
Part of the five-volume
Networtdng Services Developer's Reference Ubrary

The essential reference set for developing with
Microsoft® Windows® networking technologies

David Iseminger
Series Ed itor

Routing

David Iseminger
Series Editor

Routing

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Networking Services Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0993-4
1. Application Software--Development. 2. Microsoft Windows (Computer file). 3.

Computer networks. I. Title.
QA76.76.A65 184 2000
005.4'4769--dc21 00-020241

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Active Directory, BackOffice, FrontPage, Microsoft,
Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual
J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002787

Acknowledgements
First, thanks to Ben Ryan at Microsoft Press for continuing to share my enthusiasm
about the series. Many thanks to Ben and Steve Guty for also managing the business
details associated with publishing this series. We're just getting started!

Wendy Zucker again kept step with the difficult and tight schedule at Microsoft Press
and orchestrated things in the way only project editors can endure. John Pierce was
also instrumental in seeing the publishing process through completion, many thanks to
both of them. The cool cover art that will continue through the series is directed by Greg
Hickman-thanks for the excellent work. I'm a firm believer that artwork and packaging
are integral to the success of a project.

Thanks also to the marketing team at Microsoft Press that handles this series: Cora
McLaughlin and Cheri Chapman on the front lines and Jocelyn Paul each deserve
recognition for their coordination efforts with MSDN, openness to my ideas and
suggestions, creative marketing efforts, and other feats of marketing ingenuity.

On the Windows SDK side of things, thanks again to Morgan Seeley for introducing me
to the editor at Microsoft Press, and thereby routing this series to the right place.

Thanks also to Margot (Maley) Hutchison for doing all those agent-ish things so well.

Author's Note In Part 2 you'll see some code blocks that have unusual margin
settings, or code that wraps toa subsequent line. This is a result of physical page
constraints of printed material; the original code in these places was indented too much
to keep its printed form on one line. I've reviewed every line of code in this library in an
effort to ensure it reads as well as possible (for example, modifying comments to keep
them on one line, and to keep line-delimited comment integrity). In some places,
however, the word wrap effect couldn't be avoided. As such, please ensure that you
check closely if you use and compile these examples.

v

. Contents

Acknowledgements .. iii

Part 1

Chapter 1: Getting Around in the Networking Services Library ... 1
How the Networking Services Library Is Structured .. 2 .
How the Networking Services Library Is Designed ... 3

Chapter 2: What's In This Volume? .. 5
Router Administration•.. 6

Message Ihformation Base (MIB) ... 6

Packet Filtering ... 6

Routing Protocol Interface .. 6

Routing Table Manager (RTM) v1 .. 7

Routing Table Manager (RTM) v2 ... , 7

Multicast Group Manager ... , 7

Chapter 3: Using Microsoft Reference Resources .. 9
. The Microsoft Developer NetworkJ 0

Comparing MSDN with MSDN Online ... 11

MSDN Subscriptions ... 13

MSDN Library Subscription .. 13

MSDN Professional Subscription ... 14

MSDN Universal Subscription .. 14

Purchasing an MSDN Subscription .. 14

Using MSDN .. ; 15

Navigating MSDN ... 16

Quick Tips , .. 18

Using MSDN OnHne ... 20

Navigating MSDN Ohline ... 22

MSDN Online Features .. 23

MSDN Online Registered Users .. 29

The Windows Programming Reference Series .. 30.

vi Volume 5 Routing

Chapter 4: Finding the Developer Resources You Need .. 31
Developer Support ... : 31

Online Resources ... 33

Internet Standards ... , .. 34

Learning Products .. 35

Conferences ... 37

Other Resources .. 37

Chapter 5: Understanding Routing Technologies .. 39
Routing Basics ... 40

Basic Routing Terminology ... 40

Routing Table ... 40

Hop Count .. 41

Default Gateway .. 42

Convergence .. 42

Flooding ... 43

Routing Loops .. 43

Black Holes .. 43

Static Routing vs. Dynamic Routing ... 43

Construction of a Frame .. 44

Routable Protocols ... 46

Routing Protocols .. 48

IGPs vs. EGPs .. 49

RIP and RIP II for IP ... 51

RIP for IPX ... 53

OSPF .. 54

The Overall View of OSPF ... 56

The Local View of OSPF .. 58

Communication Between OSPF Routers .. 60

Part 2

Chapter 6: Router Administration ~ .. 63
Router Administration Overview .. 63

Components of the Router Architecture ... 63

Router Initialization ... 64

Router Management Functions ... 65

The Different Classes of Router Management Functions 65

Contents vii

Ensuring that Changes Occur Immediately and are Persistent 65

Using Router Administration and Configuration Functions Remotely 66

Router Interface Functions ... 66

Router Manager (Transport) Functions .. 67

Router Manager Client (InterfaceTransport) Functions ... 67

Mprlnfo Functions and Information Headers ... 67

Managing Router Clients and Interfaces ... 68

Changing Interface-Specific and Global Information for Clients 68

Deleting a Client from an Interface ... 69

Router Administration Reference ... 69

Router Administration Functions ... 69

Router Configuration Functions ... 1 09

Router Administration Structures .. 149

Router Administration Enumerated Types .. 167

Unreachability Reasons ... 169

Information Header Functions ... 170

Functions That Use Information Blocks ... 180

Router Information Structures ... 180

I P Information Structures .. 180

IPX Information Structures ... 180

Router Information Enumeration Types .. 183

Chapter 7: Management Information Base (MIB) ... 185
MIB Overview ... 185

Using the MIB API .. 186

Obtaining the MIB II Interfaces Table .. 186

MIB Reference .. 187
MI B Functions ... 187

MIB Structures ... 201

Transport and Protocol Constants .. 235

Chapter 8: Packet Filtering .. 239
Packet Filtering Functions .. 239

Packet Filtering Structures ... 255

Packet Filtering Enumerated Types ... 262

Chapter 9: Routing Protocol Interface .. 265
Routing Protocol I nterface Overview .. 265

Adapters ... 265

Interfaces ... 265

viii Volume 5 Routing

Static and Autostatic Routes ... 265

Routing Protocol Interface Reference .. 266

Routing Protocol Interface Functions .. 266
Routing Protocol Interface Structures ... 297

Support Functions Reference .. 304

I PX Service Table Management ... 316

Service Table Management Functions .. 316

Service Table Management Structures ... 327

Chapter 10: Routing Table Manager Version 1 ... 329
Routing Table Manager Version 1 Overview ... 329

Route Tables and Route Table Entries ... 329

Changes to the Best Route to a Network ... 330

Routing Table Manager Version 1 Reference ... 330

Routing Table Manager Version 1 Functions ... 330

Routing Table Manager Version 1 Structures ... 351

Routing Table Manager Version 1 Protocol Family Identifiers 360

Chapter 11: Routing Table Manager Version 2 ... 361
Routing Table Manager Version 2 Overview ... 361

Components of the Routing Table Manager Architecture .. 361

Router .. 361

Client .. 361

Router Manager ... 362

Routing Protocol ... c 362

Forwarder ... 362

Routing Table Manager ... 363

Routing Table Manager Instance ... 363

Address Family .. 363

Routing Table ... 364

View ... 364

Routing Table Entries .. 364

How the Routing Table Manager Architecture Fits Together 366

RTMv2 Programming Issues .. 368

Registering with the Routing Table Manager .. 368

Enumerating Registered Entities .. c 369

Using Methods ; .. 369

Using Opaque Pointers ... 370

Accessing Opaque Pointers .. 371

Marking Routes for the Hold-Down State ... 371

Contents ix

Adding Routes ... 371

Retrieving Route Information ... 372
Updating Routes .. 373

Updating Routes Using RtmAddRouteToDest ... 373

Updating Routes In Place Using RtmUpdateAndUnlockRoute 373

Receiving Notification of Changes .. 374

Registering for Change Notification ... 375

Retrieving Changes .. 376

Retrieving Change Status and Ignoring Changes .. 376

Working with Next Hops .. 376

Enumerating Routing Table Entries .. 377

Finding Specific Information in the Routing Table ... 377

Retrieving Information .. 377

Maintaining Client-Specific Lists .. 379
Managing Handles .. 379

Using Routing Table Manager Version 2 ... 380

Register with the Routing Table Manager ... 380

Enumerate the Registered Entities ... 380

Obtain and Call the Exported Methods for a Client.. ; 381

Register for Change Notification ... 383

Add and Update Routes Using RtmAddRouteToDest .. 384

Update a Route In Place Using RtmUpdateAndUnlockRoute 386

Use the Route Hold-Down State ; .. 387

Enumerate All Destinations ... 389

Enumerate All Routes ... 391

Search for the Best Route ... 392

Search for Routes Using RtmGetMostSpecificDestination and
RtmGetLessSpecificDestination .. 393

Access the Opaque Pointers in a Destination ... 394

Use a Client-Specific Route List .. ; 396

Use the Event Notification Callback .. 398

Routing Table Manager Version 2 Reference402

Routing Table Manager Version 2 Functions402

Routing Table Manager Version 2 Callbacks .. 477

Routing Table Manager Version 2 Structures .. .480

Routing Table Manager Version 2 Macros492

Routing Table Manager Version 2 Constants ... :.500

Routing Table Manager Version 2 Enumerations ... 506

Routing Table Manager Version 2 Simple Data Types ... 506

x Volume 5 Routing

Chapter 12: Multicast Group Manager ... 509
Multicast Group Manager Overview ... 509

Components of the Multicast Architecture .. 510

Router .. 510

Multicast Routing Protocol ... 51 0

Interface ... 510

Multicast Source .. 511

Multicast Group .. 511

(s, g), (*, g), and (*, *) Pairs ... 511

Destination ... 511

Next Hop , ... 511

Multicast Group Manager Client .. 511

How the Multicast Architecture Fits Together .. 512

Using the Multicast Group Manager .. 514

MGM Programming Issues ... 515

Callbacks ... 515

Routing Protocol Callbacks .. 515

IGMP Enable and Disable Callbacks ... 517

Multicast Routing Protocol Scenario ... 517

Multicast Routing Protocol Startup Tasks .. 517

Multicast Routing Protocol Operational Tasks ... 518

Multicast Routing Protocol Shutdown Tasks ... 520

Administration Program Scenario ... 520

Enumerating Groups .. 520

Enumerating MFEs .. 521

Multicast Group Manager Reference ... 523

Multicast Group Manager Functions ... 523

Multicast Group Manager Callbacks ... 547

Multicast Group Manager Structures ; .. 561

Multicast Group Manager Enumerations .. 564

Part 3

Index: Networking Services Programming Elements - Alphabetical Listing 567

Part 1

CHAPTER 1

Getting Around in the Networking
Services Library

Networking is pervasive in this digital age in which we live. Information at your fingertips,
distributed computing, name resolution, and indeed the entire Internet-the advent
of which will be ascribed to our generation for centuries to come-imply and require
networking. Everything that has become the buzz of our business and personal lives,
including e-mail, cell phones, and Web surfing, is enabled by the fact that networking
has been brought to the masses (and we've barely scraped the beginning of the trend).
You, the network-enabled Windows application developer, need to know how to lasso
this all-important networking services capability and make it a part of your application.
You've come to the right place.

Networking isn't magic, but it can seem that way to those who aren't accustomed to
it (or to the programmer who isn't familiar with the technologies or doesn't know how to
make networking part of his or her application). That's why the Networking Services
Developer'S Reference Library isn't just a collection of programmatic reference
information; it would be only half-complete if it were. Instead, the Networking Services
Library is a collection of explanatory and reference information that combine to provide
you with the complete set that you need to create today's network-enabled Windows
application.

The Networking Services Library is the comprehensive reference guide to network
enabled application development. This library, like all libraries in the Windows
Programming Reference Series (WPRS), is designed to deliver the most complete,
authoritative, and accessible reference information available on a given subject of
Windows network programming-without sacrificing focus. Each book.in each library is
dedicated to a logical group of technologies or development concerns; this approach has
been taken specifically to enable you to find the information you need quickly, elficiently,
and intuitively.

In addition to its networking services development information, the Networking Services
Library contains tips designed to make your programming life easier. For example,
a thorough explanation and detailed tour of MSDN Online is included, as is a section
that helps you get the most out of your MSDN subscription. Just in case you don't have
an MSDN subscription, or don't know why you should, I've included information about
that too, including the differences between the three levels of MSDN subscription, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

2 Volume 5 Routing

To ensure that you don't get lost in all the information provided in the Networking
Services Library, each volume's appendixes provide an all-encompassing programming
directory to help you easily find the particular programming element you're looking for.
This directory suite, which covers all the functions, structures, enumerations, and other
programming elements found in network-enabled application development, gets you
quickly to the volume and page you need, saving you hours of time and bucketsful
of frustration.

How the Networking Services Library Is Structured
The Networking Services Library consists of five volumes, each of which focuses on
a particular aspect of network programming. These programming reference volumes
have been divided into the following:

• Volume 1: Winsock and QOS

• Volume 2: Network Interfaces and Protocols

• Volume 3: RPC and WNet

• Volume 4: Remote Access Services

• Volume 5: Routing

Dividing the Networking Services Library into these categories enables you to quickly
identify the Networking Services volume you need, based on your task, and facilitates
your maintenance of focus for that task. This approach enables you to keep one
reference book open and handy, or tucked under your arm while researching that aspect
of Windows programming on sandy beaches, without risking back problems (from toting
around all 3,000+ pages of the Networking Services Library) and without having to
shuffle among multiple less-focused books.

Within the Networking Services Library-and in fact, in all WPRS Libraries-each
volume has a deliberate structure. This per-volume structure has been created to further
focus the reference material in a developer-friendly manner, to maintain consistency
within each volume and each Library throughout the series, and to enable you to easily
gather the information you need. To that end, each volume in the Networking Services
Library contains the following parts:

• Part 1: Introduction and Overview

• Part 2: Guides, Examples, and Programmatic Reference

• Part 3: Intelligently Structured Indexes

Chapter 1 Getting Around in the Networking Services Library 3

Part 1 provides an introduction to the Networking Services Library and to the WPRS
(what you're reading now), and a handful of chapters designed to help you get the most
out of networking technologies, MSDN, and MSDN Online. MSDN and WPRS Libraries
are your tools in the developer process; knowing how to use them to their fullest will
enable you to be more efficient and effective (both of which are generally desirable
traits). In certain volumes (where appropriate), I've also provided additional information
that you'll need in your network-enabled development efforts, and included such
information as concluding chapters in Part 1. For example, Volume 3 includes a chapter
that explains terms used throughout the RPC development documentation; by putting
it into Chapter 5 of that volume, you always know where to go when you have a question
about an RPC term. Some of the other volumes in the Networking Services Library
conclude their Part 1 with chapters that include information crucial to their volume's
contents, but I've been very selective about including such information. Publishing
constraints have limited the amount of information I can provide in each volume
(and in the library as a whole), so I've focused on the priority: getting you the most
useful information possible within the number of pages I have to work with.

Part 2 contains the networking reference material particular to its volume. You'll notice
that each volume contains much more than simple collections of function and structure
definitions. A comprehensive reference resource should include information about how
to use a particular technology, as well as definitions of programming elements.
Consequently, the information in Part 2 combines complete programming element
definitions with instructional and explanatory material for each programming area.

Part 3 is a collection of intelligently arranged and created indexes. One of the biggest
challenges of the IT professional is finding information in the sea of available resources
and network programming is probably one of the most complex and involved of any
development discipline. In order to help you get a handle on network programming
references (and Microsoft technologies in general), Part 3 puts all such information into
an understandable, manageable directory (in the form of indexes) that enables you
to quickly find the information you need.

How the Networking Services Library Is Designed
The Networking Services Library (and all libraries in the WPRS) is designed to deliver
the most pertinent information in the most accessible way possible. The Networking
Services Library is also designed to integrate seamlessly with MSDN and MSDN Online
by providing a look and feel consistent with their electronic means of disseminating
Microsoft reference information. In other words, the way a given function reference
appears on the pages of this book has been designed specifically to emUlate the way
that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you to use the
tools and get the ongoing information you need to create quality programs. Providing a
"common interface" among reference resources allows your familiarity with the
Networking Services Library reference material to be immediately applied to MSDN or
MSDN Online, and vice-versa. In a word, it means consistency.

4 Volume 5 Routing

You'll find this philosophy of consistency and simplicity applied throughout WPRS
publications. I've designed the series to go hand-in-hand with MSDN and MSDN Online
resources. Such consistency lets you leverage your familiarity with electronic reference
material, then apply that familiarity to enable you to get away from your computer if you'd
like, take a book with you, and-in the absence of keyboards and e-mail and upright
chairs-get your programming reading and research done. Of course, each of the
Networking Services Library volumes fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Networking Services Library provide you with a comprehensive,
presharpened toolset to build compelling Windows applications.

CHAPTER 2

What's In This Volume?

Volume 5 of the Networking Services Developer's Reference Library is a complete
treatment of the routing capabilities built into RRAS.

5

The routing components of RRAS make it possible for a computer running Windows NT
Server 4.0 or Windows 2000 Server to function as a network router. (RRAS also
provides the next generation of server functionality for the Remote Access Service
(RAS) for Windows. See Volume 4 for more information about the remote access
capabilities of RRAS.)

This volume also has information about how you can use development resources such
as MSDN, MSDN Online, and developer support resources. This helpful information
is found in various chapters in Part 1, and those chapters are common to all WPRS
volumes. By including this information in each library and in each volume, a few goals of
the WPRS are achieved:

• I don't presume you have bought, or expect you to have to buy another WPRS Library
to get access to this information. Maybe your primary focus is network programming,
and your budget doesn't allow for you to purchase the Active Directory Developer's
Reference Library. Since I've included this information in this library, you don't have
to ... because that useful developer resource information is included in this library,
as well .

• You can access this important and useful information regardless of which volume you
have in your hand. You don't have to (nor should you have to) fumble with another
physical book to refer to information about how to get the most out of MSDN, or where
to get support for questions you have about a particular Windows development
problem you're having.

• Each volume becomes more useful, more portable, and more complete in and
of itself. This goal of the WPRS makes it easier for you to grab one of its libraries'
volumes and take it with you, rather than feeling like you must bring multiple volumes
with you to have access to the library's important overview and usability information.

These goals have steered this library's content and choices of included technologies;
I hope you find its information is useful, portable, a good value, and as accessible as
it can be.

Part 2 of this volume provides the following routing information.

6 Volume 5 Routing

Router Administration
The router administration API enables developers to create applications that manage the
router service on a computer running Microsoft Windows 2000 or running Microsoft
Windows NT 4.0 with the RRAS add-on installed. (Note that not all API functions are
supported on both of these platforms.) The following topics are covered in this volume,
and provide detailed information about router administration:

• Components of the Router Architecture

• Router Initialization

• Router Management Functions

• Router Interface Functions

• Router Manager (Transport) Functions

• Router Manager Client (Interface Transport) Functions

• Mprlnfo Functions and Information Headers

• Managing Router Clients and Interfaces

Message Information Base (MIB)
The routing capabilities built into RRAS include the Management Information Base (MIB)
API, which makes it possible to query and set the values of MIB variables exported
by one of the router managers or any of the routing protocols that the router managers
service. By using this API, the router supports the Simple Network Management
Protocol (SNMP).

Packet Filtering
Packet Filtering enables the developer to create and manage input and output filters for
IP packets. Each IP adapter interface can be associated with one or more filters. Filters
can include source and destination addresses, address mask and port, and protocol
identifiers.

Routing Protocol Interface
This chapter that describes the Routing Protocol Interface and explains how
the integration of third-party routing protocols into RRAS is possible. RRAS defines the
interface between the router manager and the Dynamic-Link Library (DLL) for routing
protocols, and exposes that interface through routing protocol interface programming
capabilities.

Chapter 2 What's In This Volume? 7

Routing Table Manager (RTM) v1
The Routing Table Manager (RTM) is a central repository of routing information for all
routing protocols that operate under RRAS. The RTM provides routing information to all
interested components, such as routing protocols, management agents, and monitoring
agents. The RTM also determines the best route to each destination network known to
the routing protocols. It determines this route based on routing protocol priorities and on
metrics associated with the routes, then passes the best-route information on to the
forwarders and back to the routing protocols,

Routing Table Manager (RTM) v2
The Routing Table Manager Version 2 (RTMv2) API is a feature of Windows 2000 that
you can use to write routing protocols that interact with the routing table managers.
RTMv2 is not available for Windows NT 4.0. Additionally, RTMv2 cannot be used for IPX
routing protocols that run on Windows NT 4.0 or Windows 2000. If you are using IPX or
writing routing protocols for Windows NT 4.0, you must use the Routing Table Manager
Version 1 (RTMv1) API.

Multicast Group Manager
The Multicast Group Manager (MGM) API enables developers to use the multicast
routing capabilities of Windows 2000 Server. Developers can write routing protocols that
join and leave multicast groups, as well as administrative applications that track group
membership. Routing protocol developers can use MGM to develop callback functions
to communicate group membership information directly to the routing protocol.

CHAPTER 3

Using Microsoft Reference
Resources

9

Keeping current with all the latest information on the latest networking technology is like
trying to count the packets going through routers at the MAE-WEST Internet service
exchange by watching their blinking activity lights: It's impossible. Often times,
application developers feel like those routers might feel at a given day's peak activity; too
much information is passing through them, none of which is being absorbed or passed
along fast enough for their boss' liking.

For developers, sifting through all the available information to get to the required
information is often a major undertaking, and can impose a significant amount of
overhead upon a given project. What's needed is either a collection of information that
has been sifted for you, shaking out the information you need the most and putting that
pertinent information into a format that's useful and efficient, or direction on how to sift
the information yourself. The Networking Services Developer's Reference Library does
the former, and this chapter and the next provide you with the latter.

This veritable white noise of information hasn't always been a problem for network
programmers. Not long ago, getting the information you needed was a challenge
because there wasn't enough of it; you had to find out where such information might be
located and then actually get access to that location, because it wasn't at your fingertips
or on some globally available backbone, and such searching took time. In short, the
availability of information was limited.

Today, the volume of information that surrounds us sometimes numbs us; we're
overloaded with too much information, and if we don't take measures to filter out what
we don't need to meet our goals, soon we become inundated and unable to discern
what's "white noise" and what's information that we need to stay on top of our respective
fields. In short, the overload of available information makes it more difficult for us to find
whq.t we really need, and wading through the deluge slows us down.

This fact applies equally to Microsoft's reference material, because there is so much
information that finding what you need can be as challenging as figuring out what to do
with it once you have it. Developers need a way to cut through what isn't pertinent to
them and to get what they're looking for. One way to ensure you can get to the
information you need is to understand the tools you use; carpenters know how to use
nail-guns, and it makes them more efficient. Bankers know how to use ten-keys, and it
makes them more adept. If you're a developer of Windows applications, two tools you
should know are MSDN and MSDN Online. The third tool for developers-reference
books from the WPR~an help you get the most out of the first two.

10 Volume 5 Routing

Books in the WPRS, such as those found in the Networking Services Developer's
Reference Library, provide reference material that focuses on a given area of Windows
programming. MSDN and MSDN Online, in comparison, contain all of the reference
material that all Microsoft programming technologies have amassed over the past few
years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around,
finding what you need (even though it's in there, somewhere) can be frustrating, time
consuming, and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online ana enable you to use each of them to the fullest of their capabilities. Also, other
Microsoft reference resources are investigated, and by the end of the chapter, you'll
know where to go for the Microsoft reference information you need (and how to quickly
and efficiently get there).

The Microsoft Developer Network
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What is the difference between the three levels of MSDN subscriptions?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked any of these questions, then lurking somewhere in the back of your
thoughts has probably been a sneaking suspicion that maybe you aren't getting the most
out of MSDN. Maybe you're wondering whether you're paying too much for too little, or
not enough to get the resources you need. Regardless, you want to be in the know and
not in the dark. By the end of this chapter, you'll know the answers to all these questions
and more, along with some effective tips and hints on how to make the most effective
use of MSDN and MSDN Online.

Chapter 3 Using Microsoft Reference Resources 11

Comparing MSDN with MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD or DVD.

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best possible presentation of material. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online because it gets to its subscribers
in the form of CDs or DVDs that come in the mail. However, MSDN can sit in your
CD/DVD drive (or on your hard drive), and isn't subject to Internet speeds or failures.
Also, MSDN has a software download feature that enables subscribers to automatically
update their local MSDN content over the Internet, as soon as it becomes available,
without having to wait for the update CD/DVD to come in the mail. The interface with
which MSDN displays its material-which looks a whole lot like a specialized browser
window-is also linked to the Internet as a browser-like window. To further coordinate
MSDN with the immediacy of the Internet, MSDN Online has a section of the site
dedicated to MSDN subscribers that enable subscription material to be updated (on their
local machines) as soon as it's available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based Web sites. MSDN Online also
has a customizable interface (somewhat similar to MSN.com) that enables visitors to
tailor the information that's presented up6n visiting the site to the areas of Windows
development in which they are most interested. However, MSDN Online, while full of
up-to-date reference material and extensive online developer community content,
doesn't come with Microsoft product software, and doesn't reside on your local machine.

Because it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

12 Volume 5 Routing

Figure 3-1: The similarities and differences in coverage between MSDN and
MSDN Online.

One feature you'll notice is shared between MSDN and MSDN Online is the interface
they are very similar. That's almost certainly a result of attempting to ensure that
developers' user experience with MSDN is easily associated with the experience had on
MSDN Online, and vice-versa.

Chapter 3 Using Microsoft Reference Resources 13

Remember, too, that if you are an MSDN subscriber, you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and even provides an estimate for what each subscription level costs.

The three subscription levels for MSDN are: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Microsoft Visual Studio,
Microsoft Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mailsfrom Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

14 Volume 5 Routing

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4 Server and Workstation.

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The Microsoft BackOffice test platform, which includes all sorts of Microsoft product
software incorporated in the BackOffice family, each with a special 1 O-connection
license for use in the development of your software products

• Additional development tools, such as Office Developer, Microsoft FrontPage, and
Microsoft Project

." Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

Chapter 3 Using Microsoft Reference Resources 15

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better dea~nd in most cases, the
deal is in fact much better. Also, if your organization is using lots of Microsoft products,
whether or not MSDN is a part of that group, ask your purchasing department to look into
the Microsoft Open License program; the Open License program gives purchasing
breaks for customers who buy lots of products. Check out www.microsoft.com//icensing
for more details. Who knows, if your organization qualifies you could end up getting an
engraved pen from your purchasing department, or if you're really lucky maybe even a
plaque of some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions.

As an added bonus for owners of this Networking Services Developer's Reference
Library, in the back of Volume 1, you'll find a $200 rebate good toward the purchase of
an MSDN Universal subscription. For those of you doing the math, that means you
actually make money when you purchase the Networking Services Developer's
Reference Library and an MSDN Universal subscription. With this rebate, every
developer in your organization can have the Networking Services Developer's Refence
Library on their desk and the MSDN Universal subscription on thierdesktop, and still
come out $50 ahead. That's the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an instaliable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick .
but useful guidance on getting the most out of the interface to present and naVigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end· to MSDN reference material.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

16 Volume 5 Routing

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains, over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Welcome to the October 1999
release ofthe MSDN Library.

The MSDN Library is the essential reference for developers, with
more than a gigabyte of technical programming Information,
including sample code, documentation, technical articles, the
Microsoft Developer Knowledge Base, and anything else you
might need to develop solutions that implement Microsoft
technology.

·'Man6 ;i'!'¥Mi4iW-
Dr. GUI introduces the October 1999 release of the MSDN Library. The
good doctor examines new Library content, including articles and
dooumentation about Windows 2000, Windows CE, Office 2000, and
databases and data access, plus several new technical article sample
suites.

M,R'4"·';;'51··"4.
Read through this document for summaries of what's new and follow
the links to the new titles.

Figure 3-2: The MSDN interface.

Basic navigation through MSDN is simple and is a lot like navigating through Microsoft
Windows Explorer and its folder structure. Instead of folders, MSDN has books into
which it organizes its topics; expand a book by clicking the + box to its left, and its
contents are displayed with its nested books or reference pages, as shown in Figure 3-3.
If you don't see the left pane in your MSDN viewer, go to the View menu and select
Navigation Tabs and they'll appear.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

MSDN Library - October 1988
[±] • Welcome to the MSDN Library
[±] .. Visual Studio 6.0 Documentation
!±l .. Office Developer Documentation
ttl • Windows: CE Documentation
B I!2l Platform SDK

[±] .. Getting Started
it] .. Design Strategies: and Standards:
ttl • Base Services
ffi • Component Selllices f:B. Data Access Services
1:£] • Graphics and Multimedia Services
[±] ., Management Services

ffi .. Messaging and Collaboration Services
8 IJ2I Networking and Directol-'" Services

Active Directory, ADSI, and Directory Services
Common Internet File System Protocol
Fax Service
Internet Protocol Helper

Chapter 3 Using Microsoft Reference Resources 17

MADCAP, or Multicast Address
Dynamic Client Allocation
Protocol, is a technology
aimed at making it easy for
clients to renew and release
Multicast addresses, enabling
clients to dynamically
"connect" and "disconnect"
from multicast network
transmissions.

The development of
standards for MADCAP is
ongoing, and falls under the
Multicast Address Allocation
(malloc) Working Group at the
IETF.

Where Applicable

Ov'erv;ew

General
information
about
MADCAP.

Reference

Documentation
of MADCAP
functions and
structures.

Feedback"

Make error
reports and
feature
requests
directly to
Microsoft.

Figure 3-3: Basic navigation through MSDN.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry. This enables you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following predefined subsets (these subsets are subject to
change, based on documentation updates and TOC reorganizations):

Entire Collection Platform SDK, Networking Services
MSDN, Books and Periodicals Platform SDK, Security
MSDN, Content on Disk 2 only Platform SDK, Tools and Languages

(CD only - not in DVD version) Platform SDK, User Interface Services

MSDN, Content on Disk 3 only Platform SDK, Web Services
(CD only - not in DVD version) Platform SDK, Win32 API

MSDN, Knowledge Base Repository 2.0 Documentation
MSDN, Technical Articles and Visual Basic Documentation

Backgrounders Visual C++ Documentation

18 Volume 5 Routing

Office Developer Documentation
Platform SDK, BackOffice
Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services
Platform SDK, Getting Started
Platform SDK, Graphics and

Multimedia Services
Platform SDK, Management Services
Platform SDK, Messaging and

Collaboration Services

Visual C++, Platform SDK and
WinCE Docs

Visual C++, Platform SDK, and
Enterprise Docs

Visual FoxPro Documentation
VisuallnterDev Documentation
Visual J++ Documentation
Visual SourceSafe Documentation
Visual Studio Product Documentation
Windows CE Documentation

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's ADSI, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset by choosing the View menu, and then selecting the
Define Subsets menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

You can also delete entire subsets from the MSDN installation. Simply select the subset
you want to delete from the Select Subset To Display drop-down box, and then click the
nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the predefined
subsets, and filters the information available in the four Navigation Tabs, just like the
predefined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure.

Chapter 3 Using Microsoft Reference Resources 19

This is easy to fix. Simply click the Locate button in the navigation toolbar and all will be
synchronized.

Component Services
Data Access Services
Graphics and Multimedia
Management Services

Figure 3-4: The Define Subsets window.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the volume of information available these days can sometimes make it difficult to getour
work done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box shows
only a few subsets at a time (making it difficult to get a grip on available subsets, I think).
Underscores come before letters in alphabetical order, so if you use an underscore on all
of your defined subsets, you get them placed at the front of the Active Subset listing of
available subsets. Also, by using an underscore, you can immediately see which subsets
you've defined, and which ones come with MSDN-it saves a few seconds at most, but
those seconds can add up.

20 Volume 5 Routing

Using MSDN Online
MSDN underwent a redesign in December of 1999, aimed at streamlining the
information provided, jazzing things up with more color, highlighting hot new
technologies, and various other improvements. Despite its visual overhaul, MSDN Online
still shares a lot of content and information delivery similarities with MSDN, and those
similarities are by design; when you can go from one developer resource to another and
immediately work with its content, your job is made easier. However, MSDN Online is
different enough that it merits explaining in its own right-it's a different delivery medium,
and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used MSN's home page before (www.msn.com). you're familiar with the fact
that you can customize the page to your liking; choose from an assortment of available
national news, computer news, local news, local weather, stock quotes, and other
collections of information or news that suit your tastes or interests. You can even insert a
few Web links and have them readily accessible when you visit the site. The MSDN
Online home page can be customized in a similar way, but its collection of headlines,
information, and news sources are all about development. The information you choose
specifies the information you see when you go to the MSDN Online home page, just like
the MSN home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Personalize This Site button near
the top of the page, or you can go there directly by pOinting your browser to
msdn.microsoft.comlmsdn-onlinelstart/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from (many
more options can be found when you scroll down through available technologies). If
you're interested in Web development, you can select the checkbox at the left of the
page next to Standard Web Development, and a predefined subset of Web-centered
technologies is selected. For technologies centered more on Network Services, you can
go through and choose the appropriate technologies. If you want to choose all the
technologies in a given technology group more quickly, click the Select All button in the
technology's shaded title area.

You can also choose which tab is selected by default in the home page that MSDN
Online presents to you, which is convenient for dropping you into the category of MSDN
Online information that interests you most. All five of the tabs available on MSDN
Online's home page are available for selection; those tabs are the following:

• Features

• News

• Columns

• Technical Articles

• Training & Events

Select or dear the check boxes
below to choose a pre-set
template of information for that
technology

C Database
DevelopmenVAdministration

C Database Web Development

C OfficeNBA Developer

C Standard Web Development

C Windows Development

Chapter 3 Using Microsoft Reference Resources 21

Personalize the information that appears on your MSON Online home page.

Select your preferences from the sections below, then return here and choose Save. (Yes, we
know it's a lot of choices, There's a lot of information on this site.) You can update your choices
at any time by vis'iting this Personalization page,

Figure 3-5: The MSDN Online Personalize Page.

Once you've defined your profile-that is, customized the MSDN Online content you
want to see-MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online's home page, with the default tab you've chosen
displayed upon loading of the MSDN Online home page.

Finally, if you want your profile to be available to you regardless of which computer
you're using, you can direct MSDN Online to store your profile. Storing a profile for
MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of storing your profile is available
when you customize your MSDN Online home page (and can be done any time
thereafter). The storing of a profile, however, requires that you become a registered
member of MSDN Online. More information about becoming a registered MSDN Online
user is provided in the section titled MSDN Online Registered Users.

22 Volume 5 Routing

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the information
you're most interested in, navigating through MSDN Online is easy. A banner that sits
just below the MSDN Online logo functions as a navigation bar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

I±l MSDN Training

I±l Products
I±l Partnering

I±l International
I±l My Links

• IT Professionals

~ MSDN Flash
(e·newsletter)

liE! Send Us
Your Feedback

IiIll Site Guide

Learn about the new features, bug fixes! and other
improvements to the Microsoft XML parser coming in
Windows 2000) in this column by Charlie Heinemann of
the Microsoft XML team. Charlie also explains why the
new ersion of the parser is better equipped for ser er

use.

T Ne l I:; ! c alumns ! Technlcsl 'thcbicles } Tralmng & Events

Tune in to the MSDN Show

XMl

Vi!iual Studio

DLL Help
Database

Learn about new technologies coming out of Microsoft in MSDN Online's

first streaming media show, This show's topics include XML and BizTalk,

Figure 3-6: The MSDN Online Navigation Bar with Its Drop-Down Menus.

Following is a list of available menu categories, which groups the available sites and
features within MSDN Online:

Home

Magazines

Libraries

Developer Centers

Resources

Downloads

Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Chapter 3 Using Microsoft Reference Resources 23

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
information about technologies that you've indicated you're interested in reading about.

Magazines is a collection of columns and articles that comprise MSDN Online's
magazine section, as well as online versions of Microsoft's magazines such as MSJ,
MIND, and the MSDN Show (a Webcast feature introduced with the December 1999
remodeling of MSDN Online). The Magazines featureofMSDN Online can be linked to
directly at msdn. microsoft. com/resources/magazines. asp. The Magazines home page is
shown in Figure 3-7.

\iQices ..

MSJ II>

MIND fI'

MSPN Ne' spaper to

MSDN Show 4>

Magazines
Print and online publications for cM'rrent information on all types of development.

MS} is the magazine that brings developers monthly features on the most important tools and
technologies such as XML, Windows 2000, ATL! MFC, Windows eE) DirectX J C++! as well as monthly
columns on visual programming, Win 32) COM! debugging! security! and more,

Microsoft Internet Developer (MIND)

MIND is the m,onthly magazine for Internet and intranet developers that covers tools and technologies
including XML, Visual Basic} scripting) ADO) SQL Server) lIS) and anything else a developer might need
to build an interactive or e~commerce site.

MSDN News

The MSDN News is a printed newspaper) published bi~monthly for the developer audience, The
newspaper features new technical articles and ongoing columns) including the popular "Ask Dr. GUI/' as
well as a regular series of posters. Subscriptions are free to MSDN subscribers.

The MS[)NShow

This regular Webcast brings you inside Microsoft to talk with developers and planners about our hottest
new technologies. The segments range from broad overviews'to down-dnd-dirty coding, with some
news and entertainment mixed in, too.

Figure 3-7: The Magazines Home Page.

For those of you familiar with the Voices feature section that formerly found its home on
the MSDN Online navigation banner, don't worry; all content formerly in the Voices
section is included the Magazines section as a subsite(or menu item, if you prefer) of
the Magazines site. For those of you who aren't familiar with the Voices subsite, you'll

24 Volume 5 Routing

find a bunch of different articles or "voices" there, each of which adds its own particular
twist on the issues that face developers. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices subsite. With the combination of columns and online
developer magazines offered in the Magazines section, you're sure to find plenty of
interesting insights.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between Windows application development and Web development.
Choosing Library from the Libraries menu takes you to a page through which you can
navigate in traditional MSDN fashion, and gain access to traditional MSDN reference
material. The Library home page can be linked to directly at msdn.microsoft.comllibrary.
Choosing Web Workshop takes you to a site that enables you to navigate the Web
Workshop in a slightly different way, starting with a bulleted list of start points, as shown
in Figure 3-8. The Web Workshop home page can be linked to directly at
msdn. microsoft. comlworkshop.

ESSENTIALS ..

Component Development ..

Content & Component Delivery ..

Data Access 8< Databases ..

Design ..

DHTML, HTML & CSS ..

Languages & Development Tools ..

Messaging 8{ Collaboration ..

Networking, Protocols.
& Ddt.=. Form .. ts

Reusing Browser Technology ..

Security 8e Cryptography ..

Server Technologies ..

Stre.aming & Interactl'Je Media ..

Web Content Management ..

XML (Extensible Markup Language) '"

This section contains
information you'll need to
create components for your
Web pages:, using either
ActiveX or DHTML scriptlet
technology! as well as related
information about COM!
ActiveX Scripting, Active
Documents! and offline
browsing,

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies} including
reference material and inw
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings,
Use the index to look up
keywords} and the search
page for specific Queries.
Check our What's New page
for updates,

The MSDN Online le13m

© 1999 Microsoft Corporation. All rights reserved. Terms of IJse.

Figure 3-8: The Web Workshop Home Page.

Chapter 3 Using Microsoft Reference Resources 25

Developer Centers is a hub from which developers who are interested in a particular
area of development-such as Windows 2000, Sal Server, or XMl-can go to find
focused Web site centers within MSDN Online. Each developer center is dedicated to
providing all sorts of information associated with its area of focus. For example, the
Windows 2000 developer center has information about what's new with Windows 2000,
including newsgroups, specifications, chats, knowledge base articles, and news, among
others. At publication time, MSDN Online had the following developer centers:

• Microsoft Windows 2000

• Microsoft Exchange

• Microsoft Sal Server

• Microsoft Windows Media

• XMl

In addition to these developer centers is a promise that new centers would be added to
the site in the future. To get to the Developer Centers home page directly, link to
msdn.microsoft.comiresourcesldevcenters.asp. Figure 3-9 shows the Developer Centers
home page.

Microsoft Windo s 'l>

2000

Microsoft Exchange olio

Microsoft SQL Ser ... er ~

Microsoft WindolO}s <Ii'

Media

XML 9

MSDN Developer Centers
MSDN Developer Centers provide access to all the developer resources MSDN has to offer for specific
products and technologies, From the Developer Centers you can also find the latest links to ali the best
new technical artic1es~ downloads! samples! product news! and more, While we'll be adding more
Developer Centers to the site in the future, you can visit the following Developer Centers today:

• Microsoft Exchange

• Micros,oft SQL Server

• rl"licrosofi: \ll,1'indows 1Yied!a

• XML

Figure 3-9: The Developer Centers Home Page.

26 Volume 5 Routing

Resources is a place where developers can go to take advantage of the online forum of
Windows and Web developers, in which ideas or techniques can be shared, advice can
be found or given (through MHM, or Members Helping Members), and the MSDN User
Group Program can be joined or perused to find a forum to voice their opinions or chat
with other developers. The Resources site is full of all sorts of useful stuff, including
featured books, a DLL help database, online chats, case studies, and more. The
Resources home page can be linked to directly at msdn.microsoft.comlresources. Figure
3-10 provides a look at the Resources home page.

DLL Help D.t.base. Additional MSDN Online Resources
MSDM Online Support >Ii>

Newsgroups

Peer Journal <i

Members Helping ,.
Members

MSDN User Group e.

Program

MSDN Online Ch.ats tI

MSDN Training oil>

Event::: .,

Developer Books '"

MSDN online is about more than just technical articles and documentation. Check out the wide variety
of resources we offer to help you get your job done,

The DLL Help Database

Microsoft's DLL Help database provides a searchable database of information about file versions that
ship with a selected set of Microsoft products,

MSDN Online Support

MSDN Online Support offers a large variety of technical resources) including the Microsoft Knowledge
Base; service packs) hotfixes) and tools; and Support Web Casts) live presentations by Support
professionals.

Newsgroups

MSDN Online provides access to selected developer-focused public newsgroups through our browser
based newsreader. Microsoft's public newsgroups allow you to interact with the Microsoft developer
community and MVPs (Most Valuable Professionals). Public newsgroups are a great way to solve
technical problems} learn more about a specific product or technology! or keep up with the latest buzz
in the developer community. Microsoft employees do not monitor Microsoft's public newsgroups.

Peer Journal

Microsoft's collection of code) tips) and articles written by your developer peers.

Figure 3-10: The Resources Home Page.

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.comldownloads. The Downloads home page is shown in Figure 3-11.

Servicii! Packs. •

Samples •

Tools •

Seta and Preview •
- Releases

Images.

Sounds •

DelJelopment •
Kits (SDKs)

MSDN Subscriber •
Do nloads

Chapter 3 Using Microsoft Reference Resources 27

Welcome to the MSDN Online Downloads Area

Service Packs
Service Packs and product updates provide bug fixes and address other issues that customers have
discovered sjnc~ a productls release.

Samples·

In this section, you will find a great variety of samples that demonstrate ways to use the latest and
greatest Microsoft technologies to make your applications the best they ·can be. All samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with Ii are for users registered with Visual Studio only. To get access to these, register
your product today.

Tools

Want to tryout some great new products? Check aut our tools area, where users can download more
than 40 trial, beta, and full versions of the latest developer products.

Visit the Visual Studio Solutions Center tar sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Beta and Preview Relea.ses

Fig~re 3·11 : The Downloads Home Page .

. The Search MSDN site on MSDN Online has been improved over previous versions,
angincludes the capability to restrict searches to either library (Library or Web
Workshop), as well as other fine-tune search capabilities. The Search MSDN home page
can be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-12.

The.re are two other destinations within MSDN Online of specific interest, neither of
which is immediately reachable through the MSDN navigation bar. The first is the MSDN
Online Member Community home page, and the other is the Site Guide.

28 Volume 5 Routing

Figure 3-12: The Search MSDN Home Page.

The MSDN Online Member Community home page can be directly reached at
msdn.microsoft.comicommunity. Many of the features found in the Resources
navigation menu are actually subsites of the Community page. Of course, becoming a
member of the MSDN Online member community requires that you register (see the next
section for more details on joining), but doing so enables you to get access to Online
Special Interest Groups (OSIGs) and other features reserved for registered members.
The Community page is shown in Figure 3-13.

Another destination of interest on MSDN Online that isn't displayed on the navigation
banner is the Site Guide. The Site Guide is just what its name suggests-a guide to the
MSDN Online site that aims at helping developers find items of interest, and includes
links to other pages on MSDN Online such as a recently posted files listing, site maps,
glossaries, and other useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. comlsiteguide.

Your Membership 41

OSIGs ..

Peer Journal.

Case Studies 41-

Downloads.

Members Helping ...
Members

Offers.

Training.

MSDN Stores.

Chapter 3 Using Microsoft Reference Resources 29

Welcome to the MSDN Online Member Community
Updated October 14, 1999

With an MSDN Online membership! developers can easily access technical
information! tools! and a community of developers ready to help solve the
toughest challenges. and take advantage of member benefits,

Online Special-Interest Groups

Access the information you need! when you need it, with
(OSIGs), Web~based access to relevant newsgroups! sorted by product!

make it easy for you to get information you need to do your job, Take advantage
of special offers! find useful links! and stay up to date with the latest product and
technology news,

Members Helping Members

(MHMjis a networking and support tool that help,
developers get connected, solve problems} and gain recognition within the
developer community. Get answers Quickly by searching the MHM database for
people who can answer your technical Questions, Or, register as a volunteer and
help other developers when they need it.

Roaming Profiles

Figure 3-13: The MSDN Online Member Community Home Page.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a store profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more but a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough to register; rather than attempting to call your developer buddy
for an answer to a question (only to find out that she's on vacation for two days, and your
deadline is in a few hours), you can go to MSDN Online's Community site and ferret
through your OSIG to find the answer in a handful of clicks. Who knows; maybe your
developer buddy will begir:1 calling you with questions-you don't have to tell her where
you're getting all your answers.

30 Volume 5 Routing

There are a number of advantages to being a registered user, such as the choice to
receive newsletters right in your inbox if you want to. You can also get all sorts of other
timely information, such as chat reminders that let you know when experts on a given
subject will be chatting in the MSDN Online Community site. You can also sign up to get
newsletters based on your membership in various OSIGs-again, only if you want to. It's
easy for me to suggest that you become a registered user for MSDN Online-I'm a
registered user, and it's a great resource.

The Windows Programming Reference Series
The WPRS provides developers with timely, concise, and focused material on a given
topic, enabling developers to get their work done as efficiently as possible. In addition to
providing reference material for Microsoft technologies, each Library in the WPRS also
includes material that helps developers get the most out of its technologies, and
provides insights that might otherwise be difficult to find.

The WPRS currently includes the following libraries:

• Microsoft Win32 Developer's Reference Library

• Active Directory Developer's Reference Library

• Networking SeNices Developer's Reference Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
WPRS Libraries that cover the following material:

• Web Technologies Library

• Web Reference Library

• MFC Developer's Reference Library

• Com Developer's Reference Library

What else might you find in the future? Planned topics such as a Security Library,
Programming Languages Reference Library, BackOffice Developer's Reference Library,
or other pertinent topics that developers using Microsoft products need in order to get
the most out of their development efforts, are prime subjects for future membership in
the WPRS. If you have feedback you want to provide on such libraries, or on the WPRS
in general, you can send email towinprs@microsoft.com.

If you're sending mail about a particular library, make sure you put the name of the
library in the subject line. For example, e-mail about the Networking SeNices
Developer's Reference Librarywould have a subject line that reads "Networking
SeNices Developer's Reference Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

Networking is complex, and its resource information vast. With all the resources
available for developers of network-enabled applications, and the answers they can
provide to questions or problems that developers face every day, finding the developer
information you need can be a challenge. To address that problem, this chapter is
designed to be your one-stop resource to find the developer resources you need,
making the job of actually developing your application just a little easier.

31

Microsoft provides plenty of resource material through MSDN and MSDN Online, and the
WPRS provides a great filtered version of focused reference material and development
knowledge. However, there is a lot more information to be had. Some of that information
comes from Microsoft, some of it from the general development community,and yet
more information comes from companies that specialize in such development services.
Regardless of which resource you choose, this chapter helps you become more
informed about resources available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be reached at www.microsoft.comlsupportlcustomerldeve/op.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between.
The Web page displayed in Figure 4-1 is a good starting point from which you can
find out more information about Microsoft's support services.

32 Volume 5 Routing

Whether you are a Software or Web Developer, developing or porting
commercial applications to run on Microsoft platforms requires a unique
level of support to ensure those applications optimize both current and
emerging technologies. Microsoft provides access to a wide range of
product and application development expertise to help developers
accelerate the development cycle and produce successful applications.
This includes the Microsoft Developer Network (MSDN'M) ~ a specially
dedicated Web site packed with news! resources and technical services,

Go to Support Phone Numbers Click here

PREMIER SUPPORT FOR DEVELOPERS
For large organizations developing products using Microsoft technologies
who require a direct, proactive and managed support relationship with
Microsoft, Premier Support offers comprehensive and flexible high-end
support.

Click here for details

PROFESSIONAL SUPPORT FOR DEVELOPERS
Professional Support for Developers provides information services and
incident-based support to help create and enha.nce your software

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and
includes different packages geared toward specific Microsoft customer needs. The
packages of Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you could fall into any of these categories. To find out more
information about Microsoft's Premier Support, contact them at (800) 936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft.

Chapter 4 Finding the Developer Resources You Need 33

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

The best support option for you as a developer is the Priority Developer support. To
obtain more information about Priority Developer Support, call Microsoft at
(800) 936-3500.

Microsoft also offers a Pay-Per-Incident Support option so you can get help if there's just
one question that you must have answered. With Pay-Per-Incident Support, you call a toll
free number and provide your Visa, MasterCard, or American Express account number,
after which you receive support for your incident. In loose terms, an incident is a problem
or issue that can't be broken down into subissues or subproblems (that is, it can't be
broken down into smaller pieces). The number to call for Pay-Per-Incident Support
is (800) 936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional subscription, and provides four priority technical support incidents as part
of the MSDN Universal subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a time line you might want to rethink this approach and consider
going to MSDN Online and looking into the Community site for help with your
development question. To submit a question to Microsoft engineers online,
go to support. microsoft. comlsupportlwebresponse. asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, simply go to msdn.microsoft.comlcommunity.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
information about creating Windows applications. To find out which newsgroups are
available and how to get to them, go to support.microsoft.comlsupportlnews.

The following newsgroups will probably be of particular interest to readers of the
Microsoft Active Directory Developer's Reference Library.

• microsoft. public. win2000. *

• microsoft.public.msdn.general

• microsoft.public.platformsdk.active. directory

• microsoft.public.platformsdk.adsi

34 Volume 5 Routing

• microsoft.public.platformsdk.disLsvcs

• microsoft.public. vb. *

• microsoft. public. vc. *

• microsoft. public. vstudio. *microsoft.public.cert. *

• microsoft. public. certification. *

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to developing on Windows are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server and then use a news reader application to visit, read, or post to the
Usenet groups.

For network developers with a taste for Winsock (and OOS) programming, another site
of interest is www.stardust.com. which is chock full of up-to-date information about
Winsock development and other network-related information. There's other information
about network programming on the site, so it's worth a look.

Internet Standards
Many of the network protocols and services implemented in Windows platforms conform
to one or more Internet standards recommendations that have gone through a process
of review and comments. One especially useful source of information about such
standards, recommendations, and ongoing comment periods is the Internet Engineering
Task Force, or IETF. Rather than go into some long-winded (page-eating) explanation
of what the IETF is, does, and stands for, let me simply say that this is the place where
networking protocols and other various Internet-related services are often born,
scrutinized, recast, commented upon, and although not standardized or implemented,
recommended in a final form called a request for comment, or RFC, even though it's
essentially a standard by the time it gets to RFC stage.

If you want to get a clear technical picture of a given technology or protocol, or if you're
inclined to comment on the creation and subsequent scrutiny of such things, the place
you should go is www.ietf.org.This site can tell you all you want to know about the
goings on of the IETF, their (non-profit) mission, their Working Groups, and all the
information you might ever want about almost anything that has to do with networking
recommendations.

If you're curious about a given protocol or networking technology, and want to find an
unadulterated (albeit technical) version of its explanation, this is a great place to go.
It's a virtual hangout for the brightest people in networking, and it's worth a look or two,
even just for the sake of satisfying curiosity.

Chapter 4 Finding the Developer Resources You Need 35

Learning Products
Microsoft provides a number of products that enable developers to get versed in
the particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering series, and its
products provide comprehensive, well-structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft contains interactive tools that group books and CDs
together so that you can master the topic in question, and there are products available
based on the type of application you're developing. To obtain more information about the
Mastering series of products, or to find out what kind of offerings the Mastering series
has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors as well, such as other
publishers, other application providers that create tutorial-type content and applications,
and companies that issue videos (both taped and broadcast over the Internet)
on specific technologies. For one example of a company that issues technology-based
instructional or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as C++,
FoxPro, or Microsoft Visual Basic), for a particular operating system, or for a particular
product (such as Microsoft Sal Server or Microsoft Commerce Server) is to read the
preparation materials available for certification as a Microsoft Certified Solutions
Developer (MCSD). Before you get defensive about not having enough time to get
certified, or not having any interest in getting your certification (maybe you do-there are
benefits, you know), let me just state that the point of the journey is not necessarily to
arrive. In other words, you don't have to get your certification for the preparation
materials to be useful; in fact, the materials might teach you things that you thought you
knew well but actually didn't know as well as you thought you did. The fact of the matter
is that the coursework and the requirements to get through the certification process are
rigorous, difficult, and quite detail-oriented. If you have what it takes to get your
certification, you have an extremely strong grasp of the fundamentals (and then some) of
application programming and the developer-centric information about Windows
platforms.

You are required to pass a set of core exams to get an MCSD certification, and then
you must choose one topic from many available electives exams to complete your
certification requirements. Core exams are chosen from among a group of available
exams; you must pass a total of three exams to complete the core requirements. There
are "tracks" that candidates generally choose which point their certification in a given
direction, such as C++ development or Visual Basic development. The core exams and
their exam numbers(at the time of publication) are listed on the next page.

36 Volume 5 Routing

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Visual C++ 6.0 (70-016)

• Designing and Implementing Desktop Applications with Visual FoxPro 6.0 (70-156)

• DeSigning and Implementing Desktop Applications with Visual Basic 6.0 (70-176)

Distributed Applications Development (one required):

• DeSigning and Implementing Distributed Applications with Visual C++ 6.0 (70-015)

• Designing and Implementing Distributed Applications with Visual FoxPro 6.0 (70-155)

• Designing and Implementing Distributed Applications with Visual Basic 6.0 (70-175)

Solutions Architecture

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams
to complete their MCSD exam requirements. The following MCSD elective exams are
available:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft Sal Server 7.0
(70-019)

• Developing Applications with C++ Using the Microsoft Foundation Class Library
(70-024)

• Implementing OLE in Microsoft Foundation Class Applications (70-025)

• Implementing a Database Design on Microsoft Sal Server 6.5 (70-027)

• Designing and Implementing Databases with Microsoft Sal Server 7.0 (70-029)

• Designing and Implementing Web Sites with Microsoft FrontPage 98 (70-055)

• Designing and Implementing Commerce Solutions with
Microsoft Site Server 3.0, Commerce Edition (70-057)

• Application Development with Microsoft Access for Windows 95 and the
Microsoft Access Developer's Toolkit (70-069)

• DeSigning and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications (70-091)

• DeSigning and Implementing Database Applications with Microsoft Access 2000
(70-097)

• DeSigning and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5 (70-105)

• DeSigning and Implementing Web Solutions with Microsoft Visual InterDev 6.0
(70-152)

• Developing Applications with Microsoft Visual Basic 5.0 (70-165)

Chapter 4 Finding the Developer Resources You Need 37

The good news is that because there are exams you must pass to become certified,
there are books and other material out there to teach you how to meet the knowledge
level necessary to pass the exams. That means those resources are available to you
regardless of whether you care about becoming an MCSD.

The way to leverage this information is to get study materials for one or more of these
exams and go through the exam preparation material (don't be fooled by believing that if
the book is bigger, it must be better, because that certainly isn't always the case.) Exam
preparation material is available from such publishers as Microsoft Press, IDG, Sybex, and
others. Most exam preparation texts also have practice exams that let you assess your
grasp on the material. You might be surprised how much you learn, even though you may
have been in the field working on complex projects for some time.

Exam requirements, as well as the exams themselves, can change over time; more
electives become available, exams based on previous versions of software are retired,
and so on. You should check the status of individual exams (such as whether one of the
exams listed has been retired) before moving forward with your certification plans. For
more information about the certification process, or for more information about the
exams, check out Microsoft's certification web site at www.microsoft.comltrain_cert/dev.

Conferences
Like any industry, Microsoft and the development industry as a whole sponsor
conferences on various topics throughout the year and around the world. There are
probably more conferences available than anyone human could possibly attend and still
maintain his or her sanity, but often a given conference is geared toward a focused topic,
so choosing to focus on a particular development topic enables developers to winnow
the number of conferences that apply to their efforts and interests.

MSDN itself hosts or sponsors almost one hundred conferences a year (some of them
are regional, and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for event information, enabling users to search the site for conferences, based on many
different criteria. To find out what conferences or other events are going on in your area
of interest of development, go to events. microsoft. com.

Other Resources
Other resources are available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The list of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need; it's geared toward getting you 100 percent of
the way, but there are always exceptions.

38 Volume 5 Routing

Perhaps you're just getting started and you want more hands-on instruction than MSDN
Online or MeSD preparation materials provide. Where can you go? One option is to
check out your local college for instructor-led courses. Most community colleges offer
night classes, and increasingly, community colleges are outfitted with pretty nice
computer labs that enable you to get hands-on development instruction and experience
without having to work on a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you know of a resource that should be shared, send me
e-mail atwinprs@microsoft.com. and who knows-maybe someone else will benefit
from your knowledge.

If you're sending mail about a particularly useful resource, simply put "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the mail
and do what I can to ensure that your resource idea gets considered.

CHAPTER 5

Understanding Routing
Technologies

Networking knowledge is like being able to tie your shoes; in today's Internet society,
each step without that knowledge increases your chances of tripping up. Routing is at
the heart of networking.

Many programmers who develop solutions with RRAS have extensive knowledge of
routers and routing technologies. They know everything there is to know about packets
and how they are constructed, can name five different routing protocols, and in general
could give lectures on routing technologies at the drop of a hat. This chapter isn't
for them.

39

This chapter is for the rest (pronounced "majority") of the developers out there creating
routing solutions with Microsoft's RRAS APls; developers who perhaps have a
reasonable familiarity with routing but are fuzzy around the edges, or developers who
are familiar with basic routing but aren't quite sure how packets are constructed and how
such construction can have a bearing on routing. This chapter is also for the other large
group of developers who might be interested in routing technologies or simply want to
find out more about routing for their own edification. Whether a refresher or an
introduction, this chapter provides an explanation of routing and router technologies, and
presents the information in a concise and readable fashion.

This chapter is divided into three sections, each of which builds on the previous section
to create a foundation of knowledge on which you can better understand routing and its
various protocols:

• Routing Basics

• Routable Protocols

• Routing Protocols

40 Volume 5 Routing

Routing Basics
The idea behind routing is fundamental: to pass data between LAN segments so that a
collection of LAN segments functions as one big network. The implementation is a bit
more involved, however, especially when you have multiple routers and multiple
subnets. For routers to function at all they must have some prior knowledge of the
network to enable a routing decision to be made. Such decisions might be simple, such
as knowing to send everything not destined for the local network to an alternative
network. Or they might be much more complex. Simply put, routers need to know where
to send data that comes to them, and figuring out how to do so requires configuration
whether that be static (done by an administrator) or dynamic (updated often and
accomplished through communication with other routers on the network).

Routers make decisions on where to send data based on information they keep in their
routing table. A router's routing table is its bible, atlas, and calculator all rolled into one; it
dictates behavior and treatment of neighbors, determines distances from the "you are
here" sign to where they need to send their data, and calculates path costs in
penny-pinching router terms. Routers are also egotistical; the universe revolves around
them, and every routing table starts with a "you are here" sign (the center of its known
universe)-its own address.

In networks with multiple routers and numerous subnets, routers can be configured to
talk to one another about the road map of the network. Such communication enables
routers to determine how to send data to any destination in the network, and is achieved
through a routing protocol.

To begin with, however, I'm going to start with a reasonably short list of routing terms
whose definitions should help you understand routing issues in general, and should also
help you understand some of the discussions presented later in this chapter.

Basic Routing Terminology
The following sections provide definitions for some basic, often-seen routing terms
whose definitions can help you better understand routing and the various protocols,
components, or algorithms associated with routing.

Routing Table
A routing table is a list of available routes to network destinations. Routing tables often
have associated metrics-a means by which routers measure the "expense" of reaching
a given route-for each available route. Figure 5-1 provides an example of a Simple
routing table as seen from a Microsoft Windows 2000 command prompt window when
the route print command is issued. Notice that there are a few additional entries in the
routing table that I've personally set to enable particular routing capabilities I use in my
day to day (Internet-connected) activities.

Chapter 5 Understanding Routing Technologies 41

Figure 5-1: The Routing Table Presented When a Route Print Command is Issued.

Hop Count
Hop count is the number of routers that must be traversed to reach a given destination.
For example, a destination with a hop count of three would have gone to the default
router (hop 1); upon determining that the destination host was not connected to any of
the router's local subnets, the router would have forwarded the packet (after checking its
routing table for the appropriate router to which to send the packet) to the next router
(hop 2); again, upon determining that the destination host wasn't directly connected to
one of the router's subnet, it would have forwarded the packet (after checking its routing
table for the appropriate router) to the next router (hop 3), which would determine that
the destination host was on a subnet to which it was directly attached, and then would
send it to the destination host. Three routers crossed/traversed = three hops.

Most routable protocols, such as IP and IPX, have a maximum hop count. For IPX the
maximum hop count is 16; this designation of maximum hop count means that if the
packet is being sent through a network and reaches its 17th router on the way to its
destination, it is dropped (discarded, deleted). Hop count is modified each time a packet
passes through a router to enable such detection. If it weren't for hop counts, packets
that were misrouted could zoom around the network forever, eventually filling your
network bandwidth with random, wandering (useless) packets. As it is, such lost
(misguided and misaddressed) packets eventually are discarded by routers to ensure
the availability of bandwidth for non-vagrant packets.

42 Volume 5 Routing

Default Gateway
The default gateway, also referred to as default route, is an address that is used by
routers (and computers) when no other means (in the routing table) of reaching a
destination is available. The default gateway is not necessarily a last resort, as the
definition might at first sound; rather, it is a means of differentiating between locally
available or defined routes (the routes or host of which the router has specific
knowledge) and "all others."

Convergence
The time it takes routers to converge after a change in network topology (which could be
an added or downed router, or changes in the metric of a given link) can be considered
the determining factor of the stability and performance of your network. Convergence is
the process of updating the routing tables of routers in an intranetwork to reflect changes
in the network routing topology. For example, say you have an intranetwork with 17
routers, and one of those routers has a power supply that blows up and renders the
router useless and dead. Segments to which that router were attached are no longer
reachable through the dead router, and because routers communicate with one another
through routing protocols, other routers on the intranetwork will learn of this failed router
and adjust their routing tables accordingly. (One of the aspects of a routing protocol is
the question, "Are you still there?" If the asking router doesn't get a reply after a specific
period of time, it presumes that the other router is dead.) When such an event occurs,
routers that have new information in their routing table (news of this dead router is novel)
share that information with every other router on the intranetwork. The time it takes for all
routers on the intranetwork to hear about the change and adjust their routing tables
accordingly is considered convergence time. Once all routers share the same
information in their individual routing tables (this does not mean that their routing tables
are identical; remember that all routers' routing tables are from a "you are here"
perspective), the network is considered converged. The importance of a short
convergence time is the following: So long as the network is not converged, the system
incurs packet loss attributable to routers passing packets to the dead router (and as you
might suspect, that dead router not routing those packets). The shorter the convergence
time, the better the solution.

This is where the advantage of dynamic routing over static routing can really be seen.
If static routing is used and one of your routers goes down (remember that static routing
requires an administrator to manually create the routing table for each router in the
intranetwork), any network traffic that goes through that router will be undeliverable and
network connections will be dead (for traffic going through that router). The situation will
remain as such until an administrator troubleshoots the problem, and either modifies the
routing table or replaces the router. With dynamic routing, the routing protocol itself
detects and troubleshoots the loss of the router, and if possible, packets will be routed
around the failed router without intervention from the administrator.

Chapter 5 Understanding Routing Technologies 43

Flooding
Flooding is the means by which routers advertise routing table changes to the rest of the
routers on their internetwork. Much as it sounds, flooding involves a saturation of the
entire routed internetwork with packets containing information about the sending router's
routing table. Transmissions of such packets have special information included in them
that enables them to be broadcast only over subnets that haven't received the specific
''version'' of the routing update; if they did not have such special information, flooding
could cause such a barrage of packets (as they were sent and resent over subnets from
multiple connected routers) that the network would be brought to a standstill. To avoid
that situation, routing protocols that implement flooding ensure that flooding crosses a
subnet only once. By properly flooding the network with router change information, each
router can be assured that updates to its routing table are reflected in every other router
in the internetwork communicating with the sending router's routing protocol.

Routing Loops
Let's say your machine is on Network A and you're trying to send data to a machine on
Network D. Suppose your local router (the one you use to get beyond your local subnet)
has a routing table that says, "To get to Network D, use the router on Network B," and
the router on Network B says, "To get to Network D, use the router On Network C."
Further, the router on Network C says, "To get to Network D, use the router on
Network A." You're in a routing loop. Network A-trying to get to Network D-has sent
you to Network B, then to Network C, and back to Network A, which will then send you
back to Network B and start that vicious cycle all over again. This situation is yet another
drawback to static routing tables; dynamic routing and the implied use of a routing
protocol is designed to avoid routing loops. Fortunately every packet that gets routed
(IP and IPX) has a hop count (see its definition earlier in this chapter) to keep packets
from circling around the network and taking up bandwidth until the end of time;
eventually the packets will reach their maximum hop count and be discarded.

Black Holes
Routes that end in a dead end are considered black holes. In its simplest terms, a black
hole is a routing table entry that has no listening router on the destination end. So if you
have Network A trying to geno Network C, and the router attached to Network A says it
must go through Network B to get there, but Network Bisn'tforwarding packets, you've
run into a black hole. Black holes are, in this terminology as well as in real life, good
things to avoid.

Static Routing vs. Dynamic Routing
When a packet arrives at a router, the fouter looks at its routing table and determines
where to send that packet next. But how does it determine what to put in its routing
table? A router's routing table is determined and configured either statically or
dynamically.

44 Volume 5 Routing

With static routing, routing table entries are manually input and updated by someone
such as a network administrator. No information is exchanged between routers on an
internetwork that implements static routing, and therefore, routers that are dead, down,
or otherwise unreachable are not detected. Thus if you're in a network environment
where static routers are used and one of them fails, the portion of your network that
depends on that router for connection for routing becomes unavailable. Static routing
can work just fine in small networks; the routing capability that comes out of the box with
Windows NT 4.0 or Windows 2000 (without specifically implementing RRAS routing
features) is an example of static routing. However, static routing does not scale well to
anything other than small networks due to the overhead associated with building,
troubleshooting, and administrating static routing tables.

Dynamic routing enables the dynamic updating of routing tables. Routers that implement
dynamic routing are capable of communicating with other routers on the network, and
with such interrouter communication, can detect downed routers, determine the best
route to take to get to each interconnected subnet, and modify routing tables based on
new information (such as a downed router or a newly added router). Furthermore, such
routing information in a dynamic routing environment can be propagated to the rest of
the network's routers. Once initially configured, dynamic routers don't require
administrative intervention to adjust to changes in their routing environment. Routing
Information Protocol (RIP), RIP II and Open Shortest Path First (OSPF) are examples of
protocol implementations of dynamic routing.

Construction of a Frame
Have you ever wondered how a 17 MB file gets from the file server in the central of your
firm's network to your computer, and how those pieces of data get transmitted over the
network wire? It all has to do with routing. Even before that, the transmission requires
that the file be chopped up into pieces before it hits the network, and then reconstructed
once it reaches its destination. Understanding how this occurs is important in
understanding how routing works.

Let's make an everyday comparison to see how frames are constructed. When you want
to send a gift in the mail, you might start by wrapping the gift in some nice tissue, then
you might place it in a box, wrap the box, put a ribbon on it, place the wrapped-and
ribboned box into a shipping box, put an address on the box, and finally, attach postage
appropriate to the means by which it is shipped. If you're sending it with United Postal
Service (UPS), you must have someone affix an appropriate UPS sticker on the box; if
you're sending it via Federal Express, you'll need their sticker, and finally if you're
sending it through regular mail, you'll need the right sticker or stamp. All you really want
to do is send the gift to someone half-way across town (or all the way across the world),
but to get it there you have to jump through the appropriate hoops. Let's break this down
into parts:

The gift: The pointof this whole ordeal is to send the gift where you want it to go.

Tissue: You have to properly present the gift, so you wrap it in gift tissue.

Chapter 5 Understanding Routing Technologies 45

Gift box: You can't have that gift flopping around. Put it in a box.

Ribbon: A gift isn't a gift without a ribbon. It will get smashed on the way, and no one
really pays much attention to the ribbon, but custom is custom.

Shipping box: You can't ship the gift box as is, so you use a shipping box.

Address: The guy in the uniform and matching truck must know where to shuffle this
package to, so you give him the address. The address will have a state, city, and street
address (general part of the address), and a name (specific, unique part of the address).

Appropriate shipping sticker: Put a UPS sticker on something going through the
regular mail and you'll get nowhere (and in fact, it might just disappear without a trace),
so you need to make sure you get the right sticker on it. Maybe, however, you're
fortunate enough to have a butler or a secretary who does all these things for you, so
when you want to send something off you don't worry about the sticker, and instead just
hand it off to someone else who affixes the appropriate sticker for you.

On the other side of the delivery, the series of events plays itself in reverse: the driver
who delivers to the address looks at the sticker (the sticker has been changed because
it's going to Germany-a different language, but still addressed to the same person) and
delivers it to the address. The person to whom the package was addressed receives the
package and checks the sticker (to ensure it is for them), opens the shipping box, unties
the ribbon, opens the gift box, removes the gift tissue, and takes out the gift.

This is almost exactly how a network frame is created and sent across the network.

You start with the data, and as you go through the OSI model, information is appended
to the data until you reach the final layer (physical), where the frame is complete and can
be sent onto the wire and reach the intended destination. Figure 5-2 illustrates this.

Application el7)

Presentation (l6)

Session (l5)

Transport Cl4)

Network (l3)

Data link (l2)

Physical Cll)

Lt, L2, etc. = Layer 1, Layer 2, etc.

Data + l7 Hea er

s
Data + l7l6 l5 l4l3 l2 llHeaders

Figure 5-2: Appending Headers at Each Layer to Produce a Packet.

46 Volume 5 Routing

Starting with the data (the gift), information is appended at each theoretical layer of the
OSI model to enable the data to get from one computer on the network to another. The
reason for dOing this is that each layer in the OSI model-for example, the transport
layer-expects information specific to its layer to be there when it receives the data. An
obvious example in this case would be the address of your Germany-bound package. If
there's no address, the delivery driver doesn't know what to do with the package.

But in our frame-constructing model, every appended piece of information is just as
important as the address is to the delivery guy-the data can't be delivered if even one
is missing or incorrect.

Routable Protocols
IP and IPX match up with the OSI model (see Figure 5-3) in a way that enables packets
transmitted with their protocols to be routed.

TCP/IP IPX/SPX
LLC

(MAC

L1, L2, etc. = Layer 1, Layer2, etc.
LLe = Logical Link Control- part ot the further division of the Data Link Layer, per the 802 Project
MAC = Media Ac.cess Control - part of the furtherd/vision of the Data Link Layer, per the 802 Project

Figure 5-3: The OSI Model and How Its Layers Match Up with IPX and IP.

Notice that the IP part of the TCP/IP suite has a break right between the network layer
and the transport layer. This is the ali-important, routing-enabled break point that makes
TCP/IP a protocol suite that can be routed across multiple subnets. This break point
enables a subnetlsegment to be identified by a special number, and by doing so enables
a way to differentiate between such subnets. Also notice that IPX has a break between
the network and transport Layers-again, this enables IPX to be routed between
subnets, The process of doing so goes something like this:

Chapter 5 Understanding Routing Technologies 47

When a local host looks at its network information (this is actually a mini-version of a
routing table, similar to what a router maintains to track the topology of the internetwork),
it determines whether the data it's trying to send is going to a machine on the local
subnet or to a machine outside its local subnet. If it's going to a machine on the local
subnet, no router is involved and the client simply sends the data to the machine. If the
local host determines it's trying to send data to a machine outside the local subnet, it
sends the data to the router for delivery.

When the router receives the frame, it looks at the frame's destination information and
checks its routing table for the appropriate route the frame should take to get to the
destination host. When the router determines the appropriate route, it strips the Layer 2
header information (data link) and replaces it with its own information-information that
will either take it to the destined host (if the host is connected to a subnet to which the

router has a direct connection), or forward it to the next appropriate router. Note that
despite this stripping, information about the source and destination IP addresses is
retained. Figure 5-4 puts this process into an illustration.

I Data + L7 L6lS l4l3 B lURaders', II; '" it

O{lta + L7 L l5 l4l3 L2 Ll Headers

'::.: Layer i, { .. Dyer 2

Figure 5-4: A Router Stripping Network Information and Replacing It With Its Own.

The router does this for a number of reasons. First let's take another look at our data
frame in Figure 5-5, this time putting in the appropriate comparisons to the OSI model
and the network media.

48 Volume 5 Routing

I Data + Lt,L6,l5,L4,l3 ",Ll Hei@en; "," ~ i

L 1, L2, etc, = Layer 1, Layer 2, etc,

1!1!11§:. Though Layer 1 is being graphically represented here as a 'neader,' it is more accurately a governed standard for
transmitting the data across its medium,

Figure 5-5: The OSI Layer with IPX or IP, Plus the Appropriate Frame Type.

Notice that the MAC header includes information about the type of media over which the
frame is going to travel. So what happens if, on the way to the destination machine, the
router has to send your frame over a network different than yours-say a Token Ring
network or an FOOl network? In that case, the router, by replacing the information
contained on Layer 2 (the Oata Link Layer) with its own, enables the packet to travel
over any kind of network using any kind of medium to reach its final destination.
The router (or routers) along the way is thus acting as a sort of "media gateway"
(by definition, a bridge) by manipulating Layer 2.

The end result is that two of the general purpose protocols shipped with Windows NT
and Windows 2000 (the fourth, OLC, isn't general purpose)-IP and IPX-are routable
because those protocol specifications have built-in mechanisms that enable individual
subnets to be uniquely identified and have means (available routers) to forward their
frames between subnets. NetBEUI has no means by which its local subnet can be
uniquely identified (no means of segregating devices between logical segments) and is
thus not routable.

Routing Protocols
What's the difference between routable protocols and routing protocols? Routable
protocols (such as IP and IPX) enable computers or devices on different subnets to
communicate with each other. Routing protocols (such as'RIP, RIP II, or OSPF) enable
routers-the devices that connect individual subnets-to exchange information about
routing tables in order to create one big happy virtual network out of all of the
interconnected individual segments in a given network. Routing protocols go from not
too terribly difficult to grasp (RIP) to something out of an anesthesiology textbook
(OSPF). As with many subjects on computing, however, routing protocols are made
easier or more difficult to understand based on how they are presented and explained.

Chapter 5 Understanding Routing Technologies 49

IGPs VS. EGPs
Let's make some broad distinctions. Networks (and their routers) that require routing
protocols vary greatly in size (from somewhat small to the size of the Internet). Large
networks are often broken into smaller units to allow for easier administration and more
reasonable routing solutions. As a result, we have two kinds of communication between
routers: Interior Gateway Protocols (IGP) and Exterior Gateway Protocols (EGP).

IGPs are used for communication between routers that are in the same interconnected
network. IGPs enable the sharing of routing table information among routers that are
considered a part of the same interconnected network. If a network is divided into
different areas, IGPs share routing information with members of the same area.

IGPs do a couple of things. First, IGPs enable routers to create a complete routing
table-a routing table that includes information on how to reach all routers (and thus all
subnets) in the internetwork. Second, IGPs provide a means by which a router can
determine the best way to send data to another router, or more specifically, the best way
to send a packet destined for any given computer (or other network device) to its
destination.
The methods by which IGPs disseminate their routing information and determine the
best route by which they should reach a given subnet or router fall into two categories:
Distance Vector and Link State. Distance Vector is the simpler of the two and is the
easiest to understand and implement. RIP and RIP II are examples of Distance Vector
protocols. Link State is more complex to understand and implement, but makes up for its
complexities by solving the many shortcomings inherent with Distance Vector routing
solutions. For large networks, Link State IGPs are almost required. OSPF is an example
of a Link State protocol. Figure 5-6 illustrates the scope of coverage of IGPs.

50 Volume 5 Routing

.oI/£",,,,""'"''''''l''' = IGP Communication between routers, such as
"Hello? Are you stili there?" Or
"Has your routing table changed since last we talked?"

Figure 5-6: Where IGP Fits Into the Picture.

In contrast, EGPs are a means of communication between routers that are not a part of
the same interconnected network or area. EGPs are used to communicate information
(such as how their interconnected networks are advertised to the outside world) outside
their area. EGP is unusual in that it is a classification for a type of routing protocol, and
also the name of a particular protocol (EGP). (Kind of like the doctor who is named
Doctor.) EGP (the protocol) was used on the Internet to connect its multitude of
interconnected networks. It was replaced a number of years ago with Border Gateway
Protocol (BGP), which is itself an EGP. Figure 5-7 illustrates the difference between an
IGP and an EGP.

If you have an Autonomous System (AS) that needs to communicate with the outside
world-say the Internet, for example-you will need to implement an EGP on your AS
Boundary Router (or have your ISP do it for you). As mentioned earlier, a protocol called
EGP was first used as the Exterior Gateway Protocol on the Internet that enabled
Autonomous Systems to communicate. The successor to EGP is BGP, and it builds and
improves on the experience gathered with the use of the EGP protocol. BGP-4 is in use
on the Internet today. An in-depth explanation of BGP is not provided here; if you want
information on BGP standards or recommendations, check out the IETF web site at
www.ietf.org.

Chapter 5 Understanding Routing Technologies 51

........ , ... w··· .. =IGP

• .. EGP/BGP

Figure 5-7: Differentiating Between IGPs and EGPs.

The following sections focus on the various IGPs available with most routers, including
Windows NT and Windows 2000 RRAS.

RIP and RIP II for IP
This section provides an overview of RIP and RIP II for IP, and discusses some of its
drawbacks. This discussion is intended to familiarize you with the issues you might face
if developing solutions for RIP, and conversely, provides you with information that the
people who administer routers and networks must consider when determining the
advantages and drawbacks associated with RIP and RIP II. Such information is intended
to provide you with more context and insight into the administrative side of routing and
routing protocols.

RIP for IP is a relatively simple-though useful and widely deployed-implementation of
a Distance Vector protocol. RIP provides the most basic information required to c!'reate
and maintain routing protocols throughout an internetwork, and does so by using a
simple metric for calculating the "cost" of a given route. Consider Figure 5-8.

52 Volume 5 Routing

R1 = Router #1

Figure 5-8: A Handful of Routers and Subnets with Sufficient Redundancy.

Notice that there is more than one way to reach each of the attached subnets. Some of
those routes are longer than the others because they have more hop counts (routers to
cross) than other routes. In a network with "costs" that directly associate with the number
of hops to each network, the routing table for ROUTER1 would have a very simple
routing table.

The primary advantage of RIP and RIP II is that both of them are much easier to
implement and administer than OSPF; this can be a significant determining factor in
choosing which routing protocol to use in a given implementation. Administrators in small
network environments often do not have the bandwidth (in terms of time or attention) to
dedicate themselves to understanding the implementation details of more elaborate and
complex routing protocols, and therefore, are justified (and correct) in implementing RIP
in their networks.

RIP creates a complete routing table for all routers speaking RIP on the internetwork.
Best of all, the routing table is done automatically by periodic updates that are traded
between routers throughout the network. This periodic update is one of RIP's
shortcomings. The timeframe for these intervals is thirty seconds (and failures are
concluded only after many of these intervals pass), and they are sent out across the
network using broadcasts. This method has two drawbacks.

The first drawback: Because RIP waits three minutes before considering a router down
(and sends out challenges to find out whether the router is truly down), several minutes
can pass before data destined for a network with a dead router link is rerouted. During
that period, all data is dropped into the black hole of the dead router. .. never escaping,
never being forwarded, and causing bad things to happen. In networks, several minutes
is an awfully long time; such a lengthy recovery interval is considered slow convergence.

Chapter 5 Understanding Routing Technologies 53

The second drawback: Using broadcasts creates unwanted network traffic. In large
networks this is a significant drawback, but an even worse situation is using RIP over
WAN links. The bandwidth available on a WAN link is generally precious, and having to
share such limited bandwidth with a chatty routing protocol that sends out broadcasts
every 30 seconds is considered expensive. Certain routers can modify their behavior to
dull this effect if the router knows it is using a WAN link, but such configurations must be
made manually. RIP is therefore not a good choice where precious WAN links are in
place within the network, or in large networks.

There are some other problems with RIP-it uses a hop count that is independent of the
TTL field of an IP packet and has a maximum of 15 hops, after which the packet is
dropped. In large networks there could certainly be more than 15 hops; if there were a
destination IP address sitting 16 hops from the source in a RIP network, and even if
there were appropriate router connections between the source and destination
machines, RI P would drop the packets on the 16th hop, resulting in an error that said
something like "destination host unreachable." Another disadvantage of RIP is that,
although it stores multiple entries for equal-cost routes to a destination, RIP uses only
the first route in its list, which results in a lack of load balanCing between like-cost routes.

RIP II addresses some of the glaring deficiencies of RIP. Most significant among those
deficiencies were RIP's inability to identify a subnet mask, the load it placed on the
network by the use of multicasts, and the ability to use simple password authentication.
RIP II, however, is still a Distance Vector protocol and does not have some of the rich
routing features available in Link State protocols available today. RIP II retains the ease
of use and implementation, and for that reason RIP II can still be a viable solution for
small networks. RIP II, though attractive for some, is still not as attractive from a feature
standpoint as Link State protocols.

RIP for IPX
IPX is a different animal altogether than IP (but you knew this already). The way IPX
implements some of its features, and the way it maintains information about its features
across the network, necessitates a different approach to routing than the simple RIP
versions we saw earlier for IP. A little bit of background information on IPX and the way
NetWare servers advertise their services is in order.

IPX uses something called Service Advertising Protocol (SAP) to maintain a list of
available services being offered by Novell NetWare Servers on a given subnet. For
simple (non-routed) network deployments, such advertisements are easy; the server
itself can maintain and respond to service requests by sending or responding to
broadcasts sent over the local network. But in a routed network, management of such
advertisements (these server-related services, such as file server services, can be
shared throughout a routed network) must be done at the router because broadcasts
don't go beyond the local subnet (meaning that routers don't forward broadcasts). These
facts-that IPX uses broadcasts to advertise their services, and that routers don't
forward broadcasts-require that any IPX routing protocol manage and appropriately
forward SAP broadcasts to servers (responding to requests) and clients (making
requests). RIP for IPX manages such IPX-related issues within its protocol.

54 Volume 5 Routing

OSPF

Neither Windows NT nor Windows 2000 uses SAP, except where NetWare-like services
are provided, such as File and Print Services for NetWare (FPNW) or services like
Microsoft SQl Server, where IPX clients would only be aware of and find services with
help from SAP.

Other than this distinct difference (and the obvious difference in network addresses), RIP
for IP and RIP for IPX work in similar ways; both use flooding, both maintain and share
routing tables, and both update using broadcasts on specific intervals.

Open Shortest Path First (OSPF)is a routing protocol that takes things like bandwidth
availability and network congestion into consideration when determining the best route to
send packets across the network. OSPF works in IP networks and is a Link State
protocol, making it an attractive solution for large networks or networks that incorporate
WAN links into their topology. OSPF is the most complex of the routing protocols, but
don't let anyone fool you: When taken in bite-sized pieces, OSPF is straight forward.

OSPF differs from RIP in a number of ways. The first and perhaps most obvious
distinction is that RIP is Distance Vector-based, while OSPF is Link State-based. This
distinction is important; it means that OSPF can react to changes in network utilization
on given links and reroute around the increased traffic-dynamically. Without manual,
administrative intervention, RIP has no way of doing this. Such on-the-fly modifications
based on network traffic are often called load balancing.

OSPF is a hierarchical protocol, just like IP, DNS,and Windows 2000 domains are
hierarchical. A hierarchical protocol enables groups of subnetworks to be addressed
from a top down perspective, with a "top" network responsible for addressing a group of
subnetworks, and each of those subnetworks capable of having subnetworks within
themselves. For example, I could have a network with a "top" address of 122.0.0.0 and
have routing outside that network send anything destined for 122.x.x.x subnetworks sent
to the router servicing that group. Within the group of 122.x.x.x networks I could have a
subnetwork of 122.46.x.x and have all subnetworks planned therein (122.46.17.x, for
example) reachable through that router. Figure 5-9 provides a visual representation of a
hierarchical protocol.

Anything headed to 122.x.x.x gets sent to this router.
which in tum sends it on to the appropriate router,
based on hierarchical addressing.

Chapter 5 Understanding Routing Technologies 55

Figure 5-9: Representation of a Hierarchical Protocol.

Because OSPF is a widely used protocol, knowledge of how it functions and operates is
important to routing development (and routing administration, for that matter). As such,
I'm going to go into more detail about OSPF in this chapter so that you can have
reasonable (if not introductory) understanding of how OSPF operates.

Let's start with an overview of how OSPF works on a system-wide level, then move into
its interaction on a local level with neighboring routers and explain how such interaction
makes OSPF such an attractive large-network routing protocol.

56 Volume 5 Routing

The Overall View of OSPF
OSPF works under the premise of Autonomous Systems (AS), and can further segment
this network-wide organizational unit into smaller, easier to manage groups called Areas.
An AS, as the name suggests, is the highest level of organization for an independent
network; Areas are groups of networks within an AS that work as one administrative,
routing-area unit. In every OSPF AS there must be one area called the Backbone-the
mother of all Areas and the administrative and data-passing center of the networking
universe for the overall AS. The backbone is the central nervous system of your AS, and
all routes (if possible) should converge on or stem from your OSPF Backbone. The
reasoning behind this is that, ideally, when routing data between areas the network will
use the Backbone.

Once Areas are established-which by definition are separate entities within the AS
there must be a means by which these Areas can communicate with one another, with
the Backbone, and with the outside world. These means are accomplished through
designating different routers with different roles. There are a few types of router roles in
an OSPF network:

Internal Routers: These are routers that function within an Area and do not have
interfaces to segments or networks outside the area in which they reside.

Area Border Routers: Communication between Areas is done through an Area Border
Router, which is a router that is attached to two Areas; it keeps information about each
Area to which it has an interface, and communicates that information to the Backbone.

Backbone Routers: Similar to Area Border Routers are Backbone Routers. Backbone
Routers are, quite simply, routers that have at least one interface on the Backbone.

Autonomous System/AS Boundary Router: Finally, there often are instances when
hosts on a network need access to areas outside the AS, such as the Internet. In these
situations, the network administrator designates one router as an AS Boundary Router,
which connects your AS to networks that are outside your AS. It could be that your
company has more than one AS, and thus you will have at least one-and much more
responsibly and likely will have more than one-router in your network that will be
designated an AS Boundary Router. Figure 5-10 illustrates the various types of routers.

Chapter 5 Understanding Routing Technologies 57

AS Boundary Router

Border Routers

Figure 5-10: An AS with Areas and Router Role-Holders Identified.

OSPF uses a database called a Link State Database (LSDB) to maintain information
about its network. The LSDB is a "map" of the entire network, and being thus, needs
information from every other router in the internetwork in order to make it complete. The
internetwork is an Area if theAS has been segmented; if it has not been segmented into
areas, the LSDB will need information about every router in the AS. This is one reason
segmenting medium or large networks into Areas is such an advantage; groups of
networks placed into manageable groups cuts down on the requisite processing and
traffic overhead associated with too many routers residing in the same management unit
(AS or Area).

From this LSDB, routers calculate the Shortest Path First (SPF) Tree, which is a map of
how to get to every router on the network (and thus every segment) relative to the
location of the calculating router. OSPF better utilizes multiple, routes than RIP, and has
a more complete picture of the internetwork. Throughoutthe internetwork (whether that
is an Area if so segmented, or an AS if not), the LSDB is identical on every router, and
the SPF Tree for each router is unique.

58 Volume 5 Routing

The Local View of OSPF
OSPF has a logical, traffic-sensitive and redundancy-sensitive way of going about its
operation. This method doesn't change once you scrutinize to the local router-to-router
operation of OSPF (what I'm calling the local view of OSPF). The way OSPF routers
exchange information, govern their behavior with adjacent routers, and ensure that
communication between routers is kept to a minimum is fairly detailed and beyond the
scope of this chapter. Instead, this section focuses on providing a good explanation of
how these communications and relationships work. We've seen how OSPF segments
responsibilities and processing requirements in the overview-the same applies at the
local level. Consider Figure 5-11.

AS Boundary Router
AS Boundary Routers handle communication to the
"outside" world. relieving other routers internal to the AS
of the communications overhead associated with
convergence of exterior routes,

Backbone Routers handle inter-area
data traffic, concentrating such
throughput on routers that can handle
such high traffic.

Designated Routers

Designated Routers eliminate
multiplication of flooding traffic over
the internetwork by having nearby
routers communicate WITh them to

Area Border Routers are the liaison between areas for both
path and convergence data, eliminating the need for each
router inside their area to handle processing-intensive tasks
such as inter~area convergence.

uling table changes.

Figure 5-11: OSPF's Tree-Like Segmentation of Responsibilities.

To understand the smarts behind OSPF's local policies, we need to compare what
probably seems obvious: the definition of a routed network.

Chapter 5 Understanding Routing Technologies 59

In a contiguous network environment, every subnet is in some way connected to the
internetwork, which is the basic definition of an internetwork. To attain such connections,
routers connect these subnets, so by virtue of their inclusion, all routers are also
interconnected through one link or another. Thus, every router in the network is
connected in some way to at least one other router (unless, of course, you only have
one router in your network, in which case you shouldn't be using OSPF). To put this
another way, every router on the internetwork has at least one "neighbor" router. Most
networks have some sort of redundancy built into them, which means that routers on a
given wire (network connection media) often have more than one neighbor. Regardless
of how many neighbors a router has, every router on the network has at least one
neighbor. Think of it this way: If you have a single-file line of people, and you instruct
them to shake hands with either the person in front or behind them (shaking hands with
more than one person is okay, so long as everyone shakes at least one other person's
hand), everyone in the line will have shaken hands with someone.

Here is the paint at which the logic built into OSPF shines and where some of the
complexity tends to make people shy away from OSPF.

Routers in an OSPF environment form an adjacency with neighboring routers that share
certain common criteria (specifically authentication, passwords, Hello and Dead
intervals, Area IDs and Stub/non-Stub status). In fact, an OSPF router must form an
adjacency with one of its neighbors in order to be considered part of the Area/AS. With
this adjacency-forming requirement, OSPF ensures at least one adjacency for every
router participating in its network; OSPF routers need only synchronize their LSDBs with
adjacent routers. If all routers on the network are synchronized with their adjacent
routers, the entire network is synchronized-or more accurately, the entire network has
converged. Imagine the network traffic and computational overhead avoided by having
only adjacent routers synchronize with each other, instead of having every router in the
network synchronize with every other router in the network (it's a lot).

I'll provide a quick example to clarify why this is so cool. Remember the line of people
who shook hands with each of their neighbors? That was a pretty easy example,
because they're all in a line and it's easy to visualize that everyone would have someone
with which they could shake hands. Let's take that example a step further and say that
this line of people is in a huge room (a gym, perhaps). Now tell them they are to spread
out across the gym, but that they must stay within an arm's reach of at least one person
(being within an arm's reach of more than one person is okay as well). Chaos ensues for
a few minutes while everyone shuffles until everyone is spread out until the gym is full
and everyone has complied and is within arm's reach of at least one person. Now you
(the instructor) walk into the middle of this gathering and step between two people who
are within arm's reach and tell them, "I have a word I want you to whisper to everyone
within arm's reach of you, and everyone you tell is to whisper that word to everyone
within arm's reach of them." You tell them the word-watermelon-and the whispering
begins. Eventually everyone in the gym knows the word. You can step between any two
other people or anyone person (remember, they only have to be within arm's reach of
one person) and do the same thing with a new word; eventually everyone in the gym
knows the new word. This is exactly how needing to synchronize only with adjacent
routers ensures synchronization of the entire network's LSDB.

60 Volume 5 Routing

This is an excellent system, but it has one drawback: Routers on broadcast networks
(such as Ethernet) will create adjacencies with more than one or two routers, potentially
a whole bunch of routers. This goes crazy on broadcast networks. OSPF gets around
this problem with Designated Routers.

A Designated Router is the router on a multiple-access network that instructs all other
routers on the multiple-access network to create adjacencies-and therefore
synchronize their LSDB-only with it. The Designated Router is determined by
comparing Router Priorities (router priority is a defined term in OSPF); routers with a
Router Priority of zero never become a Designated Router. Among those routers with a
Router Priority greater than zero, the router with a higher priority becomes the
Designated Router for that multiple-access network. There is also a Backup Designated
Router, just in case theDesignated Router goes down. Figure 5-12 depicts how the use
of Designated Routers might appear in a network deployment.

OSPF routers form adjacencies with neighboring routers upon startup or initialization.
Designated Routers must have a Router Priority of one or greater.

Communication Between OSPF Routers
OSPF routers maintain communication between one another through the use of Hello
packets. Hello packets are small and have default settings generally around 10 to 15
seconds that facilitate continuous communication-and thus knowledge of ongoing
availability-between routers. There are two time intervals associated with the exchange
of Hello packets: Hello intervals and Dead intervals. Hello intervals are equivalent to "are
you still there?" communication. Dead intervals are equivalent to "if I don't hear from you
within my Dead interval time, I'm going to assume you're no longer up and modify my
LSDB (and thus my SPF Tree) appropriately" communication.

Hello intervals and Dead intervals are configurable in OSPF. If routers are on a network
that is particularly busy, or there is a router that's doing so much routing that setting a
Hello interval at 10 or 15 seconds would create unwanted stress on the router or
network, these intervals can be increased. Be careful, though: The idea behind making
these intervals relatively short is to keep convergence time short, and a short
convergence time is one of the greatest advantages of OSPF. If you increase the Hello
and Dead intervals too much, you'll be undoing one of OSPF's best features and the
network won't be able to react quickly to changes in router topology.

Designated Routers
NwNS point frgm routers that have
created adjacencies 1lI.Iheir Designated
RouterS. Dashed lines represent
Backup Designated Routers.

Chapter 5 Understanding Routing Technologies 61

Figure 5-12: Designated Routers and Backup Designated Routers in Multiple
Access Networks.

Once the Dead interval expires and an OSPF router determines that one of its neighbors
is dead, the router communicates this fact to all of its Adjacent routers. Remember that
OSPF routers synchronize their LSDBs with Adjacent routers; if a dead router is
detected, the detecting Adjacent router changes its LSDB and its LSDB falls out of sync
with its neighboring routers' LSDBs. Because the changed LSDB of the detecting router
is more recent, Adjacent routers update their LSDBs with this new information and a
chain reaction occurs-all neighbors within the AS or .Area resynchronize (converge) and
within a certain amount of time (dependent upon the size of the netWork and the speed
of your routers' CPUs, but something like 30 seconds or so), the LSDB for the
internetwork once again is converged and the downed router's impact on the network is
taken into consideration.

Part 2 63

CHAPTER 6

Router Administration

Router Administration Overview
The router administration API allows developers to create applications to manage the
router service on a computer running Microsoft® Windows® 2000, or running
Microsoft® Windows NT® 4.0 with the Routing and RAS (RRAS) add-on installed. Not
all API functions are supported on both of these platforms. The Requirements section on
the reference page for each router administration function specifies which platforms
support that function.

Components of the Router Architecture
The router administration documentation makes frequent reference to the following
components of the router.

Dynamic Interface Manager (DIM)
All router administration functions pass through DIM. Depending on the nature of the
function, DIM may pass the call on to one of the router managers. Functions that deal
only with interfaces are handled by DIM. If the function affects routing protocols, DIM will
call into the router manager for the transport corresponding to that protocol. For
example, if the function affects the Open Shortest Path First (OSPF) protocol, DIM will
call into the IP Router Manager, since OSPF is an IP routing protocol.

Router Managers
Each routable transport has its own router manager. Currently router managers exist for
the IP and IPX transports. The router managers manage router protocols and other
types of routing clients that run on interfaces on the local computer.

Routing Protocols and other Clients
Clients are service providers that function within the framework of the router architecture.
Routing protocols are one type of client that is supported by the router.

Clients are specific to a particular routable transport: either IP or IPX. Routing protocols
for the IP transport include Open Shortest Path First (OSPF) and Routing Information
Protocol (RIP). Examples of IPX routing protocols are Service Advertising Protocol
(SAP) and RIP for IPX. An example of a client that is not a routing protocol is Network
Address Translation (NAT) for IP.

64 Volume 5 Routing

The interface between the router manager and a client is described in the section
Routing Protocol Interface. All clients conform to this interface. Using this interface,
vendors can implement their own clients that are compatible with the router.

Interfaces
An interface is a connection to an external network. Each interface is identified by a
unique interface index. Interfaces are logical entities; router clients such at NAT or OSPF
deal with all types of interfaces similarly. In terms of implementation however, an
interface can represent a dedicated connection (such as to a Local Area Network (LAN))
or a non-dedicated, dial up connection (such as a PPP connection to a Wide Area
Network (WAN)).

In the case of a LAN interface, the interface corresponds to an actual physical device in
the computer, a LAN adapter. In the case of a WAN interface, the interface is mapped to
a port at the time a connection is established. The port could be a COM port, a parallel
port or a virtual port (for tunnels such as PPTP and L2TP).

WAN interfaces have the additional quality that they typically receive a network address
only at the time that a connection is established. For example, a WAN interface using
PPP receives its network layer address from the remote peer during the connection
process. Receiving a network address as part of the connection process is sometimes
referred to as "late-binding."

Router Initialization
Configuration information for the router, the router managers and the routing
protocols/clients is divided into global information and per interface information and is
stored in the registry and the router's phonebook file, router.pbk.

When the router process starts, DIM (Dynamic Interface Manager) reads the router
configuration from the registry. DIM creates the interfaces that qre specified by the
interface information.

DIM also retrieves the global router manager information. DIM starts the router
managers corresponding to this information, and passes them the information. For
example, if DIM finds global information for the IP router manager in the registry, DIM will
start the IP router manager and pass it the global information. If no global information is
present in the registry for a particular router manager, DIM will not start that router
manager.

The router managers examine the global information received from DIM. If the router
manager finds information specific to a particular client within the global information, the
router manager will load the DLL for the client (for example ipNAT.dll) and initialize the
client by calling the client's RegisterProtocol and Start Protocol functions. The router
manager passes the client-specific global information to the client in the call to
StartProtocol.

Chapter 6 Router Administration 65

At each stage, the information being passed to the next entity is opaque to the entity
above it. That is, DIM does not interpret the global information for the IP Router
Manager, beyond the fact that the information is meant for the IP Router Manager.
Similarly, the IP Router Manager does not interpret the OSPF specific information
beyond the fact that it is OSPF information.

Router Management Functions
The following sections discuss the different types of router management functions and
what you should know to use them effectively.

All router management functions require administrator privilege. A user in the Power
User group will not have sufficient privilege to use the router management functions.

The Different Classes of Router Management Functions
The router management functions can be divided up into the administration functions
and the configuration functions. The administration functions have a prefix of MprAdmin
and the configuration functions have a prefix of MprConfig. Despite the naming, both
sets of functions are used for router management. The MprAdmin functions operate
directly on the running router. The MprConfig functions have similar functionality, but
operate on the router configuration stored in the registry. Both types of functions pass
information blocks.

The router management functions can also be divided up based on what components of
the router they manage: interfaces, router managers, or router manager clients.

The router interface functions have a prefix of either MprAdminlnterface or
MprConfiglnterface. Use these functions to access interfaces. The router manager
functions have a prefix of MprAdminTransport or MprConfigTransport. Use these
functions to access the router managers. Lastly, the router manager client functions
have a prefix of MprAdminlnterfaceTransport or MprConfiglnterfaceTransport. Use
these functions to access the clients running on the router.

A subset of MprAdmin functions is the MprAdminMib functions. These also operate on
the running route alone. However, these functions do not pass information blocks. These
functions provide additional flexibility to the protocol designer, especially for retrieving
non-configuration information, such as statistics.

Ensuring that Changes Occur Immediately and are Persistent
A developer can make changes to the router configuration directly using the router
configuration functions. However, any changes made to the configuration will not take
effect until the router is restarted, since this is the only time that DIM reads the
configuration from the registry.

A developer can make changes to the running router by using the router administration
functions. However, these changes are not persistent: since they haven't been written to
the registry, they will be lost if the router is restarted.

66 Volume 5 Routing

In order to make changes that are both immediate and persistent, a developer will need
to use both the router administration and the router configuration functions. If the router
is not running, the developer need only call the appropriate router configuration
functions.

For querying information from the running router, use the router administration
functions. If the router is not running, query information using the router configuration
functions.

Using Router Administration and Configuration Functions
Remotely
Most of the router administration and configuration functions can be called on a
computer other than the one being administered. These functions take as a parameter, a
handle to the router service or configuration to administer. The administration functions
use RPC (Remote Procedure Call) to communicate with the routing service specified by
the handle. The configuration functions write to and read from the registry of the
computer specified by the handle.

To administer the routing service on a remote machine first call
MprAdminlsServiceRunning to verify that the service is running. Then call
MprdminServerConnect to obtain the handle. If the router service is not running on the
remote machine, all router administration ("MprAdmin") calls will fail.

To make changes to the router configuration on a remote machine obtain a handle by
calling the MprConfigServerConnect function.

Router Interface Functions
Use the following functions to administer interfaces on the router.

Administration Function

MprAdminlnterfaceCreate

MprAdminlnterfaceDelete

MprAdminlnterfaceEnum

MprAdminlnterfaceGetHandle

MprAdminlnterfaceGetlnfo

MprAdminlnterfaceSetlnfo

Configuration Function

MprConfiglnterfaceCreate

MprConfiglnterfaceDelete

MprConfiglnterfaceEnum

MprConfiglnterfaceGetHandle

MprConfiglnterfaceGetlnfo

MprConfiglnterfaceSetlnfo

These functions affect the interfaces themselves, not clients running on the interfaces.
For this reason, none of the functions require the caller to specify a particular transport
(IP or IPX); although clients (such as routing protocols) are associated with particular
transports, the interfaces themselves are not.

These functions are handled directly by DIM. They do not utilize the router managers.

Chapter 6 Router Administration 67

The MprAdminlnterfaceCreate and MprAdminlnterfaceDelete functions cannot create
or delete LAN interfaces. They can only create or delete demand-dial interfaces. See
ROUTER_INTERFACE_ TYPE for a list of interface types.

Router Manager (Transport) Functions
Use the following functions to administer the router managers. These functions also
allow a developer to read and write the global information for the router managers, and
the global information for router clients (such as routing protocols).

Administration function

MprAdminTransportCreate

No administration function

MprAdminTransportGetlnfo

MprAdminTransportSetlnfo

No administration function

No administration function

Configuration function

MprConfigTransportCreate

MprConfigTransportDelete

MprConfigTransportGetlnfo

MprConfigTransportSetlnfo

MprConfigTransportEnum

MprConfigTransportGetHandle

Router Manager Client (InterfaceTransport) Functions
Use the following functions to administer clients (such as routing protocols) on particular
interfaces. These functions also allow a developer to read and write interface-specific
information for router clients (such as routing protocols).

Administration function

MprAdminlnterfaceTransportAdd

MprAdminlnterfaceTransportRemove

MprAdminlnterfaceTransportGetlnfo

MprAdminlnterfaceTransportSetlnfo

No administration function

No administration function

Configuration function

MprConfiglnterfaceTransportAdd

MprConfiglnterfaceTransportRemove

MprConfiglnterfaceTransportGetlnfo

MprConfiglnterfaceTransportSetlnfo

MprConfiglnterfaceTransportEnum

MprConfiglnterfaceTransportGetHandle

Mprlnfo Functions and Information Headers
The following functions require that the caller pass an information structure or header as
one of the parameters.

Administration function

No administration function

MprAdminTransportSetlnfo

MprAdminlnterfaceTransportSetlnfo

MprAdminlnterfaceTransportAdd

Configuration function

MprConfigTransportCreate

MprConfigTransportSetlnfo

MprConfiglnterfaceTransportSetlnfo

MprConfiglnterfaceTransportAdd

68 Volume 5 Routing

Similarly, the following functions return information headers.

Administration function

MprAdminTransportGetlnfo

MprAdminlnterfaceTransportGetlnfo

Configuration function

MprConfigTransportGetlnfo

MprConfiglnterfaceTransportGetlnfo

For the transport functions, the information header contains global information for the
transport. For the client ("lnterfaceTransport") functions, the header contains information
specific to the client (for example, OSPF) being administered.

The information headers and their contents should be manipulated only by using the
Mprlnfo functions. Developers should not attempt to manipulate the contents of the
information headers directly.

The "interface-only" functions such as MprAdminlnterfaceSetlnfo do not require the
use of Mprlnfo functions. The information that is passed and returned with these
functions is always in the form of an MPR_INTERFACE structure.

Managing Router Clients and Interfaces
The following topics describe how to perform typical management tasks using the
MprAdmin and MprConfig and Mprlnfo functions:

• Changing Interface-Specific and Global Information for Clients

• Deleting a Client from an Interface

Changing Interface-Specific and Global Information for Clients
To change the interface information for a specific client, for example NAT, first use the
appropriate "Getlnfo" function to retreive the current information. If the router is running,
use MprAdminlnterfaceTransportGetlnfo. If the router is not running, use the
MprConfiglnterfaceTransportGetlnfo. This call will retrieve the information for all the
clients running on the specified interface. For example, if both OSPF and RIP are
running on a particular interface, this call will retrieve the interface information for both.
Use the MprlnfoBlockFind function to locate the information block corresponding to the
client you want to modify. Then use the MprlnfoBlockSet functions to perform the
modifications. Lastly, use either MprAdminlnterfaceTransportSetlnfo or
MprConfiglnterfaceSetlnfo to make the changes either to the running router or the
router configuration in the registry.

Global client information is information that is not specific to any particular interface on
which the client is running. Use a similar procedure to modify global information for a
specific client. First retrieve the global information for all the clients using
MprAdminTransportGetlnfo or MprConfigTransportGetlnfo. Then use the Mprlnfo
functions to modify the information. Lastly, use the MprAdminTransportSetlnfo or
MprConfigTransportSetlnfo functions to "save" the modified information back to either
the. running router or the registry.

Chapter 6 Router Administration 69

Calls to the above administration functions go through the Dynamic Interface Manager
(DIM), and eventually translate into calls from the router manager to the clients
themselves. All clients, whether or not they are routing protocols, must conform to the
interface described in the section Router Protocol Interface. As part of this interface,
the routing protocol must support the following functions (among others):

• GetGlobalinfo

• SetGlobalinfo

• Getlnterfacelnfo

• Setlnterfacelnfo

The router manager calls the Getlnterfacelnfo functions for each of the clients to gather
the information that is returned from a call to MprAdminlnterfaceTransportGetlnfo.
Similarly, when the router manager receives updated information via
MprAdminlnterfaceTransportSetlnfo call, it uses the Setlnterfacelnfo functions to
update the interface information for each of the clients.

Deleting a Client from an Interface
To delete a client, such as a routing protocol, from a particular interface, use either
MprAdminlnterfaceTransportGetlnfo or MprConfiglnterfaceTransportGetlnfo to
retrieve all the client information for the interface. Use MprlnfoBlockRemove to remove
the information block for the client to be deleted. Then use MprlnfoBlockAddto add a
zero-length block for the client to be deleted. Finally, use
MprAdminlnterfaceTransportSetlnfo or MprConfiglnterfaceTransportSetlnfo to
"save" the information back to either the running router or the registry.

If the router manager receives a zero-length interface information block for a client, it
knows to delete that client from the interface. The router manager will delete the client by
calling the client's implementation of Deletelnterface. Note the important distinction
between paSSing an information header that doesn't contain an information block for a
client, and passing an information header that contains a zero-length information block
for the client. In the first case, the router manager will take no action with respect to the
client. In the second case, the router manager will delete the client from the interface.

Router Administration Reference
Use the following functions, structures, and enumerated types when developing software
to administer Microsoft® Windows® 2000 routers:

Router Administration Functions
Use the functions on the following page when developing software to administer
Microsoft® Windows® 2000 routers.

70 Volume 5 Routing

MprAdminBufferFree
MprAdminDeregisterConnectionNotification
MprAdminGetErrorString
Mpr AdminlnterfaceConnect
MprAdminlnterfaceCreate
MprAdminlnterfaceDelete
MprAdminlnterfaceDisconnect
MprAdminlnterfaceEnum
MprAdminlnterfaceGetCredentials
MprAdminlnterfaceGetCredentialsEx
MprAdminlnterfaceGetHandle
MprAdminlnterfaceGetlnfo
MprAdminlnterfaceQueryUpdateResult
MprAdminlnterfaceSetCredentials
MprAdminlnterfaceSetCredentialsEx

MprAdminBufferFree

MprAdminlnterfaceSetlnfo
MprAdminlnterfaceTransportAdd
MprAdminlnterfaceTransportGetlnfo
MprAdminlnterfaceTransportRemove
MprAdminlnterfaceTransportSetlnfo
MprAdminlnterfaceUpdatePhonebooklnfo
MprAdminlnterfaceUpdateRoutes
MprAdminlsServiceRunning
MprAdminRegisterConnectionNotification
MprAdminServerConnect
MprAdminServerDisconnect
MprAdminServerGetlnfo
MprAdminTransportCreate
MprAdminTransportGetlnfo
MprAdminTransportSetlnfo

The MprAdminBufferFree function frees memory buffers returned by:
MprAdminlnterfaceGetlnfo, MprAdminlnterfaceEnum, MprAdminServerGetlnfo,
MprAdminlnterfaceTransportGetlnfo, and MprAdminTransportGetlnfo.

Parameters
pBuffer

Pointer to the memory buffer to free.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is the following error code.

Value Meaning

ERROR_INVALID_PARAMETER The pBuffer parameter is NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Chapter 6 Router Administration 71

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceGetlnfo, MprAdminlnterfaceEnum, MprAdminServerGetlnfo,
MprAdminlnterfaceTransportGetinfo, MprAdminTransportGetlnfo

MprAdminDeregisterConnectionNotification
The MprAdminDeregisterConnectionNotification function deregisters an event object
that was previously registered using MprAdminRegisterConnectionNotification. Once
deregistered, this event is longer signaled when an interface connects or disconnects.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hEventNotification
Handle to an event object to deregister. This event will no longer be signaled when an
interface connects or disconnects.

Return Values
If the function is successful, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_ACCESS_DENI ED

ERROR_DDM_NOT _RUNNING

ERROR_INVALlD_PARAMETER

Other

Meaning

The caller does nothave sufficient privilege.

The Demand Dial Manager (DDM) is not running.

The hEventNotification parameter is NULL or is
an invalid handle.

Use FormatMessage to retrieve the system error
message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

72 Volume 5 Routing

Router Administration Reference, Router Administration Functions, FormatMessage,
MprAdminRegisterConnectionNotification

MprAdminGetErrorString
The MprAdminGetErrorString function returns the string associated with a router error
from mprerror.h.

Parameters
dwError

The error code for a Windows 2000 router error.

IplpwsErrorString
Pointer to a LPWSTR variable that will point to the text associated with the dwError
code on successful return. Free this memory by calling LocalFree.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALlD_PARAMETER

The caller does not have sufficient privilege.

The error code in dwError is unknown.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions, LocalFree

Chapter 6 Router Administration 73

MprAdminlnterfaceConnect
The MprAdminlnterfaceConnect function creates a connection to the specified WAN
interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface. This handle is obtained from a previous call to
MprAdminlnterfaceCreate.

hEvent
Handle to an event that will be signaled after the attempt to connect the interface has
completed. The function initiates the connection attempt and returns immediately.
After the event is Signaled, you can obtain the result of the connection attempt by
calling MprAdminlnterfaceGetlnfo.

If this parameter is NULL, and fBlocking is TRUE, then this call is synchronous,
that is, the function will not return until the connection attempt has completed.

The caller must specify NULL for this parameter, if hMprserverspecifies a remote
router.

fBlocking
If hEvent is NULL and this parameter is set to TRUE, the function will not return until
the connection attempt has completed.

If hEventis NULL, and this parameter is set to FALSE, the function will return
immediately. A return value of PENDING indicates that the connection attempt
was initiated successfully.

If hEvent is not NULL, this parameter is ignored.

Return Values
If the function succeeds, the return value is NO_ERROR.

74 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value Meaning

The caller does not have sufficient
privilege.

A connection is already in progress on
this interface.

The Demand Dial Manager (DDM) is not
running.

ERROR_INTERFACE_DISABLED

ERROR_INTERFACE_HAS_NO_DEVICES

The interface is currently disabled.

No adapters are available for this
interface.

ERROR_INVALID_HANDLE

ERROR_SERVICE_IS_PAUSED

PENDING

Remarks

The hlnterface value is invalid.

The Demand Dial service is currently
paused.

The interface is in the process of
connecting. The caller should wait on
the hEvent handle, if one was specified.
After the event is signaled, you can
obtain the state of the connection and
any associated error can by calling
MprAdminlnterfaceGetlnfo.

The following table summarizes the relationship between hEvent and fBlocking.

hEvent fBlocking

Event Handle Ignored

NULL TRUE

NULL FALSE

Result

The call returns immediately. A return value of
PENDING indicates that the attempt was initiated
successfully. Wait on hEvent. When hEvent is
signalled, use MprAdminlnterfaceGetlnfo to
determine the success or failure of the connection
attempt.

The call will not return until connection attempt has
completed.

The call returns immediately. A return value of
PENDING indicates that the attempt was initiated
successfully.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Chapter 6 Router Administration 75

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceDisconnect,
MprAdminlnterfaceGetlnfo, MprAdminServerConnect

MprAdminlnterfaceCreate
The MprAdminlnterfaceCreate function creates an interface on a specified server.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

dwLevel
Level of the information passed in IpBuffer. Must be either zero.

Windows 2000 and later: This parameter may have a value of one. A value of one
indicates that the IpBuffer parameter points to an MPR_INTERFACE_1 structure.

IpBuffer
Pointer to an MPR_INTERFACE_O structure that contains the information to create
the interface. The hlnterface member of this structure is ignored.

Windows 2000 and later: The IpBuffer parameter may point to either an
MPR_INTERFACE_O or MPR_INTERFACE_1 structure. The type of structure should
be indicated by the value of the dwLevel parameter.

phlnterface
Pointer to a HANDLE variable. On successful return, the variable contains a handle to
use in all subsequent calls to manage this interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

76 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value Meaning

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

The caller does not have sufficient
privilege.

The router interface type specified in the
MPR_INTERFACE_O or
MPR_INTERFACE_1 structure is not
supported because the Dynamic
Interface Manager is configured to run
only on a LAN.

An interface with the same name
already exists.

Insufficient resources to complete the
operation.

The dwLeve/value is invalid.

Router Administration Reference, Router Administration Functions,
MPR_INTERFACE_O, MPR_INTERFACE_1, MprAdminlnterfaceDelete,
MprAdminServerConnect

MprAdminlnterfaceDelete
The MprAdminlnterfaceDelete function deletes an interface on a specified server.

Parameters
hMprServer

A handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

Chapter 6 Router Administration 77

hlnterface
Handle to the interface to delete. Obtain this handle by calling
MprAdminlnterfaceCreate.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_ACCESS_DENIED

ERROR_INTERFACE_CONNECTED

ERROR_INVALID _HANDLE

Meaning

The caller does not have sufficient privilege.

The interface specified is a demand dial
interface and is currently connected.

The hlnterface value is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminServerConnect

MprAdminlnterfaceDisconnect
The MprAdminlnterfaceDisconnect function disconnects a connected WAN interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface. This handle is obtained from a previous call to
MprAdminlnterfaceCreate.

78 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_HANDLE

ERROR_INTERFACE_NOT _CONNECTED

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

The caller does not have sufficient
privilege.
The Demand Dial Manager (DDM) is not
running.

The hlnterface value is invalid.

This interface is not connected.
Therefore, it cannot be disconnected.

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceConnect, MprAdminServerConnect

MprAdminlnterfaceEnum
The MprAdminlnterfaceEnum function enumerates all the interfaces on a specified
server.

Parameters
hMprServer

Chapter 6 Router Administration 79

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

dwLevel
Level of the information passed in IpBuffer. Must be zero.

Windows 2000 and later: This parameter may have a value of one. A value of one
indicates that the IplpBuffer parameter pOints to an array of MPR_INTERFACE_1
structures.

IplpbBuffer
Pointer to a pOinter variable that will point to an array of MPR_INTERFACE_O
structures on successful return. This memory should be freed by the
MprAdminBufferFree call.

Windows 2000 and later: The painter variable may point to an array of either
MPR_INTERFACE_O or MPR_INTERFACE_1 structures. The type of the structures
should be indicated by the value of the dwLevel parameter.

dwPrefMaxLen
Specifies the preferred maximum length of returned data (in 8-bit bytes). If this
parameter is -1, the buffer returned will be large enough to hold all available
information.

IpdwEntriesRead .
Pointer to a DWORD variable. 011 successful retl,Jrn, this variable contains the total
number of interfaces that were enumerated from the current resume position.

IpdwTotalEntries
Pointer to a DWORD variable. On successful return, this variable contains the total
number of interfaces that could have been enumerated from the current resume
position.

IpdwResumeHandle
Pointer to a DWORD variable. On successful return, this variable contains a resume
handle that can be used to continue the enumeration. The handle should be zero on
the first call, and left unchanged on subsequent calls. If the. return code is
ERROR.:...MORE.:...:DAtA then the call may be re-issued with the handle 10 retrieve
r;noredata. If on return, the handle is NULL, the. enumeration cannot be continued. For
other types of error returns,.this·handle is invalid.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return a resume handle.

Return Values
If the function succeeds, the return value is NO_ERROR.

80 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_MORE_DATA

The caller does not have sufficient privilege.

More information is available; the enumeration
can be continued.

Insufficient resources to complete the
operation.

The value of dwLevel is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MPR_INTERFACE_1, MprAdminBufferFree, MprAdminServerConnect

MprAdminlnterfaceGetCredentials
Use the MprAdminlnterfaceGetCredentials function to retrieve the domain, username,
and password for dialing out on the specified demand-dial interface.

Parameters
IpwsServer

Pointer to a Unicode string containing the name of the Windows 2000 router on which
to execute this call.

This parameter is optional. If the caller specifies NULL for this parameter, the call is
executed on the local machine.

Chapter 6. Router Administration 81

IpwslnterfaceName
Pointer to a Unicode string containing the name of the demand-dial interface. Use
MprAdminlnterfaceGetlnfo to obtain the interface name.

IpwsUserName
Pointer to a Unicode string to receive the name of the user. This string should be
UNLEN+1 long.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return the user name.

IpwsPassword
Pointer to a Unicode string to receive the password. This string should be PWLEN+ 1
long.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return the password.

IpwsDomainName
Pointer to a Unicode string to receive the domain name. This string should be
DNLEN+ 1 long.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return the domain name.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

ERROR_INVALID_PARAMETER

Other

Remarks

The specified interface doesn't have any
demand dial parameters associated with it.

At least, one of the following is true:

The IpwslnterfaceName parameter is NULL.

All three of the IpwsUserName,
IpwsPassword, and IpwsDomainName
parameters are NULL.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

The IpwsUserName, IpwsPassword, and IpwsDomainName parameters are optional.
However, if the caller specifies NULL for all three parameters,
MprAdminlnterfaceGetCredentials will return ERROR_INVALID_PARAMETER.

The constants UNLEN, PWLEN, and DNLEN are the maximum lengths for the
username, password, and domain name. These constants are defined in Imcons.h.

82 Volume 5 Routing

Note that the order of the parameters in MprAdminlnterfaceGetCredentials is different
from MprAdminlnterfaceSetCredentials.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions, FormatMessage,
MprAdminlnterfaceSetCredentials

MprAdminlnterfaceGetCredentialsEx
Use the MprAdminlnterfaceGetCredentialsEx function to retrieve extended credentials
information for the specified interface. Use this function to retrieve credentials
information used for Extensible Authentication Protocols (EAPs).

Parameters
hMprServer

A handle to a Windows 2000 router. This handle is obtained from a previous call to
MprAdminServerConnect.

hlnterface
Ahandle to the interface. This handle is obtained from a previous call to
MprAdminlnterfaceCreate.

dwLevel
Specifies the format of credentials information retrieved. This parameter must be zero,
which indicates that the information is formatted as an MPR_CREDENTIALSEX_O
structure.

IplpbBuffer
Pointer to a pointer to an MPR_CREDENTIALSEX_O structure to receive the
extended credentials information. Free the memory occupied by this structure with
MprAdminBufferFree.

Chapter 6 Router Administration 83

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

The caller does not have sufficient privilege.

The hlnterface value is invalid.

The IplpbBuffer parameter is NULL.

Insufficient resources to complete the
operation.

The dwLeve/value is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapUib.

MprAdminlnterfaceCreate, MprAdminlnterfaceGetCredentials,
MprAdminlnterfaceSetCredentialsEx, MprAdminServerConnect

MprAdminlnterfaceGetHandle
The MprAdminlnterfaceGetHandle function retrieves a handle to a specified interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling ·MprAdminServerConnect.

Ipws/nterfaceName
Pointer to a Unicode string that contains the name of the interface to be retrieved.

84 Volume 5 Routing

phlnterface
Pointer to a HANDLE variable that, on successful return, will contain a handle to the
interface specified by IpwslnterfaceName.

flncludeClientlnterfaces
If this parameter is FALSE, interfaces of type ROUTER_IF _TYPE_CLIENT will be
ignored in the search for the interface with the name specified by IpwslnterfaceName.
If this parameter is TRUE, a handle to an interface of type
ROUTER_IF _TYPE_CLIENT may be returned. Since it is possible that there are
several interfaces of type ROUTER_IF _TYPE_CLIENT, the handle returned will be
for the first interface found with the name specified by IpwslnterfaceName.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALID_PARAMETER

ERROR_NO_SUCH_INTERFACE

The caller does not have sufficient privilege.

IpwslnterfaceName is NULL.

No interface exists with the name specified
by IpwslnterfaceName.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
ROUTER_INTERFACE_ TYPE, MprAdminServerConnect

MprAdminlnterfaceGetlnfo
The MprAdminlnterfaceGetlnfo function retrieves information for a specified interface
on a specified server.

Parameters
hMprServer

Chapter 6 Router Administration 85

A handle to the Windows 2000 router to query. This handle is obtained from a
previous call to MprAdminServerConnect.

hlnterface
A handle to the interface obtained by a previous call to MprAdminlnterfaceCreate.

dwLevel
Specifies the type of structure returned through the IplpbBuffer parameter. Must be
zero.

Windows 2000 and later: This parameter may have a value of one. A value of one
indicates that the IpBuffer parameter points to an MPR_INTERFACE_1 structure.

IplpbBuffer
Pointer to a pointer variable. On successful return, this variable will point to an
MPR_INTERFACE_O structure. Free this memory by calling MprAdminBufferFree.

Windows 2000 and later: The pOinter variable may point to either an
MPR_INTERFACE_O or MPR_INTERFACE_1 structure. The type of the structure
should be indicated by the value of the dwLevel parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALlD_HANDLE

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

The caller does not have sufficient privilege.

The hlnterface value is invalid.

The IplpbBuffer parameter is NULL.

Insufficient resources to complete the
operation.

The dwLevel value is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions,
MPR_INTERFACE_O, MPR_INTERFACE_1, MprAdminBufferFree,
MprAdminlnterfaceCreate, MprAdminServerConnect

86 Volume 5 Routing

MprAdminlnterfaceQueryUpdateResult
The MprAdminlnterfaceQueryUpdateResult function returns the result of the last
request to a specified router manager to update its routes for a specified interface. For
more information, see MprAdminlnterfaceUpdateRoutes.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface. This handle is obtained from a previous call to
MprAdminlnterfaceCreate.

dwTransportld
A DWORD variable containing the transport identifier. This parameter identifies the
router manager that updated its routing information.

IpdwUpdateResult
A pOinter to a DWORD variable. On successful return, this variable will contain the
result of the last call to MprAdminlnterfaceUpdateRoutes. .

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_HANDLE

ERROR_INVALID _PARAMETER

The caller does not have sufficient
privilege.

The specified interface is not
connected; the result of the last update
is no longer available.

The hlnterface value is invalid.

The IpdwUpdateResult parameter is
NULL.

Value

Remarks

Chapter 6 Router Administration 87

Meaning

The specified transport is not running
on the specified interface.

The dwTransportldvalue does not
match any installed router manager.

The dwTransportld parameter specifies both a transport and a router manager, since
Windows 2000 router maintains a router manager for each transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceUpdateRoutes,
MprAdminServerConnect

MprAdminlnterfaceSetCredentials
Use MprAdminlnterfaceSetCredentials function to set the domain, username, and
password that will be used for dialing out on the specified demand-dial interface.

Parameters
IpwsServer

Pointer to a Unicode string containing the name of the Windows 2000 router on which
to execute this call.

This parameter is optional. If the caller specifies NULL for this parameter, the call is
executed on the local machine.

88 Volume 5 Routing

IpwslnterfaceName
Pointer to a Unicode string containing the name of the demand-dial interface. Use
MprAdminlnterfaceGetlnfo to obtain the interface name.

IpwsUserName
Pointer to a Unicode string containing the username.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not change the username associated with this interface.

IpwsDomainName
Pointer to a Unicode string containing the domain name.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not change the domain name associated with this interface.

IpwsPassword
Pointer to a Unicode string containing the password.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not change the password associated with this interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER At least, one of the following is true:

The IpwslnterfaceName parameter is NULL, or it
is longer than MAX_INTERFACE_NAME_LEN.

At least one of the IpwsUserName,
IpwsPassword, and IpwsDomainName
parameters is too long, and therefore invalid.
See Remarks section for more information.

ERROR_NOT _ENOUGH_MEMORY Insufficient memory to create a new data
structure to contain the credentials.

Other Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Remarks
The IpwsUserName, IpwsPassword, and IpwsDomainName parameters are optional. If
the caller specifies NULL for all three parameters, MprAdminlnterfaceSetCredentials
will remove all credential information for this interface.

The constants UNLEN, PWLEN, and DNLEN are the maximum lengths for the
username, password, and domain name. These constants are defined in Imcons.h.

Chapter 6 Router Administration 89

Note that the order of the parameters in MprAdminlnterfaceSetCredentials is different
from MprAdminlnterfaceGetCredentials.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions, FormatMessage,
MprAdminlnterfaceGetCredentials, MprAdminlnterfaceGetlnfo

MprAdminlnterfaceSetCredentialsEx
Use the MprAdminlnterfaceSetCredentialsEx function to set extended credentials
information for an interface. Use this function to set credentials information used for
Extensible Authentication Protocols (EAPs).

Parameters
hMprServer

A handle to a Windows 2000 router. This handle is obtained from a previous call to
MprAdminServerConnect.

hlnterface
A handle to the interface. This handle is obtained from a previous call to
MprAdminlnterfaceCreate.

dwLevel
Specifies the format of the credentials information. This parameter must be zero,
which indicates that the information is formatted as an MPR_CREDENTIALSEX_O
structure.

IplpbBuffer
Pointer to an MPR_CREDENTIALSEX_O structure containing the new extended
credentials information for the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

90 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value

ERROR_ACCESS_DENIED

ERROR_INVALI D_HANDLE

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Meaning

The caller does not have sufficient privilege.

The hlnterface value is invalid.

The IplpbBufferparameter is NULL.

Insufficient resources to complete the
operation.

The dwLeve/value is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

MprAdminlnterfaceCreate, MprAdminlnterfaceSetCredentials,
MprAdminlnterfaceSetCredentialsEx, MprAdminServerConnect

MprAdminlnterfaceSetlnfo
The MprAdminlnterfaceSetlnfo function set information for a specified interface on a
specified server.

Parameters
hMprServer

A handle to the Windows 2000 router to query. This handle is obtained from a
previous call to MprAdminServerConnect.

hlnterface
A handle to the interface obtained by a previous call to MprAdminlnterfaceCreate.

dwLevel
Specifies the type of structure returned through the IplpbBuffer parameter. Must be
zero, one, or two.

Chapter 6 Router Administration 91

IpbBuffer
Pointer to a an MPR_INTERFACE_O, MPR_INTERFACE_1, or MPR_INTERFACE_2
structure. The type of the structure should be indicated by the value of the dwLevel
parameter. Free this memory by calling MprAdminBufferFree.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DEN I ED

ERROR_INVALlD_HANDLE

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

The caller does not have sufficient privilege.

The hlnterface value is invalid.

The IplpbBuffer parameter is NULL.

Insufficient resources to complete the
operation.

The dwLevel value is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions,
MPR_INTERFACE_O, MPR_INTERFACE_1, MPR_INTERFACE_2,
MprAdminBufferFree, MprAdminlnterfaceCreate, MprAdminlnterfaceGetlnfo,
MprAdminServerConnect

Mpr Admi nlnterfaceTransportAdd
The MprAdminlnterfaceTransportAdd function adds a transport (for example, IP or
IPX) to a specified interface.

92 Volume 5 Routing

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface to which to add the transport. This handle is obtained by a
previous call to MprAdminlnterfaceCreate.

dwTransportld
Value that identifies the transport to add to the interface.

plnterfacelnfo
Pointer to an information header containing interface information for this transport.
Use the Information Header Functions to manipulate information headers.

dwlnterfacelnfoSize
Size, in bytes, of the information pOinted to by plnterfacelnfo.

Remarks
The dwTransportld parameter also specifies the router manager because a
Windows 2000 router uses a different router manager for each transport.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_ACCESS_DEN I ED

ERROR_INVALID _HANDLE

ERROR_INVALID_PARAMETER

ERROR_UNKNOWN_PROTOCOL_ID

Meaning

The caller does not have sufficient privilege.

The hlnterface value is invalid.

The plnterfacelnfo parameter is NULL.

The dwTransportldvalue does not match any
installed transport or router manager.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceTransportRemove,
MprAdminServerConnect

Chapter 6 Router Administration 93

MprAdminlnterfaceTransportGetlnfo
The MprAdminlnterfaceTransportGetlnfo function retrieves information about a
transport running on a specified interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface. This handle is obtained from a previous call to
MprAdminlnterfaceCreate.

dwTransportld
Value that identifies the transport/router manager for which information is requested.

pplnterfacelnfo
Pointer to a pointer variable. On successful return, the pOinter variable pOints to an
information header containing information for the specified interface and transport.
Use the Information Header Functions to manipulate information headers.

IpdwlnterfacelnfoSize
Pointer to a DWORD variable. On successful return, this variable contains the size in
bytes of the interface information returned through the pplnterfacelnfo parameter.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not return the size of the interface information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

94 Volume 5 Routing

Value

ERROR_ACCESS_DENIED

ERROR_INVALlD_HANDLE

Meaning

The caller does not have sufficient privilege.

The hlnterface value is invalid, or if the
interface specified is administratively
disabled.

The specified transport is not running on the
specified interface.

Insufficient resources to complete the
operation.

The dwTransportld value does not match
any installed transport or router manager.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceTransportSetlnfo,
MprAdminServerConnect

M pr Adminl nterfaceTransportRemove
The MprAdminlnterfaceTransportRemove function removes a transport (for example,
IP or IPX) from a specified interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface from which to remove the transport. Obtain this handle by
ailing MprAdminlnterfaceCreate.

Chapter 6 Router Administration 95

dwTransportld
Identifies the transport to remove from the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INTERFACE_CONN ECTED

The caller does not have sufficient privilege.

The interface specified is a demand dial
interface and is currently connected.

The hlnterface value is invalid. ERROR_INVALID_HANDLE

ERROR_NO_SUCH_INTERFACE The specified transport is not running on the
specified interface.

The dwTransportld value does not match any
installed transport.

Remarks
The dwTransportld parameter specifies a router manager because a Windows 2000
router uses a different router manager for each routable transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceTransportAdd,
MprAdminServerConnect

MprAdminlnterfaceTransportSetlnfo
The MprAdminlnterfaceTransportSetlnfo function sets information for a transport
running on a specified interface.

(continued)

96 Volume 5 Routing

(continued)

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain the handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface. Obtain this handle by calling MprAdminlnterfaceCreate.

dw Transportld
Value that identifies the transport for which information is set.

plnterfacelnfo
Pointer to an information header containing information for the specified interface and
transport. Use the Information Header Functions to manipulate information headers.

dwlnterfacelnfoSize
Size, in bytes, of the information pOinted to by plnterfacelnfo.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALI D _HANDLE

ERROR_INVALID_PARAMETER

ERROR_NO_SUCH_INTE8FACE

The caller does not have sufficient privilege.

The hlnterface value is invalid.

The plnterfacelnfo parameter is NULL.

The specified transport is not running on the
specified interface.

The dwTransportld value does not match any
installed transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Chapter 6 Router Administration 97

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceTransportGetinfo,
MprAdminServerConnect

MprAdminlnterfaceUpdatePhonebooklnfo
Call the MprAdminlnterfaceUpdatePhonebooklnfo function after making any changes
to the phonebook entry for the specified demand dial interface. This function forces the
router to pick up the changes for that interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain the handle
by calling MprAdminServerConnect.

hlnterface
Handle to a demand-dial interface. Obtain this handle by catling
MprAdminlnterfaceCreate.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The caller does not have sufficient
privilege.

ERROR_CANNOT _LOAD_PHONEBOOK The function could not load the
phonebook into memory.

ERROR_CANNOT _OPEN_PHONEBOOK The function could not find the
phonebook file.

ERROR_DDM_NOT _RUNNING The Demand Dial Manager (DDM) is not
running.

ERROR_INTERFACE_HAS_NO_DEVICES No device is currently associated with this
interface.

ERROR_INVALlD_HANDLE The hlnterfacevalue is invalid.

(continued)

98 Volume 5 Routing

(continued)

Value

Other

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Meaning

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the
system error message corresponding to
the error code returned.

Router Administration Reference, Router Administration Functions, FormatMessage,
MprAdminlnterfaceCreate, MprAdminServerConnect

MprAdminlnterfaceUpdateRoutes
The MprAdminlnterfaceUpdateRoutes function requests that a specified router
manager update its routing information for a specified interface.

Parameters
hMprServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hlnterface
Handle to the interface. Obtain this handle by calling MprAdminlnterfaceCreate.

dw Transportld
Identifies the router manager that should update its routing information.
(Windows 2000 router uses a different router manager for each transport.)

Chapter 6 Router Administration 99

hEvent
Handle to an event that will be signaled when the attempt to update routing
information for this interface has completed. If this value is NULL, then the function is
synchronous. If hMprServerspecifies a remote router, the caller must specify NULL
for this parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INTERFACE_NOT _
CONNECTED

ERROR_INVALID _HANDLE

ERROR_NO_SUCH_INTERFACE

ERROR_UPDATE IN PROGRESS

PENDING

Remarks

Meaning

The caller does not have sufficient
privilege.

The specified interface is not connected.
Therefore, routes cannot be updated.

The hlnterface value is invalid.

The specified transport is not running on
the specified interface.

The dwTransportld value does not match
any of the router managers.

A routing information update operation is
already in progress on this interface.

The interface is in the process of updating
routing information. The caller should wait
on the event object specified by hEvent.
After the event is signaled, the status of
the update operation can be obtained by
calling
MprAdminlnterfaceQueryUpdateResult.

The dwTransportld parameter specifies both a transport (for example, IP or IPX) and a
unique router manager because Windows 2000 router uses a different router manager
for each transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

100 Volume 5 Routing

Router Administration Reference, Router Administration Functions,
MprAdminlnterfaceCreate, MprAdminlnterfaceQueryUpdateResult,
MprAdminServerConnect

MprAdminlsServiceRunning
The MprAdminlsServiceRunning function checks if the Routing and Remote Access
Service is running on a specified machine. If not, none of the MprAdminXXX calls will
succeed.

Parameters
Ipws$erverName

Pointer to a Unicode string containing the name of the server to query.

Return Values
The return value is one of the following Boolean values:

Value Meaning

TRUE

FALSE

The service is running on the specified server.

The service is not running on the specified server.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions

MprAdminRegisterConnectionNotification
The MprAdminRegisterConnectionNotification function registers an event object with
the Demand Dial Manager (DDM) so that, if an interface connects or disconnects, the
event is signaled.

Parameters
hMprServer

Chapter 6 Router Administration 101

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminServerConnect.

hEventNotification
Handle to an event object. This event is signaled whenever an interface connects or
disconnects.

Return Values
If the function is successful, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_DDM_NOT _RUNNING

ERROR_INVALlD_PARAMETER

Other

Remarks

The caller does not have sufficient privilege.

The DDM is not running.

The hEventNotification parameter is NULL or is
an invalid handle.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

If the event is signaled, indicating that an interface has connected or disconnected, the
calling application can then use a function such as MprAdminConnectionEnum or
MprAdminlnterfaceEnum to determine which interface was affected.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Router Administration Reference, Router Administration Functions, FormatMessage,
MprAdminConnectionEnum, MprAdminDeregisterConnectionNotification,
MprAdminlnterfaceEnum

102 Volume 5 Routing

MprAdminServerConnect
Call the MprAdminServerConnect function to connect to the Windows 2000 router to
administer. Call this function before making any other calls to the server. Use the handle
returned in subsequent calls to administer interfaces on the server.

Parameters
IpwsServerName

Pointer to a Unicode string that contains the name of the remote server.

phMprServer
Pointer to a HANDLE variable that, on successful return, contains a handle to the
server. Use this handle in subsequent calls to administer the server.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The caller does not have sufficient privilege.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminServerDisconnect

MprAdminServerDisconnect
The MprAdminServerDisconnect function disconnects the connection made by a
previous call to MprAdminServerConnect.

Parameters
hMprServer

Chapter 6 Router Administration 103

Handle to the Windows 2000 router from which to disconnect. Obtain this handle by
calling MprAdminServerConnect.

Return Values
None.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminServerConnect

Mpr AdminServerGetlnfo
The MprAdminServerGetlnfo function retrieves routing and RAS information from a
specified server.

Parameters
hMprServer

Handle to the Windows 2000 router to query. Obtain this handle by calling
MprAdminMIBServerConnect.

dwLevel
Level of the information returned in IplpbBuffer. Must be zero.

IplpbBuffer
Pointer to a pOinter variable. On successful returFI, this pointer variable will point to an
MPR_SERVER_O structure. Free this memory by calling MprAdminBufferFree.

104 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DEN I ED

ERROR_INVALlD_PARAMETER

The caller does not have sufficient privilege.

The IplpbBuffer parameter is NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapUib.

Router Administration Reference, Router Administration Functions,
MprAdminBufferFree, MPR_SERVER_O, MprAdminServerConnect

MprAdminTransportCreate
The MprAdminTransportCreate function loads a new transport, and starts the router
manager for the transport.

Parameters
hMprServer

Handle to the Windows 2000 router on which to set the information. Obtain this
handle by calling MprAdminServerConnect.

dwTransportld
Value that identifies the transport for which to set information.

IpwsTransportName
Pointer to a null-terminated Unicode string that contains the name of the transport.

Chapter 6 Router Administration 105

pGloballnfo
Pointer to a buffer containing global information for the transport. Use the Information
Header Functions to manipulate information headers.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not set the global information.

dwGloballnfoSize
Size, in bytes, of the buffer pointed to by the pG/oballnfo parameter.

pClientin terfacelnfo
Pointer to a buffer containing default client interface information for the transport.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not set the default client interface information.

dwClientlnterfacelnfoSize
Size, in bytes, of the buffer pOinted to by the pClientlnterfacelnfo parameter.

IpwsDLLPath
Pointer to a null-terminated Unicode string that contains the path to the DLL for the
transport.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The caller does not have sufficient
privilege.

ERROR_INVALlD_PARAMETER The pGloballnfo parameter and the
pClientlnterfacelnfo parameter are
both NULL.

ERROR_NOT _ENOUGH_MEMORY Insufficient resources to complete the
operation.

ERROR_PROTOCOL_ALREADY _INSTALLED The specified transport is already
running on the specified router.

ERROR_UNKNOWN_PROTOCOL_ID The dwTransportldvalue does not
match any installed transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

106 Volume 5 Routing

MprAdminTransportGetlnfo, MprAdminTransportSetlnfo

MprAdminTransportGetlnfo
The MprAdminTransportGetlnfo function retrieves global information, default client
interface information, or both, for a specified transport.

Parameters
hMprServer

Handle to the Windows 2000 router to query. This handle is obtained from a previous
call to MprAdminServerConnect.

dwTransportld
Value that identifies the transport about which to retrieve information.

ppG/oballnfo
Pointer to a pOinter variable. On successful return, this variable points to an
information header containing global information for this transport. Use the
Information Header Functions to manipulate information headers.

Free this memory by calling MprAdminBufferFree.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not retrieve the global information.

IpdwG/oballnfoSize
Pointer to a DWORD variable. On successful return, this variable contains the size in
bytes of the global· information for the transport.

Chapter 6 Router Administration 107

ppClientlnterfacelnfo
Pointer to a pOinter variable. On successful return, this variable pOints to default client
interface information for this transport. Free this memory by calling
MprAdminBufferFree.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not retrieve the client interface information.

IpdwClientin terfacelnfoSize
Pointer to a DWORD variable. On successful return, this variable contains the size in
bytes of the client interface information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALlD_PARAMETER

Remarks

The caller does not have sufficient privilege.

One of the following is true:

The ppGloballnfo parameter and the
ppClientlnterfacelnfo parameter are both
NULL.

The ppGloballnfo parameter does not
point to valid memory.

The ppClientlnterfacelnfo parameter
does not point to valid memory.

Insufficient resources to complete the
operation.

The dwTransportld value does not match
any installed transport.

The ppGloballnfo and ppClientlnterfacelnfo parameters cannot both be NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminBufferFree, MprAdminServerConnect, MprAdminTransportSetlnfo

108 Volume 5 Routing

MprAdminTransportSetlnfo
The MprAdminTransportSetlnfo function sets global information, or default client
interface information, or both, for a specified transport.

Parameters
hMprServer

Handle to the Windows 2000 router on which to set the information. Obtain this
handle by calling MprAdminServerConnect.

dw Transportld
Value that identifies the transport for which to set information.

pGloballnfo
Pointer to a buffer containing global information for the transport. Use the Information
Header Functions to manipulate information headers.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not set the global information.

dwGloballnfoSize
Size, in bytes, of the buffer pointed to by the pGloballnfo parameter.

pClientlnterfacelnfo
Pointer to a buffer containing default client interface information for the transport.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not set the default client interface information.

dwClientlnterfacelnfoSize
Size, in bytes, of the buffer pointed to by the pClientlnterfacelnfo parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

Value

ERROR_ACCESS_DENIED

ERROR_INVALlD_PARAMETER

Chapter 6 Router Administration 109

Meaning

The caller does not have sufficient privilege.

The pG/oballnfo parameter and the
pClientlnterfacelnfo parameter are both
NULL.

Insufficient resources to complete the
operation.

The dwTransportld value does not match any
installed transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Administration Functions,
MprAdminServerConnect, MprAdminTransportGetlnfo

Router Configuration Functions
Use the following functions when developing software to configure Microsoft®
Windows NT®IWindows® 2000 routers:

MprConfigBufferFree
MprConfigGetFriendlyName
MprConfigGetGuidName
MprConfiglnterfaceCreate
MprConfiglnterfaceDelete
MprConfiglnterfaceEnum
MprConfiglnterfaceGetHandle
MprConfiglnterfaceGetlnfo
MprConfiglnterfaceSetlnfo
MprConfiglnterfaceTransportAdd
MprConfiglnterfaceTransportEnum
MprConfiglnterfaceTransportGetHandle
MprConfiglnterfaceTransportGetlnfo
MprConfiglnterfaceTransportRemove

MprConfiglnterfaceTransportSetlnfo
MprConfigServerBackup
MprConfigServerConnect
MprConfigServerDisconnect
MprConfigServerGetlnfo
MprConfigServerlnstal1
MprConfigServerRestore
MprConfigTransportCreate
MprConfigTransportDelete
MprConfigTransportEnum
MprConfigTransportGetHandle
MprConfigTransportGetlnfo
MprConfigTransportSetlnfo

110 Volume 5 Routing

MprConfigBufferFree
The MprConfigBufferFree function frees buffers allocated by calls to the following
functions:

MprConfigXEnum

MprConfigXGetlnfo

where X stands for Server, Interface, Transport, or InterfaceTransport.

Parameters
pBuffer

Pointer to a memory buffer allocated by a previous call to:

MprConfigXEnum

MprConfigXGetlnfo

where X stands for Server, Interface, Transport, or InterfaceTransport.

Return Values
If the function succeeds, the return value is NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions,
MprConfiglnterfaceEnum, MprConfiglnterfaceTransportEnum,
MprConfigTransportEnum, MprConfiglnterfaceGetlnfo,
MprConfiglnterfaceTransportGetlnfo, MprConfigServerGetlnfo,
MprConfigTransportGetlnfo

MprConfigGetFriendlyName
The MprConfigGetFriendlyName function returns the user-friendly name for an
interface that corresponds to the specified GUID name.

Parameters
hMprConfig

Chapter 6 Router Administration 111

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

pszGuidName
Pointer to a Unicode string containing the GUID name for the interface.

pszBuffer
Pointer to a buffer to receive the user-friendly name for the interface.

dwBufferSize
Size, in bytes, of the buffer pOinted to by pszBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_BUFFER_OVERFLOW The buffer pointed to by pszBuffer is not large
enough to hold the returned GUID name.

At least one of the parameters hMprConfig,
pszGuidName, or pszBuffer is NULL.

No GUID name was found that corresponds to
the specified user-friendly name.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions,
MprConfigGetGuidName, MprConfigServerConnect

112 Volume 5 Routing

MprConfigGetGuidName
The MprConfigGetGuidName function returns the GUID name for an interface that
corresponds to the specified user-friendly name.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

pszFriendlyName
Pointer to a Unicode string containing the user-friendly name for the interface.

pszBuffer
Pointer to a buffer to receive the GUID name for the interface.

dwBufferSize
Size, in bytes, of the buffer pointed to by pszBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_BUFFER_OVERFLOW

ERROR_INVALlD_PARAMETER

The buffer pointed to by pszBuffer is not large
enough to hold the returned GUID name.

At least one of the parameters hMprConfig,
pszFriendlyName, or pszBuffer is NULL.

No GUID name was found that corresponds to
the specified user-friendly name.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Chapter 6 Router Administration 113

Router Administration Reference, Router Configuration Functions,
MprConfigGetFriendlyName, MprConfigServerConnect

M prConfigServerl nstall
The MprConfigServerlnstall function configures Routing and Remote Access Service
with a default configuration.

Parameters
dwLevel

This parameter is reserved for future use, and should be zero.

pBuffer
This parameter is reserved for future use, and should be NULL.

Return Values
If the functions succeeds, the return value is ERROR_SUCCESS.

Remarks
The MprConfigServerlnstall function performs the following tasks:

• Resets the current RouterManager and Interface keys.

• Initializes RAS structures for IP.

• Sets the router type to include:

• ROUTER_TYPE_RAS

• ROUTER_TYPE_WAN

• ROUTER_TYPE_LAN

• Sets the error logging level and authorization settings to defaults.

• Sets the devices for Routing and RAS.

• Adds the RRAS snapin to the computer management console.

• Deletes the router phone book.

• Registers the router in the domain.

• Writes out the "router is configured" registry key.

The MprConfigServerlnstall function does not start Routing and RAS. Nor does it set
the service start type for Routing and RAS.

114 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Windows 2000 Registry Layout

MprConfiglnterfaceCreate
The MprConfiglnterfaceCreate function creates a router interface in the specified router
configu ration.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

dwLevel
Level of information requested. This parameter must be zero.

IpbBuffer
Pointer to an MPR_INTERFACE_O structure.

phRouterlnterface
Pointer to a handle variable. On successful return, this variable will contain a handle
to the interface configuration.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

Value

Other

Chapter 6 Router Administration 115

Meaning

At least one of the following is true:

hMprConfig is NULL

dwLevelis not zero.

IpbBuffer is NULL

phRouterlnterface is NULL

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfiglnterfaceDelete, MprConfigServerConnect .

MprConfiglnterfaceDelete
The MprConfiglnterfaceDelete function removes a router interface from the router
configuration. All transport information associated with this interface is also removed.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration. Obtain this handle by calling
prConfiglnterfaceCreate, MprConfiglnterfaceGetHandle, or
MprConfiglnterfaceEnum.

116 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER The hMprConfig parameter is NULL, or the
hRouterlnterface parameter is NULL, or both
parameters are NULL.

ERROR_NOT _ENOUGH_MEMORY Insufficient resources to complete the operation.

Other Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfigServerConnect

MprConfiglnterfaceEnum
The MprConfiglnterfaceEnum function enumerates the interfaces that are configured
for the router.

Parameters
hMprConfig

Chapter 6 Router Administration 117

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

dwLevel
Level of the information returned through the IplpBuffer parameter. This parameter
must be zero.

IplpBuffer
Pointer to a pOinter variable. On successful return, this pointer variable will paint to an
array of MPR_INTERFACE_O structures. Free this memory by calling
MprConfigBufferFree.

dwPrefMaxLen
Specifies the preferred maximum length of returned data (in 8-bit bytes). If this
parameter is -1 , the buffer returned will be large enough to hold all available
information.

IpdwEntriesRead
Pointer to a DWORD variable. On successful return, this variable contains the total
number of entries that were enumerated from the current resume position.

IpdwTotalEntries
Pointer to a DWORD variable. On successful return, this variable contains the total
number of entries that could have been enumerated from the current resume position.

IpdwResumeHandle
Pointer to a DWORD variable. On successful return, this variable contains a resume
handle that can be used to continue the enumeration. The handle should be zero on
the first call, and left unchanged on subsequent calls. If on return, the handle is NULL,
the enumeration cannot be continued. For other types of error returns, this handle is
invalid.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return a resume handle.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

118 Volume 5 Routing

Value

Other

Meaning

One of the following is true:

hMprConfig is NULL.

dwLevel is not zero.

IplpBuffer is NULL.

dwPrefMaxLen is smaller than the size of a
single MPR_INTERFACE_O structure.

IpdwEntriesRead is NULL.

IpdwTotalEntries is NULL.

Insufficient resources to complete the
operation.

No more entries available from the current
resume position.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigBufferFree, MprConfigServerConnect

MprConfiglnterfaceGetHandle
The MprConfiglnterfaceGetHandle function retrieves a handle to the specified
interface's configuration in the specified router configuration.

Parameters
hMprConfig

Chapter 6 Router Administration 119

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

IpwslnterfaceName
Pointer to a Unicode string containing the name of the interface for which the
configuration handle is requested.

phRouterlnterface
Pointer to a handle variable. On successful return, this variable contains a handle to
the interface configuration.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Other

Meaning

The hMprConfig parameter is NULL, or the
IpwslnterfaceName parameter is NULL, or
both parameters are NULL.

Insufficient resources to complete the
operation.

The specified interface was not found in the
router configuration.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect

MprConfiglnterfaceGetlnfo
The MprConfiglnterfaceGetlnfo function retrieves the configuration for the specified
interface from the router.

120 Volume 5 Routing

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration for which to retrieve information. Obtain this
handle by calling MprConfiglnterfaceCreate, MprConfiglnterfaceGetHandle, or
MprConfiglnterfaceEnum.

dwLevel
Level of the information returned in the IplpBuffer parameter. This parameter must be
zero.

IplpBuffer
Pointer to a pointer variable. On successful return, this pOinter variable pOints to an
MPR_INTERFACE_O structure. Free this buffer by calling MprConfigBufferFree.

IpdwBufferSize
Pointer to a DWORD variable. On successful return, this variable will contain the size,
in bytes, of the data returned through IplpBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER At least one of the following is true:

hMprConfig is NULL

hRouterlnterface is NULL

dwLevel is not zero.

IplpBuffer is NULL

IpdwBufferSize is NULL

Value

Chapter 6 Router Administration 121

Meaning

Insufficient resources to complete the
operation.

The interface corresponding to
hRouterlnterface is not present in the router
configu ration.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions,
MprConfigBufferFree, MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfigServerConnect

MprConfiglnterfaceSetlnfo
The MprConfiglnterfaceSetlnfo function sets the configuration for the specified
interface.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration being updated. Obtain this handle bycalling
MprConfiglnterfaceCreate, MprConfiglnterfaceGetHandle, or
MprConfiglntel1aceEnum.

dwLevel
Level of the information in the IpBuffer parameter. This parameter must be zero.

122 Volume 5 Routing

IpBuffer
Pointer to a buffer containing an MPR_INTERFACE_O structure. The information in
this buffer is used to update the interface configuration.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

Other

At least one of the following is true:

hMprConfig is NULL.

HRouterlnterface is NULL.

dwLevel is not zero.

IpBuffer is NULL.

The interface corresponding to hRouterlnterface
is not present in the router configuration.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfigServerConnect

MprConfiglnterfaceTransportAdd
The MprConfiglnterfaceTransportAdd function adds the specified transport to the
specified interface configuration on the router.

Parameters
hMprConfig

Chapter 6 Router Administration 123

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration to which to add the specified transport. Obtain
this handle by calling MprConfiglnterfaceCreate, MprConfiglnterfaceGetHandle, or
MprConfiglnterfaceEnum.

dwTransportld
Value that identifies the transport. This parameter also identifies the router manager
for the transport.

/pws TransportName
Pointer to a Unicode string containing the name for the transport being added. If this
parameter is not specified and the transport is IP or IPX,
MprConfiglnterfaceTransportAdd uses "IP" or "IPX". If this parameter is not
specified and the transport is other than IP or IPX,
MprConfiglnterfaceTransportAdd converts the dwTransportld parameter into a
string and uses that as the transport name.

plnterfacelnfo
Pointer to an information header containing information for the specified interface and
transport. The router manager for the specified transport interprets this information.
Use the Information Header Functions to manipulate information headers.

dwlnterfacelnfoSize
Size, in bytes, of the data pOinted to by plnterfacelnfo.

phRouterlfTransport
Pointer to a handle variable. On successful return, this variable contains a handle to
the transport configuration for this interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

124 Volume 5 Routing

Value

ERROR_INVALID_PARAMETER

Other

Remarks

Meaning

One of the following is true:

hMprConfig is NULL.

hRouterlnterface is NULL.

phRouterlfTransport is NULL.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

In addition to specifying a transport, the dwTransportld parameter also specifies a router
manager, because a Windows 2000 router maintains a unique router manager for each
transport.

If the specified transport already exists, MprConfiglnterfaceTransportAdd does the
equivalent of an MprConfiglnterfaceTransportSetlnfo call using the specified
parameter values.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MPR_IFTRANSPORT _0, MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfigServerConnect

MprConfiglnterfaceTransportEnum
The MprConfiglnterfaceTransportEnum function enumerates the transports configured
on the specified interface.

Parameters
hMprConfig

Chapter 6 Router Administration 125

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration from which to enumerate the transports. Obtain
this handle by calling MprConfiglnterfaceCreate, or MprConfiglnterfaceEnum.

dwLevel
Level of the information returned in the IplpBufferparameter. This parameter must be
zero.

IplpBuffer
Pointer to pOinter variable. On successful return, this pointer variable will point to an
array of MPR_IFTRANSPORT _0 structures This memory should be freed by calling
MprConfigBufferFree.

dwPrefMaxLen
Specifies the preferred maximum length of returned data (in 8-bit bytes). If this
parameter is -1, the buffer returned will be large enough to hold all available
information.

IpdwEntriesRead
Pointer to a DWORD variable. On successful return, this variable contains the total
number of entries that were enumerated from the current resume position.

IpdwTotalEntries
Pointer to a DWORD variable. On successful return, this variable contains the total
number of entries that could have been enumerated from the current resume position.

IpdwResumeHandle
Pointer to a DWORD variable. On successful return, this variable contains a resume
handle that can be used to continue the enumeration. The handle should be zero on
the first call, and left unchanged on subsequent calls. If on return, the handle is NULL,
the enumeration cannot be continued. For other types of error returns, this handle is
invalid.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return a resume handle.

126 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value . Meaning

ERROR_INVALlD_PARAMETER

Other

One of the following is true:

hMprConfig is NULL.

HRouterlnterface is NULL.

dwLevel is not zero.

IplpBuffer is NULL.

dwPrefMaxLen is smaller than the size of a
single MPR_ TRANSPORT _0 structure.

IpdwEntriesRead is NULL.

IpdwTotalEntries is NULL.

Insufficient resources to complete the
operation.

No more entries available from the current
resume position.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MPR_IFTRANSPORT _0, MprConfigBufferFree, MprConfiglnterfaceCreate,
MprConfiglnterfaceEnum, MprConfiglnterfaceGetHandle

MprConfiglnterfaceTransportGetHandle
The MprConfiglnterfaceTransportGetHandle function retrieves a handle to the
specified transport configuration on the specified interface in the specified router
configuration.

Parameters
hMprConfig

Chapter 6 Router Administration 127

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration. Obtain this handle by calling
MprConfiglnterfaceCreate, MprConfiglnterfaceGetHandle, or
MprConfiglnterfaceEnum.

dwTransportld
Identifies the transport configuration.

phRouterlfTranport
Pointer to a handle variable. On successful return, this variable contains a handle to
the transport configuration for this interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER

Other

At least one of the following is true:

hMprConfig is NULL.

hRouterlnterface is NULL.

phRouterlfTransport is NULL.

Insufficient resources to complete the
operation.

The interface specified by hRouterlnterface
was not found in the router configuration, or
the transport specified by dwTransportld was
not enabled on the specified interface.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

128 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfigServerConnect

M prConfigl nterface TransportGetl nfo
The MprConfiglnterfaceTransportGetlnfo function retrieves the configuration
information for the specified transport and interface.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration from which to retrieve the specified interface
information. Obtain this handle by calling MprConfiglnterfaceCreate,
MprConfiglnterfaceGetHandle, or MprConfiglnterfaceEnum.

hRouterlfTransport
Handle to the transport configuration from which to retrieve the specified transport
information. Obtain this handle by calling MprConfiglnterfaceTransportGetHandle
or MprConfiglnterfaceTransportEnum.

Chapter 6 Router Administration 129

pplnterfacelnfo
Pointer to a pointer variable. On successful return, this pointer variable pOints to an
information header containing configuration information for the transport and interface.
Use the Information Header Functions to manipulate information headers. Free this
memory by calling MprConfigBufferFree.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not return the configuration information.

IpdwlnterfacelnfoSize
Pointer to a DWORD variable. On successful return, this variable contains the size, in
bytes, of the data pOinted to by pplnterfacelnfo.

This parameter is optional; the calling application may specify NULL for this
parameter. However, if pplnterfacelnfo is not NULL, this parameter cannot be NULL.
For more information, see the Remarks section later in this topic.

Return Values
If the function succeeds, the return value is NO_ERROR. For more information, see the
Remarks section later in this topic.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Other

Remarks

Meaning

One of the following is true:

hMprConfig is NULL.

hRouterlnterface is NULL.

hRouterlfTransport is NULL.

pplnterfacelnfo is not NULL, but
IpdwlnterfacelnfoSize is NULL.

The interface specified by hRouterlnterface
was not found in the router configuration, or
the transport specified by hRouterlfTransport
was not enabled on the specified interface.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

If the pplnterfacelnfo parameter is NULL, MprConfiglnterfaceTransportGetlnfo does
nothing and returns immediately with a value of NO_ERROR.

130 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MPR_IFTRANSPORT _0, MprConfigBufferFree, MprConfiglnterfaceCreate,
MprConfiglnterfaceEnum, MprConfiglnterfaceGetHandle,
MprConfiglnterfaceTransportEnum, MprConfiglnterfaceTransportGetHandle,
MprConfigServerConnect

MprConfiglnterfaceTransportRemove
The MprConfiglnterfaceTransportRemove function removes the specified transport
from the specified interface configuration on the router.

Parameters
hMprConfig

Handle to the router configuration. The handle is obtained from a previous call to
MprConfigServerConnect.

hRouterinterface
Handle to the interface configuration from which to delete the specified transport.
Obtain this handle by calling MprConfiglnterfaceCreate,
MprConfiglnterfaceGetHandle, or MprConfiglnterfaceEnum.

hRouterifTransport
Handle to the interface transport configuration to be deleted. Obtain this handle by
calling MprConfiglnterfaceTransportAdd,
MprConfiglnterfaceTransportGetHandle, or MprConfiglnterfaceTransportEnum.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

Value

Other

Chapter 6 Router Administration 131

Meaning

One of the following is true:

hMprConfig is NULL.
hRouterlnterface is NULL.
phRouterlfTransport is NULL.

Use FormatMessage to retrieve the system error
message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfiglnterfaceTransportAdd,
MprConfiglnterfaceTransportEnum, MprConfiglnterfaceTransportGetHandle,
MprConfigServerConnect

MprConfiglnterfaceTransportSetlnfo
The MprConfiglnterfaceTransportSetlnfo function updates the configuration
information for the specified transport and interface.

132 Volume 5 Routing

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterlnterface
Handle to the interface configuration in which to update the information. Obtain this
handle by calling MprConfiglnterfaceCreate or MprConfiglnterfaceEnum.

hRouterlfTransport
Handle to the transport configuration in which to update the information. Obtain this
handle by calling MprConfiglnterfaceTransportGetHandle or
MprConfiglnterfaceTransportEnum.

plnterfacelnfo
Pointer to an information header containing configuration information for the specified
interface and transport. The router manager for the specified transport interprets this
information. Use the Information Header Functions to manipulate information headers.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not update the configuration information.

dwlnterfacelnfoSize
Size, in bytes, of the data pointed to by plnterfacelnfo.

This parameter is optional; the calling application may specify zero for this parameter.
However, if plnterfacelnfo is not NULL, this parameter cannot be zero. For more
information, see the Remarks section later in this topic.

Return Values
If the function succeeds, the return value is NO_ERROR. For more information, see the
Remarks section later in this topic.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER

Other

At least one of the following is true:

hMprConfig is NULL.

hRouterinterface is NULL.

hRouterlfTransport is NULL.

The interface specified by hRouterlnterface is
no longer present in the router configuration, or
the transport specified by hRouterifTransport is
no longer present on the interface.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Chapter 6 Router Administration 133

Remarks
If the plnterfacelnfo parameter is NULL, MprConfiglnterfaceTransportSetlnfo does
nothing and returns immediately with a value of NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfiglnterfaceCreate, MprConfiglnterfaceEnum,
MprConfiglnterfaceGetHandle, MprConfiglnterfaceTransportEnum,
MprConfiglnterfaceTransportGetHandle, MprConfigServerConnect

MprConfigServerBackup
The MprConfigServerBackup function creates a backup of the router-manager,
interface, and phonebook configuration for the router.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

IpwsPath
Pointer to a Unicode string that contains the path to the directory where
MprConfigServerBackup to write the backup files. This path should end with a
trailing backslash.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

134 Volume 5 Routing

Value

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Other

Meaning

The hMprConfig parameter is NULL.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect, MprConfigServerRestore

MprConfigServerConnect
The MprConfigServerConnect function connects to the Windows 2000 router to be
configured. Call this function before making any other calls to the server. The handle
returned by this function is used in subsequent calls to configure interfaces and
transports on the server.

Parameters
IpwsServername

Pointer to a Unicode string containing the name of the remote server to configure. If
this parameter is NULL, the function returns a handle to the router configuration on
the local machine.

phMprConfig
Pointer to a handle variable. On successful return, this variable contains a handle to
the router configuration.

Return Values
If the function succeeds, the return value is NO_ERROR.

Chapter 6 Router Administration 135

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Other

Meaning

The phMprConfig parameter is NULL.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerDisconnect

MprConfigServerDisconnect
The MprConfigServerDisconnect function disconnects a connection made by a
previous call to MprConfigServerConnect.

Parameters
hMprConfig

Handle to a router configuration obtained from a previous call to
MprConfigServerConnect.

Return Values
None.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

136 Volume 5 Routing

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect ~

MprConfigServerGetlnfo
The MprConfigServerGetlnfo function retrieves server-level configuration information
for the specified router.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

dwLevel
Specifies the level of the information requested. This parameter must be zero.

IplpBuffer
Pointer to a pointer variable. On successful return, this variable will point to a buffer
containing the retrieved information. Free the memory for this buffer using
MprConfigBufferFree.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALID _PARAMETER

Other

Meaning

At least one of the following is true:

The hMprConfig parameter is NULL.

The dwLevel parameter is not zero.

The IplpBufferparameter is NULL.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Chapter 6 Router Administration 137

Remarks
Currently, the only information returned by MprConfigServerGetlnfo is the
fLanOnlyMode flag.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MPR_SERVER_O, MprConfigBufferFree, MprConfigServerConnect

MprConfigServerRestore
The MprConfigServerRestore function restores the router-manager, interface, and
phonebook configuration from a backup created by a previous call to
MprConfigServerBackup.

Parameters
hMprConfig,

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

IpwsPath
Pointer to a Unicode string that contains the path to the directory where
MprConfigServerBackup to write the backup files. This path should end with a
trailing backslash.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

The hMprConfig parameter is NULL.

Insufficient resources to complete the
operation.

(continued)

138 Volume 5 Routing

(continued)

Value

Other

Meaning

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerBackup, MprConfigServerConnect

MprConfigTransportCreate
The MprConfigTransportCreate function adds the specified transport to the list of
transports present in the specified router configuration.

Parameters
hMprConfig

Chapter 6 Router Administration 139

Handle to the router configuration to which to add the transport. Obtain this handle by
calling MprConfigServerConnect.

dwTranspot1ld
Value that identifies the transport to add to the configuration. This parameter also
identifies the router manager for the transport.

Ipws Transpot1Name
Pointer to a Unicode string containing the name of the transport being added. If this
parameter is not specified, the dwTranspot1ld parameter is converted into a string and
used as the transport name.

pGloballnfo
Pointer to an information header containing global information for the transport. The
router manager for the transport interprets this information. Use the Information
Header Functions to manipulate information headers.

dwGloballnfoSize
Size, in bytes, of the data pointed to by the pGloballnfo parameter.

pClientinterfacelnfo
Pointer to an information header containing default interface information for client
routers. This information is used to configure dynamic interfaces for client routers for
this transport. Use the Information Header Functions to manipulate information
headers.

This parameter is optional; the calling application may specify NULL for this
parameter.

dwClientinterfacelnfoSize
Size, in bytes, of the data painted to by the pClientinterfacelnfo parameter. If the
calling application specifies NULL for pClientinterfacelnfo, the calling application
should specify zero for this parameter.

IpwsDLLPath
Pointer to a Unicode string containing the name of the router manager DLL for the
specified transport. If this name is specified, the function sets the DLL path for this
transport to this name.

This parameter is optional; the calling application may specify NULL for this
parameter.

phRouterTranspot1
Pointer to a handle variable. On successful return, this variable contains a handle to
the transport configuration.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

140 Volume 5 Routing

Value

Other

Remarks

Meaning

The hMprConfig parameter is NULL, or the
phRouterTransport parameter is NULL, or
both are NULL.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

If the specified transport already exists, MprConfigTransportCreate does the
equivalent of an MprConfigTransportSetlnfo call using the supplied parameter values.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect

MprConfigTransportDelete
The MprConfigTransportDelete function removes the specified transport from the list of
transports present in the specified router configuration.

Parameters
hMprConfig

Handle to the router configuration from which to remove the transport. Obtain this
handle by calling MprConfigServerConnect.

hRouterTransport
Handle to the configuration for the transport being deleted. Obtain this handle by
calling MprConfigTransportCreate or MprConfigTransportGetHandle.

Chapter 6 Router Administration 141

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one ofthe following error codes.

Value Meaning

Other

The hMprConfig parameter is NULL, or the
hRouterTransport parameter is NULL, or both
are NULL.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the system
error message corresponding to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect, MprConfigTransportCreate,
MprConfigTransportGetHandle

MprConfigTransportEnum
The MprConfigTransportEnum function enumerates the transports configured on the
router.

142 Volume 5 Routing

Parameters
hMprConfig

Handle to the router configuration for the transports. Obtain this handle by calling
MprConfigServerConnect.

dwLevel
Level of the information returned through the IplpBuffer parameter. This parameter
must be zero.

IplpBuffer
Pointer toa pointer variable. On successful return, this pOinter will point to an array of
MPR_ TRANSPORT _0 structures. Free this memory buffer by calling
MprConfigBufferFree.

dwPrefMaxLen
Specifies the preferred maximum length of returned data (in 8-bit bytes). If this
parameter is -1 , the buffer returned will be large enough to hold all available
information.

IpdwEntriesRead
Pointer to a DWORD variable. On successful return, this variable contains the total
number of entries that were enumerated from the current resume position.

IpdwTotalEntries
Pointer to a DWORD vari.able. On successful return, this variable contains the total
number of entries that could have been enumerated from the current resume position.

IpdwResumeHandle
Pointer to a DWORD variable. On successful return, this variable contains a resume
handle that can be used to continue the enumeration. The handle should be zero on
the first call, and left unchanged on subsequent calls. If on return, the handle is NULL,
the enumeration cannot be continued. For other types of error returns, this handle is
invalid.

This parameter is optional. If the caller specifies NULL for this parameter, the function
will not return a resume handle.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes on the following page.

Value

ERROR_INVALlD_PARAMETER

Other

Chapter 6 RouterAdministration 143

Meaning

At least one of the following is true:

hMprConfig is NULL.

dwLevel is not zero.

IplpBuffer is NULL.

dwPrefMaxLen is smaller than the size of
a single MPR_ TRANSPORT _0 structure.

IpdwEntriesRead is NULL.

IpdwTotalEntries is NULL.

Insufficient resources to complete the
operation.

No more entries available from the current
resume position.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigBufferFree, MprConfigServerConnect

MprConfigTransportGetHandle
The MprConfigTransportGetHandle function retrieves a handle to the specified
transport's configuration in the specified router configuration.

144 Volume 5 Routing

Parameters
hMprConfig

Handle to the router configuration. The handle is obtained from a previous call to
MprConfigServerConnect.

dwTransportld
Identifies the transport for which to retrieve the configuration.

phRouterTransport
Pointer to a handle variable. On successful return, this variable will contain a handle
to the specified transport's configuration.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Other

Meaning

The hMprConfig parameter and/or the
phRouterTransport parameter is NULL.

Insufficient resources to complete the
operation.

The transport specified by dwTransportld
was not found in the router configuration.

Use FormatMessage to retrieve the system
error message corresponding to the error
code returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect

MprConfigTransportGetl nfo
The MprConfigTransportGetlnfo function retrieves the configuration for the specified
transport from the router.

Parameters
hMprConfig

Chapter 6 Router Administration 145

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterTransport
Handle to the tram;port configuration being retrieved. Obtain this handle by calling
MprConfigTransportCreate, MprConfigTransportGetHandle, or
MprConfigTransportEnum.

ppGloballnfo
Pointer to a pointer variable. On successful return, this pointer variable points to an
information header that contains global information for the transport. Use the
Information Header Functions to manipulate information headers. Free this buffer by
calling MprConfigBufferFree.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not retrieve the global information.

IpdwGloballnfoSize
Pointer to a DWORD variable. On successful return, this variable contains the size, in
bytes, of the buffer returned through the ppGloballnfo parameter.

This parameter is optional; the calling application may specify NULL for this
parameter. However, if ppGloballnfo is not NULL, this parameter cannot be NULL.

ppClientinterfacelnfo
Pointer to a painter variable. On successful return, this pOinter points to an information
header containing default interface information for client routers for this transport. Use
the Information Header Functions to manipulate information headers. Free the buffer
by calling MprConfigBufferFree.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not retrieve the interface information.

146 Volume 5 Routing

IpdwClientlnterfacelnfoSize
Pointer to a DWORD variable. On successful return, this variable contains the size, in
bytes, of the buffer returned through the ppClientlnterfacelnfo parameter.

This parameter is optional; the calling application may specify NULL for this
parameter. However, if ppClientlnterfacelnfo is not NULL, this parameter cannot be
NULL.

IplpwsDLLPath
Pointer to a pointer to a Unicode string. On successful return, the Unicode string
contains the name of the router manager DLL for the specified transport.

This parameter is optional. If the calling application specifies NULL for this parameter,
the function does not retrieve the name of the router manager DLL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

Other

Remarks

Meaning

At least one of the following is true:

hMprConfig is NULL

hRouterTransport is NULL

ppGloballnfo is not NULL, but
IpdwGloballnfoSize is NULL.

ppClientlnterfacelnfo is not NULL, but
IpdwClientlnterfacelnfo is NULL.

The transport configuration corresponding
to hRouterTransport was not found in the
router configuration.

Insufficient resources to complete the
operation.

Use FormatMessage to retrieve the
system error message corresponding to
the error code returned.

If the pGloballnfo, pClientlnterfacelnfo, and IpwsDLLPath parameters are all NULL, the
function does nothing and returns a value of NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Chapter 6 Router Administration 147

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigBufferFree, MprConfigServerConnect, MprConfigTransportCreate,
MprConfigTransportEnum, MprConfigTransportGetHandle

MprConfigTransportSetlnfo
The MprConfigTransportSetlnfo function changes the configuration for the specified
transport in the specified router configuration.

Parameters
hMprConfig

Handle to the router configuration. Obtain this handle by calling
MprConfigServerConnect.

hRouterTransport
Handle to the transport configuration being updated. Obtain this handle by calling
MprConfigTransportCreate, MprConfigTransportGetHandle, or
MprConfigTransportEnum.

pGloballnfo
Pointer to an information header containing global information for the transport. The
router manager for the transport interprets this information. Use the Information
Header Functions to manipulate information headers.

This parameter is optional; the calling application may specify NULL for this
parameter.

dwGloballnfoSize
Size, in bytes, of the data pointed to by pGloballnfo. If the calling application specifies
NULL for pGloballnfo, the calling application should specify zero for this parameter.

148 Volume 5 Routing

pClientlnterfacelnfo
Pointer to an information header containing default interface information for client
routers. The information is used to configure dynamic interfaces for client routers for
this transport. Use the Information Header Functions to manipulate information
headers.

This parameter is optional; the calling application may specify NULL for this
parameter.

dwClientin terfacelnfoSize
Size, in bytes, of the data pointed to by pClientlnterfacelnfo. If the calling application
specifies NULL for pClientlnterfacelnfo, the calling application should specify zero for
this parameter.

IpwsDLLPath
Name of the router manager DLL for the specified transport.

This parameter is optional; the calling application may specify NULL for this
parameter.

Return Values
If the function succeeds, the return value is NO_ERROR. For more information, see the
Remarks section later in this topic.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_I NVALlD_PARAMETER

Other

Remarks

The hMprConfig parameter is NULL, the
hRouterTransport parameter is NULL, or
both are NULL.

The transport configuration corresponding
to hRouterTransport was not found in the
router configuration.

Use FormatMessage to retrieve the
system error message corresponding to
the error code returned.

Use MprConfigTransportSetlnfo to set the transport's global information, default
interface information, or the name of the router manager DLL for the transport.

MprConfigTransportSetlnfo attempts to set the items in the order in which they appear
in the parameter list:

1. Global information

2. Default interface information for client routers

3. Router manager DLL name

Chapter 6 Router Administration 149

If MprConfigTransportSetlnfo is unable to set anyone of the items, it returns
immediately without attempting to set the remaining items.

If the pGlobal/nfo, pClientlnterfacelnfo, and IpwsDLLPath parameters are all NULL, the
function does nothing, returning a value of NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib:

Router Administration Reference, Router Configuration Functions, FormatMessage,
MprConfigServerConnect, MprConfigTransportCreate, MprConfigTransportEnum,
MprConfigTransportGetHandle

Router Administration Structures
The Router Administration Functions and the Router Configuration Functions use the
following structures:

IP _ADAPTER_BINDING_INFO
IP _LOCAL_BINDING
IPX_ADAPTER_BINDING_INFO
MPR_CREDENTIALSEX_O
MPR_IFTRANSPORT _0

MPR_INTERFACE_O
MPR_INTERFACE_1
MPR_INTERFACE_2
MPR_SERVER_O
MPR_ TRANSPORT_O

The IP _ADAPTER_BINDING_INFO structure containslP-specific information for a
particular network adapter.

Members
NumAddresses

The number of IPaddresses associated with this adapter.

RemoteAddress
This member is for WAN interfaces. It contains the address of the machine at the
other end of a dial-up link.

150 Volume 5 Routing

Address
Pointer to an array of IP _LOCAL_BINDING structures. The array will contain a
structure for each of the IP addresses associated with this adapter.

Remarks
Since an adapter may have more than one IP address, the
IP _ADAPTER_BINDING_INFO structure maintains an array of IP _LOCAL_BINDING
structures.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Router Administration Reference, Router Administration Structures,
IP _LOCAL_BINDING, IPX_ADAPTER_BINDING_INFO

The IP _LOCAL_BINDING structure contains IP address information for an adapter.

Members
IPAddress

An IP address for the adapter.

Mask
The network mask for the IP address.

Remarks
Since an adapter may have more than one IP address, the
IP _ADAPTER_BINDING_INFO structure maintains an array of IP _LOCAL_BINDING
structures.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Chapter 6 Router Administration 151

Router Administration Reference, Router Administration Structures,
IP _ADAPTER_BINDING_INFO

The IPX_ADAPTER_BINDING_INFO structure contains IPX-specific information for a
particular network adapter.

Members
Adapterlndex

Identifies the adapter that has been allocated for the interface.

Network[4]
The network number to which the adapter is bound.

LocaiNode[6]
The node number to which the adapter is bound.

RemoteNode[6]
The node number of a peer router or client for demand dial point-to-point connections
(for LAN connections this field will be set to the broadcast node address: i.e.
OxFFFFFFFFFFFF).

MaxPacketSize
The maximum packet size that can be transmitted over a connection established on
the adapter.

LinkSpeed
The speed of the connection in 100 baud, for example, for 9600 baud connection this
value is 96.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

152 Volume 5 Routing

Router Administration Reference, Router Administration Structures,
IP _ADAPTER_BINDING_INFO

MPR_CREDENTIALSEX_O
The MPR_CREDENTIALSEX_O structure contains extended credentials information
such as the information used by Extensible Authentication Protocols (EAPs).

Members
dwSize

Specifies the size of the data pointed to by the IpbCredentialslnfo member.

IpbCredentialslnfo
Pointer to the extended credentials information.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

MprAdminlnterfaceGetCredentialsEx, MprAdminlnterfaceSetCredentialsEx

The MPR_IFTRANSPORT _0 structure contains information for a particular interface
transport.

Members
dwTransportld

The transport identifier.

Chapter 6 Router Administration 153

hlfTransport
Handle to the interface transport.

wszlfTransportName
Unicode string containing the name of the interface transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.

Router Administration Reference, Router Administration Structures,
MPR_ TRANSPORT _0, MprConfiglnterfaceTransportEnum

The MPR_INTERFACE_O structure contains information for a particular router interface.

Members
wszlnterfaceName

Pointer to a Unicode string containing the name of the interface.

hlnterface
Handle to the interface.

fEnabled
TRUE if the interface is enabled. FALSE if the interface is administratively disabled.

IfType
Specifies the type of interface.

dwConnectionState
Current state of the interface, for example connected, disconnected, or unreachable.
For a list of possible states, see ROUTER_CONNECTION_STATE.

fUnReachabilityReasons
Reason value. If the interface is unreachable, this member stores the reason. See·
Unreachability Reasons for a list of possible values.

154 Volume 5 Routing

dwLastError
Value that is set to nonzero if the interface fails to connect.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Router Administration Reference, Router Administration Structures,
MprAdminlnterfaceEnum, MprAdminlnterfaceGetlnfo,
ROUTER_CONNECTION_STATE, ROUTER_INTERFACE_ TYPE, Unreachability
Reasons

The MPR_INTERFACE_1 structure contains information for a particular router interface.

Members
wszlnterfaceName

Pointer to a Unicode string containing the name of the interface.

hlnterface
Handle to the interface.

fEnabled
TRUE if the interface is enabled. FALSE if the interface is administratively disabled.

If Type
Specifies the type of interface.

dwConnectionState
Current state of the interface, for example connected, disconnected, or unreachable.
For a list of possiblestates, see ROUTER_CONNECTION_STATE.

Chapter 6 Router Administration 155

fUnReachabilityReasons
Reason value. If the interface is unreachable, this member stores the reason. See
Unreachability Reasons for a list of possible values.

dwLastError
Value that is set to nonzero if the interface fails to connect.

IpwsDialoutHoursRestriction
Pointer to a Unicode string specifying the times during which dial-out is restricted. The
format for this string is:

Where day is a numeral corresponding to a day of the week.

Numeral Day

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Time range is of the, form HH:I\ttM~HH:MM, using 24~hour notation.

The string <space> in the preceding syntax denotes a space character. The string
<NULl> denotes a null character.

The restriction string is terminated by two consecutive null characters.

Example:

The preceding string restricts dialout to Tuesdays and Thursdays from 9:00 AM to
12:00 PM and from 1:00 PM to 5:30 PM.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Router Administration Reference, Router Administration Structures,
MprAdminlnterfaceCreate, MprAdminlnterfaceEnum, MprAdminlnterfaceGetlnfo,
ROUTER~CONNECTION_STATE, ROUTER_INTERFACE TYPE, Unreachability
Reasons ' .

156 Volume 5 Routing

The MPR_INTERFACE_2 structure contains information for a particular router interface.

Members
wszlnterfaceName

Chapter 6 Router Administration 157

Pointer to a Unicode string containing the name of the interface.

hlnterface
Handle to the interface.

158 Volume 5 Routing

Flag

fEnabled
TRUE if the interface is enabled. FALSE if the interface is administratively disabled.

IfType
Specifies the type of interface.

dwConnectionState
Current state of the interface, for example connected, disconnected, or unreachable.
For a list of possible states, see ROUTER_CONNECTION_STATE.

fUnReachabilityReasons
Reason value. If the interface is unreachable, this member stores the reason. See
Unreachability Reasons for a list of possible values.

dwLastError
Value that is set to nonzero if the interface fails to connect.

dwfOptions
A set of bit flags that specify connection options. You can set one or more of the
following flags.

Description

MPRIO_SpecificlpAddr If this flag is set, RRAS tries to use the IP address specified
by ipaddr as the IP address for the dial-up connection. If this
flag is not set, the value of the ipaddr member is ignored.

MPRIO_SpecificNameServers

Setting the MPRIO_SpecificlpAddr flag corresponds to
selecting the Specify an IP Address setting in the TCP/IP
settings dialog box. Clearing the MPRIO_SpecificlpAddr flag
corresponds to selecting the Server Assigned IP Address
setting in the TCP/IP settings dialog box.

Currently, an IP address set in the phonebook entry
properties or retrieved from a server overrides the IP
address set in the network control panel.,

If this flag is set, RRAS uses the ipaddrDns, ipaddrDnsAlt,
ipaddrWins, and ipaddrWinsAlt members to specify the
name server addresses for the dial-up connection. If this flag
is not set, RRAS ignores these.members.

Setting the MPRIO_SpecificNameServers flag corresponds
to selecting the Specify Name Server Addresses setting in
the TCP/IP Settings dialog box. Clearing the
MPRIO_SpecificNameServers flag corresponds to selecting
the Server Assigned Name Server Addresses setting in the
TCP/IP Settings dialog box.

Flag

MPRIO_lpHeaderCompression

MPRIO_RemoteDefaultGateway

MPRIO_DisableLcpExtensions

MPRIO_SwCompression

MPRIO~RequireEncryptedPw

Chapter 6 Router Administration 159

Description

If this flag is set, RRAS negotiates to use IP header
compression on PPP connections.

If this flag is not set, IP header compression is not
negotiated.

This flag corresponds to the Use IP Header Compression
check box in the TCP/IP settings dialog box. It is generally
advisable to set this flag because IP header compression
significantly improves performance, The flag should be
cleared only when connecting to a server that does not
correctly negotiate IP header compression.

If this flag is set, the default route for IP packets is through
the dial-up adapter when the connection is active. If this flag
is clear, the default route is not modified.

This flag corresponds to the Use Default Gateway on
Remote Network check box in the TCP/IP settings dialog
box.

If this flag is set, RRAS disables the PPP LCP extensions
defined in RFC 1570. This may be necessary to connect to
certain older PPP implementations, but interferes with
features such as server callback. Do not set this flag unless
specifically required.

If this flag is set, software compression is negotiated on the
link. Setting this flag causes the PPP driver to attempt to
negotiate Compression Control Protocol (CCP) with the
Server. This flag should be set by default, but clearing it can
reduce the negotiation period if the server does not support
a compatible compression protocol.

If this flag is set, only secure password schemes can be
used to authenticate the client with the server. This prevents
the PPP driver from using the PAP plain-text authentication
protocol to authenticate the client. However, the MS-CHAP,
MD5-CHAP and SPAP authentication protocols are
supported. Clear this flag for increased interoperability, and
set it for increased security.

This flag corresponds to the Require Encrypted Password
check box in the Security dialog box. See also
MPRIO_RequireMsEncryptedPw.

(continued)

160 Volume 5 Routing

(continued)

Flag

M PRIO _RequireMsEncryptedPw

MPRIO_RequireDataEncryption

MPRIO_NetworkLogon

MPRIO_UseLogonCredentials

MPRIO_PromoteAlternates

Description

If this flag is set, only the Microsoft secure password
schemes can be used to authenticate the client with the
server. This prevents the PPP driver from using the PAP
plain-text authentication protocol, MD5-CHAP, or SPAP. The
flag should be cleared for maximum interoperability and
should be set for maximum security. This flag takes
precedence over MPRIO_RequireEncryptedPw.

This flag corresponds to the Require Microsoft Encrypted
Password check box in the Security dialog box. See also
MPRIO_RequireDataEncryption.

If this flag is set, data encryption must be negotiated
successfully or the connection should be dropped. This flag
is ignored unless MPRIO_RequireMsEncryptedPw is also
set.

This flag corresponds to the Require Data Encryption check
box in the Security dialog box.

If this flag is set, RRAS logs on to the network after the
point-to-point connection is established.

Windows NT/2000: This flag currently has no effect under
Windows NT.

If this flag is set, RRAS uses the user name, password, and
domain of the currently logged-on user when dialing this
entry. This flag is ignored unless
MPRIO_RequireMsEncryptedPw is also set.

Note that this setting is ignored by the RasDial function,
where specifying empty strings for the szUserName and
szPassword members of the RASDIALPARAMS structure
gives the same result.

This flag corresponds to the Use Current Username and
Password check box in the Security dialog box.

This flag has an effect when alternate phone numbers are
defined by the dwAlternateOffset member. If this flag is set,
an alternate phone number that connects successfully
becomes the primary phone number, and the current
primary phone number is moved to the alternate list.

This flag corresponds to the check box in the Alternate
Numbers dialog box.

Chapter 6 Router Administration 161

Flag Description

MPRIO_SecureLocalFiles If this flag is set, RRAS checks for existing remote file
system and remote printer bindings before making a
connection with this entry. Typically, you set this flag on
phone book entries for public networks to remind users to
break connections to their private network before connecting
to a public network.

MPRIO_RequireEAP

MPRIO_RequirePAP

MPRIO_RequireSPAP

MPRIO_SharedPhoneNumbers

MPRIO_RequireCHAP

MPRIO_RequireMsCHAP

szLocalPhoneNumber

If this flag is set, an Extensible Authentication Protocol
(EAP) must be supported for authentication.

If this flag is set, Password Authentication Protocol must be
supported for authentication.

If this flag is set, Shiva's Password Authentication Protocol
must be supported for authentication.

If this flag is set, phone numbers are shared.

If this flag is set, the Challenge Handshake Protocol must be
supported for authentication.

If this flag is set, the Microsoft Challenge Handshake
Protocol must be supported for authentication.

Specifies a nUll-terminated string containing a telephone number.

dw Alternates
Specifies the offset, in bytes, from the beginning of the structure to a list of
consecutive null-terminated strings. The last string is terminated by two consecutive
null characters. The strings are alternate phone numbers that RRAS dials in the order
listed if the primary number (see szLocalPhoneNumber) fails to connect.

ipaddr
Specifies the IP address to be used while this connection is active. This member is
ignored unless dwfOptions specifies the MPRIO_SpecificlpAddr flag.

ipaddrDns
Specifies the IP address of the DNS server to be used while this connection is active.
This member is ignored unless dwfOptions specifies the
MPRIO_SpecificNarneServers flag.

ipaddrDnsAlt
Specifies the IP address of a secondary or backup DNS server to be used while this
connection is active. This member is ignored unless dwfOptions specifies the
MPRIO_SpecificNameServers flag.

ipaddrWins
Specifies the IP address of the WINS server to be used while this connection is
active. This member is ignored unless dwfOptions specifies the
MPRIO_SpecificNameServers flag.

162 Volume 5 Routing

ipaddrWinsAlt
Specifies the IP address of a secondary WINS server to be used while this connection
is active. This member is ignored unless dwfOptions specifies the
MPRIO_SpecificNameServers flag.

dwFrameSize
Specifies the network protocol frame size. The value should be either 1006 or 1500.

dwfNetProtocols
Specifies the network protocols to negotiate. This member can be a combination of
the following flags.

Flag Description

MPRNP_lpx

MPRNP_lp

szDeviceType

Negotiate the IPX protocol.

Negotiate the TCP/IP protocol.

Specifies a null-terminated string indicating the RRAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description

MPRDT _Modem

MPRDT_lsdn

MPRDT_Vpn

MPRDT_Pad

MPRDT _Generic

MPRDT _Serial

MPRDT _FrameRelay

MPRDT_Atm

MPRDT _Sonet

MPRDT_SW56

MPRDT_lrda

MPRDT _Parallel

szDeviceName

A modem accessed through a COM port.

An ISDN card with corresponding NDISWAN driver
installed.

An X.25 card with corresponding NDISWAN driver
installed.

A virtual private network connection.

A Packet Assembler/Disassembler.

Generic

Direct serial connection through a serial port.

Frame Relay

Asynchronous Transfer Mode

Sonet

Switched 56K Access

Infrared Data Association (IrDA) compliant device.

Direct parallel connection through a parallel port.

Contains a null-terminated string containing the name of a T API device to use with
this phone-book entry, for example, "XYZ Corp 28800 External". To enumerate all
available RAS-capable devices, use the RasEnumDevices function.

Chapter 6 Router Administration 163

szX25PadType
Contains a null-terminated string that identifies the X.2S PAD type. Set this member
to "" unless the entry should dial using an X.2S PAD.

Under Windows NTlWindows 2000, the szX25PadType string maps to a section
name in PAD.INF.

szX25Address
Contains a null-terminated string that identifies the X.2S address to connect to. Set
this member to "" unless the entry should dial using an X.2S PAD or native X.2S
device.

szX25Facilities
Contains a null-terminated stringthat specifies the facilities to request from the X.2S
host at connection. This member is ignored ifszX25Address is an empty string ("").

szX25UserData
Contains a null-terminated string that specifies additional connection information
supplied to the X.2S host at connection. This member is ignored if szX25Address is
an empty string ("").

dwChannels
dwSubEntries

Specifies the number of multilink subentries associated with this entry. When calling
RasSetEntryProperties, set this member to zero. To add subentries to a phone-book
entry, use the RasSetSubEntryProperties function.

dwDialMode
Indicates whether RRAS should dial all of this entry's multilink subentries when the
entry is first connected. This member can be one of the following values.

Value Meaning

MPRDM_DiaIAIl

MPRDM_DiaiAsNeeded

dwDial ExtraPercent

Dial all subentries initially.

Adjust the number of subentries as bandwidth is
needed. RRAS uses the dwDialExtraPercent,
dwDialExtraSampleSeconds,
dwDialHangUpExtraPercent, and
dwHangUpExtraSampleSeconds members to
determine when to dial or disconnect a subentry.

Specifies a percent of the total bandwidth available from the currently connected
subentries. RRAS dials an additional subentry when the total bandwidth used
exceeds dwDialExtraPercent percent of the available bandwidth for at least
dwDialExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the
MPRDM_DiaiAsNeeded flag.

164 Volume 5 Routing

dwDialExtraSampleSeconds
Specifies the number of seconds that current bandwidth usage must exceed the
threshold specified by dwDialExtraPercent before RRAS dials an additional
subentry.

This member is ignored unless the dwDialMode member specifies the
MPRDM_DiaiAsNeeded flag.

dwHangUpExtraPercent
Specifies a percent of the total bandwidth available from the currently connected
subentries. RRAS terminates (hangs up) an existing subentry connection when total
bandwidth used is less than dwHangUpExtraPercent percent of the available
bandwidth for at least dwHangUpExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the
MPRDM_DiaiAsNeeded flag.

dwHangUpExtraSampleSeconds
Specifies the number of seconds that current bandwidth usage must be less than the
threshold specified by dwHangUpExtraPercent before RRAS terminates an existing
subentry connection.

This member is ignored unless the dwDialMode member specifies the
MPRDM_DiaiAsNeeded flag.

dwldleDisconnectSeconds
Specifies the number of seconds after which the connection is terminated due to
inactivity. Note that unless the idle timeout is disabled, the entire connection is
terminated if the connection is idle for the specified interval. This member can specify
a number of seconds, or one of the following values.

Value Meaning

MPRI DS_Disabled

MPRIDS_UseGlobaiValue

dwType

There is no idle timeout for this connection.

Use the user preference value as the default.

The type of phone-book entry. This member can be one of the following types

Type Description

MPRET _Phone

MPRET_Vpn

MPRET _Direct

dwEncryptionType

Phone line, for example, modem, ISDN, X.2S.

Virtual Private Network

Direct serial or parallel connection

The type of encryption to use for Microsoft Point to Point Encryption (MPPE) with the
connection. This member can be one of the values on the following page.

Value

MPR_ET _None

MPR_ET _Require

MPR_ET _RequireMax

MPR_ET _Optional

Chapter 6 Router Administration 165

Meaning

No encryption

Require encryption

Require maximum-strength encryption.

Do encryption if possible. No encryption is okay.

The value of dwEncryptionType doesn't affect how passwords are encrypted.
Whether passwords are encrypted and how passwords are encrypted is determined
by the authentication protocol, e.g. PAP, MS-CHAP, EAP.

dwCustomAuthKey
This member is used for Extensible Authentication Protocol (EAP). This member
contains the authentication key provided to the EAP vendor.

dwCustomAuthDataSize
Size of the data pointed to by IpbCustomAuthData member.

IpbCustomAuthData
Pointer to authentication data to use with Extensible Authentication Protocol (EAP)

guidld
The GUID (Globally Unique IDentifier) that represents this phone-book entry. This
member is not settable.

dwVpnStrategy
The VPN strategy to use when dialing a VPN connection. This member can have one·
of the following values.

Value

MPR_VS_PptpOnly

MPR_ VS_PptpFirst

MPR_ VS_L2tpOnly

MPR_ VS_L2tpFirst

Remarks

Meaning

With this strategy, RRAS dials PPTP first. If PPTP fails,
L2TP is attempted. Whichever protocol succeeds is tried
first in subsequent dialing for this entry.

RAS will dial only PPTP.

RAS will always dial PPTP first.

RAS will dial only L2TP.

RAS will always dial L2TP first.

The MPR_INTERFACE_2 structure has a number of fields that are similar to fields the
RASENTRY structure. The following fields from RASENTRY have no counterpart in
MPR_INTERFACE_2:

dwCountrylD
dwCountryCode
szAreaCode
dwFramingProtocol

166 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

MPR_INTERFACE_O, MPR_INTERFACE_1, MprAdminlnterfaceGetlnfo,
MprAdminlnterfaceSetlnfo

The MPR_SERVER_O structure contains information for a particular Windows 2000
router.

Members
fLanOnlyMode

If TRUE, the Demand Dial Manager (DDM) is not running on the Windows 2000
router. If FALSE, the DDM is running on the Windows 2000 router.

dwUptime
The elapsed time (in seconds) since the router was started.

dwTotalPorts
The number of ports on the system.

dwPortslnUse
The number of ports currently in use.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Router Administration Reference, Router Administration Structures,
MprAdminServerGetlnfo, MprConfigServerGetlnfo

Chapter 6 Router Administration 167

The MPR_ TRANSPORT _0 structure contains information for a particular transport.

Members
dwTransportld

The transport identifier.

hTransport
Handle to the transport.

wszTransportName
Unicode string containing the name of the transport.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.

Router Administration Reference, Router Administration Structures,
MPR_IFTRANSPORT _0

Router Administration Enumerated Types
The Router Administration Functions and the Router Configuration Functions use the
following enumerated types:

ROUTER_CONNECTION_STATE
ROUTER_INTERFACE_ TYPE

ROUTER_CONN ECTION_STATE
The ROUTER_-,CONNECTION~STATE type enumerates the possible states of an
interface on a Windows 2000 router.

168 Volume 5 Routing

(continued)

Values
ROUTERJF _STATE_UNREACHABLE

The interface is unreachable. See Unreachability Reasons for a list of possible
reasons.

ROUTER_IF _STATE_DISCONNECTED
The interface is reachable but disconnected.

ROUTER_IF _STATE_CONNECTING
The interface is in the process of connecting

ROUTER_IF _STATE_CONNECTED
The interface is connected.

Remarks
These states are sometimes referred to as "operational states."

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.

Router Administration Reference, Router Administration Enumerated Types,
MPR_INTERFACE_O, MPR_INTERFACE_1, Unreachability Reasons

The ROUTER_INTERFACE_ TYPE type enumerates the different kinds of interfaces on
a Windows 2000 router.

Values
ROUTER_IF _TYPE_CLIENT

The interface is for a remote client.

ROUTER_IF _ TYPE_HOME_ROUTER
The interface is for a home router.

ROUTER_IF _ TYPE_FULL_ROUTER
The interface is for a full router.

ROUTER_IF _TYPE_DEDICATED

Chapter 6 Router Administration 169

The interface is always connected. It is a LAN interface, or the interface is connected
over a leased line.

ROUTER_IF _TYPE_INTERNAL
The interface is an internal-only interface.

ROUTER_IF _ TYPE_LOOPBACK
The interface is a loopback interface.

ROUTER_IF _ TYPE_TUNNEL 1
The interface is a connected over a virtual private network (VPN).

ROUTER_IF _ TYPE_DIALOUT
The interface is a dial-on-demand (DOD) interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Router Administration Reference, Router Administration Enumerated Types,
MPR_INTERFACE_O, MPR_INTERFACE_1, RAS_CONNECTION_2

Unreachability Reasons
The following table lists constant values that indicate why an interface is currently
unreachable.

Value

MPR_INTERFACE_CONNECTION_FAILURE

MPR_INTERFACE_DIALOUT _HOURS_
RESTRICTION

Meaning

The administrator has disabled the
interface.

The previous connection attempt
failed. Look at the dwLastError
member for the error code.

Dial"out is not allowed at the current
time.

(continued)

170 Volume 5 Routing

(continued)

Value

MPR_INTERFACE_SERVICE_PAUSED

MPR_INTERFACE_NO_MEDIA_SENSE

Information Header Functions

Meaning

No ports or devices are available for
use.

The service is paused.

The network cable is disconnected
from the network card.

The netword card has been removed
from the machine.

Use the following functions to manipulate router information headers and blocks. An
information header is composed of private meta-data and information blocks. Information
blocks are arrays of information structures of various types.

The following functions manipulate information headers:

MprlnfoCreate
MprlnfoDelete
MprlnfoDuplicate
MprlnfoRemoveAII

The following functions manipulate information blocks within an information header:

MprlnfoBlockAdd
MprlnfoBlockFind
MprlnfoBlockQuerySize
MprlnfoBlockRemove
MprlnfoBlockSet

Many of the router administration and configuration functions use information headers.

MprlnfoBlockAdd
The MprlnfoBlockAdd function creates a new header that is identical to an existing
header with the addition of a new block.

Parameters
IpHeader

Chapter 6 Router Administration 171

Pointer to the header to which to add the new block.

dwlnfoType
Specifies the type of block to add. The types available depend on the transport: IP
or IPX.

dwltemSize
Specifies the size of each item in the block to be added.

dwltemCount
Specifies the number of items of size dwltemSize to be copied as data for the new
block.

IpltemData
Pointer to the data for the new block. The size in bytes of this buffer should be equal
to the product of dwltemSize and dwltemCount.

IplpNewHeader
Pointer to a pointer variable that,on successful return, pOints to the new header.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value

Other

Remarks

Description

The IpHeader, IplpNewHeader, or IpltemData
parameter is NULL, or a block of type dwlnfoType
already exists in the header.

The call failed. Use FormatMessage to retrieve
the error message corresponding to the returned
error code.

After adding an information block, obtain the new size of the information header by call
MprlnfoBlockQuerySize.

172 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

FormatMessage, MprlnfoBlockRemove, MprlnfoDuplicate, MprlnfoBlockQuerySize

MprlnfoBlockFind
The MprlnfoBlockFind function locates a specified block in an information header, and
retrieves information about the block.

Parameters
IpHeader

Specifies the header in which to locate the block.

dwlnfoType
Specifies the type of block to locate. The types available depend on the transport: IP
orIPX.

IpdwltemSize
Pointer to a DWORD variable that, on successful return, specifies the size of each
item in the located block's data. This parameter is optional. If this parameter is NULL,
the item size will not be returned.

IpdwltemCount
Pointer to a DWORD variable that, on successful return, specifies the number of items
of size dwltemSize contained in the block's data. This parameter is optional. If this
parameter is NULL, the item count will not be returned.

IplpltemData
Pointer to a pOinter that, on successful return, points to the data for the located block.
This parameter is optional. If this parameter is NULL, the data will not be returned.

Chapter 6 Router Administration 173

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value

ERROR_INVALID_PARAMETER

ERROR_NOT _FOUND

Other

Description

The IplnfoHeader parameter is NULL.
No block of type dwlnfoType exists in the
header.

The call failed. Use FormatMessage to retrieve
the error message corresponding to the returned
error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

FormatMessage

MprlnfoBlockQuerySize
The MprlnfoBlockQuerySize function returns the returns the size of the information
header.

Parameters
IpHeader

Pointer to the information header for which to return the size.

Return Values
MprlnfoBlockQuerySize returns the size of the information header.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

174 Volume 5 Routing

MprlnfoBlockAdd, MprlnfoBlockRemove

MprlnfoBlockRemove
The MprlnfoBlockRemove function creates a new header that is identical to an existing
header with a specified block removed.

Parameters
IpHeader

Pointer to the header from which the block should be removed.

dwlnfoType
Specifies the type of block to be removed. The types available depend on the
transport: IP or IPX.

IplpNewHeader
Pointer to a painter variable that, on successful, return, paints to the new header.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value

Other

Remarks

Description

The IpHeader parameter is NULL, or no block
of type dwlnfoType exists in the header.

The memory allocation required for successful
execution of MprlnfoBlockRemove could not
be completed.

The call failed. Use FormatMessage to
retrieve the error message corresponding to
the returned error code.

After removing an information block, obtain the new size of the information header by
call MprlnfoBlockQuerySize.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Chapter 6 Router Administration 175

FormatMessage, MprlnfoBlockAdd, MprlnfoBlockQuerySize

MprlnfoBlockSet
The MprlnfoBlockSet creates a new header that is identical to an existing header with a
specified block modified.

Parameters
IpHeader

Pointer to the header in which to modify the specified block.

dwlnfoType
Specifies the type of block to change. The types available depend on the transport: IP
orlPX.

dwltemSize
Specifies the size of each item in the block's new data.

dwltemCount
Specifies the number of items of size dwltemSize to be copied as the new data for the
block.

IpltemData
Pointer to the new data for the block. This should point to a buffer with a size (in
bytes) equarto the product of dwltemSize and dwltemCount.

IplpNewHeader
Pointer to a pOinter variable that, on successful return, points to the new header.

176 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

Other

One (or more) required parameters is NULL, or
no block of type dwlnfoType exists in the header.

The call failed. Use FormatMessage to retrieve
the error message corresponding to the returned
error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

FormatMessage, MprlnfoBlockAdd, MprlnfoBlockRemove, MprlnfoBlockSet

MprlnfoCreate
The MprlnfoCreate function creates a new information header.

Parameters
dwVersion

Specifies the version of the information header structure to be created. The only value
currently supported is RTR_INFO_BLOCK_ VERSION, as declared in MprapLh.

IplpNewHeader
Pointer to the allocated and initialized header.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the values on the following page.

Value

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Other

Chapter 6 Router Administration 1n

Description

The /p/pNewHeader parameter is NULL.

The requested memory allocation could not be
completed.

The call failed. Use FormatMessage to retrieve
the error message corresponding to the
returned error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapUib.

FormatMessage

MprlnfoDelete
The MprlnfoDelete function deletes an information header created using
MprlnfoCreate, or retrieved by MprlnfoBlockAdd, MprlnfoBlockRemove, or
MprlnfoBlockSet.

Parameters
/pHeader

Pointer to the header to be deallocated.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails the return value is one of the following values.

Value

ERROR_I NVALI D_PARAMETER

Other

Description

The /pHeader parameter is NULL.

The call failed. Use FormatMessage to retrieve
the error message corresponding to the
returned error code.

178 Volume 5 Routing

Windows NT/2000: RequiresWindows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

MprlnfoBlockAdd, MprlnfoBlockRemove, MprlnfoBlockSet, FormatMessage

MprlnfoDuplicate
The MprlnfoDuplicate function duplicates an existing information header.

Parameters
IpHeader

Pointer to the information header to duplicate.

IplpNewHeader
Pointer to a pointer variable. On successful return, this variable points to the new
(duplicate) information header.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values,

Value Description

ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Other

The IplpNewHeaderparameter is NULL.

The requested memory allocation could not
be completed.

The call failed. Use FormatMessage to
retrieve the error message corresponding to
the returned error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapUib.

Chapter 6 Router Administration 179

FormatMessage, MprlnfoCreate

MprlnfoRemoveAIi
The MprlnfoRemoveAIi function removes all information blocks from the specified
header.

Parameters
/pHeader

Pointer to the information header from which to remove all information blocks.

/p/pNewHeader
Pointer to a pointer variable. On successful return, this variable pOints to the
information header with all information blocks removed.

Retur,n Values
If the function succeeds, the return value is NO_ERROR.

If the function fails,the return value is one of the following values:

ERROR_INVALlD_PARAMETER
Either the IpHeader parameter is NULL or the IplpNewHeader parameter is NULL.

Other
Use FormatMessageto retrieve the error message corresponding to the returned
error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Mprl nfoBlockRemove

180 Volume 5 Routing

Functions That Use Information Blocks
The following table lists functions that use information blocks. Each of these functions
has a parameter that pOints to either a global information block or an interface
information block.

Function

MprAdminlnterfaceTransportAdd

MprAdmin Interface TransportGetl nfo

MprAdminlnterfaceTransportSetlnfo

MprAdminTransportGetlnfo

MprAdminTransportSetlnfo

MprConfiglnterfaceTransportAdd

MprConfiglnterfaceTransportGetlnfo

MprConfigl nterface TransportSetlnfo

MprConfigTransportCreate

MprConfigTransportGetlnfo

MprConfigTransportSetlnfo

Router Information Structures

Info block parameter

plnterfacelnfo

pplnterfacelnfo

plnterfacelnfo

ppGlobalinfo

pGlobalinfo

plnterfacelnfo

pplnterfacelnfo

plnterfacelnfo

pGlobalinfo

ppGlobalinfo

pGlobalinfo

The following reference pages describe the router information structures for the IP and
IPX transports:

• IP Information Structures

• IPX Information Structures

IP Information Structures
The MIB_IPFORWARDROW is used for the IP transport. This structure is defined in
Iprtrmib.h.

MIB_IPFORWARDROW

IPX Information Structures
The following information structures are for the IPX transport. The structures
IPX_ TRAFFIC_FILTER_INFO and IPX_ TRAFFIC_FILTER_GLOBAL_INFO are defined
in Ipxtfflt.h. The remaining structures are defined in Ipxrtdef.h.

IPX_ADAPTER_INFO
IPX_GLOBAL_INFO
IPX_IF _INFO
IPX_SERVER_ENTRY
IPX_STATIC_NETBIOS_NAME_INFO
IPX_STATIC_ROUTE_INFO
IPX_STATIC_SERVICE_INFO
IPX_ TRAFFIC_FIL TER_GLOBAL_INFO
IPX_ TRAFFIC_FIL TER_INFO
IPXWAN_IF _INFO

Chapter 6 Router Administration 181

The IPX_IF _INFO structure stores information for an IPX interface.

Members
AdminState

Specifies the administrative state of the interface.

NetbiosAccept
Specifies whether to accept NetBIOS broadcast packets.

NetbiosDeliver
Specifies whether to deliver NetBIOS broadcast packets

Windows NT/2000: Requires Windows 2000.
Header: Declared in Ipxrtdef.h.

The IPX_STATIC_SERVICE_INFO structure describes a particular static IPX service.

182 Volume 5 Routing

Members
Type

Specifies the service type as defined by the SAP specification.

Name[48]
Specifies the service name as defined by SAP specifications.

Network[4]
Specifies the network number portion of the service address.

Node[6]
Specifies the node number portion of the service address.

Socket[2]
Specifies the socket number portion of service address.

HopCount
Specifies the service hop count.

Remarks
The IPX_STATIC_SERVICE_INFO structure is a typedef of the IPX_SERVER_ENTRY
structure. The typedef is in Ipxrtdef.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Ipxrtdef.h.

The IPXWAN_IF _INFO structure stores the administrative state for an IPX WAN
interface.

Members
AdminState

Chapter 6 Router Administration 183

Specifies the administrative state of the interface. This member can be one of the
following values. These value are defined in Ipxconst.h.

ADMIN_STATE_DISABLED
ADMIN_STATE_ENABLED
ADMIN_STATE_ENABLED_ONL Y _FOR_NETBIOS_STATIC_ROUTING
ADM I N_STATE_ENABLED_ONLY_FOR_OPER_STATE_U P

Windows NT/2000: Requires Windows 2000.
Header: Declared in Ipxrtdef.h.

Functions That Use Information Blocks, IPX_IF _INFO

Router Information Enumeration Types
Use the following information types when calling information header functions:

• IP Info Types for Router Information Blocks

• IPX Info Types for Router Information Blocks

IP Info Types for Router Information Blocks
The following information types are listed in Ipinfoid.h. Use these information types with
the Information Header functions when running the IP transport.

IP _DEMAND_DIAL_FIL TER_INFO
IP _IN_FIL TER_INFO
IP _OUT _FILTER_INFO
IP _GLOBAL_INFO
IP _IFFILTER_INFO
IP _INTERFACE_STATUS_INFO
IP _MCAST _HEARBEAT _INFO
IP _MCAST _BOUNDARY_INFO
IP _PROT _PRIORITY _INFO
IP _ROUTE_INFO
IP _ROUTER_DISC_INFO

184 Volume 5 Routing

IPX Info Types for Router Information Blocks
The following information types are listed in Ipxrtdef.h. Use these information types with
the router information block functions when running the IPX transport.

Info type

IPX_ADAPTER_INFO_ TYPE

IPX_GLOBAL_INFO_ TYPE

IPX_INTERFACE_INFO_ TYPE

IPX_IN_ TRAFFIC_FIL TER_GLOBAL_INFO_ TYPE

IPX_OUT _ TRAFFIC_FIL TER_GLOBAL_INFO_ TYPE

IPX_IN_ TRAFFIC_FILTER_INFO_ TYPE

IPX_OUT _ TRAFFIC_FILTER_INFO_ TYPE

IPX_STATIC_NETBIOS_NAME_INFO_ TYPE

IPX_STATIC_ROUTE_INFO_ TYPE

IPX_STATIC_SERVICE_INFO_ TYPE

IPXWAN_INTERFACE_INFO_ TYPE

Info structure

I PX_ADAPTER_INFO

IPX_ GLOBAL_INFO

IPX_IF _INFO

IPX_ TRAFFIC_FILTER_GLOBAL_INFO

IPX_ TRAFFIC_FILTER_GLOBAL_INFO

IPX_ TRAFFIC_FIL TER_INFO

IPX_ TRAFFIC_FIL TER_INFO

IPX_ST ATIC_NETBIOS_NAME_INFO

IPX_STATIC_ROUTE_INFO

IPX_STATIC_SERVICE_INFO

IPXWAN_IF _INFO

CHAPTER 7

Management Information
Base (MIB)

MIB Overview
The Management Information Sase (MIS) API makes it possible to query and set the
values of MIS variables exported by one of the router managers or any of the routing
protocols that the router managers service. Sy using this API, the router supports the
Simple Network Management Protocol (SNMP).

185

In the SNMP framework, each manageable object in the router is represented by a
variable that has a unique Object Identifier (010). Corresponding to each 010 is a value
that represents the current state of the object. The collection of OIOs and values is
referred to as a Management Information Sase (MIS). The MprAdminMib calls allow a
developer to specify an object by its 010 and either query or write ("Set") the object's
value.

To query and set MIS variables,the module that services the calls must define a set of
data structures. These data structures include structures to use as Object Identifiers and
structures that hold the values of the MIS variables being accessed. These data
structures are opaque to all but the caller of the MIS function and the module servicing
the call.

The module servicing the MIS call will be a router manager or one of the routing
protocols. The caller must specify a router manager even if the call will be handled by
one of the routing protocols. In such a case, the caller should specify the router manager
that corresponds to the protocol family for that routing protocol. For example, if the Open
Shortest Path First (OSPF) routing protocol were handling the MIS call, the caller would
need to specify the IP Router Manager, since OSPF belongs to the IP protocol family. In
each of the MIS functions, the dwTransportld parameter specifies a router manager, and
the RoutingPid parameter specifies the routing protocol. The router manager also has a
unique RoutingPid, since some of the MIS variables may be handled by the router
manager itself.

The MprAdminMib functions can be called on a computer other than the one being
administered. The MprAdminMIB functions that query or write values, take as a
parameter a handle to the computer to administer. Use the
MprAdminMIBServerConnect function to establish the connection to the remote
computer and obtain this handle. After calling the necessary MprAdminMIB functions to
accomplish a particular administrative task, call the MprAdminMIBServerDisconnect
function to sever the connection to the remote computer.

186 Volume 5 Routing

The MprAdminMIBEntryCreate and MprAdminMIBEntrySet functions take as
parameters an 010 and a buffer which contains the new value for the object.

The MprAdminMIBEntryGet, MprAdminMIBEntryGetFirst and
MprAdminMIBEntryGetNext functions take as parameters an 010 and the address of a
pointer variable. On successful return, the pOinter variable points to a buffer that contains
the value for the object. The caller should free the memory for this buffer by calling the
MprAdminMIBBufferFree function.

The MprAdminMIBEntryGetFirst and MprAdminMIBEntryGetNext functions enable a
developer to perform an "SNMP walk". Because the aiDs are ordered, each 010 (and
therefore each manageable object) has a "next" 010. An SNMP-Walk refers to traversing
a portion of the MIB by reading (or writing) a sequence of aiDs.

All MprAdminMib calls pass through the Dynamic Interface Manager (DIM). Depending
on the 010, DIM passes the call to one of the router managers. (Both IP and IPX support
SNMP). Again, depending on the 010, the router manager may handle the call itself, or
pass the call to one of its clients. All router clients are required to implement and export
the following functions which correspond to the similarly named MprAdminMIB
functions:

• MibCreate

• MibDelete

• MibSet

• MibGet
• MibGetFirst

• MibGetNext

• MibGetTraplnfo

• MibSetTraplnfo

Using the MIB API
This section contains examples that show how to use the MIS API to query and set
variables:

Obtaining the MIB IIlnteriaces Table
The following code uses MprAdminMIBEntryGet to obtain the MIS II interfaces table.

Chapter 7 Management Information Sase (MIS) 187

MIS Reference
This section describes the reference elements used in the Management Information
Base (MIB) API. Use these reference elements to query and set the values of the MIB
variables exported by one of the router managers, or any of the routing protocols that the
router manager services:

• MIB Functions

• MIB Structures

• Transport and Protocol Constants

MIB Functions
Use the following functions to query and setMIB variables:

MprAdminMIBBufferFree MprAdminMIBEntrySet
MprAdminMIBEntryCreate MprAdminMIBGetTraplnfo
MprAdminMIBEntryDelete MprAdminMIBServerConnect
MprAdminMIBEntryGet MprAdminMIBServerDisconnect
MprAdminMIBEntryGetFirst MprAdminMIBSetTraplnfo
MprAdminMIBEntryGetNext

188 Volume 5 Routing

MprAdminMIBBufferFree
The MprAdminMIBBufferFree function frees buffers returned by the following functions:

• MprAdminMIBEntryGet

• MprAdminMIBEntryGetFirst

• MprAdminMIBEntryGetNext

Parameters
pBuffer

Pointer to a memory buffer to free.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

The pBuffer parameter is NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

MIS Reference, MIB Functions, MprAdminMIBEntryGet, MprAdminMIBEntryGetFirst,
MprAdminMIBEntryGetNext

MprAdminMIBEntryCreate
The MprAdminMIBEntryCreate function creates an entry for one of the variables
exported by a routing protocol or router manager.

Parameters
hMibServer

Chapter 7 Management Information Base (MIB) 189

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminMIBServerConnect.

dwTransportld
Specifies the router manager that exported the variable.

dwRoutingPid
Specifies the routing protocol that exported the variable.

IpEntry
Pointer to an opaque data structure. The data structure's format is determined by the
module servicing the call. The data structure should contain information that identifies
the variable being created and the value to assign to the variable.

dwEntrySize
Specifies the size, in bytes, of the data pOinted to by the IpEntry parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR~CCESS_DENIED

Remarks

The caller does not have sufficient
privileges.

The dwRoutingPid variable does not match
any installed routing protocol.

There are insufficient resources to
complete the operation.

The dwTransportldvalue does not match
any installed router manager.

Do not pass in NULL for the IpEntry parameter because the resulting behavior is
undefined.

190 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

MIS Reference, MIS Functions, MIB Structures, MprAdminMIBServerConnect,
MprAdminMIBEntryDelete, Protocol Identifiers, Transport Identifiers

MprAdminMIBEntryDelete
The MprAdminMIBEntryDelete function deletes an entry for one of the variables that
was exported by a routing protocol or router manager.

Parameters
hMibServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminMIBServerConnect.

dwTransportld
Specifies the router manager that exported the variable.

dwRoutingPid
Specifies the routing protocol that exported the variable.

IpEntry
Pointer to an opaque data structure. The data structure's format is determined by the
module servicing the call. The data structure should contain information that identifies
the variable to be deleted.

dwEntrySize
Specifies the size, in bytes, of the data pointed to by IpEntry parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

Chapter 7 Management Information Base (MIB) 191

If the function fails, the return value is one of the following values.

Value

Remarks

Description

The caller does not have sufficient
privileges.

The dwRoutingPid variable does not match
any installed routing protocol.

The dwTransportld value does not match
any installed router manager.

Do not pass in NULL for the /pEntry parameter because the resulting behavior is
undefined.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

MIB Reference, MIB Functions, MIBStructures, MprAdminMIBServerConnect,
MprAdminMIBEntryCreate, Protocol Identifiers, Transport Identifiers

MprAdminMIBEntryGet
The MprAdminMIBEntryGet function retrieves the value of one of the variables
exported by a routing protocol Of. router manager.

192 Volume 5 Routing

Parameters
hMibServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminMIBServerConnect.

dwTransportld
Specifies the router manager that exported the variable.

dwRoutingPid
Specifies the routing protocol that exported the variable.

IplnEntry
Pointer to an opaque data structure. The data structure's format is determined by the
module servicing the call. The data structure should contain information that identifies
the variable being queried.

dwlnEntrySize
Specifies the size, in bytes, of the data structure pointed to by IplnEntry.

IplpOutEntry
Pointer to a pOinter variable. On successful return, this pOinter variable pOints to an
opaque data structure. The data structure's format is determined by the module
servicing the call. The data structure contains the value of the variable that was
queried. Free this memory by calling MprAdminMIBBufferFree.

IpdwOutEntrySize
Pointer to a DWORD variable that, on successful return, contains the size in bytes of
the data structure returned through the IplpOutEntry parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_ACCESS_DENIED The caller does not have sufficient privileges.

ERROR_CANNOT_COMPLETE The dwRoutingPidvariable does not match
any installed routing protocol.

ERROR_UNKNOWN_PROTOCOL_ID The dwTransportldvalue does not match any
installed router manager.

ERROR_NOT_ENOUGH_MEMORY There are insufficient resources to complete
the operation.

Remarks
Do not pass in NULL for the IplnEntry parameter because the resulting behavior is
undefined.

Chapter 7 Management Information Base (MIB) 193

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

MIB Reference, MIB Functions, MIB Structures, MprAdminMIBBufferFree,
MprAdminMIBServerConnect, MprAdminMIBEntrySet,
MprAdminMIBEntryGetFirst, MprAdminMIBEntryGetNext, Obtaining the MIB II
Interfaces Table, Protocol Identifiers, Transport Identifiers

MprAdminMIBEntryGetFirst
The MprAdminMIBEntryGetFirst function retrieves the first variable of some set
of variables exported by a protocol or router manager. The module servicing the call
defines "first".

Parameters
hMibServer

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminMIBServerConnect.

dwTransportld
Specifies the router manager that exported the variable.

dwRoutingPid
Specifies the routing protocol that exported the variable.

IplnEntry
Pointer to an opaque data structure. The data structure's format is determined by the
module servicing the call. The data structure should contain information that identifies
the variable being queried.

194 Volume 5 Routing

dwlnEntrySize
Specifies the size in bytes of the data pOinted to by IplnEntry.

IplpOutEntry
Pointer to a pOinter variable. On successful return, this pOinter variable pOints to an
opaque data structure. The data structure's format is determined by the module
servicing the call. The data structure contains the value of the first variable from the
set of variables exported. Free this memory by calling MprAdminMIBBufferFree.

IpdwoutEntrySize
Pointer to a DWORD variable. On successful return, this variable contains the size, in
bytes, of the data structure that was returned through the IplpOutEntry parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_ACCESS_DENIED The caller does not have sufficient privileges.

ERROR_CANNOT _COMPLETE The dwRoutingPid variable does not match
any installed routing protocol.

ERROR_UNKNOWN_PROTOCOL_ID The dwTransportldvalue does not match any
installed transport/router manager.

ERROR_NOT _ENOUGH_MEMORY There are insufficient resources to complete
the operation.

Remarks
Do not pass in NULL for the IplnEntry parameter because the resulting behavior is
undefined.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

MIS Reference, MIS Functions, MIS Structures, MprAdminMIBBufferFree,
MprAdminMIBServerConnect, MprAdminMIBEntryGet,
MprAdminMIBEntryGetNext, Protocol Identifiers, Transport Identifiers

Chapter 7 Management Information Base (MIB) 195

MprAdminMIBEntryGetNext
The MprAdminMIBEntryGetNext function retrieves the next variable of some set of
variables exported by a protocol or router manager. The module servicing the call
defines "next".

Parameters
hMibServer

Handle to the Windows 2000 router on which to execute this call. This handle is
obtained from a previous call to MprAdminMIBServerConnect.

dwTransportld
Specifies the router manager that exported the variable.

dwRoutingPid
Specifies the routing protocol that exported the variable.

IplnEntry
Pointer to an opaque data structure. The data structure's format is determined by the
module servicing the call. The data structure should contain information that identifies
the variable being queried.

dwlnEntrySize
Specifies the size, in bytes, of the data structure pointed to by IplnEntry.

IplpOutEntry
Pointer to a pointer variable. On successful return, this pointer variable points to an
opaque data structu re. The data structure's format is determined by the module
servicing the call. The data structure contains the value of the next variable from the
set of variables exported. Free this memory by calling MprAdminMIBBufferFree.

IpdwoutEntrySize
Pointer to a DWORD variable. On a successful return, this variable contains the size
in bytes of the data structure returned through the IplpOutEntry parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

196 Volume 5 Routing

If the function fails, the return value is one of the following values.

Value Description

ERROR_ACCESS_DENIED The caller does not have sufficient privileges.

ERROR_CANNOT _COMPLETE The dwRoutingPid variable does not match
any installed routing protocol.

ERROR_UNKNOWN_PROTOCOL_ID The dwTransportldvalue does not match any
installed router manager.

ERROR_NOT _ENOUGH_MEMORY There are insufficient resources to complete
the operation.

Remarks
Do not pass in NULL for the IplnEntry parameter because the resulting behavior is
undefined.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

MIS Reference, MIS Functions, MIS Structures, MprAdminMIBBufferFree,
MprAdminMIBServerConnect, MprAdminMIBEntryGet,
MprAdminMIBEntryGetFirst, Protocol Identifiers, Transport Identifiers

MprAdminMIBEntrySet
The MprAdminMIBEntrySet function sets the value of one of the variables exported by
a routing protocol or router manager.

Parameters
hMibServer

Chapter 7 Management Information Base (MIB) 197

Handle to the Windows 2000 router on which to execute this call. Obtain this handle
by calling MprAdminMIBServerConnect.

dwTransportld
Specifies the router manager that exported the variable.

dwRoutingPid
Specifies the routing protocol that exported the variable.

IpEntry
Pointer to an opaque data structure. The data structure's format is determined by the
module servicing the call. The data structure should contain information that identifies
the variable being set and the value to be assigned to the variable.

dwEntrySize
Specifies the size, in bytes, of the data pOinted to by the IpEntry parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value

ERROR_ACCESS_DENIED

ERROR_CANNOT _COMPLETE

Remarks

Description

The caller does not have sufficient privileges.

The dwRoutingPid variable does not match
any installed routing protocol.

The dwTransportld value does not match any
installed router manager.

Do not pass in NULL for the IpEntry parameter because the resulting behavior is
undefined.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

MIS Reference, MIS Functions, MIS Structures, MprAdminMIBServerConnect,
MprAdminMIBEntryGet, Protocol Identifiers, Transport Identifiers

198 Volume 5 Routing

MprAdminMIBGetTraplnfo
The MprAdminMIBGetTraplnfo function queries the module that set a trap event for
more information about the trap.

Parameters
hMibServer

[in] Handle to the Windows 2000 router on which to execute this call. Obtain this
handle by calling MprAdminMIBServerConnect.

dwTransportld
[in] Specifies a DWORD variable that contains the protocol family identifier.

dwRoutingPid
[in] Specifies a DWORD variable that contains the identifier of the routing protocol.

IplnOata
[in] Specifies the address of the input data.

dwlnOataSize
[in] Specifies a DWORD variable that contains the size, in, bytes of the data pointed to
by IplnOata.

IplpOutOata
[out] Specifies on successful return the address of a painter to the output data.

IpdwOutOataSize
[in, out] Specifies on successful return, the address of a DWORD variable that
contains the size, in bytes, of the data pOinted to by * IplpOutData.

Return Values
If the functions succeeds, the return value is NO_ERROR

If the function fails, the return value is one of the following error codes.

Chapter 7 Management Information Base (MIB) 199

Value Description

ERROR_ACCESS_DENIED The caller does not have sufficient privileges.

ERROR_UNKNOWN_PROTOCOL_ID The dwTransportldvalue does not match any
installed router manager.

ERROR_NOT _ENOUGH_MEMORY There are insufficient resources to complete
the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

MIS Reference, MIS Functions, MprAdminMIBSetTraplnfo

MprAdminMIBServerConnect
Call the MprAdminMIBServerConnect function to connect to the Windows 2000 router
being administered. This call should be made before any other calls to the server. The
handle returned by this function is used in subsequent MIS calls.

Pall8meters
IpwsServerNamer

Pointer to a Unicode string that contains the name of the remote server. If the caller
specifies NULL for this parameter, the function returns a handle to the local server.

phMibServer
Pointer to a handle variable. On successful return, this variable contains a handle to
the server.

Return Values
If the function succeeds, the return value is NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

200 Volume 5 Routing

MIB Reference, MIB Functions, MprAdminMIBServerDisconnect

MprAdminMIBServerDisconnect
The MprAdminMIBServerDisconnect function disconnects the connection made by a
previous call to MprAdminMIBServerConnect.

Parameters
hMibServer

Handle to the Windows 2000 router from which to disconnect. Obtain this handle by
calling MprAdminMIBServerConnect.

Return Values
If the function succeeds, the return value is NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

MIB Reference, MIB Functions, MprAdminMIBServerConnect

MprAdminMIBSetTraplnfo
The MprAdminMIBSetTraplnfo function passes in a handle to an event which is
signaled whenever a TRAP needs to be issued.

Parameters
dwTransportld

Chapter 7 Management Information Base (MIB) 201

[in] Specifies a DWORD variable that contains the protocol family identifier.

dwRoutingPid
[in] Specifies a DWORD variable that contains the identifier of the routing protocol.

hEvent
[in] Handle to an event that is signaled when a TRAP needs to be issued.

IplnData
[in] Pointer to the input data.

dwlnDataSize
[in] Specifies a DWORD variable that contains the size in bytes of the data pOinted to
by IplnData.

IplpOutData
[out] Specifies on successful return, the address of a pointer to the output data.

IpdwOutDataSize
[in, out] Pointer to a DWORD variable that contains the size in bytes of the data
pOinted to by * IplpOutData.

Return Values
If the functions succeeds, the return value is NO_ERROR

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_ACCESS_DENIED

ERROR_UNKNOWN_PROTOCOL_ID

The caller does not have sufficient privileges.

The dwTransportldvalue does not match any
installed router manager.

There are insufficient resources to complete
the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.
Library: Use Mprapi.1ib.

MIS Reference, Transport and Protocol Constants, MprAdminMIBGetTraplnfo

MIB Structures
Use the following structures with the MIS functions to get and set MIS variables. These
structures are defined in Iprtrmib.h.

202 Volume 5 Routing

MIB_BEST _IF
MIB_ICMP
MIB_IFNUMBER
MIB_IFROW
MIB_IFSTATUS
MIB_IFTABLE
MIB_IPADDRROW
MIB_IPADDRTABLE
MIB_IPFORWARDNUMBER
MIB_IPFORWARDROW
MIB_IPFORWARDTABLE
MIB_IPMCAST _GLOBAL
MIB_IPMCAST _IF _ENTRY
MIB_IPMCAST _IF _TABLE
MIB_IPMCAST _MFE
MIB_IPMCAST _MFE_STATS
MIB_IPMCAST _OIF

MIB_IPMCAST _OIF _STATS
MIB_IPNETROW
MIB_IPNETTABLE
MIB_IPSTATS
MIB_MFE_STATS_ TABLE
MIB_MFE_TABLE
MIB_OPAQUE_INFO
MIB_OPAQUE_QUERY
MIB_PROXYARP
MIB_TCPROW
MIELTCPSTATS
MIB_ TCPTABLE
MIB_UDPROW
MIB_UDPSTATS
MIB_UDPTABLE
MIBICMPINFO
MIBICMPSTATS

The MIB_BEST _IF structure stores the index of the interface that has the best route to a
particular destination address.

Members
dwDestAddr

Specifies the IP address of the destination.

dwlflndex
Specifies the index of the interface that has the best route to the destination address
specified by the dwDestAddr member.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

GetBestlnterface, GetBestRoute

Chapter 7 Management Information Base (MIB) 203

The MIB~ICMP structure contains the Internet Control Message Protocol (ICMP)
statistics for a particular computer.

Members
stats

Specifies a MIBICMPINFO structure that contains the ICMP statistics for the
computer.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
H~ader: Declared in Iprtrmib.h.

GetlcmpStatistics, MIBICMPINFO

The MIB~IFNUMBER structure stores the number of interfaces on a particular computer.

Members
dwValue

Specifies the number of interfaces on the computer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

204 Volume 5 Routing

The MIB_IFROW structure stores information about a particular interface.

Members
wszName[MAX_INTERFACE_NAME_LEN]

Pointer to a Unicode string that contains the name of the interface.

dwlndex
Specifies the index that identifies the interface.

dwType
Specifies the type of interface.

dwMtu
Specifies the Maximum Transmission Unit (MTU).

dwSpeed
Specifies the speed of the interface in bits per second.

Chapter 7 Management Information Base (MIB) 205

dwPhysAddrLen
Specifies the. length of the physical address specified by the bPhysAddr member.

bPhysAddr[MAXLEN_PHYSADDR]
Specifies the physical address of the adapter for this interface.

dwAdminStatus
Specifies the interface is administratively enabled or disabled.

dwOperStatus
Specifies the operational status of the interface. This member can be one of the
following values:

MIS_IF _OPER_STATUS_NON_OPERATIONAL
MIS_IF _OPER_STATUS_UNREACHASLE
MIS_IF _OPER_STATUS_DISCONNECTED
MIS_IF _OPER_STATUS_CONNECTING
MIS_IF _OPER_STATUS_CONNECTED
MIS_IF _OPER_STATUS_OPERATIONAL

dwLastChange
Specifies the last time the operational status changed.

dwlnOctets
Specifies the number of octets of data received through this interface.

dwlnUcastPkts
Specifies the number of unicast packets received through this interface.

dwlnNUcastPkts
Specifies the number of non-unicast packets received through this interface. This
includes broadcast and multicast packets.

dwlnDiscards
Specifies the number of incoming packets that were discarded even though they did
not have errors.

dwlnErrors (
Specifies the number of incoming packets that were discarded becaus~ of errors.

dwlnUnknownProtos
Specifies the number of incoming packets that were discarded because the protocol
was unknown.

dwOutOctets
Specifies thenumber.of octets of data sent through this interface.

dwOutUcastPkts
Specifies the number of unicast packets sent through this interface.

dwOutNUcastPkts
Specifies the number of non-unicast packets sent through this interface. This includes
broadcast and multicast packets.

dwOutDiscards
Specifies the number of outgoing packets that were discarded even though they did
not have errors. .

206 Volume 5 Routing

dwOutErrors
Specifies the number of outgoing packets that were discarded because of errors.

dwOutQLen
Specifies the output queue length.

dwDescrLen
Specifies the length of the bDescr member.

bDescr[MAXLEN_IFDESCR]
Contains a description of the interface.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetlfEntry, MIB_IFSTATUS, MIB_IFT ABLE, MPR_INTERFACE_O

The MIB_IFSTATUS structure stores status information for a particular interface.

Members
dwlflndex

Specifies the index that identifies the interface.

dwAdminStatus
Specifies the administrative status of the interface, that is, whether the interface is
administratively enabled or disabled.

dwOperationarStatus
Specifies the operational status of the interface. See
ROUTER_CONNECTION..~STATEfor a list of the possible operational states.

bMHbeatActive
Specifies whether multicast heartbeat detection is enabled. A value of TRUE indicates
that heartbeat detection is enabled. A value of FALSE indicates that heartbeat
detection is disabled.

Chapter 7 Management Information Base (MIB) 207

bMHbeatAlive
Specifies whether the multicast heartbeat dead interval has been exceeded. A value
of TRUE indicates that the interval has been exceeded. A value of FALSE indicates
that the interval has not been exceeded.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

MIB IFTABLE
The MIB_IFTABLE structure contains a table of interface entries.

Members
dwNumEntries

Specifies the number of interface entries in the array.

table[ANV _SIZE]
Pointer to a table of interface entries implemented as an array of MIB_IFROW
structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetlfTable, MIB_IFNUMBER, MIB_IFROW

MIB_IPADDRROW
The MIB_IPADDRROW specifies information for a particular IP address.

208 Volume 5 Routing

Members
dwAddr

Specifies the IP address.

dwlndex
Specifies the index of the interface associated with this IP address.

dwMask
Specifies the subnet mask for the IP address.

dwBCastAddr
Specifies the broadcast address. A broadcast address is typically the IP address with
the host portion set to either all zeros or all ones.

dwReasmSize
Specifies the maximum reassembly size for received datagrams

unused1
This member is not currently used.

unused2
This member is not currently used.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

MIB_IPADDRTABLE

MIB_IPADDRTABLE
The MIB_IPADDRTABLE structure contains a table of IP address entries.

Members
dwNumEntries

Chapter 7 Management Information Base (MIB) 209

Specifies the number of IP address entries in the table.

table[ANY _SIZE]
Pointer to a table of IP address entries implemented as an array of
MIB_IPADDRROW structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetlpAddrTable, MIB_IPADDRROW

MIB_IPFORWARDNUMBER
The MIB_IPFORWARDNUMBER stores the number of routes in a particular IP routing
table.

Members
dwValue

Specifies the number of routes in the IP routing table.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetlpForwardTable, MIB_IPFORWARDROW, MIB_IPFORWARDT ABLE

210 Volume5 Routing

MIB_IPFORWARDROW
The MIB_IPFORWARDROW structure contains information that describes an IP network
route.

Members
dwForwardDest

The IP address of the destination host.

dwForwardMask
The subnet mask of the destination host.

dwForwardPolicy
Specifies the set of conditions that would cause the selection of a multi-path route.
This member is typically in IP TOS format. For more information, see RFC 1354.

dwForwardNextHop
Specifies the IP address of the next hop in the route.

dwForwardlflndex
Specifies the index of the interface for this route.

dwForwardType
Specifies the route type as defined in RFC 1354. The list on the following page shows
the possible values for this member.

Chapter 7 Management Information Base (MIB) 211

Value Meaning

4

3

2

1

The next hop is not the final destination (remote route).

The next hop is the final destination (local route).

The route is invalid.

Other.

dwForwardProto
Specifies the protocol that generated the route. See Protocol Identifiers for a list of
possible protocols.

dwForwardAge
Specifies the age of the route in seconds.

dwForwardNextHopAS
Specifies the autonomous system number of the next hop.

dwForwardMetric1
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

dwForwardMetric2
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

dwForwardMetric3
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

dwForwardMetric4
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

dwForwardMetric5
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

CreatelpForwardEntry, DeletelpForwardEntry, MIB .JPFORWARDT ABLE,
SetlpForwardEntry

212 Volume 5 Routing

MIB_IPFORWARDTABLE
The MIB_IPFORWARDTABLE structure contains a table of IP route entries.

Members
dwNumEntries

Specifies the number of route entries in the table.

table[ANY _SIZE]
Pointer to a table of route entries implemented as an array of
MIB_IPFORWARDROW structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetlpForwardTable, MIB_IPFORWARDNUMBER, MIB_IPFORWARDROW

The MIB_IPMCAST_GLOBAL structure stores global information for IP multicast on a
particular computer.

Members
dwEnable

Specifies whether IP multicast is enabled on the computer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

Chapter 7 Management Information Base (MIB) 213

The MIB_IPMCAST_IF _ENTRY stores information about an IP multicast interface.

Members
dwlflndex

Specifies the index of this interface.

dwTtI
Specifies the time-to-live value for this interface.

dwProtocol
Specifies the multicast routing protocol that owns this interface.

dwRateLimit
Specifies the rate limit of this interface.

ullnMcastOctets
Specifies the number of octets of multicast data received through this interface.

ulOutMcastOctets
Specifies the number of octets of multicast data sent through this interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

214 Volume 5 Routing

The MIB_IPMCAST_IF _TABLE structure contains a table of IP multicast interface
entries.

Members
dwNumEntries

Specifies the number of interface entries in the table.

table[ANY _SIZE]
Pointer to a table of interface entries implemented as an array of
MIB_IPMCAST _IF _TABLE structures.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_IPMCAST _MFE structure stores the information for an IP MFE.

Members
dwGroup

Chapter 7 Management Information Sase (MIS) 215

Specifies the range of multicast groups for this MFE. Zero indicates a wildcard group.

dwSource
Specifies the range of source addresses for this MFE. Zero indicates a wildcard
source.

dwSrcMask
Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask members are used together to define a range of sources.

dwUpStrmNgbr
Specifies the upstream neighbor that is related to this MFE.

dwlnlflndex
Specifies the index of the interface to which this MFE is related.

dwlnlfProtocol
Specifies the routing protocol that owns the incoming interface to which this MFE is
related.

dwRouteProtocol
Specifies the client that created the route.

dwRouteNetwork
Specifies the address associated with the route.referred to by dwRouteProtocol.

dwRouteMask
Specifies the mask associated with the route referred to by dwRouteProtocol.

ulUpTime
Specifies how long, in seconds, this MFE has been yalid. This value starts from zero
aod is incremented until it reaches the ulTimeOut value, at which time the MFE is
deleted.

. .
uIExpiryTIme
.·Specifies thetime,in seconds, that remains before the MFE expires and is deleted.

This value starts from ulTime()ut and is decremented until it reaches zero, at which
time theMFE is deleted.

ulTlmeOut
.. Specifies the. total length of time that this MF'EshouJd remain valid. After the time-out

value is exceeded, the MFE is deleted, This value is static.

ulNumOutif ..
Specifiesthe number of outgoing interfaces that are associated with this MFJ:.

216 Volume 5 Routing

fFlags
This member is reserved for future use and should be NULL.

dwReserved
This member is reserved and should be NULL.

rgmioOutlnfo[ANY _SIZE]
Pointer to a table of outgoing interface statistics that are implemented as an array of
MIB_IPMCAST _OIF structures.

Remarks
The MIB_IPMCAST _MFE structure does not have a fixed size. Use the
SIZEOF _MIB_MFE(X) macro to determine the size of this structure. This macro is
defined in the Iprtrmib.h header file.

The dwRouteProtocol, dwRouteNetwork, and dwRouteMask members uniquely
identify the route to which this MFE is related.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_IPMCAST_MFE_STATS structure stores the statistics associated with
an MFE.

Members
dwGroup

Chapter 7 Management Information Base (MIB) 217

Specifies the range of multicast groups for this MFE. Zero indicates a wildcard group.

dwSource
Specifies the range of source addresses for this MFE. Zero indicates a wildcard
source.

dwSrcMask
Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask members are used together to define a range of sources.

dwUpStrmNgbr
Specifies the upstream neighbor related to this MFE.

dwlnlflndex
Specifies the index of the interface towhich this MFE is related.

dwlnlfProtocol
Specifies the routing protocol that owns the incoming interface to which this MFE is
related.

dwRouteProtocol
Specifies the client that created the route.

dwRouteNetwork
Specifies the address associated with the route referred to by dwRouteProtocol.

dwRouteMask
Specifies the mask associated with the route referred to by dwRouteProtocol.

ulUpTime
Specifies the time, in seconds, since the MFE was created.

ulExpiryTime
Specifies the time, in seconds, before the MFE expires and is deleted.

ulNumOutlf
Specifies the number of outgoing interfaces in the outgoing interface list for this MFE.

ullnPkts
Specifies the number of multicast packets received that matched this MFE.

ulinOctets
Specifies the number of octets of data received on the incoming interface.

ulPktsDifferentlf
Specifies the number packets that were received on interfaces other than the
incoming interface.

218 Volume 5 Routing

ulQueueOverflow
Specifies the number of packets that were discarded because the buffer queue for
this MFE overflowed.

rgmiosOutStats[ANY _SIZE]
Pointer to a table of outgoing interface statistics that are implemented as an array of
MIB_IPMCAST_OIF _STATS structures.

Remarks
The MIB_IPMCAST_MFE_STATS structure does not have a fixed size. Use the macro
SIZEOF _MIB_MFE_STATS(X) to determine the size of this structure. This macro is
defined in the Iprtrmib.h header file.

The dwRouteProtocol, dwRouteNetwork, and dwRouteMask members· uniquely
identify the route to which this MFE is related.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_IPMCAST_OIF structure stores the information required to send an outgoing
IP multcast packet.

Members
dwOutlflndex

Specifies the index of the interface on which to send the outgoing IP multicast packet.

dwNextHopAddr
Specifies the destination address for the outgoing IP multicast packet.

pvReserved
This member is reserved and should be NULL.

Chapter 7 Management Information Base (MIB) 219

dwReserved
This member is reserved and should be zero.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_IPMCAST _OIF _STATS structure stores the statistics that are associated with
an outgoing multicast interface.

Members
dwOutlflndex

Specifies the outgoing interface to which these statistics are related.

dwNextHopAddr
Specifies the address of the next hop that corresponds to dwOutlflndex. The
dwOutlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on
pOint-to-multipointinterfaces, where one interface connects to multiple networks.
Examples of point-to-multipoint interfaces include Non-Broadcast Multiple-Access
(NBMA) interfaces, and the internal interface on which all dial-up clients connect.

For Ethernet and other broadcast interfaces, specify zero. Also specify zero for point
to-point interfaces, which are identified by only dwOutlflndex.

pvDialContext
This member is reserved for future use and should be NULL.

ulTtITooLow
Specifies the number of packets on this outgoing interface that were discarded
because the packet's time-to-live value was too low.

220 Volume 5 Routing

ulFragNeeded
Specifies the number of packets that required fragmentation when they were
forwarded on this interface.

ulOutPackets
Specifies the number of packets that were forwarded out this interface.

ulOutDiscards
Specifies the number of packets that were discarded on this interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

MIB_IPNETROW
The MIB_IPNETROW structure contains information for an Address Resolution Protocol
(ARP) table entry.

Members
dwlndex

Specifies the index of the adapter.

dwPhysAddrLen
Specifies the length of the physical address.

bPhysAddr[MAXLEN_PHYSADDR]
Specifies the physical address.

dwAddr
Specifies the IP address.

dwType
Specifies the type of ARP entry. This type can be one of the values on the
following page.

Chapter 7 Management Information Base (MIB) 221

Value Meaning

4 Static

3 Dynamic

2 Invalid

Other

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

CreatelpNetEntry, DeletelpNetEntry, MIB_IPNETTABLE, SetlpNetEntry

MIB_IPNETTABLE
The MIB_IPNETTABLE contains a table of Address Resolution Protocol (ARP) entries.

Members
dwNumEntries

Specifies the number of ARP entries in the table.

table[ANY _SIZE]
Pointer to a table of ARP entries implemented as an array of MIB_IPNETROW
structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetlpNetTable, MIB_IPNETROW

222 Volume 5 Routing

The MIB_IPSTATS structure stores information about the IP protocol running on a
particular computer.

Members
dwForwarding

Specifies whether IP forwarding is enabled or disabled.

dwDefaultTTL
Specifies the default initial Time To Live (TTL) for datagrams originating on a
particular computer.

Chapter 7 Management Information Base (MIB) 223

dwlnReceives
Specifies the number of datagrams received.

dwlnHdrErrors
Specifies the number of datagrams received that have header errors.

dwlnAddrErrors
Specifies the number of datagrams received that have address errors.

dwForwDatagrams
Specifies the number of datagrams forwarded.

dwlnUnknownProtos
Specifies the number of datagrams received that have an unknown protocol.

dwlnDiscards
Specifies the number of received datagrams discarded.

dwlnDelivers
Specifies the number of received datagrams delivered.

dwOutRequests
Specifies the number of outgoing datagrams that IP is requested to transmit. This
number does not include forwarded datagrams.

dwRoutingDiscards
Specifies the number of outgoing datagrams discarded.

dwOutDiscards
Specifies the number of transmitted datagrams discarded.

dwOutNoRoutes
Specifies the number of datagrams for which this computer did not have a route to the
destination IP address. These datagrams were discarded.

dwReasmTimeout
Specifies the amount of time allowed for all pieces of a fragmented datagram to
arrive. If all pieces do not arrive within this time, the datagram is discarded.

dwReasmReqds
Specifies the number of datagrams requiring reassembly.

dwReasmOks
Specifies the number of datagrams successfully reassembled.

dwReasmFails
Specifies the number of datagrams that cannot be reassembled.

dwFragOks
Specifies the number of datagrams that were fragmented successfully.

dwFragFaiis
Specifies the number of datagrams that cannot be fragmented because the "don't
fragment" bit in the IP header is set. These datagrams are discarded.

dwFragCreates
Specifies the number of fragments created.

224 Volume 5 Routing

dwNumlf
Specifies the number of interfaces.

dwNumAddr
Specifies the number of IP addresses associated with this computer.

dwNumRoutes
Specifies the number of routes in the IP routing table.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

MIB MFE TABLE - -
The MIB_MFE_TABLE structure contains a table of Multicast Forwarding
Entries (MFEs).

Members
dwNumEntries

Specifies the number of multicast forwarding entries in the table.

table[ANY _SIZE]
Pointer to a table of multicast forwarding entries implemented as an array of
MIB_IPMCAST _MFE structures.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_MFE_STATS_TABLE structure stores statistics for a group of MFEs.

Members
dwNumEntries

Chapter 7 Management Information Base (MIB) 225

Specifies the number of MFE entries in the array.

table[ANY _SIZE]
Pointer to a table of MFEs that are implemented as an array of
MIB_IPMCAST _MFE_STATS structures.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_OPAQUE_INFO structure contains information returned from a management
information base opaque query.

The MIB_OPAQUE_QUERY structure contains information for a management
information base opaque query.

226 Volume 5 Routing

Members
dwVarld

Specifies the ID of the MIB object to query.

rgdwVarlndex[ANY _SIZE]
Specifies the index of the MIB object to query.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Iprtrmib.h.

The MIB_PROXYARP structure stores information for a Proxy Address Resolution
Protocol (PARP) entry.

Members
dwAddress

Specifies the IP address for which to act as a proxy.

dwMask
Specifies the subnet mask for the IP address specified by the dwAddress member.

dwlflndex
Specifies the index of the interface on which to act as proxy for the address specified
by the dwAddress member.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows ~5/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

Create Proxy ArpEntry, DeleteProxy ArpEntry

Chapter 7 Management Information Base (MIB) 227

The MIB_ TCPROW structure contains information for a TCP connection.

Members
dwState

Specifies the state of the TCP connection. This member can have one of the following
values.

Value Description

MIB_TCP~STATE_CLOSED

M1B_TCP _STATE_LISTEN

MIB_TCP_STATE_SYN_SENT

MIB_TCP _STATE_SYN_RCVD

MIB_TCP_STATE_ESTAB

MIB_ TCP _STATE~F1N_WAIT1

MIB_ TCP _STATE_FIN_WAIT2

M1B_ TCP _STATE_CLOSE_WAIT

MIB_ rcp _STATE_CLOSING

MIB_TCP _STAT E_LAST_AC K

MIB_TCP _STATE_TIME_WAIT

MIB_TCP _STATE_DELETE_TCB

dwLocalAddr

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

To be determined.

Transmission Control Block (TCB) deleted.

Specifies the address for the connection on the local computer.

dwLocalPort
Specifies the port number for the connection on the local computer.

dwRemoteAddr
Specifies the address for the connection on the remote computer.

dwRemotePort
Specifies the port number the connection on the remote computer.

228 Volume 5 Routing

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

MIB_ TCPTABLE, SetTcpEntry

The MIB_ TCPSTATS structure contains statistics for the TCP protocol running on the
local computer.

Members
dwRtoAlgorithm

Specifies the retransmission time-out algorithm in use. This member can be one of
the following values.

Value

MIB_ TCP _RTO_CONSTANT

MIB_ TCP _RTO_RSRE

MIB_TCP _RTO_VANJ

MIB_ TCP _RTO_OTHER

Description

Constant Time-out

MIL-STD-1778 Appendix B

Van Jacobson's Algorithm

Other

Chapter 7 Management Information Base (MIB) 229

dwRtoMin
Specifies the minimum retransmission time-out value in milliseconds.

dwRtoMax
Specifies the maximum retransmission time-out value in milliseconds.

dwMaxConn
Specifies the maximum number of connections. If this member is -1 , the maximum
number of connections is dynamic.

dwActiveOpens
Specifies the number of active opens. In an active open, the client is initiating a
connection with the server.

dwPassiveOpens
Specifies the number of passive opens. In a passive open, the server is listening for a
connection request from a client.

dwAttemptFaiis
Specifies the number of failed connection attempts.

dwEstabResets
Specifies the number of established connections that have been reset.

dwCurrEstab
Specifies the number of currently established connections.

dwlnSegs
Specifies the number of segments received or transmitted.

dwOutSegs
Specifies the number of segments transmitted. This number does not include
retransmitted segments.

dwRetransSegs
Specifies the number of segments retransmitted.

dwlnErrs
Specifies the number of errors received.

dwOutRsts
Specifies the number of segments transmitted with the reset flag set.

dwNumConns
Specifies the cumulative number of connections.

Windows NT/2000: Requires Windows NT 4.0 SP40r later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetTcpStatistics

230 Volume 5 Routing

MIB_TCPTABLE
The MIB_ TCPTABLE structure cOhtains a table of TCP connections.

Members
dwNumEntries

Specifies the number of entries in the table.

table[ANY _SIZE]
Pointer to a table of TCP connections implemented as an array of MIB_ TCPROW
structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetTcpTable, MIB_TCPROW

The MIB_UDPROW structure contains address information for sending and receiving
User Datagram Protocol (UDP) datagrams.

Members
dwLocalAddr

Specifies the IP address on the local computer.

dwLocalPort
Specifies the port number on the local computer.

Chapter 7 Management Information Base (MIB) 231

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h ..

The MIB_UDPSTATS structure contains statistics for the User Datagram Protocol (UDP)
running on the local computer.

Members
dwlnDatagrams

Specifies the number of datagramsreceived.

dwNoPorts
Specifies the number of received datagrams that were discarded because the port
specified was invalid.

dwlnErrors
Specifies the number of erroneous datagrams that were received. This number does
not include the value contained by the dwNoPorts member.

dwOutDatagrams
Specifies the number of datagrams transmitted.

dwNumAddrs
Specifies the number of entries in the UDP listener table.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

232 Volume 5 Routing

GetUdpStatistics, MIB_UDPROW

The MIB_UDPTABLE structure contains a table of MIB_UDPROW structures.

Members
dwNumEntries

Specifies the number of entries in the table.

table[ANY _SIZE]
Pointer to an array of MIB_UDPROW structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

GetUdpTable, MIB_UDPROW

MIBICMPINFO
The MIBICMPINFO structure contains Internet Control Message Protocol (ICMP)
statistics for a particular computer.

Members
icmplnStats

Specifies an MIBICMPSTATS structure that contains the statistics for incoming ICMP
messages.

Chapter 7 Management Information Base (MIB) 233

icmpOutStats
Specifies an MIBICMPSTATS structure that contains the statistics for outgoing ICMP
messages.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95198: Requires Windows 98.
Header: Declared in Iprtrmib.h.

MIB_ICMP, MIBICMPSTATS

MIBICMPSTATS
The MIBICMPSTATS structure contains statistics for either incoming or outgoing
Internet Control Message Protocol (ICMP) messages on a particular computer.

Members
dwMsgs

Specifies the number of messages received or sent.

dwErrors
Specifies the number of errors received or sent.

234 Volume 5 Routing

dwDestUnreachs
Specifies the number of destination-unreachable messages received or sent.
A destination-unreachable message is sent to the originating computer when a
datagram fails to reach its intended destination.

dwTimeExcds
Specifies the number of Time-To-Live (TTL) exceeded messages received or sent.
A time-to-live exceeded message is sent to the originating computer when a datagram
is discarded because the number of routers it has passed through exceeds its
time-to-live value.

dwParmProbs
Specifies the number of parameter problem messages received or sent. A parameter
problem message is sent to the originating computer when a router or host detects an
error in a datagram's IP header.

dwSrcQuenchs
Specifies the number of source quench messages received or sent. A source quench
request is sent to a computer to request that it reduce its rate of packet transmission.

dwRedirects
Specifies the number of redirect messages received or sent. A redirect message is
sent to the originating computer when a better route is discovered for a datagram sent
by that computer.

dwEchos
Specifies the number of echo requests received or sent. An echo request causes the
receiving computer to send an echo reply message back to the originating computer.

dwEchoReps
Specifies the number of echo replies received or sent. A computer sends an echo
reply in response to receiving an echo request message.

dwTimestamps
Specifies the number of time-stamp requests received or sent. A time-stamp request
causes the receiving computer to send a time-stamp reply back to the originating
computer.

dwTimestampReps
Specifies the number of time-stamp replies received or sel1t.. A computer sends a
time-stamp reply in response to receiving a time-stamp request. Routers can use
time-stamp requests and replies to measure the transmission speed of datagrams on
a network.

dwAddrMasks
Specifies the number of address mask requests received or sent. A computer sends
an address mask request to determine the number of bits in the subnet mask for its
local subnet.

dwAddrMaskReps
Specifies the number of address mask responses received or sent. A computer sends
an address mask response in response to an address mask request.

Chapter 7 Management Information Sase (MIS) 235

Remarks
Two MIBICMPSTATS structures are required to hold all the ICMP statistics for a given
computer. One MIBICMPSTATS structure contains the statistics for incoming ICMP
messages. The other contains the statistics for outgoing ICMP messages. For this
reason, the MIBICMPINFO structure contains two MIBICMPSTATS structures.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iprtrmib.h.

MIB_ICMP, MIBICMPINFO

Transport and Protocol Constants
Use the following constants with router administration and configuration functions, and
with the MIS API:

• Transport Identifiers

• Protocol Identifiers

Transport Identifiers
The following transport identifiers are also listed in MprapLh:

PID_IPX
PID_IP
PID_NSF

MIS Reference, Transport and Protocol Constants

Protocol Identifiers
The following protocol identifiers are also listed in Routprot.h.

IP Protocols
The routing protocols on the following page are associated with the IP transport.

236 Volume 5 Routing

Protocol

PROTO_IP _OTHER

PROTO_IP _LOCAL

PROTO_IP _NETMGMT

PROTO_IP _ICMP

PROTO_IP _EGP

PROTO_IP _GGP

PROTO_IP _HELLO

PROTO_IP _RIP

PROTO_IP _IS_IS

PROTO_IP _ES_IS

PROTO_IP _CISCO

PROTO_IP _BBN

PROTO_IP _OSPF

PROTO_IP _BGP

PROTO_IP _BOOTP

PROTO_IP _NT_AUTOSTATIC

Description

Protocol not listed here

Routes generated by the stack

Routes added by "route add" or through SNMP

Routes from ICMP redirects

Exterior Gateway Protocol

To be determined.

HELLO routing protocol

Routing Informaton Protocol

To be determined.

To be determined.

To be determined.

To be determined.

Open Shortest Path First routing protocol

Border Gateway Protocol

Bootstrap Protocol

Routes that were originally generated by a
routing protocol, but which are now static

Routes that were added from the routing user
interface, or by "routemon ip add"

Identical to PROTO_IP _NET _STATIC, except
these routes do not cause Dial On
Demand (DOD)

Routes with a protocol identifier of PROTO_IP _LOCAL include:

• The loopback route

• The subnet route

• All nets broadcast route for subnetted interfaces

• All "1 "s broadcast route

• Local multicast route

• Route to remote end of a PPP link

The identifier for the IP router manager is:

IPRTRMGR_PID

This identifier can be used instead of a routing protocol identifier for MIS calls with the IP
router manager. This identifier is used for MIS-II, Forwarding MIB, and some enterprise
specific information. This identifier is also listed in Iprtrmib.h.

Chapter 7 Management Information Sase (MIS) 237

IPX Protocols
The following routing protocols are associated with the IPX transport:

Protocol

IPX_PROTOCOL_RIP

IPX_PROTOCOL_SAP

IPX_PROTOCOL_NLSP

Description

Routing Information Protocol for IPX

Service Advertisement Protocol

Netware Link Services Protocol

The identifier for the IPX router manager is:

IPX_PROTOCOL_BASE

Use this identifier instead of a routing protocol identifier for MIS calls with the IPX router
manager.

239

CHAPTER 8

Packet Filtering

Packet filtering enables the developer to create and manage input and output filters for
IP packets. Each IP adapter interface can be associated with one or more filters. Filters
can include source and destination addresses, address mask and port; and protocol
identifiers.

With the exception of the PfGetlnterfaceStatistics function, all of the functions
described in this section require administrative permissions.

The following reference elements are found in the Fltdefs.h header file:

• Packet Filtering Functions

• Packet Filtering Structures

• Packet Filtering Enumerated Types

Pa,cket Filtering Functions
Use the following functions to manage IP packet filters:

PfAddFiltersTolnterface PfMakeLog
PfAddGlobalFilterTolnterface PfRebindFilters
. PfBindlriterfaceTolndex PfRemoveFifterHandles
PfBindlnterfaceTolPAddress PfRemoveFiltersFromlnterface
PfCreatelnterface PfRemoveGlobalFilterFromlnterface
PfDeletelnterface PfSetLogBuffer
PfDeleteLog PfTestPacket
PfGetlnterfaceStatistics . PfUnBindlnterface

PfAddFiltersTolnteriace
The PfAddFiltersTolnterface function adds the specified filters to the specified
interface.

240 Volume 5 Routing

Parameters
ih

Specifies a handle to the interface.

clnFilters
Specifies the number of input filter descriptions pOinted to by the pfiltln parameter.

pfiltln
Pointer to an array of filter descriptions to use as input filters.

cOutFilters
Specifies the number of output filters descriptions pointed to by the pfiltOut parameter.

pfiltOut
Pointer to an array of filter descriptions to use as output filters.

pfHandle
Pointer to a buffer that, on successful return, contains an array of filter handles. If the
caller doesn't not require the filter handles, the caller may set this parameter to NULL.

Remarks
A filter reverses the default processing rule for the interface, that is, the rule that was
specified during the call to PfCreatelnterface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

PFERROR_NO_FIL TERS_GIVEN No filter descriptions were supplied.

Other Use FormatMessage to obtain the message
string for the returned error.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use IphlpapLlib.

PfRemoveFiltersFromlnterface, PfRemoveFilterHandles

Chapter 8 Packet Filtering 241

Pf AddG lobal Fi IterTol nterface
The PfAddGlobalFilterTolnterface function adds a global filter on the specified
interface.

Parameters
plnterface

Handle to the interface.

gfFilter
Specifies the global filter to add to the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Remarks
The global filter acts across all filters on the interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

GLOBAL_FILTER, PfRemoveGlobalFilterFromlnterface

PfBindlnterfaceTolndex
The PfBindlnterfaceTolndex function associates an interface with the specified IP stack
index.

242 Volume 5 Routing

Parameters
plnterface

Specifies a handle to the interface to associate with the IP stack index.

dwlndex
Specifies the IP stack index to which to associate the interface.

pfatLinkType
Specifies the address type for the interface. This parameter would be of type
PFADDRESSTYPE.

LinklPAddress
Pointer to an array of bytes that specifies the IP address for the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_IPV6_NOT _IMPLEMENTED The IPV6 address type is not yet implemented.

Other Use FormatMessage to obtain the message
string for the returned error.

Remarks
Use the IP Helper functions to obtain a stack index.

An application should support the possibility of interface indices changing due to Plug
and Play.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

PFADDRESSTYPE, PfBindlnterfaceTolPAddress, PfUnbindlnterface

PfBindlnterfaceTolPAddress
The PfBindlnterfaceTolPAddress function associates an interface with the IP stack
index having the specified address.

Parameters
plnterface

Chapter 8 Packet Filtering 243

Specifies a handle to the interface to associate with the IP stack index.

pfatType
Specifies the address type for the interface. This parameter would be of type
PFADDRESSTYPE.

IPAddress
Pointer to an array of bytes that specifies the IP address .for the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_IPV6_NOT _IMPLEMENTED The IPV6 address type is not yet ...
implemented.

Other Use FormatMessage to obtain the message
string for the returned error.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: UselphlpapLlib.

PFADDRESSTYPE, PfB.indlnterfaceTolndex

PfCreatelnterface
The PfCreatelnterfacefunction creates a new filter interface. Use this interface to
control the adding and deleting of filters to and from adapters.

244 Volume 5 Routing

(continued)

Parameters
dwName

Specifies the interface name. A zero value specifies a new, unique interface. Any
other value is a potentially shared interface.

The bMustBeUnique parameter can turn a shared interface into a unique one.
However, using bMustBeUnique in this way can cause the function to fail.

inAction
Default action for an input packet. This member can be one of the following values.

Value

PF _ACTION_FORWARD

PF _ACTION_DROP

out Action

Meaning

Forward the packet.

Discard the packet.

Default action for an output packet. This member can be one of the following values.

Value

PF _ACTION_FORWARD

PF _ACTION_DROP

bUseLog

Meaning

Forward the packet.

Discard the packet.

Specifies whether to bind the log to this interface. If this member is TRUE, the log will
be bound to this interface.

bMustBeUnique
Specifies whether the interface is unique or shared. If this member is TRUE, this
interface is unique, that is, it cannot be shared.

pplnterface
Pointer to a pointer that, on successful return, pOints to an interface handle to use with
subsequent function calls.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Chapter 8 Packet Filtering 245

Remarks
An interface can either be unique to a process or shared. If an interface is shared, other
processes may add or remove filters.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use IphlpapLlib.

PfAddFiltersTolnterface, PfRemoveFiltersFromlnterface, PfDeletelnterface

PfDeletel nterface
The PfDeletelnteface function deletes an interface previously created using
PfCreatelnterface.

Parameters
plnterface

Specifies a interface handle obtained from a previous call to PfCreatelnterface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use IphlpapLlib,

PfCreatelnterface

246 Volume 5 Routing

PfDeleteLog
The PfDeleteLog function immediately disables the log on all interfaces with which it is
associated. The log is deleted when all interfaces associated with the log are deleted.

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use IphlpapLlib.

PfMakeLog, PfSetLogBuffer

PfGetl nterfaceStatistics
The PfGetlnterfaceStatistics function retrieves statistics for the specified interface and,

. optionally, statistics for filters associated with the interface.

Parameters
plnterface

Handle to the interface.

Value

Chapter 8 Packet Filtering 247

ppfStats
Pointer to a buffer that, on successful return contains the statistics for the interface.

If the caller requires only the statistics for the interface, this buffer should be of size
equal to a PF _INTERFACE_STATS structure. If the caller supplies a buffer that is
smaller than this size, PfGetlnterfaceStatistics returns
PFERROR_BUFFER_ TOO_SMALL, and the pdwBufferSize parameter contains a
size equal to a PF _INTERFACE_STATS structure.

If the caller requires the statistics for both the interface and the associated filters, the
buffer should of a size greater than PF _INTERFACE_STATS. If the buffer is still not
large enough PfGetlnterfaceStatistics returns ERROR_INSUFFICIENT _BUFFER,
and the pdwBufferSize parameter points to DWORD variable containing a buffer size
that will contain both the interface and filter statistics.

pdwBufferSize
Pointer to a DWORD variable that contains the size of the buffer pointed to by the
ppfStats parameter.

fResetCounters
Specifies whether the statistics counters for the interface should be reset. If this
parameter is TRUE, the statistics counters are reset.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Meaning

This error is specific to PfGetlnterfaceStatistics and
means that the supplied user buffer is too small for the
filters. The correct size is returned as the interface
statistics that contain the filter counts.

PFERROR_BUFFER_ TOO_SMALL This error is specific to PfGetlnterfaceStatistics and
means the user buffer is too small ever for the interface

Other

statistics. The returned size is the size of the interface
statistics, but does not include space for filters. If the
function is called using this size, the return value should
be ERROR_INSUFFICIENT_BUFFER.

Use FormatMessage to obtain the message string for the
returned error.

248 Volume 5 Routing

Remarks
The caller may call PfGetlnterfaceStatistics twice. Initially the call is made to obtain the
correct buffer size; the call is made a second time to retrieve the statistics. If the caller
calls PfGetlnterfaceStatistics twice for a shared interface, the second call may fail with
ERROR_INSUFFICIENT _BUFFER. This error can occur because the other sharers may
add filters to the interface in the interval between the two calls. This type of error should
not occur for a UNIQUE interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use IphlpapLlib.

PfMakeLog
The PfMakeLog function creates a log to use with an interface or set of interfaces.

Parameters
hEvent

Handle to a Win32 event object. The caller can use this event object to obtain
notification when a specified number of bytes have been used in the log's buffer, or
when a certain number of entries have been created in the log. For more information,
see PfSetLogBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Remarks
Only one log exists. The log can be used with multiple interfaces.

The interface log must be created prior to the interface or interfaces with which it will be
used. It is not possible to associate a log with an already existing interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

PfDeleteLog, PfSetLogBuffer

PfRebindFilters

Chapter 8 Packet Filtering 249

The PfRebindFilters function rebinds the filters on the specified interface.

Parameters
plnteriace

Handle to the interface.

pLateBindlnfo
Pointer to the late-binding information for the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Remarks
The fLateBound member of PF _FILTER_DESCRIPTOR for each filter determines how
the information pointed to by the pLateBindlnfo parameter affects the filter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

250 Volume 5 Routing

PfRemoveFi IterHandles
The PfRemoveFilterHandles function removes the filter associated with the specified
handles.

Parameters
plnterface

Specifies a handle to the interface.

cFilters
Specifies the number of filter handles pointed to by the pvHandles parameter. Obtain
these handles from the PfAddFiltersTolnterface function.

pvHandles
Pointer to an array of filter handles that specify the filters to remove.

Return Values
If the function succeeds, the return value is NO-,-ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Windows NT/2000:"Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

PfAddFiltersTolnterface, PfRemoveFiltersFromlnterface

PfRemoveFiltersFromlnterface
The PfRemoveFiltersFromlnterface function removes the specified filters from the
interface.

Parameters
ih

Specifies a handle to the interface.

clnFilters

Chapter 8 Packet Filtering 251

Specifies the number of input filter descriptions pointed to by the pfiltln parameter.

pfiltln
Pointer to an array of filter descriptions to use as input filters.

cOutFilters
Specifies the number of output filters descriptions pointed to by the pfiltOut parameter.

pfiltOut
Pointer to an array of filter descriptions to use as output filters.

Return Values
If the function succeeds, the return value is NO_ERROR.

Value

PFERROR_NO_FILTERS_GIVEN

Other

Remarks

Meaning

No filter descriptions were supplied

Use FormatMessage to obtain the message
string for the returned error.

The filter description passed in through the pfiltln and pfiltOut parameters must be an
exact match to a filter that was added previously.

No error is returned if a matching filter is not found.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

PfAddFiltersTolnterface

252 Volume 5 Routing·

PfRemoveGlobal FilterFromlnterface
The PfRemoveGlobalFilterFromlnterface function removes the specified global filter
from the interface.

Parameters
plnterface

Handle to the interface.

gfFilter
Specifies the global filter to remove from the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

GLOBAL_FILTER, PfAddGlobalFilterTolnterface

PfSetLogBuffer
The PfSetLogBuffer function exchanges the log current buffer tor a new one.

Parameters
pbBuffer

Chapter 8 Packet Filtering 253

Pointer to the new log buffer. This buffer must be quad-word aligned.

dwSize
Specifies the size, in bytes, of the new buffer.

dwThreshold
Specifies the number of bytes used before signaling the event object associated with
the log.

dwEntries
Specifies the number of entries in the log that will cause the event object to be
signaled.

pdwLoggedEntries
Pointer to a DWORD variable that, on successful return, contains the number of
entries in the old buffer.

pdwLostEntries
Pointer to a DWORD variable that, on successful return, contains the number of
entries that could not be put into the old buffer.

pdwSizeUsed
Pointer to a DWORD variable that, on successful return, contains the number of bytes
used in the old buffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use IphlpapLlib.

PfMakeLog, PfDeleteLog

PfTestPacket
The PfTestPacket function tests the specified packet and returns the action that would
be performed given the specified interface.

254 Volume 5 Routing

Parameters
pIn Interface

Handle to an interface to use as an input interface for the packet. This parameter is
optional and may be NULL.

pOutlnterface
Handle to an interface to use an output interface for the packet. This parameter is
optional and may be NULL.

cBytes
pbPacket

Pointer to a network packet to test with the specified interface (or interfaces).

ppAction
Pointer to a variable of type PFFORWARD_ACTION. On successful return, this
variable contains the action that would have been taken given one or more specified
interfaces and the packet.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Remarks
Specifying only an input interface simulates a packet destined for the local computer.
Specifying only an output interface simulates sending a packet from the local computer.
Specifying both an input and an output interface simulates routing a network packet.

If the caller does not specify any interfaces, the PfTestPacket returns
PF _ACTION_FORWARD in the ppAction parameter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

PFFORWARD_ACTION

Chapter 8 Packet Filtering 255

PfU n Bind Interface
The PfUnBindlnterface function unbinds the interface from the stack.

Parameters
plnterface

Specifies the interface to unbind from the stack.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the returned
error.

Remarks
Unbinding the interface does not destroy the interface or any of its filters.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.
Library: Use Iphlpapi.lib.

PfBindlnterfaceTolndex

Packet Filtering Structures
Use the following structures when managing IP packet filters:

PF _FILTER_DESCRIPTOR
PF _FILTER_STATS
PF _INTERFACE_STATS
PF _LATEBIND_INFO
PFLOGFRAME

256 Volume 5 Routing

The PF _FILTER_DESCRIPTOR structure contains the information that defines a packet
filter.

Members
dwFilterFlags

Currently only a single flag is supported for this member:

FD_FLAGS_NOSYN

dwRule
Specifies the rule for the filter.

pfatType
The address type for the filter. This member is of type PFADDRESSTYPE.

SrcAddr
The source address of the packets to filter.

SrcMask
The subnet mask for the source address.

DstAddr
The destination address of the packets to filter.

DstMask
The subnet mask for the destination address.

dwProtocol
Specifies the protocols to filter. This member can be one of the following values.

Chapter 8 Packet Filtering 257

Value Meaning

All protocols FIL TER_PROTO_ANY

FIL TER_PROTO_ICMP

FIL TER_PROTO_ TCP

FIL TER_PROTO_UDP

Internet Control Message Protocol

Transmission Control Protocol

User Datagram Protocol

fLateBound
Specifies the address information that should be updated when the filter is rebound.
This member can be any combination of the following flags:

LB_SRC_ADDR_USE_SRCADDR_FLAG
LB_SRC_ADDR_USE_DSTADDR_FLAG
LB_DST_ADDR_USE_SRCADDR_FLAG
LB_DST_ADDR_USE_DSTADDR_FLAG

wSrcPort
Specifies the source port of the packets to filter.

wDstPort
Specifies the destination port of the packets to filter.

wSrcPortHighRange
Specifies the high range of the source port of packets to filter.

wDstPortHighRange
Specifies the high range of the destination port of packets to filter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PF _LATEBIND_INFO, PfAddFiltersTolnterface, PfRebindFilters

The PF _FIL TER_STATS structure contains a description of a particular filter and the
. number of packets filtered by the filter.

258 Volume 5 Routing

Members
dwNumPacketsFiltered

Specifies the number of packets filtered by the filter specified by the info member.

info
A PF _FILTER_DESCRIPTOR that describes a particular filter.

Remarks
The PF _INTERFACE_STATS structure contains an array of PF _FILTER_STATS
structures. Each element of the PF _FILTER_STATS array corresponds to a filter
associated with the PF _INTERFACE_STATS interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PF _FILTER_DESCRIPTOR, PF _INTERFACE_STATS, PfGetlnterfaceStatistics

The PF _INTERFACE_STATS structure contains statistics for an interface.

Members
pvDriverContext

This member is not currently used.

dwFlags
No flags are currently defined for this member.

dwlnDrops

Chapter 8 Packet Filtering 259

Specifies the number of incoming packets that were dropped.

dwOutDrops
Specifies the number of outgoing packets that were dropped.

ealnAction
Specifies the default incoming action.

eaOutAction
Specifies the default outgoing action.

dwNumlnFilters
Specifies the number of filters for incoming packets.

dwNumOutFilters
Specifies the number of filters for outgoing packets.

dwFrag
Specifies the state of global fragment checking. See GLOBAL_FIL TER for more
information.

dwSpoof
Specifies the state of global checking of destination addresses. See
GLOBAL_FILTER for more information.

dw Reserved 1
This member is reserved and should be zero.

dwReserved2
This member is reserved and should be zero.

IiSYN
Specifies the number of SYN packets discarded.

IiTotal Logged
Specifies the number of packets logged.

dwLostLogEntries
Specifies the number of logged packets lost because of buffering problems.

Filterlnfo[1]
Specifies an array of PF _FILTER_STATS structures. The array contains an element
for each filter associated with the interface. Each element contains a description of the
filter and the number of packets filtered by that filter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

260 Volume 5 Routing

GLOBAL_FILTER, PfGetlnterfaceStatistics, PF _FIL TER_STATS,
PFFORWARD_ACTION

The PF _LATEBIND_INFO structure contains address information for late-binding
interface.

Members
SrcAddr

Specifies a new source address.

DstAddr
Specifies a new destination address.

Mask
Subnet mask.

Remarks
Late-binding information is typically used with Wide Area Network (WAN) interfaces. The
address information for such interfaces usually changes at the time they establish a
connection.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PF _FILTER_DESCRIPTOR, PfRebindFilters

PFLOGFRAME
The PFLOGFRAME structure stores the information for a log entry.

Members
Timestamp
pfeTypeOfFrame

Chapter 8 Packet Filtering 261

Variable of type PFFRAMETYPE that specifies the reason the packet was filtered.

dwTotalSizeUsed
The total size, in bytes, of this entry. Use this value to find the next log entry in a
sequence of entries.

dwFilterRule
Specifies the rule for the filter.

wSizeOfAdditionalData
Specifies additional data for the rule.

wSizeOflpHeader
Size of the IP header for the packet.

dwlnterfaceName
The name of the interface.

dwlPlndex
The index of the interface on which the packet was sent or received.

bPacketData[1]

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PFFRAMETYPE, PfMakeLog, PfSetLogBuffer, PfDeleteLog

262 Volume 5 Routing

Packet Filtering Enumerated Types
Use the following enumerated types when managing IP packet filters:

GLOBAL_FILTER
PFADDRESSTYPE
PFFORWARD_ACTION
PFFRAMETYPE

GLOBAL_FIL TER
The GLOBAL_FILTER type enumerates the kinds of global filters that can be applied to
an interface.

Values
GF _FRAGMENTS

Causes a consistency check of packet fragments.

GF _STRONGHOST
Causes a check of the destination address of incoming packets.

GF _FRAGCACHE
Causes a check of the fragments from the cache.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PF _INTERFACE_STATS, PfAddGlobalFilterTolnterface,
PfRemoveGlobalFilterFromlnterface

PFADDRESSTVPE
The PFADDRESSTYPE type enumerates the address formats supported by filter
interface.

Values
PF_IPV4

The addresses format used with Internet Protocol v4.

PF_IPV6
The address format used with Internet Protocol v6.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

Chapter 8 Packet Filtering 263

PfBindlnterfaceTolndex, PfBindlnterfaceTolPAddress

PFFORWARD _ACTION
The PFFORWARD_ACTION type enumerates the possible ways in which a filter
interface can process a network packet

Values
PF _ACTION_FORWARD

The interface forwards the network packet.

PF _ACTION_DROP
The interface discards the network packet.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PF _INTERFACE~STATS, PfTestPacket

264 Volume 5 Routing

PFFRAMETYPE
The PFFRAMETYPE type enumerates the reasons why a packet was filtered.

Values
PFFT _FILTER

The packet violated a filter rule.

PFFT_FRAG
A bad fragment was detected.

PFFT_SPOOF
A check of the destination address resulted in a "strong host" failure.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Fltdefs.h.

PFLOGFRAME, GLOBAL_FILTER

265

CHAPTER 9

Routing Protocol Interface

Routing Protocol Interface Overview
The following sections describe the integration of third-party routing protocols into the
Routing and Remote Access Service (RRAS). RRAS is a feature of Microsoft®
WindowS® 2000 that acts as a multiprotocol router. RRAS defines the interface between
the router manager and the Dynamic-Link Library (DLL) for routing protocols.

Use this interface to implement routing protocols, for example, IGRP, NLSP, and BGP,
as user-mode DLLs that work with RRAS.

Adapters
An adapter represents the physical pOint of attachment to a network segment. A bound
LAN card is one example of an adapter. Similarly, a machine with two modems, each
capable of connecting to a remote network, will have two adapters, one to represent
each modem. .

Interfaces
An interface represents a network that can be reached over a LAN or WAN adapter.
Each interface has a unique identifier on the router. Interfaces that are active have an
adapter that is providing connectivity to the network they represent. Interfaces that are
inactive do not have an adapter providing connectivity.

Routing a packet to a network represented by an interface will cause the router to
allocate an adapter for that interface, and establish a WAN connection to the remote
network. Allocating an adapter to an interface is referred to as "binding."

Interfaces are manageable objects. Each interface appears as a row in the Interface
Table of the appropriate SNMP MIB.

Static and Autostatic Routes
Typically, routes to remote networks are obtained dynamically through routing protocols.
However, the administrator can also "seed" the routing table by providing routes
manually. These routes are referred to as static. A static route is associated with an
interface that represents the remote network. Unlike dynamic routes, static routes are
retained even if the router is restarted or the interface is disabled.

266 Volume 5 Routing

An autostatic route is obtained through a routing protocol, but once obtained behaves
like a static route. The process for obtaining auto static routes is as follows: The IP or IPX
router manager issues a request that a routing protocol update the routing information
for a specific interface. The results of the update are then converted into static routes.
Note that only certain routing protocols support requests for autostatic route updates.

Routing Protocol Interface Reference
This section describes the functions and structures that are used to implement a routing
protocol as a user-mode DLL.

Routing Protocol Interface Functions
Implement the following functions for a routing protocol DLL:

Addlnterface MibGetFirst
ConnectClient MibGetNext
Deletelnterface Mibset
DisconnectClient MibsetTraplnfo
DoUpdateRoutes QueryPower
Get Event Message RegisterProtocol
GetGlobalinfo setGlobalinfo
Getlnterfacelnfo setlnterfacelnfo
GetMfestatus Set Power
GetNeighbors startComplete
Interfacestatus startProtocol
MibCreate Stop Protocol
MibDelete Unbind Interface
MibGet

If the routing protocol supports service handling, implement the following function in
addition to those listed preceding:

DoUpdateservices

Addl nterface
The Addlnterface function adds an interface to be managed by the routing protocol. The
protocol should consider the interface to be in a disabled state. The router manager
enables the interface by calling Interfacestatus with the
RIS_INTERFACE_ENABLED flag.

Parameters
InterfaceName

Chapter 9 Routing Protocol Interface 267

[in] Pointer to a Unicode string. The string contains a name that uniquely identifies the
interface in the set of interfaces configured on the router.

/nterface/ndex
[in] Identifies the interface in the set of interfaces configured on the router.

·/nterface Type
[in] The type of the interface.

Value

PERMANENT

DEMAND_DIAL

LOCAL_WORKSTATION_DIAL

REMOTE_WORKSTATION_DIAL

Media Type
[in] Specifies the media type.

Access Type
[in] Specifies the type of network access.

Connection Type

Description

Permanent connectivity (e,g., LAN, Frame
Relay).

Demand dial connectivity (analog, ISDN,
PPTP, switched FR) ..

Local workstation connectivity only.

Remote workstation connectivity only.

[in1 Specifies the type of network connection.

Interfacelnfo
[inJPointer to a boffer that contains protocol-defined configuration information
associated with the interface. This information is private to the routing protocol.

Structure VerSion
[in] Specifies the version of the information structures pOinted to by the /nterface/nfo
parameter. In some cases, this is equal to the version ofthe routing protocol.

268 Volume 5 Routing

StructureSize
[in] Specifies the size of each of the information structures pointed to by the
Interfacelnfo parameter. Since some information structures contain variable length
members, the routing protocol isn't necessarily able to determine the size of the
information from the version.

Structure Count
[in] Specifies a count of the number of information structures pointed to by the
Interfacelnfo parameter. This parameter is always one.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALID_PARAMETER

The attempt to add the interface failed.

The Interfacelndex parameter is invalid (for
example, an interface with that index already
exists), or one of the parameters pOinted to by
Interfacelnfo is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
Deletelnterface

ConnectClient
The router manager calls the ConnectClient function when a client connects to an
interface on which the routing protocol isrunning.

Parameters
Interfacelndex

[in] Specifies the index of the interface on which the client is connecting.

Chapter 9 Routing Protocol Interface 269

ClientAddress
[in] Pointer to the address (e.g. the IP address) of the connecting client.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Description

At least one of the following is true:

The Interfacelndex parameter is invalid, for
example, no interface exists with that index.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

DisconnectClient

Deletelnterface
The Deletelnterface function removes an interface from the set managed by the routing
protocol.

Parameters
Interfacelndex

Identifies the interface in the set of interfaces configured on the router.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALID _PARAMETER

Description

The attempt to delete the interface failed.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index).

270 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
Addlnterface

DisconnectClient
The router manager calls the DisconnectClient function when a client disconnects from
an interface on which the routing protocol is running.

Parameters
Interfacelndex

[in] Specifies the index of the interface on which the client is connecting.

ClientAddress
[in] Pointer to the address (e.g. the IP address) of the connecting client.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Description

At least one of the following is true:

The Interfacelndex parameter is invalid, for
example, no interface exists with that index.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

ConnectClient

Chapter 9 Routing Protocol Interface 271

DoUpdateRoutes
The DoUpdateRoutes function requests the routing protocol to perform a routing
information update over the specified interface to obtain static route information.
(This process is called an autostatic route update.)

Parameters
Interfacelndex

Identifies the interface in the set of interfaces configured on the router.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALID_PARAMETER

RemarkS

Description

The update operation could not be performed.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index).

If the function returns NO_ERROR, the update operation started successfully on the
interface. Check the routing protocol event queue for a completion event (see
GetEventMessage).

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
DoUpdateServices, GetEventMessage

DoUpdateServices
The DoUpdateServices function requests the routing protocol to perform a service
information update over the interface to obtain static service information. This process is
called an autostatic service update.

272 Volume 5 Routing

Parameters
Interfacelndex

Identifies the interface in the set of interfaces configured on the router.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALlD_PARAMETER

Remarks

Description

The update operation could not be performed.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index).

If the function returns NO_ERROR, the update operation started successfully on the
interface. Check the routing protocol event queue for a completion event
(see GetEventMessage).

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
DoUpdateRoutes, GetEventMessage

Get Event Message
The GetEventMessage function gets an entry from the routing protocol's message
queue. The routing protocol uses the queue to inform the router manager of
asynchronous events.

Parameters
Event

Chapter 9 Routing Protocollnteriace 273

Pointer to an event. Information about this event is reported in the associated
message. Note that this is not a Win32 event object.
(The ROUTING_PROTOCOL_EVENTS type is declared in Routprot.h.)

Event values

Value

ROUTER_STOPPED

SAVE_INTERFACE_CONFIG_INFO

UPDATE_COMPLETE

Result

Description

The router protocol shut down successfully.
The message is empty for this event.
(See StopProtoco~

The routing protocol reports that its global
configuration information has been
changed by an external agent, that is,
through means other than SetGloballnfo.
The routing protocol requests that the
router manager retrieve and permanently
store this information. The message is
empty for this event.
The routing protocol reports that the
configuration information associated with
one of its interfaces has been changed by
an external agent, that is, through means
other than Setlnterfacelnfo. The routing
protocol requests that the router manager
retrieve and permanently store this
information. The message contains the ID
of the interface.

The routing protocol has completed an
autostatic update request from the router
manager. The router manager can proceed
with converting received routing information
to static. The message contains the index
of the interface on which the update was
performed, the type of the information
received (routes or services), and the result
field, which indicates whether the update
succeeded. See DoUpdateRoutes and
DoUpdateServices.

Pointer to a MESSAGE union. The contents of the message are specific to the
reported event.

This parameter is optional; the caller may specify NULL for this parameter.

274 Volume 5 Routing

Return Values
If the entry is retrieved successfully, the return value is NO_ERROR.

If the routing protocol's message queue does not contain any entries, the return value is
ERROR_NO_MORE_ITEMS.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
DoUpdateRoutes, DoUpdateServices, MESSAGE, SetGloballnfo, Setlnterfacelnfo,
Stop Protocol .

GetGlobalinfo
The GetGloballnfo function retrieves global (as opposed to interface-specific)
configuration information kept by the routing protocol.

Parameters
G/oballnfo

Pointer to a buffer to receive the protocol-defined global configuration information.
The format of this information is specific to the routing protocol.

G/oballnfoSize
Pointer to a DWORD variable.

On input this variable contains the size, in bytes, of the buffer pointed to by the
Globallnfo parameter.

On output this variable contains the size, in bytes, of the data placed in the output
buffer. If the initial size was not large enough, the variable contains the size required
to hold all of the output data.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

Chapter 9 Routing Protocol Interface 275

Description

The routing protocol could not retrieve the
global information.

The size of the output buffer provided is not
large enough to hold the requested information.
The required size is returned in the DWORD
variable pointed to by OutputDataSize.

The G/oballnfoSize parameter is NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
Setlnterfacelnfo, SetGlobalinfo

Getl nterfacel nfo
The Getlnterfacelnfo function gets the configuration information kept by the routing
protocol for a specific interface.

Parameters
Interface Index

[in] Identifies the interface inthe set of interfaces configured on the router.

Interfacelnfo
[in] Pointer to a buffer that receives the protocol-defined configuration information
associated with the interface. This information is private to the routing protocol.

276 Volume 5 Routing

BufferSize
[in, out] Pointer to a DWORD variable.

On input: This variable contains the size, in bytes, of the buffer provided to receive the
configuration information.

On output: This variable contains the size, in bytes, of the data placed in the buffer. If
the initial size was not large enough, this variable contains the size required to hold all
of the data.

Structure Version
[in] Specifies the version of the information structures pOinted to by the Interfacelnfo
parameter. In some cases, this is equal to the version of the routing protocol.

StructureSize
[in] Specifies the size of each of the information structures pointed to by the
Interfacelnfo parameter. Since some information structures contain variable length
members, the routing protocol isn't necessarily able to determine the size of the
information from the version.

Structure Count
[in] Specifies a count of the number of information structures pointed to by the
Interfacelnfo parameter. This parameter is always one.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALID_PARAMETER

The attempt to retrieve the information failed.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index),
or the InterfacelnfoSize parameter is NULL.

The size of the output buffer provided is not
large enough to hold the requested
information. The required size is returned in
the DWORD variable pOinted to by
InterfacelnfoSize.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

Chapter 9 Routing Protocol Interface 277

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
Setlnterfacelnfo

GetMfeStatus
The router manager calls the GetMfeStatus function to obtain the status of the multicast
forwarding entry (MFE) for the specified interface, group address, and source address.

Parameters
Interfacelndex

[in] Specifies the index of the interface for this MFE.

GroupAddress
[in] Specifies the mUlticast group address for this MFE.

SourceAddress
[in] Specifies the multicast source address for this MFE.

StatusCode
[out] Pointer to a BYTE variable. The routing protocol should fill in this variable with
one of the following values. The routing protocol should select the highest-valued
code that applies.

Value

MFE_NO_ERROR

MFE_REACHED_CORE

Meaning

None of the following values apply.

The local computer is this router is an
rendezvous point (RP)/core router for the
multicast group.

This value should be set only by the owner of
the outgoing interface. The value indicates
that no downstream receivers exist on the
outgoing interface.

This value should be set only by the owner of
the incoming interface. The value indicates
that a prune message was sent upstream.

This value should be set only by the owner of
the incoming interface. The value indicates
that the upstream neighbor doesn't support
mtrace.

278 Volume 5 Routing

Return Values
If the function succeeds, the return value should be NO_ERROR.

If the function fails, the return value shoudl be one of the following error codes.

Value Description

ERROR_INVALlD_PARAMETER

Remarks

The routing protocol could not complete the
request.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index), or
the group or source address is invalid.

Only multicast routing protocols need implement this function. Non-multicast routing
protocols should pass NULL as the pOinter value for this function in
MPR_ROUTING_CHARACTERISTICS

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

GetNeighbors

GetNeighbors
The router manager calls the GetNeighbors function to obtain the querier for the
network attached through the specified interface.

Parameters
Interfacelndex

[in] Specifies the index of the interface on which the routing protocol should provide
the querier.

Chapter 9 Routing Protocol Interface 279

NeighborList
[in] Pointer to an array DWORD variables. The routing protocol should fill in this array
with the address of the querier.

If the local computer is the querier for the network attached through the specified
interface, the routing protocol need not fill in this variable. Instead, the routing protocol
should set the value pointed to by NeighborListSize to zero. Also, the routing protocol
should add MRINFO_QUERIER_FLAG to the flags returned in the InterfaceFlags
parameter.

NeighborListSize
[in, out] Pointer to a DWORD variable. The routing protocol should fill in this variable
with the length (in bytes) of the address returned in the NeighborList parameter.

Interface Flags
[out] Specifies one or more of the following flags. The flags describe the relationship
of the local computer to other computers on the network attached through the
specified interface.

MRINFO_ TUNNEL_FLAG
MRINFO_PIM_FLAG
MRINFO_DOWN_FLAG
MRINFO_DISABLED_FLAG
MRINFO_QUERIER_FLAG
MRINFO_LEAF _FLAG

Return Values
If the function succeeds, the return value is NO-,-ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_INSUFFICIENT _BUFFER

ERROR_INVALlD_PARAMETER

Remarks

The routing protocol could not complete the
request.

The size of the buffer painted to by
NeighborList is not large enough to hold the
address. The required size is returned in the
DWORD variable pointed to by the
NeigbhorListSize parameter.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index).

Only multicast routing protocols need implement this function. Non-multicast routing
protocols should pass NULL as the pointer value for this function in
MPR_ROUTING_CHARACTERISTICS

280 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

GetMfeStatus

I nterfaceStatus
Router manager calls the InterfaceStatus function to change the status of an interface.

Parameters
Interfacelndex

[in] Specifies the index of the interface to change.

InterfaceActive
[in] Specifies whether the interface is active.

Sta tus Type
[in] Specifies the new interface status. This parameter is one of the following values:

RIS_INTERFACE_ADDRESS_CHANGE
RIS_INTERFACE_ENABLED
RIS_INTERFACE_DISABLED
RIS_INTERFACE_MEDIA_PRESENT
RIS_INTERFACE_MEDIA_ABSENT

Statuslnfo
[in] Pointer to a structure that contains information appropriate to the type of interface
status type. For example, if the StatusType parameter specifies an address change,
the Statuslnfo parameter will point to a structure that contains the new address
information, e.g. IP _ADAPTER_BINDING_INFO or IPX_ADAPTER_BINDlNG_INFO.
This parameter may be NULL.

Return Values
If the function succeeds, the return value should be NO_ERROR.

If the function fails, the return value should be one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALID_PARAMETER

Chapter 9 Routing Protocol Interface 281

Description

Unspecified failure.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index).

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Addlnterface, Deletelnterface

MibCreate
The MibCreate function passes an SNMP MIS-style Create Request to the routing
protocol.

Parameters
InputDataSize

Specifies the size of the data for the Create Request.

InputData
Pointer to a buffer that contains the data for the Create Request.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALID_PARAMETER

Description

The routing protocol could not complete the
request.

Specifies the size or content of the data is
inappropriate for the request.

282 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions, MibDelete

MibDelete
The MibDelete function passes an SNMP MIB-style Delete Request to the routing
protocol.

Parameters
InputDataSize

Specifies the size of the data for the Delete Request.

InputData
Pointer to a buffer that contains the data for the Delete Request.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

The routing protocol could not complete the
request.

The size or content of the data is inappropriate
for the request.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions, MibCreate

Chapter 9 Routing Protocol Interface 283

MibGet
The MibGet function passes an SNMP MIB-style Get Request to the routing
protocol DLL.

Parameters
InputDataSize

Specifies the size of the data for the Get Request.

InputData
Pointer to a buffer that contains the data for the Get Request.

OutputDataSize
Pointer to a ULONG variable:

On input: This variable contains the size of the output buffer.

On output: This variable contains the size of the data placed in the output buffer. If the
initial size was not large enough, the variable contains the buffer size required to hold
all of the output data.

OutputData
Pointer to a buffer to receive the data from the MIB entry.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

The routing protocol could not complete the
request.

The size or content of the data is inappropriate
for the request.

The size of the output buffer provided is not
large enough to hold the requested information.
The required size is returned in the ULONG
variable painted to by the OutputDataSize
parameter.

284 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
MibGetFirst, MibGetNext, MibSet

MibGetFirst
The MibGetFi.rst function passes a SNMP MIS-style Get First Request to the routing
protocol.

Parameters
InputDataSize

Specifies the size of the data for the Get First Request.

InputData
Pointer to the data to be passed with the Get First Request.

OutputDataSize
Pointer to a ULONG variable:

On input: This variable contains the size of the output buffer.

On output: This variable contains the size of the data placed in the output buffer. If the
initial size was not large enough, the variable contains the buffer size required to hold
all of the output data.

OutputData
Pointer to a buffer to receive the data from the MIS entry.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Chapter 9 Routing Protocol Interface 285

Description

The routing protocol could not complete the
request.

The size or content of the data is inappropriate
for the request.

The size of the output buffer provided is not
large enough to hold the requested information.
The required size is returned in the ULONG
variable painted to by the OutputDataSize
parameter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions, MibGet,
MibGetNext, MibSet

MibGetNext
The MibGetNext function passes a SNMP MIS-style Get Next Request to the routing
protocol.

Parameters
InputDataSize

Spec'fies the size of the data for the Get Next Request.

InputData
Pointer to the data for the Get Next Request.

OutputDataSize
Pointer to a ULONG variable:

On input: This variable that contains the size of the output buffer.

286 Volume 5 Routing

On output: This variable contains the size of data placed in the output buffer. If the
initial size was not large enough, the variable contains the buffer size required to hold
all of the output data.

OutputData
Pointer to a buffer to receive the data frorn the MIB entry.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

The routing protocol could not complete the
request.

The size or content of the data is inappropriate
for the request.

The size of the output buffer provided is not
large enough to hold the requested information.
The required size is returned in the ULONG
variable pOinted to by the OutputDataSize
parameter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions, MibGet,
MibGetFirst, MibSet

MibGetTraplnfo
The MibEntryGetTraplnfo function queries the module that set a trap event for more
information about the trap.

Parameters
InputDataSize

Chapter 9 Routing Protocol Interface 287

[in] Specifies a ULONG variable that contains the size in bytes of the data pOinted to
by InputData.

InputData
[in] Pointer to the input data.

OutputDataSize
[out] Pointer to a ULONG variable that contains the size in bytes of the data pointed to
by *OutputData.

OutputData
[out] Specifies on successful return, the address of a pOinter to the output data.

Return Values
If the functions succeeds, the return value is NO_ERROR.

If the function fails, the return value is one. of the following error codes.

Value Description

Windows NT/2000: Requires Windowl:r2000.
Header: Declared in Routprot.h,

MibSet

The caller does not have sufficient
privileges.

There are insufficient resqurces to
complete the operation.

The MibSet function passes a SNMP MIB-style Set Request to the routing protocol.

Parameters
InputDataSize

Specifies the size of tile data for the Set Request.

288 Volume 5 Routing

InputData
Pointer toa buffer that contains the data for the Set Request.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_INVALlD_PARAMETER

The routing protocol could not complete the
. request.

The size or content of the data is inappropriate
for the request.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions, MibGet,
MibGetFirst, MibGetNext

MibSetTraplnfo
The MibSetTraplnfo function passes in a handle to an event which is signaled
whenever a TRAP needs to be issued.

Parameters
Event

[in] Handle to an event that is signaled when a TRAP needs to be issued.

InputDataSize
[in] Specifies a ULONG variable that contains the size in bytes of the data pointed to
by InputData

Chapter 9 Routing Protocol Interface 289

InputData
[in] Pointer to the input data.

OutputDataSize
[out] Pointer to a ULONG variable that contains the size in bytes of the data pOinted to
by * OutputData.

OutputData
[out] Specifies on successful return, the address of a pointer to the output data.

Return Values
If the functions succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

The caller does not have sufficient
privileges.

There are insufficient resources to complete
the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

MibGetTraplnfo

QueryPower
The QueryPower function is reserved for future use. It is not currently called by the
router manager. Routing protocols should pass NULL as the pointer value for this
function in MPR_ROUTING_CHARACTERISTICS.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

290 Volume 5 Routing

SetPower

RegisterProtocol
The RegisterProtocol function registers the routing protocol with the router manager. It
also informs the router manager of the functionality that the routing protocol supports.

Parameters
pRoutingChar

Pointer to an MPR_ROUTING_CHARACTERISTICS structure. See the reference
page for this structure for more information on how to use it with the
RegisterProtocol function.

pServiceChar
Pointer to an MPR_SERVICE_CHARACTERISTICS structure. See the reference
page for this structure for more information on how to use it with the
RegisterProtocol function.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_NOT _SUPPORTED.

Remarks
All routing protocol DLLs must fill in values for the
MPR_ROUTING_CHARACTERISTICS structure.

Routing protocol DLLs that provide services must fill in values for the
MPR_SERVICE_CHARACTERISTICS structure. If a routing protocol DLL does not
provide services, it should fill in zero for the fSupportedFunctionality member of this
structure, but need not fill in values for the other members.

Routing protocols are implemented in user-mode DLLs. A single DLL may implement
multiple routing protocols. Therefore, router manager may call RegisterProtocol
multiple times, once for each routing protocol implemented in the DLL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Chapter 9 Routing Protocol Interface 291

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
MPR_ROUTING_CHARACTERISTICS, MPR_SERVICE_CHARACTERISTICS

SetGlobalinfo
The SetGlobalinfo function sets the global (as opposed to interface-specific)
configuration information kept by the routing protocol. The format of this information is
specific to the routing protocol.

Parameters
G/oballnfo

Pointer to a buffer containing the protocol-defined global configuration information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

The routing protocol could not set the
configuration information.

The G/oballnfo parameter is NULL, or one of
the parameters in the configuration information
is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
Getlnterfacelnfo, GetGlobalinfo

292 Volume 5 Routing

Setl nterfacel nfo
The Setlnterfacelnfo function sets the configuration of a specific interface managed by
the routing protocol.

Parameters
Interfacelndex

[in] Identifies the interface in the set of interfaces configured on the router.

Interfacelnfo
[in] Pointer to a buffer that holds the protocol-defined configuration information
associated with the interface. This information is private to the routing protocol.

Structure Version
[in] Specifies the version of the information structures pointed to by the Interfacelnfo
parameter. In some cases, this is equal to the version of the routing protocol.

StructureSize
[in] Specifies the size of each of the information structures pointed to by the
Interfacelnfo parameter. Since some information structures contain variable length
members, the routing protocol isn't necessarily able to determine the size of the
information from the version.

Structure Count
[in] Specifies a count of the number of information structures pointed to by the
Interfacelnfo parameter. This parameter is always one.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Description

The attempt to set the interface configuration
failed.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index),
the Interfacelnfo parameter is NULL, or one of
the parameters in the configuration information
is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Chapter 9 Routing Protocol Interface 293

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
Getlnterfacelnfo

SetPower
The SetPower function is reserved for future use. It is not currently called by the router
manager. Routing protocols should pass NULL as the pointer value for this function in
MPR_ROUTING_CHARACTERISTICS.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

QueryPower

StartComplete
Router Manager calls the StartComplete function to inform the routing protocol that
initialization is complete and all interfaces have been added. The routing protocol should
wait for this call before starting any protocol-specific behavior.

Parameters
This function takes no parameters.

Return Values
This function should return NO_ERROR.

294 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

StartProtocol

StartProtocol
The StartProtocol function initializes the routing protocol's functionality. The router
manager uses this function to pass the routing protocol global configuration parameters
and a set of API entry pOints. The protocol uses these entry pOints to call into the router
manager.

Parameters
NotificationEvent

[in] Handle to an event object. The routing protocol will signal this event when it wants
the router manager to retrieve an asynchronous message from the queue maintained
by the protocol.

SupportFunctions
[in] Pointer to a SUPPORT ~FUNCTIONS structure. The fields of this structure are
pOinters to functions in the router manager. These functions allow the protocol to
access information that spans routing protocols.

G/oballnfo
[in] Pointer to protocol-defined global (as opposed to interface-specific) configuration
information. This information is private to the routing protocol.

Structure Version
[in] Specifies the version of the information structures pointed to by the G/oballnfo
parameter. In some cases, this is equal to the version of the routing protocol.

Chapter 9 Routing Protocol Interface 295

StructureSize
[in] Specifies the size of each of the information structures pOinted to by the
G/oballnfo parameter. Since some information structures contain variable length
members, the routing protocol isn't necessarily able to determine the size of the
information from the version.

Structure Count
[in] Specifies a count of the number of information structures pOinted to by the
G/oballnfo parameter. This parameter is always one.

Return Values
If the function succeeds, and the protocol is ready to receive interface information, the
return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_I NVALI D_PARAMETER

The attempt to initialize the routing protocol
failed:

One of the parameters pointed to by the
Global/nfo parameter is invalid .

. Windows NT/2000: Requires Windows 2000.
Header: Declared in Houtprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
GetEventMessage, Stop Protocol, SUPPORT_FUNCTIONS

StopProtocol
The StopProtocol function causes the routing protocol to perform an orderly shutdown.

Return Values
If the routing protocol shutdown successfully (synchronous completion), the return value
is NO_ERROR.

If routing protocol is shutting down asynchronously, the return value is
ERROR_PROTOCOL_STOP _PENDING. In this case, the protocol will report the results
of the shutdown through the event message queue.

296 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Functions,
GetEventMessage, StartProtocol

Unbindlnterface
The Unbindlnterface function tells the routing protocol that an adapter has been
deallocated from the specified interface. The function directs the routing protocol to stop
protocol-defined activities over the adapter.

Parameters
Interfacelndex

IdentifieS the interface in the set of interfaces configured on the router.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

Remarks

The attempt to unbind the interface failed.

The Interfacelndex parameter is invalid (for
example, no interface exists with that index, or
the interface exists, but is already unbound).

The routing protocol should no longer consider routes dynamically obtained through the
interface to be valid. It should remove these routes from the routing table.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Chapter 9 Routing Protocol Interface 297

Routing Protocol Interface Reference, Routing Protocol Interface Functions

Routing Protocol Interface Structures
The Routing Protocol Interface Functions use the following structures:

MESSAGE

MPR_ROUTING_CHARACTERISTICS

MPR_SERVICE_CHARACTERISTICS

UPDATE_COMPLETE_MESSAGE

MESSAGE
The MESSAGE union contains information about an event reported to the router
manager through the routing protocol's message queue.

Members
UpdateCompleteMessage

Provides information associated with an UPDATE_COMPLETE event.

I nterfacelndex
Identifies the interface associated with a SAVE_INTERFACE_CONFIG_INFO event.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Structures,
DoUpdateRoutes, DoUpdateServices, GetEventMessage,
UPDATE_COMPLETE_MESSAGE

MPR_ROUTING_CHARACTERISTICS
The MPR_ROUTING_CHARACTERISTICS structure contains information used to
register routing protocols with the router manager.

298 Volume5 Routing

Members
dwVersion

Chapter 9 Routing Protocol Interface 299

On input: specifies the version of RRAS currently running.

On output: the routing protocol should specify the version of RRAS that it requires.

The symbol MS_ROUTER_ VERSION in the header file Routprot.h is defined to be
the RRAS version for a given implementation.

dwProtocolid
Specifies the routing protocol that the router manager requests the DLL to register. (A
common name space is used for all protocol families.)

fSupportedFunctionality
On input: specifies the functionality that the router manager supports.

On output: the routing protocol should reset these flags to indicate the subset of
functionality that it supports.

Supported Functionality Values

Value

ROUTING

SERVICES

DEMAND_UPDATE_SERVICES

pfnStartProtocol

Description

The protocol participates in Multiprotocol routing
by importing routing table manager APls.

The protocol assumes responsibility for
managing services (such as IPX SAP), and
provides Service Table Management APls.

The protocol is able to perform autostatic
updates of routes when requested by the router
manager.

The protocol is able to perform autostatic
updates of services when requested by the
router manager.

Pointer to an implementation of the Start Protocol function for this routing protocol.

pfnStartComplete
Pointer to an implementation of the StartComplete function for this routing protocol.

pfnStopProtocol
Pointer to an implementation of the Stop Protocol function for this routing protocol.

pfnGetGlobalinfo
Pointer to an implementation of the GetGlobalinfo function for this routing protocol.

pfnSetGlobalinfo
Pointer to an implementation of the SetGlobalinfo function for this routing protocol.

pfnQueryPower
Pointer to an implementation of the QueryPower function for this routing protocol.

pfnSetPower
Pointer to an implementation of the Set Power function for this routing protocol.

300 Volume 5 Routing

pfnAddlnterface
Pointer to an implementation of the Addlnterface function for this routing protocol.

pfnDeletelnterface
Pointer to an implementation of the Deletelnterface function for this routing protocol.

pfnlnterfaceStatus
Pointer to an implementation of the InterfaceStatus function for this routing protocol.

pfnGetlnterfacelnfo
Pointer to an implementation of the Getlnterfacelnfo function for this routing protocol.

pfnSetlnterfacelnfo
Pointer to an implementation of the Setlnterfacelnfo function for this routing protocol.

pfnGetEventMessage
Pointer to an implementation of the GetEventMessage function for this routing
protocol.

pfnUpdateRoutes
Pointer to an implementation of the DoUpdateRoutes function for this routing
protocol.

pfnConnectClient
Pointer to an implementation of the ConnectClient function for this routing protocol.

pfn DisconnectClient
Pointer to an implementation of the DisconnectClient function for this routing
protocol.

pfnGetNeighbors
Pointer to an implementation of the GetNeighbors function for this routing protocol.

pfnGetMfeStatus
Pointer to an implementation of the GetMfeStatus function for this routing protocol.

pfnMibCreateEntry
Pointer to an implementation of the MibCreate function for this routing protocol.

pfnMibDeleteEntry
Pointer to an implementation of the MibDelete function for this routing protocol.

pfnMibGetEntry
Pointer to an implementation of the MibGet function for this routing protocol.

pfnMibSetEntry
Pointer to an implementation of the MibSet function for this routing protocol.

pfnMibGetFirstEntry
Pointer to an implementation of the MibGetFirst function for this routing protocol.

pfnMibGetNextEntry
Pointer to an implementation of the MibGetNext function for this routing protocol.

pfnMibSetTraplnfo
Pointer to an implementation of the MibSetTraplnfo function for this routing protocol.

pfnMibGetTraplnfo
Pointer to an implementation of the MibGetTraplnfo function for this routing protocol.

Chapter 9 Routing Protocol Interface 301

Remarks
Most of the members of this structure are pOinters to functions implemented in the
routing protocol DLL. The routing protocol fills in the address values for these pointers
during a call to the RegisterProtocol function.

For a complete description of a particular function pOinted to by one of the structure
members, see the reference page for that function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Structures,
RegisterProtocol, Protocol Identifiers

MPR_SERVICE_CHARACTERISTICS
The MPR_SERVICE_CHARACTERISTICS structure contains information used to
register a routing protocol with the router manager.

Members
dwVersion

On input: specifies the version of RRAS currently running.

On output: the routing protocol should specify the version of RRAS that it requires.

The symbol MS_ROUTER_ VERSION in the header file Routprot.h is defined to be
the RRAS version for a given implementation.

302 Volume 5 Routing

dwProtocolid
Specifies the routing protocol that the router manager requests the DLL to register. (A
common name space is used for all protocol families.)

fSupportedFunctionality
On input: specifies the functionality that the router manager supports.

On output: the routing protocol should reset these flags to indicate the subset of
functionality that it supports. If this routing protocol does not provide services,
fSupportedFunctionality should be zero.

Supported Functionality Values

Value

ROUTING

SERVICES

DEMAND _U PDATE_SERVICES

pfnlsService

Description

The protocol participates in Multiprotocol
routing by importing routing table
manager APls.

The protocol assumes responsibility for
managing services (such as IPX SAP), and
provides Service Table Management APls.

The protocol is able to perform autostatic
updates of routes when requested by the
router manager.

The protocol is able to perform autostatic
updates of services when requested by the
router manager.

Pointer to an implementation of the IsService function for this routing protocol.

pfnCreateServiceEnumerationHandle
Pointer to an implementation of the CreateServiceEnumerationHandle function for
this routing protocol.

pfnEnumerateGetNextService
Pointer to an implementation of the EnumerateGetNextService function for this
routing protocol.

pfnCloseServiceEnumerationHandle
Pointer to an implementation of the CloseServiceEnumerationHandle function for
this routing protocol.

pfnGetServiceCount
Pointer to an implementation of the GetServiceCount function for this routing
protocol.

pfnCreateStaticService
Pointer to an implementation of the CreateStaticService function for this routing
protocol.

Chapter 9 Routing Protocol Interface 303

pfnDeleteStaticService
Pointer to an implementation of the DeleteStaticService function for this routing
protocol.

pfnBlockConvertServicesToStatic
Pointer to an implementation of the BlockConvertServicesToStatic function for this
routing protocol.

pfnBlockDeleteStaticServices
Pointer to an implementation of the BlockDeleteStaticServices function for this
routing protocol.

pfnGetFirstOrderedService
Pointer to an implementation of the GetFirstOrderedService function for this routing
protocol.

pfnGetNextOrderedService
Pointer to an implementation of the GetNextOrderedServicefunction for this routing
protocol.

Remarks
The members of this structure are pointers to Service Table Management functions
implemented in the routing protocol DLL. The routing protocol fills in the address values
for these pointers during a call to the RegisterProtocol function.

Only routing protocol DLLs that support services need to fill in the
MPR_SERVICE_CHARACTERISTICS structure.

For a complete description of a particular function pointed to by one of the structure
members, see the reference page for that function.

To use this structure, the user should add -DMPR50=1 to the compiler flags.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Structures,
MPR_ROUTING~CHARACTERISTICS, RegisterProtocol, Protocol Identifiers

The UPDATE_COMPLETE_MESSAGE structure contains information describing the
completion status of an update operation.

304 Volume 5 Routing

Members
Interfacelndex

Identifies the interface over which the update was performed.

UpdateType
Indicates the type of information that was received in this update.

DEMAND_UPDATE_ROUTES
Routing information was reported to the routing table manager.

DEMAND_U PDATE_SERVICES
Services information that is accessible through the Services Table Management
functions provided by the routing protocol.

UpdateStatus
Indicates the result of the update operation.

NO_ERROR
The update was completed successfully.

ERROR_CAN_NOT_COMPLETE
The update was unsuccessful.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Routing Protocol Interface Reference, Routing Protocol Interface Structures, MESSAGE

Support Functions Reference
The following functions are provided to routing protocols by the router manager. When
the router manager calls the Start Protocol function (implemented by the routing
protocol), the router manager passes the routing protocol a SUPPORT_FUNCTIONS
structure containing pOinters to these functions.

DemandDialRequest
MIBEntryCreate
MIBEntryDelete
MIBEntryGet
MIBEntryGetFirst
MIBEntryGetNext
MIBEntrySet
SetlnterfaceReceiveType
ValidateRoute

SUPPORT_FUNCTIONS

Chapter 9 Routing Protocol Interface 305

The SUPPORT_FUNCTIONS structure is used by the router manager to pass the
routing protocol a set of pointers to functions provided by the router manager.

Members
DemandDialRequest

Pointer to the DemandDialRequestfunction provided by the router manager forthe
routing protocol.

SetinterfaceReceive Type
Pointer to the SetlnterfaceReceiveType function provided by the router manager for
the routing protocol.

306 Volume 5 Routing

ValidateRoute
Pointer to the ValidateRoute function provided by the router manager for the routing
protocol.

MIBEntryCreate
Pointer to the MIBEntryCreate function provided by the router manager for the
routing protocol.

MIBEntryDelete
Pointer to the MIBEntryDelete function provided by the router manager for the routing
protocol.

MIBEntrySet
Pointer to the MIBEntrySet function provided by the router manager for the routing
protocol.

MIBEntryGet
Pointer to the MIBEntryGet function provided by the router manager for the routing
protocol.

MIBEntryGetFirst
Pointer to the MIBEntryGetFirst function provided by the router manager for the
routing protocol.

MIBEntryGetNext
Pointer to the MIBEntryGetNext function provided by the router manager for the
routing protocol.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

StartProtocol

DemandDialRequest
The routing protocol should call DemandDialRequest to initiate a demand dial
connection.

Parameters
InitiatingProtocolld

Chapter 9 Routing Protocol Interface 307

Specifies the identifier of the routing protocol on behalf of which the connection should
be established. (Normally, this parameter is the identifier of the calling routing
protocol.)

Interfacelndex
Specifies the identifier of the interface for which the connection should be established.

Return Value
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_CAN~OT _COMPLETE

ERROR_INVALlD_PARAMETER

The attempt to establish the connection failed.

The InitiatingProtocolld parameter and/or the
Interfacelndex parameter were/was invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers

MibEntryCreate
The routing protocol should call MibEntryCreate to execute an SNMP MIS-style Create
request of the router manager or c:l Peer protocol DLL.

308 Volume 5 Routing

Parameters
TargetProtocolld

Specifies the identifier of the DLL that should process this request. This parameter
may be the identifier of the router manager or the identifier of a routing protocol.

InputDataSize
Specifies the size, in bytes, of the data to pass with the Create request.

InputData
Pointer to the data to pass with the Create request.

Return Value
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

The attempt to create the MIB entry failed.

The size or content .of the input data are
incompatible with the request.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers, MibEntryDelete

MibEntryDelete
The routing protocol should call MibEntryDelete to execute an SNMP MIB-style Delete
request of the router manager or a peer protocol DLL.

Parameters
TargetProtocolld

Chapter 9 Routing Protocol Interface 309

Specifies the identifier of the DLL that should process this request. This parameter
may be the identifier of the router manager or the identifier of a routing protocol.

InputDataSize
Specifies the size, in bytes, of the data to pass with the Delete request.

InputData
Pointer to the data to pass with the Delete request.

Return Va1ue
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

The attempt to delete the MIS entry failed.

The size or content of the input data are
incompatible with the request.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol· Identifiers, MibEntryCreate

MibEntryGet
The routing protocol should call MibEntryGet to execute an SNMP MIS-style Get
request of the router manager or a peer protocol DLL.

310 Volume 5 Routing

Parameters
TargetProtocolld

Specifies the identifier of the DLL that should process this request. This parameter
may be the identifier of the router manager or the identifier of a routing protocol.

InputDataSize
Specifies the size, in bytes, of the data to pass with the Get request.

InputData
Pointer to the data to pass with the Get request.

OutputDataSize
A pOinter to a DWORD variable:

On input: This variable contains the size, in bytes, of the output buffer.

On output: This variable contains the size, in bytes, of data placed in the output
buffer. If the initial size was not large enough, this variable contains the buffer size
required to hold all of the output data.

OutputData
Pointer to a buffer to hold the data from the MIS entry.

Return Value
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

The operation failed.

The size or content of the input data are
incompatible with the request.

The size of the output buffer provided is not
large enough to hold the requested information.
The required size is returned in the DWORD
variable pOinted to by the OutputDataSize
parameter.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers, MibEntrySet, MibEntryGetFirst, MibEntryGetNext

Chapter 9 Routing Protocol Interface 311

MibEntryGetFirst
The routing protocol should call MibEntryGetFirst to execute an SNMP MIS-style Get
First request of the router manager or a peer protocol DLL.

Parameters
TargetProtoco/Jd

Specifies the identifier of the DLL that should process this request. This parameter
may be the identifier of the router manager or the identifier of a routing protocol.

InputDataSize
Specifies the size, in. bytes,. of the data to pass with the Get First request.

InputData
Pointer to the data to pass with the Get First request.

OutputDataSize
A pointer to a DWORD variable:

On input: This variable contains the size, in bytes, of the output buffer·.

On output This variable contains the size, in bytes, of data placed in the output
buffer. If the initial size is not large enough, this variable contains the buffer size
required to hold all of the output data.

OutputData .
Pointer to a buffer to hold the data from the MIS entry.

Return Value
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value Description

ERROR_CAN_NOT_COMPLETE

ERROR_INVALlD_PARAMETER

The operation failed.

The size or content of the input data is
incompatible with the request.

The Size of the output buffer provided is not
large enough to hold the requestedfnformation.
On.retum, the required size is pOinted to by the
OutputDataSize parameter.

312 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers, MibEntryGet, MibEntryGetNext

MibEntryGetNext
The routing protocol should call MibEntryGetNext to execute an SNMP MIB-style Get
Next request of the router manager or a peer protocol DLL.

Parameters
TargetProtocolld

Specifies the identifier of the DLL that should process this request. This parameter
may be the identifier of the router manager or the identifier of a routing protocol.

InputDa ta Size
Specifies the size, in bytes, of the data to pass with the Get Next request.

InputData
Pointer to the data to pass with the Get Next request.

OutputDa ta Size
A pointer to a DWORD variable:

On input: This variable contains the size, in bytes, of the output buffer.

On output: This variable contains the size, in bytes, of data placed in the output
buffer. If the initial size is not large enough, this variable contains the buffer size
required to hold all of the output data.

OutputData
Pointer to a buffer to hold the data from the MIB entry.

Return Value
If the function succeeds, the return value is NO_ERROR.

Chapter 9 Routing Protocol Interface 313

If the function fails, the return value is one of the following values.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALlD_PARAMETER

Description

The operation failed.

The size or content of the input data is
incompatible with the request.

The size of the output buffer provided is not
large enough to hold the requested information.
On return, OutputDataSize points to the
required size.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers, MibEntryGet, MibEntryGetFirst

MibEntrySet
The routing protocol should call MibEntrySet to execute an SNMP MIS-style Set request
of the router manager or a peer protocol DLL.

Parameters
TargetProtocolld

Specifies the identifier of. the DLL that should process this request. This parameter
may be the identifier of the router manager or the identifier of a routing protocol.

InputDataSize
Specifies the size, in bytes, of the data to pass with the Set request.

InputData
Pointer to the data to pass with the Set request.

Return Value
If the function succeeds, the return value is NO_ERROR.

314 Volume 5 Routing

If the function fails, the return value is one of the following values.

Value Description

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

The operation failed.

The size or content of the input data are
incompatible with the request.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers, MibEntryGet

SetlnterfaceReceive Type
The routing protocol can call the SetinterfaceReceiveType function to set the receive
capability of the specified interface.

Parameters
Protocolld

[in] Specifies the 10 of the routing protocol.

Interfacelndex
[in] Specifies the index of the interface on which to set the receive type.

Interface Receive Type
[in] Specifies the receive type. This parameter should be one of the following values.

IR_PROMISCUOUS
IR_PROMISCUOUS_MUL TICAST

bActivate
[in] Specifies whether to activate the interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

Chapter 9 Routing Protocol Interface 315

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER The value specified by the dwlnterfaceReceiveType
parameter is not valid.

Other The call failed. Use FormatMessage to retrieve the error
message corresponding to the returned error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers

ValidateRoute
The routing protocol must call the ValidateRoute function to set the route preference
and perform other route validation.

Parameters
Protocolld

[in] Specifies the 10 of the routing protocol.

Routelnfo
[in] Pointer to information describing the route to validate.

DestAddress
[in] Pointer to information describing the destination address. This parameter is
optional and may be NULL.

Return Values
If the function succeeds, the return value is NO_ERROR.

316 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER The some or all of the information specified by the
Routelnfo or DestAddress parameters is invalid.

Other The call failed. Use FormatMessage to retrieve the error
message corresponding to the returned error code.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Routprot.h.

Protocol Identifiers

IPX Service Table Management
An IPX routing protocol that registers for service handling should maintain a service
bindery table as defined by Novell's IPX Service Advertising Protocol (SAP)
specifications. The routing protocol should also provide the router manager access to
this table through the following functions. (See the RegisterProtocol function for more
information on how a routing protocol registers for service handling.)

Service Table Management Functions
Implement the following functions for routing protocols that register for service handling:

BlockConvertServicesToStatic
BlockDeleteStaticServices
CloseServiceEnumerationHandle
CreateServiceEnumerationHandle
CreateStaticService
DeleteStaticService
EnumerateGetNextService
GetFirstOrderedService
GetNextOrderedService
GetServiceCount
IsService

BlockConvertServicesToStatic
The BlockConvertServicesToStatic function converts all services received on a
specified interface to static.

Parameters
Interfacelndex

Chapter 9 Routing Protocol Interface 317

A unique number that identifies the interface associated with the services intended for
conversion.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_CAN_NOT_COMPLETE

ERROR_INVALlD_PARAMETER

The SAP Agent is down.

The Interfacelndex parameter is invalid.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
BlockDeleteStaticServices

BlockDeleteStaticServices
The BlockDeleteStaticServices function deletes all static services associated with a
specified interface.

Parameters
Interfacelndex

A unique number that identifies the interface associated with the services to be
deleted.

Return Values
If the function succeeds, the return value is NO_ERROR.

318 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_CAN_NOT_COMPLETE

ERROR_INVALlD_PARAMETER

The SAP Agent is down.

The Interfacelndex parameter is invalid.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
BlockConvertServicesToStatic

CloseServiceEnumerationHandle
The CloseServiceEnumerationHandle function terminates the enumeration and frees
associated resources.

Parameters
EnumerationHandle

Handle that identifies the enumeration to terminate, obtained from a previous call to
CreateServiceEnumerationHandle.

Return Values
If the functions succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_CAN_NOT _COMPLETE.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
CreateServiceEnumerationHandle

Chapter 9 Routing Protocol Interface 319

CreateServiceEnumerationHandle
The CreateServiceEnumerationHandle function returns a handle that allows the use of
fast and change-tolerant enumeration functions. Such functions can scan through all
services or a specified subset.

Parameters
ExclusionFlags

Limits the set of services that CreateServiceEnumerationHandle returns to a subset
defined by a combination of ExclusionFlags and values in the corresponding
members of Criteria Service. This parameter must be one of the fol/owing values.

Value Defintion

Criteria Service

Enumerate only those services that were
obtained through the interface specified in the
Interfacelndex member of Criteria Service.

Enumerate only those services that were
obtained through the protocol specified in the
Protocol member of CriteriaService (for
example, IPX_PROTOCOL_SAP for services
obtained by the DLL protocol or
IPX_PROTOCOL_STATIC for services
maintained by the router manager).

Enumerate only those services that have the
same type as those in the Service member of
Criteria Service.

Pointer to an IPX_SERVICE structure with member values that correspond to those
specified in ExclusionFlags.

Return Values
If the function succeeds, the return value is a handle for use with the service
enumeration function.

A NULL handle indicates no services exists with the specified criteria, or that the
operation failed. For more information, call GetLastError and check the error code
against the table below.

320 Volume 5 Routing

Value

ERROR_NO_SERVICES

ERROR_INVALID _PARAMETER

Description

No services exist with the specified criteria.

One or more of the input parameters is invalid.
For example, invalid enumeration flags or
invalid members in Criteria Service.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
CloseServiceEnumerationHandle, EnumerateGetNextService, GetLastError,
IPX_SERVICE

CreateStaticService
The CreateStaticService function adds a static service to the table.

Parameters
Interfacelndex

A unique number that identifies the interface associated with the new service.

ServiceEntry
Pointer to an IPX_STATIC_SERVICE_INFO structure containing parameters of the
static service to be added.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALI D _PARAMETER

Description

The SAP Agent is down.

One or more of the input parameters is invalid,
for example, invalid interface index, or invalid
fields in ServiceEntry.

Chapter 9 Routing Protocol Interface 321

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
DeleteStaticService, IPX_STATIC_SERVICE_INFO

DeleteStaticService
The DeleteStaticService function deletes a static service from the table.

Parameters
Interfacelndex

A unique number that identifies the interface associated with the service intended for
deletion.

ServiceEntry
Pointer to an IPX_STATIC_SERVICE_INFO structure containing the parameters of
the static service intended for deletion.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

Description

The SAP Agent is down.

One or more of the input parameters is invalid;
for example,invalid interface index, or invalid
fields in ServiceEntry.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

- 322 Volume 5 Routing

IPX Service Table Management, Service Table Management Functions,
CreateStaticService, IPX_STATIC_SERVICE_INFO

EnumerateGetNextService
The EnumerateGetNextService function returns the next service entry in an
enumeration started by CreateServiceEnumerationHandle.

Parameters
EnumerationHandle

Handle that identifies the enumeration and specifies the subset of services on which
the enumeration will operate. The handle is obtained from a call to
CreateServiceEnumerationHandle.

Service
Pointer to an IPX_SERVICE structure that will contain the next service in the
enumeration. Although services are returned in no particular order, each service in the
subset is returned only once.

Return Values
If the function succeeds, the buffer pOinted to by the Service parameter receives the next
service in the enumeration. In this case the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

No more services exist with the specified
criteria.

The operation failed.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
CreateServiceEnumerationHandle, IPX_SERVICE

Chapter 9 Routing Protocol Interface 323

GetFi rstOrderedService
The GetFirstOrderedService function returns the first service in the specified order from
the designated subset of services in the table.

Parameters
OrderingMethod

Indicates the order in which the services are searched. This parameter must be one of
the following values.

STM_ORDER_BY_TYPE_AND_NAME
Search the services in type. name order.

STM_ORDER_BY _INTERFACE_ TYPE_NAME
Search the services in interface index.type.name order.

ExclusionFlags
Limits the set of examined services to a subset defined by ExclusionFlags and the
values in the members of the structure pointed to by the Service parameter. See
CreateServiceEnumerationHandle for a description of the possible flags.

Service
Pointer to an IPX_SERVICE structure.

Value of Service at Input:
Values in the members correspond to flags specified in ExclusionFlags.

Value of Service upon Output:
The first service that matches specified criteria.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_'NVALlD_PARAMETER

Services that match the specified criteria do not
exist.

One or more input parameters are invalid, that
is, invalid ordering method, enumeration flags,
or field values in Service.

324 Volume 5 Routing

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
CreateServiceEnumerationHandle, IPX_SERVICE

GetNextOrderedService
The GetNextOrderedService function returns the next service from a subset of services
in the table. The service returned is the next service after a given input service using the
ordering method specified.

Parameters
OrderingMethod

Indicates the order in which the services are searched. See GetFirstOrderedService
for a description of the various ordering methods.

ExclusionFlags
Limits the set of examined services to a subset defined by ExclusionFlags and the
values in the corresponding members of the structure pOinted to by the Service
parameter. See CreateServiceEnumerationHandle for a description of the possible
flags.

Service
Pointer to an IPX_SERVICE structure.

Value of Service at Input:
Contains the service from which to continue searching; also contains member
values that correspond to the specified ExclusionFlags.

Value of Service upon Output:
The structure contains the first service that follows the input service and matches
the specified criteria.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Chapter 9 Routing Protocol Interface 325

Description

There are no more services matching the
specified criteria.

One or more of the input parameters is invalid;
for example, invalid ordering method,
enumeration flags, or member values in
Service.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions,
CreateServiceEnumerationHandle, IPX_SERVICE

GetServiceCount
The GetServiceCount function returns the number of services in the table.

Return Values
If the function succeeds, the return value is the number of services in the table.

If the function fails, the return value is one of the following error codes.

Value

o (Zero)

Description

Operation succeeded but no services are
available.

No services are available in the table or the
operation failed. Call GetLastError to obtain
more information.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions, GetLastError

326 Volume 5 Routing

IsService
The IsService function checks whether a service of specified type and name exists in
the service table, and optionally returns the service's parameters.

Parameters
Type

Specifies the type of the service being checked.

Name
Specifies the name of the service being checked.

Service
Receives a pointer to a structure in which to place the information about the matching
service (if any).

Return Values
The IsService function returns one of the following values.

Value

TRUE

FALSE

ERROR_INVALlD_PARAMETER

Description

The service exists in the table.

No such service exists, or the operation failed.
Call GetLastError for more information about
the failure.

The operation succeeded, but no such service
exists.

The service type or name is invalid.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.

IPX Service Table Management, Service Table Management Functions, GetLastError,
IPX_SERVICE

Chapter 9 Routing Protocol Interface 327

Service Table Management Structures
Use the following structures to implement routing protocols that register for service
handling:

IPX_SERVER_ENTRY
IPX_SERVICE

The IPX_SERVER_ENTRY structure describes a particular IPX service.

Members
Type

Contains the service type as defined by the SAP specification.

Name[48]
Contains the service name as defined by SAP specifications.

Network[4]
Contains the network number portion of the service address.

Node[6]
Contains the node number portion of the service address.

Socket[2]
Contains the socket number portion of service address.

HopCount
Contains the service hop count.

Windows NT/2000: Requires Windows 2000. Available as a redistributable ·for
Windows NT 4.0.
Header: Declared in Stm.h.

IPX Service Table Management, Service Table Management Structures, IPX_SERVICE

328 Volume 5 Routing

The IPX_SERVICE structure contains information about an IPX service, and identifies
the interface and protocol through which this information was obtained.

Parameters
Interfacelndex

Contains the index of the interface through which the service information was
obtained.

Protocol
Contains the identifier of the protocol that obtained the service information. (Static
services are viewed as services obtained through the IPX_PROTOCOL_STATIC
protocol.)

Service
Specifies an IPX_SERVER_ENTRY structure.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Stm.h.

IPX Service Table Management, Service Table Management Structures,
IPX_SERVER_ENTRY

329

CHAPTER 10

Routing Table Manager Version 1

Routing Table Manager Version 1 Overview
The routing table manager is a central repository of routing information for all routing
protocols that operate under Routing and Remote Access Service (RRAS). The routing
table manager provides routing information to all interested components, such as routing
protocols, management agents, and monitoring agents. The routing table manager also
determines the best route to each destination network known to the routing protocols. It
determines this route based on· routing protocol priorities and on metrics associated with
the routes. Note that the administrator is. able to configure routing protocol priorities. The
routing table manager then passes the best-route information on to the forwarders and
back to the routing protocols.

Each routing protocol calls RtmRegisterClient to register with the routing table
manager. RtmRegisterClient returns a handle that is used by the routing protocol to
add or delete route entries. RtmRegisterClient also allows the routing protocol to
register an event object with the routing table manager. The routing table manager
signals this event object to notify the routing protocol of changes in best-route
information. All other components can obtain information stored in the routing table'
manager through route enumeration.

Route Tables and Route Table Entries
The routing table manager maintains distinct route tables for each protocol family.
Currently explicit support is provided for the Internet Protocol (IP) and Internet Packet
Exchange (IPX) routing protocol families. Regardless of the protocol family, each route
entry contains the following information:

• Destination network.

• Identifier of the protocol that added the route.

• Index of interface through which the route was obtained.

• Address of the next hop router. RRAS uses this router to forward packets to the
destination network if the network is not directly connected.

• The time the route was created or last updated.

• The amount of time this route should be kept in the routing table. If this amount of
time elapses, and the route has not been updated, the routing table manager removes
the route from the table (in this case, the route is said to have "aged ouf').

330 Volume 5 Routing

• Data specific to the protocol family. This data is transparent to RTMv1. However, if
this data changes for a route that is designated as a "best route," the routing table
manager sends out route-change notification.

• Data specific to the routing protocol. This data is completely transparent to the routing
table manager in that changes to this data do not cause route change notification.

The following values taken together uniquely identify a route in the routing table:

• Destination network

• Protocol identifier

• Interface index

• Address of next-hop router

In general, the routing table manager creates separate entries for routes that differ in
any of these parameter values. However, an exception is made for routing protocols that
do not keep more that one entry for each destination network. For these protocols, the
routing table manager ignores differences in interface index or next-hop address. An
example of such a protocol would be the RRAS implementation of Open Shortest Path
First (OSPF).

Changes to the Best Route to a Network
A change in any of the following values for the best route to a given destination network,
causes the routing table manager to generate a notification message that is sent to each
registered client and to the forwarders:

• Protocol identifier

• Interface index

• Address of next-hop router

• Protocol-family specific data that includes route metrics

A change in protocol identifier, interface index, or next-hop router address can.occur
when a new, better-route entry is added, or when the current best-route entry is deleted

1

or aged out, leaving another route as the new best route.

Routing Table Manager Version 1 Reference
The following functions, structures, and constants provide an interface that routing
protocols can use to access the routing tables maintained by the routing table manager.

Routing Table Manager Version 1 Functions
Use the following functions to access the routing tables maintained by the routing table
manager.

RtmRegisterClient
RtmDeregisterClient
RtmDequeueRouteChangeMessage
RtmAddRoute
RtmDeleteRoute
RtmlsRoute
RtmGetNetworkCount

RtmRegisterClient

Chapter 10 Routing Table Manager Version 1 331

RtmGetRouteAge
RtmCreateEnumerationHandle
RtmEnumerateGetNextRoute
RtmCloseEnumerationHandle
RtmBlockDeleteRoutes
RtmGetFirstRoute
RtmGetNextRoute

The RtmRegisterClient function registers a client as a handler of the specified protocol.
It establishes a route change notification mechanism for the client, and sets protocol
options.

Parameters
ProtocolFamify

Specifies the protocol family of the routing protocol to register.

RoutingProtocol
Specifies the routing protocol identifier, the same as that used when registering with
the router manager (see RegisterProtoco~.

ChangeEvent
Specifies that a best route to a network in the table has changed. The routing table
manager signals this event after a change to the best route to any network in the
table. See RtmDequeueRouteChangeMessage for more information about route-
change notification. . .

This parameter is optional. If the caller specifies NULL for this parameter, the routing
table manager does not notify the client of changes in best route status.

Flags ..
Miscellaneous options for special handling of the routing protocol. The fOllowing value
is currently supported.

332 Volume 5 Routing

Flags Values

RTM_PROTOCOL_SINGLE_ROUTE The routing table manager keeps only one
route per destination network for the routing
protocol. In other words, the routing table
manager replaces route entries that have
the same destination network numbers
instead of adding new ones.

Return Values
On successful return, a HANDLE value that identifies the client in subsequent calls to
the routing table manager.

A NULL handle indicates that the routing table manager was unable to register the client.
Call GetLastError to obtain the reason for the failure.

Value Description

Another client has already registered to
handle the specified protocol.

The specified protocol family is not
supported, or the Flags parameter is invalid.

Insufficient resources to carry out the
operation.

Insufficient memory to allocate data
structures for the client.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, GetLastError, RegisterProtocol, RTMv1 Protocol Family Identifiers,
RtmDequeueRouteChangeMessage, RtmDeregisterClient

Rtm Dereg isterCI ient
The RtmDeregisterClient function deregisters the client, and frees resources
associated with the client.

Parameters
ClientHandle

Chapter 10 Routing Table Manager Version 1 333

A handle that identifies the client to deregister. Obtain this handle by calling
RtmRegisterClient.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_INVALlD_HANDLE

Remarks

The ClientHandle parameter is not a valid
handle.

Insufficient resources to carry out the
operation.

This function removes all routes that were added by the client.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmRegisterClient

RtmDequeueRouteChangeMessage
The RtmDequeueRouteChangeMessage function returns the next route-change
message in the queue associated with the specified client.

334 Volume 5 Routing

Parameters
ClientHandle

Handle that identifies the client for which the operation is performed. Obtain this
handle by calling RtmRegisterClient.

Flags
Pointer to a DWORD variable. The value of this variable is set by the routing table
manager. The value indicates the type of the change message, and what information
was returned in the provided buffers. This parameter is one of the following.

Flags Values

The first route was added for a particular
destination network. The CurBestRoute
parameter paints to the information for the
added route.

The only route available for a particular
destination network was deleted. The
PrevBestRoute parameter points to the
information for the deleted route.

At least one of the significant parameters was
changed for a best route to a particular
destination network. The significant
parameters are:

Protocol identifier
Interface index
Next-hop address
Protocol-family-specific data

(including route metrics)

The PrevBestRoute parameter pOints to the route information as it was before the
change. The CurBestRoute parameter points to current (that is, after-change) route
information.

CurBestRoute
Pointer to a structure to receive the current best-route information (if any). The type of
the structure is specific to the protocol family (for example, IP or IPX).

This parameter is optional. If the caller specifies NULL for this parameter, the current
best-route information is not returned.

PrevBestRoute
Pointer to a structure to receive the previous best-route information, if any. The type
of the structure is specific to the protocol family (for example, IP or IPX).

This parameter is optional. If the caller specifies NULL for this parameter, the previous
best-route information is not returned.

Chapter 10 Routing Table Manager Version 1 335

Return Values
The return value is one of the following codes.

Value Description

ERROR_INVALlD_HANDLE

This message was the last message in the
client's queue. The event object is reset.

The ClientHandle parameter is not a valid
handle, or at registration the client did not
provide an event object for change
message notification (see
RtmRegisterClient) .

The client's queue contains additional
messages. The client should call
RtmDequeueRouteChangeMessage
again as soon as possible to allow the
routing table manager to free the resources
associated with the pending messages.

The client's queue contains no messages;
the call was unsolicited. The event is reset.

There are insufficient resources to carry
out the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmRegisterClient

RtmAddRoute
The RtmAddRoute function adds a route entry, or updates an existing route entry.

336 Volume 5 Routing

Parameters
ClientHandle

Handle that identifies the client, and therefore the routing protocol, that added or
updated the route. Obtain this handle by calling RtmRegisterClient.

Route
Pointer to a protocol-family-specific structure that contains the new or updated route.
The following fields are used by the routing table manager to update the routing table:

RR_Network
Specifies the destination network number.

RR_lnterface/D
Specifies the index of the interface through which the route was received.

RR_NextHopAddress
Specifies the address of the next-hop router.

RR_FamilySpecificData
Specifies data that is specific to the protocol family. Although the data is
transparent to the routing table manager, it is considered when comparing routes to
determine if route information has changed. The data is also used to set metric
values that are independent of the routing protocol. Consequently, this data is used
to determine the best route for the destination network.

RR_ProtocolSpecificData
Specifies data which is specific to the routing protocol that supplied the route.

RR_ TimeStamp
Specifies the current system time. This field is set by the routing table manager.

Time ToLive
Specifies the number of seconds the specified route should be kept in the routing
table. If this parameter is set to INFINITE, the route is kept until it is explicitly deleted.
The current limit for TimeToLive is 2147483 sec (24+ days).

Flags
Pointer to a DWORD variable. The value of this variable is set by the routing table
manager. The value indicates the type of the change, and what information was
returned in the provided buffers. This parameter is one of the following.

Flags Values

The addition or update either did not change any
of the significant route parameters, or the route
entry affected is not the best route among the
entries for the destination network.

The route was added for the destination network.
The CurBestRoute parameter points to the
information for the added route.

Flags

Chapter 10 Routing Table Manager Version 1 337

Values

At least one of the significant parameters was
changed for the best route to the destination
network. The significant parameters are:

Protocol identifier
Interface index
Next-hop address
Protocol-family-specific data
(including route metrics)

The PrevBestRoute parameter pOints to the route information as it was before the
change. The CurBestRoute parameter points to the current (that is, after-change)
route information.

CurBestRoute
Pointer to a structure to receive the current best-route information, if any. The type of
the structure is specific to the protocol family (for example, IP or IPX).

This parameter is optional. If the caller specifies NULL for this parameter, the current
best-route information is not returned.

PrevBestRoute
Pointer to a structure to receive the previous best-route information, if any. The type
of the structure is specific to the protocol family (for example, IP or IPX).

This parameter is optional. If the caller specifies NULL for this parameter the previous
best-route information is not returned.

Return Value
The return value is one of the following codes.

Value Description

ERROR_I NVALI D_PARAMETER

The route was added or updated
successfully.

The client handle parameter is not a valid
handle.

The route structure contains an invalid
parameter.

There are insufficient resources to carry
out the operation.

There is insufficient memory to allocate the
route entry.

338 Volume 5 Routing

Remarks
The function generates a route-change message if the best route to a destination
network has changed as the result of this operation. However, the route-change
message is not sent to the client that makes this call. Instead, relevant information is
returned by this function directly to that client through the Flags, CurBestRoute, and
PrevBestRoute parameters.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmDeleteRoute, RtmDequeueRouteChangeMessage

RtmDeleteRoute
The RtmDeleteRoute function deletes a route entry.

Parameters
ClientHandle

Handle that identifies the client and therefore the routing protocol of the added or
updated route. Obtain this handle by calling RtmRegisterClient.

Route
Pointer to a protocol-family-specific structure containing the new or updated route.
The following fields will be used by the routing table manager to update the routing
table:

RR_Network
Specifies the destination network number.

RR_lnterface/D
Specifies the index of the interface through which the route was received.

RR_NextHopAddress
Specifies the network address of the next-hop router.

Chapter 10 Routing Table Manager Version 1 339

Flags
A pointer to a set of flags that indicate the type of the change message, and what
information was placed in the provided buffers. This parameter is one of the following
values.

Flags

CurBestRoute

Values

Deleting the route did not affect the best
route to any destination network. In other
words, another entry represents a route to
the same destination network and has a
lower metric.

The route deleted was the only route
available for a particular destination network.

After this route was deleted, another route
became the best route to a particular
destination network. CurBestRoute pOints to
the information for the new best route.

Pointer to a structure to receive the current best-route information, if any. The type of
the structure is specific to the protocol family (for example, IP or IPX).

This parameter is optional. If the caller specifies NULL for this parameter, the current
best-route information is not returned.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_INVALlD_HANDLE The client handle parameter is not a valid
handle.

ERROR_INVALlD_PARAMETER The route structure pOinted to by the Route
parameter contains a member value.

ERROR_NO_SUCH_ROUTE There are no entries in the routing table that
match the parameters of the specified route.

ERROR_NO_SYSTEM_RESOURCES There are insufficient resources to perform
the operation.

Remarks
The function generates a route-change message if the best route to a destination
network has changed as the result of the deletion. However, the route-change message
is not sent to the client that makes this call. Instead, relevant information is returned by
this function directly to that client.

340 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmAddRoute, RtmDequeueRouteChangeMessage

RtmlsRoute
The RtmlsRoute function determines if one or more routes to a specified destination
network exist. If so, the function returns information for the best route to that network.

Parameters
ProtocolFamily

Specifies the type of data structure pointed to by the Network parameter (for example,
IP _NETWORK, IPX_NETWORK).

Network
Pointer to a structure that contains protocol-family-specific network number data. This
data identifies the network for which the caller seeks route information.

BestRoute
Pointer to a protocol-family-specific structure to receive the current best route
information, if any.

Return Values
The return value is one of the following codes.

Value

TRUE

Description

At least one route to the specified network
exists. The best route is returned in the
structure pOinted to by the BestRoute
parameter.

Value

FALSE

ERROR_INVALID_PARAMETER

Chapter 10 Routing Table Manager Version 1 341

Description

There is no route to the specified network,
or the operation failed. Call GetLastError
to obtain more information:

The operation succeeded, but there is no
route to the specified network.

The value of the ProtocolFamily parameter
does not correspond to any installed
protocol family.

There are insufficient resources to carry
out the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, GetLastError, IP _NETWORK, IPX_NETWORK, RTMv1 Protocol Family
Identifiers

RtmGetNetworkCount
The RtmGetNetworkCount function retrieves the number of networks to which the
routing table manager has routes.

Parameters
ProtocolFamily

Specifies for which type of network (for example, IP or IPX) to obtain route
information.

Return Values
If the function succeeds, the return value is the network count, the number of networks
known to the routing protocols of the specified protocol family.

If the return value is zero, either no routes are available, or the operation failed. Call
GetLastError to obtain more information.

342 Volume 5 Routing

Value Description

The operation succeeded, but no routes are
available.

The value of the Protoco/Family parameter
does not correspond to any installed protocol
family.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, GetLastError, RTMv1 Protocol Family Identifiers

RtmGetRouteAge
The RtmGetRouteAge function returns the age of a route. The age is the time, in
seconds, since it was created or last updated.

Parameters
Route

Pointer to a protocol-family-specific structure that contains route data recently
obtained from the routing table manager.

Return Values
The return value is one of the following values.

Value Description

RouteAge

INFINITE

The time in seconds since a route was created or last updated.

The content of the route structure is invalid. In this case, a call to
GetLastError returns ERROR_INVALlD_PARAMETER.

Chapter 10 Routing Table Manager Version 1 343

Remarks
The route age is computed from the RR_ TimeStamp member of the structure that is
pOinted to by the Route parameter. The routing table manager sets the value of this
member when a route is added or updated.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version_1 Reference, Routing Table Manager Version 1
Functions, GetLastError, RTM_IP _ROUTE, RTM_IPX_ROUTE

RtmCreateEnumerationHandle
The RtmCreateEnumerationHandle function returns a handle to use with
RtmEnumerateGetNextRoute to scan through all routes, or a subset of routes, known
to the routing table manager.

Parameters
Protoco/Family

Specifies the protocol family of the routes to enumerate.

EnumerationFlags
Specifies which routes should be enumerated. This parameter limits the set of routes
returned by the enumeration API to a subset defined by the following flags and the
values in the corresponding members of the structure pointed to by the CriteriaRoute
parameter. This parameter can be one of the following values.

EnumerationFlags Values

Enumerate only those routes that have the
same network number as the RR_Network
member of the structure pointed to by
CriteriaRoute.

(continued)

344 Volume 5 Routing

(continued)

EnumerationFlags

Criteria Route

Values

Enumerate only those routes that were
obtained through the intertace specified by the
RR_lnterfacelD member of the structure
pOinted to by CriteriaRoute.

Enumerate only those routes that were added
by the protocol handler specified by the
RR_RoutingProtocol field of the structure
pOinted to by CriteriaRoute.

Enumerate only the best routes to each of the
networks in the set.

Pointer to a protocol-family-specific route structure (RTM_IP _ROUTE or
RTM_IPX_ROUTE). The member values in this structure correspond to the flags
specified by the EnumerationFlags parameter.

Return Values
If the function succeeds, the return value is a HANDLE to use with subsequent
enumeration calls.

If the function fails, or no routes exist with the specified criteria, the return value is NULL.
Call GetLastError to obtain more information.

Value Description

There are no routes that have the specified
criteria.

One or more of the input parameters is
invalid (for example, unknown protocol
family, invalid enumeration flags).

There are insufficient resources to carry out
the operation.

There is insufficient memory to allocate the
handle.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Chapter 10 Routing Table Manager Version 1 345

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, GetLastError, RTM_IP _ROUTE, RTM_IPX_ROUTE,
RtmCloseEnumerationHandle, RtmEnumerateGetNextRoute

RtmEnumerateGetNextRoute
The RtmEnumerateGetNextRoute function returns the next-route entry in the
enumeration started by a call to RtmCreateEnumerationHandle.

Parameters
EnumerationHandle

Handle that identifies the enumeration and specifies its scope. Obtain this handle by
calling RtmCreateEnumerationHandle.

Route
Pointer to a protocol-family-specific route structure (RTM_IP _ROUTE or
RTM_IPX_ROUTE). This structure will receive the next route in the enumeration.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

Remarks

The EnumerationHandle parameter is not
valid.

There are no more routes in the
enumeration.

There are insufficient resources to carry
out the operation.

Although routes are not returned in any particular order, each route in the enumeration is
returned only once.

346 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RTM_IP _ROUTE, RTM_IPX_ROUTE, RtmCloseEnumerationHandle,
RtmCreateEnumerationHandle

RtmCloseEnumerationHandle
The RtmCloseEnumerationHandle terminates a specified enumeration and frees the
associated resources.

Parameters
EnumerationHandle

Handle to the enumeration to terminate. Obtain this handle by calling
RtmCreateEnumerationHandle.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

ERROR_INVALID _HAN DLE The EnumerationHandle parameter is not
valid.

There are insufficient resources to carry out
the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Chapter 10 Routing Table Manager Version 1 347

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmCreateEnumerationHandle, RtmEnumerateGetNextRoute

RtmBlockDeleteRoutes
The RtmBlockDeleteRoutes function deletes all routes in the specified subset of routes
in the table.

Parameters
ClientHandle

Handle that identifies the client, and therefore the routing protocol, of the routes to be
deleted.

EnumerationFlags
Specifies which routes should be enumerated. This parameter limits the set of deleted
routes to a subset defined by the following flags and the values in the corresponding
members of the structure pointed to by the Criteria Route parameter. The flags are the
same as those used in RtmCreateEnumerationHandle except that
RTM_ONL Y _BEST _ROUTES is redundant for RtmBlockDeleteRoutes. The best
route designation is adjusted as routes are deleted, so the function eventually deletes
all the routes in the subset.

Criteria Route
Pointer to a protocol-family-specific route structure (RTM_IP _ROUTE or
RTM_IPX_ROUTE). The member values in this structure correspond to the flags
specified by the EnumerationFlags parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Description

There are no routes that have the specified
criteria.

(continued)

348 Volume 5 Routing

(continued)

Value

ERROR_INVALlD_HANDLE

ERROR_INVALlD_PARAMETER

Remarks

Description

The ClienfHandle parameter is not valid.

One or more of the input parameters is
invalid (for example, the enumeration flags
are invalid).

There are insufficient resources to carry out
the operation.

There is insufficient memory to carry out the
operation.

The function generates appropriate notification messages to all registered clients
including the caller.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmCreateEnumerationHandle, RtmRegisterClient

RtmGetFirstRoute
The RtmGetFirstRoute function returns the first route from the specified subset of
routes in the table.

Parameters
ProfocolFamily

Identifies the protocol family (for example, IP or IPX) of routes to retrieve.

Chapter 10 Routing Table Manager Version 1 349

EnumerationFlags
Limits the set of deleted routes to a subset defined by these flags and the values in
the corresponding members of the structure pointed to by the Criteria Route
parameter. The flags are the same as those used in RtmCreateEnumerationHandle.

Route
Pointer to a protocol-family-specific structure (RTM_IP _ROUTE or
RTM_IPX_ROUTE).

The calling function provides member values for this structure. These values, in
conjunction with the EnumerationFlags parameter, specify the set from which to
return routes.

On successful return, Route points to the first route that matched the specified
criteria.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

Remarks

Description

One or more of the input parameters is
invalid (for example, the protocol family is
unknown, or the enumeration flags are
invalid).

There are no routes that match the
specified criteria.

There are insufficient resources to carry
out the operation.

The routes are returned in the following order:

1. Network number

2. Routing protocol

3. Interface identifier

4. Next-hap address

This function is less efficient than the corresponding enumeration handle function
(RtmEnumerateGetNextRoute) .

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

350 Volume 5 Routing

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmCloseEnumerationHandle, RtmCreateEnumerationHandle,
RtmEnumerateGetNextRoute, RtmGetNextRoute

RtmGetNextRoute
The RtmGetNextRoute function returns the next route from the specified subset of
routes in the table.

Parameters
ProtocolFamily

Specifies the protocol family (for example, IP or IPX) of routes to retrieve.

EnumerationFlags
Specifies which routes should be enumerated. This parameter limits the set of deleted
routes to a subset defined by the following flags and the values in the corresponding
members of the structure pointed to by the Criteria Route parameter. The flags are the
same as those used in RtmCreateEnumerationHandle.

Route
Pointer to a protocol-family-specific structure (RTM_IP _ROUTE or
RTM_IPX_ROUTE).

The calling function provides member values for this structure. These values, in
conjunction with the EnumerationFlags parameter, specify the set from which to return
routes.

On successful return, this structure receives the first route that matched the specified
criteria.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

Remarks

Chapter 10 Routing Table Manager Version 1 351

Description

One or more of the input parameters is
invalid (for example, the protocol family is
unknown, or the enumeration flags are
invalid).

There are no routes that match the
specified criteria.

There are insufficient resources to carry
out the operation.

The routes are returned in the following order:

1. Network number

2. Routing protocol

3. Interface identifier

4. Next-hop address

This function is less efficient than the corresponding enumeration handle functions.

Windows NT/2000: Requires Windows 2000,
Header: Declared in Rtm.h.
Library: Use Rtm.lib.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Functions, RtmCloseEnumerationHandle, RtmCreateEnumerationHand.le,
RtmEnumerateGetNextRoute, RtmGetFirstRoute

Routing Table Manager Version 1 Structures
The Routing Table Manager Version 1 Functions use the following structures:

IP_NETWORK
IP _NEXT _HOP _ADDRESS
IP _SPECIFIC_DATA
IPX_NETWORK
IPX_NEXT _HOP _ADDRESS
IPX_SPECIFIC_DATA
PROTOCOL_SPECIFIC_DATA
RTM_IP _ROUTE
RTM_IPX_ROUTE

352 Volume 5 Routing

IP _NETWORK
The IP _NETWORK structure describes an IP network address.

Members
N_NetNumber

Specifies the IP network number expressed as an IP address in machine-byte order.

N_NetMask
Specifies the network mask. Apply this mask to the IP address in order to extract the
network address. The network mask is in machine-byte order.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, RTM_IP _ROUTE

The IP _NEXT _HOP _ADDRESS structure contains the address for the next-hop router
for an IP route.

Members
N_NetNumber

Specifies the IP network address expressed as an IP address in machine-byte order.

N_NetMask
Specifies the network mask. Apply this mask to the IP address in order to extract the
network address. The network mask is in machine-byte order.

Chapter 10 Routing Table Manager Version 1 353

Remarks
The IP _NEXT _HOP _ADDRESS structure is a typedef of the IP _NETWORK structure.
The typedef is in Rtm.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, IP _NETWORK, RTM_IP _ROUTE

Members
FSD_Type

Specifies the route type as defined in RFC 1354. The following table shows the
possible values for this member. .

Member Value

2

3

4

The route type is not specified. The type is different from those
listed here.

The route is invalid. Normally, this value is used to invalidate a route.
However, since invalidation is not supported by the routing table
manager, the route is still considered in best-route computations.
Therefore, routing protocols should not use this value.

The route is a local route, that is, the next hop is the final destination.

The route is a remote route, that is, the next hop is not the final
destination.

354 Volume 5 Routing

FSD_Policy
Specifies the set of conditions that would cause the selection of a multi-path route.
This member is typically in IP TOS format. For more information, see RFC 1354.

FSD_NextHopAS
Specifies the autonomous system number of the next hop.

FSD_Priority
Specifies a metric value. The routing table manager uses this value to compare this
route entry to route entries obtained from other routing protocols. The value of this
member is set by the routing table manager.

FSD_Metric
Specifies a metric value. The routing table manager uses this value to compare this
route entry to other route entries obtained from the same routing protocol. The value
of this member is set by the routing protocol.

FSD_Metric1
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

FSD_Metric2
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

FSD_Metric3
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

FSD_Metric4
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

FSD_Metric5
Specifies a routing-protocol-specific metric value. This metric value is documented in
RFC 1354.

FSD_Flags
Specifies whether the route is valid. The routing protocol should first clear these flags,
then set the route as either valid or invalid. The routing protocol should use the
macros ClearRouteFlagsO, SetRouteValidO, and ClearRouteValidO to perform
these operations. These macros are defined in Rtm.h.

Remarks
The routing table manager uses the FSD_Priority and FSD_Metric members to
compute the best route to a particular destination network.

The FSD_Metric[1-5] members are for MIS II conformance. MIS II agents display only
these metric values. They do not display the FSD_Metric metric value. To have the
FSD_Metric displayed, the routing protocol should also store the value in one of the
FSD_Metric[1-5] members.

Chapter 10 Routing Table Manager Version 1 355

The routing table manager does not use the metric values in the FSD_Metric[1-5]
members when computing the best route to a destination network. Therefore, the routing
protocol should ensure that the FSD_Metric member has an appropriate metric value.

A routing protocol could use the FSD_Flags to mark a route as invalid, if the route
should not be used by other routing protocols.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, RTM_IP _ROUTE

The IPX_NETWORK structure describes an IPX network address.

Members
N_NetNumber;

Contains the IPX network number in machine-byte order.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, RTM_IPX_ROUTE

The IPX_NEXT _HOP _ADDRESS structure contains the address for the next-hop router
for an IPX route.

356 Volume 5 Routing

Members
NHA_Mac[6]

Specifies the MAC address of next-hop router.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, RTM_IPX_ROUTE

Members
FSD_Flags

Specifies flags that describe the route. Currently, this member is either zero or the
following flag value:

IPX_GLOBAL_CLlENT _WAN_ROUTE
Specifies that this route is for the global network allocated for all WAN clients.

FSD_ TickCount
Specifies the number of ticks it takes to reach the destination network. Routing
protocols other than RIP should convert their metrics into ticks.

FSD_HopCount
Specifies the hop count associated with the route.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Chapter 10 Routing Table Manager Version 1 357

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, RTM_IPX_ROUTE

The PROTOCOL_SPECIFIC_DATA structure contains memory reserved for data
specific to a particular routing protocol.

Members
PSD_Data[4]

Specifies an array of DWORD variables. This memory is reserved for data that is
specific to routing protocols.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures, RTM_IP _ROUTE, RTM_IPX_ROUTE

The RTM_IP _ROUTE structure contains information that describes a route owned by the
IP protocol family:

358 Volume 5 Routing

Members
RR_ TimeStamp

Specifies the time that the route entry was created or last updated. This member is
set by the routing table manager. The time is expressed as a FILETIME structure.

RR_RoutingProtocol
Specifies the routing protocol that added the route.

RR_lnterfacelD
Specifies the interface through which the route was obtained.

RR_ProtocolSpecificData
Specifies a PROTOCOL_SPECIFIC_DATA structure that contains memory reserved
for routing-protocol-specific data.

RR_Network
Specifies an IP _NETWORK structure that contains an IP network address.

RR_NextHopAddress
Specifies an IP _NEXT _HOP_ADDRESS structure that contains the address of the
next-hop router.

RR_FamilySpecificData
Specifies an IP _SPECIFIC_DATA structure that contains IP protocol-family-specific
data.

Remarks
The members of the RTM_IP _ROUTE structure are all DWORD aligned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager Version 1
Structures,IP _NETWORK, IP _NEXT_HOP _ADDRESS, IP _SPECIFIC_DATA

The RTM_IPX_ROUTE structure contains information that describes a route for the IPX
protocol family.

Chapter 10 Routing Table Manager Version 1 359

Members
RR_ TimeStamp

Specifies the time that the route entry was created or last updated. This member is
set by the routing table manager. The time is expressed as a FILETIME structure.

RR_RoutingProtocol
Specifies the routing protocol that added the route.

RR_lnterfacelD
Specifies the interface through which the route was obtained.

RR_ProtocolSpecificData
Specifies a PROTOCOL_SPECIFIC_DATA structure containing memory reserved for
data specific to routing protocols.

RR_Network
Specifies an IPX_NETWORK structure that contains an IP network' address.

RR_NextHopAddress
Specifies an IPX_NEXT _HOP _ADDRESS structure that contains the address of the
next-hop router.

RR_FamilySpecificData
Specifies an IPX_SPECIFIC_DATA structure that contains data specific to the IPX
protocol family.

Remarks
The members of the RTM_IPX_ROUTE structure are all DWORD aligned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtm.h.

Routing Table Manager Version 1 Reference, Routing Table Manager
Version_1_Structures, IPX_NETWORK, IPX_NEXT _HOP _ADDRESS,
IPX_SPECIFIC_DATA

360 Volume 5 Routing

Routing Table Manager Version 1 Protocol Family
Identifiers

The following transport identifiers are listed in Rtm.h. Use these identifiers with the
RTMv1 API.

Constant

RTM_PROTOCOL_FAMIL Y _IPX

RTM_PROTOCOL_FAMIL Y _IP

Description

Identifies the IPX address family.

Identifies the IP address family.

Routing Table Manager Version 1 Reference

361

CHAPTER 11

Routing Table Manager Version 2

Routing Table Manager Version 2 Overview
This chapter describes the Routing Table Manager Version 2 (RTMv2) technology. The
RTMv2 API is a feature of Microsoft® Windows® 2000 that you can use to write routing
protocols that interact with the routing table manager.

The routing table manager is the central repository of routing information for all routing
protocols that operate under the Routing and Remote Access Service (RRAS).

RTMv2 is not available for Microsoft® Windows NT® version 4.0. Additionally, RTMv2
cannot be used for IPX routing protocols that run on Windows NT 4.0 or Windows 2000.
If you are using IPX or writing routing protocols for Windows NT 4.0, you must use the
Routing Table Manager Version 1 (RTMv1) API.

Components of the Routing Table Manager Architecture
This section describes the major components of the Routing Table Manager Version 2
(RTMv2) technology:

• Router • Address Family

• Client • Routing Table

• Router Manager • View

• Routing Protocol • Routing Table Entries

• Forwarder • Destinations

• Routing Table Manager • Routes and the Best Route

• Routing Table Manager Instance • Next Hops

Router
For the purposes of this documentation, a router is a Windows NT/windows 2000 server
that is running the Routing and Remote Access Service (RRAS) and the routing table
manager.

Client
A client of RTMv2 is either an instance of a routing protocol, or a management
component that registers and interacts with the routing table manager using the
RTMv2 API. Unless otherwise specified, any reference to a routing table manager client
refers to a client of RTMv2.

A client must run in the same process as the router manager.

362 Volume 5 Routing

Router Manager
The router manager is the component of a Windows NTIWindows 2000 router that starts
and manages the different routing components. The components include routing
protocols, the routing table manager, and the multicast group manager.

Routing Protocol
A routing protocol is a type of client that registers with the routing table manager.
Routers use routing protocols to exchange information regarding routes to a destination.

Routing protocols are either unicast or multicast. Routing protocols advertise routes to a
destination. A unicast route to a destination is used by a unicast routing protocol to
forward unicast data to that destination. A multicast route to a destination is used by
some multicast routing protocols to create the information that is used to forward
multicast data from hosts on the destination network of the route (known as reverse path
forwarding).

Examples of unicast routing protocols include: Routing Information Protocol (RIP), Open
Shortest Path First (OSPF), and Border Gateway Protocol (BGP). Examples of multicast
routing protocols include: Multicast Open Shortest Path First (MOSPF), Distance Vector
Multicast Routing Protocol (DVMRP), and Protocol Independent Multicast (PIM).

The routing table manager supports multiple instances of the same protocol (such as
Microsoft OSPF and a third-party OSPF) running on the router. This allows routers to
use the different capabilities of each version. These protocols have different protocol
identifiers.

Protocol identifiers are comprised of a vendor identifier and a protocol-specific identifier.
The protocol-specific identifier is the same for different implementations of the protocol,
such as Microsoft OSPF and a third-party implementation of OSPF. Only when the
vendor and protocol-specific identifiers are combined is there a unique identifier for a
routing protocol.

A protocol with the same protocol identifier (that is, the same vendor identifier and
protocol-specific identifier) can register with the routing table manager multiple times.
Each time, the protocol registers using a different protocol instance identifier. For
example, an implementation of OSPF from a particular vendor can register as
Vendor-OSPF-1 and Vendor-OSPF-2. This enables a specific protocol implementation to
partition the information that it keeps in the routing table.

Forwarder
The forwarder is the kernel-mode component of the router that is responsible for
forwarding data from one router interface to the others. The forwarder also decides
whether a packet is destined for local delivery, whether it is destined to be forwarded out
of another interface, or both.

There are two kernel-mode forwarders: unicast and multicast.

Chapter 11 Routing Table Manager Version 2 363

The router manager obtains the best routes to all destinations from the routing table
manager. These routes are passed to the unicast forwarder. The unicast forwarder uses
these routes to perform the actual forwarding of unicast data. In this manner, the unicast
forwarder maintains a cache of the best routes in the unicast view of the routing table.

The multicast group manager uses information from the multicast view of the routing
table to add multicast forwarding entries to the multicast forwarder.

Routing Table Manager
The routing table manager is the central repository of routing information for all routing
protocols that operate under the R6uting and Remote Access Service (RRAS). It notifies
clients when changes have occurred, and allows clients toexchan~e private information.

The routing table manager provides routing information to all interested clients, such as
routing protocols, management programs, and monitoring programs. The routing table
manager also determines the best route to each destination network that is known to the
routing protocols. The routing table manager determines this Joute based on routing
protocol priorities and on the metrics associated with the routes. The person
administering the router can configure routing protocol priorities using the RRAS
management console.

The routing table manager passes the best-route information to the forwarders (one per
address family, or one per interface) and to all interested clients.

Each client registers with the routing table manager,and in return receives a handle that
the client uses to add or delete routes. Clients can retrieve information stored in the
routing table. Additionally, clients can register with the routing table managerto receive
notification of changes to the best route to a destination.

Routing Table Manager Instance
An instance is a separate table that the routing table manager uses to maintain routing
information about a subset of interfaces. Instances are typically used to enable a
physical router to act as a Set of virtual routers---one virtual router per logical network.

Currently, the routing table manager supports only one instance (identified as zero, the
default). The client can register with other instances, but any virtual router except the
default one is recognized or used by the router manager.

Address Family
Address families include Internet Packet Exchange (IPX), Internet Protocol Version 4
(IPv4), and Internet Protocol Version 6 (IPv6). Address families can also be referred to
as protocol families. These address families are defined in RFC 1700.·

364 Volume 5 Routing

Routing Table
The routing table manager maintains a distinct routing table for each address family
(such as IPX and IPv4). The IPX address family is supported by the RTMv1 API; IPv4 is
supported by the RTMv2 API.

The routing table consists of destinations, routes, and next hops. These entries define a
route to a destination network.

View
A view is a subset of the routing table and contains a group of related routes (for
example, multicast routes). Currently, only unicast and multicast views are supported.
Views are sometimes called Routing Information Bases (RIBs).

Routing Table Entries
The routing table consists of three types of entries: destinations, routes, and next hops.

Destinations
A destination in the routing table is a network entry represented by a network address
and a network mask.

A destination entry in the routing table includes:

• The address, expressed as a network address and network mask.

• A list of routes to the destination.

• A list of opaque pointer slots.

• The views in which this destination is valid. The destination contains a structure for
each view that contains the following information:

• An identifier for the view.

• A pointer to the best route to the destination in this view.

• The owner of the best route in this view.

• Flags associated with the best route in this view.

• Handle to any routes that are in a hold-down state in this view.

Routes and the Best Route
A route is a "network path" to a destination that has a certain cast associated with it. The
cost is represented by its administrative preference and its protocol-specific metric.
Routes with lower costs are preferred over all other routes.

A route entry in the routing table includes:

• A handle to the destination

• The owner of this route

• The neighbor (peer) that provided the route information

• Flags associated with the state of the route

Chapter 11 Routing Table Manager Version 2 365

• Flags associated with the route

• The preference and metric for the route

• The list of views to which the route belongs

• Information that is private to the owner of the route

• A list of next hops used to reach the destination

The following values, taken together, uniquely identify a route in the routing table:

• The destination network

• The owner of the route

• The neighbor who supplied the route

Metrics and Preference
Each route has an administrative preference (specified by the routing policy), and a
client-dependent metric. The routing table manager uses this information to determine
which route is the better route to a destination. Routes with lower preference are better
routes (one being lowest, and therefore best). If two routes have the same preference,
the route with the lower metric is the better route.

Normally, the preference of a route is determined by the preference of the client that
added the route. However, for any routes added using the Netsh.exe management tool,
a preference value can be specified on a per-route basis.

Preference is normally used to indicate priority between clients. For example, an
administrator can assign OSPF a lower (better) preference than RIP. In this case, OSPF
routes are preferable to RIP routes.

Next Hops
Routes have one or more next hops associated with them. If the destination is not on a
directly connected network, the next hop is the address of the next router (or network) on
the outgoing network that can most effectively route data to the destination. Each next
hop can be used to forward data on the path to the destination. All routes owned by a
client share a common set of next-hop entries that were added by the client.

Each next hop is uniquely identified by the address of the next hop and the interface
index used to reach the next hop.

If the next hop itself is not directly connected, it is marked as a "remote" next hop. In this
case, the forwarder must perform another lookup using the next hop's network address.
This lookup is necessary to find the "local" next hop used to reach the remote next hop
and the destination.

A next-hop entry in the routing table includes:

• The network address of the next hop

• The owner of the next hop

• The identifier of the outgoing interface

366 Volume 5 Routing

• The state of the next hop

• Flags associated with the next hop

• Information that is private to the owner of the next hop

• A handle to the destination corresponding to the remote next hop

How the Routing Table Manager Architecture Fits Together
Figure 11-1 shows the relationship between the different components of a router.

Router

Routing Table Manager

Figure 11-1: Router Components.

When the router is bootstrapped, the router manager service is started, as well as one or
more routing protocols. Routing protocols are associated with the various interfaces on
the router. The router manager also starts the routing table manager.

Figure 11-2 shows the relationship between clients and the different components of the
routing table manager.

The router manager starts one or more instances of the routing table manager. When
multiple instances of the routing table manager are started, the router has been
configured to act as one or more virtual routers. Each instance of the routing table
manager owns one or more interfaces; each interface can only be owned by one
instance of the routing table manager.

Each instance of the routing table manager is independent from the others; no
information is exchanged between the instances.

Each instance of the routing table manager contains one or more routing tables. Each
routing table is associated with an address family.

Each routing table contains one or more views. In this example, the routing table is
shown with a unicast and multicast view. Each view is a subset of the routing table.

Chapter 11 Routing Table Manager Version 2 367

Routing Table Manager

Interface 3 r Routing Table Manager (Instance 1)

Routing Table Manager (Instance 0)

IPv6 Routing Table

Interface 1 r--
I Multicast Vier

I Unicast View

Interface 2 r--
IPv4 Routing Table

I Multicast Vier

I Unicast View
_ Rtm RegisterEntity(

Instance 0, IP

I
I

~
V4)~

Figure 11·2: Relationship Between Clients and Components of Routing Table
Manager.

Figure 11-3 shows the relationship between clients and multiple instances of the routing
table manager, routing tables, and views.

Routing Table Manager

Routing Table Manager (Instance 1)

ilPV4 Routing Table

Routing Table Manager (Instance 0) tJ r-- I--

IPv4 Routing Table r---

RtmRegisterClient(-1 Client2
Client2, Instance 1, IPv4)

I

I Multicast Vier
r---~ I--

RtmRegisterClient(
Client1, Instance 1, IPv6)

I
RtmRegisterClient(l Unicast View n

f-J Client1, Instance 0, IPv4)

IPv6 Routing Table r---

I Multicast Vier

I Unicast View RtmR egisterClient(
Client1, Instance 0, IPv6)

I

Figure 11-3: Relationship Between Clients and Multiple Instances of the Routing
Table Manager, Routing Tables, and Views.

368 Volume 5 Routing

An instance of the client can register multiple times with an instance of the routing table
manager-once per address family. A client can register with each instance of the
routing table manager.

Figure 11-4 shows how the routing table entries are related. For more information on
routing table entries, see Routing Table Entries.

Routing Table ~ Dest 1 I
I 1

Route 1 ----+ Route 2 I Client 1 I

Next Hop 1 ,-------
Next Hop 3

1 Next Hop 2 -

Next Hop List

Figure 11-4: Relationship Between Routing Tables.

The routing table contains destinations. Each destination is related to one or more
routes. Each route has zero, one, or more pointers to next hops that are associated with
the route. Each pOinter refers to the actual next hop in the list of next hops. Each client
that registers with the routing table manager creates a list of next hops that the client
owns.

Routes can only contain pOinters to the next-hop list associated with the client that owns
the route.

RTMv2 Programming Issues
RTMv2 functions are written with the following assumptions:

• RTMv2 functions do not allocate memory for the client. The.client must always
allocate memory.

• When a client is unregistering, it must perform "clean-up" operations itself, such as
releasing all memory allocated.

• Clients must release handles correctly; memory leaks can occur if a client does not
observe this practice.

Registering with the Routing Table Manager
Before a client can access the routing table, it first must register with the routing table
manager using the RtmRegisterEntity function.

Chapter 11 Routing Table Manager Version 2 369

When a client registers, it passes to the routing table manager an RTM_ENTITY _INFO
structure. This structure contains the information that uniquely identifies a client, the
address family, and the instance of the routing table manager with which the client is
registering. A client can also establish the RTM_EVENT _CALLBACK callback. The
routing table manager will use this callback to notify the client of events such as change
notifications and client registrations.

The routing table manager completes its registration processing and returns a handle to
the client. The client must use this handle for all subsequent calls to RTMv2 functions.

The RtmRegisterEntity function that is used in RTMv2 is analogous to the
RtmRegisterClient function that is used in RTMv1. The RtmRegisterClient function is
obsolete, except for clients using IPX.

Once a client has finished interacting with the routing table manager, it must call
RtmDeregisterEntity. The routing table manager destroys the handle associated with
the client. To avoid memory leaks, the client must ensure that it releases all handles and
deletes all the routes and next hops that it owns before calling RtmDeregisterEntity .

For sample code that shows how to use these functions, see Register with the Routing
Table Manager and Use the Event Notification Gal/back.

Enumerating Registered Entities
Once a client has registered, the client can obtain a list all the other clients that have
registered with the routing table manager. Some clients must perform certain operations
if the presence of a particular type of client is detected.

The client can call the RtmGetRegisteredEntities function. A buffer of
RTM_ENTITY _INFO structures is returned. Once the client has processed this
information, the client should call RtmReleaseEntities to release the handles in the
RTM_ENTITY _INFO structures.

If the routing table manager client supplied a callback function in the call to
RtmRegisterEntity, the client is notified when any other clients register or unregister.

For sample code that shows how to use these functions, see Enumerate the Registered
Entities and Use the Event Notification Gal/back.

Using Methods
When a client registers with the routing table manager, it can export a set of methods.
These methods are used by other clients to obtain client-specific information. Methods
enable private communication between clients of the routing table manager.

A client can obtain the list of methods exported by another client. The client calls the
RtmGetEntityMethods function, supplying the target client's handle.

370 Volume 5 Routing

Each method exported by a client is uniquely identified by its method identifier. Each
client can export up to 32 methods. Each method corresponds to a bit set in the
MethodType member of the RTM_ENTITY _EXPORT _METHOD structure. To invoke
multiple methods, the client should perform a logical OR of the identifiers for those
methods. The syntax and semantics of input and output structures for each protocol
must be specified when the protocol is implemented.

Note Method identifier values that correspond to a bit set in the lower half of the
MethodType member (the lower 16 bits) are reserved by Microsoft.

To invoke a second client's method, a client calls the RtmlnvokeMethod function. The
routing table manager arbitrates all requests to invoke a client's methods. The routing
table manager performs two functions when it arbitrates between clients:

• Preventing the second client from invoking a method for a client that is unregistering.

• Holding an "invoke" request when methods are blocked, and allowing the request to
continue when the methods are unblocked.

If a client must prevent other clients from executing its methods, the client can call
RtmBlockMethods. The routing table manager will not allow a call to
RtmlnvokeMethod to be processed until the client unblocks its methods again.

Clients typically block methods when making changes to the private data that is
exchanged between clients. Blocking methods is an optional action. A client can also
use internal locks to prevent other clients from invoking methods.

For more sample code that shows how to use these functions, see Obtain and Call the
Exported Methods for a Client.

Using Opaque Pointers
Clients often must store additional, client-specific information about destinations. The
routing table manager enables clients to store this information in destination structures in
the routing table. The information is stored and retrieved using "opaque pointers". The
information stored is private, and accessible only to the client that owns the opaque
pointer.

For example, the multicast group manager keeps a list of multicast forwarding entries
that are dependent on a particular destination. The multicast group manager uses an
opaque pOinter in that destination. In another example, a routing protocol that advertises
a particular destination can keep information related to its own route advertisement of
the destination using an opaque pOinter, even though it does not own the best route.

The number of opaque pointers is limited; these pOinters are allocated to clients on a
first-come, first-served basis. The router administrator must allocate the correct number
of pOinters during the router configuration; therefore, routing protocols and other clients
must document their use of opaque pointers.

Chapter 11 Routing Table Manager Version 2 371

Accessing Opaque Pointers
Clients are able to access the information stored in destinations by using opaque
pointers. To use the storage, the client must first call
RtmGetOpaquelnformationPointer to obtain the pointer. Whenever a change to the
information is necessary, the client must first lock the destination by calling
RtmLockDestination (with the LockDest parameter set to TRUE). Once the destination
is locked, the client can make the necessary change. The destination can be unlocked
using another call to RtmLockDestination (with the LockDest parameter set to FALSE).

The RtmLockDestination function also allows a client to use either a read lock or a
write lock, using the Exclusive parameter. A client should use the write lock only when it
is making changes to the information kept using the opaque pointer. Clients can use the
use the read lock to view the opaque pOinter information stored in a destination.

For sample code that shows how to use these functions, see Access the Opaque
Pointers in a Destination.

Marking Routes for the Hold-Down State
Some clients, such as distance vector protocols like RIP and DVMRP, require that
destinations be advertised as unreachable for a certain time after the last route to the
destination is deleted. The last route that is deleted must be advertised as unreachable
even if newer routes arrive in the meantime. The last route deleted is marked as being in
a "hold-down state". The hold-down process prevents the formation of routing loops.
Routing loops are caused when a routing protocol advertises obsolete routing
information. When the hold-down expires, these protocols resume their advertisement
with the new best route.

A protocol that implements hold-down states indicates that a destination is in a hold
down state by using the RtmHoldDestination function. The client calls this function
when it advertises the best route to this destination. If all routes to this destination are
later deleted, the last route that is deleted is kept in a hold-down state for the period of
time specified in the earlier call to RtmHoldDestination.

When a protocol advertises a destination, the route information that is used depends on
whether the protocol uses hold-down states and if a route in the hold-down state exists
for the destination.

Protocols that do not use hold-down states can ignore route information that relates to
hold-down states for a destination, and always advertise the best route.

For sample code that shows how to use these functions, see Use the Route Hold-Down
State.

Adding Routes
Once a client has discovered a route, the client can add that route to the routing table.

372 Volume 5 Routing

~ To add a route, the client should take the following steps
1. If the client has already cached the next-hop handle, go to step 4.

2. Create an RTM_NEXTHOP _INFO structure and fill it with the appropriate information.

3. Add the next hop to the routing table by calling RtmAddNextHop. The routing table
manager returns a handle to the next hop. If the next hop already exists, the routing
table does not add the next hop; instead it returns the handle to the next hop.

4. Create an RTM_ROUTE_INFO structure and fill it with the appropriate information,
including the next-hop handle returned by the routing table manager.

5. Add the route to the routing table by calling RtmAddRouteToDest. The routing table
manager compares the new route to the routes that are already in the routing table.
Two routes are equal if all of the following conditions are true:

• The route is being added to the same destination.

• The route is being added by the same client (as specified by the Owner member of
the RTM_ROUTE_INFO structure).

• The route is advertised by the same neighbor (as specified by the Neighbor
member of the RTM_ROUTE_INFO structure).

If the route exists, the routing table manager returns the handle to the existing route.
Otherwise, the routing table manager adds the route and returns the handle to the
new route.

The client can set the Change_Flags parameter to RTM_ROUTE_CHANGE_NEW to
instruct the routing table manager to add a new route on the destination, even if
another route with the same owner and neighbor fields exists.

The client can set the Change_Flags parameter to RTM_ROUTE_CHANGE_FIRST
to cause the routing table manager to update the first route on the destination owned
by the caller. This update can be performed if such a route exists, even if the neighbor
field does not match. This flag is used by clients that maintain a single route per
destination.

A client can remove routes from the routing table by calling the RtmDeleteRouteToDest
function.

For sample code that shows how to use these functions, see Add and Update Routes
Using RtmAddRoute ToDest.

Retrieving Route Information
There are three methods used to obtain route information from the routing table
manager:

1. Enumerating routes (described in Enumerating Routing Table Entries)

2. Searching for specific routes (described in Finding Specific Information in the Routing
Table)

3. Retrieving changed destinations (described in Receiving Notification of Changes)

Chapter 11 Routing Table Manager Version 2 373

Updating Routes
A client can use the either of the following two methods to update or remove routes that
it owns:

• Updating Routes Using RtmAddRouteToDest

• Updating Routes In Place Using RtmUpdateAndUnlockRoute

Updating Routes Using RtmAddRouteToDest
If the client does not require efficiency when adding a route, it should use the following
method of updating routes. This method is less efficient since it requires obtaining a
handle to the route, requires passing an RTM_ROUTE_INFO structure to and from the
routing table manager, and takes more time. Since RtmAddRouteToDest does not
manipulate the routing table directly, using this method trades efficiency for simplicity.

~ To update a route, the clierit should
1. Call RtmGetRoutelnfo with the handle to the route. The handle is either one

previously cached by the client, or returned by the routing table manager from a call
that returns a route handle (such as RtmGetRoutelnfo).

2. Make the changes to the RTM_ROUTE_INFO structure that is returned by the routing
table manager.

3. Call RtmAddRouteToDest with the handle to the route and the changed
RTM_ROUTE_INFO structure.

For sample code that shows how to use these functions, see Add and Update Routes
Using RtmAddRouteToDest.

Updating Routes In Place Using RtmUpdateAndUnlockRoute
In-place updating is generally more efficient than updating the routing table with an
indirect method such as that used by the RtmAddRouteToDest function. This method is
more efficient because the client is not required to obtain a handle, not required to pass
an RTM_ROUTE_INFO structure to and from the routing table manager, and takes less
time. However, directly updating the routing table can be risky, since the routing table
manager is not functioning as an intermediary.

~ To update a route, the client should take the following steps
1. Lock the route by calling RtmLockRoute. (Currently, this function actually locks the

route's destination). The routing table manager returns a pOinter to the route.

2. Use the painter to the routing table manager's RTM_ROUTE_INFO structure
(obtained in step 1) to make the necessary changes to the route. Only certain
members can be modified when updating in place. These members are: Neighbour,
Preflnfo, EntitySpecificlnfo, BelongsToViews, and NextHopsList.

374 Volume 5 Routing

Note If the client adds information to either the Neighbour or NextHopList
members, the client must call RtmReferenceHandles to explicitly increment the
reference count that the routing table manager keeps on the next-hop object.
Similarly, if the client removes information from the NextHopUst member, the client
must call RtmReleaseNextHops to decrement the reference count.

3. Call RtmUpdateAndUnlockRoute to notify the routing table manager that a change
has taken place. The routing table manager commits the changes, updates the
destination to reflect the new information, and then unlocks the route.

For sample code that shows how to use these functions, see Update a Route In Place
Using RtmUpdateAndUnlockRoute.

Receiving Notification of Changes
Many clients can simultaneously update the routing table, and clients must be notified
when changes to routing information occur. For example, a client that is not notified of
another client's changes to the routing table could advertise outdated route information.
This can be prevented by programming clients to register with the routing table manager
to be notified of changes in the routing table. The routing table manager sends
notifications of changes to all clients that register to receive them.

Change notification applies only to destinations. There is no way to query the routing
table manager for changes to a particular route.

When a change is made to one of the routes to a destination, the routing table manager
sends out a notification that a change has occurred. This notification goes only to those
clients that have registered with the routing table manager for the type of change that
has occurred. All changes to routing information in the routing table manager occur in
one or more views, and change notification messages can be requested in any subset of
supported views.

There are currently three types of change notifications for which a client can register:

• Notification of any change to the routes for the destination. This request is made using
the RTM_CHANGE_ TYPE_ALL flag.

• Notification if the best route to the destination changes, or any of the following
information for the current best route changes:

• preference

• next hops

• route flags
This request is made using the RTM_CHANGE_ TYPE_BEST flag.

Chapter 11 Routing Table Manager Version 2 375

• Notification of all changes of the type RTM_CHANGE_ TYPE_BEST, except changes
in non-forwarding flags in the best route. For example, the router manager waits for
changes of this type in the unicast view, and updates information in the unicast
forwarder. This request is made using the
RTM_CHANGE_ TYPE_FORWARDING flag.

Requests for notifications of changes can also be restricted to a subset of destinations
by registering for notifications of changes only to "marked" destinations. The client can
mark a destination for change notification by calling
RtmMarkDestForChangeNotification.

When a change occurs, the routing table manager checks to see if there are any clients
that must be notified of this change. A client must be notified of a change if all of the
following conditions are met:

• the type of change that occurred is a type for which the client has registered for
notification

• changes to a destination that the client has marked have occurred (or any destination,
if the client has requested changes for all destinations)

• the client requested change notification for the view in which this change occurred

If the change meets all of the above criteria, the change is cached and the client is
notified.

The notification does not specify what the actual changes are, only that they have
occurred. The client must retrieve the changes by calling RtmGetChangedDests using
the notification handle that was obtained from a previous call to
RtmRegisterForChangeNotification.

Registering for Change Notification
A client can register to receive notification of changes to routing information that is stored
in the routing table manager. This request can only be made after a client has registered
with the routing table manager.

To register for change notification, a client must call
RtmRegisterForChangeNotification, specifying the types of changes for which the
client must receive notification. If the client must be notified of change to specific
destinations, the client calls RtmMarkDestForChangeNotification once for each
destination.

The client can stop receiving change notifications by calling
RtmDeregisterFromChangeNotification.

For sample code that shows how to use these functions, see Register For Change
Notification.

376 Volume 5 Routing

Retrieving Changes
Once a client has registered for notification of certain changes and one or more of these
changes occurs, the client receives a notification from the routing table manager. The
routing table manager uses the RTM_EVENT _CALLBACK callback that was supplied in
a previous call to RtmRegisterEntity. The routing table manager indicates that a
RTM_CHANGE_NOTIFICATION event has occurred.

~ After the client receives notice of the change, the client can retrieve the changes by
taking the following steps
1. Call RtmGetChangedDests to retrieve a set of changes.

2. Process the changes.

3. Release the destinations using RtmReleaseChangedDests.

4. Repeat steps 1, 2, and 3 until RtmGetChangedDests returns
ERROR_NO_MORE_ITEMS.

For sample code that shows how to use these functions, see Use the Event Notification
Callback.

Retrieving Change Status and Ignoring Changes
The client can query the routing table manager to find out if a notification of a change to
a destination is pending by calling RtmGetChangeStatus. This function returns TRUE
until the caller retrieves this change by calling RtmGetChangedDests.

A client can use this query to avoid performing an action that would have to be undone
after the change notification is received and processed. Using this feature allows the
client to work efficiently by deferring certain operations to a later time.

The client can also ignore a pending change notification for a destination by calling
RtmlgnoreChangedDests. A later call to RtmGetChangedDests will not return this
destination unless another change occurs after the call to RtmlgnoreChangedDests.

Working with Next Hops
The RTMv2 API allows clients to work with the list of next hops that are associated with
routes and destinations. Clients can add or update a next hop by calling
RtmAddNextHop. Clients can delete a next hop using RtmDeleteNextHop. Clients can
search for next hops by calling RtmFindNextHop.

~ Clients can also can update the next hop directly
1. Call RtmLockNextHop with the Lock parameter set to TRUE to lock the next hop and

obtain a direct pOinter to the routing table manager's RTM_NEXTHOP _INFO
structure.

2. Use the pOinter returned by the routing table manager to make the necessary
changes to the next hop.

Chapter 11 Routing Table Manager Version 2 377

Note The next-hop address and interface index fields in the next hop uniquely
identify the next hop and should not be modified.

3. Call RtmLockNextHop with the Lock parameter set to FALSE to unlock the next hop.

Enumerating Routing Table Entries
The enumeration functions allow a client to retrieve information about a specific type of
routing table object (routes, destinations, and next hops). Both routing protocols and
administration programs can use these functions to locate specific data.

~ The basic process for each enumeration is as follows
1. Start the enumeration by obtaining a handle from the routing table manager. Call

RtmCreateData_ TypeEnum (where Data_ Type is either Dest, Route, or NextHop),
and supply the criteria that specifies the kind of information being enumerated. This
criteria includes (but is not limited to) a range of destinations, a particular interface,
and the views in which the information resides.

2. Call RtmGetEnumData_ Type one or more times to retrieve data until the routing
table manager returns ERROR_NO_MORE_ITEMS. The route, destination, and next
hop data is returned in order of the address information (and the preference and
metric values, if routes are being enumerated).

3. Call RtmReleaseData_ Type when the handles or information structures associated
with the enumeration are no longer needed.

4. Call RtmDeleteEnumHandle to release the enumeration handle (returned when the
enumeration was created). This function is used to release the handle for all types of
enumerations.

Note Routes that are in the hold-down state are only enumerated when a client
requests data from all views using RTM_VIEW_MASK_ANY.

For sample code that shows how to use these functions, see Enumerate All Destinations
and Enumerate All Routes.

Finding Specific Information in the Routing Table
Clients must be able to locate specific information in the routing table, rather than being
required to enumerate all the data. The RTMv2 API provides the ability to search for
specific destinations, routes, and next hops based on certain criteria.

Retrieving Information
RTMv2 allows a client to retrieve the information referred to by a given handle using the
RtmGetData_ Typelnfo functions, where Data_ Type is either Entity, Dest, Route, or
NextHop.

378 Volume 5 Routing

Each of these function calls has a corresponding RtmReleaseData_ Type function to
release the handles associated with the information structure returned by the routing
table manager.

Note Information for clients is available only in the current instance and address family.

For sample code that shows how to use these functions, see Search For the Best Route.

Using RtmGetExactMatchRoute and RtmGetExactMatchDestination
The RtmGetExactMatchRoute and RtmGetExactMatchDestination functions are used
by clients to find a specific route or destination. These functions save time by doing the
comparison work for the client.

For example, when RIP updates a route, RIP must retain the old metric information. RIP
searches for the route and its information. Then RIP can copy the information and
update the route.

Using RtmGetMostSpecificDestination
The RtmGetMostSpecificDestination function is used to locate the destination that
best matches the specified network prefix.

For example, the multicast group manager uses this function to perform a
Reverse-Path-Forwarding (RPF) check on a Single address. The function can also be
used to find the local next hop for a given remote next hop.

For sample code that shows how to use these functions, see Search for Routes Using
RtmGetMostSpecificDestination and RtmGetLessSpecificDestination and Search For the
Best Route.

Using RtmGetLessSpecificDestination
The RtmGetLessSpecificDestination function is used to locate the destination that is
the next-best match for the specified network prefix. This function can be called
repeatedly to return the next successive less-specific match, until no more destinations
match.

This function is called after a call to RtmGetMostSpecificDestination.

For sample code that illustrates how to use these functions, see Search for Routes
Using RtmGetMostSpecificDestination and RtmGetLessSpecificDestination.

Using RtmlsBestRoute
The RtmlsBestRoute function enables a client to quickly find out whether or not a
particular route is the best route to a destination. For example, a client may need to store
a particular route only if it is the best route. Therefore, the client can call this function,
instead of enumerating all routes and making the comparison itself.

Chapter 11 Routing Table Manager Version 2 379

Maintaining Client-Specific Lists
RTMv2 provides functions that enable clients to create a private list of routes stored in
the routing table. Using this list can be more efficient than enumerating routes from the
routing table.

~ To use this feature, a client should take the following steps
1. Call RtmCreateRouteList to obtain a handle from the routing table manager.

2. Call RtmlnsertlnRouteList whenever the client must add a route to this list.

3. When the client no longer requires the list, it should call RtmDeleteRouteList to
remove the list.

~ If the client must enumerate the routes on the list, the client should take the
following steps
1. Call RtmCreateRouteListEnum to obtain an enumeration handle from the routing

table manager.

2. Call RtmGetListEnumRoutes to obtain the handles to the routes in the list.

3. Call RtmReleaseRoutes to release the handles when no longer required.

For sample code that shows how to use these functions, see Use a Client-Specific
Route List. .

Managing Handles
The routing table manager maintains a reference count for all the information that it
maintains. This prevents the routing table manager from returning to a client handles to
memory that has been freed. Each time a handle is returned to the caller, either as an
explicit handle or as part of an information structure (such as RTM_DEST _INFO), the
reference count for the object that corresponds to the handle is incremented. When the
handle or the information structure is released, the appropriate reference count is
decremented. When the reference count becomes zero, the object is freed.

Each RtinGetOata_ Typelnfo function (where Oata_ Type is either Dest, Route,
NextHop, or Entity) returns an information structure that has a corresponding
RtmReleaseOata_ Typelnfo function. The release functions free the handles returned by
the routing table manager. Similarly there are functions of type RtmReleaseOata_ Types
that release handles that were returned by other functions.

Note The RtmReleaseChangedDests function should be used to release handles that
have been returned by a call to RtmGetChangedDests. Do not use RtmReleaseDests
for changed destination structures.

380 Volume 5 Routing

If a client must keep a specific handle in an information structure while releasing the rest,
the client can call RtmReferenceHandles with that handle before releasing the
information structure. The handle can then later be released by a call to
RtmReleaseData_ Type.

Using Routing Table Manager Version 2
This section contains sample code that can be used when developing clients such as
routing protocols.

Register with the Routing Table Manager
The following sample code shows how to register with the routing table manager.

Enumerate the Registered Entities
The following sample code shows how to create an enumeration of registered clients
and obtain the client information from the routing table manager.

Chapter 11 Routing Table Manager Version 2 381

Obtain and Call the Exported Methods for a Client
The following sample code shows how to obtain a list of methods a client has exported,
and how to invoke a method for that client.

382 Volume 5 Routing

Chapter 11 Routing Table Manager Version 2 383

Register for Change Notification
The following sample code shows how to register for changes to best routes to all
destinations in the unicast view of the routing table.

384 Volume 5 Routing

Add and Update Routes Using RtmAddRouteToDest
The following sample code shows how to add a route to a destination using the routing
table manager as an intermediary.

Chapter 11 Routing Table Manager Version 2 385

386 Volume 5 Routing

Update a Route In Place Using RtmUpdateAndUnlockRoute
The following sample code shows how to update a route directly, using a pOinter to the
actual route information in the routing table.

Chapter 11 Routing Table Manager Version 2 387

Use the Route Hold-Down State
The following sample code shows how to mark a destination for the hold-down state, and
how to create a destination enumeration that includes routes that are in the hold-down
state.

388 Volume 5 Routing

(continued)

Chapter 11 Routing Table Manager Version 2 389

Enumerate All Destinations
The following sample code shows how to enumerate all destinations in the routing table.

390 Volume 5 Routing

(continued)

Chapter 11 Routing Table Manager Version 2 391

Enumerate All Routes
The following sample code shows how to enumerate all routes in the routing table.

392 Volume 5 Routing

(continued)

Search for the Best Route
The following sample code shows how to search the routing table for the best route.

Chapter 11 Routing Table Manager Version 2 393

Search for Routes Using RtmGetMostSpecificDestination and
RtmGetLessSpecificDestination

The following sample code shows how to use RtmGetMostSpecificDestination and
RtmGetLessSpecificDestination to walk up the prefix tree in the routing table.

(continued)

394 Volume 5 Routing

(continued)

Access the Opaque Pointers in a Destination
The following sample code shows how to access the opaque pointer in a destination.

Chapter 11 Routing Table Manager Version 2 395

396 Volume 5 Routing

(continued)

Use a Client-Specific Route List
The following sample code shows how to create and use a client-specific route list.

Chapter 11 Routing Table Manager Version 2 397

(continued)

398 Volume 5 Routing

(continued)

Use the Event Notification Callback
The following sample code shows how to process an RTM_EVENT_CALLBACK
callback received from the routing table manager.

Chapter 11 Routing Table Manager Version 2 399

400 Volume 5 Routing

(continued)

Chapter 11 Routing Table Manager Version 2 401

(continued)

402 Volume 5 Routing

(continued)

Routing Table Manager Version 2 Reference
The following documentation describes the functions, callbacks, structures, and
enumeration types to use when interacting with the routing table manager.

Routing Table Manager Version 2 Functions
The following functions are used to interact with the routing table manager.

Registration Functions
RtmGetRegisteredEntities
RtmReleaseEntities
RtmRegisterEntity
RtmDeregisterEntity

Opaque Pointer Functions
RtmLockDestination
RtmGetOpaquelnformationPointer

Export Method Functions
RtmGetEntityMethods
RtmlnvokeMethod
RtmBlockMethods

Chapter 11 Routing Table Manager Version 2 403

Handle to Information Structure Functions
RtmGetEntitylnfo
RtmGetDestlnfo
RtmGetRoutelnfo
RtmGetNextHoplnfo
RtmReleaseEntitylnfo
RtmReleaseDestlnfo
RtmReleaseRoutelnfo
RtmReleaseNextHoplnfo

Routing Table Insertion and Deletion Functions
RtmAddRouteToDest
RtmDeleteRouteToDest
RtmHoldDestination
RtmGetRoutePointer
RtmLockRoute
RtmUpdateAndUnlockRoute

Routing Table Query Functions
RtmGetExactMatchDestination
RtmGetMostSpecificDestination
RtmGetLessSpecificDestination
RtmGetExactMatchRoute
RtmlsBestRoute

404 Volume 5 Routing

Next-Hop Insertion and Deletion Functions
RtmAddNextHop
RtmFindNextHop
RtmDeleteNextHop
RtmGetNextHopPointer
RtmLockNextHop

Routing Table Enumeration Functions
RtmCreateDestEnum
RtmGetEnumDests
RtmReleaseDests
RtmCreateRouteEnum
RtmGetEnumRoutes
RtmReleaseRoutes
RtmCreateNextHopEnum
RtmGetEnumNextHops
RtmReleaseNextHops
RtmDeleteEnumHandle

Change Notification Functions
RtmRegisterForChangeNotification
RtmGetChangedDests
RtmReleaseChangedDests
RtmlgnoreChangedDests
RtmGetChangeStatus
RtmMarkDestForChangeNotification
RtmlsMarkedForChangeNotification
RtmDeregisterFromChangeNotification

Route List Function
RtmCreateRouteList
RtmlnsertlnRouteList
RtmCreateRouteListEnum
RtmGetListEnumRoutes
RtmDeleteRouteList

Handle Management Functions
RtmReferenceHandles

Chapter 11 Routing Table Manager Version 2 405

RtmAddNextHop
The RtmAddNextHop function adds a new next-hap entry or updates an existing next
hop entry to a client's next-hop list. If a next hop already exists, the routing table
manager returns a handle to the next hop. This handle can then be used to specify a
next hop to a destination when adding or updating a route.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.
NextHoplnfo

[in] Pointer to a structure that contains information identifying the next hop to add or
update. The NextHopOwner and State members are ignored; these members are set
by the routing table manager. The Flags member can be one of the following values.
Flag Description

RTM_NEXTHOP _FLAGS_REMOTE This next hop points to a remote destination
that is not directly reachable. To obtain the
complete path, the client must perform a
recursive lookup.

RTM_NEXTHOP _FLAGS_DOWN This flag is reserved for future use.

NextHopHandle
[in, out] If the client has a handle (client is updating a next hop): On input,
NextHopHandle is a pointer to the next-hop handle. On output, NextHopHandle is
unchanged.
If the client does not have a handle and a handle must be returned (client is adding or
updating a next hop): On input, NextHopHandle is a pointer to NULL. On output,
NextHopHandle receives a painter to the next-hop handle. The values in NextHoplnfo
are used to identify the next hop to update.

If a handle does not need to be returned (client is adding or updating a next hop): On
input, NextHopHandle is NULL. The values in NextHoplnfo are used to identify the
next hop to update.

ChangeFlags
[out] On input, ChangeFlags is a pointer to an RTM_NEXTHOP _CHANGE_FLAGS
structure. On output, ChangeFlags receives a flag indicating whether a next hop was
added or updated. If ChangeFlags is zero, a next hop was updated; if Change Flags is
RTM_NEXTHOP _CHANGE_NEW, a next hop was added.

406 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The calling client does not own this next hop.

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation.

Remarks
If NextHopHandle points to a non-NULL handle, the next hop specified by the handle is
updated. Otherwise, a search is made for the address specified by NextHoplnfo. If a next
hop is found, it is updated. If no match is found, a new next hop is added.

If a handle was returned, release the handle when it is no longer required by calling
RtmReleaseNextHops.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

Next Hop Flags, RTM_NEXTHOP _INFO, RtmDeleteNextHop, RtmFindNextHop,
RtmGetNextHopPointer, RtmLockNextHop, RtmReleaseNextHops

RtmAddRouteToDest
The RtmAddRouteToDest function adds a new route to the routing table or updates an
existing route in the routing table. If the best route changes, a change notification is
generated.

Parameters
RtmRegHandle

Chapter 11 Routing Table Manager Version 2 407

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHandle
[in, out] If the client has a handle (updating a route): On input, RouteHandle is a
pOinter to the route handle. On output, RouteHandle is unchanged.

If the client does not have a handle and a handle must be returned (client is adding or
updating a route): On input, RouteHandle is a pointer to NULL. On output,
RouteHandle receives a pOinter to the route handle. The values in Routelnfo are used
to identify the route to update.

If a handle does not need to be returned (client is adding or updating a route): On
input, RouteHandle is NULL. The values in Routelnfo are used to identify the route to
update.

DestAddress
[in] Pointer to the destination network address to which the route is being added or
updated.

Routelnfo
[in] Pointer to the route information to add or update.

Time ToUve
[in] Specifies the time (in milliseconds) after which the route is expired. Specify
INFINITE to prevent routes from expiring.

RouteUstHandle
[in] Handle to a route list to which to move the route. This parameter is optional and
can be set to NULL.

NotifyType
[in] Set this parameter to NULL. NotifyType is reserved for future use.

NotifyHandle
[in] Set this parameter to NULL. NotifyHandle is reserved for future use.

ChangeFlags
[in, out] On input, ChangeFlags is a pOinter to an RTM_ROUTE_CHANGE_FLAGS
structure indicating whether the routing table manager should add a new route or
update an existing one. On output, Change Flags is a painter to an
RTM_ROUTE_CHANGE_FLAGS structure that receives the flag indicating the type
of change that was actually performed, and if the best route was changed. The
following flags are used.

408 Volume 5 Routing

Constant

Return Values

Description

Indicates that the routing table manager
should not check the Neighbour member of
the Routelnfo parameter when determining if
two routes are equal.

Returned by the routing table manager to
indicate a new route was created.

Returned by the routing table manager to
indicate that the route that was added or
updated was the best route, or that because of
the change, a new route became the best
route.

If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALlD_HANDLE

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Remarks

The calling client does not own this route.

The handle is invalid.

A parameter contains incorrect information.

There is not enough memory to complete this
operation.

Two routes are considered equal if the following values are equal:

• The destination network

• The owner of the route

• The neighbor that supplied the route

When a client is updating a route, it is more efficient to pass a handle to the route to
update in the RouteHandle parameter, because the routing table manager does not
have to perform a search for the route in the routing table.

If a handle was returned, release the handle when it is no longer required by calling
RtmReleaseRoutes.

For sample code using this function, see Add and Update Routes Using
RtmAddRoute ToOest.

Chapter 11 Routing Table Manager Version 2 409

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NET _ADDRESS, RTM_ROUTE_INFO, RtmDeleteRouteToDest,
RtmGetRoutePointer, RtmHoldDestination, RtmLockRoute, RtmReleaseRoutes,
RtmUpdateAndUnlockRoute

RtmBlockMethods
The RtmBlockMethods function blocks or unblocks the execution of methods for a
specified destination, route, or next hop, or for all destinations, routes, and next hops.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

TargetHandle
[in] Handle to a destination, route, or next hop for which to block methods. This
parameter is optional and can be set to NULL to block methods for all targets.

TargetType
[in] Specifies the type of the handle in TargetHandle. This parameter is optional and
can be set to NULL to block methods for all targets. The following flags are used.

Type Description

DEST_TYPE

NEXTHOP _TYPE

ROUTE_TYPE

BlockingFlag

TargetHandle is a destination.

TargetHandle is a next hop.

TargetHandle is a route.

[in] Specifies whether to block or unblock methods. The following flags are used.

410 Volume 5 Routing

Constant

RTM_BLOCK_METHODS

RTM_RESUME_METHODS

Return Values

Description

Block methods for the specified target.

Unblock methods for the specified target.

If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the fol!owing error codes.

Value Meaning

The handle is invalid.

Remarks
Currently, this function does not support blocking methods for a specific destination,
route, or next hop.

Methods are typically blocked when client-specific data in the route is being changed; a
client blocks methods, rearranges data, and then unblocks methods.

Clients should only block methods for a short period of time. If a second client calls
RtmlnvokeMethod and the first client's methods are blocked, RtmlnvokeMethod will
not return until methods are unblocked and the function call is completed.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetEntityMethods, RtmlnvokeMethod

RtmCreateDestEnum
The RtmCreateDestEnum function starts an enumeration of the destinations in the
routing table. A client can enumerate destinations for one or more views, or for all views.

Parameters
RtmRegHandle

Chapter 11 Routing Table Manager Version 2 411

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

TargetViews
[in] Specifies the set of views to use when creating the enumeration. The following
flags are used.

Constant

RTM_ VIEW~MASK_UCAST

RTM_ VI EW_MASK_MCAST

EnumFlags

Description

Return destinations from all views. This is the
default value.

Return destinations from the unicast view.

Return destinations from the multicast view.

[in] Specifies which destinations to include in the enumeration. Two sets of flags are
used; use one flag from each set (for example, use RTM_ENUM_ALL_DESTS and
RTM_ENUM_START).

Constant

RTM_ENUM_ALL_DESTS

RTM_ENUM_OWN_DESTS

Constant

NetAddress

Description

Return all destinations.

Return destinations for which the client owns
the best route to a destination in any of the
specified views.

Description

Enumerate destinations starting at the
specified address/mask length (such as 10/8).
The enumeration continues to the end of the
routing table.

Enumerate destinations in the range specified
by the address/mask length (such as 10/8).

Enumerate destinations starting at 0/0. Specify
NULL for NetAddress.

[in] Pointer to an RTM_NET _ADDRESS structure that contains the starting address of
the enumeration. Specify NULL if EnumFlags contains RTM_ENUM_START.

412 Volume 5 Routing

Protocolld
[in] Specifies the protocol identifier used to determine the best route information
returned by the RtmGetEnumDests function. The ProtocollD is not part of the search
criteria. The routing table manager uses this identifier to determine which route
information to return (for example, if a client specifies the RIP protocol identifier, the
best RIP route is returned, even if a non-RIP route is the best route to the
destination).

Specify RTM_BEST _PROTOCOL to return a route regardless of which protocol owns
it. Specify RTM_ THIS_PROTOCOL to return the best route for the calling protocol.

RtmEnumHandle
[out] On input, RtmEnumHandle is a pointer to NULL. On output, RtmEnumHandle
receives a painter to a handle to the enumeration. Use this handle in all subsequent
calls to RtmGetEnumDests, RtmReleaseDests, and RtmDeleteEnumHandle.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER A parameter contains incorrect information.

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation.

ERROR_NOT _SUPPORTED One or more of the specified views is not
supported.

Remarks
If EnumFlags contains RTM_ENUM_RANGE, use NetAddress to specify the range of
the routing table to enumerate. For example, if a client sets NetAddress to 10/8,
destinations in the range 10.0.0.0/8 to 10.255.255.255/32 are returned.

When the enumeration handle is no longer required, release it by calling
RtmDeleteEnumHandle.

For sample code using this function, see Enumerate All Destinations.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

Chapter 11 Routing Table Manager Version 2 413

RTM_NET _ADDRESS, RtmDeleteEnumHandle, RtmGetEnumDests,
RtmReleaseDests

RtmCreateNextHopEnum

Constant

The RtmCreateNextHopEnum enumerates the next hops in the next-hop list.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EnumFlags
[in] Specifies which next hops to include in the enumeration. The following flags
are used.

NetAddress

Description

Enumerate next hops starting at the specified address/mask length
(such as 10/8). The enumeration continues to the end of the next
hop list.

Enumerate next hops in the specified range specified by the
address/mask length (such as 10/8).

Enumerate next hops starting at 0/0. Specify NULL for NetAddress.

[in] Pointer to an RTM_NET _ADDRESS structure that contains the starting address of
the enumeration. Specify NULL if EnumFlags contains RTM_ENUM_START.

RtmEnumHandle
[out] On input, RtmEnumHandle is a pointer to NULL. On output, RtmEnumHandle
receives a pointer to a handle to the enumeration. Use this handle in all subsequent
calls to RtmGetEnumNextHops, RtmReleaseNextHops, and
RtmDeleteEnumHandle.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

414 Volume 5 Routing

Value Meaning

ERROR_INVALlD_PARAMETER A parameter contains incorrect information,

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation,

Remarks
If EnumFlags contains RTM_ENUM_RANGE, use NetAddress to specify the range of
the routing table to enumerate, For example, if a client sets NetAddress to 10/8, next
hops in the range 10,0,0,018 to 10,255,255,255/32 are returned,

When the enumeration handle is no longer required, release it by calling
RtmDeleteEnumHandle,

Windows NT/2000: Requires Windows 2000,
Header: Declared in Rtmv2,h,
Library: Use Rtm,lib,

RTM_NET _ADDRESS, RtmDeleteEnumHandle, RtmGetEnumNextHops,
RtmReleaseNextHops

RtmCreateRouteEnum
The RtmCreateRouteEnum function creates an enumeration of the routes for a
particular destination or range of destinations in the routing table, A client can enumerate
routes for one or more views, or for all views,

Parameters
RtmRegHandle

Chapter 11 Routing Table Manager Version 2 415

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestHandle
[in] Handle to the destination for which to enumerate routes. This parameter is
optional, and can be set to NULL; specifying NULL enumerates all routes for all
destinations. Specify NULL if EnumFlags contains RTM_ENUM_START.

TargetViews
[in] Specifies the set of views to use when creating the enumeration. The following
flags are used.

Constant

RTM_ VI EW_MASK_UCAST

RTM_ VI EW_MASK_MCAST

EnumFlags

Description

Return destinations from all views. This is the
default value.

Return destinations from the unicast view.

Return destinations from the multicast view.

[in] Specifies which routes to include in the enumeration. Two sets of flags are used;
use one flag from each set (such as RTM_ENUM_ALL_ROUTES and
RTM_ENUM_START).

Constant

RTM_ENUM_ALL_ROUTES

RTM_ENUM_OWN_ROUTES

Constant

StartDest

Description

Return all routes.

Return only those routes that the client owns.

Description

Enumerate routes starting at the specified
address/mask length (such as 10/S). The
enumeration continues to the end of the
routing table.

Enumerate routes in the specified range
specified by the address/mask length
(such as 10/S).

Enumerate routes starting at 0/0. Specify
NULL for NetAddress.

[in] Pointer to an RTM_NET _ADDRESS structure that contains the starting address of
the enumeration. This parameter is ignored if EnumFlags contains
RTM_ENUM_START.

416 Volume 5 Routing

MatchingFlags
[in] Specifies the elements of the route to match. Only routes that match the criteria
specified in Criteria Route and Criteria Interface are returned, unless otherwise noted.
The following flags are used.

Constant

RTM_MATCH_FULL

RTM_MATCH_INTERFACE

RTM_MATCH_NEIGHBOUR

RTM_MATCH_NEXTHOP

RTM_MATCH_NONE

RTM_MATCH_OWNER

RTM_MATCH_PREF

Criteria Route

Description

Match routes with all criteria.

Match routes that are on the same interface.
The client can specify NULL for CriteriaRoute.

Match routes with the same neighbor.

Match routes that have the same next hop.

Match none of the criteria; all routes for the
destination are returned. The CriteriaRoute
parameter is ignored if this flag is set.

Match routes with same owner.

Match routes that have the same preference.

[in] Specifies which routes to enumerate. This parameter is optional and can be set to
NULL if MatchingFlags contains RTM_MATCH_INTERFACE or
RTM_MATCH_NONE.

Criteria Interface
[in] Pointer to a ULONG that specifies on which interfaces routes should be located.
This parameter is ignored unless MatchingFlags contains
RTM_MATCH_INTERFACE.

RtmEnumHandle
[out] On input, RtmEnumHandle is a pointer to NULL. On output, RtmEnumHandle
receives a pOinter to a handle to the enumeration. Use this handle in all subsequent
calls to RtmGetEnumRoutes, RtmReleaseRoutes, and RtmDeleteEnumHandle.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

Meaning

A parameter contains incorrect information.

There is not enough memory to complete this
operation.

One or more of the specified views is not
supported.

Chapter 11 Routing Table Manager Version 2 417

Remarks
If EnumFlags contains RTM_ENUM_RANGE, use Net Address to specify the range of
the routing table to enumerate. For example, if a client sets NetAddress to 10/8,
destinations in the range 10.0.0.0/8 to 10.255.255.255/32 are returned.

When the enumeration handle is no longer required, release it by calling
RtmDeleteEnumHandle.

For sample code using this function, see Enumerate All Routes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NET _ADDRESS, RTM_ROUTE_INFO, RtmDeleteEnumHandle,
RtmGetEnumRoutes, RtmReleaseRoutes

RtmCreateRouteList
The RtmCreateRouteList function creates a list in which the caller can keep a copy of
the routes it owns.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteUstHandle
[out] On input, RouteListHandle is a pointer to NULL. On output, RouteListHandle
receives a pOinter to a handle to the new route list.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

418 Volume 5 Routing

Value Meaning

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation.

Remarks
For sample code using this function, see Use a Client-Specific Route List.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmDeleteRouteList, RtmlnsertlnRouteList

RtmCreateRouteListEnum
The RtmCreateRouteListEnum function creates an enumeration of routes on the
specified route list.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteListHandle
[in] Handle to the route list to enumerate obtained from a previous call to
RtmCreateRouteList.

RtmEnumHandle
[out] On input, RtmEnumHandle is a pOinter to NULL. On output, RtmEnumHandle
receives a pointer to a handle to the enumeration. Use this handle in all subsequent
calls to functions that enumerate the list of routes.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Chapter 11 Routing Table Manager Version 2 419

Value Meaning

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation.

Remarks
When the enumeration handle is no longer required, release it by calling
RtmDeleteEnumHandle.

For sample code using this function, see Use a Client-Specific Route List.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmDeleteEnumHandle, RtmGetListEnumRoutes

RtmDeleteEnumHandle
The RtmDeleteEnumHandle function deletes the specified enumeration handle and
frees all resources allocated for the enumeration.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EnumHandle
[in] Handle to be released. Any resources associated with the handle are also freed.

Return Values
If the function succeeds, the return value is NO....:ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

420 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateDestEnum, RtmCreateNextHopEnum, RtmCreateRouteEnum,
RtmCreateRouteListEnum, RtmGetEnumDests, RtmGetEnumNextHops,
RtmGetEnumRoutes, RtmReleaseDests, RtmReleaseNextHops,
RtmReleaseRoutes

Rtm DeleteNextHop
The RtmDeleteNextHop function deletes a next hop from the next-hop list.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NextHopHandle
[in] Handle to the next hop to delete. This parameter is optional and can be set to
NULL; if it is NULL, the values in NextHoplnfo are used to identify the next hop to
delete.

NextHoplnfo
[in] Pointer to a structure that contains information identifying the next hop to delete.
This parameter is optional and can be set to NULL; if it is NULL, the handle in
NextHopHandle is used to identify the next hop to delete.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Chapter 11 Routing Table Manager Version 2 421

Value Meaning

ERROR_ACCESS_DENIED The calling client does not own this next hop.

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation.

ERROR_NOT _FOUND The specified next hop was not found.

Remarks
If a client specifies a NextHopHandle, the client should not subsequently release the
handle using RtmReleaseNextHops.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NEXTHOP _INFO, RtmAddNextHop, RtmFindNextHop,
RtmGetNextHopPointer

Rtm DeleteRouteList
The RtmDeleteRouteList function removes all routes from a client-specific route list,
then frees any resources allocated to the list.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteListHandle
[in] Handle to the route list to delete.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

422 VolumeS Routing

Value Meaning

ERROR_INVALlD_HANDLE The handle is invalid.

Remarks
This function also releases the handle to the route list.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateRouteList, RtmlnsertlnRouteList

RtmDeleteRouteToDest
The RtmDeleteRouteToDest function deletes a route from the routing table and
updates the best-route information for the corresponding destination, if the best route
changed. If the best route changes, a change notification is generated.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHandle
[in] Handle to the route to delete.

Change Flags
[out] On input, ChangeFlags is a pOinter to RTM_ROUTE_CHANGE_FLAGS. On
output, ChangeFlags receives RTM_ROUTE_CHANGE_BEST if the best route was
changed.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_ACCESS_DENIED

ERROR_INVALID_HANDLE

ERROR_NOT _FOUN D

Remarks

Chapter 11 Routing Table Manager Version 2 423

Meaning

The calling client does not own this route.

The handle is invalid.

The specified route was not found.

The RouteHandle should not subsequently be released by a client if the client has
already called RtmDeleteRouteToDest using that handle. The RtmDeleteRouteToDest
function deletes the route and releases the handle.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmAddRouteToDest, RtmGetRoutePointer, RtmHoldDestination, RtmLockRoute,
RtmUpdateAndUnlockRoute

Rtm Dereg isterEntity
The RtmDeregisterEntity function unregisters a client from a routing table manager
instance and address family.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

424 Volume 5 Routing

Remarks
Before calling this function, the client must ensure that all locks, handles, and information
structures are released with the appropriate functions.

When the client calls RtmDeregisterEntity, the handle that was returned by a previous
call to RtmRegisterEntity is released. The client must not call any RTMv2 functions
after releasing this handle.

If the client does call any functions that access the routing table manager after the client
has unregistered, the client's process may be terminated.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmRegisterEntity

Rtm DeregisterFromChangeNotification
The RtmDeregisterFromChangeNotification function unregisters a client from change
notification and frees all resources allocated to the notification.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to
RtmRegisterForChangeNotification.

NotifyHandle
[in] Handle to the change notification to unregister, obtained from a previous call to
RtmRegisterForChangeNotification.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Chapter 11 Routing Table Manager Version 2 425

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmMarkDestForChangeNotification, RtmRegisterForChangeNotification,
RtmReleaseChangedDests

RtmFindNextHop
The RtmFindNextHop function finds a specific next hop in a client's next-hop list.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NextHoplnfo
[in] Pointer to an RTM_NEXTHOP _INFO structure that contains information
identifying the next hop to find. Use the NextHopAddress andlnterfacelndex
members to identify the next hop to find.

NextHopHandle
[out] If a handle must be returned: On input, NextHopPointeris a pointer to NULL. On
output, if the client owns the next hop, NextHopPointer receives a pointer to the next
hop handle; otherwise, NextHopPointer remains unchanged.

If a handle does not need to be returned: On input, NextHopPointer is NULL.

NextHopPointer
[out] If a pointer must be returned: On input, NextHopPointeris a pOinter to NULL. On
output, if the client owns the next hop, NextHopPointer receives a pOinter to the next
hop; otherwise, NextHopPointer remains unchanged.

If a painter does not need to be returned: On input, NextHopPointer is NULL.

426 Volume 5 Routing

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DEN I ED

ERROR_NOT _FOUND

Remarks

The calling client does not own this next hop.

The specified next hop was not found.

The NextHopPointer is valid as long as the client has not released NextHopHandle.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NEXTHOP _INFO, RtmAddNextHop, RtmDeleteNextHop,
RtmGetNextHopPointer, RtmLockNextHop

RtmGetChangedDests
The RtmGetChangedDests function returns a set of destinations with changed
information.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NotifyHandle
[in] Handle to a change notification obtained from a previous call to
RtmRegisterForChangeNotification.

Chapter 11 Routing Table Manager Version 2 427

NumDests
[in, out] On input, NumDests is a pOinter to a UINT value specifying the maximum
number of destinations that can be received by ChangedDests. On output, NumDests
receives the actual number of destinations received by ChangedDests.

ChangedDests
[out] On input, ChangedDests is a pointer to an array of RTM_DEST_INFO structures.
On output, ChangedDests is filled with the changed destination information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER

ERROR_NO_MORE_ITEMS

Remarks

A parameter contains incorrect information.

No more changed destinations to retrieve.

A client is notified of changes by an RTM_EVENT_CALLBACK. The
RTM_EVENT_CALLBACK is only used to notify the client, not deliver the changes.
After a change notification is received, the client must call RtmGetChangedDests
repeatedly to retrieve all the changes.

If two or more changes to the same destination have occurred since the notification, only
the latest change is returned.

When a client no longer needs the handles in ChangedDests, the client must use
RtmReleaseChangedDests to release the handles.

For sample code using this function, see Use the Event Notification Cal/back.

Window's NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_EVENT _CALLBACK, RTM_DEST _INFO, RtmGetChangeStatus,
RtmlgnoreChangedDests, RtmlsMarkedForChangeNotification,
RtmMarkDestForChangeNotification, RtmReleaseChangedDests

428 Volume 5 Routing

RtmGetChangeStatus
The RtmGetChangeStatus function checks whether there are pending changes that
have not been retrieved with RtmGetChangedDests.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NotifyHandle
[in] Handle to a change notification.

DestHandle
[in] Handle to the destination for which to return change status.

ChangeStatus
[out] On input, ChangeStatus is a pointer to a BOOl value. On output, ChangeStatus
receives either TRUE or FALSE to indicate if the destination specified by DestHandle
has a change notification pending.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Remarks
This function can be used to make portions of the client code more efficient. For
example, a client may postpone some operation if there are changes that the client has
not yet processed.

This function can also be used to monitor change notification in another thread.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

Chapter 11 Routing Table Manager Version 2 429

RTM_EVENT _CALLBACK, RtmGetChangedDests, RtmlgnoreChangedDests,
RtmlsMarkedForChangeNotification, RtmMarkDestForChangeNotification,
RtmReleaseChangedDests

RtmGetDestlnfo
The RtmGetDestlnfo function returns information about a destination.

Parameters
RtmRegHandle

[in) Handle to the client obtained from a previous call to RtmRegisterEntity.

DestHandle
[in) Handle to the destination for which to return information.

Protocolld
[in) Specifies the protocol identifier. The ProtocollD is not part of the search criteria.
The routing table manager uses this identifier to determine which route information to
return (for example, if a client specifies the RIP protocol identifier, the best RIP route
is returned, even if a non-RIP route is the best route to the destination).

Specify RTM_BEST _PROTOCOL to return a route regardless of which protocol owns
it Specify RTM_ THIS_PROTOCOL to return the best route for the calling protocol.

TargetViews
[in) Specifies the views from which to return information. If the client specifies
RTM_VIEW_MASK_ANY, destination information is returned from all views; however,
no view-specific information is returned.

Destlnfo
[out) On input, Destlnfo is a pointer to an RTM_DEST _INFO structure. On output,
Destlnfo is filled with the requested destination information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

430 Volume 5 Routing

Value Meaning

The handle is invalid.

Remarks
The Destlnfo structure is a variable-sized structure. If the client specifies more than one
view with TargetViews, the size of Destlnfo increases for each view. Use the
RTM_SIZE_OF _DEST _INFO macro to determine how large a Destlnfo structure to
allocate before calling this function. Use the value specified for TargetViews as a
parameter to RTM_SIZE_OF _DEST _INFO.

Use RtmReleaseDestlnfo to release the Destlnfo buffer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_DEST_INFO, RtmReleaseDestlnfo

RtmGetEntitylnfo
The RtmGetEntitylnfo function returns information about a previously registered client.

Parameters
RtmRegHand/e

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EntityHand/e
[in] Handle to the client for which to return information.

Entity/nfo
[out] On input, Entity/nfo is a pOinter to an RTM_ENTITY _INFO structure. On output,
Entity/nfo is filled with the requested information.

Return Values
If the function succeeds, the return value is NO_ERROR.

Chapter 11 Routing Table Manager Version 2 431

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_ENTITY _INFO, RtmReleaseEntitylnfo

RtmGetEntityMethods
The RtmGetEntityMethods function queries the specified client to determine which
methods are available for another client to invoke.

Parameters
RtmRegHand/e

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EntityHand/e
[in] Handle to the client for which to obtain methods.

NumMethods
[in, out] On input, NumMethods specifies a valid pointer to aUINT value. Specify zero
to return the number of methods available to be exported. On output, NumMethods
receives the number of methods exported by the client.

ExptMethods
[out] Receives a pOinter to an RTM_ENTITY _EXPORT _METHOD structure
containing the set of method identifiers requested by the calling client

Return Values
If the function succeeds, the return value is NO_ERROR.

432 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value

Remarks

Meaning

The buffer supplied is not large enough to hold
all the requested information.

Do not call the another client's method directly, always use RtmlnvokeMethod. The
routing table manager performs error checking when using RtmlnvokeMethod to ensure
that the client is not unregistering or already unregistered.

If ERROR_INSUFFICIENT _BUFFER is returned, there may be some data in
ExptMethods; NumMethods specifies how many methods actually fit in the buffer.

When the entity handle is no longer required, release it by calling RtmReleaseEntities.

For sample code using this function, see Obtain and Call the Exported Methods for a
Client.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmBlockMethods, RtmlnvokeMethod

RtmGetEnumDests
The RtmGetEnumDests function retrieves the next set of destinations in the specified
enumeration.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Chapter 11 Routing Table Manager Version 2 433

EnumHandle
[in] Handle to the destination enumeration.

NumDests
[in, out] On input, NumDests is a pointer to a UINT value specifying the maximum
number of destinations that can be received by Destlnfos. On output, NumDests
receives the actual number of destinations received by Destlnfos.

Destlnfos
[out] On input, Destlnfo is a pointer to an RTM_DEST _INFO structure. On output,
Destlnfo receives an array of handles to destinations.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

Remarks

The value painted to by NumRoutes is larger
than the maximum number of routes a client is
allowed to retrieve with one call. Check
RTM_REGN_PROFILE for the maximum
number of destinations that the client is allowed
to retrieve with one call.

There are no more destinations to enumerate.

The Destlnfo structure is a variable-sized structure. If the client specifies more than one
view with TargetViews, the size of Dest/nfo increases for each view. Use the
RTM_SIZE_OF _DEST _INFO macro to determine how large a Dest/nfo structure to
allocate before calling this function. Use the value specified for TargetViews as a
parameter to RTM_SIZE_ OF _DEST _INFO.

When the destinations are no longer required, release them by calling
RtmReleaseDests.

For sample code using this function, see Enumerate All Destinations.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_DEST _INFO, RtmCreateDestEnum, RtmDeleteEnumHandle,
RtmReleaseDests

434 Volume 5 Routing

RtmGetEnumNextHops
The RtmGetEnumNextHops function retrieves the next set of next hops in the specified
enumeration.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EnumHandle
[in] Handle to the next-hop enumeration.

NumNextHops
[in, out] On input, NumNextHops is a pointer to a UINT value specifying the maximum
number of next hops that can be received by NextHopHandles. On output,
NumNextHops receives the actual number of next hops received by NextHopHandles.

NextHopHandles
[out] On input, NextHopHandles pointers to an RTM_NEXTHOP _INFO structure. On
output, NextHopHandles receives an array of handles to next hops.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

Remarks

The value pointed to by NumRoutes is larger
than the maximum number of routes a client is
allowed to retrieve with one call. Check
RTM_REGN_PROFILE for the maximum
number of next hops that the client is allowed to
retrieve with one call.

There are no more next hops to enumerate.

When the next hops are no longer required, release them by calling
RtmReleaseNextHops.

Chapter 11 Routing Table Manager Version 2 435

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateNextHopEnum, RtmDeleteEnumHandle, RtmReleaseNextHops

RtmGetEnumRoutes
The RtmGetEnumRoutes function retrieves the next set of routes in the specified
enumeration.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EnumHandle
[in] Handle to the route enumeration.

NumRoutes
[in, out] On input, NumRoutes is a pointer to aUINT value specifying the maximum
number of routes that can be received by RouteHandles. On output, NumRoutes
receives the actual number of routes received by RouteHandles.

RouteHandles
[out] On input,RouteHandles is a pointer to an RTM_ROUTE_INFO structure. On
output, RouteHandJes receives an array of handles to routes.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

436 Volume 5 Routing

Value

ERROR_INVALlD_PARAMETER

ERROR_NO _MORE_!TEMS

ERROR_NOT_ENOUGH_MEMORY

Remarks

Meaning

The value pOinted to by NumRoutes is larger
than the maximum number of routes a client is
allowed to retrieve with one call. Check
RTM_REGN_PROFILE for the maximum
number of routes that the client is allowed to
retrieve with one call.

There are no more routes to enumerate.

There is not enough memory to complete this
operation.

When the routes are no longer required, release them by calling RtmReleaseRoutes.

For sample code using this function, see Enumerate All Routes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateRouteEnum, RtmDeleteEnumHandle, RtmReleaseRoutes

RtmGetExactMatch Desti nation
The RtmGetExactMatchDestination function searches the routing table for a
destination that exactly matches the specified network address and subnet mask. If an
exact match is found, the information for that destination is returned.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Chapter 11 Routing Table Manager Version 2 437

DestAddress
[in] Pointer to the destination network address.

Protocolld
[in] Specifies the protocol identifier. The ProtocollD is not part of the search criteria.
The routing table manager uses this identifier to determine which destination and
route information to return (for example, if a client specifies the RIP protocol identifier,
the best RIP route is returned, even if a non-RIP route is the best route to the
destination).

Specify RTM_BEST _PROTOCOL to return a route regardless of which protocol owns
it. Specify RTM_ THIS_PROTOCOL to return the best route for the calling protocol.

TargetViews
[in] Specifies the views to return information from. If the client specifies
RTM_VIEW_MASK_ANY, destination information is returned from all views; however,
no view-specific information is returned.

Destlnfo
[out] On input, Destlnfo is a pointer to an RTM_DEST_INFO structure. On output,
Destlnfo is filled with the requested destination information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The specified destination was not found.

Remarks
The Destlnfo structure is a variable-sized structure. If the client specifies more than one
view with TargetViews, the size of Destlnfo increases for each view. Use the
RTM_SIZE_OF _DEST_INFO macro to determine how large a Destlnfo structure to
allocate before calling this function. Use the value specified for TargetViews as a
parameter to RTM_SIZE_OF _DEST _INFO.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_DEST _INFO, RTM_NET _ADDRESS, RtmGetExactMatchRoute,
RtmGetLessSpecificDestination, RtmGetMostSpecificDestination, RtmlsBestRoute

438 Volume 5 Routing

RtmGetExactMatchRoute
The RtmGetExactMatchRoute function searches the routing table for a route that
exactly matches the specified route (indicated by a network address, subnet mask, and
other route-matching criteria). If an exact match is found, the route information is
returned.

Parameters
RtmRegHand/e

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestAddress
[in] Pointer to the destination network address.

MatchingF/ags
[in] Specifies the criteria to use when searching for the route. The following flags are
used.

Constant

RTM_MATCH_FULL

RTM_MATCH_INTERFACE

RTM_MATCH_NEIGHBOUR

RTM_MATCH_NEXTHOP

RTM_MATCH_NONE

RTM_MATCH_OWNER

RTM_MATCH_PREF

Route/nfo

Description

Match routes with all criteria.

Match routes that are on the same interface.

Match routes with the same neighbor.

Match routes that have the same next hop.

Match none of the criteria; all routes for the
destination are returned.

Match routes with the same owner.

Match routes that have the same preference.

[in, out] On input, Route/nfo is a pointer an RTM_ROUTE_INFO structure containing
the criteria that specifies the route to find. On output, Route/nfo receives the route
information for the route that matched the criteria.

Chapter 11 Routing Table Manager Version 2 439

Interfacelndex
[in] If RTM_MATCH_INTERFACE is specified in MatchingFlags, Interfacelndex
specifies the interface on which the route should be present (that is, the route has a
next hop on that interface).

TargetViews
[in] Specifies the views from which to return information. If the client specifies
RTM_ VI EW_MASK_ANY, destination information is returned from all views; however,
no view-specific information is returned.

RouteHandle
[out] If a handle must be returned: On input, RouteHandle is a pOinter to NULL. On
output, RouteHandle receives a pOinter to the route handle; otherwise, RouteHandle
remains unchanged.

If a handle does not need to be returned: On input, RouteHandle is NULL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The specified route was not found.

Remarks
Consider using RtmGetExactMatchDestination if you have no route-matching criteria
specified in the MatchingFlags parameter.

The following members of the RTM_ROUTE_INFO structure that is passed in the
Routelnfo parameter are used to match a route:

• Neighbour
• NextHopsList

• Preflnfo

• RouteOwner

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NET _ADDRESS, RTM_ROUTE_INFO, RtmGetExactMatchDestination,
RtmGetLessSpecificDestination, RtmGetMostSpecificDestination, RtmlsBestRoute

440 Volume 5 Routing

RtmGetLessSpecificDestination
The RtmGetLessSpecificDestination function searches the routing table for a
destination with the next-best-match (longest) prefix, given a destination prefix. The
requested destination information is returned.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestHandle
[in] Handle to the destination.

Protocolld
[in] Specifies the protocol identifier. The ProtocollD is not part of the search criteria.
The routing table manager uses this identifier to determine which route information to
return (for example, if a client specifies the RIP protocol identifier, the best RIP route
is returned, even if a non-RIP route is the best route to the destination).

Specify RTM_BEST _PROTOCOL to return a route regardless of which protocol owns
it. Specify RTM_ THIS_PROTOCOL to return the best route for the calling protocol.

TargetViews
[in] Specifies the views from which to return information. If the client specifies
RTM_VIEW_MASK_ANY, destination information is returned from all views; however,
no view-specific information is returned.

Destlnfo
[out] On input, Destlnfo is a pointer to an RTM_DEST _INFO structure. On output,
Destlnfo is filled with the requested destination information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_PARAMETER

ERROR_NOT _FOUND

Meaning

A parameter contains incorrect information.

The next best destination cannot be found.

Chapter 11 Routing Table Manager Version 2 441

Remarks
The Destlnfo parameter is a variable-sized RTM_OEST _INFO structure. If the client
specifies more than one view using TargetViews, the size of Destlnfo increases for each
view. Use the RTM_SIZE_OF _OEST_INFO macro to determine how much memory to
allocate for the Destlnfo structure before calling this function. Use the value specified for
TargetViews as a parameter to RTM_SIZE_OF --,-0 EST _INFO.

The RtmGetLessSpecificOestination function is used after a call to
RtmGetMostSpecificOestination to return the next-best match for a destination. This
call is also used after a prior call to RtmGetLessSpecificOestination to return the next
successive less-specific match. Clients can use this function to "walk up" the prefix tree
for a destination.

The RtmGetLessSpecificOestination function returns matches until it reaches the
default route, if it exists. Once the default route is found,
RtmGetLessSpecificOestination returns ERROR_NOT _FOUND.

One common use for the RtmGetLessSpecificOestination and
RtmGetMostSpecificOestination functions, is to retrieve each of the matching
destinations.

For sample code using this function, see Search for Routes Using
RtmGetMostSpecificDestination and RtmGetLessSpecificDestination.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_OEST _INFO, RtmGetExactMatchOestination, RtmGetExactMatchRoute,
RtmGetMostSpecificOestination, RtmlsBestRoute

RtmGetListEnumRoutes
The RtrnGetListEnumRoutes function enumerates a set of routes in a specified
route list.

442 Volume 5 Routing

Value

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EnumHandle
[in] Handle to the route list to enumerate.

NumRoutes
[in, out] On input, NumRoutes is a pointer to a UINT value that specifies the maximum
number of routes that can be received by RouteHandles. On output, NumRoutes
receives the actual number of routes received by RouteHandles.

RouteHandles
[out] On input, Destlnfo is a pOinter to an array of RTM_DEST _INFO structures. On
output, Destlnfo is filled with the requested destination information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Meaning

ERROR_INVALlD_PARAMETER The value pointed to by NumRoutes is larger than the
maximum number of routes a client is allowed to retrieve
with one call. Check RTM_REGN_PROFILE for the
maximum number of routes that the client is allowed to
retrieve with one call.

Remarks
Call this function repeatedly to retrieve all routes.

There are no more routes to enumerate when the routing table manager returns zero in
NumRoutes.

For sample code using this function, see Use a Client-Specific Route List.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateRouteListEnum, RtmDeleteEnumHandle

Chapter 11 Routing Table Manager Version 2 443

RtmGetMostSpecificDestination
The RtmGetMostSpecificDestination function searches the routing table for a
destination with the exact match for a specified network address and subnet mask; if the
exact match is not found, the best prefix is matched. The destination information is
returned.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestAddress
[in] Pointer to the destination network address.

Protocolld
[in] Specifies the protocol identifier. The ProtocollD is not part of the search criteria.
The routing table manager uses this identifier to determine which route information to
return (for example, if a client specifies the RIP protocol identifier, the best RIP route
is returned, even if a non-RIP route is the best route to the destination).

Specify RTM_BEST _PROTOCOL to return a route regardless of which protocol owns
it. Specify RTM_ THIS_PROTOCOL to return the best route for the calling protocol.

Target Views
[inlSpecifies the views from which to return information. If the client specifies
RTM_VIEW_MASK_ANY, destination information is returned from all views; however,
no view-specific information is returned.

Destlnfo
[out] On input, Destlnfo is a pointer to an RTM_DEST _INFO structure. On output,
Destlnfo is filled with the requested destination information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_HANDLE

ERROR_NOT _FOUND

The handle was invalid.

The specified destination was not found.

444 Volume 5 Routing

Remarks
The Dest/nfo structure is a variable-sized structure. If the client specifies more than one
view with TargetViews, the size of Dest/nfo increases for each view. Use the
RTM_SIZE_OF _DEST_INFO macro to determine how much memory to allocate for the
Dest/nfo structure before calling this function. Use the value specified for TargetViews as
a parameter to RTM_SIZE_OF _DEST _INFO.

For sample code using this function, see Search for Routes Using
RfmGetMostSpecificDestination and RtmGetLessSpecificDestination.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_DEST _INFO, RTM_NET _ADDRESS, RtmGetExactMatchDestination,
RtmGetExactMatchRoute, RtmGetLessSpecificDestination, RtmlsBestRoute

RtmGetNextHoplnfo
The RtmGetNextHoplnfo function returns information about the specified next hop.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NextHopHandle
[in] Handle to the next hop.

NextHoplnfo
[out] On input, NextHoplnfo a pointer to an RTM_NEXTHOP _INFO structure. On
output, NextHoplnfo is filled with the requested next-hop information.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Chapter 11 Routing Table Manager Version 2 445

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

Remarks
When the next hop handle is no longer required, release it by calling
RtmDeleteNextHop.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NEXTHOP _INFO, RtmReleaseNextHoplnfo

RtmGetNextHopPointer
The RtmGetNextHopPointer function obtains a direct pointer to the specified next hop.
The pOinter allows the next-hop owner direct read access to the routing table manager's
RTM_NEXTHOP _INFO structure.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NextHopHandle
[in] Handle to the next hop.

NextHopPointer
[out] If the client is the owner of the next hop, NextHopPointer receives a pOinter to
the next hop.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

446 Volume 5 Routing

Value

ERROR_ACCESS_DEN I ED

ERROR_INVALlD_HANDLE

Remarks

Meaning

The calling client does not own this next hop.

The handle is invalid.

Clients should only use this pointer for read-only access.

When the next hop handle is no longer required, release it by calling
RtmReleaseNextHoplnfo.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NEXTHOP _INFO, RtmAddNextHop, RtmDeleteNextHop, RtmFindNextHop,
RtmLockNextHop

RtmGetOpaquelnformationPointer
The RtmGetOpaquelnformationPointer function returns a pointer to the opaque
information field in a destination that is reserved for this client. The pointer enables the
client to store client-specific information with the destination in the routing table.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestHandle
[in] Handle to the destination.

OpaquelnfoPointer
[out] On input, OpaquelnfoPointer is a pointer to NULL. On output, OpaquelnfoPointer
receives a pointer to the opaque information pOinter. If a client has not reserved an
opaque pOinter during registration, this parameter remains unchanged.

Chapter 11 Routing Table Manager Version 2 447

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_INVALlD_HANDLE

ERROR_NOT _FOUND

Remarks

Meaning

The handle is invalid.

No opaque pOinter was reserved by the client.

For sample code using this function, see Access the Opaque Pointers in a Destination.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmLockDestination

RtmGetRegisteredEntities
The RtmGetRegisteredEntities function returns information about all clients that have
registered with the specified instance of the routing table manager and specified address
family.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NumEntities
[in, out] On input, NumEntities is a pOinter to a UINT value, which specifies the
maximum number of clients that can be received by Entitylnfos. On output,
NumEntities receives the actual number of clients received by Entitylnfos.

448 Volume 5 Routing

EntityHandles
[out] If handles must be returned: On input, EntityHandles is a pOinter to NULL. On
output, EntityHandles receives a pointer to an array of entity handle; otherwise,
EntityHandles remains unchanged.

If handles do not need to be returned: On input, EntityHandles is NULL.

Entitylnfos
[out] If a pOinter must be returned: On input, Entitylnfos is a pointer to NULL. On
output, Entitylnfos receives a pointer to an array of RTM_ENTITY _INFO structures;
otherwise, Entitylnfos remains unchanged.

If a pointer does not need to be returned: On input, Entitylnfos is NULL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

Remarks

Meaning

The buffer supplied is not large enough to hold
all the requested information.

If ERROR_INSUFFICIENT _BUFFER is returned, there may be some data in
EntityHandles. The NumEntities parameter specifies how many entities were actually
returned.

The RtmGetRegisteredEntities function can be used by routing protocols to verify
which other protocols are running for that address family and routing table manager
instance. Based on the information returned, a client can then perform protocol-specific
processing.

The RTMv2 API supports only one instance of the routing table manager.

When the entities are no longer required, release them by calling RtmReleaseEntities.

For sample code using this function, see Enumerate the Registered Entities.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_ENTITY _INFO, RtmReleaseEntities

Chapter 11 Routing Table Manager Version 2 449

RtmGetRoutelnfo
The RtmGetRoutelnfo function returns information for the specified route.

Parameters
RtmRegHand/e

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHand/e
[in] Handle to the route to find.

Route/nfo
[out] If a painter must be returned: On input, Route/nfo is a painter to NULL. On
output, Route/nfo receives a painter to the route; otherwise, Route/nfo remains
unchanged.

If a painter does not need to be returned: On input, Route/nfo is NULL.

DestAddress
[out] If a pointer must be returned: On input, DestAddress is a pointer to NULL. On
output, DestAddress receives a pointer to the destination's RTM_NET _ADDRESS
structure; otherwise, DestAddress remains unchanged.

If a pointer does not need to be returned: On input, DestAddress is NULL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALI D _HANDLE The handle is invalid.

When the routes are no longer required, release them by calling RtmReleaseRoutelnfo.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

450 Volume 5 Routing

RtmGetRoutePointer
The RtmGetRoutePointer function obtains a direct pointer to a route that allows the
owner of the route read access.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHandle
[in] Handle to the route.

RoutePointer
[in] On input, RoutePointer is a pointer to NULL. On output, RoutePointer receives a
pointer to the route.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_ACCESS_DENIED

ERROR_INVALlD_HANDLE

Remarks

Meaning

The calling client does not own this route.

The handle is invalid.

The pointer that was returned pOints to the public part of the route.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

Chapter 11 Routing Table Manager Version 2 451

RTM_ROUTE_INFO, RtmAddRouteToDest, RtmDeleteRouteToDest,
RtmHoldDestination, RtmLockRoute, RtmUpdateAndUnlockRoute

RtmHoldDesti nation
The RtmHoldDestination function marks a destination to be put in the hold-down state
for a certain amount of time. A hold down only happens if the last route for the
destination in any view is deleted.

Routing protocols that use hold-down states continue to advertise the last route until the
hold-down expires, even if newer routes arrive in the meantime. The route is advertised
as a deleted route. The newer routes are, however, used by the routing protocols for
forwarding purposes. New routes are advertised when the hold down expires.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestHandle
[in] Handle to the destination to mark for holding.

TargetViews
[in] Specifies the views in which to hold the destination.

HoldTime
[in] Specifies how long, in milliseconds, to hold the destination.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER

ERROR_INVALID_HANDLE

The hold time specified was zero.

The handle is invalid.

452 Volume 5 Routing

Remarks
All routes in a hold-down state are held for all views for a single, maximum hold-down
time, regardless of the HoldTime specified.

For sample code using this function, see Use the Route Hold-Down State.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmAddRouteToDest, RtmDeleteRouteToDest, RtmLockRoute,
RtmUpdateAndUnlockRoute

RtmlgnoreChangedDests
The RtmlgnoreChangedDests function skips the next change for each destination if it
has already occurred. This function can be used after RtmGetChangeStatus to prevent
the routing table manager returning this change in response to a call to
RtmGetChangedDests.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NotifyHandle
[in] Handle to a change notification.

NumDests
[in] Specifies the number of destinations in ChangedDests.

ChangedDests
[in] Pointer to an array of RTM_DEST _HANDLE handles indicating the destinations
for which to ignore any pending changes.

Chapter 11 Routing Table Manager Version 2 453

Return Values
If the function succeeds, the return value is NO--,ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

When the destinations are no longer required, release them by calling
RtmReleaseChangedDests.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetChangedDests, RtmGetChangeStatus,
RtmlsMarkedForChangeNotification, RtmMarkDestForChangeNotification,
RtmReleaseChangedDests

Rtm Insertln RouteList
The RtmlnsertlnRouteList function inserts the specified set of routes into the client's
route list. If a route is already in another list, the route is removed from the old list and
inserted into the new one.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteListHandle 0

[in] Handle to the route list to which to add routes. Specify NULL to remove the
specified routes from their old lists.

NumRoutes
[in] Specifies the number of routes in RouteHandles.

454 Volume 5 Routing

RouteHandles
[in] Pointer to an array of route handles to move from the old list to the new list.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

When the routes are no longer required, release them by calling RtmReleaseRoutes.

For sample code using this function, see Use a Client-Specific Route List.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateRouteList, RtmDeleteRouteList

RtmlnvokeMethod
The RtmlnvokeMethod function invokes a method exported by another client.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

EntityHandle
[in] Handle to the client whose methods are being invoked.

Chapter 11 Routing Table Manager Version 2 455

Input
[in] Pointer to an RTM_ENTITY _METHOD_INPUT structure containing the method to
be invoked and a common input buffer.

OutputSize
[in, out] On input, OutputSize is a pointer to a UNIT value specifying the size, in bytes,
of Output. On output, OutputSize receives a painter to a UINT value specifying the
actual size, in bytes, of Output.

Output
[out] Receives a pointer to an array of RTM_ENTITY _METHOD_OUTPUT structures.
Each structure consists of a (method identifier, correct output) tuple.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Remarks
For sample code using this function, see Obtain andCal/ the Exported Methods for a
Client.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
library: Use Rtm.lib.

RTM_ENTITY _METHOD_INPUT, RTM_ENTITY _METHOD_OUTPUT,
RtmBlockMethods, RtmGetEntityMethods

RtmlsBestRoute
The RtmlsBestRoute function returns the setofviewsin which the specified route is the
best route to a destination.

456 Volume 5 Routing

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHandle
[in] Handle to the route to check.

BestinViews
[out] Receives a pointer to the set of views for which the specified route is the best
route.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALI D_HANDLE The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetExactMatchDestination, RtmGetExactMatchRoute,
RtmGetLessSpecificDestination, RtmGetMostSpecificDestination

RtmlsMarkedForChangeNotification
The RtmlsMarkedForChangeNotification function queries the routing table manager to
determine if a destination has previously been marked by a call to
RtmMarkDestForChangeNotification.

Parameters
RtmRegHandle

Chapter 11 Routing Table Manager Version 2 457

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NotifyHandle
[in] Handle to a change notification, obtained from a previous call to
RtmRegisterForChangeNotification.

DestHandle
[in] Handle to the destination to check.

DestMarked
[out] Pointer to a BOOl variable that is TRUE if the destination is marked, FALSE if it
is not.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetChangedDests, RtmGetChangeStatus, RtmlgnoreChangedDests,
RtmMarkDestForChangeNotification, RtmReleaseChangedDests

Rtm LockDesti nation
The RtmlockDestination function locks or unlocks a destination in the routing table.
Use this function to protect a destination while changing opaque pointers.

458 Volume 5 Routing

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

DestHandle
[in] Handle to the destination to lock.

Exclusive
[in] Specifies whether to lock or unlock the destination in an exclusive (TRUE) or
shared (FALSE) mode.

LockDest
[in] Specifies whether to lock or unlock the destination. Specify TRUE to lock the
destination; specify FALSE to unlock it.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALlD_HANDLE

Remarks

The calling client does not own this destination.

The handle is invalid.

This function also locks the associated routes. Avoid locking destinations for long
periods of time, because no other client can access the destination and associated
routes until the lock is released.

A client can use also this function when reading information for a destination, while
preventing changes during the client's read operation. In this case, consider using
RtmGetOestlnfo instead.

For sample code using this function, see Update a Route In Place Using
RtmUpdateAndUnlockRoute.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetOpaquelnformationPointer

Chapter 11 Routing Table Manager Version 2 459

RtmLockNextHop
The RtmLockNextHop function locks or unlocks a next hop. This function should be
called by the next hop's owner to lock the next hop before making changes to the next
hop. A pointer to the next hop is returned.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NextHopHandle
[in] Handle to the next hop to lock or unlock.

Exclusive
[in] Specifies whether to lock or unlock the next hop in an exclusive (TRUE) or shared
(FALSE) mode.

LockNextHop
[in] Specifies whether to lock or unlock the next hop. Specify TRUE to lock the next
hop; specify FALSE to unlock it.

NextHopPointer
[out] On input, NextHopPointer is a pointer to NULL. On output, if the client owns the
next hop, NextHopPointer receives a pointer to the next-hop; otherwise,
NextHopPointer remains unchanged.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DEN lED

ERROR_NOT _FOUND

Remarks

The calling client does not own this next hop.

The specified next hopwas not found.

Clients cannot change the NextHopAddress and Interfacelndex members; these
values are used to uniquely identify a next hop.

460 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NEXTHOP _INFO, RtmAddNextHop, RtmDeleteNextHop, RtmFindNextHop,
RtmGetNextHopPointer

RtmLockRoute
The RtmLockRoute function locks or unlocks a route in the routing table. This protects
the route while a client makes the necessary changes to the client's opaque route
painter.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHandle
[in] Handle to the route to lock.

Exclusive
[in] Specifies whether to lock or unlock the route in an exclusive (TRUE) or shared
(FALSE) mode.

LockRoute
[in] Specifies whether to lock or unlock the route. Specify TRUE to lock the route;
specify FALSE to unlock it.

RoutePointer
[out] If a pOinter must be returned: On input, RoutePointer is a pOinter to NULL. On
output, if the client owns the route, RoutePointer receives a pointer to the next-hop;
otherwise, RoutePointer remains unchanged.

If a handle does not need to be returned: On input, RoutePointer is NULL.

Chapter 11 Routing Table Manager Version 2 461

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_INVALlD_HANDLE

Remarks

The calling client does not own this route.

The handle is invalid.

Do not call any other RTMv2 functions until the route is unlocked by a call to
RtmLockRoute (and the LockRoute parameter is set to FALSE) or a call to
RtmUpdateAndUnlockRoute.

Currently, this function locks the entire destination, not just the route.

Clients can only change the Neighbour, Preflnfo, BelongsToViews,
EntitySpecificlnfo, and NextHopsList members of the RTM_ROUTE_INFO structure.

If any of these values are changed, the client must call RtmUpdateAndUnlockRoute to
notify the routing table manager of the changes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.·
Library: Use Rtm.lib.

RTM_ROUTE_INFO, RtmAddRouteToDest, RtmDeleteRouteToDest,
RtmGetRoutePointer, RtmHoldDestination, RtmUpdateAndUnlockRoute

RtmMarkDestForChangeNotification
The RtmMarkDestForChangeNotification function marks a destination for a client,
requesting that the routing table manager send the client change notifications messages
for marked destination. The client receives change notification messages when a
destination changes. The change notifications inform the client of changes to best-route
information for the specified destination. This function should be used when
RtmRegisterForChangeNotification is called to request changes for specific
destinations (RTM_NOTIFY _ONLY _MARKED_DESTS).

462 Volume 5 Routing

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NotifyHandle
[in] Handle to a change notification obtained via a previous call to
RtmRegisterForChangeNotification.

DestHandle
[in] Handle to the destination that the client is marking for notification of changes.

MarkDest
[in] Specifies whether to mark a destination and receive change notifications. Specify
TRUE to mark a destination and start receive change notifications for the specified
destination. Specify FALSE to stop receiving change notifications a previously marked
destination.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetChangedDests, RtmGetChangeStatus, RtmlgnoreChangedDests,
RtmlsMarkedForChangeNotification, RtmRegisterForChangeNotification,
RtmReleaseChangedDests

Chapter 11 Routing Table Manager Version 2 463

RtmReferenceHandles
The RtmReferenceHandles function increases the reference count for objects pointed
to by one or more handles that the routing manager used to access those objects. A
client should use this function when the client must keep a handle but release the rest of
the information structure associated with the handle.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NumHandles
[in] Specifies the number of handles in RtmHandles.

RtmHandles
[in] Array of handles to increase the reference count for.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Remarks
Always call this function when caching a handle returned by the routing table manager.
This notifies the routing table manager that it should not destroy the object the handle
refers to until the handle is released by the client.

When a client must release the handle, the client must call the appropriate "release"
function, based on the type of handle (for example, for a route,
call RtmReleaseRoutes).

WindowsNT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

464 Volume 5 Routing

RtmDeleteEnumHandle, RtmReleaseChangedDests, RtmReleaseDestlnfo,
RtmReleaseEntitylnfo, RtmReleaseNextHoplnfo, RtmReleaseRoutelnfo

Rtm RegisterEntity
The RtmRegisterEntity function registers a client with an instance of the routing table
manager for a specific address family. The routing table manager returns a registration
handle and a profile of the instance. The profile contains a list of values that are used
when calling other functions (values include the maximum number of destinations
returned in a buffer by a single call).

Registration is the first action a client should take.

Parameters
RtmEntitylnfo

[in] Pointer to an RTM_ENTITY _INFO structure. This structure contains information
identifying the client to the routing table manager (such as the routing table manager
instance and address family to register with).

ExportMethods
[in] Pointer to a list of methods exported by the client. This parameter is optional and
can be set to NULL if the calling client has no methods to export.

EventCalfback
[in] Specifies the callback the routing table manager will use to notify the client of
events. The events are when a client registers and unregisters, when routes expire,
and when changes to the best route to a destination have occurred (only those
changes specified when the client called RtmRegisterForChangeNotification).

ReserveOpaquePointer
[in] Specifies whether to reserve an opaque pointer in each destination for this
instance of the protocol. Specify TRUE to reserve an opaque pointer in each
destination. Specify FALSE to skip this action. These opaque pointers can be used to
point to a private, protocol-specific context for each destination.

Chapter 11 Routing Table Manager Version 2 465

RtmRegProfile
[out] On input, RtmRegProfile is a pointer to an RTM_REGN_PROFILE structure. On
output, RtmRegProfile is filled with the requested registration profile structure. The
client must use the information returned in other function calls (information returned
includes the number of equal-cost next hops and the maximum number of items
returned by an enumeration function call).

RtmRegHandle
[out] Receives a registration handle for the client. This handle must be used in all
subsequent calls to the routing table manager.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ALREADY _EXISTS The specified client has already registered
with the routing table manager.

ERROR_BAD_CONFIGURATION Registry information for the routing table
manager is corrupt.

ERROR_FILE_NOT _FOUND Registry information for the routing table
manager was not found.

ERROR_INVALlD_DATA A parameter contains incorrect information.

ERROR_INVALlD_PARAMETER A parameter contains incorrect information.

ERROR_NO_SYSTEM_RESOUHCES There are not enough available system
resources to complete this operation.

ERROR_NOT _ENOUGH_MEMORY There is not enough memory to complete this
operation.

Remarks
For sample code using this function, see Register With the Routing Table Manager.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_EVENT _CALLBACK, RTM_ENTITY _EXPORT_METHODS, RTM_ENTITY _INFO,
RTM_REGN_PROFILE, RtmDeregisterEntity, RtmGetRegisteredEntities,
RtmReleaseEntities

466 Volume 5 Routing

RtmRegisterForChangeNotification
The RtmRegisterForChangeNotification function informs the routing table manager
that the client should receive change notifications for the specified types of changes. The
routing table manager returns a change notification handle, which the client must use
when requesting change information after receiving a change notification message.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

TargetViews
[in] Specifies the views to register for change notification in.

NotifyFlags
[in] Specifies the flags that indicate the type of changes for which the client requests
notification. The following flags are used. (The flags are to be joined using a
logical OR.)

Constant

RTM_CHANGE_TYPE_ALL

RTM_CHANGE_TYPE_BEST

RTM_CHANGE_TYPE_
FORWARDING

RTM_NOTIFY _ONLY _MARKED_
DESTS

NotifyContext

Description

Notify the client of any change to a destination.

Notify the client of changes to the current best
route, or when the best route changes.

Notify the client of any best route changes that
affect forwarding (such as next hop changes).

Notify the client of changes to destinations that
the client has marked. If this flag is not
specified, change notification messages for all
destinations are sent.

[in] Pointer to a VOID that specifies the context that the RTM_EVENT _CALLBACK
uses to indicate new changes.

NotifyHandle
[out] Receives a handle to a change notification. The handle must be used when
calling RtmGetChangedDests.

Chapter 11 Routing Table Manager Version 2 467

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER

ERROR_NO_SYSTEM
RESOURCES

Remarks

A parameter contains incorrect information.

There are not enough available system
resources to complete this operation. The
routing table manager has exceeded the
maximum number of change notifications that
can be cached.

There is not enough memory to complete this
operation.

One or more of the specified views is not
supported.

A client calls RtmMarkDestForChangeNotification when it is registering for changes to
a specific destination.

The routing table manager uses the RTM_EVENT_CALLBACK callback (specified
when the client called RtmRegisterEntity) to notify the client when changes have
occurred; the client must call RtmGetChangedDests to receive the actual change
information.

For sample code using this function, see Register For Change Notification.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmDeregisterFromChangeNotification, RtmGetChangedDests,
RtmMarkDestForChangeNotification

RtmReleaseChangedDests
The RtmReleaseChangedDests function releases the changed destination handles.

468 Volume 5 Routing

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NotifyHandle
[in] Handle to a change notification, obtained from a previous call to
RtmRegisterForChangeNotification.

NumDests
[in] Specifies the number of destinations in ChangedDests.

ChangedDests
[in] Pointer to an array of RTM_DEST _INFO structures to release. The changed
destinations were obtained from a prior call to RtmGetChangedDests.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

Remarks
Always use this function to release changed RTM_DEST _INFO structures obtained from
a call to RtmGetChangedDests.

The RTM_DEST_INFO structure is a variable-sized structure. If a destination contains
information for more than one view, the size of RTM_DEST _INFO increases for each
view. Use the RTM_SIZE_OF _DEST _INFO macro to determine how large a
ChangedDests buffer to allocate before calling this function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

Chapter 11 Routing Table Manager Version 2 469

RTM_DEST _INFO, RtmGetChangedDests, RtmGetChangeStatus,
RtmlgnoreChangedDests, RtmlsMarkedForChangeNotification,
RtmMarkDestForChangeNotification

RtmReleaseDestlnfo
The RtmReleaseDestlnfo function releases a destination structure.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Destlnfo
[in] Pointer to the destination to release. The destination was obtained from a previous
call to RtmGetDestlnfo.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_DEST _INFO, RtmGetDestlnfo

RtmReleaseDests
The RtmReleaseDests function releases the destination handles.

470 Volume 5 Routing

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NumDests
[in] Specifies the number of destinations in Destlnfos.

Destlnfos
[in] Pointer to an array of RTM_DEST _INFO structures to release. The destinations
were obtained from a previous call to RtmGetEnumDests.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Remarks
Do not use this function to release RTM_DEST _INFO structures obtained from a call to
RtmGetChangedDests. Use RtmReleaseChangedDests instead.

The RTM_DEST _INFO structure is a variable-sized structure. If a destination contains
information for more than one view, the size of RTM_DEST _INFO increases for each
view. Use the RTM_SIZE_OF _DEST _INFO macro to determine how large a Destlnfos
buffer to allocate before calling this function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_DEST _INFO, RtmCreateDestEnum, RtmDeleteEnumHandle,
RtmGetEnumDests

Chapter 11 Routing Table Manager Version 2 471

RtmReleaseEntities
The RtmReleaseEntities function releases the client handles returned by
RtmGetRegisteredEntities.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NumEntities
[in] Specifies the number of clients in EntityHandles.

EntityHandles
[in] Pointer to an array of client handles to release. The handles were obtained from a
previous call to RtmGetRegisteredEntities.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmGetRegisteredEntities

Rtm ReleaseEntitylnfo
The RtmReleaseEntitylnfo function releases a client structure.

472 Volume 5 Routing

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Entitylnfo
[in] Pointer to the handle to release. The handle was obtained with a previous call to
RtmGetEntitylnfo.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_ENTITV _INFO, RtmGetEntitylnfo

Rtm ReleaseNextHoplnfo
The RtmReleaseNextHoplnfo function releases a next-hop structure.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Chapter 11 Routing Table Manager Version 2 473

NextHoplnfo
[in] Pointer to the RTM_NEXTHOP _INFO structure to release. The next hop was
obtained with a previous call to RtmGetNextHoplnfo.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID _HANDLE The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RTM_NEXTHOP _INFO, RtmFindNextHop, RtmGetNextHoplnfo

RtmReleaseNextHops
The RtmReleaseNextHops function releases the next-hop handles.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NumNextHops
[in] Specifies the number of next hops in NextHopHandles.

NextHopHandles
[in] Pointer to an array of next-hop handles to release. The handles were obtained
with a previous call to RtmGetEnumNextHops.

Return Values
If the function succeeds, the return value is NO_ERROR.

474 Volume 5 Routing

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_HANDLE The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateNextHopEnum, RtmGetEnumNextHops

RtmReleaseRoutelnfo
The RtmReleaseRoutelnfo function releases a route structure.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

Routelnfo
[in] Pointer to the RTM_ROUTE_INFO structure to release. The route was obtained
with a previous call to RtmGetRoutelnfo.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

Chapter 11 Routing Table Manager Version 2 475

RTM_ROUTE_INFO, RtmGetRoutelnfo

RtmReleaseRoutes
The RtmReleaseRoutes function releases the route handles.

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

NumRoutes
[in] Specifies the number of routes in RouteHandles.

RouteHandles
[in] Pointer to an array of route handles to release. The handles were obtained with a
previous call to RtmGetEnumRoutes.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The handle is invalid.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmCreateRouteEnum, RtmDeleteEnumHandle, RtmGetEnumRoutes

476 Volume 5 Routing

RtmUpdateAndUnlockRoute
The RtmUpdateAndUnlockRoute function updates the position of the route in the set of
routes for a destination, and adjusts the best route information for the destination.

This function is used after a client has locked a route and updated it directly (also known
as "in-place updating").

Parameters
RtmRegHandle

[in] Handle to the client obtained from a previous call to RtmRegisterEntity.

RouteHandle
[in] Handle to the route to change.

Time ToLive
[in] Specifies the time (in milliseconds) after which the route is expired. Specify
INFINITE to prevent routes from expiring.

RouteListHandle
[in] Handle to an optional route list to which to move the route. This parameter is
optional and can be set to NULL.

NotifyType
[in] Set this parameter to NULL. NotifyType is reserved for future use.

NotifyHandle
[in] Set this parameter to NULL. NotifyHandle is reserved for future use.

Change Flags
[out] Receives RTM_ROUTE_CHANGE_BEST if the best route was changed.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The calling client does not own this route.

Chapter 11 Routing Table Manager Version 2 477

Remarks
Before calling this function, the client should lock the route using RtmLockRoute, which
returns a pOinter to the route. Then, the client can update the route information using the
pointer. Finally, the client should call RtmUpdateAndUnlockRoute. If the function
executes successfully, the route is unlocked. If the call failed, the client must unlock the
route by calling RtmLockRoute with the LockRoute parameter set to FALSE.

For sample code using this function, see Update a Route In Place Using
RtmUpdateAndUnlockRoute.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.
Library: Use Rtm.lib.

RtmAddRouteToDest, RtmDeleteRouteToDest, RtmGetRoutePointer,
RtmHoldDestination, RtmLockRoute

Routing Table Manager Version 2 Callbacks
The following callbacks are used to inform clients of registration events.

RTM_ENTITY _EXPORT_METHOD

RTM_EVENT_CALLBACK

The RTM_ENTITY _EXPORT _METHOD callback is the prototype for any method
exported by a client.

Parameters
CallerHandle

Handle to the calling client.

CalleeHandle
Handle to the client being called.

478 Volume 5 Routing

Input
Handle to the method to be invoked. Contains an input buffer.

Output
An array of RTM_ENTITY _METHOD_OUTPUT structures. Each structure consists of
a (method identifier, correct output) tuple.

Remarks
Methods can be exported when a client registers. Other clients, such as routing
protocols, can invoke these methods to obtain client-specific information. For example,
BGP can use a method to obtain OSFP information.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

The RTM_EVENT _CALLBACK callback is used by the routing table manager to inform
a client that the specified event occurred.

Parameters
RtmRegHandle

Handle to the client the that routing table manager is sending the notification to.

EventType
Specifies the event the routing table manager is notifying the client about. The
following values are used.

Value Description

A client has just registered with the routing
table manager.

A client has just unregistered.

Value

RTM_ROUTE_EXPIRED

RTM_CHANGE_NOTIFICATION

Context 1

Chapter 11 Routing Table Manager Version 2 479

Description

A route has timed out.

A change notification has been made.

For RTM_ENTITY _REGISTERED calls: Contains the handle to the entity that
registered.

For RTM_ENTITY _DEREGISTERED calls: Contains the handle to the entity that
unregistered.

For RTM_ROUTE_EXPIRED calls: Contains the handle to the route that timed out.

For RTM_CHANGE_NOTIFICATION calls: Contains the handle to the change
notification.

Context2
For RTM_ENTITY _REGISTERED calls: Contains a pOinter to the
RTM_ENTITY ~INFO structure referred to by the handle in Context1. If the client must
retain this information, the client must copy it to a structure it has allocated.

For RTMc-ENTITY _DEREGISTERED calls: Contains a pointer to the
RTM_ENTITY _INFO structure referred to by the handle in Context1. If the client must
retain this information, the client must copy it to a structUre it has allocated.

For RTM_ROUTE_EXPIRED calls: Contains a pointer to the RTM_ROUTE_INFO
structure referred to by the handle in· Context1. ·If the .client must retain this
information, the client must copy it to a structure it has allocated. .

For RTM_CHANGE-,-NOTIFICATION calls: Contains the notification context that was
given to the client by a previous call to RtmRegisterForChangeNotification.

Return Values
If the routing table manager issues an RTM_ROUTE_EXPIRED callback, and the client
returns to tne routing table manager the value ERROfCNOT _SUPPORTED, the routing
table manager will delete the route from the routing table.

All other errors returned by the client are ignored.

Remarks
After a client has registered for change notificCition, the routing table manager uses this

• callback to keeP theclientinformed about events.

If a client receives an RTM_EVENT ~CALLBACKfor the RTM_ENTITY _REGISTERED
or RTM_ENUTV..;:DEREGI.STERED events, the client must not make~allsto
RtmReglsterEntity, RtmDeregisterEntity, or RtmGetRegisteredEntities in the context
of this callback.

If a client receives an RTM_EVENT _CALLBACK for the
RTM_CHANGE_NOTIFICATION event, the client must not call
RtmRegisterForChangeNotification in the context of this callback.

480 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_EVENT _TYPE, RtmRegisterEntity

Routing Table Manager Version 2 Structures
The RTMv2 functions use the following structur/3s:

RTM_DEST _INFO
RTM_ENTITV _EXPORT_METHODS
RTM_ENTITV _ID
RTM_ENTITV _INFO
RTM_ENTITV _METHOD_INPUT
RTM_ENTITY _METHOD_OUTPUT

RTM_NET _ADDRESS
RTM_NEXTHOP _INFO
RTM_NEXTHOP _LIST
RTM_PREF _INFO
RTM_REGN_PROFILE
RTM_ROUTE_INFO

The RTM_DEST _INFO structure is used to exchange destination information with clients
registered with the routing table manager.

Members
DestHandle

Handle to the destination.

Chapter 11 Routing Table Manager Version 2 481

DestAddress
Specifies the destination network address as an address and a mask.

LastChanged
Specifies the last time this destination was updated.

BelongsToViews
Specifies the views to which this destination belongs.

NumberOfViews
Indicates the number of Viewlnfo structures present in this destination.

Viewlnfo
Structure of the following components.

Viewld
Specifies the view this information applies to.

NumRoutes
Specifies the number of routes in each of the supported views.

Route
Handle to the best route (with matching criteria) in each of the supported views.

Owner
Handle to the owner of the best route in each of the supported views.

DestFlags
Specifies the flags for the best route in each of the supported views.

HoldRoute
Handle to the route that is in a hold-down state in each of the supported views.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_NET _ADDRESS, RtmGetChangedDests, RtmGetDestlnfo,
RtmGetEnum Dests, RtmGetExactMatchDestination,
RtmGetLessSpecificDesti nation, RtmGetMostSpecificDestination,
RtmReleaseChangedDests, RtmReleaseDestlnfo, RtmReleaseDests

The RTM_ENTITY _EXPORT _METHODS structure contains the set of methods
exported by a client.

482 Volume 5 Routing

Members
NumMethods

Specifies the number of methods exported by the client in the Methods member.

Methods
Specifies which methods the client is exporting.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RtmRegisterEntity

The RTM_ENTITY _10 structure is used to uniquely identify a client to the routing table
manager. The protocol identifier and the instance identifier are the values that are used
to uniquely identify a client.

Members
EntityProtocolid

Specifies a client's protocol identifier (such as RIP or OSPF).

Entitylnstanceld
Specifies a client's protocol instance (such as RIPv1 or RIPv2).

Entityld
Specifies a client's identifier, which is a combination of the EntityProtocolid and the
Entitylnstanceld.

Chapter 11 Routing Table Manager Version 2 483

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

The RTM_ENTITY _INFO structure is used to exchange client information with the
routing table manager.

Members
Rtmlnstanceld

Specifies the instance of the routing table manager with which the client registered.

AddressFamily
Specifies the address family to which the client belongs.

Entityld
Specifies the identifier that uniquely identifies a client.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_ENTITY _10, RtmGetEntitylnfo, RtmGetRegisteredEntities, RtmRegisterEntity,
RtmReleaseEntitylnfo

The RTM_ENTITY _METHOD_INPUT structure is used to pass information to a client
when invoking its method.

484 Volume 5 Routing

Members
MethodType

Specifies the method.

InputSize
Specifies the size, in bytes, of InputData.

InputData
Buffer for input data for the method.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RtmlnvokeMethod

The RTM_ENTITY _METHOD_INPUT structure is used to pass information to the calling
client when the routing table manager invokes a method.

Members
MethodType

Specifies the method identifier

MethodStatus
Receives the status of the method after execution.

OutputSize
Specifies the size, in bytes, of OutputData.

OutputData
Buffer for data returned by the method.

Chapter 11 Routing Table Manager Version 2 485

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RtmlnvokeMethod

The RTM_NET _ADDRESS structure is used to communicate address information to the
routing table manager for any address family. The address family must use only with
contiguous address masks that are less than 8 bytes.

Members
AddressFamily

Specifies the type of network address for this address (such as IPv4).

NumBits
Specifies the number of bits in the network part of the AddrBits bit array (for
example, 255.0.0.0 has 8 bits).

AddrBits
Specifies an array of bits that form the address prefix.

Remarks
If the client specifies an address and a mask length that do not correspond to each
other, inconsistent results will be returned by the routing table manager. For example, if
a client specifies an address as 10.10.10.10 and a length as 24 when calling
RTM_IPV4_SET_ADDR_AND_LEN, the routing table manager may return an incorrect
NetAddress.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

486 Volume 5 Routing

RTM_DEST _INFO, RTM_NEXTHOP _INFO, RtmAddRouteToDest,
RtmCreateDestEnum, RtmCreateNextHopEnum, RtmCreateRouteEnum,
RtmGetExactMatchDestination, RtmGetExactMatchRoute,
RtmGetMostSpecificDestination, RtmGetRoutelnfo

The RTM_NEXTHOP _INFO structure is used to exchange next-hop information with the
routing table manager.

Members
NextHopAddress

Specifies the network address for this next hop.

NextHopOwner
Handle to the client that owns this next hop.

Interfacelndex
Specifies the outgoing interface index.

State
Flags that indicates the state of this next hop. The following flags are used.

Constant

RTM_NEXTHOP_STATE_CREATED

RTM_NEXTHOP_STATE_DELETED

Description

The next hop has been created.

The next hop has been deleted.

Chapter 11 Routing Table Manager Version 2 487

Flags
Flags that convey status information for the next hop. The following flags are used.

Constant

RTM_NEXTHOP_FLAGS_
REMOTE

EntitySpecificlnfo

Description

This next hop paints to a remote destination
that is not directly reachable. To obtain the
complete path, the client must perform a
recursive lookup.

This flag is reserved for future use.

Contains information specific to the client that owns this next hop.

RemoteNextHop
Handle to the destination with the indirect next-hop address. This member is only
valid when the Flags member is set to RTM_NEXTHOP _FLAGS_REMOTE. This
cached handle can prevent multiple lookups for this indirect next hop.

WindowsNT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_NET _ADDRESS, RtmAddNextHop, RtmDeleteNextHop, RtmFindNextHop,
RtmGetNextHoplnfo, RtmGetNextHopPointer, RtmLockNextHop,
RtmReleaseNextHoplnfo

The RTM_NEXTHOP _LIST structure contains a list of next hops used to determine
equal-cost paths in a route.

Members
NumNextHops

Specifies the number of equal cost next hops in NextHops.

NextHops
Array of next-hop handles.

488 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

The RTM_PREF _INFO structure contains the information used when comparing any two
routes. The value of the Preference member is given more weight than the value of the
Metric member.

Members
Metric

Specifies a metric. The metric is specific to a particular routing protocol.

Preference .
Specifies a preference. The preference is determined by the router policy.

Remarks
Preference is more important than metric. The metric will only be checked if the
preferences are equal.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

The RTM_REGN_PROFILE structure contains information returned during the
registration process. The information is used for later function calls (such as the
maximum number of routes that can be returned by a call to RtmGetEnumRoutes).

Chapter 11 Routing Table Manager Version 2 489

Members
MaxNextHopslnRoute

Specifies the maximum number of equal-cost next hops in a route.

MaxHandleslnEnum
Specifies the maximum number of handles that can be returned in one call to
RtmGetEnumDests, RtmGetChangedDests, RtmGetEnumRoutes, or
RtmGetListEnumRoutes. The number of handles that can be returned is limited (and
configurable) to improve efficiency and performance of the routing table manager.

ViewsSupported
Views supported by this address family.

NumberOfViews
Number of views.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RtmRegisterEntity

The RTM_ROUTE_INFO structure is used to exchange route information with the
routing table manager. Do not change the read-only information.

(continued)

490 Volume 5 Routing

Constant

(continued)

Members
DestHandle

Handle to the destination that owns the route.

RouteOwner
Handle to the client that owns this route.

Neighbour
Handle to the neighbor that informed the routing table manager of this route. This
member is NULL for a link-state protocol.

State
Flags the specify the state of this route. The following flags are used.

Constant

RTM_ROUTE_STATE_CREATED

RTM_ROUTE_ST ATE_DELETING

RTM_ROUTE_ST ATE_DELETED

Flags1

Description

Route has been created.

Route is being deleted.

Route has been deleted.

Flags used for compatibility with RTMv1 .

Flags
Flags used to specify information about the route. The following flags are used.

Description

RTM_ROUTE_FLAGS_ANY_
BCAST

The route is one of the following broadcast types:
RTM_ROUTE_FLAGS_LlMITED_BC,
RTM_ROUTE_FLAGS_ONES_NETBC,
RTM_ROUTE_FLAGS_ONES_SUBNET _BC,
RTM_ROUTE_FLAGS_ZEROS-,-NETBC,
RTM_ROUTE_FLAGS_ZEROS_SUBNETBC

RTM_ROUTE_FLAGS_ANY_
MCAST

The route is one of the following multicast types:
RTM_ROUTE_FLAGS_MCAST,
RTM_ROUTE_FLAGS_LOCAL_MCAST

Constant

RTM_ROUTE_FLAGS_ANY_
UNICAST

RTM_ROUTE_FLAGS_L1MITED_
BC

RTM_ROUTE_FLAGS_LOCAL

RTM_ROUTE_FLAGS_LOCAL_
MCAST

RTM_ROUTE_FLAGS_MCAST

RTM_ROUTE_FLAGS_MYSELF

RTM_ROUTE_FLAGS_NET_
BCAST

RTM_ROUTE_FLAGS_ONES_
NETBC

RTM_ROUTE_FLAGS_ONES_

SUBNETBC

RTM_ROUTE_FLAGS_ZEROS_

SUBNETBC

RTM_ROUTE_FLAGS_ZEROS_
NETBC

Preflnfo

Chapter 11 Routing Table Manager Version 2 491

Description

The route is one of the following unicast types:
RTM_ROUTE_FLAGS_LOCAL,
RTM_ROUTE_FLAGS_REMOTE,
RTM_ROUTE_FLAGS_MYSELF

Indicates that this route is a limited broadcast address.
Packets to this destination should not be forwarded.

Indicates a destination is on a directly reachable network.

Indicates that this route is a route to a local multicast
address.

Indicates that this route is a route to a multicast address.

Indicates the destination is one of the router's addresses.

Flag grouping that contains:
RTM_ROUTE_FLAGS_ONES_NETBC,
RTM_ROUTE_FLAGS_ZEROS_NETBC

Indicates that the destination matches an interface's
"all-ones" broadcast address. If broadcast forwarding is
enabled, packets should be received and resent out all
appropriate interfaces.

Indicates that the destination matches an interface's
"all-ones" subnet broadcast address. If subnet broadcast
forwarding is enabled, packets should be received and
resent out all appropriate interfaces.

Indicates that the destination is not on a directly reachable
network.

Indicates that the destination matches an interface's
"all-zeros" subnet broadcast address. If subnet broadcast
forwarding is enabled, packets should be received and
resent out all appropriate interfaces.

Indicates that the destination matches an interface's
"all-zeros" broadcast address. If broadcast forwarding is
enabled, packets should be received and resent out all
appropriate interfaces.

Specifies the preference and metric information for this route.

BelongsToViews
Specifies the views that this route is included in.

EntitySpecificlnfo
Contains the client-specific information for the client that owns this route.

NextHopsList
Specifies a list of equal-cost next hops.

492 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_PREF _INFO, RTM_NEXTHOP _LIST, RtmAddRouteToDest,
RtmCreateRouteEnum, RtmGetExactMatchRoute, RtmGetRoutelnfo,
RtmGetRoutePointer, RtmLockRoute, RtmReleaseRoutelnfo

Routing Table Manager Version 2 Macros
RTMv2 uses the following macros:

Size of Structure Macros
RTM_SIZE_OF _DEST _INFO
RTM_SIZE_OF _ROUTE_INFO

IPv4 Address Macros
RTM_IPV4_GET _ADDR_AND_LEN
RTM_IPV4_GET _ADDR_AND _MASK
RTM_IPV4~LEN_FROM_MASK

RTM_IPV4_MAKE_NET _ADDRESS
RTM_IPV4_MASK_FROM_LEN
RTM_IPV4_SET _ADDR_AND _LEN
RTM_IPV4_SET _ADDR_AND_MASK

The RTM_IPV4_GET_ADDR_AND_LEN macro converts a generic net address and
length to an IPv4 address and a length.

Parameters
Addr

Receives the converted IPv4 address.

Len
Receives the converted length.

Chapter 11 Routing Table Manager Version 2 493

Net Address
Specifies the network address to convert.

Remarks
For example, if a client supplies the NetAddress 10.10.10/24, the Addr 10.10.10.0 and
the Len 24 are returned.

The macro is defined as follows:

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_IPV4_GET _ADDR_AND_MASK,RTM_IPV4_LEN_FROM_MASK,
RTM_IPV4_MAKE_NET _ADDRESS, RTM_IPV4_MASK_FROM_LEN,
RTM_IPV4"':SET _ADDR_AND_LEN, RTM_IPV4_SET ..:..ADDR_AND_MASK,
RTM_NET _ADDRESS

The RTM_IPV4_GET_ADDR_AND_MASK macro converts a generic net address and
length to an IPv4 address and mask.

Parameters
Addr

Receives the converted IPv4 address.

Mask
Receives the converted IPv4 mask.

NetAddress
Specifies the network address to convert.

494 Volume 5 Routing

Remarks
For example, if a client supplies the NetAddress 10.10.10/24, the Addr 10.10.10.0 and
the Mask 255.255.255.255 are returned.

The macro is defined as follows:

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_IPV4_GET _ADDR_AND_LEN, RTM_IPV4_LEN_FROM_MASK,
RTM_IPV4_MAKE_NET _ADDRESS, RTM_IPV4_MASK_FROM_LEN,
RTM_IPV4_SET _ADDR_AND_LEN, RTM_IPV4_SET _ADDR_AND_MASK,
RTM_NET _ADDRESS

The RTM_IPV4_LEN_FROM_MASK macro converts an IPv4 mask to a generic route
length.

Parameters
Len

Receives the converted length

Mask
Specifies the mask to convert.

Remarks
For example, if a client supplies the Mask 255.255.255.255, the Len 24 is returned, the
mask is returned.

The macro is defined as follows.

Chapter 11 Routing Table Manager Version 2 495

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_IPV4_GET _ADDR_AND_LEN, RTM_IPV4_GET _ADDR_AND_MASK,
RTM_IPV4_MAKE_NET _ADDRESS, RTM_IPV4_MASK_FROM_LEN,
RTM_IPV4_SET _ADDFl_AND_LEN, RTM,-IPV4_SET _ADDR_AND_MASK,
RTM_NET _ADDRESS

The RTM_IPV4_MAKE_NET _ADDRESS macro converts an IPv4 address and a length
to a generic RTM_NET_ADDRESS structure.

Parameters
NetAddress

Receives the converted address structure.

Addr
Specifies the IPv4 address to convert.

Len
Specifies the length to convert.

496 Volume 5 Routing

Remarks
For example, if a client supplies the Addr 10.10.10.0 and the Len 24, the NetAddress
10.10.10/24 is returned.

The macro is defined as follows:

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_IPV4_GET _ADDR_AND_LEN, RTM_IPV4_ GET _ADDR_AND _MASK,
RTM_IPV4_LEN_FROM_MASK, RTM_IPV4_MASK_FROM_LEN,
RTM_IPV4_SET _ADDR_AND_LEN, RTM_IPV4_SET _ADDR_AND_MASK,
RTM_NET _ADDRESS ,f'

The RTM_IPV4_MASK_FROM_LEN macro converts a generic route length to an
IPv4 mask.

Parameters
Len

Specifies the generic length to convert.

Return Values
The return value is the size of the subnet mask.

Remarks
For example, if a client supplies the Len 24, the mask 255.255.255.255 is returned.

The macro is defined as follows:

Chapter 11 Routing Table Manager Version 2 497

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

RTM_IPV4_GET _ADDR_AND_LEN, RTM_IPV4_GET _ADDR_AND_MASK,
RTM_IPV4_LEN_FROM_MASK, RTM_IPV4_MAKE_NET _ADDRESS,
RTM_IPV4_SET _ADDR_AND_LEN, RTM_IPV4_SET _ADDR_AND_MASK,
RTM_NET _ADDRESS

The RTM_IPV4_SET_ADDR_AND_LEN macro converts an IPv4 address and a length
to a generic RTM_NET _ADDRESS structure.

Parameters
NetAddress

Receives the converted address structure.

Addr
Specifies the IPv4 address to convert.

Len
Specifies the length to convert.

Remarks
For example, if a client supplies the Addr 1 0.1 0.1 0.0 and the Len 24, the NetAddress
10.10.10/24 is returned.

The macro is defined as follows.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

498 Volume 5 Routing

RTM_IPV4_GET _ADDR_AND_LEN, RTM_IPV4_GET _ADDR_AND_MASK,
RTM_IPV4_LEN_FROM_MASK, RTM_IPV4_MAKE_NET _ADDRESS,
RTM_IPV4_MASK_FROM_LEN, RTM_IPV4~SET _ADDR_AND_MASK,
RTM_NET _ADDRESS

The RTM_IPV4_SET _ADDR_AND_MASK macro converts an IPv4 address and mask
to a generic RTM_NET _ADDRESS structure.

Parameters
NetAddress

Receives the converted address structure.

Addr
Specifies the IPv4 address to convert.

Mask
Specifies the I Pv4 mask to convert.

Remarks
For example, if a client supplies the Addr 1 0.1 0.1 0.0 and the Mask 255.255.255.255, the
NetAddress 10.10.10/24 is returned.

The macro is defined as follows:

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

Chapter 11 Routing Table Manager VersiOn 2 499

RTM_IPV4_ GET _ADDR_AND_LEN, RTM_IPV4_GET _ADDR_AND_MASK,
RTM_IPV4_LEN_FROM_MASK, RTM_IPV4_MAKE_NET_ADDRESS,
RTM_IPV4_MASK_FROM_LEN, RTM_IPV4_SET_ADDR_AND_LEN,
RTM_NET _ADDRESS

The RTM_SIZE_OF _DEST_INFO macro returns the size the destination information
structure (RTM_DEST_INFO). The size of this structure is variable, and is based on the
number of views for which it contains information. Use this macro when allocating
memory for destination information.

Parameters
NumViews

Specifies the number of views in the destination structure.

Return Values
The return value is the size of the destination information structure with the specified
number of views.

Remarks
If the client will only use one view per destination, the client can allocate an
RTM_DEST _INFO structure statically.

The macro is defined as follows:

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

500 Volume 5 Routing

The RTM_SIZE_OF _ROUTE_INFO macro returns the size of the route information
structure, RTM_ROUTE_INFO. The size of this structure is variable, and is based on the
number of next hops associated with the route. Use this macro when allocating memory
for route structures.

Parameters
NumHops

Specifies the number of next hops in the route structure.

Return Values
The return value is the size of the route information structure with the specified number
of next hops.

Remarks
If the client will only allocate one next hop per route, the client can allocate an
RTM_ROUTE_INFO structure statically.

The macro is defined as follows:

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

Routing Table Manager Version 2 Constants
The RTMv2 functions use the following constants:

View Flags Routing Table Query Flags

Route Flags

Next Hop Flags

Enumeration Flags

Change Notification Flags

View Flags
Constant Value

RTM_MAX_ 16
ADDRESS_SIZE

RTM_MAX_ VIEWS 32

RTM_VI EW_I D_UCAST 0

RTM_VIEW_ID_MCAST

RTM_ VI EW _MASK_SIZE Ox20

Chapter 11 Routing Table Manager Version 2 501

Description

Max address size for an address
family.

Maximum number of views that can be
active in the routing table.

Specifies a unicast view.

Specifies a multicast view.

Specifies the maximum number of
views that can be configured.

RTM_ VIEW _MASK_NONE OxOOOOOOOO Return information regardless of the
view.

Return destinations from all views.
This is the default value.

Return destinations from the unicast
view.

Return destinations from the multicast
view.

OxFFFFFFFF Return information from all views.

Route Flags

State of the Route Constants
Constant Value

RTM_ROUTE_STATE_CREATED 0

RTM_ROUTE_STATE_DELETING 1

RTM_ROUTE_STATE_DELETED q

Route Update Flags
Constant Value

Ox01

Ox02

Description

Route has been created.

Route is being deleted.

Route has been deleted.

Description

Indicates that the routing table manager
should not check the Neighbour member
of the RTM_ROUTE_INFO structure when
determining when two routes are equal.

Returned by the routing table manager to
indicate a new route was created.

(continued)

502 Volume 5 Routing

(continued)

Constant

Unicast Flags
Constant

Value Description

Ox00010000 Returned by the routing table manager to
indicate that the route that was added or
updated was the best route, or that
because of the change, a new route
became the best route.

Value

Ox0010

Ox0020

Ox0040

Description

Indicates a destination is on a directly
reachable network.

Indicates that the destination is not on a
directly reachable network.

Indicates the destination is one of the
router's addresses.

Broadcast and Multicast Flags
Constant

RTM_ROUTE_FLAGS_LOCAL_
MCAST

RTM_ROUTE_FLAGS_LlMITED_
BC

RTM_ROUTE_FLAGS_ZEROS_
NETBC

RTM_ROUTE_FLAGS_ZEROS_
SUBNETBC

RTM_ROUTE_FLAGS_ONES_
NETBC

Value

Ox0100

Ox0200

Ox0400

Ox1000

Ox2000

Ox4000

Description

Indicates that this route is a route to a
multicast address.

Indicates that this route is a route to a local
multicast address.

Indicates that this route is a limited broadcast
address. Packets to this destination should
not be forwarded.

Indicates that the destination matches an
interface's "all-zeros" broadcast address. If
broadcast forwarding is enabled, packets
should be received and resent out all
appropriate interfaces.

Indicates that the destination matches an
interface's "all-zeros" subnet broadcast
address. If subnet broadcast forwarding is
enabled, packets should be received and
resent out all appropriate interfaces.

Indicates that the destination matches an
interface's "all-ones" broadcast address. If
broadcast forwarding is enabled, packets
should be received and resent out all
appropriate interfaces.

Chapter 11 Routing Table Manager Version 2 503

Constant Value Description

RTM_ROUTE_FLAGS_ONES
SUBNETBC

Ox8000 Indicates that the destination matches an
interface's "all-ones" subnet broadcast
address. If subnet broadcast forwarding is
enabled, packets should be received and
resent out all appropriate interfaces.

Group
Grouping of Flags

Members

RTM_ROUTE_FLAGS_
FORWARDING

RTM_ROUTE_FLAGS_
ANY _UNICAST

RTM_ROUTE_FLAGS_
ANY_MCAST

RTM_ROUTE_FLAGS_
SUBNET_BCAST

RTM_ROUTE_FLAGS_
NET_BCAST

RTM_ROUTE_FLAGS
ANY_BCAST

Next Hop Flags

RTM_ROUTE_FLAGS_MARTIAN,
RTM_ROUTE_FLAGS_BLACKHOLE,
RTM_ROUTE_FLAGS_DISCARD,
RTM_ROUTE_FLAGS_INACTIVE

RTM_ROUTE_FLAGS_LOCAL,
RTM_ROUTE_FLAGS_REMOTE,
RTM_ROUTE_FLAGS_MYSELF

RTM_ROUTE_FLAGS_MCAST,
RTM_ROUTE_FLAGS_LOCAL_MCAST

RTM_ROUTE_FLAGS_ONES_SUBNET_
BC,RTM_ROUTE_FLAGS_ZEROS_
SUBNETBC

RTM_ROUTE_FLAGS~ONES_NETBC,

RTM_ROUTE_FLAGS_ZEROS_NETBC

RTM_ROUTE_FLAGS_LlMITED_BC,
RTM_ROUTE_FLAGS_ONES_NETBC,
RTM_ROUTE_FLAGS_ONES_SUBNET_
BC,
RTM~ROUTE_FLAGS_ZEROS_NETBC,

RTM_ROUTE_FLAGS_ZEROS_
SUBNETBC

Description

Specifies any forwarding
flags.

Specifies any unicast
flags.

Specifies any unicast
flags.

Specifies any subnet
broadcast flags.

Specifies any net-wide
broadcast flags.

Specifies any of the
subnet or net-wide
broadcast flags.

Next Hop State Flags
Constant Value Description

RTM_NEXTHOP_STATE_
CREATED

RTM_NEXTHOP_STATE_
DELETED

o

1

Indicates that the next hop was
created.

Indicates that the next hop was
deleted.

504 VolumeS Routing

Next Hop Flags
Constant Value Description

RTM_NEXTHOP _FLAGS_ Ox0001 This next hop points to a remote
destination that is not directly
reachable. To obtain the complete
path, the client must perform a
recursive lookup.

REMOTE

This flag is reserved for future use.

Next Hop Added
Constant Value Description

Routing Table Query Flags
Constant

RTM_MATCH_OWNER

RTM_MATCH_
NEIGHBOUR

RTM_MATCH_

PREF

RTM_MATCH
NEXTHOP

RTM_MATCH_

NTERFACE

RTM_MATCH_FULL

RTM_BEST_
PROTOCOL

RTM_THIS_
PROTOCOL

A new next hop was created.

Value Description

OxOOOOOOOO Match none of the criteria; all
routes for the destination are
returned.

Ox00000001 Match routes with same owner.

Ox00000002 Match routes with the same
neighbor.

Ox00000004 Match routes that have the same
preference.

Ox00000008 Match routes that have the same
next hop.

Ox00000010 Match routes that are on the same
interface.

OxOOOOFFF
F

o

Match routes with all criteria.

Return a route regardless of which
protocol owns it.

Returns the best route for the
calling protocol.

Enumeration Flags
Constant

RTM_ENUM_ALL_DESTS

RTM_ENUM_OWN_DESTS

RTM_ENUM_ALL_ROUTES

RTM_ENUM_OWN_ROUTES

Change Notification Flags
Constant

RTM_CHANGE_TYPE_
FORWARDING

RTM_NOTIFY _ONLY _MARKED_
DESTS

Chapter 11 Routing Table Manager Version 2 505

Value Description

OxOOOOOOOO Enumerate routes or destinations
starting at 0/0.

Ox00000001 Enumerate routes or destinations
starting at the specified
address/mask length (such as
10/8). The enumeration continues
to the end of the routing table.

Ox00000002 Enumerate routes or destinations
in the specified subtree specified
by the address/mask length (such
as 10/8).

OxOOOOOOOO Return all destinations.

Ox01000000 Return only those destinations that
the client owns.

OxOOOOOOOO Return all routes.

Ox00010000 Return only those routes that the
client owns.

Value Description

3 Specifies the number of change
types that are currently used by the
routing table manager.

Ox0001 Notify the client of any change to a
destination.

Ox0002 Notify the client of changes to the
best route, or when the best route
changes.

Ox0004 Notify the client of any best route
changes that affect forwarding
(such as next hop changes).

Ox00010000 Notify the client of changes to
destinations that the client has
marked. If this flag is not specified,
change notification messages for
all destinations are sent.

506 Volume 5 Routing

Routing Table Manager Version 2 Enumerations
The RTMv2 functions use the following enumerations:

RTM_EVENT_TYPE

RTM EVENT TYPE - -

Enumerates the events that the routing table manager can notify the client about using
the RTM_EVENT _CALLBACK callback.

Values
RTM_ENTITY _REGISTERED

A client has just registered with the routing table manager.

RTM_ENTITY _DEREGISTERED
A client has just unregistered.

RTM_ROUTE_EXPIRED
A route has timed out.

RTM_CHANGE_NOTIFICATION
A change notification has been made.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rtmv2.h.

Routing Table Manager Version 2 Simple Data Types
The RTMv2 API defines several simple data types. The following table lists these data
types.

Data Type

RTM_VIEW_ID,
*PRTM_VIEW_ID

DWORD RTM_VIEW_SET,
*PRTM_VIEW_SET
RTM_ENTITY _HANDLE,
*PRTM_ENTITY _HANDLE,
RTM_DEST _HANDLE,
*PRTM_DEST _HANDLE,
RTM_ROUTE_HANDLE,
*PRTM_ROUTE_HANDLE,
RTM_NEXTHOP _HANDLE,
*PRTM_NEXTHOP _HANDLE,
RTM_ENUM_HANDLE,
*PRTM_ENUM_HANDLE,
RTM_ROUTE_LlST _HANDLE,
*PRTM_ROUTE_LlST _HANDLE,
RTM_NOTIFY ~HANDLE,
*PRTM_NOTIFY _HANDLE
RTM_ENTITY _METHOD_TYPE,
*PRTM_ENTITY _METHOD_TYPE
RTM_ENTITY _EXPORT_METHOD,
*PRTM_ENTITY _EXPORT_METHOD

RTM_ROUTE_CHANGE_FLAGS,
PRTM_ROUTE_CHANGE_FLAGS

RTM_NEXTHOP _CHANGE_FLAGS,
*PRTM_NEXTHOP _CHANGE_FLAGS

RTM_MATCH_FLAGS,
*PRTM_MATCH_FLAGS

RTM_ENUM_FLAGS,
*PRTM_ENUM_FLAGS

RTM_NOTIFY _FLAGS,
*PRTM_NOTIFY _FLAGS

RTM_EVENT _CALLBACK,
*PRTM_EVENT _CALLBACK;

Chapter 11 Routing Table Manager Version 2 507

Description Typedef

Identifies a particular view INT

Identifies a set of views; DWORD
expressed as a mask

Handles pointing to HANDLE
RTMv2 data

Identifies methods exported DWORD
by a registered client
Specifies the common _ENTITY_METHOD
prototype for client methods

Input and output flags used to DWORD
specify the state when a route
is added or updated

Output flags used to specify DWORD
the state when a next hop is
added
Input flags used to specify DWORD
criteria when matching routes
in the routing table
Identifies enumerations DWORD

Output flags used to specify DWORD
which type of notification is
being issued; composed as
follows: (Change Types I
Dests) a client is interested in

Identifies the callback used to RTM_EVENT_
notify clients that a change CALLBACK
has occurred in route state or
clients registered

CHAPTER 12

. Multicast Group Manager

Multicast Group Manager Overview
This chapter describes the Multicast Group Manager (MGM) technology, a feature of
Microsoft® WindowS® 2000.

509

Multicasting allows a host to send data to only those destinations that specifically
request to receive the data. Multicasting saves network bandwidth because multicast
data is sent only to hosts that request the data. In this way, multicasting differs from
sending broadcast data, since broadcast data is sent to all hosts. Multicasting also saves
network bandwidth because data travels over any link only once. Multicasting saves
server bandwidth because a server has to send only one multicast message instead of
one unicast message per receiver. Examples of popular multicast applications are online
meetings and Internet radio.

The MGM API enables developers to write multicast routing protocols that work within
the architecture for Microsoft® Windows® 2000 Routing and RAS (RRAS).

When more than one multicast routing protocol is enabled on a router, the multicast
group manager coordinates operations between all routing protocols. The multicast
group manager informs .each routing protocol when group membership changes occur,
and when multicast data from a new source or destined for a new group is received.

The MGM API provides the following features:

• Protocol registration

• Group management

• Multicast forwarding entry enumeration

• Callback definitions for multicast routing protocols

This overview describes the components of the MGM architecture, the client scenarios
that are used to implement MGM, and programming issues to consider when using the
MGM API.

The multicast group manager is incorporated into Microsoft Windows 2000 as a part of
the RRAS technology. It is not .available for Microsoft® Windows NT® version 4.0.

510 Volume 5 Routing

Components of the Multicast Architecture
The major components of the multicast routing architecture are explained in the following
topics:

• Router
• Multicast Routing Protocol

• Interface

• Multicast Source

• Multicast Group

• (s, g), (*, g), and (*, *) pairs

• Destination

• Next Hop
• Multicast Group Manager Client

The section How the Multicast Architecture Fits Together explains how these
components interact.

Router
A router is a Windows NTlWindows 2000 server that is running the RRASservice. Such
a server handles data forwarding and runs routing protocols.

Multicast Routing Protocol
Router clients are service providers that function within the framework of the router
architecture. The WindoWs NTlWindows 2000 routing architecture is designed to be
extended by router client modules. Routing protocols are one type of router client that is
supported by the router.

A multicast routing protocol manages group membership and controls the path that
multicast data takes over the network.·Examples of multicast routing protocols include:
Protocol Independent Multicast (PIM), Multicast Open Shortest Path First (MOSPF), and
Distance Vector Multicast Routing Protocol (DVMRP). The Internet Group Management
Protocol (IGMP) is a special multicast routing protocol that acts as an intermediary
between hosts and routers.

Interface
An interface is a logical connection to a network. Each interface is identified by a unique
interface index. Routing protocols such as MOSPF deal with all types of interfaces
Similarly ..

In the case of a LAN interface, the interface corresponds to an actual physical device in
the computer, the LAN adapter. In the case of a WAN interface, the interface is mapped
to a port at the time a connection is established. WAN interfaces can be based on
tunnels, the port could be a Virtual Private Network (VPN) port.

Chapter 12 Multicast Group Manager 511

Windows 2000 supports a "point-to-multipoint" interface. This interface can be viewed
as a collection of point-to-point links that share a single termination point. The MGM API
has extended interface identification to use a next-hop address. The next-hop address
uniquely identifies the exact link in this collection of point-to-point links.

Multicast Source
A multicast source is the IP address of the host from which the multicast data originated.
A source is referred to by either of the symbols, "S" or "s".

Multicast Group
A multicast group is a Class D IP address in the range of 224.0.0.0- 239.255.255.255.
Messages that are sent to an address in this range are not destined for a single target.
Instead, these messages can be received by any host that makes a request to receive
data destined for the group the host is interested in receiving messages for. A multicast
group is referred to by either of the symbols "G" or"g".

(s, g), (*, g), and (*, *) Pairs
The notation (s, g) represents a specific source and group. The notation (*, g) represents
a wildcard source and a specific group. All messages to the group "g" are included.

The notation (*, *) represents a wildcard source and wildcard group. All messages from
all sources, and bound to all groups, are included.

These notations are used to describe the addition and removal of group memberships.

Destination
A destination is a host that has joined a multicast group. Such a host has informed the
local router (using IGMP) that it is interested in receiving data sent to a specific multicast
group.

Next Hop
A next hop is the next router on the path towards a destination. Packets from a source
are forwarded to the destination on a hop-by-hop basis.

The address of the router that is the next-hop route is used to uniquely identify links on a
point-to-multipoint interface, where allthe links share the same interface index.

Multicast Group Manager Client
A client is an entity that calls an MGM function, such as a routing protocol.

The MGM functions are called primarily bymulticast routing protocols. Developers of
multicast routing protocols use MGM functions to.

512 Volume 5 Routing

• maintain group membership

• control interface ownership

• receive notifications from MGM regarding requests for multicast data generated by
other multicast routing protocols

Specific administration applications that must monitor multicast forwarding entries
(MFEs) can do so without adding or removing group membership. Administrative
program developers use MGM functions to review information in MFEs and the group
membership list. MFEs are the cached forwarding information that MGM creates based
on group membership. The MFEs that are retrieved from the multicast group manager
can provide statistical information. An administrative program can then use this
information to determine the appropriate actions (for instance, an administrative program
could perform actions that are based on the volume of packets on a specific interface).

How the Multicast Architecture Fits Together
This section describes a sample configuration and how the components fit together.

Figure 12-1 shows the relationship between the various components of a router.

Router

Multicast Group
Manager

Protocol 1

Interface 1 I
Protocol 2

II nterface 2

Protocol 3

I Interface 3 I

Figure 12-1: Router Components.

The multicast group manager is a part of the RRAS service running on a Windows 2000
server that is operating as a router.

The router shown has three multicast routing protocols (Protocol 1 , Protocol 2,
Protocol 3) running on it. Each protocol can own one or more interfaces (in this case,
Protocol 1 owns Interface 1, Protocol 2 owns Interface 2, and Protocol 3 owns Interface
3). Each interface can be owned by only one routing protocol (in addition to IGMP).

Chapter 12 Multicast Group Manager 513

The multicast group manager runs on the router and coordinates group information
between the routing protocols.

Figure 12-2 shows the relationship between two routers in a multicast architecture.

Router 2

Multicast Group
Manager

Protocol 2

1 Interface 21

Router 1

Multicast Group
Protocol 2 Network 2

Manager

I 1 Interface 2

Protocol 3

1 Interface 31

Figure 12-2: Relationship Between Two Routers in a Multicast Architecture.

Router 2 sends multicast data to Network 2 on Interface 2. Router 1 receives multicast
data from Network 2 on Interface 2. On both routers, Protocol 2 owns the respective
Interface 2.

Figure 12-3 shows the path data from a multicast source (to a multicast group) takes to
reach the host that has joined the multicast group. The routers in the illustration use the
same configuration as previous illustrations; however, the interface and protocol details
are not shown in order to keep the figure simple.

Host 1 joins multicast group G on Network 3. Router 3 learns about G via IGMP. The
multicast group manager on Router 3 notifies Protocol 3 on Router 3. Protocol 3 on
Router 3 then notifies Protocol 3 on Router 1. In turn, Protocol 3 on Router 1 notifies the
multicast group manager on Router 1. The multicast group manager on Router 1 then
notifies Protocol 1 and Protocol 2. Protocol 2 may inform Router 2, if the protocol is
designed to do so.

514 Volume 5 Routing

Source

Network 3

Figure 12-3: Path from a Multicast Source to a Multicast Group.

A source on Network 1 sends data to Group G. Data sent from Source S goes first to
Router 2, which then forwards it to Router 1 using Interface 2 (since Router 2 has been
informed by Protocol 2 that receivers are present downstream). Then Router 1 forwards
the data to Router 3 (since Router 1 has been informed by Protocol 2 that receivers are
present downstream). Router 3 forwards the data to Network 3, and therefore it arrives
at Host 1.

For further information on multicast protocol interaction, see RFC 2715, Interoperability
Rules for Multicast Routing Protocols.

Using the Multicast Group Manager
This section contains the following information:

• MGM Programming Issues

• Callbacks

• Multicast Routing Protocol Scenario

• Administration Program Scenario

Chapter 12 Multicast Group Manager 515

MGM Programming Issues
Multicast group manager clients should be written based on the following assumptions:

• Function calls must be made from within the routing process. If functions are called
from another process, their results will not be valid; the client will not interact
with MGM.

• Clients that call MGM functions must provide their own error checking, for validity, of
the values of parameters that are passed to the multicast group manager. MGM
functions do not return detailed error messages about invalid parameters; an
ERROR_'NVALlD_PARAMETER value is returned without explanation.

• Clients should exercise caution in using locks while calling MGM functions to prevent
deadlocks. When calling MGM functions, clients should not hold any locks that might
simultaneously be held in a callback from the multicast group manager.

Callbacks
There are two types of callbacks in the MGM API:

• Routing Protocol Callbacks

• IGMP Enable and Disable Callbacks

These callbacks, combined with the MGM API function, create the ongoing notification
cycle between routing protocols, IGMP, and the multicast group manager.

Routing Protocol Callbacks
This topic covers the calls into routing protocols.

Join Alert Callbacks
When the multicast group manager is notified that there are new receivers present for
a group, the multicast group manager invokes the PMGM_JOIN_ALERT _CALLBACK
callback to inform the routing protocols of the change. This callback indicates to the
routing protocols that they must request multicast data for one or more specified groups.

The multicast group manager uses a predefined set of rules that govern when this
callback is invoked. This set of rules is based on both the type of join sent by the client
and the order the join requests were received in.

When a wildcard (*, g) join for a group is received from a client, the multicast group
manager invokes the PMGM_JOIN_ALERT _CALLBACK callback for all other
registered clients. When a wildcard join for a group is received from a second client, the
multicast group manager invokes this callback for the first client to join the group. The
multicast group manager does not invoke this callback for any subsequent joins to the
group.

516 Volume 5 Routing

When a source-specific join for a group is received (s, g), the multicast group manager
invokes this callback only for the client that owns the incoming interface towards the
source "s".

Prune Alert Callbacks
When the multicast group manager is notified that old receivers are leaviri'g a group, the
multicast group manager invokes the PMGM_JOIN_ALERT_CALLBACK callback to
notify the routing protocols of the change. This callback indicates to the routing protocols
that they must stop requesting multicast data for the specified groups.

The multicast group manager has a predefined set of rules that govern when this
callback is invoked. These rules are based on both the type of prune request sent by
the client and the order the prune requests were received in.

When a wildcard (*, g) prune for a group is received and the final interface is being
removed for the second-to-Iast client (that is, when only the interfaces for a single client
remain), the multicast group manager invokes this callback for the last remaining client.
After the final interface is removed for the last client for the source and group (that is,
when no other interfaces remain), then the callback is invoked for all the other clients
that are registered with the multicast group manager.

When a source-specific prune for a group is received (s, g), the multicast group manager
invokes this callback only for the client that owns the incoming interface towards the
source "s".

Local Join Callback
After the multicast group manager is notified by IGMP that new receivers are present for
a group on an interface, MGM invokes the PMGM_LOCAL_JOIN_CALLBACK callback
to the routing protocol on that interface (if one exists) to notify the routing protocol of the
change. The PMGM_LOCAL_JOIN_CALLBACK and
PMGM_LOCAL_LEAVE_CALLBACK callbacks are used to synchronize forwarding
between IGMP and routing protocols.

Local Leave Callback
After the multicast group manager is notified by IGMP that there are no more receivers
present for a group on an interface, MGM invokes the
PMGM_LOCAL_LEAVE_CALLBACK callback to the routing protocol on that interface
(if one exists) to notify the routing protocol of the change. This callback and the
PMGM_LOCAL_JOIN_CALLBACK callback are used to synchronize forwarding
between IGMP and routing protocols.

Wrong Interface Alert Callback
After the kernel forwarder receives multicast data from a specific source on the wrong
interface, it notifies the multicast group manager. The multicast group manager then
invokes this callback to the routing protocol that owns the interface on which the data
incorrectly arrived.

Chapter 12 Multicast Group Manager 517

This callback is not currently implemented in this version of the MGM API.

RPF Alert Callback
After the multicast group manager receives notification of a packet from a new source or
of a packet that is destined for a new group, the multicast group manager looks up the
route to the source in the multicast view of the routing table.

The multicast group manager then invokes the PMGM_RPF _CALLBACK for the
protocol that owns the incoming interface.

When this callback is invoked, the routing protocol can change the incoming interface
if the routing protocol must receive the data for the group on another interface.

IGMP Enable and Disable Callbacks
The multicast group manager uses two callbacks to IGMP to coordinate changes in
interface ownership from IGMP to a routing protocol, and from a routing protocol
to IGMP.

The multicast group manager allows IGMP to coexist on an interface with another
routing protocol (such as DVMRP).

After the ownership of an interface changes, the multicast group manager first calls
PMGM_DISABLE_IGMP _CALLBACK. IGMP must stop adding and deleting group
memberships on the specified interface until it receives the
PMGM_ENABLE_IGMP _CALLBACK callback.

The multicast group manager calls PMGM_ENABLE_IGMP _CALLBACK after the
change of interface ownership is complete.

Multicast Routing Protocol Scenario
All multicast routing protocols go through three basic phases: startup, operation, and
shutdown. The fOllowing sections outline a basic set of interactions between a multicast
routing protocol and the multicast group manager.

Multicast Routing Protocol Startup Tasks
The following table summarizes the startup interaction between a routing protocol and
the multicast group manager. The first column describes actions that the routing protocol
performs and the responses of the routing protocol to the multicast group manager.
The second column describes the mUlticast group manager's responses to the routing
protocol and any actions the multicast group manager performs (such as callbacks). The
third column presents any additional information.

Each row of the table represents one step.

518 Volume 5 Routing

Routing Protocol Action

Register with the multicast group
manager using
MgmRegisterMProtocol.

If an interface is already owned,
determine the protocol that owns it
using MgmGetProtocolOnlnterface.

Take ownership of all the interfaces
on which the protocol is enabled,
using MgmTakelnterfaceOwnership.

Determine the current state of group
membership on the router. This is
done using the group membership
enumeration functions:
MgmGroupEnumerationStart,
MgmGroupEnumerationGetNext,
and MgmGroupEnumerationEnd.

MGM Action

Return to the routing protocol a
handle that the protocol must
use to identify itself in
subsequent MGM calls.

If IGMP has already taken
ownership of an interface and
the
MgmTakelnterfaceOwnership
function call is received for the
same interface, contact IGMP
using the
PMGM_DISABLE_IGMP _
CALLBACK. Once all internal
MGM changesregarding
interface ownership have been
made, contact IGMP again
using PMGM_ENABLE_IGMP _
CALLBACK.

Return the list of groups.

Multicast Routing Protocol Operational Tasks

Notes

Only one protocol can
own an interface at a
given time, in addition
to IGMP.

Routing protocols can
use the results to
determine what
actions to take based
on the groups already
joined.

See the topic on
Enumerating Groups
for a complete guide
to using these
functions.

The following table summarizes the operational interactions between a routing protocol
and the multicast group manager. The first column describes the actions that the routing
protocol performs and the routing protocol's responses to the multicast group manager.
The second column describes the multicast group manager's responses to the routing
protocol and any actions the multicast group manager performs (such as callbacks). The
third column presents any additional information.

Each row of the table represents one step.

Chapter 12 Multicast Group Manager 519

The tasks listed in this table do not occur in any specific order; rather, they occur based
on the status of multicast group memberships. The table below is an example order.

Routing Protocol
Action

Manage group
memberships based on
protocol information
received on any
interfaces that the
protocol owns. Use the
following functions to
manage group
memberships:
MgmAddGroup
MembershipEntry and
MgmDeleteGroup
MembershipEntry.

Enumerate the multicast
forwarding entries
(MFEs), using the
MgmGetFirstMfe,
MgmGetNextMfe, and
MgmGetMfe Make
make decisions about
multicast data based on
the enumeration results.

Modify the upstream
neighbor in an MFE
using MgmSetMfe.

MGM Action

Add to and delete from the outgoing
interface list for the specified (s, g),
(*, g), and (*, *) entries. This list
represents the set of interfaces on which
data for this group is forwarded. The
data for this group is from the specified
source.

Send alerts back to the other routing
protocols in the form of callbacks:
join/leave groups
(PMGM_JOIN_ALERT _CALLBACK,
PMGM_PRUNE_ALERT ~CALLBACK),
group membership changed by IGMP
(PMGM_LOCAL~JOIN_CALLBACK,

PMGM_LOCAL_LEAVE_CALLBACK),
data received on wrong interface
(PMGM_ WRONG_IF _CALLBACK),
data received from new sources or to a
new group
(PMGM_CREATION_ALERT _
CALLBACK and
PMGM_RPF _CALLBACK).

Return the requested MFEs.

Return ERROR_NO_MORE ITEMS
when there are no more MFEs to return.

Notes

Using these callbacks,
MGM is able to coordinate
packet forwarding when
several multicast routing
protocols are present on a
router.

Use the
MgmGetFirstMfeStats,
MgmGetNextMfeStats,
MgmGetMfeStats to
enumerate MFE statistics.

See the Enumerating
MFEs topic for the
complete enumeration
procedure.

520 Volume 5 Routing

Multicast Routing Protocol Shutdown Tasks
The following table summarizes the interactions between the multicast group manager
and the routing protocol when the routing protocol is shutting down. The first column
describes the actions that the routing protocol performs and the routing protocol's
responses to the multicast group manager. The second column describes the multicast
group manager's responses to the routing protocol and any actions the multicast group
manager performs (such as callbacks). The third column presents any additional
information.

Each row of the table represents one step.

Routing Protocol
Action

Release ownership of
each interface that the
routing protocol owns
using
MgmReleaselnterface
Ownership.

Unregister with MGM
using MgmDeRegister
MProtocol.

MGM Action

If IGMP is also running on the interface
that was just released by a routing
protocol, contact IGMP using the
PMGM_DISABLE_IGMP _CALLBACK
callback. Once all internal (to MGM)
changes regarding interface ownership
have been made, contact IGMP again
using
PMGM_ENABLE_IGMP _CALLBACK.
Delete all the forwarding entries
associated with this interface.

Destroy the handle that was returned 0

the routing protocol by the call to
MgmDeRegisterMProtocolrouting
protocol's handle.

Administration Program Scenario

Notes

The routing protocol can
no longer use this handle
to call MGM functions.

Administration programs call a subset of MGM functions that are related to enumerating
groups and multicast forwarding entries (MFEs). These functions do not need to register
with the multicast group and receive a handle. The following sections outline a basic set
of interactions between an administration program and the multicast group manager.

Enumerating Groups
The following table summarizes the interactions between an administration program and
the multicast group manager. The first column describes the actions that the
administration program performs and the administration program's responses to the
multicast group manager. The second column describes the multicast group manager's
responses to the administration program. The third column presents any additional
information.

Each row of the table represents one step.

Administration Program Action

Call MgmGroupEnumerationStart
to obtain a handle to an
enumeration.

Call MgmGroupEnumeration
GetNext to obtain groups.

If ERROR_INSUFFICIENT_
BUFFER is received, call
MgmGroupEnumerationGetNext
again using a buffer of the size
indicated.

Continue the enumeration until
ERROR_NO_MORE_ITEMS is
received.

Chapter 12 Multicast Group Manager 521

MGM Action

Return a handle.

Return as many groups as fit in the
buffer supplied by the client.

If no groupscan be returned in the
supplied buffer, return
ERROR_INSUFFICIENT _BUFFER
and the size of the buffer that is
needed to return one group.

Return ERROR_NO_MORE_ITEMS
when there are no more groups.

Notes

Call MgmGroupEnumerationEnd Destroy the handle.
to destroy the handle to the
enumeration.

Enumerating MFEs
The following table summarizes the interactions between an administration programand
the multicast group manager. The first column describes the actions that the
administration program performs and the administration program's responses to the
multicast group manager. The second column describes the multicast group manager's
responses to the administration program. The third column presents any additional
information.

522 Volume 5 Routing

Each row of the table represents one step.

Routing Protocol Action MGM Action

Call MgmGetFirstMfe to
obtain MFEs.

If ERROR_
INSUFFICIENT_BUFFER
is received, call
MgmGetFirstMfe again
using a buffer of the size
indicated.

Call MgmGetNextMfe,
supplying as one of the
parameters the last MFE
that was returned by the
previous call to
MgmGetFirstMfe.

If ERROR_
INSUFFICIENT_BUFFER
is received, call
MgmGetNextMfe again
using a buffer of the size
indicated.

Continue the enumeration
until
ERROR_NO_MORE_
ITEMS is received.

Return as many MFEs as fit in the
buffer supplied by the client.

If no MFEs can be returned in the
supplied buffer, return
ERROR_INSUFFICIENT _BUFFER
and the size of the buffer that is
needed to return one MFE.

Return as many MFEs as fit in the
buffer supplied by the client.

If no MFEs can be returned in the
supplied buffer, return
ERROR_INSUFFICIENT _BUFFER
and the size of the buffer that is
needed for one MFE.

Return ERROR_NO_MORE_ITEMS
when no more MFEs remain.

Notes

Clients can also retrieve MFE
statistics using the
corresponding statistics
functions,
MgmGetFirstMfeStats and
MgmGetNextMfeStats.

Note Use the MgmGetMfe and MgmGetMfeStats functions to retrieve a specific MFE
or specific set of MFE statistics.

Chapter 12 Multicast Group Manager 523

Multicast Group Manager Reference
The following documentation describes the functions, callbacks, structures, and
enumeration types to use when working with the multicast group manager.

Multicast Group Manager Functions
The following functions are used to control group membership and work with the MFE
cache:

Protocol Registration Functions
MgmRegisterMProtocol
MgmDeRegisterMProtocol

Interface Ownership Functions
MgmGetProtocolOnlnterface
MgmTakelnterfaceOwnership
MgmReleaselnterfaceOwnership

Group Membership Functions
MgmAddGroupMembershipEntry
MgmDeleteGroupMembershipEntry

Multicast Forwarding Entry Enumeration Functions
MgmGetFirstMfe
MgmGetNextMfe
MgmGetMfe
MgmGetFirstMfeStats
MgmGetNextMfeStats
MgmGetMfeStats

Multicast Forwarding Entry Update Functions
MgmSetMfe

Group Membership Enumeration Functions
MgmGroupEnumerationStart
MgmGroupEnumerationGetNext
MgmGroupEnumerationEnd

524 Volume 5 Routing

MgmAddGroupMembershipEntry
The MgmAddGroupMembershipEntry function notifies the multicast group manager
that there are receivers for the specified groups on the specified interface. The receivers
can restrict the set of sources from which they should receive multicast data by
specifying a source range.

A multicast routing protocol calls this function when it is notified that there are receivers
for a multicast group on an interface. The protocol must call this function so that
multicast data can be forwarded out over an interface.

Parameters
hProtoco/

[in] Handle to the protocol obtained from a previous call to MgmRegisterMProtocol.

dwSourceAddr
[in] Specifies the range of source addresses from which to receive group data. Specify
zero to receive data from all sources (a wildcard receiver for a group); otherwise,
specify the IP address of the source or source network.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources from
which to receive data. Specify zero for this parameter if zero was specified for
dwSourceAddr (a wildcard receiver).

dwGroupAddr
[in] Specifies the range of multicast groups for which to receive data. Specify zero to
receive all groups (a wildcard receiver); otherwise, specify the IP address of the
group.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. Specify zero for this parameter if zero was specified for dwGroupAddr (a
wildcard receiver).

Chapter 12 Multicast Group Manager 525

dwlflndex
[in] Specifies the interface on which to add the group membership. Multicast packets
are forwarded out of this interface.

dwlfNextHoplPAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddrparameters uniquely identify a next hop on pOint
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, specify zero.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT _COMPLETE Could not complete the call to this function.

ERROR_INVALID_PARAMETER Invalid handle. to a client.

ERROR_NOT _ENOUGH_MEMORY Not enough memory to complete this
operation.

Remarks
This version of the Multicast Group Manager API supports only wildcard sources or
specific sources, not source ranges. The same restriction applies to groups, that is, no
group ranges are permitted.

When this function is called, the multicast group manager may invoke
PMGM_JOIN_ALERT_CALLBACK to notify other routing protocols that there are new
receivers.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmDeleteGroupMembershipEntry, PMGM_JOIN_ALERT_CALLBACK

526 Volume 5 Routing

MgmDeleteGroupMembershipEntry
The MgmDeleteGroupMembershipEntry function notifies the multicast group manager
that there are no more receivers present for the specified groups on the specified
interface.

A multicast routing protocol calls this function after it is notified that there are no more
receivers for a multicast group on an interface. The protocol must call this function to
stop multicast data from being forwarded out over an interface.

Parameters
hProtoco/

[in] Handle to the protocol obtained from a previous call to MgmRegisterMProtocol.

dwSourceAddr
[in] Specifies the range of source addresses from which to stop receiving group data.
Specify zero to stop receiving data from all sources (a wildcard receiver for a group);
otherwise, specify the IP address of the source or source network.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources from
which to stop receiving data. Specify zero for this parameter if zero was specified for
dwSourceAddr (a wildcard receiver).

dwGroupAddr
[in] Specifies the range of multicast groups for which to stop receiving data. Specify
zero to stop receiving all groups (a wildcard receiver); otherwise, specify the IP
address of the group.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. Specify zero for this parameter if zero was specified for dwGroupAddr (a
wildcard receiver).

dwlflndex
[in] Specifies the interface on which to delete the group membership. Multicast
packets for the specified groups will no longer be forwarded out over this interface.

Chapter 12 Multicast Group Manager 527

dwlfNextHoplPAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface on which
all dial-up clients connect).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, specify zero.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT _COMPLETE

ERROR_INVALID _PARAMETER

Remarks

Could not complete the call to this function.

Invalid handle to a client, or the interface is
owned by another protocol.

The specified interface was not found.

This version of the Multicast Group Manager API supports only wildcard sources or
specific sources, not source ranges. The same restriction applies to groups (that is, no
group ranges are permitted).

When this function is called, the multicast group manager may invoke
PMGM_PRUNE_ALERT _CALLBACK to notify other routing protocols that no more
receivers are present.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmAddGroupMembershipEntry, PMGM_PRUNE_ALERT _CALLBACK

MgmDeRegisterMProtocol
The MgmDeRegisterMProtocol function unregisters a client handle obtained from a call
to MgmRegisterMProtocol.

528 Volume 5 Routing

Parameters
hProtoco/

[in] Handle obtained from a previous call to MgmRegisterMProtocol.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER

Remarks

Could not complete the call to this function.
Client did not first release the interfaces it owns.

Invalid handle to a client.

A multicast protocol must deregister only after releasing interface ownership for all
interfaces that it owns.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmRegisterMProtocol, MgmReleaselnterfaceOwnership

MgmGetFirstMfe
The MgmGetFirstMfe function retrieves MFEs starting at the beginning of the MFE list.
The function can retrieve zero, one, or more MFEs. The number of MFEs returned
depends on the size of the MFEs and the size of the buffer supplied when the function is
called.

The data returned in the buffer is ordered first by group, and then by the sources within a
group.

Parameters
pdwBufferSize

Chapter 12 Multicast Group Manager 529

[in, out] On input, pdwBufferSize is a pOinter to a DWORD value containing the size,
in bytes, of pbBuffer. On output, if the return value of MgmGetFirstMfe is
ERROR_INSUFFICIENT _BUFFER, pdwBufferSize receives the minimum size
pbBuffer must be to hold the MFE; otherwise pdwBufferSize remains unchanged.

pbBuffer
[out] On input, the client must supply a pointer to a buffer. On output, pbBuffer
receives one or more MFEs. Each MFE is a MIB_IPMCAST _MFE structure.

pdwNumEntries
[out] On input, the client must supply a pointer to a DWORD value. On output,
pdwNumEntries receives the number of MFEs in pbBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT _COMPLETE Could not complete the call to this function.

ERROR_INSUFFICIENT_BUFFER The specified buffer is too small for even one
MFE. The client should check pdwBufferSize for
the minimum buffer size required to retrieve one
MFE.

ERROR_MORE_DATA More MFEs are available.

ERROR_NO_MORE_ITEMS No more MFEs are available. Zero or more MFEs
were returned; check pdwNumEntries to verify
how many were returned.

Remarks
This function is used to begin sequential retrieval of MFEs; use MgmGetNextMfe to
continue the retrieval process.

Note The minimum size of pbBuffer is not fixed; it is different for each MFE. Use the
SIZEOF _MIB_MFE macro to determine the size of each MFE returned in the buffer.

530 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGetFirstMfeStats, MgmGetMfe, MgmGetMfeStats, MgmGetNextMfe,
MgmGetNextMfeStats, MIB_IPMCAST _MFE, SIZEOF _MIB_MFE

MgmGetFirstMfeStats
The MgmGetFirstMfeStats function retrieves MFE statistics starting at the beginning of
the MFE list. The function can retrieve zero, one, or more MFE statistics. The number of
entries returned depends on the size of the entries and the size of the buffer supplied
when the function is called.

The data returned in the buffer is ordered first by group, and then by the sources within a
group. The statistics returned include the packets and bytes received, as well as the
packets forwarded, on each outgoing interface.

Parameters
pdwBufferSize

[in, out] On input, pdwBufferSize is a pOinter to a DWORD value containing the size,
in bytes, of pbBuffer. On output, if the return value of MgmGetFirstMfeStats is
ERROR_INSUFFICIENT _BUFFER, pdwBufferSize receives the minimum size
pbBuffer must be to hold statistics for the MFE; otherwise pdwBufferSize remains
unchanged.

pbBuffer
[out] On input, the client must supply a pOinter to a buffer. On output, pbBuffer
receives statistics for one or more MFEs. Each set of statistics is returned in a
MIB_IPMCAST_MFE_STATS structure.

pdwNumEntries
[out] On input, the client must supply a pOinter to a DWORD value. On output,
pdwNumEntries receives the number of MFEs for which statistics are returned in
pbBuffer.

Chapter 12 Multicast Group Manager 531

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT_COMPLETE

ERROR_INSUFFICIENT _BUFFER

ERROR_MORE_DAT A

ERROR_NO_MORE_ITEMS

Remarks

Could not complete the call to this function.

The specified buffer is too small to hold the
statistics for even one MFE. The client should
check pdwBufferSize for the minimum buffer
size required to retrieve statistics for one MFE.

More MFE statistics are available.

No more MFE statistics are available. Zero or
more sets of MFE statistics were returned;
check pdwNumEntries to verify how many were
returned.

This function is used to begin sequential retrieval of MFE statistics; use
MgmGetNextMfeStats to continue the retrieval process.

Note The minimum size of pbBuffer is not fixed; it is different for each MFE lor which
statistics are returned. Use the SIZEOF _MIB_MFE~STATS macro to determine the size
of each group of statistics returned in the buffer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGetFirstMfe, MgmGetMfe, MgmGetMfeStats, MgmGetNextMfe,
MgmGetNextMfeStats, MIB_IPMCAST _MFE_STATS, SIZEOF _MIB_MFE_ST ATS

MgmGetMfe
The MgmGetMfe function retrieves a specific MFE.

532 Volume 5 Routing

Parameters
pimm

[in] Pointer to a MIB_IPMCAST _MFE structure specifying the MFE to retrieve. The
information to be returned is specified by the dwSource and dwGroup members of
the MIB_IPMCAST _MFE structure.

pdwBufferSize
[in, out] On input, pdwBufferSize is a pointer to a DWORD value that contains the
size, in bytes, of pbBuffer. On output, if the return value of MgmGetMfe is
ERROR_INSUFFICIENT _BUFFER, pdwBufferSize receives the minimum size
pbBuffer must be to hold the MFE; otherwise pdwBufferSize remains unchanged.

pbBuffer
[out] On input, the client must supply a pointer to a buffer. On output, pbBuffer
receives the specified MFE. The MFE is a MIB_IPMCAST_MFE structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INSUFFICIENT _BUFFER

Meaning

Could not complete the call tothis function.

The specified buffer is too small to hold the
MFE. The client should check pdwBufferSize
for the minimum buffer size required to retrieve
one MFE.

The specified MFE was not found.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGetFirstMfe, MgmGetFirstMfeStats, MgmGetMfeStats, MgmGetNextMfe,
MgmGetNextMfeStats, MIB_IPMCAST _MFE

Chapter 12 Multicast Group Manager 533

MgmGetMfeStats
The MgmGetMfeStats function retrieves the statistics for a specific MFE. The statistics
returned include the packets and bytes received, and the packets forwarded, on each
outgoing interface.

Parameters
pimm

[in] Pointer to a MIB_IPMCAST _MFE structure specifying the MFE to retrieve. The
information to be returned is specified by the dwSource and dwGroup members of
the MIB_IPMCAST_MFE structure.

pdwBufferSize
[in, out] On input, pdwBufferSize is a pOinter to a DWORD value that contains the
size, in bytes, of pbBuffer. On output, if the return value of MgmGetMfeStats is
ERROR_INSUFFICIENT_BUFFER, pdwBufferSize receives the minimum size
pbBuffer must be to hold the MFE; otherwise pdwBufferSize rernains unchanged.

pbBuffer
[out] On input, the client must supply a pointer to a buffer. On output, pbBuffer
receives one or more sets of MFE statistics. Each set of statistics is returned in a
MIB_IPMCAST_MFE_STATS structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT _COMPLETE

ERROR_INSUFFICIENT _BUFFER

Meaning

Could not complete the call to this function.

The specified buffer is too small for the statistics
for even one MFE. The client should check
pdwBufferSize for the minimum buffer size
required to retrieve statistics for one MFE.

The specified MFE was not found.

534 Volume 5 Routing

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGetFirstMfe, MgmGetFirstMfeStats, MgmGetMfe, MgmGetNextMfe,
MgmGetNextMfeStats, MIB_IPMCAST _MFE_STATS

MgmGetNextMfe
The MgmGetNextMfe function retrieves one or more MFEs. The routing table manager
retrieves the MFE that follows the specified MFE. The function can retrieve zero, one, or
more MFEs. The number of MFEs returned depends on the size of the MFEs and the
size of the buffer supplied when the function is called.

The data returned in the buffer is ordered first by group, and then by the sources within a
group.

Parameters
pimmStart

[in] Pointer to a MIB_IPMCAST _MFE structure that specifies from where to begin
retrieving MFEs. Use the dwSource and dwGroup members from the last MFE that
was returned by the previous call to MgmGetFirstMfe or MgmGetNextMfe.

pdwBufferSize
[in, out] On input, pdwBufferSize is a pointer to a DWORD value that contains the
size, in bytes, of pbBuffer. On output, if the return value of MgmGetNextMfe is
ERROR_INSUFFICIENT _BUFFER, pdwBufferSize receives the minimum size
pbBuffer must be to hold the MFE; otherwise pdwBufferSize remains unchanged.

pbBuffer
[out] On input, the client must supply a painter to a buffer. On output, pbBuffer
receives one or more MFEs. Each MFE is a MIB_IPMCAST _MFE structure.

pdwNumEntries
[out] On input, the client must supply a painter to a DWORD value. On output,
pdwNumEntries receives the number of MFEs in pbBuffer.

Chapter 12 Multicast Group Manager 535

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT _COMPLETE

ERROR_INSUFFICIENT _BUFFER

ERROR_MaRE_DATA

ERROR_NO _MORE_ITEMS

Remarks

Could not complete the call to this function.

The specified buffer is too small for even one
MFE. The client should checkpdwBufferSize
for the minimum buffer size required to retrieve
one MFE.

More MFEs are available.

No more MFEs are available. Zero or more
MFEs were returned; check pdwNumEntries to
verify how many were returned.

This function is used to continue the sequential retrieval of MFEs; use MgmGetFirstMfe
to start the retrieval process.

In general, to retrieve MFEs, first call MgmGetFirstMfe. Then, call MgmGetNextMfe
one or more times, until there are no more MFEs to return. Each call to
MgmGetNextMfe should start after the last MFE returned by the previous call to
MgmGetNextMfe (or the initial call to MgmGetFirstMfe) , by specifying the last source
and group in the buffer returned by a previous call.

Note The minimum size of pbBuffer is not fixed; it is different for each MFE. Use the
SIZEOF _MIB_MFE macro to determine the size of each MFE returned in the buffer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGetFirstMfe, MgmGetFirstMfeStats, MgmGetMfe, MgmGetMfeStats,
MgmGetNextMfeStats, MIB_IPMCAST _MFE, SIZEOF _MIB_MFE

536 Volume 5 Routing

MgmGetNextMfeStats
The MgmGetNextMfeStats function retrieves one or more sets of MFE statistics. The
routing table manager retrieves the set of statistics that follows the specified MFE. The
function can retrieve zero, one, or more sets MFE statistics. The number of entries
returned depends on the size of the entries and the size of the buffer supplied when the
function is called.

The data returned in the buffer is ordered first by group, then by the sources within a
group. The statistics returned include the packets and bytes received, as well as the
packets forwarded, on each outgoing interface.

Parameters
pimmStart

[in] Pointer to a MIB_IPMCAST _MFE structure that specifies from where to begin
retrieving MFE statistics. Use the dwSource and dwGroup members from the last
MFE returned by the previous call to MgmGetFirstMfeStats or
MgmGetNextMfeStats.

pdwBufferSize
[in, out] On input, pdwBufferSize is a pointer to a DWORD value that contains the
size, in bytes, of pbBuffer. On output, if the return value of MgmGetNextMfeStats is
ERROR_INSUFFICIENT_BUFFER, pdwBufferSize receives the minimum size
pbBuffer must be to hold the MFE; otherwise pdwBufferSize remains unchanged.

pbBuffer
[out] On input, the client must supply a pOinter to a buffer. On output, pbBuffer
receives one or more sets of MFE statistics. Each set of statistics is returned in a
MIB_IPMCAST_MFE_STATS structure.

pdwNumEntries
[out] On input, the client must supply a pOinter to a DWORD value. On output,
pdwNumEntries receives the number of MFE statistics in pbBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INSUFFICIENT _BUFFER

ERROR_MORE_DAT A

ERROR_NO _MORE_ITEMS

Remarks

Chapter 12 Multicast Group Manager 537

Meaning

Could not complete the call to this function.

The specified buffer is too small to hold the
statistics for even one MFE. The client should
check pdwBufferSize for the minimum buffer
size required to retrieve statistics for one MFE.

More MFE statistics are available.

No more MFE statistics are available. Zero or
more sets of MFE statistics were returned;
check pdwNumEntries to verify how many were
returned.

This function is used to continue the sequential retrieval of MFE statistics; use
MgmGetFirstMfeStats to start the retrieval process.

In general, to retrieve MFE statistics, first call MgmGetFirstMfeStats. Then, call
MgmGetNextMfeStats one or more times, until there are no more MFEs to return. Each
call to MgmGetNextMfeStats start after the last MFE returned by
MgmGetNextMfeStats (or the initial call to MgmGetFirstMfeStats) , by specifying the
last source and group in the buffer returned by a previous call.

Note The minimum size of pbBuffer is not fixed; it is different for each MFE for which
statistics are returned. Use the SIZEOF _MIB_MFE_STATS macro to determine the size
of each group of statistics returned in the buffer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGetFirstMfe, MgmGetFirstMfeStats, MgmGetMfe, MgmGetMfeStats,
MgmGetNextMfe, MIB_IPMCAST_MFE_STATS, SIZEOF _MIB_MFE

MgmGetProtocolOnlnterface
The MgmGetProtocolOnlnterface function retrieves the protocol identifier of the
protocol that owns the specified interface.

538 Volume 5 Routing

Parameters
dwlflndex

[in] Specifies the index of the interface for which to retrieve the protocol identifier.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex, The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface on which
all dial-up clients connect),

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, specify zero,

pdwlfProtocolld
[out] On input, the client must supply a pointer to a DWORD value, On output,
pdwlfProtocolld receives the identifier of the protocol on the interface specified by
dwlflndex,

pdwlfComponentid
[out] On input, the client must supply a pointer to a DWORD value, On output,
pdwlfComponentid receives the component identifier for the instance of the protocol
on the interface, This parameter is used with pdwlfProtocolld to uniquely identify an
instance of a routing protocol.

Return Values
If the function succeeds, the return value is NO_ERROR,

If the function fails, the return value is one of the following error codes,

Value

ERROR_CAN_NOT_COMPLETE

ERROR_NOT _FOUND

Meaning

Could not complete the call to this function,

The specified interface was not found in the
multicast group manager.

Windows NT/2000: Requires Windows 2000,
Header: Declared in Mgm,h,
Library: Use Rtm,lib,

Chapter 12 Multicast Group Manager 539

MgmReleaselnterfaceOwnership, MgmTakelnterfaceOwnership

MgmGroupEnumerationEnd
The MgmGroupEnumerationEnd function releases the specified enumeration handle
that was obtained from a previous call to MgmGroupEnumerationStart.

Parameters
hEnum

[in] Specifies the enumeration handle to release.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR_CAN_NOT_COMPLETE

ERROR_INVALlD_PARAMETER

Meaning

Could not complete the call to this function.

Invalid enumeration handle.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmGroupEnumerationGetNext, MgmGroupEnumerationStart

MgmGroupEnumerationGetNext
The MgmGroupEnumerationGetNext function retrieves the next set of group entries.
The information that is returned by thisfunction lists the groups that have been joined.
For source-specific joins, the sources for those groups are also returned. The groups are
not returned in any particular order.

540 Volume 5 Routing

Parameters
hEnum

[in] Handle to the enumeration that was obtained from a previous call to
MgmGroupEnumerationStart.

pdwBufferSize
[in, out] On input, pdwBufferSize is a pointer to a DWORD value that contains the
size, in bytes, of pbBuffer. On output, if the return value of
MgmGroupEnumerationGetNext is ERROR_INSUFFICIENT _BUFFER,
pdwBufferSize receives the minimum size that pbBuffer must be to hold the group
entry; otherwise pdwBufferSize remains unchanged.

pbBuffer
[out] On input, the client must supply a pointer to a buffer. On output, pbBuffer
receives one or more group entries. Each group entry is a
SOURCE_GROUP _ENTRY structure.

pdwNumEntries
[out] On input, the client must supply a pointer to a DWORD value. On output,
pdwNumEntries receives the number of groups in pbBuffer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT _COMPLETE

ERROR_INSUFFICIENT _BUFFER

ERROR_INVALlD_PARAMETER

ERROR_MORE_DATA

ERROR_NO _MORE_ITEMS

Could not complete the call to this function.

The specified buffer is too small to hold even
one group. The client should check
pdwBufferSize for the minimum buffer size
required to retrieve one group.

Invalid handle to an enumeration.

More groups are available.

No more groups are available. Zero or more
groups were returned; check pdwNumEntries to
verify how many were returned.

Not enough memory to complete this operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

Chapter 12 Multicast Group Manager 541

MgmGroupEnumerationEnd, MgmGroupEnumerationStart,
SOURCE_GROUP_ENTRY

MgmGroupEnumerationStart
The MgmGroupEnumerationStart function obtains an enumeration handle that is later
used to list the groups that have been joined. After the client obtains the handle, it
should use the MgmGroupEnumerationGetNext function to enumerate the groups.

Parameters
hProtocol

[in] Handle to the protocol obtained from a previous call to MgmRegisterMProtocol.

metEnumType
[in] Specifies the type of enumeration. The following enumerations are available.

Enumeration Meaning

ALL_SOURCES

ANY_SOURCE

phEnumHandle

Retrieves wildcard joins (*, g) and source-specific joins (s, g).

Retrieves group entries that have at least one source
specified.

[out] Returns the handle to the enumeration. Use this handle in calls to
MgmGroupEnumerationGetNext and MgmGroupEnumerationEnd.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

542 Volume 5 Routing

Value Meaning

ERROR_CAN_NOT _COMPLETE Could not complete the call to this function.

ERROR_INVALlD_PARAMETER Invalid handle to a protocol.

ERROR_NOT _ENOUGH_MEMORY Not enough memory to complete this
operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MGM_ENUM_ TYPES, MgmGroupEnumerationEnd,
MgmGroupEnumerationGetNext

MgmRegisterMProtocol
The MgmRegisterMProtocol function is used by clients to register with the multicast
group manager. When the registration is complete, the multicast group manager returns
a handle to the client. The client must supply this handle in subsequent MGM function
calls.

Parameters
prpilnfo

[in] Pointer to a structure that contains callbacks into the client that is registering.

dwProtocolld
[in] Specifies the identifier of the client. The identifier is unique for each client.

dwComponentld
[in] Specifies the component identifier for the instance of the client. This parameter is
used with dwProtocolldto uniquely identify an instance of a client.

Chapter 12 Multicast Group Manager 543

ph Protocol
[outlln input, the client must supply a pOinter to a handle. On output, phProtocol
receives the registration handle for the client. This handle must be used in
subsequent calls to the multicast group manager.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value

ERROR---,-CAN_NOT _COMPLETE

ERROR_NOT_ENOUGH_MEMORY

Remarks

Meaning

Cannot register the specified client because an
entry with the same protocol and component
identifier already exists.

Could not complete the call to this function.

Not enough memory to complete this
operation.

Registering a protocol is the first operation any multicast routing protocol or other client
should perform. After registration, the protocol should take ownership of the appropriate
interfaces before adding or deleting group memberships.

Only one client may take ownership of an interface at any given time. Multiple routing
protocols may be registered with the multicast group manager, each protocol owning
different interfaces.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmDeRegisterMProtocol, MgmTakelnterfaceOwnership,
ROUTING_PROTOCOL_CONFIG

MgmReleaselnterfaceOwnership
The MgmReleaselnterfaceOwnership function is used by a client to relinquish
ownership of an interface. When this function is called, all group MFEs maintained by the
multicast group manager on behalf of the client for the specified interface are deleted.

544 Volume 5 Routing

Parameters
hProtocol

[in] Handle to the protocol obtained from a previous call to MgmRegisterMProtocol.

dwlflndex
[in] Specifies the index of the interface to release.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, specify zero.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Value Meaning

ERROR_CAN_NOT _COMPLETE

ERROR_INVALlD_PARAMETER

Remarks

Could not complete the call to this function.

Invalid handle to a client, or the interface was
not found.

A client must release ownership of all the interfaces it owns before unregistering itself
with the MgmDeRegisterMProtocol function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmDeRegisterMProtocol, MgmGetProtocolOnlnterface,
MgmTakelnterfaceOwnership

Chapter 12 Multicast Group Manager 545

MgmSetMfe
The MgmSetMfe function changes the upstream neighbor for an MFE. An MFE contains
the information about which interface is receiving, and which interfaces are forwarding,
multicast data.

Parameters
hProtoco/

[in] Handle to the protocol obtained from a previous call to MgmRegisterMProtocol.

pmimm
[in] Pointer to a MIB_IPMCAST _MFE structure that specifies the MFE to change.
Specify the new neighbor in the dwUpstreamNeighbor member.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CAN_NOT _COMPLETE

ERROR_INVALID_PARAMETER

ERROR_NOT _FOUND

Could not complete the call to this function.

Invalid handle to a client.

The specified MFE was not found.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

MgmTakelnterfaceOwnership
The MgmTakelnterfaceOwnership function is called by a client (such as a routing
protocol) when it is enabled on an interface.

546 Volume 5. Routing

Only one client can take ownership of a given interface at any time. The only exception
to this rule is the IGMP. IGMP can coexist with another client on an interface.

Parameters
hProtocol

[in] Handle to the protocol obtained from a previous call to MgmRegisterMProtocol.
dwlflndex

[in] Specifies the index of the interface of which to take ownership.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, specify zero.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ALREADY _EXISTS The specified interface is already owned by
another routing protocol.

ERROR_CAN_NOT _COMPLETE Could not complete the call to this function.

ERROR_INVALlD_PARAMETER Invalid handle to a client.

ERROR_NOT _ENOUGH_MEMORY Not enough memory to complete this operation.

Remarks
The client must take ownership of an interface only after registering itself with the
multicast group manager and before it adds group membership entries.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.
Library: Use Rtm.lib.

Chapter 12 Multicast Group Manager 547

MgmGetProtocolOnlnterface, MgmRegisterMProtocol,
MgmReleaselnterfaceOwnership

Multicast Group Manager Callbacks
The multicast group manager uses the following callbacks to notify clients (typically,
routing protocols) of events and state changes:

Routing Protocol Callbacks
PMGM_CREATION_ALERT _CALLBACK
PMGM_JOIN_ALERT _CALLBACK
PMGM_PRUNE_ALERT_CALLBACK
PMGM_LOCAL_JOIN_CALLBACK
PMGM_LOCAL_LEAVE_CALLBACK
PMGM_RPF_CALLBACK
PMGM_WRONG_IF _CALLBACK

IGMP·Only Callbacks
PMGM_DISABLE_IGMP _CALLBACK
PMGM_ENABLE_IGMP _CALLBACK

PMGM_ CREATION_ALERT _CALLBACK
The PMGM_CREATION_ALERT_CALLBACK is a call into a routing protocol. This call
determines the subset of interfaces owned by the routing protocol onwhich a multicast
packet from a "new" source should be forwarded.

When a packet sent from a new source, or destined for a new group, arrives on an
interface, the multicast group manager creates a new MFE. The multicast group
manager then issues this callback to those routing protocols that have outgoing
interfaces in this new MFE. A routing protocol can choose to disable the forwarding of
data from the source to the group on specific interfaces.

548 Volume 5 Routing

Parameters
dw$ourceAddr

[in] Specifies the address of the source from which the multicast data was received.

dw$ourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources from
which to receive data. This parameter is set to zero if dwSourceAddrwas also set to
zero. This parameter is not currently used.

dwGroupAddr
[in] Specifies the multicast group for which the data is destined.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. This parameter is set to zero if dwGroupAddrwas also set to zero. This
parameter is currently not used.

dwlnlflndex
[in] Specifies the interface on which the multicast data from the source should arrive.

dwlnlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, MGM sets dwlnlfNextHopAddrto zero.

dwlfCount
[in] Specifies the number of interfaces in pmieOutlfList.

pmieOutlfList
[in, out] On input, a pOinter to the set of interfaces owned by the protocol on which
that data will be forwarded. On return, the protocol prevents forwarding (if the
prevention of forwarding is required) on any of its interfaces by setting the bEnabled
member of the corresponding MGM~IF ~ENTRY structure to FALSE.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

Chapter 12 Multicast Group Manager 549

PMGM_DISABLE_IGMP _CALLBACK
The PMGM_DISABLE_IGMP _CALLBACK is a call into the IGMP to notify that a routing
protocol is taking or releasing ownership of an interface on which IGMP is enabled.

When this callback is invoked, IGMP should stop adding and deleting group
memberships on the specified interface:

Parameters
dwlflndex

[in] Specifies the interface on which to disable IGMP.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on pOint
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, MGM sets dwlnlfNextHopAddrto zero.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

The PMGM_ENABLE_IGMP _CALLBACK is a call into the IGMP to notify IGMP that a
routing protocol has finished taking or releasing ownership of an interface.

When this callback is invoked, IGMP should add all its group memberships on the
specified interface using calls to MgmAddGroupMembershipEntry.

550 Volume 5 Routing

Parameters
dwlflndex

[in] Specifies the index of the interface on which to enable IGMP.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
non-broadcast multiple access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, MGM sets dwlnlfNextHopAddrto zero.

Remarks
IGMP must not add group memberships in the context of this callback. The multicast
group manager and IGMP will become deadlocked.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

The PMGM_JOIN_ALERT _CALLBACK is a call into a routing protocol to notify the
protocol that receivers are present for one or more groups on interfaces that are owned
by other routing protocols.

Parameters
dwSourceAddr

Chapter 12 Multicast Group Manager 551

[in] Specifies the range of source addresses from which to receive group data. The
multicast group manager sets dwSourceAddrto zero to indicate a wildcard receiver
for a group); otherwise, the multicast group manager specifies the IP address of the
source or source network.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources from
which to receive data. This parameter is not currently used.

dwGroupAddr
[in] Specifies the range of multicast groups for which to receive data. The multicast
group manager sets dwGroupAddrto zero to receive all groups (a wildcard receiver);
otherwise, the multicast group manager specifies the IP address of the group.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. The multicast group manager sets dwGroupMaskto zero if dwGroupAddris
set to zero (a wildcard receiver).

bMemberUpdate
[in] Specifies whether the callback was invoked because
MgmAddGroupMembershipEntry was called by a client (the multicast group
manager sets this parameter to TRUE), or because an MFE was created or updated
(the multicast group manager sets this parameter to FALSE).

Remarks
The multicast group manager sets the bMemberDelete parameter to TRUE if both of the
following conditions are met:

• A client calls MgmAddGroupMembershipEntry for a (*, g) entry.

• The interoperability rules between multicast routing protocols specify that other clients
must be informed.

The multicast group manager sets the bMemberDelete parameter to FALSE if an
MgmAddGroupMembershipEntry call causes the MFE for group "g" to contain an entry
(that is, if theMFE is caused to leave the negative state). The action taken by the routing
protocol when this callback is received is protocol-specific. The protocol may ignore the
callback if the bMemberDelete parameter is set to FALSE,if the protocol specification
indicates that this is the correct behavior.

This version of the Multicast Group Manager API supports only wildcard sources (*, g) or
specific sources (s, g), not source ranges. The same restriction applies to groups (that is,
no group ranges are permitted).

552 Volume 5 Routing

When MgmAddGroupMembershipEntry is called, the multicast group manager uses
this callback to notify other multicast group manager clients that there are receivers for
the specified source and group.

The multicast group manager uses the following rules to determine when to invoke this
callback for wildcard (*, g) joins:

• If this is the first client to inform MGM that there are receivers on an interface for a
group, the callback is invoked for all other clients registered with MGM.

• If this is the second client to inform MGM that there are receivers on an interface for a
group, MGM invokes this callback for the first client that called
MgmAddGroupMembershipEntry.

The multicast group manager uses the following rule to determine when to invoke this
callback for source-specific (s, g) joins:

• If this is the first client to inform MGM that there are receivers on an interface for a
source and group, MGM invokes this callback only for the client that owns the
incoming interface towards the specified source.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

The PMGM_LOCAL_JOIN_CALLBACK is a call into a routing protocol to notify the
protocol that IGMP has detected receivers for a group on an interface that is currently
owned by the routing protocol.

This callback is invoked when MgmAddGroupMembershipEntry is called by IGMP.

Parameters
dwSourceAddr

Chapter 12 Multicast Group Manager 553

[in] Specifies the range of source addresses from which to receive group data. The
multicast group manager sets dwSourceAddrto zero to indicate a wildcard receiver
for a group; otherwise, the multicast group manager specifies the IP address of the
source or source network.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources. This
parameter is set to zero if dwSource Addrwas also set to zero. This parameter is
currently unused.

dwGroupAddr
[in] Specifies the range of multicast groups for which to receive data. The multicast
group manager sets dwGroupAddrto zero to receive all groups (a wildcard receiver);
otherwise, the multicast group manager specifies the IP address of the group.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. This parameter is set to zero if dwGroupAddrwas also set to zero. This
parameter is currently unused.

dwlflndex
[in] Specifies the interface on which to add the group membership.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
Non-Broadcast Multiple Access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, the multicast group manager sets
dwlnlfNextHopAddr to zero.

Remarks
This version of the Multicast Group Manager API supports only wildcard sources (*, g) or
specific sources (s, g), not source ranges. The same restriction applies to groups (that is,
no group ranges are permitted).

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

554 Volume 5 Routing

The PMGM_LOCAL_LEAVE_CALLBACK is a call into a routing protocol to notify the
routing protocol that the IGMP has detected that it no longer has receivers for a group on
an interface that is currently owned by the routing protocol.

This callback is invoked when MgmDeleteGroupMembershipEntry is called by IGMP.

Parameters
dwSourceAddr

[in] Specifies the range of source addresses from which to stop receiving group data.
The multicast group manager sets dwSourceAddrto zero to indicate a wildcard
receiver for a group; otherwise, the multicast group manager specifies the IP address
of the source or source network.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources. This
parameter is set to zero if dwSource Addrwas also set to zero. This parameter is
currently not used.

dwGroupAddr
[in] Specifies the range of multicast groups for which to stop receiving data. The
multicast group manager sets dwGroupAddrto zero to stop receiving all groups (a
wildcard receiver); otherwise, the multicast group manager specifies the IP address of
the group.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. This parameter is set to zero if dwGroupAddrwas also set to zero. This
parameter is currently not used.

dwlflndex
[in] Specifies the interface on which to remove the group membership.

Chapter 12 Multicast Group Manager 555

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on pOint
to-multipoint interfaces, where one interface connects to multiple networks (such as
Non-Broadcast Multiple Access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, the multicast group manager sets
dwlfllfNextHopAddrto zero.

Remarks
This version of the Multicast Group Manager API supports only wildcard sources (*. g) or
specific sources (s, g), not source ranges. The same restriction applies to groups (that is,
no group ranges are permitted).

Windows NT/2000: RequiresWindows 2000.
Header: Declared in Mgm.h.

The PMGM_PRUNE_ALERT _CALLBACK is a call into a muting protocol to notify the
protocol that receivers are no longer present on interfaces owned by other routing
protocols.

556 Volume 5 Routing

Parameters
dwSourceAddr

[in] Specifies the range of source addresses from which to stop receiving group data.
The multicast group manager sets dwSourceAddr to zero to indicate a wildcard
receiver for a group; otherwise, the multicast group manager specifies the IP address
of the source or source network.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask parameters are used together to define a range of sources from
which to stop receiving data. This parameter is set to zero if dwSourceAddrwas also
set to zero.

dwGroupAddr
[in] Specifies the range of multicast groups for which to stop receiving data. The
multicast group manager sets dwGroupAddrto zero to stop receiving all groups (a
wildcard receiver); otherwise, the multicast group manager specifies the IP addr~ss of
the group.

dwGroupMask
[in] Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask parameters are used together to define a range of multicast
groups. This parameter is set to zero if dwGroupAddrwas also set to zero.

dwlflndex
[in] Specifies the interface on which to remove the group membership.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipoint interfaces, where one interface connects to multiple networks (such as
Non-Broadcast Multiple Access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or pOint-to-point interfaces,
which are identified by only dwlflndex, the multicast group manager sets
dwlnlfNextHopAddr to zero.

bMemberDelete
[in] Specifies whether the callback was invoked because
MgmDeleteGroupMembershipEntry was called by a client (the multicast group
manager sets this parameter to TRUE), or because an MFE was updated (the
multicast group manager sets this parameter to FALSE).

pdwTimeout
[out] Pointer to a DWORD value that on return contains the time-out value, in
seconds, for this MFE. If bMemberDelete is FALSE, this parameter can be used to
specify how long the corresponding MFE should remain in the multicast forwarding
cache. If the client does not specify a value, the default is 900 seconds.

Chapter 12 Multicast Group Manager 557

Remarks
The multicast group manager sets the bMemberDelete parameter to TRUE if both of the
following conditions are met:

• A client calls MgmDeleteGroupMembershipEntry for a (*, g) entry.

• The interoperability rules between multicast routing protocols specify that other clients
must be informed.

The multicast group manager sets the bMemberDelete parameter to FALSE if a
MgmDeleteGroupMembershipEntry call causes the MFE for group "g" to become
negative. The action taken by the routing protocol when this callback is received is
protocol-specific. The protocol may ignore the callback if the bMemberDelete parameter
is set to FALSE, if the protocol specification indicates that this is the correct behavior.

This version of the Multicast Group Manager API supports Ohly wildcard sources (*, g) or
specific sources (s, g), not source ranges. The same restriction applies to groups (that is,
no group ranges are permitted).

When MgmDeleteGroupMembershipEntry is called, the multicast group manager uses
PMGM_PRUNE_ALERT_CALLBACK to notify other multicast group manager clients
that receivers no longer exist for the specified source and group.

The multicast group manager uses the following rules to determine when to invoke this
callback for wildcard (*, g) prunes:

• If this is the final interface being removed for the second-to-laSt client (that is, there
are only interfaces remaining for a single client), the multicast group manager invokes
this callback for the last remaining client.

• If this is the final interface being removed for the last client for the group (that is, if no
other interfaces remain), then the callback is invoked for all other clients registered
with the multicast group manager.

The multicast group manager uses the following rule to determine when to invoke this
callback for source-specific (s, g) prunes:

• If this is the final interface being removed for the last client, this callback is invoked
only for the client that owns the incoming interface towards the specified source.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

558 Volume 5 Routing

The PMGM_RPF ~CALLBACK is a call into a routing protocol to determine if a given
packet was received on the correct interface.

This callback is invoked when a packet from a new source or destined for a new group is
received. The multicast group manager calls into the routing protocol that owns the
incoming interface towards the source.

Parameters
dwSourceAddr

[in] Specifies the address of the source that originated the multicast packet.

dwSourceMask
[in] Specifies the subnet mask that corresponds to dwSourceAddr.

dwGroupAddr
[in] Specifies the multicast group to which the data is to be delivered.

dwGroupMask
[in] Specifies the subnet maskthat corresponds to dwGroupAddr.

pdwlnlflndex
[in, out] On input, a pointer to a DWORD value that specifies the index of the interface
on which data from the source is expected to be received, based on the multicast
view of the routing table. On output, pdwlnlflndex points to a DWORD value which
contains the index of the interface on which the protocol expects to receive packets.
The interface index may differ on output from the index specified on input.

pdwlnlfNextHopAddr
[in, out] On input, pdwlnlfNextHopAddr points to the address of the next hop that
corresponds to the interface in pdwlflndex. The pdwlflndex and dwlfNextHoplPAddr
parameters uniquely identify a next hop on point-to-multipoint interfaces, where one
interface connects to multiple networks (such as Non-Broadcast Multiple Access
(NBMA) interfaces, or the internal interface all dial-up clients connecton).

Chapter 12 Multicast Group Manager 559

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, the multicast group manager sets
dwlnlfNextHopAddrto zero.

On output, pdwlnlfNextHopAddr pOints to the next hop that corresponds to
pdwlnlflndex.

pdwUpStreamNbr
[in, out] On input, pdwUpStreamNbr points to a DWORD value specifying the
immediate upstream neighbor towards the source (the source is found in the multicast
view of the routing table). On output, pdwUpStreamNbrmay have been modified by
the protocol. This parameter is informational.

dwHdrSize
[in] Specifies, in bytes, the size of the buffer pointed to by pbPacketHdr.

pbPacketHdr
[in] Pointer to a buffer that contains the IP header of the packet, including the IP
options and a fragment of the data. This parameter is supplied for those protocols that
examine the contents of the packet header.

pbRoute
[in] Pointer to a buffer that contains the route towards the source. The buffer contains
an RTM_DEST _INFO structure.

Remarks
This callback is invoked when an MFE is created. MFEs are created when data from a
new multicast source, or destined to a new group,is received.

The multicast group manager invokes this callback for the routing protocol that owns the
incoming interface towards the source. The multicast group manager determines the
interface by looking up the source of the multicast data in multicast view ofthe routing
table. This interface is not always the same as the interface on which the data was
actually received; this condition occurs if multicast data was received on the wrong
interface.

When this callback is invoked, the routing protocol can change the incoming interface if
the routing protocol behavior requires it to receive the data for the group from another
interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

560 Volume 5 Routing

PMGM_WRONG_IF _CALLBACK
The PMGM_WRONG_IF _CALLBACK is a call into a routing protocol to notify the
protocol that a packet has been received from the specified source and for the specified
group on the wrong interface.

Parameters
dw$ourceAddr

[in] Specifies the source address from which group data was received.

dwGroupAddr
[in] Specifies the multicast group for which the data is destined.

dwlflndex
[in] Specifies the interface on which the packet arrived.

dwlfNextHopAddr
[in] Specifies the address of the next hop that corresponds to dwlflndex. The
dwlflndex and dwlfNextHoplPAddr parameters uniquely identify a next hop on point
to-multipointinterfaces, where one interface connects to multiple networks (such as
Non-Broadcast Multiple Access (NBMA) interfaces, or the internal interface all dial-up
clients connect on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, the multicast group manager sets
dwlnlfNextHopAddrto zero.

dwHdr$ize
[in] Specifies the size, in bytes, of the buffer pointed to by pbPacketHdr.

pbPacketHdr
[in] Pointer to a buffer that contains the IP header of the packet, including the IP
options and a fragment of the data. This parameter is supplied for those protocols that
examine the contents of the packet header.

Remarks
This callback is not currently available.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

Multicast Group Manager Structures

Chapter 12 Multicast Group Manager 561

The Multicast Group Manager functions use the following structures:

MGM_IF _ENTRY

ROUTING_PROTOCOL_CONFIG

SOURCE_GROUP_ENTRY

The MGM_IF _ENTRY structure describes a router interface. This structure is used in the
PMGM_CREATION_ALERT_CALLBACK. In the context of this callback, the routing
protocol must enable or disable multicast forwarding on each interface, notifying the
multicast group manager by using the blsEnabled member.

Members
dwlflndex

Specifies the index of the interface.

dwlfNextHopAddr
Specifies the address of the next hop that corresponds to dwlflndex. The dwlflndex
and dwlfNextHoplPAddr parameters uniquely identify a next hop on point-to-multipoint
interfaces, where one interface connects to multiple networks (such as Non-Broadcast
Multiple Access (NBMA) interfaces, or the internal interface all dial-up clients connect
on).

For broadcast interfaces (such as Ethernet interfaces) or point-to-point interfaces,
which are identified by only dwlflndex, specify zero.

blGMP
Indicates whether or not IGMP is enabled on this interface. If TRUE, IGMP is enabled
on this interface. If FALSE, IGMP is not enabled on this interface.

562 Volume 5 Routing

blsEnabled
Indicates whether or not multicast forwarding is enabled on this interface. If TRUE,
multicast forwarding is enabled on this interface. If FALSE, multicast forwarding is
disabled on this interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

The ROUTING_PROTOCOL_CONFIG structure describes the routing protocol
configuration information that is passed to the multicast group manager when a protocol
is registered.

Members
dwCalibackFlags

Reserved for future use.

pfnRpfCaliback
Callback into a routing protocol to perform an RPF check.

pfnCreationAlertCallback
Callback into a routing protocol to determine the subset of interfaces owned by the
routing protocol on which a multicast packet from a new source or to a new group
should be forwarded.

Chapter 12 Multicast Group Manager 563

pfnPruneAlertCallback
Callback into a routing protocol to notify the protocol that receivers are no longer
present on an interface owned by other routing protocols for the specified source and
group.

pfnJoinAlertCaliback
Callback into a routing protocol to notify the protocol that receivers are present on an
interface owned by another routing protocol for the specified source and group.

pfnWronglfCaliback
Callback into a routing protocol to notify the protocol that a packet has been received
from the specified source and for the specified group on the wrong interface.

pfnLocalJoinCaliback
Callback into a routing protocol to notify the protocol that IGMP has detected
receivers for a group on an interface.

pfnLocalLeaveCallback
Callback into a routing protocol to notify the protocol that IGMP has detected that
there are no receivers for a group on an interface.

pfnDisablelgmpCallback
. Callback into IGMP to notify IGMP that a protocol is taking or releasing ownership of

an interface on which IGMP is enabled.

pfnEnablelgmpCallback
Callback into IGMP to notify IGMP that a protocol has finished taking or releasing
ownership of an interface on which IGMP is enabled.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

MgmRegisterMProtocol

The SOURCE_GROUP _ENTRY structure describes the entry returned by the multicast
group manager group enumeration functions.

564 Volume 5 Routing

Members
dwSourceAddr

Specifies the range of source addresses for the membership entry. Zero indicates a
wildcard source.

dwSourceMask
Specifies the subnet mask that corresponds to dwSourceAddr. The dwSourceAddr
and dwSourceMask members are used together to define a range of sources.

dwGroupAddr
Specifies the range of multicast groups for the membership entry. Zero indicates a
wildcard group.

dwGroupMask
Specifies the subnet mask that corresponds to dwGroupAddr. The dwGroupAddr
and dwGroupMask members are used together to define a range of multicast
groups.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

MGM_ENUM_ TYPES, MgmGroupEnumerationEnd,
MgmGroupEnumerationGetNext, MgmGroupEnumerationStart

Multicast Group Manager Enumerations
The Multicast Group Manager functions use the following enumeration:

MGM_ENUM_ TYPES

The MGM_ENUM_ TYPES enumeration lists the types of group enumerations that the
multicast group manager uses. It is used by the MgmGroupEnumerationStart function.

Values
ANY_SOURCE

Enumerate group entries that have at least one source.

ALL_SOURCES
Enumerate all source entries for a group.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mgm.h.

MgmGroupEnumerationStart

Chapter 12 Multicast Group Manager 565

Part 3 567

IN D EX

Networking Services Programming Elements -
Alphabetical Listing

This final part, found in each volume in the Networking Services Library, provides a
comprehensive programming element index that has been designed to make your life
easier.

Rather than cluttering the TOGs of each individual volume in this library with the names
of programming elements, I've relegated such per-element information to a central
location: the back of each volume. This index points you to the volume that has the
information you need, and organizes the information in a way that lends itself to easy
use.

Also, to keep you as informed and up-to-date as possible about Microsoft technologies,
I've created (and maintain) a live Web-based document that maps Microsoft
technologies to the locations where you can get more information about them. The
following link gets you to the live index of technologies:

www.iseminger.com/winprs/technologies

The format of this index is in a constant state of improvement. I've designed it to be as
useful as possible, but the real test comes when you put it to use. If you can think of
ways to make improvements, send me feedback at winprs@microsoft.com. While I can't
guarantee a reply, I'll read the input, and if others can benefit, I will incorporate the idea
into future libraries.

Locators are arranged by Volume Number followed by Page Number.

A B
accept ... Vol. 1, 133 bind ... Vol, 1, 139
AcceptEx .. Vol. 1, 135 Binding Option Constants Vol. 3, 333
ACTION_HEADER Vol. 2,147 Binding Time-out Constants Vol. 3, 333
ADAPTER_STATUS Vol. 2,148 BLOB : Vol. 1, 378
Addlnterface Vol. 5, 266 BlockConvertServicesToStatic Vol. 5, 316
AddlPAddress Vol. 2, 239 BlockDeleteStaticServices Vol. 5, 317
ADDRESS_LIST _DESCRiPTOR Vol. 1, 835
AFPROTOCOLS : Vol. 1,377
AsnAny ... Vol. 2, 336 c
AsnCounter64 Vol. 2, 338
AsnObjectidentifier Vol. 2, 339
AsnOctetString Vol. 2, 339
Authentication-Level Constants Vol. 3, 330
Authentication-Service Constants Vol. 3, 331
Authorization-Service Constants Vol. 3, 332

cbpAdmitRsvpMsg Vol. 1,860
cbpGetRsvpObjecls Vol. 1, 861
Change Notification Flags Vol. 5, 505
CIAddFlowComplete Vol. 1,830
CIDeleteFlowComplete Vol. 1,831
CIModifyFlowComplete Vol. 1, 831

568 Volume 5 Routing

CINotifyHandler Vol. 1, 832 Enumeration Flags Vol. 5, 505
CloseServiceEnumerationHandle Vol. 5, 318 ENUMERATION_BUFFER. Vol. 1,835
closesocket... Vol. 1, 142 EnumProtocols Vol. 1, 149
connect ... Vol. 1, 145
ConnectClient... Vol. 5, 268
CONNECTDLGSTRUCT Vol. 3, 656 F
CreatelpForwardEntry Vol. 2, 240
CreatelpNetEntry Vol. 2, 242
CreateProxyArpEntry Vol. 2, 242
CreateServiceEnumerationHandle ... Vol. 5, 319
CreateStaticService Vol. 5, 320
CSADDR_INFO Vol. 1, 378

fd set .. Vol. 1,380
FIND_NAME_BUFFER Vol. 2,151
FIND_NAME_HEADER Vol. 2, 152
FIXED_INFO Vol. 2, 277
FLOWSPEC Vol. 1,380
FLOWSPEC Vol. 1,791
FlushlpNetTable Vol. 2, 246

D
DCE_C_ERROR_STRING_LEN Vol. 3, 336 G
DceErrorlnqText Vol. 3, 349
Deletelnterface Vol. 5, 269
DeletelPAddress Vol. 2, 243
DeletelpForwardEntry Vol. 2, 244
DeletelpNetEntry Vol. 2, 245
DeleteProxyArpEntry Vol. 2, 245
DeleteStaticService Vol. 5, 321
DemandDialRequest Vol. 5, 306
DhcpCApiCleanup Vol. 2, 74
DhcpCApilnitialize Vol. 2, 74
DhcpDeRegisterParamChange Vol. 2, 80
DhcpRegisterParamChange Vol. 2, 78
DhcpRequestParams Vol. 2, 75
DhcpUndoRequestParams Vol. 2, 77
DISCDLGSTRUCT Vol. 3, 658
DisconnectClient Vol. 5, 270
DnsAcquireContextHandle Vol. 2, 49
DnsExtractRecordsFromMessage Vol. 2, 50
DnsFreeRecordList Vol. 2, 51
DnsModifyRecordslnSet... Vol. 2, 51
DnsNameCompare Vol. 2, 53
DnsQuery ... Vol. 2, 61
DnsQueryConfig Vol. 2, 63
DnsRecordCompare Vol. 2, 55
DnsRecordCopyEx Vol. 2, 55
DnsRecordSetCompare Vol. 2, 56
DnsRecordSetCopyEx Vol. 2, 57
DnsRecordSetDetach Vol. 2, 58
DnsReleaseContextHandle Vol. 2, 54
DnsReplaceRecordSet... Vol. 2, 59
DnsValidateName Vol. 2, 64
DnsWriteQuestionToBuffer Vol. 2, 67
DoUpdateRoutes Vol. 5, 271
DoUpdateServices Vol. 5, 271

GetAcceptExSockaddrs Vol. 1, 153
GetAdapterlndex Vol. 2, 247
GetAdapterslnfo Vol. 2, 248
GetAddressByName Vol. 1, 154
GetBestinterfacevol. 2, 249
GetBestRoutevol. 2, 250
GetEventMessage Vol. 5, 272
GetFirstOrderedService Vol. 5, 323
GetFriendlylflndex Vol. 2, 251
GetGloballnfo Vol. 5, 274
gethostbyaddr Vol. 1, 159
gethostbyname Vol. 1, 160
gethostname Vol. 1, 162
GetlcmpStatistics Vol. 2, 252
GetifEntry .. Vol. 2, 252
GetlfTable ... Vol. 2, 253
Getlnterfacelnfo Vol. 2, 254
Getlnterfacelnfo Vol. 5, 275
GetipAddrTable Vol. 2, 255
GetipForwardTable Vol. 2, 256
GetipNetTable Vol. 2, 257
GetipStatistics Vol. 2, 258
GetMfeStatus Vol. 5, 277
GetNameByType Vol. 1, 163
GetNeighbors Vol. 5, 278
GetNetworkParams Vol. 2, 258
GetNextOrderedService Vol. 5, 324
GetNumberOflnterfaces Vol. 2, 260
getpeername Vol. 1, 164
GetPerAdapterlnfo Vol. 2, 260
getprotobyname Vol. 1, 165
getprotobynumber. Vol. 1, 167
GetRTTAndHopCount Vol. 2, 262
getservbyname Vol. 1, 168
getservbyport VoI.1, 169

E GetService .. Vol. 1, 171
GetServiceCount Vol. 5, 325

EnumerateGetNextService Vol. 5, 322 getsockname Vol. 1, 175

Index Networking Services Programming Elements - Alphabetical Listing 569

getsockopt .. Vol. 1, 176
GetTcpStatistics Vol. 2, 263
GetTcpTable Vol. 2, 263
GetTypeByName Vol. 1, 185
GetUdpStatistics Vol. 2, 264
GetUdpTable Vol. 2, 265
GetUniDirectionalAdapterlnfo Vol. 2, 266
GLOBALJIL TER Vol. 5, 262
GUARANTEE Vol. 1, 413
GUID ... VoI.1, 848
GUID ... Vol. 3, 295

H
hostent.. ... Vol. 1,381
htonl .. Vol. 1, 186
htons ... Vol. 1,187

(I
IEAPProviderConfig Vol. 4, 426
IEAPProviderConfig: :

RouterlnvokeConfigUI Vol. 4,430
IEAPProviderConfig::

RouterlnvokeCredentialsUI Vol. 4, 432
IEAPProviderConfig::

ServerlnvokeConfigUI Vol. 4, 429
IEAPProviderConfig::lnitialize Vol. 4, 426
IEAPProviderConfig::Uninitialize Vol. 4, 428
in_addr .. Vol. 1, 381
inet_addr ... Vol. 1, 187
ineCntoa ... Vol. 1, 189
Interface Registration Flags Vol. 3, 336
InterfaceStatus Vol. 5, 280
ioctlsocket.. Vol. 1, 190
IP Info Types for Router

Information Blocks Vol. 5,183
IP _ADAPTER_BINDING_INFO Vol. 5, 149
IP _ADAPTER_INDEX_MAP Vol. 2, 278
IP _ADAPTER_INFO Vol. 2, 279
IP _INTERFACE_INFO Vol. 2, 280
IP _LOCAL_BINDING Vol. 5,150
IP _NETWORK Vol. 5, 352
IP _NEXT _HOP_ADDRESS Vol. 5, 352
IP _PATTERN ; .. Vol. 1,842
IP _PER_ADAPTER_INFO Vol. 2, 281
IP _SPECiFiC_DATA Vol. 5, 353
IP _UNIDIRECTIONAL_ADAPTER_

ADDRESS Vol. 2, 282
IPNG_ADDRESS Vol. 2, 88
IpReleaseAddress Vol. 2, 267
IpRenewAddress Vol. 2, 268
IPX Info Types for Router

Information Blocks Vol. 5,184

IPX_ADAPTER_BINDING_INFOvol. 5,151
IPX_ADDRESS_DATA Vol. 1,670
IPX_IF _INFO Vol. 5,181
IPX_NETNUM_DATA Vol. 1,672
IPX_NETWORK Vol. 5, 355
IPX_NEXT _HOP_ADDRESS Vol. 5, 355
IPX_SERVER_ENTRY Vol. 5, 327
IPX_SERVICE Vol. 5, 328
IPX_SPECIFIC_DATA Vol. 5, 356
IPX_SPXCONNSTATUS_DATA Vol. 1,673
IPX_STATIC_SERVICE_INFO Vol. 5,181
IPXWAN_IF_INFO Vol. 5,182
ISensLogon Vol. 2, 212
ISensLogon::DisplayLock Vol. 2, 216
ISensLogon::DisplayUnLock Vol. 2, 217
ISensLogon::Logoff Vol. 2, 214
ISensLogon::Logon Vol. 2, 213
ISensLogon::StartScreenSaver Vol. 2, 218
ISensLogon::StartShell Vol. 2, 215
ISensLogon::StopScreenSaver Vol. 2, 219
ISensNetwork Vol. 2, 220
ISensNetwork::

ConnectionMadeNoOOClnfo Vol. 2, 222
ISensNetwork::

DestinationReachable Vol. 2, 225
ISensNetwork::

DestinationReachable
NoOOClnfo Vol. 2, 226

ISensNetwork::ConnectionLost Vol. 2, 223
ISensNetwork::ConnectionMade Vol. 2, 221
ISensOnNow Vol. 2, 228
ISensOnNow::BatteryLow Vol. 2, 231
ISensOnNow::OnACPowervol. 2, 229
ISensOnNow::OnBatteryPower Vol. 2, 230
IsService ... Vol. 5, 326
ISyncMgrEnumltems Vol. 2, 166
ISyncMgrRegister Vol. 2, 193
ISyncMgrRegister::

GetHandlerRegistrationlnfo Vol. 2, 195
ISyncMgrRegister::

RegisterSyncMgrHandler Vol. 2,194
ISyncMgrRegister::

UnregisterSyncMgrHandler Vol. 2, 194
ISyncMgrSynchronize Vol. 2, 168
ISyncMgrSynchronize: :

EnumSyncMgrltems Vol. 2,171
ISyncMgrSynchronize: :

GetHandlerlnfo Vol. 2,170
ISyncMgrSynch ronize::

GetltemObject.. Vol. 2, 172
ISyncMgrSynchronize::

PrepareForSync Vol. 2,175
ISyncMgrSynch ronize::

SetltemStatus Vol. 2, 178

570 Volume 5 Routing

ISyncMgrSynchronize:: MCAST _SCOPE_ENTRY Vol. 2, 90
SetProgressCaliback Vol. 2,174 McastApiCleanup Vol. 2, 82

ISyncMgrSynchronize:: McastApiStartup Vol. 2, 82
ShowProperties Vol. 2,173 McastEnumerateScopes Vol. 2, 83

ISyncMgrSynchronize:: McastGenUID Vol. 2, 85
Synchronize Vol. 2, 176 McastReleaseAddress Vol. 2, 87

ISyncMgrSynchronize::lnitialize Vol. 2, 169 McastRenewAddress Vol. 2, 86
ISyncMgrSynchronize::ShowError ... Vol. 2, 179 McastRequestAddress Vol. 2, 85
ISyncMgrSynchronizeCaliback Vol. 2, 180 MesBufferHandleReseL. Vol. 3, 350
ISyncMgrSynchronizeCaliback: : MesDecodeBufferHandleCreate Vol. 3, 351

DeleteLogError Vol. 2, 189 MesDecodelncrementalHandle
ISyncMgrSynchronizeCallback: : Create .. Vol. 3, 353

EnableModeless Vol. 2, 186 MesEncodeDynBufferHandle
ISyncMgrSynchronizeCallback: : Create .. Vol. 3, 354

EstablishConnection Vol. 2, 190 MesEncodeFixedBufferHandle
ISyncMgrSynchronizeCallback: : Create .. Vol. 3, 355

LogError ... Vol. 2, 187 MesEncodelncrementalHandle
ISyncMgrSynchronizeCaliback: : Create .. Vol. 3, 356

PrepareForSyncCompleted Vol. 2, 184 MesHandleFree Vol. 3, 357
ISyncMgrSynchronizeCallback:: MeslncrementalHandleReset Vol. 3, 358

Progress .. Vol. 2, 182 MeslnqProcEncodingld Vol. 3, 359
ISyncMgrSynchronizeCallback:: MESSAGE .. Vol. 5, 297

ShowErrorCompleted Vol. 2, 188 MGM_ENUM_TYPES Vol. 5, 564
ISyncMgrSynchronizeCallback:: MGM_IF _ENTRY Vol. 5, 561

ShowPropertiesCompleted Vol. 2, 183 MgmAddGroupMembershipEntry Vol. 5, 524
ISyncMgrSynchronizeCallback:: MgmDeleteGroupMembership

SynchronizeCompleted Vol. 2, 185 Entry ... VoI. 5, 526
ISyncMgrSynchronizelnvoke Vol. 2, 191 MgmDeRegisterMProtocol. Vol. 5, 527
ISyncMgrSynchronizelnvoke:: MgmGetFirstMfe Vol. 5, 528

UpdateAII Vol. 2, 192 MgmGetFirstMfeStats Vol. 5, 530
ISyncMgrSynchronizelnvoke:: MgmGetMfe Vol. 5, 531

Update Items Vol. 2, 191 MgmGetMfeStats Vol. 5, 533
MgmGetNextMfe Vol. 5, 534

L
MgmGetNextMfeStats Vol. 5, 536
MgmGetProtocoIOnlnterface Vol. 5, 537

LANA_ENUM Vol. 2, 152
linger. .. Vol. 1, 382
listen ... Vol. 1, 192
LPM_AdmitRsvpMsg Vol. 1, 863
LPM_CommitResv Vol. 1, 866
LPM_Deinitialize Vol. 1, 867
LPM_DeleteState Vol. 1, 868
LPM_GetRsvpObjects Vol. 1,870
LPM_lnitialize Vol. 1, 872
Lpm_lpAddressTable Vol. 1,874
LPMIPTABLE Vol. 1,875

MgmGroupEnumerationEnd Vol. 5, 539
MgmGroupEnumerationGetNext Vol. 5, 539
MgmGroupEnumerationStart Vol. 5, 541
MgmRegisterMProtocol Vol. 5, 542
MgmReleaselnterfaceOwnership Vol. 5, 543
MgmSetMfe Vol. 5, 545
MgmTakelnterfaceOwnership Vol. 5, 545
MIB_BEST_IF Vol. 5, 202
MIB_ICMP ... Vol. 5, 203
MIB~IFNUMBER Vol. 5, 203
MIB_IFROW Vol. 5, 204
MIB_IFSTATUS Vol. 5, 206

M
MIB_IFTABLE Vol. 5, 207
MIB_IPADDRROW Vol. 5, 207

MACYIELDCALLBACK Vol. 3, 575
MCAST _CLIENT _UID Vol. 2, 89
MCAST _LEASE_REQUEST Vol. 2, 90
MCAST _LEASE_RESPONSE Vol. 2, 92
MCAST _SCOPE_CTX Vol. 2, 89

MIB_IPADDRTABLE Vol. 5,208
MIB_IPFORWARDNUMBER Vol. 5, 209
MIB_IPFORWARDROW Vol. 5, 210
MIB_IPFORWARDTABLE Vol. 5, 212
MIB_IPMCAST_GLOBAL Vol. 5, 212
MIB_IPMCAST_IF _ENTRY Vol. 5, 213

Index Networking Services Programming Elements - Alphabetical Listing 571

MIB_IPMCAST_IF _TABLE Vol. 5, 214 MprAdminConnectionHangup
MIB_IPMCAST_MFE Vol. 5, 214 Notification2 Vol. 4,345
MIB_IPMCAST_MFE_STATS Vol. 5, 216 MprAdminDeregisterConnection
MIB_IPMCAST_OIF Vol. 5, 218 Notification Vol. 5, 71
MIB_IPMCAST_OIF_STATS Vol. 5, 219 MprAdminGetErrorString Vol. 5, 72
MIB_IPNETROW Vol. 5, 220 MprAdminGetlpAddressForUser Vol. 4, 346
MIB_IPNETTABLE Vol. 5, 221 MprAdminGetPDCServer Vol. 4, 349
MIB_IPSTATS Vol. 5, 222 MprAdminlnterfaceConnect... Vol. 5, 73
MIB_MFE_STATS_TABLE Vol. 5, 224 MprAdminlnterfaceCreate Vol. 5, 75
MIB_MFE_ TABLE Vol. 5, 224 MprAdminlnterfaceDelete Vol. 5, 76
MIB_OPAQUE_INFO Vol. 5, 225 MprAdminlnterfaceDisconnect... Vol. 5, 77
MIB_OPAQUE_QUERY Vol. 5, 225 MprAdminlnterfaceEnum Vol. 5, 78
MIB_PROXYARP Vol. 5, 226 MprAdminlnterfaceGetGredentials Vol. 5, 80
MIB_ TCPROW Vol. 5, 227 Mpr Admin InterfaceGetCredentials
MIB_TCPSTATS Vol. 5, 228 Ex ... Vol. 5, 82
MIB_ TCPTABLE Vol. 5, 230 MprAdminlnterfaceGetHandle Vol. 5, 83
MIB_UDPROW Vol. 5, 230 MprAdminlnterfaceGetlnfo Vol. 5, 84
MIB_UDPSTATS ...•.......................... Vol. 5, 231 MprAdminlnterfaceQueryUpdate
MIB_UDPTABLE Vol. 5, 232 Result ... V01. 5, 86
MibCreate ... Vol. 5, 281 MprAdminlnterfaceSetCredentials Vol. 5, 87
MibDelete ... Vol. 5, 282 MprAdminlnterfaceSetCredentials
MibEntryCreate Vol. 5, 307 Ex ... Vol. 5, 89
MibEntryDelete Vol. 5, 308 MprAdminlnterfaceSetinfo Vol. 5, 90
MibEntryGet... Vol. 5, 309 MprAdminlnterfaceTransport
MibEntryGetFirst Vol. 5, 311 Getlnfo ... Vol. 5, 93
MibEntryGetNext Vol. 5, 312 MprAdminlnterfaceTransport
MibEntrySet... Vol. 5, 313 Remove .. Vol. 5, 94
MibGet .. Vol. 5, 283 MprAdminlnterfaceTransport
MibGetFirst Vol. 5, 284 Setlnfo .. VoI. 5, 95
MibGetNext... Vol. 5, 285 MprAdminlnterfaceTransportAdd .. ; Vol. 5, 91
MibGetTraplnfo Vol. 5, 286 MprAdminlnterfaceUpdate
MIBICMPINFO Vol. 5, 232 Phonebooklnfo Vol. 5, 97
MIBICMPSTATS Vol. 5, 233 MprAdminlnterfaceUpdateRoutes Vol. 5, 98
MibSet .. Vol. 5, 287 MprAdminlsServiceRunning Vol. 5, 100
MibSetTraplnfo Vol. 5, 288 MprAdminLinkHangupNotification Vol. 4, 347
MPR_CREDENTIALSEX_O Vol. 5, 152 MprAdminMIBBufferFree Vol. 5,188
MPR_IFTRANSPORT _0 Vol. 5, 152 MprAdminMIBEntryCreate Vol. 5,188
MPR_INTERFACE_O Vol. 5,153 MprAdminMIBEntryDelete Vol. 5, 190
MPR_INTERFACE_1 Vel. 5, 154 MprAdminMIBEntryGet Vol. 5,191
MPR_INTERFACE_2 Vol. 5, 156 MprAdminMIBEntryGetFirst... Vol. 5, 193
MPR_ROUTING_ MprAdminMIBEntryGetNext Vol. 5,195

CHARACTERISTICS Vol. 5, 297 MprAdminMIBEntrySet Vol. 5,196
MPR_SERVER_O Vol. 5, 166 MprAdminMIBGetTraplnfo Vol. 5, 198
MPR_SERVICE_ MprAdminMIBServerConnect.. Vol. 5,199

CHARACTERISTICS Vol. 5, 301 MprAdminMIBServerDisconnect Vol. 5, 200
MPR_TRANSPORT_O Vol. 5,167 MprAdminMIBSetTraplnfo Vol. 5, 200
MprAdminAcceptNewConnection Vol. 4, 341 MprAdminPortClearStats Vol. 4, 334
MprAdminAcceptNewConnection2 .. Vol. 4,342 MprAdminPortDisconnect Vol. 4, 335
MprAdminAcceptNewLink Vol. 4, 343 MprAdminPortEnum Vol. 4, 336
MprAdminBufferFree Vol. 5, 70 MprAdminPortGetinfo Vol. 4, 338
MprAdminConnectionClearStats Vol. 4, 329 MprAdminPortReset Vol. 4, 339
MprAdminConnectienEnum Vol. 4, 330 MprAdminRegisterConnection
MprAdminConnectionGetlnfo Vol. 4, 332 Notification ; Vol. 5, 100
MprAdminCennectionHangup MprAdminReleaselpAddress Vol. 4, 348

Notification , Vol. 4, 344 MprAdminSendUserMessage Vol. 4, 351

572 Volume 5 Routing

MprAdminServerConnect... Vol. 5,102 NCB .. Vol. 2,154
MprAdminServerDisconnect Vol. 5,102 NDR_USER_MARSHAUNFO Vol. 3, 296
MprAdminServerGetlnfo Vol. 5,103 NdrGetUserMarshallnfo Vol. 3, 360
MprAdminTransportCreate Vol. 5,104 Netbios .. V01. 2, 145
MprAdminTransportGetlnfo Vol. 5,106 NETCONNECTINFOSTRUCT Vol. 3, 659
MprAdminTransportSetinfo Vol. 5, 108 NETINFOSTRUCT Vol. 3, 661
MprAdminUserGetlnfo Vol. 4, 352 NETRESOURCE Vol. 3, 663
MprAdminUserSetlnfo Vol. 4, 353 Next Hop Flags Vol. 5, 503
MprConfigBufferFree Vol. 5,110 NotifyAddrChange Vol. 2, 268
MprConfigGetFriendlyName Vol. 5,110 NotifyRouteChange Vol. 2, 269
MprConfigGetGuidName Vol. 5,112 NS_SERVICE_INFO Vol. 1,383
MprConfiglnterfaceCreate Vol. 5,114 NSPCleanup Vol. 1,497
MprConfiglnterfaceDelete Vol. 5, 115 NSPGetServiceClasslnfo Vol. 1,498
MprConfiglnterfaceEnum Vol. 5, 116 NSPlnstaliServiceClass Vol. 1,499
MprConfiglnterfaceGetHandle Vol. 5,118 NSPLookupServiceBegin Vol. 1,500
MprConfiglnterfaceGetlnfo Vol. 5, 119 NSPLookupServiceEnd Vol. 1,504
MprConfiglnterfaceSetinfo Vol. 5,121 NSPLookupServiceNext Vol. 1,505
MprConfiglnterfaceTransport NSPRemoveServiceClass Vol. 1,509

Enum ... Vol. 5,124 NSPSetService Vol. 1,510
MprConfiglnterfaceTransport NSPStartup Vol. 1,513

GetHandle Vol. 5,126 ntohl .. VoI.1, 194
MprConfiglnterfaceTransport ntohs ... Vol. 1, 195

Getlnfo ... Vo1.5, 128
MprConfiglnterfaceTransport

Remove ... Vol. 5,130 o
MprConfig Interface Transport

Setlnfo ... Vol. 5, 131
ORASADFunc Vol. 4,103

MprConfiglnterfaceTransportAdd Vol. 5, 122
MprConfigServerBackup Vol. 5, 133 p
MprConfigServerConnect... Vol. 5, 134
MprConfigServerDisconnect Vol. 5,135
MprConfigServerGetinfo Vol. 5, 136
MprConfigServerlnstall Vol. 5, 113
MprConfigServerRestore Vol. 5, 137
MprConfigTransportCreate Vol. 5, 138
MprConfigTransportDelete Vol. 5, 140
MprConfigTransportEnum Vol. 5, 141
MprConfigTransportGetHandle Vol. 5, 143
MprConfigTransportGetlnfo Vol. 5,144
MprConfigTransportSetlnfo Vol. 5,147
MprlnfoBlockAdd Vol. 5, 170
MprlnfoBlockFind Vol. 5, 172
MprlnfoBlockQuerySize Vol. 5, 173
MprlnfoBlockRemove Vol. 5,174
MprlnfoBlockSet Vol. 5, 175
MprlnfoCreate Vol. 5, 176
MprlnfoDelete Vol. 5, 177
MprlnfoDuplicate Vol. 5, 178
MprlnfoRemoveAII Vol. 5, 179
MultinetGetConnection

Performance Vol. 3, 609

PALLOCMEM Vol. 1, 876
PF _FILTER_DESCRIPTOR Vol. 5, 256
PF _FILTER_STATSYol. 5, 257
PF _INTERFACE_STATS Vol. 5, 258
PF _LATEBIND_INFO Vol. 5, 260
PfAddFiltersTolnterface Vol. 5, 239
PfAddGlobalFilterTolnterface Vol. 5, 241
PFADDRESSTYPE Vol. 5, 262
PfBindlnterfaceTolndex Vol. 5, 241
PfBindlnterfaceTolPAddressYol. 5, 242
PfCreatelnterface Vol. 5, 243
PfDeletelnterface Vol. 5, 245
PfDeleteLog Vol. 5, 246
PFFORWARD_ACTIONYol. 5, 263
PFFRAMETYPEYol. 5, 264
PfGetlnterfaceStatistics Vol. 5, 246
PFLOGFRAME Vol. 5, 260
PfMakeLog .. Vol. 5, 248
PfRebindFilters Vol. 5, 249
PFREEMEM Vol. 1,876
PfRemoveFilterHandles Vol. 5, 250
PfRemoveFiltersFromlnterface Vol. 5, 250
PfRemoveGlobalFilterFrom

N nterfaceYol. 5, 252

NAME_BUFFER Vol. 2, 153
PfSetLogBuffer. Vol. 5, 252

Index Networking Services Programming Elements - Alphabetical Listing 573

PtTestPacket Vol. 5, 253 QOS_OBJECT_DS_CLASS Vol. 1,857
PfUnBindlnterface Vol. 5, 255 QOS_OBJECT_HDR Vol. 1,799
PMGM_CREATION_ALERT _

CALLBACK Vol. 5, 547
PMGM_DISABLE_IGMP _

QOS OBJECT_SD_MODE Vol. 1,801
QOS - OBJECLSHAPING_RATE Vol. 1,802
QOS=OBJECT_TRAFFIC_CLASS .. Vol. 1,856

CALLBACK Vol. 5, 549 QueryPower Vol. 5, 289
PMGM_ENABLE_IGMP _

CALLBACK Vol. 5, 549
PMGM_JOIN_ALERT _ R

CALLBACK Vol. 5, 550
PMGM_LOCAL_JOIN_

CALLBACK Vol. 5, 552
PMGM_LOCAL_LEAVE_

CALLBACK Vol. 5, 554
PMGM_PRUNE_ALERT _

CALLBACK Vol. 5, 555
PMGM_RPF _CALLBACK Vol. 5, 558
PMGM_WRONG_IF _CALLBACK Vol. 5, 560
Portability Macros Vol. 3, 583
PPP _ATCP _INFO Vol. 4, 355
PPP _CCP _INFO Vol. 4, 356
PPP _EAP _ACTION Vol. 4, 414
PPP _EAP _INFO Vol. 4, 403
PPP _EAP _INPUT Vol. 4, 404
PPP _EAP _OUTPUT Vol. 4, 409
PPP _EAP _PACKET Vol. 4, 412
PPP _INFO .. Vol. 4, 358
PPP _INFO_2 Vol. 4, 358
PPP _IPCP _INFO Vol. 4, 359
PPP _IPCP _INF02 Vol. 4, 360
PPP _IPXCP _INFO Vol. 4, 361
PPP _LCP _INFO Vol. 4, 362
PPP _NBFCP _INFO Vol. 4, 364
Protection Level Constants Vol. 3, 337
Protocol Identifiers Vol. 5, 235
Protocol Sequence Constants Vol. 3, 338
PROTOCOL_INFO Vol. 1, 384
PROTOCOL_SPECIFIC_DATA Vol. 5, 357
protoent .. Vol. 1,387
PROTSEQ .. Vol. 3, 317
PS_ADAPTER_STATS Vol.1,851
PS_COMPONENT_STATS VoI.1, 850
PS_CONFORMER_STATS Vol. 1,853
PS_DRRSEQ_STATS Vol. 1,854
PS_FLOW_STATS Vol.1,852
PS_SHAPER_STATS Vol. 1,853

RADIUS_ACTION Vol. 2,112
RADIUS_ATIRIBUTE Vol. 2,110
RADIUS_ATIRIBUTE_TYPE Vol. 2,112
RADIUS_AUTHENTICATION_

PROVIDER Vol. 2, 120
RADIUS_DATA_TYPE Vol. 2,121
RadiusExtensionlnit Vol. 2, 107
RadiusExtensionProcess Vol. 2,108
RadiusExtensionProcessEx Vol. 2, 109
RadiusExtensionTerm Vol. 2, 107
RAS_AUTH_ATIRIBUTE Vol. 4, 413
RAS_AUTH_ATIRIBUTE_TYPE Vol. 4, 415
RAS_CONNECTION_O Vol. 4, 365
RAS CONNECTION 1 Vol. 4, 367
RAS=CONNECTION=2 Vol. 4, 368
RAS_HARDWARE_CONDITION Vol. 4, 375
RAS PARAMETERS Vol. 4, 293
RAS=PARAMS_FORMAT Vol. 4, 314
RAS_PARAMS_VALUE Vol. 4, 312
RAS_PORT_O Vol. 4, 294
RAS_PORT_O Vol. 4, 369
RAS PORT 1 Vol. 4, 297
RAS - PORT -1 Vol. 4, 370
RAS - PORT-CONDITION Vol. 4, 376
RAS -PORT - STATISTICS Vol. 4, 298
RAS - PPP ATCP RESULT Vol. 4, 302
RAS - PPP -IPCP -RESUL T Vol. 4, 303
RAS=PPP =IPXCP _RESULT Vol. 4, 303
RAS_PPP _NBFCP _RESUL T.. Vol. 4, 304
RAS_PPP _PROJECTION_

RESULT ... Vol. 4, 305
RAS SECURITY INFO Vol. 4, 306
RAS -SERVER O' Vol. 4, 307
RAS - STATS ... -:: Vol. 4, 308
RAS=USER_O Vol. 4, 310
RAS_USER_O Vol. 4, 372
RAS_USER_1 Vol. 4, 373
RASADFunc Vol. 4,105

Q RasAdminAcceptNewConnection Vol. 4, 277
RasAdminConnectionHangup

QOCINFO ... Vol. 2, 209 Notification Vol. 4, 279
QOS .. Vol. 1, 388 RasAdminFreeBuffer Vol. 4, 265
QOS ; ... Vol. 1,797 RasAdminGetErrorString Vol. 4, 266
QOS_DIFFSERV _RULE Vol. 1, 844 RasAdminGetipAddressForUservol. 4, 281
QOS_OBJECT _DESTADDR Vol. 1,800 RasAdminGetUserAccountServer Vol. 4, 267
QOS_OBJECT _DIFFSERV ; Vol. 1,858 RasAdminPortClearStatistics Vol. 4, 269

574 Volume 5 Routing

RasAdminPortDisconnect Vol. 4, 270 RasFreeBuffer. Vol. 4, 199
RasAdminPortEnum Vol. 4, 271 RasFreeEapUserldentity Vol. 4, 142
RasAdminPortGetinfo Vol. 4, 272 RasGetAutodialAddress Vol. 4,143
RasAdminReleaselpAddress Vol. 4, 282 RasGetAutodialEnable Vol. 4,144
RasAdminServerGetinfo Vol. 4, 274 RasGetAutodialParam Vol. 4,145
RasAdminUserGetlnfo Vol. 4, 275 RasGetBuffer Vol. 4,198
RasAdminUserSetlnfo Vol. 4, 276 RasGetConnectionStatistics Vol. 4,147
RASADPARAMS Vol. 4, 205 RasGetConnectStatus Vol. 4,148
RASAMB .. Vol. 4, 206 RasGetCountrylnfo Vol. 4,149
RASAUTODIALENTRY Vol. 4, 207 RasGetCredentials Vol. 4,151
RasClearConnectionStatistics Vol. 4,107 RasGetCustomAuthData Vol. 4,153
RasClearLinkStatistics Vol. 4,107 RasGetEapUserData Vol. 4, 155
RASCONN .. Vol. 4, 208 RasGetEapUserldentity Vol. 4, 156
RasConnectionNotification Vol. 4, 109 RasGetEntryDiaIParams Vol. 4,158
RASCONNSTATE Vol. 4, 258 RasGetEntryProperties Vol. 4, 160
RASCONNSTATUS Vol. 4, 210 RasGetErrorString Vol. 4, 162
RasCreatePhonebookEntry Vol. 4,110 RasGetLinkStatistics Vol. 4, 164
RASCREDENTIALS Vol. 4, 211 RasGetProjectionlnfo Vol. 4,165
RASCTRYINFO Vol. 4, 212 RasGetSubEntryHandle Vol. 4,167
RasCustomDeleteEntryNotify Vol. 4, 111 RasGetSubEntryProperties Vol. 4,168
RasCustomDial Vol. 4,112 RasHangUp Vol. 4,170
RasCustomDialDlg•....... Vol. 4, 114 RaslnvokeEapUI Vol. 4, 171
RasCustomEntryDlg Vol. 4, 116 RASIPADDR Vol. 4, 239
RasCustomHangUp Vol. 4, 118 RasMonitorDlg Vol. 4, 173
RasCustomScriptExecute Vol. 4, 197 RASMONITORDLG Vol. 4, 240
RasDeleteEntry Vol. 4, 119 RASNOUSER Vol. 4, 241
RASDEVINFO Vol. 4, 214 RASPBDLG Vol. 4, 243
RasDial ... Vol. 4, 120 RasPBDlgFunc Vol. 4,174
RasDialDlg Vol. 4, 123 RasPhonebookDlg Vol. 4,176
RASDIALDLG Vol. 4, 215 RASPPPCCP Vol. 4, 245
RASDIALEXTENSIONS Vol. 4, 217 RASPPPIP .. Vol. 4, 247
RasDiaIFunc Vol. 4,125 RASPPPIPX Vol. 4, 251
RasDiaiFunc1 Vol. 4, 127 RASPPPLCP Vol. 4, 248
RasDiaIFunc2 Vol. 4, 129 RASPPPNBF Vol. 4, 252
RASDIALPARAMS Vol. 4, 219 RASPROJECTION Vol. 4, 263
RasEapBegin Vol. 4, 389 RasReceiveBuffer Vol. 4, 201
RasEapEnd Vol. 4, 391 RasRenameEntry Vol. 4,178
RasEapFreeMemory Vol. 4, 391 RasRetrieveBuffer Vol. 4, 203
RasEapGetidentity Vol. 4, 392 RasSecurityDialogBegin Vol. 4, 284
RasEapGetlnfo Vol. 4, 395 RasSecurityDialogComplete Vol. 4, 286
RASEAPINFO Vol. 4, 222 RasSecurityDialogEnd Vol. 4, 287
RasEaplnitialize Vol. 4, 396 RasSecurityDialogGetinfovol. 4, 288
RasEaplnvokeConfigUI Vol. 4, 397 RasSecurityDialogReceive Vol. 4, 289
RasEaplnvokelnteractiveUI. Vol. 4, 399 RasSecurityDialogSend Vol. 4, 291
RasEapMakeMessage Vol. 4, 401 RasSendBuffer Vol. 4, 200
RASEAPUSERIDENTITY Vol. 4, 222 RasSetAutodiaIAddress Vol. 4,179
RasEditPhonebookEntry Vol. 4, 131 RasSetAutodiaIEnable Vol. 4,181
RASENTRY Vol. 4, 223 RasSetAutodialParam Vol. 4, 182
RasEntryDlg Vol. 4, 133 RasSetCredentials Vol. 4,184
RASENTRYDLG Vol. 4, 236 RasSetCustomAuthData Vol. 4,186
RASENTRYNAME Vol. 4, 238 RasSetEapUserData Vol. 4,187
RasEnumAutodialAddresses Vol. 4, 135 RasSetEntryDialParamsvol. 4, 189
RasEnumConnections Vol. 4, 136 RasSetEntryProperties Vol. 4, 191
RasEnumDevices Vol. 4,137 RasSetSubEntryProperties Vol. 4, 193
RasEnumEntries Vol. 4, 139 RASSLIP ... Vol. 4, 253

Index Networking Services Programming Elements - Alphabetical Listing 575

RASSUBENTRY Vol. 4, 254 RpcBindingServerFromClient Vol. 3, 385
RasValidateEntryName Vol. 4, 195 RpcBindingSetAuthlnfo Vol. 3, 387
recv ... Vol. 1, 196 RpcBindingSetAuthlnfoEx Vol. 3, 389
recvfrom , Vol. 1, 199 RpcBindingSetObject... Vol. 3, 391
RegisterProtocol Vol. 5, 290 RpcBindingSetOption Vol. 3, 392
REMOTE_NAME_INFO Vol. 3, 665 RpcBindingToStringBinding Vol. 3, 394
Route Flags Vol. 5, 501 RpcBindingVectorFree Vol. 3, 395
ROUTER_CONNECTION_STATE .. Vol. 5,167 RpcCanceIThread Vol. 3, 396
ROUTER_INTERFACE_ TYPE Vol. 5, 168 RpcCanceIThreadEx Vol. 3, 397
Routing Table Query Flags Vol. 5, 504 RpcCertGeneratePrincipalName Vol. 3, 398
ROUTING_PROTOCOL_CONFIG .. Vol. 5, 562 RpcEndExcept Vol. 3, 586
RPC_ASYNC_EVENT Vol. 3, 315 RpcEndFinally Vol. 3, 586
RPC_ASYNC_STATE Vol. 3,298 RpcEpRegister Vol. 3, 399
RPC_AUTH_IDENTITY _HANDLE ... Vol. 3, 318 RpcEpRegisterNoReplace Vol. 3, 401
RPC_AUTH_KEY _RETRIEVAL_ RpcEpResolveBinding Vol. 3, 404

FN .. Vol. 3, 576 RpcEpUnregister Vol. 3, 405
RPC_AUTHZ_HANDLE Vol. 3, 319 RpcExcept.. Vol. 3, 587
RPC_BINDING_HANDLE Vol. 3, 319 RpcExceptionCode Vol. 3, 407
RPC_BINDING_ VECTOR. Vol. 3, 301 RpcFinally ... Vol. 3, 588
RPC_CLlENT _INTERFACE Vol. 3, 302 RpclfldVectorFree Vol. 3, 407
RPC_DISPATCH_TABLE Vol. 3, 302 Rpclflnqld .. Vol. 3, 408
RPC_EP _INQ_HANDLE Vol. 3, 320 RpclmpersonateClient Vol. 3, 409
RPC_IF _CALLBACK_FN Vol. 3, 577 RpcMacSetYieldlnfo Vol. 3, 410
RPC_IF _HANDLE Vol. 3, 321 RpcMgmtEnableldleCleanup Vol. 3, 411
RPC_IF _ID Vol. 3, 303 RpcMgmtEpEltlnqBegin Vol. 3, 412
RPC_IF_ID_VECTOR Vol. 3, 304 RpcMgmtEpEltlnqDone Vol. 3, 415
RPC_MGMT _AUTHORIZATION_ RpcMgmtEpEltlnqNext Vol. 3, 416

FN .. : Vol. 3, 577 RpcMgmtEpUnregister Vol. 3, 417
RPC_MGR_EPV Vol. 3, 321 RpcMgmtlnqComTimeout... Vol. 3, 418
RPC_NOTIFICATION_TYPES Vol. 3, 315 RpcMgmtlnqDefaultProtectLevel Vol. 3, 419
RPC_NS_HANDLE Vol. 3, 322 RpcMgmtinqlflds Vol. 3, 421
RPC_OBJECT _INQ_FN Vol. 3, 579 RpcMgmtlnqServerPrincName Vol. 3, 422
RPC_POLlCY Vol. 3, 304 RpcMgmtlnqStats Vol. 3, 423
RPC_PROTSEQ_ VECTOR Vol. 3, 308 RpcMgmtisServerListening Vol. 3, 425
RPC_SECURITY _QOS Vol. 3, 308 RpcMgmtSetAuthorizationFn Vol. 3, 426
RPC_STATS_VECTOR Vol. 3, 310 RpcMgmtSetCanceITimeout... Vol. 3, 427
RPC_STATUS Vol. 3, 323 RpcMgmtSetComTimeout Vol. 3, 428
RpcAbnormaITermination Vol. 3, 362 RpcMgmtSetServerStackSize Vol. 3, 429
RpcAsyncAbortCall Vol. 3, 362 RpcMgmtStatsVectorFree Vol. 3, 430
RpcAsyncCanceICall Vol. 3, 363 RpcMgmtStopServerListening Vol. 3, 431
RpcAsyncCompleteCall... Vol. 3, 365 RpcMgmtWaitServerListen , Vol. 3, 432
RpcAsyncGetCaIiHandle Vol. 3, 585 RpcNetworklnqProtseqs Vol. 3, 433
RpcAsyncGetCaliStatus Vol. 3, 366 RpcNetworklsProtseqValid Vol. 3, 434
RpcAsynclnitializeHandle Vol. 3, 367 RPCNOTIFICATION_ROUTINE VoI.3, 579
RpcAsyncRegisterlnfo Vol. 3, 368 RpcNsBindingExport Vol. 3, 435
RpcBindingCopy Vol. 3, 369 RpcNsBindingExportPnP Vol. 3, 438
RpcBindingFree Vol. 3, 370 RpcNsBindinglmportBegin Vol. 3, 440
RpcBindingFromStringBinding Vol. 3, 372 RpcNsBindinglmportDone Vol. 3, 442
RpcBindinglnqAuthClient Vol. 3, 373 RpcNsBindinglmportNext : .. Vol. 3, 443
RpcBindinglnqAuthClientEx Vol. 3, 375 RpcNsBindinglnqEntryName Vol. 3, 445
RpcBindinglnqAuthlnfo Vol. 3, 377 RpcNsBindingLookupBegin Vol. 3, 446
RpcBindinglnqAuthlnfoEx Vol. 3, 380 RpcNsBindingLookupDone Vol. 3, 449
RpcBindinglnqObject... Vol. 3, 382 RpcNsBindingLookupNext Vol. 3, 450
RpcBindinglnqOption Vol. 3, 383 RpcNsBindingSelect ... : Vol. 3, 452
RpcBindingReset... Vol. 3, 384 RpcNsBindingUnexport Vol. 3, 453

576 Volume 5 Routing

RpcNsBindingUnexportPnP Vol. 3, 456 RpcSmEnableAliocate Vol. 3, 542
RpcNsEntryExpandName Vol. 3, 457 RpcSmFreevol. 3, 543
RpcNsEntryObjectlnqBegin Vol. 3, 458 RpcSmGetThreadHandle Vol. 3, 544
RpcNsEntryObjectlnqDone Vol. 3, 460 RpcSmSetClientAllocFree Vol. 3, 545
RpcNsEntryObjectlnqNext Vol. 3, 461 RpcSmSetThreadHandle Vol. 3, 546
RpcNsGroupDelete Vol. 3, 462 RpcSmSwapClientAllocFree Vol. 3, 547
RpcNsGroupMbrAdd Vol. 3, 463 RpcSsAliocate Vol. 3, 548
RpcNsGroupMbrlnqBegin Vol. 3, 465 RpcSsDestroyClientContext Vol. 3, 549
RpcNsGroupMbrlnqDone Vol. 3, 466 RpcSsDisableAliocate Vol. 3, 550
RpcNsGroupMbrlnqNext Vol. 3, 467 RpcSsDontSerializeContext Vol. 3, 550
RpcNsGroupMbrRemove Vol. 3, 468 RpcSsEnableAliocate Vol. 3, 551
RpcNsMgmtBindingUnexport Vol. 3, 470 RpcSsFreevol. 3, 552
RpcNsMgmtEntryCreate Vol. 3, 473 RpcSsGetThreadHandle Vol. 3, 553
RpcNsMgmtEntryDelete Vol. 3, 474 RpcSsSetClientAllocFree Vol. 3, 554
RpcNsMgmtEntrylnqlflds Vol. 3, 475 RpcSsSetThreadHandle Vol. 3, 555
RpcNsMgmtHandleSetExpAge Vol. 3, 476 RpcSsSwapClientAllocFree Vol. 3, 556
RpcNsMgmtlnqExpAge Vol. 3, 478 RpcStringBindingCompose Vol. 3, 558
RpcNsMgmtSetExpAge Vol. 3, 480 RpcStringBindingParse Vol. 3, 559
RpcNsProfileDelete Vol. 3, 481 RpcStringFree Vol. 3, 561
RpcNsProfileEltAdd Vol. 3, 482 RpcTestCancel Vol. 3, 562
RpcNsProfileEltlnqBegin Vol. 3, 484 RpcTryExcept Vol. 3, 590
RpcNsProfileEltlnqDone Vol. 3, 488 RpcTryFinally Vol. 3, 590
RpcNsProfileEltlnqNext... Vol. 3, 488 RpcWinSetYieldlnfo Vol. 3, 563
RpcNsProfileEltRemove Vol. 3, 490 RpcWinSetYieldTimeout... Vol. 3, 566
RpcObjectlnqType Vol. 3, 492 RSVP _ADSPEC Vol. 1,802
RpcObjectSetlnqFn Vol. 3, 493 RSVP_RESERVE_INFO VoI.1, 803
RpcObjectSetType Vol. 3, 494 RSVP _STATUS_INFO Vol. 1,805
RpcProtseqVectorFree Vol. 3, 496 RTM_DEST_INFO Vol. 5, 480
RpcRaiseException Vol. 3, 497 RTM_ENTITY _EXPORT _
RpcRevertToSelf Vol. 3, 501 METHOD Vol. 5, 477
RpcRevertToSelfEx Vol. 3, 502 RTM_ENTITY _EXPORT _
RpcServerlnqBindings Vol. 3, 503 METHODS Vol. 5, 481
RpcServerlnqDefaultPrincName Vol. 3, 504 RTM_ENTITY _ID Vol. 5, 482
RpcServerlnqlf Vol. 3, 505 RTM_ENTITY _INFO Vol. 5, 483
RpcServerListen Vol. 3, 506 RTM_ENTITY _METHOD_
RpcServerRegisterAuthlnfo Vol. 3, 508 OUTPUT .. Vol. 5, 484
RpcServerRegisterlf Vol. 3, 511 RTM_ENTITY _METHOD_INPUT Vol. 5, 483
RpcServerRegisterlf2 Vol. 3, 512 RTM_EVENT _CALLBACK Vol. 5, 478
RpcServerRegisterlfEx Vol. 3, 514 RTM_EVENT_TYPE Vol. 5, 506
RpcServerTestCancel Vol. 3, 516 RTM_IP _ROUTE Vol. 5, 357
RpcServerUnregisterlf... Vol. 3, 517 RTM_IPV4_GET _ADDR_AND_
RpcServerUseAIiProtseqs Vol. 3, 519 LEN .. Vol. 5, 492
RpcServerUseAIiProtseqsEx Vol. 3, 521 RTM_IPV4_GET _ADDR_AND_
RpcServerUseAIiProtseqslf... Vol. 3, 523 MASK ... Vol. 5, 493
RpcServerUseAIiProtseqslfEx Vol. 3, 524 RTM_IPV4_LEN_FROM_MASK Vol. 5, 494
RpcServerUseProtseq Vol. 3, 526 RTM_IPV4_MAKE_NET _
RpcServerUseProtseqEp Vol. 3, 530 ADDRESS Vol. 5, 495
RpcServerUseProtseqEpEx Vol. 3, 532 RTM_IPV4_MASK_FROM_LEN Vol. 5, 496
RpcServerUseProtseqEx Vol. 3, 528 RTM_IPV4_SELADDR_AND_
RpcServerUseProtseqlf Vol. 3, 534 LEN .. Vol. 5, 497
RpcServerUseProtseqlfEx Vol. 3, 536 RTM_IPV4_SET _AD DR_AN D_
RpcSmAliocate Vol. 3, 538 MASK ... Vol. 5, 498
RpcSmClientFree Vol. 3, 539 RTM_IPX_ROUTE Vol. 5, 358
RpcSmDestroyClientContext Vol. 3, 540 RTM_NET _ADDRESS Vol. 5, 485
RpcSmDisableAliocate Vol. 3, 541 RTM_NEXTHOP _INFO Vol. 5, 486

Index Networking Services Programming Elements - Alphabetical Listing 577

RTM_NEXTHOP _LIST Vol. 5, 487 RtmHoldDestination Vol. 5, 451
RTM_PREF _INFO Vol. 5, 488 RtmlgnoreChangedDests Vol. 5, 452
RTM_REGN_PROFILE Vol. 5, 488 RtmlnsertlnRouteList Vol. 5, 453
RTM_ROUTE_INFO Vol. 5, 489 RtmlnvokeMethod Vol. 5, 454
RTM_SIZE_OF _DEST _INFO ., Vol. 5, 499 RtmlsBestRoute Vol. 5, 455
RTM_SIZE_OF _ROUTE_INFO Vol. 5, 500 RtmlsMarkedForChange
RtmAddNextHop Vol. 5, 405 Notification Vol. 5, 456
RtmAddRoute Vol. 5, 335 RtmlsRoute Vol. 5, 340
RtmAddRouteToDest Vol. 5, 406 RtmLockDestination Vol. 5, 457
RtmBlockDeleteRoutes Vol. 5, 347 RtmLockNextHop Vol. 5, 459
RtmBlockMethods Vol. 5, 409 RtmLockRoute Vol. 5, 460
RtmCloseEnumerationHandle Vol. 5, 346 RtmMarkDestForChange
RtmCreateDestEnum Vol. 5, 410 Notification Vol. 5, 461
RtmCreateEnumerationHandle Vol. 5, 343 RtmReferenceHandles Vol. 5, 463
RtmCreateNextHopEnum Vol. 5, 413 RtmRegisterClient...vol. 5, 331
RtmCreateRouteEnum Vol. 5, 414 RtmRegisterEntity Vol. 5, 464
RtmCreateRouteList... Vol. 5, 417 RtmRegisterForChange
RtmCreateRouteListEnum Vol. 5, 418 Notification Vol. 5, 466
RtmDeleteEnumHandle Vol. 5, 419 RtmReleaseChangedDests Vol. 5, 467
RtmDeleteNextHop Vol. 5, 420 RtmReleaseDestlnfo Vol. 5, 469
RtmDeleteRoute Vol. 5, 338 RtmReleaseDests Vol. 5, 469
RtmDeleteRouteList Vol. 5, 421 RtmReleaseEntities Vol. 5, 471
RtmDeleteRouteToDest Vol. 5, 422 RtmReleaseEntitylnfo Vol. 5, 471
RtmDequeueRouteChange RtmReleaseNextHoplnfo Vol. 5, 472

Message .. Vol. 5, 333 RtmReleaseNextHops Vol. 5, 473
RtmDeregisterClient Vol. 5, 332 RtmReleaseRoutelnfo Vol. 5, 474
RtmDeregisterEntity Vol. 5, 423 RtmReleaseRoutes Vol. 5, 475
RtmDeregisterFromChange RtmUpdateAndUnlockRoute Vol. 5, 476

Notification Vol. 5, 424
RtmEnumerateGetNextRoute Vol. 5, 345
BtmFindNextHop Vol. 5, 425 s
RtmGetChangedDests Vol. 5, 426
RtmGetChangeStatus Vol. 5, 428
RtmGetDestlnfo Vol. 5, 429
RtmGetEntitylnfo Vol. 5, 430
RtmGetEntityMethods Vol. 5, 431
RtmGetEnumDests Vol. 5, 432
RtmGetEnumNextHops Vol. 5, 434
RtmGetEnumRoutes Vol. 5, 435
RtmGetExactMatchDestination Vol. 5, 436
RtmGetExactMatchRoute Vol. 5, 438
RtmGetFirstRoute Vol. 5, 348
RtmGetLessSpecificDestination Vol. 5, 440
RtmGetListEnumRoutes Vol. 5, 441
RtmGetMostSpecificDestination Vol. 5, 443
RtmGetNetworkCount Vol. 5, 341
RtmGetNextHoplnfo Vol. 5, 444
RtmGetNextHopPointer Vol. 5, 445
RtmGetNextRoute Vol. 5, 350
RtmGetOpaquelnformation

Pointer ... Vol. 5, 446
RtmGetRegisteredEntities Vol. 5, 447
RtmGetRouteAge Vol. 5, 342
RtmGetRoutelnfo , Vol. 5, 449
RtmGetRoutePointer Vol. 5, 450

SEC_WINNT_AUTH_IDENTITY Vol. 3, 312
SECURITY_MESSAGEvol. 4, 311
select... .. Vol. 1,202
send .. Vol. 1,206
SendARP .. Vol. 2, 270
sendto ... Vol. 1,209
SENS_QOCINFO Vol. 2, 227
servent .. Vol. 1, 388
SERVICE_ADDRESSvol. 1, 389
SERVICE_ADDRESSES Vol. 1,390
SERVICE_INFO Vol. 1,390
SERVICE_ TYPE_INFO_ABSvol. 1,393
SERVICE_TYPE_VALUE_ABS Vol. 1,394
SESSION_BUFFER Vol. 2, 160
SESSION_HEADER Vol. 2,162
SetGlobalinfo Vol. 5, 291
SetifEntry .. Vol. 2, 271
Setinterfacelnfo Vol. 5, 292
SetinterfaceReceiveType Vol. 5, 314
SetipForwardEntry Vol. 2, 272
SetlpNetEntry Vol. 2, 273
SetipStatistics Vol. 2, 274
SetipTTL ... VoI.2, 275
SetPowervol. 5, 293

578 Volume 5 Routing

SetService .. Vol. 1, 212 SnmpOpen .. Vol. 2, 428
setsockopt .. Vol. 1, 215 SnmpRecvMsg Vol. 2, 430
SetTcpEntry Vol. 2, 276 SnmpRegister Vol. 2, 433
shutdown .. Vol. 1, 223 SnmpSendMsg Vol. 2, 436
smiCNTR64 Vol. 2, 458 SnmpSetPduData Vol. 2, 438
smiOCTETS Vol. 2, 459 SnmpSetPort Vol. 2, 440
smiOID .. Vol. 2, 460 SnmpSetRetransmitMode Vol. 2, 442
smiVALUE .. Vol. 2,461 SnmpSetRetry Vol. 2, 444
smiVENDORINFO Vol. 2, 464 SnmpSetTimeout Vol. 2, 445
SNMPAPLCALLBACK Vol. 2, 375 SnmpSetTranslateMode Vol. 2, 446
SnmpCancelMsg Vol. 2, 376 SnmpSetVb Vol. 2, 448
SnmpCleanup Vol. 2, 378 SnmpStartup Vol. 2, 450
SnmpClose Vol. 2, 379 SnmpStrToContext Vol. 2, 453
SnmpContextToStr Vol. 2, 380 SnmpStrToEntity Vol. 2, 455
SnmpCountVbl Vol. 2, 382 SnmpStrToOid Vol. 2, 456
SnmpCreatePdu Vol. 2, 383 SnmpSvcGetUptime Vol. 2, 314
SnmpCreateSession Vol. 2, 385 SnmpSvcSetLogLevel Vol. 2, 315
SnmpCreateVbl Vol. 2, 388 SnmpSvcSetLogType Vol. 2, 316
SnmpDecodeMsg Vol. 2, 390 SnmpUtiiAsnAnyCpy Vol. 2, 317
SnmpDeleteVb Vol. 2, 392 SnmpUtilAsnAnyFree Vol. 2, 317
SnmpDuplicatePdu Vol. 2, 394 SnmpUtilDbgPrint Vol. 2, 318
SnmpDuplicateVbl Vol. 2, 395 SnmpUtilldsToA Vol. 2, 319
SnmpEncodeMsg Vol. 2, 396 SnmpUtilMemAlioc Vol. 2, 321
SnmpEntityToStr Vol. 2, 398 SnmpUtilMemFree Vol. 2, 321
SnmpExtensionClose Vol. 2, 290 SnmpUtilMemReAlloc Vol. 2, 322
SnmpExtensionlnit Vol. 2, 291 SnmpUtiiOctetsCmp Vol. 2, 323
SnmpExtensionlnitEx Vol. 2, 293 SnmpUtiiOctetsCpy Vol. 2, 324
SnmpExtensionMonitor Vol. 2, 294 SnmpUtiiOctetsFree Vol. 2, 325
SnmpExtensionQuery Vol. 2, 295 SnmpUtiiOctetsNCmp Vol. 2, 325
SnmpExtensionQueryEx Vol. 2, 298 SnmpUtilOidAppend Vol. 2, 326
SnmpExtensionTrap Vol. 2, 302 SnmpUtiiOidCmp Vol. 2, 327
SnmpFreeContext Vol. 2, 399 SnmpUtilOidCpy Vol. 2, 328
SnmpFreeDescriptor Vol. 2, 401 SnmpUtiiOidFree Vol. 2, 329
SnmpFreeEntity Vol. 2, 402 SnmpUtilOidNCmp Vol. 2, 330
SnmpFreePdu Vol. 2, 403 SnmpUtiiOidToA Vol. 2, 331
SnmpFreeVbl Vol. 2, 404 SnmpUtilPrintAsnAny Vol. 2, 331
SnmpGetLastError Vol. 2, 406 SnmpUtilPrintOid Vol. 2, 332
SnmpGetPduData Vol. 2, 407 SnmpUtilVarBindCpy Vol. 2, 333
SnmpGetRetransmitMode Vol. 2, 411 SnmpUtilVarBindFree Vol. 2, 335
SnmpGetRetry Vol. 2, 412 SnmpUtilVarBindListCpy Vol. 2, 334
SnmpGetTimeout Vol. 2, 414 SnmpUtilVarBindListFree Vol. 2, 335
SnmpGetTranslateMode Vol. 2, 416 SnmpVarBind Vol. 2, 340
SnmpGetVb Vol. 2, 417 SnmpVarBindList Vol. 2, 341
SnmpGetVendorlnfo Vol. 2, 420 sockaddr ... Vol. 1,396
SnmpListen Vol. 2, 421 SOCKADDR_IRDA Vol. 1, 397
SnmpMgrClose Vol. 2, 304 socket... ... Vol. 1,225
SnmpMgrGetTrap Vol. 2, 305 SOCKET _ADDRESS Vol. 1,397
SnmpMgrOidToStr Vol. 2, 307 SOURCE_GROUP _ENTRY Vol. 5, 563
SnmpMgrOpen Vol. 2, 308 StartComplete Vol. 5, 293
SnmpMgrRequest Vol. 2, 309 StartProtocol Vol. 5, 294
SnmpMgrStrToOid Vol. 2, 311 StopProtocol Vol. 5, 295
SnmpMgrTrapListen Vol. 2, 312 String Binding Vol. 3, 324
SnmpOidCompare Vol. 2, 423 String UUID Vol. 3, 329
SnmpOidCopy Vol. 2, 425 SUPPORT_FUNCTIONS Vol. 5, 305
SnmpOidToStr. Vol. 2, 427 SYNCMGRFLAG Vol. 2,196

Index Networking Services Programming Elements - Alphabetical Listing 579

SYNCMGRHANDLERFLAGS Vol. 2,197 UPDATE_COMPLETE_
SYNCMGRHANDLERINFO Vol. 2, 201 MESSAGE Vol. 5, 303
SYNCMGRINVOKEFLAGS Vol. 2, 200 UUID ... Vol. 3, 313
SYNCMGRITEM Vol. 2, 203 UUID_VECTOR Vol. 3, 314
SYNCMGRITEMFLAGS Vol. 2, 199 UuidCompare Vol. 3, 567
SYNCMGRLOGERRORINFO Vol. 2, 202 UuidCreate .. Vol. 3, 568
SYNCMGRLOGLEVEL Vol. 2, 199 UuidCreateNil Vol. 3, 570
SYNCMGRPROGRESSITEM Vol. 2, 201 UuidCreateSequential. Vol. 3, 569
SYNCMGRSTATUS Vol. 2,198 UuidEqual ... Vol. 3, 570

UuidFromString Vol. 3, 571

T
UuidHash .. Vol. 3, 572
UuidlsNiI .. Vol. 3, 573

TC_GEN_FIL TER Vol. 1, 845 UuidToString Vol. 3, 574

TC_GENJLOW Vol. 1, 846
TC_IFC_DESCRIPTOR Vol. 1,847
TcAddFilter Vol. 1, 807 v
TcAddFlow .. Vol. 1, 809 ValidateRoute Vol. 5, 315
TcCloselnterface Vol. 1, 811 View Flags .. Vol. 5, 501
TcDeleteFilter Vol. 1,812
TcDeleteFlow Vol. 1,813
TcDeregisterClient.. Vol. 1, 814 w
TcEnumerateFlows Vol. 1,815
TcEnumeratelnterfaces Vol. 1, 817
TcGetFlowName Vol. 1, 819
TCI_CLlENT _FUNC_L1ST Vol. 1, 847
TcModifyFlow Vol. 1, 820
TcOpenlnterface Vol. 1,822
TcQueryFlow Vol. 1, 823
TcQuerylnterface Vol. 1, 824
TcRegisterClient... Vol. 1, 826
TcSetFlow ... Vol. 1,827
TcSetlnterface Vol. 1, 828
The ProviderSpecific Buffer Vol. 1, 799
timeval .. Vol. 1, 398
TraceDeregister. Vol. 4, 438
TraceDump Vol. 4, 438
TraceDumpEx Vol. 4, 440
TracePrintf , Vol. 4, 441
TracePrintfEx Vol. 4, 442
TracePuts ... Vol. 4, 444
TracePutsEx Vol. 4, 445
TraceRegister Vol. 4, 446
TraceRegisterEx Vol. 4, 447
TraceVprintf Vol. 4, 449
TraceVprintfEx Vol. 4, 450
TRANSMIT _FILE_BUFFERS ;. Vol. 1,399

. TransmitFile Vol. 1,228
Transport Identifiers Vol. 5, 235

WM_RASDIALEVENT Vol. 4, 257
WNetAddConnection Vol. 3, 611
WNetAddConnection2 Vol. 3, 613
WNetAddConnection3 Vol. 3, 616
WNetCancelConnection Vol. 3, 620
WNetCanceiConnection2 Vol. 3, 622
WNetCloseEnum Vol. 3, 624
WNetConnectionDialog Vol. 3, 625
WNetConnectionDialog1 Vol. 3, 626
WNetDisconnectDialog Vol. 3, 628
WNetDisconnectDialog1 Vol. 3, 629
WNetEnumResource Vol. 3, 630
WNetGetConnectionvol. 3, 632
WNetGetLastError Vol. 3, 634
WNetGetNetworkl nformation Vol. 3, 635
WNetGetProviderName Vol. 3, 636
WNetGetResourcelnformation Vol. 3, 638
WNetGetResourceParent Vol. 3, 640
WNetGetUniversalName Vol. 3, 642
WNetGetUser Vol. 3, ·645
WNetOpenEnum Vol. 3, 647
WNetUseConnection Vol. 3, 650
WPUCloseEvent Vol. 1,515
WPUCloseSocketHandle Vol. 1,515
WPUCloseThread Vol. 1, 516
WPUCompleteOverlapped

Request... Vol. 1, 517
WPUCreateEvent Vol. 1,520

u WPUCreateSocketHandle Vol. 1, 521
WPUFDlsSet... Vol. 1,523

Unbind Interface Vol. 5, 296 WPUGetProviderPath Vol. 1,524
UNIVERSAL_NAME_INFO Vol. 3, 667 WPUGetQOSTemplate Vol. 1, 783

WPUModifyIFSHandle Vol. 1,525

580 Volume 5 Routing

WPUOpenCurrentThread Vol. 1, 527 WSARecv .. Vol. 1,326
WPUPostMessage Vol. 1, 528 WSARecvDisconnect... Vol. 1, 332
WPUQueryBlockingCaliback Vol. 1, 529 WSARecvEx Vol. 1,334
WPUQuerySocketHandleContext Vol. 1, 530 WSARecvFromvol. 1, 337
WPUQueueApc Vol. 1, 531 WSARemoveServiceClass Vol. 1, 343
WPUResetEvent Vol. 1, 533 WSAResetEvent Vol. 1, 344
WPUSetEvent Vol. 1, 534 WSASend ... Vol. 1,345
WSAAccept Vol. 1,231 WSASendDisconnect Vol. 1,350
WSAAddressToString Vol. 1,235 WSASendTo Vol. 1, 352
WSAAsyncGetHostByAddr Vol. 1,236 WSASERVICECLASSINFO Vol. 1,411
WSAAsyncGetHostByName Vol. 1, 239 WSASetBlockingHook Vol. 1, 357
WSAAsyncGetProtoByName Vol. 1, 242 WSASetEvent Vol. 1,358
WSAAsyncGetProtoByNumber Vol. 1, 245 WSASetLastError Vol. 1,359
WSAAsyncGetServByName Vol. 1, 248 WSASetService Vol. 1,360
WSAAsyncGetServByPort Vol. 1,251 WSASocket.. Vol. 1, 363
WSAAsyncSelect Vol. 1 ,254 WSAStartup Vol. 1,367
WSABUF .. Vol. 1, 399 WSAStringToAddress Vol. 1,371
WSACanceIAsyncRequest... Vol. 1, 263 WSATHREADID Vol. 1,412
WSACancelBlockingCall Vol. 1, 265 WSAUnhookBlockingHook Vol. 1,372
WSACleanup Vol. 1, 265 WSAWaitForMultipleEvents Vol. 1, 373
WSACloseEvent Vol. 1, 267 WSCDeinstaliProvider Vol. 1, 535
WSAConnect... Vol. 1, 268 WSCEnableNSProvider Vol. 1,536
WSACreateEvent Vol. 1, 272 WSCEnumProtocols Vol. 1, 537
WSADATA .. Vol. 1,400 WSCGetProviderPath Vol. 1,539
WSADuplicateSocket Vol. 1, 273 WSClnstaliNameSpace Vol. 1,540
WSAECOMPARATOR Vol. 1,413 WSClnstaIiProvidervol. 1, 541
WSAEnumNameSpaceProviders Vol. 1, 276 WSClnstallQOSTemplatevol. 1, 786
WSAEnumNetworkEvents Vol. 1, 277 WSCRemoveQOSTemplate Vol. 1,788
WSAEnumProtocols Vol. 1, 279 WSCUnlnstaIiNameSpace Vol. 1, 543
WSAEventSelect Vol. 1, 281 WSCWriteProviderOrder Vol. 1, 543
WSAGetLastError Vol. 1,287 WSPAccept... Vol. 1,545
WSAGetOverlappedResult Vol. 1, 288 WSPAddressToString Vol. 1,549
WSAGetQOSByName Vol. 1, 290 WSPAsyncSelect.. Vol. 1,550
WSAGetQOSByName Vol. 1, 784 WSPBind ... Vol. 1, 558
WSAGetServiceClasslnfo Vol. 1, 292 WSPCanceIBlockingCall. Vol. 1,560
WSAGetServiceClassNameBy WSPCleanup Vol. 1, 562

Classld ... Vol. 1, 293 WSPCloseSocket Vol. 1, 564
WSAHtonl ... Vol. 1, 294 WSPConnect Vol. 1, 566
WSAHtons .. Vol. 1, 295 WSPDuplicateSocket.. Vol. 1, 570
WSAlnstaIiServiceClass Vol. 1,296 WSPEnumNetworkEvents Vol. 1, 573
WSAloctl. .. Vol. 1, 297 WSPEventSelect Vol. 1, 576
WSAlsBlocking Vol. 1, 308 WSPGetOverlappedResult... Vol. 1, 581
WSAJoinLeaf Vol. 1, 309 WSPGetPeerName Vol. 1, 584
WSALookupServiceBegin Vol. 1, 313 WSPGetQOSByName Vol. 1, 585
WSALookupServiceEnd Vol. 1, 317 WSPGetQOSByName Vol. 1,789
WSALookupServiceNext... Vol. 1, 318 WSPGetSockName Vol. 1, 586
WSANAMESPACE_INFO Vol. 1,401 WSPGetSockOpt Vol. 1,588
WSANETWORKEVENTS Vol. 1, 402 WSPloctl ... Vol. 1, 593
WSANtohl ... Vol. 1, 322 WSPJoinLeaf Vol. 1, 604
WSANtohs .. Vol. 1, 323 WSPListen .. Vol. 1, 608
WSAOVERLAPPED Vol. 1, 403 WSPRecv .. Vol. 1,610
WSAPROTOCOUNFO Vol. 1, 404 WSPRecvDisconnect... Vol. 1,617
WSAPROTOCOLCHAIN Vol. 1, 408 WSPRecvFrom Vol. 1,618
WSAProviderConfigChange Vol. 1, 324 WSPSelect.. Vol. 1, 624
WSAQUERYSET Vol. 1, 409 WSPSend ... Vol. 1, 628

Index Networking Services Programming Elements - Alphabetical Listing 581

WSPSendDisconnect Vol. 1, 633 WSPStringToAddress Vol. 1,654
WSPSendTo Vol. 1,634
WSPSetSockOpt Vol. 1, 640
WSPShutdown Vol. 1, 644 y
WSPSocket Vol. 1, 645
WSPStartup Vol. 1,649

YieldFunctionName Vol. 3, 580

Part No. 097-0002787

Routing

This essential reference book is part of the five-volume
NETWORKING SERVICES DEVELOPER'S REFERENCE LIBRARY.

In its printed form, this material is portable, easy to use,
and easy to browse-a highly condensed, completely
indexed, intelligently organized complement to the
information available on line and through the Microsoft
Developer Network (MSDW'). Each book includes an
overview of the five-volume library, an appendix of
programming elements, an index of referenced Microso~
technologies, and tips on how and where to find other
Microsoft developer reference resources you may need.

Routing

This volume provides reference materials about the
Routing and Remote Access Service (RRAS), which is
available as an add-on for Microsoft Windows Nr' Server
4.0 and included in Microsoft Windows~ 2000 Server.
The RRAS API lets you create applications to administer
routing and remote access services, to implement your
own routing protocols, or even to turn a computer into a
fully functioning network router. RRAS can run many of
the most popular routing protocols and provides the
capability to deploy economical, high-performance
midrange routers on computers that run Windows NT 4.0
or Windows 2000 Server.

Microsoft

