
Microsoft®

f~i;~~ . c iltdows® 2000
TCP/IP Protocols

and Services
Technical
Reference
The comprehensive technical guide
to using networking protocols with
Windows 2000

Thomas Lee and
Joseph Davies

Microsoft®

·c ~oft

IDdOWS® 2000
TCP/IP Protocols

and Services
·Technical
Reference

Thomas Lee and
Joseph Davies

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Thomas Lee and Joseph Davies

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Lee, Thomas.

Microsoft Windows 2000 TCP/IP Protocols and Services Technical Reference I Thomas
Lee, Joseph Davies.

p. cm.
Includes index.
ISBN 0-7356-0556-4
1. TCP/IP (Computer network protocol) 2. Microsoft Windows (Computer file) 3.

Operating systems (Computers) L Lee, Thomas. II. Title.
TK5105.585 D38 1999
004.6'2--dc21 99-056120

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 wcwc 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Microsoft, Microsoft Press, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any
real company, organization, product, person or event is intended or should be inferred.

Any RFC excerpts are subject to the following statement:

Copyright© The Internet Society (1999). All Rights Reserved. This document and translations of it may be copied and
furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other
than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its
successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE
INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MER
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acquisitions Editor: David Clark
Project Editor: Michael Bolinger

Tables xv
Preface xix
Acknowledgments xxi
Introduction xxiii

I The Network Interface Layer

1 Local Area Network (LAN) Technologies 3

LAN Encapsulations

Ethernet

Ethernet II

IEEE 802.3

IEEE 802.3 SNAP

Special Bits on Ethernet MAC Addresses

Token Ring

IEEE 802.5

IEEE 802.5 SNAP

Special Bits on Token Ring MAC Addresses

FDDI

FDDI Frame Format

FDDI SNAP

Special Bits on FDDI MAC Addresses

Summary

2 Wide Area Network (WAN) Technologies 29

WAN Encapsulations

Point-to-Point Encapsulation

SLIP

PPP

PPP Multilink Protocol

X.25

X.25 Encapsulation

Frame Relay

Frame Relay Encapsulation

3
4
4
9

11

14
15
16
19
21

23

23
26
28

28

29
30

30

32

36
39
40
42
44

iii

iv I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

ATM

The ATM Cell

ATM Architecture

AAL5

Multiprotocol Encapsulation with AAL5

Summary

Address Resolution Protocol (ARP) 57

46

47

49

51
54

55

Overview of ARP 57

The ARP Cache 58

Updating the MAC Address 60

Windows 2000 ARP Registry Settings 60

ARP Frame Structure 62

ARP Request and ARP Reply Example 64

Gratuitous ARP and Duplicate IP Address Detection 67

IP Address Conflict Detection 67

The Gratuitous ARP and Address Conflict Exchange 68

Inverse ARP (InARP) 69

Proxy ARP 70

Summary 72

II Internet Layer Protocols

Internet Protocol (IP) Basics 75

Introduction to IP

IP Services

IP MTU

The IP Datagram

The IP Header

Version

Header Length

Type Of Service

Total Length

Identification

Flags

Fragment Offset

Time To Live

Protocol

Header Checksum

75

75

77

78

78

78

79
80

83
83
83
83
83
85

86

Contents I v

Source Address 86

Destination Address 86

Options and Padding 86

Fragmentation 87

Fragmentation Fields 87
Fragmentation Example 89
Reassembly Example 91
Fragmenting a Fragment 93
Avoiding Fragll?-entation 93

IP Options 96
End Of Option List 97
No Operation 98
Record Route 98
Strict and Loose Source Routing 100
IP Router Alert 103
Internet Timestamp 104

Summary 106

5 Internet Protocol (IP) Addressing 107

Types of IP Addresses 107

Expressing IP Addresses 107

Converting from Binary to Decimal 108

Converting from Decimal to Binary 109
IP Addresses in the ·IP Header 109

Unicast IP Addres.ses 109
A History Lesson: IP Address Classes 110

Rules for Enumerating Network IDs 112

Rules for Enumerating Host IDs 112

Subnets and the Subnet Mask 113
How to Subnet 117

Variable-Length Subnetting 125

Supernetting and Classless Inter-Domain
Routing (CIDR) 128

Public and Private Addresses 131
Microsoft Windows 2000 Automatic
Private IP Addressing 134

IP Broadcast Addresses 134

Network Broadcast 134

vi I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Subnet Broadcast 135
All-Subnets-Directed Broadcast 135
Limited Broadcast 135

IP Multicast Addresses 136
Mapping IP Multicast Addresses to MAC Addresses 137

Summary 138

6 Internet Protocol (IP) Routing 139

Introduction to IP Routing 139
Direct and Indirect Deliveries 139

Types of Links 140
Broadcast 140
Point-to-Point 141

Non-Broadcast Multiple Access 142

The IP Routing Table 143
Structure 143
Types of Routes 144

Route Determination Process 145
The Microsoft Windows 2000 IP Routing Table 146

Multihomed Nodes 148

Maintaining the Microsoft Windows 2000
IP Routing Table 148

IP Routing from Sending Host to Destination 151
Sending Host Forwarding Process 151
IP Router Forwarding Process 151
Destination Host Receiving Process 152

IP Routing Infrastructure Overview 153
Single-Path vs. Multi-Path 154
Class-Based vs. Classless 155
Flat vs. Hierarchical 156
Static vs. Dynamic 157
Single vs. Multiple Autonomous Systems 161

Routing Utilities 161
Summary 162

7 Internet Control Message Protocol (ICMP) 163
ICMP Message Structure 164

ICMP Messages 165
ICMP Echo/Echo Reply 165

ICMP Destination Unreachable

Path MTU Discovery

Windows 2000 Registry Settings for PMTU

ICMP Source Quench

ICMP Redirect

ICMP Router Discovery

ICMP Time Exceeded

ICMP Parameter Problem

PING Utility

PING Options

TRACERT Utility

TRACERT Options

PATHPING Utility

PATHPING Options

Summary

Internet Group Management Protocol (IGMP) 191

Introduction to IP Multicast and IGMP

IP Multicasting Overview

Host Support

Router Support

The Multicast-Enabled IP Internetwork

IGMP Message Structure

IGMP Version 1 (IGMPvl)

IGMP Version 2 (IGMPv2)

Microsoft Windows 2000 and IGMP

TCP /IP Protocol

The Routing and Remote Access Service

Summary

9 Internet Protocol Version 6 (1Pv6) 209

Chapter Contents

Introduction to 1Pv6

Nodes, Routers, Hosts, and Interfaces

Links, Neighbors, Link MTUs,
and Link Layer Addresses

Unicast, Multicast, and Anycast Addresses

Addressing

Text Representation of 1Pv6 Addresses

167

171

174

174

176

178

181
182
184
184
186

189
189
190

190

191

191

192

194

195

196
197

200

204

204

204
207

210

211
. 211

212
212

212
212

Contents I vii

viii I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Unicast Addresses

Anycast Addresses

Multicast Addresses

Neighbor Discovery

IPv6 Header Format and Routing Mechanisms

Hop-by-Hop Options Header

Destination Options Header

Routing Header

Fragment Header

Authentication Header

Transition Mechanisms

Dual-Stack Implementation

IPv6 Over IPv4 Tunneling

Summary

Transport Layer Protocols

User Datagram Protocol (UDP) 227

Introduction to User Datagram Protocol

Uses for UDP

The UDP Message

The UDP Header

The UDP Pseudo Header

UDP Ports

MaxUserPort

Summary

Transmission Control Protocol (TCP) Basics 235

Introduction to TCP

The TCP Segment

The TCP Header

TCP Ports

MaxUserPort

TCP Flags

The TCP Pseudo Header

TCP Urgent Data

TCP Options

End Of Option List and No Operation

Maximum Segment Size Option

213

216

216

217

219

221

221

222

222

223

224

224

224

224

227

228

228

229

230

231

232

234

235

236

237

239
240

242

243

244

246

246

247

TCP Window Scale Option

Selective Acknowledgment Option

TCP Timestamps Option

Summary

Transmission Control Protocol (TCP) Connections 259

249

251

255

258

The TCP Connection 259
TCP Connection Establishment 260

Segment 1: The Synchronize (SYN) Segment 260

Segment 2: The SYN-ACK Segment 262

Segment 3: The ACK Segment 263

Result of TCP Connection Establishment Process 265

TCP Half-Open Connections 266

TCP Connection Maintenance 269

KeepAliveTime 270

KeepAlivelnterval 270

TCP Connection Termination 270

Segment 1 271

Segment 2 272

Segment 3 273

Segment 4 274

TCP Connection Reset 275

TCP. Connection States 277

Controlling TCP Connection Terminations
in Microsoft Windows 2000 279

Summary 280

13 Transmission Control Protocol (TCP) Data Flow 281

Basic TCP Data Flow Behavior

TCP Acknowledgments

Delayed Acknowledgments

Cumulative for Contiguous Data

Selective for Non-Contiguous Data

TCP Sliding Windows

Send Window

Receive Window

Microsoft Windows 2000 Maximum
Receive Window Size

281

281

282

282

283

284

284

288

290

Contents I ix

x I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Small Segments

The Nagle Algorithm

Silly Window Syndrome

Sender-Side Flow Control

Slow Start Algorithm

Congestion Avoidance Algorithm

Summary

Transmission Control Protocol (TCP)
Retransmission and Time-Out 301

Retransmission Time-Out and Round-Trip Time

Congestion Collapse

Retransmission Behavior

TcpMaxDataRetransmissions

Retransmission Behavior for New Connections

Dead Gateway Detection

Using the Selective Acknowledgment (SACK)
TCP Option

Calculating the RTO

TcplnitialRTT

Using the TCP Timestamps Option

Karn's Algorithm

Karn's Algorithm and the Timestamps Option

Fast Retransmit

TcpMaxDupAcks

Fast Recovery

Summary

Application Layer Protocols and Services

Dynamic Host Configuration Protocol (DHCP) Service 321

Chapter Contents

Overview to DHCP in Windows 2000
What Is DHCP?

DHCP Overview and Key Terms

How DHCP Works

DHCP Messages

General Message Format

DHCPDISCOVER

293
293
294
295
296'
298
300

301

302
303
304
305
306

307
308
309
309
313
315
315
316
317
317

322
322
322
322
328
332
332
334

DHCPOFFER

DHCPREQUEST

DHCPACK

DHCPDECLINE

DHCPNAK

DHCPRELEASE

DHCPINFORM

DHCP Options

What Are DHCP Options?

Options Supported by Windows 2000

Summary

Domain Name Service (DNS) 351

336

338
340

341

343

345
346

347

347

348

350

Chapter Contents 352

Overview to DNS in Microsoft Windows 2000 352

What Is DNS? 352

Key DNS Terms 353

How DNS Works 367

Configuring DNS Client Functions 367

Resolving Names 368

Resolving Aliases 369

Dynamically Updating DNS 370

Transferring Zone Information 372

DNS Resource Records 373

What Are Resource Records? 373

Resource Records Supported by Windows 2000 375

DNS Messages 377
DNS Messages 377

Name-Query Message 382

Name-Query Response Message 383

Reverse-Name Query Message 383

Name Update Message 383

Name Update Response Message 384

Summary 384

Windows Internet Name Service (WINS) 385

Chapter Contents

Overview of WINS in Windows 2000

What Is WINS?

386

387

387

Contents I xi

xii I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Key WINS Terms

How WINS Works

Registering NetBIOS Names

Resolving NetBIOS Name Registration Conflicts

Releasing NetBIOS Names

Resolving NetBIOS Names

Refreshing NetBIOS Names

Determining Adapter Status

NetBIOS Name Service Messages

Name Service Header

NetBIOS Name Representation

Question Entries

Resource Records (RRs)

Resource Record Name Compression

Name Registration Message

Positive Name Registration Response

Negative Name Registration Response

Name Refresh Message

Name Release Request Message

Name Release Response Message

Name Query Request Message

Positive Name Query Response Message

Negative Name Response Message

Wait Acknowledgment Message

Summary

File and Printer Sharing 423

Overview

Chapter Contents

Introduction to Internet Printing

IPP Operation

IPP Specifications

Introduction to CIFS

CIFS Operation

Summary

Internet Information Server (llS) and the Internet Protocols

Chapter Contents

HTTP

387
398
398
400
401
401
403
403
404
405
408
409
410
412
413
414
414
416
416
417
418
419
419
420
421

423
423
423
424
426
434
434
439

441

441
441

Introduction and Terminology

HTTP Operation

URis

HTTP Messages

Request Messages

Response Messages

HTTP Codings

HTTP Content Negotiation

HTTP Caching

FTP

Introduction and Terminology

FTP Operation

FTP Data

Connections and Transmission Modes

FTP Commands and Responses

SMTP

Introduction and Terminology

SMTP Operation

SMTP Commands

SMTP Replies

Summary

Securing IP Communications with IP Security (IPSec) 477

Chapter Contents

IPSec Overview

How IPSec Works

Authentication Header (AH) Details

Encapsulating Security Payload (ESP) Details

Summary

Virtual Private Networks (VPNs) 491

Chapter Contents

Overview of Virtual Private Networks

What Is a VPN?

VPN Clients and Servers

VPN Protocols

Tunneling

VPN Authentication

Extensible Authentication Protocol (EAP)

441
443
443
444
445
446
458
459
460
461
461
462
464
465
467
468
468
469
471
474
475

478
478
483
485
487
490

491
492
492
493
493
494
497
498

Contents I xiii

xiv I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

VPN Address Assignment 498

VPN Data Compression 499

VPN Data Encryption 499

Introduction to Point-to-Point Tunneling Protocol (PPTP) 499

Installation of PPTP 500

PPTP Encapsulation 500

PPTP Encryption 501
Introduction to Layer 2 Tunneling Protocol (L2TP) 501

Installation of L2TP 501

L2TP Encapsulation 502

L2TP Encryption 503

Summary 503

Glossary 505
Bibliography 511
Index 515

Tables I xv

Tables

2 2-1. Defined Values for the Frame Relay DLCI 45

3 3-1. ARP Hardware Type Values 63
3-2. ARP Operation Values 63

4 4-1. IP MTUs for Common Network Interface Layer
Technologies 77

4-2. Values of the IP Precedence Field 81
4-3. Values of the IP Protocol Field 85
4-4. Original IP Datagram 90
4-5. Fragments of the Original IP Datagram 91
4-6. Option Classes 97
4-7. Option Classes and Numbers 97

5 5-1. Address Class Ranges of Network IDs 112
5-2. Address Class Ranges of Host IDs 112
5-3. Dotted Decimal Notation for Default Subnet Masks 115
5-4. Network Prefix Notation for Default Subnet Masks 115
5-5. Subnetting of a Class A Network ID 119
5-6. Subnetting of a Class B Network ID 120
5-7. Subnetting of a Class C Network ID 120
5-8. 3-Bit Subnetting of 131.107.0.0 (Binary) 121
5-9. Enumeration of IP Addresses for the 3-Bit Subnetting

of 131.107.0.0 (Binary) 122
5-10. 3-Bit Subnetting of 131.107.0.0 (Decimal) 123
5-11. Enumeration of IP Addresses for the 3-Bit Subnetting

of 131.107.0.0 (Decimal) 124
5-12. The Eight Subnets for the 3-Bit Subnetting

of 131.107.0.0/16 126
5-13. A Block of Eight Class C Network IDs Starting

with 223.1.184.0 129
5-14. The Aggregated Block of Class C Network IDs 129
5-15. Supernetting and Class C Addresses 130
5-16. Reserved Local Subnet IP Multicast Addresses 136

7 7-1. Common ICMP Types 165
7-2. Code Values for ICMP Destination Unreachable Messages 168
7-3. Plateau Values for PMTU 173
7-4. Values of the Code Field in an ICMP Redirect 178
7-5. ICMP Parameter Problem Code Values 183
7-6. PING Utility Options 184

xvi I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

7-7. TRACERT Utility Options 189
7-8. PATHPING Utility Options 190

8 8-1. Recommended Values of the TTL
for IP Multicast Traffic 193

8-2. Addresses Used in IGMPvl Messages 198
8-3. Values of the IGMPv2 Type Field 202
8-4. Addresses Used in IGMPv2 Messages 202

9 9-1. Aggregatable Global Unicast Address Fields 215
9-2. Multicast Address Fields 217
9-3. Ipv6 Header Fields 220

10 10-1. Well-Known UDP Port Numbers 232

11 11-1. Well-Known TCP Port Numbers 240

12 12-1. TCP Connection States 277

15 15-1. DHCP Message Fields and Descriptions 333
15-2. DHCP Options Appearing in All DHCP Messages 348
15-3. Options for Which Clients Can Request

and Receive Values 349
15-4. Options that Can Be Returned to a Client Running

Windows 2000 350

16 16-1. 3-Character Top-Level Domains in Use in the Internet 354
16-2. Key Resource Records as Used by a Windows 2000

Network 355

17 17-1. Common NetBIOS Suffixes Used
with Windows Networking 388

17-2. Name Service Operation Codes and Meanings 407
17-3. Converting an Original 16-Byte NetBIOS Name

into a 32-Byte String 408
17-4. Values for the Return Code Field 415
17-5. Explanation of Return Code Value and Error 418

18 18-1. IPP Operations 428
18-2. IPP Operation Attributes 429
18-3. IPP Job-Template Attributes 430
18-4. IPP Job-Description Attributes 431
18-5. IPP Printer-Description Attributes 432
18-6. Components of a CIFS Server NEGOTIATE Response 435
18-7. Bit Definitions of Server Capabilities 435

Tables I xvii

19 19-1. Common HTIP/1.1 Method Codes 445
19-2. HTTP/1.1 Status Code Classes and Meanings 447
19-3. HTTP /1.1 Status Codes 447
19-4. Request Header Fields 451
19-5. Response Header Fields 454
19-6. Entity Header Fields 455
19-7. General Header Fields 457
19-8. FTP Response Codes-First Digit 468
19-9. FTP Response Codes-Second Digit 468

19-10. Common SMTP Commands, Descriptions, and Syntax 472
19-11. SMTP Response Codes-First Digit 474
19-12. SMTP Response Codes-Second Digit 475

Preface

I can still remember picking up my first TCP/IP book in early 1994. Up
to that point, I'd had several years of networking experience with Win
dows for Workgroups, Novell NetWare, and Windows NT 3.1, but knew
little of UNIX or of TCP /IP. I had finally broken down and decided to
get onto the Internet, but all the instructions my ISP gave me were to
tally foreign.

So I went out and bought a book-actually, I bought several. At first the
concepts were foreign and seemed so contrary to what I knew. Read
ing W. Richard Steven's books really brought the subject to light, and
gradually, like peeling an onion, I worked through the layers and dis
covered the wonderful world of TCP /IP.

Why We Wrote This Book
I started thinking about writing this book many years ago. Most of the
good TCP /IP books available then were either aimed at the UNIX mar
ket or were completely generic. As I did more and more with Microsoft's
TCP /IP offerings and watched the Windows 2000 product slowly evolve,
it was obvious a book focusing on TCP /IP· with a Windows 2000 focus
would be very useful.

Joe and I worked together several years ago as part of a team that was
rolling out advanced TCP /IP training to Microsoft product support engi
neers. Joe was the course author and I was one of the many trainers who
delivered this material to a very tough audience. It took time, and a lot
of convincing by those nice people at Microsoft Press, but here we are.

We wrote this book as an in-depth reference to the TCP /IP protocol suite
and the related network services. We explain how this suite of proto
cols and related services work and how they function in Windows 2000.

We have aimed this book at several different audiences:

• General technical staff Anyone interested in learning the
details of TCP/IP, as implemented in Windows 2000.

• TCP /IP administrators This book contains details of the
protocols and services administrators need to do problem solv
ing and TCP /IP infrastructure planning.

xix

xx I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

• MCSE candidates Those studying for their Windows 2000
exams would find this book a useful reference text.

• Microsoft certified trainers They can use this book to
learn the protocols and as to recommend to their students.

-Thomas Lee

Acknowledgments

During the writing of this book, I found that W. Richard Stevens had
passed away. Rich was a friend who shared a love for TCP/IP. He mo
tivated us both to write this book. I'm only sorry I wasn't able to send
him a copy.

While writing a book can look easy, there are a lot of people behind this
effort. Both Joe and I would like to thank all the great people at Microsoft
Press, including Anne Hamilton (who chased Thomas across two pub
lishers before finally getting him nailed down), David Clark, and Michael
Bolinger (two great managers). After we finished writing, it was up to
Sarah Hains and her editing team at nSight, Inc., including Tony
Northrup, our technical editor, to make the text make sense to you, the
reader.

This book was written as the Windows 2000 operating system was be
ing built. As the product changed, so did the book. We'd like to thank
our partners, the Windows 2000 networking team, including Jawad
Kakhi, Bernard Abbobo, Ken Crocker, William Dixon, Dave Eitlebach,
Peter Ford, Art Shelest, and Glen Zorn.

I would like to give thanks to my wonderful wife, Susan Lee-Tanner, for
her patience during the many months it took to get this project out the
door, and to my darling daughter, Rebecca, who was a constant com
panion in my office during the days (and some of the nights) that I
worked on the book.

I would also like to express my deep appreciation to the engineers in
the Windows 2000 beta support team, notably John Gray, for getting the
CDs to me when I needed them. Thanks also to all the engineers for read
ing the many bug reports and patiently answering them, providing
workarounds when I really needed them, and keeping a continual sense
of humor. Also a big thank you to all the folks in BEDM Training, in
cluding Dean Murray, Keith Cotton, Angie Fultz, Susan Greenberg, Paul
Howard, Rodney Miller, Ken Rosen, Paul Adare, Kathleen Cole, Robert
Deupree, Brian Komar, Doug Steen, and Joern Wettern. You guys taught
me a lot-thanks.

Joe would like to say thanks to his wonderful wife, Kara, and beautiful
daughter, Katherine Rose, for their support, sacrifice, and patience while
Joe worked early mornings, late evenings, and weekends to complete
the chapters in this book.

xxi

xxii I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

And finally, special thanks to Laura Robinson, who was drafted in at the
last minute to write additional content for this book. She was working
under a tremendous amount of pressure and her efforts were very much
appreciated. I hope we can work together again in the future.

Introduction

The Transmission Control Protocol/Internet Protocol (TCP /IP) protocol
suite is the foundation of today's Internet, as well as the foundation of
many private computer networks. The TCP /IP protocol suite, which
comprises more than just TCP and IP, enables computers within a net
work to communicate with each other.

TCP/IP was originally developed to enable ARPANET sites to commu
nicate. ARPANET sites used different computers manufactured by differ
ent vendors and running different operating systems. The only common
element between them was that they ran a common protocol.

As the ARPANET grew to become the Internet, many companies began
to utilize TCP/IP. With Windows 2000, the Active Directory (AD) service
requires the use of TCP /IP in the Internet.

This introduction provides a brief introduction to the TCP /IP protocol
suite, including:

• A potted history of the TCP /IP protocol suite

• A look at the Open Systems Interconnection (OSI) model and
a comparison to the model that TCP /IP uses

• An overview of the Windows 2000 network architecture illus
trating how TCP /IP is implemented

This introduction also serves as a foundation for this book.

Brief History of TCP /IP
In the mid-to-late 1960s the U.S. Department of Defense's Advanced
Research and Projects Administration (ARPA, or DARPA, as it later be
came known) began researching the creation of a network that would
link up various ARPA contractors. They issued a contract to build the first
Interface Message Processors (IMP) to Bolt, Baranek, and Newman
(BBN), a consulting firm in Cambridge, Mass. The IMP, which today
probably would be called a router, was based on a Honeywell 516 mini
computer and was a system the size of a large refrigerator.

In the days of the first IMPs, there were no protocols to purchase
everything had to be designed from scratch. The concept of packet
switching-based networks wasn't new, but there were no significant
implementations that ARPA or BBN could go out and buy.

xxiii

xxiv I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

The first IMP was delivered toward the end of the summer of 1969 at
UCLA; the second IMP was delivered to Stanford Research Institute a
month later. Additional IMPs were added over the coming months and
years, and the ARPANET slowly became a reality.

During the 1970s, the number of sites connected to the ARPANET grew,
initially, at a linear rate (one per month or so), but toward the end of the
1970s, the growth became exponential.

The initial protocols and addressing schemes that were used within the
ARPANET were adequate to connect the first IMPs, and to prove that the
concept of a heterogeneous packet-switching network was valid, but they
didn't scale. Something better was needed, and in the late 1970s the devel
opment of what we now know as TCP /IP began to see the light of day. RFC
760, which described the Internet Protocol, was published on January 1,
1980. It was subsequently replaced by RFC 791, which was published in
September 1981, along with an RFC describing TCP (RFC 793). RFC 768,
describing User Datagram Protocol (UDP), had been issued the year before.

These RFCs define the core of the TCP /IP protocol suite and are in use
today. While some of the details have changed, and some additional
functionality has been added, such as flow control with TCP, these pro
tocols have withstood the test of time and continue to serve their pur
pose. IP's addressing scheme, based on a 32-bit IP address, has proven
inadequate for today's Int_ernet, but no one in the 1970s could have fore
seen what the Internet has become.

Perhaps the biggest boost to the adoption of TCP /IP was the publication
of the BSD 4.2 version of UNIX in 1983, which incorporated a TCP /IP suite.
UNIX, which Bell Laboratories developed, had been viewed as a possible
ARPA mini-host, as noted in RFC 681. It was attractive for many reasons,
not the least of which was that Bell licensed the operating system for a nom
inal fee, $150.00 for colleges and universities (although for "non-university"
institutions the license fee was $20,000.00). With the release of BSD 4.2,
many universities could now afford additional mini-computers and the soft
ware to run on them. The result was an explosive growth in the use of the
ARPANET and in the development of many of the tools and facilities we
now take for granted, such as the Domain Name Server (DNS) system.

The International Organization for Standardization
{ISO) Open Systems Interconnection {OSI) Model

The development of the ARPANET was undertaken in an academic
setting. At that time, it didn't capture much commercial interest. During
the 1970s, the need for more open networking was a hot topic of

Introduction I xxv

conversation in the computer industry. Because networking was largely
homogenous, computers from different manufacturers generally couldn't
communicate.

In 1977, the ISO began the development of a detailed reference model·
for OSI. The idea behind the OSI model was to enable the development
of software that would allow an open system; one that's open to others
for the purpose of information exchange with another. The assumption
was that an open system would use the applicable standards and there
fore be able to interoperate.

The OSI model is a very loose standard in which the definitions and
much of the terminology are vague. This was deliberate to ensure that
the model didn't attempt to constrain an implementer to use existing
techniques or terminology. Rather, it was intended to promote the de
velopment of protocols that could provide heterogeneous systems to
interoperate. The OSI model also functions as a reference model, to
enable other standards and protocols to be compared.

The OSI model starts from the premise that communication between two
computers is sufficiently complex enough that it couldn't be considered
as a single entity. Instead, the functions that make up the communica
tions process should be broken up into a series of separate layers, with
each successive layer built on top of a lower layer, and using the func
tions assigned to each layer. What the precise internal workings of the
layers would be, however, was a detail left to developers-the key was
to standardize the functions contained in each of the layers and the
interfaces between them.

The ISO OSI model is made up of seven levels, as shown in Figure I-1.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1-1. Tbe seven layers of the ISO OSI model.

xxvi I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

In this model, the application and the users are at the top, while at the
bottom are some physical communications media. The functions of the
layers, in ascending order, are as follows:

• Physical Puts a stream of bits on the physical media, the
wire, and pulls them back off. This layer is typically imple
mented in hardware.

• Data Link Defines the concept of a packet (a frame) and en
ables a computer to send a frame to another computer con
nected to the same wire. This layer is typically implemented in
a mixture of hardware and system software.

• Network Enables two end systems to send packets of data
across an internetwork based on the lower levels. This layer,
implemented in software, is inherently unreliable because a
frame being sent out across a network might get lost, be badly
routed, or become corrupted. The higher layers are respon
sible for reliability.

• Transport Enables the reliable transmission of data across
the network provided. It utilizes the end-to-end communica
tion provided by the network layer and adds reliability.

• Session Adds in the concept of sessions between two sys
tems where the computers in the session will save information
about the state of the session and later use that state informa
tion as the basis for future processing.

• Presentation Meant for the translation of data between dif
ferent formats as needed (e.g., between ASCII and EBCIDC),
thus separating the wire formats from the view of data seen by
an application.

• Application Where the applications and users reside. These
applications use the other six layers to implement a business
function based on the underlying network.

The designers of the OSI model had hoped that vendors would build
protocols that mapped directly to this model. But with seven layers, this
model added a considerable overhead. Functions at each level needed
to make procedure calls to lower levels, which involved a higher level
layer packing up parameters and making a procedure call to the lower
level which would then need to validate those parameters. A few imple
mentations were developed, but these implementations didn't achieve
a significant commercial success.

Introduction xxvii

The DARPA Model
The designers of the TCP /IP suite of protocols chose a simpler model
with fewer layers to improve performance and ease of implementation.
This model, known as the Defense Advanced Research and Projects
Authority (DARPA) model, is simpler than the ISO model, having only
four layers. The DARPA model is shown in Figure 1-2, which also shows
the correspondence between the two models.

OSI Mode

TCP/IP Model

Figure 1-2. Comparing the DARPA model to the ISO model.

The four layers of the DARPA model are broadly compatible with the ISO
model, although the mapping is not perfectly clean. The ISO session
layer, for example, doesn't perfectly map onto the DARPA model. Ad
ditionally, some protocols break the model. Asynchronous Transfer Mode
(ATM), for example, is a connection-oriented protocol effectively imple
mented in the hardware. Nevertheless, these models are still very use
ful because they enable the complex tasks involved with computer
networking to be broken down into pieces that are more manageable.

Note In this book, we use both the OSI and DARPA models when
discussing the TCP /IP protocol suite and associated services.

xxviii I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Windows 2000 Network Architecture Overview
One of the unique features of Microsoft Windows NT 3.1, when it was first released, was
that it was supplied with a full suite of networking protocols. These came "in the box"
and there was no need to buy and add extra software to enable a Windows NT system
to interoperate with other Windows computers on a corporate network. These networking
protocols have matured and been improved as Windows NT evolved to become Win
dows 2000, but the basic design has rem,ained broadly the same.

A key characteristic of Windows 2000 networking is that it provides administrators with
the ability to fully integrate third-party components. Additionally, the designers built the
networking components to enable the user to view and work with remote and local files
in similar ways. Figure I-3 shows a high-level overview of the Windows 2000 network
ing architecture.

7 Application

6. Presentation : ... ~

i Executive !

:___"$.~ft{J§~~--~ 1/0 Manager

5. Session

4. Transport

3. Network

2. Data Link

Transport Protocols
(TCP/IP, IPX/SPX, NETBEUI)

·--------------------------------·---------------·------------------------------------·-------------------------------J

1. Physical

Figure 1-3. Windows 2000 network architecture.

Kernel

As with all the other components of Windows 2000, the networking architecture is lay
ered, which allows third-party vendors to add in different components. Microsoft builds
the Transport Driver Interface (TDI) and Network Device Interface Specification (NDIS)

Introduction xxix

layers, which third-party vendors can utilize to provide new network card
drivers, new transport protocols, and new network providers, redirectors,
and servers.

At the bottom of the network architecture diagram reside the Network
Devices and Device Drivers. This includes both connectionless adapter
types, such as Ethernet and Token Ring; wide area network (WAN) driv
ers for support of WAN Protocols, such as Frame Relay and X.25; and
connection-oriented adapters, such as ATM.

The NDIS interface serves as a dividing line between the transport pro
tocols and the network hardware and drivers. This interface enables the
transport protocols to use virtually any network device driver seamlessly.

The transport protocols include the core of the TCP /IP protocol suite as
well as NWLink (Microsoft's implementation of Internetwork Packet Ex
change/Sequenced Packet Exchange (IPX/SPX)), NetBIOS Enhanced User
Interface (NetBEUI), and the Data Link Control protocol (DLC). In addi
tion, this layer also holds the Virtual Private Network (VPN) protocols
(PPTP, L2TP), and some of the Internet Protocol Security (IPSec) driver.

The TDI, which sits above the transport protocols, provides an interface
into the transport protocols for kernel mode components, such as the
redirectors and servers.

At the top of this model, you will find the network services DHCP, DNS,
WINS, and IIS that are network-aware applications.

What's in This Book
This chapter has provided the background to and an overview of the
TCP/IP protocol suite as implemented in Windows 2000. The remain
der of this book describes the TCP /IP protocols and the related Windows
2000 networking services in more detail. We have divided the book into
four parts:

• The Network Interface Layer This part contains two chap
ters describing the local area network (LAN) and WAN tech
nologies supported within Windows 2000 and, in particular,
how they carry IP datagrams. This section also includes a
chapter on hardware address resolution.

• Internet Layer Protocols This part includes chapters
describing IP, Internet Control Message Protocol (ICMP), and
Internet Group Management Protocol (IGMP). We've also
included a chapter on IP version 6 (1Pv6), although this isn't
included in Windows 2000.

xxx I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

• Transport Layer Protocols This part contains chapters
describing UDP and TCP.

• Application Layer Protocols and Services This part con
tains chapters describing the key TCP /IP related services,
.including DHCP, DNS, WINS, a,nd IIS. This section also
includes chapters on Windows 2000 File and Print sharing,
IPSec, and VPNs.

Network Monitor Traces
Throughout this book, we have illustrated the theory with packet cap
tures. These show the actual behavior of a protocol or service "on the
wire." To improve the value of this book to you, we have included all
of the traces referenced in this book on the companion CD-ROM.

The traces taken in the book, and included on the CD-ROM, were cap
tured using Microsoft Network Monitor, Version 2.0, which is a compo
nent of Systems Management Server V2.0. Windows 2000 Server Standard
Edition, Windows 2000 Advanced Server, and Windows 2000 Datacenter
Server ship with Microsoft Network Monitor Lite version 2.0, which
should enable you to view alm6st all of the traces. However, a few of
the traces are only fully readable with the full version.

To assist readers who do not have the full version of Network Monitor,
we also include a full text dump of each trace.

Companion CD-ROM
We also include a companion CD-ROM with the following contents:

• Full set of Request for Comment (RFC) documents

• Full set of Internet drafts Those documents which may
one day become RFCs.

• White papers Key TCP /IP related white papers.

• Network Monitor traces

The RFCs and Internet Drafts were the full set of obtainable drafts as of mid
September 1999. And as is the way with such book projects, this list most
likely will have changed by the time you buy this book-although the RFCs
that have been implemented will be included on the companion CD-ROM.

Introduction xxxi

Errors and All That
We both hope this book has no errors, and that everything here is perfect.
But sometimes errors do, sadly, creep in. If you find any, we apologize. But
please let Thomas know, by sending email to tjl@kapoho.com. Any errors
that we do find, plus any updates, will be found at http://www.kapoho.com/
tcpip/default.htm.

Microsoft Press provides corrections for books through the World Wide Web
at the following address:

http://mspress.microsoft.com/support/

Please note that product support is not offered through the above mail
addresses. For further information regarding Microsoft software support
options, please connect to http://www.microsoft.com/support/ or call
Microsoft Professional Support Sales at 800-936-3500.

For information about ordering the full version of any Microsoft software,
please call Microsoft Sales at 800-426-9400 or visit www.microsoft.com.

r I
. The Network
Interface Layer

Local Area Network
(LAN) Technologies

3

To successfully troubleshoot TCP/IP problems on a local area network (LAN), it is im
portant to understand how IP datagrams and ARP messages are encapsulated when sent
by a Microsoft Windows 2000 computer on a LAN technology link such as Ethernet, Token
Ring, or Fiber Distributed Data Interface (FDDI). For example, IP datagrams sent over
an Ethernet network segment can be encapsulated two different ways. If two hosts are
not using the same encapsulation, communication cannot occur. It is also important to
understand LAN technology encapsulations to correctly interpret the Ethernet, Token Ring,
and FDDI portions of the frame when using Microsoft Network Monitor.

LAN Encapsulations

Because Internet Protocol (IP) datagrams are an Open Systems Interconnection (OSI)
Network Layer entity, IP datagrams must be encapsulated with a Data Link Layer header
and trailer before being sent on the physical medium. The Data Link Layer header and
trailer provide the following services:

• Delimitation Frames at the Data Link Layer must be distinguished from each
other. For each frame, the start and end of the frame are indicated and the
frame's payload is distinguished from the Data Link Layer header and trailer.

• Protocol identification Because many organizations use multiple protocol
suites such as TCP/IP, Internetwork Packet Exchange (IPX), or AppleTalk, the
protocols must be distinguished from each other.

• Addressing For shared access LAN technologies such as Ethernet, the source
node and destination node must be identified.

• Bit-level integrity check To detect bit-level errors in the entire frame re
ceived by the hardware, a bit-level integrity check in the form of a checksum is
needed. The checksum is computed by the source node and included in the
frame header or trailer. The destination recalculates the checksum and checks
it against the included checksum. If the checksums match, the frame is consid
ered free of bit-level errors. If the checksums don't match, the frame is silently
discarded. This frame checksum is in addition to the checksums provided by
upper layer protocols such as IP or TCP.

4 I PAIU I The Network Interface Layer

The particular way a network type (such as Ethernet or Token Ring) encapsulates data
to be transmitted is called a frame format. The frame format corresponds to the informa
tion placed on the frame at the Logical Link Control (LLC) and Media Access Control (MAC)
sublayers of the OSI Data Link Layer, and the frame format manifests itself as a header
and trailer. If multiple frame formats exist for a given network type (such as Ethernet),
the frame formats represent different header and trailer structures and are therefore in
compatible with each other. In other words, all the nodes on the same network segment
(bounded by routers) must use the same frame format in order to communicate.

This chapter is a discussion of Ethernet,. Token Ring, and FDDI LAN technologies and
their frame formats for IP datagrams and Address Resolution Protocol (ARP) messages.
ARCnet is not discussed as it is not a widely used networking technology.

Ethernet
Ethernet evolved from a 9.6 Kbps radio transmission system developed at the University
of Hawaii called ALOHA. A key feature of ALOHA was that all transmitters shared the
same channel and contended for access to the channel in orderto transmit. This became
the basis for the contention-based Ethernet that we know today.

In 1972, the Xerox Corporation created a 2.94 Mbps network, based on the principles of
the ALOHA system. This new network, called Ethernet, featured carrier sense, where the
transmitter listens before attempting to transmit. In 1979, Digital, Intel, and Xerox (DIX)
created an industry standard 10 Mbps Ethernet known as Ethernet II. In 1981, the Insti
tute of Electrical and Electronics Engineers (IEEE) Project 802 formed the 802.3 subcom
mittee to make 10 Mbps Ethernet an international standard. In 1995, the IEEE approved
a 100 Mbps version of Ethernet called Fast Ethernet.

Ethernet existed before the IEEE 802.3 specification and, because there are multiple Ethernet
standards, there are multiple ways of encapsulating data to be transmitted on an Ethernet
network. This can be very confusing when two hosts on an Ethernet network segment
cannot communicate, even though they are using the correct communication protocol (such
as TCP/IP) and Application Layer protocol (such as File Transfer Protocol [FTP]).

More Info IP datagrams and ARP messages sent on an Ethernet network segment
use either Ethernet II encapsulation (described in RFC 894) or IEEE 802.3 Sub
Network Access Protocol (SNAP) encapsulation (described in RFC 1042). These
RFCs are included in the \RFC folder on the companion CD-ROM.

Ethernet II
The Ethernet II frame format was defined by the Ethernet specification created by Digi
tal, Intel, and Xerox before the IEEE 802.3 specification. The Ethernet II frame format is
also known as the Digital Intel Xerox (DIX) frame format. Figure 1-1 shows Ethernet II
encapsulation for an IP datagram.

Chapter 1. Local Area Network (LAN) Technologies 5

Preamble

Destination Address

Source Address

EtherType

Payload 1111111111111111111111111. · · 46 - 1500 bytes

Frame Check Sequence
l1111111l1111111l1111111l1111111I

Figure 1-1. Ethernet II encapsulation showing the fields in the Ethernet II header and
trailer.

Ethernet II Header and Trailer

The fields in the Ethernet II header and trailer are defined as follows:

Preamble
The Preamble field is 8 bytes long and consists of 7 bytes of alternating ls and Os (each
byte is the bit sequence 10101010) to synchronize a receiving station and a 1-byte
10101011 sequence that indicates the start of a frame. The Preamble provides receiver
synchronization and frame delimitation services.

Note The Preamble field isn't visible with Network Monitor.

Destination Address
The Destination Address field is 6 bytes long and indicates the destination's address. The
destination can be a unicast, a multicast, or the Ethernet broadcast address. The unicast
address is also known as an individual, physical, hardware, or MAC address. For the
Ethernet broadcast address, all 48 bits are set to 1 to create the address OxFF-FF-FF-FF
FF-FF.

Source Address
The Source Address field is 6 bytes long and indicates the sending node's unicast address.

EtherType
The EtherType field is 2 bytes long and indicates the upper layer protocol contained within
the Ethernet frame. After the network adapter passes the frame to the host's network
operating system, the EtherType field's value is used to pass the Ethernet payload to the
appropriate upper layer protocol. If no upper layer protocols have registered interest in
receiving payload at the frame's EtherType field value, the payload is silently discarded.

6 I PART I The Network Interface Layer

The EtherType field acts as the protocol identifier for the Ethernet II frame format. For
an IP datagram, the field is set to Ox0800. For an ARP message, the EtherType field is set
to Ox0806. The current list of defined EtherType field values can be found at http://
www.isi.edu/in-notes/iana/assignments/ethernet-numbers/.

Payload
The Payload field for an Ethernet II frame consists of a protocol data unit (PDU) of an
upper layer protocol. Ethernet II can send a maximum-sized payload of 1500 bytes.
Because of Ethernet's collision detection facility, Ethernet II frames must send a minimum
payload size of 46 bytes. If an upper layer PDU is less than 46 bytes long, it must be
padded so that it is at least 46 bytes long. The Ethernet minimum frame size is discussed
in greater detail in the "Ethernet Minimum Frame Size" section of this chapter.

Frame Check Sequence
The Frame Check Sequence (FCS) field is 4 bytes long and provides bit-level integrity
verification on the bits in the Ethernet II frame. The FCS is also called a cyclical redun
dancy check (CRC). The source node calculates the FCS and places the result in this field.
When the destination receives the FCS, it runs the same CRC algorithm and compares its
own value with the one placed in the FCS field by the source node. If the two values
match, the frame is considered valid and the destination node processes it. If the two
values don't match, the frame is silently discarded.

The FCS calculation consists of dividing a 33-bit prime number into the number consist
ing of the bits in the frame (not including the Preamble and FCS fields). The result of the
division is a quotient and a remainder. The 4-byte FCS field is set to the remainder-always
a 32-bit value. The FCS can detect 100 percent of all single-bit errors. While it's math
ematically possible to selectively change bits in the frame without invalidating the value
of the FCS field, it's highly improbable that the type of random noise and damage that
occurs on networks will result in a frame whose bits are changed, but retains a valid FCS.

The FCS calculation provides only a bit-levelintegrity service; not a data integrity or
authentication service. A valid FCS doesn't imply that only the node with the unicast
address stored in the Source Address ·field could have sent it and that it wasn't modified
in transit. The FCS calculation is well known and an intermediate node could easily in
tercept the frame, alter its contents, perform the FCS calculation, and place the new value
in the FCS field before forwarding the frame. The receiver of the frame couldn't detect
that the frame contents were altered using just the FCS field. For data integrity and au
thentication services, use IP Security (IPSec). For more information on IPSec, see Chap
ter 20, "Securing IP Communications with IP Security (IPSec)."

The FCS field provides only bit-level error detection; not error recovery. When the re
ceiver-calculated FCS value doesn't match the value of the FCS stored in the frame, the
only conclusion that can be reached is that, somewhere in the frame, a bit or bits were
changed. The FCS calculation doesn't produce any information on where the error oc
curred or how to correct it. However, other types of CRC calculations provide informa
tion on where the error occurred and how to correct it. An example of such a CRC

Chapter 1. Local Area Network (LAN) Technologies I 7

calculation is the 1-byte Header Checksum field in the Asynchronous Transfer Mode (ATM)
cell header, which provides error detection and limited-error recovery services for the
bits in the ATM header.

Note The FCS field isn't visible with Network Monitor.

The following Network Monitor trace (Capture 01-01, included in the \Captures folder
on the companion CD-ROM) shows the Ethernet II frame format for an IP datagram:

+ Frame: Base frame properties
ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol

+ ETHERNET: Destination address : 001054CAE140
+ ETHERNET: Source address : 00600852F9D8

ETHERNET: Frame Length : 74 (0x004A)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Number of data bytes remaining = 60 (0x003C)

+ IP: ID = 0xAE09; Proto = ICMP; Len: 60
+ ICMP: Echo: From 192.168.160.186 To 192.168.160.01

Note The ETHERNET: Frame Length and ETHERNET: Ethernet Data fields are
Network Monitor informational fields, and don't correspond to fields that are
physically present in the Ethernet header.

The Ethernet lnterframe Gap

Unlike Token Ring and FDDI, Ethernet frame formats don't have a way to explicitly in
dicate the end of the frame. Rather, Ethernet frames use an implied postamble by leav
ing a gap between each Ethernet frame. This gap, known as the Ethernet interframe gap,
is used to space Ethernet frames apart. The· Ethernet interframe gap is a specific mea
sure of the time required to send 96 bits of data (9.6 µson a 10 Mbps Ethernet network
segment).

The Ethernet interframe gap is used as a postamble; after receiving bits of a frame, if the
wire falls silent for 96 bit times, the last bit in the received frame occurred 96 bit times ago.

Ethernet Minimum Frame Size

All Ethernet frames must carry a minimum payload of 46 bytes. The Ethernet minimum
frame size is a result of the Ethernet collision detection scheme applied to a maximum
extent Ethernet network. To detect a collision, Ethernet nodes must be transmitting long
enough for the signal indicating the collision to be propagated back to the sending node.
The maximum extent Ethernet network consists of Ethernet segments configured using
10Base5 cabling and the IEEE 802.3 Baseband 5-4-3 rule.

The IEEE 802.3 Baseband 5-4-3 rule states that there can be a maximum of five physical
segments between any two nodes, with four repeaters between the nodes. However, only
three of these physical segments can have connected nodes (populated physical seg
ments). The other two physical segments can be used only to link physical segments to

8 I PART I The Network Interface Layer

extend the network length. Repeaters count as a node on the physical segment. When
using 10Base5 cabling, each physical segment can be up to 500 meters long. Therefore,
an Ethernet network's maximum linear length is 2500 meters.

Figure 1-2 shows Ethernet node A and Ethernet node B at the farthest ends of a 5-4-3
network using 10Base5 cabling.

----------- 2500 meters-------------

Repeater

l I 1·

D_ D_ D_
A B
-------------------------~

Slot time= 57.6 µs

Figure 1-2. 7be maximum extent Ethernet network and the slot time.

When node A begins transmitting, the signal must propagate the network length. In the
worst-case collision scenario, node B begins to transmit just before the signal for node
A's frame reaches it. The collision signal of node A and node B's frame must travel back
to node A in order for node A to detect that a collision has occurred.

The time it takes for a signal to propagate from one end of the network to the other is
known as the propagation delay. In this worst-case collision scenario, the time that it takes
for A to detect that its frame has been collided with is twice the propagation delay. Node
A's frame must travel all the way to node B, and then the collision signal must travel all
the way from node B back to node A. This time is known as the slot time. An Ethernet
node must be transmitting a frame for the slot time in order for a collision with that frame
to be detected. This is the reason for the minimum Ethernet frame size.

The propagation delay for this maximum extent Ethernet network is 28.8 µs. Therefore,
the slot time is 57.6 µs. To transmit for 57.6 µs with a 10 Mbps bit rate, an Ethernet node
must transmit 576 bits. Therefore, the entire Ethernet frame, including the Preamble field,
must be a minimum size of 576 bits, or 72 bytes -long. Subtracting the Preamble (8 bytes),
Source Address (6 bytes), Destination Address (6 bytes), EtherType (2 bytes), and the PCS
(4 bytes) fields,. the minimum Ethernet payload size is 46 bytes long:

Upper layer PDUs that are under 46 bytes are padded to 46 bytes, ensuring the minimum
Ethernet frame size. This padding isn't part of the IP datagram or the ARP message, and isn't
included in any length indicator fields within the IP datagram or ARP message. For example,
this padding isn't included in the IP header's Total Length field. The IP header's Total Length
field indicates only the size of the IP datagram, and is used to discard the padding bytes.

Chapter :1 Local Area Network (LAN) Technologies I 9

IEEE 802.3
The IEEE 802.3 frame format is the result of the IEEE 802.2 and 802.3 specifications, and
consists of an IEEE 802.3 header and trailer and an IEEE 802.2 LLC header. Figure 1-3
shows the IEEE 802.3 frame format.

Preamble

Start Delimiter

Destination Address

Source Address

Length

DSAP

SSAP

Control

Payload

Frame Check
Sequence

J
I 1111111I1111111I1111111 I ...

IEEE 802.2
LLC Header

l1111111l1111111l1111111l1111111I ~- ~~!~.~02 · 3

IEEE 802.3
Header

Figure 1-3. The IEEE 802.3 frame format, showing the IEEE 802.3 header and trailer and
the IEEE 802.2 header.

IEEE 802.3 Header and Trailer

The fields in the IEEE 802.3 header and trailer are defined as follows:

Preamble
The Preamble field is 7 bytes long and consists of alternating ls and Os that synchronize
a receiving station. Each byte is the bit sequence 10101010.

Note The Preamble field isn't visible with Network Monitor.

Start Delimiter
The Start Delimiter field is 1 byte long consisting of the bit sequence 10101011 that in
dicates the start of a frame. The combination of the IEEE 802.3 Preamble and Start De
limiter fields is the exact same bit sequence as the Ethernet II Preamble field.

Note The Start Delimiter field isn't visible with Network Monitor.

10 I PART I The Network Interface Layer

Destination Address
The Destination Address field is the same as the Ethernet II Destination Address field
except that IEEE 802.3 allows both 6-byte and 2-byte addresses. IEEE 802."3 2-byte ad
dresses aren't commonly used.

Source Address
The Source Address field is the same as the Ethernet II Source Address field except that
IEEE 802.3 allows both 6-byte and 2-byte addresses.

Length
The Length field is 2 bytes long and indicates the number of bytes from the LLC header's
first byte to the payload's last byte. The Length field doesn't include the IEEE 802.3 header
or the PCS field. This field's minimum value is 46 (Ox002E), and its maximum value is
1500 (Ox05DC).

Frame Check Sequence
The Frame Check Sequence (PCS) field is 4 bytes long and is identical to the Ethernet II
PCS field.

IEEE 802.2 LLC Header

The fields in the IEEE 802.2 LLC header and trailer are defined as follows:

DSAP
The Destination Service Access Point (DSAP) field is 1 byte long and indicates the des
tination upper layer protocol for the frame.

SSAP
The Source Service Access Point (SSAP) field is 1 byte long and indicates the source upper
layer protocol for the frame.

The DSAP and SSAP fields act as protocol identifiers for the IEEE 802.3 frame format. The
defined value for the DSAP and SSAP fields for IP is Ox06.-However, it's not used in the
industry. Instead, the SNAP header is used to encapsulate IP datagrams with an IEEE 802.3
header. The SNAP header is discussed in greater detail in the "IEEE 802.3 SNAP" section
of this chapter. The current list of defined DSAP and SSAP values can be found at http://
www.isi.edu/in-notes/iana/assignments/ieee-802-numbers.

Control
The Control field can be 1 or 2 bytes long depending on whether the LLC-encapsulated
data is an LLC datagram, known as a Type 1 LLC operation, or part of an LLC session,
known as a Type 2 LLC operation.

• A Type 1 LLC operation (a 1-byte Control field) is a connectionless, unreliable
LLC datagram. With an LLC datagram, LLC isn't providing reliable delivery ser
vice on behalf of the upper layer protocol. A Type 1 LLC datagram is known as
an Unnumbered Information (UI) frame and is indicated by setting the Control
field to the value Ox03.

Chapter 1 Local Area Network (LAN) Technologies I 11

• A Type 2 LLC operation (a 2-byte Control field) is a connection-oriented, reli
able LLC session. Type 2 LLC frames are used when LLC is providing reliable
delivery service for the upper layer protocol.

For IP datagrams and ARP messages, reliable LLC services are never used. Therefore, IP
datagrams and ARP messages are always sent as a Type 1 LLC datagram with the Con
trol field set to Ox03 to indicate a UI frame.

Differentiating an Ethernet II Frame from an IEEE 802.3 Frame

It's common for a network operating system to support multiple frame formats simulta
neously. Microsoft Windows 2000 supports both Ethernet II and IEEE 802.3 frame for
mats for IP datagrams and ARP messages. There are many similarities between the Ethernet
II and IEEE 802.3 frame formats, such as the following:

• The Ethernet II Preamble field is identical to the IEEE 802.3 Preamble and Start
Delimiter fields.

• With the exception of the 2-byte address allowed by IEEE 802.3, the Source
Address and Destination Address fields are identical.

• The PCS is identical.

The ability to differentiate between the Ethernet II and the IEEE 802.3 frame formats lies
in the first 2 bytes past the Source Address field. For the Ethernet II frame format, these
2 bytes are the EtherType field. For the IEEE 802.3 frame format, these 2 bytes are the
Length field. The following algorithm is used to determine whether these 2 bytes are an
EtherType field or a Length field:

• If the value of these 2 bytes is greater than 1500 (Ox05DC), it is an EtherType
fi~ld and an Ethernet II frame format.

• If the value of these 2 bytes is less than or equal to 1500 (Ox05DC), it is a
Length field and an IEEE 802.3 frame.

This comparison can be made because there are no defined EtherType values less than
Ox05DC. The lowest EtherType value is Ox0600, used to indicate the Xerox Network
Systems (XNS) protocol.

IEEE 802.3 SNAP
While there is a defined value of Ox06 for the Service Access Point (SAP) for IP, it's not
used in the industry. RFC 1042 states that IP datagrams and ARP frames sent over IEEE
802.3, 802.4, and 802.5 networks must use the Sub-Network Access Protocol (SNAP)
encapsulation.

The IEEE 802.3 SNAP was created as an extension to the IEEE 802.3 specification to al
low protocols that were designed to operate with an Ethernet II header to be used in an
IEEE 802.3 compliant environment. Figure 1-4 shows the IEEE 802.3 SNAP frame format.

12 I PART ~ The Network Interface Layer

Preamble

Source Address

Length

DSAP § =OxM

SSAP = OxAA

Control = Ox03 J IEEE802.2
LLC Header

IEEE 802.3
Header

Organization Code ffi: = Ox00-00-00 _]- SNAP
Header

EtherType = Ox08-00

IP Datagram 1111111111111111111111111 . . . 38-1492 bytes

Fra~:q~~~~~ 111111111111111111111111111111111 ~- ~';!~0~02 3

Figure 1-4. Tbe IEEE 802.3 SNAP frame format showing the SNAP header and an IP
datagram.

To denote a SNAP frame, the DSAP and SSAP fields are set to the SNAP-defined value of
OxAA within the LLC header. Because all SNAP-encapsulated payloads aren't using reli
able LLC services, every SNAP frame is an LLC datagram. Therefore, the Control field is
set to Ox03 to indicate a UI frame.

The SNAP header consists of the following two fields:

• The Organization Code field is 3 bytes long and is used to indicate the organi
zation that maintains the meaning of the 2 bytes that follow. For IP datagrams
and ARP messages, the Organization Code field is set to Ox00-00-00.

• For the Organization Code field set to Ox00-00-00, the next 2 bytes of the SNAP
header are the 2-byte EtherType field. The same values for IP (Ox0800) and
ARP (Ox0806) are used.

Because of the increased overhead of the LLC header (3 bytes total) and the SNAP header
(5 bytes), the payload for an IEEE 802.3 SNAP frame can have a maximum size of 1492
bytes and a minimum size of 38 bytes. Padding is added when needed to ensure that the
payload is a minimum length of 38 bytes.

Chapter 1 Local Area Network (LAN) Technologies I 13

The following Network Monitor trace (Capture 01-02, included in the \Captures folder
on the companion CD-ROM) shows the IEEE 802.3 SNAP frame format for an ARP Re
quest frame:

+ Frame: Base frame properties
ETHERNET: 802.3 Length = 50

+ ETHERNET: Destination address : FFFFFFFFFFFF
+ ETHERNET: Source address : 00AA004BB147

ETHERNET: Frame Length : 50 (0x0032)
ETHERNET: Data Length : 0x0024 (36)
ETHERNET: Ethernet Data: Number of data bytes remaining = 36 (0x0024)

LLC: UI DSAP=0xAA SSAP=0xAA C
LLC: DSAP = 0xAA : INDIVIDUAL : Sub-Network Access Protocol (SNAP)
LLC: SSAP = 0xAA: COMMAND : Sub-Network Access Protocol (SNAP)
LLC: Frame Category: Unnumbered Frame
LLC: Command = UI
LLC: LLC Data: Number of data bytes remaining 33 (0x0021)

SNAP: ETYPE = 0x0806I
SNAP: Snap Organization code = 00 00 00
SNAP: Snap etype : 0x0806
SNAP: Snap Data: Number of data bytes remaining 28 (0x001C)

+ ARP_RARP: ARP: Request, Target IP: 192.168.50.2

Note The ETHERNET: Data Length, ETHERNET: Ethernet Data, LLC: Frame Cat
egory, 'LLC: LLC Data, and SNAP: Snap Data fields are Network Monitor informa
tional fields and don't correspond to fields that are physically present in the
Ethernet header.

By default, Windows 2000 uses the Ethernet II encapsulation when sending and receiv
ing frames on an Ethernet network. Windows 2000 will receive both types of frame for
mats but, by default, will only respond with Ethernet II-encapsulated frames. To send IEEE
802.3 SNAP-encapsulated IP and ARP messages, add the ArpUseEtherSNAP registry setting.

ArpUseEtherSNAP

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
Tcpip\Parameters
Data type: REG_DWORD
Valid range: 0-1
Default value: 0
Present by default: No

ArpUseEtherSNAP either enables (=1) or disables (=O) the use of the IEEE 802.3 SNAP
frame format when sending IP and ARP frames. ArpUseEtherSNAP is disabled by default,
meaning that IP and ARP frames are sent with Ethernet II encapsulation. Regardless of
the ArpUseEtherSNAP setting, both types of frame formats are received.

With ArpUseEtherSNAP disabled, Windows 2000 TCP/IP will recognize a SNAP-encap
sulated ARP Request message and respond with an Ethernet II-encapsulated ARP Reply
frame. The assumption is that the node sending the ARP Request message will recognize

14 I PART I The Network Interface Layer

the Eth~rnet II encapsulation on the ARP Reply and use Ethernet II encapsulation for sub
sequent communications. If the node sending the ARP Request doesn't switch, IP com
munication between the node sending the ARP Request and the Windows 2000 node
sending the ARP Reply is impossible.

With ArpUseEtherSNAP enabled, Windows 2000 TCP/IP will switch to Ethernet II encap
sulation if one of the following two scenarios occurs: a SNAP-encapsulated ARP Request
frame is responded to with an Ethernet II-encapsulated ARP Reply frame, or an Ethernet
II-encapsulated ARP Request is received.

Special Bits on Ethernet MAC Addresses
Within the Source Address and Destination Address fields of the Ethernet II and IEEE 802.3
frame formats, special bits are defined, as Figure 1-5 shows.

Destination
Address

Source
Address

~--'-Tr~~~~~~~~~

I
O - Individual

~~-... 1 - Group

I
0 - Universal Admin

~--- 1- Local Admin

l1111111l111111l111~11l1111111l1111111l111111i
[[I O - No Routing

1- Routing Present

O - Universal Admin
1 - Local Admin

Figure 1-5. Tbe special bits defined for Ethernet source and destination Jl1AC addresses.

The Individual/Group Bit

The Individual/Group (I/G) bit is used to indicate whether the address is a unicast (in~
dividual) or multicast (group) address. For a unicast address, the I/G bit is set to 0. For
a multicast address, the I/G bit is set to 1. The broadcast address is a special case of
multicast and its I/G bit is set to 1. The I/G bit is f;llso known as the multicast bit.

The Universal/Locally Administered Bit

The Unive.rsal/Locally (U/L) Administered bit is used to indicate whether the IEEE allo
cated the address. For a universal address allocated by the IEEE, the U/L bit is set to 0.
Universal addresses are guaranteed to be universally unique because network adapter
manufacturers obtain universally unique vendor identifiers from the IEEE and assign
unique 3-byte serial numbers to each network adapter. The 6-byte physical address of a
network adapter, as programmed into the adapter during the manufacturing process, is
a universally administered address.

Chapter :1 Local Area Network (LAN) Technologies I 15

For a locally administered address, the U/L bit is set to 1. Some network adapters allow
you to override the network adapter's physical address and specify a new physical ad
dress. In this case, the new address must have the U/L bit set to 1 to indicate that it is
locally administered.

The U/L bit is significant only for unicast addresses (the I/G bit is set to 0). When the
I/G bit is set to 1, this bit doesn't imply a locally or universally administered address. The
U/L bit is relevant for both the Source Address and Destination Address.

Routing Information Indicator Bit

The Routing Information Indicator bit indicates whether MAC-level routing information is pre
sent. This bit is meaningful only for Token Ring addresses. Token Ring has a MAC-level routing
mechanism known as Token Ring source routing. Even though this bit is meaningless for
Ethernet addresses, it's still reserved and set to 0 to prevent problems when employing a
translating bridge or Layer 2 switch between an Ethernet segment and a Token Ring.

For example, suppose the Routing Information Indicator bit isn't reserved at the value of
0 for Ethernet addresses, and this bit is set to 1 through a universal or locally adminis
tered address. When the address is translated to a Token Ring address, the Routing In
formation Indicator bit is set to 1 when there is no source routing information present.
This can cause the Token Ring node to drop the frame.

The following Network Monitor trace (Capture 01-03, included in the \Captures folder
on the companion CD-ROM) shows the special bits for Ethernet MAC addresses:

+ Frame: Base frame properties
ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol

ETHERNET: Destination address : 01005E400009
ETHERNET: 1 =Group address
ETHERNET: 0. =Universally administered address

ETHERNET: Source address : 00E034C0A060
ETHERNET: 0 No routing information present
ETHERNET: 0. =Universally administered address

ETHERNET: Frame Length : 591 (0x024F)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Number of data bytes remaining = 577 (0x0241)

+ IP: ID = 0xDBD2: Proto = UDP; Len: 517
+ UDP: IP Multicast: Src Port: Unknown, (3985): Ost Port: Unknown (20441):
Length = 557 (0x22D)

Token Ring
Token Ring is a ring access network technology originally proposed by Olaf Soderblum
in 1969. IBM purchased the rights to the original design and created and released its Token
Ring product in 1984. Key elements of the original IBM design were the use of propri
etary connectors, twisted pair cable out to the network node, and structured wiring sys
tems using centralized active hubs.

16 I PART i The Network Interface Layer

In 1985, the IEEE 802 ·project created the 802.5 subcommittee and Token Ring became
an international standard. IBM created Token Ring to replace Ethernet as the most popular
LAN technology: Although Token Ring is in many ways a superior technology to Ethernet,
a combination of cost issues and marketing has made Token Ring less popular than
Ethernet.

The original specification was for a 4 Mbps transmission rate, but was followed by an
additional specification at 16 Mbps. On the same ring, all nodes must operate at the same
speed. Common implementations use 4 Mbps rings connected together, using 16 Mbps
rings as a high-speed backbone.

More Info IP and ARP encapsulation over Token Ring networks are described in
RFC 1042, which can be found in the \RFC folder on the companion CD-ROM.

IEEE 802.5
The IEEE 802.5 frame format is the result of the IEEE 802.2 and 802.5 specifications, and
consists of an IEEE 802.5 header and trailer and an IEEE 802.2 LLC header. The IEEE 802.5
frame format is shown in Figure 1-6.

Starting Delimiter

Access Control

Frame Control

Destination Address

Source Address

DSAP

SSAP

Control

Payload

Frame Check
Sequence

Ending Delimiter

Frame Status

-1 IEEE 802.2

__ I LLC Header

J IEEE802.5
Trailer

IEEE802.5
Header

Figure 1-6. The IEEE 802.5 frame format showing the IEEE 802.5 header and trailer and
the IEEE 802.2 header.

Chapter 1 Local Area Network (LAN) Technologies I 17

IEEE 802.5 Header and Trailer

The fields in the IEEE 802.5 header and trailer are defined as follows:

Start Delimiter
The Start Delimiter field is 1 byte long and identifies the start of the frame. The Start
Delimiter field contains nondata symbols known as J and K symbols that are deliberate
violations of the Token Ring signal encoding scheme. The J symbol is an encoding vio
lation of a 1 and the K symbol is an encoding violation of a 0. The Start Delimiter field
provides a very explicit preamble. Unlike Ethernet, Token Ring frames don't have an
interframe gap to separate frames on the wire. The Start Delimiter field also provides
synchronization for the receiver.

Note The Start Delimiter field isn't visible with Network Monitor.

Access Control
The Access Control field is 1 byte long and contains bits for:

• Setting the current priority of the token (3 bits). An interesting facility of Token
Ring is its ability to prioritize access to the token and, therefore, the right to
transmit data based on seven priority levels.

• Setting the token reservation level (3 bits). The token reservation bits set the
priority of the token once the station that is currently transmitting releases it.

• Indicating whether the frame has passed the ring monitor station (1 bit). As the
frame passes the ring monitor station, the Monitor bit is set to 1. If the ring
monitor station sees a frame with the Monitor bit set to 1, the frame has
already been sent on the ring. The ring monitor station removes the frame
from the ring and then purges the ring.

• Indicating whether the frame that follows is a token or a frame (1 bit). If set to
0, what follows is a token. If set to 1, what follows is a frame.

Frame Control
The Frame Control field is 1 byte long and contains bits for:

• Indicating whether the frame that follows is a Token Ring MAC management
frame or an LLC frame (2 bits).

• Indicating the type of Token Ring MAC management frame such as Purge,
Claim Token, Beacon, and so forth (4 bits).

Two bits within the Frame Control field are reserved.

Destination Address
The Destination Address field is 6 bytes long and indicates the address of the destina
tion. For Token Ring, the Destination Address field can be:

• A universal or locally administered unicast address.

• The universal broadcast address (OxFF-FF-FF-FF-FF-FF).

18 I PART I The Network Interface Layer

• The Token Ring broadcast address (OxC0-00-FF-FF-FF-FF). A frame using the
Token Ring broadcast address is designed to remain on a single ring and isn't
forwarded by Token Ring source-route bridges.

• A multicast address.

• A Token Ring functional address. A functional address is a type of multicast
address that's specific to Token Ring and is typically used by Token Ring MAC
management frames.

Source Address
The Source Address field is 6 bytes long and indicates the sending node's unicast address.

Payload
The Payload field for a Token Ring frame consists of a PDU of an upper layer protocol.
Unlike Ethernet, there is no minimum frame size and the maximum transmission unit for
Token Ring isn't a defined number, but dependent on factors such as the bit rate and the
token holding time. Token ring MTUs are further complicated by the presence of Token
Ring source-routing bridges. More information on Token Ring MTUs for IP datagrams can
be found in the "IEEE 802.5 SNAP" section of this chapter.

Frame Check Sequence
The Frame Check Sequence field is a 4-byte CRC that uses the same algorithm as Ethernet
to provide a bit-level integrity check of all fields in the Token Ring frame, from the Frame
Control field to the Payload field. The FCS doesn't provide bit-level integrity for the Access
Control or Frame Status field. This allows bits in these fields, such as the Monitor bit, to
be set without forcing a recalculation of the FCS.

The FCS is checked as it passes each node on the ring. If the FCS fails at any node, the
Error bit in the End Delimiter field is set to 1 and the receiving node doesn't copy the frame.

Note The Frame Check Sequence field isn't visible with Network Monitor.

End Delimiter
The End Delimiter is a 1-byte field that identifies the end of the frame. Like the Start
Delimiter, the End Delimiter contains] and K non-data symbols to provide an explicit
postamble. The End Delimiter field also contains:

• An Intermediate Frame indicator (1 bit), used to indicate whether this frame is
the last frame in the sequence (set to 0) or more frames are to follow (set to 1).

• An Error Detected i'ndicator (1 bit), used to indicate whether this frame has
failed the FCS.

Because there is no Length field in the IEEE 802.5 frame, the End Delimiter is used to
locate the end of the payload and the position of the Frame Check Sequence and Frame
Status fields.

Note The End Delimiter field isn't visible with Network Monitor.

Chapter 1 Local Area Network (LAN) Technologies I 19

Frame Status
The Frame Status field is a 1-byte field that contains:

• Two copies of the Address Recognized indicator. The destination node sets the
Address Recognized indicator to indicate that the address in the Destination
Address field was recognized.

• Two copies of the Frame Copied indicator. The Destination node sets the
Frame Copied indicator to indicate that the frame was successfully copied into
a buffer on the network adapter.

Two copies of each indicator are needed because the Frame Status field isn't protected
by the Frame Check Sequence field.

The Address Recognized and Frame Copied indicators aren't used as acknowledgments
for reliable data delivery. The sending Token Ring network adapter uses these indica
tors to retransmit the frame, if necessary.

Note The Frame Status field isn't visible with Network Monitor.

IEEE 802.2 LLC Header

The fields in the IEEE 802. 2 LLC header are defined and used in the same way as the IEEE
802.2 LLC header for the IEEE 802.3 frame format, as discussed in the "IEEE 802.3" sec
tion of this chapter.

IEEE 802.5 SNAP
As described earlier in this chapter, the value of Ox06 is defined as the SAP for IP. How
ever, it's not defined for use in RFC 1042 and not used in the industry. Therefore, similar
to the case of IEEE 802.3 frames, to send an IP datagram over an IEEE 802.5 network,
the IP datagram must be encapsulated using SNAP, as Figure 1-7 shows.

The following Network Monitor trace (Capt.me 01-04, included in the \Captures folder
on the companion CD-ROM) shows the IEEE 802.5 SNAP frame format for an IP datagram:

+ Frame: Base frame properties
TOKEN RI NG: Length = 66, Priority Norma 1 (No token) LLC Frame

TOKENRING: Access control = 16 (0x10) Original, Frame, Priority: Normal
(No token)

TOKENRING: 000 Reservation bits: Reservation= Normal, No
token needed.

TOKENRING: 0 ... Monitor bit= Original (non-repeated)
TOKEN RI NG: ... 1.... Token bit = Frame
TOKENRING: 000 Priority bits: Priority= Normal, No token needed.

TOKENRING: Frame control = 64 (0x40), LLC Frame
TOKENRING: 0000 Control bits= Normal Buffered
TOKEN RI NG: 01...... Frame type = LLC Frame

+ TOKENRING: Destination address 400030370AF4
+ TOKENRING: Source address : 10007038213A

20 I PART~ The Network Interface Layer

TOKENRING: Frame length : 66 (0x0042)
TOKENRING: Tokenring data: Number of data bytes remaining 52 (0x0034)

LLC: UI DSAP=0xAA SSAP=0xAA C
LLC: DSAP = 0xAA : INDIVIDUAL : Sub-Network Access Protocol (SNAP)
LLC: SSAP = 0xAA: COMMAND : Sub-Network Access Protocol (SNAP)
LLC: Frame Category: Unnumbered Frame
LLC: Command = UI
LLC: LLC Data: Number of data bytes remaining 49 (0x0031)

SNAP: ETYPE = 0x0800
SNAP: Snap Organization code = 00 00 00
SNAP: Snap etype : 0x0800
SNAP: Snap Data: Number of data bytes remaining = 44 (0x002C)

+ IP: ID = 0xCA3D; Proto = TCP; Len: 44
+TCP: S., len: 0, seq:364446-364446, ack: 0, win: 16384, src:50982 dst: 21

Note The TOKENRING: Frame length, TOKENRING: Tokenring data, LLC: Frame
Category, LLC: LLC Data, and SNAP: Snap Data fields are Network Monitor infor
mational fields and don't correspond to fields that are physically present in the
Token Ring header.

Starting Delimiter

Access Control

Frame Control

Destination Address

Source Address

DSAP § =OxAA

SSAP = OxAA

Control = Ox03

IEEE 802.5
Header

-1- IEEE802.2 _:_J LLC Header

Organization = ~~} Code = Ox00-00-00 SNAP
Header

EtherType x08-00

IP Datagram 1111111111111111111111111

Frame Check
Sequence 1111111 1111111 1111111 1111111

Ending Delimiter 11111 I I

Frame Status I I 111 I I

-l IEEE802.5

_J-Trailer

Figure 1-7. 1be IEEE 802.5 SNAP frame format showing the SNAP header and an IP datagram.

Chapter :1 Local Area Network (LAN) Technologies I 21

For a 10-millisecond (ms) token-holding time, the maximum sizes for IP datagrams are
4464 bytes for 4 Mbps Token Ring network adapters, and 17,914 bytes for 16 Mbps To
ken Ring network adapters. If Token Ring source-routing bridges are present, the maxi
mum size of IP datagrams can be 508, 1020, 2044, 4092, and 8188 bytes.

More Info For more information on Token Ring MTUs, see RFC 1042 in the \RFC
folder of the companion CD-ROM.

Special Bits on Token Ring MAC Addresses
Within the Source Address and Destination Address fields of the IEEE 802. 5 frame for
mat, special bits are defined, as shown in Figure 1-8.

Destination
Address ~~~'--"-"--Y~~~~~~~

Source
Address

O - Functional
1 - Nonfunctional

I

O - Universal Admin
~---- 1 - Local Admin

I

0 - Individual
~---- 1 - Group

l1111111l1111111l1111111l1111111l1111111l1111111I

O - Universal Admin
1 - Local Admin

0 - No Routing
I 1 - Routing Present

Figure 1-8. The special bits defined on Token Ring source and destination MJ1C addresses.

The Individual/Group Bit

Identical to Ethernet, the l/G bit for Token Ring addresses is used to indicate whether
the address is a unicast (individual) or multicast (group) address. For unicast addresses,
the l/G bit is set tO 0. For multicast addresses, the l/G bit is set to 1.

The Universal/Locally Administered Bit

Identical to Ethernet, the U/L Administered bit for Token Ring addresses is used to indi
cate whether the IEEE has allocated the address. For universal addresses allocated by the
IEEE, the U/L bit is set to 0. For locally administered addresses, the U/L bit is set to 1.
The U/L bit is relevant for both the Sour.ce Address and Destination Address fields.

22 I PART I The Network Interface Layer

Functional Address Bit

The Functional Address bit indicates whether the address is a functional address (set to
0) or a nonfunctional address (set to 1). Token Ring defines the following two types of
multicast addresses:

• Functional addresses Multicast addresses that are specific to Token Ring.
There are specific functional addresses for identifying the ring monitor, the
ring-parameter server, and a source-routing bridge.

• Nonfunctional addresses General multicast addresses that aren't Token
Ring-specific.

The Functional Address bit is significant only if the I/G bit is set to 1.

Routing Information Indicator Bit

The Routing Information Indicator bit indicates whether MAC-level routing information
is present. In the case of Token Ring, the Routing Information Indicator bit indicates the
presence of a source-routing header between the IEEE 802.5 header and the IEEE 802.2
LLC header. Token Ring source routing isn't OSI Network Layer routing, but rather a MAC
sublayer routing scheme that allows a sending node to discover and specify a route
through a defined series of rings and bridges within a Token Ring network segment.

The following Network Monitor trace (Capture 01-04, included in the \Captures folder
on the companion CD-ROM) shows the special bits for Token Ring addresses:

+ Frame: Base frame properties
TOKENRING: Length= 66, Priority Normal (No token) LLC Frame

+ TOKENRING: Access control = 16 (0xl0) Original. Frame, Priority: Normal
(No token)

+ TOKENRING: Frame control = 64 (0x40), LLC Frame
.TOKENRING: Destination address : 400030370AF4

TOKENRING: Destination Address I/G Bit
TOKENRING: Destination Address U/L bit

address

Individual address
Locally administered

TOKENRING: Destination Address Functional bit = Functional address
TOKENRING: Source address : 10007038213A

TOKENRING: Source Address Routing bit No routing information
present

TOKENRING: Source Address U/L bit
address

TOKENRING: Frame length : 66 (0x0042)

Universally administered

TOKENRING: Tokenring data: Number of data bytes remaining 52 (0x0034)
+ LLC: UI DSAP=0xAA SSAP=0xAA C
+ SNAP: ETYPE = 0x0800
+ IP: ID = 0x21E0; Proto = TCP; Len: 44
+TCP: S .• len: 0, seq:1891988225-1891988225, ack: 0, win:
8192, src:50982 dst: 3180

FDDI

Chapter :1 Local Area Network (LAN) Technologies I 23

Fiber Distributed Data Interface (FDDI) is a network technology that the American Na
tional Standards Institute (ANSI) developed. FDDI is an optical fiber-based token pass
ing ring with a bit rate of 100 Mbps. It was designed to span long distances and, in most
implementations, it acts as a campus-wide high-speed backbone. FDDI offers advanced
features beyond Token Ring, such as the ability to self-heal a break in the ring, and the
use of guaranteed bandwidth.

Although not developed by the IEEE as part of the 802.x standards, the FDDI specifica
tion is quite similar to the IEEE 802.3 and 802.5 specifications; it defines the MAC sublayer
of the OSI Data Link Layer and the Physical Layer, and it uses the IEEE 802.2 LLC sublayer.
Copper Data Distributed Interface (CDDI) is a version of FDDI that operates over twisted
pair copper wire.

More Info RFC 1188 describes IP encapsulation over FDDI networks. You can find
RFC 1188 in the \RFC folder on the companion CD-ROM.

FDDI Frame Format
The FDDI frame format is the result of the IEEE 802.2 and ANSI FDDI specifications, and
consists of a FDDI header and trailer and an IEEE 802.2 LLC header. Figure 1-9 shows
the FDDI frame format.

FDDI Header and Trailer

The fields in the FDDI header and trailer are defined as follows:

Preamble
The Preamble field is 2 bytes long and provides receiver synchronization.

Note The Preamble field isn't visible with Network Monitor.

Start Delimiter
The Start Delimiter field is 1 byte long and identifies the start of the frame. Like Token
Ring, the Start Delimiter field contains non-data symbols known as] and K symbols that
are deliberate violations of the FDDI signal encoding scheme. The] symbol is an encoding
violation of a 1 and the K symbol is an encoding violation of a 0.

Note The Start Delimiter field isn't visible with Network Monitor.

Frame Control
The Frame Control field is 1 byte long and contains bits for the following:

• Setting the class of the frame (1 bit). FDDI frames can be sent as synchronous
or asynchronous frames. Synchronous frames are used for guaranteed band
width and response time. Asynchronous frames are used for dynamic band-

24 I PART I The Network Interface Layer

width sharing. The Class bit is set to 1 for synchronous frames and 0 for asyn
chronous frames.

• Setting the length of the Destination Address and the Source Address fields (1
bit). Like IEEE 802.3, FDDI supports 2-byte and 6-byte addresses. The Address
bit is set to 1 for 6-byte addresses and 0 for 2-byte addresses.

• Indicating that what follows is a token (either non-restricted or restricted), a
station management frame, a MAC frame, and LLC frame, or an LLC frame with
a specific priority (6 bits).

Preamble

Starting Delimiter

Frame Control

Destination Address

Source Address

DSAP

SSAP

Control

.. ~ l IEEE 802.2 · -·.I LLC Header

Payload 1111111111111111111111111 ...

Frame Status J FDDI
Trailer

Frame Check Sequence

Ending Delimiter

FDDI
Header

Figure 1-9. The FDDI frame format showing the FDDI header and trailer and IEEE 802.2
header.

Destination Address
The Destination Address field is either 2 bytes or 6 bytes long and indicates the address
of the destination (2-byte addresses are seldom used). For 6-byte addresses, FDDI Des
tination Address fields are defined the same as Ethernet Destination Address fields to
provide easy interoperability between bridged or Layer 2-switched Ethernet and FDDI
segments. The destination address is a unicast, multicast, or broadcast address.

Chapter :1 Local Area Network (LAN) Technologies I 25

Source Address
The Source Address field is either 2 bytes or 6 bytes long and indicates the unicast ad
dress of the sending node (2-byte addresses are seldom used).

Frame Check Sequence
The PCS field is a 4-byte CRC that uses the same algorithm as Ethernet to provide a bit
level integrity check of all fields in the FDDI frame, from the Frame Control field to the
Payload field. The PCS is checked as it passes each node on the ring. If the PCS fails at
any node, the Error bit in the Frame Status field is set to 1 and the receiving node doesn't
copy the frame.

Note The Frame Check Sequence field isn't visible with Network Monitor.

End Delimiter
The End Delimiter field is 1 byte long and identifies the end of the frame. Like the Start
Delimiter field, the End Delimiter field contains] and K non-data symbols to provide an
explicit postamble. Because there is no Length field in the FDDI frame, the End Delim
iter field is used also to locate the end of the payload, and the position of the Frame Check
Sequence and Frame Status fields.

Note The End Delimiter field isn't visible with Network Monitor.

Frame Status
The Frame Status field is typically 2 bytes long and contains bits for the following:

• The Address Recognized indicator The destination node sets the Address
Recognized indicator to show that the address in the Destination Address field
was recognized.

• The Frame Copied indicator The destination node sets the Frame Copied
indicator to show that the frame was successfully copied into a buffer on the
network adapter.

• The Error indicator Any FDDI station sets the Error indicator to 1 when the
Frame Check Sequence field is invalid.

Similar to Token Ring, the Address Recognized and Frame Copied indicators aren't used
as acknowledgments for reliable data delivery. Rather, the sending FDDI network adapter
uses these indicators to retransmit the frame if necessary.

Note The Frame Status field isn't visible with Network Monitor.

IEEE 802.2 LLC Header

The fields in the IEEE 802.2 LLC header are defined and used in the same way as the IEEE
802.2 LLC header for the IEEE 802.3 and IEEE 802.5 frame format discussed earlier in this
chapter.

26 I PART i The Network Interface Layer

Payload

The payload for an FDDI frame consists of a PDU of an upper layer protocol. The entire
FDDI frame from the Preamble field to the Frame Status field can be a maximum size of
4500 bytes. Once you subtract the FDDI and IEEE 802.2 LLC headers, the maximum
payload size is 447 4 bytes with a 3-byte LLC header, and 4473 bytes with a 4-byte LLC
header.

FDDISNAP
As described earlier in this chapter, the value of Ox06 is defined as the SAP for IP. How
ever, it's not defined for use in RFC 1188 and not used in the industry. Therefore, similar
to the case of IEEE 802.3 frames and IEEE 802.5 frames, to send an IP datagram over an
FDDI network, the IP datagram must be encapsulated using the SNAP, as shown in Fig
ure 1-10.

Preamble

Starting Delimiter

Frame Control

Destination Address

Source Address

DSAP

SSAP

Control

·= OxAA

= OxAA

=0x03

--- --1_ IEEE802.2 _J LLC Header

FDDI
Header

Organization Code = = Ox00-00-0~ SNAP

Header
Ether Type 08-00

IP Datagram 1111111111111111111111111 ... Up to 4352 bytes

Frame Check
Sequence

Ending Delimiter

Frame Status

1111111111111111111111111111]

1111111 FDDI

Trailer

Figure 1-10. Tbe FDDI SNAP frame format showing the SNAP header and an IP datagram.

Chapter :1 Local Area Network (LAN) Technologies I 27

The following Network Monitor trace (Capture 01-05, included in the \Captures folder
on the companion CD-ROM) shows the FDDI SNAP frame format for an IP datagram:

+ Frame: Base frame properties
FDDI: Length= 81, type= 0x57 (LLC).

FDDI: Frame control bits= 87 (0x57)
FDDI: .. 01.... LLC frame
FDDI: 0 =Asynchronous frame
FDDI: .1 = 48-bit addresses

+ FDDI: Destination address : 00608Cl4AF25
+ FDDI: Sour~e address : 00608C13182A

FDDI: Frame Length : 81 (0x0051)
FDDI: Fddi Data: Number of data bytes remaining= 68 (0x0044)

LLC: UI DSAP=0xAA SSAP=0xAA C
LLC: DSAP = 0xAA : INDIVIDUAL : Sub-Network Access Protocol (SNAP)
LLC: SSAP = 0xAA: COMMAND : Sub-Network Access Protocol (SNAP)
LLC: Frame Category: Unnumbered Frame
LLC: Command = UI
LLC: LLC Data: Number of data bytes remaining 65 (0x0041)

SNAP: ETYPE = 0x0800
SNAP: Snap Organization code = 00 00 00
SNAP: Snap etype : 0x0800
SNAP: Snap Data: Number of data bytes remaining 60 (0x003C)

+ IP: ID = 0xA665; Proto = ICMP: Len: 60
+ ICMP: Echo: From 192.168.44.01 To 192.168.44.254

Note The FDDI: Frame Length, FDDI: FddiData, LLC: Frame Category, LLC: LLC
Data, and SNAP: Snap Data fields are Network Monitor informational fields and
don't correspond to fields that are physically present in the FDDI header.

The maximum-sized IP datagram that can be sent on an FDDI network is 4352 bytes. The
4352 bytes is the result of taking the maximum FDDI frame size of 4500 bytes and sub
tracting the FDDI header and trailer (22 bytes), the LLC header (3 bytes), the SNAP header
(5 bytes), and reserving 117 bytes for future purposes.

IP datagrams and ARP messages sent over FDDI networks also have the following
constraints:

• Only 6-byte FDDI source and destination addresses can be used.

• All IP and ARP frames. are transmitted as asynchronous class LLC frames using
unrestricted tokens.

RFC 1188 doesn't define how frame priorities are used or how the FDDI node deals with
the values of the Address Recognized and Frame Copied indicators.

FDDI nodes send ARP Requests using the Ethernet ARP Hardware Type value of Ox00-
01, but can receive ARP Requests using the ARP Hardware Types of Ox00-01 and Ox00-
06 (IEEE networks). The use of the Ethernet ARP Hardware Type value is designed to

28 I PART I The Network Interface Layer

allow FDDI hosts and Ethernet hosts in a bridged or Layer 2-switched environment to
send and receive ARP messages.

Special Bits on FDDI MAC Addresses
Because FDDI MAC addresses are defined in the same way as Ethernet MAC addresses,
the special bits on FDDI MAC addresses are the same as those defined for Ethernet MAC
addresses.

Network Monitor trace 1-5 (Capture 01-05, included in the \Captures folder on the com
panion CD-ROM) shows the special bits in the FDDI header.

Summary
LAN technology encapsulations provide delimitation, addressing, protocol identification,
and bit-level integrity services. IP datagrams and ARP messages sent over Ethernet links
are encapsulated using either the Ethernet II or IEEE 802.3 SNAP frame formats. IP
datagrams and ARP messages sent over Token Ring links are encapsulated using the IEEE
802.5 SNAP frame format. IP datagrams and ARP messages sent over FDDI links are en
capsulated using the FD.DI SNAP frame format.

Wide Area Network
(WAN) Technologies

29

To successfully troubleshoot TCP/IP problems on a wide area network (WAN), it is im
portant to understand how IP datagrams and Address Resolution Protocol (ARP) messages
are encapsulated by a Microsoft Windows 2000 computer that uses a WAN technology
such as T-carrier, an analog phone line, Integrated Services Digital Network (ISDN), X.25,
Frame Relay, or Asynchronous Transfer Mode (ATM). It is also important to understand
WAN technology encapsulations to understand the WAN encapsulation portions of the
frame when using Microsoft Network Monitor or other types of WAN frame capture pro
grams or facilities.

WAN Encapsulations
As discussed in Chapter 1, "Local Area Network (LAN) Technologies," Internet Protocol
(IP) datagrams are an Open Systems Interconnection (OSI) Network Layer entity that
require a Data Link Layer encapsulation before being sent on a physical medium. For WAN
technologies, the Data Link Layer encapsulation provides the following services:

• Delimitation Frames at the Data Link Layer must be distinguished from each
other, and the frame's payload must be distinguished from the Data Link Layer
header and trailer.

• Protocol identification On a multiprotocol WAN link, protocols such as
TCP/IP, Internetwork Packet Exchange (IPX), or AppleTalk must be distin
guished from each other.

• Addressing For WAN technologies that support multiple possible destina
tions using the same physical link, the destination must be identified.

• Bit-level integrity check A checksum provides a bit-level integrity check
between either the source and destination, or between forwarding nodes on a
packet-switching network.

30 I PART I The Network Interface Layer

This chapter discusses WAN technologies and their encapsulations for IP datagrams and
ARP messages. WAN encapsulations are divided into two categories based on the types
of IP networks of the WAN link:

• Point-to-point links support an IP network segment with a maximum of two
nodes. These links include analog phone lines, Integrated Services Digital Net
work (ISDN) circuits, Digital Subscriber Lines (DSL), and T-carrier links such as
T-1, T-3, Fractional T-1, E-1, and E-3. Point-to-point links do not require Data
Link Layer addressing.

• Non-broadcast multiple access (NBMA) links support an IP network segment
with more than two nodes; however, there's no facility to broadcast a single IP
datagram to multiple locations. NBMA links include packet-switching WAN
technologies such as X.25, Frame Relay, and Asynchronous Transfer Mode
(ATM). NBMA links require Data Link Layer addressing.

Point-to-Point Encapsulation

SLIP

The two most prominent industry standard encapsulations for sending IP datagrams over
a point-to-point link are Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol
(PPP).

As RFC 1055 describes, SLIP is a very simple packet-framing protocol that offers only frame
delimitation services. SLIP does not provide protocol identification, or bit-level integrity
verification services. SLIP was designed to be easy to implement for links that didn't re
quire these types of services.

More Info SLIP is described in RFC 1055, which can be found in the \RFC folder
on the companion CD-ROM.

To delimit IP datagrams, SLIP uses a special character called the END character. The END
character (OxCO) is placed at the beginning and end of each IP datagram. Successive IP
datagrams have two END characters between them: one to mark the end of one datagram
and one to mark the beginning of another.

The END character presents a problem; if the END character occurs within the IP datagram
and is sent unmodified, the receiving node will interpret the END character as the marker
for the end of the IP datagram. If this happens, the originally sent IP datagram is trun
cated and will eventually be discarded because of failed checksums in the IP header and
upper layer protocol headers. Figure 2-1 shows a SLIP-encapsulated IP datagram.

To prevent the occurrence of the END character within the IP datagram, SLIP uses a tech
nique called character stuffing. The END character is escaped, or replaced, with a

Chapter 2 Wide Area Network (WAN) Technologies I 31

END

IP Datagram

END

Figure 2-1. SLIP encapsulation, showing the simple frame delimitation services for an IP
datagram.

sequence beginning with another special character called the ESC (OxDB) character. The
SLIP ESC character has no relation to the American Standard Code for Information Inter
change (ASCII) ESC character.

If the END character occurs within the original IP datagram, it's replaced with the sequence
OxDB-DC. To prevent the misinterpretation of the ESC character by the receiving node,
if the ESC (OxDB) character occurs within the original IP datagram, it's replaced with the
sequence OxDB-DD. Therefore:

• END characters can occur only at the beginning and end of the SLIP frame and
SLIP places them on the point-to-point link medium.

• SLIP replaces the END character within the IP datagram with the sequence
OxDB-DC. On the receiving node, the OxDB-DC sequence is translated back to
OxCO.

• SLIP replaces the ESC character within the IP datagram with the sequence
OxDB-DD. On the receiving node, the OxDB-DD sequence is translated back to
OxDB. If the IP datagram contains the sequence OxDB-DC, the escaping of the
ESC character turns this sequence into OxDB-DD-DC to prevent the receiver
from misinterpreting the OxDB-DC sequence to OxCO.

Figure 2-2 shows SLIP character stuffing.

END

IP Datagram

END

END

IP Datagram

END

Figure 2-2. SLIP character stuffing, showing the escaping of the END and ESC characters
within an IP datagram.

As RFC 1055 describes, the maximum size of an IP datagram over a SLIP connection is
1006 bytes-the size imposed by Berkeley UNIX drivers that existed when the RFC was
written. Most systems adhere to the industry standard maximum size of 1006 bytes. How-

32 I PARl I The Network Interface Layer

PPP

ever, some systems, such as· Windows 2000, allow a maximum packet size of 1500 bytes
over a SLIP connection to prevent fragmentation of IP datagrams when SLIP links are used
in conjunction with Ethernet network segments.

While SLIP doesn't provide for the negotiation of compression methods during the con
nection setup, SLIP does support a compression scheme known as Compressed SLIP or
C-SLIP.

More Info RFC 1144 describes C-SLIP and how it's used to compress IP and TCP
headers to a 3-5-byte header on the SLIP link. This RFC can be found in the \RFC
folder on the companion CD-ROM.

Windows 2000 Network and Dial-Up Connections use SLIP and C-SLIP to create SLIP
remote access connections to a network access server. The Windows 2000 Routing and
Remote Access service doesn't support SLIP or C-SLIP.

PPP is a standardized point-to-point network encapsulation method that addresses the
shortcomings of SLIP and provides Data Link Layer functionality comparable to local area
network (LAN) encapsulations. PPP provides frame delimitation, protocol identification,
and bit-level integrity services.

More Info PPP is described in RFC 1661, which can be found in the \RFC folder
on the companion CD-ROM.

RFC 1661 describes PPP as a suite of protocols that provide the following:

• A Data Link Layer encapsulation method that supports multiple protocols
simultaneously on the same link.

• A protocol for negotiating the Data Link Layer characteristics of the point
to-point connection called the Link Control Protocol (LCP).

• A series of protocols for negotiating the Network Layer properties of Network
Layer protocols over the point-to-point connection called Network Control Pro
tocols (NCPs). For example, RFCs 1332 and 1877 describe the NCP for IP called
Internet Protocol Control Protocol (IPCP). IPCP is used to negotiate an IP add
ress, the addresses of name servers, and the use of the Van Jacobsen TCP com
pression protocol.

This chapter discusses only the Data Link Layer encapsulation.

PPP encapsulation and framing is based on the International Organization for Standard
ization (ISO) High-Level Data Link Control (HDLC) protocol. HDLC was derived from the
Synchronous Data Link Control (SDLC) protocol developed by IBM for the Systems Net
work Architecture (SNA) protocol suite. HDLC encapsulation for PPP frames is shown
in Figure 2-3.

Chapter 2 Wide Area Network (WAN) Technologies I 33

More Info HDLC encapsulation for PPP frames is described in RFC 1662, which
can be found in the \RFC folder on the companion CD-ROM.

Flag

Address

Control

Protocol

IP Datagram

Frame Check Sequence

Flag

Figure 2-3. PPP encapsulation using HDLC framing for an IP datagram, showing the PPP
header and trailer.

The fields in the PPP header and trailer are defined as follows:

• Flag A 1-byte field set to Ox7E (bit sequence 01111110) that indicates the start
and end of a PPP frame. Unlike SLIP, a single FLAG character is used between
back-to-back PPP frames.

• Address A 1-byte field that is a by-product of HDLC. In HDLC environments,
the Address field is used as a destination address on a multi-point network.
PPP links, however, are point-to-point, and the destination node is always the
other node on the point-to-point link. Therefore, the Address field for PPP en
capsulation is set to OxFF-the broadcast address.

• Control A 1-byte field that is also an HDLC by-product. In HDLC environ
ments, the Control field is used to implement sequencing and acknowledgments
to provide Data Link Layer reliability services. For session-based traffic, the Con
trol field is multiple bytes long. For datagram traffic, the Control field is 1-byte
long and set to Ox03 to indicate an unnumbered information (UI) frame. Because
PPP doesn't provide reliable Data Link Layer services, PPP frames are always UI
frames. Therefore, PPP frames always use a 1-byte Control field set to Ox03.

• Protocol A 2-byte field used to identify the upper layer protocol of the PPP
payload. For example, Ox00-21 indicates an IP datagram, Ox00-29 indicates an
AppleTalk datagram, and Ox00-2B indicates an IPX datagram.

More Info For a complete list of defined PPP protocol numbers, s~e RFC 1661,
in the \RFC folder on the companion CD-ROM.

l•l•J
l!H!I

34 I PART i The Network Interface Layer

• Frame Check Sequence (FCS) A 2-byte field used to provide bit-level integ
rity services for the PPP frame. The sender calculates the FCS, which is then
placed in the FCS field. The receiver performs the same FCS calculation and
compares its result with the result stored in this field. If the two FCS values
match, the PPP frame is considered valid and is processed further. If the two
FCS values don't match, the PPP frame is silently discarded.

Figure 2-4 shows a typical PPP framing for an IP datagram.

Flag = Ox7E

Protocol ~ = Ox21

IP Datagram

Frame Check Sequence

Flag 1111111 = Ox7E

Figure 2-4. Typical PPP encapsulation for an IP datagram when using address, control,
and protocol compression.

This abbreviated form of PPP framing is a result of the following:

• Because the Address field is irrelevant for point-to-point links, in most cases
the PPP peers agree to not include the Address field during LCP negotiation.
This is done through the Address and Control Field Compression LCP option.

• Because the Control is always set to Ox03 and provides no other service, in
most cases the PPP peers agree to not include the Control field during the LCP
negotiation. This, too, is done through the Address and Control Field Compres
sion LCP option.

• Because the high-order byte of Network Layer protocols such as IP, AppleTalk,
and IPX are always set to OxOO, in most cases the PPP peers agree to use a 1-
byte Control field during the LCP negotiation. This is done through the Proto
col Compression LCP option.

Note PPP frames captured with Windows 2000 Network Monitor will not display
the HDLC structure, as shown in Figures 2-3 and 2-4. PPP control frames contain
simulated source and destination MAC addresses and only the PPP Protocol field.
PPP data frames contain a simulated Ethernet II header.

Chapter 2 Wide Area Network (WAN) Technologies I 35

PPP on Asynchronous Links

As in SLIP, PPP on asynchronous links such as analog phone lines uses character stuff
ing to prevent the occurrence of the FLAG character within the PPP payload. The FLAG
character is escaped, or replaced, with a sequence beginning with another special char
acter called the ESC (Ox7D) character. The PPP ESC character has no relation to the ASCII
ESC character.

If the FLAG character occurs within the original IP datagram, it's replaced with the se
quence Ox7D-5E. To prevent the misinterpretation of the ESC character by the receiving
node, if the ESC (Ox7D) character occurs within the original IP datagram, it's replaced
with the sequence Ox7D-5E. Therefore:

• FLAG characters can occur only at the beginning and end of the PPP frame,
and PPP places them on the point-to-point link medium.

• PPP replaces the FLAG character within the IP datagram with the sequence
Ox7D-5E. On the receiving node, the Ox7D-5E sequence is translated back to
Ox7E.

• PPP replaces the ESC character within the PPP frame with the sequence Ox7D-
5D. On the receiving node, the Ox7D-5E sequence is translated back to Ox7D.
If the IP datagram contains the sequence Ox7D-5E, the escaping of the ESC
character turns this sequence into Ox7D-5D-5E to prevent the receiver from
misinterpreting the Ox7D-5E sequence to Ox7E.

Additionally, character stuffing is used to stuff characters with values less than Ox20 (32
in decimal) to prevent these characters from being misinterpreted as control characters
when software flow control is used over asynchronous links. The es.cape sequence for
these characters is Ox7D-(original character with the fifth bit set to 1). The fifth bit is
defined as the third bit from the high-order bit using the bit position designation of 7-6-
2-4-3-2-1-0. Therefore, the character Oxll (bit sequence 0-0-0-1-0-0-0-l) would be escaped
to the sequence Ox7D-31 (bit sequence 0-0-1-1-0-0-0-1).

The use of character stuffing for characters less than Ox20 is negotiated using the Asyn
chronous Control Character Map (ACCM) LCP option. This LCP option uses a 32-bit bitmap
to indicate exactly which character values need to be escaped.

More Info For more information on the ACCM LCP option, see RFCs 1661 and
1662. These can be found in the \RFC folder on the companion CD-ROM.

PPP on Synchronous Links

Character stuffing is an inefficient method of escaping the FLAG character. If the PPP
payload consists of a stream of Ox7E characters, character stuffing roughly doubles the
size of the PPP frame as it's sent on the medium. For asynchronous, byte-boundary media
such as analog phone lines, character stuffing is the only alternative.

36 I PART I The Network Interface Layer

On synchronous links such as T-carrier, ISDN, and Synchronous Optical Network
(SONET), a technique calied bit stuffing is used to mark the location of the FLAG char
acter. Recall that the FLAG character is Ox7E, or the bit sequence 01111110. With bit stuff
ing, the only time six 1 bits in a row are allowed is for the FLAG character as it's used to
mark the start and end of a PPP frame. Throughout the rest of the PPP frame, if there
are five 1 bits in a row, a 0 bit is inserted into the bit stream by the synchronous link
hardware. Therefore, the bit sequence 111110 is stuffed to produce lllllQO and the bit
sequence 111111 is stuffed to become 1111 lQl. Therefore, six 1 bits in a row can't oc
cur except for the FLAG character when it's used to mark the start and end of a PPP frame.
If the FLAG character does occur within the PPP frame, it's bit stuffed to produce the bit
sequence Oll l llQlO. Bit stuffing is much more efficient than character stuffing. If stuffed,
a single byte becomes 9 bits, not 16 bits, as is the case with character stuffing. With syn
chronous links and bit stuffing, data sent no longer falls along bit boundaries. A single
byte sent can be encoded as either 8 or 9 bits, depending on the presence of a 11111
sequence within the byte.

PPP MTU

The maximum-sized PPP frame, the maximum transmission unit (MTU) for a PPP link,
is known as the Maximum Receive Unit (MRU). The default value for the PPP MRU is 1500
bytes. The MRU for a PPP connection can be negotiated to a lower or higher value us
ing the Maximum Receive Unit LCP option. If an MRU is negotiated to a value lower than
1500 bytes, a 1500-byte MRU must still be supported in case the link has to be
resynchronized.

PPP Multilink Protocol
The PPP Multilink Protocol (MP) is an extension to PPP that allows you to bundle or ag
gregate the bandwidth of multiple physical connections. It is supported by Windows 2000
Network and Dial-Up Connections and the Routing and Remote Access Service. MP takes
multiple physical connections and makes them appear as a single logical link. For ex
ample, two analog phone lines operating at 28.8 Kbps appear as a single connection
operating as 57.6 Kbps using MP. Another example is the aggregation of multiple chan
nels of an ISDN Basic Rate Interface (BRI) or Primary Rate Interface (PRI) line. In the case
of a PRI line, MP makes the two 64-Kbps PRI 13-channels appear as a single connection
operating at 128 Kbps.

More Info Multiple Protocol is described in \RFC 1991, which can be found in
the \RFC folder on the companion CD-ROM.

MP is an extra layer of encapsulation that operates within a PPP payload. To identify an
MP packet, the PPP Protocol field is set to Ox00-3D. The payload of an MP packet is a
PPP frame or the fragment of a PPP frame. If the size of the PPP payload that would be

Chapter 2 Wide Area Network (WAN) Technologies I 37

sent on a single-link PPP connection, plus the additional MP header, is greater than the
MRU for the specific physical link over which the MP packet is sent, MP will fragment
the PPP payload.

MP fragmentation divides the PPP payload along boundaries that will fit within the link's
MRU. The fragments are sent in sequence using an incrementing sequence number, and
flags are used to indicate the first and last fragments of an original PPP payload. A lost
MP fragment will cause the entire original PPP payload to be silently discarded.

MP encapsulation has two different forms: the long sequence number format (as Figure
2-5 shows) and the short sequence number format. The long sequence number format
adds 4 bytes of overhead to the PPP payload.

Flag

Protocol

Beginning Fragment Bit

Ending Fragment Bit

Reserved

Sequence Number

Multilink Fragment

Frame Check Sequence

· Flag

~= Ox7E

bmJ = Ox3D

~E
Figure 2-5. The Multi/ink Protocol header as a PPP payload, using the long sequence num
ber format.

The fields in the MP long sequence number format header are defined as follows:

• Beginning Fragment Bit Set to 1 on the first fragment of a PPP payload and
to 0 on all other PPP payload fragments.

• Ending Fragment Bit Set to 1 on the last fragment of a PPP payload and to
0 on all other PPP payload fragments. If a PPP payload isn't fragmented, both
the Beginning Fragment Bit and Ending Fragment Bit are set to 1. .

38 I PART I The Network Interface Layer

• Reserved Set to 0.

• Sequence Number Set to an incrementally increasing number for each MP
payload sent. For the long sequence number format, the Sequence Number
field is 3 bytes long. The Sequence Number field is used to number successive
PPP payloads that would normally be sent over a single link PPP connection,
and is used by MP to preserve the packet sequence as sent by the PPP peer.
Additionally, the Sequence Number field is used to number individual frag
ments of a PPP payload so that the receiving node can detect a fragment loss.

Figure 2-6 shows the short sequence number format. The short sequence number for
mat adds 2 bytes of overhead to the PPP payload.

Flag

Protocol

Beginning Fragment Bit

Ending Fragment Bit

Reserved

Sequence Number

Multilink Fragment

Frame Check Sequence

Flag

~= Ox7E

~= Ox3D

~E
Figure 2-6. The Multi/ink Protocol header as a PPP payload, using the short sequence num
ber format.

The short sequen:ce format has only 2 reserved bits, and its Sequence Number field is
only 12 bits long. The long sequence number format is used by default unless the Short
Sequence Number Header Format LCP option is used during the LCP negotiation.

X.25

Chapter 2 Wide Area Network (WAN) Technologies I 39

In the 1970s, a standard set of protocols known as X.25 was created to· provide users with
a standard way to send .packetized data across a packet-switched public data network
(PSPDN). Until X.25, PSPDNs and their interfaces were proprietary and completely in
compatible. Changing PSPDN vendors meant purchasing new Public Data Network (PDN)
interfacing equipment. X.25 is an international standard, as specified by the International
Telecommunications Union-Telecommunication sector (ITU-T).

X.25 was developed during a time when the telecommunication infrastructure was largely
based on noisy copper cabling. A typical use for PSPDNs at that time was the commu
nication of a dumb terminal with a mainframe computer. Errors in transmission because
of noisy cabling couldn't be recovered by dumb terminal equipment. Therefore, X.25 was
designed to provide a reliable data transfer service-an unusual feature for a Data Link
Layer protocol. All data sent to the PSPDN using X.25 was reliably received and reliably
forwarded to the desired endpoint. The reliable service ,of X.25 typically isn't needed for
the communication of more intelligent endpoints using protocol suites such as TCP /IP.
However, X.25 is still used as a WAN technology over which to send TCP/IP data because
of its international availability.

As Figure 2-7 shows, X.25 defines the interface between data terminal equipment (DTE)
and data circuit-terminating equipment (DCE). A DTE can be a terminal that doesn't imple
ment the complete X.25 functionality; as such, it is known as a non-packet mode DTE.
A non-packet mode DTE is connected to a DCE through a translation device called a
packet assembler/disassembler (PAD). X.25 doesn't attempt to define the nature of the
DIE to DCE communication within the PSPDN. These details are left to the X.25 vendor.

X.25

PSPDN

....

Virtual Circuit
........ -............

............ -....

---- ---- ---

Non-
.. packet mode

;·~

X.25

Figure 2-7. Tbe X.25 WAN service, showing DTE, DCE, PAD, and the X.25 interface to the
PSPDN.

End-to-end communication between DTEs is accomplished through a bi-directional and
full-duplex logical connection called a virtual circuit. Virtual circuits permit communica
tion between DTEs without the U$e of dedicated circuits. Data is sent as it's produced,

40 I PART I The Network Interface Layer

using the bandwidth of the PDN infrastructure more efficiently. X.25 can support per
manent virtual circuits (PVCs) or switched virtual circuits (SVCs). A PVC is a path through
a packet-switching network that is statically programmed into the switches. An SVC is a
path through a packet-switching network that is negotiated using a signaling protocol each
time a connection is initiated.

Once a virtual circuit is established, a DTE sends a packet to the other end of a virtual
circuit by using an X.25 virtual-circuit identifier called the Logical Channel Number (LCN).
The DCE uses the LCN to forward the packet within the PDN to the appropriate destina
tion DCE.

X.25 encompasses the Physical, Data Link, and Network Layers of the OSI model.

• Physical Layer X.25 can use a variety of interface standards such as X.2lbis
(~oughly equivalent to EIA/TIA232C [formerly RS-232-C]) or V.35.

• Data Link Layer X.25 at the Data Link Layer uses a framing called Link
Access Procedure-Balanced (LAPB), another variant of the HDLC protocol.

• Network Layer X.25 at the Network Layer uses a framing called Packet Layer
Protocol (PLP). For X.25 SVCs, X.25 call setup packets contain a connection
establishment address known as an X.121 address, also referred to as an Inter
national Data Number (IDN). X.121 addresses have a variable length (up to 14
decimal digits). Once the SVC is created, the LCN is used for data transfer. User
data transfer is performed reliably between endpoints using flow control, se
quencing, and acknowledgments.

While X.25 is defined at the Physical, Data Link, and Network Layers of the OSI model,
relative to sending IP datagrams, X.25 is a Data Link and Physical Layer technology.

Typical packet sizes for X.25 PSPDNs are 128, 256, or 512 bytes. User information, such
as IP datagrams that are beyond the packet size of the X.25 PSPDN, are segmented by
X.25 and reliably reassembled.

X.25 Encapsulation
X.25 encapsulation can take two different forms:

• If IP datagrams are the only type of data being sent across the virtual circuit, IP
traffic is identified by setting the 1-byte Network Layer Protocol Identifier
(NLPID) to OxCC in the first octet in the Call User Data (CUD) field of the X.25
Call Request packet. IP datagrams are encapsulated with the X.25 PLP and
LAPB headers.

• If IP datagrams are one of many types of data being sent across the virtual cir
cuit (a multiprotocol link), the NLPID in the CUD field of the X.25 Call Request
packet is set to OxOO to indicate null encapsulation. IP datagrams are encapsu
lated with the NLPID header set to OxCC and the X.25 PLP and LAPB headers.

NLPID

Chapter 2 Wide Area Network (WAN) Technologies I 41

More Info X.25 encapsulation of IP datagrams is described in RFC 1356, which
can be found in the \RFC folder on the companion co.:RoM.

Figure 2-8 shows the X.25 encapsulation for IP datagrams on a multiprotocol link.

Flag

Address

Cor:itrol

General Format Indicator

Logical Channel Number

Packet Type Identifier

NLPID ~ = OxCC

IP Datagram

Frame Check Sequence ~

Flag ~7E

PLP
Header

LAPB
Header

- and

Trailer

Figure 2-8. X.25 encapsulation for IP datagrams, when sent on a multiprotocol link.

For multiprotocol virtual circuits, the 1-byte NLPID field is present and set to OxCC to
indicate an IP datagram. For a single protocol virtual circuit, the NLPID field isn't present.
If the IP datagram is fragmented, the NLPID is fragmented along with the IP datagram.

PLP Header

The fields in the X.25 PLP header are defined as follows:

• General Format Indicator (GFI) A 4-bit field that identifies the PLP payload
as a user data or an X.25 message, the packet numbering scheme (modulo 8 or
modulo 128), and whether delivery confirmation with the endpoint is required.

• Logical Channel Number (LCN) A 12-bit field that identifies the virtual cir
cuit over which the X.25 packet is to travel. The LCN is only locally significant
between the DTE and DCE. When an X.25 connection is negotiated, an X.25

42 I PART I The Network Interface Layer

LCN is assigned so that the originating node can multiplex data to the proper
destination. Up to 4095 virtual circuits can be identified (LCN = 0 is used for
X. 25 signaling). The first 4 bits of the LCN were originally defined for use as a
Logical Group Number (LGN). The LGN was intended for use as a method of
bundling multiple logical X.25 channels together for X.25 virtual circuit routing,
but it was never used. However, the concept of having a two-level hierarchy
for virtual circuit identification is used for ATM.

• Packet Type Identifier For X.25 protocol messages, the 1-byte Packet Type
Identifier field identifies the type of X.25 message. When user data is being
sent, the Packet Type Identifier field is used to provide sequencing, acknowl
edgments, and X.25 fragmentation.

RFC 1356 sets the IP MTU for X.25 networks at 1600 bytes. However, most X.25 networks
support only X.25 packet sizes of 128, 256, or 512 bytes. To accommodate the sending
of a 1600-byte IP datagram over an X.25 network, X.25 fragments the IP datagram along
boundaries that will fit on the X.25 network. A bit within the PTI field called the M-bit is
used for fragment delimitation. Similar to the More Fragments flag in the IP header, the
M-bit in the X.25 PLP header is set to 1 if more fragments follow, and set to 0 for the last
fragment. Unlike IP fragmentation, X.25 fragmentation recovers from lost fragments.

LAPB Header and Trailer

The following fields are in the LAPB header and trailer:

• Flag As in PPP frames, the 1-byte Flag field is set to Ox7E to mark the begin
ning and end of the X.25 frame. Bit stuffing is used on synchronous links, and
character stuffing is used on asynchronous links to prevent the occurrence of
the FLAG character within the X.25 frame.

• Address A 1-byte field used to specify X.25 commands and responses.

• Control A 1-byte field that provides further qualifications of command and
response frames, and also indicates the frame format and function. For X.25
protocol messages, the Control field provides send and receive sequence
numbers.

• Frame Check Sequence (PCS) A 2-byte CRC used to check for errors in the
LAPB frame.

Frame Relay
When packet-switching networks were first introduced, they were based on existing
analog copper lines that experienced a high number of errors. X.25 was designed to
compensate for these errors and provide connection-oriented reliable data transfer. In
these days of high-grade digital fiber-optic lines, there is no need for the overhead asso
ciated with X.25. Frame Relay is a packet-switched technology similar to X.25, but with
out the added framing and processing overhead to provide guaranteed data transfer.

Chapter 2 Wide Area Network (WAN) Technologies I 43

Unlike X.25, Frame Relay doesn't provide link-to-link reliability. If a frame in the Frame
Relay network is corrupted in any way, it's silently discarded. Upper layer communica
tion protocols such as TCP must detect and recover discarded frames.

A key advantage Frame Relay has over private-line facilities, such as T-Carrier, is that Frame
Relay customers can be charged based on the amount of data transferred, instead of the
distance between the endpoints. It is common, however, for the Frame Relay vendor to
charge a fixed monthly cost. In either case Frame Relay is distance-insensitive. A local
connection, such as a T-1 line, to the Frame Relay vendor's network is required. Frame
Relay allows widely separated sites to exchange data without incurring long-haul ~ele
communications costs.

Frame Relay is a packet-switching technology defined in terms of a standardized inter
face between user devices (typically routers) and the switching equipment in the vendor's
network (Frame Relay switches).

Frame Relay is similar to X.25 in the following ways:

• A packet-switching technology designed to send variable-sized packets.

• Designed for the transfer of LAN traffic (computer communication protocols
such as TCP/IP).

• Provides a mechanism for multiplexing multiple logical connections (virtual
circuits) over a single physical link.

However, Frame Relay differs from X.25 in the following ways:

• Frame Relay is an unreliable data transfer service. Frame Relay switches silently
discard frames lost as a result of congestion or corruption.

• Frame Relay provides no flow control. However, Frame Relay does provide for
basic congestion notification that can be used to notify upper-layer protocols
to implement their own flow control.

Typical Frame Relay service providers currently only offer PVCs. The Frame Relay ser
vice provider establishes the PVC when the service is ordered. New specifications for an
SVC version of Frame Relay use the ISDN signaling protocol as the mechanism for es
tablishing the virtual circuit. This standard isn't widely used in production networks.

Frame Relay speeds range from 56 Kbps to 1.544 Mbps. The required throughput for a
given link will determine the committed information rate (CIR). The CIR is the through
put guaranteed by the Frame Relay service provider. Most Frame Relay service provid
ers. allow a customer to transmit bursts above the CIR for short periods of time. Depending
on congestion, the bursted traffic can be delivered by the Frame Relay network. How
ever, traffic that exceeds the CIR is delivered on a best-effort basis only. This flexibility
allows for network traffic spikes without having to drop frames.

44 I PART I The Network Interface Layer

Frame Relay Encapsulation
Frame Relay encapsulation of IP datagrams is based on HDLC, as RFC 2427 describes.
Unlike X.25, Frame Relay encapsulation assumes that multiple protocols are sent over
each Frame Relay virtual circuit. IP datagrams are encapsulated with the NLPID header
set to OxCC and a Frame Relay header and trailer. Figure 2-9 shows the Frame Relay
encapsulation for IP datagrams.

More Info HDLC, as the basis for Frame Relay encapsulation of IP datagrams,
is described in RFC 2427, which can be found in the \RFC folder on the compan
ion CD-ROM.

Flag

~~~Ir Address 

Control x03 

NLPID ~=OxCC 

IP Datagram 

Frame Check Sequence c:7E Flag 

Figure 2-9. Frame Relay encapsulation for IP datagrams, showing the Frame Relay header 
and trailer. 

The fields in the Frame Relay header and trailer are defined as follows: 

• Flag As in PPP and X.25 frames, the Flag field is 1 byte long and is set to 
Ox7E to mark the. beginning and end of the Frame Relay frame. Bit stuffing is 
used on synchronous links to prevent the occurrence of the FLAG character 
within the Frame Relay frame. 

• Address The Address field is multiple bytes long, typically 2 bytes long, and 
contains the Frame Relay virtual circuit identifier called the Data Link Connec
tion Identifier (DLCI) and congestion indicators. The Address field's structure is 
discussed in the "Frame Relay Address Field" section of this chapter. 

• Control A 1-byte field set to Ox03 to indicate an Unnumbered Information 
(UI) frame. 

• NLPID A 1-byte field set to OxCC to indicate an IP datagram. 

• Frame Check Sequence A 2-byte CRC used for bit-level integrity verification 
in the Frame Relay frame. If a Frame Relay frame fails integrity verification, it's 
silently discarded. 



Chapter 2 Wide Area Network (WAN) Technologies I 45 

Frame Relay Address Field 

The Frame Relay Address field can be 1, 2, 3, or 4 bytes long. Typical Frame Relay imple
mentations use a 2-byte Address field, as shown in Figure 2-10. 

DLCI 

C/R First byte 

EA 

DLCI 

FECN 

BECN 
Second byte 

DE 

EA =1 

Figure 2-10. A 2-byte Frame Relay Address field. 

The fields within the 2-byte Address field are defined as follows: 

• DLCI The first 6 bits of the first byte and the first 4 bits of the second byte 
comprise the 10-bit DLCI. The DLCI is used to identify the Frame Relay virtual 
circuit over which the Frame Relay frame is traveling. Like the X.25 LCN, the 
DLCI is only locally significant. Each Frame Relay switch changes the DLCI 
value as it forwards the Frame Relay frame. The devices at each end of a vir
tual circuit use a different DLCI value to identify the same virtual circuit. Table 
2-1 lists the defined values for the DLCI. 

Table 2-1. Defined Values for the Frame Relay DLCI 

DLCI Value 

0 

1-15 

16-991 

992-1022 

1023 

Use 

In-channel signaling 

Reserved 

Assigned to user connections 

Reserved 

In-channel signaling 

• Extended Address (EA) The last bit in each byte of the Address field is the 
EA bit. If this bit is set to 1, the current byte is the last byte in the Address 
field. For the 2-byte Address field, the value of the EA bit in the first byte of 



46 J PART I The Network Interface Layer 

ATM 

the Address field is 0, and the value of the EA bit in the second byte of the Ad
dress field is 1. 

• Command/Response ( C/R) The seventh bit in the first byte of the Address 
field is the CIR bit. It currently isn't used for Frame Relay operations, and is set 
to 0. 

• Forward Explicit Congestion Notification (FECN) The fifth bit in the sec
ond byte of the Address field is the FECN bit. It is used to inform the destina
tion Frame Relay node that congestion exists in the path from the source to the 
destination. The FECN bit is set to 0 by the source Frame Relay node, and set 
to 1 by a Frame Relay switch if it's experiencing congestion in the forward 
path. If the destination Frame Relay node receives a Frame Relay frame with 
the FECN bit set, the node can indicate the congestion condition to upper layer 
protocols that can implement receiver-side flow control. The interpretation of 
the FECN bit for IP traffic isn't defined. 

• Backward Explicit Congestion Notification (BECN) The sixth bit in the 
second byte of the Address· field is the BECN bit. The BECN bit is used to in
form the destination Frame Relay node that congestion exists in the path from 
the destination to the source (in the opposite direction in which the frame was 
traveling). The BECN bit is set to 0 by the source Frame Relay node, and set to 
1 by a Frame Relay switch if it's experiencing congestion in the reverse path. If 
the destination Frame Relay node receives a Frame Relay frame with the BECN 
bit set, the node can indicate the congestion condition to upper layer protocols 
that can implement sender-side flow control. The interpretation of the BECN 
bit for IP traffic isn't defined. 

• Discard Eligibility (DE) The seventh bit in the second byte of the Address 
field is the DE bit. Frame Relay switches use the DE bit to decide which frames 
to discard during a period of congestion. Frame Relay switches consider the 
frames with the DE bit lower priority frames and discard them first. The initial 
Frame Relay switch sets the DE bit to 1 on a frame when a customer has ex
ceeded the CIR for the virtual circuit. 

The maximum-sized frame that can be sent across a Frame Relay network varies according 
to the Frame Relay provider. RFC 2427 requires all Frame Relay networks to support a 
minimum frame size of 262 bytes, and a maximum of 1600 bytes for IP datagrams, al
though maximum frame sizes of up to 4500 bytes are common. 

ATM, or cell relay, is the latest innovation in broadband networking and is destined to 
eventually replace most existing WAN technologies. As with Frame Relay, ATM provides 
a connection-oriented, unreliable delivery service. ATM allows for the establishment of 
a connection between sites, but reliable communication is the responsibility of an up
per layer protocol such as TCP. 



Chapter 2 Wide Area Network (WAN) Technologies I 4 7 

ATM improves on the performance of Frame Relay. Instead of using variable-length frames, 
ATM takes a LAN traffic protocol data unit (PDU) such as an IP datagram and segments 
it into 48-byte segments. A 5-byte ATM header is added to each segment. The 53-byte 
ATM frames consisting of the segments of the IP datagram are sent over the ATM net
work, which the destination then reassembles. The fixed-length 53-byte ATM frame, 
known as an ATM cell, allows the performance of the ATM-switching network to be 
optimized. 

ATM is available today as a PVC or an SVC through an ATM-switched network. ATM has 
been demonstrated at data rates up to 9.6 Gbps using Synchronous Optical Network 
(SONET), an international specification for fiber-optic communication. ATM is a scalable 
solution for data, voice, audio, fax, and video, and can accommodate all of these infor
mation types simultaneously. ATM combines the benefits of circuit switching (fixed-transit 
delay and guaranteed bandwidth) with the benefits of packet switching (efficiency for 
bursty traffic). 

The ATM Cell 
The ATM cell consists of a 5-byte ATM header and a 48-byte payload. The following are 
two types of ATM headers: 

• User network interface (UNI) header The ATM header that exists within a 
private network or between a customer site and a public ATM service provider. 

• Network-to-network interface (NNI) header The ATM header that exists 
within a public ATM service provider's network. 

Figure 2-11 shows the ATM cell header's format at either a public or private UNI. 

Generic Flow Control 

Virtual Path Identifier 

Virtual Channel Identifier 

Payload Type Indicator 

Cell Loss Priority 

Header Error Check 

Figure 2-11. The ATM header format that exists at the ATM UNI. 

The fields in the ATM header are defined as follows: 

• Generic Flow Control (GFC) A 4-bit field that was originally added to sup
port the connection of ATM networks to shared access networks such as a Dis-



48 I PART I The Network Interface Layer 

tributed Queue Dual Bus (DQDB) ring. The GFC field was designed to give 
the UNI 4 bits in which to negotiate multiplexing and flow control among cells 
of a single ATM virtual circuit. However, the use and exact values of the GFC 
field have not been standardized, so the value is always set to OxO. 

• Virtual Path Identifier (VPI) The identifier of the virtual path for this par
ticular cell. VPis for a particular ATM virtual circuit are discovered during the 
virtual-circuit setup process for SVCs, and are manually· configured for PVCs. At 
the UNI, the VPI is 8 bits, allowing up to 256 different virtual paths. VPI 0 ex
ists by default on all ATM equipment and is used for admini?trative purposes, 
such as signaling to create and delete dynamic ATM connections. 

• Virtual Channel Identifier (VCI) The identifier of the virtual channel within 
the specified virtual path. Like VPis, VCis are dynamically allocated for SVC 
connections and manually configured for PVC connections. The VCI is 16 bits, 
allowing up to 65,536 different virtual channels for each virtual path. For each 
VPI, the ITU reserves VCis 0-15, and the ATM Forum reserves VCis 16-32. The 
reserved VCis are used for signaling, operation and maintenance, and resource 
management. 

The combination of VPI and VCI identifies the virtual circuit for a given ATM 
cell. The VPl/VCI combination is the ATM routing information that is used by 
ATM switches to forward the cell to its destination. The VPI/VCI combination 
acts as a local virtual-circuit identifier in the same way as an LCN in X.25 and 
the DLCI in Frame Relay. 

• Payload Type Indicator (PTI) A 3-bit field consisting of the following fields: 

* ATM Cell Type The first bit of the PTI field is used as an indicator of the 
type of ATM cell. Set to 0 to indicate user data, and set to 1 to indicate op
erations, administration, and management (OA&M) data. 

* Explicit Forward Congestion Indication (EFCI) The second bit of the 
PTI field is used as an indicator of whether the cell experienced congestion 
in its journey from the source to the destination. The source sets the EFCI 
bit to 0. If an interim switch is experiencing congestion during the forward
ing of the cell, the switch sets the bit to 1. Once set to 1, all other switches 
in the path leave this bit set at 1. Destination ATM endpoints can use the 
EFCI bit to implement receiver-side flow control mechanisms until cells 
with an EFCI bit set to 0 are received. The EFCI bit is similar in function to 
the FECN bit used in Frame Relay. 

0 AAL5 Segmentation Flag Used in user ATM cells to indicate the last cell 
in a block for ATM Adaptation Layer 5 (AAL5). For non-user ATM cells, the 
third bit is used for OA&M functions. AAL5 is described in detail in the 
"AAL5" section of this chapter. 



Chapter 2 Wide Area Network (WAN) Technologies I 49 

• Cell Loss Priority (CLP) A 1-bit field that is used as a cell priority indica
tor. If set to 0, the cell is high priority and interim switches must make ev
ery effort to forward the cell successfully. If the CLP bit is set to 1, the 
interim switches can elect to discard the cell in congestion situations. The 
CLP bit is similar to the DE bit in Frame Relay. Setting the CLP bit to 1 can 
be done by the ATM endpoint upon creation, as a way to indicate a lower
priority cell, or at the ATM switch, if the cell is beyond the negotiated pa
rameters of the virtual circuit (similar to bursting above the CIR in Frame 
Relay). 

• Header Error Check (HEC) A 1-byte field that allows an ATM switch or 
ATM Endpoint to correct a single-bit error, or to detect multi-bit errors in 
the first 4 bytes of the ATM header. Multi-bit errored cells are silently dis
carded. Note that the HEC checks only the ATM header and not the ATM 
payload. Checking the payload for errors is the responsibility of upper layer 
protocols. 

Figure 2-12 shows the ATM cell header format at the public NNI. 

Virtual Path Identifier 

Virtual Channel Identifier 

Payload Type Indicator 

Cell Loss Priority 

Header Error Check 

Figure 2-12. Tbe ATM header format that exists at the ATM NNI. 

The only differences between the UNI and NNI headers are as follows: 

• No GFC field ATM switches in an ATM service provider don't need a 
way to negotiate the multiplexing from various types of shared-access user 
connections. 

• VPI is now 12 bits long This allows up to 4096 virtual paths per transmis
sion path. With an extended VPI, ATM service providers have more flexibility 
to perform virtual path switching and to create a backbone architecture to sup
port trunk lines in the voice telephone system. 

ATM Architecture 
The ATM architectural model (known as the B-ISDN/ ATM Model) has three main layers, 
as shown in Figure 2-13. 



50 I PART I The Network Interface Layer 

Higher Layers 

ATM Adaptation Layer Convergence Sublayer (CS) J 
Segmentation and Reassembly (SAR)j 

ATM Layer 

Physical Layer 
Transmission Convergence (TC) _j 

Physical Medium Dependent (PMD)j 

Figure 2-13. Tbe ATM architectural model, showing the three main layers and their 
sub/ayers. 

Physical Layer 

The Physical Layer provides for the transmission and reception of ATM cells across a 
physical medium between two ATM devices. The Physical Layer is subdivided into a 
Physical Medium· Dependent (PMD) sublayer and Transmission Convergence (TC) 
sublayer. 

The PMD sublayer is responsible for the transmission and reception of individual bits on 
a physical medium. These responsibilities encompass bit-timing, signal-encoding, inter
facing with the physical medium, and the physical medium itself. ATM doesn't rely on 
any specific bit rate, encoding scheme, or medium. Various specifications for ATM exist 
for coaxial cable, shielded and unshielded twisted pair wire, and optical fiber at speeds 
ranging from 64 Kbps through 9.6 Gbps. 

The TC sublayer acts as a converter between the bit stream at the PMD sublayer and ATM 
cells. When transmitting, the TC sublayer maps ATM cells onto the format of the PMD 
sublayer (such as DS-3 or SONET frames). Because a continuous stream of bytes is re
quired, idle cells occupy portions in the ATM cell stream that are not used. The receiver 
silently discards idle cells. Idle cells are never passed to the ATM layer for processing. 
The TC sublayer also is responsible for generation and verification of the HEC field for 
each cell, and for determining ATM cell delineation (where the ATM cells begin and end). 

ATM Layer 

The ATM Layer provides cell multiplexing, demultiplexing, and VPI/VCI routing functions. 
In addition, the ATM Layer is responsible for supervising the cell flow to ensure that all 
connections remain within their negotiated cell throughput limits. The ATM Layer can take 
corrective action so that those connections operating outside their negotiated parameters 
don't affect those connections that are obeying their negotiated connection parameters. 
Additionally, the ATM Layer ensures that the cell sequence from any source is maintained. 

The ATM Layer multiplexes/ demultiplexes, routes ATM cells, and ensures their sequence 
from end to end. However, if a switch drops a cell because of congestion or corruption, 
it's not the ATM Layer's responsibility to correct the dropped cell through retransmission 
or to notify other layers of the dropped cell. Layers above the ATM Layer must sense the 
lost cell and decide whether to correct for its loss. 



Chapter 2 Wide Area Network (WAN) Technologies I 51 

ATM Adaptation Layer 

The ATM Adaptation Layer (AAL) is responsible for the creation and reception of 48-byte 
payloads via the ATM Layer on behalf of different types of applications. The AAL Layer 
is subdivided between the Convergence sublayer (CS) and the Segmentation and Reas
sembly (SAR) sublayer. ATM adaptation is necessary to interface the cell-based technol
ogy at the ATM Layer, to the bit-stream technology of digital devices (such as telephones 
and video cameras), and the packet-stream technology of modern data networks (such 
as Frame Relay or LAN protocols including TCP/IP). 

Convergence Sublayer 
The CS is the last place that an application block of data (also known as a PDU) has its 
original form before being handed to the SAR sublayer for division into 48-byte ATM 
payloads. The CS is responsible for an encapsulation that allows the application data block 
to be distinguished and handed to the destination application. The CS is further subdi
vided into two sublayers: the Common Part CS (CPCS), which must be implemented, and 
the Service Specific CS (SSCS), which might be implemented depending on the actual 
service. If the SSCS is not implemented, it won't add headers to the data being sent. 

SAR Sublayer 

AALS 

On the sending side, the SAR sublayer takes the block of data from the CS (hereafter 
known as the CPCS PDU), and divides it into 48-byte segments. Each segment is then 
handed to the ATM Layer for final ATM encapsulation. On the receiving side, the SAR 
sublayer receives each ATM cell and reassembles the CPCS PDU. The completed CPCS · 
PDU is then handed up to the CS for processing. 

To provide a standard mechanism for the CPCS and SAR sublayers, the ITU-T has cre
ated a series of ATM Adaptation Layers: 

• AALl Designed for isochronous (time-dependent), constant bit rate, connec
tion-oriented applications, and is u~ed to provide circuit emulation. 

• AAL2 Designed for isochronous, variable bit rate, connection-oriented appli
cations, and is used for compressed voice or video. 

• AAL3/ 4 Designed for non-isochronous, variable bit rate, connection-oriented 
or connectionless applications, and is used for X.25 or LAN traffic. 

• AAL5 Designed for non-isochronous, variable bit rate, connection-oriented or 
connectionless applications. It's typically used for LAN traffic such as IP 
datagrams because its overhead is lower than that of AAL 3/ 4. 

AALS provides a way for non-isochronous, variable bit rate, connectionless applications 
to send and receive data. The data communications industry developed AALS as a straight
forward framing at the CPCS that tends to behave like existing LAN technologies such 
as Ethernet. AALS is the AAL of choice when sending connection-oriented (Frame Re
lay) or connectionless (IP or IPX) LAN protocol traffic over an ATM network. 



52 I PARl I The Network Interface Layer 

AALS Framing 

Figure 2-14 shows the framing that occurs at AAL5. 

Payload ... 1- 65,535 bytes 

Pad O - 47 bytes 

User to User Indication 

Common Part Indicator 

Length of Payload 

CRC 

Figure 2-14. AAL5 framing, showing the payload and the AAL5 trailer. 

The fields in the AAL5 frame are defined as follows: 

• Payload The block of data that an application sends. The size can vary from 
1 byte to 65,535 bytes. . 

• Pad Of variable length (0-47 bytes). The Pad field is present to make the en
tire CPCS PDU an integral number of 48-byte units. 

• User To User Indication A 1-byte field that is used to transfer information 
between AAL users. The exact use of this byte isn't defined and is left to the 
implementation. 

• Common Part Indicator A 1-byte field that is currently used only for align
ment processes ·so that the non-padded portion of the AAL5 trailer is on a 64-
bit boundary. 

• Length Of Payload A 2-byte field used to indicate the length in bytes of the 
Payload field so that the Pad field can be discarded by the receiver. 

• CRC A 4-byte CRC that provides bit-level integrity services on the entire CPCS 
PDU. The AAL5 CRC uses the same checksum algorithm as 802.x network tech
nologies such as Ethernet and Token Ring. 

The SAR sublayer for AAL5 segments the CPCS PDU along 48-byte boundaries and passes 
the segments to the ATM Layer for encapsulation with an ATM header. On the receiving 
side, the SAR sublayer reassembles the incoming 48-byte ATM payloads and passes the 
result to the CPCS. The SAR uses the AAL5 Segmentation Flag field, the third bit in the 
Payload Type Indicator (PTI) field, to indicate when the last 48-byte unit in a CPCS PDU 
is sent. On the receiving side, when the ATM cell is received with the AAL5 Segmenta
tion Flag field set, the ATM Layer indicates this to AAL5 so that analysis of the full CPCS 
PDU can begin. 



Chapter 2 Wide Area Network (WAN) Technologies I 53 

Sending an IP Datagram Over an ATM Network 

The method of sending IP datagrams over an ATM network using AAL5 is known as 
classical IP over ATM, and is described in RFCs 1577 and 1626. To ensure compatibility 
with IP datagrams sent over a Switched Multimegabit Data Service (SMDS) network, 
another cell-based WAN technology, IP datagrams have a maximum size of 9180 bytes. 
Figure 2-15 shows IP datagram encapsulation using AAL5. 

More Info RFCs 1577 and 1626 describe classical IP over ATM. These can be 
found in the \RFC folder on the companion CD-ROM. 

IP Datagram Up to 9,180 bytes 

Pad O - 47 bytes 

User to User Indication 

Common Part Indicator 

Length of Payload 

CRC 

Figure 2-15. IP Datagram encapsulation, using AAL5. 

At the SAR sublayer, the CPCS PDU is segmented into 48-byte units that become the ATM 
payloads for a stream of ATM cells. When the last cell in the CPCS PDU is sent, the AAL5 
Segmentation Flag field is set to 1. When the last cell is received, the receiver uses the 
CRC to check the validity of the bits in the CPCS PDU. If the CRC is valid, the Length field 
is used to discard the Pad field. The AAL trailer is stripped, and the end result is the 
originally transmitted IP datagram that is then passed to the IP layer for processing. 

For a given ATM virtual circuit, IP datagrams must be sent one at a time. The cells of 
multiple IP datagrams can't be mixed on the same virtual circuit. The ATM header con
tains no information to signify which cells belong to which CPCS PDU. ATM segmenta
tion differs from IP fragmentation in this regard. With IP fragmentation, the Identification 
field serves to group all the fragments of the original IP datagram together. An IP router 
can send the fragments of different IP packets alternately without a reconstruction issue 
on the receiving side. With ATM segmentation, there is no fragment ID field or equiva
lent that can be used to differentiate CPCS PDUs. 

Example of Sending an IP Datagram 
Figure 2-16 shows an example of sending a 128-byte IP datagram across an ATM network 
using AAL5. 

llJ.lf 



54 I PART i The Network Interface Layer 

IP ~ 
SAR PDUs ATM Cells 

Datag~_.,. CPCS PDU · ~ 
ATM T Header 

SAR . 53 
Payload 48 bytes 

ATM bytes 

l Payload 1 
-=======: ~ 

CPCS 

~ 
ATM T Payload 

Header 
128 

bytes SAR 48 bytes 53 
Payload 

l 
ATM bytes 

Payload 1 ~ ~ 

~ 
ATM Header T Pad 8 bytes 

w/AAL5 

IAAL5Traile~~ SAR Flag=1 
53 48 bytes Payload 

l ATM 
bytes 

Payload l ~ 

Figure 2-16. Example of sending an IP datagram over ATM, using AAL5 encapsulation. 

The AALS trailer with an 8-byte Pad field is added to the IP datagram. The 8 bytes of the 
Pad field make the entire AALS CPCS PDU 144 bytes, an integral multiple of 48. The 
resulting AALS CPCS PDU is then segmented into three 48-byte segments. Each 48-byte 
segment becomes the payload of an ATM cell sent in sequence to the destination ATM 
endpoint on the virtual circuit. When the last segment is sent, the AALS Segmentation Flag 
field is set to 1. 

Note ATM traffic captured with Windows 2000 Network Monitor will not display 
the individual ATM cells or the ATM header. The ATM header displayed with Net
work Monitor contains a simulated source and destination MAC address and the 
VPI and VCI fields for the virtual circuit. 

Multiprotocol Encapsulation with AALS 
When multiple protocols are sent over the same ATM virtual circuit, a protocol identifier 
is needed to differentiate the various Network Layer protocols. 

More Info Multiprotocol encapsulation over ATM is described in RFC 1483, which 
can be found in the \RFC folder on the companion CD-ROM. 

To add a protocol identifier to the CPCS PDU, the Sub-Network Access Protocol (SNAP) 
method used by IEEE 802.x networks is used. Figure 2-17 shows multiprotocol encap
sulation over AALS. 



DSAP 

SSAP 

Control 

OUI 

EtherType 

IP Datagram 

Pad 

User to User Indication 

Common Part Indicator 

Length of Payload 

CRC 

=OxAA 

Chapter 2 Wide Area Network (WAN) Technologies I 55 

0 - 47 bytes 

LLC 
Header 

SNAP 
Header 

Up to 9,180 bytes 

Figure 2-17. Multiprotocol encapsulation for AAL5, using the LLC and SNAP headers. 

As described in Chapter 1, "Local Area Network (LAN) Technologies," the SNAP header 
consists of a Logical Link Control (LLC) header and a SNAP header. Within the LLC header, 
the Destination Service Access Point (DSAP) is set to OxAA, the Source Service Access 
Point (SSAP) is set to OxAA, and the Control field is set to Ox03. Within the SNAP header, 
the Organization Unique Identifier (OUI) is set to 00-00-00 and the EtherType field is set 
to Ox08-00 for IP. 

When the ATM virtual circuit is created, both ATM endpoints negotiate the use of either 
single protocol or multiprotocol AAL5 encapsulation. 

Summary 
Typical WAN technology encapsulations used by Windows 2000 provide delimitation, 
addressing, protocol identification, and bit-level integrity services. IP datagrams and ARP 
messages sent over point-to-point WAN links can be encapsulated using SLIP, PPP, or MP. 
IP datagrams and ARP messages sent over NBMA links such as X.25, Frame Relay, or ATM 
use the appropriate single or multiprotocol encapsulation. 





57 

Address 
Resolution Protocol (ARP) 

To successfully troubleshoot problems forwarding IP datagrams on a local area network 
(LAN) link, it is important to understand how ARP is used to resolve a node's IP address 
to its corresponding Network Interface Layer address. Microsoft Windows 2000 TCP/IP 
supports ARP for address resolution and duplicate IP address detection. The Windows 2000 
Routing and Remote service uses a variation of ARP called proxy ARP to forward IP data
grams between remote access clients and the network attached to the remote access server. 

Overview of ARP 
ARP is the protocol used by shared access, broadcast-based networking technologies such 
as Ethernet and Token Ring. This protocol is used to resolve the forwarding IP address of a 
node to its corresponding media access control (MAC) address. The MAC address also is 
known as the physical, hardware, or network adapter address. The resolved MAC address 
becomes the destination MAC address in the Ethernet or Token Ring header to which an IP 
datagram is addressed when it's sent on the medium. ARP resolves an Internet Layer address 
(an Internet Protocol (IP) address) to a Network Interface Layer address (MAC address). 

More Info ARP is described in RFC 826, which can be found in the \RFC folder 
on the companion CD-ROM. 

The forwarding IP address isn't necessarily the same as the destination IP address of the 
IP datagram. As is discussed in detail in Chapter 6, "Internet Protocol (IP) Routing," the 
result of the route determination process for every outgoing IP datagram is an interface 
and a forwarding IP address. For direct deliveries to destinations on the same subnet, the 
forwarding IP address is the datagram's destination IP address. For indirect deliveries to 
remote destinations, the forwarding IP address is the IP address of a router on the same 
subnet as the forwarding host. 

IP was designed to be independent of any specific Network Interface Layer technology. 
Therefore, there's no way to determine the destination Network Interface Layer address 
from the forwarding IP address. For example, Ethernet and Token Ring MAC addresses 
are 6 bytes long, and IP addresses are 4 bytes long. During the manufacturing process, 



58 I PART I The Network Interface Layer 

the MAC address is assigned to the adapter. A network administrator assigns the IP 
address. Because there's no correlation between the assignment of these two addresses 
for a given IP node, it's impossible to derive one address from the other. ARP is a broad
cast-based, request-reply protocol that provides a dynamic-resolution facility to map. 
forwarding IP addresses to their corresponding MAC addresses. 

ARP consists of the following two messages: 

• The forwarding node uses the ARP Request message to request the MAC ad
dress for a specific forwarding IP address. The ARP Request is a MAC-level 
broadcast frame intended to reach all the nodes on the physical network seg
ment to which the interface sending the ARP Request is attached. The node 
sending the ARP Request is known as the ARP requester. 

• The ARP Reply message is used to reply to the ARP requester. The node whose 
IP address matches the requested IP address in the ARP Request message 
sends the ARP Reply. The ARP Reply is a unicast MAC frame sent to the desti
nation MAC address of the ARP requester. The node sending the ARP Reply is 
known as the ARP responder. 

Because the ARP Request is a MAC-level broadcast packet, all forwarding IP addresses 
to be resolved must be directly reachable (on the same subnet) from the interface used 
to send the ARP Request. For proper routing table entries, this is always the case. If a 
routing table entry contains an invalid forwarding IP address where that address isn't 
directly reachable for the interface, ARP will fail to resolve the forwarding IP address. 

All nodes within the same broadcast domain receive the ARP Request. A broadcast do
main is a portion of a network over which a broadcast frame is propagated. Hubs, bridges, 
and, more recently, Layer 2 switches propagate the ARP Request. However, IP routers 
or Layer 3 switches don't propagate ARP frames. 

The ARP Cache 
As is common in many TCP /IP implementations, Windows 2000 TCP /IP maintains a RAM
based table of IP and MAC address mappings known as the ARP cache. When an ARP ex
change is complete (both the ARP Request and the ARP Reply are sent and received), both 
the ARP requester and the ARP responder have each other's IP address to MAC address 
mappings in their ARP caches. Subsequent packets forwarded to the previously resolved 
IP addresses use the ARP cache entry's MAC address. The ARP cache is .always checked 
before an ARP Request is sent. There is a separate ARP cache for each IP interface. 

After the MAC address for a forwarding IP address is determined using an ARP Request
ARP Reply exchange, the resolved MAC address is used as the destination MAC address 
for subsequent packets. If the node whose IP address has been resolved fails, the ARP 
requester node will continue to use its ARP cache entry and send packets on the medium 
to the resolved MAC address. Because the resolved MAC address corresponds to a net
work adapter that's no longer present on the network, all of the network segment's nodes 
ignore the frame. Because the forwarding IP address was mapped to a MAC address with 



Chapter 3 Address Resolution Protocol (ARP) I 59 

the ARP cache entry, and the frame was sent on the medium, IP and ARP on the send
ing node consider the IP datagram to be successfully delivered. 

This condition is known as a network black hole; packets sent on the network are dropped 
and the sender or forwarder is unaware of the condition. The user at the ARP requester 
computer won't notice this condition until TCP connections or other types of session
oriented traffic begin to time out. This particular type of network black hole will persist 
as long as the entry for the mapping remains in the ARP cache. After the entry is removed, 
an ARP Request-ARP Reply exchange is attempted again. Because the failed node won't 
respond to the ARP Request, the lack of an ARP Reply can be used to indicate an unsuc
cessful delivery of IP packets using the forwarding IP address. 

By default, ARP cache entries in Windows 2000 persist for only 2 minutes. If the ARP cache 
entry is used within 2 minutes, it's given additional time in 2-minute increments, up to a 
maximum lifetime of 10 minutes. After a maximum time of 10 minutes, the ARP cache 
entry is removed and must be resolved through another ARP Request-ARP Reply exchange. 
The time-out of ARP cache entries is configurable with the ArpCacheLife and 
ArpCacheMinReferencedLife registry settings. 

ArpCacheLife 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-0xFFFFFFFF 
Default value: 120 
Present by default: No 

ArpCacheLife sets the number of seconds that an unused ARP cache entry is kept in the 
ARP cache. The default value of ArpCacheLife is 120 seconds (2 minutes). 

ArpCacheMinReferencedLife 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-0xFFFFFFFF 
Default value: 600 
Present by default: No 

ArpCacheMinReferencedLife sets the number of seconds that a used ARP cache entry 
persists in the ARP cache. The default value of ArpCacheMinReferencedLife is 600 sec
onds (10 minutes). The ArpCacheMinReferencedLife and ArpCacheLife registry settings 
are used in the following ways: 

• If ArpCacheLife is greater than or equal to ArpCacheMinReferencedLife, both 
used and unused ARP cache entries persist for ArpCacheLife seconds. 

• If ArpCacheLife is less than ArpCacheMinReferencedLife, unused ARP cache 
entries expire in ArpCacheLife seconds, and used entries expire in 
ArpCacheMinReferencedLife seconds. 



60 I ?ART i The Network Interface Layer 

In addition, Microsoft Windows 2000 TCP /IP allows the use of static ARP cache entries. 
Static ARP cache entries can be added through the use of the ARP utility using the "-s" com
mand-line option. Static ARP cache entries don't time out of the ARP cache. However, static 
ARP cache entries are stored in RAM and must be added each time TCP /IP is initialized. 

While a forwarding IP address is being resolved with ARP, Microsoft Windows 2000 ARP 
will store only one IP datagram for that forwarding IP address. If multiple datagrams are 
sent to the same forwarding IP address without pause, it's possible that some datagrams 
might be dropped before the ARP exchange completes. This isn't a problem for TCP 
connection data, but User Datagram Protocol (UDP) messages might experience packet 
loss because of this behavior. In this case, use the SendArp() function to create the ARP 
cache entry prior to sending packets. 

Updating the MAC Address 
The default behavior of Windows 2000 TCP/IP is to update the ARP cache entry with 
additional time, in 2-minute increments, while it's in use. Another way of updating the 
ARP cache entry is through the receipt of an ARP Request sent by the node with the ARP 
cache entry's IP address. When an ARP Request that was sent by an IP node corresponding 
to an existing entry in the ARP cache is received, update the ARP cache entry with the 
received ARP Request's MAC address. 

When a network black hole is caused by a failed interface, and when the interface is 
replaced, the first ARP Request frame sent on that interface will contain the interface's 
new MAC address. Upon receipt of that ARP Request, all of the network segment's nodes 
that have an ARP cache entry for that node's IP address will update the ARP cache entry 
with the new MAC address. The network black hole is removed by the resetting of ARP · 
cache entries when the ARP Request is sent. 

Windows 2000 ARP Registry Settings 
By default, Windows 2000 uses the Ethernet II encapsulation described in Chapter 1, "Local 
Area Network (LAN) Technologies," when sending both IP and ARP frames. Windows 
2000 will receive both Ethernet II and IEEE 802.3 SubNetwork Access Protocol (SNAP)
encapsulated frames, but, by default, it will respond only with Ethernet II-encapsulated 
frames. To send IEEE 802.3 SNAP-encapsulated IP and ARP frames, use the ArpUseEther
SNAP registry setting. 

ArpUseEtherSNAP 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-1 
Default value: 0 
Present by default: No 



3 Address Resolution Protocol (ARP) I 61 

ArpUseEtherSNAP either enables ( =1) or disables ( =0) the use of the IEEE 802.3 SNAP 
frame format when sending IP and ARP frames. ArpUseEtherSNAP is disabled by default, 
meaning that IP and ARP frames are sent with Ethernet II encapsulation. Regardless of 
the ArpUseEtherSNAP setting, both types of frame formats are received. 

For Token Ring, the ArpTRSingleRoute and ArpAlwaysSourceRoute provide control over 
broadcast ARP Requests in a Token Ring source-routed environment. 

ArpTRSingleRoute 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-1 
Default value: 0 
Present by default: No 

ArpTRSingleRoute either disables ( =0) or enables ( =1) the sending of ARP Requests as 
single-route broadcasts. When disabled, the default ARP Requests are sent as all-routes 
broadcasts. 

A Token Ring source-routed environment is a series of rings connected by source-rout
ing bridges. The rings can be connected so that there are multiple paths to any given node. 
While this creates fault tolerance for the source-routing bridges, it also causes a prob
lem for all-routes broadcast frames. An all-routes broadcast frame travels all possible paths. 
If there are five different paths between a node sending an all-routes broadcast frame 
and a ring, five copies of that all-routes broadcast frame appear on that ring. 

To prevent this problem, nodes are configured to send single-route broadcast frames, and 
source-routing bridges are configured to either propagate single-route or all-routes broad
cast frames. With proper design, a network administrator can define a single path over 
which single-route broadcast traffic travels even though multiple paths exist for all-routes 
broadcast traffic. Using single-route broadcasts, a Token Ring environment can maintain 
its fault tolerance while avoiding the duplication of broadcast traffic. 

ArpAlwaysSourceRoute 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-1 or not present 
Default value: Not present 
Present by default: No 

ArpAlwaysSourceRoute either disables ( =O) or enables ( =1) the use of source routing on 
broadcast ARP Requests. When the ArpAlwaysSourceRoute setting isn't present in the 
registry, the default setting causes the ARP to send the ARP Request without source-routing 
first. If no reply is received, ARP sends the ARP Request with source routing. 



62 I PART I The Network Interface Layer 

ARP Frame Structure 
ARP frames use the EtherType of Ox08-06. ARP isn't a client protocol of IP, and ARP frames 
don't contain an IP header. Thus, ARP is useful only for resolving MAC addresses for IP 
addresses that are on the same physical network segment, the boundaries of which are 
defined by IP routers. IP routers will never forward an ARP Request or ARP Reply frame. 

As RFC 826 describes, an ARP frame's structure suggests that ARP could be used for MAC 
address resolution for protocols other than IP. However, in practice, IP is the only pro
tocol that uses the ARP frame format. Figure 3-1 shows the structure of the ARP frame. 

Hardware Type 

Protocol Type 

Hardware Address Length 

Protocol Address Length 
f-L-LLL.LL.Lf---

Operation 

Sender Hardware Address 

Sender Protocol Address 

Target Hardware Address 

Target Protocol Address 

Figure 3-1. Tbe structure of an ARP frame for LAN technologies. 

More Info ARP as a potential MAC address resolution for non-IP protocols is 
discussed in RFC 826, which can be found in the \RFC folder on the companion 
CD-ROM. 

The fields in the ARP header are defined as follows: 

• Hardware Type A 2-byte field that indicates the type of hardware being 
used at the Data Link Layer. Table 3-1 lists some commonly used ARP Hard
ware Type values. Upon receipt of an ARP frame, an IP node verifies that the 
Hardware Type of the ARP frame matches the Hardware Type of the interface 
on which the ARP frame was received. If it doesn't match, the frame is silently 
discarded. For a complete list of ARP Hardware Type values, see http:// 
www.isi.edu/in-notes/iana/ assignments/ arp-parameters. 



Chapter 3 Address Resolution Protocol (ARP) I 63 

Table 3-1. ARP Hardware Type Values 

Hardware Type Value Data Link Layer Technology 

1 (Ox00-01) Ethernet (10 Mbps) 

6 (Ox00-06) IEEE 802 Networks (Token Ring) 

15 (OxOO-OF) Frame Relay 

16 (Ox00-10) Asynchronous Transfer Mode 

• Protocol Type A 2-byte field that indicates the protocol for which ARP is 
providing address resolution. The ARP Protocol Type field uses the same val
ues as the Ethernet II EtherType field. For IP address resolution, the Protocol 
Type field is set to the EtherType for IP, Ox0800. Upon receipt of an ARP 
frame, an IP node verifies that the ARP Protocol Type is set to Ox0800. If it's 
not set to Ox0800, the frame is silently discarded. 

• Hardware Address Length A 1-byte field that indicates the length in bytes 
of the hardware address in the Sender Hardware Address and Target Hardware 
Address fields. For Ethernet and Token Ring, the Hardware Address Length 
field is set to 6. For Frame Relay, the Hardware Address Length typically is set 
to 2 (for the commonly used 2-byte Frame Relay Address field). 

• Protocol Address Length A 1-byte field that indicates the length in bytes of 
the protocol address in the Sender Protocol Address and Target Protocol 
Address fields. For the IP protocol, the length of IP addresses is 4 bytes. 

• Operation (Opcode) A 2-byte field that indicates the type of ARP frame. 
Table 3-2 lists the commonly used ARP Operation values. For a complete list 
of ARP Operation values, see http://www.isi.edu/in-notes/iana/assignments/ 
a-rp-parameters. 

Table 3-2. ARP Operation Values 

Operation Value Type of ARP Frame 

1 

2 

8 

9 

ARP Request 

ARP Reply 

Inverse ARP Request 

Inverse ARP Reply 

• Sender Hardware Address (SHA) A field that is the length of the value of 
the Hardware Address Length field and contains the hardware or Data Link 
Layer address of the ARP frame's sender. For Ethernet and Token Ring, the 
SHA field contains the MAC address of the node sending the ARP frame. 

• Sender Protocol Address (SPA) A field that is the length of the value of the 
Protocol Address Length field and contains the protocol address of the ARP 
frame's sender. For IP, the SPA field contains the IP address of the node send
ing the ARP frame. 



64 I PART ! The Network Interface Layer 

• Target Hardware Address (THA) A field that is the length of the value of 
the Hardware Address Length field and contains the hardware or Data Link 
Layer address of the ARP frame's target (destination). For Ethernet and Token 
Ring, the THA field is set to Ox00-00-00-00-00-00 for ARP Request frames, and 
it's set to the MAC address of the ARP requester for ARP Reply frames. 

• Target Protocol Address (TPA) A field that is the length of the value of the 
Protocol Address Length field and contains the protocol address of the ARP 
frame's target (destination). For IP, the TPA field is set to the IP address being 
resolved in the ARP Request frame, and it's set to the IP address of the ARP 
requester in the ARP Reply frame. 

ARP Request and ARP Reply Example 
The ARP Request and ARP Reply exchange contains all the information for the ARP 
requester to determine the IP address and MAC address of the ARP responder, and for 
the ARP responder to determine the IP address and MAC address of the ARP requester. 
Figure 3-2 shows an ARP Request and ARP Reply exchange. 

Node 1 
IP Address: 10.0.0.99 

MAC Address: 00-60-08-52-F9-D8 

ARP Request 

SHA: 00-60-08-52-F9-D8 
SPA: 10.0.0.99 
THA: 00-00-00-00-00-00 
TPA: 10.0.0.1 

ARP Reply 
SHA: 00-10-54-CA-E1-40 
SPA: 10.0.0.1 
THA: 00-60-08-52-F9-D8 
TPA: 10.0.0.99 

Node 2 
IP Address: 10.0.0.1 

MAC Address: 00-10-54-CA-E1-40 

Figure 3-2. Tbe resolution of Node 2's .MAC address by Node 1, using an exchange of ARP 
Request and ARP Reply frames. 

Node 1, with the IP address of 10.0.0.99 and the MAC address of Ox00-60-08-52-F9-D8, 
needs to forward an IP datagram to Node 2 at the IP address of 10.0.0.1. Based on infor
mation in Node l's routing table, the forwarding IP address to reach Node 2 is 10.0.0.1, 
using the Ethernet interface. Node 1 constructs an ARP Request frame and sends it as a 
MAC-level broadcast using the Ethernet interface. 

The following Network Monitor trace (Capture 03-01 in the \Captures folder on the com
panion CD-ROM) is for the ARP Request frame sent by Node 1. 



Chapter 3 Address Resolution Protocol (ARP) I 65 

+ Frame: Base frame properties 
ETHERNET: ETYPE = 0x0806 : Protocol = ARP: Address Resolution Protocol 

+ ETHERNET: Destination address : FFFFFFFFFFFF 
+ ETHERNET: Source address : 00600852F9D8 

ETHERNET: Frame Length : 42 (0x002A) 
ETHERNET: Ethernet Type : 0x0806 (ARP: Address Resolution Protocol) 
ETHERNET: Ethernet Data: Number of data bytes remaining = 28 (0x001C) 

ARP_RARP: ARP: Request, Target IP: 10.0.0.1 
ARP_RARP: Hardware Type = Ethernet (10Mb) 
ARP_RARP: Protocol Type = 2048 (0x800) 
ARP_RARP: Hardware Address Length 6 (0x6) 
ARP_RARP: Protocol Address Length = 4 (0x4) 
ARP _RA RP: Opcode = Request 
ARP _RARP: Sender's Hardware Address 00600852F9D8 
ARP _RARP: Sender's Protocol Address 10.0.0.99 
ARP _RARP: Target's Hardware Address 000000000000 
ARP _RARP: Target's Protocol Address 10.0.0.1 

The known quantity-the IP address of 10.0.01-is set to the Target Protocol Address field. 
The unknown quantity-the hardware address of 10.0.0.1-is the Target Hardware 
Address field in the ARP Request frame, which is set to 000000000000. Included in the 
ARP Request are the IP and MAC addresses of Node 1 so that Node 2 can add an entry 
for Node 1 to its own ARP cache. 

Upon receipt of the ARP Request frame at Node 2, the node checks the values of the ARP 
Hardware Type and Protocol Type fields. Node 2 then examines its own ARP cache for 
an entry matching the SPA. If an entry exists, Node 2 updates the MAC address of the 
ARP cache entry with the value stored in the SHA. For our example purposes, no entry 
for 10.0.0.99 exists. 

Node 2 then examines the value of the TPA. Because the TPA is the same as Node 2's IP 
address, Node 2 adds an ARP cache entry consisting of [SPA, SHA] to its ARP cache. It 
then checks the ARP Operation field. Because the received ARP frame is an ARP Request, 
Node 2 constructs an ARP Reply to send back to Node 1. 

The following Network Monitor trace (Capture 03-01 in the \Captures folder on the com
panion CD-ROM) is for the ARP Reply frame sent by Node 2. 

+ Frame: Base frame properties 
ETHERNET: ETYPE = 0x0806 : Protocol = ARP: Address Resolution Protocol 

+ ETHERNET: Destination address : 00600852F9D8 
+ ETHERNET: Source address : 001054CAE140 

ETHERNET: Frame Length : 60 (0x003C) 
ETHERNET: Ethernet Type : 0x0806 (ARP: Address Resolution Protocol) 
ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E) 

ARP_RARP: ARP: Reply, Target IP: 10.0.0.99 Target Hdwr Addr: 00600852F9D8 



66 I PA~l i The Network Interface Layer 

ARP _RARP: Hardware Type = Ethernet (10Mb) 
ARP _RARP: Protocol Type = 2048 (0x800) 
ARP _RARP: Hardware Address Length = 6 (0x6) 
ARP _RARP: Protocol Address Length = 4 (0x4) 
ARP _RARP: Opcode = Reply 
ARP _RARP: Sender's Hardware Address 001054CAE140 
ARP _RARP: Sender's Protocol Address 10.0.0.1 
ARP _RARP: Target's Hardware Address 00600852F9D8 
ARP _RARP: Target's Protocol Address 10.0.0.99 
ARP _RARP: Frame Padding 

In the ARP Reply, all quantities are known and the frame is addressed at the MAC level 
using Node l's unicast MAC address. The quantity that Node 1 needs-Node 2's MAC 
address-is the SHA field's value. 

Upon receipt of the ARP Reply frame, Node 1 checks the values of the ARP Hardware Type 
and Protocol Type fields. Node 1 then examines its own ARP cache for an entry matching 
the SPA. No entry exists; otherwise, an ARP Request would not have been sent. Node 1 then 
examines the TPA's value. Because the TPA is the same as Node l's IP address, Node 1 adds 
an ARP cache entry consisting of [SPA, SHA] to its ARP cache. Node 1 then checks the ARP 
Operation field. Because the received ARP frame is an ARP Reply, the ARP frame is discarded. 

Frame Padding and Ethernet 

Notice that the ARP frames of Network Monitor trace contain a Frame Padding field. This 
Frame Padding field isn't an ARP field, but the consequence of sending an ARP frame 
on an Ethernet network. As discussed in Chapter 1, "Local Area Network (LAN) Tech
nologies," Ethernet payloads using the Ethernet II encapsulation must be a minimum 
length of 46 bytes to adhere to the minimum Ethernet frame size. The ARP frame is only 
28 bytes long. Therefore, to send the ARP frame on an Ethernet network, the ARP frame 
must be padded with 18 padding bytes. 

Tip When using Network Monitor, you might notice that sometimes the Frame 
Padding field doesn't appear on either the ARP Request or the ARP Reply frames. 
Does this mean that the ARP frame was sent as a runt-an Ethernet frame with 
a length below the minimum frame size? No. The answer to the mystery lies in 
the implementation of Network Monitor within Windows 2000. Network Monitor 
receives frames by acting as a Network Driver Interface Specification (NDIS) pro
tocol. When any frame is sent or received, Network Monitor receives a copy. 
However, when frames are sent, Network Monitor receives a copy of the frame 
before the frame padding is added. When the frame is received, Network Moni
tor receives a full copy of the frame. Therefore, you won't see a Frame Padding 
field on an ARP frame if it was captured on the node sending the ARP frame. The 
example Network Monitor trace given in this chapter was taken on Node 1. There
fore, the frame padding is only seen on the ARP Reply frame. 



Chapter 3 Address Resolution Protocol (ARP) I 67 

Gratuitous ARP and· Duplicate IP Address Detection 
ARP also is used to provide duplicate IP address detection through the transmission of 
ARP Requests known as gratuitous ARPs. A gratuitous ARP is an ARP Request for a node's 
own IP address. In the gratuitous ARP, the SPA and the TPA are set to the same IP address. 

If a nod~ sends an ARP Request for its own IP address and no ARP Reply frames are 
received, the node can assume that its assigned IP address isn't being used by other nodes. 
If a node sends an ARP Request for its own IP address and an ARP Reply frame is re
ceived, the node can determine that its assigned IP address is already being used by 
another node. 

The ArpRetryCount registry setting controls the number of gratuitous ARPs that are sent. 

ArpRetryCount 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Jcpip\Parameters 
Data type: REG_DWORD 
Valid range: 1-3 
Default value: 3 
Present by default: No 

ArpR~tryCount sets the number of times that a gratuitous ARP is sent when initializing 
IP for a specific IP address. If no ARP Reply is received after sending ArpRetryCount 
gratuitous ARPs, IP assumes the IP address is unique on the network segment. 

Note The gratuitous ARP attempts to detect the use of a duplicate IP address 
by a node on the same network segment. Because ARP frames aren't propagated 
by routers, a gratuitous ARP won't detect an IP address conflict between two nodes 
that are located on different network segments. 

IP Address Conflict Detection 
In an IP address conflict, the node that is already successfully configured with the IP 
address is known as the defending node. The node that is sending the gratuitous ARP is 
known as the offending node. Based on the ARP Reply, the offending node can deter
mine the defending node's MAC address. 

On the Offending Node 

If the offending node is a Windows 2000 computer manually configured with a conflict
ing IP address, the receipt of the ARP Reply to the gratuitous ARP will prevent TCP /IP 
from initializing using the conflicting address. An error message is displayed and an event 
is logged in the System Event log. 

If the offending node is a Windows 2000 computer using Dynamic Host Configuration 
Protocol (DHCP), gratuitous ARPs are sent for the IP address received in the DHCPOFFER 
message. If an ARP Reply is received in response to the gratuitous ARPs, the DHCP di-



68 I PART i The. Network Interface Layer 

ent sends a DHCPDECLINE message to the DHCP server. If the DHCP server is a Win
dows 2000 DHCP server, the IP address sent in the DHCPOFFER is flagged as a bad IP 
address and isn't allocated to any other DHCP clients. The DHCP client starts the DHCP 
lease allocation process by sending a new DHCPDISCOVER message. For more informa
tion on Windows 2000 DHCP, see Chapter 15, "Dynamic Host Configuration Protocol 
(DHCP) Service." 

On the Defending Node 

The defending node detects an address conflict whenever the SPA of the incoming ARP 
Request is the same as an IP address configured on the defending node. For gratuitous 
ARPs from an offending node, both the SPA and TPA are set to the conflicting address. 
However, gratuitous ARPs aren't the only ARP Requests that can have the SPA set to the 
conflicting address. 

For example, if a node using a conflicting address is started without being connected to 
its network segment, no replies to the gratuitous ARPs are received and the node will ini
tialize TCP/IP using the conflicting address. If the node is then placed on the same net
work segment as the defending node, no additional gratuitous ARPs are sent. However, 
each time either node using the conflicting address sends an ARP Request, the SPA is set 
to the conflicting address. In this case, an error message is displayed and an event is logged 
in the System Event log. Both nodes continue to use the conflicting IP address, but dis
play an error message and log an event every time the other node sends an ARP Request. 

The Gratuitous ARP and Address Conflict Exchange 
The gratuitous ARP and address conflict detection for Windows 2000 is an exchange of 
three frames. The first two frames, as noted below, are the ARP Request-ARP Reply for 
the conflicting address. 

1. The off ending node attempting to detect another node on the same network 
segment using the same IP address sends the gratuitous ARP Request. 

2. The defending node sends the ARP Reply to the offending node. 

When the gratuitous ARP is sent, the SPA is set to a conflicting IP address and the SHA is 
set to the offending node's MAC address. Nodes on the network segment that have an ARP 
cache entry for [conflicting IP address, defending node's MAC address] will have their ARP 
cache entries updated to [conflicting IP address, offending node's MAC address]. The gra
tuitous ARP sent by the offending node updates all the ARP cache entries for the nodes 
communicating with the defending node; this causes future IP datagrams to be sent to the 
offending node's MAC address. A worst-case scenario is when the defending node is the 
default gateway for the network segment. Sending the gratuitous ARP Request causes all 
nodes on that network segment, with an entry in their ARP cache for the default gateway 
IP address, to forward all traffic off the subnet to the offending node's MAC address. 

When the ARP Reply is sent, it's sent to the defending node's MAC address. The unicast 
ARP Reply doesn't correct the improper ARP cache entries. Therefore, to reset the ARP 



Chapter 3 Address Resolution Protocol (ARP) I 69 

cache entries that were improperly updated by the offending nodes' sending of the gra
tuitous ARP Request, the def ending node sends another broadcast ARP Request. The 
defending node's ARP Request is a gratuitous ARP as if the defending node were doing 
its own conflict detection. The defending node's ARP Request contains the SHA set to 
the offending node's MAC address. Network segment nodes that have had their ARP cache 
entries improperly set to [conflicting IP address, offending node's MAC address] are 
reset to the proper mapping of [conflicting IP address, defending node's MAC address]. 

Network Monitor trace 3-2 (Capture 03-02 in the \Captures folder on the companion CD
ROM) shows the gratuitous ARP and address conflict exchange. Frame 1 is the offend
ing node's gratuitous ARP. Frame 2 is the defending node's ARP Reply. Frame 3 is the 
defending node's gratuitous ARP. At the end of frame 3, all network segment nodes that 
have the IP address 192.168.0.1 in their ARP caches have been reset to the proper MAC 
address of Ox00-60-97-02-6D-3D. 

Inverse ARP (lnARP) 
For Non-Broadcast Multiple Access (NBMA)-based WAN technologies such as X.25, Frame 
Relay, and ATM, the Network Interface Layer address isn't a MAC address but a virtual
circuit identifier. For example, for Frame Relay, the virtual-circuit identifier is the Frame 
Relay Data Link Connection Identifier (DLCI). To address frames for a given destination, 
the Frame Relay header's DLCI is set to the value that corresponds to the virtual circuit 
over which the frame is traveling. With NMBA technologies, the virtual-circuit identifier 
is known but the IP address of the interface on the other end of the virtual-circuit isn't. 

InARP is used to resolve the IP address on the other end of a virtual circuit based on a 
known Frame Relay DLCI. As RFC 2390 describes, InARP was designed specifically for 
Frame Relay virtual circuits. Frame Relay link management protocols such as Local Man
agement Interface (LMI) determine which virtual circuits are in use over the physical 
connection to the Frame Relay service provider. Once the DLCis are determined, InARP 
is used to query each virtual circuit to determine the IP address of the interface on the 
other end. The response to the InARP is used to build a table of entries consisting of [DLCI, 
forwarding IP address]. 

More Info lnARP, as designed for Frame Relay virtual circuits, is described in 
RFC 2390, which can be found in the \RFC folder on the companion CD-ROM. 

Because the DLCI values are only locally significant, the SHA and THA are irrelevant. In 
both the InARP Request and InARP Reply, the SHA field is typically set to 0 and the TPA 
field is set to the local DLCI value. The relevant information is the value of the SPA field 
in the InARP Request and the InARP Reply. The InARP responder uses the InARP Request's 
SPA to add an entry to its table consisting of [local DLCI, SPA of InARP Request]. The InARP 
requester uses the InARP Reply's SPA to add an entry to its table consisting of [local DLCI, 
SPA of InARP Reply]. 



70 I PART ! The Network Interface Layer 

The InARP Request and Reply have the same structure as the ARP Request and Reply, ex
cept 2-byte hardware adresses are used. The ARP Operation field is set to Ox0008 for an 
InARP Request and Ox0009 for an InARP Reply. 

Proxy ARP 
Proxy ARP is the answering of ARP Requests on behalf of another node. As RFC 925 
describes, Proxy ARP is used in situations where a subnet is divided without the use of 
a router. A proxy ARP device is placed between nodes on the same subnet. The proxy 
ARP device is aware of what nodes are available on which segment. The proxy ARP device 
also answers ARP Requests and facilitates the forwarding of unicast IP packets for com
munication between nodes on separate segments. The existence of the proxy ARP 
device is transparent to the nodes on the subnet. A proxy ARP device is often physically 
a router device; however, it is not acting as an IP router, forwarding IP datagrams between 
two IP subnets. Figure 3-3 shows an example of a proxy ARP configuration. 

More Info Use of Proxy ARP in divided subnet situations is described in RFC 925, 
which can be found in the \RFC folder on the companion CD-ROM. 

Node 1 

I 

Proxy ARP Device 

Node 2 

Single 
Subnet 

Figure 3-3. A single subnet configuration, using a Proxy ARP device. 

When Node 1 wants to send an IP datagram to Node 2 on the other side of the proxy 
ARP device, because Node 1 and Node 2 are on the same logical IP subnet, Node 1 sends 
an ARP Request with Node 2's IP address as the TPA. The proxy ARP device receives the 
ARP Request and, even though the TPA isn't its own address, the proxy ARP device sends 
an ARP Reply to Node 1 with the proxy ARP device's MAC address as the SHA. Node 1 
then sends the IP datagram to the proxy ARP device's MAC address. As far as Node 1 is 
concerned, it has resolved Node 2's MAC address and delivered the IP datagram to Node 
2. The proxy ARP device next delivers the IP datagram to Node 2, using ARP if neces
sary to resolve Node 2's MAC address. 



Chapter 3 Address Resolution Protocol (ARP) I 71 

The Windows 2000 Routing and Remote Access service uses proxy ARP to facilitate com-
. munications between remote access clients and nodes on the network segment to which 
the remote access server is attached. When IP-based remote access clients connect, the 
remote access server assigns them an IP address. The IP address assigned can either be 
from the address range of a subnet to which the remote access server is attached, an on
subnet address, or from the address range of a separate subnet, an off-subnet address. 
Proxy ARP is used when the remote access server assigns an on-subnet address. An on
subnet address range is used when either the Routing and Remote Access service is 
configured to use DHCP to obtain addresses, or a range of addresses from a directly 
attached subnet is manually configured. Figure 3-4 shows an example of a remote ac
cess server manually configured with an on-subnet address range. 

The subnet to which the remote access server is attached is 10.1.1.0/24, implying a range 
of usable addresses from 10.1.1.1 through 10.1.1.254. In this case, the network adminis
trator is using the high end of the range (10.1.1.200 through 10.1.1.254) for assignment 
to remote access clients. 

Remote Access Client 
Assigned address: 10.1.1.201 

10.1.1.0/24 

10.1.1.50 

Windows 2000 
Remote Access Server 

Configured range: 
10.1.1.200-10.1.1.254 

10.1.1.8 

Figure 3-4. A Windows 2000 remote access server, configured with an on-subnet address 
range using proxy ARP. 

When an IP-based remote access client successfully connects and is assigned an IP ad
dress, the Routing and Remote Access service tracks the assigned address in a connec
tion table. When a host on the network to which the remote access server is attached 
sends an ARP Request for the remote access client's assigned on-subnet IP address, the 
remote access server answers with an ARP Reply and receives the forwarded IP datagram. 
The Routing and Remote Access service then forwards the IP datagram addressed to the 
remote access client over the appropriate remote access connection. 



72 I PART i The Network Interface Layer 

If the remote access server is manually configured with a range of addresses that repre
sents a different subnet (an off-subnet address range), the remote access server acts as 
an IP router forwarding IP datagrams between separate subnets. 

Summary 
ARP is used as a translation layer between Internet Layer addresses and Network Inter
face Layer addresses. ARP on LAN links is used to resolve the forwarding IP address of 
a node to its corresponding MAC address and to detect IP address conflicts. InARP on 
NBMA links is used to map a DLCI value to the IP address of the node on the other end 
of the virtual circuit. Proxy ARP is used to subdivide an IP subnet and provide transpar
ent communication without using a IP router. 



II 
Internet 
Layer Protocols 





75 

Internet Protocol (IP) Basics 

To fully grasp TCP /IP, users need to completely understand one of its most important 
protocols: Internet Protocol (IP). IP is the internetworking building block of all the other 
protocols at the Internet Layer and above. 

Introduction to IP 
IP embodies the Internet Layer of the DARPA model and provides the internetworking 
functionality that makes possible large-scale internetworks such as the Internet. IP has 
lasted since it was formalized in 1981, and will continue to be used on the Internet for 
years to come. Only relatively recently have IP's shortcomings been addressed in a new 
version known as IP version 6 (1Pv6). For more information on 1Pv6, see Chapter 9, 
"Internet Protocol Version 6 (1Pv6)." IP's amazing longevity is a tribute to its original 
design. 

More Info RFC 791, "Internet Protocol," documents IP. This RFC can be found 
in the \RFC folder on the companion CD-ROM. 

Note This chapter uses IP to refer to version 4 of IP that is in widespread use 
today. IP version 6 will be denoted as 1Pv6. 

IP Services 
IP offers the following services to upper layer protocols: 

• Internetworking protocol IP is an internetworking protocol, also known as 
a mutable protocol. The IP header contains information necessary for routing 
the packet, including source and destination IP addresses. An IP address is 
composed of two components: a network address and a node address. 
Internetwork delivery, or routing, is possible because of the existence of a des
tination network address. IP allows the creation of an IP internetwork, which is 
two or more networks interconnected by IP router(s). 

The IP header also contains a link count, which is used to limit the number of 
links on which, the packet can travel before being discarded. 



76 I PART ii Internet Layer Protocols 

• Multiple client protocols IP is an internetwork carrier for upper layer pro
tocols. IP can carry several different upper layer protocols, but each IP packet 
can contain data from only one upper layer protocol at a time. Because each 
packet can carry one of several protocols, there must be a way to indicate 
which upper layer protocol a packet contains so that the data can be for
warded to the appropriate upper layer protocol at the destination. Both the 
client and the server always use the same protocol for a given exchange of 
data. Therefore, the packet does not need to indicate separate source and 
destination protocols. 

Examples of upper layer protocols include other Internet Layer protocols such 
Internet Control Message Protocol (ICMP) and Internet Group Management 
Protocol (IGMP). Further examples include Transport Layer protocols such as 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). 

• Datagram delivery IP is a datagram protocol that provides a connectionless, 
unreliable. delivery service for upper layer protocols. Connectionless means 
that no handshaking occurs between IP nodes prior to sending data, and that 
no logical connection is created or maintained at the Internet Layer. Unreliable 
means that IP sends a packet without sequencing and without an acknowledg
ment that the destination was reached. IP makes a best effort to deliver pack
ets to the next hop or the final destination. End-to-end reliability is the 
responsibility of upper layer protocols such as TCP. 

• Independence from Network Interface Layer At the Internet Layer, IP is 
designed to be independent of the network technology present at the Network 
Interface Layer. IP is independent of OSI Physical Layer attributes such as 
cabling, signaling, and bit rate. It also is independent of OSI Data Link Layer 
attributes such as media access control scheme, addressing, and maximum 
frame size. IP uses a 32-bit address that is independent of the addressing 
scheme used at the Network Interface Layer. 

• Fragmentation and reassembly To support the maximum frame sizes of 
different Network Interface Layer technologies, IP allows for the fragmentation 
of a payload when forwarding onto a link that has a lower MTU than the IP 
datagram size. Routers or sending hosts fragment an IP payload, and fragmen
tation can occur multiple times. The destination host then reassembles the frag
ments into the originally sent IP payload. More information on fragmentation 
and reassembly are provided in the "Fragmentation" section of this chapter. 

• Extensible through IP options When features are required that are not 
available using the standard IP header, IP options can be used. IP options are 
appended to the standard IP header and provide custom functionality, such as 
the ability to specify a path that an IP datagram will follow through the IP 
internetwork. 

• Datagram packet-switching technology IP is an example of a datagram 
packet-switching technology: each packet is a datagram, an unacknowledged 



IP MTU 

Chapter 4 Internet Protocol (IP) Basics I 77 

and non-sequenced message, that is forwarded by the switches of the switching 
network using a globally significant address. In the case of IP, each switch in 
the switching network is an IP router, and the globally significant address is the 
destination IP address. This address is examined at each router. The router 
makes an independent routing decision and forwards the packet. Because each 
router decides independently where to forward a packet, a packet's path from 
Node 1 to Node 2 is not necessarily the packet's path from Node 2 to Node 1. 
Additionally, because each packet is separately switched, each can take a differ
ent path between the source and destination; and, because of various transit de
lays, each packet can arrive in a different order from which it was sent. 

Note The term switch used here is for a generalized forwarding device and is 
not meant to imply a Layer 2 or Layer 3 switch. A Layer 2 switch is typically used 
in Ethernet environments to. segment traffic. A Layer 3 switch is equivalent to a 
router. 

Each Network Interface Layer technology imposes a maximum-sized frame that can be 
sent. The maximum-sized frame consists of the framing header and trailer, and a payload. 
The maximum size of a frame for a given Network Interface Layer technology is called 
the maximum transmission unit (MTU). For an IP packet, the Network Interface Layer 
payload is an IP datagram. Therefore, the maximum-sized payload becomes the maxi
mum-sized IP datagram. This is known as the IP MTU. 

Table 4-1 lists the IP MTUs for the various Network Interface Layer technologies that 
Chapters 1 and 2 discuss. 

Table 4-1. IP MTUs for Common Network Interface Layer Technologies 

Network Interface Layer Technology 

Ethernet (Ethernet II encapsulation) 

Ethernet (IEEE 802.3 SNAP encapsulation) 

Token Ring (4 and 16 Mbps) 

FDDI 

X.25 

Frame Relay 

ATM (Classical IP over ATM) 

Minimum MTU 

IP MTU 

1500 

1492 

varies based on token holding time 

4352 

1600 

1600 

9180 

576 

In an environment with mixed Network Interface Layer Protocols, fragmentation can oc
cur when crossing a router from a link with a higher IP MTU to a link with a lower IP MTU. 
IP fragmentation is discussed in more detail in the "Fragmentation" section of this chapter. 



78 I PART !I Internet Layer Protocols 

Microsoft Windows 2000 Registry Setting for IP MTU 

In Windows 2000 it is possible to override the MTU as normally reported to the Network 
Driver Interface Specification (NDIS) by the NDIS Media Access Control (MAC) driver. 
When TCP/IP initializes, it queries its bound NDIS network adapter driver and receives 
the MTU. The MTU registry setting is used to set an MTU that is lower than the default 
MTU, as reported by the NDIS driver, and greater than the minimum value of 68. Values 
in the MTU registry setting that are greater than the default MTU are ignored; if the MTU 
registry setting is set to a value less than 68·, 68 is used. 

It is useful to change the default MTU size for testing or for solving MTU issues in trans
lational bridge environments. 

MTU 
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<Adapter 
Name>\Parameters\Tcpip 
Data type: REG_DWORD 
Valid range: 68 - <the MTU reported by the network adapter> 
Default: 0xFFFFFFFF (the MTU reported by the network adapter) 
Present by default: No 

The IP Datagram 
An IP datagram consists of an IP header and an IP payload, as Figure 4-1 illustrates. 

IP Header IP Payload 

Figure 4-1. Tbe IP datagram consists of an IP header and an IP payload. 

• IP header The IP header is of variable size, between 20 and 60 bytes, in 
4-byte increments. It provides routing support, payload identification, IP 
header and datagram size indication, fragmentation support, and options. 

• IP payload The IP payload is of variable size, ranging from 8 bytes (a 68-
byte IP datagram with a 60-byte IP header) to 65,515 bytes (a 65,535-byte IP 
datagram with a 20-byte header). 

The IP Header 
Figure 4-2 displays the IP header's structure. The following sections discuss the fields of 
the IP (version 4) header. 

Version 
The Version field is 4 bits long and is used to indicate the IP header version. A 4-bit field 
can have values from 0 through 15. The standard IP version used today on corporate 



Chapter 4 Internet Protocol (IP) Basics I 79 

networks and the Internet is version 4, or IPv4. The next version of IP is version 6, or 
IPv6. All other values for the version field are either undefined or not in use. For the latest 
list of the defined values of the IP Version field, see http://www.isi.edu/in-notes/iana/ 
assignments/version-numbers. 

Version 

IP Header Length 

Type of Service f--L-1 ~I I ~I I \'-'--II __ 

Total Length 
f-L-L-L~Lf--'-'-~'-'--1 

Identifier 

Time-to-Live 

Protocol 

Header Checksum 

IP Options and Padding I 1111 I I 1111 I 11 I I 11111 I 1111 I I 

Figure 4-2. The format of the IP version 4 header. 

Header Length 
The Header Length field is 4 bits long and is used to indicate the IP header size. The 
maximum number that can be represented with 4 bits is 15. Therefore, the Header Length 
field cannot possibly be a byte counter. Rather, the Header Length field indicates the 
number of 32-bit words ( 4-byte blocks) in the IP header. The typical IP header does not 
contain any options and is 20 bytes long. The smallest possible header length is 5 (Ox5). 
With the maximum amount of IP options, the largest IP header can be 60 bytes long, 
indicated with a header length of 15 (OxF). 

Using a 4-byte .block counter to indicate the IP header size means that the IP header size 
must always be a multiple of 4. If IP options extend the IP header, they must do so in 
4-byte increments. If an IP option is not 4 bytes long, option padding must be used so 
that the IP header is always along 4-byte boundaries. 



80 I PART !! Internet Layer Protocols 

Type Of Service 
The Type Of Service (TOS) field is 8 bits long and is used to indicate the quality of ser
vice with which this datagram is to be delivered by the internetwork routers. The TOS 
field contains sub-fields and flags to indicate desired precedence, delay, throughput, 
reliability, and cost characteristics. 

Within the 8 bits of the TOS field are five fields that indicate a different quality of the 
-datagram delivery, as Figure 4-3 illustrates. The TOS field is set by the sending host and 
is not modified by routers. All IP datagram fragments contain the same TOS setting as 
the original IP datagram. 

Delay Reliability 

I I 

0 

I 

I 
Precedence Throughput 

Cost 

Reserved 

Figure 4-3. Tbe format of the JP Type Of Service field. 

Normally, a sending host sends an IP datagram with the TOS field set to the value of OxOO: 
routine precedence, normal delay, normal throughput, normal reliability, and normal cost. 
Routers normally ignore the values in TOS field and forward all datagrams as if the fields 
are not set. This is known as TOSO routing. However, modern routing protocols such as 
OSPF and Integrated IS-IS now support the calculation of routes for each value of the 
TOS field. 

The routers and the routing protocol determine how the various values in the TOS field 
are interpreted. In a properly configured network, packets with specific TOS values are 
forwarded over different paths. This can improve routing and delivery efficiency in a multi
path IP internetwork. For example, an IP internetwork could have one path for general 
traffic, one for low-delay traffic, and another path for high reliability traffic. When send
ing hosts set various combinations of TOS values, routers can choose between those paths. 

The TOS field is used for quality of service (QoS) in IP internetworks. 

Precedence 

The Precedence field is 3 bits long and is used to indicate the importance of the datagram. 
Table 4-2 lists the defined values of the Precedence field. 



Delay 

Chapter 4 Internet Protocol (IP) Basics I 81 

Table 4-2. Values of the IP Precedence Field 

Precedence Value Precedence 

000 Routine 

001 Priority 

010 Immediate 

011 Flash 

100 Flash Override 

101 CRITIC/ECP 

110 Internetwork Control 

111 Network Control 

The Precedence field is set to 000 (Routine) by default. 

The Delay field is a flag indicating either Normal Delay ( =0) or Low Delay ( =1). If Delay 
is set to 1, the IP router forwards the IP datagram along the path that has the lowest delay 
characteristics. An application can request the low delay path when sending either time
sensitive data, such as digitized voice or video, or interactive traffic, such as Telnet ses
sions. Based on the Delay flag, the router might choose the lower delay terrestrial WAN 
link over the higher delay satellite link, even if the satellite link has a higher bandwidth. 

Throughput 

The Throughput field is a flag indicating either Normal Throughput ( =0) or High Through
put ( =1). If the Throughput field is set to 1, the IP router forwards the IP datagram along 
the path that has the highest throughput characteristics. An application can request the 
high throughput path when sending bulk data. Based on the Throughput flag, the router 
can choose the higher throughput satellite link over the lower throughput terrestrial WAN 
link, even if the terrestrial link has a lower delay. 

Reliability 

The Reliability field is a flag indicating either Normal Reliability ( =O) or High Reliability 
( =1). During periods of congestion at an IP router, the Reliability field is used to decide 
which IP datagrams to discard first. If the Reliability field is set to 1, the IP router dis
cards these datagrams last. An application can request the high reliability path when 
sending time-sensitive data, so that it cannot be discarded. For example, with some 
methods of sending digital video, the digitized video is sent as two types of packets: the 
primary type is used to reconstruct the basic video image, and a secondary type is used 
to provide a higher resolution image. In this case, the primary packets are sent with the 
Reliability field set to 1 and the secondary packets are sent with the Reliability field set 
to 0. If congestion occurs at the router, the router discards the secondary packets first. 



82 I PART II Internet Layer Protocols 

Cost 

The Cost field is a flag indicating either Normal Cost (=O) or Low Cost (=1), where cost 
indicates monetary cost. If the Cost field is set to 1, the IP router forwards the IP datagram 
along the path that has the lowest cost characteristics. An application can request the low 
cost path when sending non-critical data. Based on the Cost flag, the router can choose 
a lower cost terrestrial link over a higher cost satellite link, even if the terrestrial link has 
a lower bandwidth. 

Reserved 

The Reserved field is the last bit and must be set to 0. Routers ignore this field when 
forwarding IP datagrams. 

Microsoft Windows 2000 Registry Setting for Default TOS 

DefaultTOS 
In Windows 2000, it is possible to set the default value for the TOS field for packets that 
a host sent. Microsoft Windows Sockets applications can override this default value. By 
default, the DefaultTOS vaiue is set to 0. 

Changing the value of DefaultTOS is necessary only for testing, when all traffic from a 
host can be characterized in terms of a specific TOS, and TOS routing is supported by 
your routing infrastructure. 

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Value type: REG_DWORD 
Valid range: 0 - 255 
Default: 0 
Present by default: No 

For example, to set all traffic from a host for routine precedence, minimum delay, and 
maximum reliability, set DefaultTOS to 20 (20 = 00010100). 

Setting the TOS with PING.EXE 

The Microsoft Windows 2000 PING utility with the "-v" option can be used to set the TOS 
value in ICMP Echo Request messages. The syntax is as follows: 

PING -v [TOS value] [IP address or host name] 

The TOS value is expressed in decimal. For example, to ping 10.0.0.1 with a TOS field 
that is normal precedence, minimum delay, and minimum monetary cost, use the follow
ing command: 

PING -v 18 10.0.0.1 



Chapter 4 Internet Protocol (IP) Basics I 83 

Total Length 
The Total Length field is 2 bytes long and is used to indicate the size of the IP datagram 
(IP header and IP payload) in bytes. With 16 bits, the maximum total length that can be 
indicated is 65,535 bytes. For maximum-sized IP datagrams, the total length is the same 
as the IP MTU for that Network Interface Layer technology. 

Between the header length and the total length, the IP payload length can be determined: 

IP payload length (bytes) = total length (bytes) - 4*header length (32-bit words) 

Identification 

Flags 

The Identification field is 2 bytes long and is used to identify a specific IP packet sent 
between a source and destination node. The sending host sets the Identification field's 
value, and the field is incremented for successive IP datagrams. The Identification field 
is used to identify the fragments of an original IP datagram. 

The Flags field is 3 bits long and contains two flags for fragmentation. One flag is used 
to indicate whether the IP datagram is eligible for fragmentation, and the other indicates 
whether or not there are more fragments to follow for this fragmented IP datagram. 

More information on these flags and their us.es can be found in the "Fragmentation" section 
in this chapter. 

Fragment Offset 
The Fragment Offset field is 13 bits long and is used to indicate the offset of where this 
fragment begins relative to the original IP payload. 

More information on the Fragment Offset field can be found in the "Fragmentation" sec
tion in this chapter. 

Time To Live 
The Time To Live field is 1 byte long and is used to indicate on how many links this IP 
datagram can travel before an IP router discards it. The Time To Live field (TTL) was origi
nally intended to be used as a time counter, to indicate the number of seconds that the 
IP datagram could exist on the Internet. An IP router was intended to keep track of the 
time that it received the IP datagram and the time that it forwarded the IP datagram. The 
TTL was then decreased by the number of seconds that the packet resided at the router. 

However, the latest modern standard (RFC 1812) specifies that IP routers decrement the 
TTL by one when forwarding an IP datagram. Therefore, the TTL is an inverse link count. 
The sending host sets the initial TTL, which acts as a maximum link count. The maxi
mum value limits the number of links on which the datagram can travel and prevents a 
datagram from indefinitely looping. 



84 I PART II Internet Layer Protocols 

Some additional aspects of the TTL field include: 

• Routers decrement the TTL in received packets to be routed before consulting 
the routing table. If the TTL is 0, the packet is discarded and an ICMP Time 
Expired-TTL Expired In Transit message is sent back to the sending host. 

• Destination hosts do not check the TTL field. 

• Sending hosts must send IP datagrams with a TTL greater than 0. The exact 
value of the TTL for sent IP datagrams is either an operating system default or 
is specified by the application. The maximum value of the TTL is 255. 

• A recommended value of the TTL is twice the diameter of your internetwork. 
The diameter is the number of links between the farthest two nodes on the IP 
internetwork. 

• The TTL is independent of routing protocol metrics such as the Routing Infor
mation Protocol (RIP) hop count and the Open Shortest Path First (OSPF) cost. 

Note The TTL can be mistakenly referred to as a hop count when in fact it is a 
link count. The difference is subtle but important. Hop count is the number of 
routers to cross to reach a given destination. Link count is the number of Net
work Interface Layer links to cross to reach a given destination. The difference 
between hop count and link count is 1. For example, if host A and host B are 
separated by five routers, the hop count is 5, but the link count is 6. An IP 
datagram sent from host A to host B with a TTL of 5 will be discarded by the fifth 
router. An IP datagram sent from host A to host B with a TTL of 6 will arrive at 
host B. 

Microsoft Windows 2000 Registry Setting for Default TTL 

DefaultTTL 
In Windows 2000 it is possible to set the default value for the TTL field for packets sent 
by a host. Windows Sockets applications can override this default value. 

Changing the value of Default TTL is necessary only when the diameter of your network 
changes. 

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Value type: REG_DWORD 
Valid range: 1 - 255 
Default: 128 
Present by default: No 

The default value of DefaultTTL is set to 128 so that IP packets sent by a Windows 2000 
computer can reach locations on the Internet that might need to traverse many links. 



Chapter 4 Internet Protocol (IP) Basics I 85 

Setting the TTL with PING 

The Windows 2000 PING utility with the "-i" option can be used to set the TTL value in 
ICMP Echo messages. The syntax is: 

PING -i [TTL value] [IP address or host name] 

The TTL value is expressed in decimal. For example, to ping 10.0.0.1 with a TTL field 
that is set to 7, use the following command: 

PING -i 7 10.0.0.1 

The default TTL for ICMP Echo messages sent by PING is 32. 

Protocol 
The Protocol field is 1 byte long and is used to indicate the upper layer protocol con
tained within the IP payload. The Protocol field is an explicit indication of the client pro
tocol. Some common values of the IP protocol field are 1 for ICMP, 6 for TCP, and 17 
(Oxl 1) for UDP. The Protocol field acts as a multiplex identifier so that the payload can 
be passed to the proper upper layer protocol upon receipt at the destination node. 

Windows Sockets applications can refer to protocols by name. Protocol names are 
resolved to protocol numbers through the PROTOCOL file stored in the \SystemRoot\ 
system32 \drivers\ etc directory. 

Table 4-3 lists some of the values of the IP Protocol field for protocols that Windows 2000 
supports. 

Table 4-3. Values of the IP Protocol Field 

Value Protocol 

0 Reserved 

1 Internet Control Message Protocol (ICMP) 

2 Internet Group Management Protocol (IGMP) 

4 IP in IP encapsulation 

6 Transmission Control Protocol (TCP) 

8 Exterior Gateway Protocol (EGP) 

17 User Datagram Protocol (UDP) 

46 Resource Reservation Protocol (RSVP) 

47 Generic Routing Protocol (GRE) 

50 IP Security Encapsulating Security Payload (ESP) 

51 IP Security Authentication Header (AH) 

89 Open Shortest Path First ( OSPF) 

For a complete list of IP Protocol field values, see http://www.isi.edu/in-notes/iana/ 
assignments/protocol-numbers. 



86 I PART II Internet Layer Protocols 

Header Checksum 
The Header Checksum field is 2 bytes long and performs a bit-level integrity check on 
the IP header only. The IP payload is not included. IP payloads must include their own 
checksums to check for bit-level integrity. The sending host performs an initial checksum 
in the sent IP datagram. Each router in the path between the source and destination verifies 
the Header Checksum field before processing the packet. If the verification fails, the router 
silently discards the IP datagram. 

Because each router in the path between the source and destination decrements the TTL, 
the header checksum changes at each router. 

To compute the header checksum, each 16-bit quantity in the IP header is one's comple
mented; bits within the 16-bit quantity that are set to 0 are changed to 1, bits within the 
16-bit quantity that are set to 1 are changed to 0. The one's complemented 16-bit quan
tities are added together and the sum is one's complemented. The result is placed in the 
Header Checksum field. 

For the purposes of computing the header checksum over all the fields in the IP header, 
the value of the Header Checksum field is set to 0. 

Source Address 
The Source Address field is 4 bytes long and contains the IP address of the source host, 
unless a network address translator (NAT) is translating the IP datagram. A NAT is used 
to translate between public and private addresses when connecting to the Internet. 

More Info For more information on NAT, see RFC 1631 in the \RFC folder on the 
companion CD-ROM. 

Destination Address 
The Destination Address field is 4 bytes long and contains the IP address of the destina
tion host, unless the IP datagram is being translated by a network address translator or 
being loose or strict source routed. More information on IP source routing can be found 
in the "IP Options" section of this chapter. 

Options and Padding 
Options and padding can be added to the IP header, but must be done so in 4-byte in
crements so that the size of the IP header can be indicated using the Header Length field. 

The following Network Monitor trace (Capture 04-01 in the \Captures folder on the 
companion CD-ROM) shows the structure of the IP header: 

+ Frame: Base frame properties 
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol 

IP: ID = 0x34CD; Proto = ICMP; Len: 60 



IP: Version = 4 (0x4) 
IP: Header Length = 20 (0x14) 
IP: Precedence = Routine 
IP: Type of Service = Normal Service 
IP: Total Length = 60 ( 0x3C) 
IP: Identification = 13517 (0x34CD) 
IP: Flags Summary = 0 (0x0) 

Chapter 4 Internet Protocol (IP) Basics I 87 

IP: ....... 0 = Last fragment in datagram 
IP: ...... 0. = May fragment datagram if necessary 

IP: Fragment Offset = 0 (0x0) bytes 
IP: Time to Live = 128 (0x80) 
IP: Protocol = ICMP - Internet Control Message 
IP: Checksum = 0xB869 
IP: Source Address= 157.59.8.1 
IP: Destination Address= 157.59.8.1 
IP: Data: Number of data bytes remaining 40 (0x0028) 

+ ICMP: Echo: From 157.59.11.19.To 157.54.08.01 

Fragmentation 
When a source host or a router must transmit an IP datagram on a link and the MTU of 
the link is less than the IP datagram's size, the IP datagram must be fragmented. When 
IP fragmentation occurs, the IP payload is segmented and each segment is sent with its 
IP header. 

The IP header contains information required to reassemble the original IP payload at the 
destination host. Because IP is a datagram packet-switching technology and the fragments 
can arrive in a different order from which they were sent, the fragments must be grouped 
(using the Identification field), sequenced (using the Fragment Offset field), and delim
ited (using the More Fragments flag). 

Virtual circuit packet-switching technologies such as X.25 and ATM require only fragment/ 
segment delimitation. For ex.ample, with ATM Adaptation Layer 5, an IP datagram is 
segmented into 48-byte segments that become the payloads for ATM cells. ATM sends 
the stream of cells that comprise the IP datagram and uses the third bit of the Payload 
Type field in the ATM header to indicate the end of the stream of cells for an IP datagram. 

Fragmentation Fields 
Figure 4-4 shows the fragmentation fields in the IP header. 

Identification 

The IP Identification field is used to group all the fragments of an original IP datagram 
together. The sending host sets the Identification field, and the field is preserved during 



88 I PART Ii Internet Layer Protocols 

the fragmentation process. The Identification field is set even when fragmentation of the 
IP payload is not allowed by setting the Don't Fragment flag. 

Identification c: 
Fragmentation Flags 

Fragment Offset 

0 

Don't Fragment 
I 

I 
Reserved More Fragments 

Figure 4-4. Tbe fields in the IP header used for fragmentation. 

Don't Fragment Flag 

The Don't Fragment (DF) flag is set to 0 to allow fragmentation and set to 1 to prohibit 
fragmentation. Therefore, fragmentation will occur only if the DF flag is set to 0. If frag
mentation is needed to forward the IP datagram and the DF flag is set to 1, the router 
discards the IP datagram and sends back an ICMP Destination Unreachable-Fragmenta
tion Needed And DF Set message back to the source host. 

Fragmentation is an expensive process at the routers and the destination host. The DF 
flag and the ICMP Destination Unreachable-Fragmentation Needed And DF Set message 
are the mechanisms by which a sending host discovers the MTU of the path between the 
source and the destination, or Path MTU Discovery. For more information, see Chapter 
7, "Internet Control Message Protocol (ICMP)." 

More Fragments Flag 

The More Fragments (MF) flag is set to 0 if there are no more fragments that follow this 
fragment (this is the last fragment), and set to 1 if there are more fragments that follow 
this fragment (this is not the last fragment). 

Fragment Offset 

The Fragment Offset field is set to indicate the position of the fragment ·relative to the 
original IP payload. The Fragment Offset is an offset used for sequencing during reas
sembly, putting the incoming fragments in proper order to reconstruct the original pay
load. The Fragment Offset field is 13 bits long. With a maximum IP payload size of 65,515 
bytes (the maximum IP MTU of 65,535 less a minimum-sized IP header of 20 bytes), the 
Fragment Offset field cannot possibly indicate a byte offset. At 13 bits, the maximum value 
is 8191. The fragment offset must be 16 bits long to be a byte offset. 



Chapter 4 Internet Protocol (IP) Basics I 89 

Because 16 bits are required to indicate a maximum-sized IP payload and only 13 bits 
are available in the Fragment Offset field, each value of the fragment offset must repre
sent 3 bits. Therefore, the Fragment Offset field is defined in terms of 8-byte blocks, called 
fragment blocks. 

During fragmentation, the payload is fragmented along 8-byte boundaries and the maxi
mum number of 8-byte fragment blocks is placed in each fragment. The Fragment Off
set field is set to indicate the starting fragment block for the fragment relative to the original 
IP payload. 

For each fragment being fragmented by a router, the original IP header is copied and the 
following fields are changed: 

• Header Length Might or might not change depending on whether IP options 
are present and whether the options are copied to all fragments or just the first 
fragment. IP options are discussed in the "IP Options" section in this chapter. 

• TIL Decremented by 1. 

• Total Length Changed to reflect the new IP header and IP payload size. 

• MF Set to 1 for first or middle fragments. Set to 0 for the last fragment. 

• Fragment Offset Set to indicate the position of the fragment in fragment 
blocks relative to the original payload. 

• Header Checksum Recalculated based on the changed fields in the IP header. 

The Identification field does not change for each fragment. 

Fragmentation Example 
As an example of the fragmentation process, a node on a Token Ring network wants to 
send a fragmentable IP datagram with the IP Identification field set to 9999 to a node on 
an Ethernet network. 

4 Mbps ring 
IP MTU = 4482 

10 Mbps Ethernet 
IP MTU = 1500 

Assuming a 9-millisecond token holding time, a 4-Mbps ring, and no Token Ring source 
routing header, the IP MTU for the Token Ring network is 4482 bytes. The Ethernet IP 



90 I PARl !I Internet Layer Protocols 

MTU is 1500 bytes using Ethernet II encapsulation. Table 4-4 shows the fields relevant 
to fragmentation in the IP header and their values for the original IP datagram. 

Table 4-4. Original IP Datagram 

IP Header Field Value 

Total Length 4482 
Identification 9999 
DF 0 

MF 0 

Fragment Offset 0 

The IP router connecting the two networks receives the IP datagram, checks its routing 
table, and notes that the interface on which to forward the datagram has a lower IP MTU 
than the datagram's size. The router then checks the Don't Fragment flag. If set to 1, the 
router discards the IP datagram and sends an ICMP Destination Unreachable-Fragmen
tation Needed And DF Set message back to the source host. If set to 0, the IP router frag
ments the 4462 byte IP payload (assuming no IP options are present) into four fragments, 
each of which can be sent on the 1500-byte Ethernet network. 

IP payloads on an Ethernet network can be 1480 bytes long, assuming no IP options are 
present. Each 1480-byte payload is 185 fragment blocks (185*8 = 1480). Therefore, the 
four fragments are three fragments each with payloads of 1480 bytes and the last frag
ment with 22 bytes (4462 = 1480 + 1480 + 1480 + 22). Figure 4-5 shows the fragmenta
tion process. 

4482 bytes 

=I 1

._________ 4462 byt_es ________ ---,... 

CIPT ] Payload 

IP I J 
~~---

Fragment 1 
Total Length: 1500 

IP 

Fragment 2 
Total Length: 1500 

I IP 
Fragment 3 

Total Length: 1500 

IP 11 

Fragment 4 
Total Length:42 

Figure 4-5. Tbe IP fragmentation process when fragmenting from a 4482-byte IP MTU link 
to a 1500-byte IP MTU link. 



Chapter 4 Internet Protocol (IP) Basics I 91 

Table 4-5 shows the fields relevant to fragmentation in the IP header of the four fragments. 

Table 4-5. Fragments of the Original IP Datagram 

IP Header Field Value 

Fragment 1 

Total Length 1500 
Identification 9999 
DF 0 
MF 1 
Fragment Offset 0 

Fragment 2 

Total Length 1500 
Identification 9999 
DF 0 
MF 1 
Fragment Offset 185 

Fragment3 

Total Length 1500 
Identification 9999 
DF 0 
MF 1 
Fragment Offset 370 

Fragment 4 

Total Length 42 
Identification 9999 
DF 0 
MF 0 
Fragment Offset 555 

Reassembly Example 
The fragments are forwarded by the intermediate IP router(s) to the destination host. 
Because IP is a datagram-based packet-switching technology, the fragments can take 
different paths to the destination and arrive in a different order from which the fragmenting 
router forwarded them. IP uses the Identification and Source IP Address fields to group 
the arriving fragments together. 

Upon receiving a fragment (not necessarily the first fragment of the original IP payload), 
IP allocates reassembly resources comprised of: 

• A data buffer to contain the IP payload (65,515 bytes) 



92 I PARl Ii Internet Layer Protocols 

• A header buffer to contain the IP header (60 bytes) 

• A fragment block bit table (1024 bytes or 8192 bits) 

• A total length data variable 

• A timer 

IP knows that a fragment arrived because either the MF flag or the Fragment Offset field 
has a non-zero value. An unfragmented IP datagram has MF flag = 0 and Fragment Off
set = 0. When the first fragment arrives (the Fragment Offset field is 0), its IP header is 
placed in the header buffer. When the last fragment arrives (the MF flag is 0), the total 
data length is computed. 

For each fragment arriving, the IP payload is placed in the data buffer according to the 
values of the Fragment Offset and Total Length fields; the bits corresponding to the ar
riving fragment blocks are set in the fragment block bit table. When the final fragment 
arrives (which may not be the last fragment), all the bits in the fragment block bit table 
are set and reassembly of the original IP datagram is complete. IP delivers the IP pay
load to the appropriate upper layer protocol based on the Protocol field's value. 

The reassembly timer is used to abandon the reassembly process within a certain amount 
of time. If all the fragments do not arrive before the reassembly timer expires, the IP 
datagram is discarded and the destination host can send an ICMP Time Exceeded-Frag
mentation Time Expired message to the source host. RFC 791 recommends a default 
reassembly timer of 15 seconds; as fragments arrive, the reassembly timer is set to the 
maximum of the current value and the value of the arriving fragment's TTL field. 

Figure 4-6 shows the reassembly process for our example fragmentation. 

Fragment 1 
Fragment Offset: 0 

-o-cr=~_·_~ 

Fragment 2 
Fragment Offset: 185 

[-IP -

I IP 

Payload 

Fragment 3 
Fragment Offset: 370 

Fragment 4 
Fragment Offset: 555 

I IP 11 

l 
]] 

Figure 4-6. The IP reassembly process for the four fragments of the original IP datagram. 



Chapter 4 Internet Protocol (IP) Basics I 93 

Fragmenting a Fragment 
It is possible for fragments to become further fragmented. In this case, each fragment is 
fragmented to fit the MTU of the link onto which it is being forwarded. The process of 
fragmenting a fragment is slightly different from fragmenting an original IP datagram. The 
difference is in how the MF flag is set. 

When fragmenting a fragment, the MF flag is always set to 1, except when the fragment 
of the fragment is the last fragment of the last fragment. 

• If an IP router fragments a previously fragmented first or middle fragment, all 
of the fragments will have the MF flag set to 1. 

• If an IP router fragments a previously fragmented last fragment, all of the 
fragments except the last fragment will have the MF flag set to 1. 

Therefore, regardless of how many times the IP datagram is fragmented, only one frag
ment will have the MF flag set to 0, indicating the last fragment of the original IP datagram. 

Avoiding Fragmentation 
As seen from the preceding discussion, while fragmentation allows IP nodes to connect 
regardless of differing MTUs in intermediate network segments and without user inter
vention, IP fragmentation and reassembly is a relatively expensive process-both at the 
routers (or sending hosts) and at the destination host. On the modern Internet, fragmen
tation is highly discouraged; Internet routers are busy enough with the forwarding of IP 
traffic. 

Fragmentation can be avoided by taking the following measures: 

• Set the DF flag to 1 on all IP datagrams sent. 

• Discover the IP MTU that is supported by all of the links in the path between 
the source and the destination (the path MTU). 

For more information on the path MTU discovery process, see Chapter 7, "Internet Con
trol Message Protocol (ICMP)." 

Setting the OF with PING 

The Windows 2000 PING utility with the "-f" option can be used to set the DF flag to ~ 
in ICMP Echo messages. The syntax is: 

PING -f [IP address or host name] 

For example, to ping 10.0.0.1 and set the DF to 1: 

PING -f 10.0.0.1 

The default DF flag ICMP Echo messages sent by PING is 0 (fragmentation allowed). 



94 I ?AF?l n Internet Layer Protocols 

Setting the Payload Size with PING 

The Windows 2000 PING utility with the "-1" option can be used to set the size of the 
ICMP payload in ICMP Echo messages. The syntax is: 

PING -1 [payload size] [IP address or host name] 

The payload value is expressed in decimal. 

For example, to ping 10.0.0.1 with an ICMP payload size of 5000: 

PING -1 5000 10.0.0.1 

The default ICMP payload size PING is 32. 

The ICMP payload size is not the same as the IP payload size because ICMP Echo 
messages include an ICMP header 8 bytes long. Therefore, to calculate the IP payload's 
size, add 8 to the size of the ICMP payload. To calculate the IP datagram's size, add 20 
to the IP payload's size. To ping with an Echo at the maximum size allowed by the 
Network Interface technology, subtract 28 from the IP MTU. For example, to ping with 
a maximum-sized Echo on an Ethernet network (with an IP MTU of 1500), the PING 
command becomes: 

PING -1 1472 10.0.0.1 

Using PING to Create Source-Fragmented Packets 

The Windows 2000 PING utility with the "-1" option can be used to produce source-frag
mented packets. Pinging with an ICMP payload size that is greater than [IP MTU - 28] bytes 
produces source-fragmented packets. For example, pinging from an Ethernet node with 
an ICMP payload size of 1472 or less will not produce fragmented packets. Pinging from 
an Ethernet node with an ICMP payload size greater than 1472 will produce fragmented 
packets. 

Fragmentation and Translational Bridging Environments 

Translational bridging is the interconnection of two different Network Interface Layer 
technologies on the same network by a Layer 2 device such as a bridge or switch. A 
common use for translational bridges is to connect an Ethernet segment to a Token Ring 
segment. In modern networks, translational bridging is done by switches to connect 10-
Mbps or 100-Mbps Ethernet nodes to servers on high-speed ports. Common high-speed 
port technologies include FDDI, gigabit Ethernet, and ATM. 

The most serious obstade to translational bridging is the difference in MTU between vari
ous Network Interface Layer technologies. Because there is no router involved, we can
not rely on either fragmentation or Path MTU Discovery processes to account for the 
differing MTUs. A translational bridge does not have the capability to fragment. Frames 
larger than the MTU of the link onto which they are to be forwarded are silently discarded 
by the bridge. 



Chapter 4 Internet Protocol (IP) Basics I 95 

As discussed in Chapter 11, "Transmission Control Protocol (TCP) Basics," when a TCP 
connection is established, both nodes communicate MTU information in the form of the 
TCP Maximum Segment Size (MSS) option. After receiving each other's TCP MSS, both 
nodes agree to send TCP segments at the lowest MSS of the two nodes. However, de
spite this MTU negotiation, proper communication between all nodes in a translational 
bridging environment might require the mo.dification of the IP MTU of specific nodes. 

For example, as Figure 4-7 shows, two Ethernet switch~s are connected together on an 
Ethernet backbone. On each Ethernet switch is the same FDDI port connected to an FDDI 
ring containing application servers. When the servers on the same FDDI ring communi
cate with each other, they can send packets with the FDDI MTU of 4352 bytes. When an 
Ethernet node on one of the switches uses TCP to connect to an application server on 
either FDDI ring, the TCP MSS option lowers the MTU of TCP-based IP datagrams to 1500. 

Ethernet 
backbone 

I 
loo o o o o o o o o o o o oil 
!00000000000.~~~ 

Ethernet switch 

I 
!00000 000000 oo oll 
loo o oo o o o o oo.~~ ol 

Ethernet switch 

FDDI ring 

FDDI ring 

111=1_1 
0000000 

Figure 4-7. An MTU problem in a translational bridging environment, caused by two FDDI 
hosts connected to two Ethernet switches. 

However, consider the communication between application servers on different FDDI 
rings. In creating the TCP connection, each server will negotiate an FDDI-based TCP MSS. 
Therefore, Ethernet switches will silently discard TCP-based IP datagrams sent between 
servers on different rings that have an IP total length greater than 1500. 

The solution to this problem is to manually configure the application servers' IP MTU for 
the smallest IP MTU of all the links within the translational-bridged network. 

Using our example, the IP MTU of the application servers on the FDDI rings are set to 
1500. Now translational bridges can forward IP datagrams between FDDI rings. Chang
ing the application servers' MTU means that when sending packets to application serv
ers on the same ring, the packets will be sent at the lower MTU of 1500, a lower efficiency 
than when sent at the default FDDI MTU of 4352. However, it is better to have lower 



96 I PART II Internet Layer Protocols 

efficiency between servers on the same ring than zero efficiency between servers on 
different rings. 

For Windows 2000 nodes, use the MTU registry setting to override the default MTU set
ting reported by NDIS. 

IP Options 

Copy 

IP options are additional fields appended to the standard 20-byte IP header. While IP 
options are not required on each IP header, the ability to process IP option fields is 
required. IP options are used infrequently for network testing purposes. 

The IP options portion size of the IP header will vary in length based on the IP options 
that are being used. The individual IP options vary in length also, from a single octet to 
multiple 4-octet quantities. Recall that the maximum-sized IP header that can be indicated 
with the Header Length field is 60 bytes. With a standard IP header size of 20 bytes, 40 
bytes are left for IP options. 

The first byte of each IP option has the format shown in Figure 4-8. 

Copy 

I 

Option 
Number 

11111111} 
Option 
Class 

, Figure 4-8. The format of the IP option octet. 

The Copy field is 1 bit long and is used when a router or a sending host must fragment 
the IP datagram. When the Copy field is set to 0, the IP option should be copied only 
into the first fragment. When the Copy field is set to 1, the IP option should be copied 
into all fragments. 

Option Class 

The Option Class field is 2 bits long and is used to indicate the general class of the 
option. Table 4-6 lists the defined option classes. 



Chapter 4 Internet Protocol (IP) Basics I 97 

Table 4-6. Option Classes 

Option Class 

0 

1 

2 

3 

Option Number 

Description 

Network control 

Reserved for future use 

Debugging and measurement 

Reserved for future use 

The Option Number field is 5 bits long and is used to indicate a specific option within 
the option class. Each option class can have up to 32 different option numbers. 

Table 4-7 lists the defined option classes and numbers for non-military computing. 

Table 4-7. Option Classes and Numbers 

Option Class Option Number 

0 0 

0 

0 3 

0 7 

0 9 

0 20 

2 4 

End Of Option List 

Option Code [010101010101010! 

Description 

End Of Option List A 1-octet option used to indicate 
the end of an option list. 

No Operation A 1-octet option used to align octets in 
a list of options. 

Loose Source Routing A variable length option used 
to route a datagram through a specified path where alter
nate routes can be taken. 

Record Route A variable length option used to trace a 
route through an IP internetwork. 

Strict Source Routing A variable length option used 
to route a datagram through a specified path where alter
nate routes cannot be taken. 

IP Router Alert A fixed length option used to inform 
the router that additional processing of the datagram is 
required. 

Internet Timestamp A variable length option used to 
record a series of timestamps at each hop. 

The End Of Option List option is always a single octet in length and is used at the end 
of the IP options when the IP options do not fall on a 4-byte boundary. The End Of Op
tion List option is used only at the end of the IP options, not at the end of each option. 



98 I PARl ii Internet Layer Protocols 

No Operation 

The No Operation option is always a single octet in length and is used between IP 
options when an IP· option does not fall on a 4-byte boundary. 

Record Route 

Option Code 

Option Length 

Next Slot Pointer 

First IP Address 

Second IP Address 

The Record Route option is a variable size option and is used to record the IP addresses 
of the far side interfaces of IP routers as it traverses the IP internetwork. The far side 
interface is the interface on the router on which the IP datagram .is forwarded. The far 
side interface is presumed to be farthest from the sending host. 

As the IP datagram is forwarded from router to router, each router adds its IP address to 
the list; each router also modifies the Next Slot Pointer field. The route from the source 
host to the destination host is recorded. To get the complete route, there must be enough 
room in the Record Route option header. Unlike Token Ring source routing, the num
ber of IP address slots is specified by the sending host and is fixed in the IP header. 

The Record Route option contains the following fields: 

• Option Code Set to 7 (Copy Bit=O, Option Class=O, Option Number=7): 

• Option Length Set by the sending host to the number of octets in the 
Record Route option. 

• Next Slot Pointer Set to the octet offset (starting at 1) within the Record 
Route option of the next available IP address. The minimum value of the Next 
Slot Pointer field is 4. 

• First IP Address, Second IP Address Set to the IP address of the far side 
interface by routers. With a maximum of 40 bytes in the IP options portion of 
the IP header, there is enough room for a maximum of nine IP addresses. 



Chapter 4 Internet Protocol (IP) Basics I 99 

Record Route Processing 

An IP router receiving an IP datagram with the Record Route option compares the 
Option Length and Next Slot Pointer fields. If the Next Slot Pointer field is less than the 
Option Length field, there are open IP address fields. The router records the IP address 
of the interface that is forwarding the datagram in the next available IP address field; the 
router also updates the Next Slot Pointer field by adding 4. If the value of the Next Slot 
Pointer field is greater than the Option Length field, all of the available IP address fields 
have been used by previous routers. The router then forwards the IP datagram without 
modifying the Record Route option. 

Both hosts must agree that the information in the Record Route option will be processed 
in IP datagrams sent between them. If one host does not agree, the information in the 
Record Route option is ignored upon receipt and return IP datagrams are not sent with 
the Record Route option. 

Because the Record Route option size is not a multiple of 4 bytes, either an End Of Op
tions option (if there are no more options) or a No Operation option (if there are more 
options) must be added to ensure that the IP header is an. integral multiple of 4 bytes. 

Setting the Record Route Option with PING 

The Windows 2000 PING utility with the "-r" option can be used to add the Record Route 
option and set the number of IP address slots in the Record Route option within an ICMP 
Echo message. The syntax is: 

PING -r [IP address slots] [IP address or host name] 

where the IP address slots value is expressed in decimal. 

For example, to ping 10.0.0.1 with seven IP address slots, use the following command: 

PING -r 7 10.0.0.1 

When both hosts are Windows 2000 computers, the Record Route option records the IP 
addresses of the far side interfaces of forwarding routers in the ICMP Echo. When the 
Echo is received, the IP addresses recorded are maintained and the Echo Reply is sent 
with the same Record Route option. The Echo Reply contains the recorded route for the 
Echo and the recorded route for the Echo Reply. 

Therefore, with the PING -r option, it is possible to record the far side router interfaces 
for the Echo (the path from host A to host B) and the far side router interfaces for the 
Echo Reply (the path from host B to host A). However, because there is only room for 
nine IP address slots, this is possible only if there are no more than four routers between 
hosts. 

Note The TRACERT utility does not use the PING -r option. 



100 I PART Ii Internet Layer Protocols 

Strict and Loose Source Routing 
The IP routing process at IP routers is performed through a comparison of the destina
tion IP address with entries in a local routing table. Each router makes a forwarding 
decision. However, it is sometimes necessary to specify a path that an IP datagram is to 
take regardless of the router's routing table entries. The path is specified before the source 
host sends the datagram; this is known as source routing. 

For example, in a multi-path IP internetwork (where there is more than one path between 
IP networks), routers choose the best path based on a lowest cost metric. Once a router 
determines all of the best paths, the higher cost paths are not used unless the topology 
of the internetwork changes. To check that higher cost paths contain valid links, you must 
do source routing. 

Source routing in IP is done by specifying the IP address(es) of the near side interfaces 
of the desired routers between the source and its destination. At each leg of the journey, 
the destination IP address in the IP header is set to the IP address of the next near side 
router interface. IP supports both loose and strict source routing. In loose source rout
ing, the next router's IP address does not have to be a neighboring· router; it can be 
multiple hops away. In strict source routing, the next router's IP address must be a neigh
boring router (a single hop away). 

IP source routing also records the path taken in the same way as the Record Route 
option. For each leg of the journey, the IP address of the interface on the router that for
warded the IP datagram is recorded. 

Note To use IP source routing, source routing must be enabled on all the rout
ers in the path between the source and destination hosts. It is a common prac
tice to disable source routing on routers, especially those connected to the 
Internet. 

Strict Source Route Option 

Option Code 

Option Length 

Next Slot Pointer 

First IP Address 

Second IP Address 



Chapter 4 Internet Protocol (IP) Basics I 101 

The Strict Source Route option contains the following fields: 

• Option Code Set to 137 (Copy Bit=l, Option Class=O, Option Number=9). 

• Option Length Set by the sending host to the number of octets in the Strict 
Source Route option. 

• Next Slot Pointer Set to the octet offset (starting at 1) within the next 
router's Strict Source Route option. The Next Slot Pointer field's minimum 
value is 4. The Next Slot Pointer field is used also in the same manner as the 
Record Route option to determine the location of the next IP address slot for 
recording the route. 

• First IP Address, Second IP Address Set by the sending host for the series 
of IP addresses for successive router destinations in the strict source route; set 
also by IP routers to the IP address of the forwarding interface. With a maxi
mum of 40 bytes in the IP options portion of the IP header, there is enough 
room for only a maximum of nine IP addresses. 

·When a sending host sends an IP datagram with the Strict Source Route option, the sending 
host: 

1. Sets the Next Slot Pointer field's value to 4. 

2. Places the first IP address in the strict source route in the IP header's Destina
tion IP Address field. 

When an IP router receives an IP datagram with the Strict Source Route option, it com
pares the Option Length and Next Slot Pointer fields. If the Next Slot Pointer field is less 
than the Option Length field, the router: 

1. Adds 4 to the Next Slot Pointer field's value. 

2. Replaces the IP header's destination IP address with the IP address that is 
recorded in the next slot (based on the Next Slot Pointer field's new value). 

3. Records the IP address of the forwarding interface in the previous slot. 

If the next destination IP address is not reachable using a directly attached network (the 
IP address of a neighboring router or host), the IP datagram is discarded and an ICMP 
Destination Unreachable-Source Route Failed message is sent back to the source host. 

If the Next Slot Pointer field's value is greater than the Option Length field's value, the 
IP datagram has reached its final destination. 

Because the size of the Strict Source Route option is not a multiple of 4 bytes, either an 
End Of Options option (if there are no more options) or a No Operation option (if there 
are more options after the Strict Source Route option) must be added to ensure that the 
IP header is an integral multiple of 4 bytes. Windows 2000 TCP /IP places the Strict Source 
Route option as the last option in the list and uses an End Of Options option to specify 
the end of the list of options. 



102 I PART II Internet Layer Protocols 

Setting the Strict Source Route Option with PING 

The Windows 2000 PING utility with the "-k" option can be used to add the Strict Source 
Route option. The PING utility also can be used to set the IP addresses of successive 
routers and the final destination in ICMP Echo messages. The syntax is: 

PING -k [IP address of first hop] [IP address of second hop] _[destination IP 
address] 

For example,. to ping 10.0.0.1 through neighboring router interfaces 192.168.1.1 and 
192.168.2.1, use the following command: 

PING -k 192.168.1.1 192.168.2.1 10.0.0.1 

Loose Source Route Option 

Option Code 

Option Length 

Next Slot Pointer 

First IP Address 

Second IP Address 

The Strict Source Route option contains the following fields: 

• Option Code Set to 131 (Copy Bit=l, Option Class=O, Option Number=3). 

• Option Length Set by the sending host to the number of octets in the Loose 
Source Route option. 

• Next Slot Pointer Set to the octet offset (starting at 1) within the next 
router's Loose Source Route option. The Next Slot Pointer field's minimum 
value is 4. The Next Slot Pointer field also is used in the same manner as the 
Record Route option to determine the location of the next IP ·address slot for 
recording the route. 

• First IP Address, Second IP Address Set by the sending host for the series 
of IP addresses for successive router destinations in the strict source route, and 
set by IP routers to the forwarding interface's IP address. With a maximum of 
40 bytes in the IP options portion of the IP header, there is enough room for 
only a maximum of nine IP addresses. 

When a sending host sends an IP datagram with the Loose Source Route option, the 
sending host: · 

1. Sets the Next Slot Pointer field's value to 4. 



Chapter 4 Internet Protocol (IP) Basics I 103 

2. Places the first IP address in the loose source route in the IP header's Destina
tion IP Address field. 

When an IP router receives an IP datagram with the Loose Source Route option, it com
pares the Option Length and Next Slot Pointer fields. If the Next Slot Pointer field's value 
is less than the Option Length field's value, the router: 

1. Adds 4 to the Next Slot Pointer field's value. 

2. Replaces the IP header's destination IP address with the IP address that is 
recorded in the next slot (based on the Next Slot Pointer field's new value). 

3. Records the IP address of the forwarding interface in the previous slot. 

If the Next Slot Pointer field's value is greater than the Option Length field's value, the 
IP datagram has reached its final destination. 

Because the size of the Loose Source Route option is not a multiple of 4 bytes, either an 
End Of Options option (if there are no more options) or a No Operation option (if there 
are more options) must be added to ensure that the IP header is an integral multiple of 
4 bytes. 

Setting the Loose Source Route Option with PING 

The Windows 2000 PING utility with the "-j" option can be used to add the Loose Source 
Route option. Additionally, it is used to set the IP addresses of successive routers and 
the final destination in ICMP Echo messages. The syntax is 

PING -j [IP address of first hop] [IP address of second hop] _[destination IP 
address] 

For example, to ping 10.0.0.1 through neighboring router interfaces 192.168.1.1 and 
192.168.2.1, use the following command: 

PING -j 192.168.1.1 192.168.2.1 10.0.0.1 

IP Router Alert 

Option Code 

Option Length 

Value 

The IP Router Alert option is used to indicate to IP routers that additional processing of 
the IP datagram is required even when the IP datagram is not addressed to the router. 
The IP Router Alert option is used for the Resource Reservation Protocol (RSVP) and 
Internet Group Management Protocol (IGMP) version 2. For example, when a router 
receives an IP datagram with the IP Router Alert Option, it looks at the IP Protocol field 



104 I PART Ii Internet Layer Protocols 

to see if the IP payload requires additional processing before making a forwarding 
decision. RFC 2113 describes the IP Router Alert Option. 

The IP Router Alert option contains the following fields: 

• Option Code Set to 148 (Copy Bit=l, Option Class=O, Option Number=20). 

• Option Length Set to the fixed length of 4. 

• Value A 2-byte field set to 0. All other values are reserved. The value of 0 in
dicates that the router must examine the packet. 

Internet Timestamp 

Option Code 

Option Length 

Next Slot Pointer 

Overflow 

Flags 

First IP Address 

First Timestamp 

The Internet Timestamp option is used to record the time that an IP datagram arrived at 
each IP router in the path between the source and destination host. The Internet 
Timestamp option is similar to the Record Route option in that the sending node creates 
blank entries in the IP header that routers fill out as the packet travels through the IP 
internetwork. Each entry consists of the router's IP address and a 32-bit integer timestamp 
that indicates the number of milliseconds since midnight, Universal Time. If Universal Time 
is not being used, the high-order bit of the timestamp field is set to 1. 

Note To use Internet timestamps, Internet timestamping must be enabled on 
all the routers in the path between the source and destination hosts. It is com
mon for routers to either not support Internet timestamping or have it disabled. 

The Internet Timestamp option contains the following fields: 

• Option Code Set to 68 (Copy Bit=O, Option Class=2, Option Number=4). 

• Option Length Set by the sending host to the number of octets in the 
Internet Timestamp option. 



Chapter 4 Internet Protocol (IP) Basics J 105 

• Next Slot Pointer Set to the octet offset (starting at 1) within the Internet 
Timestamp option of the next slot for the recording of the IP address and 
timestamp. The Next Slot Pointer field's minimum value is 5. 

• Overflow Set by routers to indicate the number of routers that were unable 
to record their IP address and timestamp. 

• Flags Set by the sending host to indicate the format of the IP Address/ 
Timestamp slots. When Flags = 0, the IP address is omitted. This allows up to 
nine timestamps to be recorded. When Flags = 1, the IP address is recorded, 
allowing up to four IP address/timestamp pairs to be recorded. The Internet 
Timestamp option format shown assumes Flags= 1. When Flags = 3, the 
sending node specifies the IP addresses of successive routers: a timestamp is 
recorded only if the IP address in the slot matches the router's IP address. 

• First IP Address/First Timestamp Set by routers to record the IP address 
and timestamp of the routers encountered (Flags = 1) or specified (Flags = 3). 

When a sending host sends an IP datagram with the Internet Timestamp option, the 
sending host: 

1. Sets the Next Slot Pointer field's value to 5. 

2. For a specified route (Flags = 3), places the series of IP addresses in the 
Internet Timestamp option. 

When an IP router receives an IP datagram with the Internet Timestamp option, it com
pares the Option Length and Next Slot Pointer fields. If the Next Slot Pointer field's value 
is less than the Option Length field's value: 

• If Flags = 3, the router replaces the IP header's destination IP address with the 
IP address that is recorded in the next slot (based on the Next Slot Pointer 
field). 

• If Flags = 1 or Flags = 3, the router records the IP address of the interface on 
which the IP datagram was received in the same slot. 

• If Flags = 0, the router records the timestamp and adds 4 to the Next Slot 
Pointer field. If Flags = 1, the router records the timestamp after the IP address 
and adds 8 to the Next Slot Pointer field. If Flags = 3, the router replaces the IP 
address and adds 4 to the Next Slot Pointer field. 

If the Next Slot Pointer field's value is greater than the Option Length field's value, the 
router increments the Overflow field. If the Overflow field is 15 before incrementing, an 
ICMP Parameter Problem is sent back to the source host. 

Setting the Internet Timestamp Option with PING 

The Windows 2000 PING command and the "-s" option can be used to send ICMP Echo 
messages with the Internet timestamp. The syntax is: 

PING -s [slots] [IP Address of destination] 



106 I PART II Internet Layer Protocols 

For example, to ping the IP address of 10.9.1.1 using Internet timestamps with three slots, 
use the following command: 

PING -s 3 10.9.1.1 

Summary 
The Internet Protocol (IP) provides the internetworking building block for all other 
Internet Layer and above protocols in the TCP/IP suite. IP provides a best-effort, unre
liable, connectionless datagram delivery service between networks of an IP internetwork. 
The IP header provides addressing, type of delivery, maximum link count, fragmenta
tion, and checksum services. IP fragmentation provides a way for IP datagrams to travel 
over links with a lower IP MTU than the original IP datagram. The basic services of the 
IP header are extended through IP options, the most common of which provide source 
routing, path recording, router alert, and timestamping functions. 



Internet Protocol 
(IP) Addressing 

107 

To successfully administer and troubleshoot IP internetworks, it is important to under
stand all aspects of IP addressing. One of the most important aspects of TCP /IP network 
administration is the assignment of unique and proper IP addresses to all the nodes of 
an IP internetwork. While the concept of IP address assignment is simple, the actual . 
mechanics of efficient allocation of IP addresses using subnetting techniques are some
what complicated. Additionally, it is important to understand the role of IP broadcast and 
multicast traffic and how these addresses map to Network Interface Layer addresses such 
as Ethernet and Token Ring media access control (MAC) addresses. 

Types of IP Addresses 
An IP address is a 32-bit logical address and can be one of the following types: 

• Unicast A unicast IP address is assigned to a single network interface at
tached to an IP internetwork. Unicast IP addresses are used in one-to-one 
communications. 

• Broadcast A broadcast IP address is designed to be processed by every IP 
node on the same network segment. Broadcast IP addresses are used in one
to-everyone communications. 

• Multicast An IP multicast address is an address on which one or multiple 
nodes can be listening on the same or different network segments. IP multicast 
addresses are used in one-to-many communications. 

Expressing IP Addresses 
The IP address is a 32-bit quantity that computers are adept at manipulating. Humans, 
however, do not think in binary mode, 32 bits at a time. Because most humans are trained 
in the use of decimal (base 10 numbering system) rather than binary (base 2 numbering 
system), it is common to express the IP address in a decimal form. 



108 I PART n Internet Layer Protocols 

The 32-bit IP address is divided from the high-order bit to the low-order bit into four 
8-bit quantities called octets. IP addresses are normally written as four separate decimal 
octets and are delimited by a period (a dot). This is known as dotted decimal notation. 

For example, the IP address': 

00001010000000011111000101000011 

is subdivided into four octets: 

00001010 00000001 11110001 01000011 

Each octet is converted to a base 10 number and separated by periods: 

10.1.241.67 

A generalized IP address is indicated with w.x.y.z, as Figure 5-1 shows. 

--- 32 bits 

I I I 

w x y z 

Figure 5-1. Tbe generalized IP address consisting of 32 bits expressed in dotted decimal 
notation. 

Converting from Binary to Decimal 
To convert a binary number to its decimal equivalent, add the numbers represented by 
the bit positions that are set to 1. Figure 5-2 shows an 8-bit number and the decimal value 
of each position. 

7 6 5 4 3 2 1 0 

I 
• 

I I l LI Tl 
II II II II II II II II 
21 26 25 24 23 22 21 20 

II II II II II II II II 
128 64 32 16 8 4 2 1 

Figure 5-2. An 8-bit number showing bit positions and their decimal equivalents. 

For example, the 8-bit binary number 01000011 is 67 ( = 64 + 2 + 1). The maximum number 
that can be expressed with an 8-bit number (11111111) is 255 ( = 128 + 64 + 32 + 16 + 8 
+ 4 + 2 + 1). 



Chapter 5 Internet Protocol (IP) Addressing I 109 

Converting from Decimal to Binary 
To convert from decimal to binary, the decimal number is analyzed to see if it contains 
the quantities represented by the bit positions from the high-order bit to the low-order 
bit. Starting from the high-order bit quantity (128), if each quantity is present, the bit in 
that bit position is set to 1. For example, the decimal number 211 contains 128, 64, 16, 
2, and 1. Therefore, 211 is 11010011 in binary. 

IP Addresses in the IP Header 
IP addresses are used in the IP header's Source Address and Destination Address fields. 

• The IP header's Source Address field is always either a unicast address or the 
special address 0.0.0.0. The unspecified IP address, 0.0.0.0, is used only when 
the IP node is not configured with an IP address and the node is attempting to 
obtain an address through a configuration protocol such as Dynamic Host Con
figuration Protocol (DHCP). 

• The IP header's Destination Address field is always a unicast address, multicast 
address, or a broadcast address. 

Unicast IP Addresses 
Each network interface on which TCP /IP is active must be identified by a unique, logi
cal, unicast IP address. The unicast IP address is a logical address because it is an Internet 
Layer address that has no direct relation to the address being used at the Network Inter
face Layer. For example, the unicast IP address assigned to a host on an Ethernet net
work has no relation to the 48-bit MAC address used by the Ethernet network adapter. 

The unicast IP address is an internetwork address for IP nodes that contains a network 
ID and a host ID: 

• The network ID, or network address, identifies the nodes that are located on 
the same logical network. In most cases, a logical network is the same as a 
physical network segment whose boundaries are defined by IP routers. In 
some cases, multiple logical networks exist on the same physical network us
ing a practice called multinetting. All nodes on the same logical network share 
the same network ID. If all nodes on the same logical network aren't config
ured with the same network ID, routing or delivery problems will occur. The 
network ID must be unique to the internetwork. 

• The host ID, or host address, identifies a node within a network. A node is a 
router or host (a nonrouter interface such as a workstation, server, or. other TCP I 
IP-based system). The host ID must be unique within each network segment. 

Note The term network ID applies to class-based network IDs, subnetted net
work IDs, and classless network IDs. 



110 I PART If Internet Layer Protocols 

Figure 5-3 is an example of a unicast IP address and its network ID and host ID portions: 

1--

Figure 5-3. Tbe structure of an example IP address showing the network ID and host ID. 

A History Lesson: IP Address Classes 
This section is titled "A History Lesson" because modern-day networks are not based on 
the Internet address classes. Because of the Internet's recent rapid expansion, the Internet 
authorities saw clearly that the originally designed class-based structure did not scale well 
to the size of a global internetwork. For example, if the Internet authorities were still 
handing out class-based addresses, there would be hundreds of thousands of routes in 
the routing tables of Internet backbone routers. To prevent this scaling problem, address
ing on the modern Internet is classless. However, the understanding of Internet address 
classes is an important element of understanding IP addressing. 

RFC 791 defined the unicast IP address in terms of address classes to create well-defined 
networks of various sizes. The design goal was to create: 

• A small number of large networks (networks with a large amount of nodes) 

• A moderate number of moderate-sized networks 

• A large number of small networks 

The result was the creation of address classes, subdivisions of the 32-bit IP address space 
defined by setting high-order bits and dividing the remaining bits into network ID and 
host ID. 

Address Class A 

Class A addresses are designed for networks with a large amount of hosts. The high-order 
bit is set to 0. The first 8 bits (the first octet) are defined as the network ID; the last 24 
bits (the last three octets) are defined as the host ID. Figure 5-4 illustrates the class A 
address. 

1
_. Network ID ~I i.-

1
_. _______ H_os_t_ID _______ ~I 

UillJJ] UillJJ] UillJJ] 
Figure 5-4. Tbe class A address showing the network ID and the host ID. 



Chapter 5 Internet Protocol (IP) Addressing I 111 

Class B 

Class B addresses are designed for moderate-sized networks with a moderate amount of 
hosts. The 2 high-order bits are set to 10. The first 16 bits (the first 2 octets) are defined 
as the network ID; the last 16 bits (the last 2 octets) are defined as the host ID. Figure 5-
5 illustrates the class B address. 

1--
Network ID 

~1 1111 
Host ID 

~1 

Figure 5-5. The class B address showing the network ID and the host ID. 

Class C 

Class C addresses are designed for small networks with a small amount of hosts. The 3 
high-order bits are set to 110. The first 24 bits (the first 3 octets) are defined as the net
work ID; the last 8 bits (the last 3 octets) are defined as the host ID. Figure 5-6 illustrates 
the class C address. 

•llll--------'--'N--'--et=w~or~k_ID ______ -91~I loll Host ID ~I 

illillill 
Figure 5-6. The class C address showing the network ID and the host ID. 

Additional Address Classes 

Class D and E addresses are defined, in addition to unicast address classes A, B, and C. 

Class D 
Class D addresses are for IP multicast addresses. The 4 high-order bits are set to binary 
1110. The next 28 bits are used for individual IP multicast addresses. For more informa
tion on IP multicast addresses, see the "IP Multicast Addresses" section of this chapter. 
Microsoft Windows 2000 supports class D addresses for IP multicast traffic. 

Class E 
Class E addresses are experimental addresses, reserved for future use. The 5 high-order 
bits in a class E address are set to 11110. Windows 2000 does not support the use of class 
E addresses. 



112 I PART II Internet Layer Protocols 

Rules for Enumerating Network IDs 
In enumerating IP network IDs, the following rules apply: 

• The network ID cannot begin with 127 as the first octet. All 127.x.y.z 
addresses are reserved as loopback addresses. 

• All the bits in the network ID cannot be set to 1. Network IDs set to all ls 
are reserved for broadcast addresses. 

• All the bits in the network ID cannot be set to 0. Network IDs set to all Os 
are reserved for indicating a host on the local network. 

• The network ID must be unique to the IP internetwork. 

Table 5-1 lists the ranges of network IDs based on the IP address classes. Network IDs 
are expressed by setting all host bits to 0 and expressing the result in dotted decimal 
notation. 

Table 5-1. Address Class Ranges of Network IDs 

Address Class First Network ID Last Network ID Number of Networks 

Class A 1.0.0.0 126.0.0.0 126 

Class B 128.0.0.0 191.255.0.0 16,384 

Class C 192.0.0.0 223.255.255.0 2,097,152 

Note IP network IDs, even though expressed in dotted decimal notation, are not 
IP addresses assigned to network interfaces. The IP network ID is the network ad
dress that is common for all network interfaces attached to the same logical network. 

Rules for Enumerating Host IDs 
In enumerating IP host IDs, the following rules apply: 

• All bits in the host ID cannot be set to 1. Host IDs set to all ls are reserved 
for broadcast addresses. 

• All the bits in the host ID cannot be set to 0. Host IDs set to all Os are 
reserved for the expression of IP network IDs. 

• The host ID must be unique to the network. 

Table 5-2 lists the ranges of host IDs based on the IP address classes. 

Table 5-2. Address Class Ranges of Host IDs 

Address Class 

Class A 

Class B 

Class C 

First Host ID 

w.0.0.l 

w.x.O.l 

w.x.y.l 

Last Host ID 

w.255.255.254 

w.x.255.254 

w.x.y.254 

Number of Hosts 

16,777,214 

65,534 

254 



Chapter 5 Internet Protocol (IP) Addressing I 113 

Subnets and the Subnet Mask 
Subnetting is designed to make more efficient use of a fixed address space. A fixed address 
space is an IP network ID. The network bits are fixed and the host bits are variable. 
Originally, the host bits were designed to indicate host IDs within an IP network ID. With 
subnetting, host ID bits can be used to express a combination of a subnetwork ID and 
a subnetwork host ID, thereby better utilizing the host bits. 

Consider a class B network that has 65,534 possible hosts. A network segment of 65,534 
hosts is technically possible but impractical because of the accumulation of broadcast traf
fic. All nodes on the same physical network segment belong to the same broadcast do
main and share the same broadcast traffic. Because 65,534 hosts all sharing the same 
broadcast traffic don't make a practical configuration, most of the host IDs are not usable. 

To create smaller broadcast domains and make better use of the host bits, RFC 950 de
fines a method of subdividing a network ID into subnetworks-subsets of the original 
class-based network-by using bits in the host ID portion of the original IP network ID. 
Each subnetwork, or subnet, is assigned a new subnetted network ID. Hosts on subnets 
are assigned host IDs from the remaining host bits in the subnetted network ID. 

While RFC 950 discusses subnetting in terms of class-based network IDs, subnetting is a 
general technique that can be used on classless network IDs or used recursively on 
subnetted network IDs. This is described in the "Variable-Length Subnettting" section of 
this chapter. 

The proper subnetting of a network ID is transparent to the rest of the IP internetwork. 
For example, consider the class B network ID of 131.107.0.0, shown in Figure 5-7, that 
is connected to the Internet. The class-based network ID was obtained from the InterNIC 
and is a fixed address space. Because this class B network ID represents an impractical 
broadcast domain, it is subnetted. However, in subnetting 131.107.0.0, we should not 
require any reconfiguration of the Internet routers. 

Figure 5-7. Tbe class B network 131.107.0.0 before subnetting. 

From an analysis of broadcast traffic, it is determined that there should be no more than 
250 nodes on each broadcast domain. Therefore, network ID 131.107.0.0 is subnetted to 
look like a class C address by using the first 8 high-order host bits (the third octet rep
resented by y) for the subnetted network ID. Note that before the subnetting, only the 
first 2 octets are considered the network ID. After the subnetting, the first 3 octets are 
considered the network ID. The new network IDs are 131.107.1.0, 131.107.2.0, and 
131.107.3.0, as Figure 5-8 shows. 



114 I PART Ii Internet Layer Protocols 

131.107 .1.0 

131.107 .2.0 

131.107 .3.0 

Figure 5-8. The class B network 131.107.0.0 after subnetting. 

The IP router connected to the Internet has an interface on each of the subnets and is 
aware of the new subnetting scheme. The IP router forwards IP datagrams from the Internet 
to the host on the appropriate subnet. The Internet routers are completely unaware of 
the subnetting of 131.107.0.0. They still consider all IP addresses in the range of 131.107.0.0 
through 131.107.255.255 to be reachable through the IP router's Internet interface. 

The Subnet Mask 

With subnetting, a host or router can no longer assume the network ID and host ID 
designations of the IP address classes. The node needs additional configuration to dis
tinguish the network ID and host ID portions of an IP address, whether the network ID 
is class-based, classless, or a subnetted network ID. 

RFC 950 defines the use of a bit mask to identify which bits in the IP address belong to 
the network ID and which belong to the host ID. This bit mask, called a subnet mask or 
address mask, is defined by the following: 

• If the bit position corresponds to a bit in the network ID, it is set to 1. 

• If the bit position corresponds to a bit in the host ID, it is set to 0. 

Since the publication of RFC 950, TCP/IP nodes require a subnet mask to be configured 
for each IP address, even when class-based addressing is being used. A default subnet mask 
corresponds to a class-based network ID. A custom subnet mask corresponds to either a 
classless network ID or a subnetted network ID. The subnet mask is the definitive piece 
of configuration information that allows the node tb determine its own network ID. 

Subnet Masks in Dotted Decimal Representation 

Frequently, the subnet mask is expressed in dotted decimal notation. Although expressed 
in the same form as an IP address, the subnet mask is not an IP address. As an example 
of subnet masks in dotted decimal notation, default subnet masks are based on the IP 



Chapter 5 Internet Protocol (IP) Addressing I 115 

address classes. Table 5-3 lists the default subnet masks for class A, B, and C network 
IDs in dotted decimal notation. 

Table 5-3. Dotted Declmal Notation for Default Subnet Masks 

Address Class 

Class A 

Class B 

Class C 

Bits for Subnet Mask 

11111111 00000000 00000000 00000000 

11111111 11111111 00000000 00000000 

11111111 11111111 11111111 00000000 

Subnet Mask 

255.0.0.0 

255.255.0.0 

255.255.255.0 

A custom subnet mask is used whenever you perform non-classful addressing. In our 
previous example, the classful network ID 131.107.0.0 is subnetted by using the third octet 
for subnets. The subnetted network ID 131.107.1.0 no longer uses the default subnet mask 
255.255.0.0. To express the third octet as part of the network ID, the custom subnet mask 
255.255.255.0 is used. 

The subnetted network ID and its corresponding subnet mask are expressed in dotted 
decimal notation as 131.107.1.0, 255.255.255.0. 

Network Prefix Length Representation of Subnet Masks 

While it is technically possible to subnet IP network IDs by choosing host bits in a non
contiguous fashion, it is impractical and mathematically challenging to enumerate the 
subnetted network IDs and the host IDs per subnet. For this reason, subnetting must be 
done by choosing host bits in a contiguous fashion from the high-order host bit. 

Because the network ID bits are always contiguous starting from the highest order bit, 
an easier and more compact way of expressing the subnet mask is to indicate the num
ber of network ID bits using network prefix notation, or Classless Inter-Domain Routing 
(CIDR) notation. Network prefix notation views the IP address in terms of the prefix (the 
network ID) and the suffix (the host ID). Network prefix notation is: 

/#of bits in the network ID 

Network prefix notation is commonly used with TCP/IP implementations other than 
Windows 2000, and it is an important notation to understand looking forward to IP ver
sion 6 (1Pv6). 

Table 5-4 lists the equivalent subnet mask in network prefix notation for the IP address 
classes. 

Table 5-4. Network Prefix Notation for Default Subnet Masks 

Address Class 

Class A 

Class B 

Class C 

Bits for Subnet Mask 

11111111 00000000 00000000 00000000 

11111111 11111111 00000000 00000000 

11111111 11111111 11111111 00000000 

Network Prefix 

/8 

/16 
/24 



116 I PART II Internet Layer Protocols 

In our previous example, the classful network ID 131.107.0.0, with the subnet mask of 
255.255.0.0, is expressed in network prefix notation as 131.107.0.0/16. If 131.107.0.0 were 
subnetted by using the third octet to express subnets, a total of 24 contiguous bits would 
be used for the subnetted network ID. The subnetted network ID 131.107.1.0 and its 
corresponding subnet mask are expressed in network prefix notation as 131.107.1.0/24. 

Expressing Network IDs 

A network ID is defined by the fixed network ID bits and the subnet mask. Therefore, 
network IDs must always be expressed by the combination of the network ID and a subnet 
mask. Expressing a network ID without its subnet mask is ambiguous. For example, for 
the network ID 10.16.0.0, which bits are used for the network ID? The first 16? The first 
24? The first 12? 

The following are examples of properly expressed network IDs: 

• 192.168.45.0, 255.255.255.0 

• 10.99.0.0/16 

All hosts on the same logical network must be using the same network ID bits and the 
same subnet mask. For example, 131.107.0.0/16 is not the same as 131.107.0.0/24. For 
the network ID 131.107.0.0/16, the usable IP addresses range from 131.107.0.1 through 
131.107.255.254. For the network ID 131.107.0.0/24, the usable IP addresses range from 
131.107.0.1 through 131.107.0.254. Clearly, 131.107.0.0/16 and 131.107.0.0/24 do not 
represent the same group of hosts. 

Determining the Network ID 

In earlier examples, classful network IDs and subnetted network IDs all fell along octet 
boundaries where it was easy to determine the network ID and host ID portion of the 
IP address. However, real world subnetting is not always done along octet boundaries. 
For example, some network administrators might determine that, for their situation, they 
need only three host bits for subnetting. 

Because subnettil).g can occur along non-octet boundaries, there must be a method of 
determining the network ID from an IP address with an arbitrary subnet mask. IP uses 
a method called a bit-wise logical AND to extract the network ID. 

Recall how the subnet mask is defined: a 1 is used to indicate a network ID bit and a 0 
is used to indicate a host ID bit. In a logical AND comparison, the result is 1 when the 
value of the two bits being compared is 1. Otherwise, the result is 0. This comparison is 
done for all 32 bits of the IP address and subnet mask. The result of the bit-wise logical 
AND of the IP address and the subnet mask is the network ID. 

For example, what is the network ID of the IP node 131.107.164.26 with a subnet mask 
of 255.255.240.0? To obtain the result in binary, convert both the IP address and subnet 
mask to binary. Then perform the logical AND comparison for each bit. 



Chapter 5 Internet Protocol (IP) Addressing I 117 

IP address 10000011 01101011 10100100 00011010 

Subnet mask 11111111 11111111 11110000 00000000 

Network ID 10000011 01101011 10100000 00000000 

The result of the bit-wise logical AND of the 32 bits of the IP address and the subnet mask 
is the network ID 131.107.160.0 with the subnet mask of 255.255.240.0. 

Notice that: 

• The bits in the network ID portion of the IP address are copied directly to the 
result. A value of 1 in the network ID portion of the IP address becomes a 1 in 
the result. A value of 0 in the network ID portion of the IP address becomes a 
0 in the result. 

• All bits in the host ID portion of the IP address are set to 0. Because the 
subnet mask uses a 0 for host ID bit positions, the logical AND comparison al
ways yields a 0. 

Therefore, the bits in the network ID are copied and the bits in the host ID are set to 0. 
The result must be the network ID. 

How to Subnet 
The act of subnetting a network ID is a relatively complex procedure; although there are 
numerous subnet calculators available, the ability to subnet is a vital skill for any TCP I 
IP network administrator. 

Subnetting is done in two basic steps: 

1. Based on your design requirements, decide how many host bits you need for 
the proper balance·between number of subnets and number of hosts per 
subnet. 

2. Based on the number of host bits chosen, enumerate the subnetted network 
IDs, including the ranges of usable IP addresses for each subnetted network 
ID. The actual mechanics of defining the subnetted network IDs can be done 
in binary or decimal. 

There are two methods for the seco~d step of subnetting, the enumeration of the subnetted 
network IDs: 

1. The binary method, where the individual bits of the subnetted network IDs are 
manipulated and converted to dotted decimal notation, can be used to subnet, 
but the method does not scale well to large numbers of subnets. It is described 
here primarily to illustrate the subnetting process in its most fundamental form. 

2. The decimal method, where subnetted network IDs are derived from calcula
tions on decimal numbers, scales well to large numbers of subnets and lends 
itself well to spreadsheets and programming code. 



118 I PART Ii Internet Layer Protocols 

Step 1: Determining the Number of Host Bits 

To determine the''number of host bits required for subnetting, perform an analysis of your 
internetwork. You should determine the following: 

• The number of subnets needed both now and in the future Be sure to 
plan for expansion. Subnetting an existing network requires reassigning IP ad
dresses to IP interfaces. While DHCP can ease this burden, routers and other 
fixed-address types of hosts might need to be manually reconfigured. 
Subnetting is not something you want to do often. 

• The maximum number of hosts needed on each subnet This number 
will depend on how many hosts you want sharing the same broadcast traffic. 
In most cases, when choosing between more subnets and more hosts per 
subnet, the practical choice is to choose more subnets. 

There is an inverse relationship between the number of subnets and the number of hosts 
per subnet that can be supported by a given subnetting scheme. As Figure 5-9 illustrates, 
when you choose more host bits, the number of subnets goes up, but the number of hosts 
per subnet goes down by approximately a factor of 2. 

131 107 0 0 

1--
Original Network ID 

•1 1--
Original Host ID 

[J]]] [ill]] 
ll ~·1 

2 subnets 

32, 766 hosts 256 subnets 
254 hosts 

Figure 5-9. The relationship between the number of subnets and hosts per subnet when 
subnetting the class B network ID 131.107.0.0. 

Ifwe choose one host bit when subnetting the class B network ID 131.107.0.0, two subnets 
can be expressed, with 32,766 hosts per subnet. If we choose 8 host bits, 256 subnets 
can be expressed with 254 hosts per subnet. 

Determine how many subnets you need now, and plan for growth by estimating how many 
you'll need in the next five years. Each physical network segment is a subnet. Point-to-point 
wide area network (WAN) connections such as leased lines might need subnetted network 
IDs, unless your routers support unnumbered connections. Non-broadcast multiple access 
WAN technologies such as Frame Relay need subnetted network IDs. Use additional host 
bits if the remaining host bits can express more hosts per subnet than you'll need. 

Subnetting always starts with a fixed address space in the form of a network ID. The 
network ID to be subnetted can be a classful network ID, a classless network ID (as 



Chapter S Internet Protocol (IP) Addressing I 119 

allocated using CIDR), or a previously subnetted classful or classless network ID. The fixed 
address space contains a sequence of bits that are fixed (the network· ID bits) and a 
sequence of bits that are variable (the host ID bits). 

Based on your analysis of the desired number of subnets and number of hosts per subnet, 
a specific number of high-order host bits is converted from host bits into subnet bits. The 
combination of the original network ID bits and the converted host bits becomes the new 
subnetted network ID. 

As you determine how many host bits you need, you determine the new subnet mask 
for your subnetted network IDs. 

Tables 5-5, 5-6, and 5-7 list the subnetting of classful network IDs according to the re
quirement of a specific number of subnets. These tables can be useful when determin
ing a subnetting scheme for a class-based network ID based on a required number of 
subnets and a desired number of hosts per subnet. 

Table 5-5. Subnetting of a Class A Network ID 

Required Number Number of Number of Hosts 
of Subnets Host Bits Subnet Mask per Subnet 

1-2 1 255.128.0.0 or 19 8,388,606 

3-4 2 255.192.0.0 or /10 4,194,302 

5-8 3 255.224.0.0 or /11 2,097,150 

9-16 4 255.240.0.0 or /12 1,048,574 

17-32 5 255.248.0.0 or /13 524,286 

33-64 6 255.252.0.0 or /14 262,142 

65-128 7 255.254.0.0 or /15 131,070 

129-256 8 255.255.0.0 or /16 65,534 

257-512 9 255.255.128.0 or /17 32,766 

513-1024 10 255.255.192.0 or /18 16,382 

1025-2048 11 255.255.224.0 or /19 8190 

2049-4096 12 255.255.240.0 or /20 4094 

4097-8192 13 255.255.248.0 or /21 2046 

8193-16,384 14 255.255.252.0 or /22 1022 

16,385-32,768 15 255.255.254.0 or /23 510 

32, 769-65, 536 16 255.255.255.0 or /24 254 

65,537-131,072 17 255.255.255.128 or /25 126 

131,073-262,144 18 255.255.255.192 or /26 62 

262, 145-524,288 19 255.255.255.224 or /27 30 

524,289-1,048,576 20 255.255.255.240 or /28 14 

1,048,577-2,097' 152 21 255.255.255.248 or /29 6 

2,097' 153-4, 194,304 22 255.255.255.252 or /30 2 



120 I PART !I Internet Layer Protocols 

Table 5-6. Subnetting of a Class B Network ID 

Required Number Number of Number of Hosts 
of Subnets Host Bits Subnet Mask per Subnet 

1-2 1 255.255.128.0 or /17 32,766 

3-4 2 255.255.192.0 or /18 16,382 

5-8 3 255.255.224.0 or /19 8190 

9-16 4 255.255.240.0 or /20 4094 

17-32 5 · 255.255.248.0 or /21 2046 

33-64 6 255.255.252.0 or /22 1022 

65-128 7 255.255.254.0 or /23 510 

129-256 8 255.255.255.0 or /24 254 

257-512 9 255.255.255.128 or /25 126 

513-1024 10 255.255.255.192 or /26 62 

1025-2048 11 255.255.255.224 or /27 30 

2049-4096 12 255.255.255.240 or /28 14 

4097-8192 13 255.255.255.248 or /29 6 

8193-16,384 14 255.255.255.252 or /30 2 

Table 5-7. Subnetting of a Class C Network ID 

Required Number Number of Number of Hosts 
of Subnets Host Bits Subnet Mask per Subnet 

1-2 1 255.255.255.128 or /25 126 

3-4 2 255.255.255.192 or /26 62 

5-8 3 255.255.255.224 or /27 30 

9-16 4 255.255.255.240 or /28 14 

17-32 5 255.255.255.248 or /29 6 

33-64 6 255.255.255.252 or /30 2 

Step 2: Defining the Subnetted Network IDs (Binary Method) 

The following technique describes how to subnet an arbitrary network ID into subnets 
that yield both subnetted network IDs, and their corresponding range of valid IP addresses, 
using binary analysis. While there are other techniques that might seem easier, they are 
typically limited in scope. This technique will work for any subnetting situation. 

Step 2a: Enumerating the Subnetted Network IDs (Binary) 
Create a three-column table with 2n rows where n is the number of host bits chosen for 
the subnetting. Column one is used for the subnet number. Column two is for the binary 
representation of the subnetted network ID. Column three is for the dotted decimal rep
resentation of the subnetted network ID. 

For the binary representation for each entry in the table, the original network ID bits are 
fixed at their original values. The host bits chosen for subnetting, hereafter known as the 



Chapter 5 Internet Protocol (IP) Addressing I 121 

subnet bits, are allowed to vary over all of their possible values, and the remaining host 
bits are set to 0. 

The table's first entry is the subnet, defined by setting all the subnet bits to 0 (also called 
the all-zeros subnet). The result is converted to dotted decimal notation. This subnetted 
network ID does not appear to be different from the original network ID; but remember 
that a network ID is a combination of the dotted decimal notation· and a subnet mask. 
With the new subnet mask, the subnetted network ID is clearly different from the origi
nal network ID. 

In the following entries, treat the subnet bits as though they were distinct binary num
bers. Increment the value within the subnet bits and convert the result of the entire 32-
bit subnettted network ID to dotted decimal notation. 

As an example of this technique, subnet the class B network ID 131.107.0.0 by using three 
bits of the classful host ID. The new subnet mask for the subnetted network IDs is 
255.255.224.0, or /19. Based on using three host bits, create a table with eight entries (8 
= 23). The first entry is the all-zeros subnet. The additional entries are increments of the 
binary number represented by the subnet bits (underlined). Table 5-8 lists the subnetted 
network IDs. 

Table 5-8. 3-Bit Subnetting of 131.107.0.0 (Binary) 

Subnet Binary Representation Subnetted Network ID 

1 10000011. 01101011. 00000000. 00000000 131.107.0.0/19 

2 10000011. 01101011. 00100000. 00000000 131.107.32.0/19 

3 10000011. 01101011. 01000000. 00000000 131.107.64.0/19 

4 10000011. 01101011. 01100000. 00000000 131.107.96.0/19 

5 10000011. 01101011.10000000. 00000000 131.107.128.0/19 

6 10000011. 01101011.10100000. 00000000 131.107.160.0/19 

7 10000011. 01101011.11000000. 00000000 131.107.192.0/19 

8 10000011. 01101011.ill 00000. 00000000 131.107.224.0/19 

Step 2b: Enumerating IP Address Ranges for Each Subnetted Network ID (Binary) 
For each subnetted network ID, the range of valid IP addresses must be determined. 

1. Create a three-column table with 2n entries where n is the number of host bits 
chosen for the subnetting. Column one is used for the subnet number. Column 
two is for the binary representation of the first and last IP address in the range. 
Column three is for the dotted decimal representation of the first and last IP 
address in the range. Alternately, you can extend the table created for enumer
ating the subnetted network IDs by adding two columns. 

2. Express the first and last IP address in the range in binary. The first IP address 
is defined by setting the remaining host bits to 0, except for the last host bit. 
The last IP address is defined by setting the remaining host bits to 1, except for 
the last host bit. 



122 I PART U Internet Layer Protocols 

3. Convert the binary representation of the first and last IP address to dotted deci
mal notation. 

4. Repeat steps 2-3 until the table is. complete. 

To continue our example, Table 5-9 lists the enumeration of the range of valid IP addresses 
for the 3-bit subnetting of 131.107.0.0. The host bits are underlined. 

Table 5-9. Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 (Binary) 

Subnet Binary Representation Range of IP Addresses 

1 

2 

3 

4 

5 

6 

7 

8 

10000011. 01101011. 00000000. 00000000 -
10000011.01101011.00011111.11111110 

10000011. 01101011. 00100000. 00000001 -
10000011. 01101011. 00111111.11111110 

10000011. 01101011. 01000000. 00000001 -
10000011.01101011.01011111.11111110 

10000011. 01101011. 01100000. 00000001 -
10000011.01101011.01111111.11111110 

10000011. 01101011.10000000. 00000001 -
10000011. 01101011.10011111.11111110 

10000011.01101011.10100000.00000001 -
10000011.01101011.10111111.11111110 

10000011. 01101011.11000000. 00000001 -
10000011.01101011.11011111.11111110 

10000011. 01101011.11100000. 00000001 -
10000011. 01101011.11111111.11111110 

131.107.0.1 - 131.107.31.254 

131.107.32.1 - 131.107.63.254 

131.107.64.1 - 131.107.95.254 

131.107.96.1 - 131.107.127.254 

131.107.128.1 - 131.107.159.254 

131.107.160.1 - 131.107.191.254 

131.107.192.1 - 131.107.223.254 

131.107.224.1 - 131.107.255.254 

Step 2: Defining the Subnetted Network IDs (Decimal Method) 

The previous technique describes a subnetting technique using binary. While this method 
will work for any valid subnetting scheme, it does not scale well. For example, if you 
were performing a 10-bit subnetting, you would have 1024 entries in the table. While 
programmers are adept at binary manipulation and could create programs to automate 
this process, non-programmers find it easier to work with decimal numbers. Therefore, 
the following technique treats the 32-bit network ID and IP address as a single decimal 
number to enumerate the subnetted network ID and its corresponding range of IP ad
dresses. Either technique-binary or decimal-yields the same result. 

Step 2a: Enumerating the Subnetted Network IDs (Decimal) 
1. Create a three-column table with 2n entries where n is the number of host bits 

chosen for the subnetting. Column one is used for the subnet number. Column 
two is for the decimal representation of the subnetted network ID. Column 
three is for the dotted decimal representation of the subnetted network ID. 

2. Convert the original network ID from dotted decimal notation (w.x.y.z) to N, 
its decimal representation. 



Chapter 5 Internet Protocol (IP) Addressing I 123 

N = w*16777216 + x*65536 + y*256 + z 

3. Compute I, the increment value, based on h, the number of host bits remaining. 

I= 2h 

4. For the first table entry, the all-zeros subnet, the decimal representation of the 
subnetted network ID is N, and the subnetted network ID is w.x.y.z, with its 
new subnet mask. 

5. For the decimal representation of the next table entry, add the increment I to 
the previous entry. 

6. Convert the decimal representation of the subnetted network ID to dotted deci
mal notation (W.X.Y.Z) using the following formula (wheres is the decimal 
representation of the subnetted network ID): 

W = INT (s/16777216) 

X = INT ((s mod 16777216)/65536) 

Y = INT ((s mod 65536)/256) 

Z = s mod 256 

INT 0 denotes integer division and yields the integer multiple. Mod 0 denotes 
the modulus operator and yields the remainder upon division. 

7. Repeat steps 5-6 until the table is complete. 

To compare the two techniques and verify that they will both yield the same result, let's 
perform a decimal 3-bit subnetting of 131.107.0.0. 

Based on n = 3, we create a table with eight entries. The entry for subnet 1 is the all
zeros subnet. N, the decimal representation of 131.107.0.0, is 2204827648 (131 *16777216 
+ 107*65536). Because there are 13 remaining host bits, the increment value I is 213

, or 
8192. Entries for subnets 2-8 are incremented by 8192. 

Table 5-10 lists the subnetted network IDs of 131.107.0.0. 

Table 5-10. 3-Bit Subnetting of 131.107.0.0 (Decimal) 

Subnet Decimal Representation Subnetted Network ID 

1 2204827648 131.107.0.0/19 

2 2204835840 131.107.32.0/19 

3 2204844032 131.107.64.0/19 

4 2204852224 131.107.96.0/19 

5 2204860416 131.107 .128.0/19 

6 2204868608 131.107.160.0/19 

7 2204876800 131.107.192.0/19 

8 2204884992 131.107.224.0/19 



124 I PART II Internet Layer Protocols 

Step 2b: Enumerating IP Address Ranges for Each Subnetted Network ID (Decimal) 
For each subnetted network ID, the range of valid IP addresses must be determined. 

1. Create a three-column table with 2n entries where n is the number of host bits 
chosen for the subnetting. Column one is used for the subnet number. Column 
two is for the decimal representation of the first and last IP address in the 
range. Column three is for the dotted decimal representation of the first and 
last IP address in the range. Alternately, you can extend the table created for 
enumerating the subnetted network IDs by adding two columns. 

2. Compute the increment value] based on h, the number of host bits remaining. 

J = 2h - 2 

3. The decimal representation of the first IP address is N + 1 where N is the deci
mal representation of the subnetted network ID. The decimal representation of 
the last IP address is N + ] . 

4. Convert the decimal representation of the first and last IP address to dotted 
decimal notation (W.X.Y.Z) using the following formula (wheres is the decimal 
representation of the first or last IP address): 

W = INT (s/16777216) 

X = INT ((s mod 16777216)/65536) 

Y = INT ((s mod 65536)/256) 

Z = s mod 256 

INT 0 denotes integer division and yields the integer multiple. Mod 0 denotes 
the modulus operator and yields the remainder upon division. 

5. Repeat steps 3-4 until the table is complete. 

To continue with our example, we will enumerate the range of valid IP addresses for the 
3-bit subnetting of 131.107.0.o: Compute the increment value]= 213 

- 2 = 8190. Table 5-
11 lists the ranges of IP addresses for the eight subnetted network IDs. 

Table 5-11. Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 (Decimal) 

Subnet 

1 

2 

3 
4 

5 

6 
7 

8 

Binary Representation 

2204827649 - 2204835838 

2204835841 - 2204844030 

2204844033 - 2204852222 

2204852225 - 2204860414 

2204860417 - 2204868606 

2204868609 - 2204876798 

2204876801 - 2204884990 

2204884993 - 2204893182 

Range of IP Addresses 

131.107.0.1 - 131.107.31.254 

131.107.32.1 - 131.107.63.254 

131.107.64.1 - 131.107.95.254 

131.107.96.1 - 131.107.127.254 

131.107.128.1 - 131.107.159.254 

131.107.160.1 - 131.107.131.107 

131.107.192.1 - 131.107.223.254 

131.107.224.1 - 131.107.255.254 



Chapter 5 Internet Protocol (IP) Addressing I 125 

All-Zeros and All-Ones Subnets 

In the previous discussion's examples, we used the subnet where all the host bits were 
set to 0 (the all-zeros subnet), and the subnet where all the host bits were set to 1 (the 
all-ones subnet). The use of these subnets is somewhat controversial. 

Originally, RFC 950 forbade the use of these subnets as valid subnets because: 

• The all-zeros subnet caused problems for early routing protocols that did not 
use a subnet mask to distinguish a network ID. Therefore, 131.107.0.0/16 was 
the same network to the router as 131.107.0.0/19. 

• The subnet broadcast address for the all-ones subnet uses the same address as 
a special broadcast address, called the all-subnets-directed broadcast address. 
An IP datagram for the all-subnets-directed broadcast was designed to be for
warded by routers to all classful network ID subnets. For more information on 
the all-subnets-directed broadcast address, see the "IP Broadcast Addresses" 
section of this chapter. 

The restriction on the use of the all-zeros and all-ones subnets is part of the legacy of classful 
networks. The result of this restriction is that substantial portions of a fixed address space 
are unusable and wasted. For example, when performing a 3-bit subnetting of 131.107.0.0 
and excluding the all-zeros and all-ones subnets, only six subnets are available. The range 
ofIP addresses, 131.107.0.1through131.107.31.254 for the all-zeros subnet, and the range, 
131.107.224.1 through 131.107.255.254 for the all-ones subnet, are unusable. 

RFC 1812 now allows the use of all-zeros and all-ones subnets for classless environments. 

• Classless environments use routing protocols that advertise the subnet mask with 
the network ID. Therefore, 131.107.0.0/16 is distinguishable from 131.107.0.0/19. 

• The all-subnets-directed broadcast has no meaning in a classless environment. 

Even though RFC 1812 now allows the use of these special subnets, there is no guaran
tee that all of your routers and hosts support them. For routers, it is a c;ommon default 
configuration that they do not support one or the other special subnet and must be in
structed to do so. Verify that your routers and hosts support the all-zeros and all-ones 
subnets before using them. Microsoft Windows 2000 hosts and routers support the use 
of the all-zeros and all-ones subnets without additional configuration; 

Variable-Length Subnetting 
The preceding discussion illustrates how a fixed network ID can be subdivided into 
equally sized subnets. The 3-bit subnetting of the classful network ID 131.107.0.0/16 
produced eight equally sized subnets, each containing 8190 possible IP addresses. How
ever, in the real world, network segments are not equal sizes. Some network segments 
require more IP addresses than others. For example, a network segment containing hosts 
requires more IP addresses than a backbone network segment containing just a few 
routers. And point-to-point WAN connections require only two IP addresses. 



126 I PAf*l Ii Internet Layer Protocols 

If equally sized subnetting were done, the subnetting would have to be done based on 
the network segment that required the largest amount of hosts. All other network segments 
would have the same amount of IP addresses, some of which are unassigned or unusable. 

To maximize the use of the fixed address space, the technique of subnetting is applied 
recursively to produce subnets of different sizes all derived from the same original net
work ID. This is known as variable-length subnetting. Differently sized subnets use dif
ferent subnet masks, or variable-length subnet masks (VLSM). 

Because all of the subnets are derived from the same network ID, if the subnets are 
contiguous, the routes for all the subnets can be summarized by advertising the original 
network ID. Contiguous subnets are subnets of the same network ID that are connected 
to each other. 

When performing variable-length subnetting, care must be taken so that each subnet is 
unique, and with its subnet mask, can be distinguished from all other subnets of the 
original network ID. Variable-length subnetting requires a careful analysis of your net
work segments to determine how many of each sized network you require. Then, start
ing from your network ID, subnetting is performed as many times as needed to express 
as many subnets as desired with the proper sizes. 

With variable-length subnetting, the subnetting technique is applied recursively: you 
subnet a previously subnetted network ID. When subnetting a previously subnetted 
network ID, the subnetted network ID bits are fixed and an appropriate number of re
maining host bits is chosen for subnetting. 

Example of Variable-Length Subnetting 

To expand on our earlier example, let's continue subnetting the classful network ID of 
131.107.0.0/16. After the 3-bit subnetting has been performed, the remaining addresses 
must be divided such that: 

• Half of the addresses are reserved for future use 

• Three subnets are allocated with up to 8190 IP addresses 

• 31 subnets are allocated with up to 254 IP addresses 

• 64 subnets are allocated with only 2 IP addresses 

Recall that the 3-bit subnetting of 131.107.0.0/16 produced the following eight subnets 
as Table 5-12 lists. 

Table 5-12. The Eight Subnets for the 3-Bit Subnetting of 131.107.0.0/16 

Subnet 

1 

2 

(continued) 

Subnetted Network ID 

131.107.0.0/19 

131.107.32.0/19 



Chapter 5 Internet Protocol (IP) Addressing I 127 

Table 5-12. (continued) 
Subnet Subnetted ·Network ID 

3 131.107.64.0/19 

4 131.107.96.0/19 

5 131.107.128.0/19 

6 131.107.160.0/19 

7 131.107.192.0/19 

8 131.107.224.0/19 

Reserve Half of the IP Addresses for Future Use 
To reserve half of the addresses for future use, set aside the first four subnets (131.107.0.0/ 
19, 131.107.32.0/19, 131.107.64.0/19, 131.107.96.0/19). 

Obtain Three Subnets with up to 8190 IP Addresses 
To obtain three subnets with up to 8190 IP addresses per subnet, choose the next 3 subnets 
(131.107.128.0/19, 131.107.160.0/19, 131.107.192.0/19). Each subnet has 13 host bits for 
a total of 8190 IP addresses per subnet. 

Obtain 31 Subnets with up to 254 IP Addresses 
To obtain 31 subnets, each with up to 254 IP addresses, perform a 5-bit subnetting of 
131.107.224.0/19. The result is 32 subnets (131.107.224.0/24, 131.107.225.0/24, 
131.107.226.0/24 ... 131.107.253.0/24, 131.107.254.0/24, 131.107.255.0/24). To fulfill the 
requirement, choose the first 31 subnets (131.107.224.0/24 to 131.107.254.0/24). 

Obtain 64 Subnets with only 2 IP Addresses 
To obtain 64 subnets with only 2 usable IP addresses, perform a 6-bit subnetting of 
131.107.255.0/24. The result is 64 subnets (131.107.255.4/30, 131.107.255.8/30, 
131.107.255.12/30 ... 131.107.255.244/30, 131.107.255.248/30, 131.107.255.252/30). 

Figure 5-10 shows the variable-length subnetting of 131.107.0.0/16. 

131.107 .0.0/16 

131.107 .0.0/19 

131.107 .32.0/19 

131.107.64.0/19 

131.107.96.0/19 

131.107.128.0/19 

131.107.160.0/19 

131.107.192.0/19 

131.107 .224.0/19 

131.107 .224.0/24 

131.107 .225.0/24 

131.107.226.0/24 

131.107 .253.0/24 

131.107 .254.0/24 

131.107 .255.0/24 

131.107 .255.4/30 

131.107 .255.8/30 

131.107 .255.12/30 

131.107 .255.244/30 

131.107 .255.248/30 

131.107 .255.252/30 

Figure 5-10. The variable-length subnetting of 131.107.0.0/16 into differently sized subnets. 



128 I PART Ii Internet Layer Protocols 

Variable-Length Subnetting and Routing 

Variable-length subnetting requires routing protocols to advertise the subnet mask with 
the network ID. Routing Information Protocol (RIP) version 2, Open Shortest Path First 
(OSPF), and Border Gateway Protocol version 4 (BGPv4) support variable-length 
subnetting environments. RIP version 1 does not support variable-length subnetting 
environments. 

Supernetting and Classless Inter-Domain Routing (CIDR) 
As the Internet grew suddenly from a collection of educational institutions and govern
ment agencies to a business-oriented, pervasive, global internetwork, great stress was 
placed on the IP address space. Assigning classful network IDs to organizations meant 
a quick and wasteful depletion of the Internet address space. 

For example, a large number of organizations worldwide require more than 254 IP ad
dresses. Therefore, a single class C network ID is insufficient. A single class B network 
ID, however, provides sufficient IP addresses and enough host bits to implement 
subnetting within the organization's internal network. While this is good for the organi
zation, it is bad for the Internet IP address space. Consider the smaller organization that 
needs only 4000 IP addresses. Assigning a class B network with 65,534 possible IP ad
dresses means that 61,534 IP addresses are unassigned and wasted. 

Now, instead of an entire class B network ID, the lnterNIC assigns a range of class C 
network IDs. For example, InterNIC assigns 16 class C network IDs to an organization 
needing 4000 IP addresses. Each class C network ID allows for 254 IP addresses. There
fore, 16 class C network IDs allow for 4064 IP addresses. 

This technique minimizes the wasting of Internet IP addresses. However, it produces a 
new problem. If a single class B network ID is assigned, that single class B network ID 
becomes a single route in the routing tables of the Internet backbone routers. If 16 class 
C network IDs are assigned, 16 class C network IDs become 16 routes in the routing tables 
of the Internet backbone routers. 

Extending this example to its ultimate limits, there are over two million class C network 
IDs. After assigning them all, it is possible to have over two million routes in the routing 
tables of the Internet backbone routers. Even with today's technology, it is difficult to build 
an IP router that can have a routing table with millions of entries, and forward IP datagrams 
at megabit or gigabit per second speeds. 

To prevent this scaling problem from overwhelming Internet routers, a route aggrega
tion technique is used to express a range of class C network IDs as a single route. This 
technique is called CIDR, which is the method of address allocation that the modern 
Internet uses. CIDR solves the scaling problem by minimizing the total number of routes 
that must be stored in the routing tables of Internet routers. 

CIDR uses a supernetted subnet mask to express the range of class C network IDs. A 
supernetted subnet mask is less specific or contains less network ID bits than a classful 



Chapter S Internet Protocol (IP) Addressing I 129 

subnet mask. In contrast, a subnetted subnet mask is more specific, or contains more 
network ID bits, than a classful subnet mask. 

Views on CIDR Allocation 

The CIDR method of address allocation can be viewed in two different ways: 

1. A range of class C network IDs 

2. An address space in which multiple classful networks are combined into a 
single classless network 

The latter perspective is more appropriate for today's Internet and for looking forward 
to IP version 6 (IPv6). 

A Range of Class C Network IDs 
Viewed as a range of class C network IDs, our requirement is based on the number of 
class C network segments needed in our organization. The. following are requirements 
for a range of class C network IDs to be expressible as a single route using a network 
ID and a subnet mask: 

• The class C network IDs must be sequential. 

• The number of allocated class C network IDs must be expressed as a power of 2. 

For example, Table 5-13 lists the range (or block) of eight class C network IDs, starting 
with network ID 223.1.184.0. 

Table 5-13. A Block of Eight Class C Network IDs Starting with 223.1.184.0 

Starting Network ID 223.1.184.-0 11011111 00000001 10111000 00000000 

Ending Network ID 223.1.191.0 11011111 00000001 10111111 00000000 

Notice that the first 21 bits (underlined) of the range of class C network IDs are the same. 
The last three bits of the third octet vary over all possible values from 000 through 111. 
This range of class C network IDs can be aggregated with the following network ID and 
subnet mask, as listed in Table 5-14. 

Table 5-14. The Aggregated Block of Class C Network IDs 

Network ID. 

Subnet Mask (binary) 

Subnet Mask 

Network Prefix 

223.1.184.0 

1111111111 11111111 11111000 00000000 

255.255.248.0 

/21 

A block of class-based network IDs, as allocated in this example, is known as a CIDR 
block. 

Table 5-15 lists the number of class C network IDs and the supernetted subnet mask for 
a required number of hosts. 



130 I PART II Internet Layer Protocols 

Table 5-15. Supernetting and Class C Addresses 

Required Hosts 

2-254 

255-508 

509-1016 

1017-2032 

2033-4064 

4065-8128 

8129-16,256 

16,257-32,512 

32,513-65,024 

An Address Space 

Number of Class C Network IDs 

1 

2 

4 

8 

16 

32 

64 

128 

256 

Supernetted Subnet Mask 

255.255.255.0 or /24 

255.255.254.0 or /23 

255.255.252.0 or /22 

255.255.248.0 or /21 

255.255.240.0 or /20 

255.255.224.0 or /19 

255.255.192.0 or /18 

255.255.128.0 or /17 

255.255.0.0 or /16 

From the perspective of an address space, CIDR blocks are no longer viewed as a range 
of class C network IDs. Even though the CIDR block is obtained from the class-defined 
range of class C network IDs, it does not necessarily represent a range of class C net
work IDs. Viewing the CIDR block as a range of class C network IDs implies that we will 
assign each class C network ID within the block to each of our networks. 

In reality, we typically want to assign network IDs of various sizes to the networks of 
our intranet in a variable-length subnetting scheme. Now our requirement is based on 
the number of IP addresses required, rather than the number of class C networks in our 
organization. 

For example, to assign 4000 IP addresses to an organization, determine the number of 
bits required to express 4000 IP addresses. Using powers of 2, 12 bits are needed to 
express 4094 IP addresses. Therefore, 12 bits are used for the host ID portion, and 20 
bits for the network ID portion. The subnet mask indicates 20 bits of network ID. Start
ing from an unassigned portion of the IP address space, the InterNIC allocates the 
223.1.176.0 network with the subnet mask of 255.255.240.0 (or 223.1.176.0/20) address 
space to the organization. 

The allocated address space allows the assignment of the range of IP addresses from 
223.1.176.1 through 223.1.191.254. However, it is unlikely that the organization will use 
all 4094 IP addresses on the same network segment. Rather, the organization can use 
variable-length subnetting and the 12 host bits to create a series of subnets containing 
the appropriate number of appropriately sized subnets. 

With CIDR, IP network IDs lose their classful heritage and become address spaces where 
certain bits are fixed (the network ID bits), and certain bits are variable (the host ID bits). 
Using variable-length subnetting techniques, the organization's needs can determine how 
to best utilize the host bits. 



Chapter 5 Internet Protocol (IP) Addressing I 131 

CIDR and Routing 

CIDR, like variable-length subnetting, requires routing protocols to advertise the subnet 
mask with the network ID. RIP version 2, OSPF, and BGPv4 support CIDR environments. 
RIP version 1 does not support CIDR environments. 

Public and Private Addresses 
When deploying an IP addressing scheme in your organization, the main consideration 
is whether your intranet is connected to the Internet. 

• If your organization is not connected to the Internet, it is technically possible 
to choose any IP network IDs-classful or classless-without regard to using 
overlapping addresses that are being used on the Internet. However, it is 
highly recommended that you choose a private address range. 

• If your organization is connected to the Internet, it can be connected one of 
two ways. If your organization uses a direct-routed connection using a router 
or firewall, you must use InterNIC-compliant addresses as allocated by the 
lnterNIC or an ISP. If your organization uses an indirect connection using a 
proxy server or a network address translator, you must use addresses that do 
not overlap with addresses that do, or might, exist on the Internet. 

For organizations connected to the Internet, the organizations must choose between the 
use of public or private addresses. 

Public Addresses 

The InterNIC assigns public addresses that are within the public address space consist
ing of all of the possible unicast addresses on the worldwide Internet. Historically, the 
InterNIC assigned classful network IDs to organizations connecting to the Internet with
out regard to geographical location. Today, the InterNIC assigns CIDR blocks to ISPs based 
on geographical location; the ISPs then subdivide their assigned CIDR blocks to customers. 
The subdivision of the remaining class C address space based on geographical location 
was done to provide hierarchical routing. Its purpose was also to minimize the number 
of routes in the Internet backbone routers. Public addresses are guaranteed to be glo
bally unique. 

When an organization or an ISP is assigned a block of addresses in the public address 
space, a route exists in the Internet routers' routing tables so that the assigned public 
addresses are reachable through the ISP. Historically, a classful network ID was added 
to all the Internet routers. Today, a route consisting of the range of assigned addresses 
is added to the routing tables of regional and ISP Internet routers. 

The range of public IP addresses assigned to an organization are summarized by one or 
more (network ID, mask) pairs. These pairs become the routes in the ISP and Internet 
routers so that the IP addresses of the organization can be reached. 



132 PART II Internet Layer Protocols 

Illegal or Overlapping Addresses 
Organizations that are not connected to the Internet either directly or indirectly are free 
to choose any addressing scheme without regard to whether the addresses have been 
assigned to another ISP or organization. However, if that organization later decides to 
connect to the Internet, implementing a new addressing scheme might be required. 

The addresses assigned when the organization was not connected to the Internet might 
include public addresses that have been assigned to other organizations or ISPs by the 
InterNIC. If that is the case, these addresses are duplicates, and in conflict with assigned 
addresses. This is known as illegal, or overlapping, addressing. Internet traffic from hosts 
using illegal addresses is forwarded to the routers of the organization who were origi
nally assigned those addresses. Therefore, organizations using illegal addressing are not 
reachable on the Internet. 

For example, an organization that is not connected to the Internet decides to use the 
address space 207.46.130.0/24 for its intranet. As long as the organization does not con
nect to the Internet, the use of 207.46.130.0/24 is not an issue. If the organization then 
connects to the Internet using a direct routed connection, the use of 207.46.130.0/24 is 
illegal and no responses from hosts on the 207.46.130.0/24 network segment are received. 

In this configuration, when a host sends traffic to an Internet location, it sends the traf
fic with the source IP address within the address space of 207.46.130.0/24. When the 
Internet host sends a response, it sends the response to the destination IP address within 
the address space of 207.46.130.0/24. InterNIC assigned the Microsoft Corporation the 
address space 207.46.130.0/24, and a route exists in Internet routers to forward traffic with 

. the destination IP address in this range to the Microsoft Corporation's routers. Therefore, 
the responses to traffic sent by the hosts on the illegal address space 207.46.130.0/24 are 
forwarded to the Microsoft Corporation's routers, and not to the routers of the organiza
tion using the illegal addresses. 

Note It is common practice among Internet service providers to discard IP pack
ets sent from a customer site when the source IP address field is not set to a 
valid public address assigned to the customer. This prevents the sending of traf
fic from hosts using illegal addresses and address spoofing. Address spoofing 
is the sending of IP traffic from a source IP address that is not assigned to a host. 

Private Addresses 

As the Internet experienced exponential growth, the demand for public IP addresses 
increased commensurately. Because each node on an organization's intranet required a 
globally unique public IP address, organizations requested from the InterNIC enough IP 
addresses to assign unique IP addresses to all of the nodes within their organizations. 

However, when an analysis of IP addressing within organizations was done, the Internet 
authorities noticed that most organizations actually needed very few public addresses. The 
only hosts that required public IP addresses were those that communicated directly with 



Chapter 5 Internet Protocol (IP) Addressing I 133 

systems on the Internet. Examples are Web servers, FTP servers, e-mail servers, proxy serv
ers, and firewalls. Most of the hosts within an organization's intranet obtained access to Internet 
resources through Application Layer gateways such as proxy servers and e-mail servers. 

For the hosts within the organization's intranet that do not require direct access to the 
Internet, a legal IP address space needs to be used. For this purpose, the Internet authori
ties created the private address space, a subset of the Internet IP address space that can 
be used without conflict within an organization, for hosts that do not require a direct 

. connection to the Internet. 

The private and public address spaces are separate and do not overlap. The InterNIC never 
assigns private addresses-IP addresses within the private address space-to an organi
zation or ISP. This also means that private IP addresses are not reachable on the Internet. 

Because private addresses are not reachable on the Internet, hosts on an intranet with 
private addressing cannot be directly connected to the Internet. Rather, hosts on an intranet 
with private addressing must be indirectly connected to the Internet using a network 
address translator or an Application Layer gateway such as a proxy server. 

A network address translator is a router that translates between private addresses and 
public addresses for Internet traffic. The proxy server receives a request from a host on 
the intranet for Internet resources. The proxy server then sends the request to the Internet 
resource and the response traffic is forwarded back to the requesting host. When the proxy 
server sends the request to the Internet resource, it uses public addressing. Both proxy 
servers and network address translators have private addresses on their intranet interface 
and public addresses on their Internet interface. 

More Info For more information on network address translation, see RFC 1631, 
which can be found in the \RFC folder on the companion CD-ROM. 

The private address space is defined by the following three address blocks: 

• 10.0.0.0/8 The 10.0.0.0/8 private network is an address space with 24 host 
bits that can be used for any subnetting scheme within the private organization. 

• 172.16.0.0/12 The 172.16.0.0/12 private network is an address space with 20 
host bits that can be used for any subnetting scheme within the private organi
zation. From a classful persp~ctive, the 172.16.0.0/12 private network ID is the 
range of 16 class B network IDs from 172.16.0.0/16 through 172.31.0.0/16. 

• 192.168.0.0/16 The 192.168.0.0/16 private network is an address space with 
16 host bits that can be used for any subnetting scheme within the private or
ganization. From a classful perspective, the 192.168.0.0/16 private network ID 
is the range of 256 class C network IDs from 192.168.0.0/24 through 
192.168.255.0/24. 

More Info For more information on the public address space, see RFC 1918, 
which can be found in the \RFC folder on the companion CD-ROM. 



134 I PART I! Internet Layer Protocols 

Microsoft Windows 2000 Automatic Private IP Addressing 
When you configure a Windows 2000 computer to use Dynamic Host Configuration 
Protocol (DHCP) to obtain its IP address automatically and a DHCP server does not re
spond to the DHCPREQUEST and DHCPDISCOVER messages, TCP /IP for Windows 2000 
configures itself using the Automatic Private IP Address (APIPA) feature. Using APIPA, 
TCP /IP for Windows 2000 randomly picks an IP address in the address space of 
169.254.0.0/16. This address space has been reserved by the Internet Assigned Numbers 
Authority (IANA) and is not reachable on the Internet. 

After choosing an IP address, TCP /IP for Windows 2000 sends a gratuitous Address Reso
lution Protocol (ARP) to check for IP address uniqueness. After receiving no response to 
the gratuitous ARP, TCP /IP for Windows 2000 is configured for the randomly chosen IP 
address and the subnet mask of 255.255.0.0. If a response to the gratuitous ARP is received, 
TCP/IP for Windows 2000 randomly chooses a new address in the 169.254.0.0/16 address 
space. After APIPA configuration, TCP/IP for Windows 2000 continues to send DHCP
DISCOVER messages every five minutes. If a DHCP server responds, TCP /IP for Windows 
2000 abandons the APIPA configuration and the DHCP-allocated address takes effect. For 
more information on gratuitous ARP, see Chapter 3, "Address Resolution Protocol (ARP)." 

APIPA was designed to simplify the configuration of a single subnet small office/home office 
(SOHO) network that is not connected to the Internet or any other IP internetwork. With 
APIPA, all the computers on a single subnet SOHO network configure themselves and are 
able to communicate without manually configuring TCP /IP or setting up a DHCP server. 

APIPA does not provide automatic configuration of a default gateway, the IP address of 
a Domain Name Server (DNS) server, a DNS domain name, the IP address of a Windows 
Internet Name Service (WINS) server, or NetBIOS node type. A single subnet SOHO 
network does not need a default gateway, and broadcast NetBIOS name queries resolve 
names for communication between computers. 

IP Broadcast Addresses 
IP broadcast addresses are used for single packet one-to-everyone delivery. A sending 
host addresses the IP packet using a broadcast address and every node on the sending 
node's network segment receives and processes the packet. IP broadcast addresses can 
be used only as the destination IP address. 

There are four different types of IP broadcast addresses. For each type, the broadcast IP 
packet is addressed at the Network Interface Layer using the network technology's broad
cast address. For example, for Ethernet and Token Ring networks, all IP broadcasts are 
sent using the Ethernet and Token Ring broadcast address of OxFF-FF-FF-FF-FF-FF. 

Network Broadcast 
The IP network broadcast address is the address formed by setting all the host bits to 1 
for a classful address. An example of a network broadcast address for the classful net-



Chapter 5 Internet Protocol (IP) Addressing I 135 

work ID 131.107.0.0/16 is 131.107.255.255. Network broadcasts are used to send pack
ets to all hosts of a classful network. All hosts of a classful network listen for and pro
cess packets addressed to the network broadcast address. IP routers do not forward 
network broadcast packets. 

Subnet Broadcast 
The IP subnet broadcast address is the address formed by setting all the host bits to 1 
for a non-classful address. An example of a network broadcast address for the non-classful 
network ID 131.107.26.0/24 is 131.107.26.255. Subnet broadcasts are used to send pack
ets to all hosts of a subnetted, supernetted, or otherwise non-classful network. All hosts 
of a non-classful network listen for and process packets addressed to the subnet broad
cast address. IP routers do not forward subnet broadcast packets. 

For a classful network, there is no subnet broadcast address, only a network broadcast 
address. For a non-classful network, there is no network broadcast, only a subnet broad
cast address. 

All-Subnets-Directed Broadcast 
The IP all-subnets-directed broadcast address is the address formed by setting all the 
original classful network ID host bits to 1 for a non-classful network. A packet addressed 
to the all-subnets-directed broadcast is intended to reach all hosts on all of the subnets 
of a subnetted class-based network ID. An example of an all-subnets-directed broadcast 
address for the subnetted network ID 131.107.26.0/24 is 131.107.255.255. The all-subnets
directed broadcast is the network broadcast address of the original classful network ID. 

All hosts of a non-classful network listen for and process packets addressed to the all
subnets-directed broadcast address. RFC 922 required IP routers to forward all-subnets
directed broadcast packets to all subnets of the original classful network ID implied in 
the address. However, this forwarding was not widely implemented. 

With the advent of classless network IDs, the all-subnets-directed broadcast address is 
no longer relevant. According to RFC 1812, the use of the all-subnets-directed broadcast 
has been deprecated. 

Notice how the all-subnets-directed address is the same as the subnet broadcast for the 
all-ones subnet. For example, the 8-bit subnetting of the class B network ID 157.54.0.0 
produces the subnets {157.54.0.0/24, 157.54.1.0/24 ... 157.54.254.0/24, 157.54.255.0/24}. 
For the last subnet, 157.54.255.0/24, the subnet broadcast is 157.54.255.255, which is the 
same as the all-subnets-directed broadcast address of 157.54.255.255. This address con
flict is not an issue for routers that do not forward all-subnets-directed broadcast traffic. 

Limited Broadcast 
The limited broadcast address is the address formed by setting all 32 bits of the IP ad
dress to 1 (255.255.255.255). The limited broadcast address is used when an IP node must 
perform a one-to-everyone delivery on the local network but the network ID is unknown. 



136 I PART II Internet Layer Protocols 

The limited broadcast address is typically used only by nodes during an automated con
figuration process such as BOOTP or DHCP. For example, with DHCP, a DHCP client must 
use the limited broadcast address for all traffic sent until the IP address lease is acknowl
edged by the DHCP server. 

All hosts, classful or non-classful, listenfor and process packets addressed to the limited 
broadcast address. While it appears that the limited broadcast address is addressed to all 
nodes on all networks, it appears only on the local network and is never forwarded by 
routers. The limited broadcast packet is limited to the local network segment. 

IP Multicast Addresses 
IP multicast addresses are used for single packet one-to-many delivery. A sending host 
addresses the IP packet using an IP multicast address; every node on the sending node's 
internetwork that is listening for the multicast traffic receives and processes the packet. 
Unlike broadcast packets, routers forward IP multicast packets and only the hosts listen
ing for the IP multicast traffic are disturbed. IP multicast addresses can be used only as 
the destination IP address. 

As RFC 1112 describes, the set of hosts listening for the traffic of a specific IP multicast 
address is called a host group. Host group members can be located anywhere on the IP 
internetwork. They also can join and leave the host group at any time. In order for rout
ers to forward IP multicast traffic to host group members, the routers must be aware of 
where the members of a multicast group are located. For more information on how hosts 
and routers facilitate the forwarding of IP multicast traffic, see Chapter 8, "Internet Group 
Management Protocol (IGMP)." 

Multicast IP addresses are in the class D range. Multicast IP addresses range from 224.0.0.0 
through 239.255.255.255. Multicast IP addresses in the range 224.0.0.0 through 224.0.0.255 
are reserved for local subnet traffic. Table 5-16 lists some of the reserved IP addresses in 
this range used by Windows 2000. For a complete list, see http://www.isi.edu/in-notes/ 
iana/ assignments/multicast-addresses. 

Table 5-16. Reserved Local Subnet IP Multicast Addresses 

Multicast 
IP Address 

224.0.0.1 

224.0.0.2 

224.0.0.5 

224.0.0.5 

224.0.0.9 

Purpose 

The all-hosts multicast address. Designed to reach all hosts on a subnet. 

The all-routers multicast address. Designed to reach all routers on a subnet. 

The AllOSPFRouters address. Designed to reach all OSPF routers on a subnet. 

The DRRouters address. Designed to reach all OSPF designated routers 
on a subnet. 

The RIPv2 multicast address. Designed to reach all RIPv2 routers on a subnet. 



Chapter 5 Internet Protocol (IP) Addressing I 137 

Mapping IP Multicast Addresses to MAC Addresses 
To fulfill the promise of IP multicast traffic-where a single IP datagram is processed only 
by the host group members-IP multicast traffic must be mapped to a corresponding MAC
level multicast address. The corresponding MAC-level multicast becomes an interesting 
address to the network interface card (NIC), and all traffic addressed to that interesting 
address with a valid frame check sequence is passed up through a hardware interrupt 
to the operating system. 

Ethernet and· FDDI 

To denote a MAC-level multicast address, Ethernet and FDDI NICs set the Individual/ 
Group (l/G) bit, the low-order bit of the first byte of the destination MAC address, to 1. 
For IP multicast addressing, the range of multicast MAC addresses is Ox01-00-5E-OO-OO
OO to Ox01-00-5E-7F-FF-FF. The high-order 25 bits are set to 0000001 00000000 01011110 
0. The low-order 23 bits are available for use by IP multicast addresses. 

To map an IP multicast address to an Ethernet or FDDI MAC-level multicast address, the 
low-order 23 bits of the IP multicast address are copied to the low-order 23 bits in the 
Ethernet multicast address as Figure 5-11 shows. 

8 bits 16 bits 24 bits 32 bits 40 bits 48 bits 

IPMulticastAddress I~ ITIIIillJIITIIIillJ WlIIW 
j Loroer 23 bits I 

Ethernet Multicast Address 

l0 l0 l0 l0l+l+lll+l0l 0l 0l 0l~~ll+l+l 1l 1 l 1l 0I rumru mn ITllilJ] 
01 00 5E 

Figure 5-11. Tbe mapping of IP multicast addresses to Ethernet and FDDI .MAC addresses. 

In the high-order nine bits of the IP multicast address, the first four bits are set to 1110; 
the next five bits are variable. These five bits do not map to the corresponding Ethernet 
and FDDI multicast address. Therefore, up to 32 different IP multicast addresses can map 
to the same Ethernet and FDDI MAC-level multicast address. IP multicast packets received 
that do not correspond to a multicast address registered by an application or another 
protocol are silently discarded. 



138 I PART II Internet Layer Protocols 

A node registers interest in a specific multicast group by informing the NIC to listen for 
another interesting destination address for incoming frames. In Windows 2000, this is done 
through the NDISRequest() function. For example, by default Windows 2000 TCP /IP lis
tens for all multicast traffic sent to the all-host multicast address 224.0.0.1. Therefore, TCP I 
IP informs the NIC through NDIS to pass up frames with the destination MAC address of 
OxO 1-00-SE-00-00-01. 

Token Ring 

As RFC 1469 describes, Token Ring can support the same type of multicast IP address to 
MAC mapping as Ethernet and FDDI. However, because of the hardware limitations of 
most Token Ring network adapters, all IP multicast addresses are mapped to the single 
Token Ring functional address of OxC0-00-00-04-00-00. 

Summary 
IP addresses can be unicast, broadcast, or multicast. For unicast addresses, subnetting 
techniques allow a network ID to be allocated, in an efficient manner, to the subnets of 
an IP internetwork. The Internet authorities have defined public addresses that are reach
able on the Internet, and private addresses that are designed to be used on private intranets 
not directly connected to the Internet. IP broadcast addresses are used to send IP 
datagrams to all the nodes on a physical or logical subnet. IP multicast addresses are used 
to send IP datagrams to all members of a multicast host group. 



139 

Internet Protocol (IP) Routing 

In order to troubleshoot TCP /IP connectivity problems, it is important to understand how 
packets are forwarded from a source to a destination node on an IP internetwork. In order 
for data to be exchanged between any two nodes, each node must be reachable from 
the other. For universal reachability, a forwarding path between any two nodes must exist 
in both directions. The forwarding paths are determined by the contents of local IP routing 
tables and the nature of the IP routing infrastructure. 

Introduction to IP Routing 
IP routing is the process of forwarding unicast IP traffic to its destination in an IP 
internetwork with an arbitrary topology. Specifically, IP routing is the process of forward
ing packets from the sending host and through a series of intermediate routers. To fa
cilitate the forwarding process, the sending host and each router make a forwarding 
decision based on the contents of their local IP routing table. For Microsoft Windows 2000 
hosts and routers, the IP routing table entries are created based on the TCP /IP configu
ration, static routing table entries, ICMP Redirect, or routing protocols. 

For discussion in this chapter, a node is a network device running the TCP /IP protocol; 
a host is a TCP/IP node that does not have routing capability; and a router (or gateway) 
is a TCP /IP node that does have routing capability. Both hosts and routers are consid
ered nodes. 

Direct and Indirect Deliveries 
When forwarding an IP datagram, the sending host performs either a direct or indirect 
delivery to the destination. If the destination is directly reachable-on a directly attached 
network segment-the forwarding node performs a direct delivery by resolving the 
destination node's Media Access Control (MAC) address and sending the frame to the 
destination. If the destination is not directly reachable-not on a directly attached net
work segment-the host uses its IP routing table to determine an intermediate router's 
forwarding IP address. The forwarding node performs an indirect delivery by resolving 
the intermediate router's MAC address and sending the frame to the intermediate router. 

The IP routing process is a series of direct and indirect deliveries, as shown in Figure 
6-1. For Host A and Host B, on the same network segment, Host A performs a direct 



140 I fART II Internet Layer Protocols 

delivery when sending packets to Host B. For Host A and Host C, on different network 
segments separated by a single IP router, Host A performs an indirect delivery to the router. 
The router then performs a direct delivery to Host C. 

Host 
B 

D_ 

ti 
Direct 

delivery 

Host 
A 

D_ 

Host 
c 

D_ 
Router 

'-----~ j ___ ____,1 t 
Indirect Direct 
delivery delivery 

Figure 6-1. IP f01warding showing direct and indirect delivery. 

For more details on the behavior of the Address Resolution Protocol (ARP) during direct 
and indirect deliveries, see Chapter 3, "Address Resolution Protocol (ARP)." 

Types of Links 
The IP forwarding process and IP routing table entries vary depending on the type of 
link over which the packet is being forwarded. The following are the three types of links: 

• Broadcast 

• Point-to-point 

• · Non-broadcast multiple access 

Broadcast 
The broadcast link type is characterized by its ability to have more than two nodes on 
the same network segment, and each frame sent is received at the Network Interface Layer 
by all of the network segment's nodes. Ethernet, Token Ring, and FDDI are examples of 
broadcast links. In each case, one of possible multiple nodes on the network segment 
must be distinguished using a Network Interface Layer address. For Ethernet, Token Ring, 
and FDDI, the Network Interface Layer address is the destination MAC address. ARP is 
used to resolve the destination MAC address for a given forwarding IP address. 

The broadcast link type supports the ability to multicast to a group of hosts on the net
work segment, or to broadcast .to all hosts on the segment. Routing protocols such as 
Routing Information Protocol (RIP) or Open Shortest Path First (OSPF) use the ability to 
multicast to propagate routing information. RIP routers can use either subnet broadcasts 
or the 224.0.0.9 multicast address. OSPF routers use the multicast addresses of 224.0.0.S 
and 224.0.0.6. Figure 6-2 shows Ethernet, an example of a broadcast link. 



Host 
A 

Host 
B 

D_ D_ 
~ ¥----~----}~I ___ Ethernet 

Data flow 

Chapter 6 Internet Protocol (IP) Routing I 141 

Host 
c 

Host 
D 

D_ 

11= ... 
Figure 6-2. A broadcast link such as Ethernet where a single packet is received by multiple 
nodes. 

To forward an IP datagram on a broadcast network, knowledge of the forwarding IP 
address is required. 

Point-to-Point 
The point-to-point link type is characterized by its ability to support only two IP nodes. 
Examples of point-to-point links are typical leased-line and circuit-switched wide area 
network (WAN) links such as analog phone lines, T-Carrier (including Tl/El and T3/E3), 
and ISDN. For point-to-point links, there is only one possible node that receives the 
forwarded IP datagram. Therefore, ARP is not used to resolve a Network Interface Layer 
address and the forwarding IP address is irrelevant. 

Routing protocols such as RIP and OSPF will work over point-to-point links without 
modification. For broadcast RIP announcements, the two routers' IP addresses on the 
point-to-point link network segment must be from the same IP network ID. If the IP 
addresses of the two routers' interfaces on the point-to-point link are from different 
network IDs, the receiving router will not process broadcast RIP requests or announce
ments. If this is the case, use RIP version 2 and multicast announcements. 

For OSPF, the router interfaces are configured for the OSPF point-to-point network type. 
In this configuration, OSPF routers always use the multicast address of 224.0.0.5. Figure 
6-3 shows a leased-line connection between two routers using Tl, an example of a point
to-point link. 

IP 
internetwork 

Router 
A Data flow 

Figure 6-3. A point-to-point link such as a Tl leased line contains a maximum of two 
nodes. 



142 I PART U Internet Layer Protocols 

Non-Broadcast Multiple Access 
The non-broadcast multiple access (NBMA) link type is characterized by its ability to 
support more than two IP nodes; however, this link type cannot multicast or broadcast. 
Examples of NBMA links are packet-switched WAN technologies such as X.25, Frame 
Relay, and ATM. In each of these technologies; a single WAN adapter can support mul
tiple virtual circuits. However, with the exception of recent developments in Frame Re
lay, NBMA links have no capability of sending a single packet that is copied to all the 
configured virtual circuits. 

For X.25, Frame Relay, and ATM adapters operating in NBMA mode, the forivarding IP 
address is relevant. However, because there is no multicast or broadcast facility, ARP is 
not used. Inverse ARP can be used to discover the IP addresses of the routers on the other 
end of the virtual circuit. The forwarding IP address from the route in the routing table 
is mapped to the appropriate virtual-circuit identifier using a table maintained by the 
adapter. 

For ·RIP and OSPF operation over an NBMA network, instead of broadcasting or multi
casting, RIP or OSPF neighbors are configured. Each neighbor is a unicast location to 
which RIP or OSPF traffic is sent. Figure 6-4 shows a Frame Relay spoke and hub con
figuration, an example of an NBMA link. 

Qsite4 
S;}IJ.; Router 
M11Fi D 

Router Router 

C)~~. ~==~,~C) 
Site 1 Site 3 

Figure 6-4. An NBMA link such as Frame Relay, where a single interface supports multiple 
virtual circuits without a broadcast facility. 

For X.25, Frame Relay, and ATM adapters operating in multi- or sub-interface mode, each 
virtual circuit is represented as a separate logical adapter. Each logical adapter is the 
equivalent of a point-to-point adapter. RIP and OSPF are configured the same way as a 
point-to-point link. 



Chapter 6 Internet Protocol (IP) Routing I 143 

The IP Routing Table 
The IP routing table is a database of routes present in memory on all IP nodes. Each entry, 
or route, in the routing table contains forwarding information for a range of destination 
IP addresses. The level of detail for destination IP addresses-the number of routes in 
the routing table-depends on whether the IP node is a host or a router. Typically, IP 
hosts have few entries and IP routers have many. 

It is common on IP internetworks to configure IP hosts with a "default gateway." The 
default gateway configuration creates a default route that effectively summarizes all des
tinations. For IP routers, it is common for the routing table to contain an entry for every 
reachable network on the IP internetwork, although route summarization and default 
routing are also commonly used. 

In each case, the IP routing table's purpose is to yield two values for the destination IP 
address of each packet being forwarded: 

• The interface The interface is the representation of a physical or logical de-. 
vice over which the IP datagram is forwarded. 

• The forwarding IP address The forwarding IP address is the node's IP ad
dress to which the IP datagram is forwarded. For direct deliveries, the forward
ing IP address is the destination IP address of the IP datagram being forwarded. 
For indirect deliveries, the forwarding IP address is the IP address of a directly 
reachable intermediate router to which the IP datagram is being forwarded. 

Structure 
A route in the IP. routing table contains enough information to identify the destination, 
identify the interface and forwarding IP address, and distinguish the best route to use when 
multiple routes to the destination are found. 

Typical IP routing tables contain the following fields for each route: 

• Destination Used in conjunction with the Network Mask, this field is a repre
sentation of a range of IP addresses that is reachable with this route. The Destina
tion field can be an IP network ID (classful, subnet, supernet) or an IP address. 

• Network Mask The bit mask that is used to determine the significant bits in the 
Destination field. A 1 bit in the Network Mask field identifies a bit that must match 
the Destination field for this route. A 0 bit in the Network Mask field is a bit that 
does not have to match the Destination field. The Network Mask field must con
sist of a series of contiguqus 1 bits followed by a series of contiguous 0 bits. The 
Destination and the Network Mask fields define a range of IP addresses. An IP 
datagram with a destination IP address within the range will match the route. 

To determine whether the destination IP address of an IP datagram being 
forwarded matches a route, the destination IP address is bit-wise logically 
ANDed with the Network Mask. The result is compared with the value of the 



144 I PART H Internet Layer Protocols 

Destination field for the route. If they match, the route matches the destination 
IP address for the packet and the corresponding forwarding IP address will be 
used. 

Due to the ANDing process used between the Network Mask field and the Des
tination field, the Destination field cannot be more specific than the Network 
Mask field. In binary terms, the Destination field cannot have bits set to 1 in bit 
positions where the Network Mask field has bits set to 0. Because the logical 
ANDing of a 1 and a 0 is always a 0, the ANDing of the Network·Mask field 
with any IP address never results in a match to the Destination field. This is a 
useless route because it never matches any destination. Windows 2000 will not 
allow such a route to be added to the IP routing table. To test whether a desti
nation and network-mask combination is invalid, perform a bit-wise logical 
AND of the destination and the network mask. If the result is not the destina
tion, the combination is invalid. 

• Forwarding IP Address Indicates the IP address to which the IP datagram is 
to be forwarded if it matches this route. The Forwarding IP Address field's value 

" is relevant for broadcast or NBMA links, and irrelevant for point-to-point links. 
For routes of directly attached network segments, the Forwarding IP Address 
field can be set to the IP address of that network segment's interface. This is the 
behavior of the Windows 2000 IP routing table. 

• Interface This is the designation of the logical or physical interface used 
when forwarding IP datagrams using this route. The Interface field's value. can 
be a logical name or the IP address assigned to the interface. The Windows 
2000 IP routing table uses the IP address assigned to the interface. 

• Metric Indicates the route's cost and is used by the route determination process 
to choose among multiple routes with the same destination and network mask. 
When there are multiple routes that match the same destination and network 
mask, the route with the lowest metric is used. The Metric field is commonly used 
to reflect the hop count-the number of routers to the destination-although 
routing protocols such as OSPF use customizable link costs that take into account 
the bandwidth, delay, and physical link costs when calculating the metric. 

Types of Routes 
A route in the IP routing table is one of the following types (in order of most to least specific): 

• Host Route A route to a specific IP address; therefore, the network mask is 
255.255.255.255 C/32). Host routes allow you to customize IP routing on a per IP 
address basis.· Host routes are commonly used to specify a more optimal route 
to specific hosts on a remote subnet. 

• Network ID Route A route for classful, classless, subnet, and supernetted des
tinations. The network mask for a network ID route is somewhere between 
128.0.0.0 (/1) and 255.255.255.254 C/31). 



Chapter 6 Internet Protocol (IP) Routing I 145 

Each Network ID route can be either a directly attached network ID route or a 
remote network ID route. A directly attached network ID route is a route for a 
network segment on which the router has an interface. Routes for directly at
tached network IDs might not hav_e a value for the forwarding IP address. A 
remote network ID is a network ID that is available across another router. For 
remote network ID routes, the forwarding IP address is an intermediate 
router's IP address. The forwarding IP address must be directly reachable using 
the interface in the Interface field. 

• Default Route A route to all destinations, used when no other host route or 
network ID route matching the destination is found. The default route has a des
tination of 0.0.0.0 and a network mask of 0.0.0.0 (/0) and is sometimes expressed 
as 0/0. Notice that the default route is a matching route for any destination IP ad
dress (any IP address AND 0.0.0.0 is 0.0.0.0). A default route is used to summa
rize all possible destinations. The def a ult gateway configured on an IP host 
creates a default route in the IP routing table. For routers, a default route is used 
to summarize all destinations, and is typically used for static routing and summa
rizing all the destinations of a large IP internetwork such as the Internet. 

Route Determination Process 
For any IP datagram being forwarded, a single route in the routing table must be cho
sen to determine the interface and the forwarding IP address for the forwarding process. 
To determine the single best route for forwarding, IP uses the following process: 

1. For each route in the IP routing table, determine which routes match the desti
nation IP address in the IP datagram by performing a bit-wise logical AND be
tween the destination IP address and the network mask, and comparing the 
result to the value of the Destination field. If they match, mark the route as a 
matching route. 

2. From the routes that matched the destination, determine which route(s) have 
the largest number of 1 bits in the Network Mask field. The route(s) with the 
largest number of 1 bits are the route(s) that most closely matched the destina
tion IP address. This is known as the longest match or closest match paradigm. 
The longest match is the most specific route to the destination node. Note that 
for the default route, there are no 1 bits in the Network Mask field; however, it 
is a matching route. 

3. From the list of longest matching routes, determine which of the longest 
matching routes has the lowest metric. 

4. From the list of longest matching routes with the lowest metric, the router is 
free to choose from the remaining routes. 

The end result of the route determination process is the choice of a single route that is 
the most specific route to the destination with the lowest metric. The single route chosen 
yields the forwarding IP address and the interface over which to forward the IP datagram. 



146 I PART H Internet Layer Protocols 

If no matching route is found, IP indicates a routing error. For a sending host, an internal IP 
routing error informs the upper layer protocol. For a router, the IP datagram is discarded and 
an Internet Control Message Protocol (ICMP) Destination Unreachable-Host Unreachable 
message is sent back to the sending host. 

The closest matching route process favors routes matching the destination in the following 
order: 

1. Host Route For a host route, all 32 bits match the destination IP address. 

2. Subnet Route For a route representing a subnetted network ID, all the class
based network bits and all the subnet bits match the destination IP address. 

3. Class-Based Network Route For a route representing a class-based network 
ID, all class-based network bits match the destination IP address. 

4. Supernet or Summarized Route For a route representing a supernetted 
(Classless Inter-Domain Routing [CIDR]) or summarized route, all the bits in the 
summarized network ID match the destination IP address. 

5. Default Route For the default route, none of the bits matches the destination IP 
address. 

The Microsoft Windows 2000 IP Routing Table 
The Windows 2000 IP routing table for a single interface host with the IP address 172.16.1.99, 
subnet mask 255.255.255.0, and default gateway 172.16.1.1 as displayed by typing route 
print at a command prompt is shown below: 

D: \>route print 

Interface List 
0xl ............................. MS TCP Loopback interface 
0x2 ... 00 60 08 3e 4f la ...... 3Com 3C90x Ethernet Adapter 

Active Routes: 
Network Destination Netmask Gateway Interface Metric 

0.0.0.0 0.0.0.0 172.16.1.1 172.16.1.99 1 
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1 

172.16.1.0 255.255.255.0 172.16.1.99 172.16.1.99 1 
172.16.1.99 255.255.255.255 127.0.0.1 127.0.0.1 1 

172.16.255.255 255.255.255.255 172.16.1.99 172.16.1.99 1 
224.0.0.0 224.0.0.0 172.16.1.19 172.16.1.19 1 

255.255.255.255 255.255.255.255 172.16.1.99 172.16.1.99 1 
Default Gateway: 172.16.1.1 

Persistent Routes: 
None 



Chapter G Internet Protocol (IP) Routing I 14 7 

This example of a Windows 2000 IP routing table consists of the following routes: 

• Default Route (0.0.0.0 with 0.0.0.0 or 0/0) The closest matching route when 
there are no other matches. If the default route is chosen, the packet is forwarded 
to the default gateway's IP address (172.16.1.1) using the interface assigned to 
the IP address 172.16.1.99. 

• Loopback Network Route (127 .0.0.0 with 255.0.0.0 or 
127.0.0.0/8) Matches any IP address in the range 127.0.0.0 through 
127.255.255.255. All IP addresses beginning with 127 are reserved for 
loopback. All IP datagrams addressed in this range are forwarded to the re
served loopback ad?ress 127.0.0.1 using the loopback interface. 

• Directly Attached Network Route (172.16.1.0 with 255.255.255.0 or 
172.16.1.0/24) A route to the locally attached subnet. When this route is 
chosen, the IP datagram is forwarded to the destination IP address using the 
interface assigned the IP address 172.16.1.99. 

• Local Host Route (172.16.1.99 with 255.255.255.255 or 
172.16.1.99/32) A host route for the assigned IP address. All traffic ad
dressed to the local host IP address is forwarded to the reserved loopback ad
dress 127.0.0.1 using the loopback interface. 

• All-Subnets Directed Broadcast Route (172.16.255.255 with 
255.255.255.255 or 172.16.255.255/32) A host route for the all-subnets di
rected broadcast address for the class B network ID 172.16.0.0/16. Packets ad
dressed to the all:-subnets directed broadcast address are sent as MAC-level 
broadcasts, using the interface assigned the IP address of 172.16.1.99. An all
subnets directed broadcast route is present only if the locally attached network 
segment is subnetted. For more information on the all-subnets directed broad
cast, see Chapter 5, "Internet Protocol (IP) Addressing." 

• Multicast Addresses Route (224.0.0.0 with 224.0.0.0 or 
224.0.0.0/3) Used to match all Class D addresses reserved for IP multicast 
traffic. IP multicast packets are sent as MAC-level multicasts, using the interface 
assigned the IP address of 172.16.1.99. 

• Limited Broadcast Route (255.255.255.255 with 255.255.255.255 or 
255.255.255.255/32) A host route for the limited broadcast address. 
Datagrams addressed to the limited broadcast address are sent as MAC-level 
broadcasts using the interface assigned the IP address 172 .16.1.99. 

These are the routes in the IP routing table created based on the common configuration of 
an IP address, a subnet mask, and a default gateway. Additional routes can be added through 
static routes, the receipt of ICMP Redirect messages, or a routing protocol. 



148 I PART ii Internet Layer Protocols 

Multihomed Nodes 
For multihomed nodes-nodes with more than one IP address-additional entries for the local 
host route, the directly attached network ID route, the multicast route, and the limited broad
cast address are present for each IP address added. An example is shown below: 

D:\>route print 

Interface List 
0xl ........................... . MS TCP Loopback interface 

3Com 3C90x Ethernet Adapter 
ELNK3 Ethernet Adapter 

0x2 ... 00 60 08 3e 4f la 
0x3 ... 00 60 97 01 54 d3 

Active Routes: 
Network Destination Netmask Gateway Interface 

0.0.0.0 0.0.0.0 172.16.1.1 172.16.1.99 
127.0.0.0 255.0.0.0 ' 127.0.0.1 127.0.0.1 

172.16.1.0 255.255.255.0 17 2 .16 .1. 99 172.16.1.99 
172.16.1.99 255.255.255.255 127.0.0.1 127.0.0.1 

172.16.255.255 255.255.255.255 172.16.1.99 172.16.1.99 
169.254.0.0 255.255.0.0 169.254.155.89 169.254.155.89 

169.254.155.89 255.255.255.255 127.0.0.1 127.0.0.1 
224.0.0.0 224.0.0.0 157 .59.11.19 157.59.11.19 
224.0.0.0 224.0.0.0 169.254.155.89 169.254.155.89 

255.255.255.255 255.255.255.255 172.16.1.99 172.16.1.99 
255.255.255.255 255.255.255.255 169.254.155.89 169.254.155.89 

Default Gateway: 172.16.1.1 

Persistent Routes: 
None 

Metric 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

In the above example, the 3Com 3C90x Ethernet Adapter is configured with the IP address 
172.16.1.99, the subnet mask 255.255.255.0, and the default gateway of 172.16.1.1. The 
ELNK3 Ethernet Adapter is configured through the Windows 2000 Automatic Private IP 
Addressing (APIPA) feature with the IP address 169.254.155.89 and the subnet mask 
255.255.0.0. 

Maintaining the Microsoft Windows 2000 IP Routing Table 
You maintain the Windows 2000 IP routing table with the ROUTE command-line utility. With 
ROUTE, you can view the routing table, add routes, change routes, and delete routes. The IP 
routing table is stored in RAM and is not preserved when the computer is restarted. It will re
build a default routing table based on the TCP /IP configuration when TCP /IP is initialized. 

To make additional static routes persistent so that they are always added when TCP /IP is 
initialized, add the routes using the ROUTE ADD command with the "-p" option. Routes 
added with the "-p" option are stored in the Windows 2000 registry under: 



Chapter 6 Internet Protocol (IP) Routing I 149 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TCPIP\ 
Parameters\PersistentRoutes 

For a Windows 2000 Server computer running the Routing and Remote Access service, 
the IP routing table also can be maintained from the Routing and Remote Access admin- . 
istrative tool. Use context menu options available from the IP Routing\Static Routes object 
to view the IP routing table and add static routes. Figure 6-5 shows the IP routing table 
as it appears in the Routing and Remote Access administrative tool. 

0.0.0.0 0.0.0.0 172.16.1.1 Local Area Connection 2 Network ... 
127.0.0.0 255.0.0.0 127.0.0.1 Loopback Local 
127.0.0.1 255. 255. 255. 255 127.0.0.1 Loopback Local 
169.254.0.0 255. 255. 0. 0 169.254.155.89 Local Area Connection Local 
169.254.155.89 255. 255. 255. 255 127.0.0.1 Loopback Local 
172.16.1.0 255. 255. 255. 0 172.16.1.99 Local Area Connection 2 Local 
172.16.1.99 255. 255. 255. 255 127.0.0.1 Loopback Local 
172.16. 255. 255 255. 255. 255. 255 172.16.1.99 Local Area Connection 2 Local 
224.0.0.0 240.0.0.0 172.16.1.99 Local Area Connection 2 Local 
224.0.0.0 240.0.0.0 169.254.155.89 Local Area Connection Local 
255. 255. 255. 255 255. 255. 255. 255 172.16.1.99 Local Area Connection 2 Local 
255. 255. 255. 255 255. 255. 255. 255 169. 254.155. 89 Local Area Connection Local 

Figure 6-5. 1be IP routing table as viewed from the Routing and Remote Access administra
tive tool. 

The Windows 2000 IP Routing Process 

The Windows 2000 IP routing process is as follows: 

1. Perform the route determination process previously described to choose a single 
route that is the closest match to the destination and has the lowest metric. 

·2. From the chosen route, examine the gateway and interface IP addresses. 

3. If the gateway IP address is the same as the interface IP address, set the 
forwarding IP address to the destination IP address in the IP datagram being 
forwarded. 

4. If the gateway IP address is not the same as the interface IP address, set the for-
warding IP address to the gateway IP address. 

The result of the Windows 2000 IP routing process is the IP address of the interface over which 
the packet is to be forwarded (the Interface field's IP address) and the forwarding IP address 
(either the IP datagram's destination IP address or the Gateway field's value). This result is 
then passed to the ARP module to determine: 

• For unicast IP traffic sent over broadcast links, the unicast MAC address of the 
node using the forwarding IP address 

• For multicast IP traffic sent over broadcast links, the multicast MAC address corre
sponding to the multicast IP address 

• For broadcast IP traffic sent over broadcast links, the MAC-level broadcast 
address 



150 I PART II Internet Layer Protocols 

For more details on how ARP resolves the unicast MAC address of the node to which the 
datagram is being forwarded, see Chapter 3, "Address Resoiution Protocol (ARP)." 

Examples of Windows 2000 Route Determination 

A Windows 2000 host has the following Windows 2000 IP routing table: 

D:\>route print 

Interface List 
0xl ............................. MS TCP Loopback interface 
0x2 ... 00 60 08 3e 4f la ...... 3Com 3C90x Ethernet Adapter 

Active Routes: 
Network Destination Netmask Gateway Interface Metric 

0.0.0.0 0. 0. 0. 0 172.16.1.1 172.16.1.99 1 
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1 

172.16.1.0 255.255.255.0 172.16.1.99 172.16.1.99 1 
172.16.1.99 255.255.255.255 127.0.0.1 127.0.0.1 1 

172.16.255.255 255.255.255.255 172.16.1.99 172.16.1.99 1 
224.0.0.0 224.0.0.0 172.16.1.19 172.16.1.19 1 

255.255.255.255 255.255.255.255 172.16.1.99 172.16.1.99 1 
Default Gateway: 172.16.1.1 

Persistent Routes: 
None 

When sending traffic to the destination IP address 172.16.1.47 (local subnet traffic), the 
matching routes are the default route (0.0.0.0 with 0.0.0.0) and the local subnet route 
(172.16.1.0 with 255.255.255.0). Because the local subnet route is a closer match to the 
destination IP address (24 bits in the network mask matched rather than 0 bits for the 
default route), the directly attached network ID route is chosen. Because the Gateway 
and Interface fields are set to the same value, the forwarding IP address for the datagram 
is set to 172.16.1.47. The IP datagram, the forwarding IP address (172.16.1.47), and the 
interface (172.16.1.99) are passed to ARP to perform a direct delivery. 

When sending traffic to the destination IP address 10.1.1.100 (remote traffic), the only 
matching route is the default route (0.0.0.0 with 0.0.0.0). Because the Gateway and Inter
face fields are different, the forwarding IP address for the datagram is set to 172.16.1.1. The 
IP datagram, the forwarding IP address (172.16.1.1), and the interface (172.16.1.99) are 
passed to ARP to perform an indirect delivery. 



Chapter 6 Internet Protocol (IP) Routing I 151 

IP Routing from Sending Host to Destination 
To fully understand IP routing, we must examine the series of forwarding processes that occur 
at the sending host, the intermediate routers, and the destination host. The following processes 
assume an IP header without Loose Route, Strict Route, or Record Route IP options. 

Sending Host Forwarding Process 
When the sending host (a Windows 2000 computer) forwards an IP datagram, IP performs 
the following: 

1. The Time-to-Live (TTL) is set to either the default value or the value specified by 
an upper layer protocol. 

2. The destination IP address is passed to the Windows 2000 IP routing process, 
which determines the interface and the forwarding IP address. If no route is 
chosen, IP indicates a routing error to the upper layer protocol. 

3. IP passes the IP datagram, the forwarding IP address, and the interface to ARP. 

4. ARP resolves the forwarding IP address to a unicast MAC address for the indi
cated interface. For a direct delivery, ARP resolves the destination's MAC ad
dress. For an indirect delivery, ARP resolves the intermediate router's MAC 
address. Once ARP determines the MAC address for the forwarding IP address, it 
calls NDISSend() to send the frame using the appropriate network adapter. 

IP Router Forwarding Process 
When an IP datagram is received by a Windows 2000 computer, acting as an IP router, IP 
performs the following: 

1. IP verifies the IP header checksum. It runs the checksum calculation and com
pares the result with the value stored in the IP datagram's Header Checksum 
field. If the result does not match the value of the Header Checksum field, IP si
lently discards the IP datagram. 

2. IP checks the IP version field. If the IP version does not equal 4, IP silently dis
cards the IP datagram. 

3. IP checks the destination IP address in the IP datagram. 

4. If the destination address in the datagram is an IP multicast address and 
multicast forwarding is enabled, IP forwards the datagram appropriately. For 
more information on this process, see Chapter 8, "Internet Group Management 
Protocol (IGMP)." 

5. If the destination address corresponds to local host traffic (it is an IP address of a 
router interface or a broadcast address of a locally attached network), IP processes 
the datagram as the destination host. 

6. If the destination IP address in the datagram is a unicast address that is not a local 
host IP address, IP decrements the TTL value in the IP header. 



152 I PA~r II Internet Layer Protocols 

7. If the TIL is 0 (or less), IP submits the IP header and the first 8 bytes of the IP pay
load to ICMP with an error indication. IP then discards the IP datagram. ICMP in
cludes the IP header and first 8 bytes of the IP payload as the payload of an ICMP 
Time Expired-TIL Expired message that is sent back to the sending host. 

8. If the TTL is 1 or greater after decrementing, IP updates the TTL field with its 
new value, recalculates the IP header checksum, and updates the Header 
Checksum field's value. 

9. IP passes the value of the destination W address in the IP datagram to the IP 
route determination process. If no route is found, IP submits the IP header and 
the IP payload's first 8 bytes to ICMP with an error indication. IP then discards 
the IP datagram. ICMP includes the IP header and first 8 bytes of the IP pay
load as the payload of an ICMP Destination Unreachable-Host Unreachable 
message that is sent back to the sending host. 

10. If a route is found, IP passes the modified IP datagram, the interface, and the 
forwarding IP address to ARP. 

11. ARP resolves the forwarding IP address to a unicast MAC address for the indi
cated interface. For a direct delivery, ARP resolves the destination's MAC ad
dress. For an indirect delivery, ARP resolves the intermediate router's MAC 
address. Once the MAC address for the forwarding IP address is determined, ARP 
calls NDISSend() to send the frame using the appropriate network adapter. 

This forwarding process is repeated at each intermediate router in the path between the 
sending host and the destination host. 

Destination Host Receiving Process 
When the final intermediate router performs a direct delivery to the destination host, IP on 
the destination host performs the following: 

1. IP verifies the IP header checksum. It runs the checksum calculation and com
pares the result with value stored in the IP datagram's Header Checksum field. 
If the result does not match the Header Checksum field's value, IP silently dis
cards the datagram. 

2. IP checks the IP version field. If the IP version does not equal 4, IP silently dis
cards the datagram. 

3. . IP checks the destination IP address in the datagram. 

4. If the destination address in the datagram is a unicast address that is not a local 
host IP address, IP silentiy discards the datagram. 

5. If the destination IP address corresponds to local host traffic (it is an IP address 
of a host interface or a broadcast address of a locally attached network) or an 
IP multicast address, IP checks the Protocol field. 



Chapter 6 Internet Protocol (IP) Routing I 153 

6. If the Protocol field's value corresponds to an upper layer protocol that is being 
used on the host, IP passes the IP payload to the appropriate upper layer proto
col. 

7. If the Protocol field's value does not correspond to an upper layer protocol that is 
being used on the host, IP forwards .the IP header and the first 8 bytes of the IP 
payload to ICMP with an error indication. IP then discards the IP datagram. ICMP 
includes the IP header and first 8 bytes of the IP payload as the payload of an 
ICMP Destination Unreachable-Protocol Unreachable message that is sent back to 
the sending host. 

8. If the IP payload is a TCP segment, IP hands the TCP segment to TCP. After TCP 
verifies the TCP checksum, it checks the destination port in the TCP header. If the 
value of the Destination Port field corresponds to an application running on the 
host, the TCP segment is processed further. If the value of the Destination Port 
field does not correspond to an application running on the host, a TCP Connection 
Reset segment is sent back to the sending host. For more information on TCP 
connections, see Chapter 12, "Transmission Control Protocol (TCP) Connections." 

9. If the IP payload is a User Datagram Protocol (UDP) message, IP hands the UDP 
message to UDP. After UDP verifies the UDP checksum, it checks the Destination 
Port field in the UDP header. If the value of the Destination Port field corresponds 
to an application running on the host, the UDP message is processed further. If 
the value of the Destination Port field does not correspond to an application run
ning on the host, UDP submits the IP header and the first 8 bytes of the IP pay
load to ICMP with an error indication. UDP then discards the UDP message. ICMP 
includes the IP header and first 8 bytes of the IP payload as the payload of an 
ICMP Destination Unreachable-Port Unreachable message that is sent back to the 
sending host. 

IP Routing Infrastructure Overview 
For the successful delivery of IP datagrams to an arbitrary location in an IP internetwork, you 
must employ an IP routing infrastructure. Hosts and routers must have the supporting routes 
in their routing table to forward unicast traffic to any reachable location. Typically for hosts, 
all destinations are either directly reachable or reachable through a default route pointing to 
their default gateway. Routers, however, have either explicit routes for each network seg
ment in the IP internetwork, summarized or aggregated routes, or a default route. The com
bination of the host's routing table entries and the routers comprise the IP routing infrastructure. 

The type of IP routing infrastructure that you deploy can have the following characteristics: 

• Single-path vs. multi-path 

• Class-based vs. classless 

• Flat vs. hierarchical 



154 I PART II Internet Layer Protocols 

• Static vs. dynamic 

• Single vs. multiple autonomous systems 

Single-Path vs. Multi-Path 
For a single-path routing infrastructure, IP traffic can only travel a single path between any 
source and any destination. Single-path infrastructures are simple but are intolerant of net
work faults. A downed link or a downed router creates physically separate portions of the 
internetwork that are unreachable for the duration of the fault. 

For a multi-path routing infrastructure, IP traffic can travel different paths between any source 
and destination. Typically, a multi-path environment forwards IP traffic along a single path 
until the network topology changes. When coupled with dynamic routing, multi-path rout
ing infrastructures can be fault-tolerant. Multi-path infrastructures are more complex to plan 
and implement and there exists a possibility that, either because of misconfiguration or during 
a period when the internetwork topology is changing, a routing loop can form. A routing loop 
is a path through the routing infrastructure that loops back on itself. It occurs when routers 
for\vard traffic in a loop that does not include the network segment of the destination. Traf
fic-caught in a routing loop is forwarded between the routers of the loop until the TTL in the 

, IP header becomes 0. Figure 6-6 shows a routing loop created by misconfiguration of the 
default route (0/0) between three routers (Router B, Router C, and Router D). 

Router 
B 

'7 .•• 7~~;···· 
Router ;.m ..... ···::·.·.:·:·· .. £Ll·····.:·.·.···:··.···:··.··.·.·.·.·.i·.. j I ... : .... H·.·.· .. ·.:·£Ll·:··:···.· .. ::.· ..• ·:···.•.~:-•. •.· ... •.'..: Router 

A~)~~:d;TD 

Router 
c 

Figure 6-6. A default routing loop between Router B, Router D, and Router C. 

One way to detect routing loops in your internetwork is to use the PING command-line utility 
with the "-i" option set to 255. The "-i" option sets the TTL in the ICMP Echo message. If the 
PING utility displays "TTL Expired In Transit," there is a good chance you have a routing loop. 
To ensure that you do have a routing loop, use the TRACERT command-line utility to trace 
the route to the destination. In the TRACERT display, look for a set of router IP addresses or 
names that repeat themselves. 



Chapter 6 Internet Protocol (IP) Routing I 155 

Class-Based vs. Classless 
Your routing infrastructure can be either class-based or classless. While originally a class-based 
routing infrastructure, address allocation and routing on the modem Internet is classless. 

Class-Based Routing 

Class-based routing is the determination of the network ID based on the IP address classes. 
Class-based routing protocols such as Routing Information Protocol (RIP) version 1 do 
not advertise a subnet mask when advertising routes. You can subnet with class-based 
routing protocols; however, there are limitations to the types of addresses and configu
rations that are permitted. 

For example, when subnetting a class-based network ID, all of the subnets of the class
based network ID must be contiguous. Class-based routing protocols do not advertise 
the subnets of a class-based network ID on network segments that are not a subnet of 
the class-based network ID. Rather, on network segments that are not a subnet of the 
class-based network ID, they advertise the summarized class-based network ID. Class
based IP routers summarize the subnets of a class-based network ID by advertising the 
class-based network ID. Because of this behavior, all subnets must be contiguous. Two 
different subnets of the same class-based network ID in different parts of the IP 
internetwork (discontiguous subnets) will both separately advertise the summarized class
based network ID. With two routes to the same class-based network ID, routers will use 
the route with the lowest metric. Regardless of which route is chosen, because of prox
imity to the advertising router, incorrect routing will occur. The locations on both subnets are 
not reachable by all hosts on the IP internetwork. Because routes learned from neighboring 
routers are received without a network mask, the class-based router must assume the subnet 
mask based on the following: · 

• If the route fits the class (there are no 1 bits in the host ID portion of the class
based network ID), the class-based default subnet mask is assumed. For ex
ample, if the route 195.241.4.0 is received, the network mask of 255.255.255.0 
is assumed. This assumption will assign the incorrect mask for CIDR blocks 
and other uses of aggregated routes. For example, for the CIDR block 
195.241.8.0/21, the route assumed by the class-based router is 195.241.8.0/24. 

• If the route does not fit the class (there are more host bits than the class-based 
network ID), but fits the subnet mask of the interface on which it was· received, 
the subnet mask of the interface on which it was received is assumed. This as
sumption can assign the incorrect mask for subnetting situations where the adver
tised route just happens to fit the subnet mask of the interface on which it was 
received but not be the correct network mask for the route. 

• If the route does not fit the class or the subnet mask of the interface on which it 
was received, it is assumed to be a host route with a network mask of 
255.255.255.255. This assumption can assign the incorrect mask for many 
subnetting situations where .the network segment's mask is more specific than 



156 I PART n Internet Layer Protocols 

the class or the mask of the interface ori which it was received. For example, 
when you subnet 128.1.0.0/16 using variable-length subnetting and the network 
ID of a network segment is 128.1.64.0/18, the route for the subnetted network 
ID 128.1.176.0/20 is incorrectly assumed to be 128.1.176.0/32. All locations on 
the 128.1.176.0/20 network segment are unreachable from the router receiving 
the advertisement. 

Classless Routing 

With classless routing, routers never assume that the network mask is based on address classes. 
Classless routing protocols such as RIP version 2 and Open Shortest Path First (OSPF) adver
tise the network mask with the network ID. Because no mask assumptions are made, class
less routing allows discontiguous subnets of a network ID, variable-length subnetting, CIDR 
blocks, and route aggregation. In today's classless world, IP internetworks should be using 
classless routing with an appropriate routing protocol. Class-based routing should be used only 
in networks that require compatibility with legacy routing protocols such as RIP version 1. 

Flat vs. Hierarchical 
For a flat routing infrastructure, each separate network segment is represented as a single 
route in the IP routers' routing table (assuming no use of default routing). The entire 
internetwork is a collection of IP network segments having no structure. While a flat 
routing infrastructure can work well for small- to medium-sized internetworks, flat rout
ing, when scaled to large networks, produces a large number of routes in routing tables. 
Consider the example of the Internet. The Internet Network Information Center (InterNIC) 
at one time allocated class-based network IDs to organizations upon request, creating a 
flat routing infrastructure on the Internet. As the number of allocated network IDs grew, 
so did the number of routes in the routing tables of the Internet backbone routers. To
day, Internet backbone routers have more than 45,000 routes in their routing tables. 

For a hierarchical routing infrastructure, ranges of network IDs are collapsed to a single 
network ID and, therefore, a single route through the use of route aggregation techniques. 
Also, in a hierarchical routing infrastructure, IP network segments that share a common 
network ID prefix are grouped together and have a network/ subnetwork/ sub-subnetwork 
structure. With a hierarchical routing infrastructure, routers at the border of a region of 
network segments sharing the same set of network ID prefixes advertise a single route 
that summarizes or aggregates all of the network IDs of the region. In this way, routing 
information propagated outside the region is highly simplified. Very few routes exist on 
the backbone of a properly configured hierarchical internetwork. 

There are many advantages to a hierarchical routing infrastructure. However, hierarchical 
infrastructure requires proper planning and an addressing scheme that allows groups of 
network IDs to be grouped together. Figure 6-7 shows an example of a hierarchical routing 
infrastructure based on the private network ID 10.0.0.0/8. The arrows and routes represent 



Chapter 6 Internet Protocol (IP) Routing 157 

the summarized route that is advertised outside the region by the router(s) at the region's 
border. 

10.0.0.0/8 

Figure 6-7. A hierarchical addressing and routing scheme showing routing regions and 
route summarization at region borders. 

For a variety of reasons having to do with the impracticality of renumbering the IP 
internetwork, some IP internetworks have a combination of flat and hierarchical routing 
infrastructure. Before the development of CIDR, the Internet had a flat routing infrastruc
ture. Post-CIDR, IP addresses are allocated using a hierarchical global addressing scheme. 
However, because of the difficulty of reallocating public network IDs to existing organiza
tions, today's Internet remains a mixed flat and hierarchical routing infrastructure. 

Static vs. Dynamic 
The ongoing maintenance of routing tables can be done either manually through static routing 

· or automatically using dynamic routing. 

Static Routing 

Static routing relies on manually configured routes. It supports classless routing because each 
route must be added with a network mask, making the destination unambiguous. Static routing 
can work well for small internetworks but it does not scale well because of the manual 
administration involved. Static routing can also work well in branch office scenarios where, 
rather than using a routing protocol across the WAN link to the branch office, static routes are 
added to the branch office and hub office routers to make the locations on each other's 
network segments reachable. 

Ideally, an IP router has explicit knowledge of each network ID in the internetwork, either 
through an explicit or aggregated route. Default routing is used when connecting a smaller 
set of network segments to a much larger set of network segments and the creation of 
explicit or aggregated routes is not practical or possible. Static routes are often used to 



158 I PART II Internet Layer Protocols 

connect to the Internet. It is impractical to add the Internet's 45,000 routes to the routing table 
of the static router; therefore, add a single default route pointing to the downstream Internet 
service provider (ISP) router. 

Static routing is not fault-tolerant. A static router cannot sense that a neighboring router is no 
longer available (if the link to the neighboring router remains operational) or that a remote 
network segment is no longer reachable and make adjustments to its routing table. 

Microsoft Windows 2000 as a Static IP Router 
A Windows 2000 computer can act as a static IP router by installing multiple network 
adapters, creating a multihomed computer. A separate IP address and subnet mask is 
configured for each network adapter, defining routes for the directly attached networks. 
It is natural to want to configure a default gateway. However, the configuration of a default 
gateway creates a default route, and a default route on a static router is based on a de
sign decision of your static routing environment. 

If you use default routing, it is also natural for you to configure a default gateway for each 
network adapter. However, you must configure a default gateway for a single network 
adapter corresponding to the network adapter attached to the network segment of the 
router you want to use for your default route. If you configure a default gateway for more 
than one network adapter, a default route with a metric of 1 is added for each default 
gateway. This leads to multiple default routes in the routing table with the same metric. 
In this situation, TCP /IP for Windows 2000 picks a default route based on the first net
work adapter binding. This can lead to undesired behavior if TCP /IP for Windows 2000 
chooses a less-than-optimal default route. 

Once the network adapters are configured, enable IP routing for Windows 2000 Server com
puters by configuring and enabling the Routing and Remote Access service. For Windows 2000 
professional computers, set the following Windows 2000 registry setting to 1: 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\ 
Parameters\IpEnableRouter 

Unlike previou~ versions of Microsoft Windows NT, there is no option in the properties 
of TCP /IP for Windows 2000 that allows you to enable routing. 

Once you enable IP routing, add the appropriate specific or aggregated routes of your 
internetwork using either the Routing and Remote Access administrative tool or the ROUTE 
ADD command at a Windows 2000 command prompt. 

Dynamic Routing 

Dynamic routers rely on routing protocols-protocols used by routers to communicate 
routing information-to maintain IP routing tables. Routes for remote network IDs are 
learned through routing protocol traffic and added or removed from IP routing tables. When 
all of the IP internetwork routers have received all the information needed to create routes 
that reflect the internetwork's current topology, the internetwork has converged. 



RIP 

Chapter 6 Internet Protocol (IP) Routing I 159 

Dynamic routing in a multi-path routing infrastructure can provide fault tolerance. When a 
route becomes unreachable, it is removed from the routing table and its unreachability is 
conveyed to neighboring routers. When a link or router goes down, routes are adjusted for 
a new path to the network segments affected by the network fault. Routing protocols can 
be either class-based or classless depending on how the route is advertised. 

The two most common IP routing protocols for private IP internetworks are RIP and OSPF, 
both of which Windows 2000 Server computers support. 

RIP is a distance vector routing protocol. Distance vector routing protocols propagate 
routing information in the form of a network ID and its "distance" or hop count. RIP has 
a maximum distance of 15 hops. Locations 16 or greater hops away are considered un
reachable. The original version of RIP, known as RIP version 1, described in RFC 1058, 
is a class-based routing protocol. The network ID is announced without its network mask. 
Therefore, the restrictions of class-based routing apply. A newer version of RIP called RIP 
version 2, described in RFC 1723, is a classless routing protocol. The RIP v2 announce
ment includes a network ID and a subnet mask. 

More Info RFCs 1058 and 1723 describe RIP versions 1 and 2. These RFCs can 
be found in the \RFC folder on the companion CD-ROM. 

RIP is a simple routing protocol with a periodic route-advertising mechanism designed 
for use in small- to medium-sized IP internetworks. RIP doesn't scale well to the large 
or very large IP internetwork. 

RIP v1 and v2 Operation 
When a RIP router is initialized, it announces the appropriate routes in its routing table 
on all interfaces. The RIP router also sends a RIP General Request message on all inter
faces. All neighboring routers-routers on the same network segments as the router 
sending the request-send the contents of their routing tables in response; those responses 
build the initial routing table. Learned routes are given a 3-minute lifetime (by default) 
before being removed by RIP from the IP routing table. 

After initialization, the RIP router periodically announces (every 30 seconds, by default) 
the appropriate routes in its routing table for each interface. The exact set of routes being 
announced depends on whether the RIP router is implementing split horizon (where routes 
are not announced over the interfaces on which they were learned) or split horizon with 
poison reverse (where routes learned on interfaces are announced as unreachable). 

Fault tolerance for RIP intemetworks is based on the timeout of RIP-learned routes. If a change 
occurs in the internetwork topology, RIP routers can send a triggered update-a routing 
update, sent immediately-rather than waiting for a scheduled announcement. 



160 I PART II Internet Layer Protocols 

OSPF 

OSPF is a link state routing protocol. Link state routing protocols propagate routing informa
tion in the form of link state advertisements (LSAs) that contain the connected networks and 
their cost. The cost of each router interface is a unitless number that the network adminis
trator assigns, and it can include delay, bandwidth, and monetary cost factors. The accumu
lated cost between network segments in an OSPF internetwork must be less than 65,535. 
OSPF is a classless routing protocol; OSPF LSAs contain the network ID and subnet mask for 
routes. 

OSPF Operation 
Each router has an LSA that describes its current state. The LSA of each OSPF router is 
efficiently propagated throughout the OSPF internetwork through logical relationships 
between neighboring routers called adjacencies. When the propagation of all current 
router LSAs is complete, the OSPF internetwork has converged. 

Based on the collection of OSPF LSAs-known as the link state database-OSPF calcu
lates the lowest-cost path to each route, and those paths become OSPF routes in the IP 
routing table. To keep the size of the link state database down, OSPF allows the creation 
of areas. An OSPF area is a grouping of contiguous networks. In all OSPF networks, there 
is at least one area called the backbone area. OSPF areas allow the summarization or 
aggregation of routing information at the boundaries of an OSPF area. A router at the 
boundary of an OSPF area is known as an area border router (ABR). 

Figure 6-8 shows an example of a multiple-area OSPF internetwork. Area 1 consists of a 
series of variable-length subnetted network segments from the address space 10.47.0.0/ 
16. By default, the ABR for Area 1 will propagate routing information in the form of LSAs 
for each separate network segment within Area 1. Using route summarization, the ABR 
is configured to propagate only the single route 10.47.0.0/16. All of the destinations within 
Area 1 are reachable outside of that area using this route. Areas and route summarization allow 
OSPF internetworks to scale to large organizational IP internetworks. 

Backbone area 

Area 1 

(\ Ro~ter 

( Hfi·~: --------==-'.· 
! / Summarized 

_____/ route: 
Subnetted networks 10.47.0.0/16 

of 10.47.0.0/16 

Router 
B 

Area 2 

Figure 6-8. A multiple-area OSPF internetwork showing the route summarization of Area 1. 



Chapter 6 Internet Protocol (IP) Routing I 161 

Microsoft Windows 2000 as a Dynamic Router 

A Windows 2000 Server computer can act as a dynamic router supporting RIP and OSPF by 
installing multiple network adapters and enabling the Routing and Remote Access service. 
A separate IP address and subnet mask is configured for each network adapter, defining the 
directly attached network ID routes. In the case of dynamic routing, default routes are less 
typically used so a default gateway need not be configured for any network adapter. 

Once th~ Routing and Remote Access service is enabled, static IP routing is enabled. Using 
the Routing and Remote Access administrative tool, add the RIP for IP or OSPF routing 
protocols and then enable them on your installed network adapters by adding your 
network adapters to the appropriate routing protocol. The detailed configuration of RIP 
and OSPF options is beyond the scope of this book. For more information, see Windows 
2000 Server Help and the Microsoft Windows 2000 Server Resource Kit lnternetworking 
Guide. 

A Windows 2000 Professional computer can use the RIP protocol to listen to RIP traffic 
using the RIP Listener-a service installed as a separate networking component. A com
puter using the RIP Listener service is known as a silent RIP host. The RIP Listener ser
vice listens for all RIP vl broadcast traffic on the local network segment and maintains 
routes in the IP routing table. 

Single vs. Multiple Autonomous Systems 
Very large IP internetworks such as the Internet are divided into regions called autono
mous systems. An autonomous system (AS) is a contiguous region of the internetwork 
under the same administrative control. Administrative control is typically defined by an 
organization such as an institution or corporation. Within an AS, one or more Interior 
Gateway Protocols (IGPs) are used. Examples of IGPs include RIP and OSPF. Between 
autonomous systems, Exterior Gateway Protocols (EGPs) are used. An example of an EGP 
is the Border Gateway Protocol (BGP), version 4. EGPs used between autonomous systems 
are independent of the IGPs used within the AS. 

For most organizations, a single AS is often sufficient. The Internet, however, is a multiple 
AS environment, composed of a somewhat hierarchical organization of autonomous systems 
using BGPv4 as the EGP. As seen with OSPF, each AS can be subdivided into areas or domains 
(if you are using multiple IGPs) to define a hierarchical structure within the AS. If you are an 
ISP, you may need to implement BGPv4 to communicate routing information to other Internet 
autonomous systems. Windows 2000 does not provide support for BGPv4. 

Routing Utilities 
Windows 2000 provides the following command-line utilities for maintaining and testing 
routing functionality: 



162 I PART U Internet Layer Protocols 

• ROUTE Used to view the IP routing table, add temporary and persistent routes, 
change existing routes, and remove routes from the IP routing table. 

• PING Used to verify reachability by sending ICMP Echo messages to intended 
destinations. It also supports the use of IP strict and loose source route options. 

• TRACERT Sends ICMP Echo messages with incrementally higher values of the 
TIL field to discover the path between a node and a destination. In list form, 
TRACERT displays the series of near-side router interfaces encountered by the 
ICMP Echo message as it traverses the internetwork toward the destination. For 
more information on how TRACERT works, see Chapter 7, "Internet Control Mes-· 
sage Protocol (ICMP)." 

• PATHPING Used to discover the path between a host and a destination, and 
also to identify high-loss links or routers. For more information on how 
PATHPING works, see Chapter 7, "Internet Control Message Protocol (ICMP)." 

Summary 
IP routing is a combination of direct and indirect delivery processes that forward an IP 
datagram from the source node to the destination node. At each hop, a local IP routing 
table is consulted to determine how the datagram is delivered to the next hop or to the 
final destination. The route determination process results in a forwarding interface and 
a forwarding IP address. The routing infrastructure of an IP internetwork provides 
reachability between any source and destination node and can be class-based or class
less, flat or hierarchical, static or dynamic, and consist of a single system or multiple au
tonomous systems. Windows 2000 supports static routing and dynamic routing using RIP 
vl, RIP v2, and OSPF. 



163 

Internet Control 
Message Protocol (ICMP) 

Internet Protocol (IP) provides end-to-end datagram delivery capabilities for IP datagrams. 
However, IP doesn't provide any facilities for reporting routing or delivery errors encoun
tered by an IP datagram in its journey from the source to the destination. ICMP reports 
error and control conditions on behalf of IP. 

When a protocol encounters an error that can't be recovered in the processing of a packet, 
it has one of the two following choices: 

1. Discard the offending packet without sending an error notification to the send
ing host. This is known as a silent discard. For example, an Ethernet network 
adapter checks each Ethernet frame for bit-level errors by performing a 
checksum and comparing its own result with the Frame Check Sequence value 
stored in the frame. If the two checksums do not match, the adapter considers 
the frame invalid and silently discards it. 

2. Discard the offending packet and send an error notification to the sending 
host. This is known as an informed discard. ICMP provides an informed dis
card service for specific types of IP routing and delivery errors. 

ICMP is an extensible protocol that also provides functions to check IP connectivity and 
aid in the automatic configuration of hosts. 

ICMP doesn't make IP reliable. There are no facilities within IP or ICMP to provide 
sequencing or retransmission of IP datagrams that encounter errors. ICMP messages are 
unreliably sent as IP datagrams; and while ICMP will report an error, there are no require
ments for how the sending host will treat the error. It's up to the TCP/IP implementa
tion to interpret the error and adjust its behavior accordingly. 

ICMP messages are sent only for the first fragment of an IP datagram. ICMP messages 
are not sent for problems encountered by ICMP error messages or for problems encoun
tered by broadcast or multicast datagrams. 

More Info ICMP is documented in RFCs 792, 950, 1812, 1122, 1191, and 
1256. These RFCs can be found in the \RFC folder on the companion CD-ROM. 



164 I PART II Internet Layer Protocols 

ICMP Message Structure 
ICMP messages are sent as IP datagrams. Therefore, an ICMP message consisting of an 
ICMP header and ICMP message data is encapsulated with an IP header using IP Proto
col number 1. The resulting IP datagram is then encapsulated with the appropriate Net
work Interface Layer header and trailer. Figure 7-1 shows the resulting frame. 

Network Network 
Interface IP header ICMP header ICMP message data Interface 
header trailer 

I. 1. 
ICMP message 

:1 J IP datagram 
Network Interface Layer frame 

Figure 7-1. ICMP message encapsulation showing the IP header and Network Interface 
Layer header and trailer. 

In the IP header of ICMP messages, the Source IP Address field is set to the router or host 
interface that sent the ICMP message. The Destination IP Address field is set to the sending 
host of the offending packet (in the case of ICMP error messages), a specific host, an IP broad
cast, or IP multicast address. Every ICMP message has the same structure, as Figure 7-2 shows. 

Type 

Code 

Checksum 

Type-Specific Data 

Figure 7-2. Tbe structure of an ICMP message showing the fields that are common to all 
types of ICMP messages. 

The common fields in the ICMP message are defined as follows: 

• Type A 1-byte field that indicates the type of ICMP message (Echo vs. Echo 
Reply, etc.). Table 7-1 lists the defined ICMP types. 

• Code A 1-byte field that indicates a specific ICMP message within an ICMP 
message type. If there is only one ICMP message within an ICMP type, the 
Code field is set to 0. The combination of ICMP Type and Code determines a 
specific ICMP message. 

• Checksum A 2-byte field for a 16-bit checksum covering the ICMP message. 
ICMP uses the same checksum algorithm as IP for the IP header checksum. 

• Type-Specific Data Optional data for each ICMP type. 



Chapter 1 Internet Control Message Protocol (ICMP) I 165 

ICMP Messages 
Table 7-1 lists the most commonly used ICMP types. 

Table 7-1. Common ICMP Types 

ICMP Type Description 

0 

3 
4 

5 

8 

9 
10 

11 

12 

Echo Reply 

Destination Unreachable 

Source Quench 

Redirect 

Echo (also known as an Echo Request) 

Router Advertisement 

Router Selection 

Time Exceeded 

Parameter Problem 

More Info For a complete list of ICMP types, see http://www.isi.edu/in-notes/ 
iana/assignments/icmp-parameters. 

The following sections discuss the ICMP messages supported by TCP/IP for Microsoft 
Windows 2000. 

ICMP Echo/Echo Reply 
One of the most heavily used ICMP facilities is the ability to send a simple message to 
an IP node and have the message echoed back to the sender. This facility is useful for 
network troubleshooting and debugging. The simple message sent is an ICMP Echo, and 
the message echoed back to the sender is an ICMP Echo Reply. Windows 2000 Packet 
InterNet Groper (PING) and Trace Route (TRACERT) utilities use Echo/Echo Reply to 
provide information about reachability and the path taken to reach a destination node. 
Figure 7-3 displays the ICMP Echo message structure. 

Figure 7-3. The structure of the ICMP Echo message. 



166 I PART ii Internet Layer Protocols 

The fields in the ICMP Echo message are defined as follows: 

• Type Set to 8. 

• Code Set to 0. 

• Identifier A 2-byte field that stores a number generated by the sender that is 
used to match the ICMP Echo with its corresponding Echo Reply. 

• Sequence Number A 2-byte field that stores an additional number that is 
used to match the ICMP Echo with its corresponding Echo Reply. The combi
nation of the values of the Identifier and Sequence Number fields identifies a 
specific Echo. 

• Optional Data Optionally, data can be added at the end of the ICMP packet. 

For information on how Windows 2000 determines Identifier, Sequence Number, and Op
tional Data fields, see the "PING Utility" and "TRACERT Utility" sections later in this chapter. 

The Network Monitor trace Capture 07-01, in the \Captures folder on the companion CD
ROM, shows the structure of an ICMP Echo message. 

Figure 7-4 shows the ICMP Echo Reply message structure. 

Type 

Code 

Checksum 

Identifier 

Sequence# 

Optional Data 

Figure 7-4. Tbe structure of the ICMP Echo Reply message. 

The fields in the ICMP Echo Reply message are defined as follows: 

• Type Set to 0. 

• Code Set to 0. 

• Identifier Set to the value of the Identifier field of the Echo message being 
echoed. 

• Sequence Number Set to the value of the Sequence Number field of the 
Echo message being echoed. 

• Optional Data Set to the value of the Optional Data field of the Echo mes
sage being echoed. 



Chapter 1 Internet Control Message Protocol (ICMP) I 167 

Echoed in the Echo Reply are the Identifier, Sequence Number, and Optional Data fields. 
The host that sent the original Echo verifies these fields upon receipt. If the fields are not 
correctly echoed, the Echo Reply is ignored. 

The Network Monitor trace Capture 07-01, in the \Captures folder on the companion CD
ROM, shows the structure o~ an ICMP Echo Reply message sent in reply to an Echo 
message. 

Sending ICMP Echo packets and receiving ICMP Echo Replies checks for the following: 

• The host sending the Echo can forward the Echo to either the destination 
(direct delivery) or to a router (indirect delivery). 

• The routing infrastructure between the host sending the Echo and the destina
tion can forward the Echo to the destination. 

• The host sending the Echo Reply can forward the Echo Reply to either the des
tination (the sender of the Echo) or to a router. 

• The routing infrastructure between the host sending the Echo Reply and the 
destination can forward the Echo Reply to the destination. 

ICMP Destination Unreachable 
IP attempts a best-effort delivery of datagrams to their destination. Routing or delivery errors 
can occur along the path or at the destination. When a routing or delivery error occurs, a 
router or the destination will discard the offending datagram and attempt to report the error 
by sending an ICMP Destination Unreachable message to the source IP address of the 
offending packet. Figure 7-5 shows the ICMP Destination Unreachable message structure. 

Type 

Code 

Checksum 

Unused 

IP Header and 
first 8 bytes of datagram 

Figure 7-5. Tbe structure of the JCMP Destination Unreachable message. 

The fields in the ICMP Destination Unreachable message are defined as follows: 

• Type Set to 3. 

• Code Set to a value from 0 tO 12. Table 7-2 lists and discusses the different 
ICMP Destination Unreachable Code values. 

• IP Header + First 8 Bytes Of Offending Datagram To provide meaningful 
information to the sender of the offending datagram, the ICMP Destination Un-



168 I PART ii Internet Layer Protocols 

reachable message contains the IP header and the first 8 bytes of the discarded 
datagram. The IP header contains the IP Identification field. For Transmission 
Control Protocol (TCP) segments, the first 8 bytes of IP payload contain the 
source and destination port numbers and the sequence number. For User 
Datagram Protocol (UDP) messages, the first 8 bytes contain the entire UDP 
header including the source and destination port numbers. 

Table 7-2. Code Values for ICMP Destination Unreachable Messages 

Code Value 

0 - Network 
Unreachable 

1 - Host 
Unreachable 

2 - Protocol 
Unreachable 

3 - Port 
Unreachable 

4 - Fragmentation 
Needed and DF Set 

5 - Source 
Route Failed 

(continued) 

Meaning 

Sent by an IP router when a route for the destination IP address can't 
be found in the routing table. The source IP address of this message 
identifies the router that could not find a route. This message is 
largely obsolete in today's classless Internet due to the inability of the 
router to determine the network ID of the destination. 

Sent by an IP router when a route to the destination was not found in 
the routing table. In today's classless Internet, this is the more appro
priate message to send when a router cannot determine the next hop 
for an IP datagram. This message's source IP address identifies the 
router that could not deliver the datagram to the destination host. 

Sent by the destination host when the Protocol field in the datagram's IP 
header doesn't match a client protocol of IP that is being used by the 
destination. For example, if a host is sent an Open Shortest Path First 
(OSPF) packet (IP protocol 89), it will send a Protocol Unreachable 
message back to the sender. 

Sent by the destination host when the destination port in the UDP or 
TCP header doesn't match an application running on the destination. 
In practice, however, when TCP ports can't be found, TCP sends a 
Connection Reset segment. Therefore, Port Unreachable messages are 
sent only for UDP messages. 

Sent by an IP router when fragmentation is needed in. order to forward 
the IP datagram but the Don't Fragment (DF) flag is set in the IP 
header. The Fragmentation Needed and DF Set message is an impor
tant part of the Path Maximum Transmission Unit (PMTU) Discovery 
process discussed in the "Path MTU Discovery" section of this chap
ter. This message's source IP address identifies the router that could 
not fragment the IP datagram. 

Sent by an IP router when it can't forward an IP datagram using infor
mation stored in the Source Route option in the IP header. For example, 
this ICMP Destination Unreachable message is sent if the sending host 
is using a strict source route and the next router is not directly reach
able. The Source Route Failed message contains source route options 
of the same type as the offending datagram and includes the path 
back to the sending host. This message's source IP address identifies 
the router that could not forward the source-routed IP datagram. For 
more information on IP source routing, see Chapter 4, "Internet 
Protocol (IP) Basics." 



Table 7-2. (continued) 

Code Value 

6 - Destination 
Network Unknown 

7 - Destination 
Host Unknown 

8 - Source Host 
Isolated 

9 - Communication 
with Destination 
Network Administra
tively Prohibited 

10 - Communication 
with Destination 
Host Administratively 
Prohibited 

11 - Network 
Unreachable 
for Type of Service 

12 - Host 
Unreachable 
for Type of Service 

13 - Communication 
Administratively 
Prohibited 
Because of Firewalls 

Network Monitor Example 

Chapter 7 Internet Control Message Protocol (ICMP) I 169 

Meaning 

Sent by an IP router when the destination network for the destination 
IP address is indicated in the routing table as an unknown network. 
In practice, the Destination Network Unknown message is obsolete; 
IP routers send a Host Unreachable message instead. 

Sent by an IP router when the destination host doesn't exist as 
detected through Network Interface Layer mechanisms. In practice, 
the Destination Host Unknown message is sent only when the router 
can't deliver to a host that is connected to the router by a point
to-point link. This message's source IP address identifies the router 
that could not deliver the IP datagram. 

An obsolete message sent by an IP router when it can detect that the 
source host is isolated from the rest of the network. 

Sent by an IP router when a route to the destination IP address was 
found but the router can't forward the IP datagram because of a 
prohibitive network policy. This message's source IP address 
identifies the router that could not forward the IP datagram. 

Sent by an IP router when it can't deliver to the destination host 
because of a prohibitive network policy. This message's source IP 
address identifies the router that could not deliver the IP datagram. 

Sent by an IP router when a route to the destination IP address for 
the Type Of Service (TOS) indicated in the IP header of the IP data
gram was not found. This message is sent only by routers that use the 
TOS field when forwarding IP datagrams. This message's source IP 
address identifies the router that could not forward the IP datagram. 

Sent by an IP router when it can't deliver to the destination host for 
the TOS indicated in the IP header of the IP datagram. This message 
is sent only by routers that use the TOS field when forwarding IP 
datagrams. This message's source IP address identifies the router that 
could not forward the IP datagram. 

Sent by an IP router when it can't forward or deliver the IP datagram 
because of administratively configured packet filters on the router. 
This message's source IP address identifies the router that could 
not deliver the IP datagram. 

To illustrate a Destination Unreachable message, examine the following Network Moni
tor trace (Capture 07-02 in the \Captures folder on the companion CD-ROM). Frame 1 
is an Echo sent to a private address while on the Internet. Because private addresses are 
not reachable on the Internet, Frame 2 is the ICMP Destination Unreachable-Host Un
reachable message sent by an Internet router. 

Frame 1: The ICMP Echo message 
+ FRAME: Base frame properties 
+ ETHERNET: ETYPE = 0x0800 : Protocol IP: DOD Internet Protocol 



170 I PART II Internet Layer Protocols 

IP: ID = 0x8A03; Proto = ICMP; Len: 60 
IP: Version = 4 (0x4) 
IP: Header Length = 20 (0x14) 
IP: Precedence = Routine 
IP: Type of Service = Normal Service 
IP: Tota 1 Length = 60 ( 0x3C) 
IP: Identification = 35331 (0x8A03) 

+ IP: Flags Summary = 0 (0x0) 
IP: Fragment Offset = 0 (0x0) bytes 
IP: Time to Live = 32 (0x20) 
IP: Protocol = ICMP - Internet Control Message 
IP: Checksum = 0x26AA 
IP: Source Address = 134.39.89.236 
IP: Destination Address = 10.0.0.1 
IP: Data: Number of data bytes remaining 40 (0x0028) 

ICMP: Echo: From 134.39.89.236 To 10.00.00.01 
ICMP: Packet Type = Echo 
ICMP: Echo Code = 0(0x0) 
ICMP: Checksum = 0xlB5C 
ICMP: Identifier = 256 (0x100) 
ICMP: Sequence Number = 12544 (0x3100) 
ICMP: Data: Number of data bytes remaining = 32 (0x0020) 

Frame 2: The ICMP Destination Unreachable-Host Unreachable message 
+ FRAME: Base frame properties 
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol 

IP: ID = 0x7AA9; Proto = ICMP; Len: 56 
IP: Version = 4 (0x4) 
IP: Header Length = 20 (0x14) 
IP: Precedence = Routine 
IP: Type of Service = Normal Service 
IP: Total Length = 56 (0x38) 
IP: Identification = 31401 (0x7AA9) 

+ IP: Flags Summary= 0 (0x0) 
IP: Fragment Offset = 0 (0x0) bytes 
IP: Time to Live = 252 (0xFC) 
IP: Protocol = ICMP - Internet Control Message 
IP: Checksum = 0xBA4A 
IP: Source Address = 168.156.1.33 
IP: Destination Address = 134.39.89.236 
IP: Data: Number of data bytes remaining = 36 (0x0024) 

ICMP: Destination Unreachable: 10.0.0.1 (See frame 1) 
ICMP: Packet Type = Destination Unreachable 
ICMP: Unreachable Code = Host Unreachable 



Chapter 7 Internet Control Message Protocol (ICMP) I 171 

ICMP: Checksum = 0xA7A2 
ICMP: Unused Bytes = 0 (0x0) 
ICMP: Data: Number of data bytes remaining 28 (0x001C) 

ICMP: Description of original IP frame 
ICMP: (IP) Version = 4 (0x4) 
ICMP: (IP) Header Length = 20 (0x14) 

+ ICMP: (IP) Service Type = 0 (0x0) 
ICMP: (IP) Total Length = 60 (0x3C) 
ICMP: (IP) Identification = 35331 (0x8A03) 

+ ICMP: (IP) Flags Summary= 0 (0x0) 
ICMP: (IP) Fragment Offset= 0 (0x0) bytes 
ICMP: (IP) Time to Live = 28 (0x1C) 
ICMP: CIP) Protocol = ICMP - Internet Control Message 
I CMP: (IP) Checksum = 0x2AAA 
ICMP: (IP) Source Address = 134.39.89.236 
ICMP: (IP) Destination Address = 10.0.0.1 

'ICMP: (IP) Data: Number of data bytes remaining 8 (0x0008) 
ICMP: Description of original ICMP frame 

ICMP: Checksum = 0X1B5C 
ICMP: Identifier = 256 (0x100) 
ICMP: Sequence Number = 12544 (0x3100) 

Notice that the ICMP Destination Unreachable-Host Unreachable contains the IP header 
and the first 8 bytes (the ICMP header) of Frame 1. 

Path MTU Discovery 
As discussed in Chapter 4, "Internet Protocol (IP) Basics," IP fragmentation is an expen
sive process for both routers and the destination host and should be avoided. An early sol
ution to avoiding fragmentation was the use of a 576-byte IP MTU to send data to a location 
on another network. RFC 791 requires Network Interface Layer technologies to support an 
IP MTU size of 576 bytes. However, this solution is inefficient; two Ethernet nodes sepa
rated by routers send each other 576-byte IP datagrams rather than 1500-byte IP datagrams. 

The current solution to avoiding fragmentation is known as Path MTU Discovery (PMTU 
Discovery) and is documented in RFC 1191. With PMTU Discovery, hosts send all IP 
datagrams with the DF flag set to 1. If a router can't forward an IP datagram onto a link 
because the datagram's size exceeds the link's MTU, it sends an ICMP Destination Un
reachable-Fragmentation Needed and DF Set message (ICMP Type 3, Code 4) back to 
the sender. While this has been the behavior since the inception of IP and ICMP, PMTU 
Discovery support on the router modifies the ICMP message to include the IP MTU of 
the network onto which it needs to forward the IP datagram. 

Figure 7-6 shows the modified ICMP Destination Unreachable message. The previous 32-
bit Unused field is now a 16-bit Unused field and a 16-bit Next Hop MTU field. The router 
sets the Next Hop MTU field to the next hop network segment's IP MTU. Upon receiv-



172 J PART II Internet Layer Protocols 

ing this message, the sending host adjusts the size of the IP datagram to the Next Hop 
MTU size and retransmits the IP datagram. Sending hosts and all the IP routers in your 
internetwork must support PMTU. 

Type 

Checksum 

Unused 

Next Hop MTU 
f-L'-'-~'--t-'-"-~-"-+--~-----r~~ 

IP Header and 
first 8 bytes of datagram~~~~~~~~~ 

Figure 7-6. A PMTU-compliant ICMP Destination Unreachable-Fragmentation Needed And 
DP Set message showing the Next Hop MTU field. 

To discover the initial PMTU, a sending host that supports PMTU sets the initial PMTU 
to the IP MTU of the directly attached network. The host then sends an IP datagram with 
the DP flag set to 1 at the PMTU size. 

Upon receipt of an ICMP Destination Unreachable-Fragmentation Needed and DP Set with 
the Next Hop MTU indicated, the sending host sets the PMTU to the value of the Next 
Hop MTU and resends the adjusted IP datagram. 

The PMTU is determined when no more ICMP Destination Unreachable-Fragmentation 
Needed and DP Set messages are received. 

In the Network Monitor trace Capture 07-03, in the \Captures folder on the companion 
CD-ROM, Frame 1 shows an ICMP Echo with the DP set to 1 and a 1000 byte Optional 
Data field. This packet is being forwarded across a router interface that supports only a 
576-byte IP MTU. Frame 2 is an ICMP Destination Unreachable-Fragmentation Needed 
And DP Set message indicating the Next Hop MTU of 576. 

Adjusting the PMTU 

In a single-path internetwork, the PMTU remains the same once discovered. In a multi
path internetwork, the PMTU can change based on the paths that the IP datagrams travel 
because of changing conditions in the routing infrastructure. The PMTU can change to 
be either higher or lower than the currently known PMTU. 

• For a lower PMTU, the sending host is immediately informed through a Desti
nation Unreachable message. 

• For a higher PMTU, because there's no mechanism on the routers to inform the 
sending host that larger datagrams can now be sent, it's up to the host to redis-



Chapter 1 Internet Control Message Protocol (ICMP) I 173 

cover the new larger PMTU. If the Windows 2000 host's PMTU is smaller than the 
IP MTU of the locally attached network, the sending host attempts to send larger 
IP datagrams 5 minutes after receiving the last ICMP Destination Unreachable
Fragmentation Needed and DF Set messages, and at 1-minute intervals thereafter. 

Routers that Do Not Support PMTU 

PMTU Discovery relies on PMTU support on the sending host and all of the internetwork's 
routers. TCP /IP for Windows 2000 supports PMTU Discovery for both hosts and routers. 
However, what happens when an intermediate router doesn't support PMTU Discovery? 

·The lack of support for PMTU Discovery on IP routers can occur on the following two levels: 

1. The router sends back ICMP Destination Unreachable-Fragmentation Needed 
and DF Set messages without the Next Hop MTU field. 

2. The router doesn't send back ICMP Destination Unreachable-Fragmentation 
Needed and DF Set messages. 

In the first case, the router is not RFC 1191-compliant and according to the sending host, 
the Destination Unreachable-Fragmentation Needed and DF Set message contains a 0 Next 
Hop MTU. The sending host assumes that PMTU Discovery is not possible and will ei
ther use the minimum PMTU of 576 bytes or use a series of plateau values for the PMTU 
until Destination Unreachable-Fragmentation Needed and DF Set messages are no longer 
received. Table 7-3 lists the plateau values, which correspond to the IP MTUs of com
mon Network Interface Layer technologies. Windows 2000 nodes do not use this behavior. 
PMTU behavior for TCP /IP for Windows 2000 is described in the "Windows 2000 Regis
try Settings for PMTU" section of this chapter. 

Table 7-3. Plateau Values for PMTU 

Plateau Value 

65,535 

32,000 

17,914 

8166 

4352 

2002 

1492 

1006 

508 

296 

68 

Representing 

Maximum IP MTU 

Just in case 

16 Mbps IBM Token Ring 

IEEE 802.4 

IEEE 802.5 (4 Mbps) and FDDI 

Wideband Network and IEEE 802.5 (4 Mbps) 

Ethernet/IEEE 802.3 (SNAP) 

SLIP 

X.25 and ARCnet 

Point-to-Point (low delay) 

Minimum IP MTU 

When a router doesn't send back Destination Unreachable-Fragmentation Needed and 
DF Set messages, it's called a PMTU Black Hole Router. PMTU Black Hole Routers per
form silent discards for datagrams that can't be fragmented. Because IP is unreliable, it's 



17 4 I PART ii Internet Layer Protocols 

the responsibility of an upper layer protocol to recover from the discarded packet. For 
example, TCP segments will be retransmitted when their retransmission timer expires. 

To successfully detect a PMTU Black Hole Router, discarded packets with the DF flag set 
to 1 are retransmitted with the DF flag set to 0. If an acknowledgment is received, the TCP 
Maximum Segment Size (MSS) is lowered to the next lowest plateau value and the DF flag 
for subsequent IP datagrams is set to 1. This process repeats until the PMTU is found. 

Windows 2000 Registry Settings for PMTU 
The following Windows 2000 registry settings allow modification of the PMTU behavior 
for TCP/IP. 

EnablePMTUBHDetect 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-1 
Default: 0 
Present by default: No 

EnablePMTUBHDetect enables ( =1) or disables ( =O) the detection of Black Hole PMTU rout
ers. By default, detection of PMTU Black Hole Routers is disabled. TCP sends segments with 
the DF flag set to 1. If no acknowledgments are received after the maximum number of 
TCP retransmissions, the TCP connection is terminated. If enabled, the PMTU is set at 576 
bytes after no acknowledgment is received for a large segment after several retransmissions. 

EnablePMTUDiscovery 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 0-1 
Default: 1 
Present by default: No 

Enable PMTUDiscovery enables ( =1) or disables ( =O) the PMTUDiscovery for TCP connec
tion data. By default, PMTU Discovery is enabled. TCP will attempt to discover the PMTU 
by initially transmitting segments at the largest segment size and then adjusting the segment 
size when Destination Unreachable-Fragmentation Needed and DF Set messages are received. 

If disabled, PMTU Discovery is not performed and an IP MTU of 576 bytes is assumed 
for traffic not destined to a host on a locally attached network. 

ICMP Source Quench 
When a router becomes congested because of either a sudden increase in traffic, a slow 
link, or inadequate processor and memory resources, the router begins to discard incoming 
IP datagrams. When a router discards an IP datagram because of congestion, it might send 
an ICMP Source Quench message back to the sending host. The Source IP Address field 



Chapter 7 Internet Control Message Protocol (ICMP) I 175 

of the ICMP Source Quench message identifies the congested router. ICMP Source Quench 
messages can be sent also by the destination host when IP datagrams are arriving too 
quickly to be buffered. 

RFC 792 doesn't document the specific implementation details of when a router or des
tination host sends ICMP Source Quench messages. A router can begin sending Source 
Quench messages when its memory buffers for storing incoming packets is approaching 
its maximum capacity, rather than waiting for the buffer to fill. A router doesn't have to 
send a Source Quench message for every packet discarded. In fact, RFC 1812 states that 
routers should not send ICMP Source Quench messages. Creating more traffic on a con
gested internetwork creates more congestion. 

The ICMP Source Quench message is an Internet Layer notification. However, the Internet 
Layer has no mechanism for flow control. IP is unaware of when to increase or decrease 
its transmission rate. Similarly, UDP has no mechanism for flow control. 

TCP is an upper layer protocol that has flow control mechanisms to lower the transmission 
rate. Therefore, upon receipt of the ICMP Source Quench message for a discarded TCP seg
ment, a notification is made to TCP. TCP treats the receipt of the ICMP Source Quench mes
sage for a specific TCP segment as a lost TCP segment that needs to be retransmitted. TCP then 
adjusts its transmission rate for the connection according to the slow start and congestion avoid
ance algorithms. The sending host gradually increases its transmission rate, giving time for the 
routers to clear their buffers. For more information, see Chapter 13, "Transmission Control Pro
tocol (TCP) Data Flow." Figure 7-7 shows the ICMP Source Quench message structure. 

Type 

Code 

Checksum 

Unused 

IP Header and 
first 8 bytes of datagram 

Figure 7-7. The structure of the JCMP Source Quench message. 

The fields in the ICMP Source Quench message are defined as follows: 

• Type Set to 4. 

• Code Set to 0. 

• IP Header + First 8 Bytes Of Discarded Datagram The ICMP Source Quench 
message contains the IP header and the first 8 bytes of that discarded datagram. 

TCP /IP for Windows 2000 properly implements TCP flow control if an ICMP Source 
Quench message is received and contains the IP header and TCP header (only the first 8 



176 I PART ii Internet Layer Protocols 

bytes) for an active TCP connection. As a router, TCP /IP for Windows 2000 doesn't send 
ICMP Source Quench messages when the router buffers fill and packets are discarded. 

ICMP Redirect 
It's common practice for hosts to have minimal routing tables. A typical host has a route 
to the locally attached network and a default route corresponding to the host's config
ured default gateway. The routers keep all other knowledge of the internetwork's topol
ogy-the entire list of network IDs and the best forwarding IP addresses to reach them. 
For network segments containing a single router and hosts configured with the IP ad
dress of the single router as their default gateway, all routing from hosts to remote net
works occurs through the optimal path~the single router. 

However, if there are multiple routers on a network with hosts configured with a default 
gateway of a single router, the possibility exists for non-optimal routing. Consider the IP 
internetwork in Figure 7-8. 

Host A, 10.0.0.99/24, is configured with the default gateway of 10.0.0.1. Host A sends an 
IP datagram to Host Bat 192.168.1.99. Router 1 is attached to network 10.0.0.0/24 and 
the rest of the IP internetwork. Router 2 is attached to network 10.0.0.0/24 and 192.168.1.0/ 
24. According to the default route in Host A's IP routing table, to reach 192.168.1.99, 
forward the IP datagram to 10.0.0.1. This is not the optimal path, however. For the op
timal path, the datagram must be forwarded to 10.0.0.2. 

192.168.1.0/24 

10.0.0.0/24 

Host A 

10.0.0.99/24 

Router 2 

10.0.0.2 ·Vfiit. 

Router 1 

10.0.0.1 lff!-

Host B 

192.168.1.99/24 

Figure 7-8. An ICMP Redirect scenario where a host with a configured default gateway 
must forward an IP datagram using another router. 

To inform Host A of the more optimal route for traffic to Host B at 192.168.1.99, Router 
1 uses an ICMP Redirect message. Host A uses the contents of the ICMP Redirect mes
sage to create a host route in its routing table so that subsequent IP datagrams to Host B 
take the more optimal route through Router 2 at 10.0.0.2. 



Chapter 1 Internet Control Message Protocol (ICMP) I 177 

The ICMP Redirect process in detail is as follows: 

1. Host A forwards the IP datagram destined for Host B to its default gateway, 
Router 1, at the IP address of 10.0.0.1. 

2. Router 1 receives the IP datagram. Because the IP datagram is not destined for 
an IP address assigned to Router 1, Router 1 checks the contents of its routing 
table for a route to Host B. A route is found for 192.168.1.0/24 at the forward
ing IP address of 10.0.0.2. 

3. Before forwarding the IP datagram to Router 2 at 10.0.0.2, Router 1 notices that 
the sending host's IP address, the IP address of the interface on which the IP 
datagram was received, and the forwarding IP address are all on the same net
work, 10.0.0.0/24. 

4. Router 1 forwards the IP datagram to Router 2. 

5. Router 1 sends an ICMP Redirect message to Host A. The Redirect message 
contains the forwarding IP address for Router 2, 10.0.0.2, and the IP header of 
the originally sent IP datagram. 

6. Based on the contents of the Redirect message, Host A creates a host route for 
the IP address of Host B, 192.168.1.99, at the forwarding IP address of 10.0.0.2. 

7. Subsequent packets from Host A to Host B are forwarded to Router 2 at the IP 
address of 10.0.0.2. 

ICMP Redirect messages are never sent for IP datagrams using source route options. The 
presence of source route options means that a specific path must be followed without 
regard to whether it's optimal. Source route options are sometimes used to test connec
tivity along non-optimal paths. 

When a TCP /IP for Windows 2000 host receives an ICMP Redirect message, it first checks 
the source IP address to ensure that it was sent from the router indicated by the gate
way column for the route to the destination in the IP routing table. TCP /IP for Windows 
2000 also ensures that the source IP address of the ICMP Redirect is directly reachable. 
If the ICMP Redirect didn't come from the directly reachable indicated router, the ICMP 
Redirect is ignored. Host routes created through ICMP Redirect messages persist in the 
routing table for 10 minutes. After 10 minutes, the redirect process occurs again. Figure 
7-9 shows the ICMP Redirect message structure. 

Type 

Code 

Checksum 

Router IP Address 

IP Header and 
first 8 bytes of datagram LLLL~~-LL.LLLLL~~-LL.L~ 

Figure 7-9. Tbe structure of the ICMP Redirect message. 



178 I PART ii Internet Layer Protocols 

The fields in the ICMP Redirect message are defined as follows: 

• Type Set to 5. 

• Code Set to 0-3 (see Table 7-4). 

• Router IP Address A 4-byte field set to the forwarding IP address for the 
more optimal route to the destination of the offending IP datagram. This IP ad
dress becomes the address in the Gateway column of the host route created in 
the Windows 2000 IP routing table. 

• IP Header + First 8 Bytes Of Forwarded Datagram To identify the for
warded IP datagram, the IP header and first 8 bytes of the IP payload are en
capsulated and sent back to the sending host. Included in the encapsulated IP 
header is the destination IP address that becomes the value in the Destination 
Network column for the host route created in the Windows 2000 IP routing 
table. The Network Mask for the host route is set to 255.255.255.255. 

Table 7-4. Values of the Code Field in an ICMP Redirect 

Code Value 

0 

1 

2 

3 

Meaning 

Redirected datagrams for the network (obsolete) 

Redirected datagrams for the host 

Redirected datagrams for the TOS and the network 

Redirected datagrams for the TOS and the host 

Note ICMP Redirect messages are sent only when the sending host forwards 
an IP datagram using a non-optimal route. ICMP Redirect messages are never sent 
when routers forward IP datagrams using non-optimal routes. 

The Network Monitor trace Capture 07-04, in the \Captures folder on the companion CD
ROM, shows an ICMP Echo and the ICMP Redirect for the example previously discussed. 

ICMP Router Discovery 
ICMP Router Discovery is a set ofICMP messages documented in RFC 1256 that are used 
by both routers to advertise their presence and by hosts to discover their network 
segment's routers, and choose which router will be the host's default gateway. ICMP 
Router Discovery provides a fault-tolerance mechanism for downed routers. Hosts even
tually realize that their current default gateway has become unavailable and switch their 
default gateway to the next most preferred router. 

ICMP Router Discovery uses the following two different ICMP messages: 

• ICMP Router Advertisement The ICMP Router Advertisement message is 
sent pseudo-periodically by a router to advertise its continued existence, a 
preference level, and a time after which it can be considered unavailable. 



Chapter 1 Internet Control Message Protocol (ICMP) I 179 

• ICMP Router Solicitation Hosts send an ICMP Router Solicitation message 
whenever they need to discover the most preferred router to use as their de
fault gateway. ICMP Router Discovery-capable hosts that have not been config
ured with a default gateway will send an ICMP Router Solicitation message 
upon startup. Additionally, hosts send an ICMP Router Solicitation message 
when the availability time of their current default gateway (discovered through 
ICMP Router Discovery) expires. 

ICMP Router Discovery is not a routing protocol; it provides information only on a pre
ferred default gateway for hosts on a network segment. ICMP Router Discovery doesn't 
provide any information on network IDs or optimal paths. 

ICMP Router Advertisement 

Routers send the ICMP Router Advertisement message to either the all-hosts multicast IP 
address (224.0.0.1), the subnet (or network) broadcast address, or the limited broadcast 
address. ICMP Router Advertisements are sent pseudo-periodically (at a random inter
val between a minimum and maximum value) and in response to an ICMP Router 
Solicitation. The default interval for ICMP Router Advertisements is between 7 and 10 min
utes. The Windows 2000 Routing and Remote Access service implementation of ICMP 
Router Discovery sends ICMP Router Advertisements to the all-hosts multicast IP address. 
Figure 7-10 shows the ICMP Router Advertisement message structure. 

Type 

Code 

Checksum 

Number of Addresses 

Figure 7-10. The structure of the ICMP Router Advertisement message. 

The fields in the ICMP Router Advertisement message are defined as follows: 

• Type Set to 9. 

• Code Set to 0. 



180 I PART U Internet Layer Protocols 

• Number Of Addresses A 1-byte field that indicates how many IP addresses 
are being advertised. Normally, only a single IP address is advertised. For a 
router with multiple interfaces on the same network segment, multiple IP ad
dresses are advertised. 

• Address Entry Size A 1-byte field that indicates how many 32-bit words ( 4-
byte quantities) are contained in a Router Advertisement entry. A Router Ad
vertisement entry consists of an IP address (32 bits) and a preference level (32 
bits). Therefore, the Address Entry Size field is always set to 2. 

• Lifetime A 2-byte field that indicates the time in seconds after the last re
ceived Router Advertisement that the router can be considered down. This is 
equivalent to the Dead Interval for the OSPF routing protocol. The Lifetime 
field has a default value of 3600 (30 minutes). 

• Router Address A 4-byte field that indicates the IP address of the network 
segment's router interface on which the advertisement was sent. 

• Preference Level A 4-byte field that indicates the level of preference for us
ing the Router Address as the IP address of your default gateway. The router 
advertising the highest preference level is the most preferred router. If there 
are two or more routers with the same preference level, the router with the 
numerically smallest router address becomes the default gateway. 

Router Advertisement behavior for the Windows 2000 Routing and Remote Access ser
, vice is configured per interface through the properties of an interface in the IP 
Routing\General node in the Routing and Remote Access administrative tool. 

ICMP Router Solicitation 

Hosts send the ICMP Router Solicitation message to either the all-routers multicast IP 
address (224.0.0.2), the subnet (or network) broadcast address, or the limited broadcast 
address. 

TCP/IP for Windows 2000 listens for ICMP Router Advertisements that are sent to the all
hosts multicast address of 224.0.0.1 and sends up to three ICMP Solicitation messages 
spaced 600 milliseconds apart to the all-routers multicast IP address. Figure 7-11 shows 
the ICMP Router Solicitation message structure. 

Type 

Code 

Checksum 

Unused 

Figure 7-11. The structure of the ICMP Router Solicitation message. 



Chapter 1 Internet Control Message Protocol (ICMP) I 181 

The fields in the ICMP Router Solicitation message are defined as follows: 

• Type Set to 10. 

• Code Set to 0. 

• Reserved A 4-byte field that is set to all O's. 

Windows 2000 Registry Settings for Host Router Discovery 

Host Router Discovery behavior for TCP /IP for Windows 2000 can be modified through 
the following registry settings: 

PerformRouterDiscovery 
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ 
Tcpip\Parameters\Interfaces\<interface> 
Data type: REG_DWORD 
Valid range: 0-1 
Default: 1 
Present by default: Yes 

PerformRouterDiscovery enables (=1) and disables ( =0) ICMP Router Discovery for each 
interface. The default is enabled. 

SolicitationAddressBCast 
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ 
Tcpip\Parameters\Interfaces\<interface> 
Data type: REG_DWORD 
Valid range: 0-1 
Default: 0 (disabled) 
Present by default: No 

SolicitationAddressBCast enables ( =1) or disables ( =O) the use of the subnet (or network) 
broadcast address as the destination IP address of ICMP Router Solicitation messages. 
When disabled (the default), TCP /IP for Windows 2000 uses the all-routers IP multicast 
address (224.0.0.2). 

ICMP Time Exceeded 
The ICMP Time Exceeded message is sent in the following instances: 

• When a router decrements the IP header's Time-to-Live (TTL) field to 0 

• When the reassembly timer for '1: fragmented IP datagram expires 

When the TTL goes to 0 for an IP datagram, it can mean one of two things: 

• The IP datagram was sent with an inadequate TTL that doesn't reflect the cur
rent number of links between the source and destination nodes. In this case, 
the TTL should be increased. 



182 I PART ii Internet Layer Protocols 

• A routing loop exists in the internetwork. As discussed in Chapter 6, "Internet 
Protocol (IP) Routing," a routing loop occurs when IP routers have incorrect 
routing information and forward an IP datagram in a loop that never reaches 
the destination. To test for a routing loop, send an IP datagram with a TTL of 
255, the maximum value. If an ICMP Time Exceeded message is still received, 
a routing loop exists in your internetwork. 

Destination hosts receiving a fragmented IP datagram use a reassembly timer as a maxi
mum time to wait before discarding the incomplete IP datagram. If all of an IP datagram's 
fragments arrive within the time allotted in the reassembly timer, the IP datagram is suc
cessfully reassembled. If the reassembly timer expires before all of an IP datagram's frag
ments have been received, the destination host discards the incomplete payload and can 
send an ICMP Time Exceeded message back to the source. Figure 7-12 shows the ICMP 
Time Exceeded 'message structure. 

The fields in the ICMP Time Exceeded message are defined as follows: 

• Type Set to 11. 

• Code Set to 0 or 1. Set to 0 by a router to indicate a TTL expiration. Set to 1 
by a destination host to indicate a reassembly expiration. 

• IP Header + First 8 Bytes Of Discarded Datagram To identify the 
discarded IP datagram, the ICMP Time Exceeded message contains the IP 
header and the first 8 bytes of the IP payload. 

Type 

Code 

Checksum 

Unused 

IP Header and 
first 8 bytes of datagram 

Figure 7-12. The structure of the ICMP Time Exceeded message. 

The Network Monitor trace Capture 07-05, in the \Captures folder on the companion CD
ROM, shows an ICMP Echo from an Internet host sent to an Internet Web site with an 
insufficient TTL. 

ICMP Parameter Problem 
A router or a destination host sends an ICMP Parameter Problem mes.5age when an er
ror occurs in the processing of the IP header causing the IP datagram to be discarded, 



Chapter 1 Internet Control Message Protocol (ICMP) I 183 

and there are no other ICMP messages that can be used to indicate the error. ICMP Pa
rameter Problem messages can be sent because of errors in TCP /IP implementations 
causing incorrect formatting of IP header fields. Typically, ICMP Parameter Problem 
messages are sent because of incorrect arguments in IP option fields. Figure 7-13 shows 
the ICMP Parameter Problem message structure. 

Type 

Code 

Checksum 

Pointer 

Unused 

IP Header and 
first 8 bytes of datagram ~~~~~~~~~ 

Figure 7-13. The structure of the ICMP Parameter Problem message. 

The fields in the ICMP Parameter Problem message are defined as follows: 

• Type Set to 12. 

• Code Set to 0-2. See Table 7-5. 

• Pointer A 1-byte field set to the byte offset (starting at 0) in the encapsulated 
IP header where the error was detected for Parameter Problem messages with 
the Code field set to 0. 

• IP Header + First 8 Bytes Of Discarded Datagram To identify the dis
carded IP datagram, the ICMP Parameter Problem message contains the IP 
header and the first 8 bytes of the· IP payload. 

Table 7-5. ICMP Parameter Problem Code Values 

Code Value 

0 

1 

2 

Meaning 

Pointer indicates error 

Missing a required option 

Bad length 

Note ICMP Parameter Problem messages are never sent for IP datagrams with 
an invalid checksum. IP datagrams that fail the checksum are silently discarded. 



184 I PART ii Internet Layer Protocols 

PING Utility 
The PING command-line utility for Windows 2000 is the primary network troubleshoot
ing tool. The PING utility tests reachability, name resolution, source routing, network 
latency, and other issues. PING sends an ICMP Echo to a specified destination and records 
the round-trip time, the number of bytes sent, and the corresponding Echo Reply's TTL. 
When PING finishes sending ICMP Echoes, it displays statistics on the average number 
of replies and round-trip time. 

When you ping a destination IP address, the default behavior is to send four fragmentable, 
non-source routed ICMP Echoes with an optional data field of 32 bytes and wait one 
second for the corresponding ICMP Echo Reply. When you ping a name, normal Win
dows 2000 name resolution mechanisms resolve the name to an IP address before the 
Echoes are sent. If Windows 2000 is unable to resolve the name to an IP address, the 
PING utility displays the message Unknown Host. If a corresponding Echo Reply is not 
received within one second, PING displays the error message Request Timed Out. 

In the ICMP header of Windows 2000 PING-generated ICMP Echoes: 

• The Identifier field is set to 256 (OxlOO). 

• The Sequence Number field for the first Echo is chosen as a multiple of 256 
(OxlOO) and the Sequence Number for subsequent Echoes is incremented by 
256 (OxlOO). 

• The Optional Data field is 32 bytes (by default), consisting of the string 
"abcdefghijklmnopqrstuvwabcdefghi." 

PING Options 
Table 7-6 lists the use and default values of PING utility options. 

Table 7-6. PING Utility Options 

Option Use Default 

-t Sends Echoes until interrupted. Not used 

-a Performs a Domain Name System (DNS) reverse query to Not used 
resolve the DNS host name of the specified IP address. 

-n count The number of Echoes to send. 4 

-1 size The size of the Optional Data field up to a maximum of 65,500. 32 

-f Sets the Don't Fragment (DF) flag to 1. Not used 

-i TTL Sets the value of the TTL field in the IP header. 32 

-v TOS Sets the value of the Type Of Service field in the 0 
IP header. The TOS value is in decimal. 

-r count Sends the ICMP Echoes using the IP Record Route option and sets Not used 
the value of the number of slots. Count has a maximum value of 9. 

(continued) 



Chapter 1 Internet Control Message Protocol (ICMP) I 185 

Table 7-6. (continued) 

Option Use Default 

-s count Sends the ICMP Echoes using the IP Internet Timestamp option Not used 
and sets the value of the number of slots. Count has a maximum 
value of 4. Windows 2000 PING uses the Internet Timestamp. 
FLAG set to 1 (records both the IP addresses of each hop and 
the timestamp). 

-j host-list Sends the ICMP Echoes using the Loose Source Route option Not used 
and sets the next hop addresses to the IP addresses in the host 
list. The host list is made up of IP addresses separated by spaces 
corresponding to the loose source route. There can be up to 
nine IP addresses in the host list. 

-k host-list Sends the ICMP Echoes using the Strict Source Route option Not used 
and sets the next hop addresses to the IP addresses in the 
host list. The host list is made of IP addresses separated by 
spaces corresponding to the loose source route. There can be 
up to 9 IP addresses in the host list. 

-w timeout Waits the specified amount of time, in milliseconds, for the corres- 1000 
ponding Echo Reply before displaying a Request Timed Out message. 

Network Monitor Example 

The following Network Monitor trace (Capture 07-01 in the \Captures folder on the com
panion CD-ROM) illustrates a summary of a typical use of the PING utility to ping a 
destination IP address. Four Echoes are sent and four Echo Replies are received. The 
summarized frames have been indented for readability. 

Frame Time 
1 0. 271 

2 0. 271 

3 1. 271 

4 1. 271 

5 2.273 

6 2. 273 

7 3.275 

8 3. 275 

Src MAC Addr 
0060083E4607 

00502AB9A440 

0060083E4607 

00502AB9A440 

0060083E4607 

00502AB9A440 

0060083E4607 

00502AB9A440 

Ost MAC Addr 
00502AB9A440 

0060083E4607 

00502AB9A440 

0060083E4607 

00502AB9A440 

0060083E4607 

00502AB9A440 

0060083E4607 

Protocol Description 
ICMP Echo, From 157.59.11.19 

To 157.59.08.01 
ICMP Echo Reply, To 

157.59.11.19 From 
157.59.08.01 

ICMP Echo, From 157.59.11.19 
To 157.59.08.01 

ICMP Echo Reply, To 
157.59.11.19 From 
157.59.08.01 

ICMP Echo, From 157.59.11.19 
To 157.59.08.01 

ICMP Echo Reply, To 
157.59.11.19 From 
157.59.08.01 

ICMP Echo, From 157.59.11.19 
To 157.59.08.01 

ICMP Echo Reply, To 
157.59.11.19 From 
157.59.08.01 



186 I PART Ii Internet Layer Protocols 

TRACERT Utility 
The TRACERT utility uses ICMP Echo messages to determine the path-the series of rout
ers-that unicast traffic takes from a source host to a destination host. TRACERT tests 
reachability, name resolution, network latency, routing loops, and other issues. 

When you tracert a destination IP address, the default behavior is to trace the route and 
report the round-trip time, the near-side router IP address, and the DNS name correspond
ing to the near-side router IP address. When you tracert a name, normal Windows 2000 
name resolution techniques resolve the name to an IP address before the Echo messages 
are sent. If Windows 2000 is unable to resolve the name to an IP address, the TRACERT 
utility displays the message Unknown Host. 

TRACERT works in the following manner: 

1. An ICMP Echo is sent to the destination with the TTL in the IP header set to 1. 
If the destination is on a directly attached network, the destination responds 
with a corresponding Echo Reply and TRACERT is done. 

2. If the destination is not in a directly attached network, the Echo is forwarded to 
an IP router. 

3. The IP router determines that the IP datagram is transit traffic (not destined for 
the router) and decrements the TTL. Because the TTL is now 0, the IP router 
discards the IP datagram and sends back an ICMP Time Exceeded-TTL Expired 
In Transit message to the sending host with the source IP address set to the IP 
address of the interface on which the ICMP Echo was received. The interface 
on which the Echo was received is the near-side interface, the interface that is 
the smallest number of hops from the sending host. 

4. Upon receipt of the ICMP Time Exceeded-TTL Expired In Transit message, the 
TRACERT utility records the round-trip time and the source IP address. 

5. TRACERT sends two more ICMP Echo messages and records their round-trip time. 

6. An ICMP Echo is sent to the destination with the IP header's TTL set to 2. The 
Echo is forwarded to an IP router. 

7. The IP router determines that the IP datagram is transit traffic, decrements the 
TTL to 1, and forwards it to the next hop or the final destination. 

8. If the destination is on a directly attached network, the destination responds 
with a corresponding Echo Reply and TRACERT is done. 

9. If the destination is not on a directly attached network, the IP router determines 
that the IP datagram is transit traffic and decrements the TTL. Because the TTL 
is now 0, the IP router discards the IP datagram and sends back an ICMP Time 
Exceeded-TTL Expired In Transit message to the sending host with the source 
IP address set to the IP address of the interface on which the ICMP Echo was 
received. The interface on which the Echo was received is the near-side inter
face, the interface that is smallest number of hops from the sending host. 



Chapter 1 Internet Control Message Protocol (ICMP) I 187 

10. Upon receipt of the ICMP Time Exceeded-TTL Expired In Transit message, the 
TRACERT utility records the round-trip time and the source IP address. 

11. TRACERT sends two more ICMP Echo messages and records their rm.ind-trip time. 

This process continues until the destination is reached and replies with ICMP Echo 
Reply messages. 

The TRACERT utility records the series of near-side router interfaces in the path from the 
sending host to a destination. By default, TRACERT also performs a DNS reverse query on 
each near-side router interface and displays the host name corresponding to the IP address. 

Note If a router silently discards packets with an expired TIL, TRACERT shows 
a series of"*" characters for that hop. If ICMP packet filtering is occurring on a 
near-side router interface, that router and all subsequent routers will show the "*" 
character until 30 hops are attempted (the default). 

Network Monitor Example 

The following frames from a Network Monitor trace (Capture 07-06 in the \Captures folder 
on the companion CD-ROM) summarize a typical use of the TRACERT utility to trace the 
route to a destination IP address. In this case, TRACERT is used to trace the path across 
two routers, and the -d option is used to simplify the process and the display. The sum
marized frames have been indented for readability. 

Frame 
1 

2 

3 

4 

5 

6 

7 

8 

Time 
1.241 

1.241 

1.242 

1.242 

Src MAC Addr 
0060083E4607 

00502AB9A440 

0060083E4607 

00502AB9A440 

Ost MAC Addr 
00502AB9A440 

0060083E4607 

00502AB9A440 

0060083E4607 

Protocol 
ICMP 

ICMP 

ICMP 

ICMP 

1.260 0060083E4607 00502AB9A440 ICMP 

1.260 00502AB9A440 0060083E4607 ICMP 

2.263 0060083E4607 00502AB9A440 ICMP 

2.263 00502AB9A440 0060083E4607 ICMP 

Description 
Echo, From 157.59.11.19 

To 157.59.224.33 
Time Exceeded while 

trying to deliver to 
157.59.224.33 See 
frame 1 

Echo, From 157.59.11.19 
To 157.59.224.33 

Time Exceeded while 
trying to deliver to 
157.59.224.33 See 
frame 3 

Echo, From 157.59.11.19 
To 157.59.224.33 

Time Exceeded while 
trying to deliver to 
157.59.224.33 See 
frame 5 

Echo, From 157.59.11.19 
To 157.59.224.33 

Time Exceeded while 
trying to deliver to 
157.59.224.33 See 
frame 7 



188 I PART ii Internet Layer Protocols 

9 2.264 0060083E4607 00502AB9A440 ICMP 

10 2.265 00502AB9A440 0060083E4607 ICMP 

11 2.265 0060083E4607 00502AB9A440 ICMP 

12 2.266 00502AB9A440 0060083E4607 ICMP 

13 3.264 0060083E4607 00502AB9A440 ICMP 

14 3.265 00502AB9A440 0060083E4607 ICMP 

15 3.266 0060083E4607 00502AB9A440 ICMP 

16 3.267 00502AB9A440 0060083E4607 ICMP 

17 3.268 0060083E4607 00502AB9A440 ICMP 

18 3.268 00502AB9A440 0060083E4607 ICMP 

Echo, From 157.59.11.19 
To 157.59.224.33 

Time Exceeded while 
trying to deliver to 
157.59.224.33 See 
frame 9 

Echo, From 157.59.11.19 
To 157.59.224.33 

Time Exceeded while 
trying to deliver to 
157.59.224.33 See 
frame 11 

Echo, From 157.59.11.19 
To 157.59.224.33 

Echo Reply, To 
157.59.11.19 From 
157.59.224.33 

Echo, From 157.59.11.19 
To 157.59.224.33 

Echo Reply, To 
157.59.11.19 From 
157.59.224.33 

Echo, From 157.59.11.19 
To 157.59.224.33 

Echo Reply, To 
157.59.11.19 From 
157.59.224.33 

Frames 1-6 are the first hop. In frames 1, 3, and 5, the IP header's TTL is set to 1. The 
local router decrement~ the TTL to 0 and sends back ICMP Time Exceeded-TTL Expired 
In Transit messages (frames 2, 4, and 6). 

Frames 7-12 are the second hop. In frames 7, 9, and 11, the IP header's TTL is set to 2. 
The second router in the path decrements the TTL to 0 and sends back the ICMP Time 
Exceeded-TTL Expired In Transit messages (frames 8, 10, and 12). 

Frames 13-18 reach the destination. In frames 13, 15, and 17, the IP header's TTL is set 
to 3, which is an adequate TTL to reach a destination two routers away. The destination 
sends back the appropriate Echo Reply messages (frames 14, 16, and 18). 

Tip The round-trip times reflected in the TRACERT display are not necessarily the 
same round-trip times for normal traffic. Most routers process ICMP errors and 
messages at a lower priority. Therefore, the round-trip times reflected in the 
TRACERT display may be larger than the round-trip times for normal traffic. Addi
tionally, it is possible for network conditions and the path to change during the 
route-tracing process, giving misleading results. 



Chapter 1 Internet Control Message Protocol (ICMP) I 189 

TRACERT Options 
Table 7-7 lists the use and default values of TRACERT utility options. 

Table 7-7. TRACERT Utility Options 

Option 

-d 

-h max_hops 

-j host-list 

-w timeout 

Use 

Instructs TRACERT to not perform a DNS reverse query 
on every router IP address. If the host name of each 
router is unimportant, the -d option accelerates the 
TRACERT display of the path. 

Instructs TRACERT to increment the TTL up to max_hops. 

Sends the ICMP Echo messages using the loose source 
route specified in the host-list. The host list is up to nine 
IP addresses separated by spaces corresponding to the 
loose-source route to the destination. 

Waits the specified amount of time in milliseconds for the 
response before displaying a "*". 

PATHPING Utility 

Default 

Performs DNS 
reverse queries 
on each router 
IP address 

30 

Not used 

1000 

The PATHPING command-line utility for Windows 2000 is used to test router and link 
latency and packet losses. PATHPING works by sending successive ICMP Echo messages 
to each point in the path and recording the following: the average round-trip time, the 
packet loss when sending ICMP Echo messages to the router, and the packet loss when 
sending ICMP Echo messages across a router. 

The following is an example of the display of the PATHPING utility: 

D:\>pathping -n 10.0.224.33 
Tracing route to 10.0.224.33 over a maximum of 30 hops 

0 10.1.11.19 
1 10.1.8.l 
2 10.0.231.130 
3 10.0.224.33 

Computing statistics for 75 
Source to Here 

Hop RTT Lost/Sent = Pct 
0 

1 0ms 0/ 100 0% 

2 0ms 0/ 100 0% 

3 0ms 0/ 100 0% 
Trace complete. 

seconds ... 
This Node/Link 
Lost/Sent Pct Address 

10.1.11.19 
0/ 100 0% I 
0/ 100 0% 10.1.8.1 
0/ 100 0% I 
0/ 100 0% 10. 0. 231.130 
0/ 100 0% I 
0/ 100 0% 10.0.224.33 



190 I PART ii Internet Layer Protocols 

In the preceding example, PATHPING is sending ICMP Echo messages from a host 
(10.1.11.19) to a destination host (10.0.224.33) across two routers (10.1.8.1 and 
10.0.231.130). PATHPING first resolves the path using the same mechanism as TRACERT. 
Then, PATHPING sends two series of ICMP Echo messages to each hop in the path; one 
series to determine the packet loss to each destination (the Source To Here column), and 
another series to determine the packet loss of each link (the This Node/Link column). 

PATHPING Options 
Table 7-8 lists the use and default values of PATHPING utility options. 

Table 7-8. PATHPING Utility Options 

Option 

-n 

-h max_hops 

-g host-list 

-p period 

-q num_queries 

-w timeout 

-T 

-R 

Summary 

Use 

Instructs PATHPING to not perform a DNS reverse 
query on every router IP address. If the host name 
of each router is unimportant, the -n option 
accelerates the PATHPING display of the path. 

Instructs PATHPING to increment the 
TTL up to max_hops. 

Sends the ICMP Echoes using the loose-source route 
specified in the host-list. The host list is up to nine IP 
addresses separated by spaces corresponding to the 
loose-source route to the destination. 

Waits the specified amount of time in milliseconds 
between successive Echoes. 

Sends the num_queries number of queries for each hop. 

Waits the specified amount of time in milliseconds 
for the response. 

Adds a layer-2 priority tag to the ICMP Echoes to test 
for Quality of Service (QoS) functionality. 

Uses the Resource Reservation Protocol (RSVP) 
to test QoS functionality. 

Default 

Performs DNS 
reverse queries 
on each router 
IP address 

30 

Not used 

250 

100 

3000 

Not used 

Not used 

ICMP is a set of messages that provides services that are not part of IP. ICMP includes the 
following services: diagnostic (Echo and Echo Reply messages), delivery error reporting 
(Destination Unreachable, Time Exceeded, Source Quench, and Redirect messages), router 
discovery (Router Advertisement and Router Solicitation messages), and IP header prob
lems (Parameter Problem message). The ICMP Destination Unreachable-Fragmentation 
Needed And DF Set message is used for PTMU discovery. The Windows 2000 PING, 
TRACERT, and PATHPING utilities make use of ICMP messages to provide diagnostic 
functionality. 



191 

Internet Group 
Management Protocol (IGMP) 

Historically, data transfer services used one-to-one delivery, using unicast addressing and 
routing across an IP internetwork. The utility of one-to-many delivery across an IP 
internetwork has recently become an interesting and cost-effective way to deliver audio, 
video, and other types of content to multiple destinations. One-to-many delivery service 
requires hosts to inform local routers of their interest in receiving the traffic so that rout
ers can forward the traffic to the network segments of the listening host~. 

Introduction to IP Multicast and IGMP 
IP multicast provides an efficient one-to-many delivery service. To achieve one-to-many 
delivery using IP unicast traffic, each datagram needs to be sent multiple times. To achieve 
one-to-many delivery using IP broadcast traffic, a single datagram is sent, but it is pro
cessed by all nodes, even those nodes that aren't interested. Broadcast delivery service 
is unsuitable for internetworks, as routers are designed to prevent the spread of broad
cast traffic. With IP multicast, a single datagram is sent and forwarded across routers only 
to nodes who are interested in receiving it. 

Historically, Internet Protocol (IP) multicast traffic has been little utilized: However, 
recent developments in audio and video teleconferencing, distance learning, and data 
transfer to a large number of hosts have made IP multicast traffic more important. 

More Info RFCs 1112 and 2236 describe IP multicast and IGMP. These RFCs 
can be found in the \RFC folder on the companion CD-ROM. 

IP Multicasting Overview 
The essential details of IP multicast operation are the following: 

• All multicast traffic is sent to a class D address in the range 224.0.0.0 through 
239.255.255.255 (224.0.0.0/4). All traffic in the range 224.0.0.0 through 
224.0.0.255 (224.0.0.0/24) is for the local subnet and is not forwarded by rout
ers. Multicast-enabled routers forward multicast traffic in the range 224.0.1.0 
through 239.255.255.255 with an appropriate TTL. 



192 I PART ~i Internet Layer Protocols 

• A specific multicast address is called a group address. 

• The set of hosts that listen for multicast traffic at a specific group address is 
called a multicast group or host group. Multicast group members can receive 
traffic to their unicast address and the group address. Multicast groups can be 
permanent or transient. A permanent group is assigned a well-known group 
address. An example of a permanent group is the all-hosts multicast group, lis
tening for traffic on the well-known multicast address of 224.0.0.1. The mem
bership of a permanent group is transient; only the group address is permanent. 

• There are no limits on a multicast group's size. 

• A host can send multicast traffic to the group address without belonging to the 
multicast group. 

• There are no limits to how many multicast groups a host can belong to. 

• There are no limits on when members of a multicast group can join and leave 
a multicast group. 

• There are no limits on the location of multicast group members. 

IP multicast must be supported on hosts and routers. 

Host Support 
To support IP multicast, hosts must be able to send and receive IP multicast traffic. RFC 
1112 defines three levels of IP multicast support for hosts as follows: 

• Level 0: No support for sending or receiving IP multicast traffic 

• Level 1: Support for sending IP multicast traffic 

• Level 2: Support for sending and receiving IP multicast traffic 

By default, Microsoft Windows 2000 TCP /IP supports level 2 IP multicasting. 

Microsoft Windows 2000 Registry Setting for the Level of IP Multicasting 

The following Windows 2000 registry setting allows modification of the IP multicast 
support level: 

IGMPLevel 
Location:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Value Type: REG_DWORD 
Valid Range: 0-2 
Default: 2 
Present by Default: No 

Sending IP Multicast Traffic 

A host sending an IP multicast packet must first determine the IP multicast address. The 
IP multicast address is determined by either the application or protocol (a well-known 



Chapter 8 Internet Group Management Protocol (IGMP) I 193 

or reserved IP multicast address), or obtained from a server allocating unique IP multicast 
addresses. Multicast Address Dynamic Client Allocation Protocol (MADCAP) is an exten
sion to the DHCP standard that is used to obtain an internetwork's unique IP multicast 
address. Multicast scopes configured on the DHCP server define ranges of IP multicast 
addresses. Similar to allocating unicast IP addresses, unique IP multicast addresses are 
allocated to a single DHCP client. If multiple hosts use the same IP multicast address for 
different applications, forwarding of the wrong traffic to host group members could occur. 
For more information on multicast support by the Windows 2000 DHCP service, see Chap
ter 15, "Dynamic Host Configuration Protocol (DHCP) Service." 

After determining the destination IP multicast address, the sending host must construct 
the IP datagram with its own IP address as the source IP address, the intended IP multicast 
address as the Destination IP Address, and an appropriate Time-to-Live (TTL) value. For 
local subnet IP multicast traffic destined for addresses in the range 224.0.0.0 through 
224.0.0.255, the TTL is set to 1. Routers won't forward IP mufricast traffic in this range 
even if the TTL is greater than 1. For non-local subnet traffic, the TTL should be set to a 
value that's high enough to reach all host group members. Table 8-1 lists the recom
mended values of the TTL for IP multicast traffic and their scope. 

Table 8-1. Recommended Values of the TTL for IP Multicast Traffic 

TTL Value 

0 

1 

15 
63 
127 
191 

255 

Description 

Restricted to the same host 

Restricted to the same subnet 

Restricted to the same site 

Restricted to the same region 

Worldwide 

Worldwide; limited bandwidth 

Unrestricted 

Once the sending host constructs the IP multicast datagram, the IP packet is passed through 
the IP forwarding process. The multicast entry in the IP routing table (the route(s) with 
the destination of 224.0.0.0 and the network mask of 240.0.0.0) informs IP that the datagram 
must be forwarded to the destination IP address, using the local network interface. The 
IP datagram, the forwarding IP address, and the interface are submitted to ARP. 

The ARP module checks the forwarding IP address. Because the forwarding IP address 
is in the range 224.0.0.0 through 239.255.255.255 (224.0.0.0/4), ARP bypasses the pro
cess of checking the ARP cache and sending a broadcast ARP Request frame. For Ethernet 
and Fiber Distributed Data Interface (FDDI) hosts, the destination IP address is mapped 
to the destination MAC address using the process described in Chapter 5, "Internet Pro
tocol (IP) Addressing." For Token Ring hosts, all IP multicast traffic is addressed to the 
Token Ring functional address of OxC0-00-00-04-00-00. 



194 I PART ii Internet Layer Protocols 

Receiving IP Multicast Traffic 

To receive IP multicast traffic, a host informs the IP layer to process traffic for a specific 
group address. To facilitate the request, the IP module: 

• Informs the Network Interface Layer technology to add the MAC-level multicast 
address that corresponds to the group address to the list of interesting destina
tion MAC addresses. In Windows 2000, the IP module within the TCP/IP proto
col uses the NDISRequest() function. 

• If the group address isn't in the range 224.0.0.1 through 224.0.0.255 (224.0.0.0/ 
24), an IGMP Host Membership Report message is sent to inform local routers 
to forward the host group traffic to the network segment of the listening host. 

If there are multiple applications on the host using the same group address, IP tracks 
application group membership and passes a copy of the received IP multicast datagram 
to each listening application. For a multihomed host, IP tracks group membership for each 
network segment. 

Router Support 
To support IP multicast forwarding and routing, a router must be able to do the following: 

• Listen for IGMP Host Membership Report messages sent from hosts on local 
network segments. 

• Track and maintain group membership for hosts on local network segments. Rout
ers maintain host group membership through the receipt of IGMP Host Member
ship Report messages and the sending of IGMP Host Membership Query messages. 

• In a multicast-enabled intranet with more than two routers, a router must be 
able to communicate host group membership information to neighboring rout
ers. This is done using a multicast routing protocol such as Distance Vector 
Multicast Routing Protocol (DVMRP), Multicast Extensions To Open Shortest 
Path First (MOSPF), or Protocol Independent Multicast (PIM). 

• Listen for all IP multicast traffic on all attached network segments. To do this, 
the router must put the. network interface into either promiscuous listening 
mode or multicast promiscuous listening mode. In promiscuous mode, all in
coming frames are considered interesting and passed to Windows 2000 for pro
cessing. Promiscuous mode is a processor and interrupt-intensive listening 
mode, and is typically used only for protocol analysis or network sniffing. 

Multicast promiscuous mode is a special listening mode where all packets with 
the Individual/Group (I/G) bit, also known as the multicast bit, in the destination 
MAC address that are set to 1, are considered interesting. For Ethernet frames, 
the multicast bit is the last bit of the first byte in the destination MAC address. In 
multicast promiscuous mode, all frames with the multicast bit set and a valid 
Frame Check Sequence (FCS) are passed up to the operating system for process
ing. See Chapter 1, "Local Area Network (LAN) Technologies," for more informa-



Chapter 8 Internet Group Management Protocol (IGMP) I 195 

tion on the multicast bit. In multicast promiscuous mode, an IP multicast router 
receives a copy of every IP mul~icast packet for processing or forwarding. 

Not all network adapters support multicast promiscuous mode. A network adapter 
that supports promiscuous mode might not support multicast promiscuous mode. 

• Forward IP multicast traffic with a valid 1TL on appropriate network segments 
where there are host group members or where there are downstream routers that 
have host group members. The IP multicast forwarding capability is provided by 
the TCP /IP protocol. Similar to unicast forwarding, when IP multicast forwarding 
is enabled, the 1TL of the packet being forwarded is decremented, and is then 
forwarded over the appropriate interfaces based on the entries in a local multicast 
forwarding table. IP silently discards multicast traffic with a TTL of 0. 

IP multicast traffic is forwarded to network segments that have either a listening 
host, or a router that has informed the router forwarding the IP multicast traffic 
that there are host group members downstream. The entries in the IP multicast' 
forwarding table don't indicate which hosts are listening or how many group 
members there are on a network segment--only that at least one host member 
is present on the network segment (or a downstream network segment). 

The Multicast-Enabled IP Internetwork 
Figure 8-1 shows a multicast-enabled intranet. To support the forwarding of IP multicast 
traffic from any host to any group member, hosts and routers must support the following: 

• Any host receiving IP multicast traffic joins the multicast group by sending 
IGMP Host Membership Report messages on the local network segment. 

• Any host sending IP multicast traffic forms the IP multicast frame and sends it 
on the local network segment. 

Listening 
Host 

IGMP 
Host membership report 

IP multicast 
traffic 

Sending 
Host 

Figure 8-1. A multicast-enabled intranet showing multicast-enabled hosts and routers. 



196 I PART Ii Internet Layer Protocols 

• IP multicast routers forward the IP multicast traffic from the originating net
work segment to all segments where there are group members. IGMP Host 
Membership Report messages inform the routers about group members on lo
cally attached network segments. For downstream host members, IP multicast 
routers communicate downstream host member information using multicast 
routing protocols. In both cases, IGMP and multicast routing protocols update 
the router's local TCP /IP multicast forwarding tables. 

The Internet's Multicast-Enabled Backbone 

The portion of the Internet that is IP-multicast-enabled is known as the Multicast Back
bone or MBONE. The MBONE was created originally to multicast the audio for Internet 
Engineering Task Force (IETF) meetings for IETF members who couldn't attend. Today, 
the MBONE is used for the audio and video of IETF meetings, the launches of the Na
tional Aeronautic and Space Administration (NASA) space shuttle, and teleconferences 
of all kinds. The MBONE is also the testbed for the development of IP multicast technol
ogy such as applications, tools, and routing protocols. 

The MBONE is a logical IP multicast topology overlaid on the Internet's physical unicast 
topology. Not all Internet portions and Internet service providers (ISPs) support the for
warding of IP multicast traffic. To connect two portions of the Internet that do support 
IP multicast traffic, IP multicast traffic is tunneled or wrapped with another IP header 
addressed from one router to another router. The typical tunneling is called IP-in-IP tun
neling, and is described in RFC 1853. The MBONE is a series of multicast-enabled islands 
connected together with IP-in-IP tunnels. · 

More Info IP-in-IP tunneling is described in RFC 1853, which can be found in the 
\RFC folder on the companion CD-ROM. 

IGMP Message Structure 
The protocol used to maintain local subnet host group membership is IGMP, which is 
required for hosts that support level 2 IP multicasting. IGMP messages are sent as IP 
datagrams with the IP Protocol field set to 2. Therefore, an IGMP message is encapsu
lated with an IP header. The resulting IP datagram is then encapsulated with the appro
priate Network Interface Layer header and trailer. Figure 8-2 shows the resulting frame. 

Network Network 
Interface IP header IGMP message Interface 
header trailer 

I. I~ 
IGMP message 

:1 
.I 

IP datagram 
I 

Network Interface Layer frame 

Figure 8-2. IGMP message encapsulation showing the IP header and Network Interface 
Layer header and trailer. 



Chapter 8 Internet Group Management Protocol (IGMP) · 1 197 

In the IP header of IGMP messages, the Source IP Address field is set to the router or 
host interface that sent the IGMP message; the Destination IP Address field depends on 
the type of IGMP .message. 

IGMP Version 1 {IGMPv1) 
IGMPvl, described in Appendix I of RFC 1112, defines two types of IGMP messages: 

1. The Host Membership Report 

2. The Host Membership Query 

More Info IGMPv1 is described in Appendix I of RFC 1112, which can be found 
in the \RFC folder on the companion CD-ROM. 

Host Membership Report 

A host sends a Host Membership Report message to inform local routers that the host 
wants to receive IP multicast traffic at a specified group address. A host also sends a Host 
Membership Report in response to a Host Membership Query message sent by a router. 
Host Membership Report messages are sent, with a Time-To-Live (TTL) of 1, to the des
tination IP address of the multicast group. 

Host Membership Query 

A router sends a Host Membership Query message to poll a network segment and verify 
that there are hosts still listening for IP multicast traffic. Host Membership Query mes
sages are sent, with a TTL of 1, to the destination IP address of the all-hosts IP multicast 
address (224.0.0.1). An IGMPvl Host Membership Query is a general query, attempting 
to identify all multicast groups being listened to by hosts on a network segment. 

Hosts that receive the Host Membership Query message send a Host Membership Report 
for all the host groups for which the host is a member. To prevent an avalanche of re
sponse traffic, host group members choose a random report delay time for each host group 
and wait to hear from other host group members on the network segment. If a Host 
Membership Report message is sent by another host group member, the waiting host 
doesn't send a reply. 

This behavior is consistent with the information kept by multicast routers. A multicast 
router doesn't track which hosts on a network segment are members of a host group, 
only that there is at least one host group member. 

If no hosts respond with a Host Membership Report to a group address that the multicast 
router is tracking for the network segment, the multicast router can remove that entry 
from the multicast forwarding table and inform other multicast routers through multicast 
routing protocols. Multicast traffic to the removed group address will no longer be for
warded to the network segment. 

ISllU 
l!1!J 



198 I PART U Internet Layer Protocols 

IGMPv1 Message Structure 

Figure 8-3 shows the structure of the IGMPvl message. 

Version = 1 

Type 

Unused 

Checksum 

Group Address 

Figure 8-3. Tbe structure of the IGMPvl message. 

The fields in the IGMPvl header are defined as follows: 

• Version A 4-bit field set to 1 to indicate IGMPvl. 

• Type A 4-bit field that indicates the type of IGMP message. Set to 1 for a 
Host Membership Query. Set to 2 for a Host Membership Report. 

• Unused A 1-byte field zeroed by the sender and ignored by the receiver. 

• Checksum A 2-byte field that stores the 16-bit checksum on the 8-byte IGMP 
header. 

• Group Address A 4:.byte field that for a Host Membership Report stores the 
multicast group address being joined by the listening host. In a Host Member
ship Query, the Group Address field is 0.0.0.0. 

Table 8-2 summarizes the addresses used in IGMPvl Host Membership Report and Host 
Membership Query me~sages. 

Table 8-2. Addresses Used in IGMPv1 Messages 

Source IP Address (IP header) 

Destination IP Address (IP header) 

Group Address 

Network Monitor Examples 

Host Membership Report 

Host IP Address 

Group IP Address 

Group IP Address 

Host Membership Query 

Router IP Address 

224.0.0.1 

0.0.0.0 

The following Network Monitor trace (Capture 08-01 in the \Captures folder on the 
companion CD-ROM) is an IGMPvl Host Membership Report message for a host joining 
the host group 224.0.1.41: 

+ FRAME: Base frame properties 
ETHERNET: ETYPE = 0x0800 : Protocol IP: DOD Internet Protocol 



Chapter B Internet Group Management Protocol (IGMP) I 199 

ETHERNET: Destination address : 01005E000129 
ETHERNET: ....... 1 =Group address· 
ETHERNET: ...... 0. =Universally administered address 

+ ETHERNET: Source address : 00C04FD7BAEC 
ETHERNET: Frame Length : 60 (0x003C) 
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol) 
ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E) 

IP: ID = 0xB201; Proto = IGMP; Len: 28 
IP: Version = 4 (0x4) 
IP: Header Length = 20 (0x14) 
IP: Precedence = Routine 
IP: Type of Servtce = Normal Service 
IP: Total Length = 28 (0x1C) 
IP: Identification = 45569 (0xB201) 

+ IP: Flags Summary = 0 (0x0) 
IP: Fragment Offset = 0 (0x0) bytes 
IP: Time to Live = 1 (0xl) 
IP: Protocol = IGMP - Internet Group Management 
IP: Checksum = 0x118E 
IP: Source Address = 10.0.11.40 
IP: Destination Address = 224:0.1.41 
IP: Data: Number of data bytes remaining = 8 (0x0008) 

IGMP: IGMP Group Report, From 10.00.11.40 To 224.00.01.41 
IGMP: Version = 1 (0xl) 
IGMP: Type = IGMP Group Report 
IGMP: Unused = 0 (0x0) 
IGMP: Checksu~ = 0x0CD6 
IGMP: Group Address = 224.0.1.41 

Note that the group address of 224.0.1.41 is being mapped to the Ethernet destination 
address of 01-00-SE-00-01-29 (41 in hexadecimal is Ox29). Also note that IGMP messages 
must be padded with 18 padding bytes on Ethernet networks to adhere to the Ethernet 
minimum payload size of 46 bytes (padding bytes· not shown). 

The following Network Monitor trace (Capture 08-02 in the \Captures folder on the 
companion CD-ROM) is an IGMPvl Host Membership Query: 

+ FRAME: Base frame properties 
ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol 

ETHERNET: Destination address : 01005E000001 
ETHERNET: ....... 1 = Group address 
ETHERNET: ...... 0. =Universally administered address 

+ ETHERNET: Source address : 00E034C0A060 
ETHERNET: Frame Length : 60 (0x003C) 
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol) 



200 I PART Ii Internet Layer Protocols 

ETHERNET: Ethernet Data: Number of data bytes remaining 46 (0x002E) 
IP: ID = 0x0: Proto = IGMP: Len: 28 

IP: Version = 4 (0x4) 
IP: Header Length = 20 (0x14) 
IP: Precedence = Internetwork Control 
IP: Type of Service = Normal Service 
IP: Total Length = 28 (0x1C) 
IP: Identification = 0 (0x0) 

+ IP: Flags Summary= 0 (0x0) 
IP: Fragment Offset = 0 (0x0) bytes 
IP: Time to Live = 1 (0xl) 
IP~ Protocol = IGMP - Internet Group Management 
IP: Checksum = 0xC71E 
IP: Source Address = 10.0.8.1 
IP: Destination Address = 224.0.0.1 
IP: Data: Number of data bytes remaining = 8 (0x0008) 

IGMP: IGMP Group Query, From 10.00.08.01 To 224.00.00.01 
IGMP: Version = 1 (0xl) 
IGMP: Type = IGMP Group Query 
IGMP: Unused = 100 (0x64) 
IGMP: Checksum = 0xEE9B 
IGMP: Group Address = 0.0.0.0 

Notice that for both traces, the IP header's TTL field is set to 1. 

IGMP Version 2 (IGMPv2) 
IGMPv2, described in RFC 2236, provides additional capabilities to help multicast rout
ers converge a multicast group to the set of hosts listening for traffic. IGMPv2 is back
ward compatible with IGMPvl. 

The additional capabilities of IGMPv2 are: 

• The Leave Group message 

• The Group-Specific Query message 

• The election of a multicast querier 

• The IGMPv2 Host Membership Report message 

More Info IGMPv2 is described in RFC 2236, which can be found in the \RFC 
folder on the companion CD-ROM. 

The Leave Group Message 

With IGMPvl, if a host leaves a specific multicast group and it's the last member of the 
multicast group for that subnet, the local router isn't explicitly informed. The router main-



Chapter 8 Internet Group Management Protocol (IGMP) I 201 

tains the entry in its multicast forwarding table and continues to forward multicast traffic 
to the host's subnet. Only after the router sends a Host Membership Query message and 
receives no response for the multicast group does the router recognize that there are no 
more hosts on that network segment for that group address. The router then updates its 
multicast forwarding table, discontinues forwarding IP multicast traffic to the network seg
ment, and informs neighboring routers of the new state. This can lead to long-leave la
tency times. During the leave latency time, multicast traffic is forwarded to network 
segments that don't contain group members. 

During the periodic polling process, when a host responds to a Membership Query, it 
assumes that it's potentially the last member in the group for that subnet because no other 
hosts responded before it. If that host leaves the group, it sends an IGMP Leave Group 
message to the all-routers IP multicast address. To ensure that the host leaving is truly the 
last host in the group for the subnet, the multicast router sends a series of group-specific 
Membership Queries. If the multicast router receives a response from another host for that 
group, the router maintains the group membership state for that group on that subnet. If 
the multicast router doesn't receive any responses, it can prevent the forwarding of traf
fic to that group to the subnet. If there are host members on downstream subnets avail
able across subnet routers, multicast traffic for the group is still forWarded to the subnet. 

The Group-Specific Query Message 

In the case of IGMPv2, two different types of Host Membership Query messages are 
defined: the General Query and the Group-Specific Query. The General Query is the same 
as the IGMPvl Host Membership Query. The Group-Specific Query is designed to check 
for host membership in a specific group. In the Group-Specific Query, the IP header's 
destination IP address and the IGMP header's group address are set to the group address 
being queried. 

The Multicast Querier 

IGMPv2 supports the election of a multicast querier, a single router per network segment 
that sends Host Membership Query messages. With IGMPvl, the designation of a single 
multicast router to perform queries is a function of the multicast routing protocol. Because 
all IGMP traffic is sent to multicast addresses, every multicast router on a network segment 
receives all IGMP messages. Therefore, only a single router is needed to send queries. 

The IGMPv2 multicast querier election is simple: a router assumes that it's the multicast 
querier until it receives a Host Membership Query (either General or Group-Specific) from 
another router with a numerically lower IP address. If it is the only router on a subnet and 
it doesn't receive a query from another router in an interval called the Other Querier Present 
Interval (by default set for 255 seconds), the router becomes the querier for that network. 

IGMPv2 Message Structure 

Figure 8-4 shows the structure of the IGMPv2 message. 



202 I PART II Internet Layer Protocols 

Type 

Maximum Response Time 

Checksum 

Group Address 

Figure 8-4. Tbe structure of the IGMPv2 message. 

The IGMPv2 header contains the following fields: 

• Type IGMPv2 combines the IGMPvl 4-bit Version field and IGMPvl 4-bit 
. Type field into a single 8-bit Type field. Table 8-3 lists the Type field values. 

Table 8-3. Values of the IGMPv2 Type Field 

Type 

17 (Oxll) 

18 (Ox12) 

22 (Ox16) 

Message 

Host Membership Query The previous Version Oxl and Type Oxl 
are combined to form Oxll, or 17. 

IGMPvl Host Membership Report The previous Version Oxl and 
Type Ox2 are combined to form Ox12, or 18. 

IGMPv2 Host Membership Report The IGMPv2 Host Membership 
Report has the same function as the IGMPvl Host Membership Report 
and is intended to be received by only IGMPv2-capable multicast routers. 

23 (Oxl 7) Leave Group Message 

• Maximum Response Time The IGMPvl Unused field is used in IGMPv2 
Membership Query messages (either General or Group-Specific) to store a 
maximum time in 1/lOth of a second within which a host must respond to the 
query. The maximum response time becomes the maximum value of the report 
delay timer for subnet host members. 

• Checksum A 2-byte field that stores a 16-bit checksum on the 8-byte IGMP 
header. 

• Group Address Set to 0.0.0.0 for the general Host Membership Query and 
set to the specific group address for all other IGMPv2 message types. 

Table 8-4 summarizes the addresses used in IGMPv2 Group-Specific Host Membership 
Query and Group Leave messages. 

Table 8-4. Addresses Used in IGMPv2 Messages 

Source IP Address (IP header) 

Destination IP Address (IP header) 

Group Address 

Group-Specific Query 

Router IP Address 

Group IP Address 

Group IP Address 

Group Leave 

Host IP Address 

224.0.0.2 

Group IP Address 



Chapter 8 Internet Group Management Protocol (IGMP) I 203 

Network Monitor Example 

The following Network Monitor trace (Capture 08-03 in the \Captures folder on the 
companion CD-ROM) shows an IGMPv2 Host Membership Report for a host registering 
the group address 239.255.255.252: 

+ Frame: Base frame properties 
ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol 

ETHERNET: Destination address : 01005E7FFFFC 
ETHERNET: ....... 1 = Group address 
ETHERNET: ...... 0. =Universally administered address 

+ ETHERNET: Source address : 0060083E4607 
ETHERNET: Frame Length : 46 (0x002E) 
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol) 
ETHERNET: Ethernet Data: Number of data bytes remaining = 32 (0x0020) 

IP: ID = 0xlA26; Proto = IGMP; Len: 32 
IP: Version = 4 (0x4) 
IP: Header Length = 24 (0xl8) 
IP: Precedence = Routine 
IP:· Type of Service = Normal Service 
IP: Total Length = 32 (0x20) 
IP: Identification = 6694 (0x1A26) 
IP: Flags Summary:= 0 (0x0) 

IP: ....... 0 = Last fragment in datagram 
IP: ...... 0. =May fragment datagram if necessary 

IP: Fragment Offset = 0 (0x0) bytes 
IP: Time to Live = 1 (0xl) 
IP: Protocol = IGMP - Internet Group Management 
IP: Checksum = 0x07ED 
IP: Source Address = 10.1.8.200 
IP: Destination Address = 239.255.255.252 
IP: Option Fields 

IP: Unrecognized Option 
IP: Option Type = 0x94 
IP: Option Length = 4 (0x4) 
IP: Option data: Number of data bytes remaining 2 (0x0002) 

IP: Data: Number of data bytes remaining = 8 (0x0008) 
IGMP: Version 2 Membership Report 

IGMP: Type = Version 2 Membership Report· 
IGMP: Unused = 0 (0x0) 
IGMP: Checksum = 0xFA02 
IGMP: Group Address = 239.255.255.252 

Notice the existence of the IP Router Alert option (Option Type Ox94) that is used to inform 
the router that further processing of the IP header is required. For more information on 
the IP Router Alert option, see Chapter 4, "Internet Protocol (IP) Basics." 



204 I PART ii Internet Layer Protocols 

Microsoft Windows 2000 and IGMP 
Windows 2000 supports IP multicast sending, receiving, and forwarding through the TCP I 
IP protocol and the Routing and Remote Access service. 

TCP /IP Protocol 
TCP/IP for Windows 2000 supports IP multicast traffic in the following ways: 

• To support host reception of IP multicast traffic, TCP/IP for Windows 2000 is 
an RFC 2236-compliant IGMPv2 host. 

• To support host transmission and reception of IP multicast traffic, TCP/IP for 
Windows 2000 supports the mapping of IP multicast addresses to MAC ad
dresses for Ethernet and FDDI network adapters as described in RFC 1112. For 
Token Ring network adapters, all IP multicast traffic is mapped to the Token 
Ring functional address of Ox-C0-00-00-04-00-00. 

• To support the forwarding of IP multicast traffic, TCP/IP for Windows 2000 
supports multicast forwarding based on the entries in the TCP/IP multicast for
warding table and the setting of the EnableMulticastForwarding registry setting. 
You can view the contents of the TCP/IP multicast forwarding table from the 
Routing and Remote Access administrative tool. 

EnableMulticastForwarding 

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data Type: REG_DWORD 
Valid Range: 0-1 
Default: 0 
Present by Default: No 

EnableMulticastForwarding enables ( =1) or disables ( =O) the forwarding of IP multicast 
traffic. The EnableMulticastForwarding registry setting is set to 1 (enabled) when the 
Routing and Remote Access service is enabled and configured. 

The Routing and Remote Access Service 
The Windows 2000 Server Routing and Remote Access service functions as a limited 
multicast router using IGMPvl or v2 to track local group membership. Because IGMP isn't 
a true multicast routing protocol, Windows 2000 routers can support only limited multicast 
configurations. For more information on recommended configurations, see Windows 2000 
Server Help or the Microsoft Windows 2000 Seroer Resource Kit Internetworking Guide. 

In the Routing and Remote Access service, IGMP is implemented as a routing protocol 
added and configured through the Routing and Remote Access administrative tool. Af
ter adding the IGMP routing protocol, add individual routing interfaces to the IGMP routing 
protocol and configure them for either IGMP router mode or IGMP proxy mode. 



Chapter 8 Internet Group Management Protocol (IGMP) I 205 

Interfaces in IGMP Router Mode 

An interface in IGMP router mode acts as an IGMP-capable IP multicast router and per
forms the following: 

• Places network adapter in multicast promiscuous mode If the network 
interface is a broadcast network type such as Ethernet or FDDI, the network 
adapter is placed in multicast promiscuous mode. If the network adapter doesn't 
support multicast promiscuous mode, an event is logged in the system event log. 

• Manages local subnet multicast group membership The routing interface 
uses IGMP to listen for IGMP Host Membership Report and Leave Group mes
sages, to elect an IGMP querier, and to send General and Group-Specific Host 
Membership Query messages. 

• Updates the TCP/IP multicast forwarding table Based on ongoing group 
membership for the interface, IGMP in conjunction with other components of 
the Routing and Remote Access service maintains the TCP /IP multicast for
warding table. 

Interfaces in IGMP Proxy Mode 

An interface in IGMP proxy mode acts as an IGMP-capable IP multicast proxy host for 
hosts on IGMP router mode interfaces and performs the following: 

• Forwards IGMP Host Membership Reports IGMP Host Membership Re
port messages received on IGMP Router mode interfaces are forwarded on the 
IGMP proxy mode interface. The forwarded Host Membership Report messages 
have a TTL of 1. The received Host Membership Reports aren't forwarded us
ing the entries in the TCP/IP multicast forwarding table. 

• Adds multicast MAC addresses to network adapter table For each group 
address registered by proxy, the corresponding multicast MAC address is added 
to the table of interesting MAC addresses on the network adapter (for LAN tech
nologies such as Ethernet and FDDI). The network adapter won't be placed in 
promiscuous mode unless the network card can't support listening to all required 
multicast MAC addresses. Non-local IP multicast traffic received on the IGMP 
proxy mode interface is passed to the TCP /IP protocol for multicast forwarding. 

• Updates the TCP/IP multicast forwarding table To facilitate the forward
ing of multicast traffic from a multicast source on an IGMP router mode inter
face to a group member downstream from the IGMP proxy mode interface, the 
IGMP routing protocol adds entries to the TCP/IP multicast forwarding table so 
that all non-local IP multicast traffic received on IGMP router mode interfaces 
is forwarded over the IGMP proxy mode interface. The IGMP proxy mode in
terface forwards all non-local multicast traffic received from IGMP router mode 
interfaces regardless of whether or not there are group members present 
downstream from the IGMP proxy mode interface. 



206 I PART ii Internet Layer Protocols 

IGMP proxy mode is designed to connect a Windows 2000 router to a fully capable IP 
multicast internetwork, as Figure 8-5 shows. A good example of this is the· connection 
of a single router intranet to the MBONE. IGMP proxy mode is enabled on a single in
terface connected to the multicast-enabled internetwork. 

The combination of IGMP router mode interfaces and the IGMP proxy mode interface. 
allows the sending and receiving of IP multicast traffic for hosts on a Windows 2000 router 

· network segment. 

IGMP proxy mode 
IGMP router mode interface 

interr\e I 
·~--+----,~ 

Windows 2000 
router 

D_ 
Sending or 

receiving host 

Neighboring 
IP multicast-enabled 

router 

Figure 8-5. Tbe use of IGMP router mode and proxy mode to connect a single router 
intranet to an IP multicast-enabled internetwork. 

Multicast Group Members on IGMP Router Mode Interfaces 
Host members on IGMP router mode interfaces receive host group traffic through the 
following process: 

1. A host sends an IGMP Host Membership Report message on the local subnet. 

2. The Windows 2000 router updates its multicast forwarding table with the ap
propriate entry. 

3. The IGMP. routing protocol uses the NDISRequestO function to add the 
multicast MAC address corresponding to the IP multicast address to the table of 
interesting MAC addresses on the network adapter on which IGMP proxy 
mode is enabled. 

4. The Windows 2000 router forwards the IGMP Host Membership Report on the 
IGMP proxy mode interface. , 

5. The neighboring IP multicast-enabled router receives the IGMP Host Member
ship Report, makes the appropriate changes to its multicast forwarding table, 
and informs downstream IP multicast-enab~ed routers using multicast routing 
protocols that a host member exists on the IGMP proxy mode interface net
work segment. 



Chapter 8 Internet Group Management Protocol (IGMP) I 207 

Routers of the IP multicast-enabled internetwork forward IP multicast traffic sent to the 
host group to the neighboring IP multicast-enabled router, which forwards the traffic on 
the IGMP proxy mode interface network segment. The IGMP proxy mode interface re
ceives the multicast traffic and submits it to the TCP /IP multicast forwarding process. Based 
on the entries in the multicast forwarding table, the IP multicast traffic is forwarded on 
the IGMP router mode interface to the network segment containing the host member. 

Multicast Sources on IGMP Router Mode Interfaces 
The multicast traffic of multicast sources on IGMP router mode interfaces are forwarded 
through the following process: 

1. A multicast source host sends non-.local IP multicast traffic to a specific group 
address. 

2. The IGMP router mode interface receives tl:ie multicast traffic. 

3. For the first multicast packet, the IGMP routing protocol adds an entry to the 
TCP /IP multicast forwarding table, indicating that there are host members 
present on the IGMP proxy mode interface. 

4. The multicast traffic is passed to the multicast forwarding process. Based on 
the entries in the multicast forwarding table, the multicast traffic is forwarded 
on the IGMP proxy mode interface. 

5. The neighboring IP multicast-enabled router receives the IP multicast traffic 
and passes it to the multicast forwarding process. Based on the entries in the 
multicast forwarding table of the IP multicast-enabled router, the multicast 
packet is either forwarded to host members (local or downstream) or silently 
discarded. 

Summary 
IGMP provides a mechanism for hosts to register their interest in receiving IP multicast 
traffic sent to a specific group address (the Host Membership Report message), for hosts 
to indicate that they are no longer interested in receiving IP multicast traffic sent to a 
specific group address (the Leave Group message), and for routers to query the mem
bership of all host groups (the general Host Membership Query) or a single host group 
(the group-specific Host Membership Query). TCP/IP for Windows 2000 supports IGMPv2 
and IP multicast forwarding. The Windows 2000 Server Routing and Remote Access ser
vice uses IGMP to maintain the IP multicast forwarding table and provide multicast routing 
in limited configurations. 





r 
Internet Protocol 
Version 6 (1Pv6) 

209 

Over the course of the evolution of the current IP version, version 4 (1Pv4), the· inevi
table exhaustion of the address space has become increasingly apparent. While mecha
nisms such as Classless Inter-Domain Routing (CIDR) and the use of proxies have served 
to increase the longevity of 1Pv4, development of a larger, more flexible version of IP, 
version 6 (1Pv6), is well underway. 

In its original inception, the Internet (then ARPANET) was designed primarily to facili
tate communication between research entities and military organizations. However, the 
extraordinary longevity and functionality of the TCP /IP protocol ·suite has allowed the 
Internet to become a communications mechanism of an enormity that couldn't have been 
foreseen in its early stages. 

Now there are even newer arenas that require the addressing and routing capabilities that 
IP provides. Cellular phones, pagers, and personal digital assistants (PDAs) have become 
ubiquitous accessories whose nature dictates that mechanisms be available for secure, 
portable communication. Entertainment media such as digital television and real-time 
audio require similar connectivity, with the imperative of guaranteed delivery rates. 
Additionally, the still largely untapped area of power and device management will de
mand the same capabilities. The once fantastic "home of the future," with electronically 
controlled temperature, lighting, and gadgetry is fast approaching reality. 

If these markets are to utilize IP rather than be forced into developing proprietary solu
tions, mechanisms will be required that aren't easily provided in 1Pv4. Rather than inves
tigate methods to extend an already strapped address space with limited future potential, 
research has been heavily dedicated to devising a new version of IP-1Pv6. To success
fully meet current and future needs, the following are several key capabilities that must 
be addressed by this new IP version: 

• First and foremost, any new IP version must be capable of coexistence and 
interoperability with current IP specifications. Att~mpts to make a sweeping 
conversion from one version to the next would be both unrealistic and chaotic. 
Therefore, 1Pv6 must have inherent mechanisms for communicating with both 
1Pv4 and 1Pv6 hosts. 

• 1Pv6 must support an exponentially larger address space than 1Pv4. 



210 I PA.Rf II Internet Layer Protocols 

• 1Pv6 packets must be as lightweight as possible to facilitate transmission of 
1Pv6 over diverse media. 

• Quality of Service (QoS), or the ability to prioritize traffic and allocate bandwidth, 
must be built into 1Pv6 to accommodate functionality required by low-latency ap
plications. 

• 1Pv6 routing capabilities must be designed so that intermediate nodes on a path 
can be specified in the packets themselves, similar to 1Pv4's Record Route and 
Loose Source routing options. 

• Mechanisms for secure transmission of data must be inherent in 1Pv6's structure. 

With both an eye turned toward future needs and an awareness of past and current issues, 
the IETF 1Pv6 working group continues to work to develop a solution. 

Chapter Contents 
This chapter looks at the current specifications for 1Pv6. Related RFCs are included on the 
companion CD-ROM. 



Chapter 9 Internet Protocol Version 6 (1Pv6) I 211 

This chapter contains the following sections: 

• Introduction to IPv6 A description of IPv6 and its intended function, as well as 
an introduction to terminology in IPv6 

• IPv6 Addressing An overview of addressing in IPv6 

• IPv6 Header Format A look at header formats in IPv6 

• Transition Mechanisms A brief description of the intended methodology for 
integration of IPv6 with current formats 

This chapter doesn't cover every detail of IPv6, nor does it attempt to fully describe its 
integration with Windows 2000 services. 

Introduction to 1Pv6 
As RFC 2460 describes, IPv6 is the intended replacement for IPv4. It increases the size 
of IP addresses from 32 to 128 bits, allowing for 296 (2128

-32) times the number of addresses 
in IPv4. This gives a total of 340,282,366,920,938,463,463,374,6o7,431,768,211,456 ad
dresses, a seemingly endless supply. This increase in the address space not only provides 
for more hosts, but also for an expanded addressing hierarchy. 

More Info 1Pv6 specifications are defined in RFC 2460, which can be found in 
the \RFC folder on the companion CD-ROM. 

Packet headers have been improved by dropping some IPv4 header fields, making oth
ers optional, and utilizing extension headers. Extension headers are separate headers that, 
with one exception, aren't examined by any hosts on a path between the source and 
destination, helping to improve routing efficiency. Additionally, they allow for more flex
ibility in options encoding and expansion capabilities for future options. 

Flow labeling is introduced in IPv6, which allows packets to be designated as belonging 
to a specific "flow" of traffic, thus allowing for QoS handling and bandwidth management 
without having to parse TCP and UDP headers. Extensions also have been introduced 
that allow for authentication, data integrity assurance, and optional packet encryption. 

Before looking at IPv6 in detail, it's important to understand some of the basic terminol-
ogy used in the protocol specifications. . 

Nodes, Routers, Hosts, and Interfaces 
A node is any device that implements IPv6. It can be a router, which is a device that forwards 
packets that aren't directed specifically to it, or a host, which is a node that doesn't forward 
packets. An interface is the connection to a transmission medium through which IPv6 pack
ets are sent. While a distinction is made between routers and hosts, it's possible, albeit un
likely, for a single node to have multiple interfaces, and potentially be forwarding packets 
addressed to other nodes on only a subset of its interfaces. Thus, this device would be act-



212 I PA~r rn Internet Layer Protocols 

ing both as a host (on its non-foryvarding interfaces) and as a router (on its forwarding inter
faces). 

Links, Neighbors, Link MTUs, and Link Layer Addresses 
A link is the medim over.which IPv6 is carried. Neighbors are nodes that are connected to 
the same link. A link maximum transmission unit (MTU) is the maximum packet size that can 
be carried over a given link medium, and is expressed in octets. A Link Layer address is the 
"physical" address of an interface, such as m~dia access control (MAC) addresses for Ethernet 
links. 

Unicast, Multicast, and Anycast Addresses 
In IPv6, all addressing is directed to interfaces rather than to nodes. A unicast address speci
fies that a packet be sent to a particular interface. A multicast address is sent to a set of 
interfaces, typically encompassing multiple nodes. An anycast address, while identifying 
multiple interfaces (and typically multiple nodes), is sent only to the interface that's deter
mined to be "nearest" to the sender. Each of these types of addressing will be discussed in 
more detail later in this chapter. 

Note Unless otherwise specified, terms used iri this chapter refer to 1Pv6. 

Addressing 

Text Representation of 1Pv6 Addresses 
Perhaps the most obvious difference between IPv4 and IPv6 is the increase in the num
ber of bits used for addressing. Instead of using 32-bit dotted-decimal notation, IPv6 uses 
128-bit addressing expressed in hexadecimal format. Text depiction of these addresses 
might vary, with the following three acceptable representations: 

• In the preferred text representation, addresses are listed as eight 16-bit hexa
decimal sections, separated by colons. For example, an IPv6 address for an in
terface would look like: 

ABCD:EF12:3456:7890:ABCD:EF12:3456:7890 

Any field containing leading zeros doesn't need to display the leading zeros, 
although no field can be left blank. For example: 

1234:0:0:0:ABCD:123:45:6 

• Because of the mechanisms for address allocation in IPv6, long strings of zero 
bits will be common. Consequently, an alternate form of address representa
tion allows "::" to be used to represent a portion of the address containing zero 
bits. The "::" placeholder can be used to represent more than one section of 
zero bits, but may not be used more than once in an address. 



For example: 

1234:0:0:0:ABCD:0:0:123 

could be represented as: 

1234: :ABCD:0:0:123 

or 

1234:0:0:0:ABCD: :123 

but not 

1234: :ABCD: :123 

Chapter 9 Internet Protocol Version 6 (1Pv6) I 213 

• The third method of textually displaying addresses is used in environments with a 
mixture of IPv4 and IPv6 nodes. In this notation, the six high-order (leftmost) 16-
bit sections are displayed in hexadecimal, but the remaining bits are displayed in 
the familiar dotted-decimal notation. 

For example, an address might appear in any of these formats: 

0:0:0:0:0:0:131.107.6.100 or 

: : 131.107. 6 .100 (compressed format) 

0:0:0:0:0:FFFF:l31.107.4.99 or 

: : FFFF: 131.107. 4. 99 (compressed format) 

ABCD:EF:l2:34:0:0:131.107.2.98 or 

ABCD: EF: 12: 34:: 131.107. 2. 98 (compressed format) 

More Info 1Pv6 addressing architecture is described in detail in RFC 2373, which 
can be found in the \RFC folder on the companion CD-ROM. 

Unicast Addresses 
A variable-length field of leading bits, referred to as the Format Prefix (FP), identifies the 
type of address in IPv6. An FP value of 11111111 (FF) identifies an address as a multicast 
address. Any other value in the high-order bits identifies the address as a unicast address. 
Anycast addresses are taken from the unicast space, and will be discussed in the "Anycast 
Addresses" section of this chapter. Unicast addresses refer to a single node on the link; 
however, a single unicast address can be assigned to multiple interfaces on that node, 
provided that the interfaces are presented to upper layer protocols as a single entity. 
Unicast addresses can be of several types, including Aggregatable Global unicast ad
dresses, link local unicast addresses, site local unicast addresses, and IPv6 Addresses with 
Embedded IPv4 Addresses. 

Reserved Unicast Addresses 

Currently, RFC 2373 defines two specialized reserved unicast addresses. The first is called 
the unspecified address. The unspecified address, 0:0:0:0:0:0:0:0, or :: in compressed 
format, can't be assigned to any node, nor can it be used as the source address inIPv6 



214 I PART II Internet Layer Protocols 

packets or routing headers. Typically, it's used while nodes are initializing IPv6, and indicates 
that they haven't yet "learned" their own addresses. The second reserved unicast address, 
0:0:0:0:0:0:0:1, or ::1 in compressed format, is the loopback address, which is used by a node 
to send a packet to itself-much like the loopback address of 127.0.0.1 in IPv4. 

Aggregatable Global Unicast Addresses 

In IPv4, under Classless Inter-Domain Routing (CIDR), ISPs (Internet Service Providers) al
locate addresses in "pools." Aggregatable Global unicast addresses in IPv6 function in a similar 
manner, and will be used for global communication on the IPv6-enabled portion of the 
Internet. The format of an Aggregatable Global unicast address is shown in Figure 9-1. 

More Info The format of an Aggregatable Global unicast address is defined in 
RFC 2374, which can be found in the RFC folder on the companion CD-ROM. 

FP TLA ID RES NLA ID SLA ID Interface ID 

~01 13 bits 8 bits 24 bits 16 bits 64 bits 

< ) 
Public Topology Site Interface identifier 

Topology 

Figure 9-1. An Aggregatable Global unicast address format. 

Before looking at the internal structure of an Aggregatable Global unicast address, it's 
important to understand the overall structure of these addresses. Aggregatable addresses 
will be organized into a three-tiered hierarchical structure. The top level of this hierar
chy will be the Public Topology, or the portion of the address space that will be man
aged by entities that provide public Internet services. The Public Topology will provide 
a mechanism for what are referred to as long-haul transit providers and public exchanges 
to provide aggregates, or collections, of addresses. These providers will be responsible 

· for providing routing that occurs outside an organization's internal corporate structure. 

Because organizations maintain internal routing topologies, a portion of an aggregatable 
address is devoted to allowing for internal routing. This is the Site Topology portion of 
the address, and represents the bits that will identify internal routing paths. One of the 
chief advantages to this three-tiered approach to address allocation is that if a company 
changes long-haul transit providers, or uses multiple providers, that company won't need 
to obtain reassigned Site Topology addresses. 

The interface identifier of an aggregatable address is the portion that identifies individual 
interfaces on the organization's physical links. Similar to how IPv4 addresses use network 
IDs and host IDs, IPv6 ·addresses will use Site and Interface identifiers. Table 9-1 sum
marizes the structure of an Aggregatable Global unicast address. 



Chapter 9 Internet Protocol Version 6 (1Pv6) I 215 

. Table 9-1. Aggregatable Global Unicast Address Fields 

Abbreviation Field 

FP Format 
Prefix 

TLA ID Top-Level 
Aggregation 
Identifier 

RES Reserved 

NLAID Next-Level 
Aggregation 
Identifier 

SLA ID Site-Level 
Aggregation 
Identifier 

Interface ID Interface 
Identifier 

Local-Use Unicast Addresses 

Length 

3 bits 

13 bits 

8 bits 

24 bits 

16 bits 

64 bits 

Description 

"001" indicates that this is an Aggregatable Global 
unicast address. 

TLAs will be responsible for maintaining the upper 
levels of the public routing hierarchy. The use of 13 
bits for these IDs allows for 8192 TLAs. 

Reserving these bits allows for the expansion of 
TLA and NLA fields, should future needs dictate. 

NLAs will be used by organizations that are assigned 
a TLA to create an internal addressing hierarchy, and 
to allow transit providers to identify sites that they 
service. The use of 24 bits for this identifier will allow 
each TLA to service approximately 16 rnillion sites if 
used in a flat fashion, or roughly the equivalent of 
the entire IPv4 address space if used hierarchically. 

SLAs allow organizations to create an internal rout
ing structure independent of the external public rout
ing topologies. Approximately 65,536 internal sub
nets will be supported by the use of 16 bits for SLAs. 

Interface IDs must be unique to the link, might often 
match the Link Layer address, and actually might be 
assigned to multiple interfaces on a single node, thus 
allowing for load balancing over multiple interfaces. 

Link-local unicast addresses, shown in Figure 9-2, are used for communication within a 
single link. They are used on links where no routers are present, or for purposes such 
as address autoconfiguration (the process by which nodes obtain an IPv6 address) and 
neighbor discovery (a method used for finding other nodes on a link). 

10 bits 54 bits 64 bits 

1111111010 0 Interface ID 

Figure 9-2. Link-local unicast address format. 

Site-local unicast addresses, shown in Figure 9-3, are the equivalent of IPv4 private ad
dresses and are used for addressing and communication within a single private organi
zation. Routers must not forward these packets outside the site where they're used. 

10 bits 38 bits 16 bits 64 bits 

1111111011 0 Subnet ID Interface ID 

Figure 9-3. Site-local unicast address format. 



216 I PART H Internet Layer Protocols· 

1Pv6 Addresses with Embedded 1Pv4 Addresses 

To successfully facilitate the transition from 1Pv4 to 1Pv6, mechanisms have been developed 
for tunneling 1Pv6 packets over 1Pv4 infrastructures. One mechanism for encoding packets 
allows nodes to carry an 1Pv4 address in the low-order bits of the 1Pv6 packet, which uses 
a specialized unicast address. This type of packet is referred to as an 1Pv4-compatible 1Pv6 
address, as seen in Figure 9-4, and zeros out all fields in the interface identifier except for 
the 32 low-order 1Pv4 bits. A second type of transition packet exists to allow nodes to specify 
addresses for nodes that don't use 1Pv6 in any form, and precedes the 32 bits of the 1Pv4 
address with "FFFF" to indicate that this is what is termed an "1Pv4-mapped 1Pv6 address." 

80 bits 16 bits 32 bits 

0000 ........................... 0000 0000 or FFFF 1Pv4 address 

Figure 9-4. 1Pv6 with embedded 1Pv4 address format. 

Anycast Addresses 
Anycast addresses are structurally identical to other unicast addresses, and are pulled from 
the pool of available unicast addresses in a given organization. However, rather than being 
assigned to a single node, as with unicast addresses, the anycast address is assigned to 
a group of nodes, typically routers on the site. Each of the routers is assigned the same 
address, and configured to use it as an anycast address. 

When a source node wishes to send a packet to this address, it uses a discovery mecha
nism to find the nearest node that owns the address. Thus, the source node doesn't need 
to have knowledge that the address is an anycast address, as subsequent communication 
occurs only between the source node and the nearest router configured to use the anycast 
address. 

As RFCs 2373 and 2526 state, anycast addresses are currently subject to certain limitations 
as research progresses. At this time, anycast addresses can't be used as the source address 
in any 1Pv6 packet, and can be used only by routers, not by hosts. Additionally, routers 
are required to support the anycast addresses for each subnet to which they are connected, 
to ensure that a local' router will receive the packet sent to an anycast address on that subnet. 

Multicast Addresses 
As defined in RFCs 2373 and 2375, multicast addresses are used for 1Pv6 multicast traffic and 
replace broadcast addresses in 1Pv6. A multicast address is assigned to a group of nodes, but 
unlike an anycast address, all nodes configured with the multicast address will receive packets 
sent to that address. A node can belong to more than one multicast group; however, no node 
can use a multicast address as a source address in any packet; nor can a multicast address 
be used in routing headers. Figure 9-5 shows the format of an 1Pv6 multicast address. 



Chapter 9 Internet Protocol Version 6 (1Pv6) I 217 

More Info Read about multicast addresses and 1Pv6 traffic in RFCs 2373 and 
2375, which can be found in the \RFC folder on the companion CD-ROM. 

8 bits 4 bits 4 bits 112 bits 

11111111 figs scop Group ID 

Figure 9-5. 1Pv6 multicast address format. 

Table 9-2 describes each of the fields in a multicast address. 

Table 9-2. Multicast Address Fields 

Abbreviation Field Length 

pp Format 8 bits 
Prefix 

Fl gs Flags 4 bits 

Sc op Scope 4 bits 

Group ID Group 112 bits 
Identifier 

Description 

"11111111" indicates that this is a multicast address. 

The first 3 bits of the Flags field are reserved, and must 
be zeroed out. If the fourth flag is "O,'' this indicates a 
permanently assigned multicast address; if it's "l," the 
multicast address is "transient," or not assigned by the 
Internet Assigned Numbers Authority (IANA). 

Scope values limit the scope of the multicast group. 
Values of "O" or "F" are reserved; "l" indicates a 
node-local scope; "2" indicates a link-local scope; "5" 
indicates a site-local scope; "8" indicates an 
organization~local scope; "E" indicates a global scope; 
and all other values are currently unassigned. 

This is a unique identifier for the multicast group 
that will accept packets sent to this address. 

For example, the following multicast addresses are used to address packets to groups of 
routers: 

FF01:0:0:0:0:0:0:2 Node-local; all routers. 

This address identifies all routing interfaces on a single node. 

FF02:0:0:0:0:0:0:2 Link-local; all routers. 

This address identifies all routers on a link. 

FF05:0:0:0:0:0:0:2 Site-local; all routers. 

This address identifies all routers in a site. 

Neighbor Discovery 
"Discovery" can be a misleading term, as nodes use discovery mechanisms to both adver
tise their presence to other nodes on the network and to determine parameters such as node 
location, router availability, link MTU, and address configuration. Some discovery methods are 



218 I PART ~l Internet Layer Protocols 

specific to the physical link type, although RFC 2461 defines general discovery ~echanisms. 
Discovery mechanisms are often implemented as multicasts, and replace IPv4 functionality 
such as ARP, ICMP router discovery, Internet Group Management Protocol (IGMP), and ICMP 
redirect. 

Router Discovery Mechanisms 

Routers use discovery for a multitude of purposes. Both at regular intervals and in response 
to router solicitation requests, routers issue router advertisements. These advertisements 
can include information that informs nodes of Link Layer router addresses, link prefixes 
(the approximate equivalent to the IPv4 netmask), suggested hop limits, and link MTU. 

By advertising its own physical address, each router enables other nodes on the network 
to ascertain the router's existence. Router advertising of link prefixes allows nodes to 
determine to which subnet they're attached, and thus to build their internal routing tables. 
In IPv6, packets are now decremented by hop, rather than by Time-to-Live (TTL) values. 
By sending suggested hop limits, a router aids nodes in determining whether a destina
tion is reachable by a given path. Additionally, for multicasting to function correctly on 
a link, all nodes must use the same MTU..Router advertisements enable nodes to config
ure their packets correctly for the link MTU. 

Using Router Advertisement, routers also can be configured for inbound load balancing. 
A router can have multiple interfaces to a given link. However, these interfaces can be 
presented as a single interface with multiple bound addresses, and the router can omit 
the source address in its router advertisement packets. Consequently, hosts wanting to 
send packets to the router would use a neighbor solicitation request to obtain a router 
interface's address. The router can then provide different addresses in response to requests 
from different hosts. All hosts will believe that they're sending packets to a single inter
face with multiple addresses when, in reality, the router might divide incoming traffic over 
all connected interfaces. 

Host Discovery 

Hosts use discovery mechanisms primarily as an investigative tool, although they'll also 
respond to requests for information regarding their own configuration. Upoh initializing, 
a host might use discovery to query a router as to whether it should configure its address 
via "stateless" or "stateful" configuration. Stateful autoconfiguration is used to issue host 
address parameters via Dynamic Host Configuration Protocol (DHCP). As defined in RFC 
2462, stateless autoconfiguration enables the host to assign itself an address, issue a dis
covery packet to determine if the address is being used by any other node on the link, 
and configure remaining link and site parameters based on the information the host 
received in the router advertisement packet. 

More Info Stateless autoconfiguration is defined in RFC 2462, which can be 
found in the \RFC folder on the companion CD-ROM. 



Chapter 9 Internet Protocol Version 6 (1Pv6) I 219 

When a node wants to communicate with another node, it issues a neighbor solicitation to the 
solicited node multicast address of the target node requesting its Link Layer address. The source 
node includes its own Link Layer address in the solicitation packet so that the target node can 
cache the results and thus doesn't need to issue its own solicitation. In response, the target node· 
issues a neighbor advertisement listing its own Link Layer address., 

When communication between two nodes is actively occurring, each node relies on upper 
layer protocols·to provide confirmation that packets are successfully being sent and re
ceived. If this confirmation isn't forthcoming, a node uses neighbor unreachability de
tection to determine if the other node is still functional by sending a unicast neighbor 
solicitation directly to its partner. If two-way connectivity isn't confirmed, the node will 
stop sending packets to the target. 

More Info RFC 2463 discusses how ICMP addresses error handling in 1Pv6. This 
RFC can be found in the \RFC folder on the companion CD-ROM. 

Should a node's Link Layer address change, it will issue an unsolicited multicast neigh
bor advertisement to announce the change to other nodes on the network. By issuing 
the announcement immediately, other nodes can purge cached Link Layer addresses for 
that node, and thus deer.ease the likelihood that they will attempt communication with 
an unreachable node. · 

1Pv6 Header Format and Routing Mechanisms 
Address information in 1Pv6 comprises only a portion of each packet header. The remain
der of an 1Pv6 header contains information necessary for nodes to effectively evaluate 
and process each packet. Figure 9-6 shows the general format of an 1Pv6 header. 

Version 

Traffic Class 

Flow Label 

Destination Address 

Fig 9-6. General format of an 1Pv6 header. 



220 I PART II Internet Layer Protocols 

Table 9-3 discusses the fields in an 1Pv6 header. 

Table 9-3. 1Pv6 Header Fields 

Field 

Version 

Traffic Class 

Flow Label 

Payload Length 

Next Header 

Hop Limit 

Source Address 

Destination Address 

Length 

4 bits 

8 bits 

20 bits 

16 bits 

8 bits 

8 bits 

128 bits 

128 bits 

Description 

"0110" indicates version 6. 

Used to identify traffic "class," or priority, so that pack
ets can be forwarded at different priorities to ensure 
QoS. 

Packets that belong to a specific traffic class stream are 
labeled to identify to which "flow" they belong. 

Length, in octets, of the remainder of the packet, includ
ing extension headers. 

Identifies the type of header immediately following the 
IPv6 header, and uses the same values as the IPv4 proto
col field (RFC 1700). 

Number of links on which the packet can travel before 
being discarded. Each forwarder decrements this field by 1. 

Sending node's address. 

Target node's address, which can be the final destination, 
or an intermediate node. 

Following the 1Pv6 header there can be one or more extension headers, which are used 
to provide additional information about the packet, such as routing information, whether 
the packet has been fragmented, and the next hop on the path specified by the sender. 
With the exception of a header called the Hop-by-Hop Options header, no node along 
the routing path processes these headers. Only the destination node specified in the packet 
(whether this is the final destination or an intermediate destination node) must evaluate 
and process all extension headers. Each extension header is a multiple of 8 octets long 
to preserve packet alignment and to allow nodes that don't need to process the exten
sion headers to pass over them. Figure 9-7 shows the structure of an 1Pv6 packet con
taining extension headers. 

1Pv6 Hop-by-Hop Desti- Routing Fragment Authenti- En cap- Des ti- TCP 
header Options nation header header cation sulating nation header 

Next header . Options Next Next header Security Options and 
header: Next header header: header: Next Payload header(2) data 
Hop-by- header: Next Fragment Authenti- header: header Next 

Hop Desti- header: cation Encap- Next header: 
Options nation Routing sulating header: TCP 

Options Security Destination 
Payload Options 

Figure 9-7. 1Pv6 extension headers. 

Packets can include all, some, or none of the extension headers in 1Pv6, but should al
ways implement them in the order shown in Figure 9-7. Each extension header shouldn't 



Chapter 9 Internet Protocol Version 6 (1Pv6) I 221 

occur more than once in a packet, with the exception of the Destination Options header, which 
can be used once to specify IP options, and used a second time to specify upper layer options. 
Extension headers of all types use a next-header field, which is 8 bits in length and specifies 
the type of header following this header. If this field contains the value "59," this indicates 
that there are no subsequent headers. 

Hop-by-Hop Options Header 
Each node along the delivery path must examine the Hop-by-Hop Options header, shown 
in Figure 9-8. Multiple options can be encoded in the header, must be processed in or
der, and define actions that occur at intermediate hops along the routing path. The 8-bit 
next-header field identifies the header that follows this one, as mentioned above. The 
header extension length field specifies the length of this extension header in octets. The 
option type 8-bit identifier specifies what action a node takes if the options in the packet 
aren't recognized by that node. As instructed by this identifier, the node can discard the 
packet, skip the option, and continue through the rest of the header, or send an ICMP 
Unrecognized Option Type message to the source address. 

Next Header 

Header Extension Length 

Option Type 

Option Data Length 

Option Data (variable) ...... 

Figure 9-8. Hop-by-Hop Options header. 

Destination Options Header 
The Destination Options header is nearly identical to the Hop-by-Hop Options header, except 
that it's examined only by the packet's destination node and not by intermediate nodes on 
the path. A next-header value of 60 in the preceding header indicates the presence of the 
Destination Options header. Hop-by-Hop and Destination Options are identical. 

Next Header 

Header Extension Length 

Option Type 

Option Data Length 

Option Data (variable) ...... 

Figure 9-9. Destination Options header. 



222 I PART ii Internet Layer Protocols 

Routing Header 
In IPv6, a source node can list one or more stops along the packet's path. The Routing header, 
shown in Figure 9-10, isn't examined until the packet reaches the destination listed in the IPv6 
header. This destination then examines the Routing header, processes it according to the 
algorithm specified in the Routing Type field, and uses the results to send the packet to the 
next destination address specified in the packet. The 8-bit Segments Left field specifies the 
number of addresses remaining to be visited, and the 32-bit Reserved field is zeroed and 
ignored on transmission. As the packet is sent to each node specified in the Routing header, 
the visited addresses are stripped from the packet and the hop count is decremented, even
tually resulting in the packet reaching its final destination. 

Next Header 

Header Extension Length 

Routing Type 

Segments Left 

Reserved 

Address 1 

Address 2 

(Type 0) 

i..u..u..u..+-~-~----, 

Additional Addresses ...................... .. 

Figure 9-10. Routing header. 

Fragment Header 
Figure 9-11 shows the structure of an IPv6 Fragment header. IPv6 requires a minimum 
link MTU of 1280 octets; any links that don't support this specification must provide link
specific mechanisms for fragmentation and reassembly below the IPv6 layer. If the link 
MTU is at least 1280 octets, but the packet being sent is too large for this MTU, IPv6 
provides its own fragmentation mechanisms. In IPv6, the source node performs the frag
mentation rather than the routers. The presence of a Routing header, however, can re
quire intermediate nodes to fragment the packet as a result of different MTUs along the 
path. Because each of these hops becomes the source node as it sends the packet to the 
next address, the node need be only concerned with the MTU of the link between itself 
and the destination, rather than know the MTU of all the network links. The Fragment 
Offset field determines packet reassembly order at the target node, and each fragmented 
packet is assigned a unique value in the Identification field to facilitate retransmission 



Chapter 9 Internet Protocol Version 6 (1Pv6) I 223 

of lost packets. An M flag value of "O" indicates that this is the last of the fragments, and a 
value of "1" indicates that more fragments are to follow. 

Next Header 

Reserved 

Fragment Offset 

Reserved 

M Flag 

Identification 

Figure 9-11. Fragment header. 

Authentication Header 
Authentication headers can be used alone or in conjunction with Encapsulating Security 
Payload (ESP) headers, and provide verification of data source and integrity. However, 
Authentication headers don't provide data encryption; in IPv6, this is ESP's responsibil
ity. Authentication and ESP header formats are outlined in RFCs 2402 and 2406, and IP 
security is discussed in Chapter 20, "Securing IP Communications with IP Security (IPSec)." 
The 8-bit Payload Length field in an Authentication header specifies the length of that 
header in 32-bit words. The 16-bit Reserved field isn't currently used, and must be set to 
"O." The Security Paremeters Index (SPI) field is an arbitrary 32-bit value. In conjunction 
with the destination node address and security protocol negotiated between two nodes, 
this value uniquely identifies the packet's security association. The 32-bit Sequence 
Number field is incremented by 1 for each packet, and this counter isn't allowed to "roll 
over" without the sending and receiving nodes first establishing a new security associa
tion. The authentication data length can vary, but it must be a multiple of 32 bits and is 
padded when necessary to meet this requirement. 

Next Header 

Payload Length 

Reserved 

Security Parameters Index 

Sequence Number Field 

Authentication Data 
(variable) 

Figure 9-12. Authentication header. 



224 I PART Ii Internet Layer Protocols 

Transition Mechanisms 
Mechanisms for transitioning from IPv4 to IPv6 are defined in RFC 1933, and are continuing 
to be developed at this time. The primary goal in the transition process is a successful co
existence of the two protocol versions until such time as IPv4 can be retired if, indeed, it's 
ever completely decommissioned. Transition plans fall into two primary categories: dual-stack 
implementation, and IPv6 over IPv4 tunneling. 

More Info Mechanisms for transitioning from 1Pv4 to 1Pv6 are defined in RFC 
1933, which can be found in the \RFC folder on the companion CD-ROM. 

Dual-Stack Implementation 
The simplest method for providing IPv6 functionality allows the two IP versions to be 
implemented as a dual stack on each node. Nodes using the dual stack can communi
cate via either stack. While dual-stack nodes can use IPv6 and IPv4 addresses that are 
related to each other, this isn't a requirement of the implementation, so the two addresses 
can be totally disparate. These nodes also can perform tunneling of IPv6 over IPv4. 
Because each stack is fully functional, the nodes can configure their IPv6 addresses via 
stateless autoconfiguration or DHCP for IPv6, while configuring their IPv4 addresses via 
any of the current configuration methods. 

1Pv6 Over 1Pv4 Tunneling 
The second method for implementing IPv6 in an IPv4 environment is by tunneling IPv6 
packets within IPv4 packets. These nodes can map an IPv4 address into an IPv4-com
patible IPv6 address, preceding the IPv4 address with a 96-bit "0:0:0:0:0:0" prefix. Rout
ers on a network don't need to immediately be IPv6-enabled if this approach is used, 
but Domain Name System (DNS) servers on a mixed-version network must be capable 
of supporting both versions of the protocol. To help achieve this goal, a new record type, 
"AAA.A-," has been defined for IPv6 addresses. Because Windows 2000 DNS servers imple
ment this record type as well as the IPv4 "A" record, IPv6 can be easily implemented in 
a Windows 2000 environment. For more information on DNS in Windows 2000, see 
Chapter 16, "Domain Name Service (DNS)." · 

Summary 
While IPv4 will undoubtedly continue to be implemented for years to come, IPv6 pro
vides extensibility and configuration capabilities that will provide IP functionality far 
beyond what is currently possible. IPv6 development continues as of this writing, but the 
protocol is fast approaching a completed state. When it is finally deployed on a wide scale, 
IPv6 will give an estimated 1500-plus unique addresses for every square meter on the 
planet, and may well serve to provide networking options that have previously been 
considered science fiction. 



Ill 
Trans~rt 
Layer Protocols 





227 

User Datagram Protocol (UDP) 

At the Transport Layer there are two protocols that Application Layer protocols typically use 
for transporting data: Transmission Control Protocol (TCP) and UDP. UDP is the Transport 
Layer protocol that offers a minimum of services, but also has the minimum overhead for 
Application Layer protocols that do not require an end-to-end reliable delivery service. 

Introduction to User Datagram Protocol 
UDP is a minimal Transport Layer protocol that is a direct reflection of IP's datagram 
services, except that UDP provides a method to pass the message portion of the UDP 
message to the Application Layer protocol. UDP has the following characteristics: 

• Connectionless UDP messages are sent without a UDP-based connection 
establishment negotiation. 

• Unreliable UDP messages are sent as datagrams without sequencing or 
acknowledgment. The Application Layer protocol must recover lost messages. 
Typical UDP-based Application Layer protocols provide either their own reliable 
service, or retransmit UDP messages periodically or after a defined time-out value. 

• Provides identification of Application Layer protocols UDP provides a 
mechanism to send messages to a specific Application Layer protocol or pro
cess on an internetwork host. The UDP header provides both source and desti
nation process identification. 

• Provides checksum of UDP message The UDP header provides a 16-bit 
checksum on the entire UDP message. 

UDP does not provide the following services for end-to-end delivery: 

• Buffering UDP doesn't provide any buffering of incoming or outgoing data. 
The Application Layer protocol must provide all buffering. 

• Segmentation UDP doesn't provide any segmentation of large blocks of 
data. Therefore, the application must send data in small enough blocks so that 
the IP datagrams for the UDP messages are no larger than. the MTU of the Net
work Interface Layer technology on which they are sent. 

• Flow control UDP doesn't provide any sender-side or receiver-side flow con
trol. UDP message senders can react to the receipt of an ICMP Source Quench 
message, but it isn't required. 



228 I PART m Transport Layer Protocols 

Uses for UDP 
Because UDP doesn't provide any services beyond Application Layer protocol identifi
cation and a checksum, it's hard to imagine why UDP is needed at all. However, the 
following are specific uses for sending data using UDP: 

• Lightweight protocol To conserve memory and processor resources, some 
Application Layer protocols require the use of a lightweight protocol that per
forms a specific function using a simple exchange of messages. A good ex
ample of a lightweight protocol is Domain Name System (DNS) name queries. 
Typically, a DNS client sends a DNS Name Query message to a DNS server. 
The DNS server responds with a DNS Name Response message. If the DNS 
server doesn't respond, the DNS client retransmits the DNS Name Query. 

Imagine the resources required at the DNS server if all the DNS clients used 
TCP rather than UDP. All DNS interactions would be sent reliably, but the DNS 
server would have to support hundreds or, on the Internet, thousands of TCP 
connections. The low overhead solution of using UDP is the best choice for 
simple request-reply-based Application Layer protocols. 

• Reliability provided by the Application Layer protocol If the Application 
Layer protocol provides its own reliable data transfer service, there's no need for 
the reliable services of TCP. Examples of reliable Application Layer protocols are 
Trivial File Transfer Protocol (TFTP) and Network File System (NFS). 

• Reliability not required due to periodic advertisement process If the 
Application Layer protocol periodically advertises information, reliable delivery 
is not required. If an advertisement is lost, it is announced again at the period 
interval. An example of an Application Layer protocol that uses periodic adver
tisements is the Routing Information Protocol (RIP). 

• One-to-many delivery UDP is used as the Transport Layer protocol when
ever Application Layer data must be sent to multiple destinations using an IP 
multicast or broadcast address. TCP can be used only for one-to-one delivery. 
For example, Microsoft NetShow sends multicast traffic using UDP. 

The UDP Message 
UDP messages are sent as IP datagrams. A UDP message consisting of a UDP header and 
a message is encapsulated with an IP header using IP Protocol number 17 (Oxll). The 
message can be a maximum size of 65,507 bytes: 65,535 less the minimum-size IP header 
(20 bytes) and the UDP header (8 bytes). The resulting IP datagram is then encapsulated 
with the appropriate Network Interface Layer header and trailer. Figure 10-1 shows the 
resulting frame. UDP is described in RFC 768. 



Chapter :10 User Datagram Protocol (UDP) I 229 

Network 
Interface IP header 
header 

UDP 
Message 

Network 
Interface 

trailer 

j UDP message - -~I --. 
~---IP datagram ---

Network Interface Layer frame 

Figure 10-1. UDP message encapsulation showing the IP header and Network Interface 
Layer header and trailer. 

In the IP header of UDP messages, the Source IP Address field is set to the host inter
face that sent the UDP message. The Destination IP Address field is set to the unicast 
address of a specific host, an IP broadcast address, or an IP multicast address. 

The UDP Header 
The UDP header is a fixed-length size of 8 bytes consisting of four fixed-length fields, as 
Figure 10-2 shows. 

Source Port 

Destination Port 

Length 

Checksum 

Figure 10-2. The structure of the UDP header. 

The fields in the UDP header are defined as follows: 

• Source Port A 2-byte field used to identify the source Application Layer pro
tocol sending the UDP message. The use of a source port is optional and, 
when not used, is set to Ox00-00. IP multicast traffic, such as videocasts sent 
using UDP, could use Ox00-00 because no reply to the video traffic is assumed. 
Typical Application Layer protocols use the source port of the incoming UDP 
message as the destination port for replies. 

• Destination Port A 2-byte field used to identify the destination Application 
Layer protocol. The combination of the IP header's destination IP address and 
the UDP header's destination port provides a unique, globally significant ad
dress for the process to which the message is sent. 

• Length A 2-byte field used to indicate the length in bytes of the UDP message 
(UDP header and message). The minimum length is 8 bytes (the UDP header's 
size), and the maximum is 65,515 bytes (maximum-sized IP datagram of 65,535 



230 I PART m Transport Layer Protocols 

bytes less minimum-sized IP header of 20 bytes). The actual maximum length is 
confined by the MTU of the link on which the UDP message is sent. The 
Length field is a redundant field. The UDP length can always be calculated 
from the Total Length and the IP Header Length fields in the IP header (UDP 
length = payload length = total length - 4*IP header length [in 32-bit words]). 

• Checksum A 2-byte field that provides a bit-level integrity check for the UDP 
message (UDP header and message). The UDP checksum calculation uses the 
same method as the IP header checksum over the UDP pseudo header, the 
UDP header, the message, and, if needed, a padding byte of OxOO. The pad
ding byte is used only if the message's length is an odd number of bytes. The 
use of the UDP Checksum field is optional. If not used, the UDP Checksum 
field is set to Ox00-00. For details on the checksum calculation, see Chapter 4, 
"Internet Protocol (IP) Basics." 

Note TCP /IP for Windows 2000 always calculates a value for the UDP checksum. 

The following Network Monitor trace (Capture 10-01 in the \Captures folder on the 
companion CD-ROM) shows the structure of the UDP header for a DNS Name Query: 

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol 
+ IP: ID = 0x4001: Proto = UDP; Len: 58 

UDP: Src Port: DNS, (53): Ost Port: DNS (53): Length= 38 (0x26) 
UDP: Source Port = DNS 
UDP: Destination Port = DNS 
UDP: Total length = 38 (0x26) bytes 
UDP: UDP Checksum = 0x6AA1 
UDP: Oqta: Number of data bytes remaining = 30 (0x001E) 

+ DNS: 0x2:Std Ory for www.acme.com. of type Host Addr on class !NET addr. 

Note The last item in the Network Monitor display of the UDP header (UDP: Data: 
Number of data bytes remaining) is a Network Monitor information field and 
doesn't correspond to a field in the UDP header. 

The UDP Pseudo Header 
The UDP pseudo header is used to associate the UDP message with the IP header. The 
UDP pseudo header is added to the beginning of the UDP message only for the checksum 
calculation, and isn't sent as part of the UDP message. The UDP pseudo header assures 
that a routing or fragmentation process didn't improperly modify the IP header's key fields. 

The UDP pseudo header consists of the Source IP Address field, the Destination IP Ad
dress field, the Protocol field for UDP (17 or Oxl 1), an Unused field set to 0, and the UDP 
Length field. When sending a UDP message, UDP is aware of all of these values. When 
receiving a UDP message, IP indicates all of these values to UDP. Figure 10-3 shows the 
UDP pseudo header. 



Chapter :10 User Datagram Protocol (UDP) I 231 

Source IP Address 

Destination IP Address 

Unused 

Protocol 

Length 

Figure 10-3. The structure of the UDP pseudo header. 

The UDP Checksum field is calculated over the combination of the UDP pseudo header, 
the UDP message, and a OxOO padding byte. The checksum calculation relies on summing 
16-bit words. Therefore, the checksum quantity must be an even number of bytes. The 
padding byte is used only if the length of the message is an odd number of bytes. The 
padding byte isn't included in the UDP length and isn't sent as part of the UDP message. 
Figure 10-4 shows the resulting quantity for the calculation of the UDP Checksum field. 

--------~ UDP message--------

Message 

12 bytes 8 bytes 0 to 65,507 bytes Padding 
(1 byte) 

Figure 10-4. The resulting quantity used for the· UDP checksum calculation. 

Note The UDP pseudo header and Checksum field don't provide data integrity. 
IP header fields can be modified as long as the UDP Checksum field is updated. 
This is how a network address translator (NAT) works. An NAT is a router that trans
lates public and private addresses during the forwarding process. For example, 
when translating a source IP address from a private address to a public address, 
the NAT also recalculates the UDP checksum. 

UDP Ports 
A UDP port defines a location or message queue for the delivery of messages for Appli
cation Layer protocols using UDP services. Included in each UDP message is the source 
port (the message queue from which the message was sent) and a destination port (the 
message queue to which the message was sent). The Internet Assigned Numbers Authority 
(IANA) assigns port numbers, known as well-known port numbers, to specific Applica
tion Layer protocols. Table 10-1 shows well-known UDP port numbers used by Windows 
2000 components. 



232 I PART m Transport Layer Protocols 

Table 10-1. Well-Known UDP Port Numbers 

Port Number 

53 
67 
68 

69 
137 
138 
161 

520 

445 
1812, 1813 

Application Layer Protocol 

Domain Name System (DNS) 

· BOOTP client (Dynamic Host Configuration Protocol [DHCP]) 

BOOTP server (DHCP) 

Trivial File Transfer Protocol (TFTP) 

NetBIOS Name Service 

NetBIOS Datagram Service 

Simple Network Management Protocol (SNMP) 

Routing Information Protocol (RIP) 

Direct hosting of Server Message Block (SMB) datagrams over TCP/IP 

Remote Authentication Dial-In User Service (RADIUS) 

See http://www.isi.edu/in-notes/iana/assignments/port-numbers for the most current list 
of !ANA-assigned UDP port numbers. 

Typically, the server side of an Application Layer protocol listens on the well-known port 
number. The client side of Application Layer protocols uses either the well-known port 
number or, more commonly, a dynamically allocated port number. These dynamically 
allocated port numbers are used for the duration of the process and are also known as 
ephemeral or short-lived ports. The following registry setting determines the range of TCP 
and UDP port numbers that TCP /IP uses for Windows 2000: 

MaxUserPort 
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ 
Tcpip\Parameters 
Data type: REG_DWORD 
Va 1 id range: 5000-65534 
Default: 5000 
Present by default: No 

By default, the maximum port number is 5000. Dynamically allocated port numbers are 
within the range of 1024 through 5000 (0 through 1023 are reserved for well-known ports 
controlled by the IANA). 

A UDP port number can be referenced by name by a Microsoft Windows Sockets appli
cation using the GetServByName() function. The name is resolved to a UDP port num
ber through the SERVICES file stored in the SystemRoot\system32\drivers\etc folder. 

A sending node determines the destination port (using either a specified value or the Get
ServByName() function) and the source port (either specified or by obtaining a dynami
cally allocated port through Windows Sockets). The sending node then indicates the 
source IP address, destination IP address, source port, destination port, and the message 
to TCP/IP to be sent. The UDP module calculates the length and the checksum, and in-



Chapter :10 User Datagram Protocol (UDP) I 233 

dicates the UDP message with the appropriate source IP address and destination IP ad
dress to the IP module. 

When receiving a UDP message at the destination, IP verifies the IP header and, based 
on the value of 17 (Oxll) in the Protocol field, passes the UDP message, the source IP 
address, and the destination IP address to the UDP module. After verifying the UDP 
checksum, the UDP module verifies the destination port. If a process is listening on the 
port, the UDP message is passed to the application. If no process is listening on the port, 
UDP informs the ICMP module and an ICMP Destination Unreachable-Port Unreachable 
message is sent to the sender of the UDP message. 

Figure 10-5 shows the process of demultiplexing an incoming UDP message. 

Domain Name 
System (DNS) 

UDP Port 53 

Trivial File 
Transfer 

Protocol (TFTP) 

UDP Port 69 

UDP 

NetBIOS Name 
Service 

UDP Port 137 

Protocol 17 

r 
IP 

NetBIOS 
Datagram 

Service 

UDP Port 138 

Figure 10-5. Tbe demultiplexing of a UDP message to the appropriate Application Layer 
protocol using the IP Protocol field and the UDP Destination Port field. 

Best Practices UDP ports are separate from TCP ports even for the same port 
number. A UDP port represents a UDP message queue for an Application Layer 
protocol. A TCP port represents one side of a TCP connection for an Application 
Layer protocol. The Application Layer protocol using the UDP port isn't necessarily 
the same Application Layer protocol using the TCP port. A good example of the 
differentiation between TCP and UDP Application Layer protocols is the Extended 
Filename Server (EFS) protocol, which uses TCP port 520, and the Routing Infor
mation Protocol (RIP), which uses UDP port 520. Clearly these are separate Ap
plication Layer protocols. Therefore, it is good practice to never refer to a port by 
just its port number. The port number alone is ambiguous. Always refer to either 
a TCP port number or a UDP port number. 



234 I PART m Transport Layer Protocols 

Summary 
UDP provides a connectionless and unreliable delivery service for applications that do 
not require the guaranteed delivery service of TCP. Application Layer protocols use UDP 
for lightweight interaction, for broadcast or multicast traffic, or when the Application Layer 
protocol provides its own reliable delivery service. The UDP header provides a checksum 
and the identification of source and destination port numbers to multiplex UDP message 
data to the proper Application Layer protocol. 



Transmission Control 
Protocol (TCP) Basics 

235 

At the Transport Layer there are two protocols that Application Layer protocols typically 
use for transporting data: TCP and User Datagram Protocol (UDP). TCP is the Transport 
Layer protocol that provides end-to-end reliable delivery service. 

Introduction to TCP 
TCP is a fully formed Transport Layer protocol that provides a reliable data-transfer ser
vice and a method to pass TCP-encapsulated data to an Application Layer protocol. TCP 
has the following characteristics: 

• Connection-oriented Before data can be transferred, two Application Layer 
processes must formally negotiate a TCP connection using the TCP connection 
establishment process. TCP connections are formally closed using the TCP con
nection termination process. For more information on TCP connection pro
cesses, see Chapter 12, "Transmission Control Protocol (TCP) Connections." 

• Full duplex For each TCP peer, the TCP connection consists of two logical 
pipes: an outgoing pipe and an incoming pipe. With the appropriate Network 
Interface Layer technology, data can be flowing out of the outgoing pipe and into 
the incoming pipe simultaneously. The TCP header contains both the sequence 
number of the outgoing data and an acknowledgment of the incoming data. 

• Reliable Data sent on a TCP connection is sequenced and a positive ac
knowledgment is expected from the receiver. If no acknowledgment is re
ceived, the segment is retransmitted. At the receiver, duplicate segments are 
discarded and segments arriving out of sequence are placed back in the proper 
sequence. A TCP checksum is always used to verify the bit-level integrity of the 
TCP segment. 

• Byte stream TCP views the data sent over the incoming and outgoing logical 
pipes as a continuous stream of bytes. The sequence number and acknowledg
ment number in each TCP header are defined along byte boundaries. TCP isn't 
aware of record or message boundaries within the byte stream. The Application 
Layer protocol must provide the proper parsing of the incoming byte stream. 



236 I PART m Transport Layer Protocols 

• Sender- and receiver-side fl.ow control To avoid sending too much data at 
one time and congesting the routers of the IP internet:Work, TCP implements 
sender-side flow control that gradually scales the amount of data sent at one 
time. To avoid having the sender send data that the receiver can't buffer, TCP 
implements receiver-side flow control that indicates the amount of space left in 
the receiver's buffer. For more information on how TCP implements sender 
and receiver-side flow control, see Chapter 13, "Transmission Control Protocol 
(TCP) Data Flow." 

• Segmentation of Application Layer data TCP will segment data obtained 
from the Application Layer process so that it will fit within an IP datagram sent 
on the Network Interface Layer link. TCP peers exchange the maximum-sized 
segment that each can receive and adjust the TCP maximum segment size 
using Path Maximum Transmission Unit (PMTU) discovery. 

• One-to-one delivery TCP connections are a logical point-to-point circuit 
between two Application Layer protocols. TCP doesn't provide a one-to-many 
delivery service. 

TCP typically is used when the Application Layer protocol requires a reliable data trans
fer service and such service isn't provided by the Application Layer protocol itself. 

The TCP Segment 
TCP segments are sent as IP datagrams. A TCP segment, consisting of a TCP header and 
a segment, is encapsulated with an IP header using IP Protocol number 6. The segment 
can be a maximum size of 65,495 bytes: 65,535 less the minimum-size IP header (20 bytes) 
and the minimum-size TCP header (20 bytes). The resulting IP datagram is then encap
sulated with the appropriate Network Interface Layer header and trailer. Figure 11-1 
displays the resulting frame. 

Network 
TCP 

Interface IP header header 
header 

Segment 
Network 
Interface 
header 

j TCP segment ==ul 
j.. IP datagram 

Network Interface Layer frame 

Figure 11-1. TCP segment encapsulation showing the IP header and Network Interface 
Layer header and trailer. 

In the IP header of TCP segments, the Source IP Address field is set to the unicast ad
dress of the host interface that sent the TCP segment. The Destination IP Address field is 
set to the unicast address of a specific host. 



Chapter ::tl Transmission Control Protocol (TCP) Basics I 237 

The TCP Header 
The TCP header is of variable-length size consisting of the fields as shown in Figure 11-
2. When TCP options aren't present, the TCP header is 20 bytes long. 

Source Port 

Destination Port 

Sequence Number 

Acknowledgment Number 

Data Offset 

Reserved 

Flags 

Window 

Checksum 

Urgent Pointer 

Options and Padding 

Figure 11-2. Tbe structure of the TCP header . . 

The fields in the TCP header are defined as follows: 

• Source Port A 2-byte field that indicates the source Application Layer proto
col sending the TCP segment. The combination of the source IP address in the 
IP header and the source port in the TCP header provides a socket-a unique, 
globally significant address from which the segment was sent. 

• Destination Port A 2-byte field that indicates the destination Application 
Layer protocol. The combination of the destination IP address in the IP header 
and the destination port in the TCP header provides a socket-a unique, glo
bally significant address to which the segment is sent. 

• Sequence Number A 4-byte field that indicates the outgoing byte-stream
based sequence number of the segment's first octet. The Sequence Number 
field is always set, even when there's no data in the segment. In this case, the 
Sequence Number field is set to the number of the outgoing byte stream's next 
octet. When establishing a TCP connection, TCP segments sent with the SYN 
(Synchronization) flag set the Sequence Number field to the Initial Sequence 
Number (ISN). This indicates that the first octet in the outgoing byte stream 
sent on the connection is ISN + 1. 



238 I PART m Transport Layer Protocols 

• Acknowledgment Number A 4-byte field that indicates the sequence num
ber of the next octet in the incoming byte stream that the receiver expects to 
receive. The acknowledgment number provides a positive acknowledgment of 
all octets in the incoming byte stream up to, but not including, the acknowl
edgment number. The acknowledgment number is significant in all TCP seg
ments with the ACK (Acknowledgment) flag set. 

• Data Offset A 4-bit field that indicates where the TCP segment data begins. 
The Data Offset field is also the TCP header's size. As in the IP header's Header 
Length field, the Data Offset field is the number of 32-bit words ( 4-byte blocks) 
in the TCP header. For the smallest TCP header (no options), the Data Offset 
field is set to 5 (Ox5), indicating that the segment data begins in the twentieth 
octet offset starting from the beginning of the TCP segment (the offset starts its 
count at 0). With a Data Offset field set to its maximum value of 15 (OxF), the 
largest TCP header can be 60 bytes long including TCP options. 

• Reserved A 6-bit field that's reserved for future use. The sender sets these 
bits to 0. 

• Flags A 6-bit field that indicates six TCP flags. The six TCP flags, known as 
URG (Urgent), ACK (Acknowledgment), PSH (Push), RST (Reset), SYN (Syn
chronize), and FIN (Finish), are discussed in greater detail in the "TCP Flags" 
section of this chapter. 

• Window A 2-byte field that indicates the number of bytes of available space 
,in the receive buffer of the sender of this segment. The receive buffer is used 
to store the incoming byte stream. By advertising the window size with each 
segment, a TCP receiver is telling the sender how much data can be sent and 
successfully buffered. The sender shouldn't be sending more data than can fit 
in the receiver's buffer. If ~here's no more space in the receiver's buffer, a win
dow size of 0 bytes is advertised. With a window size of 0, the sender can't 
send any more data until the window size is a non-zero value. The advertise
ment of the window size is an implementation of receiver-side flow control. 

• Checksum A 2-byte field that provides a bit-level integrity check for the TCP 
segment (TCP header and segment). The Checksum field's value is calculated 
in the same way as the IP header checksum, over all the 16-bit words in a TCP 
pseudo header, the TCP header, the segment, and, if needed, a padding byte of 
OxOO. The padding byte is used only if the segment length is an odd number of 
octets. The value of the Checksum field is set to Ox00-00 during the checksum 
calculation. 

• Urgent Pointer A 2-byte field that indicates the location of urgent data in the 
segment. The Urgent Pointer field and urgent data are discussed in the "TCP 
Urgent Data" section of this chapter. 



Chapter :11. Transmission Control Protocol (TCP) Basics I 239 

• Options One or more TCP options can be added to the TCP header but must 
be done so in 4-byte increments so that the TCP header size can be indicated 
with the Data Offset field. TCP options are discussed in the "TCP Options" sec
tion of this chapter. 

The following Network Monitor trace (Capture 11-01 in the \Captures folder on the com
panion CD-ROM) shows the TCP header structure for File Transfer Protocol (FTP) traffic: 

+ Frame: Base frame properties 
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol 
+ IP: ID = 0xDFC8; Proto = TCP; Len: 1500 

TCP: . A .... , 1 en: 1460, seq: 1038577021-1038578481. ack: 3930983524, 
win:17520, src: 20 dst: 1163 

TCP: Source Port = FTP [default data] 
TCP: Destination Port = 0x048B 
TCP: Sequence Number = 1038577021 (0x3DE76D7D) 
TCP: Acknowledgement Number = 3930983524 (0xEA4E0C64) 
TCP: Data Offset = 20 (0xl4) 
TCP: Reserved = 0 (0x0000) 

+TCP: Flags = 0x10 : .A .... 
TCP: .. 0 ..... =No urgent data 
TCP: ... 1 .... =Acknowledgment field significant 
TCP: .... 0 ... =No Push function 
TCP: ..... 0 .. =No Reset 
TCP: ...... 0.=No Synchronize 
TCP: ....... 0=No Fin 
TCP: Window = 17520 (0x4470) 
TCP: Checksum = 0x8489 
TCP: Urgent Pointer = 0 (0x0) 
TCP: Data: Number of data bytes remaining 1460 (0x0584) 

+ FTP: Data Transfer To Client, Port= 1163, size 1460 

TCP Ports 
A TCP port defines a location for the delivery of TCP connection data. Included in each 
TCP segment is the source port that indicates the Application Layer process from which 
the segment was sent, and a destination port that indicates the Application Layer pro
cess to which the segment was sent. There are port numbers that are assigned by the 
Internet Assigned Numbers Authority (IANA) to specific Application Layer protocols. Table 
11-1 shows assigned TCP port numbers used by Microsoft Windows 2000 components. 



240 I PART m Transport Layer Protocols 

Table 11-1. Well-Known TCP Port Numbers 

Port" Number 

19 
20 

21 

23 
25 
69 
80 

139 
339 
445 

Application Layer Protocol 

Network News Transfer Protocol (NNTP) 

FTP Server (data channel) 

FTP Server (control channel) 

Telnet Server 

Simple Mail Transfer Protocol (SMTP) 

Trivial File Transfer Protocol (TFTP) 

Hypertext Transfer Protocol (HTTP) (Web Server) 

NetBIOS Session Service 

Lightweight Directory Access Protocol (LDAP) 

Direct-Hosted Server Message Block (SMB) 

See http://www.isi.edu/in-notes/iana/assignments/port-numbers for the most current list 
of !ANA-assigned TCP port numbers. 

Typically, the server side of an Application Layer protocol listens on the well-known port 
number. The client side of an Application Layer protocol uses either the well-known port 
number or, more commonly, a dynamically allocated port number. These dynamically 
allocated port numbers are used for the duration of the process and are known also as 
ephemeral or short-lived ports. The following registry setting determines the range of port 
numbers that TCP /IP for Windows 2000 uses: 

MaxUserPort 
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Data type: REG_DWORD 
Valid range: 5000-65534 
Default: 5000 
Present by default: No 

By default, the maximum port number is 5000. Dynamically allocated port numbers are 
within the range of 1024 through 5000 (0 to 1023 are reserved for well-known ports con
trolled by the IANA). 

A TCP port number can be referenced, by name, by a Windows Sockets application us
ing the GetSeruByName() function. The name is resolved to a TCP port number through 
the SERVICES file stored in the SystemRoot\system32\drivers\etc folder. 

A sending node determines the destination port (using either a specified value or the 
GetSeruByName() function) and the source port (using either a specified value, or by ob
taining a dynamically allocated port through Windows Sockets). The sending node then 
passes the source IP address, destination IP address, source port, destination port, and 



Chapter :t:t Transmission Control Protocol (TCP) Basics I 241 

the segment to TCP /IP to be sent. The TCP module calculates the Checksum field and 
indicates the TCP segment with the appropriate source IP address and destination IP 
address to the IP module. 

When receiving a TCP segment at the destination, IP verifies the IP header. Then, based 
on the value of 6 in the Protocol field, IP passes the TCP segment, the source IP address, 
and the destination IP address to the TCP module. After verifying the TCP Checksum field, 
the TCP module verifies the destination port. If a process is listening on the port, the TCP 
segment is passed to the application. If no process is listening on the port, TCP sends a 
TCP Connection Reset segment to the sender. See Chapter 12, "Transmission Control 
Protocol (TCP) Connections," for a detailed discussion of the TCP Connection Reset 
segment. 

Figure 11-3 shows the demultiplexing of received TCP connection data based on the TCP 
destination port. 

File Transfer 
Protocol 

(control channel) 

TCP Port 21 

i 

Hypertext 
Telnet 

Transfer Service Protocol (HTIP) 

TCP Port 80 TCP Port 23 

i i 
TCP 

Protocol 6 

i 
IP 

NetBIOS 
Session 
Service 

TCP Port 139 

i 

Figure 11-3. The demultiplexing of a TCP segment to the appropriate Application Layer pro
tocol using the IP Protocol field and the TCP Destination Port field. 

Best Practices TCP ports are separate from UDP ports, even for the same port 
number. A TCP port represents one side of a TCP connection for an Application 
Layer protocol. A UDP port represents a UDP message queue for an Application 
Layer protocol. The Application Layer protocol using the TCP port isn't necessar
ily the same Application Layer protocol using the UDP port. For example, the Ex
tended Filename Server (EFS) protocol uses TCP port 520, and the Routing 
Information Protocol (RIP) uses UDP port 520. Clearly these are separate Appli
cation Layer protocols. Therefore, it's good practice to never refer to a port by just 
its port number. The port number alone is ambiguous. Always refer to either a "TCP 
port number" or a "UDP port number." 



242 I PART m Transport Layer Protocols 

TCP Flags 
Figure 11-4 shows the six TCP flags in the Flags field of the TCP header. 

URG 

ACK 

PSH 

RST 

SYN 

FIN 

Figure 11-4. The six TCP flags in the Flag field of the TCP header. 

The TCP flags are defined as follows: 

• URG (Urgent Pointer field is significant) Indicates that the segment por
tion of the TCP segment contains urgent data and to use the Urgent Pointer 
field to determine the location of the urgent data in the segment. Urgent data is 
discussed in more detail in the "TCP Urgent Data" section of this chapter. 

• ACK (Acknowledgment field is significant) Indicates that the Acknowledg
ment field contains the next octet that the receiver expects to receive. The ACK 
flag is always set, except during the first phase of a TCP connection establishment. 

• PSH (the Push function) Indicates that the contents of the TCP receive buffer 
should be passed to the Application Layer protocol. The data in the receive 
buffer must consist of a contiguous block of data from the left edge of the buf
fer. In other words, there can't be any missing segments of the byte stream up to 
the segment containing the PSH flag; the data can't be passed to the Application 
Layer protocol until missing segments arrive. Normally, the TCP receive buffer is 
flushed (the contents are passed to the Application Layer protocol) when the 
receive buffer fills with contiguous data or during normal TCP connection main
tenance processes. The PSH flag overrides this default behavior and immediately 
flushes the TCP receive buffer. The PSH flag is used also for interactive Applica
tion Layer protocols such as Telnet, where each keystroke in the virtual terminal 
session is sent with the PSH flag set. Another example of using the PSH flag is 
the setting of the PSH flag on the last segment of a file transferred with FTP. 
Data sent with the PSH flag doesn't have to be immediately acknowledged. 

• RST (reset the connection) Indicates that the connection is being aborted. 
For active connections, a TCP segment with the RST flag set is sent in response 
to a TCP segment received on the connection that's incorrect, causing the con
nection to fail. The sending of an RST segment for an active connection fore-



Chapter 1:t Transmission Control Protocol (TCP) Basics I 243 

ibly and ungracefully terminates the connection, causing data stored in send 
and receive buffers or in transit to be lost. For TCP connections being estab
lished, a RST segment is sent in response to a connection establishment 
request to deny the connection attempt. 

• SYN (synchronize sequence number) Indicates that the segment contains an 
ISN. During the TCP connection establishment process, TCP sends a TCP seg
ment with the SYN flag set. Each TCP peer acknowledges the receipt of the SYN 
flag by treating the SYN flag as if it were a single byte of data. The Acknowledg
ment Number field for the acknowledgment of the SYN segment is set to ISN + 1. 

• FIN (f'tnish sending data) Indicates that the TCP segment sender is finished 
sending data on· the connection. When a TCP connection is gracefully termi
nated, each TCP peer sends a TCP segment with the FIN flag set. A TCP peer 
doesn't send a TCP segment with the FIN flag set until all outstanding data to 
the other TCP peer has been sent and acknowledged. Each peer acknowledges 
the receipt of the FIN flag by treating the FIN flag as if it were a single byte of 
data. When both TCP peers have sent segments with the FIN flag set and re
ceived acknowledgment of their receipt, the TCP connection is terminated. 

The TCP Pseudo Header 
The TCP pseudo header is used to associate the TCP segment with the IP header. The 
TCP pseudo header is added to the beginning of the TCP segment only during the 
checksum calculation and isn't sent as part of the TCP segment. The use of the TCP pseudo 
header assures the receiver that a routing or fragmentation process didn't improperly 
modify key fields in the IP header. 

The TCP pseudo header consists of the Source IP Address field, the Destination IP Ad
dress field, an Unused field set to OxOO, the Protocol field for TCP (6), and the length of 
the TCP segment. When sending a TCP segment, TCP knows all of these values. When 
receiving a TCP segment, IP indicates all of these values to TCP. Figure 11-5 illustrates 
the TCP pseudo header. 

Source IP Address 

Destination IP Address 

Unused 

Protocol 

Length 

Figure 11-5. Tbe structure of the TCP pseudo header. 



244 I PART m Transport Layer Protocols 

The TCP checksum is calculated over the combination of the TCP pseudo header, the 
TCP segment, and a OxOO padding byte. The checksum calculation relies on summing 
16-bit words. Therefore, the quantity over which the checksum being calculated must be 
an even number of octets. The padding byte is used only if the segment length is an odd 
number of octets. The padding byte isn't included in the IP length and isn't sent as part 
of the TCP segment. Figure 11-6 shows the resulting quantity for the TCP checksum. 

1~ TCP segment ~1 
~' p_s_eu_dT_~_~_e_ad_e_r~I h_!_~_~_er~l _______ s_eg_m_e_n_t ______ ~ ___ . 

12 bytes Oto 65,507 bytes Padding 
(1 byte) 

Figure 11-6. 1be resulting quantity used for the TCP checksum calculation. 

Note The. TCP pseudo header and Checksum field aren't providing data authen
tication and integrity as the IP Security (IPSec) Authentication header does. Key 
fields in the IP header can be modified as long as the TCP checksum is updated. 
This is how a network address translator (NAT) works. An NAT is a router that trans
lates public and private addresses during the forwarding process. For example, 
when translating a source IP address from a private address to a public address, 
the NAT also recalculates the TCP Checksum field. 

TCP Urgent Data 
Normal data sent on a TCP connection is data corresponding to the incoming- and out
going-byte stream data. For some data-transfer situations, there must be a method of 
sending control data to interrupt a process or inform the Application Layer protocol of 
asynchronous events. This control data is known as out of band data-data that isn't part 
of the TCP byte stream but is needed to control the data flow. Out of band data for TCP 
connections can be implemented in the following ways: 

• Use a separate TCP connection for the out of band data. The separate 
TCP connection sends control commands and status information without being 
combined on the data stream of the data connection. This is the method used 
by FTP. FTP uses a TCP connection on port 21 for control commands such as 
login, gets (downloading a file to the FTP client), and puts (uploading a file to 
the FTP server), and a separate TCP connection on port 20 for the sending or 
receiving of file data. 

• Use TCP urgent data. TCP urgent data is sent on the same TCP connection 
as the data. When TCP urgent data is used, the urgent data is indicated as be
ing present by setting the URG flag, and the urgent data is distinguished from 



Chapter :11 Transmission Control Protocol (TCP) Basics I 245 

the non-urgent data using the Urgent Pointer field. Urgent data within the TCP 
segment must be processed before the non-urgent data. Urgent data is used by 
the Telnet protocol to send control commands, even though the advertised re
ceive window of the Telnet server is 0. 

The interpretation of the Urgent Pointer value depends on the TCP implementation's 
adherence to either RFC 793, the original TCP RFC, or RFC 1122, which defines require
ments for Internet hosts. 

• RFC 793 defines the value of the Urgent Pointer field as the positive offset from 
the beginning of the TCP segment to the first byte of non-urgent data. 

• RFC 1122 defines the value of the Urgent Pointer field as the positive offset 
from the beginning of the TCP segment to the last byte of urgent data. 

These two definitions of the Urgent Pointer field differ by one byte. Both hosts on a TCP 
connection must use the same interpretation, otherwise data corruption could occur. 
There's no interoperability of these two interpretations, nor is there a mechanism to 
negotiate the interpretation during the TCP connection establishment process. 

The definition of the Urgent Pointer field in RFC 793 was made in error (the correct in
terpretation is actually given later in the RFC during the discussion of event processing, 
section 3.9). The correct use of the Urgent Pointer field is the RFC 1122 version. How
ever, numerous implementations of TCP use the RFC 793 definition of the Urgent Pointer 
field. 

More Info The use of the TCP Urgent Pointer field is documented in RFCs 793 
and 1122. These RFCs can be found in the \RFC folder on the companion CD-ROM. 

Figure 11-7 shows the placement of urgent data within the TCP segment, and the RFC 
793 and RFC 1122 interpretation of the Urgent Pointer field. 

Urgent data 
(n bytes) Non-urgent data 

TCP header I 1 I I · · · I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1. · . 

RFC~·~ 
Urgent Pointer = n -1 RFC 793 

Urgent Pointer = n 

Figure 11-7. Tbe location of TCP urgent data within a TCP segment. 

The following Windows 2000 registry setting allows you to configure the interpretation 
of the TCP Urgent Pointer field: 



246 I PART m Transport Layer Protocols 

TcpUseRFC1122UrgentPointer 
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
Value type: REG_DWORD 
Valid range: 0-1 
Default: 0 
Present by default: No 

Set this value to 1 to use the RFC 1122 interpretation of the Urgent Pointer field, or set to 
0 to use the RFC 793 interpretation. The default is the RFC 793 interpretation. 

TCP Options 
As in IP, TCP options are used to extend TCP functionality. There are a variety of defined 
TCP options used for negotiating maximum segment sizes, scaling window sizes, per
forming selective acknowledgments, recording timestamps, and providing padding for 
4-byte boundaries. A node isn't required to support all TCP options; however, the sup
port for processing TCP options is required. The presence of TCP options is indicated 
by a Data Offset field with a value greater than 5 (Ox5). A TCP header with a size greater 
than 20 bytes contains TCP options. 

A TCP option is either a single octet or multiple octets. For multiple octet options, the 
TCP option is in type-length-value format, as shown in Figure 11-8, where the length is 
the length in octets of the entire option. A TCP option type is known as an option kind. 

Option Kind 

Option Length 
f-LI--LI--'--'-'+-~-~ 

Figure 11-8. Tbe format for a multiple-octet TCP option. 

End Of Option List and No Operation 
To implement 4-byte boundary support for TCP options, the following single-octet TCP 
options are defined: 

• The End Of Option List TCP option is a single octet with the option kind set to 
0 (OxOO), which indicates that no other options follow. The End Of Option List 
option isn't used to delimit TCP options. If the set of TCP options falls along a 
4-byte boundary, the End Of Option List option isn't needed. 

• The No-Operation TCP option is a single octet with the option kind set to 1 
(OxOl), which is used between TCP options for a 4-byte alignment. The 
No-Operation option isn't required, so TCP implementation must be able to 
correctly interpret TCP options that aren't on 4-byte boundaries. 



Chapter 11 Transmission Control Protocol (TCP) Basics I 24 7 

Maximum Segment Size Option 
The TCP maximum segment size (MSS) is the maximum-sized segment that can be sent 
on the connection. The value for the MSS can be obtained by taking the IP Maximum 
Transmission Unit (MTU) and subtracting the IP header size and the TCP header size. For 
a typical IP header (without options) and a typical TCP header (without options), the MSS 
is 40 octets less than the IP MTU, as shown in Figure 11-9. 

IP MTU 

IP TCP Segment 

Figure 11-9. The TCP maximum segment size defined in terms of the IP MTU and the TCP 
and IP header sizes. 

The MSS TCP option is used to communicate a receiver's MSS. The MSS TCP option is 
included only in TCP segments with the SYN flag set during the TCP connection estab
lishment process. Figure 11-10 shows the MSS TCP option structure. 

Option Kind ~-2 

Option Length = 4 

Maximum Segment Size 

Figure 11-10. The structure of the TCP Maximum Segment Size option. 

The fields in the TCP MSS option are defined as follows: 

• Option Kind Set to 2 (Ox02) to indicate the MSS option kind. 

• Option Length Set to 4 (Ox04) to indicate that the size of the entire TCP op
tion is 4 bytes. 

• Maximum Segment Size Two bytes that indicate the maximum receive-seg
ment size of the sender of this TCP segment. For IP datagrams sent on an 
Ethernet network segment using Ethernet II encapsulation, the MSS is 1460 (an 
IP MTU of 1500 less 40 bytes for minimum-sized IP and TCP headers). 

The following Network Monitor trace (Capture 11-02 in the \Captures folder on the 
companion CD-ROM) shows the MSS TCP option at the end of the TCP header for a SYN 
segment on an Ethernet network: 

+ Frame: Base frame properties 
+ ETHERNET: ETYPE = 0x0800 : Protocol IP: DOD Internet Protocol 
+ IP: ID = 0x28EA; Proto = TCP; Len: 48 



248 I PART m Transport Layer Protocols 

TCP: .... S., len: 0, seq:3928116524-3928116524, ack: 0, win:l6384, src: 1162 
dst: 21 (FTP) 

TCP: Source Port = 0x048A 
TCP: Destination Port= FTP [control] 
TCP: Sequence Number = 3928116524 (0xEA224D2C) 
TCP: Acknowledgement Number = 0 (0x0) 
TCP: Data Offset = 28 (0x1C) 
TCP: Reserved = 0 (0x0000) 

+TCP: Flags = 0x02 : .... S. 
TCP: Window = 16384 (0x4000) 
TCP: Checksum = 0x854E 
TCP: Urgent Pointer = 0 (0x0) 
TCP: Options 

TCP: Maximum Segment Size Option 
TCP: Option Type = Maximum Segment Size 
TCP: Option Length = 4 (0x4) 
TCP: Maximum Segment Size = 1460 (0x5B4) 

TCP: Option Nop = 1 (0xl) 
TCP: Option Nop= 1 (0xl) 

+ TCP: SACK Permitted Option 

When two TCP peers exchange their MSS during the connection establishment process, 
both peers will adjust their initial MSS to the minimum value reported by both. For ex
ample, when an Ethernet node sends an MSS of 1460 and an FDDI node sends an MSS 
of 4312 (the FDDI IP MTU of 4352, less 40 octets), both nodes agree to send maximum
sized TCP segments of 1460 octets. The initial MSS is adjusted on an ongoing basis through 
Path MTU discovery. For example, two FDDI nodes on two separate FDDI rings-con
nected by routers over Ethernet network segments-exchange a TCP MSS of 4312. How
ever, once TCP segments of 4312 octets are sent, Path Maximum Transmission Unit (PMTU) 
discovery messages will adjust the MSS for the connection to 1460. For more informa
tion on PMTU, see Chapter 7, "Internet Control Message Protocol (ICMP)." 

The MSS TCP option won't prevent problems that could occur between two hosts on the 
same network segment that are separated by a Network Interface Layer technology with 
a lower IP MTU size. For example, consider hosts A and B in Figure 11-11. Hosts A and 
Bare on separate FDDI rings connected by a Fast Ethernet backbone. 

Both FDDI rings and the Ethernet backbone are on the same network segment as the 
router. Therefore, when hosts A and B exchange MSS, both agree to send maximum-sized 
TCP segments with the size of 4312 octets. However, when they begin to send bulk data 
with maximum-sized segments, the translating bridges implemented by the Layer 2 
switches have no facilities for translating 4352-octet FDDI payloads to 1500-octet Ethernet 
payloads. Therefore, the Layer 2 switch silently drops the maximum-sized TCP segments. 
Because the switch isn't an IP router, no Path MTU discovery messages are sent to the 
TCP peers to lower the MSS. The connection fails after one peer retransmits a maximum
sized TCP segment for the maximum allowable times. 



Ethernet 
backbone 

Ethernet switch 

~~~~-1.-~-h-e-rn-et-s~w~it~ch 
Router

Chapter :11 Transmission Control Protocol (TCP) Basics I 249

FDDI ring

FDDI ring

Figure 11-11. Hosts on two FDDI rings, connected by an Ethernet backbone.

If Host A were an FTP server and Host B were an FTP client, the user at Host B would
be able to connect and log in to the FTP server. However, when the user issued a get or
put instruction to send a file, the connection would hang and eventually terminate.

The only solution to this problem is to adjust the IP MTU on the FDDI nodes to the low
est value supported by all the Network Interface Layer technologies on the network
segment. In this case, you would use the MTU Windows 2000 registry setting described
in Chapter 4, "Internet Protocol (IP) Basics," to lower the IP MTU of the two FDDI adapters
to 1500.

TCP Window Scale Option
The TCP window size defined in RFC 793 is a 16-bit field for a maximum receive
window size of 65,535 bytes. This means that a sender can have only 65,535 bytes of data
in transit before having to wait for an acknowledgment. While this isn't an issue on typi
cal LAN and WAN links, it's possible on newer LAN and WAN technologies operating at
gigabit-per-second speeds with a sizeable transit delay to have more than 65,535 bytes
in transit. If TCP can't fill the pipe and keep it filled, it's operating at less efficiency.

The TCP Window Scale option described in RFC 1323 allows the receiver to advertise a
larger window size than 65,535 bytes. The Window Scale option includes a window scaling
factor which, when combined with the 16-bit window size in the TCP header, increases
the receive window size to a maximum of 1,073,725,440 bytes (1 gigabyte). The Window
Size option is sent only in an SYN segment during the connection establishment process.
Both TCP peers selectively indicate different window scaling factors used for their receive
window sizes. The receiver of the TCP connection establishment request (the SYN seg
ment) can't send a Window Scale option unless the initial SYN segment contains it.

Figure 11-12 illustrates the Window Scale TCP option structure.

250 I PART m Transport Layer Protocols

Option Kind ~ = 3

Option Length = 3

Shift Count

Figure 11-12. Tbe structure of the TCP Window Scale option.

The fields in the TCP Window Scale option are defined as follows:

• Option Kind Set to 3 (Ox03) to indicate the Window Scale option kind.

• Option Length Set to 3 (Ox03) to indicate that the size of the entire TCP op
tion is 3 octets.

• Shift Count One byte that indicates the scaling factor as the exponent of 2. For
example, for a Shift Count of 5, the scaling factor is 25, or 32. The exponent is
used rather than a whole number so that implementations can take advantage of
binary shift programming techniques to quickly calculate the actual window size.
For example, for a Shift Count of 5, the actual window size is the value of the
Window field with five Os added (the Window field is left-shifted by 5). The max
imum value of the Shift Count is 14 for a window scaling factor of 214, or 16,384.

The following Network Monitor trace (Capture 11-03 in the \Captures folder on the
companion CD-ROM) shows the Window Scale TCP option at the end of the TCP header
for a SYN segment:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x2A1A: Proto = TCP; Len: 64

TCP: s., len: 0, seq: 6727680-6727680, ack:
src: 1049 dst: 21 (FTP)

TCP: Source Port = 0x0419
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 6727680 (0x66A800)
TCP: Acknowledgement Number = 0 (0x0)
TCP: Data Offset = 44 (0x2C)
TCP: Reserved = 0 (0x0000)

+TCP: Flags= 0x02 : S.
TCP: Window = 65528 (0xFFF8)
TCP: Checksum = 0xBDC5
TCP: Urgent Pointer = 0 (0x0)
TCP: Options

+ TCP: Maximum Segment Size Option
TCP: Option Nop= 1 (0xl)
TCP: Window Scale Option

TCP: Option Type = Window Scale

0, win:65528,

Chapter :11 Transmission Control Protocol (TCP) Basics I 251

TCP: Option Length = 3 (0x3)
TCP: Window Scale = 3 (0x3)

TCP: Option Nop = 1 (0xl)
TCP: Option Nop = 1 (0xl)

+ TCP: Timestamps Option
TCP: Option Nop = 1 (0xl)
TCP: Option Nop = 1 (0xl)

+ TCP: SACK Permitted Option

Notice the use of the No-Operation TCP option (Nop) preceding the Window Scale option
to align the Window Scale option on 4-byte boundaries.

When the Window Scale option is used, the window size advertised in each TCP seg
ment for the connection is scaled by the factor indicated in the peer's SYN segment.
Therefore, the TCP header's Window field is no longer a byte counter of the amount of
space left in the receive buffer. Rather, the Window field is a block counter where the
block size in bytes is the scaling factor. For example, for a TCP peer using a Shift Count
of 3, the Window field in outgoing TCP segments is actually indicating the number of 8-
byte blocks remaining in the receive buffer.

The use of scaling windows is controlled through the following Windows 2000 registry
setting:

Tcp13230pts
Key:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Value type: REG_DWORD
Valid range: 0-3
Default: 3
Present by default: No

Set this value to 0 to disable both window scaling and timestamps. Set this value to 1 to
enable only window scaling. Set this value to 2 to only enable timestamps. Set this value
to 3 to enable both window scaling and timestamps. The default value is 3.

Note When tracing TCP connection data, make sure that you also look at the con
nection establishment process to determine whether window scaling is being used.
Otherwise, you might misinterpret the Window field value during the connection.

Selective Acknowledgment Option
The acknowledgment scheme for TCP was originally designed as a positive cumulative
acknowledgment scheme where the receiver sends a segment with the ACK flag set and
the Acknowledgment field set to the next octet the receiver expects to receive. This use
of the Acknowledgment field provides an acknowledgment of all bytes up to, but not
including, the sequence number in the Acknowledgment field. This scheme provides
reliable byte-stream data transfer, but can result in lower TCP throughput in environments
with high-packet losses.

252 I PART m Transport Layer Protocols

If a segment at the beginning of the current send window isn't received and all other
segments are, the data received can't be acknowledged until the missing segment arrives.
The sender will begin to retransmit the segments of the current send window until the
acknowledgment for all the segments received has arrived. The sender will needlessly
retransmit some segments, consequently wasting network bandwidth. This problem is
exacerbated in environments such as satellite links, with high bandwidth and high de
lay, when TCP has a large window size. The more segments in the send window, the
more segments can be retransmitted unnecessarily when segments are lost.

RFC 2018 describes a method of selective acknowledgment (SACK) using TCP options
that selectively acknowledges the non-contiguous data blocks that have been received.
When the sender receives a selective acknowledgment, it can retransmit just the missing
blocks, preventing the sender from waiting for the retransmission time-out for the unac
knowledged segments and retransmitting segments that have successfully arrived.

The selective acknowledgment scheme defines the following two different TCP options:

• The SACK-Permitted option to negotiate the use of selective acknowledgments
during the connection establishment process.

• The SACK option to indicate the non-contiguous data blocks that have been
received.

More Info Selective acknowledgment (SACK) is described in RFC 2018, which
can be found in the \RFC folder on the companion CD-ROM.

The SACK-Permitted Option

The SACK-Permitted option is sent in segments with the SYN flag set and indicates that
the TCP peer can receive and interpret the SACK option once data is flowing on the
connection. The SACK-Permitted option is 2 bytes consisting of an Option Kind set to 4
(Ox04) and an Option Length set to 2 (Ox02), as shown in Figure 11-13.

Option Kind ~ = 4

Option Length ~ = 2

Figure 11-13. The structure of the TCP SACK-Permitted option.

The following Network Monitor trace (Capture 11-04 in the \Captures folder on the
companion CD-ROM) shows the TCP SACK-Permitted option at the end of the TCP header
for a SYN segment:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol IP: DOD Internet Protocol
+ IP: ID = 0x28EA; Proto = TCP; Len: 48

Chapter :1:1 Transmission Control Protocol (TCP) Basics I 253

TCP: S., len: 0, seq:3928116524-3928116524, ack: 0, win:16384, src: 1162
d st : 21 (FTP)

TCP: Source Port = 0x048A
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 3928116524 (0xEA22402C)
TCP: Acknowledgement Number = 0 (0x0)
TCP: Data Offset = 28 (0xlC)
TCP: Reserved = 0 (0x0000)

+TCP: Flags = 0x02 : S.
TCP: Window = 16384 (0x40001
TCP: Checksum = 0x854E
TCP: Urgent Pointer = 0 (0x0)
TCP: Options

+ TCP: Maximum Segment Size Option
TCP: Option Nop = 1 (0xl)
TCP: Option Nop = 1 (0xl)
TCP: SACK Permitted Option

TCP: Option Type = Sack Permitted
TCP: Option Length = 2 (0x2)

Notice the use of the two No-Operation TCP option (Nop) fields preceding the SACK
Permitted option to align the SACK-Permitted option on 4-byte boundaries.

The SACK Option

The SACK option is sent as needed in segments of the open connection with the ACK
flag set. As Figure 11-14 illustrates, the SACK option is a variable-size option, depending
on how many contiguous blocks are being acknowledged.

Option Kind

Option Length

Left Edge of 1st Block

Right Edge of 1st Block

Left Edge of 2nd Block

Figure 11-14. Tbe structure of the TCP SACK option.

The fields in the TCP SACK option are defined as follows:

• Option Kind Set to 5 (Ox05) to indicate the SACK option kind.

254 I PART m Transport Layer Protocols

• Option Length Set to 10 (a single non-contiguous block), 18 (two non-con
tiguous blocks), 26 (three non-contiguous blocks), or 34 (four non-contiguous
blocks) octets to indicate the size of the entire TCP option.

• Left Edge of Nth Block A 4-byte field that indicates the sequence number of
this block's first octet.

• Right Edge of Nth Block A 4-byte field that indicates the next sequence
number expected to be received immediately following this block.

The following Network Monitor trace (Capture 11-05 in the \Captures folder on the
companion CD-ROM) shows the SACK TCP option at the end of the TCP header for data
being acknowledged:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xFA0D; Proto = TCP: Len: 64

TCP: .A len: 0, seq: 925293-925293, ack: 55053434, win:32767.
src: 1242 dst: 139 (NBT Session)

TCP: Source Port = 0x04DA
TCP: Destination Port = NETBIOS Session Service
TCP: Sequence Number = 925293 (0xE1E6D)
TCP: Acknowledgement Number = 55053434 (0x3480C7A)
TCP: Data Offset = 44 (0x2C)
TCP: Reserved = 0 (0x0000)

+TCP: Flags = 0x10 : .A
TCP: Window = 32767 (0x7FFF)
TCP: Checksum = 0x436E
TCP: Urgent Pointer 0 (0x0)
TCP: Options

TCP: Option Nop 1 (0xl)
TCP: Option Nop 1 (0xl)

+ TCP: Timestamps Option
TCP: Option Nop 1 (0xl)
TCP: Option Nop = 1 (0xl)
TCP: SACK Option

TCP: Option Type = SACK
TCP: Option Length = 10 (0xA)
TCP:. Left Edge of Block 55054882 (0x3481222)
TCP: Right Edge of Block = 55059226 (0x348231A)

In the trace, the sender of this segment is acknowledging the receipt of all contiguous
octets in the byte stream up to, but not including, octet 55053434, and the receipt of the
block of contiguous data from octets 55054882 through 55059225. There's a missing
segment consisting of the octets 55053434 through 55054881. Notice the use of the Nop
to align the SACK option on 4-byte boundaries.

Chapter :11 Transmission Control Protocol (TCP) Basics I 255

The use of SACK is controlled through the following Windows 2000 registry setting:

SackOpts
Key:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servi~es\Tcpip\Parameters

Value type: REG_DWORD
Valid range: 0-1
Default: 1
Present by default: No

SackOpts either enables (=1) or disables (=O) the use of SACK. SackOpts is enabled by default.

For more information on the use of selective acknowledgments to retransmit data, see
Chapter 14, "Transmission Control Protocol (TCP) Retransmission and Time-Out."

TCP Timestamps Option
To set the retransmission time-out (RTO) on TCP segments sent, TCP monitors the round
trip time (RTT) on an ongoing basis. Normally, TCP calculates the RTT of a TCP segment
and its acknowledgment once for every full send window of data. While this works well
in many environments, for high-bandwidth and high-delay environments such as satellite
links with large window sizes, the sampling rate of one segment for each window size can't
monitor the RTT to determine the current RTO and prevent unnecessary retransmissions.

To calculate the RTT on any TCP segment, the segment is sent with the TCP Timestamps
option described in RFC 1323. The TCP Timestamps option places a timestamp value based
on a local clock on an outgoing TCP segment. The acknowledgment for the data in the
TCP segment echoes back the timestamp, and the RTT can be calculated from the
segment's echoed timestamp and the time (relative to the local clock) that the segment
acknowledgment arrived.

More Info The TCP Timestamps option is describ_ed in RFC 1323, which can be
found in the \RFC folder on the companion CD-ROM.

Including the Timestamps option in the SYN segment during the connection establish
ment process indicates its use for the connection. Both sides of the TCP connection can
selectively use timestamps. Once indicated during connection establishment, the timestamp
can be included in TCP segments at the discretion of the sending TCP peer.

Figure 11-15 shows the TCP Timestamps option structure.

The fields in the TCP Timestamps option are defined as follows:

• Option Kind Set to 8 (Ox08) to indicate the Timestamps option kind.

• Option Length Set to 10 (OxOA) to indicate that the size of the entire TCP
option is 10 octets.

• TS Value A 4-byte field that indicates the timestamp value of this TCP seg
ment. The TS Value is calculated from an internal clock that's based on real
time. The TS Value increases over time and wraps around when needed.

256 I PART m Transport Layer Protocols

• TS Echo Reply A 4-byte field set on a TCP segment that acknowledges data
received (with the ACK flag set) that's set to the same value as the TS Value for
the received segment being acknowledged. In other words, the TS Echo Reply
is an echo of the TS Value of the acknowledged segment.

Option Kind

Option Length

Ts Value

Ts Echo Reply

Figure 11-15. Tbe structure of the TCP Timestamps option.

Figure 11-16 illustrates an example of the values of the TS Value and TS Echo Reply for
an exchange of data between two hosts.

1 Block 1, TS Value= 100, TS Echo Reply= 9000

2
Ack on Block 1_, TS Value = 9020, TS Echo Reply= 100

3 Block 2, TS Value= 158, TS Echo Reply= 9020
Host A Host B

4 Ack on Block 2, TS Value= 9053, TS Echo Reply= 158

5 Block 3, TS Value = 9098, TS Echo Reply = 158

6 Ack on Block 3, TS Value= 210, TS Echo Reply= 9098

Figure 11-16. An example of the use of the TCP Timestamps option.

Host A's internal clock starts its TS Value at 100. Host B's internal clock starts its TS Value
at 9000. Segments 1 through 4 are for two data blocks sent by Host A. Segments 5 and
6 are for a data block sent by Host B. Notice how the TS Echo Reply value for the ac
knowledgments are set to the TS Value of the segments they're acknowledging. To pre
vent gaps in the sending of data from increasing the RTT, the TS Echo Reply is used for
RTT measurement only if the segment is an acknowledgment of new data sent.

The following Network Monitor trace (Capture 11-06 in the \Captures folder on the
companion CD-ROM) shows two frames-a frame of data containing the Timestamps TCP
option and its corresponding acknowledgment:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x1A15; Proto = TCP; Len: 1500

TCP: .A len: 1448, seq: 55050538-55051986, ack: 925293, win:16564,
src: 139 (NBT Session) dst: 1242

Chapter :1:1 Transmission Control Protocol (TCP) Basics I 257

TCP: Source Port = NETBIOS Session Service
TCP: Destination Port = 0x04DA
TCP: Sequence Number = 55050538 (0x348012A)
TCP: Acknowledgement Number = 925293 C0xE1E6D)
TCP: Data Offset = 32 (0x20)
TCP: Reserved = 0 (0x0000)

+TCP: Flags = 0x10 : .A
TCP: Window = 16564 (0x40B4)
TCP: Checksum = 0xBD81
TCP: Urgent Pointer 0 (0x0)
TCP: Options

TCP: Option Nop 1 (0xl)
TCP: Option Nop 1 (0xl)
TCP: Timestamps Option

TCP: Option Type = Timestamps
TCP: Option Length = 10 (0xA)
TCP: Timestamp = 4677 (0x1245)
TCP: Reply Timestamp = 7114 (0x1BCA)

TCP: Data: Number of data bytes remaining = 1448 (0x05A8)
+ NBT: SS: Session Message Cont .. 1448 Bytes

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xF60D; Proto = TCP; Len: 52

TCP: .A , len: 0. seq: 925293-925293. ack: 55051986, win:32722.
src: 1242 dst: 139 (NBT Session)

TCP: Source Port = 0x04DA
TCP: Destination Port = NETBIOS Session Service
TCP: Sequence Number = 925293 (0xE1E6D)
TCP: Acknowledgement Number = 55051986 (0x34806D2)
TCP: Data Offset = 32 (0x20)
TCP: Reserved = 0 (0x0000)

+TCP: Flags = 0x10 : .A
TCP: Window = 32722 (0x7FD2)
TCP: Checksum = 0x84Dl
TCP: Urgent Pointer 0 C0x0)
TCP: Options

TCP: Option Nop 1 (0xl)
TCP: Option Nop 1 (0xl)
TCP: Timestamps Option

TCP: Option Type = Timestamps
TCP: Option Length = 10 C0xA)
TCP: Timestamp = 7126 (0x1BD6)
TCP: Reply Timestamp = 4677 (0x1245)

258 I PJUU m Transport Layer Protocols

Notice that in the second frame the Reply Timestamp (TS Echo Reply) field is set to 4677,
echoing the Timestamp (TS Value) field.

The use of TCP timestamps for Windows 2000 is controlled through the Tcp13230pts
registry setting discussed in the "TCP Window Scale Option" section of this chapter.

For more information on RTT, RTO, and retransmission behavior, see Chapter 14, "Trans
mission Control Protocol (TCP) Retransmission and Time-Out."

Summary
TCP provides connection-oriented and reliable data transfer for applications that require
end-to-end guaranteed delivery service. Application Layer protocols use TCP for one
to-one traffic. The TCP header provides sequencing, acknowledgment, a checksum, and
the identification of source and destination port numbers to multiplex TCP segment data
to the proper Application Layer protocol. TCP options are used to indicate maximum seg
ment sizes and window scaling and provide selective acknowledgments and timestamping.

Transmission Control
Protocol (TCP) Connections

259

TCP is a connection-oriented protocol. Before data can flow on a TCP connection, the
connection must be formally established through a handshaking process. To stop the flow
of data on a TCP connection and release the resources of the connection, the connec
tion must be terminated through a similar handshake process.

The TCP Connection
A TCP connection is a bi-directional, full-duplex logical circuit between two processes
(Application Layer protocols) in an Internet Protocol (IP) internetwork. The TCP connec
tion's endpoints are identified by an [IP address, TCP port] pair. The connection is uniquely
identified by both endpoints: [IP address 1, TCP port 1, IP address 2, TCP port 2]. TCP
uses those four numbers to demultiplex the data portion of the TCP segment to the proper
Application Layer process.

A TCP connection can be visualized as a bi-directional data pipe containing two logical
pipes between the two TCP peers, as Figure 12-1 illustrates. One logical pipe is used for
outbound data and the other logical pipe is used for inbound data (relative to the TCP peer).
The outbound data pipe for one TCP peer is the inbound data pipe for the other TCP peer.

TCP
Peer

1

Outbound ==> Inbound

Inbound <===Outbound

TCP
Peer

2

Figure 12-1. A TCP connection showing both inbound and outbound logical pipes.

TCP connections must be:

• Established through a handshake process where both TCP peers agree to cre
ate a TCP connection

• Maintained through a periodic keep-alive process that ensures that both TCP
peers are active on the connection

• Terminated through a handshake process where both TCP peers agree to close
the TCP connection

260 I PART m Transport Layer Protocols

TCP Connection Establishment
To create a TCP connection over which full-duplex data can begin to flow, each TCP peer
must learn the following information from the other TCP peer:

• The starting sequence number for data sent on the inbound pipe

• The size of the buffer to receive data sent on the outbound pipe (the receive
window size of the other TCP peer)

• The maximum segment size that can be received

• The TCP options that are supported

Learning this information is done through an exchange of three TCP segments called the
TCP connection establishment process, or the TCP three-way handshake.

To create a TCP connection, a server system must allow a TCP connection, and a client
system must initiate a TCP connection. The server system issues a passive OPEN func
tion call to permit incoming connection requests on a specific port number. The passive
OPEN function call does not create any TCP traffic. The client system issues an active
OPEN function call. An active OPEN function call creates and sends the first segment of
the TCP three-way handshake.

Figure 12-2 displays the TCP connection establishment process. The diagram shows the
three TCP segments that are exchanged and the information in the TCP header that is
vital to the connection establishment. Prior to segment 1, TCP Peer 2 issued a passive
OPEN to receive TCP connection requests. TCP Peer 1 issues an active OPEN and cre
ates segment 1. Segments 2 and 3 complete the connection establishment process. The
vertical arrows show the passage of time during the connection establishment process.

TCP Peer 1

Seq=ISN1

TCP Peer 2

Seq=ISN1+1
Ack=ISN2+1

SYN, Seq=ISN1, Ack=O, Window=default
MSS option, SACK-Permitted option

- Q)----------------

SYN-ACK, Seq=ISN2, Ack=ISN1+1, Window=n*MSS
MSS option, SACK-Permitted option

ACK, Seq=ISN1+1, Ack=ISN2+1,Window=n*MSS
- @-----------------

ISN1=1nitial Sequence Number for TCP Peer 1
ISN2=1nitial Sequence Number for TCP Peer 2

Seq=ISN2
Ack=ISN1+1

Seq=ISN2+1
Ack=ISN1+1

Figure 12-2. Tbe TCP connection establishment process showing the exchange of three TCP
segments.

Segment 1: The Synchronize (SYN) Segment
TCP Peer 1 sends the first TCP segment, known as the SYN segment, to TCP Peer 2. The
SYN segment then establishes TCP connection parameters, such as the Initial Sequence

Chapter 12 Transmission Control Protocol (TCP) Connections I 261

Number (ISN) that TCP Peer 1 uses. The SYN segment as sent by a Microsoft Windows
2000 computer contains the following fields in the TCP header:

• Destination Port Set to the TCP port number of the passive OPEN on TCP
Peer 2. For typical TCP connections, the destination port in the SYN segment is
a well-known TCP port in the range of 1 to 1023·.

• Source Port Set to the local TCP port number of the active OPEN on TCP
Peer 1. For typical TCP connections, the source port is a dynamically allocated
port in the range of 1024 to 5000.

• Sequence Number Set to the ISN for data to be sent by TCP Peer 1 for the
outbound data pipe (ISNl in Figure 12-2). A Windows 2000 TCP peer chooses
the ISN based on a startup-derived, 2048-bit random key and an RC4-based ran
dom number to reduce the predictability of the next TCP connection's ISN.

• Acknowledgment Number Set to 0. Because the ACK flag is not set, the Ac
knowledgment Number field is insignificant. Only after a TCP peer learns the
sequence number for inbound data on the connection can the ACK flag be set
and the Acknowledgment Number field set to the appropriate value.

• SYN Flag Indicates that the segment contains the ISN for data sent by TCP Peer 1.

• Window Set to a default value, indicating an initial value for the size of TCP
Peer l's receive buffer.

• MSS in the MSS TCP Option Set to the maximum-sized TCP segment that
TCP Peer 1 can receive.

• Selective Acknowledgment (SACK)-Permitted TCP Option Included to in
dicate that TCP Peer 1 can receive and interpret the SACK option included in
TCP segments that TCP Peer 2 sends.

The following Network Monitor trace (Capture 12-01, included in the \Captures folder on
the companion CD-ROM) shows a SYN segment for a File Transfer Protocol (FTP) session:

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x28EA; Proto = TCP; Len: 48

TCP: S., len: 0, seq:3928116524-3928116524, ack: 0, win:16384, src: 1162
dst: 21 (FTP)

TCP: Source Port = 0x048A
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 3928116524 (0xEA224D2C)
TCP: Acknowledgement Number = 0 (0x0)
TCP: Data Offset = 28 (0xlC)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x02 : S.

TCP: .. 0 =No urgent data
TCP: ... 0 =Acknowledgement field not significant
TCP: 0... No Push function
TCP: 0 .. = No Reset

262 I PART m Transport Layer Protocols

TCP: 1. =Synchronize sequence numbers
TCP: 0 =No Fin

TCP: Window = 16384 (0x4000)
TCP: Checksum = 0x854E
TCP: Urgent Pointer = 0 (0x0)
TCP: Options

TCP: Maximum Segment Size Option
TCP: Option Type = Maximum Segment Size
TCP: Option Length = 4 (0x4)
TCP: Maximum Segment Size = 1460 (0x5B4)

TCP: Option Nop = 1 (0xl)
TCP: Option Nop = 1 (0xl)
TCP: SACK Permitted Option

TCP: Option Type = Sack Permitted
TCP: Option Length = 2 (0x2)

Segment 2: The SYN-ACK Segment
Upon receipt of the SYN segment, TCP Peer 2 sends the second TCP segment known as
the SYN-ACK segment to TCP Peer 1. The SYN-ACK segment establishes TCP connec
tion parameters such as the ISN used by TCP Peer 2 and acknowledges TCP connection
parameters used by TCP Peer 1. The SYN-ACK segment as sent by a Windows 2000
computer contains the following fields in the TCP header:

• Destination Port Set to the Source Port of the SYN segment.

• Source Port Set to the local TCP port number of the passive OPEN on TCP
Peer 2 as indicated by the Destination Port number of the SYN segment.

• Sequence Number Set to the ISN for data to be sent by TCP Peer 2 for the
outbound data pipe (ISN2 in Figure 12-2).

• Acknowledgment Number Set to the value of the TCP Peer l's ISN plus 1
(ISNl + 1). The SYN flag occupies a single octet of the sequence space of
Peer 1. The acknowledgment number is the next octet in the byte stream that
TCP Peer 2 expects to receive. If the SYN flag acts as a single octet of non
data, the next octet that TCP Peer 2 expects to receive is actual data, and must
therefore begin with ISNl + 1.

• SYN Flag Indicates that the segment contains the ISN for data sent by TCP
Peer 2.

• ACK Flag Indicates that the Acknowledgment Number field is significant.

• Window _Set to an application-specified value or the value of an integral num
ber of MSS-sized segments according to an operating system default value. This
value indicates an initial value for the size of TCP Peer 2's receive buffer (n*MSS
in Figure 12-2). For Windows 2000 TCP/IP hosts using Ethernet, the default
receive-window size is 17,520 octets, or 12 MSS segments (at 1460 octets).

Chapter 1.2 Transmission Control Protocol (TCP) Connections I 263

• MSS in the MSS TCP Option Set to the maximum-sized TCP segment that
TCP Peer 2 can receive.

• SACK-Permitted TCP Option Indicates that TCP Peer 2 can receive and
interpret the SACK option included in TCP segments that TCP Peer 1 sends.

The following Network Monitor trace (Capture 12-01, included in the \Captures folder
on the companion CD-ROM) shows a SYN-ACK segment for an FTP session (continued
from the previous ACK segment):

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xDFAB; Proto = TCP; Len: 48

TCP: .A .. S., len: 0, seq:l035688768-1035688768, ack:3928116525,
win:17520, src: 21 (FTP) dst: 1162

TCP: Source Port= FTP [control]
TCP: Destination Port = 0x048A
TCP: Sequence Number = 1035688768 (0x3DBB5B40)
TCP: Acknowledgement Number = 3928116525 (0xEA224D2D)
TCP: Data Offset = 28 (0x1C)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x12 : .A .. S.

TCP: .. 0 = No urgent data
TCP: ... 1 =Acknowledgement field significant
TCP: 0 ... = No Push function
TCP: 0 .. = No Reset
TCP: 1. = Synchronize sequence numbers
TCP: 0 =No Fin

TCP: Window = 17520 (0x4470)
TCP: Checksum = 0xE7Dl
TCP: Urgent Pointer = 0 (0x0)
TCP: Options

TCP: Maximum Segment Size Option
TCP: Option Type = Maximum Segment Size
TCP: Option Length = 4 (0x4)
TCP: Maximum Segment Size = 1460 (0x5B4)

TCP: Option Nop = 1 (0xl)
TCP: Option Nop = 1 (0xl)
TCP: SACK Permitted Option

TCP: Option Type = Sack Permitted
TCP: Option Length = 2 (0x2)

Segment 3: The ACK Segment
Upon receipt of the SYN-ACK segment, TCP Peer 1 sends the third TCP segment, known
as the ACK segment, to TCP Peer 2. The ACK segment establishes final TCP connection
parameters used by TCP Peer 1 and acknowledges TCP connection parameters that TCP

264 I PART m Transport Layer Protocols

Peer 2 uses. The ACK segment, as sent by a Windows 2000 computer, contains the fol
lowing· fields in the TCP header:

• Destination Port Set to the Source Port of the SYN-ACK segment.

• Source Port Set to the local TCP port number of the active OPEN on TCP
Peer 1 as indicated by the Destination Port number of the SYN-ACK segment.

• Sequence Number Set to ISNl + 1.

• Acknowledgment Number Set to the value of the TCP Peer 2's ISN plus 1
(ISN2 + 1). The SYN flag occupies a single octet of the sequence space of TCP
Peer 2. The acknowledgment number is the next octet in the byte stream that
TCP Peer 1 expects to receive. If the SYN flag is acting as a single octet of non
data, the next octet that TCP Peer l expects to receive is actual data, and must
therefore begin with ISN2 + 1.

• ACK Flag Indicates that the Acknowledgment Number field is significant.

• Window Set to an application-specified value, or the value of an integral
number of MSS-sized segments, according to an operating system default value.
This value indicates an initial value for the size of TCP Peer l's receive buffer
(n*MSS in Figure 12-2). For Windows 2000 TCP/IP hosts using Ethernet, the de
fault receive-window size is 17,520 octets, or 12 MSS segments (at 1460 octets).

The following Network Monitor trace (Capture 12-01, included in the \Captures folder
on the companion CD-ROM) shows an ACK segment for an FTP session (continued from
the previous SYN-ACK segment):

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x28EB; Proto = TCP; Len: 40

TCP: .A , len: 0, seq:3928116525-3928116525, ack:l035688769,
win:17520, src: 1162 dst: 21 CFTP)

TCP: Source Port = 0x048A
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 3928116525 (0xEA224D2D)
TCP: Acknowledgement Number = 1035688769 (0x3DBB5B41)
TCP: Data Offset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : .A

TCP: .. 0 = No urgent data
TCP: ... 1. ... = Acknowledgement field significant
TCP: 0... No Push function
TCP: 0.. No Reset
TCP: 0. No Synchronize
TCP: 0 No Fin

TCP: Window = 17520 C0x4470)
TCP: Checksum = 0x1496
TCP: Urgent Pointer = 0 (0x0)

Chapter 1.2 Transmission Control Protocol (TCP) Connections I 265

Result of TCP Connection Establishment Process
The results of the TCP connection establishment process are that:

• Each TCP peer knows the sequence number of the first octet of data to be sent
on the connection (TCP Peer l's Acknowledgment Number field is set to TCP
Peer 2's Sequence Number field; TCP Peer 2's Acknowledgment Number field
is set to TCP Peer l's Sequence Number field).

• Each TCP peer knows the MSS that can be sent on the connection. The
connection's MSS is the minimum of the two MSSs advertised by TCP Peer 1
and TCP Peer 2. Path Maximum Transmission Unit (PMTU) discovery adjusts
the initial MSS for the duration of connection. For more information on PMTU
discovery, see Chapter 7, "Internet Control Message Protocol (ICMP)."

• Each TCP peer knows the size of the other peer's receive buffer (the window
size) indicating the maximum amount of data that can be sent without waiting
for an ACK and updated window size. Although a large amount of data can be
sent, TCP peers use the slow start and congestion avoidance algorithms to
slowly scale the amount of data sent to avoid congesting the internetwork.

• Each TCP peer is aware that the other peer is capable of receiving SACKs using
the SACK TCP option. For more information on SACK, see Chapter 13, "Trans
mission Control Protocol (TCP) Data Flow."

Microsoft Windows 2000 Registry Settings for TCP Connections

The TCP connection establishment process is controlled by the following Windows 2000
registry settings:

TcpMaxConnectRetransmissions
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Data type: REG_DWORD
Valid range: 0-255

Default value: 2
Present by default: No

TcpMaxConnectRetransmissions sets how many SYN segment retransmissions are sent
when attempting to establish a TCP connection. The retransmission time-out is doubled
between each retransmission. With the initial retransmission time-out of 3 seconds and
the default value of TcpMaxConnectRetransmissions of 2, it takes 21 seconds to time out
a TCP connection attempt (initial SYN, wait 3 seconds, first retransmitted SYN, wait 6
seconds, second transmitted SYN, wait 12 seconds).

The following summary of a Network Monitor trace (Capture 12-02, included in the
\Captures folder on the companion CD-ROM) shows this behavior:

1 0.000 TCP_Peer_l Intel 123456 TCP S., len: 0, seq: 748701-748704, ack: 0
2 2. 923 TCP _Peer _l Intel 123456
3 6.009 TCP_Peer_l Intel 123456

TCP S., len: 0, seq: 748701-748704, ack: 0
TCP S., len: 0, seq: 748701-748704, ack:0

266 I PJUU m Transport Layer Protocols

This summary trace displays the elapsed time between successive frames.

TcpNumConnections
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Valid range: 0-0xFFFFFE
Default value: 0xFFFFFE
Present by default: No

TcpNumConnections sets the maximum number of TCP connections that can be open.
By default, 16,777,214 (OxFFFFFE) connections can be open.

TCP Half-Open Connections
A TCP half-open connection is a TCP connection that has not completed the connection
establishment process. A SYN segment has been received and an SYN-ACK has been sent,
but the final ACK has not been received. Until the final ACK is received, data cannot be
sent on the connection. Figure 12-3 illustrates the TCP half-open connection.

TCP Peer 1

Seq=ISN1

TCP Peer 2

SYN, Seq=ISN1, Ack=O, Window=default
MSS option, SACK-Permitted option

~CD----------------

SYN-ACK, Seq=ISN2, Ack=ISN1+1, Window=n*MSS
MSS option, SACK-Permitted option

---------------@-

(Retran"smission)
SYN-ACK, Seq=ISN2, Ack=ISN1+1, Window=n*MSS

MSS option, SACK-Permitted option
---------------@-

Seq=ISN2,
Ack=ISN1+1

Figure 12-3. A TCP half-open connection showing the SYN segment and retransmissions of
the SYN-ACK segment.

While the SYN-ACK segment contains no data, the SYN flag occupies a single byte of the
sequence space and is treated as data. Therefore, TCP retransmission and time-out be
haviors used for recovering from lost data are used to recover from a lost SYN-ACK seg
ment. In the case of retransmitting an SYN-ACK segment, the default time-out is 3 seconds
and the SYN-ACK is retransmitted twice by default. Therefore, the first SYN-ACK is sent;
3 seconds later the first retransmission is sent; and 6 seconds later the second retrans
mission is sent. After waiting 12 seconds for a response to the final retransmission, the
connection is abandoned and the memory and the connection's internal table entries are
released. A total of 21 seconds elapse from the time the first SYN-ACK is sent to when
the connection is abandoned.

Chapter :12 Transmission Control Protocol (TCP) Connections I 267

268 I PJUrr m Transport Layer Protocols

Chapter 12 Transmission Control Protocol (TCP) Connections I 269

TcpM$XPortsExhausted ..
Loca:tiorr:' HKEY _LOCAL •• MACFH NE\SYSTEM\CurrentControl Set\Services\ Tep; p\Pa rameters
Data typ.e: REG_DWORO
Valid range: 0-65535
Default value: 5
Present by default: No

TcpMaxPOrtsExhausted sets th~ ·rriaximum number of TCP connection requests that have
been refused before SYN attack protection takes effect.

TCP Connection Maintenance
A TCP connection can be maintained through the periodic exchange of a TCP keepalive
segment. A TCP keepalive segment is an ACK segment containing no data. The Sequence
Number field in the TCP header of the keepalive segment is set to 1 less than the cur
rent sequence number for the outbound data stream. For example, if a TCP peer's next
octet of data is 18745323, the TCP keepalive sent by the TCP peer has the Sequence
Number field set to 18745322.

Upon receiving this ACK segment, the other TCP peer sends back an ACK segment with
the Acknowledgment Number field set to the next octet that it expects to receive. In this
example, the TCP peer sends an ACK segment with the Acknowledgment Number field
set to 18745323. This simple exchange confirms that both TCP peers are still participat
ing in the TCP connection.

Figure 12-4 shows the TCP keepalive.

TCP Peer 1

Seq=CSN1
Ack=CSN2 ACK, Seq=CSN1-1, Ack=CSN2

TCP Peer 2

Seq=CSN2
Ack=CSN1

-CD----------------
ACK,Seq=CSN2,Ack=CSN1

CSN1=Current Sequence Number for TCP Peer 1
CSN2=Current Sequence Number for TCP Peer 2

Figure 12-4. A TCP keepalive showing the sending of an exchange of ACK segments to con
firm both ends of the connection are still present.

Windows 2000 TCP keepalives are disabled by default. If enabled through the use of the
setsockopt() Windows Sockets function, a keepalive segment is sent every 2 hours by de
fault, as controlled by the KeepAliveTime registry setting. Even if enabled, other upper
layer protocols such as NetBIOS send their own keepalive. If the keepalive interval that
the upper layer protocol uses is less than the TCP keepalive interval, TCP keepalives are

270 I PART m Transport Layer Protocols

never sent. For example, NetBIOS sessions over TCP/IP send a NetBIOS keepalive every
60 minutes. Therefore, TCP keepalives enabled for a NetBIOS session are never used.

The following Windows 2000 registry settings control TCP keepalive behavior:

KeepAliveTime
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Valid range: 0-0xFFFFFFFF
Default value: 0x6DDD00 (7,200,000)
Present by default: No

KeepAliveTime sets the number of milliseconds between each TCP keepalive segment if
no data has been sent on the connection and if keepalives have been enabled on the
connection. The default value of 7,200,000 milliseconds corresponds to 2 hours.

KeepAlivelnterval
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Valid range: 0-0xFFFFFFFF
Default value: 0x3E8 (1000)
Present by default: No

KeepAlivelnterval sets the number of milliseconds between successive retransmissions of
the keepalive segment when a response to the initial keepalive is not received. The number
of TCP keepalive retransmissions is controlled by the TcpMaxDataRetransmissions regis
try setting, which has a default value of 5. After sending five TCP keepalive retransmis
sions, the connection is abandoned.

Therefore, with the default values of KeepAliveTime, KeepAlivelnterval, and TcpMaxData
Retransmissions, a TCP connection on which keepalives have been enabled by the
application is abandoned after 2 hours and 6 seconds.

Notice that for keepalives, the exponential backoff behavior between successive retrans
missions is not done. For more information on the retransmission behavior of TCP, see
Chapter 14, "Transmission Control Protocol (TCP) Retransmission and Time-Out."

TCP Connection Termination
Just as the TCP connection establishment process requires the sending of a SYN segment
and its acknowledgment, the TCP connection termination process requires the sending of a
FIN segment, a TCP segment where the FIN (Finish) flag is set, and its acknowledgment. The
FIN segment indicates that the FIN segment sender will send no more data on the connec
tion. Because a TCP connection is made up of two logical pipes (an outbound and inbound
pipe for each TCP peer), both pipes must be closed and the closure must be acknowledged.

Chapter :12 Transmission Control Protocol (TCP) Connections I 271

Figure 12-5 shows a TCP connection termination.

TCP Peer 1

Seq=FSN1

TCP Peer 2

Ack=CSN2

Seq=FSN1+1
Ack=CSN2

Seq=FSN1+1
Ack=CSN2

Seq=FSN1+1
Ack=FSN2+1

Seq=FSN1+1
Ack=FSN2+1

FIN-ACK, Seq=FSN1, Ack,;,,CSN2
-CD-----------------•

ACK,Seq=CSN2,Ack=FSN1+1
4----------------@ -

FIN-ACK, Seq=FSN2, Ack=FSN1+1
4----------------® -

ACK,Seq=FSN1+1,Ack=FSN2+1
-®---------------------

FSN1=Final Sequence Number for TCP Peer 1
FSN2=Final Sequence Number for TCP Peer 2

Seq=CSN2
Ack=FSN1+1

Seq=FSN2
Ack=FSN1+1

Seq=FSN2+1
Ack=FSN1+1

Figure 12-5. A TCP connection termination showing the exchange of four TCP segments.

Typical TCP connection termination processes are the exchange of four TCP segments.

Segment 1
A TCP peer (TCP Peer 1) that wants to terminate outbound data flow sends a TCP seg
ment that contains no data with the following:

• The Sequence Number field set to the current sequence number for outbound
data. When closing the connection, the current sequence number is the final
sequence number for outbound data (FSNl in Figure 12-5).

• The Acknowledgment Number field set to the next byte of inbound data that
the TCP peer expects to receive. This number also corresponds to the current
sequence number of TCP Peer 2 (CSN2 in Figure 12-5).

• The ACK flag is set, indicating that the Acknowledgment Number field is significant.

• The FIN flag is set, indicating that no more data will be sent from this TCP peer
on the connection.

The following Network Monitor trace (Capture 12-03, included in the \Captures folder
on the companion CD-ROM) shows an FIN-ACK segment for an FTP session being closed
by an FTP server:

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xDFF9: Proto =TCP; Len: 40

TCP: .A ... F, len: 0, seq:l035689055-1035689055, ack:3928116597,
win:l7448, src: 21 (FTP) dst: 1162

TCP: Source Port= FTP [control]
TCP: Destination Port = 0x048A
TCP: Sequence Number = 1035689055 (0x3DBB5C5F)

272 I fART m Transport Layer Protocols

Segment 2

TCP: Acknowledgement Number= 3928116597 (0xEA224D75)
TCP: Data Offset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags= 0xll : .A ... F

TCP: .. 0 = No urgent data
TCP: ... 1
TCP: 0 ...
TCP: 0 ..
TCP: 0.

= Acknowledgement field significant
No Push function
No Reset
No Synchronize
No more data from sender

TCP: Window = 17448 (0x4428)
TCP: 1

TCP: Checksum = 0x1377
TCP: Urgent Pointer = 0 (0x0)

Similar to the SYN flag, the FIN flag occupies a byte of the TCP sequence space and there
fore must be acknowledged as if it were a byte of data. Therefore, the TCP peer receiv
ing the FIN-ACK segment (TCP Peer 2) sends an ACK with the following:

• The Sequence Number field set to the current sequence number for outbound
data (CSN2 in Figure 12-5).

• The Acknowledgment Number field set to 1 more than the final sequence num
ber for inbound data on the connection (FSNl + 1).

• The ACK flag is set, indicating that the Acknowledgment Number field is significant.

The following Network Monitor trace (Capture 12-03, included in the \Captures folder on
the companion CD-ROM) shows an ACK segment sent from the FTP client in response
to a FIN-ACK sent by the FTP server:

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x291E; Proto = TCP; Len: 40

TCP: . A , 1 en: 0, seq: 3928116597 -3928116597, ack: 1035689056,
win:17234, src: 1162 dst: 21 (FTP)

TCP: Source Port = 0x048A
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 3928116597 (0xEA224075)
TCP: Acknowledgement Number = 1035689056 (0x3DBB5C60)
TCP: Data Offset = 20 (0xl4)
TCP: Reserved = 0 (0x0000)
TCP: Flags= 0x10: .A

TCP: .. 0 = No urgent data
TCP: ... 1
TCP: 0 ...
TCP: 0 ..
TCP: 0.

= Acknowledgement field significant
No Push function
No Reset
No Synchronize

Chapter :l2 Transmission Control Protocol (TCP) Connections I 273

TCP: 0 = No Fin
TCP: Window = 17234 (0x4352)
TCP: Checksum = 0xl440
TCP: Urgent Pointer = 0 (0x0)

Notice how the acknowledgment number is 1 more (1035689056) than the sequence
number of the previous FIN-ACK (1035689055), explicitly acknowledging the receipt of
the FIN-ACK segment.

Once the FIN is acknowledged, the TCP peer that sent the initial FIN-ACK segment can
not send data (TCP Peer 1). However, only one logical pipe has been terminated. The
inbound data pipe for TCP Peer 1 is still open and data can still flow and be acknowl
edged with ACK segments that contain no data.

Segment 3
If the TCP peer with the open outbound data pipe (TCP Peer 2) still has data to send,
data can be sent and acknowledged by TCP Peer 1. This is known as a TCP half-close.
An example of a TCP half-close is when a client application sends the FIN-ACK segment
and the server application still has data to send to the client before it can terminate its
side of the connection.

Once all outstanding data from TCP Peer 2 is sent and acknowledged, TCP Peer 2 can close
its outbound logical pipe to TCP Peer 1. TCP Peer 2 sends a segment with the following:

• The Sequence Number field set to the current sequence number for outbound
data. When closing the connection, the current sequence number is the final
sequence number for outbound data (FSN2 in Figure 12-5).

• The Acknowledgment Number field set to the next byte of inbound data that
the TCP peer expects to receive. In this case, the acknowledgment number is
the same as that acknowledged in Segment 2 (FSNl + 1).

• The ACK flag is set, indicating that the Acknowledgment Number field is significant.

• The FIN flag is set, indicating that no more data will be sent from this TCP peer
on the connection.

The following Network Monitor trace (Capture 12-03, included in the \Captures folder
on the companion CD-ROM) shows a FIN-ACK segment for the FTP client closing its
outbound pipe:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x291F; Proto = TCP; Len: 40

TCP: .A ... F, len: 0, seq:3928116597-3928116597, ack:1035689056,
win:17234, src: 1162 dst: 21 (FTP)

TCP: Source Port = 0x048A
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 3928116597 (0xEA224D75)

27 4 I PART m Transport Layer Protocols

Segment 4

TCP: Acknowledgement Number = 1035689056 (0x3DBB5C60)
TCP: Data Offset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0xll : .A ... F

TCP: .. 0 = No urgent data
TCP: ... 1
TCP: 0 ...
TCP: 0 ..
TCP: 0.

= Acknowledgement field significant
No Push function
No Reset
No Synchronize
No more data from sender

TCP: Window = 17234 (0x4352)
TCP: 1

TCP: Checksum = 0x144C
TCP: Urgent Pointer = 0 (0x0)

As in Segment 2, the FIN flag occupies a byte of the TCP sequence space and therefore
must be acknowledged as a byte of data is acknowledged. Therefore, the TCP peer re
ceiving the FIN-ACK segment (TCP Peer 1) sends an.ACK with the following:

• The Sequence Number field set to the current sequence number for outbound
data (FSNl + 1).

• The Acknowledgment Number field set to 1 more than the final sequence num
ber for inbound data on the connection (FSN2 + 1).

• The ACK flag is set, indicating that the Acknowledgment Number field is significant.

The following Network Monitor trace (Capture 12-03, included in the \Captures folder
on the companion CD-ROM) shows an ACK segment that the FTP server sent in response
to a FIN-ACK sent by the FTP client:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xDFFA; Proto = TCP; Len: 40

TCP: .A , len: 0, seq:1035689056-1035689056, ack:3928116598,
win:17448, src: 21 (FTP) dst: 1162

TCP: Source Port= FTP [control]
TCP: Destination Port = 0x048A
TCP: Sequence Number = 1035689056 (0x3DBB5C60)
TCP: Acknowledgement Number = 3928116598 (0xEA224D76)
TCP: Data Offset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : .A

TCP: .. 0 = No urgent data
TCP: ... 1 =Acknowledgement field significant
TCP: 0... No Push function
TCP: 0 .. =No Reset

Chapter 12 Transmission Control Protocol (TCP) Connections I 275

TCP: 0. = No Synchronize
TCP: 0 =No Fin

TCP: Window = 17448 (0x4428)
TCP: Checksum = 0x1376
TCP: Urgent Pointer = 0 (0x0)

Notice how the acknowledgment number is 1 more (3928116598) than the sequence
number of the previous FIN-ACK (3928116597), explicitly acknowledging the receipt of
the FIN-ACK segment.

TCP Peer 2's outbound pipe is terminated when the ACK segment is received. The TCP
connection, with both logical pipes gracefully terminated, is closed.

Note TCP connection terminations do not have to use four segments. In some
cases, segments 2 and 3 are combined. The result is a FIN-ACK/FIN-ACK/ ACK
sequence.

TCP Connection Reset
The TCP connection termination process is for the graceful, mutually agreed closure of
both pipes of a TCP connection. Both TCP peers exchange FIN segments that are acknowl
edged explicitly, indicating that all data on the outbound pipe has been sent and acknowl
edged. Another way to terminate a TCP connection is through a TCP connection reset-a
TCP segment with the RST (Reset) flag set.

A TCP connection reset is sent when a parameter problem exists in the TCP header of
an inbound TCP segment that cannot be reconciled. For example, an improper source
or destination IP address or TCP port number could cause an established connection to
be aborted.

Aborting an established TCP connection through a TCP reset also can be intentionally
done through Windows Sockets. However, aborting a TCP connection will cause all TCP
data that is in transit, or in buffers waiting to be sent, to be discarded.

A TCP connection reset is used also to reject a TCP connection attempt in response to
the receipt of a SYN segment. The most common reason a TCP peer denies a connec
tion attempt with a connection reset is that the destination port in the SYN segment does
not correspond to an Application Layer process running at the recipient of the SYN seg
ment. Connection attempts also can be denied when the maximum allowed TCP con
nections is reached. Figure 12-6 shows a TCP connection reset.

Note When a User Datagram Protocol (UDP) message arrives to a destination
port that does not correspond to an Application Layer process, an Internet Con
trol Message Protocol (ICMP) Destination Unreachable-Port Unreachable message
is sent to the sender of the UDP message.

276 I PART m Transport Layer Protocols

TCP Peer 1

Seq=ISN1

TCP Peer 2

SYN, Seq=ISN1, Ack=O, Window=default
MSS option, SACK-Permitted option

-CD----~--------------
ACK, RST, Seq=O, ACK=ISN1+1, Window=O

---------------~~

Seq=O
Ack=ISN1+1

Figure 12-6. A TCP connection reset showing the SYN and RST segments.

The following Network Monitor trace (Capture 12-04, included in the \Captures folder
on the companion CD-ROM) shows the sequence of packets sent between a host run
ning an FTP client and a host that is not an FTP server. Frame 1 is an SYN segment to
the FTP control port; Frame 2 is the connection reset.

Frame 1
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x2927; Proto = TCP; Len: 48

TCP: S .• len: 0, seq:4065871748-4065871748, ack: 0, win:16384, src: 1164
d st : 21 (FTP)

TCP: Source Port = 0x048C
TCP: Destination Port= FTP [control]
TCP: Sequence Number = 4065871748 (0xF2584784)
TCP: Acknowledgement Number = 0 (0x0)
TCP: Data Offset = 28 (0x1C)
TCP: Reserved = 0 (0x0000)
TCP: Flags= 0x02 S.

TCP: .. 0..... No urgent data
TCP: ... 0.... Acknowledgement field not significant
TCP: 0... No Push function
TCP: 0.. No Reset
TCP: 1. Synchronize sequence numbers
TCP: 0 No Fin

TCP: Window = 16384 (0x4000)
TCP: Checksum = 0x82BE
TCP: Urgent Pointer = 0 (0x0)

+ TCP: Options

Frame 2
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xE18A; Proto = TCP: Len: 40

TCP: .A.R ... len: 0, seq: 0-0, ack:4065871749, win: 0, src: 21 (FTP) dst: 1164
TCP: Source Port= FTP [control]
TCP: Destination Port = 0x048C
TCP: Sequence Number = 0 (0x0)

Chapter 12 Transmission Control Protocol (TCP) Connections I 277

TCP: Acknowledgement Number = 4065871749 (0xF2584785)
TCP: Data Offset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x14 .A. R ..

TCP: .. 0..... No urgent data
TCP: ... 1.... Acknowledgement field significant
TCP: 0 ... No Push function
TCP: 1 .. Reset the connection
TCP: 0. No Synchronize
TCP: 0 No Fin

TCP: Window = 0 (0x0)
TCP: Checksum = 0xEF6E
TCP: Urgent Pointer = 0 (0x0)

In the connection reset segment:

• The RST and ACK flags are set.

• The sequence number is 0.

• The acknowledgment number is 1 more than the sequence number of the SYN
segment (ISNl + 1). As in the SYN-ACK segment of a connection establishment
process, the SYN flag occupies a byte of sequence space and is explicitly
acknowledged as if it were a byte of data.

• The window size is 0.

Upon receipt of a connection reset, the initiating peer can either try again (in practice,
three attempts are made) or abandon the connection attempt. For the Windows 2000 FTP
utility, the error message "Connection Was Refused" is displayed.

TCP Connection States
A TCP connection exists in one of the following states, as listed in Table 12-1.

Table 12-1. TCP Connection States

State

CLOSED

LISTEN

SYN SENT

SYN RCVD

ESTABLISHED

(continued)

Description

No TCP connection exists.

An Application Layer protocol has issued a passive open and is willing to
accept TCP connection attempts.

An Application Layer protocol has issued an active open and a SYN
segment is sent.

A SYN segment is received and a SYN-ACK is sent.

The final ACK for the TCP connection establishment process is sent and
received. Data can now be transferred in both directions.

278 I PART m Transport Layer Protocols

Table 12-1. (continued)

State

FIN WAIT-1

FIN WAIT-2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

Description

The initial FIN-ACK segment to close one side of the connection is sent.

The ACK in response to the initial FIN-ACK is received.

A FIN-ACK is received but the ACK is not for the FIN-ACK sent. This is
known as a simultaneous close, when both TCP peers send FIN-ACKs at the
same time.

FIN-ACKs have been sent and acknowledged by both TCP peers and the
TCP connection termination process is completed. Once the TIME WAIT
state is reached, TCP must wait twice the maximum segment lifetime (MSL)
before the connection's TCP port number can be reused. The MSL is the
maximum amount of time a TCP segment can exist in an internetwork, and
its recommended value is 240 seconds. This delay prevents a new
connection's TCP segments using the same port numbers from being con
fused with duplicated TCP segments of the old connection.

A FIN-ACK has been received and a FIN-ACK has been sent.

The ACK in response to the FIN-ACK has been received.

Figure 12-7 shows the states of a TCP connection.

The connection states that a TCP peer goes through depend on whether the TCP peer is
the initiator of the TCP connection establishment or the initiator of the TCP connection
termination.

CLOSED}~~~~~~~~~~~~~~~--,

Passive Open i j Passive Close Active Open

I I s:SYN
r:SY~ LISTEN

I SYN RCVD I• r:SYN/s:SYN+ACK I SYN SENT I -.
/. ~ ~YN-ACK/s:ACK

........ /~IEST:;~:H;~FIN/s:ACK. •I lCLOr::
~------'"-----, r·FIN/s·ACK ' LAST-ACK l _.. I FIN WAIT-1 I · · I CLOSING I : I r:ACK

r:ACK (ofFIN) l r:ACK (of FIN) , ~ - -p~~~I~~ Cl~~~-_ (qf_f3t-JJ

~F-IN-W~A~IT---2~ r:FIN/s:ACK [TIME WAIT }

Figure 12-7. Tbe states of a TCP connection.

Figure 12-8 shows the connection states of two TCP peers during the connection estab
lishment process.

Chapter 12 Transmission Control Protocol (TCP) Connections I 279

Connection initiator TCP peer

CLOSED

SYN SENT

t---- SYN ____ LISTEN

SYN RCVD

ESTABLISHED

Figure 12-8. The states of a TCP connection during TCP connection establishment.

Figure 12-9 shows the connection states of two TCP peers during the connection termi
nation process.

Termination initiator

ESTABLISHED

FIN WAIT-1

FIN WAIT-2

TIME WAIT

(after 2*MSL)

CLOSED

TCP peer

ESTABLISHED

CLOSE WAIT

Figure 12-9. The states of a TCP connection during TCP connection termination.

Controlling TCP Connection Terminations in Microsoft Windows 2000
The TIME WAIT state is used to delay the re-use of the same parameters for a TCP connec
tion, ensuring that duplicates of the old connection's TCP segments in transit are not confused
with a new connection's TCP segments. The RFC 793 recommended value for the MSL is 2 min
utes. Therefore, the time that the TCP connection is in the TIME WAIT state is 4 minutes (2*MSL).

TCP connections in the TIME WAIT state are controlled by the following Windows 2000
registry settings:

TcplimedWaitDelay
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Valid range: 30-300
Default value: 0xF0 (240)
Present by default: No

The value of TcpTimedWaitDelay is the number of seconds that a TCP connection remains
in the TIME WAIT state. The default is the RFC 793 recommended value of 240 seconds
(4 minutes).

280 I PART m Transport Layer Protocols

MaxFreeTWTcbs

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Val id range: 1-0xFFFFFFFF
Default value: 0x3E8 (1000)
Present by default: No

The value of the MaxFreeTWTcbs is the number of TCP connections allowed in the TIME
WAIT state. If the number of TCP connections in the TIME WAIT state exceeds this value,
the oldest TCP connection is immediately released.

The default values for TcpTimedWaitDelay and MaxFreeTWTcbs work well for many sit
uations. However, for some that require the opening and closing of many outbound con
nections in a short amount of time, the large delay before a TCP port number can be
re-used can result in the use of all possible TCP ports. Once this state of full capacity is
reached, new TCP connections cannot be made until existing TCP connections go from
the TIME WAIT state to the CLOSED state.

There are three methods that can prevent this problem from occurring:

1. Set the value of TcpTimedWaitDelay to a lower value to free TCP port numbers
more quickly. The TcpTimedWaitDelay can be set as low as 30 seconds.

2. Set the value of MaxFreeTWTcbs to a lower value to force the freeing of TCP
connections in the TIME WAIT state more quickly.

3. Set the value of MaxUserPort to a higher value. MaxUserPort specifies the
maximum port number that can be used when an application requests an
available port using Windows Sockets. The default value of MaxUserPort is
5000. Dynamically allocated ports start at 1024. Therefore, with the default set
ting of 5000, only 3977 dynamic TCP ports are available. In a high-traffic, high
use environment such as a proxy server on the Internet, it is possible to have
3977 TCP ports in either an established or TIME WAIT state. Setting this value
higher allows more TCP ports to be in use simultaneously.

Summary
TCP connections are created through the TCP connection establishment process, where
two TCP peers exchange SYN segments and determine starting sequence numbers, win
dow sizes, maximum segment sizes, and other TCP options. TCP connections can be
maintained through the exchange of periodic keepalive segments, although this is not
commonly done. To terminate a TCP connection, each TCP peer must send a FIN seg
ment and have it acknowledged. A TCP connection reset segment is used to either abort
a current connection or refuse a connection attempt.

r
Transmission Control
Protocol {TCP) Data Flow

281

TCP data flow provides reliable data transfer through the sequencing of outbound data
and the acknowledgment of inbound data. Along with reliability, TCP data transfer
includes behaviors to prevent inefficient use of the network and provide sender and
receiver-side flow control.

Basic TCP Data Flow Behavior
The following mechanisms govern TCP data flow, whether for interactive traffic, such as
Telnet sessions, or for bulk data transfer, such as the downloading of a large file with the
File Transfer Protocol (FTP):

• Acknowledgments TCP acknowledgments are delayed and cumulative for
contiguous data, and selective for non-contiguous data.

• Sliding send and receive windows A send window for the sender and a
receive window for the receiver control the amount of data that can be sent.
Send and receive windows provide receiver-side flow control. As data is sent
and acknowledged, the send and receive windows slide along the sequence
space of the sender's byte stream.

• Avoidance of small segments Small segments-TCP segments that aren't at
the TCP maximum segment size (MSS)-are allowed, but are governed to
avoid inefficient internetwork use.

• Sender-side flow control While TCP sliding windows provide a way for the
receiver to determine flow control, the sender also uses flow control algo
rithms to avoid sending too much data and congesting the internetwork.

TCP Acknowledgments
A TCP acknowledgment (ACK) is a TCP segment with the ACK flag set. In an ACK, the
Acknowledgment Number field indicates the next byte in the contiguous byte stream that
the ACK's sender expects to receive. Additionally, if the TCP Selective ACK (SACK) op
tion is present, the ACK indicates up to four blocks of non-contiguous data received.

282 I PART m Transport Layer Protocols

Delayed Acknowledgments
When a TCP peer receives a segment, the acknowledgment for the segment (either cu
mulative or selective) isn't sent immediately. The TCP peer delays the sending of the ACK
segment for the following reasons:

• If, during the delay, additional TCP segments are received, a single ACK seg
ment can acknowledge the receipt of multiple TCP segments.

• For full-duplex data flow, delaying the ACK makes it possible for the ACK
segment to contain data. This is known as piggybacking the data on the ACK,
or piggyback ACKs. If the incoming TCP segment contains data that requires a
response from the receiver, the response can be sent along with the ACK. This
is common for Telnet traffic where each keystroke of the Telnet client is sent to
the Telnet server process. The received Telnet keystroke must be echoed back
to the Telnet client. Rather than sending an ACK for the keystroke received and
then sending the echoed keystroke, a single TCP segment containing the ACK
and the echoed keystroke is sent.

• TCP has the time to perform general connection maintenance. The Application
Layer protocol has additional time to retrieve data from the TCP receive buffer
and an updated window size can be sent with ACK.

RFC 1122 states that the acknowledgment delay shouldn't be any longer than 0.5 seconds.
By default, TCP /IP for Windows 2000 uses an acknowledgment delay of 200 milliseconds
(0.2 seconds), which can be configured per interface by the TcpDelAckTicks registry setting.

TcpDelAckTicks

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
Interfaces\InterfaceName
Data type: REG_DWORD
Valid range: 0-6
Default value: 2
Present by defauit: No

TcpDelAckTicks sets the delayed acknowledgment timer (in 100-millisecond intervals) of
an interface. The default value of 2 is for a 200-millisecond delayed acknowledgment timer.
A value of 0 disables delayed acknowledgments; an ACK is sent immediately for each
segment received that contains data.

Cumulative for Contiguous Data
As originally defined in RFC 793, the TCP acknowledgment scheme is a cumulative ac
knowledgment scheme. The presence of the ACK flag and the value of the Acknowledg
ment Number field explicitly acknowledge all bytes in the received byte stream from the
Initial Sequence Number (ISN) + 1 (the first byte of data sent on the connection), up to
but not including the number in the Acknowledgment Number field (Acknowledgment
Number - 1). Figure 13-1 illustrates the cumulative acknowledgment scheme of TCP.

Chapter :13 Transmission Control Protocol (TCP) Data Flow I 283

Implied acknowledgment of all bytes fr.om ISN+1 to I

. Acknowledgment Number-1 :

I I I I I j I ... Byte stream

t t
ISN+1 Acknowledgment

Number

Figure 13-1. The cumulative acknowledgment scheme of TCP.

An ACK with a new Acknowledgment Number field is sent when a TCP segment is received
containing data that's contiguous with previous data received. TCP segments received that
aren't contiguous with the previous segments received aren't acknowledged. Only when the
missing segments are retransmitted and received, creating a contiguous block of one or more
TCP segments, is an ACK segment sent with the new Acknowledgment Number field.

While the original cumulative acknowledgment scheme for TCP works well and provides
reliable data transfer, in high-loss environments this relatively simple acknowledgment
scheme can slow throughput and use additional network bandwidth.

For example, a TCP peer sends six TCP segments. If the first of the six segments is dropped
and the last five segments arrive, no ACK for the five received segments is sent. With
normal TCP retransmission behavior, after the retransmission time-out, the sending TCP
peer begins to retransmit all six segments. When the retransmission of the first TCP seg
ment arrives, the receiving TCP peer sends an ACK segment confirming receipt of all six
segments. While the dropped first segment has been successfully recovered, TCP has
needlessly sent duplicates of segments that have successfully ·arrived.

Selective for Non-Contiguous Data
With SACK, the Acknowledgment Number field still indicates the last contiguous byte
received, but the TCP SACK option can acknowledge non-contiguous received segments.
With the SACK option, the left and right edges of the blocks of non-contiguous data
received are explicitly acknowledged, preventing their needless retransmission. Figure 13-
2 illustrates TCP's SACK scheme.

Implied acknowledgment of all bytes from
ISN+1 to Acknowledgment Number-1

t t

Selective acknowledgment of
non-contiguous blocks of received data

I

SACK block 1 SACK block 2

ISN+1
Acknowledgment Number

Figure 13-2. The selective acknowledgment (SACK) scheme of TCP.

284 I PART m Transport Layer Protocols

Using the previous example, if six TCP segments are sent and the first TCP segment is
dropped, the receiving TCP peer sends an ACK segment with the following settings: the
Acknowledgment Number field set to the first byte of the missing TCP segment, and the
SACK option set with the left and right edge of the block consisting of the second to the
sixth received TCP segments. Upon receipt of the ACK with the SACK option, the sender
marks the selectively acknowledged TCP segments and doesn't retransmit them. The
sending TCP peer retransmits the first TCP segment after its retransmission time-out. Upon
receipt, the receiving TCP peer sends an ACK segment with the Acknowledgment Num
ber field set to the first octet past the sixth TCP segment.

SACK is especially important for the recovery of data on a TCP connection with a large
window size. The previous example has a window size of six segments. Imagine a high
bandwidth, high-delay link such as a satellite channel with a window size of 200 seg
ments. The sender will transmit 200 segments at a time. If cumulative acknowledgments
are used, and the first segment is dropped, the sender will needlessly retransmit many
of the successfully received segments before the dropped segment is recovered. With
SACK, no needless retransmissions of successfully received segments occur.

TCP Sliding Windows
To govern the amount of data that can be sent at any one time and to provide receiver
side flow control, data transfer between TCP peers is performed using a window. The
window is the span of data on the byte stream that the receiver permits the sender to
send. The sender can send only the bytes of the byte stream that lie within the window.
New data can be sent only with the receiver's permission. The window slides along the
sender's outbound byte stream and the receiver's inbound byte stream.

The Acknowledgment Number and Window fields' values in ACKs that the receiver sends
determine the actual bytes within the window. The Acknowledgment Number field in
dicates the next byte of data that the receiver expects to receive. The Window field in
dicates the amount of space left in a receive buffer to store incoming TCP data on this
connection. The span of data within the window is from Acknowledgment Number
through the value of (Acknowledgment Number+ Window - 1).

For a given logical pipe-one direction of the full duplex TCP connection-the sender
maintains a send window and the receiver maintains a receive window. When there's no
data or ACK segments in transit, a logical pipe's send window and receive window are
matched. In other words, the span of data that the sender is permitted to send is matched
to the span of data that the receiver is able to receive.

Send Window
To maintain the send window, the sender must account for the bytes in the outbound
byte stream that have been:

• Sent and acknowledged (Sent/ ACKed)

Chapter :13 Transmission Control Protocol (TCP) Data Flow I 285

• Sent but not acknowledged (Sent/UnACKed)

• Unsent but fit within the current send window (Unsent/Inside)

• Unsent but lie beyond the current send window (Unsent/Outside)

Figure 13-3 illustrates the types of data that exist for the send window.

SentjACKed

t
ISN+1

--------- Window

SentjUnACKed Unsent; Inside Unsent; Outside

/ s~.NXT ~ck~indow
Ack+Window-1 SND.NXT-1

Figure 13-3. The types of data for the TCP send window.

The span of data that lies within the send window is the Sent/UnACKed and Unsent/
Inside data.

Sent/ ACKed Data

Sent/ ACKed data is data that's been sent and acknowledged as received. The first byte
of Sent/ ACKed data is the value of (ISN + 1). Recall from the TCP connection establish
ment process that the TCP peer chooses an ISN that's explicitly acknowledged as if it were
a data byte. Therefore, the first byte of user data sent on the connection is ISN + 1. Re
call also that the acknowledgment number is the next byte of data the receiver expects
to receive, explicitly acknowledging all bytes received up to but not including the ac
knowledgment number. Therefore, the last byte of ACKed data is the value of (Acknowl
edgment Number - 1).

SentjUnACKed Data

Sent/UnACKed data is data that's been sent but for which no acknowledgments have been
received. The Sent/UnACKed data is either in transit, dropped from the internetwork, has
arrived at the receiver but no acknowledgment has been sent (because of delayed ac
knowledgments), or the ACK for the Sent/UnACKed data's in transit.

To distinguish Sent/UnACKed data from Unsent/Inside data, TCP maintains a variable
known as SND.NXT, which is the value of the next byte to be sent. The value of SND.NXT
becomes the Sequence Number field of the next TCP segment sent.

The first byte of Sent/UnACKed data is the Acknowledgment Number field's value of the
last ACK segment received from the receiver. The last byte of Sent/UnACKed data is the
value of (SND.NXT - 1).

286 I PART m Transport Layer Protocols

Unsentjlnside Data

Unsent/Inside data is data that's not yet been sent but is within the current send window.
Unsent/Inside data can be sent because the receiver has permitted it. It's natural to assume
that if the data has been permitted, the sender will send all data within the send window
before waiting for an acknowledgment and an updated window size from the receiver. In
other words, there's no Unsent/Inside data when waiting for an acknowledgment.

However, as will be discussed later in this chapter, when starting the initial data flow and
when encountering congestion, the sender-side flow control mechanisms of slow start and
congestion avoidance prevent the sender from sending all the data that falls within the
receiver's send window. In such cases, these mechanisms govern the amount of data sent
before waiting for an acknowledgment.

The first byte of Unsent/Inside data is the value of the SND.NXT variable. The last byte
of Unsent/Inside data is the last byte of data within the send window, the value of (Ac
knowledgment Number+ Window - 1).

Unsent;Outside

Unsent/Outside data is data that's unsent and outside the current send window and rep
resents future data that will be sent. Unsent/Outside data relative to the current send win
dow should never be sent because it falls outside the receive window. The receiver's
receive window is a direct reflection of buffer space remaining to store incoming data.
The receiver discards data that can't be stored in the receive buffer for the connection,
and sends an ACK segment with the current acknowledgment number. The first byte of
Unsent/Outside data is the value of (Acknowledgment Number+ Window).

Sliding the Send Window

The send window has a left edge (defined by the boundary between Sent/ ACKed and Sent/
UnACKed data) and a right edge (defined by the boundary between Unsent/Inside and
Unsent/Outside data). When an ACK is received with a higher acknowledgment number, the
send window closes and the left edge advances to the right. When an ACK is received where
the sum of the (Acknowledgment Number + Window) is a greater value than the previous
sum of the (Acknowledgment Number+ Window), the send window opens and the right
edge advances to the right. The sum of the (Acknowledgment Number + Window) fields in
an ACK is the acknowledgment number of the ACK for the last TCP segment that will fit within
the current send window. Figure 13-4 illustrates the sliding of the send window.

Closing the window

SentjACKed Sent;unACKed Unsent; Inside

Window

Opening the window

Unsent; Outside

Figure 13-4. The sliding of the send window showing window closing and opening.

Chapter :13 Transmission Control Protocol (TCP) Data Flow I 287

It's possible for the send window to close but not open-for the left edge of the send
window to advance while the right edge doesn't. For example, the sender receives an
ACK with an increased acknowledgment number but a decreased window, such that the
sum of the (Acknowledgment Number+ Window) doesn't change. This can happen when
the receiver receives the data, which is acknowledged, but the received data hasn't been
passed to the Application Layer protocol on the receiver. Therefore, the value of the
Acknowledgment Number field in the ACK increases because of the contiguous data
arriving, but the window decreases by the same amount, keeping the sum of the
(Acknowledgment Number+ Window) the same.

Zero Send Window

When the receiver advertises a window size of zero, the left and right edges of the send
window are at the same boundary-the boundary between Sent/ ACKed data and Unsent/
Outside data. A zero window size can occur when the receiver's receive buffer fills with
acknowledged data but the data hasn't yet been retrieved by the Application Layer pro
tocol. This can happen when TCP hasn't yet indicated the data to the Application Layer
protocol or when the Application Layer protocol hasn't explicitly informed TCP that it's
ready to receive the next block of data from the TCP receive buffer.

With a zero send window, no new data can be sent until an ACK with a non-zero win
dow size is received. However, because no new data is sent, the receiver isn't sending
any new ACKs. This can produce a deadlock situation where the sender waits to receive
a new window size and the receiver doesn't send a new window size because there are
no new ACKs to send. Consequently, receiver and sender behaviors are defined to pre
vent the deadlock.

When the data in the TCP receive buffer is passed to the Application Layer protocol, the
receiver sends an ACK segment with the current acknowledgment number and new non
zero window size. However, this segment is an ACK containing no data. ACK segments
without data aren't sent reliably; the receiver doesn't acknowledge them, nor does the
sender retransmit the ACK segments when it doesn't receive acknowledgment of those
segments' receipt. Therefore, if an ACK sent by the sender to update the window size is
lost, the sender would have no notification that new data can be sent. The TCP connec
tion is indefinitely deadlocked; the receiver has informed the sender that new data can
be sent, but the sender still considers the window size to be zero.

To prevent the deadlock of the dropped ACK that the receiver sent, the sender periodi
cally sends a TCP segment containing 1 byte of new data for the connection. Because
the data byte is Unsent/Outside data, the receiver discards the data and sends an ACK
with the current acknowledgment number and window size. This sender-side mechanism
is known as probing the window. The first window probe is sent after the current retrans
mission time-out, and the interval for successive probes is determined by doubling the
timeout for the previous probe.

288 I PART m Transport Layer Protocols

Receive Window
To maintain the receive window, the receiver must account for the bytes in the inbound
byte stream that have been:

• Received, acknowledged, and retrieved by the Application Layer protocol
(Rcvd/ ACKed/Retr)

• Received, acknowledged, and not retrieved by the Application Layer protocol
(Rcvd/ ACKed/N otRetr)

• Received, but not acknowledged (Rcvd/UnACKed)

• Not received, but inside the current receive window (NotRcvd/Inside)

• Not received, but outside the current receive window (NotRcvd/Outside)

Figure 13-5 illustrates the types of data that exist for the receive window.

Maximum receive window ~
1111 Current receive window

t t /"- I~
ISN+1 RCV.USER-1 RCV.USER Ack-1 Ack RCV.NXT-1 RCV.NEXT Ack+Window-1

Figure 13-5. The types of data for the TCP receive window.

The span of data that lies within the maximum receive window is Rcvd/ ACKed/NotRetr,
Rcvd/UnACKed, and NotRcvd/Inside. The span of data that lies within the current receive
window is Rcvd/UnACKed and NotRcvd/Inside.

Notice the difference between the maximum receive window and the current receive win
dow. The maximum receive window is a fixed size and corresponds to a receive buffer used
to store inbound TCP segments. The current receive window is of variable size and is the
amount of space that's left in the receive buffer to store inbound TCP segments. The current
receive window's size is the value of the Window field advertised in ACKs sent back to the
sender, and is the difference between maximum-receive window size and the amount of data
that's been received and acknowledged but not passed to the Application Layer protocol.

Rcvd/ ACKed/Retr Data

Rcvd/ ACKed/Retr data is data that's been received, acknowledged, and retrieved by the Appli
cation Layer protocol. The first byte of Rcvd/ ACKed/Retr data is the value of (ISN + 1). To track
the next byte to be passed to the Application Layer protocol, TCP maintains a variable called
RCV. USER. Therefore, the last byte of Rcvd/ ACKed/Retr data is the value of (RCV. USER - 1).

Rcvd/ ACKed/NotRetr Data

Rcvd/ ACKed/NotRetr data is data that's been received and acknowledged but hasn't been
passed up to the Application Layer protocol. This category of data is the difference be-

Ch<%pter 13 Transmission Control Protocol (TCP) Data Flow I 289

tween the fixed-size maximum receive window and the variable-size current receive
window. The first byte of Rcvd/ ACKed/NotRetr data is the value of RCV. USER. The last
byte of Rcvd/ ACKed/NotRetr data is the current (Acknowledgment Number - 1).

Rcvd/UnACKed Data

Rcvd/UnACKed data is data that's been received but not acknowledged. To keep track
of the next contiguous byte to be received, TCP maintains a variable called RCV.NEXT.
When an ACK segment is sent, the ACK segment's Acknowledgment Number field is set
to the value of RCV.NEXT. The first byte of Rcvd/UnACKed data is the current acknowl
edgment number. The last byte of Rcvd/UnACKed data is the value of (RCV.NEXT - 1).

If there are no TCP segments in transit and the receiver hasn't yet sent the ACK for TCP
segments received, the send window's Sent/UnACKed data is the same data as the re
ceive window's Rcvd/UnACKed data. In this situation, the value of RCV.NEXT kept by
the receiver is equal to the value of SND.NEXT kept by the sender.

NotRcvd/lnside Data

NotRcvd/Inside data is data that can be received and will fit within the current receive
window. The first byte of NotRcvd/Inside data is the value of RCV.NEXT. The last byte
of NotRcvd/Inside data within the receive window is the value of (Acknowledgment
Number+ Window - 1).

NotRcvd/Outside Data

NotRcvd/Outside data is data that's not been received and is outside the current receive
window, and represents future data that will be received. NotRcvd/Outside data relative
to the current receive window should never be received because it falls outside the cur
rent receive window. The receiver discards data that can't be stored in the current re
ceive window and sends an ACK with the current acknowledgement number. The first
byte of NotRcvd/Outside data is the value of (Acknowledgment Number+ Window).

Sliding the Receive Window

The current receive window ~as a left edge (defined by the boundary between Rcvd/
ACKed/NotRetr and Rcvd/UnACKed data) and a right edge (defined by the boundary be
tween NotRcvd/Inside and NotRcvd/Outside data). When an ACK segment is sent with
an acknowledgment number set to RCV.NEXT, the current receive window closes and
the left edge advances to the right. When the Rcvd/ ACKed/NotRetr data is passed up to
the Application Layer protocol, the maximum receive window opens and the right edge
advances to the right. When this occurs, space is made available in the fixed-size receive
buffer and new data can be received. The maximum receive window slides to the right
by the number of bytes passed to the Application Layer protocol. When the maximum
receive window slides as a result of data being passed to the Application Layer proto
col, the current receive window slides also, since the right edge of the maximum receive
window and the current receive window are the same. The next ACK that the receiver

290 I PART m Transport Layer Protocols

sends will contain an updated window size. The increase in the sum of the acknowledg
ment number and the window size indicates to the sender that more data can be sent.

Figure 13-6 illustrates the sliding of the receive window.

Maximum receive window
Closing the Shrinking
window the window

Current receive window ----

Rcvd/ ACKed/Retr Rcvd/ ACKed/NotRetr Rcvd/unACKed NotRcv/lnside

Opening
the window

NotRecv/Outside

Figure 13-6. Sliding the receive window showing window closing, opening, and shrinking.

If the Application Layer protocol doesn't receive the data in a timely fashion, the receive
window closes instead of sliding. This is indicated to the sender by increasing the acknowl
edgment number for new data received and decreasing the value of the Window field
by the same.amount, thereby keeping the sum of (Acknowledgment Number+ Window)
the same. In an extreme situation, the maximum receive window is filled with Rcvd/
ACKed/NotRetr data and the left and right edges are the same (a zero receive window).

Shrinking the Window

Shrinking the window is the movement of the right edge of the receive window to the left.
To shrink the receive window, an ACK segment is sent where the (Acknowledgement

· Number+ Window) sum decreases. Normally; the (Acknowledgement Number+ Window)
sum either increases or remains the same. RFC 1122 discourages shrinking the window.
However, a sending TCP peer must be prepared to adjust its send window accordingly.
The receiver discards any data sent that's suddenly outside the shrunken receive window.

Microsoft Windows 2000 Maximum Receive Window Size
The TCP /IP for Windows 2000 maximum receive window size is set to 16,384 bytes by default
(the Microsoft Windows NT 4.0 default maximum receive window size is 8192 bytes). The
default maximum receive window size and the maximum segment size (MSS) of the con
nection negotiated during the TCP connection establishment process determine the maxi
mum receive window size. For maximum efficiency in bulk data transfers, the maximum
receive window size is adjusted to be an integral multiple of the MSS for the connection.

The maximum receive window size is calculated using the following algorithm (based on
the default maximum window size of 16,384 bytes):

1. Assume a maximum receive window size of 16,384 bytes (16 KB). In the syn
chronize (SYN) segment sent to establish a TCP connection, include the TCP
MSS option and set the window size to 16,384.

2. When the SYN-ACK is returned, examine the TCP MSS option to determine the
MSS for the connection (the minimum MSS of the two TCP peers).

Chapter 13 Transmission Control Protocol (TCP) Data Flow I 291

3. Based on the connection's MSS, divide 16,384 by the connection's MSS and
round up to the next integer value.

4. If the result of rounding up isn't at least four times the connection's MSS, set
the window size to four times the MSS (up to a maximum of 65,535). Window
scaling must be in effect to use window sizes greater than 65,535.

Ethernet Example

For the maximum receive window size for an Ethernet-based TCP connection, the algo
rithm produces the following:

1. Assume a maximum receive window size of 16,384 bytes (16 KB). In the SYN
segment sent to establish a TCP connection, set the window size to 16,384.

2. When the SYN-ACK is returned, examine the TCP MSS option to determine the
connection's MSS (the minimum of the MSS of the two TCP peers). The MSS
for two Ethernet-based TCP peers is 1460.

3. Based on the connection's MSS, divide 16,384 by the connection's MSS and
round up to the next integer value. 16,384/1460 = ·11.22, which, when rounded
up to the next integer value, is 12. Therefore, the maximum receive window
size for two Ethernet TCP peers is 17,520 (12*1460).

The default of 17,520 for Ethernet assumes that additional TCP options, such as SACK
and TCP timestamps, aren't being used. If used, the maximum receive window size will
be adjusted accordingly.

Token Ring (4-Mbps Ring with an IP MTU of 4168)

For the maximum receive window size for a 4-Mbps Token Ring-based TCP connection,
the algorithm produces the following:

1. Assume a maximum receive window size of 16,384 bytes (16 KB). In the SYN
segment sent to establish a TCP connection, set the window size to 16,384.

2. When the SYN-ACK is returned, examine the TCP MSS option to determine the
connection's MSS (the minimum of the MSS of the two TCP peers). The MSS
for two 4-Mbps Token Ring TCP peers is 4128.

3. Based on the connection's MSS, divide 16,384 by the connection's MSS and
round up to the next integer value. 16,384/4128 = 3.97, which, when rounded
up to the next integer value, is 4. Therefore, the maximum receive window
size for two 4-Mbps Token Ring TCP peers is 16,512 (4*4128).

Token Ring (16-Mbps Ring with an IP MTU of 17 ,928)

For the maximum receive window size for a 16-Mbps Token Ring-based TCP connection,
the algorithm produces the following:

1. Assume a maximum receive window size of 16,384 bytes (16 KB). In the SYN
segment sent to establish a TCP connection, set the window size to 16,384.

292 I PART m Transport Layer Protocols

2. When the SYN-ACK is returned, examine the TCP MSS option to determine the
connection's MSS (the minimum of the MSS of the two TCP peers). The MSS
for two 16-Mbps Token Ring TCP peers is 17,888.

3. Based on the connection's MSS, divide 16,384 by the connection's MSS and
round up to the next integer value. 16,384/17,888 = 0.9, which, when rounded
up to the next integer value, is 1.

4. The result of rounding up isn't at least 4 times the connection's MSS. There
fore, the window size is set to 4 times the MSS, or 71,552 07,888*4). However,
without window scaling, this window size can't be accommodated. Therefore,
the maximum window size is set to a single MSS, or 17,888.

Changing the Default Maximum Receive Window Size

The default maximum receive window size can be set through the setsockopt() Windows
Sockets function on a per socket basis or through the following registry settings:

GlobalMaxTcpWindowSize
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Va 1 id range: 0-0x3FFFFFFF
Default value: 0x4000 (16,384)
Present by default: No

GlobalMaxTcpWindowSize sets the number of bytes in the default maximum receive
window for all interfaces (unless overridden per interface using TcpWindowSize regis
try setting). Values greater that 65,535 can be used only in conjunction with enabling
window scaling with the Tcp13230pts registry setting and with TCP peers that support
window scaling. The maximum value, Ox3FFFFFFF, or 1,073,741,823, reflects the largest
window size possible using window scaling.

TcpWindowSize
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
and
Location: HKEY_LOCAL..MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\

InterfaceName

Data type: REG_DWORD
Valid range: 0-0x3FFFFFFF
Present by default: No

TcpWindowSize sets the number of bytes in the default maximum receive window for
all interfaces unless overridden using the GlobalMaxTcpWindowSize registry setting or
the interface-based TcpWindowSize registry setting. The default value is the smallest of
the following values:

• OxFFFF (65,535)

• GlobalMaxTcp WindowSize

Chapter :13 Transmission Control Protocol (TCP) Data Flow I 293

• The larger of 4 times the connection MSS

• 16,384 rounded up to an even multiple of the connection MSS

Values greater than 65,535 can be used only in conjunction with enabling window scal
ing with the Tcpl3230pts registry setting and with TCP peers that support window scal
ing. The maximum value, Ox3FFFFFFF, or 1,073,741,823, reflects the largest window size
possible using window scaling.

Small Segments
A small segment is a. TCP segment that's smaller than the MSS. To increase the efficiency
of sending data, TCP avoids the sending and receiving of small segments through the
Nagle algorithm and by avoiding silly window syndrome (SWS).

ThA N~dlA 41dnrithm - --..... - - - ------

For interactive data, such as the data of a Telnet or Rlogin session, much of the traffic is
made up of individual keystrokes sent by the client and echoed by the server. For each
keystroke, a single byte of data is sent. This is a network efficiency of 2 percent (the num
ber of bytes of data [1 byte] divided by the number of bytes of overhead needed to send
the data [40 bytes]). For interactive sessions, such as Telnet, each typed character must
be sent and echoed back to the Telnet client application in order to be displayed on the
user's screen. Therefore, sending small segments can't be avoided for interactive sessions.
Preventing the sending of a small segment would mean that the user wouldn't see the
keystroke as entered on the keyboard.

In the case of Telnet and Rlogin, q, single keystroke echoed back to the user generates
the following three TCP segments:

1. The client application sends the keystroke byte as a small TCP segment with
the Push (PSH) flag set.

2. The keystroke TCP segment is passed to the server application, which sends an
echo of the keystroke back to the client application (along with an ACK of the
keystroke byte) as a small TCP segment with the PSH flag set.

3. The echoed keystroke TCP segment is passed to the client application, which
sends an ACK of the echoed keystroke segment.

Typical interactive sessions consist of multiple keystrokes in rapid succession.

To minimize the low efficiency of sending small TCP segments, TCP is required to use
the Nagle algorithm, named after John Nagle, the author of RFC 896, which describes the
algorithm. The Nagle algorithm's premise is that a TCP connection can send only a single
unacknowledged small segment. If a small segment is sent and not acknowledged, no
other small segments can be sent. ·

294 I PART m Transport Layer Protocols

More Info The Nagle algorithm is described in RFC 896, which can be found in
the \RFC folder on the companion CD-ROM.

In the case of interactive session traffic, such as Telnet and Rlogin, a keystroke segment
is sent. Additional keystrokes entered by the user are accumulated in the TCP send buffer
until the ACK for the outstanding small segment arrives. The next segment sent could
contain multiple keystrokes. Depending on the average time to receive acknowledgments
and the user's typing speed, this simple rule can decrease the number of TCP segments
sent in the session by a factor of 3 or more.

The Nagle algorithm adapts itself to the environment on which the TCP segments are being
sent. In a high-bandwidth, low-delay environment, such as a local area network (LAN),
ACKs return more quickly and less accumulation occurs. However, in a high-bandwidth,
low-delay environment, lower efficiency can be tolerated because of the higher capac
ity of the LAN. In a low-bandwidth, high-delay environment, such as a wide area net
work (WAN), ACKs return less quickly, producing more accumulation. This results in more
efficient data transfer for environments with less capacity.

TCP/IP for Windows 2000 uses the Nagle algorithm by default. The Nagle algorithm is
disabled through the TCP _NODELAY Windows Sockets option. Developers should dis
able the Nagle algorithm only when the immediate sending of multiple small segments
is required. To improve performance of file locking and manipulation, Windows 2000
disables the Nagle algorithm for NetBIOS over TCP/IP (NetBT) and non-NetBIOS-based
redirector and server communication.

Silly Window Syndrome
Whenever data is passed to the receiver's Application Layer protocol, the receive win
dow opens and a new window size is advertised. Depending on how much data is re
trieved from the receive buffer, this mechanism can cause the following behavior:

1. The sender and receiver are in a zero window state. The sender has sent all
the data it can. The receiver has acknowledged all the data in the receive
buffer and is waiting for the Application Layer protocol to retrieve the data be
fore it's free to advertise a non-zero window size.

2. The Application Layer protocol retrieves a single byte of data from the receive
buffer. The receive window advances by 1 byte.

3. The receiver sends an ACK with the window size set to 1.

4. The sender, realizing that the value of (Acknowledgement Number+ Window)
has increased, advances its send window by 1 byte. Because the receiver has
permitted the sending of a single byte, the sender sends a single byte.

Each time the Application Layer protocol fetches a single byte of data from the buffer,
the sender sends a single-byte TCP segment. The data sent on the TCP connection con
sists of a steady pattern of small segments. The behavior is known as the silly window
syndrome (SWS). Both the sender and the receiver avoid SWS.

Chapter :13 Transmission Control Protocol (TCP) Data Flow I 295

Receiver-Side SWS Avoidance

The receiver avoids SWS by not advertising a new window. size unless the new window
size is at least either an MSS or half of the maximum receive window size. Figure 13-7
illustrates receiver-side SWS avoidance.

I.. Maximum receive window ~

i.-- Current receive window ___..j

I I I I I I ! 11 I I I I I I 1 I

I

.. Maximum receive window :;

----- Current receive window ------·

LI I I I I 11lfl I I I I 1 I I I I I I I I I I I I I I 11 I I i:ILJJ
n bytes n bytes

Figure 13-7. SWS avoidance as implemented by the receiver.

As data is passed to the application, the receive window advances. If the receive window
advances n bytes, receiver-side SWS dictates that a new window size can't be advertised
unless n is at least MSS bytes or half the maximum receive window.

Sender-Side SWS Avoidance

The sender avoids SWS by not sending a TCP segment containing data unless the adver
tised receive window size is at least MSS bytes. However, as previously discussed, small seg
ments must be allowed for interactive data. Therefore, small segments are allowed if:

• The data is being pushed and adheres to the Nagle algorithm. Interactive data
typically sets the TCP header's PSH flag~ A single small segment can be sent
according to the Nagle algorithm.

• The data is at least half the size of the maximum receive window and adheres
to the Nagle algorithm.

Sender-Side Flow Control
Receiver-side flow control is implemented through the send and receive windows. The
receiver can inform the sender to stop sending data by reducing the advertised receive
window to 0. However, once a non-zero receive window size is advertised, there's noth
ing in the TCP sliding window mechanism that prevents the sender from sending all pos
sible segments in the send window.

For example, during the TCP connection process, the maximum receive window size is
determined. If the TCP peers are Ethernet-based, the maximum receive window and the
advertised receive window at the end of the TCP connection establishment process for

296 I ?ART m Transport Layer Protocols

two Windows 2000-based hosts is 17,520 bytes, or 12 MSS-sized TCP segments (assum
ing no TCP options are present). According to the TCP sliding window mechanism, the
sender can immediately send all 12 segments that fit within the receive window without
waiting for an acknowledgment. While this behavior is permitted, it also can lead to
network congestion, especially when sending TCP segments across multiple routers.

To prevent the flooding of segments that fit within the advertised receive window, TCP
implementations, including Windows 2000, use the following algorithms:

• The slow start algorithm Provides an exponential scaling of the number of
segments within the send window that a sender can send before waiting for an
acknowledgment.

• The congestion avoidance algorithm Provides a linear scaling of the num
ber of segments that a sender can send within the send window before waiting
for an acknowledgment.

While slow start and congestion avoidance algorithms were developed to solve separate
problems, they're used together to provide sender-side flow control.

Both the slow start and congestion avoidance algorithms maintain an additional variable
called the congestion window (cwind) to help define how much data can be sent. For
both algorithms, the size of the actual send window is the minimum of the advertised
receive window and the congestion window (the value of cwind).

Slow Start Algorithm
The premise of the slow start algorithm is that TCP increases the congestion window
(cwind) by the MSS (or one segment size) for every ACK received that acknowledges new
data. Every time cwind is updated, it's compared to the current advertised receive win
dow size, and the minimum of both values is used to update the actual send window size.

When TCP data begins to flow on a connection after the connection establishment pro
cess or after a prolonged idle time, the following slow start process is used to increase
the actual send window size (assuming two Ethernet-based TCP peers):

1. Set cwind's initial value to 2MSS (two MSS-sized segments). Compare cwind's
value and the currently advertised receive window size (17,520 or 12 MSS). Set
the actual send window size to the minimum of cwind and the currently adver
tised receive window size. Result: cwind = 2MSS, adverti~ed receive window
size = 12MSS, actual send window= 2MSS.

2. Two TCP segments are sent. The sender waits for acknowledgments.

3. When the sender receives an acknowledgment, cwind is set to 3MSS. Compare
cwind's value and the currently advertised receive window size. Set the actual
send window size to the minimum of cwind and the currently advertised re
ceive window size. Result: cwind = 3MSS, advertised receive window size=
12MSS, actual send window = 3MSS.

Chapter :t3 Transmission Control Protocol (TCP) Data Flow I 297

4. Three TCP segments are sent. The sender waits for acknowledgments.

5. When the sender receives an acknowledgment, cwind is set to 4MSS. Compare
cwind's value and the currently advertised receive window size. Set the actual
send window size to the minimum of cwind and the currently advertised re
ceive window size. Result: cwind = 4MSS, advertised receive window size =
12MSS, actual send window= 4MSS.

6. Four TCP segments are sent. The sender waits for acknowledgments.

This process continues until cwind becomes greater than the currently advertised receive
window (12 MSS), at which point the currently advertised receive window governs how
much data can be sent at a time, and slow start is finished. There's no more sender-side
flow control unless a TCP segment needs to be retransmitted.

The following Network Monitor trace (Capture 13-01, included in the \Captures folder
on the companion CD-ROM) illustrates the slow-start behavior for the downloading of a
file using- FTP un to 6MSS.

~ -

17 FTP Server
18 FTP Client
19 FTP Server
20 FTP Server
21 FTP Server
22 FTP Client
23 FTP Server
24 FTP Server
25 FTP Server
26 FTP Client
27 FTP Server
28 FTP Server
29 FTP Server
30 FTP Server
31 FTP Client
32 FTP Server
33 FTP Server
34 FTP Server
35 FTP Server
36 FTP Server
37 FTP Client
38 FTP Server
39 FTP Server
40 FTP Server
41 FTP Server
42 FTP Server
43 FTP Server

FTP Client S., len: 0, seq: 10482005-10482005, ack: 0
FTP Server .A .. S., len: 0, seq: 376829-376829, ack: 10482006
FTP Client .A , len: 0, seq: 10482006-10482006, ack: 376830
FTP Client .A len: 1460, seq: 10482006-10483465, ack: 376830
FTP Client .A• len: 1460, seq: 10483466-10484925, ack: 376830
FTP Server .A , len: 0, seq: 376830-376830, ack: 10484926
FTP Client .A , len: 1460, seq: 10484926-10486385, ack:376830
FTP Client .A , len: 1460, seq: 10486386-10487845, ack: 376830
FTP Client .A , len: 1460, seq: 10487846-10489305, ack:376830
FTP Server .A , len: 0, seq: 376830-376830, ack: 10489306
FTP Client .A , len: 1460, seq: 10489306-10490765, ack: 376830
FTP Client .A , len: 1460, seq: 10490766-10492225, ack:376830
FTP Client .A , len: 1460, seq: 10492226-10493685, ack:376830
FTP Client .A , len: 1460, seq: 10493686-10495145, ack:376830
FTP Server .A , l en: 0, seq: 376830-376830, ack: 10495146
FTP Client .A , len: 1460, seq: 10495146-10496605, ack: 376830
FTP Client .A , len: 1460, seq: 10496606-10498065, ack: 376830
FTP Client .A , len: 1460, seq: 10498066-10499525, ack: 376830
FTP Client .A , len: 1460, seq: 10499526-10500985, ack: 376830
FTP Client .A , len: 1460, seq: 10500986-10502445, ack: 376830
FTP Server .A , len: 0, seq: 376830-376830, ack: 10500986
FTP Client .A , len: 1460, seq: 10502446-10503905, ack: 376830
FTP Client .A , len: 1460, seq: 10503906-10505365, ack: 376830
FTP Client .A , len: 1460, seq: 10505366-10506825, ack: 376830
FTP Client .A , len: 1460, seq: 10506826-10508285, ack: 376830
FTP Client .A , len: 1460, seq: 10508286-10509745, ack: 376830
FTP Client .A , len: 1460, seq: 10509746-10511205, ack: 376830

298 I PART m Transport Layer Protocols

The slow start algorithm for this data transfer is as follows:

1. The TCP connection establishment process is done in frames 17-19. cwind is
set to 2MSS.

2. Frames 20 and 21 are the two segments corresponding to the current actual
send window size of 2MSS.

3. Frame 22 is an ACK for frames 20 and 21. cwind is set to 3MSS.

4. Frames 23-25 are the three segments corresponding to the current send actual
window size of 3MSS.

5. Frame 26 is an ACK for frames 23-25. cwind is set to 4MSS.

6. Frames 27-30 are the four segments corresponding to the current actual send
window size of 4MSS.

7. Frame 31 is an ACK for frames 27-30. cwind is set to 5MSS.

8. Frames 32-36 are the five segments corresponding to the current actual send
window size of 5MSS.

9. Frame 37 is an ACK for frames 21-35. cwind is set to 6MSS.

10. Frames 38-43 are the six segments corresponding to the current actual send
window size of 6MSS. ·

The rate at which the size of the actual send window increases depends on how quickly
ACK segments are returned. In a high-bandwidth, low-delay environment such as a LAN,
the actual send window opens quickly. In a low-bandw:idth, high-delay environment such
as a WAN, the actual send window opens more slowly.

Although called the slow start algorithm, the actual send window size can increase at an
exponential rate based on the receipt of multiple ACKs for multiple segments sent. For
example, when starting the actual send window at 2MSS, two segments are sent. If an
ACK is sent for each segment sent, the actual send window increases to 4MSS; four seg
ments are sent. If an ACK is sent for each segment sent, the actual send window increases
to 8MSS. The actual send window has quickly grown from 2MSS to 4MSS, and then to
8MSS. The actual window growth depends on how many ACK segments are received.

Congestion Avoidance Algorithm
Once data is flowing on the TCP connection, the actual send window is governed by the
currently advertised receive window and receiver-side flow control is in effect. When a
TCP segment must be retransmitted, the assumption is that the packet loss is a result of
congestion at a router, rather than damage to the packet causing a checksum calculation
to fail. If the packet loss is a result of congestion at a router, the sender's transmission
rate must be immediately lowered and then gradually scaled back up to the rate at which
data was being sent before the congestion occurred. For TCP connections, the transmis
sion rate is the amount of data that the sender can send before having to wait for an
acknowledgment.

Chapter 1.3 Transmission Control Protocol (TCP) Data Flow I 299

When the congestion occurs, the slow start algorithm is used to scale the actual window
size to half of the value of the advertised receive window size when the congestion
occurred. Then, the congestion avoidance algorithm takes over. To keep track of when
to ·use slow start and when to use congestion avoidance, an additional variable called
the slow start threshold (ssthresh) is used. When a connection is established, ssthresh is
set to 65,535. As with slow start, during congestion avoidance, the actual send window
is the minimum of cwind and the currently advertised receive window.

The premise of the congestion avoidance algorithm is to increase cwind by lMSS for each
round-trip time. The round-trip time is the time it takes for a TCP segment to be sent and
acknowledged. The congestion avoidance algorithm provides a smooth, linear increase
in cwind, thereby increasing the actual send window. There are different ways of imple
menting the change in cwind for congestion avoidance.

• One method is to increase cwind by MSS*MSS/ cwind (integer division) for
each segment that's acknowledged. For example, if cwind is set to 7MSS, for
-~-1- ---··---·_.._.._1 __ .._, __ 1 1 1 1 • .,. • 11 .. ~..-...-., ,....-...-.1-...... ,..,.....,.....,
'-""-'-"ii "''-"5iii'-"iiL Liia.L"' "'-'-"n..iiv vv 1'-"u5'-"u, tJU/Hbw 1;:i 111L1c111c11lcu uy iv100 lVhJO/ / lV!oo,

or MSS/7. Therefore, after 7 acknowledged segments, cwind increases by
lMSS. When cwind is incremented by a quantity that's not a full MSS, sender
side SWS prevents a small segment from being sent. Only after cwind is
incremented to another MSS can another full segment be sent.

• Another method is to track the current actual send window size in increments
of the MSS. When the number of segments that correspond to the size of the
current actual send window size are ACKed, increment cwind by an MSS.
Thus, the actual send window grows by lMSS for each full window of data
that's been acknowledged.

With slow start, the actual send window increases by lMSS for each ACK received in a
round-trip time. With congestion avoidance, the actual send window increases by a single
MSS for multiple ACKs received in a round-trip time.

When congestion occurs (when a TCP segment must be retransmitted), the combination
of slow start and congestion avoidance works as follows:

1. The slow start threshold (ssthresh) is set to half the value of the current send
window with a minimum value of 2MSS. The congestion window "(cwind) is
set to 2MSS.

2. Set the actual send window to the minimum of the currently advertised receive
window and cwind.

3. Send the appropriate number of TCP segments.

4. As ACKs are received, increment cwind. If cwind < ssthresh, increment cwind
using slow start. If cwind > ssthresh, increment cwind using congestion avoid
ance. If cwind = ssthresh, then the TCP implementation is free to choose slow
start or congestion avoidance.

5. Return to step 2.

300 . I PART m Transport Layer Protocols

The result of using the combination of slow start and congestion avoidance is that when
congestion occurs, the sender uses slow start to quickly (exponentially) scale the actual
send window size to half the size of the actual send window when the congestion oc
curred. Then, congestion avoidance is used to more slowly (arithmetically) scale the actual
send window size up to the currently advertised receive window size. This gradual in
crease in the amount of data being sent allows the internetwork to clear its routing buff
ers and recover from the congestion.

Summary
TCP achieves reliable data transfer through the cumulative or selective acknowledgment
of TCP segments received. Selective acknowledgments improve TCP performance in high
loss environments or for TCP connections with large window sizes. To provide receiver
side flow control, TCP uses sliding send and receive windows. With each ACK segment,
the receiver indicates how much more data can be sent and successfully buffered. To avoid
sending small segments, TCP uses the Nagle algorithm and SWS avoidance. To provide
sender-side flow control, TCP uses the slow start and congestion avoidance algorithms.
Slow start is used to increase the size of the actual send window by lMSS for each ACK
segment received. Congestion avoidance is used to increase the size of the actual send
window by one MSS for each round-trip time. Slow start and congestion avoidance are
used to avoid congesting an IP internetwork when sending and retransmitting data.

Transmission
Control Protocol (TCP)
Retransmission and Time-Out

301

The reliable service of TCP requires that all segments containing data be acknowledged
hv thP rPrPiuPr \Y!hPn -::in -::irk-nnurlPrlo-mPnt (ArKI fnr -::i <::PomPnt k nnt rPrPivPrl urithin

J <.....,)' -. "

a determined amount of time, the sender retransmits the segment. The sender might
retransmit the segment multiple times before abandoning the connection. The retrans
mission and time-out behaviors of TCP directly. affect TCP performance and can help
prevent congestion on the internetwork.

Retransmission Time-Out and Round-Trip Time
For each connection, TCP maintains a variable called the retransmission time-out (RTO),
whose value is the amount of time within which an ACK for the segment is expected. If
TCP doesn't receive an ACK before the RTO expires, the segment is retransmitted.

The RTO must allow enough time for the following:

1. The initially sent TCP segment to traverse the internetwork (the transit time
from source to destination).

2. The initially sent TCP segment to be received and processed by the destination
node (the destination's inbound packet-processing time).

3. The generation of an ACK for the segment (the ACK generation time). A com
ponent of the ACK generation time is the delayed acknowledgment time of the
destination node. Rather than sending an ACK segment for each TCP data seg
ment received, TCP delays ACKs. Delayed ACKs can contain data, include up
dated window sizes, and acknowledge multiple segments received.

4. The generated ACK to traverse the internetwork (the transit time from destina
tion to source).

5. The generated ACK to be received and processed by the sending node (the
source's inbound packet-processing time).

302 I PART m Transport Layer Protocols

The sum of all these times is known as the round-trip time (RTT). The RTT varies over
time and must be constantly measured throughout the TCP connection's life. The RTO
is based on the currently known RTT and should always be greater than the currently
known RTT to prevent unnecessary retransmissions.

To prevent the following behaviors, the RTO should be neither too large nor too small:

• When the RTO is too large, the sending TCP peer must wait too long before
retransmitting a lost segment. This lowers throughput for connections with
some degree of packet loss.

• When the RTO is too small, segments will be retransmitted unnecessarily.
Retransmitted segments increase the load on the internetwork and waste
internetwork ca pa city.

If the ACK for the initially sent segment doesn't arrive within the RTO, the ACK is either
arriving late or not at all. The main causes of ACK segments arriving late are either an
increase in the transit time from the source to the destination, or an increase in the tran
sit time from the destination to the source.

The following are reasons why the ACK isn't received at all:

1. The initially sent TCP segment is dropped at a router because of congestion.

2. The initially sent TCP segment is dropped at a router or the destination be
cause of damage to the packet. Damage to the packet occurs when electronic
or optical errors impact the encoded signal, causing bits within the packet to
change values. Damaged packets are silently discarded after failing checksum
calculations.

3. The ACK for the TCP segment is dropped at a router because of congestion.

4. The ACK for the TCP segment is dropped at a router or the destination
because of damage to the packet.

It's much more probable that the TCP segment or its ACK was discarded by a congested
router rather than the TCP segment or its ACK was damaged and silently discarded.

Note Unlike TCP segments containing data, ACKs that contain no data aren't
sent reliably. The ACK sender doesn't set an RTO for the ACK and doesn't retrans
mit the ACK segment. Therefore, a lost ACK is recovered by the sender retrans
mitting the segment(s) that the lost ACK is acknowledging, and not by the sender
of the lost ACK retransmitting the ACK.

Congestion Collapse
The proper measurement of the RTT and determination of the RTO for sent TCP segments
are important to prevent a phenomenon of routed internetworks known as congestion
collapse. Congestion collapse occurs when the buffers of the internetwork routers fill to
capacity and the routers begin to discard packets.

Chapter 14 Transmission Control Protocol (TCP) Retransmission and Time-Out I 303

Congestion collapse begins with a steady increase in the load on the internetwork. As
hosts send more data, more data is queued in the buffers of the internetwork routers.
As this occuts, the transit time from the source to the destination and from the destina
tion to the source increases. Therefore, the actual RTT grows larger than the currently
known KIT of sending hosts.

The current RTO for sent segments is based on the currently known RTT. When the actual
RTI increases so that it's greater than the current RTO, sent TCP segments will have ACKs
that arrive late. When the ACKs don't arrive in the time based on the current RTO, the
segments are retransmitted. Now there are two copies of each retransmitted segment,
effectively doubling the load on the internetwork at a time when the load needs to be
decreased. As more TCP segments are retransmitted, eventually the buffers on the
internetwork routers fill and the routers begin to discard packets.

Congestion collapse can be avoided through the ongoing determination of the current
RTI, which is monitored on a per window basis or per segment basis. Changes in the
currem Kl l are usec..i LO upc..iaLe Li1e :K10.

The recurrence of congestion collapse is avoided through the combination of the slow
start and congestion avoidance algorithms of the sending host, as discussed in Chapter
13, "Transmission Control Protocol (TCP) Data Flow." When the retransmission timer for
a segment expires, TCP assumes that retransmission timer expiration is a result of the
segment being discarded by a router experiencing congestion. Slow start and congestion
avoidance are used to slowly scale the number of segments sent before waiting for an
acknowledgment up to the number of segments that will fit in the receiver's advertised
receive window. ·

Slow start and congestion avoidance are used together to prevent the congestion collapse
from recurring. Without slow start and congestion avoidance, once an internetwork
becomes congested, it becomes congested again as the sending hosts begin transmitting
new data and the internetwork oscillates between congested and uncongested states.

Retransmission Behavior
TCP uses the following exponential backoff behavior to determine the RTO of succes
sive retransmissions of the same segment:

1. When the TCP segment is initially sent, the RTO for the segment is set to the
currently known RTO for the connection.

2. After RTO number of seconds, when the retransmission timer expires, the seg
ment RTO is set to twice the RTO for the segment's previous transmission and
is retransmitted.

Step 2 is repeated for the maximum number of retransmissions before the TCP connec
tion is abandoned. In Windows 2000, the TcpMaxDataRetransmissions registry setting
controls the maximum number of retransmissions.

304 I PART m Transport Layer Protocols

TcpMaxDataRetransmissions
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Val id range: 0-0xFFFFFFFF
Default value: 5
Present by default: No

TcpMaxDataRetransmissions sets the maximum number of retransmissions of a TCP seg-
ment containing data before the connection is abandoned.

The following Network Monitor trace (Capture 14-01, included in the \Captures folder
on the companion CD-ROM) shows the maximum number of retransmissions and the
doubling of the RTO between successive retransmissions:

1 0.000000 LOCAL 0060083E4607 TCP .A , 1 en:
0, seq: 1311725-1311725, ack:23 FTP Server FTP Client
2 0.000000 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
3 0.000000 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
4 0.000000 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
5 0.000000 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
6 0.000000 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
7 0.000000 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
8 0.500720 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
9 1.001440 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
10 2.002880 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
11 4.005760 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server
12 8.011520 0060083E4607 LOCAL FTP Data
Transfer To Server, Port = 1296, size 1460 FTP Client FTP Server

This Network Monitor trace was captured from a File Transfer Protocol (FTP) client where
the uploading of a file was in progress and the cable connecting the network adapter of
the FTP server was pulled. Frames 8-12 show the retransmission behavior of TCP /IP for
Windows 2000. Notice how the initial RTO is 0.5 seconds and successive retransmissions
have RTOs that are approximately doubled. After the last retransmission, the FTP server
waits 16 seconds before abandoning the connection and recovering the connection's
resources. It takes a total of 31.5 seconds to abandon the connection. The connection
abandonment time is 63 times the RTO for the connection (the sum of RTO for the

Chapter 1.4 Transmission Control Protocol (TCP) Retransmission and Time-Out I 305

initial segment sent, 2*RTO for the first retransmission, 4*RTO for the second retransmis
sion, 8*RTO for the third retransmission, 16*RTO for the fourth retransmission, and 32*RTO
for the fifth retransmission).

Note The retransmission time-outs are doubled, but the elapsed time for sending
the retransmitted segment isn't exactly doubled in the Network Monitor trace because
of delays in processing, queuing, and the physical transmission of network frames.

Retransmission Behavior for New Connections
For new connections initiated by a Windows 2000 host, the TcpMaxConnectRetrans
missions registry setting determines the maximum number of retransmissions of the syn
chronize (SYN) segment.

TcpMaxConnectRetransmissions

Data type: REG_DWORD
Valid range: 0-255

Default value: 2
Present by default: No

TcpMaxConnectRetransmissions sets the maximum number of retransmissions of a SYN
segment before the connection attempt is abandoned. Exponential backoff is used between
successive retransmissions of the SYN segment. With an initial RTO value of 3 seconds,
it takes 21 seconds to abandon a connection attempt (the sum of 3 seconds for the initial
SYN, 6 seconds for the first retransmission, and 12 seconds for the second retransmission).
The initial RTO's value is controlled using the TcplnitialRTT registry setting described in
the "Calculating the RTO" section of this chapter.

For new connections initiated by a TCP peer for a Windows 2000 host, the TcpMaxCon
nectResponseRetransmissions registry setting determines the SYN-ACK segment's maxi
mum number of retransmissions. -

TcpMaxConnectResponseRetransmissions

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Valid range: 0-255

Default value: 2
Present by default: No

TcpMaxConnectResponseRetransmissions sets the maximum number of retransmissions
of a SYN-ACK segment sent in response to an SYN segment before the connection attempt
is abandoned. Exponential backoff is used between successive retransmissions of the SYN
ACK segment. With an initial RTO value of 3 seconds, it takes 21 seconds to abandon the
connection (the sum of 3 seconds for the first SYN, 6 seconds for the first retransmission,

306 I PART m Transport Layer Protocols

and 12 seconds for the second retransmission). If TcpMaxConnectResponseRetrans
missions is greater than 1, SYN attack protection is used. See Chapter 12, "Transmission
Control Protocol (TCP) Connections," for more information on the SYN attack.

Dead Gateway Detection
Dead gateway detection is an algorithm that detects the failure of the currently configured
default gateway. If it detects a failure, dead gateway detection automatically switches to
a new default gateway, providing there are multiple default gateways configured. Dead
gateway detection uses TCP retransmission behavior to detect and recover from a downed
router configured as the default gateway.

When an individual TCP connection retransmits a segment multiple times (half of
TcpMaxDataRetransmissions), its forwarding IP address is changed to the next default
gateway. When 25 percent of all TCP connections using the failed default gateway have
been moved to the next default gateway, the default route in the IP routing table is up
dated with the next default gateway as the forwarding IP address.

If the new default gateway isn't available, dead gateway detection is used to switch to
the next default gateway in the configured list. When the last default gateway in the list
is reached and becomes unavailable, the next default gateway is the first default gate
way in the list. When the computer is restarted, the first default gateway in the list is used.

For a detailed example of how dead gateway detection works, consider a host with the
following configuration:

• The IP address of 10.0.0.99/24.

• Two default gateways are configured: 10.0.0.1 and 10.0.0.2.

• The default route 0.0.0.0/0 has 10.0.0.1 as its forwarding IP address.

• There are currently 10 TCP connections for locations off the 10.0.0.0/24 subnet
using 10.0.0.1 as their forwarding IP address.

• TcpMaxDataRetransmissions is set at its default value of 5.

When the router at 10.0.0.1 fails, dead gateway detection uses the following process to
change the default route to us~ the forwarding IP address of 10.0.0.2:

1. A TCP connection (one of the 10 TCP connections at the host) sends a data seg
ment. Because no acknowledgment is received, the segment is retransmitted.
After the third retransmission, the forwarding IP address for this specific TCP
connection is changed to 10.0.0.2. At this point, 10 percent of the TCP connec
tions using the forwarding IP address of 10.0.0.1 have been switched to 10.0.0.2.

2. Another TCP connection sends a data segment. Because no acknowledgment is
received, the segment is retransmitted. After the third retransmission, the for
warding IP address for this specific TCP connection is changed to 10.0.0.2. At
this point, 20 percent of the TCP connections using the forwarding IP address
of 10.0.0.1 have been switched to 10.0.0.2.

Chapter 14 Transmission Control Protocol (TCP) Retransmission and Time-Out I 307

3. Another TCP connection sends a data segment. Because no acknowledgment is
received, the segment is retransmitted. After the third retransmission, the for
warding IP address for this specific TCP connection is changed to 10.0.0.2. At
this point, 30 percent of the TCP connections using the forwarding IP address
of 10.0.0.1 have been switched to 10.0.0.2.

4. Because more than 25 percent of the TCP connections using 10.0.0.1 as their
forwarding IP address have had their forwarding IP addresses changed, the de
fault route in the IP routing table is updated to use 10.0.0.2 as the forwarding
IP address.

The EnableDeadGWDetect registry setting controls dead gateway detection in Windows
2000.

EnableDeadGWDetect

Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
._ - r'\r-1"'\ r"\111"\r'\r"\

LJU "'u VJ f-.IC. .,LU_LJnVl'LI

Valid range: 0-1
Default value: 1
Present by default: No

EnableDeadGWDetect enables (=1) or disables (=0) dead gateway detection. Dead gate
way detection is enabled by default.

Using the Selective Acknowledgment (SACK) TCP Option
The SACK TCP option allows the receiver to selectively acknowledge non-contiguous
blocks of data received. However, the sender shouldn't discard selectively acknowledged
segments from its transmission queue until the segments are included in a cumulative
acknowledgment.

RFC 2018 allows the data receiver to discard non-contiguous segments even though those
segments have been selectively acknowledged. This is known as reneging on a selec
tive acknowledgment, and its practice is discouraged. To keep reneged data from being
lost on a connection, the sender must retransmit selectively acknowledged data until it's
acknowledged by the Acknowledgment Number field in an ACK from the receiver.

More Info TCP selective acknowledgments are described in RFC 2018, which
can be found in the \RFC folder on the companion CD-ROM.

The retransmission behavior of selectively acknowledged segments is as follows:

1. For each segment, maintain a SACK flag that's enabled when the segment is
selectively acknowledged.

2. When initial RTO timers begin to expire, only retransmit the segments that
haven't been selectively acknowledged (segments for which the SACK flag is
disabled).

308 I PART m Transport Layer Protocols

3. If an ACK is received that cumulatively acknowledges the retransmitted seg
ment, the send window closes and opens depending on the new (Acknowl
edgment Number+ Window) sum and new segments can be sent. The SACK
flags on non-cumulatively acknowledged segments are maintained.

4. If a retransmitted segment times out, indicating that the receiver might have
reneged on the selectively acknowledged segments, disable the SACK flags of
all segments in the current window and retransmit them normally.

This mechanism recovers from the possibility that the receiver discarded the non-con
tiguous received segments. If necessary, the entire window of data is resent.

Calculating the RTO
The determination of the RTO is an important function of TCP. The RTO must be adjusted
to the internetwork's changing conditions. If the determined RTO is less than the RTT,
segments are unnecessarily retransmitted.

In RFC 793, the suggested method of computing the RTO-known as the Smoothed
Round-Trip Time (SRTT)-is based on the following formulas:

SRTT = (a*SRTT) + ((1-a)*RTT)

RTO = min[UpperBound, max[LowerBound,(/3 *SRTT)]]

Thus, the new RTO is based on the determination of the current RTT, the previous SRTT,
a smoothing factor (a), and a variance factor CB). RFC 793 cited this formula as an ex
ample method of computing the RTO. In practice, this formula was found to be inadequate
in determining the RTO in an environment where the RTT changed suddenly. Instead,
RFC 1122 states that TCP must use the following formulas as documented in "Conges
tion Avoidance and Control,'' a paper written by Van Jacobson and Michael J. Karels:

SRTT = RTT + 8*(New _RTT - RTT)

Dev= Dev+ CINew_RTT - RTTI - Dev)/4

RTO = SRTT + Dev/4

With this new way of calculating the RTO, the RTO is based on the average and vari
ance (Dev) of the RTT. The RTO is self-tuning for different environments (the low-delay
Local Area Network [LAN] and the high-delay Wide Area Network [WAN]) and is sensi
tive to sudden changes in the RTT for environments such as the Internet.

More Info RTO calculation is described in RFCs 793 and 1122, which can be
found in the \RFC folder on the companion CD-ROM.

In Windows 2000, the TcpintialRTT registry setting controls the RTO's initial value for
establishing connections or sending data on new connections.

Chapter 14 Transmission Control Protocol (TCP) Retransmission and Time-Out I 309

TcplnitialRTT
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\

Interfaces\InterfaceName
Data type: REG_DWORD
Valid range: 0-0xffff
Default value: 3
Present by default: No

TcpinitialRTI sets the number of seconds for the initial RTO for SYN segments, SYN-ACK
segments, and for initial data segments sent on a new connection for each interface. Increas
ing this value from its default will have a multiplicative effect on the amount of time it takes
to time-out from a connection establishment or when sending data on a new connection.

For new connections being established by a host, the connection abandonment time is
7*TcpinitialRTT (assuming the default value of TcpMaxConnectRetransmissions). For
arbitrary values of TcpintialRTT and TcpMaxConnectRetransmissions, the connection
abandonment time is:

TcpintialRTT*[2 (TcpMaxConnectRetransmissions+l) _ 1]

For new connections being requested from a host, the connection abandonment time is
7*TcpinitialRTI (assuming the default value of TcpMaxConnectResponseRetransmissions).

·For arbitrary values of TcpintialRTI and TcpMaxConnectResponseRetransmissions, the
connection abandonment time is:

TcpintialRTT*[2 (TcpMaxConnectResponseRetransmissions+l) _ 1]

As data segments are sent, the RTO is adjusted from the TcpinitialRTT to a value closer
to the connection's RTI. By default, the connection's RTT isn't sampled for each segment
sent. Rather, the RTT is sampled once for every full send window of data sent. If the send
window is 12*MSS, the RTT is sampled once every 12 segments. For each sample of the
RTI, the time that the sampled segment is sent is recorded based on the current value
of an internal clock. When the ACK for the segment is received, the RTT is determined
from the difference between the recorded value of when the segment was sent and the
current value of the internal clock.

The RTI sampling rate is 1/(window size). For small window sizes, this sampling rate is
adequate. However, for large windows, the sampling rate is inadequate and can't keep
up with rapid changes in the RTT. The result is increased network bandwidth utilization
from unneeded retransmissions when the currently known RTO is less than the current
RTT. In these situations, the TCP Timestamps option is used to provide a sampling rate
that's equal to the sending rate.

Using the TCP Timestamps Option
As described in Chapter 11, "Transmission Control Protocol (TCP) Basics," the TCP
Timestamps option allows TCP peers to place a timestamp value on each segment. The

310 I PART m Transport Layer Protocols

TCP Timestamps option contains two 32-bit fields to track timestamps: TS Value and TS
Echo Reply. The TS Value field stores the current timestamp value. The TS Echo Reply
field stores the timestamp echo, the value of the TS Value field of the segment being
acknowledged.

The use of TCP timestamps allows an RTT to be calculated by subtracting the timestamp
echo in the acknowledgment from the curren,t time value of the timestamp clock.

As an example, TCP Peer A sends a data segment to TCP Peer B, which sends an ACK
back. The data segment's TS Value has the value 1285458 when it's sent and is echoed
in the ACK segment's TS Echo Reply field. When the ACK is received and processed, the
current value of-TCP Peer A's timestamp clock is 1286506. Therefore, the RTT for this
segment is based on the TCP timestamp value of 1048, or (1286506 - 1285458).

This basic method of RTT determination is complicated by the following factors:

• There might be pauses in sending data.

• ACKs are delayed and can acknowledge multiple TCP segments.

• Segments can arrive out of sequence.

• Segments can be dropped and must be retransmitted.

Figure 14-1 illustrates the problem with pauses in sending data. TCP Peer A sends TCP
Peer B a series of segments and then pauses. Then TCP Peer A sends more segments.
The new segment after the pause has the TS Echo Reply field set to the TS Value field of
the last ACK received. If TCP Peer B now calculates the RTT for the last ACK sent, the
RTT is inflated by the time of the pause in sending data.

TCP Peer A TCP Peer B

1 Block 1, TS Value = 100, TS Echo Reply= 9000

ACK on Block 1, TS Value = 9020, TS Echo Reply= 100
2

3 Block 2, TS Value = 158, TS Echo Reply = 9020

4
ACK on Block 2, TS Value = 9053, TS Echo Reply= 158

TS= 9053

(pause)

5 Block 3, TS Value = 2057, TS Echo Reply = 9053 TS =10951

6 ACK on Block 3, TS Value= 10951, TS Echo Reply= 2057

Figure 14-1. The behavior of TCP timestamps with pauses in data.

From Figure 14-1, the TCP timestamp interval calculated from TCP segment 5 is calcu
. lated as 1898 (10951 - 9053), clearly the wrong value, as it includes the pause in send-

Chapter 14 Transmission Control Protocol (TCP) Retransmission and Time-Out I 311

ing data. With an RTO adjusted to this higher value of the RTI, throughput for data sent
by TCP Peer 2 isn't optimal because the RTO is too high. To prevent this behavior, the
RTI is calculated only for TCP segments that acknowledge new data sent. Therefore, in
the example shown in Figure 14-1, the RTT is calculated only by TCP Peer A. TCP Peer
B doesn't calculate RTI because the segments received by TCP Peer B don't acknowl
edge data sent by TCP Peer B.

For delayed ACKs, segments that arrive out of order, and retransmitted segments, the value
of TS Echo Reply for ACKs is based on the following algorithm:

1. For correct TCP timestamp behavior, TCP keeps track of two variables for each
connection: tsrecent is the value .of the TS Echo Reply that will be sent in the
next ACK, and lastack is the value of the Acknowledgment Number field from
the last ACK sent.

2. Upon receipt of a new segment, if the segment contains the byte numbered last
ack, which means that a contiguous segment has arrived, update tsrecent with
the value of the TS Value field from the arriving segment. If the segment doesn't
contain lastack, ignore the value of the TS Value field of the arriving segment.

3. When sending a segment with the TCP Timestamp option, set the value of TS
Echo Reply to the value of tsrecent.

4. When sending an ACK, set the value of lastack to the value of the Acknowl-
edgment Number field in the ACK.

For delayed acknowledgments, the RTI determination must include the acknowledgment
delay. Therefore, when sending a delayed acknowledgment, the TS Echo Reply of the
delayed ACK is set to the TS Value of the first segment being acknowledged. Figure 14-:-
2 illustrates this behavior.

TCP Peer A

1 Segment 1, TS Value = 100, TS Echo Reply = 9000
(1000 bytes of data)

2
Segment 2, TS Value= 150, TS Echo Reply= 9000
(1000 bytes of data)

Segment 3, TS Value = 200, TS Echo Reply = 9000
3 (1000 bytes of data)

TCP Peer B

/astack = 1000
tsrecent = 10

lastack = 1000
tsrecent = 100

lastack = 1000
tsrecent = 100

/astack = 1000
tsrecent = 100

4
ACK on Segments 1-3, TS Value = 9250, TS Echo Reply= 100

/astack = 4000
tsrecent = 100

Figure 14-2. The behavior of TCP timestamps for delayed acknowledgments.

312 I PART m Transport Layer Protocols

Prior to receiving any TCP segments, the value of tsrecent is 10 and the value of lastack
is 1000. When TCP segment 1 arrives, it contains the lastack byte and the~efore tsrecent
is updated with the TS Value of 100. When TCP segment 2 arrives, it doesn't contain the
lastack byte and tsrecent remains at the value of 100. When TCP segment 3 arrives, it
doesn't contain the lastack byte and tsrecent remains at the value of 100. When the delayed
ACK is sent, the value of TS Echo Reply is set to tsrecent and lastack is set to the value
of the Acknowledgment Number field.

When segments arrive out of sequence, the value of tsrecent, and therefore the value of
TS Echo Reply, isn't updated. TS Echo Reply and tsrecent are updated only when the
missing segment(s) arrives. Figure 14-3 illustrates this behavior.

TCP Peer A TCP Peer B

1
Segment 1, TS Value= 100, TS Echo Reply= 9000

(1000 bytes of data)

ACK on Segment 1, TS Value = 9150, TS Echo Reply = 100
2

3
Segment 3, TS Value= 250, TS Echo Reply= 9150

(1000 bytes of data)

4
Segment 2, TS Value= 200, TS Echo Reply= 9150
(1000 bytes of data)

/astack = 1000
tsrecent = 10

/astack = 1000
tsrecent = 100

lastack = 2000
tsrecent = 100

/astack = 2000
tsrecent = 100

lastack = 2000
tsrecent = 200

Figure 14-3. Tbe behavior of TCP timestamps for out-of-order segments.

Prior to receiving any TCP segments, the value of tsrecent is 10 and the value of lastack
is 1000. When TCP segment 1 arrives, it contains the lastack byte and therefore tsrecent
is updated with the TS Value field value of 100. When the ACK on segment 1 is sent, the
value of TS Echo Reply field is set to tsrecent and lastack is set to the Acknowledgment
Number field's value.

When TCP segment 3 arrives, it doesn't contain the lastack byte, and tsrecent remains at
the value of 100. When TCP segment 2 arrives, it does contain the lastack byte and the
value of tsrecent is updated.

When a segment is dropped and must be retransmitted, the segments arrive out of se
quence, the value of tsrecent, and therefore the value of the TS Echo Reply field, isn't
updated. Because the RTT doesn't include the retransmission time-out for the retransmitted
segment, tsrecent. and TS Echo Reply are updated only when the missing, retransmitted
segment arrives. Figure 14-4 illustrates this behavior.

Chapter 1.4 Transmission Control Protocol (TCP) Retransmission and Time-Out I 313

TCP Peer A TCP Peer 8

Segment 1, TS Value = 100, TS Echo Reply = 9000
(1000 bytes of data)

ACK on Segment 1, TS Value = 9150, TS Echo Reply= 100

Segment 2, TS Value= 150, TS Echo Reply= 9150•1
(1000 bytes of data-dropped)

Segment 3, TS Value= 200, TS Echo Reply= 9150
(1000 bytes of data)

Segment 2, TS Value= 500, TS Echo Reply= 9150
(1000 bytes of data-retransmitted)

/astack = 1000
tsrecent = 10

lastack = 1000
tsrecent = 100

lastack = 2000
tsrecent = 100

/astack = 2000
tsrecent = 100

/astack = 2000
tsrecent = 500

Figure 14-4. The behavior of TCP timestamps for retransmitted segments.

Prior to receiving any TCP segments, the value of tsrecent is 10 and the value of lastack
is 1000. When TCP segment 1 arrives, it contains the lastack byte and therefore tsrecent
is updated with the TS Value of 100. When the ACK on segment 1 is sent, the value of
TS Echo Reply is set to tsrecent and lastack is set to the value of the Acknowledgment
Number field. ·

When TCP segment 3 arrives, it doesn't contain the lastack byte and tsrecent remains at
the value of 100. When the retransmitted TCP segment 2 arrives, it does contain the lastack
byte and the value of tsrecent is updated.

Karn 's Algorithm
When a TCP segment whose RTT is being calculated is sent, the time that the segment
is sent is recorded. If the RTO expires, an exact duplicate is sent and its time is recorded.
When the ACK is received, how is the RTT computed? When the TCP Timestamps op:
tion isn't being used, the ACK doesn't distinguish between the original TCP segment and
its retransmitted copy. TCP has the problem of acknowledgment ambiguity. When mul
tiple copies of a TCP segment are sent, the ACK doesn't identify a specific instance of
the TCP segment being acknowledged.

If we choose to calculate the RTT based on the first instance of the segment and the first
instance is lost, the measured RTT is larger than the actual RTT for the connection be
cause it includes the RTO for retransmitting the segment. The measured RTT is the dif
ference between the time the first segment was sent and the time the ACK for the
retransmitted instance was received. The new RTO grows larger than it should, result
ing in lowered throughput for retransmitted segments. As more TCP segments are lost,
the RTO based on this method of RTT calculation grows larger.

314 I fART m Transport Layer Protocols

If we choose to calculate the RTI based on the retransmitted instance of the segment,
and the reason the RTO expired is a result of a sudden increase .in the RTI, the ACK for
the first instance arrives soon after the retransmitted segment is sent. The measured RTI
(the difference between the time the retransmitted segment was sent and the time the
ACK for the first instance was received) is now smaller than the connection's actual RTI.
The updated RTO gets smaller when it should get larger, eventually resulting in unnec
essary retransmissions for subsequent segments.

To prevent these conditions from incorrectly changing the RTO, RTI measurements for
TCP segments that have been retransmitted are ignored. Only the RTI for ACKs that are
acknowledging a single instance of a TCP segment are considered. However, ignoring
the RTI for retransmitted segments introduces a new problem. When the actual RTI
increases suddenly, the RTO for a TCP segment is too small and results in a retransmis
sion. Because the RTI isn't calculated for the retransmitted segment, the RTO remains
at its inadequate value. Subsequent TCP segments sent would also be retransmitted.

To keep subsequent TCP segments from being sent with an inadequate RTO when the
actual RTI increases suddenly, TCP /IP implementations, including Windows 2000, use
Karn's algorithm. Karn's algorithm is named after its creator, Phil Karn, in the paper "Im
proving Routing-Trip Time Estimates in Reliable Transport Protocols," by Phil Karn and
Craig Partridge. Karn's algorithm states that when an ACK for a retransmitted segment
arrives, it shouldn't be used to update the RTO. However, use the RTO of the retrans
mitted segment (that has been exponentially backed off) as a temporary RTO for subse
quent TCP segments. When an ACK for a non-retransmitted TCP segment arrives, use its
RTI to update the RTO. Then, use the updated RTO for subsequent TCP segments.

For example, if the RTO for a TCP connection is 300 ms and the actual RTI for the con
nection suddenly rises to 400 ms, Karn's algorithm will cause the following behavior:

1. Segment A is sent and its RTO is set to 300 ms.

2. Because the RTO for Segment A is lower than the connection's actual RTI, the
retransmission timer for Segment A expires. Segment A's RTO is set to 600 ms
and retransmitted (using exponential backoff and a factor of 2).

3. The ACK for Segment A arrives (400 ms after the first instance of Segment A
was sent).

4. Because the ACK is for a retransmitted segment, it isn't used to update the RTO.

5. TCP temporarily sets the RTO for subsequent segments to 600 ms (the RTO of
the retransmitted Segment A).

6. Segment B is transmitted and Segment B's RTO is set to 600 ms.

7. The ACK for Segment B arrives in 400 ms.

8. Because the ACK is for a segment that hasn't been retransmitted, its RTI is cal
culated and used to update the RTO.

9. Subsequent segments are sent using the updated RTO.

Chapter :14 Transmission Control Protocol (TCP) Retransmission and Time-Out I 315

Karn's Algorithm and the Timestamps Option
Karn's algorithm applies when the ACKs are ambiguous-when TCP can't distinguish the
original TCP segment from a retransmitted instance. However, with the TCP Timestamps
option, each TCP segment has a steadily increasing value of the timestamp clock (the TS
Value field in the TCP Timestamps option header) and is therefore unique within the time
that segments are being retransmitted. The ACK for different instances of a TCP segment
can be distinguished from another because the ACK contains the echo of the timestamp
value of the segment being acknowledged. Therefore, Karn's algorithm doesn't apply when
TCP timestamps are being used.

If a segment is retransmitted because of a segment loss, the ACK for the retransmitted
segment contains the timestamp value for the retransmitted segment, and not the origi
nal segment. Therefore, the RTT is accurately calculated as the difference in the current
TCP time clock and the ACK's timestamp echo.

TC ,.....__: _,...... ,........__: ,..........l 1..-... _ ,.......C ,.... ,...l,..l,...... ... ,.... .! ... ,_ -..-..-.,--. ! ... - T'l'"T"9'T"1 1_ ,--., "'F"TT ,.... ,......! ~ 1_ ,--., ~.-- ~
.&..&. - U'-b.L.&..&.-..L..L'- .LU' .&._......_'-"".&..LU.L.L.....,_'-"'--'--t- 1-../--"""-"'"U- '-J.L ""U~"-"''-""-.1..L. ..&...&...&.'-..&.-'41J'-' ..1..L.&. .L'\....L .L' l-J....L- J..:t..'-'.L'l... '-"'\...JJ..J.l.'4.J..J..1.IJ \...1..1.'-' \..J...1..1..1.'-'

stamp value of the first instance. Therefore, the RTT is accurately calculated as the difference
in the current TCP time clock and the timestamp echo in the ACK for the first segment.

Fast Retransmit
When a TCP segment arrives and the sequence number isn't the next sequence number
the receiver was expecting (a non-contiguous, out-of-order segment), an immediate ACK
is sent with the Acknowledgment Number field set to the next sequence number the
receiver was expecting. This ACK is a duplicate of an ACK that was previously sent and
isn't .subject to the delayed acknowledgment behavior for new contiguous data received.

Upon receipt of this duplicate ACK, the sender can't determine whether the duplicate ACK
was sent by the receiver because of a TCP segment that arrived out of order or because
a segment was lost.

• If a TCP segment arrived out of ·order, the TCP segment that contains the next
byte the receiver expects to receive should arrive at the receiver shortly thereaf
ter and a cumulative ACK will be sent. Therefore, for out-of-order segments,
only one or two duplicate ACKs most likely will be sent.

• If a TCP segment is lost, all of the segments sent beyond the contiguous seg
ment arriving at the receiver generate an immediate duplicate ACK. Therefore, if
three or more duplicate ACKs arrive at the sender, the TCP segment containing
the next byte the receiver expects is most likely lost and must be retransmitted.

Fast retransmit is the retransmission of a TCP segment before the retransmission timer for
the segment expires, based on the recefpt of three duplicate ACKs where the ACK's ac
knowledgment number is the retransmitted segment's sequence number. The retransmitted
segment is the missing segment.

316 I PART m Transport Layer Protocols

More Info Fast retransmit and fast recovery are described in RFC 2581, which
can be found in the \RFC folder on the companion CD-ROM.

As Figure 14-5 illustrates, TCP Peer A sends five TCP segments and the first segment is
lost. As the non-contiguous segments arrive, TCP Peer B sends an immediate ACK with
the ACK number it expects to receive. After the third duplicate ACK for sequence num
ber 1000, TCP Peer A retransmits the first segment.

TCP Peer A

Segment 1, Seq #==1000

Segment 2, Seq #==2000

TCP Peer B

Figure 14-5. Fast retransmit behavior, when the first of five segments is dropped.

In Windows 2000, the TcpMaxDupAcks registry value controls fast retransmit behavior.

TcpMaxDupAcks
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Data type: REG_DWORD
Valid range: 1-3
Default value: 2
Present by default: No

TcpMaxDupAcks sets the maximum number of duplicate ACKs (ACKs that are duplicates
of the original ACK received) that must be received before fast retransmit is used to re
transmit the missing segment. The default value of TcpMaxDupAcks is 2, rather than the
RFC 2581-discussed value of 3.

Chapter 1.4 Transmission Control Protocol (TCP) Retransmission and Time-Out I 317

Fast Recovery
Fast retransmit causes the sender to retransmit the missing TCP segment before its retrans
mission timer expires. If the retransmission timer expires, slow start and congestion
avoidance algorithms are usesf to gradually increase the actual send window up to the
advertised receive window. Because the retransmission timer didn't expire, congestion
avoidance is performed, but not slow start. This behavior is known as fast recovery and
is described in RFC 2581. For more information on slow start and congestion avoidance,
see Chapter 13, "Transmission Control Protocol (TCP) Data Flow."

Fast recovery assumes that the arrival of duplicate ACKs indicates that segments sent before
the missing TCP segment have already been received, and aren't adding to the
internetwork congestion. Therefore, Windows 2000 can scale the congestion window
faster than when using slow start.

The fast recovery algorithm is as follows:

1. Upon receipt of the third duplicate ACK, the value of the slow start threshold
(ssthresh) is set to one half the value of the congestion window (cwind), with
a minimum value of 2*MSS.

2. The missing segment is retransmitted and cwind is set to (ssthresh + 3*MSS).
This increases cwind to a value that reflects the receipt of three TCP segments
at the receiver (based on the receipt of three duplicate ACKs).

3. For each additional duplicate ACK, cwind is increased by MSS. Once again,
cwind is being increased because of an additional segment that has arrived at
the receiver.

4. If allowed by the values of cwind and the advertised receive window size, the
next TCP segment(s) is transmitted.

5. When the ACK arrives that acknowledges the receipt of the missing new seg
ment and all other contiguous segments, cwind is set to the value of ssthresh.
At this value of cwind, slow start is avoided and congestion avoidance is per
formed.

Summary
To recover from lost TCP segments, TCP connections maintain an RTO for each segment.
If the RTO expires, the segment is retransmitted and the RTO is doubled for the retrans
mitted segment. After a maximum number of retransmissions, the TCP connection is
abandoned. The RTO is based on calculations from samples of the RTT, using either a
single sample per window of data or TCP timestamps. When TCP segments are sent
without timestamps, Karn's algorithm is used to update the RTO when an ACK for a
retransmitted segment is received. Fast retransmit and fast recovery are used to re-send
a missing segment before its RTO expires, and to more quickly scale the send window.

I
Application
Layer Protocols
anll Services

r
Dynamic Host Configuration
Protocol (DHCP) Service

321

To communicate successfully with each other, all TCP /IP hosts must be properly config
ured. These hosts require a valid and unique IP address, a subnet mask, and a default
gateway address, although the default gateway can be omitted if the host is to communi-
r-ritA r\nlu rvn t-h.o 11""\r-ril Cl1hnAt "Prvr l,,rn-or nDf-T-1:rr'\rlrc ,,;1r11t-1"nril ror'\nf1n11r'1t1"n 1·b:::>.rnc Flro ro
----- ----1 --- ---- -- ---- - __ , _____ . - -- ----o-- ----'. -----, --------------- ------0---------- ------- --- - - -

quired, such as DNS server IP addresses, WINS server IP addresses, and NetBIOS node types.

In small networks, carrying out this configuration requires a degree of TCP /IP skill, which
might not be readily available. On large networks, ensuring that all hosts are properly con
figured can be a considerable management and administrative task, especially in a dynamic
network with roaming users and their laptops. Manual configuration or reconfiguration
of a large number of computers can be time-consuming, and errors in configuring an IP
host can result in the host being unable to communicate with the rest of the network.

DHCP is a client server protocol that simplifies the management of client IP configura
tion and the assignment of IP configuration data. With DHCP, administrators define all
necessary configuration parameters on a central server, which then provides hosts with
all necessary IP configuration information.

DHCP provides three key benefits to those planning, designing, and maintaining an IP
network:

• Centralized administration of IP configuration The DHCP administrator
can centrally manage all IP configuration information. This eliminates the need
to manually configure individual hosts when TCP /IP is first deployed, or when
IP infrastructure changes are required.

• Seamless IP host configuration The use of DHCP ensures that DHCP clients
get accurate and timely IP configuration parameters without user intervention.
Because the configuration is automatic, troubleshooting is largely eliminated.

• Flexibility By using DHCP, the administrator has increased flexibility over
changes in IP configuration information, allowing the administrator to. change
IP configuration more simply as infrastructure changes are needed.

322 I PART IV Application Layer Protocols and Services

Chapter Contents
This chapter describes the Microsoft Windows 2000 DHCP protocol implementation in
detail. Additionally, the companion. CD-ROM contains several Network Monitor traces that
demonstrate the DHCP protocol in operation. This chapter contains the following sections:

• Overview to DHCP in Windows 2000 A description of the DHCP protocol
as implemented in Windows 2000

• DHCP Messages A description of the format of the messages sent between
DHCP clients and DHCP servers

• DHCP Options A description of the options that a DHCP host can request
from a DHCP server

Overview to DHCP in Windows 2000
This section presents an overview of DHCP and defines key DHCP terms.

What Is DHCP?
DHCP is a client server protocol that automatically provides an IP host with its IP address
and other related configuration information such as the subnet mask and default gate
way. RFCs 2131 and 2132 define DHCP as an Internet Engineering Task Force (IETF)
standard based on the Bootstrap Protocol (BOOTP) protocol, with which it shares many
implementation details. DHCP allows hosts to obtain all necessary TCP/IP configuration
information from a DHCP server.

More Info DHCP is an IETF standard based on the BOOTP protocol and is
defined in RFCs 2131 and 2132, which can be found in the \RFC folder on the
companion CD-ROM.

All Windows 2000 Servers (including Server, Advanced Server, and Data Center Server)
include a DHCP Server service, which is an optional installation. All Microsoft Windows
clients automatically install the DHCP client service as part of TCP /IP, including Windows
2000, Windows NT 4.0, Windows 98, and Windows 95.

DHCP Overview and Key Terms
Before examining DHCP in detail, it's necessary to provide you with a basic DHCP over
view and to review definitions of key terms.

DHCP Clients and Servers

A computer that gets its configuration information from DHCP is known as a DHCP cli
ent. DHCP clients communicate with a DHCP server to obtain IP addresses and related
TCP /IP configuration information. DHCP servers hold information about available IP
addresses and related configuration information as defined by the DHCP administrator.

Chapter 1.5 Dynamic Host Configuration Protocol (DHCP) Service I 323

DHCP Scopes and Options

A set of IP addresses and associated configuration information that can be supplied to a
DHCP client is known as a scope. A scope is a set of IP addresses that the server can issue
to DHCP clients, along with one or more options. An option is a specific configuration
item such as a subnet mask and a default gateway IP address, which the DHCP admin
istrator wants the DHCP server to provide to the DHCP client.

A DHCP administrator can create one or more scopes ori one or more Windows 2000
servers running the DHCP service. However, since DHCP servers don't communicate
scope information with each other, the administrator must be careful to ensure that the
scopes are defined carefully so that multiple DHCP servers are not handing out the same
IP address to different clients, or handing out addresses that are taken by existing, manu
ally configured IP hosts.

The IP addresses defined in a DHCP scope are continuous and are associated with a
subnet mask. To allow for the possibility that some IP addresses in the scope might have
been already assigned and in use, the DHCP administrator can specify an exclusion
one or more IP addresses in the scope that won't be handed out to DHCP clients.

Note In networks with multiple subnets and multiple networks, it is useful to
have standards for separating the dynamic IP addresses given out by DHCP from
the addresses used by manually configured hosts.

DHCP options are defined in detail in RFC 2132, and key Windows DHCP options are de
scribed later in this chapter. In the DHCP protocol packet, each option begins with a single
tag octet, which defines the option. An option ·can be fixed length, such as the NetBIOS
Node Type (Option 46); variable length, such as the Domain Name Server (DNS) Domain
Name (Option 15); or an array of items, such as the list of DNS Servers (Option 6).

With the Windows 2000 DHCP service, the DHCP administrator can manage options at
the following five different levels:

• Pre-Defined Options Allow the DHCP administrator to specify default op
tion values for all options supported on the DHCP. server and to create new
option types for use on this server.

• Server Options Values assigned to all clients and scopes defined on the DHCP
server (unless they're overridden by scope, class, or client-assigned options).

• Scope Options Values applied only to clients of a specific scope (unless
they're overridden by class or client-assigned options).

• Class Options Allow the administrator to set user- or vendor-defined option
classes, providing option data to a specified class of DHCP clients (that is, all
Windows 2000 clients). Options set at this level are overridden only by options
assigned at the client level.

• Reserved Client Options Set for an individual DHCP client. Only properties
manually configured at the client computer can override options assigned at
this level.

324 I PART nr Application Layer Protocols and Services

Option Classes

A DHCP options class is an additional set of options that can be provided to a DHCP client
based on the computer being a member of a class of computers. The administrator can use
these to sub-manage option values provided to DHCP clients. There are two types of op
tions classes supported by the Windows 2000 DHCP server: vendor classes and user classes.

When an administrator configures options classes on a DHCP server, a client belonging
to that class, for example, all Windows 2000 computers, can be provided with class-spe
cific option types for its configuration. To support earlier DHCP clients that are unable to
support sending of the class ID, the administrator can configure default classes to provide
option values. This allows the administrator to leverage options specifically provided in
a particular client class, simultaneously allowing the administrator to provide all neces
sary options for other clients.

A DHCP client can indicate in the DHCP protocol messages it sends to a server that the cli
ent is a member of a particular user or vendor class. The administrator can use DHCP to define
option values that are returned only for this client class. For example, the administrator can
configure options specific to Windows 2000 computers, which can be sent option values (for
example, whether or notto release a DHCP lease when shutting down). Other clients, such
as Windows 95, which cannot support this feature, wouldn't receive these values.

For a DHCP client to receive option values for these extended options, the client must
specify a user class string option, containing a string identifying the client type. The DHCP
server can then use this to identify extra options to be sent to the client. The user class
option is set using the IPCONFIG command.

DHCP Messages

DHCP clients communicate with DHCP servers by sending application layer messages to,
and receiving messages from, a DHCP server. There are eight DHCP message types, which
are sent using User Data Protocol (UDP). DHCP clients with a bound IP address and a
valid lease communicate with the DHCP server using unicast IP datagrams, while clients
in the process of obt~ining an IP address communicate using broadcast packets, sent to
the limited broadcast IP address 255.255.255.255. The DHCP client binds to UDP port 68,
while the DHCP server binds to UDP port 67.

While the general message format and individual message details are defined in the "DHCP
Messages" section of this chapter, we'll define the eight DHCP messages here:

• DHCPDISCOVER Broadcast by a DHCP client broadcast to locate a DHCP server.

• DHCPOFFER Sent by a l)HCP server to a DHCP client, in response to
DHCPDISCOVER, along with offered configuration parameters.

• DHCPREQUEST Sent by the DHCP client to DHCP servers to request param
eters from one server while implicitly declining offers from other servers, and to
confirm the validity of previously allocated addresses (for example, after a
reboot or to extend an existing DHCP lease).

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 325

• DHCPACK Sent by a DHCP server to a DHCP client to confirm an IP address
and to provide the client with those configuration parameters that the client
has requested and the server is configured to provide.

• DHCPNAK Sent by a DHCP server to a DHCP client denying the client's
DHCPREQUEST. This might occur if the requested address is incorrect because
of the client having moved to a new subnet or because the DHCP client's lease
has expired and can't be renewed.

• DHCPDECLINE Sent by a DHCP client to a DHCP server, informing the
server that the offered IP address is in use.

• DHCPRELEASE Sent by a DHCP client to a DHCP server, relinquishing an IP
address and canceling the remaining lease. This is sent to the server that pro
vided the lease.

• DHCPINFORM Sent from a DCHP client to a DHCP server, asking only for ad
ditional local configuration parameters; the client already has an externally con~
.C! ___ . __ 1 TT"\ _ _j,...l,. ___ '"T"1_~- ·--------____, __ ! _ _ 1 _______ 1 .C_,_ T"\ ______ --·---·- ...l-'---'-~-·-

J.J.6LIJ. "-''-" .L.1. '4\.,..&.\.. ... &.J. \.,...-iJtJ. .1. .1.J.J.0 .1.J..J.\,_,tJi..:Jc:A.5'- I,.. J 1-''-' J.0 c::.t..1.tJV U.tJ\,_,\.,...&. .I.VJ. .l.\..Vt)U.'-' 0\.....-.1. V "-.1. \,...l.'-...-\..'-\....-l-J.\J.J.J.o

DHCP Leases and Reservations

The IP addresses acquired by DHCP generally aren't permanent. When a DHCP client is
configured using DHCP, it acquires a lease on the assigned address. The lease duration
is defined by the DHCP administrator. In Windows 2000, the administrator can specify
either a lease time, between 1 minute and 999 days, or an unlimited lease time.

While most IP addresses will be dynamically allocated, Windows 2000 allows a DHCP
administrator to create a reservation. A reservation is a permanent address lease that the
DHCP administrator creates in order to assign a specific IP address (and DHCP options)
to a specific DHCP client. The administrator creates the reservation by specifying the IP
address to be allocated and the host's MAC address. The reservation ensures that the DHCP
client with a Network Interface Card (NIC) having that MAC address will always obtain
the same IP address and options.

DHCP Relay Agents

When a Windows 2000 DHCP client is initially booted, it broadcasts DHCP messages to
obtain or renew a lease from a DHCP server. The DHCP administrator uses a DHCP Re
lay Agent to centralize DHCP servers, and avoid needing a DHCP server on each subnet.
Also referred to as a BOOTP relay agent, a DHCP relay agent is a host, or an IP router,
that listens for DHCP client messages being broadcast on a subnet and then transfers the
messages to a configured DHCP server. The DHCP server will send DHCP messages to
the relay agent that then broadcasts them onto the subnet for the DHCP client.

The Windows 2000 server's Routing and Remote Access Service includes a DHCP relay
agent. A DHCP administrator needs to enable the Routing and Remote Access Service,
add the DHCP relay agent, and configure the DHCP server's IP address. Additionally, most
modern hardware routers can be configured to provide relay facilities. On many rout
ers, this is referred to as BOOTP Forwarding.

326 I PART iV Application Layer Protocols and Services

Unauthorized DHCP Server Detection

Properly configured DHCP servers provide IP configuration information for IP networks.
However, when an incorrectly configured DHCP server is introduced into a network, or
any DHCP server is introduced into the wrong network, problems might arise. For ex
ample, if a client obtains a lease from an incorrectly configured DHCP server, the client
might receive an invalid IP address, which will prevent it from communicating on the
network. This can prevent users from logging on. With Windows 2000, an unauthorized
DHCP server is simply a DHCP server that hasn't explicitly been authorized. Unauthorized
DHCP servers are also referred to as Rogue DHCP servers.

In a Windows 2000 domain environment, the DHCP service on an unauthorized server
will fail to initialize. The administrator must explicitly authorize all Windows 2000 DHCP
servers that operate in an Active Directory domain environment. At initialization time, the
DHCP service in Windows 2000 will check for authorization and won't start if the server
detects it's in a domain environment and the server hasn't been explicitly authorized.

Automatic Private IP Addressing (APIPA)

DHCP clients need to find a DHCP server to get an initial lease. In most cases, the DHCP
client will find a server either on a local subnet or via a relay agent. To allow for the pos
sibility that the DHCP server is unavailable, Windows 2000 and Windows 98 provide APIPA.
APIPA is a facility of the Windows 2000 TCP/IP implementation that allows a computer to
obtain IP configuration information without a DHCP server or manual configuration.

APIPA avoids the problem of IP hosts being unable to communicate if, for some reason,
the DHCP server is umivailable. APIPA is also useful for small workgroup networks where
no DHCP server is implemented. Because auto-configuration does not support a default
gateway, it works only with a single subnet and it's inappropriate for larger networks.

If the DHCP client is unable to locate a DHCP, the computer will auto-configure itself with
an IP address randomly chosen from the !ANA-reserved class B network 169.254.0.0, and
with the subnet mask 255.255.0.0. The auto-configured computer will then test to verify that
the IP address it has chosen isn't already in use, using a gratuitous Address Resolution Pro
tocol (ARP) broadcast. If the chosen IP address is in use, the computer will randomly select
another address. The computer will make up to 10 attempts to find an available IP address.

Once the selected address has been verified as available, the client will be configured to
use that address. The DHCP client will continue to check for a DHCP server in the back
ground every 5 minutes, and if a DHCP server is found, the configuration offered by the
DHCP server will be used.

DNS Integration

The DNS service, which Chapter 16, "Domain Name Service (DNS),'' describes in more
detail, provides name resolution for DNS clients. Windows 2000 clients support dynamic
DNS update, which allows DHCP clients to automatically update their configured DNS
servers with forward- and reverse-lookup information.

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 327

Routing and Remote Access Service Integration

The Windows 2000 Routing and Remote Access Service includes a Remote Access Service
server facility, which allows Dial-Up Networking or Virtual Private Network (VPN) clients
to access a Routing and Remote Access Service server and join a local network. To other com
puters on the local network, these clients appear to be peer clients. In this case, the remote
access server acts as a gateway between the remote client and the local network. Remote
access service clients will need IP addresses for the local network in order to operate. While
the Remote Access Service client can be manually configured with an appropriate IP address,
this is an administrative overhead. Alternatively, the Windows 2000 Routing and Remote
Access Service can be configured to obtain any required IP addresses from a DHCP server.

When a Windows 2000 remote access server is configured to use DHCP to obtain IP
addresses, the remote access server obtains 10 IP addresses from a DHCP server. The
remote access server uses the first IP address obtained from DHCP for itself and allocates
subsequent addresses to TCP /IP-based remote access clients as they connect. IP addresses

are used, the remote access server obtains 10 more addresses. When the Routing and
Remote Access Service is stopped, all IP addresses obtained through DHCP are released.

If a DHCP server is not available when the Routing and Remote Access Service is started;
then APIPA addresses in the range from 169.254.0.1 through 169.254.255.254 are used.

Multicast Scopes

In addition to providing leases to unicast IP addresses, the Windows 2000 DHCP service
supports multicast scopes. A multicast scope is a set of addresses in the Class D range,
for use by multicast applications. This feature allows the DHCP administrator to control
the specific multicast addresses in use by multicast applications. Applications must be
specifically written to DHCP to obtain leases for multicast IP addresses.

BOOTP Support

DHCP is based on BOOTP, an older protocol with similar funtionality. BOOTP is an es
tablished protocol standard used for configuring IP hosts. BOOTP was designed originally
to enable boot configuration for diskless workstations. Modern DHCP servers respond to
both BOOTP requests and DHCP requests.

BOOTP clients initialize themselves in two distinct steps, as follows:

1. The BOOTP client requests an IP address and other configuration information,
such as a default gateway address, a DNS server IP address, and the like, from
a BOOTP server. This information includes the boot image file name and the
server name where an IP address should be obtained.

2. The BOOTP client then contacts the server and downloads the boot image file
using Trivial File Transfer Protocol (TFTP).

328 I PART iV Application Layer Protocols and Services

Although DHCP has superceded B001P, Windows 2000's DHCP server provides support for
B001P clients. The administrator can define a scope for use only by B001P clients. Alter
natively, the administrator can define a scope to be used for both B001P and DHCP clients.

How DHCP Works
Hosts use the DHCP protocol to obtain an initial lease, to renew an existing lease, and
to detect unauthorized DHCP servers.

Obtaining an Initial Lease

Initial lease acquisition occurs the first time a DHCP client boots up, as Figure 15-1 illustrates.

DHCPDISCOVER

D_ DHCPOFFER

DHCPREQUEST
DHCP client DHCPACK DHCP server

Figure 15-1. DHCP messages exchanged during initial lease acquisition.

The following Network Monitor Trace (Capture 15-01, included in the \Captures folder
on the companion CD-ROM) illustrates this process:

1 4.426365 KAPOH010 *BROADCAST DHCP Discover (xid=43474883) 0.0.0.0
255.255.255.255 IP
2 4.426365 LOCAL *BROADCAST DHCP Offer (xid=43474883) TALLGUY
255.255.255.255 IP
3 4.426365 KAPOH010 *BROADCAST DHCP Request (xid=43474883) 0.0.0.0
255.255.255.255 IP
4 4.436379 LOCAL *BROADCAST DHCP ACK (xid=43474883) TALLGUY
255.255.255.255 IP

In this trace, the DHCP client first broadcasts a DHCPDISCOVER message to find a DHCP
server. Because the host doesn't have an IP address, it communicates with the DHCP server
by means of a local area broadcast. If there's more than one DHCP server able to pro
vide the DHCP client with a valid IP address, it's possible for the DHCP client to receive
one or more DHCPOFFER responses. If this occurs, the client will choose the "best" of
fer, which for Windows 2000 DHCP clients will be the first offer received. To help the
client decide which is the best offer, the DHCPOFFER message will also contain values
for options that the client has requested and that are configured on the offering DHCP
server.

Any DHCP server that receives a DHCPREQUEST message and that can assign the DHCP
client a lease will issue a DHCPOFFER message, which contains an offered IP address
(and option values). If the client can accept this lease, it will issue a DHCPREQUEST to
the DHCP server, requesting the offered IP address. This request also will contain all the
configuration options that the DHCP client wishes to obtain.

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 329

The final message, a DHCPACK, is sent from the DHCP server to the DHCP client to
confirm that the DHCP client has the IP address. The DHCPACK also provides values for
the requested options that were specified by the DHCP administrator on the server issu
ing the DHCPACK.

Renewing a Lease

As Figure 15-2 illustrates, DHCP clients will attempt to renew the lease either at each
reboot or at regular intervals after the DHCP client has initialized.

D_ DHCPREQUEST

DHCPACK

DHCP client DHCP server

Figure 15-2. DHCP messages exchanged during lease renewal.

The following Network Monitor trace (Capture 15-02, included in the \Captures folder
on the companion CD-ROM) illustrates this process:

1 81.757561 KAPOH010 *BROADCAST DHCP Request (xid=492D15B9) 0.0.0.0
255.255.255.255 IP
2 81.767576 LOCAL *BROADCAST DHCP ACK (xid=492Dl5B9) TALLGUY
255.255.255.255 IP

As shown in the Network Monitor trace, a lease renewal involves just tWo DHCP messages
DHCPREQUEST and DHCPACK. If the DHCP client renews a lease while booting up, broad
cast IP packets are used to send these messages as shown in trace 15-2. If the lease renewal
is made while the DHCP client is running, the DHCP client and the DHCP server commu
nicate via unicast.

When a client obtains a lease, DHCP provides values for all configuration options re
quested by the client. By reducing the lease time, the DHCP administrator can force cli
ents to regularly renew leases and obtain updated configuration details. This can be useful
when the administrator wishes to change a subnet's IP configuration.

A DHCP client will first attempt to reacquire its lease at half the lease time, also known
as Tl. If this fails, the client will attempt a further lease renewal at 87.5 percent of the
lease time, known as T2. If the lease isn't reacquired before it expires (for example, if
the DHCP server is unreachable), as soon as the lease expires, the client immediately
unbinds the IP address and attempts to acquire a new lease.

Changing Subnets and Servers

If the DHCP client requests a lease via a DHCPREQUEST message, that the DHCP server
cannot fulfill (for example, when a laptop is moved to a different subnet), the DHCP server
sends a DHCPNAK message to the client. The client will then acquire a new lease using
the lease acquisition process described earlier. Figure 15-3 illustrates this sequence of
DHCP messages.

330 I PART !V Application Layer Protocols and Services

DHCPREQUEST

DHCPNAK Jig D DHCPDISCOVER

DHCPOFFER

DHCP client DHCPREQUEST

DHCPACK

Figure 15-3. DHCP messages exchanged when DHCP client boots in a new subnet.

The following Network Monitor trace (Capture 15-03, included in the \Captures folder
on the companion CD-ROM) illustrates this process:

1 68.198064 KAPOH010 *BROADCAST DHCP Request (xid=2DBB2B8B)
0.0.0.0 255.255.255.255 IP
2 68.198064 LOCAL *BROADCAST DHCP NACK (xid=2DBB2B8B)
TALLGUY 255.255.255.255 IP
3 69.419821 KAPOH010 *BROADCAST DHCP Discover (xid=749C146A)
0.0.0.0 255.255.255.255 IP
4 69.419821 LOCAL *BROADCAST DHCP Offer (xid=749C146A)
TALLGUY 255.255.255.255 IP
5 69.429836 KAPOH010 *BROADCAST DHCP Request (xid=749C146A)
0.0.0.0 255.255.255.255 IP
6 69.429836 LOCAL *BROADCAST DHCP ACK (xid=749C146A)
TALLGUY 255.255.255.255 IP

When a DHCP client boots up, it broadcasts a DHCPREQUEST message to renew its lease.
This ensures that the DHCP renewal request is sent to the DHCP server that provides
DHCP addresses for the subnet the client is now on, which might be different from the
server that provided the initial lease. When the DHCP server receives the broadcast, it
compares the address the DHCP client is requesting with the scopes configured on the
server. If it's impossible to satisfy the client request, the DHCP server issues a DHCPNAK,
and the DHCP client then acquires a new lease.

If the DHCP client is unable to locate any DHCP serve,r when rebooting, to renew its lease,
it issues an ARP broadcast for the default gateway that was previously obtained, if one
was provided. If the IP address of the gateway is successfully resolved, the DHCP client
assumes that it's still located on the same network where it obtained its current lease,
and continues to use this lease.

If the ARP broadcast that the client sent for the default gateway receives no response,
the client assumes that it's been moved to a network that has no DHCP services currently
available (such as a home network), and it auto-configures itself using APIPA. Once it
auto-configures itself, the DHCP client will try, every 5 minutes, to locate a DHCP server.

Using the DHCP Relay Agent

DHCP relay agents listen for DHCPDISCOVER and DHCPREQUEST (and DHCPINFORM)
messages that are broadcast. The DHCP relay agent then waits a configured amount of
time and, if no response is detected, sends the message to the configured DHCP server

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 331

via unicast. The server then acts on the message, and sends the reply back to the DHCP
relay agent. The relay agent then broadcasts the message on the local subnet allowing
the DHCP client to receive it.

Detecting Unauthorized DHCP Servers

As part of the initialization of the DHCP service, all DHCP servers perform Rogue Server
Detection. As Figure 15-4 illustrates, if the server isn't authorized in the Active Directory,
it shuts down. This process can be seen in Network Monitor trace 15-4 (Capture 15-04,
included in the \Captures folder on the companion CD-ROM), which contains a trace of
an unauthorized server performing Rogue Server Detection, and succeeding.

tlg DHCPINFORM tlg
Initializing DHCPACK Initialized

r'\Uf'n "".....,....,,,...,.,. l"IUl"D con1':>r -· ·-· --· ·-·

Figure 15-4. A DHCP server performing Rogue Server Detection.

Rogue server detection begins with the initializing DHCP server issuing DHCPINFORM
queries to determine if there are other initialized DHCP servers on any attached network.
If so, these servers respond with a DHCPACK message that contains the name of the do
main in which they have been authorized. If other DHCP servers are found, as can be
seen in the Network Monitor trace 15-4, a Windows 2000 DHCP service that's starting will
bind to the Active Directory and issue a series of LDAP calls to discover whether or not
it is authorized. If the server isn't authorized, the service terminates. This detection is
carried out once per hour by the DHCP server, in order to detect newly de-authorized
servers.

If DHCP event logging is enabled, a message is written to the DHCP event log. The event
log message to accompany trace 15-4 is as follows:

00,05/17/99,18:34:08,Started,,,
61,05/17/99,18:34:08,Server found that belongs to OS
domain,10.10.1.200,kapoho.com,
01,05/17/99,18:34:08,Stopped,,,

In this example, the DHCP service started up and performed the Unauthorized DHCP
Server detection. This authorization failed and the DHCP service, therefore, was stopped.
Any attempts to restart the DHCP service would be unsuccessful until the DHCP server
was authorized.

Updating DNS Entries

When a DHCP lease is granted to an IP host, it's important for the host name and IP
address mapping to be provided to the DNS. Traditionally, this was a manual task, which
involved creating the DNS forward- and reverse-lookup entries.

332 I PART IV Application Layer Protocols and Services

More Info Windows 2000 implements Dynamic DNS update protocol described
in RFC 2136. This protocol enables Windows 2000 clients to automatically send
DNS ~ntries to a DNS server. This RFC can be found in the \RFC folder on the
companion CD-ROM.

Each time a DHCP client receives a new lease or renews an existing lease, the client sends
its fully qualifie9 name to the DHCP server as part of the DHCPREQUEST message. The
DHCPREQUEST message requests the DHCP server to register a reverse-lookup address
mapping in the DNS server on behalf of the client. The DHCP client usually handles the
forward-lookup registration on its own, if it's capable.

The DHCP administrator can configure the DHCP server to send DNS updates for both
the forward- and reverse-lookup address mappings to the DNS server. This is useful for
down-level DHCP clients that don't support dynamic DNS updates.

Network Monitor trace 15-5 (Capture 15-05, included in the \Captures folder on the com
panion CD-ROM) illustrates a DHCP server registering both the forward- and reverse-lookup
mappings for a new address lease. In the trace, the DHCP server queries for the DNS Start of
Authority (SOA) record for the forward-lookup zone, then updates the forward-lookup en
try for the DHCP client. The DHCP server then queries the DNS server for the reverse-lookup
zone, and performs the update of the DHCP client's reverse lookup entry.

For the dynamic updates to be successful, the DNS server must support dynamic DNS
updates and have the forward- and reverse-lookup zones configured to allow dynamic
updates. The Windows 2000 DNS service supports dynamic DNS updates, but the default
for new zones doesn't allow dynamic updates. If, for some reason, the dynamic updat
ing of a zone isn't configured when the DHCP server attempts to update the DNS entry,
the server will receive an error from the DNS server. This can be seen in Network Moni
tor trace 15-6 (Capture 15-06, included in the \Captures folder on the companion CD
ROM), where the reverse-lookup zone is configured to not allow dynamic updates. In
this case, the DHCP server sends the update, but receives an error in return.

DHCP Messages
The format of DHCP messages is based on the message format used with the BOOTP
protocol, as described in this section. The descriptions of the DHCP messages will refer
to DHCP options, which are described in more detail in the "DHCP Options" section of
this chapter.

General Message Format
RFC 2131 defines the format of the messages sent between a DHCP client and a DHCP
server. The basic message format is illustrated in Figure 15-5.

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 333

Message Type (Op)

Hardware Address Type (Htype)

Hardware Address Length (Hien)

Hops (Hops)

Transaction ID (Xid)

Seconds (Secs)

Flags (Flags)

Client IP Address (Ciaddr)

Your IP Address (Yiaddr)

DHCP Server IP Address (Siaddr)

Gateway IP Address (Giaddr)

Server Hardware Address (Chaddr) 16 Octets
f--~~~~~~~~~~~~~

Client Host Name (Sname) 64 Octets

Boot File Name (File)

Options (Options) Variable Length

Figure 15-5. DHCP message format.

Table 15-1 displays the individual fields in the DHCP message, and a short description
for each.

Table 15-1. DHCP Message Fields and Descriptions

Fields

Message Type (Op)

Hardware Address Type (Htype)

Hardware Address Length (Hlen)

Hops (Hops)

Transaction ID (Xid)

Seconds (Secs)

(continued)

Description

Message type.

Hardware address type, as defined in ARP section of RFC
1700 (for example, "Oxl" means 10 MB Ethernet).

Hardware address length, in octets (for example, "Ox6"'
for 10 MB Ethernet).

DHCP client sets this to 0. Relay agent can use this option
ally when the DHCP client is booting via a relay agent.
A random number used to denote a conversation be
tween a DHCP client and a DHCP server (for example, a
lease acquisition).

Filled in by DHCP client. Number of seconds elapsed since
DHCP client commenced address acquisition process.

334 I PAIU IV Application Layer Protocols and Services

Table 15-1. (continued)

Fields

Flags (Flags)

Client IP Address (Ciaddr)

Your IP Address (Yiaddr)

DHCP Server IP Address (Siaddr)

Gateway IP Address (Giaddr)

Client Hardware Address (Chaddr)

Server Host name (Sname)

Boot File Name (File)

Options (Options)

Description

Flags set by client. In RFC 2131, the Broadcast flag is the
only flag defined: A DHCP client that can't receive unicast
IP datagrams until it has been configured with an IP ad
dress sets this Broadcast flag.

Filled in only if client has an IP address and can respond
to ARP requests to defend this IP address.

The address given by the DHCP server to the DHCP client.

IP address of the DHCP server that's offering a lease (re
turned by DHCPOFFER).

DHCP Relay Agent IP Address, used when booting via a
DHCP relay agent.

Client hardware address.

Windows 2000 doesn't use this field.

The name of the file containing a boot image for a
BOOTP client. ,

A variable-length set of fields containing DHCP options.

As Figure 15-5 illustrates, DHCP messages consist of a fixed part-236 octets in length
plus a variable-length section, used to hold options. As DHCP messages are transmitted
using UDP, all DHCP messages must fit fully into a UDP Datagram, which limits the vari
able-length section to MTU 264 bytes (allowing for the IP header of 20 bytes, and the
UDP header of 8 bytes). Thus, for Ethernet, this limit is 1236 bytes.

DHCPDISCOVER
A DHCP client that wishes to find a DHCP server to provide a lease sends the
DHCPDISCOVER message. Using DHCP, this is the first step in obtaining an IP address.
Because the DHCP client has a valid IP address, the DHCPDISCOVER message is trans
mitted using the limited-broadcast IP address 255.255.255.255 and a source IP address
of 0.0.0.0.

Before transmitting ·the DHCPDISCOVER message, the DHCP client fills in the fields
(described earlier) in the fixed-length portion of the DHCP message as follows:

• Op Set to 1,. BOOTREQUEST

• Htype, Hien Set based on the type of network in use

• Hops, Secs, Glags Set to 0

• Xid Client selects a random 32-bit value

• Ciaddr, Yiaddr, Siaddr, Giaddr All set to 0

• Chaddr Set to the client MAC address of the interface acquiring a DHCP
lease, and is the address used in all subsequent DHCP messages to refer to this
interface on this client

• Cname, File Set to 0

Chapter :15 Dynamic Host Configuration Protocol (DHCP) Service I 335

The Windows 2000 DHCP client also sets a series of options in the DHCPDISCOVER
message. The options are set as follows:

• Magic Cookie Always set to 99.130.83.99 to indicate that vendor extensions
follow.

• Client Identifier Set to the DHCP client's hardware address.

• Host Name Set to the client's host name.

• Client Class Set to "MSFT 5.0" to indicate that this is a Windows 2000 system.

• Parameter Request List Set to indicate the parameters the client wants to
obtain from the server. For Windows 2000, these are OxOl (subnet mask), OxOF
(DNS domain name), Ox03 (default gateway), Ox06 (DNS servers), Ox2C (WINS
server address), Ox2E (NetBIOS node type), Ox2F (NetBIOS Scope ID), Ox2B
(vendor class information).

Nn+~ Th~ Winrlnw~ QR nHr.Pnisr.OVFR mP.ssMe doesn't send client class infor
mation and doesn't request vendor class information. Additionally, the Windows 98
DHCPDISCOVER message sends an Option Request message for Option 57, a maxi
mum DHCP message size that isn't acted on by the Windows 2000 DHCP server.

The following Network Monitor trace (part of Capture 15-01, included in the \Captures
folder on the companion CD-ROM) shows a DHCPDISCOVER message sent from a
Windows 2000 client discovering available DHCP servers:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x120; Proto = UDP; Len: 328
+ UDP: IP Multi cast: Src Port: BO OTP Client, (68); Ost Port: BOOTP Server
(67); Length = 308 (0x134)

DHCP: Discover
DHCP: Op Code

(xid=43474883)
(op) = 1 (0xl)

DHCP: Hardware Type (htype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 (0x6)
DHCP: Hops (hops) = 0 (0x0)
DHCP: Transaction ID (xid) = 11287 45091 (0x43474883)
DHCP: Seconds (secs) 0 (0x0)

+ DHCP: Flags (flags) 0 (0x0)
DHCP: Client IP Address (ciaddr) 0.0.0.0
DHCP: Your IP Address (yiaddr) 0.0.0.0
DHCP: Server IP Address (siaddr) 0.0.0.0
DHCP: Relay IP Address (giaddr) 0.0.0.0
DHCP: Client Ethernet Address (chaddr) = 006008010303
DHCP: Server Host Name (sname) <Blank>
DHCP: Boot File Name (file) <Blank>
DHCP: Magic Cookie= 99.130.83.99

336 I PART IV Application Layer Protocols and Services

DHCP: Option Field (options)
DHCP: DHCP Message Type
DHCP: Unrecognized Option
DHCP: Client-identifier
DHCP: Requested Address

DHCP Discover
251 (0xFB)
(Type: 1) 00 60 08 01 d3 03
12.12.12.12

DHCP: Host Name KAPOH010

DHCPOFFER

DHCP: Client Class information= (length: 8) 4d 53 46 54 20 35 2e 30
DHCP: Parameter Request List = (Length: 10) 01 0f 03 06 2c 2e 2f lf 21 2b
DHCP: End of this option field

When a DHCP server receives a DHCPREQUEST, the server uses the Chaddr field to
identify the client requesting the DHCP lease. The server first checks its database to see
if the DHCP client requesting the lease has an existing lease or a reservation for a lease.
If it doesn't, the DHCP server then checks to see if it has a configured scope from which
to allocate an IP address lease.

To determine which scope to use for address assignment, the DHCP server examines the
Giaddr field in the DHCPDISCOVER message. If giaddr is 0, the DHCP server uses the
interface that the message was received on to determine the scope. Conversely, if the
Giaddr field is not 0, the server uses the scope that corresponds to the subnet the DHCP
relay agent resides in. The Giaddr field is set by a DHCP relay agent, and is based on
the subnet that the originating DHCP client is in.

If there's no existing lease for the client, the DHCP server examines the chosen scope to
find an IP address for the DHCP client. If the client had a previously assigned lease, but
the lease expired, and the address is available, the DHCP server offers this address. Oth
erwise, the server picks an available address from the scope being used for the allocation.

If the DHCP server can offer a lease, it will construct a DHCPOFFER message with the
following fields set in the fixed-length portion of the DHCP message:

• Op Set to 2

• Htype Set according to the network hardware in use

• Xid Set to the Xid in the received DHCPDISCOVER

• Yiaddr Set to the IP address being offered to the DHCP client

• Siaddr Set to the IP address of the DHCP server offering the lease

• Chaddr Set to the client's hardware address as received in the
DHCPDISCOVER message

The DHCP server also sets a series of options as follows:

• Magic Cookie Set to 99.130.83.99

• DHCP Message Type Set to 2 (DHCPOFFER)

• Subnet Mask Obtained from the scope definition

Chapter :15 Dynamic Host Configuration Protocol (DHCP) Service I 337

• Renewal Time (Tl) Set to 50 percent of the lease time, in seconds

• Rebinding Time (T2) Set to 87.5 percent of the lease time, in seconds

• IP Address Lease Time The duration of the lease, in seconds

• Server Identifier The IP address of the server offering the lease

• Domain Name If requested in the DHCPDISCOVER message (and config
ured for the scope), the DNS domain name specified in the scope definition

• Domain Name Server If requested in the DHCPDISCOVER message (and con
figured for the scope), the list of DNS servers specified in the scope definition

• NetBIOS Name Server If requested in the DHCPDISCOVER message (and
configured for the scope), the list of W1NS servers specified in the scope

• NetBIOS Node Type If requested in the DHCPDISCOVER message (and con-
figured for the scope), the NetBIOS node type specified in the scope definition

The DHCP client, having issued a DHCPDISCOVER, might receive zero, one, or more
Tll-WPOPFFR mPc;;c;;~~P" Tf no DHCPOFFER message is received. the DHCP client retrans
mits the DHCPOFFER message. If the DHCP client receives no offer after three attempts,
the client initiates auto-configuration using APIPA.

A DHCPOFFER message is shown in the following Network Monitor trace (part of Cap
ture 15-01, included in the \Captures folder on the companion CD-ROM), which details
a Windows 2000 client being offered a lease on the IP address 10.10.1.51:

+ Frame: Base frame. properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xD8B; Proto = UDP; Len: 337
+UDP: IP Multicast: Src Port: BOOTP Server, (67); Ost Port: BOOTP Client
(68); Length = 317 (0x13D)

DHCP: Offer Cxid=43474883)
DHCP: Op Code (op) = 2 (0x2)
DHCP: Hardware Type Chtype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length Chlen) = 6 (0x6)
DHCP: Hops Chops) = 0 (0x0)
DHCP: Transaction ID Cxid) = 1128745091 C0x43474883)
DHCP: Seconds (secs) 0 C0x0)

+ DHCP: Flags (flags) 0 (0x0)
DHCP: Client IP Address (ciaddr) 0.0.0.0
DHCP: Your IP Address (yiaddr) 10.10.1.51
DHCP: Server IP Address (siaddr) 10.10.1.100
DHCP: Relay IP Address (giaddr) 0.0.0.0
DHCP: Client Ethernet Address (chaddr) = 006008010303
DHCP: Server Host Name (sname) <Blank>
DHCP: Boot File Name (file) <Blank>
DHCP: Magic Cookie 99.130.83.99
DHCP: Option Field (options)

338 I PART IV Application Layer Protocols and Services

DHCP: DHCP Message Type
DHCP: Subnet Mask

= DHCP Offer
= 255.255.255.0

DHCP: Renewal Time Value (Tl) = 4 Days, 0:00:00
DHCP: Rebinding Time Value (T2) = 7 Days, 0:00:00
DHCP: IP Address Lease Time 8 Days, 0:00:00
DHCP: Server Identifier 10.10.1.100
DHCP: Domain Name
DHCP: Router
DHCP: Domain Name Server

DHCPREQUEST

kapoho.com
10.10.1.100
10.10.1.200 10.10.2.200

A DHCP client sends the DHCPREQUEST to a DHCP server, usually as part of an initial
lease acquisition (that is, responding to a DHCPOFFER), or as part of a subsequent lease
renewal. A DHCP host can use it to confirm its previously allocated IP address and as
sociated configuration parameters as well.

Based either on the information in a DHCPOFFER message, or on the currently config
ured DHCP properties, the Windows 2000 client constructs a DHCPREQUEST message
with the following fields set in the fixed-length portion of the DHCP message:

• Op Set to 1.

• Htype, Hien Set according to the network hardware in use.

• Xid Set to either the xid in the original DHCPDISCOVER (for new leases) or
a new transaction ID (for lease renewals and IP address confirmations).

• Chaddr Set to the client's hardware address as specified in the original
DHCPDISCOVER message.

• Ciaddr For new leases, this field is set to O; for lease renewals, this is set to
the IP address being renewed (or if the lease has expired, the IP address last
leased by the DHCP client).

The Windows 2000 DHCP client also sets a series of options in the DHCPREQUEST
message. The options are set as follows:

• Magic Cookie Always set to 99.130.83.99.

• DHCP Message Type Set to Ox03 (DHCPREQUEST).

• Client Identifier Set to the DHCP client's hardware address.

• Requested Address This is the address, offered in the DHCPOFFER message.
(If multiple offers were received, this is the address the client chose from the
set of addresses that were offered, and which the client is now requesting.)

• Server ID The client is addressing the DHCP request to this server.

• Host Name This is the DHCP client's host name.

• Dynamic DNS Updates This option, not defined in RFC 2131, contains the
Host Name that the DHCP server will use to format DNS forward- and
reverse-lookup updates.

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 339

• Client Class Information Specifies the DHCP client's vendor class. For
Windows 2000 computers, the class-identifier string is "MSFT 5.0." The DHCP
server uses this to identify the client-class type and to identify any vendor
specific information to be· returned.

• Parameter Request List The list of configuration parameters that the client
wishes to obtain. For Windows 2000 clients this request list contains options
OxOl (subnet mask), Ox03 (router), Ox06 (DNS server list), OxOF (domain
name), Ox2B (vendor-specific information), Ox2C (WINS server list), Ox2E
(NetBIOS node type), and Ox2F (NetBIOS scope).

Note Windows 98 DHCPREQUEST messages are similar to those sent by Win
dows 2000 clients. The Windows 98 client sends Option 57 (maximum DHCP mes
sage size), although the Windows 2000 DHCP server doesn't acknowledge this.
The Windows 98 client, however, doesn't send the Dynamic DNS updates option
or vendor class information in the Parameter Request list.

The following Network Monitor trace (part of Capture 15-01, included in the \Captures
folder on the companion CD-ROM) shows a DHCPREQUEST message with a Windows
2000 client requesting a lease on the IP address 10.10.1.51:

+ Frame: Base frame properties
+ETHERNET: ETYPE = 0x0800: Protocol= IP: DOD Internet Protocol
+ IP: ID = 0xl21; Proto = UDP; Len: 365
+UDP: IP Multicast: Src Port: BOOTP Client, (68); Ost Port: BOOTP Server
(67); Length = 345 (0xl59)

DHCP: Request
DHCP: Op Code

(xid=43474883)
(op) = 1 (0xl)

DHCP: Hardware Type (htype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 (0x6)
DHCP: Hops (hops) = 0 (0x0)
DHCP: Transaction ID (xid) = 11287 45091 (0x43474883)
DHCP: Seconds (secs) 0 (0x0)

+ DHCP: Flags (flags) 0 (0x0)
DHCP: Client IP Address (ciaddr) 0.0.0.0
DHCP: Your IP Address (yiaddr) 0.0.0.0
DHCP: Server IP Address (siaddr) 0.0.0.0
DHCP: Relay IP Address (giaddr) 0.0.0.0
DHCP: Client Ethernet Address (chaddr) = 006008010303
DHCP: Server Host Name (sname)
DHCP: Boot File Name (file)
DHCP: Magic Cookie = 99.130.83.99
DHCP: Option Field (options)

DHCP: DHCP Message Type
DHCP: Client-identifier
DHCP: Requested Address

<Blank>
<Blank>

DHCP Request
(Type: 1) 00 60 08 01 d3 03
10.10.1.51

340 I PART iV Application Layer Protocols and Services

DHCP: Server Identifier
DHCP: Host Name
DHCP: Dynamic DNS updates

4f 31 30 2e 72 65 64 6d ...

10.10.1.100
KAPOH010
(Length: 38) 00 00 00 4b 41 50 4f 48

DHCP: Client Class information= (Length: 8) 4d 53 46 54 20 35 2e 30
DHCP: Parameter Request List= (Length: 10) 01 0f 03 06 2c 2e 2f lf 21 2b
DHCP: End of this option field

DHCPACK
The DHCP server sends the DHCPACK message to the DHCP client in response to the
DHCPREQUEST or DHCPINFORM message. The DHCPACK message is a confirmation
by the DHCP server that it has issued the DHCP client with a lease on an IP address and
provides values for any required options (as specified in the Parameter Request list of
the DHCPREQUEST message).

The Windows 2000 DHCP server constructs a DHCPACK message with the following fields
set in the fixed-length portion of the DHCP message:

• Op Set to 2.

• Htype, Hien Set according to the network hardware in use.

• Xid Set to either the xid in the original DHCPDISCOVER (for new leases) or
a new transaction ID (for lease renewals and IP address confirmations).

• Yiaddr Set to the client's IP address. The DHCP server issues this address to
the client.

• Chaddr Set to the client's hardware address as specified in the original
DHCPDISCOVER message.

The Windows 2000 DHCP server also sets a series of options in the DHCPREQUEST
message. The options are set as follows:

• Magic Cookie Always set to 99.130.83.99

• DHCP Message Type Set to Ox05 (DHCPACK)

• Renewal Time (Tl) Set to 50 percent of the lease time, in seconds

• Rebinding Time (T2) Set of 87.5 percent of the lease time, in seconds

• IP Address Lease Time The duration of the lease, in seconds

• Server ID The client is addressing the DHCP request to this server

• Subnet Mask The client's subnet mask

• Dynamic DNS Updates Sent in response to the Dynamic DNS updates in the
DHCPREQUEST message

Additionally, the DHCP server will send all option values for any of the options requested
in the DHCPREQUEST message. The following Network Monitor trace (part of Capture

Chapter :1.5 Dynamic Host Configuration Protocol (DHCP) Service I 341

15-01, included in the \Captures folder on the companion CD-ROM) shows a Windows
2000 DHCP server confirming a lease on IP address 10.10.1.51 to a Windows 2000 client:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xD90; Proto = UDP; Len: 342
+UDP: IP Multicast: Src Port: BOOTP Server, (67); Dst Port: BOOTP Client
(68) : Length = 322 (0x142)

DHCP: ACK (xid=43474883)
DHCP: Op Code (op) = 2 (0x2)
DHCP: Hardware Type (htype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 (0x6)
DHCP: Hops (hops) = 0 (0x0)
DHCP: Transaction ID
DHCP: Seconds

+ DHCP: Flags
DHCP: Client IP Address
DHCP: Your IP Address

(xid)
(secs)
(flags)
(ciaddr)
(yiaddr)

= 11287 45091
0 (0x0)
0 (0x0)
0.0.0.0
10.10.1.51

DHCP: Server IP Address (siaddr) 0.0.0.0
DHCP: Relay IP Address (giaddr) 0.0.0.0

(0x43474883)

DHCP: Client Ethernet Address (chaddr) = 00600801D303
DHCP: Server Host Name (sname) <Blank>
DHCP: Boot File Name (file) <Blank>
DHCP: Magic Cookie = 99.130.83.99
DHCP: Option Field (options)

DHCPDECLINE

DHCP: DHCP Message Type DHCP ACK
DHCP: Renewal Time Value (Tl) = 4 Days, 0:00:00
DHCP: Rebinding Time Value (T2) = 7 Days, 0:00:00
DHCP: IP Address Lease Time = 8 Days, 0:00:00
DHCP: Server Identifier 10.10.1.100
DHCP: Subnet Mask 255.255.255.0
DHCP: Dynamic DNS updates (Length: 3) 03 ff ff
DHCP: Domain Name
DHCP: Router
DHCP: Domain Name Server

kapoho.com
10.10.1.100
10.10.1.200 10.10.2.200

When a DHCP client receives an IP address from a DHCP server, the client must deter
mine whether the IP address is in use. In fact, the Windows 2000 DHCP server can be
configured to check that the address is in use before even issuing the address. However,
both Windows 2000 and Windows 98 clients perform this check after receiving a
DHCPACK. The client performs the check by issuing an ARP broadcast for the address.

342 I PART IV Application Layer Protocols and Services

If the DHCP client receives an ARP reply, indicating that the address is in use, the client
broadcasts a DHCPDECLINE to the DHCP server and unbinds the address. The Windows
2000 DHCP server marks the address as "bad" in the DHCP database. The client is then
free to acquire a lease for another IP address.

Network Monitor trace 15-7 (Capture 15-07; included in the \Captures folder on the
companion CD-ROM) contains a trace of a Windows 2000 system acquiring a lease. In
the trace, the DHCP server offers and acknowledges an IP address against which the DHCP
client performs a gratuitous ARP. Because the address is in use, the ARP finds a host using
the address, and the DHCP client broadcasts the DHCPDECLINE. This allows the DHCP
server to mark the address as "bad_address" in the DHCP database. The DHCP client also
writes an Event Log Warning message to the DHCP client's event log, as well as to the
event log of the client currently holding the disputed IP address (if that system is a Win
dows 2000 computer).

The Windows 2000 client constructs a DHCPDECLINE message with the following fields
set in the fixed-length portion of the DHCP message:

• Op Set to 1

• Htype, Hien Set according to the network hardware in use

• Xid Set to xid in the original DHCPDISCOVER or DHCPREQUEST

• Ciaddr Set to the IP address that's in dispute (that is, the one the client was
issued but has determined is already in use)

• Chaddr Set to the client's hardware address as specified in the original in the
DHCPDISCOVER message

The Windows 2000 DHCP client also sets a series of options in the DHCPDECLINE
message as follows:

• Magic Cookie Always set to 99.130.83.99

• DHCP Message Type Set to Ox04 (DHCPDECLINE)

• Client Identifier The MAC address of the client issuing the DHCPDECLINE
message .

• Requested Address The disputed IP address

• Server ID The IP address of the server that issued the client with the dis
puted address

The following trace (part of Capture 15-07, included in the \Captures folder on the com
panion CD-ROM) shows the DHCPDECLINE message in detail:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xC58; Proto = UDP; Len: 328
+UDP: IP Multicast: Src Port: BOOTP Client, (68); Ost Port: BOOTP Server
(67): Length = 308 (0xl34)

Chapter :15 Dynamic Host Configuration Protocol (DHCP) Service I 343

DHCP: Decline (xid=3D136017)
DHCP: Op Code (op) = 1 (0xl)
DHCP: Hardware Type (htype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 (0x6)
DHCP: Hops (hops) = 0 (0x0)
DHCP: Transaction ID
DHCP: Seconds

(xid) = 1024679959 (0x3D136017)
(secs) 0 (0x0)

+ DHCP: Flags (flags) 0 (0x0)
DHCP: Client IP Address (ciaddr)
DHCP: Your IP Address (yiaddr)

10.10.1.50
0.0.0.0

DHCP: Server IP Address (siaddr) 0.0.0.0
DHCP: Relay IP Address (giaddr) 0.0.0.0
DHCP: Client Ethernet Address (chaddr) = 00600801D303
DHCP: Server Host Name (sname) <Blank>
DHCP: Boot File Name (file) <Blank>

.. ,...,,...
un~r; na~1~ ~UUKIC - ~~.iJU.UJ.~~

DHCP: Option Field (options)
DHCP: DHCP Message Type DHCP Decline
DHCP: Client-identifier = (Type: 1) 00 60 08 01 d3 03
DHCP: Requested Address = 10.10.1.50

DHCP: Option MUST NOT be Present
DHCP: Server Identifier 10.10.1.100
DHCP: End of this option field

DHCPNAK
The DHCP server uses DHCPNAK messages to tell a DHCP client that an address it's
requesting can't be provided. This can occur when a client that has a lease is off-line or,
for administrative reasons, the DHCP administrator cancels the lease. In that case, the
DHCP server could re-allocate the address to another client. It can also occur on clients
that move between different subnets.

If the requested address comes from a scope that does not match the scope· of the value
in the Giaddr field or the scope of the interface on which it was received (if the Giaddr
field is 0), the DHCP server determines that the DHCP client has moved to a different
subnet.

Upon receiving a DHCPNAK message, Windows DHCP clients immediately release the
IP address and attempt to acquire a new IP address.

The following Network Monitor trace (part of Capture 15-03, included in the \Captures
folder on the companion CD-ROM} illustrates the DHCPNAK. The trace shows a
DHCPREQUEST for an address, followed by a DHCPNAK indicating that it's not available:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol

344 I PART iV Application Layer Protocols and Services

+ IP: ID = 0xAE: Proto = UDP; Len: 353
+UDP: Src Port: BOOTP Client, (68); Ost Port: BOOTP Server (67); Length 333
(0x14D)

(xid=199F7780) DHCP: Request
DHCP: Op Code (op) = 1 (0xl)
DHCP: Hardware Type (htype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 (0x6)
DHCP: Hops (hops) = 0 (0x0)
DHCP: Transaction ID (xid) = 429881216 (0x199F7780)
DHCP: Seconds (secs) 0 (0x0)

+ DHCP: Flags (flags) 0 (0x0)
DHCP: Client IP Address (ciaddr) 10.10.1.50
DHCP: Your IP Address (yiaddr) 0.0.0.0
DHCP: Server IP Address (siaddr) 0.0.0.0
DHCP: Relay IP Address (giaddr) 0.0.0.0
DHCP: Client Ethernet Address Cchaddr) = 006008010303
DHCP: Server Host Name (sname) <Blank>
DHCP: Boot File Name (file) <Blank>
DHCP: Magic Cookie = 99.130.83.99
DHCP: Option Field (options)

DHCP: DHCP Message Type
DHCP: Client-identifier
DHCP: Host Name
DHCP: Dynamic DNS updates
4f 31 30 2e 72 65 64 6d ...

DHCP Request
(Type: 1) 00 60 08 01 d3 03
KAPOH010
(Length: 38) 00 00 00 4b 41 50 4f 48

DHCP: Client Class information= (Length: 8) 4d 53 46 54 20 35 2e 30
DHCP: Parameter Request List = (Length: 10) 01 0f 03 06 2c 2e 2f lf 21 2b
DHCP: End of this option field

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xCBEA; Proto = UDP: Len: 328
+UDP: Src Port: BOOTP Server, (67); Ost Port: BOOTP Client (68); Length 308
(0x134)

DHCP: NACK (xid=l99F7780)
DHCP: Op Code (op) = 2 (0x2)
DHCP: Hardware Type (htype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 C0x6)
DHCP: Hops Chops) = 0 (0x0)
DHCP: Transaction ID
DHCP: Seconds

(xid) = 429881216 (0xl99F7780)
(secs) 0 (0x0)

+ DHCP: Flags (flags) 128 (0x80)
DHCP: Client IP Address (ciaddr)
DHCP: Your IP Address (yiaddr)
DHCP: Server IP Address (siaddr)

0.0.0.0
0.0.0.0
0.0.0.0

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 345

DHCP: Relay IP Address (giaddr) = 0.0.0.0
DHCP: Client Ethernet Address (chaddr) = 006008010303
DHCP: Server Host Name (sname)
DHCP: Boot File Name (file)
DHCP: Magic Cookie = 99.130.83.99
DHCP: Option Field (options)

DHCPRELEASE

DHCP: DHCP Message Type
DHCP: Server Identifier

<Blank>
<Blank>

DHCP NACK
10.10.1.100

The DHCP client sends this message to the DHCP server releasing the IP address and
canceling the lease. The released IP address can then be reused for other DHCP clients.
The Windows 2000 DHCP server doesn't acknowledge the DHCPRELEASE. The
DHCPRELEASE message is unicast from the DHCP client to the DHCP server that origi
nally issued the lease that the client is releasing.

The Windows 2000 DHCP client constructs a DHCPRELEASE message with the follow
ing fields set in the fixed-length portion of the DHCP message:

• Op Set to 1

• Htype, Hien Set according to the network hardware in use

• Xid Set to a new transaction ID

• Ciaddr Set to the client's IP address that's being released

• Chaddr Set to the client's hardware address as specified in the original
DHCPDISCOVER message

The Windows 2000 client also sets a series of options in the DHCPRELEASE message. The
options are set as follows:

• Magic Cookie Always set to 99.130.83.99

• DHCP Message Type Set to Ox07 (DHCPRELEASE)

• Server Identifier The server that originally issued the lease

• Client Identifier The DHCP client's MAC address

The following Network Monitor trace (Capture 15-08, included in the \Captures folder
on the companion CD-ROM), shows a DHCPRELEASE message sent from a Windows 2000
computer, releasing the IP address 10.10.1.61:

+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: . DOD Internet Protocol
+ IP: ID = 0xFA; Proto = UDP; Len: 328
+ UDP: Src Port: BOOTP Client, (68); Ost Port: BOOTP Server (67); Length 308
(0x134)

DHCP: Release
DHCP: Op Code

(xid=771D3A02)
(op) = 1 (0xl)

346 I PART IV Application Layer Protocols and Services

DHCP: Hardware Type Chtype) = 1 (0xl) 10Mb Ethernet
DHCP: Hardware Address Length (hlen) = 6 C0x6)
DHCP: Hops Chops) = 0 (0x0)
DHCP: Transaction ID Cxid) = 1998404098 C 0x771D3A02)
DHCP: Seconds (secs) 0 C0x0)

+ DHCP: Flags (flags) 128 (0x80)
DHCP: Client IP Address (ciaddr) 10.10.1.61
DHCP: Your IP Address (yiaddr) 0.0.0.0
DHCP: Server IP Address Csiaddr) 0.0.0.0
DHCP: Relay IP Address (giaddr) 0.0.0.0
DHCP: Client Ethernet Address (chaddr) = 006008010303
DHCP: Server Host Name Csname)
DHCP: Boot File Name (file)
DHCP: Magi,c Cookie = 99 .130. 83. 99
DHCP: Option Field (options)

DHCP: DHCP Message Type
DHCP: Server Identifier
DHCP: Client-identifier

<Blank>
<Blank>

DHCP Release
10.10.1.100
(Type: 1) 00 60 08 01 d3 03

DHCP: End of this option field

DHCPINFORM
RFC 2131 defines a new DHCP message type, DHCPINFORM. DHCP clients could use
the DHCPINFORM message to request additional configuration information, regardless
of how the DHCP clients were originally configured. Thus, a DHCP client, configured
with a static IP address, could use the DHCPINFORM messages to request additional local
configuration parameters from a DHCP server. DHCPINFORM is also used by Windows
2000 remote access clients to automatically obtain a DNS domain name, after the Point
to-Point Protocol (PPP) connection is configured.

More Info DHCPINFORM is described in RFC 2131, which can be found in the
\RFC folder on the companion CD-ROM.

In Windows 2000, the key use of the DHCPINFORM message is to enable a Windows 2000
DHCP server to discover the name of the Directory Services (DS) enterprise root on which
each server is installed as part of rogue DHCP server detection. This information is re
quested within the DHCPINFORM message by including information in the message's
vendor-specific options area. When other DHCP servers running the Windows 2000 DHCP
Server service receive the DHCPINFORM message, the DHCP servers process, acknowl
edge, and respond with the requested information about the DS enterprise root.

The Windows 2000 server constructs a DHCPINFORM message with the following fields
set in the fixed-length portion of the DHCP message:

• Op Set to 1

• Htype, Hien Set according to the network hardware in use

Chapter 1.5 Dynamic Host Configuration Protocol (DHCP) Service I 34 7

• Xid The DHCP server generates a new transaction ID

• Ciaddr Set to the DHCP server's IP address

The Windows 2000 DHCP server also sets a series of options in the DHCPINFORM mes
sage as follows:

• Magic Cookie Always set to 99.130.83.99

• DHCP Message Type Set to Ox08 (DHCPINFORM)

• Vendor-Specific Information For unauthorized server detection, this field is
set to Ox5E

DHCP Options
The Windows 2000 server provides DHCP leases, which include IP addresses, subnet
masks. and values for soecific ootions as reauested bv the DHCP client. This section
defines the options that. Windows 2000 DHCP servers support and those that Windows
2000 clients can request.

What Are DHCP Options?
A DHCP option is a configuration parameter that a DHCP server can send to a DHCP client.
These can be standard options, used in all Dl1CP messages (or all messages of a particular
type such as DHCPDISCOVER), such as the Magic Cookie option, orDHCP message types.
Additionally, DHCP options can contain configuration parameters that are explicitly re
quested by DHCP clients, such as the default gateway IP address.

The Windows 2000 DHCP server supports the standard option types, defined in RFC 2132.
Moreover, Windows 2000 defines extra vendor-specific options that the administrator can
use to provide Windows 2000 DHCP clients with additional information.

More Info Standard option types are defined in RFC 2131, which can be found
in the \RFC folder on the companion CD-ROM.

9ption Formats

As defined by RFCs 2131 and 2132, options can be of either fixed length or variable length,
and might or might not have associated data. All options begin with an octet holding the
option code to identify it. Fixed-length options without data consist of only a tag octet.
The only fixed-length options without data are Option 0 (Pad) and Option 255 (End).
All other options are of variable length and have a length octet following the tag octet.
The length octet value excludes the two octets that specify the tag and length. The length
value indicates the number of octets that the option will contain. Some variable-length
options have a fixed-length field but a length option will still be specified.

The vendor option class is formatted slightly differently in that there's a single option
(vendor-specific information) that consists of a list of sub-options.

348 I PART IV Application Layer Protocols and Services

Options Supported by Windows 2000
The Windows 2000 DHCP service supports all options specified in RFC 2132. However,
most of the defined options are no longer in use, or aren't used by Windows or MS-DOS
DHCP clients. For the full list of options that Windows 2000 DHCP service supports, re
fer to Windows 2000 Server Help. The options that the Windows 2000 DHCP server sup
ports fall into the following three groups:

• Options that are present in all messages (or all occurrences of a specific message type)

• Standard options that clients can request and that the DHCP server will pro
vide, if the administrator at the DHCP server has defined the option value

• Vendor options that are returned based on the client class

Options Present in All DHCP Messages

Table 15-2 displays the DHCP options that appear in all DHCP messages (or in all occur
rences of a particular DHCP message):

Table 15-2. DHCP Options Appearing in All DHCP Messages

Option Name Option Code

Pad .0

Subnet 1
Mask

Host 12
Name

Vendor- 43
Specific
Information

Requested 50
Address

Lease Time 51

DHCP 53
Message
Type

(continued)

Option Length

1 octet

4 octets

Variable length;
minimum length
is 1 octet

Variable length

4 octets

4 octets

1 octet

Option Description

Used to cause subsequent fields to align. Can
be used in any DHCP message.

Used in conjunction with an offered IP address.
Used in DHCPOFFER and DHCPACK messages.

Specifies the name of the client.
Used in DHCPDISCOVER, DHCPREQUEST,
and DHCPNAK messages.

Used by clients and servers to exchange vendor
specific information. The definition of this
information is vendor-specific and isn't defined
in RFC 2132. Used in DHCPINFORM messages.

The DHCP client is requesting (or declining)
this address. Used in DHCPREQUEST and
DHCPDELCINE messages.

The length of the lease in seconds. Present in
only DHCPOFFER and DHCPACK messages.

Used to define the DHCP Message type. The
values are as follows:
1 - DHCPDISCOVER
2 - DHCPOFFER
3 - DHCPREQUEST
4 - DHCPDECLINE
5- DHCPACK
6- DHCPNAK
7 - DHCPRELEASE
8 - DHCPINFORM
Used in all DHCP messages.

Chapter 15 Dynamic Host Configuration Protocol (DHCP) Service I 349

Table 15-2. (continued)

Option Name Option Code Option Length

Server
Identifier
and

54 4 octets

Parameter
Request
List

55 Variable

Renewal 58
Time (Tl)

Rebinding 59
Time (T2)

Client 61
Identifier

Dynamic 81
DNS Update

End 255

length;
but for
Windows 2000
Clients, this
will be 8
octets in length

4 octets

4 octets

Variable length;
minimum
length is 2 octets;
for Ethernet,
the length is
6 octets

Variable length

1 octet

Options Requested by DHCP Clients

Option Description

The DHCP server's IP address. Used in
DHCPREQUEST, DHCPACK, DHCPDECLINE,
DHCPRELEASE messages.

Used by a DHCP client to request values for
specific configuration parameters. Each octet
is a valid DHCP option code (defined in RFC
2132) for options that the DHCP client is
requesting values for from the DHCP server.
Occurs in DHCPDISCOVER, DHCPREQUEST,
and DHCPINFORM messages.

Length of time until client enters renewal state,
in seconds. Used in DHCPOFFER and
DHCPACK messages.

Length of time until the client enters rebinding
state, in seconds. used m lJttCt'UJ:<J:<tK and
DHCPACK messages.

A value to identify the client uniquely. For
Windows 2000 clients, this is the client MAC
address. Used in DHCPDISCOVER,
DHCPREQUEST, DHCPDECLINE, DHCPNAK,
and DHCPRELEASE messages.

This is the fully qualified domain name of the
host and the DHCP server uses it to send
dynamic DNS updates to a DNS server. Used in
DHCPREQUEST messages.

Marks the end of the Options field in a DHCP
message. Used in all DHCP messages.

The options that clients can request and receive values for (assuming the administrator
has specified values for them on the DHCP server) are shown in Table 15-3.

Table 15-3. Options for Which Clients Can Request and Receive Values

Option Name

Router

Domain
Name
Servers

(continued)

Option Code

3

6

Option Length

Variable; but
always a
multiple of 4

Variable; but
always a
multiple of 4 ·

Option Description

A list of IP addresses for routers on
the client's subnet, which should be
listed in order of preference. Gener
ally, there will be only one router
the default gateway-but multiple
gateways can be specified. ·

A list of IP addresses for Domain
Name System servers (per RFC 1035)
available to the client.

350 I PART IV Application Layer Protocols and Services

Table 15-3. (continued)

Option Name

DNS
Domain

·Name

WINS
Server
Names

NetBIOS Over
TCP/IP
Node Type

NetBIOS
Scope ID

Option Code

15

44

46

47

Vendor-Specific Options

Option Length

Variable length
set of ASCII
characters

Variable; but
always a
multiple of 4

1 octet

Variable;
minimum
length is 1

Option Description

The DNS domain name that the DHCP
client should use when resolving host
names using DNS.

A list of WINS Server IP Addresses for
client use. This will typically be a
primary and secondary server.

Used to tell a TCP/IP client how NetBIOS
names should be resolved, as follows:
Oxl B-node (broadcast)
Ox2 P-node (point-to-point)
Ox4 M-rtode (mixed)
Ox8 H~node (hybrid)
See Chapter 17 for more detail on the
NetBIOS Node Type.

Specifies the NetBIOS over TCP /IP
scope for the client, as specified in
RFCs 1001 and 1002.

In addition to the standard options noted above, the administrator can set specific op
tions to be returned to clients of a particular class (such as Windows 2000, Windows 98,
and so forth).

Table 15-4 shows the options that can be returned to a client running Microsoft Windows
2000.

Table 15-4. Options that Can Be Returned to a Client Running Windows 2000

Option Name

Microsoft Disable
NetBIOS Option

Microsoft Release
On Shutdown

Microsoft Default
Router Metric Base

Summary

Option Code

1

2

2

Option Length Option Description

4 Informs the Windows 2000 client
whether or not to disable NetBIOS

4 Informs the Windows 2000 client
whether or not to release the DHCP
lease on shutdown

4 Specifies the default router metric base

DHCP is a simple client server protocol that makes TCP /IP network configuration much
simpler for the Administrator. DHCP is based on the BOOTP protocol, which explains
some of the message formats. Windows 2000 implements the latest RFCs that define both
the DHCPINFORM message type, plus the new Vendor and User class options. The DHCP
Server in Windows 2000 will support all down-level Microsoft networking clients that
support DHCP.

351

Domain Name Service (DNS)

Every host that runs TCP/IP must have a unique IP address that's used when communi
cating with other computers in a network. Computers operate easily with IP addresses,
but people don't; users would rather identify systems by a name. To facilitate effective
and efficient communication, users need to be able to refer to computers by name, and
still have their computer use IP addresses transparently.

T._ 1_ --- ----- __ 1 __ _.J ____ ,...., ,,.....C .._, __ --- A nnA 1'.Tnt"J"1 1 ,....... C---~~-~-~~.-~-- -- ..__ ,-l,.... ,,...., T-... ,...,. t....,........,.,......,.,..,...,, ,..... 1 ,..
.J...1.J.. \...1..1."-' '-'"'-.l..J.J '-A.uyu '-"J.. \...l..L'--' ..L..t.....L'\...L..L..t...J.."111,L....,.L' L-.J...1.'--' .1.'-".1.'-'.1."""'.1..1...1..1.-.L "'-' L'-''-+(A..] u .a..1..1..\..-.&...1...1.--..., \...&..&._ ... _ ""_..__] '-"'

small number of computers attached to the network. The Network Information Center
(NIC), located at Stanford Research Institute (SRI), was responsible for compiling a single
file, HOSTS.TXT, which contained the names and addresses of every computer. Admin
istrators would email SRI, which would then update the HOSTS.TXT file. Next, ARPANET
users would download the new version of HOSTS.TXT using File Transfer Protocol (FTP).

As the ARPANET grew, it became obvious that this approach wouldn't scale, for the fol
lowing three key reasons:

• The bandwidth consumed in transmitting updated versions of an ARPANET-wide
host file was proportional to the square of the number of hosts in the ARPANET.
With the number of hosts growing at an exponential rate, the long-term impact
was likely to be a load that no one host was going to be able to sustain.

• The static flat host file also meant that no two computers on the ARPANET
could have the same name. As the number of hosts grew, the risk of adding a
duplicate name grew, as did the difficulty of trying to control this centrally.

• The nature of the underlying network was changing-the large, timesharing
computers that had once made up the ARPANET were being superseded by
networks of workstations-each of which needed to have a unique host name.
This would be difficult, if not impossible, to control centrally.

As the ARPANET continued to grow, it became clear that ARPANET needed a better so
lution. Several proposals were generated based on the concept of a distributed naming
service, which was based on a hierarchical name space. RFCs 882 and 883 emerged, which
described the design for a domain name system, based on a distributed database con
taining generalized resource information. This design evolved, and RFCs 1034 and 1035
were issued to describe the Domain Name System (DNS) service used in today's Internet.
This design continues to evolve, and a number of proposed updates and refinements are
being discussed as this chapter is being written.

352 I PART IV Application Layer Protocols and Services

Chapter Contents
This chapter describes Microsoft Windows 2000's implementation of the DNS protocol.
Additionally, there are Network Monitor traces on the companion CD-ROM that demon
strate the DNS protocol in operation.

This chapter contains the following sections:

• Overview to DNS in Windows 2000 A description of the DNS protocol as
implemented in Windows 2000

• How DNS Works A description of how DNS works, illustrated by various
Network Monitor traces

• DNS Messages Describes the format of the messages sent between DNS cli
ents and DNS servers, and the functions provided

• Server-Server DNS Messages Describes the format of messages sent be-
tween D NS servers

This chapter doesn't discuss the administration of a DNS system, however. The care and
feeding of a DNS service could, and does, fill complete books, and we won't duplicate
that effort here. See the bibliography for details of recommended books covering DNS
administration considerations.

Overview to DNS in Microsoft Windows 2000
To facilitate communications between computers, computers can be given names within a
name space. The specifie name space defines the rules for naming a computer, and for how
names are resolved into IP addresses. When one computer communicates with other com
puters, it must resolve, or convert, a computer name into an IP address based on the rules
of the name space being used. This resolution will be done by a name-resolution service.

There are two main name spaces, and name.,.resolution methods, used within Windows
2000: NetBIOS, implemented by Windows Internet Naming Service (WINS) (described
in Chapter 17), and the DNS, described in this chapter. Windows 2000 also provides
support for other name spaces, such as Novell Netware and Banyan Vines, although
discussion of these is outside the scope of this book.

In this section, we'll describe DNS and the protocol used to provide name resolution.

What Is DNS?
The DNS is an IETF-standard name service. The DNS service enables client computers
on your network to register and resolve DNS domain names. These names are used to
find and access resources offered by other computers on your network or other networks,
such as the Internet. The following are the three main components of DNS:

• Domain name space and associated resource records (RRs) A distrib
uted database of name-related information.

Chapter :1© Domain Name Service (DNS) I 353

• DNS Name Servers Servers that hold the domain name space and RRs, and
that answer queries from DNS clients.

• DNS Resolvers The facility within a DNS client that contacts DNS name serv
ers and issues name queries to obtain resource record information.

Key DNS Terms
This section describes the key components of the DNS and defines key DNS terms.

Domain Name Space

The domain name space is a hierarchical, tree-structured name space, starting at an un
named root used for all DNS operations. In the DNS name space, each node and leaf in
the domain name space tree represents a named domain. Each domain· can have addi
tional child domains. Figure 16-1 illustrates the structure of Internet domain name space.

Top Level
Domains

2nd
Level

Domains

Figure 16-1. Domain name space for the Internet.

Domain Names

Each node in the DNS tree, as Figure 16-1 illustrates, has a separate name, referred to in
RFC 1034 as a label. Each DNS label can be from 1 through 63 characters in length, with
the root domain having a length of zero characters.

A specific node's domain name is the list of the labels in the path from the node being
named to the DNS Tree root. DNS convention is that the labels that compose a domain
name are read left to right-from the most specific to the root (for example, www.kapoho
.com). This full name is also known as the fully qualified domain name (FQDN).

Domain names can be stored as upper case or lower case, but all domain comparisons
and domain functions are defined, by RFC 1034, to be case insensitive. Thus,
www.kapoho.com is identical to WWWJG4POHO.COM for domain naming operations.

354 I PART IV Application Layer Protocols and Services

Top-Level Domains

A top-level domain is a DNS domain directly below the root. As Figure 16-1 illustrates, a
number of top-level domains have been defined. Additional names (at least for the Internet)
are difficult to create. The following are the 'three categories of top-level domains:

• "ARPA" This is a special domain-used today for reverse-name lookups.

• 3-letter domains There are six 3-character, top-level domains noted below.

• 2-letter country-based domain names These country code domains are
based on the International Organization for Standardization (ISO) country
name, and are used principally by companies and organizations outside the
US. The exception is the UK, which uses .uk as the top-level domain, even
though the ISO country code is GB.

Table 16-1 shows the six top-level domains in use today, as defined by RFC 1591.

Table 16-1. 3-Character Top-Level Domains in Use in the Internet

3-Character
Domain Name Use

com Commercial organizations, such as microsoft.com for the Microsoft Corporation

edu Educational institutions, now mainly four-year colleges and universities, such
as cmu.edu for Carnegie Mellon University

gov Agencies of the US Federal Government, such as fbi.gov for the US Federal
Bureau of Investigation

int Organizations established by international treaties, such as nato.int for NATO

mil US military, such as af.mil for the US Air Force

net Computers of network providers, organizations dedicated to the Internet,
Internet Service Providers (ISPs), and so forth, such as internic.net for the
Internet Network Information Center (InterNIC)

org A top-level domain for groups that don't fit anywhere else, such as non
government or non-profit organizations (for example, reiki.org for information
about Reiki)

Note While these are the only 3-letter domains available today, there is pres
sure to expand this number; we may well end up with more in the future.

Resource Records (RR)

A resource record is a record containing information relating to a domain that the DNS
database can hold and that a DNS client can retrieve and use. For example, the host RR
for a specific domain holds the IP address of that domain (host); a DNS client will use
this RR to obtain the IP address for the domain.

Each DNS server contains the RRs relating to those portions of the DNS namespace for
which it's authoritative (or for which it can answer queries sent by a host). When a DNS
server is authoritative for a portion of the DNS name space, those systems' administrators

Chapter :16 Domain Name Service (DNS) I 355

are responsible for ensuring that the information about that DNS name space portion is
correct. To increase efficiency, a given DNS server can cache the RRs relating to a do
main in any part of the domain tree.

There are numerous RR types defined in RFCs 1035 and 1036, and in later RFCs. Most of
the RR types are no longer needed or used, although all are fully supported by Windows
2000. Table 16-2 lists the key RRs that might be used in a Windows 2000 network. (For
more detail on the contents of specific RRs, see the "DNS Resource Records" section later
in this chapter.)

Table 16-2. Key Resource Records as Used by a Windows 2000 Network

Resource Record Type

A

CNAME

MX

NS

PTR

SOA

SRV

Contents

Host Address

Canonical Name (alias)
Mail F.xrharn::ipr

Name Server

Pointer

Start of Authority

Service Locator

Use

Used to hold a specific host's IP address.

Used to make an alias name for a host.
Provines message routing to a mail

server, plus backup server(s) in case the
target server isn't active.

Provides a list of authoritative servers for
a domain or indicates authoritative DNS
servers for any delegated sub-domains.

Used for reverse lookup-resolving an IP
address into a domain name using the IN
ADDR.ARPA domain.

Used to determine the DNS server that's
the primary server for a DNS zone and to
store other zone property information.

Provides the ability to find the server pro
viding a specific service. Active Directory
uses SRV records to locate domain control
lers, global catalog servers, and Light
weight Directory Access Protocol (LDAP)
servers.

RRs can be attached to any node in the DNS tree, although RRs won't be provided in some
domains (for example, Pointer (PTR) RRs are found only in domains below the in
addr.arpa domain). Thus, higher-level domains, such as microsoft.com, can have indi
vidual RRs (for example, Mail Exchange (MX) record for mail to be sent to the Microsoft
Corporation) as well as having sub-domains that also might have individual RRs (for
instance, eu.microsoft.com, which has a host record www.eu.microsoft.com).

Canonical Names
The Canonical Name (CNAME) RR enables the administrator to create an alias to another
domain name. The use of CNAME RRs are recommended for use in the following scenarios:

• When a host specified in an (A) RR in the same zone needs to be renamed. For
example, if you need to rename kona.kapoho.com to hilo.kapoho.com, you
could create a CNAME entry for kona.kapoho.com to point to hilo.kapoho.com.

356 I PART IV Application Layer Protocols and Services

• When a generic name for a well-known service, such as ftp or www, needs to
resolve to a group of individual computers (each with an individual (A) RR). For
example, you might want www.kapoho.com to be an alias for kona.kapoho.com
and hilo.kapoho.com. A user will access www.kapoho.com and generally won't
be aware of which computer is actually servicing this request.

DNS Query Operation

A DNS client issues a query operation against a DNS server to obtain some or all of the
RR information relating to a specific domain, for instance, to determine which host (A)
record or records are held for the domain named kapoho.com. If the domain exists and
the requested RRs exist, the DNS server will return the requested information in a query
reply message. The query reply message will return both the initial query and a reply
containing the relevant records, assuming the DNS server can obtain the required RRs.

A DNS query, referred to in RFC 1034 as a standard query, contains a target domain name,
a query type, and a query class. The query will contain a request for the specific RR(s)
that the resolver wished to obtain (or a request to return all RRs relating to the domain).

DNS Update Operation

A DNS update operation is issued by a DNS client against a DNS server to update, add,
or delete some or all of the RR information relating to a specific domain, for instance, to
update the host record for the computer named kona.kapoho.com to point to 10.10.1.100.
The update operation is also referred to as a dynamic update.

DNS Zones

A DNS server that has complete information for part of the DNS name space is said to
be the authority for that part of the name space. This authoritative information is orga
nized into units called zones, which are the main units of replication in DNS. A zone
contains one or more RRs for one or more related DNS domains.

The following are the three DNS zone types implemented in Windows 2000:

• Standard Primary Holds the master copy of a zone and can replicate it to
secondary zones. All changes to a zone are made on the standard primary.

• Standard Secondary Contains a read-only copy of zone information that can
provide increased performance and resilience. Information in a primary zone is
replicated to the secondary by use of the zone transfer mechanism.

• Active Directory-integrated A Microsoft proprietary zone type, where the
zone information is held in the Windows 2000 Active· Directory (AD) and repli
cated using AD replication. .

Traditionally, the master copy of each zone is held in a primary zone on a single DNS
server. On that server, the zone has a Start Of Authority (SOA) record that specifies it to
be the primary zone. To improve performance and redundancy, a primary zone can be

Chapter :16 Domain Name Service (DNS) I 357

automatically distributed to one or more secondary zones held on other DNS servers.
When changes are made to the zone, for instance, to add an (A) record, the changes are
made to the primary zone and are transferred to the secondary zone. The transfer of zone
information is handled by the zone replication process, which is described later in the
"Zone Transfer" section.

When a zone is first created in Windows 2000, the zone will only hold information about
a single DNS domain name, for example, kapoho.com. After the zone is created, the
administrator can then add RRs to the zone, or can set the domain to be dynamically
updated. For example, the administrator could add (A) records (host records) for hosts
in the domain, such as kona.kapoho.com. If dynamic updates are enabled for the zone,
a Windows 2000 computer can then directly update the A and PTR records on the DNS
server (if the DNS client is also a DHCP client, the administrator can configure a DHCP
server to send the updates).

Once the administrator has created the zone, he can add additional sub-domains to the
/(°' 1 •1 1 1 • 1 . 1 1 1 1 , • 1 T""""l.,"1'. Tr"I

LVUC \1V1 c11..a111v1c, JU.n..avvuv.LV111,.J. 111C.:lC 1111611l UC au.u.cu. LV }'1vv1U.C .Ln ~ oJ ,:)Cl v 1\..,\:-,:) LV

a new building that is managed separately from the parent domain. This sub-domain,
which might reside in a separate zone, would have RRs added (for example, a host record
for jasmine. jh.kapoho.com).

As Figure 16-2 illustrates, if other domains are added below the domain used initially to
create the zone, these domains can either be part of the same zone or belong to another.
For example, the sub-domain jh.kapoho.com, which is subordinate to kapoho.com, could
be held in the same zone as kapoho.com, or in a separate zone. This allows the sub-do
main to be managed and included as part of the original zone records, or to be delegated
away to another zone created to support that sub-domain.

Figure 16-2. Zones versus domains.

In this example, the domain kapoho.com has a sub-domain of jh.kapoho.com. Addition
ally, both domains contain a single host record. In this e:x;ample, ·the domains
jh.kapoho.com and kapoho.com are held in separate zones on different DNS servers. The
kapoho.com zone holds one host record for kona.kapoho.com. The jh.kapoho.com
domain holds the host record for the host jasmine.jh.kapoho.com.

358 I ?AIU IV Application Layer Protocols and Services

Active Directory-Integrated Zones

A major new feature in the Windows 2000 DNS service is the ability to store DNS zones
within the AD. An.Active Directory-integrated zone is a primary DNS zone that's held
within the AD and replicated to other AD primary zones, using AD replication (and not
traditional zone transfer). Although this method of holding zones is a Microsoft proprietary
approach, it can provide some useful benefits.

The main advantage of AD-integrated zones is that the zones become, in effect, multi
master, with the capability of updates being made to any DNS server. This can increase
the fault tolerance of the DNS service. In addition, replication of zone information oc
curs using AD replication, which can be more efficient across slow links, because of the
way that AD compresses replication data between sites.

Reverse-Lookup Zones

Most queries sent to a DNS server involve a search based on the DNS name of another
computer as stored in an address (A) RR. This type of query expects an IP address as the
resource data for the answered response. This type of query is generally referred to as
a forward query. DNS also provides a reverse-lookup process, which enables a host to
determine another host's name based on its IP address. For example, "What is the DNS
domain name of the host at IP address 10.10.1.100?"

To allow for reverse queries, a special domain, in-addr.arpa, was defined and reserved
in the Internet DNS name space. Sub-domains within the in-addr.arpa domain are named
using the reverse ordering of the numbers in the dotted-decimal notation of IP addresses.
The reverse ordering of the domain name is needed because, unlike DNS names, IP
addresses are read from left to right, but are interpreted in the opposite manner (that is,
the left-most part is more generalized than the right"'.'most part). For this reason, the or
der of IP address octets is reversed when building the in-addr.arpa domain tree; for ex
ample, the reverse-lookup zone for the subnet 192.168.100.0 is 100.168.192.in-addr.arpa.

This approach enables the administration of lower limbs of the DNS in-addr.arpa tree to
be delegated to an organization when it obtains a set of IP addresses from an IP registry.

The in-addr.arpa domain tree makes use of the PTR RR. The PTR RR is used to associate
the IP address to the owning domain name. This lookup should correspond to an Ad
dress RR for the host in a forward-lookup zone. The success of a PTR RR used in reverse
query depends on the validity of its pointer data, the (A) RR, which must exist.

Note The in-addr.arpa domain is used only for Internet Protocol version 4 (1Pv4)
based networks. In the Windows 2000 DNS Microsoft. Management Console
(MMC) snap-in, the DNS server's New Zone wizard will use this domain when it
creates a new reverse-lookup zone. Internet Protocol version 6 (1Pv6)-based re
verse-lookup zones are based on the domain ip6.int.

Chapter :16 Domain Name Service (DNS) I 359

Reverse Queries

A reverse query is one in which the DNS server is requested to return the DNS domain
name for a host at a particular IP address. Reverse-Lookup Query messages are, in ef
fect, standard queries, but relating to the reverse-lookup zone. The reverse-lookup zone
is based on the in-addr.arpa domain name and mainly holds PTR RRs.

Note The creation of reverse-lookup zones and the use of PTR RRs for identify
ing hosts are optional parts of the DNS standard. Reverse-lookup zones aren't
required in order to use Windows 2000, although some networked applications can
be configured to use the reverse-lookup zones as a form of additional security.

Inverse Queries

Inverse queries originally were described in RFC 1032, but now are outdated. Inverse
queries were meant to look up a host name based on its IP address and use a nonstand-
,.,.,.,-1 TYl\.TC ,,~.._.T "_r::i..,.,.,~:,-..- 'T1hC'> ·nC"r.'lo ,-..f :+"'\,.TC!t.+"'C".C:.. ,.....,,C'lo,...:.CH"" :<" 1:..-"'V"\:-t.ci.rl 'tr'\ C',-............,,.ci. ,...,.,f" -th.ci. £:).i"l'f"'l:.o....,
--- ~· -~ --i--·; ~!""'-----~--· ·--- -~- -- ---· --~- --i-----~ -~ --------- -- ~----- -- ---- --------

versions of NSLOOKUP.EXE, a utility used to test and troubleshoot a DNS service. The
Windows 2000 DNS server recognizes and accepts inverse query messages and answers
them with a "fake" inverse query response.

DNS Query Classes

DNS queries fall into one of two classes: recursive queries and iterative queries.

A recursive query is a DNS query sent to a DNS server in which the querying host asks
the DNS server to provide a complete answer to the query, even if that means contact
ing other servers to provide the answer. When sent a recursive query, the DNS server
will use separate iterative queries to other DNS servers on behalf of the querying host to
obtain an answer for the query.

An iterative query is a D NS query sent to a D NS server in which the querying host re
quests it to return the best answer the DNS server can provide without seeking further
assistance from other DNS servers.

In general, host computers issue recursive queries against DNS servers. The host assumes
that the DNS server either knows the answer to the query, or can find the answer. On
the other hand, a DNS server will generally issue iterative queries against other DNS servers
if it is unable to answer a recursive query from cached information.

DNS Resolver

In Windows 2000, the DNS resolver is a system component that performs DNS queries
against a DNS server (or servers). The Windows 2000 TCP/IP stack is usually configured
with the IP address of at least one DNS server to which the resolver sends one or more
queries for DNS information.

'.~
L::J

360 I PART IV Application Layer Protocols and .services

In Windows 2000, the resolver is part of the DNS Client service. This service is installed
automatically when TCP /IP is installed, and runs as part of the Services.Exe process. Like
most Windows 2000 services, the DNS Client service will log on using the Windows 2000
System account.

DNS Resolver Cache

An IP host might need to contact some other host on a regular basis, and therefore would
need to resolve a particular DNS name many times (such as the name of the mail server).
To avoid having to send queries to a DNS server each time the host wants to resolve the
name, Windows 2000 hosts implement a special cache of DNS information.

The DNS Client service caches RRs from query responses that the DNS Client service
receives. The information is held for a set Time-To-Live (TTL) and can be used to an
swer subsequent queries. By default, the cache TTL is based on the TTL value received
in the DNS query response. When a query is resolved, the authoritative DNS server for
the resolved domain defines the TTL for a given RR.

You can use the IPCONFIG command with the /DISPLAYDNS option to display the cur
rent resolver cache contents. The output looks like the following:

D:\2031AS>ipconfig /displaydns
Windows 2000 IP Configuration

1oca1 host.

Record Name .
Record Type .
Time To Live
Data Length .
Section ...
A (Host) Record

kona.kapoho.com.

Record Name .
Record Type .
Time To Live
Data Length .
Section . . .
A (Host) Record

1.0.0.127.in-addr.arpa.

Record Name .
Record Type .
Time To Live
Data Length
Section . .
PTR Record

local host
1
31523374
4

Answer
127.0.0.1

KONA.kapoho.com
1

2407
4

Answer
195.152.236.200

1.0.0.127.in-addr.arpa
12
31523373
4

Answer
local host

Chapter :l6 Domain Name Service (DNS) I 361

Negative Caching

The DNS Client service further provides negative caching support. Negative caching occurs
when an RR for a queried domain name doesn't exist or when the domain name itself
doesn't exist, in which case, the lack of resolution is stored. Negative caching prevents .
the repetition of additional queries for RRs or domains that don't exist.

If a query is made to a DNS server and the response is negative, subsequent queries for
the same domain name are answered negatively for a default time of 300 seconds. To
avoid the continued negative caching of stale information, any query information nega- .
tively cached is held for a shorter period than is used for positive query responses.
However, this negative caching time-out value can be changed in the registry using the
following NegativeCacheTime registry value:

NegativeCacheTime
Location: HKEY_LOCAL_MACHINE \System\CurrentControlSet\Services\Dnscache\Parameters
Data type: REG_DWORD--Time, in seconds
Default value: 0x12c (300 decimal, or 5 minutes)
Valid range: 0-0xFFFFFFFF (the suggested value is less one day, to prevent
very stale records)
Present by default: Yes

Negative caching reduces the load on DNS servers, but should the relevant RRs become
available, later queries can be issued to obtain the information.

If all DNS servers are queried and none is available, for a default of 30 seconds, succeeding
name queries will fail instantly, instead of timing out. This can save time for services that
query the DNS during the boot process, especially when the client is booted from the
network.

Zone Transfer

To improve the resilience and performance of the DNS service, it's normal to have at least
one standard secondary zone for each standard primary zone, where the secondary zone
is held on another DNS server. Depending on the exact nature of the organization, mul
tiple standard secondary zones might be appropriate. When changes are made to the pri
mary zone, it's important that the zone information is promptly replicated to all secondary
zones. The process of transferring zone information from a primary to a secondary zone
is called a zone transfer.

Zone transfers usually occur automatically, in intervals difined in the zone's SOA record.
Zone transfers can also be performed manually by using the DNS MMC Snap-in, which
might be done if the administrator suspects the secondary zone hasn't been properly
updated.

When a standard secondary zone is created on a Windows 2000 DNS server, the DNS
server will transfer all RRs from the standard primary zone to the new standard second
ary. The DNS server does this to obtain and replicate a full copy of all RRs for the zone.
In many of the early DNS server implementations, this same method of full transfer for

362 I PART l\f Application Layer Protocols and Services

a zone is used also when the secondary zone requires updating to align it with the pri
mary zone, after changes are made to the primary zone. For large zones, this can be very
time-consuming and wasteful of network resources; This can be an issue because a zone
transfer will be needed each time the primary zone is updated, such as when a new host
is added to the domain or if the IP address for a host is changed.

After the RRs have been replicated, the server on which the new standard secondary zone
resides will check with the server on which the primary zone resides at regular intervals
to determine if there are any changes to the primary zone. This is determined by polling
the primary zone on a regular basis, the time period being defined by the Administrator
in the Zone SOA record in the standard primary zone, and checking if the zone's ver
sion number has changed. If the version number has been incremented, a zone transfer
is necessary. This process is shown in the following Network Monitor trace (Capture 16-
01, included in the \Captures folder on the companion CD-ROM):

1 563.890835 Router Mahimahi DNS 0x6000:Std Ory for kapoho.com. of type SOA on
class !NET addr. 10.10.2.200 10.10.1.200
2 563.890835 Mahimahi Router DNS 0x6000:Std Ory Resp. for kapoho.com. of type
SOA on class !NET addr. 10.10.1.200 10.10.2.200
3 563.890835 Router Mahimahi DNS 0x4000:Std Ory for kapoho.com. of type Req
for incrmntl zn Xfer on class !NET 10.10.2.200 10.10.1.200
4 563.890835 MahiMahi Router DNS 0x4000:Std Ory Resp. for kapoho.com. of type
SOA on class !NET addr. 10.10.1.200 10.10.2.200

In this trace, the DNS server holding the secondary zone queries the primary zone. The
SOA is then returned. The secondary zone discovers a higher version number on the
primary DNS server and requests a zone transfer.

For manually maintained DNS servers, this .traditionally has been a key troubleshooting
issue-changes are made to a primary zone, but the version number is unchanged, and
thus the changes are not replicated to the secondary. With Windows 2000, changes made
to the zone, either via manual update using the DNS MMC Snap-in or via dynamic reg
istration, trigger an update to the version number, thus enabling the secondary to carry
out the zone transfer at the next poll interval.

Incremental Zone Transfers

For large zones, zone transfers can consume a significant amount of bandwidth, espe
cially when a zone transfer is carried across slow WAN links. To improve the efficiency
of zone transfers, Windows 2000 implements a new method of replicating DNS zones,
incremental zone transfer, which involves transferring only the changes to the zone, rather
than the entire zone. This can significantly reduce the traffic needed to keep a second
ary zone current. Incremental zone transfer is defined in RFC 1995.

Chapter 1.6 Domain Name Service (DNS) I 363

With incremental zone transfers, the differences between the source and replicated ver
sions of the zone are first determined. If the zones are identified as the same version
as indicated by the serial number field in the SOA RR of each zone-no transfer is made.

If the serial number for the zone at the source is greater than at the requesting second
ary server, a transfer is made of only those changes to RRs for each incremental zone
version. For an incremental zone-transfer query to succeed and. changes to be sent, the
zone's source DNS server must keep a history of incremental zone changes to use when
answering these queries. Windows 2000 holds the incremental zone transfer information
for each zone in a text file \ Winnt\system32\dns folder whose name is based on the name
of the file holding the the zone data (which was specified when the zone was defined).
Thus, if the zone information for the kapoho.com zone is held in the file kapoho.com.dns,
the incremental update log is held in kapoho.com.dns.log.

Directory-Integrated Zone Replication
,.....1 . 1•, • 1 1° ,_• __ _ 1 _ _ ·- ~---- _ ..__ "-,~-.·- _c~ .. - ----~- ___ ~ .. -.C..-- .. _
Uld.llUC::llU LUllC:.:::> U.:::>C: L11C: L.la.UlllVlla.1 L..V.11\.,..., 1\.......l-'.l.l\....a.\...1V1..1 J.J..l\,,...\,,...lJ.Q..J.J..10.l.l.lO \..'-.I l..1'4.J..1.'--1.L'-'.l LA . ./.1..1.'-' ..1...1..i...L'J.I.

mation. Active Directory-integrated zones, however, use AD replication to replicate up
dates. This provides the following three key benefits:

• DNS servers become multi-master. With standard DNS zones, all updates need
to be made to a single DNS server-in other words, to the server containing
the primary zone. With AD integration, any DNS server can accept the updates,
which provide both improved performance and scaling, as well as better fault
tolerance.

• AD replication is both more efficient and quicker. AD replication transfers up
dated-only properties, and not the entire zone, which means only the changes
are transmitted across the network. Additionally, replication between sites,
typically involving slower links, is highly compressed.

• The administrator only needs to plan and implement a single replication topol-
ogy for AD. This will also replicate DNS changes.

For organizations using AD, Active Directory-integrated zones are generally recommended.
If the organization is, however, using third-party DNS servers, these servers probably won't
support AD-integrated zones.

Zone Delegation

DNS is a distributed database of information designed specifically to overcome the limita
tions of the earlier HOSTS.TXT approach to name resolution. The key to scaling DNS to
handle large name spaces/networks, such as the Internet, is the ability to delegate the admin
istration of domains. A zone delegation occurs when the responsibility of the RRs of a sub
domain is passed from the owner of the parent domain to the owner of the sub-domain.

364 I PART l\f Application Layer Protocols and Services

At the heart of the Internet are 13 root servers, named A.ROOT-SERVERS.NET through
M.ROOT-SERVERS.NET. The root servers are widely distributed. The root servers hold data
for all the top-level domains, such as .com, .org, and .net, as well as for geographical do
mains, such as .uk, and .jp. These root-name servers enable Internet hosts to have access
to the complete DNS database. Below the root and top-level domains are the domains
and sub-domains belonging to individual organizations. In some top-level domains, ad
ditional hierarchy levels are provided. For example, in the .uk domain, there are sub
domains co.uk for UK-based companies (for i.nstance, psp.co.uk) and ac.uk for academic
institutions (for instance, ic.ac.uk for Imperial College), and so forth.

As illustrated in Figure 16-2, delegation occurs as a cut in the DNS with responsibility for
the domain below the cut to be delegated from the domain above the cut. Within the
kapoho.com domain is a sub-domain jh.kapoho.com. Responsibility for the subordinate
domain has been delegated to a different server.

To implement a delegation, the parent zone must have both an A RR and a Name Ser
vice (NS) record-both pointing to the new delegated domain's root. In the kapoho.com
zone, illustrated in Figure 16-2, there must be an A and an NS record that point to
jh.kapoho.com. The Windows 2000 server has a delegation wizard to simplify the task
of implementing a delegation.

Forwarder and Slave DNS Servers

If a resolver contacts a DNS server to resolve a domain name and return relevant RRs,
the contacted DNS server will first attempt to perform the lookup using its own cache.
If this fails, by default the DNS server will then start to issue iterative queries to resolve
the domain. This will start at the root. If the DNS server is one of several at a site con
nected to the outside world by slow links, this default behavior might not be desirable.

As illustrated by Figure 16-3, a forwarder is a DNS server that other DNS servers contact
before attempting to perform the necessary name resolution.

In this example, when any of the DNS clients send recursive queries to DNS servers A,
B, and C, they'll attempt to answer the query from locally held zones or from their local
cache. If this isn't successful, instead of these servers issuing iterative queries to external
DNS servers, they'll send a recursive query to DNS server D, which has a better chance
of answering the query from its own cache. This arrangement will reduce the external
traffic needed to resolve host queries.

If the forwarder (server D in the example) is unable to answer the queries sent by DNS
Servers A, B, or C, these servers will attempt to resolve the queries themselves by issu
ing iterative queries, which, again, might not be desirable. A Slave server is a forwarder
that will only forward queries. This forces the DNS server to use only its configured for
warders for all name-resolution activities.

Chapter 16 Domain Name Service (DNS) I 365

DNS client

D.--•HJ
DNS client DNS Server A (Forwar~

D_ ------.-001 ---ID-J~;::::~
DNS Se:j§GrNS Server D

D_

DNS client DNS Server C (Forwarder)

Single Site

Figure 16-3. DNS forwarder.

Dnnntf Dnhin I n~tl R~l~n~inP'
- - - ---- -- ·- -

Round robin is an approach for performing load balancing. It's used to share and dis
tribute the network resource load. With round robin, the answers contained in a query,
for which multiple RRs exist, are rotated each time the query is answered. Round robin
is a very simple method for load balancing a client's use of Web servers and other fre
quently queried multi-homed computers.

For round robin to work, multiple address (A) RRs for the queried name must exist in
the zone being queried. For example, suppose there were three physical Web servers ser-:
vicing www.kapoho.com, with the IP addresses of 10.1.1.151, 10.1.152, and 10.1.1.153.
To invoke round robin, the administrator would need to define three (A) records for
www.kapoho.com (pointing to the different servers). The first query for this domain would
be returned in the order 10.1.1.151, 10.1.1.152, and 10.1.1.153. The following query would
return 10.1.1.152, 10.1.1.153, and 10.1.1.151, and so on. Because the client usually will
take the first IP address, the first query would use the IP address 10 .1.1.151, while the
second would use 10.1.1.152.

Dynamic Update DNS Client

For large networks, getting all the necessary RR information into the DNS and keeping
it current can be a significant task. Maintenance of host records can be a full-time job
for one or tnore people, in some environments. To simplify the task, Windows 2000
includes support for dynamic updates to DNS, as described in RFC 2136.

366 I PART IV Application layer Protocols and Services

With Dynamic DNS, the client sends a DNS registration message to the DNS server, in
structing the server to update the (A) record for the dynamic update host. Additionally,
if the client is also a DHCP client, every time there's an address event (for instance, a new
address or address renewal), as part of the DHCP lease-management process, the DHCP
client sends DHCP Option 81 to the DHCP server along with its fully qualified name.
Option 81 instructs the DHCP server to register a PTR RR on its behalf. Windows 2000
computers that are statically configured will register both the (A) RR and the PTR RR with
the DNS server themselves.

If a Windows 2000 DHCP client talks to a lower-level DHCP server that doesn't handle
Option 81, the client registers a PTR RR on its own. The Windows 2000 DNS server is ca
pable of handling dynamic updates.

This approach (client updating the (A) record, DHCP server updating the PTR record) is
taken because only the client knows which IP addresses on the host map to a given host
name. The DHCP server might not be able to properly do the (A) RR registration because
it has incomplete knowledge. If appropriate, the DHCP server also can be configured to
register both records with the DNS.

1Pv6 Support

IP version 6 (1Pv6) is a new version of the Internet Protocol. Although Windows 2000 won't
ship with a native 1Pv6 TCP/IP stack, the Windows 2000 DNS server does provide support
for 1Pv6 by implementing several additional pieces of functionality, including the following:

• AAAA RR This new record type is defined to store a host's 1Pv6 address. A
multi-homed 1Pv6 host, for example, a host that has more than one 1Pv6 address,
must have more than one AAAA record. The AAAA RR is similar to the (A) re
source, using the larger IP address size. The 128-bit 1Pv6 address is encoded in
the data portion of an AAAA RR in network byte order (high-order byte first).

• AAAA query An AAAA query for a specified domain name in the Internet
class returns all associated AAAA RRs in the. answer section of a response. A
type AAAA query doesn't perform additional section processing.

• IP6.INT domain This domain is used to provide reverse-lookup faculties for
1Pv6 hosts (as the in-addr.arpa domain does for 1Pv4 addresses).

Similar to in-addr.arpa domain for 1Pv4, an 1Pv6 address is represented as a name in the
IP6.INT domain by a sequence of nibbles separated by dots with the suffix ".IP6.INT."
The sequence of nibbles is encoded in reverse order; for instance, the low-order nibble
is encoded first, with the highest-order nibble last. Each nibble is represented by a hexa
decimal digit. For example, the inverse-lookup domain name corresponding to the ad
dress 4321:0:1:2:3:4:567:89a:b would be b.a.9.8.7.6.5.0.4~0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.-
0.0.1.2.3.4.IP6.INT.

Finally, to support 1Pv6, all existing DNS query types that perform type A additional sec
tion processing, such as NS or mail exchange (MX) query types, must support both A and

Chapter 1.6 Domain Name Service (DNS) I 367

AAAA records and must do any processing associated with both of these record types.
This means the DNS server will add any relevant IPv4 addresses and any relevant IPv6
addresses available locally to the additional section of a response when processing any
one of these queries ..

How DNS Works

Configuring DNS Client Functions
With Windows 2000, there's generally very little configuration to do for a client, with
respect to DNS. Generally, it's only necessary to configure the host with the IP address
of a primary (and a secondary) DNS server. This can be simplified by using DHCP to assign
the IP address of the DNS server(s).

Usually, DNS default client behavior is adequate. However, in certain cases, some change
LU L~1c: ~c:;aull ~cl1a.v ~u1 11i~~~1~ ~'-' a.t:'1-'J.V_iJ~-1a~~. ~!-J.~ ~~~5~~~~-,· !;::~y·:: ~:::~:!:.::=. !::2~27.T ::.:: ~~

used to change how the Windows 2000 DNS client works.

Specifying a Default TTL

By default, the TTL for the (A) and PTR RR updates sent by a DNS client is 20 minutes.
To increase it, you can configure the following registry value:

Default Registration TTL
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
Value type: REG_DWORD--seconds
Default: 0x4B0 (1200 decimal, or 20 minutes)
Valid range: 0-0xffffffff
Present by default: No

Disabling Dynamic Updates

While the automatic updating of DNS zones by a host can be useful, in some environ
ments this might not be desirable. The following registry key can disable dynamic DNS
updates either for a Windows 2000 computer as a whole, or for just one interface on that
computer.

DisableDynamicUpdate
Key: KEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services Tcpip\Parameters
Or
HKEY_LOCAL..MACHINE\SYSTEM\CurrentControlSet\Services Tcpip\Parameters\Interfaces\<interface>
Value type: REG_DWORD--Boolean
Valid range: 0, 1 (False, True)
Default: 0 (False; dynamic DNS enabled)
Present by default: No

368 I PART rv Application Layer Protocols and Services

Resolving Names
DNS name resolution occurs when a resolver, operating at a host, sends a DNS server a
query message containing a domain name. The query message instructs the DNS to find
the name and return certain RRs. The query message contains the domain name to search
for, plus a code indicating the records that should be returned.

The following Network Monitor Trace (Capture 16-01, included in the \Captures folder
on the companion CD-ROM) shows the process of issuing and resolving a name query.

1 4.866998 LOCAL 3COM 884403 DNS 0x1587:Std Ory for kona.kapoho.com. of type
Host TALLGUY 10.10.2.200
+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xEEA8; Proto = UDP; Len: 61
+UDP: Src Port: Unknown, (4715); Ost Port: DNS (53); Length = 41 (0x29)

DNS: 0x1587:Std Ory for kona.kapoho.com. of type Host Addr on class INET addr.
DNS: Query Identifier = 5511 (0xl587)

+ DNS: DNS Flags = Query, OpCode - Std Ory, RD Bits Set, RCode - No error
DNS: Question Entry Count = 1 (0xl)
DNS: Answer Entry Count = 0 (0x0)
DNS: Name Server Count = 0 (0x0)
DNS: Additional Records Count = 0 (0x0)
DNS: Question Section: kona.kapoho.com. of type Host Addr on class INET addr.

DNS: Question Name: kona.kapoho.com.
DNS: Question Type = Host Address
DNS: Question Class = Internet address class

2 4.866998 3COM 884403 LOCAL DNS 0x1587:Std Ory Resp. for kona.kapoho.com. of
type 10.10.2.200 TALLGUY IP
+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x7BAA; Proto = UDP; Len: 77
+UDP: Src Port: DNS, (53); Ost Port: Unknown (4715); Length= 57 (0x39)

DNS: 0xl587:Std Ory Resp. for kona.kapoho.com. of type Host Addr on class
INET addr.

No

DNS: Query Identifier = 5511 (0x1587)
+ DNS:

error
DNS:
DNS:
DNS:
DNS:

DNS Flags = Response, OpCode - Std Ory, AA RD RA Bits Set, RCode -

Question Entry Count = 1 (0xl)
Answer Entry Count = 1 (0xl)
Name Server Count = 0 (0x0)
Additional Records Count = 0 (0x0)

DNS: Question Section: kona.kapoho.com. of type Host Addr on class INET addr.
DNS: Question Name: kona.kapoho.com.
DNS: Question Type = Host Address
DNS: Question Class = Internet address class

DNS: Answer section: kona.kapoho.com. of type Host Add~ on class INET addr.

Chapter :16 Domain Name Service (DNS) I 369

DNS: Resource Name: kona.kapoho.com.
DNS: Resource Type = Host Address
DNS: Resource Class = Internet address class
DNS: Time To Live = 1200 (0x4B0)
DNS: Resource Data Length = 4 (0x4)
DNS: IP address = 10.10.2.200

In the trace shown above, a client sends a DNS query to request the DNS server to re
turn all A records for kona.kapoho.com. The query response contains the question en
try and the answer RR(s). In this case, there's only one A record to return pointing to
10.10.2.200.

Network Monitor trace 16-2 (Capture 16-02, included in the \Captures folder on the com
panion CD-ROM) shows a Reverse-Lookup Query message. In this trace, the querying
host tries to discover the host name for the host at 10.10.1.52. To determine this, the
resolver queries for 52.1.10.10.in-addr.arpa and requests any PTR records. The DNS has
thP rPlPv~nt PTR record. which shows the host to be kaooholt.kaooho.com.

Resolving Aliases
If the resolver is attempting to perform name resolution on a name that a user provided, it
won't know in advance whether the name relates to a Host (A) RR or to a CNAME. If it relates
to the CNAME, the server can return the CNAME. However, in this instance, the CNAME must
still be resolved. To avoid extra DNS traffic, when a DNS server returns a CNAME in response
to a Host record lookup, the DNS server will also return the A record relating to the CNAME.

The following Network Monitor Trace (Capture 16-03, included in the \Captures folder
on the companion CD-ROM) shows the process of issuing and resolving a canonical name.

1 6.559432 DNS Server DNS Client DNS 0xl590:Std
Ory for nsl.kapoho.com. of type Host A TALLGUY 10.10.2.200
+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xEFCD; Proto = UDP; Len: 60
+UDP: Src Port: Unknown, (4761); Ost Port: DNS (53); Length= 40 (0x28)

2

DNS: 0x1590:Std Ory for nsl.kapoho.com. of type Host Addr on class !NET addr.
DNS: Query Identifier = 5520 (0xl590)

+ DNS: DNS Flags = Query, OpCode - Std Ory, RD Bits Set, RCode - No error
DNS: Question Entry Count = 1 (0xl)
DNS: Answer Entry Count = 0 (0x0)
DNS: Name Server Count = 0 (0x0)
DNS: Additional Records Count = 0 (0x0)
DNS: Question Section: nsl.kapoho.com. of type Host Addr on class !NET addr.

DNS: Question Name: nsl.kapoho.com.
DNS: Question Type = Host Address
DNS: Question Class = Internet address class

6.569446 DNS Client DNS Server DNS 0x1590:Std

370 I PART iv Application Layer Protocols and Services

Ory Resp. for nsl.kapoho.com. of type 10.10.2.200 TALLGUY
+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x807B; Proto = UDP; Len: 95

IP

+UDP: Src Port: DNS, (53); Ost Port: Unknown (4761); Length= 75 (0x4B)
DNS: 0xl590:Std Ory Resp. for nsl:kapoho.com. of type Canonical name on

class !NET addr. ·

No

DNS:
+ DNS:

error
DNS:
DNS:
DNS:
DNS:

Query Identifier = 5520 (0xl590)
DNS Flags = Response, OpCode - Std Ory, AA RD RA Bits Set, RCode -

Question Entry Count = 1 (0xl)
Answer Entry Count = 2 (0x2)
Name Server Count = 0 (0x0)
Additional Records Count = 0 (0x0)

DNS:·Question Section: nsl.kapoho.com. of type Host Addr on class !NET addr.
DNS: Question Name: nsl.kapoho.com.
DNS: Question Type = Host Address
DNS: Question Class = Internet address class

DNS: Answer section: nsl.kapoho.com. of type Canonical name on class
!NET addr.(2 records present)

+ DNS: Resource Record: nsl.kapoho.com. of type Canonical name on
class !NET addr.

+ DNS: Resource Record: kona.kapoho.com. of type Host Addr on class
!NET addr.

In this trace, the DNS client sends a DNS query to the DNS server requesting the Host record
for nsi.kapoho.com, which is actually an alias for kona.kapoho.com. In the DNS reply,
there are two answer RRs. The first is the CNAME RR for nsl.kapoho.com, and contains
the canonical name. The second answer RR is the Host record for kona.kapoho.com, which
will contain the IP address of this computer.

Dynamically Updating DNS
Dynamic updating of DNS zones, described in RFC 2136, is a mechanism that enables
DNS clients to add or delete RRs or sets of RRs (RRSets) to a zone. In addition, update
requests can state prerequisites (specified separately from update operations), which can
be tested before an update can occur. Such updates are said to be atomic, that is, all
prerequisites must be satisfied for the update operation to be carried out. The Windows
2000 TCP /IP client and the DHCP server issue dynamic update requests to update the
DNS with host A and PTR records.

More Info Dynamic updating of DNS zones is described in RFC 2136, which can
be found in the \RFC folder on the companion CD-ROM.

The following NetworkMonitor Trace (Capture 16-04, included in the \Captures folder
on the companion CD-ROM) shows the process of dynamically registering an (A) RR.

Chapter :16 Domain Name Service (DNS) I 371

1 6.270000 DNS Client DNS Server DNS 0x61:Dyn Upd
PRE/UPD records to KAPOHOLT.kapoho.c 10.10.1.52 195.152.236.200
+ Frame: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x1082; Proto = UDP; Len: 115
+UDP: Src Port: Unknown, (3276); Ost Port: DNS (53); Length= 95 (0x5F)

DNS: 0x61:Dyn Upd PRE/UPD records to KAPOHOLT.kapoho.com. of type Canonical
name

DNS: Query Identifier = 97 (0x61)
+ DNS: DNS Flags = Query, OpCode - Dyn Upd, RCode - No error

DNS: Zone Count = 1 (0xl)
DNS: Prerequisite Section Entry Count = 2 (0x2)
DNS: Update Section Entry Count = 1 (0xl)
DNS: Additional Records Count = 0 (0x0)

+ DNS: Update Zone: kapoho.com. of type SOA on class !NET addr.
+ DNS: Prerequisite: KAPOHOLT.kapoho.com. of type Canonical name on class

llnvnn1.m rl;:ic:c:(? Y'P('fH'n<: nrpc:;pnt)

DNS: Update: KAPOHOLT.kapoho.com. of type Host Addr on class !NET addr.
DNS: Resource Name: KAPOHOLT.kapoho.com.
DNS: Resource Type = Host Address
DNS: Resource Class = Internet address class
DNS: Time To Live = 1200 (0x4B0)
DNS: Resource Data Length = 4 (0x4)
DNS: IP address = 10.10.1. 52

2 6.270000 DNS Server DNS Client DNS 0x61:Dyn Upd
Resp. PRE/UPD records to KAPOHOLT.ka 195.152.236.200 10.10.1.52
+ Frame~ Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x86BD; Proto = UDP; Len: 115
+UDP: Src Port: DNS, (53); Ost Port: Unknown (3276); Length= 95 (0x5F)

DNS: 0x61:Dyn Upd Resp. PRE/UPD records to KAPOHOLT.kapoho.com. of type
Canonical name

DNS: Query Identifier = 97 (0x61)
+ DNS: DNS Flags = Response, OpCode - Dyn Upd, RCode - No error

DNS: Zone Count = 1 (0xl)
DNS: Prerequisite Section Entry Count = 2 (0x2)
DNS: Update Section Entry Count = 1 (0xl)
DNS: Additional Records Count·= 0 (0x0)

+ DNS: Update Zone: kapoho.com. of type SOA on class !NET addr.
+ DNS: Prerequisite: KAPOHOLT.kapoho.com. of type Canonical name on class

Unknown Class(2 records present)
DNS: Update: KAPOHOLT.kapoho.com. of type Host Addr on class !NET addr.

DNS: Resource Name: KAPOHOLT.kapoho.com.
DNS: Resource Type = Host Address
DNS: Resource Class = Internet address class
DNS: Time To Live = 1200 (0x4B0)

372 I PART IV Application Layer Protocols and Services

DNS: Resource Data Length = 4 (0x4)
DNS: IP address = 10.10.1.52

In this trace, the dynamic update message is sent from the DNS client to the DNS server
to update the (A) RR for the host kapoholt.kapoho.com, which is· now at IP address
10.10.1.52.

Transferring Zone Information
There are three methods of performing zone transfer:

• Traditional Zone Transfer This approach involves the secondary requesting
a full copy of the zone from the primary.

• Incremental Zone Transfer This approach, as defined in RFC 1995, re
quires the DNS server hosting the primary zone to keep a record of the
changes that are made between each increment of the zone's sequence num
ber. The secondary can thus request only the changes that occurred since the
last time the secondary was updated.

• AD Zone Transfer AD zones are replicated to all domain controllers in the
Windows 2000 domain using AD replication.

More Info The Incremental Zone Transfer approach is defined in RFC 1995, and
the traditional zone-transfer mechanism is defined in RFC 1034. These RFCs can
be found in the \RFC folder on the companion CD-ROM.

The traditional zone-transfer mechanism, which RFC 1034 defines, can be wasteful of
network resources if the change in the transferred RRs is small in relation to the overall
zone. The following Network Monitor Trace (Capture 16-05, included in the \Captures
folder on the companion CD-ROM) shows a zone transfer.

1 60.1765 Secondary Primary TCP S., len: 0, seq:3436924871-3436924871, ack
2 60.1765 Primary Secondary TCP .A .. S .. len: 0, seq:2396712099-2396712099, ack
3 60.1765 Secondary Primary TCP .A len: 0, seq:3436924872-3436924872, ack
4 60.1765 Secondary Primary DNS 0x0:Std Ory for kapoho~com. of type Req for zn
Xfer on class INET addr.
5 60.1865 Primary Secondary DNS 0x0:Std Ory Resp. for kapoho.com. of type
SOA on class INET addr.
6 60.1865 Primary Secondary DNS 0x636F:Rsrvd for _ of type Unknown Type on class
7 60.1865 Secondary Primary TCP .A len: 0, seq:3436924904-3436924904, ack
8 60.2366 Secondary Primary TCP .A ... F, len: 0, seq:3436924904-3436924904, ack
9 60.2366 Primary Secondary TCP .A len: 0, seq:2396714217-2396714217, ack
10 60.2366 Primary Secondary TCP .A ... F. len: 0, seq:2396714217-2396714217, ack

This Network Monitor trace 16-5 shows a zone transfer of the zone kapoho.com from the
primary to a secondary server. In this trace, the secondary DNS server first initiates a TCP
connection with the primary server and issues a zone-transfer message. The primary zone's

Chapter 16 Domain Name Service (DNS) I 373

DNS server then transfers the zone RRs. In a zone-transfer, the first and last record trans
ferred is the SOA record. After all the records are transferred, the TCP connection is terminated.

Incremental zone transfers, described in RFC 1995, can be more efficient than traditional
zone transfers for both large and dynamic zones. However, they place additional pro
cessing requirements on the DNS server, which needs to keep track of the zone differ
ences and sends only the changed records. By default, standard zones will use incremental
transfers where possible.

The following Network Monitor trace 16-6 (Capture 16-06, included in the \Captures folder
on the. companion CD-ROM) shows an incremental zone transfer.

1 563.890835 LOCAL 3COM 6Bl5C7 DNS 0x6000:Std Ory for
kapoho.com. of type SOA on class INET addr.
2 563.890835 3COM 6B15C7 LOCAL DNS 0x6000:Std Ory Resp.
for kapoho.com. of type SOA on class INET addr.
3 563.890835 LOCAL 3COM 6B15C7 DNS 0x4000:Std Ory for

r - , - - - T~llT -....1....1.....,
i<>OIJUllU, \..VIII, UI '-Ji.JC: r\t::\.j I UI 111\..1111111.,1 Lii /\ I ~;;,;I VII VIU.J...J .Ll•&...1 ""'--· .
4 563.890835 3COM 6B15C7 LOCAL DNS 0x4000:Std Ory Resp.
for kapoho.com. of type SOA on class INET addr.

In this trace, the DNS server initiating the zone transfer first queries for the SOA record, then
requests an incremental zone transfer. In this example, the reply, contained in the fourth
packet, fully fits inside a single UDP datagram. Had this not been the case, the reply mes
sage would have indicated that the reply was truncated, ·and the requesting server would
have created a TCP session to the other DNS server and requested the zone transfer via TCP.

Active Directory replication is a proprietary solution, which can be used only with Windows
2000 domain controllers. Standard and incremental zone transfers rely on the servers holding
secondary zones to pull changes from the primary zone. AD replication, on the other hand,
is push in nature. For zones that change little, AD replication will ensure that all DNS serv
ers holding the zone are updated quickly, while for more dynamic zones, will tend to smooth
the replication traffic. Active Directory replication is beyond the scope of this book.

DNS Resource Records

What Are Resource Records?
An RR is information related to a DNS domain; for example, the host record defining a
host IP address. Each RR will contain a common set of information, as follows:

• Owner Indicates the DNS domain in which the resource record is found.

• TIL The length of time used by other DNS servers to determine how long to
cache information for a record before discarding it. For most RRs, this field is
optional. The TTL value is measured in seconds, with a TTL value of 0 indicat
ing that the RR contains volatile data that's not to be cached. As an example,
SOA records have a default TTL of 1 hour. This prevents these records from

37 4 I PART IV Application Layer Protocols and Services

being cached by other DNS servers for a longer period, which would delay the
propagation of changes.

• Class For most RRs, this field is optional. Where it's used, it contains standard
mnemonic text indicating the class of an RR. For example, a class setting of IN
ind~cates the record belongs to the Internet (IN) class. At one time there were
multiple classes (such as CH for Chaos Net), but today, only the IN class is used.

• Type This required field holds a standard mnemonic text indicating the type
for an RR. For example, a mnemonic of A indicates that the RR stores host ad
dress information.

• Record-Specific Data This is a variable-length field containing information
describing the resource. This information's format varies according to the type
and class of the RR.

Note With Windows 2000, nearly all of the DNS information is either automati
cally added to the server or can be left to a default value. For most organizations
running Windows 2000, DNS will be self-maintaining once the DNS servers are
installed and the relevant zones created. However, the details on RR types can
be useful for those integrating Windows 2000 with a non-Windows 2000 DNS
server, or for troubleshooting.

Standard DNS zone files contain the set of RRs for that zone as a text file. In this text file,
each RR is on a separate line and contains all the above data items, as a set of text fields,
separated by white space. In the zone file, each RR consists of the above data items,
although different records will contain slightly differently formatted record-specific data.

Sample Zone Data

The zone data for the kapoho.com zone noted earlier in this chapter is as follows:

Database file kapoho.com.dns for kapoho.com zone.
Zone version: 22508

@ IN SOA kona.kapoho.com. administrator.kapoho.com.
22508 serial number
900 refresh
600
86400
3600

Zone NS records

retry
expire
minimum TTL

There are two DNS servers holding this domain
@ NS kona.kapoho.com.
@ NS kapoholt.kapoho.com~

Zone records for Kapoho.com

Chapter :16 Domain Name Service (DNS) I 375

@ 600 A 10.10.1.52
@ 600 A 10.10.2.200
@ 600 A 10.10.2.211
hil 0 900 A 10.10.2.211
kapoholt A 10.10.1.52
kona A 10.10.2.200
tall guy 1200 A 10.10.1.100

1200 A 10.10.2.100

Delegated sub-zone: jh.kapoho.com.

jh NS kapoholt.kapoho.com.
End delegation

Zone data for AD-integrated zones are held as a series of AD objects representing this
data. For more detail on how the AD holds DNS-integrated zones, see the Windows 2000
Co.....,.rD...- Ual1""'\
--- . -- ----r·

Where Are RRs Located?

RRs for standard zones are stored in the folder systemroot\system32\dns. The RRs for each
zone are held in a separate text file, which is named after the zone with an extension of
.dns; for example, kapoho.com.dns.

Active Directory-Integrated Zone RRs

RRs for AD-integrated DNS zones are stored within the AD itself. The AD uses the fol
lowing two main object classes to hold this DNS information:

• dnsZone Represents an AD-integrated zone that contains dnsNode objects.
This object class is the AD equivalent of a Standard zone held as a text file.
The dnsZone objects have a dnsProperty attribute that defines key details
about the zone, such as whether this zone can be dynamically updated.

• dnsNode Corresponds to the individual RRs in the zone. Each dnsNode ob
ject will have a dnsRecord attribute containing the resource information.

Resource Records Supported by Windows 2000
Windows 2000 supports all RFC-compliant RRs. Many of these aren't commonly, or ever,
used. The following sections list the most commonly used RRs and contain tables that
include the RR type, the syntax, and an· example.

Host Address (A)

This RR contains a host address RR that maps a DNS domain name to an 1Pv4 32-bit
address.

Type
Syntax
Example

A
Owner A 1Pv4_address
kona A 10.10.2.200

376 I PART IV Application Layer Protocols and Services

1Pv6 Host ·Record (AAAA)

This RR contains a host address RR that maps a DNS domain name to an 1Pv6 128-bit
address.

Type
Syntax
Example

AAAA

Owner Class IPv6_address
ipv6host AAAA 4321:0:1:2:3:4:567:89a:b

Canonical Name (CNAME)

This RR maps an alias or alternate DNS domain name in the Owner field to a canonical
or actual DNS domain name. There must also be an (A) RR for the canonical DNS do
main name, which must resolve to a valid DNS domain name in the name space. The
fully qualified canonical n?me should end with a full stop (".").

Type CNAME

Syntax
Example

Alias_name CNAME Canonical_name
nsl CNAME kona.kapoho.com

Mail Exchanger (MX)

The MX record provides message routing to a mail-exchanger host for any mail that's to be
sent to the target domain. This RR also contains a 2-digit preference value to indicate the
preferred ordering of hosts, if multiple exchanger hosts are specified. Each exchanger host
specified in an MX record must have a corresponding host A address RR in the current zone.

Type
Syntax
Example

Pointer (PTR)

MX
Owner MX preference mail_exchanger_host_name
kapoho MX 10 mail.kapoho.com

This RR, used for Reverse Name Lookup message, points from the IP address in the Owner
field to another location in the DNS name space as specified by the target_domain_name.
Usually, this is used only in the in-addr.arpa domain tree to provide reverse lookups of
address-to-name mappings. In most cases, each record provides information that points
to another DNS domain-name location, such as a corresponding host (A) address RR in
a forward-lookup zone:

Type
Syntax
Example

PfR

Owner PTR target_domain_name
200 PTR kona.kapoho.com

Service Locator (SRV)

The SRV RR enables a computer to locate a host providing specific service, such as a
Windows 2000 Active Directory Domain Controller. This enables the administrator to have
multiple servers, each providing a similar TCP /IP-based service to be located using a single
DNS query operation. This record is mainly used to support the Windows 2000 AD, where
all relevant DNS RRs can be automatically populated into the DNS.

Chapter :16 Domain Name Service (DNS) I 377

Type
Syntax
Example

SRV

service.protocol.name SRV preference-weight port target
_ldap._tcp.dc._msdcs 600 SRV 0 100 389 kona.kapoho.com

600 SRV 0 100 389 kapoholt.kapoho.com
600 SRV 0 100 389 hilo.kapoho.com

DNS Messages
DNS messages are sent between a DNS client and a DNS server or between two DNS
servers. These messages are usually transmitted using User Data Protocol (UDP) with the
DNS server binding to UDP p.ort 53. In some cases, the message length, particularly for
responses, might exceed the maximum size of a UDP datagram. In such cases, an initial
response is sent with as much data as will fit into the UDP datagram. The DNS server
will turn on a flag to indicate a truncated response. The client can then contact the server
using TCP (port 53), and reissue the request-taking advantage of TCP's capability to
reliablv handle lornzer streams of data. This approach uses UDP's performance for most
queries while providing a simple mechanism to handle longer queries.

DNS Messages
DNS originally provided dynamic lookup for essentially static, manually updated data,
such as host records manually added to a zone. The original DNS messages involved
sending a query to a DNS server and getting a response. RFC 2165 defines the dynamic
update facility, which makes use of update messages, whose format is similar to and
derived from query messages. Both message types are described below.

DNS Query Message Format

All DNS query messages share a common basic format, as Figure 16-4 illustrates.

Transaction ID Flags

Question count Answer RR count

Authority RR count Additional RR count

Question entries (variable length)

Answer RRs (variable length)

Authority RRs (variable lengt~)

Additional RRs (variable length)

Figure 16-4. Generic DNS query message format.

1-r

12 bytes

Variable
length

As can be seen from Figure 16-4, the DNS query message consists of a fixed-length 12-
byte header, plus a variable portion holding questions and DNS RRs.

DNS Query Message Header

The DNS Message header consists of the following fields:

378 I PART IV Application Layer Protocols and Services

• Transaction ID A 16-bit field used to identify a specific DNS tran·saction. The
originator creates the transaction ID and the responder copies the transaction
ID into a reply message. This enables the client to match responses received
from a DNS server to the requests that were sent to the server.

• Flags A 16-bit field containing various service flags, described in more detail
below.

• Question Count A 16-bit field indicating the number of entries in the ques
tion section of a name service packet.

• Answer RR Count A 16-bit field indicating the number of entries in the an
swer RRs section of a DNS message.

• Authority RR Count A 16-bit field indicating the number of authority RRs in
the DNS message.

• Additional RR Count A 16-bit field indicating the number of additional RRs
in the DNS message.

The Flags field contains a number of status fields that are communicated between client
and server. Figure 16-5 below displays the format of the Flags field.

Request; Response

Operation Code

Authoritative Answer

Truncation

Recursion Desired

Recursion Available

Reserved O 0 O

Return Code

Figure 16-5. DNS message Flags field.

D=1bit

The individual fields in the flags field are as follows:

• Request/Response This 1-bit field is set to OxO to indicate a name-service
request, and Oxl to indicate a name-service response.

• Operation Code This 4-bit field indicates the specific name-service operation
of the name-service packet, as the following table shows:

Operation Code
OxO
Oxl
Ox2

Operation
Query

Inverse Query

Server Status Request

Chapter :16 Domain Name Service (DNS) I 379

• Authoritative Answer Returned in a reply to. indicate whether the responder
is authoritative for the domain name in the question sections.

• Truncation Set to Oxl if the total number of responses couldn't fit into the
UDP datagram (for instance, if the total number exceeds 512 bytes). In this
case, only the first 512 bytes of the reply are returned.

• Recursion Desired Set to Oxl to indicate a recursive query. For queries, if
this bit is not set and the name server contacted isn't authoritative for the
query, the DNS server will return a list of other name servers that can be con
tacted for the answer. This is how delegations are handled during name resolu
tion.

• Recursion Available DNS servers set this field to Oxl to indicate that they
can handle recursive queries.

• Reserved These 3 bits are reserved, and set to zero.

• Return Code A 4-bit field holding the return code. A value of OxO indicates a
successtul response (tor instance, tor name queries, tn1s means tne answer 1s m
the reply message). A value of Ox3 indicates a name error, which is returned
frotn an authoritative DNS server to indicate that the domain name being que
ried for doesn't exist.

DNS _Query Question Entries

In a DNS query, the question entry contains the domain name being queried. Figure 16-6
displays the Question field layout.

Question Name

Question Type

Question Class

l J
= 1 byte

Figure 16-6. Question field layout.

The question entry is made up of the following three fields:

• Question Name The domain name being queried. The format of this field is
discussed later.

• Question Type Indicates the records that should be returned, expressed as a
16-bit integer, as shown in the following table.

Type Value Record(s) Returned

OxOl
Ox02
Ox05
OxOC (12)

Host record

Name server (A) record

Alias (CNAME) record

Reverse-lookup (PTR) record

380 I fA~T IV Application Layer Protocols and Services

OxOF (15)

Ox21 (33)

OxFB (251)

OxFC (252)

OxFF (255)

Mail exchanger (MX) record

Service (SRV) record

Incremental zone transfer (IXFR) record

Standard zone transfer (AXFR) record

All records

• Question Class Normally set to Ox00-01. This represents the IN question class.

The Question Name field holds the name of the domain being queried. In DNS, these
domain names are expressed as a sequence of labels. The domain kapoho.com, for
example, consists of two labels (kapoho and com). In the Question Name field, the domain
name has ·a sequence for each label, as 1-byte length fields followed by the label. The
domain kapoho.com, therefore, would be expressed as Ox6kapoho0x3com0x0, where
the hex digits represent the length of each label, the ASCII characters represent the in
dividual labels, and the final hex 0 indicates the end of the name.

Resource Records (RRs)

When a DNS server sends a query reply back to a DNS host, the answer, authority, and
additional information sections of the DNS message can contain RRs, which answer the
question in the question section. Figure 16-7 illustrates the format of these RRs.

RR name
(variable length)

Record type - 16 bits

Record class - 16 bits

TIL RR - 32-bits

Resource data length - 16 bits

·Resource data - variable length

Figure 16-7. DNS RRformat.

The fields in an RR are as follows:

• RR Name The DNS domain name held as a variable-length field. The format
of this field is the same as the format of the Question Name field, described in
the "DNS Query Question Entries" section of this chapter.

• Record Type The RR type value, as noted above.

• Record Class The RR class code; there's only one record class used
currently: Ox00-01, Internet Class.

• TTL RR Time to live, expressed in seconds held in a 32-bit unsigned field.

• Resource Data Length A 2-byte field holding the length of the resource data.

• Resource Data Variable-length data corresponding to the RR type.

Chapter 16 Domain Name Service (DNS) I 381

In DNS, domain names are expressed as a sequence of labels. The DNS name kapoho.
com, for example, would consist of two labels (kapoho and com). When DNS· domain
names are contained in an RR, they are formatted using a length-value format. With this
format, each label in a DNS message is formatted with a 1-byte-length field followed by
the label. The domain kapoho.com, therefore, would be expressed as Ox06kapoho0x03-
com0x00, where the hex digits represent the length of each label, the ASCII characters
hold the individual labels, and the final hex zero indicates the end of the name.

DNS Update Message Format

The format of a DNS Update message is very similar to DNS query messages,.and many
of the fields are the same. The DNS Update message contains a header defining the update
operation to be performed and a set of RRs, which contain the update. Figure 16-8 dis
plays the general format of the DNS Update message.

Identification Flags

Number of zone entries Number of prerequisite RRs

Number of update RRs Number of additional RRs

Zone entry
(variable length)

Prequisite RRs
(variable length)

Update RRs
(variable length)

Additional RRs
(variable length)

Figure 16-8. General Update message flags

DNS Update Message Flags

IT

t

12 bytes

Variable
length

The DNS Update message has a flag section,· similar to query messages but with a slightly
different format. Figure 16-9 shows the format of the Flag field section for DNS Update
messages.

,------

Request; Response

Operation Code 0 1 0 1

Reserved 0 0 0 0 0 l 0 l 0 J D =1bit

Return Code

Figure 16-9. DNS Update message flags.

382 I PART IV Application Layer Protocols and Services

The DNS Update message flags are used as follows:

• Request/Response A 1-bit field, set to OxO ·to indicate an update request,
and Oxl to indicate an update response.

• Operation Code Set to Ox5 for DNS updates.

• Return Code For update responses, indicates the result of the query. The
defined result codes are shown in Table 16-3.

Table 16-3. Defined Result Return Code Flags for Update Responses

Result Code Value

OxO
Oxl

Ox2

Ox3
Ox4
Ox5

Ox6
Ox7
Ox8
Ox9

OxA

Name-Query Message

Meaning

No error-update successful.

Format error-the DNS server was unable to understand the
update request.

The name server encountered an internal failure while pro
cessing this request.

Some name that ought to exist doesn't exist.

The operation code isn't supported.

The name server refuses to perform the operation for policy
for security reasons.

Some name that ought not to exist does exist.

Some RR set that ought not to exist does exist.

Some RR set that ought to exist doesn't exist.

The server isn't authoritative for the zone named in the
Zone section.

A name used in the Prerequisite or Update section is not
within the zone denoted by the Zone section.

A Name Lookup message uses the DNS message format defined in RFC 1034 and described
earlier in the "DNS Query Message Format" section of this chapter. Network Monitor trace
16-1(Capture16-01, included in the \Captures folder on the companion CD-ROM) shows
an example name query. In this trace, the following fields are set:

• Query Identifier Set to a unique number so that the resolver can match the
response to the query

• Flags Set to indicate a standard query, with recursion if· necessary

• Question Count Set to 1

• Question Entry Set to the domain name to resolve (kona.kapoho.com) and
the RR to return (the host A record)

Chapter :16 Domain Name Service (DNS) 383

Name-Query Response Message
A Name-Query Response message is sent in response to a Name Query and is sent us
ing the same query message format as the query response. Network Monitor trace 16-1
(Capture 16-01, included in the \Captures folder on the companion CD-ROM) displays
an example query response in which the following fields are set:

• Query Identifier Set to the unique number set in the query, to allow the re-
solver to match the response to the original query

• Flags Set to indicate a response and a successful lookup

• Question Count Set to 1

• Answer Count Set to 1

• Question Entry Set to the question contained in the query message

• Answer Entry The RR requested in the query (the host record, containing
the IP address of the queried domain)

Network Monitor trace 16-3 (Capture 16-03, included in the \Captures folder on the com
panion CD-ROM) shows a slightly different response message. In this trace, a resolver is
attempting to resolve the (A) RR for nsl.kapoho.com. There's no Host (A) RR for this name,
but there's an alias (CNAME). In the response, the replying DNS server returns two RRs:
the CNAME RR, as well as the A Record for the canonical name (kona.kapoho.com).

Reverse-Name Query Message
Reverse-Name Query messages use the same message format as normal queries. The only
differences in the contents are as follows:

• The domain name being queried is different. For a reverse lookup, the resolver
will construct a domain name in the in-addr.arpa domain based on the .IP ad
dress that's being queried.

• The queried record will be a PTR record, rather than an (A) record.

The Reverse-Name Query Reply message is also the same as a Query Reply message,
except that a PTR record, rather than a host record, is returned. A reverse lookup can be
seen in Network Monitor trace 16-2 above. In the trace, the resolver is looking for the
host name of the host at 10.10.1.52, and thus queries for the domain 52.1.10.10.in
addr.arpa. The Reverse-Name Query Reply returns the requested PTR record, which shows
the host name at this IP address to be kapoholt.kapoho.com.

Name Update Message
Name Update messages use the Name Update message format defined in RFC 2136 and
described earlier in the "DNS Update Message Format" section of this chapter. Network
Monitor trace 16-4 shows an example Name Update message. In this update, the key
update message fields are set as follows:

384 I PART IV Application Layer Protocols and Services

• Query Identifier Like query messages, update messages contain an identifier
to enable the sender to match the response to the original update.

• Flags Set to indicate a request and a dynamic update.

• Update Zone Set to 1, and the zone section contains the zone to be updated.

• Prerequisites Zone Set to 2, with two prerequisite records specified.

• Update Zone Contains the RR that's to be updated.

Name Update Response Message
A Name Update Response message is issued in response to a Name Update Request.
Network Monitor trace 16-4 contains an example of this in which the response can be
seen to be identical to the request, except that the DNS flags in the message header are
set to indicate this is a successful response. If the response had been unsuccessful, the
response message would have contained an error code.

Summary
DNS was once an option for most Windows NT networks that used WINS (NetBIOS) for
most domain operations, and as the basis of file and print sharing. DNS is now a key
component in Windows 2000 networks and is required in those networks that deploy
Windows 2000 Active Directory. In this chapter we have examined what DNS is and how
it works, including DNS message formats and how the message appears on the wire. The
chapter also has shown a number of Network Monitor captures, which are also contained
on the companion CD-ROM for deeper study.

Windows Internet Name
Service (WINS)

385

In the early days of personal computing, both IBM and Microsoft used NetBIOS to pro
vide programmers and applications with access to networking functions and features.
NetBIOS was originally developed for IBM by Sytek Corporation as an extension to the
BIOS. which an aoolication could access bv making: BIOS calls.

In Microsoft Windows 2000, NetBIOS is both a transport-independent network interface,
and a session management and data transport protocol. NetBIOS can work over any of
the Windows 2000 network transport protocols, including NetBEUI, NWLink (IPX), and
TCP/IP. Applications using NetBIOS can run over any of the configured transport proto
cols. Windows networking clients traditionally have used NetBIOS for a variety of func
tions, including file and printer sharing and browsing.

RFCs 1001 and 1002 define the functions and features of a NetBIOS service on a TCP/
UDP transport, also known as NetBIOS over TCP/IP (NBT). These RFCs, which were
published in 1987, document the following three principal services for NetBIOS appli
cations running over TCP /IP:

• Name service provides computers with the ability to acquire and defend
NetBIOS names, and to locate the holders of those names.

• Session service provides reliable message exchange, conducted between a
pair of NetBIOS applications.

• Datagram service provides an unreliable, non-sequenced, connectionless
message-passing service for NetBIOS applications.

The NetBIOS session and datagram services, which enable NetBIOS applications to send
messages to each other, are based on individual computers having NetBIOS names. The
NetBIOS name service provides these applications with the ability to acquire/register a
name, locate computers holding a specific name, and resolve a given NetBIOS name into
an IP address. The datagram and session functions are outside the scope of this chapter.

386 I PART !V Application Layer Protocols and Services

The WINS is a NetBIOS Name server that clients can use to register, defend, and look
up NetBIOS names. WINS provides several benefits to an organization:

• Name-registration and name-resolution facilities for down-level NetBIOS-based
computers

• Dynamic database maintenance to support computer-name registration. and
resolution

• Centralized management of a scalable NetBIOS name database

WINS implements the name service features of a NetBIOS Name server defined in RFCs
1001 and 1002. However, to scale for larger networks, WINS also provides replication
facilities.

In earlier versions of Microsoft Windows NT, WINS played a critical role in locating ser
vices, particularly the Windows NT directory services. Clients use NetBIOS to locate
Windows NT 4.0 Domain Controllers. NetBIOS session and datagram services are used
as the basis for directory operations. File and print sharing also make use of NetBIOS.

An organization that uses all Windows 2000 computers or a mixture of Windows 2000
. computers and third-party operating systems such as UNIX, and whose applications fully
support the use of Domain Name System (DNS), can eliminate NetBIOS, having no need
for WINS. However, doing so would mean any application reliant on NetBIOS, such as
the computer browser service, would not function.

Most organizations, however, need to support older computers-down-level clients-that
require NetBIOS network names. This includes computers that run Microsoft Windows
for Workgroups, Microsoft Windows 95, Microsoft Windows 98, and all versions of Win
dows NT. Organizations supporting computers running these operating systems will
continue to find WINS an important service during the deployment of Windows 2000.

Chapter Contents
This chapter describes the NetBIOS name service protocol, as implemented by WINS, in
detail. Additionally, there are Network Monitor traces on the companion CD-ROM that
demonstrate the NetBIOS name service protocol in operation.

This chapter contains the following sections:

• Overview to WINS in Windows 2000 Describes the NetBIOS name service
protocol as implemented in Windows 2000

• How WINS Works Describes in detail how WINS clients and servers commu
nicate, illustrated by Network Monitor traces

• NetBIOS Name Service Messages Describes the format of the messages sent
between WINS clients and WINS servers, and the functions provided

Chapter 11 Windows Internet Name Service (WINS) I 387

Overview of WINS in Windows 2000

What Is WINS?
In Windows 2000, WINS consists of two components: Windows Internet Name Service
(WINS) and a WINS client service. WINS is a NetBIOS name server, which enables a client
to register NetBIOS names in a central database and to resolve NetBIOS names into IP
addresses. The WINS client uses the WINS server to register names and to provide name
resolution facilities (converting NetBIOS names into IP addresses). In functional terms,
WINS is much like DNS, with clients registering names and performing name lookup, and
servers handling the registration and resolution. The key difference is that WINS is based
on NetBIOS names, rather than on DNS host names.

RFCs 1001 and 1002 define the functions of a NetBIOS Name server in some detail. In
this respect, the WINS server is an RFC-compliant NetBIOS Name server providing name
registration and name-resolution facilities. The WINS server is scalable-able to function
well in networks of all sizes.

More Info Read about the functions of a NetBIOS Name server in RFCs 1001
and 1002, which can be found in the \RFC folder on the companion CD-ROM.

All Windows 2000 servers (including Server, Advanced Server, and Datacenter Server)
include a WINS service, although this service is not installed by default. All Windows cli
ents include a WINS client, including Windows 2000, Windows NT 4.0, Windows 98, and
Windows 95. For Windows 2000 clients, the WINS client function is automatically installed.

Key WINS Terms
In Windows 2000, NetBIOS is both a network interface, allowing applications and key
system components to communicate across a network, and a protocol for allowing that
communication. System processes that make use of NetBIOS include the Windows file
sharing service, and the computer browser service. The following is an explanation of
key terms relating to WINS and an overview of WINS operations.

Network Resources and End-Nodes

For applications to inter-operate and for users to access key resources, every network
resource needs a name. A network resource is a process running on a specific computer.
This could be the Server service running on the Exchange Server computer, or Server ser
vice running on a file server. The specific computer that runs the network resource pro
cess is referred to as an end-node.

NetBIOS Names

Each network resource in Windows 2000 is identified by a NetBIOS name. In Windows
2000, each NetBIOS name can be up to 15 characters in length. The final, sixteenth char-

388 I PARl IV Application Layer Protocols and Services

acter allowed in RFCs 1001 and 1002 is reserved for the NetBIOS name suffix. The NetBIOS
name can't start with an "*';, and the NetBIOS name isn't case-sensitive.

The NetBIOS name space is flat, unlike DNS, which is hierarchical. This means that a
NetBIOS name can be used only once within a network. Two computers with a Server
service running can't have the same name. This can pose problems for very large orga
nizations, and the NetBIOS scope parameter provides one solution to this issue.

NetBIOS Name Types

A NetBIOS name can be a unique name, owned by just one end-node, or it can be part
of an Internet group, which can include multiple end-nodes. Each computer running
Windows 2000 has a Server service and a Workstation service for the purposes of shar
ing files. These services would each have a unique NetBIOS name. When resolving a
NetBIOS address to an IP address, unique names resolve to a single IP address, whereas
Internet group addresses typically resolve to multiple addresses.

NetBIOS Name Suffix

Although RFCs 1001 and 1002 allow NetBIOS names to be 16 characters, as noted ear
lier, the sixteenth character in the Windows NetBIOS name is reserved for a special suf
fix. The NetBJOS name suffix is used by all Windows Networking software to identify
functionality installed on the registered device. This enables an end-node to register
multiple names, based on the computer, domain, or user name, and a suffix to indicate
the services available on that machine. wINS clients can then construct a NetBIOS name
based on computer, user, or domain name, and the appropriate suffix to locate those
relevant network resources.

For example, the Messenger service has the suffix Ox03. To send a message to COM
PUTER42, the client would send a message to the Workstation service on Computer42,
or COMPUTER42[03]. Note that in the full 16-character NetBIOS name notation, the first
9 characters of the NetBIOS name would be COMPUTER42, the next 6 characters would
be" " (blank), and the final character would be Ox03.

Table 17-1 lists common NetBIOS suffixes used with Windows 2000. The suffixes are listed
in hexadecimal format because many of them are unprintable otherwise.

Table 17-1. Common NetBIOS Suffixes Used with Windows Networking

Name NetBIOS Suffix (hex) Type Usage

<computername> 00 u Workstation Service

<computername> 01 u Messenger Service

<computername> 03 u Messenger Service

<computername> 20 u Server Service

(continued)

Chapter 1.1 Windows Internet Name Service (WINS) I 389

Table 17-1. (continued)

Name NetBIOS Suffix (hex) Type Usage

<username> 03 u Messenger Service

<domain> 00 G Domain Name

<domain> 1B u Domain Master Browser

<domain> lC G Domain Controllers

<domain> 1E G Browser Service Elections

< .. - _MSBROWSE - > 01 G Master Browser

In addition to these common names used by Windows 2000, other applications such as
Microsoft Exchange, Lotus Notes, and others also register NetBIOS names. See knowl
edge base articles Ql 19495, Q163409, and Q194338 for more details on these names.

Note Microsoft produces a series of knowledge base articles describing features
'""""",.J .f1 '""""'+i"...,.,.... ".f +h" '''°' i"' ,,... \A/inrl"'"'',.... l""\.11"'\l"'\""'"'+inrl ~",...+'"'VV\t:' Ct"r'V'H~\ r\"F +ht:_\C'C'\. l/lf'\r\u1I
-··- ·-··- ... ·-··- -· _ ·-··---·····--··-- - Ille::> _J_ ... _lll-.• --Ill--·-··--- l•OO-WWI

edge base articles can be found on Technet, while the full Microsoft Knowledge
Base is available on the Web at http://support.microsoft.com/search/. At the Web
site, you can search for an article by its Q ID number.

NetBIOS Name Service Operations

NetBJOS name service operations involve registering, defending, querying, and releasing
NetBIOS names. Additionally, NetBIOS session and datagram services use these name
service operations to locate resources. For example, if a Windows 2000 computer user
wants to access a file share on a remote system, that user enters the remote computer
name and share name using Microsoft Explorer. Explorer uses NetBIOS name services
to determine the remote server's IP address, and can then issue NetBIOS session-level
commands to access the shared resource.

NetBIOS name service operations are carried out on the wire, using either IP broadcasts
or a NetBIOS name server. The use of broadcasts might be acceptable for small local area
networks (LANs). However, in larger networks, the use of broadcasts, which could re
sult in broadcast storms, is undesirable. Such networks should implement WINS.

NetBIOS Scope

The NetBIOS name space is flat, meaning that all names must be unique on an
internetwork. If you have a computer called KAPOHO and it's properly defending its
computer name, no other network computer can call itself KAPOHO. This limitation can
cause difficulties for larger organizations.

As RFC 1001 describes, an approach to resolving this flat name space is the use of an
additional qualifier for the NetBIOS name. RFC 1001 defines the NetBJOS scope as "the
population of computers across which a registered NetBJOS name is known. "To identify

390 I PART !V Application Layer Protocols and Services

the NetBIOS scope, the NetBIOS scope identifier is used. The NetBIOS scope identifier is
a character string, similar in format and function to the DNS domain name.

The use of the NetBIOS scope, however, is limited in that a user can't specify the scope
directly .. The NetBIOS scope of a Windows 2000 computer is defined as part of the
computer's IP parameters received from a DHCP server or in the computer's registry.
Thereafter, the NetBIOS scope is automatically appended to all NetBIOS names. The effect
is that an end node with a given NetBIOS scope can communicate only with other end
nodes configured with the same NetBIOS scope.

You can set the NetBIOS scope either by specifying a scope as part of a DHCP scope, or
by editing the registry. The registry key used to manually change node type is as follows:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetBT\Parameters or
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetBT\
Adapters\Interface\<interface>
Value name: Scopeid
Value type: REG_SZ-Character string
Valid range: Any valid DNS domain name consisting of two dot-separated parts,
or an
asterisk (*)

Default: None
Present by default: No

Caution While the use of the NetBIOS scope identifier might offer some ben
efits, it also might make communication with other systems more difficult. Addi
tionally, the inadvertent use of a NetBIOS scope identifier can make
troubleshooting problems that arise from its inadvertent use more difficult to
resolve. In general, you should probably avoid all use of this feature.

NetBIOS Node Types

To allow for the various sizes of NetBIOS networks, RFCs 1001 and 1002 use the con
cept of node type to determine how a particular computer should handle name service
functions. The node type defines how name service operations are to be performed.

An end-node can be one of four node types, defined in RFCs 1001 and 1002:

• B-Node (Broadcast Node) Name-registration and name-resolution opera
tions are performed using broadcasts only. This is usually the best option for
very small, single subnet networks.

• P-Node (Point to Point Node) Name-registration and name-resolution op
erations are done using a NetBIOS name server (WINS) only. This node type
can be used to eliminate local subnet broadcasts, but may cause network re
sources on the local subnet to not be resolved.

• M-Node (Mixed Node) A combination of B-Node and P-Node, where name
registration and resolution are done via broadcast. But if name resolution isn't
successful using broadcasts, the NetBIOS name server is used. This is useful in

Chapter :1.1 Windows Internet Name Service (WINS) I 391

cases where the WINS server is on a remote network, as it will first attempt to
resolve the name locally before using WAN resources for the resolution.

• H-Node (Hybrid Node) A combination of P-node and B-node, where name
registration and resolution are done using a WINS server. But if the name reso
lution isn't successful using the WINS server, broadcasts are used. This is the
default node type when using WINS servers.

By default, computers running Windows 2000 are B-Node. If you configure your Win
dows 2000 computer to use a WINS server, by default it becomes H-Node. You can con
figure your computer to be P-Node or M-Node by manually editing the registry.
Additionally, the administrator can set Dynamic Host Configuration Protocol (DHCP)
parameters to set the node type for a DHCP client.

The registry key used to manually change node type is as follows:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters or
k'o\/• 1-lk'J:"V I nrtil MArl-lT~IJ:"\<:::V<:::TJ:"M\r11l"l"ontrnntl"nl<::ot\<::ol"\/il"oc:\Motht\ - - -

Adapters\Interfaces\<interface>
Value name: NodeType
Value type: REG_DWORD - Number
Valid range: 1,2,4,8 (B-Node, P-node, M-node, H-node)
Default: 1 or 8 based on the WINS server configuration
Present by default: No

Microsoft-Modified B-Node

As defined in RFCs 1001 and 1002, B-Node behavior doesn't generally scale beyond a
single subnet. This can be overcome partly by configuring routers to forward broadcasts,
but as this also doesn't scale, it's rarely done. To overcome these inherent limitations,
Microsoft has extended the B-Node for name service operations. Known as modified B
Node, these extensions add the following name-lookup facilities to B-Node:

• The NetBIOS name cache An in-memory cache of recently resolved names
that can be searched before other name-resolution methods are attempted

• The LMHOSTS file A flat-file, contained in systemroot\system32\drivers\etc
that contains a static list of NetBIOS names and their IP addresses

If using LMHOSTS is, for some reason, undesirable, you can disable this by reconfiguring
your computer's TCP/IP parameters.

Name Registration

Whenever a network resource becomes available for use-for example, when a file server
starts up-the network resource must register its.relevant NetBIOS name. The registra
tion procedure ensures that the name being registered isn't already in use by another
comptuer. For P-Node, M-Node, and H-Node clients, the client also informs the WINS
server of the name and IP address.

392 I PART IV Application Layer Protocols and Services

Time To Live (TTL)

In general, NetBIOS names aren't held or owned permanently. With WINS, each name
registered successfully has a limited time to live (TIL). When the TIL for a NetBIOS name
expires, it's up to the network resource to re-register that name. If a network resource
registers a name with a WINS server and the TIL expires, the name can be removed from
the WINS server. Windows 2000 clients attempt to re-register their NetBIOS names at one
half of the TIL, or when the computer is rebooted.

Name Defense

Once registered, all unique NetBIOS names need to be defended to ensure that two
different network resources don't claim the same NetBIOS name. If a computer attempts
to register a NetBIOS name that's already being used by another computer, the name's
owner needs to defend the name. If a network resource finds that the name it's attempt
ing to resister is already in use-for example, a computer booting up is configured with
a computer name of one that's already running-the network resource should fail grace
fully. Windows 2000 processes, such as the Server service, also will write an error event
to the event log for later analysis and troubleshooting.

If the name's owner is a B-Node client, the owner must accept responsibility for defend
ing the name by listening for a Name Registration Request and broadcasting a negative
Name Registration Response.

For P-Node clients, name defense is more complicated. If a P-Node client attempts to
register a name with a WINS server that the WINS server believes to be in use, the WINS
server will first attempt to contact the computer that has previously registered the NetBIOS
name. If the WINS server successfully contacts the registered owner, the WINS server sends
a negative Name Registration message to the client attempting to register the name. If, -
on the other hand, the WINS server can't reach the previously registered owner of the
name, it will send a positive Name Registration Response.

NetBIOS Name Resolution

When a computer wishes to communicate with another, using NetBIOS, it must deter
mine the remote computer's IP address before communications can be established. Name
resolution is the process of determining a computer's IP address based on a NetBIOS
name. The general approach a WINS client takes to resolving names is as follows:

• Check whether the name really can be resolved using NetBIOS. If the name
entered by the user or specified by the application is longer than 15 characters,
or contains a".", DNS name resolution will be performed.

• Next, the client will check to see if the name is in the local NetBIOS name
cache. See below for more information on the NetBIOS name cache.

• If the computer is configured to use LMHOSTS, this file will be consulted for
the name's IP address.

Chapter :11 Windows Internet Name Service (WINS) I 393

If the name can't be resolved either alternatively (for example, by DNS) or locally, Win
dows 2000 WINS clients will go through further name-resolution steps. These specific steps
will vary depending on the NetBIOS node type and whether a WINS proxy has been
configured as follows:

• B-Node clients will broadcast NetBIOS Name Request messages to the local
subnet. If a computer holding the name is on that local subnet, the computer
will issue a positive Name Query response, containing the required IP address.
If there's a WINS proxy agent on the subnet when a NetBIOS Name Request
message is broadcast, and there's no reply, the WINS proxy agent will attempt
to resolve the name on behalf of the client (see below for more detail about
the WINS proxy agent). This is a good approach for very small networks (pos
sibly with no WINS servers) and is the default for a computer with no WINS
server configured.

• P-Node clients will unicast NetBIOS Name Request messages to the configured
wJ.1~.:) ~erver. 11 Li1e \v-ii:~.3 .:;e1vc1 lla'=> LllC: 1c:yu~1c:~ 11a.111c, ~L vv~~~ ~\...-.u-.! a f-'V.;~~~"--

Name Query Response, containing the required IP address; otherwise, the
computer will send a negative Name Query Response. If the WINS client gets
no response from its WINS server, and is configured with the IP addresses of
additional WINS servers, the client will try these additional WINS servers. This
approach minimizes broadcasts on the local network but can cause wide area
network (WAN) resolution traffic, even if the network resource is local to the
WINS client.

• M-Node clients will first attempt to use B-Node behavior to resolve the name,
and if this isn't successful, M-Node clients will attempt P-Node behavior. This is
particularly useful when the client is on the other side of a WAN link to the
network resource, but will cause additional broadcast traffic on the local
subnet.

• H-Node clients will first attempt to use P-Node behavior to resolve the name,
and if this isn't successful, H-Node clients will attempt to use B-Node behavior.
As with P-Node, this approach reduces local broadcast traffic for names held
by the WINS server, but will use the iocal broadcast to attempt to resolve the
name.

Note Early WINS clients handled only a maximum of two WINS servers (a pri
mary and a secondary). To provide additional fault tolerance for clients' comput
ers, Windows 2000 or Windows 98 allows you to specify up to 12 WINS servers
per interface. These extra WINS server addresses are used only if the primary
and secondary WINS servers fail to respond.

If none of these steps is successful in resolving the NetBIOS name, the Windows 2000
computer will attempt to use host name resolution, first checking the local HOSTS file,
and then contacting configured DNS servers. If, after all these steps, the name still can't
be resolved, the Windows 2000 computer sends an Error message to the caller.

394 J PART !V Application Layer Protocols and Services

This series of steps is intended both to provide the maximum amount of fault tolerance
to the client, and to accommodate incorrectly configured systems. It's all too easy, for
example, for a new adminis.trator to add NetBIOS names to the HOSTS file instead of the
LMHOSTS file.

If a computer uses broadcasting to resolve a NetBIOS name, it can't be sure that a lack
of response is significant. Because UDP is used as the transport for NetBIOS name op
erations, the packet could have been dropped. To compensate for the unreliability, the
client resolving a name, by default, broadcasts the name resolution request three times,
with a 750-millisecond interval between each attempt. Use the following registry entry
to change the number of broadcasts attempted:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters
Or
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters\

Adapters\Interfaces\<interface>
Value name: BcastNameQueryCount
Value type: REG_DWORD-Number
Valid range: 1-0xFFFF
Default: 3
Present by default: No

Use the following registry entry to change the interval between broadcasts:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters\
Adapters\Interfaces\<interface>

Value name: BcastQueryTimeout
Value type: REG_DWORD-rime in milliseconds
Valid range: 100-0xFFFFFFFF
D~fault: 0x2ee (750 decimal)
Present by default: No

Note While it might seem like a good idea to reduce the number of broadcasts,
if you reduce the number to one, or make the time interval too small, you might
increase the possibility that a busy WINS server won't be able to respond quickly
enough. In that case, the client would fail to resolve a name for a system that
otherwise might have been able to respond (using the default values). Test any
changes to these parameters carefully.

NetBIOS Name Cache

To minimize the use of WINS Name Resolution Queries, WINS clients use a NetBIOS name
cache that holds recently resolved NetBIOS names. If a client needs to resolve a NetBIOS
name, it will examine this cache before transmitting a Name Resolution Query.

By default, the NetBIOS Name cache holds 16 name resolutions, which is probably ad
equate for most client computers. Cache entries are held by default for 10 minutes, al-

Chapter 17 Windows Internet Name Service (WINS) I 395

though you can modify this time-out value. If a client resolves more NetBIOS names than
the cache can hold, the oldest entries are discarded, and the new name (and IP address)
is added to the name cache. You can configure the name cache to be one of the follow
ing three sizes:

• Small Holds 16 entries (this is the default)

• Medium Holds 128 entries

• Large Holds 256 entries

Use the following registry entry to modify the NetBIOS name cache size:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters
Value name: Size/Small/Medium/Large
Value type: REG_DWORD
Valid range: 1. 2, 3 (Small, Medium, Large)
Default: 1 (Small)

By default, entries in the NetBIOS name cache time out and are deleted after 10 minutes.
To adjust this time-out period, use the following registry entry:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters
Value name: CacheTimeout
Value type: REG_DWORD
Valid range: 60000-0xFFFFFFFF
Default: 0x927c0 (600000 milliseconds= 10 minutes)
Present by default: No

The value holds the length of time, in milliseconds, for which a NetBIOS lookup is cached.
You can use the NBTSTAT -c command from the Windows 2000 command prompt to view
the entries in the local NetBIOS name cache.

Note By increasing the size of the NetBIOS name cache, and increasing the
cache time-out value, you can reduce the number of lookups performed against
a busy server. For many environments with largely static IP addresses for all key
servers, this change might be appropriate. However, by making this change, you
also increase the probability that an entry in the cache is no longer accurate (which
could occur in a highly dynamic TCP /IP network). This tradeoff between accuracy
and amount of lookup traffic should be considered carefully and tested thoroughly.

Name Release

If the network resource terminates gracefully, it can no longer defend the name, and the
resource performs name release. For B-Node clients, this is done simply by stopping the
name defense of the name being released. For P-Node clients, name release is accom
plished by sending a Name Release message to the WINS server.

396 I PA~r !V Application Layer Protocols and Services

WINS Proxy

Older, or third-party, NetBIOS clients might not be able to be configured to use WINS.
Instead, they would rely on B-Node behavior. To provide these clients with use of a WINS
server's resources, use a WINS proxy, which is a WINS client that you can configure to
act on behalf of other computers that are unable to use WINS. A WINS proxy can also
be used during the migration from a broadcast environment to a WINS environment. You
can set up a WINS server and a WINS proxy, then migrate systems over one by one
without affecting name resolution for the systems that have not yet been converted.

The WINS proxy functions as follows:

• When a B-Node WINS dient registers a NetBIOS name, the WINS proxy per
forms a name lookup, first using its local NetBIOS name cache and, if neces
sary, sending a Name Resolution Query to the WINS server. If the name is
found, the proxy sends a negative Name Registration Response back to the B
N ode client attempting to register the name.

• When a B-Node client releases its name, the proxy simply deletes the client's
name from its name cache, and sends a name release to the WINS server.

• When a B-Node client broadcasts a name resolution, the proxy attempts to re
solve the name, first by using information locally contained in its cache of re
mote names or by sending a Name Resolution Query to the WINS server. If the
name lookup is successful, the proxy sends a Name Query Response. If it's not
successful, the proxy sends a negative Name Query Response.

You can configure a system to act as a WINS proxy for B-Node clients on the local subnet
by editing the following registry key:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters Or
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netbt\Parameters\

Adapters\ Interfaces\< interface>
Value name: EnableProxy
Value type: REG_DWORD-Boolean
Valid range: 0, 1 (False, True)
Default: 0 (False)
Present by default: No

Setting this value entry to Oxl enables the system to act as a proxy name server for the
networks to which NetBIOS over TCP/IP is bound (or to the chosen interface). A WINS
proxy name server listens for broadcast Name Resolution Queries, resolves them using
WINS (or the proxy's NetBIOS name cache), and broadcasts the result back to the cli
ent. The WINS proxy provides B-Node WINS clients with the ability to inter-operate with
WINS servers.

Note Windows 2000 servers that run the Routing and Remote Access Service's
Connection Sharing (NAT) feature can also be configured to act as a WINS proxy
for clients on the private network. See the Windows Server Help for more infor
mation about 'connection Sharing.

Chapter 1.1 Windows Internet Name Service (WINS) I 397

WINS Database Entries

When a name is registered, or released, the WINS server updates its internal database. A
WINS database entry holds the name of the network resource, its associated IP address,
TTL, and version number. The version number is the basis for WINS server replication.

WINS Server Replication

In large enterprise networks, having a single WINS server isn't advisable. A single server
providing a service to a large number of clients would represent a single point of fail
ure. Also, IT would potentially require clients to use WAN links to resolve names of
network resources that might turn out to be local.

To provide redundancy, load balancing, and scalability, and to reduce the WAN traffic
involved with Name Registration and Name Query options, WINS servers can be config
ured for replication, which replicates WINS database entries from one server to another.
WINS server replication enables a WINS client computer to register NetBIOS names on
one w 11'\J~ server, anci ro ·i1ave Li1aL -w-11~5 be1 vc1 1cp~iLa.Lc L~1c 11a.111c i:>v ~~J.a.~ ~~'~ a.v·a1!aC!~

to all WINS servers, and to all WINS clients, in an organization. This can expedite client
name resolution because the use of WAN links for WINS queries is avoided.

For a WINS server to replicate its information, the server must be configured with at least
one other WINS server as a replication partner. WINS replication partners replicate names
known on one server to the other partner servers. There are two replication roles for a
WINS server: pull partner and push partner. A pull partner is a WINS server that pulls
WINS entries from its configured partner(s). A push partner is a WINS server that pushes
updated WINS entries to its configured partner(s).

All replication traffic is pulled, with one partner requesting updates from a configured
partner. The main difference between push and pull partners is who and what triggers
the replication event. Pull partners pull name-to-IP address mapping updates from their
replication partners, either when the WINS service starts or at intervals configured by the
administrator. On the other hand, push partners inform configured partners that updates
exist, either when the WINS service starts or after a certain number of updates have
accumulated. After the partner has received the notification that updates exist, the part
ner can pull these changes down to update its local WINS database.

Note The WINS replication topology for an organization is determined by an ad
ministrator based on the business needs for NetBIOS name resolution. Replica
tion involves pairs of servers replicating from one to the other, which can involve
WAN traffic. Microsoft recommends making all replication push/pull, which is a
good default, especially for LAN-connected WINS servers. When replicating across
WAN links, pull replication (where each partner pulls at a predefined interval) might
be a better alternative.

398 I PART IV Application Layer Protocols and Services

Adapter Status

NetBIOS end-nodes can query the status of another system. This status is known as the
adapter status. The Windows 2000 NBTSTAT.EXE command can be used to issue a node
status query against another computer, although this will return only the NetBIOS names
owned by the remote computer. RFC 1002 defines a number of statistics that are returned
in an Adapter Status message, but these are not displayed by NBTSTAT.EXE.

How WINS Works
To understand how WINS itself works, you also must understand how WINS clients
operate and how NBT, in general, works. This section describes key functions and fea
tures of both NetBIOS name services and WINS clients and servers.

Registering NetBIOS Names
The process of registering and renewing NetBIOS names by an end-node varies depending
on the NetBIOS node type configured for the end-node. In general, an end-node that
wants to register the NetBIOS name issues a NetBIOS Name Registration Request to reg
ister the name. Once the name is registered, other computers can then resolve that name
and use the resulting IP address to communicate with the end-node. When the network
resource terminates, it generally releases the name.

Name Registration Request

When a network resource starts up, it attempts to register the related NetBIOS names.
The network resource issues a NetBIOS Name Registration Request, depending on the
node type as follows:

• B-Node When a B-Node client registers a name, it broadcasts a name-regis
tration packet to the local network. Ifthe name is currently in use by another
node, the name's owner sends a negative Name Registration Reply. AB-Node
client that doesn't receive a negative Name Registration Reply then considers
itself the owner of the name, and carries out name defense against that name.

• P-Node When a P-Node client registers a name, it sends the name to the
configured WINS server as a unicast packet. If the name being registered has
previously been registered, the WINS server attempts to contact the regis
tered owner to check whether the name is actively being used. If the name is
still in use, the WINS server sends a negative Name Registration Reply to the
client; if the name isn't in use, the WINS server sends a positive Name Regis
tration Reply. The WINS server might also send a Wait Acknowledgment mes
sage to the client attempting to register the name. This message indicates that
the WINS server is still attempting to determine whether the name can, in
fact, be registered.

Chapter 1.7 Windows Internet Name Service (WINS) I 399

• M-Node An M-Node client attempts to register the name via broadcast, as for
a B-Node client. In the absence of an objection, the client attempts to register
the name using P-Node behavior, and a WINS server. While the broadcast ap
proach might yield an owner of the name, and therefore would terminate the
name-registration process, it's insufficient to confirm name ownership.

• H-Node A Windows 2000 H-Node client registers the name via WINS. If this
is successful, the registering client assumes ownership of the name.

Network Monitor trace 17-1 (Capture 17-01, included in the \Captures folder on the
companion CD-ROM) shows a name registration by an H-Node client for the name
KAPOHOlO[OO]. Network Monitor trace 17-2 (Capture 17-02 in the \Captures folder on
the companion CD-ROM) shows a name registration by a B-Node client for the name
KAPOHOlO[OO].

Positive Name Registration Reply

t'osmve J\lame Keg1srrauon Kepiie~ are ::,e11L i1u111 a -w11~:; ;,c:1 vc:1 tv a T;r_;:~;:::; '--~~-..,u~ u.iJvi-J.
successfully registering a NetBIOS name. If a WINS client sends a WINS server a request
to register a unique NetBIOS name, and that name isn't presently registered, the WINS server
will register the name and send a positive Name Registration message to the computer that
registered the name. Computers that send NetBIOS Name Registration Requests via broad
cast, such as a B-Node client, won't receive a positive Name Registration Reply.

If a WINS client sends a WINS server a request to register a group name, the WINS server
will always send a positive Name Registration Reply. B-node clients send NetBIOS Name
Registration. AB-Node client broadcasts multiple Name Registration messages, and if no
negative Name Registration Replies are received, it assumes ownership of the NetBIOS
name. Network Monitor trace 17-1 shows a successful name registration by an H-Node
client, including a positive Name Registration message.

Negative Name Registration Reply

A WINS se_rver that receives a request to register a unique NetBIOS name that's already
registered should reject the request by issuing a negative Name Registration Reply mes
sage, provided that the end-node owning that name is able to defend the name. Before
sending the negative Name Registration Response, the WINS server checks with the current
owner of the NetBIOS name to determine whether that computer's still active. This situ
ation could occur, for example, if a laptop is moved to a different subnet, or for some
reason is reconfigured to have a new IP address.

A computer sending NetBIOS Name Registration Requests via broadcast, for example a
B-Node client, also receives a negative Name Registration Reply if another computer is
active on that subnet and currently owns the name. A computer registering NetBIOS names
using WINS sends its Registration Request messages using unicast; the WINS server sends
a negative Name Response message if the name being registered has previously been
registered by some other end-node, and if that other end-node can defend the name.

400 I PART IV Application Layer Protocols and Services

Network Monitor trace 17-3 (Capture 17-03, included in the \Captures folder on the
companion CD-ROM) shows a computer attempting to register the NetBIOS name
KAPOHOlO with a WINS server. This name is in use on another computer and the sec
ond packet in this trace shows the negative Name Response message.

Wait Acknowledgment

If a WINS server receives a request to register a unique NetBIOS name that's already
registered, it checks with the registered owner of that name. In this case, it might issue
a Wait Acknowledgment message to the computer attempting to register the name. The
purpose of this is to inform the client that the WINS server might not yet be able to pro
vide a name reply. To enable the client to be aware that the server hasn't failed (and isn't
performing name service operations), a WINS server sends a Wait Acknowledgment
message if it can't answer the query within a certain time.

Network Monitor trace 17-4 (Capture 17-04, included in the \Captures folder on the com
panion CD-ROM) shows a Wait Acknowledgement message. The WINS server has to
contact another system, and issues the Wait Acknowledgement while that contact is ac
complished. This message is part of a name resolution failure, which is discussed later
in the section "Resolving NetBIOS Name Registration Conflicts."

Name Renewal Request

NetBIOS names registered with a WINS server have a limited life and must be refreshed
before that life expires. The default TTL for NetBIOS name entries held in WINS is 6 days,
but the administrator can change this to any time between 1 minute and 365 days. When
an end-node registers a NetBIOS name with a WINS server, the end-node receives a
positive Name Reply, which contains a TTL for the name.

Much like DHCP clients, a WINS client attempts to renew any NetBIOS names it holds
at half the TTL, for instance, every 3 days. Additionally, each time the computer is re
started, or the Windows service that registers a NetBIOS name restarts, a new Name
Registration message is sent to the WINS server, renewing the name (assuming, of course,
that the WINS server successfully registers the name).

Network Monitor trace 17-5 (Capture 17-05, included in the \Captures folder on the com
panion CD-ROM) shows a name refresh for the name KAPOHOlO[OO].

Resolving NetBIOS Name Registration Conflicts
A name conflict occurs when two (or more) end-nodes want to register the same unique
NetBIOS name. In most cases, this is caused by configuration errors, such as giving two
computers the same name or by improperly configuring a service. When two comput
ers attempt to register a unique NetBIOS name, the second end-node attempting to reg
ister the NetBIOS name will fail, causing an error to be logged.

Chapter 1.1 Windows Internet Name Service (WINS) I 401

Network Monitor trace 17-4 (Capture 17-04, included in the \Captures folder on the com
panion CD-ROM) shows a computer (IP address 10.10.1.52) attempting to register the name
JASMINE[OO]. However, the WINS server already has a registration for that name. The WINS
server first issues a wait acknowledgment to the computer at 10.10.1.52, and then que
ries the registered owner of the NetBIOS name JASMINE[OO]. The query is a simple Name
Query Request sent to the registered owner at IP address 10.10.1.102. This computer is
active and responds to the request with a Name Query Response. Because WINS has
ascertained that the registered owner still owns the name, WINS sends a registration re
sponse back to 10.10.1.52 with an error code set, indicating that the name is active.

Releasing NetBIOS Names
A name can be released one of two ways: actively or silently. A Windows 2000 computer
configured to use WINS can release any held NetBIOS names by sending the WINS server
a Name Release message containing the NetBIOS name to release. Alternatively, if an end
node fails to renew the name, after the name's TTL has expired, the name will become
available for use by another end-node.

With Windows 2000, the NBTSTAT.EXE command, used with the -RR switch, releases all
currently registered NetBIOS names, and then re-registers them. This can be useful for
diagnostic purposes.

Name Release Request and Name Release Response

When an end-node wants to release a registered NetBIOS name, the end-node sends a
Name Release Request message to the WINS server. The WINS server then sends back a
Name Release Response. Usually, the release response has a result code of 0, indicating
that the name was successfully released. In theory, a negative Name Release message could
be sent, although it would be ignored by the end-node sending the Name Release.

Network Monitor trace 17-6 (Capture 17-06, included in the \Captures folder on the
companion CD-ROM) shows the computer at IP address 10.10.1.52 releasing the NetBIOS
names it owns. It does this by sending the WINS server, at 10.10.1.200, a Name Release
message. For each name released, the WINS server sends a Release Response.

Resolving NetBIOS Names
When a Windows 2000 computer needs to resolve a NetBIOS name, it issues a NetBIOS
Name Query Request, either using a broadcast or sending the request directly to a WINS
server, depending on node type. If the Name Query Request is sent to a WINS server and
is one that can be resolved, the WINS server sends a Name Query Response to the com
puter issuing the query. If the WINS server can't resolve the name, it will issue a nega
tive Name Query Request. If the computer performing the name resolution is using
B-Node behavior, it will issue a Name Query Request; and if the end-system owning the
name is on the local subnet, it will respond. However, if there's no end-node owning that
name on the net, the host that's querying the name will time out, although this can take
longer than getting a negative Name Query Response from a WINS server.

402 I PART IV Application Layer Protocols and Services

Name Query Request

A Name Query message contains the NetBIOS name to be resolved and is sent either to
the local network or to the WINS server, or both, depending on the NetBIOS node type.
If the end-node uses broadcast to find the name, it issues three broadcasts, by default,
before failing.

When a user performs some operation using names on a Windows 2000 computer-such
as typing NET VIEW \ \XXX at the Windows 2000 command prompt, or typing \ \XXX
in Explorer's Address box-it isn't always clear what type of name is being resolved: host
name or NetBIOS name. Nor is it obvious which name-resolution method will give the
fastest results. In Windows NT 4.0, the operating system first attempts one name resolu
tion (such as NetBIOS resolution or Host Name resolution), and if that doesn't succeed,
the operating system tries the other method. This results in delays, if the wrong method
is chosen. To reduce the delay, Windows 2000 attempts to resolve the names using both
methods simultaneously.

Network Monitor trace 17-7 (Capture 17-07, included in the \Captures folder on the
companion CD-ROM) shows an M-Node client attempting to resolve the name XXX.
Network Monitor trace 17-8 (Capture 17-08, included in the \Captures folder on the
companion CD:-ROM) shows the same attempted resolution by an H-node client. The same
computer generated both traces through the user by typing NET VIEW \ \XXX at the
Windows 2000 command prompt.

Notice .that, in both of these traces, a DNS Query is attempted before any NetBIOS name
resolution is performed. Also note that in trace 17-7, the M-Node client first attempts to
resolve the name by broadcasting on the local network. When this fails, the client con
tacts the WINS server. In trace 17-8, the H-Node client first attempts to contact WINS. When
this fails to resolve the name, the H-Node client then broadcasts the Name Query Request
message.

Positive Name Query Response

When a NetBIOS host or a WINS server receives a Name Query Request for a NetBIOS
name that can be resolved, the receiving system returns a Name Query Response. The
Name Query Response will have the return code set to OxO (indicating successful reso
lution) and will include an RR giving the IP address of the system owning the name. If
the name being queried is a unique name, only one IP address will be returned. If the
name being queried is a group name, one or more IP addresses can be returned.

Network Monitor trace 17-9 (Capture 17-09, included in the \Captures folder on the com
panion CD-ROM) shows WINS successfully resolving the NetBIOS name KONA[OO]. The
response contains an RR, with the IP address of the end-node holding the NetBIOS name
10.10.2.200.

Chapter 1.1 Windows Internet Name Service (WINS) I 403

Negative Name Query Response

When a WINS server receives a Name Query Request for a NetBIOS name that can't be .
resolved, the WINS server returns a negative Name Query Response. The negative Name
Query Response will have the return code set to indicate that the requested name doesn't
exist.

Network Monitor traces 17-6 and 17-7 both show negative Name Query Responses.

Refreshing NetBIOS Names
Each registered NetBIOS name has a TTL. If the owning end-node wants to continue using
the NetBIOS name, it must refresh the name before the TTL expires. For names regis
tered with WINS, the TTL value is configured by the administrator. Windows 2000 com-

. puters will attempt to re-register each NetBIOS name at half the TTL.

Network Monitor trace 17-4 (Capture 17-04, included in the \Captures folder on the com
panion CD-ROM) shows an end-node re-registering the NetBIOS name TALLGUY[03] using
a Name Refresh message. In this trace, the refresh is successful, theretore the W!NS server
responds with a Registration Response message.

Determining Adapter Status
RFCs 1001 and 1002 provide for a mechanism so that an end-node can determine the status
of a local or remote adapter of another end-node. The adapter status information includes
the NetBIOS names registered at that end-node and counts of various statistics.

In Windows 2000, you can use the NBTSTAT.EXE command, with the -A or -a switch to
obtain a remote computer's NetBIOS adapter status. If the remote host has NBT disabled,
however, this command will fail.

Network Monitor trace 17-11 (Capture 17-11, included in the \Captures folder on the
companion CD-ROM) shows a trace of an adapter status Request and Response message.
The command used to generate this trace, along with its output, is as follows:

D:\2031AS>nbtstat -a 10.10.1.52
\Device\NetBT_Tcpip_{6Dl37606-FEEF-11D2-8389-0020AF4B1775}:
Node IpAddress: [10.10.1.51] Scope Id: []

NetBIOS Remote Machine Name Table

Name Type Status

KAPOHOLT <00> UNIQUE Registered
KAPOHO <00> GROUP Registered
KAP OHO <lE> GROUP Registered
KAPOHOLT <20> UNIQUE Registered
KAPOHOLT <03> UNIQUE Registered
ADMINISTRATOR <03> UNIQUE Regi.stered

MAC Address = 00-60-08-01-03-03

404 I PART IV Application Layer Protocols and Services

NetBIOS Name Service Messages
Most interactions between a WINS client and a WINS server consist of a request (such
as a Name Registration Request) sent from a client to a server, and a subsequent response
sent in the opposite direction. For example, when a WINS client needs to resolve a
NetBIOS name, it sends a Name Request message to the WINS server and receives ei
ther a negative Name Reply or a positive Name Reply message in return.

NetBIOS Name Service messages are sent using UDP, with UDP port 137 on both the client
and the server. Because all Name Service messages use UDP, which is an inherently
unreliable transport protocol, there might not be a strict one-to-one relationship between
requests and responses. However, there's never more than one response generated for
any given request. This means, for example, that a WINS client might send more than
one Name Resolution Request before it receives a request. If the WINS server can't an
swer the question promptly, it might send one or more Wait Acknowledgment messages
back to the client.

As Figure 17-1 illustrates, the general format of a Name Service message is similar to DNS
messages, described in Chapter 16.

Name Service header - 12 octets

Question entries - variable length
(optional)

Answer Resource Records - variable length
(optional)

Authority Resource Records - variable length
(optional)

Additional Resource Records - variable length
(optional)

Figure 17-1. NetBIOS Name Service message format.

A NetBIOS Name Service messages consists of five sections:

• Name Service header Fixed length (12 octets long), holding information
about tbe type of NetBIOS Name Service message, plus counts of the other
records in the message.

• Question entries Variable length (length defined in Name Service header)
for NetBIOS Name Registration, Refresh, or Release messages; this field holds
the NetBIOS name being acted on by the message.

• Answer Resource Records Variable length (length defined in Name Service
header) holding RRs returned in response to a question.

Chapter 1.1 Windows Internet Name Service (WINS) 405

• Authority Resource Records Variable length (length defined in Name Ser
vice header) holding RRs used to indicate the authority for the question being
asked. These aren't used in Windows 2000.

• Additional Resource Records Variable length (length defined in Name Ser-
vice header) holding other RRs, not provided in direct answer to a question.

NetBIOS Name Service messages contain a header and one or more additional entries,
depending on the Name Service messages. The specific entries that are included iii. each
NetBIOS Name Service record are given in the description of each NetBIOS Name Ser
vice message.

Name Service Header
Figure 17-2 displays the format of the Name Service header.

Tr:=msriction ID

Flags

Question Count

Answer Count

Resource Record Count

Additional Resource Record Count

D =1byte

Figure 17-2. NetBIOS Name Service message header layout.

The Name Service header is a fixed-length set of fields, which identifies the type of name
service packet, and the number of question entries, answer records, authority RRs, and
additional records existing in the message. The other sections of a Name Query message
carry either the NetBIOS names to be used in the name operation or RRs (such as the IP
address) returned by a Name Service Query.

The Name Service header section consists of the following fields:

• Transaction ID A 16-bit field used to identify a specific name-service trans
action. The originator creates the transaction ID when it sends the request to
the responder, and the responder copies the transaction ID into the reply mes
sage. If a WINS client is, for example, registering multiple names, each Name
Registration Request will have a different transaction ID.

• Flags A 16-bit field containing various Name Service flags, described in more
detail below.

406 I PART nt Application Layer Protocols and Services

• Question Count A 16.,.bit field indicating the number of entries in the ques
tion section of a name-service packet. The sender of a NetBIOS Name Service
Request (for example, a WINS client attempting to register a name) will always
set this value to OxOO-Olor more, although typically it's set at Ox00-01). The re
sponder for a Name Service Request will always set this field to 0.

• Answer Count A 16-bit field indicating the number of entries in the answer
RRs section of a name-service packet. The sender of a Name Service Request
will set this count to 0. The responder for a Name Service Request will set this
to indicate the number of answers returned. This will generally be OxOl for
unique NetBIOS name lookups, and a larger number for Internet group name
lookups.

• RR Count A 16-bit field indicating the number of entries in the authority RR
section of a name-service packet. This number is used for recursive NetBIOS
name queries, which aren't implemented in Windows 2000. This field is set to
0 in NetBIOS Name Service messages to indicate that there are no authority
records present.

• Additional RR Count A 16-bit field indicating the number of entries in the
additional RRs section of a name-service packet. These records are used when
an RR needs to be included in any name-service operation that isn't a response
to a Name Query Request, such as a name release (the additional RR will in
clude the name being released).

Name Service Header Flags Field

The Flags field, contained in the NetBIOS Name Service header, contains details on the
purpose of each Name Service message. Figure 17-3 displays this field's format.

Request/Response

Operation Code

Authoritative Answer

Truncation

Recursion Desired

Recursion Available

Reserved

Broadcast

Return Code

D =1bit

0 0

Figure 17-3. NetB/OS Name Service Flags field layout.

Chapter U Windows Internet Name Service (WINS) I 407

The Flags field holds the following fields:

• Request/Response A 1-bit field set to OxO to indicate a Name-Service Re
quest, and set to 1 to indicate a Name Service Response.

• Operation Code A 4-bit field .that indicates the specific name-service opera
tion of the name-service packet, as shown in Table 17-2.

Table 17-2. Name Service Operation Codes and Meanings

Operation Code Operation

OxO
Ox5
Ox6
Ox7
Ox8

Name Query Request

Name Registration Request

Name Release

Wait Acknowledgment

Name Refresh

• Authoritative Answer Indicates whether the responder is authoritative. For
Name Service requests, this is always set to OxO. For responses, the computer
responding to the request sets it to Oxl if it's authoritative for a NetBIOS name.

• Truncation Set to Oxl if the total number of responses can't fit into the UDP
datagram (for instance, the total number exceeds 576 bytes). RFC 1001 offers
the possibility of using TCP to obtain the full answers, but Windows 2000
doesn't support this.

• Recursion Desired Set to Oxl by the sender of a Name Query, Name Regis
tration, or Name Release if the sender wishes the receiver to iterate on the
query. Windows 2000 WINS clients set this flag to Oxl for all name queries. If
the flag was set in a Name Service message sent to a Windows 2000 WINS
server, the WINS server will set it in the corresponding reply. However, Win
dows 2000 doesn't support recursion.

• Recursion Available Set to OxO on all Name Request messages. The Win
dows 2000 WINS server will set to Oxl in Name Service Replies to indicate that
it can perform recursive Name Query, Name Registration, and Name Release
messages. If set to OxO in a Name Service Response, the client must iterate for
Name Service Queries and perform challenges for any name registrations.

• Reserved Two reserved bits set to OxO.

• Broadcast Set to OxO if the Name Service message is being sent via a unicast
packet (for instance, to a WINS server), or Oxl if it's being broadcast.

• Return Code A. 4-bit field holding the return code. All Name Service Re
quests set the value to OxO, which indicates a successful response. For Name
Query Requests, this means the answer is in the Reply message; for name reg
istrations, it means the registration was successful.

408 I PART !V Application Layer Protocols and Services

NetBIOS Name Representation
NetBIOS names represented in name-service packets are encoded. The encoding scheme
was originally designed to make NetBIOS names, contained in Name Service message
packets, similar to DNS names. This was considered important since the DNS specifica
tions, at the time that RFCs 1001 and 1002 were written, were more restrictive in terms
of the range of characters that can be used in the name. The full name of the network
resource is the concatenation of the encoded 16-character NetBIOS name, the "." char
acter, and the NetBIOS scope identifier.

Creating the full NetBIOS resource name involves the following three steps:

1. The 16-character NetBIOS name is converted into a 32-bit unicode
representation.

2. The "." character and the NetBIOS scope identifier are appended to the
encoded 16-character NetBIOS name.

3. The resulting name is then encoded according to the rules for DNS Name
Query.

The first step involves converting the original 16-byte NetBIOS name into a 32-byte string.
This is done by mapping each 4-bit (half-byte) nibble to an ASCII character, as shown in
Table 17-3.

Table 17-3. Converting an Original 16-Byte NetBIOS Name into a 32-Byte String

Nibble Value {in Hex) Encoded ASCII Character

0 A

1 B

2 c
3 D

4 E

5 F

6 G

7 H

8

9 J
A K

B L

c M

D N

E 0

F p

Chapter 1.1 Windows Internet Name Service (WINS) I 409

This conversion results in a name string that contains only the characters A-F, thus pro
viding compatibility with DNS names, which were more restrictive about the content of
names than NetBIOS.

As an example, consider the name of the Workstation service on the server KAPOHO
(KAPOH0[03]). The full 16-character name would be "KAPOHO [03]", that is, the
name "KAPAHO" followed by nine blanks (or Ox20), and terminated by the hex value
Ox03. Expressed in hex, this name becomes:

4B-41-50-4F-48-4F-20-20-20-20-20-20-20-20-20-03

Converting this name into nibbles, the string would then become:

4-B-4-l-5-0-4-F-4-8-4-F-2-0-2-0-2-0-2-0-2-0-2-0-2-0-2-0-2-0-0-3

Using Table 17-3, this nibble string is then encoded into a 32-byte ASCII string, which is:

ELEBFAEPEIEPCACACACACACACACACAAA

The third step involves converting the name into the DNS name format. In DNS, domain
names are expressed as a sequence of labels. If the DNS name is kapoho.com, for ex
ample, this DNS name would consist of two labels (kapoho and com). Each label in a
DNS message is. formatted with a 1-byte length field followed by the label. The domain
kapoho.com, therefore, would be expressed as Ox06kapoho0x03com0x00, where the hex
digits represent the length of each label, the ASCII characters represent the individual
labels, and the final hex 0 indicates the end of the name.

To complete the NetBIOS name encoding, the first label will be the encoded 16-charac
ter NetBIOS name, with additional labels for the NetBIOS scope identifier, if this is used.
In the example, if there is no NetBIOS scope identifier, the name would be:

0x20ELEBFAEPEIEPCACACACACACACACACAAA

If a NetBIOS scope identifier, for example KAPOHO.COM, were to be used, the name
would become:

0x20ELEBFAEPEIEPCACACACACACACACACAAA0x06kapoho0x03com0x00

Note This encoding scheme seems quite complicated at first sight. It was origi
nally designed to be compatible with the emerging DNS standards and to make
it easier for computers to parse. Fortunately, the Microsoft Network Monitor
decodes the NetBIOS name, thus simplifying viewing NetBIOS names in Network
Monitor traces.

Question Entries
In a NetBIOS name packet, a question entry represents the NetBIOS name being regis
tered, refreshed, released, or queried. The format of a NetBIOS Name Service Question
entry is based on DNS question entries. Figure 17-4 displays the Question field layout.

410 I PART !V Application Layer Protocols and Services

Question Name l J
Question Type

Question Class

D = 1byte

Figure 17-4. Name Service Question Entry field layout.

The question entry is made up of the following three fields:

• Question Name The NetBIOS name being registered, refreshed, and so
forth. The name is encoded using the NetBIOS name representation scheme
described earlier in the NetBIOS Name Representation section.

• Question Type The type of question. Set to either Ox00-20, indicating that
the question name is a NetBIOS name, or Ox00-21.

• Question Class The question class. Set to Ox00-01. This represents the IN
(Internet) question class.

Resource Records (RRs)
RRs are used to send resource information between a client and server. Figure 17-5 dis
plays the layout of an RR.

Resource Record Name

Record Type

Record Class

Time To Live

Resource Data Length

Resource Data

D =1byte

...

I
...

Figure 17-5. Name Service RRfield layout.

The fields in an RR are as follows:

J

• Resource Record Name The NetBIOS name, represented in the compressed
name format

• Record Type The RR type code-see below for details

Chapter 1.7 Windows Internet Name Service (WINS) I 411

• Record Class The RR class code-there's only one record class, Ox00-01, the
Internet Class.

• Time To Live The RR's TTL, expressed in seconds.

• Resource Data Length A 2-byte field holding the resource data's length.

• Resource Data Variable-length data corresponding to the RR type. RFC 1002
defines values for Record Type fields as follows:

Value

Ox00-00

Ox00-02

OxOO-OA

Ox00-20

Ox00-21

Description

IP Address RR

Name Server RR

Null RR

NetBIOS General Name Service RR

NetBIOS Node Status RR

Mn"t N:::imP SPrvirP rprords :::irP Pither NetRTOS General Name Service RRs (record tvne
Ox00-20) or NetBIOS Node Status RRs (record type Ox00-21).

Figure 17-6 displays the layout for the RR data used in General Name Service RRs (record
type Ox00-20).

Rdata Length

Rdata Flags Byte

IP Address

D =1byte

0 6

I J

Figure 17-6. RR data layout/or record type Ox00-20.

As Figure 17-6 shows, the RR contains a length of 6 bytes, an RDATA flag byte, and the
IP address relating to this name. For instance, in a Name Registration message, this is the
IP address of the owner registering the name.

Figure 17-7 displays the layout of the RDATA flag byte.

The RDATA contains the following three fields:

• Group Flag Set to Oxl if the name is a group name; otherwise set to OxO.

• Owner Node Type A 2-bit field, formatted as follows:
OxO - B-Node
Oxl - P-Node
Ox2 - M-Node
Ox3 - H-Node

• Reserved 13 bits set to binary 0.

412 I PART !V Application Layer Protocols and Services

Group Flag

Owner Node Type

Reserved (13 bits - all zero)

D =1bit

rn ... D

Figure 17-7. RDATA.flag byte layout.

With respect to the owner node type, RFC 1002 defines the value of 11 as "Reserved for
future use." In Windows 2000, this indicates H-Node.

Figure 17-8 displays the RDATA field for node status response RRs (Name Service record
type Ox21).

Length

Number of Names

D Node Name Array

Node Statistics

D =1byte

Figure 17-8. RDATA layout for node status response.

As Figure 17-8 shows, the RDATA field for node status responses contains the following
fields:

• Length 16 bits holding the total length of the RDATA section

• Number Of Names 8 bits holding the number of names in the node name
array

• Node Name Array A variable-length array of the NetBIOS names owned by
the node responding to the node status request

• Node Statistics A set of statistics about the node's NetBIOS service

The Network Monitor trace 17-11 (Capture 17-11, included in the \Captures folder on
the companion CD-ROM) illustrates the Statistics field. The values for this field, however,
are not displayed by the NBTSTAT command.

Resource Record Name Compression
To ensure that Name Service Request and Response messages fit into a single UDP packet,
NBTuses a compression mechanism for NetBIOS Name Service messages in which a given

Chapter 1.1 Windows Internet Name Service (WINS) I 413

NetBIOS name appears more than once. For example, in Name Registration Request
messages, the NetBIOS name being registered is held both in the Question fields (the
Question Name field) and in the Additional RR field (which contains both the NetBIOS
name and IP address of the end-node that's registering the NetBIOS name).

In these cases, the name registration information contained in the Additional Resource
Name field of the NetBIOS Name Service records uses the compressed label pointer tech
nique that DNS uses, as defined in RFC 883.

Name Registration Message
A Name Registration message contains a header, a question record, and an additional RR
holding the IP address of the node registering the name.

The fields are set as follows:

• Transaction ID Set to a random number.

• .Kesponse 1' 1ag :::>et to uxu un01caung a request).

• Op Code Set to OxS (indicating registration).

• Recursion Desired Set to Oxl.

• Broadcast Flag Set if name-registration packet is being broadcast.

• Question Count Set to OxOl.

• Answer Resource Record Count set to OxOO.

• Name Service Resource Record Count Set to OxOO.

• Additional Resource Record Count Set to OxOl.

• Question Record Section Contains the NetBIOS name being registered.

• Additional Resource Record The format is described in the following
bullet list.

The additional RR field in a Name Registration Request message contains details regard
ing this RR, and includes the following fields:

• Resource Record Name in pointer format

• Resource Record Type Set to Ox00-20

• Requested TTL Set to 300,000 milliseconds

• RDATA Flags Indicates the name type (group, unique) and the node type of
the node registering the name

• IP Address Belongs to the end-node registering this name

A Name Registration message can be seen in Network Monitor trace 17-1 (Capture 17-
01, included in the \Captures folder on the companion CD-ROM).

414 I PART IV Application Layer Protocols and Services

Positive Name Registration Response
A positive Name Registration Response contains a header and an answer record. In a
positive Name Registration Response message returned by a Window.s 2000 WINS server,
the header fields are set as follows:

• Transaction ID Set to a random number corresponding to the Name Regis-
tration Request registering the name

• Response Flag Set to Oxl to indicate a response

• Op Code Set to Ox5 (registration)

• Authoritative Answer Flag Set to Oxl

• Recursion Desired Set to Oxl

• Recursion Available Set to Oxl

• Broadcast Flag Set to OxO

• Question Count Set to OxOO

• Return Code Set to OxO to indicate the name was successfully registered

• Question Count Set to OxOO

• Answer Resource Record Count · Set to OxOl

• Name Service Resource Record Count Set to OxOO

• Additional Resource Record Count Set to OxOO

• Answer Resource Record

The answer RR confirms the details of the NetBIOS name that were registered with the
WINS server, and contains the following fields:

• Resource Record Name Such as the registered NetBIOS name (in coded for
mat)

• Resource Record Type Set to Ox00-20

• Actual TTL For The Record Registered Set based on the TTL configured at
the WINS server

• IP Address Set to the IP address that belongs to the end-node that registered
this name

A Positive Name Registration Response message can be seen in Network Monitor trace
17-1 (Capture 17-01, included in the \Captures folder on the companion CD-ROM).

Negative Name Registration Response
A negative Name Registration Response is returned when the WINS server is unable to
register the requested NetBIOS name. This usually occurs when an end-node attempts
to register a unique NetBIOS name that's owned by another end-node.

Chapter 1.1 Windows Internet Name Service (WINS) I 415

The negative Name Registration record is formatted as follows:

• Transaction ID Set to a random number corresponding to the Name Regis-
tration Request registering the name

• Response Set to Oxl to indicate a response

• Op Code Set to Ox5

• Authoritative Answer Flag Set to Oxl

• Recursion Desired Set to Oxl

• Recursion Available Set to Oxl

• · Result Code Indicates why the NetBIOS name couldn't be registered

• Broadcast Flag Set to OxO

• Question Count Set to OxO

• Answer Resource Record Count Set to Oxl
1'T--- ~--.,,.!-- .., ___ ...,.,.. ___ n----....:1 ·r ____ .._ c ~ ~ f\...,.,...f\
.A.'t-.&&JL- ,,,_,_ ... ,,, ... __ _..._:i, __ ... __ --........... -_.. ___,......,,.,.. ..,..._,, \J..i.Jrrr..'J

• Additional Resource Record Records Set to OxO

• Answer Resource Record Confirms the details of the name that failed to be
registered

RFC 1001 defines the following values for the return code field, as Table 17-4 displays:

Table 17-4. Values for the Return Code Field

Return Code Value

Oxl
Ox2

Ox4

Ox5

Ox6
Ox7

Reason for the Error

Format error-the request was improperly formatted

Server failure-there's a problem with the name server, such that it
can't process the Name Registration Request

Unsupported-the request isn't supported by the NetBIOS name
server (not used by WIN_S)

Registration Request refused-for policy reasons, the NBNS won't
register this name from this host (not used by WINS)

Name active-another node owns the name

Name conflict-more than one end-node owns a unique NetBIOS
name

The most common return code will be Ox6-name active. This occurs whenever the name
that the end-node is requesting WINS to register has already been registered by another
end-node. This can be seen in Network Monitor trace 17-3 (Capture 17-03, included in
the \Captures folder on the companion CD-ROM).

416 I PART !V Application Layer Protocols and Services

Name Refresh Message
As noted earlier, the end-node owning a NetBIOS name will attempt to refresh the name
(essentially re-leasing the NetBIOS name) at half the TTL by issuing a Name Refresh
message to the WINS server. The Name Refresh message is similar to a Name Registra
tion Request message and is formatted as follows:

• Transaction ID Set to a random number.

• Response - Set to OxO to indicate a request.

• Op Code Set to Ox4, indicating a name refresh. RFC 1002 defines the name
refresh op code as Ox09, but Windows 2000 clients set this to Ox04.

• Authoritative Answer Flag Set to OxO.

• Recursion Desired Set to Oxl.

• Recursion Available Set to OxO.

• Result Code Set to OxO.

• Broadcast Flag Set to OxO.

• Question Record Count Set to Oxl.

• Answer Resource Record Count Set to OxO.

• Name Service Resource Record Count Set to OxO.

• Additional Resource Records Set to Oxl.

• Question Record Contains the NetBIOS name being refreshed. The format is
the same as for the question record in a Name Registration Request.

• Additional Resource Record Confirms the details of the name to be re
freshed. The format is the same as for the additional RR in a Name Registration
Request.

WINS usually responds to a Name Refresh message with a positive Name Registration
Response record, as seen in Network Monitor trace 17-5 (Capture 17-05, included in the
\Captures folder on the companion CD-ROM).

Name Release Request Message
A Name Release Request message is sent when an end-node releases a NetBIOS name.
This usually happens when a Windows 2000 service is stopped or is being shut down.
A Name Release Request message is formatted as follows:

• Transaction ID Set to a random number.

• Response Set to OxO to indicate a request.

• Op Code Set to Ox6, meaning name release.

• Authoritative Answer Flag Set to OxO.

• Recursion Desired Set to OxO.

• Recursion Available Set to OxO.

Chapter 1.1 Windows Internet Name Service (WINS) I 417

• Broadcast Flag Set to OxO.

• Result Code Set to OxO.

• Question Record Count Set to Oxl.

• Answer Resource Record Count Set to OxO.

• Name Service Resource Record Count Set to OxO.

• Additional Resource Records Set to Oxl.

• Question Record Contains the NetBIOS name being released. The format is
the same as for the Question record in a Name Registration Request.

• Additional Resource Record Confirms the details of the name that's to be
released. The format is the same (such as the DNS pointer format) as for the
additional RR in a Name Registration Request.

Network Monitor trace 17-6 (Capture 17-6, included in the \Captures folder on the com
panion CD-ROM) illustrates the Name Release Request message. When an end-node sends
a Name Release Request message to a WINS server, the WINS server usually responds
with a positive Name Release Response message, although an error can occur at the WINS
server and result in the WINS server sending a negative Name Release Response mes
sage. The end-node sending the original name release message doesn't take any action
on a negative Name Release Response message.

Name Release Response Message
A WINS server sends a Name Release Response message in response to a Name Release
Request message. A positive Name Release Response is indicated by the result code OxO.
A negative Name Release Response has the same format as a positive Name Release,
except that the result code contains details of the error.

A Name Release Response message is formatted as follows:

• Transaction ID Set to the same transaction ID contained in the Name Re-
lease Request message.

• Response Set to Oxl to indicate a response.

• Op Code Set to Ox6, meaning name release.

• Authoritative Answer Flag Set to OxO.

• Recursion Desired Set to OxO.

• Recursion Available Set to OxO.

• Broadcast Flag Set to OxO.

• Result Code Set to OxO (success) or to indicate reason for the failure.

• Question Record Count Set to OxO.

• Answer Resource Record Count Set to Oxl.

• Name Service Resource Record Count Set to OxO.

418 I PART IV Application Layer Protocols and Services

• Additional Resource Records Set to OxO.

• Answer Resource Record Contains the NetBIOS name that has been re
leased. The format is the same as for the Question record in a Name Registra
tion Request.

If the WINS server successfully releases the NetBIOS name, the return code is OxO. Table
17-5 indicates what the return codes will be if the WINS server can't release the name.

Table 17-5. Explanation of Return Code Value and Error

Return Code Value Reason for the Error

Oxl
Ox2

OxS

Ox6

Format error-the request was improperly formatted

Server failure-there's a problem with the Name server,
such that it can't process the Name Release Request

Registration Request refused-for policy reasons, the
NBNS won't release this name from this host (not used
by WINS)

Name active-another node owns the name; only the node
owning the name can release it

A Name Release Response message can be seen in Network Monitor trace 17-6 (Capture
17-06, included in the \Captures folder on the companion CD-ROM).

Name Query Request Message
A computer that wants to resolve a NetBIOS name sends a Name Query Request mes
sage. This message, which can be sent via broadcast or direct to a WINS server, is for
matted as follows:

• Transaction ID Set to a random 16-bit value.

• Response Set to OxO to indicate a request.

• Op Code Set to OxO, meaning Name Query.

• Authoritative Answer Flag Set to OxO.

• Recursion Desired Set to Oxl.

• Recursion Available Set to OxO.

• Broadcast Flag Set to Oxl if broadcast, and OxO if sent to a WINS server.

• Result Code Set to OxO.

• Question Record Count Set to Oxl.

• Answer Resource Record Count Set to OxO.

• Name-Service Resource Record Count Set to OxO.

• Additional Resource Records Set to OxO.

• Question Record Contains the NetBIOS name that the sender wishes to
resolve.

Chapter 11 Windows Internet Name Service (WINS) I 419

The Network Monitor trace 17-9 (Capture 17-09, included in the \Captures folder on the
companion CD-ROM) illustrates a Name Query Request, and shows a query being sent
to a WINS server.

Positive Name Query Response Message
If the node that has received a Name Query can resolve the name, it formats and sends
a positive Name Query Response to the node that issued the original Name Query mes
sage. The positive Name Query message contains the IP address of the system owning
the NetBIOS node and is formatted as follows:

• Tran~action ID Set to the transaction ID specified in the Name Query
message.

• Response Set to Oxl to indicate a response.

• Op Code Set to OxO, meaning Name Query.

• Authoritative Answer Flaa Set to Ox1 .

• Recursion Desired Set to Oxl.

• Recursion Available Set to Oxl.

• Broadcast Flag Set to Oxl if broadcast, and to OxO if sent from a WINS
server.

• Result Code Set to OxO.

• Question Record Count Set to OxO.

• Answer Resource Record Count Set to Oxl.

• Name Service Resource Record Count Set to OxO.

• Additional Resource Records Set to OxO.

• Answer Resource Record Contains details of the name including the narrie
type (unique, group) and the name TTL; also contains details of the node that
owns the name (the IP address and the node type).

A Positive Name Query Response message can be seen in Network Monitor trace 17-9
(Capture 17-09, included in the \Captures folder on the companion CD-ROM).

Negative Name Response Message
When a WINS server gets a Name Query Response that it can't resolve, it sends a nega
tive Name Response message to the node that sent the original Name Query message.
The negative Name Response message is formatted as follows:

• Transaction ID Set to the transaction ID specified in the Name Query
message.

• Response Set to Oxl to indicate a response.

• Op Code Set to OxO, meaning Name Query.

420 I PART IV Application Layer Protocols and Services

• Authoritative Answer Flag Set to Oxl.

• Recursion Desired Set to Oxl.

• Recursion Available Set to Oxl.

• Broadcast Flag Set to Oxl if broadcast, and to OxO if sent from a WINS
server.

• Result Code Set to OxO.

• Question Record Count Set to OxO.

• Answer Resource Record Count Set to Oxl.

• Name Service Resource Record ·Count Set to OxO.

• Additional Resource Records Set to OxO.

• Answer Resource Record Contains details of the name including the name
type (unique, group) and the name TTL; also contains details of the node that
owns the name (the IP address and the node type).

Wait Acknowledgment Message
A WINS server sends a Wait Acknowledgment message to a client .asking it to wait for
the completion of a name-service operation. Network Monitor trace 17-4 (Capture 17-04,
included in the \Captures folder on the companion CD-ROM) illustrates a Wait Acknowl
edgment message. The format of a Wait Acknowledgment message is as follows:

• Transaction ID Set to the transaction ID specified in the name message pre-
viously sent to the WINS server.

• Response Set to Oxl to indicate a response.

• Op Code Set to Ox7, meaning Wait Acknowledgment message.

• Authoritative Answer Flag Set.to Oxl.

• Recursion Desired Set to OxO.

• Recursion Available Set to OxO.

• Broadcast Flag Set to OxO.

• Result Code Set to OxO.

• Question Record Count Set to OxO.

• Answer Resource Record Count Set to Oxl.

• Name Service Resource Record Count Setto OxO.

• Additional Resource Records Set to OxO.

• Answer Resource Record Contains details of the name-service operation
that the WINS server is asking the receiver of this message to wait for.

A Negative Name Query Response message can be seen in Network Monitor trace 17-10
(Capture 17-10, included in the \Captures folder on the companion CD-ROM).

Chapter 17 Windows Internet Name Service (WINS) I 421

Summary
WINS provides NetBIOS name resolution for networks of any size, although it will most
likely be used in networks that span multiple subnets. While Windows 2000 makes heavier
use of DNS than Windows NT 4.0, the need for WINS will continue until all down-level
clients or NetBIOS applications that rely on NetBIOS are replaced by either Windows 2000
or by updated applications.

423

File and Printer Sharing

Overview
Microsoft Windows 2000 introduces improved methods for sharing and accessing print
ers and files over internetworks via Internet Printing Protocol (IPP) and the latest gen
eration of the Common Internet File System (CIFS). IPP in Windows 2000 allows clients
to install printer drivers over their intranet or the Internet, as well as to send print jobs
via IPP encapsulated in HTIP/1.1. HTIP/1.1 is a standard Internet protocol fully supported
in Internet Information Service (IIS) 5.0, and is discussed in Chapter 19 of this book. CIFS
is an operating-system-independent protocol that evolved from the NetBIOS file-sharing
mechanisms of earlier versions of Windows. It allows clients to access files and printers
over the Internet as if they were directly connected to their corporate local area network
(LAN). Microsoft and several other vendors are jointly developing CIFS specifications, and
a. specification draft has been submitted to the Internet Engineering Task Force (IETF)
in expectation that it might be adopted as an informational RFC.

Chapter Contents
This chapter focuses on the mechanisms that allow efficient, secure sharing of files and
printers over an intranet or the Internet in Windows 2000. Specifically, this focuses on
the following two application-level protocols:

• Internet Printing in Windows 2000 An analysis of Internet Printing Proto
col/l. 0, and its functionality in Windows 2000.

• CIFS CIFS allows printer sharing and read/write file access over the Internet,
independent of an operating system. ·

Introduction to Internet Printing
Internet printing in Windows 2000 allows a user to in?tall, use, and monitor a printer over
an internet. Using IPP, a user can install a printer using a Web browser or the Add Printer
wizard, but can specify a URL or IP address instead of a Universal Naming Convention
(UNC) path to the printer. When submitting a print request, the user can then use the

424 I PART IV Application Layer Protocols and Services

installed printer interface to print directly to the URL. The print server must, however,
be running IIS to accept these print requests. Because the print server uses the HTTP
functionality of IIS, it can return information regarding the print job in browser-ready
format. The underlying protocol that allows Internet printing to function is the IPP, which
is sent encapsulated in an HTTP /1.1 request to the print server.

I PP Operation
IPP is defined in RFCs 2565 through 2569, as well as RFC 2639. It functions within Ac
tive Directory (AD) in Windows 2000, as IPP recommends that printer objects be repre
sented in a directory service. A printer object is the server-side component of the IPP
protocol, which, in Windows 2000, is a computer running IIS and acting as the print server
for one or more output devices. Because it's an object represented in the directory ser
vice, a printer object's attributes can be queried to determine its capabilities. However,
the printer object isn't to be confused with the output device. The output device is the
physical device, whether it's a printer, fax printer, or even software, such as desktop
publishing or document archive software. The physical output device doesn't need to be
!PP-aware or -compliant because the printer object (the IPP server) handles the IPP.

A user can query AD to locate a printer object by attributes, such as its location or capa
bilities. When a user sends a document for printing via IPP, the client computer submits
the document as a print job, which contains a listing of the document's print attributes.
The print submission is sent to the printer object, which validates the submission's at
tributes and creates a new job object. The newly created job object is a queryable ob
ject, which facilitates reporting on print status and errors, and is sent to the physical output
device by the printer object. Printing properties and access control mechanisms are made
very flexible for administrators because the printer object and the output device are
separate entities. For example, an administrator can restrict access to a printer object,
which would limit printing to a subset of people. Additionally, the administrator can use
a single printer object to represent more than one physical output device. Although AD
isn't the focus of this book, it's important to understand the relationship between direc
tory services objects and the entities that they represent.

Note Unless otherwise specified, the terms "printer" and "printer object" will
be used interchangeably throughout this chapter.

An IPP client is a computer running an HTTP /1.1-compatible browser, such as Microsoft
Internet Explorer or Netscape Navigator (versions 4 or later), and an installed printer soft
ware interface representing the print object. The user at the client computer installs the
printer by entering its URL or IP address in either a Web browser or the Add Printer wiz
ard. After the printer has been added on the client computer, the user can submit print
jobs from any application as if the printer were a network printer. The client IPP soft
ware processes the print job in the appropriate format for the printer object, then sub
mits the job as an encapsulated HTTP /1.1 request to the printer object, which might be
a print server or the actual output device. RFC 2566 specifies three different scenarios

Chapter 18 File and Printer Sharing I 425

for setup of the printer object(s) and output device(s). Figures 18-1, 18-2, and 18-3 dia
gram each of these scenarios.

Hosted Printing

In hosted printing, the IPP client sends a print job to the printer object, which can be
represented in AD. The client can locate the printer object by querying AD for printers
that are capable of specific functionality. However, queries for dynamic information, such
as job status and queue length, are submitted to the printer object itself. The printer object
in this scenario is a print server running the IPP service (IIS, for example), and the out
put device is a physical print device or software application that can be installed directly
on the print server network. The output device doesn't need to support any IPP func
tionality, because the printer object, in this case the IIS server, performs all processing
related to IPP and sends the job to the output device as it would any locally submitted
print job. The printer object is also responsible for providing status monitoring and no
tification functionalitv to the requesting client via HTTP/1.1, which is why the server must
be running IIS to serve as an IPP printer object.

IPP Client
HTIP/1.1 browser,
IPP protocol, spooler

and print driver

Directory Service Represented
Printer Object

(Printer published in a directory
service such as Active Directory)

Figure 18-1. !PP hosted printing.

Fan Out Printing

Output Device
(not !PP-enabled)

Printer Object
(Running IPP service and

functioning as a print server)

Fan out printing is very similar to hosted printing, except that the print object can trans
parently direct the print job to any of a number of output devices. These devices can be
physical print devices, fax printers, or .software ori the local computer or another com
puter on the network. As with hosted printing, the output device doesn't need to use IPP,
because the IPP server/printer object handles that functionality. Client queries relating
to job status are submitted to the printer object, and not to the output devices.

IPP Client Directory Service Represented
HTIP/1.1 browser, Printer Object Printer Object

IPP protocol, spooler (Printer published in a directory
and print driver service such as Active Directory)

(Running IPP service and Output Device
functioning as a print server) (not I PP-enabled)

Figure 18-2. !PP fan out printing.

426 I PART IV Application Layer Protocols and Services

Embedded Printing

In embedded printing, the printer object and the output device are tbe same entity, and
might or might not be represented in AD. Unlike hosted and fan out printing, there's no
intermediary server acting as the print object and print server for the output device.
Embedded printing requires that the output device be capable of receiving and process
ing IPP client requests, as well as returning information to the client via HTTP. There
fore, this implementation requires additional functionality on the part of the output device.
Some printer vendors have already provided this functionality.

IPP Client
HTTP/1.1 browser,

IPP protocol, spooler
and print driver

Directory Service Represented
Printer Object

(Printer published in a directory
service such as Active Directory)

Figure 18-3. !PP embedded printing.

I PP Specifications

Printer Objects/Output Devices
(Devices running IPP service)

IPP structure and semantics are defined in RFCs 2565 and 2566. IPP specifications de
fine two layers: transport and operation. The transport layer of the protocol consists of
HTTP/1.1 requests and responses, defined in Chapter 19, "Internet Information Server
(IIS) and the Internet Protocols." The operation layer is a message body embedded in
the HTTP /1.1 requests and responses. Each request or response message contains a se
quence of attributes that describe the capabilities and characteristics of every object in
volved in the print transaction. These object attributes can be described as:

• Printer attributes Printer object attributes fall into two categories: printer
description attributes and printer job-template attributes. Printer description at
tributes are those that define properties, such as the printer object's location
and state. Printer job-template attributes describe the printer object's capabili
ties, such as the types of jobs it can handle and its default settings.

• Job attributes Job attributes are properties of a print job that's been pro
cessed by the printer object and assigned to a job object. Job attributes can be
job-template attributes, which are attributes submitted by the client requesting
override of the default printer job-template attributes. For example, a printer
object can, by default, assign a specific priority to print jobs that the client
wishes to override. Job attributes can also be job-description attributes, which
provide parameters, such as the job's size, state, and identification. Some job
description attributes are provided by the client when requesting the print job,
and others are provided by the print object as it processes the print request.

Chapter 18 File and Printer Sharing I 427

For example, a requesting client can provide information regarding the number
of pages in a print request (client-side job-description attributes), and the
printer object can assign a job a Uniform Resource Identifier (URI) when it ac
cepts the job for printing (server-side job-description attributes).

• Operation attributes Unlike printer-object and job-object attributes, which
provide characteristics relating to the objects involved in a print transaction,
operation attributes describe the transaction itself. These attributes identify
properties, such as where the job is being sent and what localization param
eters might need to be defined in the transaction.

• Unsupported attributes Because IPP attributes are extensible, a client can
issue a request containing attributes that aren't supported by the print object. If
this is the case, the IPP server returns a message to the client listing which at
tributes it can't support, so that the client can issue only requests that the print
object can fulfill. This process allows client and server to "negotiate" job pa-
.. ,,.,....,""t"" .. "' ,-1,, .. ;...,,... tho rPn11Pct/rpcnr.ncp cPn11PrtrPc
- ------ - -- ~ -- -~- ---o ---- - -.1 - .1 .1,

More Info IPP structure and semantics are defined primarily in RFCs 2565 and
2566, which can be found in the \RFC folder on the companion CD-ROM.

IPP Request/Response Mechanisms
IPP operations are passed between client and server as a series of HTTP /1.1 request and
response messages. When a client wants to submit a print request to a print object (IPP
server), the client issues a request message to the printer-object URI containing opera
tion attributes, object attributes, and the document data itself. Each request message must
be followed by a response message from the other party. The response message con
tains a code indicating success or failure of the requested operation, as well as opera
tion attributes, object attributes, and status messages that the server generated. After the
server has accepted the print request and created a job object with its own URI, the cli
ent can request the addition of further documents to the same job object. While a printer
isn't required to support job objects that contain more than one document, allowing the
submission of multiple documents to a single job object increases printing efficiency and
allows print requests to be "batched." Because each job object is queryable, the client
can use a single job URI to obtain status reports on multiple documents, if the server
supports this mechanism. .

Each operation request that the client issues must contain a Version-Number, an Opera
tion-ID, a Request-ID, and any attributes required by the request type. Each server re
sponse message must contain a Version-Number, a Status-Code, the Request-ID that the
client issued, and any attributes that are specific to that request type. Figure' 18-4 illus
trates the encoding for these requests and responses.

As Figure 18-4 demonstrates, the Version-Number is the version identifier for the request/
response sequence. The Operation-ID is used in a request message to specify what
operation the client wants to request of the print object, and the Status-ID is sent in the
server's response message to indicate whether that operation was successfully received

428 I PART IV Application Layer Protocols and Services

and processed. The Request-ID is used tO assign a number to the request for tracking
purposes. The 1-byte Attributes tag identifies the type of attributes being sent in this
request or response message (printer, job, operation, or unsupported), and the variable
length Attributes sequence lists the attributes particular to that type. The end of the at
tributes is indicated by a 1-byte End-Of-Attributes tag, and the remaining bytes might or
might not consist of the actual print data being sent.

Version Number - 2 bytes (required)

Operation-ID (request) or Status-ID
(response)- 2 bytes (required)

Request-ID - 4 bytes (required)

Attributes tag (attributes group ID) - 1byte

Attribute sequence (Attributes) - x bytes

End-of-Attributes tag - 1 byte (required)

Data -y bytes (optional)

:--T--r·r--r·r·--r-1

P' :]l: ': !l:; ' , "TTT,

i:::J:::I::I::I:::l::::::::l::I::I::::::::l:::!
Figure 18-4. Request/response encoding.

Operations

An IPP client requests submission of a print job by sending an HTTP Request message
containing an operation request and attributes to the printer's URI. The printer uses the
information provided by the client to construct a new job object, whose URI is then passed
back to the client so that the client can use this URI for purposes of querying or adding
to the job. IPP /1.0 defines certain operations that can be requested of a printer or a job.
These operations are defined in Table 18-1.

Table 18-1. IPP Operations

Operation Type (Printer or Job)

Print-Job Printer

Print-URI Printer

Validate-Job Printer

(continued)

Description

Required. Allows a client to submit a print job and sup:
ply the document data, which isn't considered a sepa
rate rate object and therefore has no attributes of its
own. Includes operation attributes character set and
natural language attributes, and printer-URI.

Identical to a Print-Job operation except that the client
supplies a job-URI reference to the print data as op
posed to submitting the data itself. The printer then
validates the job-URI before responding to the client.

Similar to a Print-Job operation except that no data is
supplied in the request/response process. The client

Table 18-1. (continued)

Operation

Create-Job

Get-Printer-Attributes

Get-Jobs

Send-Document

Send-URI

Cancel-Job

Get-Job

Chapter :18 File and Printer Sharing I 429

Type (Printer or Job) Description

Printer

Printer

Printer

Job

Job

Job

Job

uses it to verify that a print job submitted to this
printer would be accepted and processed.

Similar to Print-Job, except that the client sends
no document data in the operation, but issues
attributes for multiple print requests to submit
them to a single job object.

Required. Allows the client to request printer
attributes to determine the capabilities of the
printer.

Allows the client to request a list of job objects
owned by the printer object.

Allows the client to send a multi-document job-
,, , 1.._~._1_ -------~"-~ -~--- 1-.-..

VUjC:\....L J.~\..f_U\,..,,::>l ... , VV t...l.lc;.t.t.. .1.l.1UJ.t..J.p.1.v J.."'-''-1.~'-''-"'-'-' -u...1...1. L-''-'

submitted under a single job.

Identical to the Send-Document operation, ex
cept that the client supplies a document-URI
operation attribute rather than the document
data itself.
Required. Allows a client to request cancellation
of a print job.
Required. Allows a client to request the
attributes of the Attributes job object identified
in the message.

Each of these operations can be sent as part of either a request or response message
between client and printer, and each operation includes attributes that identify the de
tails of the request or response. Printer attributes cam be sent as part of a printer opera
tion message, and job-object attributes can be sent as part of a job operation.

Attributes

Attributes are extensible characteristics or properties of any object in IPP, such as printer
objects, job objects, and operations. Attribute specifications include the name of the at
tribute, followed by its syntax in parentheses. Tables 18-2, 18-3, 18-4, and 18-5 describe
these attributes.

Table 18-2. IPP Operation Attributes

Attribute

Attributes-charset

Attributes-natural
language

Description

Required. Must be supplied as the first attribute in any request or
response so as to define the character set that the client or the IPP
server uses.

Required. Must be supplied as the second attribute in any request or
response message so as to define the natural language that the client or
IPP server uses.

430 I PART IV Application Layer Protocols and Services

Table 18-3. IPP Job-Template Attributes

Attribute

Job-priority
(integer (1:100))

Job-hold-until
(type3 keyword
name (MAX))

]ob-sheets (type3
keyword I name
(MAX))

Multiple-document
handling
(type2 keyword)

Copies (integer (l:MAX))

Finishings (lsetOf
rangeOflnteger (1 :MAX))

Page-ranges (lsetOf
rangeOflnteger (1 :MAX))

Page-ranges-supported
(Boolean)

Sides (type2 keyword)

Number-up
(integer (l:MAX))

Orientation-requested
(type2 enum)

Media (type3
keyword I name (MAX))

Printer-resolution (resolution)

Print-quality (type2 enum)

Description

Priority for job scheduling; 1 is the lowest priority and 100 is the
highest.

Named time frame during which the job must become eligible
for printing; values include the following: no-hold (immediately);
daytime (during the day); evening (evening); night (night);
weekend (weekend); second-shift (after close of business);
and third-shift (after midnight).

Which job start/ end sheets must be printed with the job (if any).
Key-word values: none (no job sheet printed); standard (site
specific standard sheets are printed, administrator-defined
values).

If a job consists of more than one document, this controls the
placement of pages onto media sheets (such as large sheets of
paper used in commercial printing). Keywords: single-document
(multiple documents must be treated as a single media sheet);
separate-documents-uncollated-copies (each document is
treated as a single, non-collated media sheet); separate
documents-collated-copies (each document is treated as a
single media sheet and the media sheets are collated); single
document-new-sheet (each document instance in the job must
be forced onto a new sheet).

Number of copies to be printed, ranging from 1 through the
maximum number supported by the output device (such as
number of collation trays for collated copies, or the maximum
number of non-collated copies allowed by the output device).

Identifies the finishing operations used for each copy of each
document in the job. Enum values: 3-no finishing; 4-staple;
5-punch; 6-cover (used to specify a cover sheet); 7-bind
(specifies site-defined binding operations).

Range of pages to be printed for a document. A page range of
"1:5, 24:24" would specify pages 1-5 and page 24 should be
printed.

Indicates whether the printer supports printing of ranges.
0 = No, 1 = Yes.

Specifies whether printing is one-sided or two-sided. Keyword
values: one-sided; two-sided-long-edge; duplex or head-to
head; two-sided-short-edge.

Number of pages to place on a single side of the
selected medium.

Page orientation, such as portrait, landscape, reverse landscape,
reverse-portrait (used in commercial printing).

Media type used by the printer, such as paper type, paper size,
paper tray, electronic form.

The resolution used by the printer for the job.

Print quality used by the printer for the job.
Enum values: 3-draft; 4-normal; 5-high.

Chapter :U3 File and Printer Sharing I 431

Table 18-4. IPP Job-Description Attributes

Attribute

Job-uri (URI)

Job-id (integer
(l:MAX))

Job-printer-uri (URI)

Job-more-info (URI)

Job-name
(name (MAX))

Job-originating-user
name (name (MAX))

Job-state
(typel enum)

Job-state-reasons
(lsetOf type2 keyword)

Job-state-message
(text (MAX))

Number-of-documents
(integer (O:MAX))

Output-device-assigned
(name (127))

Time-at-creation
(integer (O:MAX))

Time-at-processing
(integer (O:MAX))

Time-at-completed
(integer (O:MAX))

Number-of-intervening
jobs (integer (O:MAX))

Job-message-from
operator (text (127))

Job-k-octets
(integer (O:MAX))

Job-impressions
(integer (O:MAX))

Job-media-sheets
(integer (O:MAX))

(continued)

Description

Required. The URI for this print job.

Required. Job ID that's generated by the print object upon receipt
of a new job and returned to the requesting client for identification
purposes.

Required. Identifies the printer object that created the job object.

Contains the URI referencing a resource that has more information
about the job object (such as, an HTML page listing job status
information).

Required. User-friendly name assigned to the print job.
Generated by the print object and returned to the client.

Required. Name of the user who submitted the print job. Can be
used for authentication purposes in access-controlled print
environments.

Kequirea. 10ernmes me currem JOO sLaLe. vaiues: :)-pc:11ui11~;
4-pending-held; 5-processing; 6-processing-stopped; 7-canceled;
8-aborted; 9-completed.

Provides additional information about the job-state attribute, such
as "none," "job-incoming," "submission-interrupted,"
"job-outgoing," and so forth.

Job-state and job-state-reasons information provided in
friendly message format.

Indicates the number of documents in the job.

Identifies the output device to which the printer object assigned
the print job. If this is an embedded printer object, the attribute
is unnecessary.

Time at which the job object was created.

Time at which the job object began processing.

Time at which the job object was completed, canceled,
or aborted.

The number of jobs "ahead" of this job in the queue.

Message sent to the client from an operator or administrator
of the printer.

Total size in k octets (units of 1024 octets, or kilobytes)
of the document.

Total size of the document in number of impressio'ns (pages as
chosen by the client, such as "letter," "legal," and so forth).

Total number of media sheets to be produced for the job.

432 I PART IV Application Layer Protocols and Services

Table 18-4. (continued)

Attribute

] ob-k-octets-processed
(integer (O:MAX))

] ob-impressions-com
pleted (integer (O:MAX))

] ob-media-sheets-comp
leted (integer (O:MAX))

Attributes-charset (charset)

Attributes-natural-language
(naturalLanguage)

Description

The total number of k octets processed so far.

Number of impressions completed, which includes
interpreting, marking, and stacking the output, and both sides
of the impression.

The media sheets completed for the job, whether both sides
of the sheet have been processed or not.

Required. Identifies the character set used in the job.

Required. Identifies the natural language of the job
(English, French, and so forth).

Table 18-5. IPP Printer-Description Attributes

Attribute

Printer-uri-su pported
(lsetOf uri)

Uri-security-supported
(lsetOf type2 keyword)

Printer-name (name (127))

Printer-location (text (127))

Printer-info (text (127))

Printer-more-info (URI)

Printer-driver-installer (URI)

Printer-make-and-model
(text (127))

Printer-more-info
manufacturer (URI)

Printer-state (typel enum)

Printer-state-reasons
(lsetOf type2 keyword)

Printer-state-message
(text (MAX))

Operations-supported
(lsetOf type2 enum)

Charset-configured (charset)

Charset-supported
(lsetOf charset)

(continued)

Description

Required. Contains one or more URis used to submit print jobs
to this print object. Multiple URis allow the print object to be
represented as multiple objects in a directory service, but
represent a single IPP server.

Required. Identifies the security mechanisms for each of the
URis that identify a printer object (such as "none" or "SSL3").

Required. Friendly name of the printer object.

Friendly text identifying the location of the printer.

Friendly description of the printer.

Specifies a URI where more information about the printer can be
obtained, such as an HTML page listing the printer's capabilities.

URI used to locate the driver installer for the printer object.

The make and model of the printer object.

Manufacturer's information about this printer.

Required. Identifies whether the printer is idle, pending,
processing, or stopped.

Provides more information about the reported state of the
printer, such as "paused," "shutdown," and so forth.

Friendly message that represents the printer state to the user.

Required. Operations that are supported by the printer for
its job objects.

Required. The configured character set of the printer.

Required. A list of character sets supported by the printer.

Table 18-5. (continued)

Attribute

Natural-language-configured
(naturalLanguage)

Generated-natural-language-sup
ported (lsetOf natura1Languagel08)

Document-format-default
(mimeMediaType)

Document-format-supported
(lsetOf mimeMediaType)

Printer-is-accepting-jobs
(Boolean)

Queued-job-count
(integer (O:MAX))

Printer-message-from-
/. , ,..., ""'....,.,,

V}J\.....J.a.tVJ. \,L'-'AL \....L~ / //

Color-supported (Boolean)

Reference-uri-schemes
supported (lsetOf uriScheme)

Pdl-override-su pported
(type2 keyword)

Printer-up-time
(integer (l:MAX))

Printer-current-time (dateTime)

Multiple-operation-time-out
(integer Cl:MAX))

Compression-supported
(lsetOf type3 keyword)

Job-k-octets-supported
(rangeOflnteger (O:MAX))

Job-impressions-supported
(rangeOflnteger (O:MAX))

Job-media-sheets-supported
(rangeOflnteger (O:MAX))

Internet Printing Security

Chapter :LS File and Printer Sharing I 433

Description

Required. The configured natural language of
the printer.

Required. A list of natural languages supported by
the printer.

Required. The default document format that the printer
assumes if the client doesn't specify a particular format.

Required. Multipurpose Internet Mail Extensions (MIME)
media types supported by the printer.

Required. Indicates whether the printer is currently
accepting job requests.

Recommended. The number of jobs in the print queue
for this printer object.

Text sent from an administrator or operator to
..... 1_ ,..... ,...,, 1 : ,..... ~- +-

Indicates whether the printer is capable of color printing.

List of URI schemes that the printer can accept jobs
from, such as FTP, HTTP, and so forth.

Required. Specifies whether the printer. object is capable
of overriding document defaults as supplied by the ap
plication that requested the print job with IPP settings.

Required. Amount of time, in seconds, that the printer
has been up and running.

The current date and time where the printer is located.

Maximum time, in seconds, that the printer waits for
additional instructions on a multi-document job before
taking recovery action.

Printer-supported HTTP compression types, such as
"none," "gzip," "deflate," "compress."

Upper and lower boundaries of k octets that the
printer can accept in a single job.

Upper and lower bounds for the number of
impressions per job.

Upper and lower bounds of the number of media
sheets supported per job.

Because a printer object can be represented by more than one URI, an administrator is
provided very flexible control options. For example, a printer can be represented by one
URI that accepts unsecured HTTP connections, and another URI that only accepts SSL3
(Secure Socket Layer) connections. The printer administrator can grant specific permis
sions to each of the URis, thereby permitting some clients to print over an unsecured con
nection while forcing others to print only over a secured connection. Additionally, because

434 I PART IV Application Layer Protocols and Services

the printer object can be published in AD, all Windows 2000 security mechanisms can
be applied to the printer. While IPP provides mechanisms for printing via HTIP, it doesn't
provide full file-sharing functionality; CIFS provides that functionality.

Introduction to CIFS
Common Internet File System (CIFS) is a cross-platform mechanism allowing clients to
request file and print services from a network server based on the widely used NetBIOS file
sharing/SMB (Server Message Block) protocol. CIFS was quietly introduced as part of Ser
vice Pack 3 for Microsoft Windows NT 4.0. The version of CIFS included with Windows 2000
contains many new features, but remains backwards-compatible with previous versions of
Windows. CIFS is an open protocol, which means that all aspects of communication are pub
licly documented. This allows software vendors to easily create client and server software.

The chief advantage that CIFS provides over protocols such as HTTP and FTP, is that it al
lows simultaneous read-write access to a file, as opposed to file read or transfer capabilities
only. CIFS supports distributed, replicated virtual volumes (such as Distributed File System
(DFS)), file and record locking, file change notification, read-ahead and write-behind op
erations, and most of the functionality typically associated only with direct connections to
a corporate network. CIFS functions over any IP-based network, including the Internet.

CIFS Operation

Name Resolution and Connection Establishment

CIFS communication is established via standard SMB session and NetBIOS name resolu
tion mechanisms. A CIFS server must register its name with a name resolution service,
such as Windows Internet Naming Service (WINS) or Domain Name System (DNS). A
client wishing to establish a connection to the CIFS server first queries its WINS or DNS
server to obtain the IP address of the CIFS server. After resolving the IP address of the
CIFS server, the client establishes a connection to the CIFS server via a connection-ori
ented protocol, such as TCP. The client can parse the name reference to the CIFS server
into a server-name portion and a relative-name portion. For example, if the URL that led
the client to the CIFS server was http://cifsserver.company.com, the client would parse
the URL and consider the server name to be "cifsserver.microsoft.com," and would use
"/documents/CIFS/whitepapers" to indicate the relative file structure that it wished to
navigate on that CIFS server.

To establish a session with the CIFS server, the client issues an SMB session-request packet
to the CIFS server's registered name over TCP port 139 (the NetBIOS session service). The
client begins the session negotiation by issuing a list of dialects (SMB languages) that it
understands to the CIFS server. The dialects are numbered 0 through n (the last dialect
the client understands). The server responds to the client with a NEGOTIATE packet iden
tifying the highest dialect that both machines understand, as well as parameters specific
to that dialect. In the case of Windows 2000 clients and servers, the negotiated dialect will

Chapter 1.8 File and Printer Sharing I 435

most likely be NT LM 0.12, which allows the server to issue parameters that specify things
such as encryption key lengths, maximum-message sizes, and whether the server is DFS
aware. Table 18-6 lists the components of a CIFS server NEGOTIATE response.

Table 18-6. Components of a CIFS Server NEGOTIATE Response

Server Response

Word Count

Dialectlndex

Security Mode

MaxMpxCount

MaxNumberV cs
MaxBufferSize

MaxRawSize

SessionKey

Capabilities

SystemTimeLow

SystemTimeLow

ServerTimeZone

EncryptionKeyLength

ByteCount

EncryptionKey[]

OemDomainName

Description

A count of the parameter words in the packet (17 in the case of NT
LM 0.12 dialect).

The index of the selected dialect. For example, if the client offered
eight dialects, numbered 0-7, with 7 representing NT LM 0.12, the
index would equal 7).

Security Mode of the selected dialect consists of 2 bits. If bit O=O, this
indicates share level security; if bit 0=1, this indicates user level secu
rity. If bit 1=1, this indicates that passwords must be encrypted.

Maximum number of pending multiplexed requests.

Maximum number of virtual connections between client and server.

Maximum transmit buff er size (>= 1024). This is the size of the largest
message that the client can transmit to the server.

Maximum raw-buffer size. This is the maximum-message size that
the server can send or receive for SMB_COM_ WRITE_RAW or
SMB_COM_READ_RAW operations.

The unique key identifying this session.

Server capabilities. These parameters are listed in Table 18-7.

System (Universal Time Coordinate [UTC]) time of the server (low).

System (UTC) time of the server (high).

Time zone of the server (min from UTC).

Length of the encryption key.

Count of the data bytes.

The challenge encryption key.

The name of the domain in original equipment manufacture (OEM)
characters.

By returning a list of its capabilities, the server informs the client as to which operations
might or might not be performed at the client's request. Table 18-7 lists the bit defini
tions of the server's capabilities.

Table 18-7. Bit Definitions of Server Capabilities

Capability

CAP _RAW _MODE

CAP _MPX_MODE

CAP _UNICODE

(continued)

Encoding Description

OxOOOl The server supports SMB_COM_READ_RAW and
SMB_COM_ WRITE_RAW.

Ox0002 The server supports SMB_COM_READ_MPX and
SMB_COM_ WRITE_MPX.

Ox0004 The server supports unicode strings.

436 I PART IV Application Layer Protocols and Services

Table 18-7. (continued)

Capability

CAP _LARGE_FILES

CAP _NT _SMBS

CAP _RPC_REMOTE_APIS

CAP _STATUS32

CAP _LEVEL_II_OPLOCKS

CAP _LOCK_AND _READ

CAP _NT _FIND

CAP _DFS

CAP _LARGE_READX

Encoding

Ox0008

OxOOlO

Ox0020

Ox0040

Ox0080

Ox0100

Ox0200

OxlOOO

Ox4000

Description

The server supports large files with 64-bit offsets.

The server supports the SMBs particular to the NT
LM 0.12 dialect.

The sever supports remote Application Programming
Interface (API) requests via Remote Procedure
Call (RPC).

The server can respond with 32-bit status codes.

The server supports level 2 oplocks.

The server supports the
SMB_COM_LOCK_AND~READ SMB.

The server supports NT Find.

The server is DFS-aware.

The server supports SMB_COM_READ_ANDX
requests that exceed the negotiated buffer size.

As part of the setup process, the CIFS server can request client authentication by issuing
a request for the credentials that will be used for the session establishment. After the client
has been validated, the server assigns a UID (user ID) to the client session, and
additional sessions can be set up over the same connection without the user being
re-prompted for a password. CIFS can use any authentication supported by client and
server, including Windows 2000 Kerberos authentication mechanisms.

The connection between client and server in an SMB session is called a virtual circuit, or
VC, which is formed over the transport services, such as TCP. Within a VC, the server as
signs a Tree ID (TID) to each transaction. The TID provides a unique identifier for each
file session, as well as defining the types of access allowed over that connection. A Pro
cess ID (PID) identifies the process environment for that session, and a File ID (FID) is
assigned to each file opened during the session. If a VC is closed, all environments within
the VC (TID, PID, FID) also will be closed. However, the closing of a single FID might not
result in the closing of the VC, as multiple operations can be requested over a single VC.

Session Disconnection

When a client wishes to disconnect its session to a CIFS server, it follows a teardown pro
cess that's essentially the reverse of the session-establishment process. Any open files are
closed and their associated FID and PIDs then can be disconnected. The TID is discon
nected and the user logs off, which results in the server discarding that client's UID. If
the client should reconnect, the user will be prompted again for credentials because the
UID assigned during the last session no longer exists. Figure 18-5 illustrates the steps in
SMB connection and disconnection. The diagram illustrates a simplified session in which
only a single read or write operation is requested by the client, but covers all of the steps
in session establishment and teardown.

Chapter 18 File and Printer Sharing I 437

Client and server establish TCP session over port 139 (NetBIOS Session Service)

Client Client issues negotiate message including dialects understood

Server issues negotiate reply message containing chosen dialect and setup
parameters, such as authentication mechanisms

Client issues tree connect message with pathname and password

Server assigns UID and issues tree-connect response message with TID

Client program requires access to a file, and client issues open message with
file path and tree ID

Server issues open reply message with FID and file attributes

Client issues read (or write) message containing FID

Server issues read (or write) reply message with file data

Client issues close message containing FID for the file it wishes to close

Server issues close response message and decommissions FID

Server

LJ Client issues tree disconnect message including TIO LJ
Server issues tree disconnect response message and deco.mmissions TID and UID

Figure 18-5. SMB session setup and teardown.

Connection Management

CIFS provides mechanisms that allow for efficient disconnections when a client and server
have completed all session traffic, or when a connection is lost or malfunctioning. A cli
ent can issue a connection request only once to a CIFS server in any given session. If
the CIFS server receives another connection request from a client with whom it already
has an established session, the server disconnects the original session with the client. This
is to help ensure that a client that was unexpectedly disconnected from its session can
effectively establish another session with the server. If a client is generating malformed
or illegal requests to the CIFS server, the server can issue an error to the client and then
disconnect the session, again potentially allowing the client to correct the problem and
reconnect. A server can also disconnect a session with a client in the case of hard trans
port errors or if the client has been inactive for a long period of time and the server needs
the connection. '

File and Printer Access

After a client has established an SMB session with a CIFS server, the client can begin
requesting files by issuing "open" messages to the server for the file(s) it wishes to ac
cess. A file can be opened for read access, write access, or both. For example, accessing
a printer is accomplished via a read request to the printer, and printing is accomplished
via a write request to the printer.

438 I PART IV Application Layer Protocols and Services

Distributed File System Operations

Any client and CIFS server supporting dialects NT LM 0.12 or later support DFS opera
tions. Using DFS, the CIFS server can represent multiple shares on multiple servers in a
single namespace that appears to the client to be located on a single server. The CIFS
server and can redirect the client software to another location on the network to access
a resource, but the client will believe the resource is local to the server with which (he
or she) originally negotiated a connection.

Read-Ahead and Write-Behind

CIFS supports read-ahead and write-behind operations. Read-ahead allows a client to
cache read data locally so that it doesn't have to incur traffic over its connection to the
server in order to obtain the next block of data it wants to read. Write-behind allows a
client to perform and cache write operations on a file that then can be uploaded to the
server, rather than having to submit each read/write operation separately. Files on the
server also can be called locked or unlocked. An unlocked file is a file to which no
computer has been granted exclusive access for either read or write purposes. CIFS
supports caching, read-ahead, and write-behind, even for unlocked files, because the files
are said to be "safe" as long as no client is actively writing to the file. If a client wants to
write to a file, it must either submit the write data to the server for the server to write, or
it can request an operation lock from the server.

Opportunistic Locks

When a client is actively writing to a file on the server, it's more efficient for the client to
locally buffer its data and submit it as a batched request. However, this increases the pos
sibility that the same file might be opened by another client and data might also be writ
ten by that client. To help a client increase the efficiency of its data buffering, CIFS allows
for opportunistic locks (oplocks), which allow the client to "lock" the file so that it can't
be written to simultaneously by another client. The following are three types of oplocks
used in CIFS:

• Exclusive oplocks In an exclusive oplock, a client (Client A) requests exclu
sive access to a file, where Client A is the only computer permitted to write
data to the file. When Client A opens the file, it requests an exclusive oplock
from the server. If another client (Client B) has already opened the file, the
server refuses to issue the oplock to the requesting client. When this occurs,
Client A is neither permitted to buffer any data nor to perform any read-ahead
unless it knows that it has the read-ahead range locked. If there's no other cli
ent currently accessing the file, the exclusive oplock will be granted to Client A
and it can both read-ahead and buffer data that's to be written to the file. If
Client C opens the file while Client A has an exclusive oplock, the server will
instruct Client A to break its lock. Breaking the lock requires Client A to submit
any buffered lock or write data it's currently holding, acknowledge receipt of

Chapter 1.8 File and Printer Sharing I 439

the notification, and purge its read-ahead buffer so that the file can be released
for access by Client C.

• Level II oplocks Level II oplocks allow multiple clients to open the same
file, provided that no client is writing to that file. In a level II oplock, Client A
can open a file and request an exclusive oplock to it. If it's the only client ac
cessing the file, the server grants the oplock. When Client B requests access to
the same file, the server contacts Client A and requests that it break its lock to
a level II oplock if Client A hasn't been writing to the file. This is a result of
the fact that some down-level client applications request read/write access to
files even when they don't intend to perform write operations. After the server
has synchronized with Client A to ensure that Client A has no lock buffer data,
access to the file is granted to Client B at a level II oplock status. This informs
Client B that it can't buffer any locks to the file, although it's been granted ac
cess. Either client can eventually write to the file; should this occur, the server
notifies all level II oolock clients to break their locks, thus allowing the data to
be written by a single client and ensuring that the server doesn't have to syn
chronize with all connected clients in order to allow this to occur.

• Batch oplocks Batch oplocks are commonly used by applications that run
command batches requiring them to repeatedly open and close multiple files
in order to read and execute their command sequences. When Client A wants
to obtain a batch oplock to server files, it requests the oplock from the server.
If the files aren't opened by other clients, the batch oplock is granted. Client A
can now open the files, leave them open while executing its command se
quences, and buffer data as needed. If Client B requests access to one of the
files while Client A has a batch oplock, the server notifies Client A to clean up
its data and synchronize with the server. In most cases, this results in Client A
finishing its current batch operation and closing the file(s) in question, and Cli
ent B being able to open the file.

Summary
Internet Printing Protocol significantly extends the functionality and ease of printing in
Windows 2000. Using IPP, installing and using a printer can be as simple as typing a URL
into a Web browser. Detailed queries and status reports can also be generated from the
browser interface, and users can now print directly to devices such as fax machines and
document software. Common Internet File System allows platform-independent sessions
to be established between a client and a server over any Internet or intranet. Via this
connection, clients may access file and print resources, and can also use DPS to seamlessly
access multiple servers that are represented as a single name space. These mechanisms
provide remote clients with the same functionality they have when directly connected
to a network, while maintaining secure communications paths.

441

Internet Information Server
(llS) and the Internet Protocols

IIS 5.0 is an integrated service available in Microsoft Windows 2000. IIS 5.0 provides Web
publishing, file transfer, and mail services via HypterText Transfer Protocol (HTTP), File
Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP). In this chapter, we will
lnnk at Parh nrntnrnl anr1 thP fllnrtinnalitv it nrovides. TTS c;.o also nrovides services for

....

Network News Transfer Protocol (NNTP), although this chapter won't discuss these services.

Chapter Contents

HTTP

This chapter contains the following three sections:

• HTTP An analysis of the specifications and functionality of HTTP/1.1; HTTP/
1.1 is the most recent HTTP specification and is implemented in IIS 5.0

• FTP A description of the FTP mechanisms as implemented in IIS 5.0, includ
ing enhancements to recoverability of lost connections

• SMTP A look at SMTP and its usage in IIS 5.0

This chapter isn't intended to serve as a "how-to" manual for the use of these protocols,
but is instead a technical reference of their functionality

Introduction and Terminology
HTTP was first defined in RFC 1945 (HTTP/1.0), although it existed in a looser fashion,
now referred to as HTTP/0.9, beginning in 1990. From 1990 to 1996, HTTP continued to
grow in a rather uncontrolled manner, with different vendors customizing the protocol
to suit their own needs. The publishing of RFC 1945 in 1996 was an attempt to summa
rize and unify these implementation details and, as a result, the industry expected it to
be replaced rather quickly. HTTP/1.0 lacked sufficient definition for caching, hierarchi
cal proxies, virtual hosts, and persistent connections. A more stringent version, HTTP I
1.1, was defined in RFC 2068, which is now obsolete, and later in RFC 2616. IIS 5.0 is
HTTP /1.1 compliant, and thus that version will be the focus of this section.

442 I PART IV Application Layer Protocols and Services

HTTP is an application-level protocol used for communication between client comput
ers and HTTP servers to transfer data. Client requests are frequently submitted, from
browser software such as Microsoft Internet Explorer and Netscape Navigator, to HTTP
servers such as IIS. Before analyzing HTTP in depth, we must understand certain basic
terms as they relate to the protocol:

• Message The basic unit of communication between a client and a server.

• Resource An object or service available on the server that's identified in a
message.

• Request A message from the client to the server that requests a resource.

• Response A message from the server to the client that ret1:lrns information
initiated by a request message.

• Request method A descriptor of the action to be performed on the re
quested resource. ·

• Client Any program that establishes a connection to an HTTP server to issue
requests.

• Server A process that accepts HTTP requests for connections from client pro
grams, and provides response data. A single program can utilize both client
and server components.

• Cache A client proxy or server's store of response messages, used to retain
resources that are designated as cacheable. By caching responses, retrieval of
data that's been recently requested doesn't require additional network traffic,
as the request can be fulfilled locally.

• Cacheable A response message that's permitted to be stored by the
requestor, as determined by a set of rules governing cacheability.

• Tunnel A Transport Layer intermediary between client and server programs
that doesn't take part in the request/response process, except to relay informa
tion between the programs. A tunnel is closed when both endpoint parties to
the communication have closed their connections.

• Gateway An HTTP server that receives requests on behalf of another server,
often appearing to the client to be the server that was queried.

• Proxy A program that acts as both client and server in HTTP communication,
.receiving request messages from a client program, repackaging the requests as if
the proxy were the client, and returning the responses to the original requestor.

• Uniform Resource Identifier (URI) A standard format used to describe a
resource requested from a server.

• Uniform Resource Locator (URL) A standard naming method used to define
the location of any resource on the Internet. URLs take the format protocol://host
name.port/filename, for example, http://backoffice.microsoft.com:80/hello.asp.

• Range HTTP messages are represented in sequences, or ranges, of bytes.
When a client wishes to retrieve a resource from an HTTP server, it might need

Chapter 19 Internet Information Server (llS) and the Internet Protocols I 443

to specify a range of the total bytes that make up the resource, as the entire re
source might be too large to transfer in a single transaction. Servers might also
specify the range measurement that they're capable of accepting, such as bytes.

• Entity A resource, or portion of a resource, that's being referred to in a
request/response exchange between clients, proxies, and servers.

• Variant Resources can be represented by more than one name; additional
names for a single resource are called variants.

HTTP Operation

UR ls

HTTP is a request/response protocol. A client wishing to retrieve a resource from an HTTP
server issues a request message containing a request method, URI, protocol version ID, and
resource-specific information. This request can be issued to the server, a tunneling agent, a
proxy, or a gateway, and each participant in the transaction can simultaneously process
multiple HTTP connections. HTIP requests are typically issued over TCP port 80, although
thP rv:1rt1r-1rv1nt 'lnnl1r-'lt1r.nc r-".ln cnPr-1hr r.thPr nr.rtc l\tfr.ct 1mnlPmPnt'lt1r.nc r.f J ... :rrrP/1 () rP_

J. -.l- ------------ ----- -.1------.; ------- .i----- ------- -------.!.---:----- ------------- --- ________ , -·-- ---

quired that a separate connection be established for each request; in HTIP /1.1, multiple
transactions can now be processed over a single connection, called a keep-alive, which greatly
improves protocol performance. HTTP itself doesn't provide mechanisms for guaranteed
delivery of datagrams, but relies on underlying protocols, such as TCP, for this functionality.

Upon receiving a request message, an HTIP server responds with a message indicating
success or error, as well as protocol-version information and possible resource-specific
data, including the data itself. The protocol version must be sent in the format "HTTP I
x.y," where xis the "major" version identifier and y is the "minor" version identifier. By
sending version numbers as part of the HTTP message, clients and servers negotiate
communication format, with both client and server sending the highest protocol version
they both understand. With the exception of tunnels, which don't maintain any aware
ness of the contents of HTIP data, each party in the process can potentially cache mes
sage content to facilitate faster retrieval for future requests.

A proxy isn't permitted to send a request message in a protocol version higher than the
proxy itself supports. Additionally, it's required to either downgrade any incoming re
quest message with a higher version than its own, respond to the client with an error
message, or switch to tunnel mode. Proxies are also required to upgrade any lower pro
tocol version requests to match their own, but return the response to the client in the
same major version as the original request.

A URI is simply a standard format for defining a retrievable resource. A familiar term, the
URL, is actually a subset of URI, as is the less familiar Uniform Resource Name (URN). A
retrievable item can be requested by referencing the item's location, as in the case of a
URL, or by referencing the item's distinguished name, as in the case of a URN. The HTTP
protocol doesn't limit the length of URls, and servers are required to be capable of re
ceiving a URI whose length is at least as long as that of any resource they serve.

444 I PART IV Application Layer Protocols and Services

URI Syntax

URis can be absolute or relative to a base URI. Although RFC 2396 defines generic syn
tax, several RFCs define URI's syntax. An absolute URI lists the entire scheme (this is
usually the name of the protocol used in this request) and path that will be used to re
quest the resource, while relative URis build on a previously established base location
and scheme. Typical URI construction is:

"scheme:"" I /""hostname"": ""port"" I absol ute_path""?""query"

It might appear as:

http://search.microsoft.com:443/us/SearchMS.asp?so=RECCNT&qu=dogbiscuits&boolean=
PHRASE&intCat=0&intCat=l&intCat=2&intCat=3&intCat=4&intCat=5&intCat=
6&intCat=7&intCat=8&intCat=9&p=l&nq=NEW

In this example, the scheme is "http:", indicating that the request will be passed over the
HTTP protocol. The slashes are reserved characters that serve as separators between
scheme and scheme-specific details. The host name given here is "search.microsoft.com", ·
and the ":443" issues the request over TCP port 443. If no port is specified, the request
will be issued over the default TCP port 80, and if the target server is not listening for
requests over this port number, an error will result. The absolute path given here is the
published directory "us," containing the SearchMS.asp active server page. The presence
of a question mark following this path indicates that a query is being performed, and the ·
remainder of the URI is query parameter information.

HTTP Messages
HTTP messages are the basic form of communication between a client and a server in
HTTP communication, and follow a well-defined syntax.

Message Types

RFC 822 defines HTTP request and response messages as being used to transfer data and
resources, called entities, from client to server, and vice versa. These messages are com
prised of a start line that might or might not be followed by header fields, which are often
simply referred to as headers. An end-of-line marker (carriage return line feed [CRLF])
indicates the end of the headers, and message body data might follow. HTTP /1.1 dic
tates that no more than one CRLF be used sequentially in any HTTP message to elimi
nate unnecessary parsing on the part of either the server or client, although flawed
implementations of HTTP often issue multiple CRLFs in succession. If a CRLF is received
where none is expected, it's ignored. Syntax of a typical HTTP message is:

Request-LinelResponse-Line *((general-headerlrequest-headerlresponse
headerlentity-header)CRLF)CRLF [message-body]

More Info HTIP request and response messages are defined in RFC 822, which
can be found in the \RFC folder on the companion CD-ROM.

Chapter .19 Internet Information Server (llS) and the Internet Protocols I 445

Message Headers

HTIP header fields are used to define parameters regarding the message being transmit
ted, whether the message is general, request, response, or entity information. Header fields
can be preceded by any amount of linear white space (LWS), and consist simply of the header
name followed by a colon (:) and the header value. General header fields apply to both
request and response messages, but don't relate to the entity being transferred. Request and
response header fields are specific to their respective message types, and entity header fields
provide additional information about the resource being passed in the message.

Request Messages
Client programs issue request messages both to establish communication parameters and
to initiate resource transfer and manipulation. The following example shows a portion
of the message generated by a client requesting a resource from a server:

HTTP: GET Request (from client using port 1036)
1-lTTD· Pon11oc+ Mo+h"rl = r-i::T

HTTP: Uniform Resource Identifier = /images/logo.gif
HTTP: Protocol Version = HTTP/1.1

The lines above are actually a single line, with spaces separating the individual elements,
and are finished with a CRLF sequence. This line identifies four criteria: the general type
of request being made (a GET, in this case); the method token, or action to perform on
the requested resource (again a GET); the URI of the requested resource (/images/logo.git);
and the protocol version number (HTIP/1.1). The client HTIP port number listed in this
request isn't to be confused with the server TCP port. While the client made its HTIP re
quest over port 1036, the request was issued to TCP port 80, as can be seen below:

TCP: .AP ... , len: 247, seq: 815985-816232, ack:3911620698, win: 8760, src: 1036 dst: 80
TCP: Source Port = 0x040C
TCP: Destination Port = Hypertext Transfer Protocol

Request Message Methods

Methods are actions that a request message can ask to be performed at the server or
applied to a resource entity. Table 19-1 lists common HTTP /1.1 methods and the actions
that they request.

Table 19-1. Common HTTP /1.1 Method Codes

Method

OPTIONS

(continued)

Description

Requests information regarding the server capabilities or what actions can be per
formed on a specified resource. No action is actually performed on the resource,
as this is an information-gathering method. Results of this method can't be cached.
If the request-URI is an asterisk (*), the client is testing the capabilities of the server
to facilitate further action. If the request-URI is anything other than an asterisk, the
client can retrieve information only about the capabilities of the resource specified.

446 I PART IV Application Layer Protocols and Services

Table 19-1. (continued)

Method

GET

HEAD

POST

PUT

DELETE

TRACE

CONNECT

Description

Requests retrieval of the specified information. GET methods can also be condi
tional GETs, where the retrieval is performed only if specified conditions are
met, or partial GETs, where the client can specify that it's already received and
cached some portion of the requested data, and needs to retrieve the portions
that it doesn't yet have.

The HEAD method is identical to the GET method, except that the server isn't
permitted to return the actual resource in its response, but merely information
about the resource. This method is often used to test validity of hypertext links
so as not to request a resource that might not actually be available.

A client uses POST to send a large block of data to the server. The POST com
mand is often used to supply a server with information that a user has input
into an HTML form. POST methods name a specific file on the server as part of
the URI-the file named is generally a server-side script or executable that's ca
pable of processing the data the client is sending.

The PUT method is used to create an entity under the requested URI. Generally,
PUT is used as a simple method of uploading a file to the server. PUT might
create new files, or might replace files that already exist and have the same
name as the entity named in the PUT request.

The DELETE method requests that a specific resource be deleted from the
server. Even though the server might respond with a message indicating success,
the client won't know if the deletion actually occurred, as the deletion might be
halted by human intervention.

The TRACE method is used to request a loopback of the request message. This
is used primarily as a troubleshooting tool to determine what data is actually
being received at the other end of the request. No entities are passed in a
TRACE method.

CONNECT is used for proxies that can dynamically become tunnels, as is re
quired by secure socket layer (SSL) tunneling.

Safe Methods
Methods can be said to be safe, meaning that if they're properly implemented, they should
cause no ill effects on the server. For example, the GET and HEAD methods are consid
ered safe methods because they retrieve only data from the server and don't actually
manipulate that data while it resides on the server.

Response Messages
After a server receives a client request message, it returns an HTIP response message,
similar in construct to the client request, in the following format:

Status line *((general header I response header I entity header) CRLF) CRLF
[message body]

Each of these components will be analyzed in further detail in this section.

Chapter :19 Internet Information Server (llS) and the Internet Protocols I 447

Response Message Status Lines

When a server receives a request message from a client, it evaluates the request method
and might or might not perform an action on the requested resource as a result. Regard
less of whether or not the action is performed, the server must respond to the request
ing client. The response is sent in the form of a status line, with the following syntax:

Status Line <space> HTTP version <space> Status code <space> Reason phrase <CRLF>

Status codes are organized into classes, which identify the generic response type. Table
19-2 lists the classes and meanings of status codes defined in HTTP /1.1.

Table 19-2. HTTP /1.1 Status Code Classes and Meanings

Number Class

lxx Informational

2xx Successful

3xx Redirection

4xx Client Error

5xx Server Error

Indication

This indicates a provisional response and returns only a status
line indicating status and optional headers. Essentially, this is the
~--·--'~ --'"1-.-.-1 -C --~-~-rl:-- ~.: .. t-. ~- ~-1·--~·1-rl----'" --~~~-
~-· · -· ~ ···-···~- ~· · -~.t'~··-···o ·· ···· ---·.-·~ ·· ·--o···-··· ···-~~--o-·
The server understands and accepts the client's request.

The requestor needs to take further action to retrieve the re
quested resource. If the method used in the subsequent request
message is GET or HEAD, the redirect can occur without any
user intervention.

The server believes that the client has performed an error. The
server should provide an explanation of the error, and indicate
whether this is a permanent or temporary error. Additionally, the
server should wait for TCP acknowledgment of client receipt of
the error message so it doesn't close the connection prematurely.

The server is incapable of performing the request, the client isn't
allowed access to the resource, or a server error has occurred.
The server should include an explanation of the error and indi
cate whether the error is temporary or permanent.

Each class of status response has codes that the server returns to the client indicating
specific information. Table 19-3 summarizes the individual codes that a server can return
to a requesting client as defined in RFC 2616. The messages listed are merely recommen
dations and can be customized without affecting the protocol.

Table 19-3. HTTP /1.1 Status Codes

Code

100

101

(continued)

Message

Continue

Switching
Protocols

Meaning

The client should continue sending the remainder of the
request; if the entire request has already been sent, the
message is ignored by the client upon receipt.

The client has requested to switch to another application pro
tocol by issuing an Upgrade message header; the server will
switch to that protocol immediately following this status line.

448 I PART IV Application Layer Protocols and Services

Table 19-3. (continued)

Code

200

201

202

203

205

206

300

301

302

303

304

305

306

Message

OK

Created

Accepted

Non
Authoritative
Information

No Content

Reset
Content

Partial
Content

Multiple
Choices

Moved
Permanently

Found

See Other

Not
Modified

Use Proxy

Unused

(continued)

Meaning

The client's request has been successfully processed; remaining infor
mation returned will vary according to the type of client request.

A new resource has been successfully created at the client's request.

The client's request has been accepted, but not yet processed. The
server should indicate to the client when the request might be
fulfilled or provide a pointer to a status monitor for the request.

The server would normally issue a 200 (OK) response, but the
server isn't authoritative for the information returned in the
message. This indicates that the information was gathered
from another source, and therefore this server can't verify it.

The server has fulfilled the client request, but doesn't need to
return a new object. The server can, however, return
information that causes the user interface to be updated.

The server has· fulfilled the client request and is instructing the
·user agent (client software) to reset the current document
view. This is commonly used to allow a user to input form
data, then clear the form so that more data can be entered.

The client has issued a partial GET request, and the server has
fulfilled that request. The server must indicate what portion of
the requested data it has fulfilled for this particular GET.

The requested resource exists in multiple locations, and the
server is providing a list of these locations to the client. The
server can indicate preference for a specific location, but the
client chooses what it deems the appropriate location.

The requested resource has been moved permanently and future
requests for the resource should be directed to the location
the server returns.

The requested resource exists elsewhere, but its location might
change and the client should therefore continue to use the
same request URI. ·Most browsers don't implement this cor
rectly, and treat a 302 response in the same manner as a 301.

The response to the request exists under a different URI and
should be retrieved via a GET method. The 303 response
shouldn't be cached, although the response received from the
redirection location can potentially be cached.

The client has performed a conditional GET, but the
document hasn't been modified.

This response must be issued only by the server, and indicates
that the requested resource must be accessed via the proxy
provided in the response.

This status code was used in previous implementations of
HTTP, has no function in HTTP /1.1, and is reserved.

Chapter 19 Internet Information Server (llS) and the Internet Protocols I 449

Table 19-3. (continued)

Code

307

400

401

402

I.A?

404

405

406

407

408

409

410

411

412

Message

Temporary
Redirect

Bad Request

Unauthorized

Payment
Required
.,., __ t-..:--1--1-~
... .._, ,.....,, _

Not Found

Method
Not Allowed

Not
Acceptable

Proxy
Authentication
Required

Request
Timeout

Conflict

Gone

Length
Required

Precondition
Failed

(continued)

Meaning

The requested resource temporarily exists under a different URI,
which should be provided to the client as a hyperlink to the new
URI (for pre-HTTP/1.1 clients that don't understand the 307 code).
Automatic redirection without user input should occur only if the
client issued a GET or HEAD request that triggered this message.

The client issued a malformed request that the server couldn't
interpret and one that shouldn't be issued again without modification.

The requested resource requires authentication; the server must
issue a WWW-Authenticate challenge. If the client has already res
ponded to a challenge response, this message indicates that the
credentials presented don't have permission to access the resource.

Reserved for future use.

"'T1t....,.... ,....,,....~.,.,.... ,_,....C ,....,,......,.... ..__....... C lC.:11 .._t._,...... ,_,....,,...., ,......,...,+- ~ ,...],......, t....~ ... +-l-,......, 1.: -. '"T"1t-..,.... ,....,,......,_
• ••~ u~• • ~• • ~• ~u~u •~ • ~.,.,, •u~ • ~'1 ~~u• u•~~~ ~ J •u~ ~"~"'' • u~ u~•

ver can indicate why the refusal has been generated with this mes
sage, or can disguise the reason by issuing a 404 message instead.

The requested URI wasn't found on the server; the server isn't
required to give an indication as to whether this condition is
temporary or permanent. This message is typically used when
the server doesn't wish to reveal or doesn't know why the
resource is unavailable.

The request method isn't permitted on this URI. A list of valid
methods for the URI must be returned as part of the response.

The resource identified in the request is capable of generating
responses only to the accept headers that it returns to the
client, and not to the accept header that the client originally sent.

Similar to a 401, but indicates that the client must authenticate
with the proxy that forwarded the request.

The server didn't receive a request from the client within the time
that the server was prepared to wait. The client can reissue the
request later.

The request made by the client couldn't be fulfilled because it con
flicts with the current state of the resource. Information can be re
turned that allows the user to correct the condition causing the con
flict and resubmit the request. This message is seen most often in
response to PUT requests that can cause version conflicts in a resource.

The requested resource is no longer available and its new
location is unknown.

The server will not accept the request unless the client reissues the
request with the addition of a valid Content-Length header field.

The client issued a request containing precondition header
fields and one or more of the fields evaluated to false. This
allows the client to perform conditional requests.

450 I PART t\f Application Layer Protocols and Services

Table 19-3. (continued)

Code Message

413 Request Entity
Too Large

414 Request URI
Too Long

415 Unsupported
Media Type

416 Requested Range
Not Satisfiable

417 Expectation
Failed

500 Internal
Server Error

501 Not
Implemented

502 Bad Gateway

503 Service
Unavailable

504 Gateway
Timeout

505 HTTP Version
Not Supported

Meaning

The request is larger than the server is capable of processing,
and is being refused. The server is permitted to close the con
nection with the client so that the request can't be resubmitted.

The request URI is longer than the server is capable of
accepting. This typically occurs when the user has input too
much data into a form that's sent using a GET request.

The client issued a request method that isn't supported for the
resource in question.

The request included a Range Request header field that doesn't
overlap with any of the values for the requested resource.

The request included an Expect Request header that the
server can't fulfill.

The server can't fulfill the request because of an
unexpected error.

The server doesn't recognize the request method and is
incapable of fulfilling it.

The server is acting as a gateway and received an invalid
response from the requested server.

The server is experiencing a temporary condition that causes
it to be unable to fulfill the request, such as overloading or
maintenance being performed.

The server is acting as . a gateway or proxy and didn't receive
a response from the upstream server in time to process the
request. Some proxies return this as a result of Domain Name
System (DNS) time-out errors.

This server doesn't support the HTTP version specified in the
request message.

More Info HTIP/1.1 status codes are defined in RFC 2616, which can be found
in the \RFC folder on the companion CD-ROM.

A typical server response line might appear as follows:

HTTP: Response (to client using port 1036)
HTTP: Protocol Version = HTTP/1.1
HTTP: Status Code = OK
HTTP: Reason = OK

Note that this data doesn't appear to list the actual code number returned by the server
to the client. However, analysis of the raw data sent _shows that the following informa
tion was actually sent:

HTTP /1.1 200 OK

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 451

Status codes are extensible, meaning that server implementations can issue codes not listed
in the preceding tables. Because the client might nor might not understand the meaning
of a particular extended status code, the code must be issued as an extension of an existing
class. If the specific code number is unrecognized, the client responds as if it received a
generic code from that class. For example, if the server issues error code 509 and the client
doesn't recognize this code, it treats the error as a 500 error. A table of IIS 5.0 error codes
and descriptions can be found in the \Appendix folder on the companion CD-ROM.

Header Fields

A client can generate request headers to query parameters regarding a resource, or to
negotiate content with the server.- A server can issue response headers to provide infor
mation that can't be included in the status line. Both request and response headers can
indicate the presence of an entity to be transferred by including entity header fields and
possible entity data. While these field names can't be universally extended without an
accomoanving change in the orotocol version. extension headers can he used. orovided

- - - - -
both the client and the server understand them to be header fields. Any header that's not
recognized by the recipient is ignored.

Headers are also said to be end-to-end headers or hop-by-hop headers. End-to-end
headers are transmitted to the final message recipient, and must be stored as part of a
cached entry. Proxies are forbidden to modify many end-to-end headers, cautioned against
modifying others, and might or might not be permitted to add headers to a message. Hop
by-hop headers are useful only to the next recipient on a path, and proxies neither cache
nor forward these headers.

RFC 2616-defined headers are summarized in Tables 19-4, 19-5, 19-6, and 19-7. Sender
and recipient can refer to either the client or the server in these tables, as both can send
messages containing header fields during the transaction.

Table 19-4. Request Header Fields

Header Name

Accept

(continued)

Type

End
to-end

Interpretation

Used to specify which media
types are considered acceptable
for the response. These might be
limited to specific types of media,
or might list groups of acceptable
media. If no Accept header is
present, it's assumed that all media
types are acceptable. If the client
issues an Accept header that the
server isn't capable of fulfilling, the
server issues a 406 (Not Acceptable)
response.

Example

Accept: image/ gif;
image/x-xbitmap;
image/jpeg; image/
pjpeg; */*.
Gifs, bitmaps, and jpegs
are acceptable media
types; "*/*" indicates
that all media are
acceptable. "Image/*"
would indicate that
all image types are
acceptable.

11

452 PART ~V Application Layer Protocols and Services

Table 19-4. (continued)

Header Name Type Interpretation Example

Accept- End- Indicates acceptable-response Accept-Charset:
Chars et to-end character sets. If no Accept-Charset iso-8859-5, Unicode-

header is present, it's assumed that 1-l;q=0.8.
all character sets are acceptable. Indicates that this client
Character sets can be given an accepts both character
associated quality value, representing sets listed, with a prefer-
user preference for a given ence as indicated by
character set. codes assigned

to the q value.

Accept- End- Used to designate acceptable content Accept-Encoding: gzip,
Encoding to-end codings, such as compress or gzip. compress.

Content coding is discussed fater Indicates that both gzip
in this chapter. and compress codings

are acceptable.

Accept- End- Defines acceptable languages, such Accept-Language: en-us
Language to-end· as English, German, and Japanese. U.S. English will be

accepted.

Authorization End- Clients attempting to authenticate Authorization: Basic
to-end with a server will issue their bWNOOTg6bWNOND-

credentials in the Authorization MyPQ==.
header. Results can be cached.

Expect End- The client expects specific behavior Expect: 100-continue.
to-end from the server; if the server doesn't Indicates that the client

understand the Expect header, it expects the server to
must return a 417 (Expectation continue the message
Failed) error. exchange.

From End- Used to identify the user that From:
to-end initiated this sequence of messages. owner@microsoft.com.

Typically, this is utilized by robots
that gather information on behalf of
a human being; by providing the
e-mail address of the robot's owner,
the user can be contacted if the
robot causes server problems.

Host End- Identifies the host name and port Host:
to-end number of the owner of the technet.microsoft.com.

requested resource. If no port
number is specified, port 80 is
assumed. This header is used to
allow the server to distinguish
between multiple sites responding
to the same IP and TCP port.

(continued)

Chapter .19 Internet Information Server (llS) and the Internet Protocols I 453

Table 19-4. (continued)

Header Name Type Interpretation Example

If-Match End- Used to make the request message If-Match: *.
to-end conditional; generally, this is used Indicates that this allows

to verify that the client's resource a match with any current
is current. version of the resource,

rather than a specific
entity tag.

If-Modified- End- Used to make a method conditional If-Modified-Since: Sat, 11
Since to-end upon whether the specified resource Sept 1999 12:26:31 GMT.

has been modified since a particular
date. Used by the browser to
determine if a specific resource has
been updated since it was last cached.

If-None- End- Used to facilitate efficient caching by If-None-Match:
Match to-end verifying that there's no match on the "a0cde3e0c444be 1: 18e2."

server ror Ine specmea resource; a1so mrncaies mis vame coma
used by clients to ensure that a PUT be followed with a PUT
method doesn't inadvertently replace method to place the
a resource. resource on the server.

If-Range End- A client can use this tag to determine If-Range:
to-end whether a resource it has a partial "a0cde3e0c444be 1: 18e2."

copy of has changed. If the resource
hasn't changed, the client might then
be able to request the remainder of the
entity range to obtain the complete
resource.

If- End- Used to make a method conditional; If-Unmodified-Since:
Unmodified- to-end the converse of the If-Modified-Since Sat, 11 Sept 1999
Since header field. 12:26:31 GMT.

Max- End- Used in conjunction with the Trace Max Forwards: 3.
Forwards to-end and Options headers to limit the

number of proxies that can forward
the request message. This is generally
used to troubleshoot paths that are
suspected to be looping back upon
themselves.

Proxy- Hop- Used by a client to identify itself to a Proxy Authorization:
Authorization by-hop proxy that requires authentication, Basic

which has usually been indicated by bQROOTg6b-
the return of a 407 (Proxy Authenti- WNONDMyNP==.
cation Required) message to the client.

Range End- Used to specify the portion of a Range:
to-end resource that the client wants to "a0cde3e0c444be 1: 18e2."

retrieve. In some cases, this header
can be used in conjunction with the
If-Range header.

(continued)

I:
454 I PART IV Application Layer Protocols and Services

· Table 19-4. (continued)

Header Name Type Interpretation Example

Ref erer [sic] End- A client uses the Referer header Referer: http:/ I
to-end (misspelled throughout the HTTP partnering.microsoft. com/

RFCs as well as in actual implemen- exchange/ pf/ root. asp.
tation) to inform a server as to where
the client received the reference that
directed it to the server for the
Request URI message.

TE Hop- Indicates the extension transfer TE: trailers, deflate.
by-hop codings that the client is willing to Indicates the client's

accept in a response message. If willingness to accept
accompanied by a trailers keyword, resources in chunks
the client will accept the resource in that are deflate-encoded.
chunked transfer coding, which means
means that it will accept the response
as a series of pieces of the requested
entity. This header applies only to
the current connection and must be
reissued as necessary.

User-Agent End- Used to pass information regarding User-Agent: Mozilla/4.0
to-end the software that the client is using (compatible; MSIE 5.0;

to send its requests. Servers can then Microsoft Windows NT;
tailor their responses to the limitations DigExt).
or capabilities of this software. Indicates that the

browser software being
used is Internet Explorer
5, and lists its capabilities.

Vary End- Used to specify header fields that Vary: *.
to-end dictate whether a future response to Can be issued by a server

a request for this resource can be to dictate that a proxy
issued from cache, rather than being can't issue a response
re-retrieved from a server. from its cache, as the

server wishes to negotiate
all content itself.

Table 19-5. Response Header Fields

Header Type Interpretation Example

Accept- End- Allows the server to specify whether Accept-Ranges: bytes.
Ranges to-end it will accept range requests from a Indicates that the server

client, and in what format. will accept range requests
that are specified in bytes.

Age End- The sender's estimate of the amount Age: 86,400.
to-end of time elapsed since it cached the Indicates that the

named resource received from an resource was cached
origin server. Essentially, how old a 86,400 seconds
cached entity is. previously.

(continued)

Chapter 19 Internet Information Server (llS) and the Internet Protocols I 455

Table 19-5. (continued)

Header Name

Etag

Location

Proxy
Authenticate

Retry-After

Server

WWW
Authenticate

Type

End-
to-end

End-
to-end

Hop
by-hop

End
to-end

End
to-end
End
to-end

Interpretation

The entity tag identifier; might be
used to compare against other
entities received from this source.
Used to redirect a client to another
location for a requested resource,
or, if it is part of a 201 (Created)
response, to indicate where the new
resource is located.
Must be included as part of a 407
(Proxy Authentication Required) res
ponse, and includes the authentica
tion scheme for the requested URI.
This header isn't passed farther down
the path, as the authentication is to

~ 4 ~ • ~

occur oeL ween u1e cneru anu
the proxy.

Used by a server to inform a client
as to how long a service is expected
to be unavailable. Usually part of a
503 (Service Unavailable) response
message or a 3xx (Redirection)
response in order to direct the client
to wait a specified amount of time
before attempting to retrieve the
requested entity.

Used by the server to indicate what
software it uses to service HTIP requests.
Issued always as part of a 401
(Unauthorized) message to indicate
the authorization scheme that the
server requires the client to pass.

Table 19-6. Entity Header Fields

Header Name

Allow

(continued)

Type

End
to-end

Interpretation

List of methods allowed for the
resource identified by the Request
URI message. This doesn't prevent a
client from requesting a disallowed
method. If a client requests a method
that's not allowed for a resource, the
server will issue a 405 (Method Not
Allowed) error and must include an
Allow header in the response so that
the client can adjust its request.

Example

ETag:
"077d777c8flbe1:189e."

Location: /exchange/pf/
root.asp.

Proxy-Authenticate:
Basic realm="Enterprise
Server."
RFC 2617, "HTIP
Authentication: Basic
and Digest Access
1\.uu1enucauon, exLen
sively describes authen
tication mechanisms.
Retry-After: Fri, 31 Dec
1999 23:59:59 GMT.
Tells the client to wait
until a specified date
before attempting to
retrieve the resource,
while the following
example specifies a wait
time in seconds:
Retry-After: 240.
Server: Microsoft-IIS/5.0.

WWW-Authenticate:
Basic realm="partnering.
microsoft.com."

Example

Allow: GET, HEAD, PUT,
POST.
Specifies that the GET,
HEAD, PUT, and POST
methods are acceptable
for the identified
resource.

456 I PART IV Application Layer Protocols and Services

Table 19-6. (continued)

Header Name Type Interpretation

Content- End- Specifies encoding methods applied
Encoding to-end to the resource specified in the

Request-URI message so that the
message recipient knows which
decoding mechanisms to apply.

Content- End- Defines the natural language of the
Language to-end entity being transferred.

Content- End- Specifies the length of the entity
Length to-end body in a decimal number of octets.

Content- End- A server can use this to specify
Location to-end resource location that the client

requested, particularly if the
resource is accessible from a
separate location than was
originally requested in the client
message. This value is also used
to set the base-URI.

Content- End- When a server returns a partial entity-
Range to-end body in its response, it uses content-

range to specify the range of the full
entity that's covered by this partial
entity. Essentially, this is a marker
to identify the portion of the resource
being sent. Servers returning status
codes 206 (Partial Content) or 416
(Requested Range Not Satisfiable) will
utilize the Content-Range header field.

Content- End- Identifies the media type of the
Type to-end entity being sent.

Expires End- The resource specified is considered
to-end stale at its expiration date and

shouldn't be returned from cache at
that point; rather, the resource should
again be retrieved from the server.

Last- End- Indicates the date that the server
Modified to-end believes to be the last modification

date for the resource in question.

Example

Content-Encoding: gzip.
Specifies the type of
encoding used to
compress the requested
resource.

Content-Language: en-us.
Language content is U.S.
English.

Content-Length: 4110.
Indicates a length of
4110 octets.

Content-Location: http://
192.168.0.1/Default.htm.
Specifies Default.htm at
the listed IP address as
the base-URI for the
requested resource.

Content-Range: bytes
500-999/1500.
Informs the client
that the range
encompasses bytes
500-999 of a
1500-byte resource.

Content-Type: text/html.
Indicates the message
being sent consists of
HTML text.

Expires: Mon, Nov 16
1999 17:38:01 GMT.

Last-Modified: Sun, 29
Aug 1999 02:44:51 GMT.

I,

!

Chapter .19 Internet Information Server (llS) and the Internet Protocols I 457

Table 19-7. General Header Fields

Header Name Type Interpretation Example

Cache- End- Issues directives regarding cache- Cache-Control: private.
Control to-end ability of this information that must Indicates that the server

be obeyed by all points along the is issuing a message that
request chain. HTIP /1.0 caches that can't be cached by any
don't implement cache-control can intermediary points, as
simply assume the entity isn't the content is privately
cacheable. cacheable only by the

client that requested it.

Connection Hop- Used to specify options for a single Connection: keepalive.
by-hop connection along the path; mustn't Indicates that the

be propagated farther along the path. connection between
Any headers included in the these two points is to be
connection header mustn't include kept open after this
end-to-end headers. message is forwarded.

A - U'TvrO /1 f'\ -CJ.~.;;.ci.._t-
·-·· --- -- , -·~ ·--···-··-
might not be capable of
interpreting a keepalive,
and therefore might
remove and ignore the
header fields pertaining
to the keepalive.

Date End- Indicates the date and time that this Date: Fri, 03 Sep 1999
to-end message originated. 00:58:28 GMT.

Pragma End- Used to provide instructions to Pragma: no-cache.
to-end each recipient of the message along Specifies that a proxy is

the path. These directives are expected to pass the
implementation-specific, and there- request message on to a
fore might be ignored by proxies server even though the
that don't understand their meaning. proxy might already
However, the proxy is required to have the requested item
forward the header whether or not in its own cache.
it understands its directives.

Trailer Hop- Used to inform a client that there Trailer: Range.
by-hop are header fields in this message Indicates the presence

pertaining to chunked transfer- of a Range header in
encoding, so that the client can this message.
know that it needs to use these for
decoding and reassembly.

Transfer- Hop- Used to indicate what type of Transfer-Encoding:
Encoding by-gop encoding has been applied to the Chunked, deflate.

body of the message, so that the Indicates the encoding
recipient can determine how to applied to this message,
decode it. in the order it was

applied.

(continued)

458 I PART IV Application Layer Protocols and Services

Table 19-7. (continued)

Header Name

Upgrade

Via

Warning

HTTP Codings

Content Codings

Type

Hop
by-hop

End
to-end

End
to-end

Interpretation

Frequently issued by a server as
part of a 101 (Switching Protocols)
message to indicate additional
communication protocols that it
supports. The client can also use
this header for negotiating the
protocols to be used. Because this
header applies only to the current
connection, it must be supplied
as part of a Connection header.

Must be used by proxies and gate
ways to indicate the protocols and
intermediate recipients between the
requesting client and the issuing
server. This is used for purposes of
tracking the path of a request/
response transaction.

Used to issue warnings regarding
message content. These warnings
are issued in human-readable
language.

Example

Upgrade: HTTP /1.2,
. SHTTP/1.3, IRC/7.0.

Via: 1.0 microsoft.com, 1.1
technet. microsoft. com
(Microsoft-HS/ 5. 0).
Specifies the order of
the hops made and the
HTTP server program
running at those hops,
in this case, IIS 5.0.

Warning: 110 Response
is stale.
Indicates that the
message has exceeded
its freshness lifetime, or
the indicator of how
long the entity can be
considered accurate.

HTIP uses content codings to specify data-transformation mechanisms, such as compres
sion, that have been applied to an entity. By specifying the coding method in header fields,
client and server applications can determine how to decode the entity to make it legible.
Content-codings are registered with the Internet Assigned Numbers Authority (IANA), arid
include the following:

• GNU's Not Unix (GNU) Zip (Gzip) A file compression format defined in
RFC 1952

• Compress A UNIX compression-encoding format

• Deflate A combination of the zlib and deflate encoding and compression
mechanisms defined in RFCs 1950 and 1951

• Identity The default encoding mechanism, which indicates that there's no
encoding performed on the entity

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 459

Transfer Codings

Transfer codings are used to ensure safe passage of an entity through the request/response
path. Transfer coding isn't an entity property, as is content coding. Rather, transfer cod
ing is applied to the entire entity message body. Transfer-coding values indicate whether
encoding has been or can be applied to the message. If transfer coding is applied to a
message, the values must indicate whether the data has been chunked, or broken into
more manageable pieces. This coding mustn't be applied more than once to the mes
sage body so that a client can accurately determine message-transfer length. Any server
that receives transfer-coding values it doesn't understand should return a 501 (Not Imple
mented) response so that the client can request or apply a different encoding mechanism.
The encoding formats used for transfer encoding are the same as those listed for con
tent coding, with the addition of the chunked value.

Chunked Transfer Coding

l.hnnkt=>rl tr~nsfpr co<lin~ is used to modifv the bodv of a message so that it can be sent
as a series of smaller pieces. Each chunk is sent with its own size information and, pos
sibly, entity headers, so that the recipient can accurately determine whether it has received
all the chunks that comprise the message. HTTP/1.1-compliant applications are required
to be capable of receipt and decoding of chunked transfer coding, and must ignore any
extensions to transfer-coding values that they don't understand.

HTTP Content Negotiation
Content negotiation is the process by which communicating parties in HTTP transactions
determine the preferred representation for a response. Client software might be able to
interpret only specific entity media types, as might also be the case at the server. Addi
tionally, user preferences for parameters, such as language and file format, affect the
negotiation process. Content negotiation can be said to be agent-driven, wherein the client
chooses the best media representation after receiving a response from a server; server
driven, meaning that the server will specify preferred representations; or transparent,
which is a combination of both agent-driven and server-driven negotiation.

Agent-Driven Content Negotiation

In agent-driven negotiation, the client software, called a user agent, issues a request
message to a server that indicates its own capabilities by means of header fields, such as
Accept, Accept-Charset, and Accept-Language. When the server receives this request, it
responds with a message indicating its own capabilities, and the user agent then responds
with its own choice of representation from the list provided by the server.

Agent-driven negotiation is advantageous in situations when the user wants to dictate certain
content parameters, such as the language used to display a Web page, or when the server
can't ascertain the client's capabilities by analyzing its request message. Additionally, load
balancing for heavily trafficked servers can be provided via public caches (additional servers
or proxies that maintain cached copies of the information on the origin server), and agent-

460 I PART IV Application Layer Protocols and Services

driven negotiation can be used to determine message parameters with the computers pro
viding these caches. However, agent-driven negotiation has the disadvantage of requiring
additional message transfer between client and server, because ~he client must first request
a listing of the server's capabilities before choosing a message format.

Server-Driven Content Negotiation

In server-driven content negotiation, the server uses an algorithm to select what it con
siders to be the best format for messages between itself and the client. The server can
base its determination on parameters it receives in the client's request message, as well
as on its own capabilities, and even parameters, such as the requesting client's network
address. Server-driven negotiation allows the server to send the requested entity in its
initial response package, as determined by its best guess as to which media type the client
prefers (based on header fields such as Accept, Accept-Charset, and Accept-Language),
rather than waiting for another request after the client has received a response and cho
sen from the list of available formats.

Server-driven negotiation provides advantages in reducing the number of messages that need
to be transferred to determine acceptable media types, but also has several disadvantages.
First, this type of negotiation requires the server to guess as to what is the preferred for
mat on the client's end, which might or might not match what the user prefers. Second,
because this negotiation type requires the user agent to describe its capabilities in each
request it makes to the server, it might be inefficient and might also violate the user's pri
vacy. Third, the server must perform additional processing for each response to determine
the optimal format for that response. Last, servers that are providing public caches to fa
cilitate load balancing for another server might not be able to service requests for differ
ent users from their caches, because each user agent might provide different parameters.

Transparent Content Negotiation

Transparent content negotiation provides a combination of both agent-driven and server
driven negotiation mechanisms. When a cache receives a client request containing param
eters that it's capable of fulfilling, it can negotiate the content format itself, rather than
forwarding the request parameters to the origin server. In this case, the cache is acting as
the server would in server-driven negotiation, thus saving work at the server that originally
provides a resource. HTIP/1.1 doesn't provide any guidelines for transparent negotiation,
although many implementations provide their own mechanisms as extensions of HTIP /1.1.

HTTP Caching
To make HTTP as efficient as possible, clients, servers, proxies, and gateways can cache
content retrieved as part of the request/response process. Caching in HTTP/1.1 is server
specified, meaning that the originating server for any resource decides whether or not a
message can be cached by other machines along the path. Servers might specify that a
message can't be cached by any computer, must be cached by these computers, or can be
cached based on variables, such as the age of the message. Originating servers don't, how-

FTP

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 461

ever, always assign dictates as to whether or not, or for how long a message can be cached,
so caches also use a mechanism called heuristic expiration. In heuristic expiration, a cache
uses information contained in message headers to estimate the point at which the message
can be considered stale, and thus would need to be re-retrieved, should it be requested.
Because this is inherently unreliable in providing accurate gauges as to message freshness,
HTTP /1.1 strongly encourages servers to provide explicit expiration on any responses they
send. RFC 2616 outlines implementation details for caching and content expiration.

Introduction and Terminology
While HTTP is perhaps the most well-known protocol in use on the Internet today, it isn't
the only available mechanism for data transfer. IIS 5.0 also utilizes FTP, as defined, pri
marily, in RFC 959. While additions to FTP have been proposed in several RFCs and drafts,
ltS Core tUnCtlOnailty remains mUCll 1lle same. lfllS Cilapltl UUt~ll·l }-JIUViUc: iu~uuuivu

in how to use FTP, but instead defines the protocol itself.

More Info User documentation and instructions for using FTP may be found in
RFCs 412, 959, and 1635, which can be found in the \RFC folder on the com
panion CD-ROM.

FTP is used to share and transfer files between computers, as well as use other comput
ers for remote storage purposes. As is the case in HTTP, FTP is an Application Layer pro
tocol that relies on TCP to ensure guaranteed delivery of datagrams. While the RFC
definition of FTP doesn't provide any true method for recovering a lost connection and
picking up file transfer where it left off, IIS 5.0 implements a process called FTP restart to
add this functionality. FTP is an inherently non-secure protocol because it transmits pass
words used in transactions as clear text. To help provide secure mechanisms to be used
in FTP transmissions, security extensions to the FTP protocol are defined in RFC 2228.

As. with HTTP, FTP has its own unique terminology, some of which is defined below:

• FTP commands Commands issued between two computers in an FTP ses
sion to control the flow of information from one computer to the other.

• Control connection A connection established between client and server
components for the exchange of FTP commands and replies.

• Reply An acknowledgment sent by the server over the control connection in
response to client commands.

• Data connection A full-duplex connection established for the purpose of
transferring data between two computers, whether they're made up of a client
and a server or two servers.

• Data Transfer Process (DTP) The entity that establishes data connections,
as well as managing connections once they've been opened. A DTP can be

462 I PART IV Application Layer Protocols and Services

active, meaning that it is listening for connections between client and server, or
passive, meaning that data is currently being passed and the DTP is idle.

• Protocol Interpreter (PI) On the client side of an FTP session, the user-PI
initiates a control connection from the client port to the server FTP process, as
well as issuing commands from client to server. On the server side of an FTP
session, the server-PI listens for a user-PI connection and commands, and gov
erns the issuing of responses and the server DTP. The server-PI and server-DTP
comprise the server FTP process.

• Logical byte size The defined byte size of data that's internally stored on a
computer. One operating system can store its on-disk data in a different byte
size than another.

• Transfer byte size The byte size used in transferring data from one com
puter to another, which might or might not be the same byte size used to store
the data on-disk. In FTP transfers, all data, regardless of logical byte size, is
sent in 8-bit increments.

FTP Operation
FTP connections can be established between either a client and a server, or between two
servers. Unless otherwise specified, this chapter focuses on client-server FTP sessions.
An FTP session between client and server can be initiated either by a user, through an
FTP client interface, or programmatically. In any case, the actual connection is initiated
by the user-Pl. The user-PI is responsible for sending a command to the server-Pl requesr
ing that a connection be opened between them. The server-Pl listens for connection
requests over port 21 by default, and upon receiving a connection request from a user
PI, begins the process of establishing a control connection.

Every FTP session actually consists of two separate connections-a control connection
and a data connection. The control connection follows telnet specifications, and is used
to negotiate communication parameters, issue commands and responses, and monitor
the status of any data connection that's opened between the two computers. The task of
opening and monitoring the data connection is handled by components on both client
and server called DTPs. The data connection is the actual mechanism over which data
transfer occurs. While a data connection can be dynamically opened and closed in a single
session between the two computers, the control connection always remains open.

A user can initiate an FTP session between a client and server, or between two servers.
In a client-server session, the user can use FTP software, consisting of an interface to the
user-PI and user-DTP, to initiate a control connection between the client and the server
FTP process (comprised of the server-PI and server-DTP). In Microsoft Windows 2000,
client software can be a browser, such as Internet Explorer, or the connection can be
initiated from the command prompt simply by typing FTP <hostname or IP address
of an FTP server>. After the control connection has been established between client
and server, the user can issue commands to the server that cause the server to open a
data connection between the two computers. Data is then passed bi-directionally (full-

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 463

duplexed) over this connection. When the data transfer is complete, the data connection
can be closed, although the control connection remains open until the user initiates its
disconnection and the server performs the actual process of closing the connection. Figure
19-1 diagrams this process.

User FTP

program (user
Pl and user-DTP)

Control connection
Server FTP

(server-Pl and

server-DTP)
Data connection

·Initiates control connection request • Listens for control connection request and
establishes control connection • Issues commands that may cause

data connection to be opened

• Issues commands that request
closing of control connection

• Receives commands that may cause data con
nection to be opened and opens data connection

·Receives commands that request closing of
control connection and closes control connection

Figure 19-1. A client-server FTP session.

Because the control and data connections are separate entities, a user can also initiate data
transfer between two servers by establishing control connections with each of the servers,
and issuing commands that cause the servers to open a data connection between them.
The control connections must remain open while the data transfer is in progress because
these connections are used to define the parameters of the data transfer, but the data con
nection does not need to be established with the client computer at all. If the control con
nection between either of the servers and the client is closed while the data transfer between
the two servers is still in progress, the server whose control connection was lost will close
the data connection between itself and the other server. Figure 19-2 illustrates this process.

Server FTP
(server-Pl and
server-DTP)

• Listens for control con
nection request and
establishes control con
nection between itself and
user FTP

• Receives commands that
may cause data con
nection to be opened
between the two servers
and opens data connection

• Receives commands that
request closing of control
connection and closes
control connection

Data connection
Server FTP

(server-Pl and
server-DTP) User FTP

program (user-Pl
and user-DTP) ~~-----~

·Initiates control
connection request to
each server

·Issues commands that
may cause data
connection to be opened
between the two servers

• Issues commands that
request closing of control
connections between
user FTP and server FTP
processes

Control Connections

~ • Listens for control
connection request and
establishes control
connection between itself
and user FTP

• Receives commands that
may cause data
connection to be opened
between the two servers
and opens data connection

• Receives commands that
request closing of control
connection and closes
control connection

Figure 19-2. A user-initiated server-to-server FTP session.

464 I PART rif Application Layer Protocols and Services

FTP Data

Data Transfer

FTP data transfer always occurs over the data connection between the two computers;
the control connection is reserved for passing and receiving FTP commands that control
the session, as well as the data-transfer parameters. Sender and receiver in any FTP ses
sion must negotiate data-transfer format to ensure that the receiving end can correctly
reconstruct the data that is sent. Because each computer can store its data in its own
specific logical byte sizes (the number of bits that comprise a data byte on the disk),
mechanisms must be in place to ensure that the data sent to the receiving computer is
transmitted in an agreed-upon format. The FTP specification provides for specific data
structures and data-type representations.

Data Structures

FTP classifies three different data structures, or characteristics, of a file stored on the
computer. Some systems store data as a series of fixed-length records, while other com
puters store data as a series of characters and separators. Because of the disparity in storage
formats, transfers of data must be made in a format that the sending and receiving com
puters can reconstruct and write appropriately to their own disks. In FTP, these structures
are defined as file structure, record structure, and page structure, as listed below:

• File structure This data is stored as a continuous series of bytes that have
no internal structure, such as record markers. File structure is the default data
structure used in FTP transfers, and is assumed by both parties unless a com
mand is issued specifying one of the other structures.

• Record structure This data is stored on-disk as a series of sequential
records. All FTP implementations are required to accept record structures for
text files, whether the text is in ASCII or EBCDIC format.

• Page structure These files can be discontinuous data, containing sections of
file data interspersed with descriptors of that data. FTP refers to these file sec
tions as pages.

When page-structure data is sent between two hosts via FTP, each page must be sent with
a page header comprised of 1-byte fields that provide informational parameters. Each
header begins with a Header Length field that defines the number of bytes comprising
the header. Following this is a page index, or number, that identifies this page's place in
the overall file, and a Data Length field that specifies the length of the page data itself.
The next field in the header identifies the page type, which can be a normal data page;
a descriptor page that defines properties for the file; an access-controlled page, which
provides information about access control to the file; or the last page in the file. There
might also be optional header fields that define properties, such as access control to the
individual page.

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 465

Data Types

Within each of the data structures defined in FTP, data can be stored as different data types.
These data types define the on-disk byte size of the file data. Some data types provide
explicit definition of data byte size, while others provide implicit definition by using logical
byte size. Acceptable data types in IIS FTP transfers are defined below:

• ASCII type Default data type used in FTP transfers, which must be accepted
by all compliant implementations of FTP. ASCII is most often used for the
transmission of text files. In an ASCII transfer, the sending computer retrieves
the requested file from its ow_n disk in whatever format was used to store it.
The file is then converted to ASCII, which dictates 8-bit character bytes, and
transmitted in 8-bit increments (transfer byte size is always 8 bits, regardless of
data type). The receiving computer reassembles the 8-bit ASCII text and stores
it to disk in its own native format.

• Image type Sent as a continuous stream of bits that the receiving computer
.......-.n('"'i- t'""'t-" ... 0 ,,C" ,, C'Cl+"~DC' ~f' r'r"Vt'"t-.frr11'"'11c h1tc ThP rPr1n1Pnt rn1ol1t t"lP.Prl tn n~rl thP_... _ ... - _........, - ____ -- ~ --------o-- - --- ·- --- - -- --- -- - - - J.- v

end of each file or record (depending on its own internal storage mechanisms)
with Os that are stripped off when the file is retrieved. This data type is most
efficient for files that need to be stored in binary format, as opposed to ASCII
text (executable files versus text documents, for example).

Connections and Transmission Modes
In order to transmit data between a client and server using FTP, both a control connec
tion and a data connection must be established. The control connection is used both to
set parameters for the data connection and to monitor the passage of data over the data
connection. While the control connection remains open during the entire client-server
FTP session, the data connection may be dynamically opened and closed.

Data Connection Establishment and Management

FTP connections between client and server are initiated by the user-PI. FTP server-Pis
listen on port 21 (by default) for connection requests. When the server-PI hears a con
nection request from a user-PI, it opens a control connection. The use of non-default ports
for connections can only be initiated by the user-PI, and not the server-PI. When the client
issues a command that initiates data transfer, the server DTP opens a data connection and
data transfer begins. Both user-DTP and server-DTP monitor the connection to determine
which computer might be sending or receiving at any given time. When an active trans
fer is occurring, the DTP on the receiving computer is passive and the DTP on the send
ing computer is actively controlling data transfer. Because the data connection is
automatically closed upon completion of a data transfer, a data connection can be kept
open either by negotiating a non-default port before beginning transfer, or by switching
to a different transfer mode for the file(s) in question. FTP defines the following three
transfer modes.

466 I PART IV Application Layer Protocols and Services

Stream Mode
In stream mode data transfer, the data is sent as a series of bytes, with little to no pro
cessing performed on the data before it is sent. Data that's sent in stream mode can be
of any representation type (file, record, or image). If file structure data is sent, the end
of the file is indicated by the sending computer closing the data connection. If the data
being sent is record structure, each record is followed by a two-character control code
that indicates the end of the record; the end of the file itself is indicated by a similar control
code.

Block Mode
Block-mode data is sent as a series of data blocks with no filler bits, preceded by header
bytes that contain a Count field and possible descriptor code. The Count field indicates
each block's length in bytes. The descriptor code indicates whether this is the last block
in either the record or the file, whether the data is suspected to contain errors (possibly
because of bad media), or to identify a restart marker, which will be described later in
this section. Any data-representation type can be used in block mode, and record struc
tures are permitted.

Compressed Mode
Compressed:..mode data is sent as three types of information: regular data, compressed
data, and control information. Regular data is sent as a simple byte string. Compressed
data uses an algorithm to compress filler bytes and represent them with a single filler byte,
thus decreasing the actual number of bytes that need to be sent. Control information is
sent as a 2-byte escape sequence and descriptor code, which are the same codes used
in block-mode data transfer, including a possible restart marker.

FTP Restart

FTP restart is implemented in Windows 2000, and provides a mechanism for resuming
file transfers that were interrupted before completion. FTP itself provides little in terms
of recovery mechanisms, but does provide for the insertion of restart markers in both block
and compressed data modes. When an FTP server implements FTP restart, it periodically
sends a restart marker (essentially a place marker) in the data being transferred to the
receiving computer.

The receiver collects these restart markers, and if the data connection is lost, it can use
them to resume the file transfer where it was left off. Upon resuming the connection
between itself and the server, the client will first query the server to determine if the file
has changed since the interruption of the transfer. If the file hasn't changed, the client
issues the last restart marker value to the server and requests that the transfer be resumed
at that point. If the file has changed since the data transfer interruption, the client requests
that the entire file be transmitted from the beginning.

While the server inserts restart markers only in transmission of block or compressed data,
stream data can also be recovered if the connection is lost. Because stream data is sent

Chapter 19 Internet Information Server (llS) and the Internet Protocols I 467

simply as a series of bytes, the client need only calculate the byte offset of the last data
it received, and request the server to resume the file transfer at that offset point.

FTP restart commands aren't used only when a connection has been broken; many FTP
clients send the command REST 0 before downloading a new file from a serv'er. This
command is used to ensure that the data transfer will begin with the first byte of the
requested file.

FTP Commands and Responses
FTP communication between a client and server is transmitted as a series of commands
that the client needs fulfilled, and responses from the server in response to those com
mands. This process is similar to the HTTP request/response functionality in HTTP com
munication.

FTP Commands
.. 1 • r

.l .llC: u.;:,c:1-r .l 1C>C>U.C:C> \..-VUHUct.llUC> v v C:i l11C: \..-VUU Vi \..-V.11.llC:\..-UVU lV HHlictlC: .LUC: l1 (:l.l1;)1C:1 • .l' .l r

commands can be commands that verify the user's identity with the FTP server, such as
USER, ACCT, and PASS; commands that navigate the file system on the remote host, such
as CDUP, XCUP, and CWD; session origination and termination commands, such as QUIT,
BYE, and REIN; or commands that control the parameters of file transfer as well as the
transfer itself, such as PORT, TYPE, MODE, GET, PUT, RETR, and STOR. Client commands
and Windows 2000 FTP server-recognized commands can be found in the \Appendix fol
der of the companion CD-ROM.

FTP Replies

FTP servers issue reply codes in response to client commands. These reply codes are sent
in the form of a three-digit number, with the value of the first and second digits indicat
ing the type of response. These codes are extensible, and a listing of specific codes and
their meanings may be found in the \Appendix folder of the companion CD-ROM.

The first digit in an FTP response code indicates the general type of response the server
wants to pass to the client. The second digit is used to provide a more specific indica
tion as to the meaning of the response. Values for the third digit in a response code are
extensible, meaning that they can be customized for specific implementations. Tables 19-
8 and 19-9 below describe the representations of the first and second digits in response
codes. As an example of response-code meanings, a server issuing code 250 would in
dicate that the requested file-system action was successfully completed; the "2" indicates
success, and the "5" indicates a file-system operation.

468 I PART l\! Application Layer Protocols and Services

Table 19-8. FTP Response Codes-First Digit

First Digit Value

lyz

2yz

3yz

4yz

Syz

Indicator

Positive
Preliminary
Reply
Positive Comp
letion Reply
Positive
Intermediate
Reply

Transient
Negative
Completion Reply

Permanent
Negative
Completion
Reply

Description

The requested action is being processed; another
command can't be sent until another reply is
received from the server.
The requested action has been completed and a
new command can now be sent.
The requested action is accepted, and will
continue, processing pending further
information from the client, which should
now be issued.
A temporary error has occurred that prevented pro
cessing of the command, and the command (or
command sequence) should now be issued by
the user.
An error has occurred that prevented processing of
the command; the command shouldn't be reissued
without modification. This modification might be
as simple as correcting a misspelling, or this error
might indicate a non-transient server error.

Table 19-9. FTP Response Codes-Second Digit

Second Digit Value

xOz

xlz
x2z

x3z

x4z

xSz

SMTP

Indicator

Syntax

Information
Connections
Authentication
and Accounting
Unspecified
File System

Introduction and Terminology

Description

There is a syntax error, the issued command is
unimplemented by the server, or the server
doesn't recognize the command category.
Replies to information requests, such as help.
Refers to control and data connections.
Replies to user login or accounting procedures.

Unspecified.
File system status as it relates to the requested
transfer or command.

SMTP is designed to do exactly what its name implies-provide reliable, efficient mecha
nisms for the transfer of electronic mail. SMTP transfers messages from the client to a server
and between servers, but it isn't responsible for managing mailboxes or for allowing a
client to download incoming mail. RFC 821 defines SMTP, although features and refine
ments have been added in numerous subsequent RFCs. While SMTP uses familiar termi
nology, a few terms might be unknown and are defined below:

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 469

• Sender-SMTP Process The process that initiates an SMTP connection to a
receiver-SMTP process to send mail. The sender-SMTP process controls the
transfer of mail between itself and the receiver-SMTP, issues commands, and
receives replies from the receiver-SMTP.

• Receiver-SMTP Process The process that waits for a sender-SMTP process to
establish a connection, then receives commands from the sender-SMTP and
carries out the operations specified in those commands.

• Transmission Channel The full-duplex channel opened between sender
and receiver-SMTP processes for the purposes of command/reply sequences
and mail transfer.

• Reverse-Path Specifies the mail's sender. The reverse-path can be simply the
name of the user who is sending the mail, or can include a list of hosts that
relayed this mail from its original sender-SMTP. The first host listed is the most
recent relay, and the last host listed is the first relay.
~ .. _ ,,,. ..-. ·r· .. . 11 1 ,... 1 1

- .a:v.1. wa...1.u-.ca1..1..1. 0pc:1....111c;;:, LUC: 111ct11;:, 1c:1....1p1c:11L\.."J· vpuvuct11y, LUC: 1v1 Wct1u-yctt11

can specify a list of relays to be used to route the mail to its intended
recipient(s), with the current receiving-SMTP being the first relay in the list and
the final destination being the last.

• Reverse-Path Buffer Used to hold the list of reverse-path parameters for a
transaction, possibly including a list of hosts who relayed the mail. This can be
cleared as a result of various commands being issued.

• Forward-Path Buffer Used to hold the list of forward-path parameters for a
transaction, possibly including a list of relay hosts to whom the mail is to be
routed. This can also be cleared as a result of various commands.

More Info SMTP is defined in RFC 821, which can be found in the \RFC folder
on the companion CD-ROM.

SMTP Operation
While numerous enhancements have been added to SMTP since RFC 821, it remains a
fairly simple protocol. SMTP, like HTTP and FTP, is an Application Layer protocol that
relies on underlying protocols to ensure data delivery. Although SMTP can utilize other
protocols, TCP can be assumed to be the underlying protocol throughout this section.

SMTP communication is initiated by a user's mail system, referred to herein as the client
or the sender-SMTP. The client establishes a full-duplex transmission channel to a SMTP
server, or receiver-SMTP, by issuing either an HELO or EHLO command to begin a ses
sion. Extended implementations of SMTP, such as that included with IIS 5.0, might re
quire the client to provide authentication credentials that verify the client is permitted to
use the SMTP server. Most often, these are simply a username and password that are
recognized by the receiving system.

4 70 I PART IV Application Layer Protocols and Services

After the transmission channel has been established, the client issues a MAIL command
that informs the receiver-SMTP that it wants to send mail. If the server is capable of re
ceiving mail at that time, it responds with an OK reply. The sender-SMTP (client) then
issues one or more RCPT commands that identify the recipient(s) of the messages it wants
to send; each RCPT command represents a single mail recipient. The recipients can be
other users in the same mail system or users in external domains.

If the SMTP server is capable of receiving mail addressed to the recipient named in the
RCPT command, it issues an OK reply to the client and the client is free to issue another
RCPT command. If the receiver-SMTP isn't capable of delivering mail to the designated
recipient, it returns an error reply to the sender-SMTP, and the client can then move on
to the next command. The command/reply sequence is strictly ordered; the client must
receive a single reply before the server can issue another command, and a server isn't
permitted to issue more than one reply to any command.

Because not all recipients, can be using the same SMTP system, the client must provide
the name of the ultimate destination host as well as the mailbox name in that mail sys
tem. The syntax of SMTP mail addresses is the familiar

username@domain

format, where information to the right of the "@" symbol identifies the destination host,
and the username identifies the name of the mailbox to which the mail should be deliv
ered. SMTP differentiates between sending and mailing; if mail is sent, the client is des
ignating that the mail should be delivered immediately to the recipient's mail interface,
provided the recipient is online and using a mail system that uses this functionality. More
often, however, mail is mailed, which designates that it be delivered to the recipient's
mailbox on a receiving server. Additionally, the send functionality isn't a required SMTP
implementation, and it can be assumed that this chapter refers to the mail functionality
unless specified otherwise.

SMTP mail has both a forward-path and a reverse-path. The forward-path is the path that
the mail must take to reach its final destination, whether it uses a direct path or a series
of relays. It's important not to confuse SMTP relays with routers; SMTP relays are SMTP
servers that can receive mail from one SMTP host and forward that mail to another SMTP
host, independent of underlying routing mechanisms. The reverse-path in an SMTP mail
is the name of the sender-SMTP, which can be as simple as

username@somedomain

or can consist of a list of relay hosts between the original sender and the current receiver
SMTP. The MAIL command uses the reverse-path as its argument, and the RCPT command
uses the forward-path. If multiple recipients' mailboxes reside on the same SMTP host,
SMTP encourages the sending of a single copy of the mail to the destination SMTP host.

Once the receiver-SMTP has accepted the recipient addresses and provided the appro
priate reply, the client is free to begin issuing the DATA command, which informs the

I

I'''

I

Chapter 1.9 Internet Information Server (llS) and the Internet Protocols I 4 71

server of its intent to begin transferring the mail message. The server replies with a code
accepting the sender-SMTP's intent, and the client then issues the data. The mail data
includes not only the body of the mail, but also the memo header information, such as
the To:, cc:, bee:, and subject lines. If the transfer of the mail data is successful, the server
replies with a message indicating receipt and processing, and the client can now issue
commands to terminate the transmission connection.

If the sender specifies invalid destination information in the forward-path of the mail, but
the server knows the correct destination, the server can reply to the sender-SMTP with
a message allowing the client to correct the error. When the client wishes to terminate
the SMTP session, it indicates this by issuing the QUIT command, and the server then
closes the transmission connection.

A typical SMTP session might look similar to the one below:

SMTP: 00:36:17 [rx] 220-server.somenet.net: Sun, 5 Sep 1999 21:36:29 -0700 (PDT)
SMTP: 00:36:17 [tx] HELO LRW2KPRO
SMTP: 00:36:17 [rx] 250 server.somenet.net Hello ser.ver.name.here.any.net
[10.26.53.60], pleased to meet you
SMTP: 00:36:17 [tx] MAIL FROM: <laurarobinson@somenet.net>
SMTP: 00:36:17 [rx] 250 <laurarobinson@somenet.net> ... Sender ok
SMTP: 00:36:17 [tx] RCPT TO: <laurarobinson@someothernet.net>
SMTP: 00:36:18 [rx] 250 <laurarobinson@someothernet.net> ... Recipient ok
SMTP: 00:36:18 [tx] RCPT TO: <lrobinson@somecompany.com>
SMTP: 00:36:18 [rx] 250 <lrobinson@somecomp~ny.com> ... Recipient ok
SMTP: 00:36:18 [tx] RCPT TO: <lrobinson@someothercompany.com>
SMTP: 00:36:18 [rx] 250 <lrobinson@someothercompany.com> ... Recipient ok
SMTP: 00:36:18 [tx] DATA
SMTP: 00:36:19 [rxJ 354 Enter mail, end with
SMTP: 00:36:19 [tx]

on a line by itself

SMTP: 00:36:19 [rx] 250 VAA07817 Message accepted for delivery
SMTP: 00:36:19 [tx] QUIT
SMTP: 00:36:20 [rx] 221 server.somenet.net closing connection

SMTP Commands
The sender-SMTP issues the SMTP commands, which follow a straightforward syntax, as
shown below (brackets indicate optional command parameters):

<SMTP-COMMAND> [<SP> <COMMAND-ARGUMENTS>] <CRLF>

The sender-SMTP process issues commands to perform functions, such as opening a
transmission channel or initiating a mail transfer, and the receiver-SMTP process returns
the responses. Commands can be issued individually, or as part of a series of commands,
but each command must be followed by a reply from the receiver-SMTP. Table 19-10 lists
common SMTP commands, their descriptions, and their syntax.

4 72 I PART IV Application Layer Protocols and Services

Table 19-10. Common SMTP Commands, Descriptions, and Syntax

Command

ATRN

AUTH

DATA

EHLO

ETRN

EXPN

HELO

HELP

MAIL

(continued)

Description

Authenticated TURN-If the session between
sender-SMTP and receiver-SMTP has been
authenticated (the user has provided valid
identification credentials), this specifies that
the receiver-SMTP must either return an OK
reply and assume the role of sender for the
mail, or return a refusal (Bad Gateway, 502)
and retain the role of receiver-SMTP.

AUTHENTICATE-Used to begin an
authenticated mail-transfer session (where a
user can provide a username and password
to the receiver-SMTP to continue the session).

DATA-The lines following this command are spec
ified as mail data from the sender to the receiver.

EXTENDED HELLO-A client that supports
SMTP extensions issues this command rather
than the HELO command when initiating a
session. If the SMTP server receiving this
command supports SMTP extensions, it'll
return a 250 (Requested Mail Action Okay,
Completed) response. If the SMTP server
receiving the message doesn't support SMTP
extensions, it will return a 500 (Syntax Error,
Command Unrecognized) message, which
will indicate to the sender-SMTP that it can't
use extended SMTP commands.

ETRN-An extended SMTP command that
requests the SMTP server to begin processing
its mail queues for messages waiting at the
server to be delivered to the client.

EXPAND-Asks the receiver-SMTP to verify that
the argument passed is a mailing list. If the argu
ment does represent a mailing list, the member
ship of the list is returned to the sender-SMTP,
in the form of users' full names and mailboxes.

HELLO-Used to identify the sender-SMTP to
the receiver-SMTP and begin a new transaction.

HELP-Causes the receiver-SMTP to return
help information to the sender; might or might
not contain arguments.

MAIL-Used to initiate a mail transaction between
sender- and receiver-SMTPs; dears the reverse
path buffer, forward-path buffer, and mail buffer,
and inserts the reverse-path argument from this
command into the reverse-path buffer.

Syntax

ATRN [<SP> domain
name [","domain name]]
<CRLF>

AUTH LOGIN <CRLF>

DATA <CRLF>

EHLO <SP> <domain>
<CRLF>

ETRN <SP> [<option
character>] <node-name>
<CRLF>

EXPN <SP> <mailing list
name> <CRLF>

HELO <SP> <host name
of sender-SMTP> <CRLF>

HELP [<SP>
<arguments>] <CRLF>

MAIL <SP> <reverse
path> <CRLF>

Chapter 19 Internet Information Server (llS) and the Internet Protocols I 473

Table 19-10. (continued)

Command

NOOP

QUIT

RCPT

RSET

SAML

SEND

SIZE

SOML

TURN

(continued)

Description

NO OP-Has no effect on any buffers and specifies
no action other than that the receiver- SMTP return
an OK reply.

QUIT-Specifies that the receiver return an OK
reply and close the transmission channel.
RECIPIENT-Identifies the recipient of the mail
being sent; multiple recipients are specified by
repeated issuing of the command.

RESET-Specifies that the current mail transaction
be aborted and all buffers be cleared. The receiver
SMTP responds with an OK message.

SEND AND MAIL-Initiates a transaction specifying
mail data be delivered to any recipient named who
is actively connected and capable of receiving mail.
as well as delivering to the mailbox(es) of the
specified recipient(s). Clears the reverse-path buffer,
the forward-path buffer, and the mail buffer, and
inserts the reverse-path information provided with
the command into the reverse-path buffer.

SEND-Initiates a transaction specifying that mail
data be immediately delivered to any recipient
named who is actively connected and capable of
receiving mail. If a recipient isn't connected or
capable of receiving mail, a 450 (Mailbox Unavail
able) response is returned. Clears the reverse-path
buffer, the forward-path buffer, and the mail buffer,
and inserts the reverse-path information provided
with the command into the reverse-path buffer.

SIZE-Allows the sender-SMTP to specify the mail
size that it wants to send, which the server can
refuse if the size is too large. Only valid in SMTP
implementations that support service extensions.
SEND OR MAIL-Initiates a transaction specifying
that mail data be immediately delivered to any
recipient named who is actively connected and
capable of receiving mail. If a recipient isn't
connected or capable of receiving mail, specifies
delivery to the recipient's mailbox. Clears the
reverse-path buffer, the forward-path buffer, and
the mail buffer, and inserts the reverse-path
information provided with the command into the
reverse-path buffer.

TURN-Specifies that the receiver-SMTP must either
return an OK reply and assume the role of sender
for the mail, or return a refusal (502) and retain the
role of receiver-SMTP.

Syntax

NOOP <CRLF>

QUIT <CRLF>

RCPT <SP> TO:<reverse
path> <CRLF>

RSET <CRLF>

SAML <SP>
FROM:<reverse-path>
<CRLF>

SEND <SP>
FROM:<reverse-path>
<CRLF>

SIZE <SP> 1000000 <CRLF>
or MAIL <SP> FROM:
<reverse-path> <SP>
SIZE = 100000 <CRLF>

SOML <SP>
FROM:<reverse-path>
<CRLF>

TURN <CRLF>

4 7 4 I PART IV Application Layer Protocols and Services

Table 19-10. (continued)

Command

VRFY

SMTP Replies

Description

VERIFY-Requests that the receiver-SMTP verify the
username specified in the argument. If the username
is valid, the full name and mailbox of the user are

. returned. Has no effect on reverse-path buffer,
forward-path buffer, or mail buffer.

Syntax

VRFY <SP> <username>
<CRLF>

SMTP replies are issued by the receiver-SMTP in response to sender-SMTP commands.
Every command must generate one (and only one) reply. Similar to the response codes
issued by FTP servers, SMTP-receivers issue a three-digit code number followed by de
scriptive text. As in FTP, the first digit of the response code indicates the general type of
response, and the second digit provides additional information within that response
category. Tables 19-11 and 19-12 list the values and meanings of both first- and second
digit values. A table of specific SMTP replies may be found in the \Appendix folder of
the companion CD-ROM.

Table 19-11. SMTP Response Codes-First Digit

First Digit Value

lyz

2yz

3yz

4yz

5yz

Indicator

Positive
Preliminary Reply

Positive
Completion Reply

Positive
Intermediate Reply

Transient Negative
Completion Reply

Permanent Negative
Completion Reply

Description

The command has been accepted and is waiting
confirmation of this reply and further instruction
as to whether the receiver-SMTP should continue
or abort processing. However, there are no SMTP
commands that allow this type of reply, so there
are no continue or abort commands.

The requested action has been completed and
another command can now be issued.

The command has been accepted and is being
held, pending receipt of further information from
the sender-SMTP.

A transient error has occurred that prevented
processing of the command, and the command (or
command sequence) should be reissued by the
sender-SMTP.

An error has occurred that prevented processing
of the command; the command (or command
sequence) shouldn't be reissued without
modification. This modification can be as simple
as correcting a misspelling, or this error might
indicate a non-transient server error.

Chapter 19 Internet Information Server (llS) and the Internet Protocols I 475

Table 19-12. SMTP Response Codes-Second Digit

Second Digit Value

xOz

xlz
x2z

x5z

Indicator

Syntax

Information

Connections

Mail System

Description

There is a syntax error, the command issued is
unimplemented by the server, or the server
doesn't recognize the command category.

Replies to information requests, such as "Help."

Replies, referring to the transmission channel.

Mail system status as it relates to the requested
transfer or command.

Since RFC 821 was published, extensions to the protocol have been introduced that al
low for mechanisms, such as authentication; message size declaration, which allows a
server to limit the size of mail that it'll accept; turning of the transmission connection,
so that sender and receiver switch roles; and delivery status notifications. These specifi
cations have been included on the CD that accompanies this book

Summary
Internet Information Services 5.0 provides enhanced support for web-based services via
its implementations of the HTTP/1.1, SMTP, and FTP protocols. HTTP/1.1 improves upon
earlier implementations of HTTP in its support for multiple requests over a single con
nection, header compression, authentication mechanisms, and enhanced caching and
proxy definitions. SMTP allows an IIS server to send and receive electronic messages on
behalf of the clients it serves, facilitating e-mail communication for companies that may
not require a full-fledged messaging system. In IIS 5.0, SMTP is implemented as a secure
protocol, allowing for authentication and verification mechanisms. IIS 5.0's implemen
tation of FTP has also been improved, providing FTP Restart, which allows a lost down
load connection to be resumed at the point at which it left off. By complying to the most
recent standards for each of these protocols, IIS 5.0 ensures that web services can be
provided in the most quick and efficient manner possible.

I

Securing IP Communications
with IP Security (IPSec)

477

The TCP/IP protocol suite was designed in the early 1980s as a replacement for the ini
tial ARPANet protocols. Although the original protocols had enabled the ARPANet to get
started, they weren't felt to be an effective long-term solution. Something better was
neeclt=>cl-:::incl thi." hPr'.lmP thP TrP/TP !:'mtrvY-..1 ~'-'~~'::', '"'.'~~-.:::~ ~~-::!::~T :~ ~~~ ~~ ~:::.::::~:::; ::::::~.":::::-!~

ing standard and the basis of the Internet.

In the TCP/IP protocol suite, as originally developed, an application is responsible for
providing any security that might be needed to protect itself or its users. Microsoft Win
dows 2000 file sharing, for example, employs the user's access token, created at login,
and Access Control Lists, to ensure that only authorized users perform the actions they've
been authorized to perform. While the protocols, such as IP, TCP, and UDP, do provide
some protection against physical data corruption by using checksums, the value of
checksums is limited and provides no protection against sophisticated hackers.

Requiring the application to implement security was entirely appropriate for the early days
of the ARPANET, when users were mainly academics and research staff; this approach
continues to be adequate for many users today. As the use of TCP/IP has grown, how
ever, so has the need to provide security at a lower level in the TCP /IP stack. This secu
rity is required both for the Internet, which is becoming increasingly commercial, and
for private IP networks, to protect against insider attacks.

IP Security (IPSec) is a suite of protocols and cryptographic algorithms that extend the IP
protocol to provide authentication and privacy. IPSec provides strong security to all ap
plications that use IP and allows the network administrator to provide in-depth security.

Essentially, IPSec extends the IP datagram structure to provide both strong authentica
tion and privacy. IPSec does this by adding additional headers to each secured IP datagram
sent between two hosts. This provides good end-to-end protection of the IP datagrams,
transparently to higher level protocols.

4 78 I PART IV Application Layer Protocols and Services

Much of the development of IPSec took place as part of the development of IP version
6 (1Pv6), described in Chapter 9, "Internet Protocol Version 6 (1Pv6)." However, because
of the slow adoption of 1Pv6, the need for a solution based on IP version 4 (1Pv4) be
came apparent. As a result, IPSec has been modified to work with 1Pv4, enabling you to
implement IPSec on existing 1Pv4 networks, and reducing the urgency to upgrade to 1Pv6.

Chapter Contents
This chapter describes the IPSec protocols, as implemented in Windows 2000. Addition
ally, there are Network Monitor traces on the companion CD_:ROM that demonstrate IPSec
in operation. This chapter contains the following sections:

• Overview to IPSec A description of what IPSec is and its key components

• How IPSec Works A description of how IPSec works

• Authentication Header (AH) A description of the AH header and its fields

• Encapsulating Security Payload (ESP) Header A description of the ESP
header and its constituent fields

The subject of IPSec, like many of the topics in this book, could easily fill an entire book
in its own right. Here, however, we will omit details of the cryptographic algorithms in
use of key management, and the administration and management aspects of IPSec. The
bibliography contains books you might want to consult for further research. For more
information about configuring IPSec policy on a Windows 2000 computer, see the Win
dows 2000 Server Help.

IPSec Overview
IPSec is a suite of related protocols and services that extends the IP datagram structure
(described in Chapter 5, "Internet Protocol (IP) Addressing") to provide additional secu
rity at the IP datagram level. In this section, we will review IPSec's key building blocks.

What Is IPSec?

IPSec is designed to provide additional security to IP datagrams in transit across a net
work, over and beyond that provided by an application. It does this by first creating a
Security Association (SA) between two computers, and then using this SA to transform
IP datagrams to add the security into the IP packets. IPSec supports two specific trans
forms: the AH and the ESP.

The specific services provided by IPSec, which are based on standardized cryptographic
technologies, are as follows:

• Authentication IPSec verifies the origin and the integrity of each IP
datagram by assuring the genuine identity of the sending computer. IPSec in

Chapter :w Securing IP Communications with IP Security (IPSec) I 479

Windows 2000 provides authentication based on pre-shared keys, public keys
(such as X.509 certificates), or via Kerberos and the Windows 2000 Active Di
rectory (AD).

• Integrity IPSec protects the data in an IP datagram from unauthorized modi
fication during transit, ensuring that the information that's received is the same
as the information that was sent. IPSec uses cryptographic hash functions to
uniquely sign each packet. The receiving computer can check the signature
before passing the IP datagram up the stack, and if the signature is not valid,
the packet is discarded.

• Confidentiality IPSec ensures that data is disclosed only to the intended re
cipient by encrypting the data contained in an IP datagram.

• Nonrepudiation IPSec ensures that the sender of an IP datagram is the only
person who could have sent the datagram, thus ensuring that the sender can't
later deny having sent it. Nonrepudiation is achieved by a combination of au-
+.1-. ,.....,._... +..! ,....,, ,....: - ~ ,.... ~- ,..] ~ ·- ~ ~ -~ ~ ...__ - _ 1_ - - 1 _. - -
t,...&...L-.l..LIL-.&.-'4i.....L'-".J..L '4.L.L'""" J..J.J.l..'"--6..1. J.l.. y '-J...l.'-\......1\..J.J.J.5.

• Anti-replay IPSec ensures the uniqueness of each IP packet to avoid a
packet sequence being captured and replayed (such as an inter-bank transfer).
Anti-replay is enabled by the use of sequence numbers added into the IP
datagram's header.

• Key management IPSec enables keys to be determined, exchanged, and up
dated in a secure fashion.

I PSec Architecture

Figure 20-1 illustrates the overall IPSec architecture within Windows 2000.

This figure shows the key components of IPSec, which are described later in more de
tail. The diagram shows an application on Computer 1 communicating with an applica
tion on Computer 2. The traffic between them is sent using normal WINSOCK or NetBIOS
Application Programming Interface (API) calls, which will result in IP datagrams being
transferred over a physical network. The IPSec Policy Agent obtains the IPSec Policy from
the AD. The Policy Agent will use the Internet Key Exchange (IKE) protocol to negoti
ate the specific details of how the data is to be protected. The IPSec driver is then re
sponsible for implementing the IP datagram transformations, based on the IPSec policy.

IPSec Policy

An IPSec policy describes how IPSec will operate on a computer. For example, the policy
could require all communications with certain computers to be encrypted and to not
communicate if suitable encryption couldn't be negotiated. Alternatively, the policy could
state that the computer should always try to use IPSec but fall back to normal clear text
communication if the other computer isn't IPSec-enabled. You can define various named
policies, but at any given time, only one policy can be active on a single computer.

480 I PART IV Application Layer Protocols and Services

Windows
2000

Active Directory

IP security IP security
policies policies

Application IPSec policy IPSec policy Application
agent

TCP/IP Internet Key Security
Internet Key TCP/IP

Tansport Exchange Exchange Transport
Driver Association Driver

IPSec IP Sec

Driver Driver

NDIS NDIS
Driver

... ~
Driver

Computer 1 Computer 2

Figure 20-1. A diagram showing the IPSec architecture.

The IPSec policy contains a series of rules that describe the policy in details. Each rule
includes the following:

• Filter List Specifies which network traffic will be secured by the rule

• Filter Action Specifies how traffic matching the filter will be handled
(dropped, encrypted, etc.)

• Authentication Methods Specifies how two computers will authenticate
themselves to the other (Keberos, pre-shared key, or X509 Certificates)

• Connection Type Allows the rule to be applied to local area network (LAN)
traffic, wide area network (WAN) traffic, or both

• Tunnel Settings Allows you to specify a tunnel endpoint for IPSec tunnels

IPSec Policy Agent

The IPSec Policy Agent is a Windows 2000 service that runs within the context of the
LSASS.EXE process, and can be seen in the list of services in the Windows 2000 Services
MMC Snap-in. The Policy Agent is responsible for retrieving IPSec policy information (from
either the AD or the local registry) and passing it to the other IPSec components that need
IPSec policies.

Chapter 20 Securing IP Communications with IP Security (IPSec) I 481

The IPSec Policy Agent is loaded and started at system start time and obtains system policy
at that point. The Agent continues to poll the AD (or the registry) at regular intervals for
any updates to IPSec policy.

IPSec Security Associations

After the computer's IPSec policy has been obtained, it will be applied to all IP traffic
sent or received by that computer. However, before two computers can use IPSec fea
tures to transform IP packets, they must first negotiate an SA. The SA defines the spe
cific details of how the two computers will use IPSec, the specific keys to be used, key
lifetimes, and which authentication and encryption protocols should be applied. The IPSec
policy defines the specific options that two computers can negotiate, such as any encryp
tion algorithms. After an SA has been negotiated, communication between the two com
puters can proceed. IP datagrams will be transformed as mandated by the active IPSec
policy.

tion and Key Management Protocol (ISAKMP) SA. Creating this SA involves negotiation
of IPSec policy (encryption algorithms, integrity algorithms, and so forth), covering the
creation of the ISAKMP SA, initial key exchange, and machine authentication. This SA
ensures that both computers have verified securely the identity of the other computer,
and have the keys necessary to negotiate additional SAs.

The ISAKMP SA is then used to negotiate a second SA, known as the IPSec SA. The IPSec
SA is used for the actual transformation of data that will be transferred between the
computers. The creation of the IPSec SA involves agreement by the two computers over
IPSec policy, the creation of keys to be used for the required transformations, and the
integrity and encryption algorithms to be used. After these have been negotiated, they're
passed to the IPSec driver.

Internet Key Exchange (IKE)

Setting up an SA between two computers is performed by the IKE. IKE is an Application
Layer protocol, that combines the ISAKMP with the Oakley key determination algorithms.
This protocol was formerly known as ISAKMP/Oakley. ISAKMP centralizes security as
sociation management, while Oakley generates and manages the authenticated keys.

ISAKMP

Note IKE is a relatively new term, and much of the IPSec literature still refers
to this as ISAKMP /Oakley.

IPSec uses the ISAKMP protocol to negotiate SAs. ISAKMP defines procedures for authen
ticating a peer, creation and management of SAs, key generation techniques, and threat
mitigation (such as denial of service and replay attacks). ISAKMP defines a framework
for key management, and is independent of the key exchange protocols, encryption/
integrity algorithms, and authentication methods in use.

482 I PART IV Application Layer Protocols and Services

More Info The details of ISAKMP are outside the scope of this book, but RFC
2408 defines the protocol in detail. This RFC can be found in the \RFC folder on
the companion CD-ROM.

Oakley Key Determination Protocol

The establishment of keys is an essential part of cryptographic-based packet protection.
Oakley is a scalable, secure key distribution mechanism used within ISAKMP to estab
lish the keys used in IPSec packet transforms. Oakley is based on, and is a refinement
of, the Diffie-Hellman key exchange algorithm. This algorithm enables two computers
to agree on a shared key without requiring encryption. This shared key can then be used
for authentication or encryption.

More Info The details of the Diffie-Hellman algorithm and the Oakley protocol
are outside the scope of this book, but RFC 2412 defines them in more detail.
This RFC can be found in the \RFC folder on the companion CD-ROM.

IPSec Driver

The IPSec driver is a kernel-mode device driver that's responsible for enforcing IPSec
policies on packets received from, or sent to, other computers. The IPSec driver watches
for outbound IP packets that the IPSec policy requires to be transformed, as well as for
inbound IP packets that need to be verified and/or decrypted. The IPSec policy driver
then will carry out the required transform before passing the datagram on to the Network
Driver Interface Specification (NDIS) driver (for packets to be sent), or to the TCP/IP driver
(for received packets).

Security Parameters Index (SPI)

Before there can be multiple SAs at any one time between two computers, it's vital that
both sender and receiver know the particular SA that relates to each IP datagram. The
SPI is used for this purpose. It's a 32-bit pseudo-random number transferred in each IP
datagram (in the AH or ESP headers), and is used to indicate the inbound or outbound
packet to which it relates.

During the ISAKMP negotiation, the,receiver's IPSec driver creates an SPI. The SPI is
transferred to the sender's ISAKMP, which delivers it to the sending IPSec driver. The
sending IPSec driver includes the SPI in every AH or ESP header.

IPSec Modes

IPSec has two main modes of operation: transport mode and tunnel mode. Transport mode
is mainly for a computer in an end-to-end scenario. Transport mode provides protection
for upper layer protocols by adding an extra header between the original IP datagram
and the IP datagram's payload. IPSec tunnel mode is designed for use by network rout
ers, and enables them to protect IP datagrams passed between two IPSec-enabled rout
ers over an insecure transit network. With tunnel mode, the original IP datagram is

::i
''I

Chapter 20 Securing IP Communications with IP Security (IPSec) I 483

wrapped (tunneled) inside a new IP datagram, meaning that the entire original IP datagram
is now fully encrypted. ·

IPSec transport mode provides good end-to-end security and authentication within a
corporate network, as well as across a less secure network. Tunnel mode provides ad
ditional security, and is more appropriate when used as part of a Virtual Private Network
using the Internet as a backbone'.

Sample Network Monitor Traces

Network Monitor traces 20-1 and 20-2 (Captures 20-01 and 20-02, included in the \Cap
tures folder on the companion CD-ROM) show the creation of an SA followed by a PING
command. Network Monitor trace 20-1 shows the creation of an SA to support use of the
AH between the two computers, while 20-2 shows the use of the ESP header. In both
cases, the first six packets are the main mode negotiation, and the following four pack
ets are the quick mode negotiation. This is followed by the actual PING command. Both
traces show TPSec hein~ 11sPrl in tr'.:ln":'ort morlP

How IPSec Works
In this section, we will look at the details of how IPSec works on Windows 2000
computers.

Note IPSec currently is not available for Microsoft Windows 95, Windows 98, or
Windows NT. It is unlikely that IPSec would ever be provided for Windows 95 and
Windows 98, and currently there are no plans for providing IPSec for Windows NT.

Obtaining IPSec Polley

IPSec policy can be configured manually to apply to individual computers whether or
not they participate in a Windows 2000 AD domain. For computers participating in an
AD domain, however, site, domain, and Organizational Unit (OU) policies override any
local IPSec policies. The preferred scenario· for IPSec deployment is for IPSec policy in
formation to be stored in the AD and applied using Group policy Objects (GPOs).

A GPO, which holds IPSec polices, can be applied to an AD site, an AD domain, or an
AD OU. In an enterprise environment, a hierarchy of GPOs can be created and applied
at each of these levels. The AD inheritance rules and the order of GPO objects defined
for each level determine the effective IPSec policy for a given computer.

GPO objects reside in the AD. They are stored in the Policies container within the do
main-naming context's System container. In the domain kapoho.com, for example, this
System container has the distinguished name CN=Policies,CN=System,DC=kapoho,DC=com.
Individual IPSec polices are contained within the AD in the Security container.
In the domain kapoho.com, this System container has the distinguished name
CN=IPSecurity,CN=System,DC=kapoho,DC=com. This container holds an IPSec policy
object for each defined IP Sec policy.

484 I PART IV Application Layer Protocols and Services

Note The use of GPOs for controlling a computer's policy is a complex subject,
and is outside the scope of this book. The creation of GPO objects and IPSec
policies and their application to computers in an enterprise should be planned
with great care. If the effective IPSec policy is incorrectly set, it can result in a
computer not communicating with other computers.

When a Windows 2000 computer is first initialized, the IPSec Policy Agent will issue
Lightweight Directory Access Protocol (LDAP) queries against the AD and obtain the
relevant IPSec policy. For computers in a domain, the IPSec policy is applied using Group
policy.

Although not the preferred deployment scenario, the administrator can define local com
puter IPSec policies that are stored in the registry. This is most useful for computers that
aren't members of a Windows 2000 domain. The local policy database, which is similar
to AD-held IPSec policies, is held in the registry key HKLM\SYSTEM\CurrentControl Set\
Services\PolicyAgent\Policy\Local.

Applying IPSec Policy

It's the responsibility of the IPSec driver to apply IPSec policy. When the IPSec driver
receives a packet for transmission to another computer, it first checks to see if that packet
matches the IP filter list specified in any of the rules in the active IPSec policy. If so, and
if no SA has been set up, the IPSec driver notifies IKE, which will negotiate an IPSec SA
with the other computer. If necessary, an ISAKMP SA will be established first. After the
SA is established, the IPSec driver will apply the relevant IPSec transform to the IP
datagram, and then will send it to the NDIS driver for onward transmission.

Processing of inbound datagrams is similar to, although the reverse of, outbound pro
cessing. When the NDIS driver sends an IP datagram to the IPSec driver, the IP driver
will examine the filter list to determine if there's a match. If so, the IPSec will use the SA
(identified by the SPI in the IPSec header) to determine the transform to be applied to
the packet. Based on this transform, the IPSec driver then verifies the packet's integrity,
and decrypts the packet if appropriate. If errors occur, such as if the packet was changed
in flight, the packet is silently discarded. After the packet transform has been applied,
the SA's IPSec driver routes the datagram to the TCP/IP driver that routes the packets to
the appropriate application.

Creating Security Associations (SAs)

The process of establishing an SA for use by an application involves two distinct phases,
involving two specific SA s. In the first phase, also known as main mode, the two com
puters establish the ISAKMP SA. This provides the security environment in which other
SAs can be established. Although there are two phases here, we'll only discuss the main
mode, which is the more complex of the two.

[,
I

Chapter 20 Securing IP Communications with IP Security (IPSec) I 485

To establish the ISAKMP SA, the sending computer sends a list of potential security lev
els to the responder. The responder then negotiates with the sender on a mutually agree
able level by use of the ISAKMP protocol.

After the ISAKMP SA is established, the two computers can communicate with each other
to negotiate an SA used for the transfer of application data. This second SA is known as
the IPSec SA. The ISAKMP SA provides the secure connection in which IPSec SAs can
be negotiated. Quick mode is somewhat simpler and requires fewer exchanges.

On Windows 2000, negotiation of an ISAKMP SA and an IPsec SA requires 10 datagrams
to be passed between sender and receiver. These can be seen in the Network Monitor
traces noted earlier in this chapter.

Generating New Keys

To further secure the transfer of application data, IPSec can create new keying material
either after a certain amount of time (for instance, after 30 minutes) or after a certain
c:l111VU11l V; ~dld ~ld~ Ut::t::U llaW:ilt::fft::U. ,llllS aclclS OVerneaQ, OU(prOVlQeS aQQltlOnal SeCU
rity. This is done by renegotiating either the ISAKMP SA or the IPSec SA. The quick mode
noted above can perform this update.

Authentication Header (AH) Details
The AH header is designed to provide authentication of data contained in an IP datagram,
and is an extension to the original IP header. As specified in RFC 2402, AH provides data
integrity through keyed hashing. Windows 2000 supports two hash algorithms: HMAC
MDS and HMAC SHA. The specific hashing algorithm is negotiated during the SA setup.

More Info Read about how the Authentication header provides data integrity
through keyed hashing in RFC 2402, which can be found in the \RFC folder on
the companion CD-ROM.

The AH header provides data and address integrity by hashing the IP header and pay
load, except for those portions of the IP header that could change during the transmis
sion of an IP datagram across a network such as Time-To-Live (TIL) or the IP header
checksum. This hash value is then included in the AH. The IP addresses in the IP header
and the port numbers in the Transport Protocol header are part of the hash, thus address
ing can be verified as unmodified. Because the IP data payload is also hashed, the data
can be verified as being unmodified.

AH also provides anti-replay protection by providing sequence numbers for anti-replay
protection. The sequence number is a part of the data that's hashed, and thus can be
verified as having not been changed. Additionally, the sequence number on each incoming
Sequence Number field is compared to the current sequence number. If the number is
too far out of sequence or if it matches a recent sequence number, the packet is rejected
as a replay.

486 I PART IV Application Layer Protocols and Services

AH Header Layout

Figure 20-2 displays the layout of the AH header.

Next Header

Payload Length

Reserved

Security Parameters Index

Sequence Number

Authentication Data

D =1byte

Figure 20-2. AH header.

As Figure 20-2 illustrates, the AH header consi~ts of the following fields:

• Next Header This 1-byte field is used to identify the next part of the IP
datagram, usually Oxll (to indicate UDP) or Ox06 (indicating.TCP).

• Payload Length This 1-byte field specifies the length of AH in 32-bit words,
minus 2.

• Reserved This 2-byte field is reserved and must be set to 0. The value is in
cluded in the Authentication Data field calculation, but is otherwise ignored.

• SPI This 4-byte field, in combination with the Destination IP Address field
and Security Protocol (AH), is used to identify the SA for this datagram.

• Sequence Number This unsigned 4-byte field holds a monotonically increas
ing counter value. Even if the receiving computer chooses not to use it, it's a
mandatory field. The first packet sent using a particular SA would always have
a sequence number of 1. If anti-replay (the default) is enabled, the transmitted
sequence number must never be allowed to cycle. To allow for additional large
numbers of packets to be transferred between two hosts, a new SA, and there
fore a new set of keys and a new sequence number, must be negotiated prior
to the transmission of the 232nd packet on a given SA.

• Authentication Data This variable-length field holds the integrity check
(hash), for the IP datagram.

AH Packet Transform

Figure 20-3 illustrates the effect of the AH on the original datagram.

i I

Chapter 20 Securing IP Communications with IP Security (IPSec) I 487

Original IP datagram
IP header TCP header Payload data

IP datagram with AH
IP header AH header TCP header

Authentication
(except for mutable fields)

Figure 20-3. Effect of AH header on IP datagram.

Payload data

As can be seen in Figure 20-3 and in Network Monitor trace 20-1 (Capture 20-01, included
in the \Captures folder on the companion CD-ROM), the AH header is added to the IP
~a.ta.~1a.111 ju:;t a!ter ti:1e ir neacier. l.t' rrears me Att neader as a protocol header, identi
fied as protocol 51 (Ox33). Using the AH header therefore increases the amount of over
head per packet. Its use also requires extra central processing unit (CPU) power to
compute the authentication data, although with Windows 2000 hardware offload, much
of this computing power can reside on the network card. Notice that the original IP header
isn't modified; this allows intermediate routers to forward the packets regardless of
whether or not they support IPSec.

Computing the Authentication Data

The AH Authentication field value is computed including:

• The IP header fields that are either not changed in transit (immutable fields),
or that are predictable in value upon arrival at the endpoint for the SA.

• The AH header (Next Header, Payload Len, Reserved, SPI, Sequence Number,
and the Authentication Data [which is set to 0 for this computation], and ex
plicit padding bytes, if any).

• The upper level protocol data, which is assumed to be immutable in transit.

Each field within an IP datagram header that can change during transit (for example, TLL)
is set to a value of 0 for purposes of calculating the authentication data. This includes
the Authentication Data field's value itself.

Encapsulating Security Payload (ESP) Details
The ESP header is used to provide data confidentiality (encryption) as well as data au
thentication. Similar to the AH header, the ESP header is an extension of the original IP
header and is specified in RFC 2406. The purpose of the ESP header is to provide con
fidentiality via the encryption of the IP datagram. The encryption algorithms that Win
dows 2000 supports are DES-CBC and Triple DES (a.k.a. 3DES). ESP also provides hashing
and uses either MD5 or SHA, as in AH.

488 I PART IV Application Layer Protocols and Services

More Info Read about the Encapsulating Security Payload (ESP) header in RFC
2406, which can be found in the \RFC folder on the companion CD-ROM.

When the IPSec policy on a computer is set to require encryption via the ESP header,
the negotiation of the SA will determine which encryption algorithm is used.

Note If you are using an export version of Windows 2000 or communicate with
computers outside the United States, be sure to include DES in the IPSec policy.
Also, if you plan to deploy ESP outside of the U.S. or Canada, some additional
planning should be done to avoid inadvertent violation of U.S., or other, laws.

When applying the ESP transform, the IPSec driver encrypts and then hashes the entire
IP datagram, except for the IP and ESP headers. This means that information in the IP
header (for example, the source and destination IP addresses) isn't protected. Obviously,
encrypting the IP header would mean that no device could read the addressing. You can
also use AH and ESP together. Using both security methods provides data encryption and
verification as well as address verification. When used together, ESP is always applied
first, then AH.

ESP Header Layout

Figure 20-4 illustrates the layout of the ESP header.

As Figure 20-4 displays, the ESP header consists of the following fields:

• Security Parameters Index This 4-byte field, in combination with the Desti
nation IP Address field, is used to identify the SA for this datagram.

• Sequence Number This unsigned 4-byte field holds a monotonically increas
ing counter value. Even if the receiving computer chooses not to use it, it's a
mandatory field. The first packet sent using a particular SA would always have
a sequence number of 1. If anti-replay (the default) is enabled, the transmitted
sequence number must never be allowed to cycle. If the Sequence Number
field increments to its limit, a new set of keys and a new sequence number
must be negotiated prior to the transmission of the 232nd packet on a given SA.

Security Parameters Index I

Sequence Number

D =1byte

Figure 20-4. ESP header.

I I I !

Chapter 20 Securing IP Communications with IP Security (IPSec) I 489

I PSec ESP Packet Layout and Packet Transform

When using the ESP header, the original packet is transformed, in a fashion similar to
the AH header. Figure 20-5 displays the IPSec packet format.

Security Parameters Index (SPI) J
--------4 ESP Header

Sequence number

Pad Next
len th header

ESP Authentication Data
(variable)

Figure 20-5. IPSec ESP packet layout.

As Figure 20-5 and Network Monitor trace 20-2 (Capture 20-02, included in the \Captures
folder on the companion CD-ROM) illustrate, the format of an IP datagram when ESP is
in use is more complex than with the AH header. Figure 20-6 also shows how the IP
datagram is transformed when using the ESP header in transport mode.

As Figure 20-6 illustrates, using ESP adds an ESP header and two trailer fields to the IP
datagram. IP views the ESP header as a new protocol type, and identifies it as protocol
50 (Ox32). The ESP trailer consists of padding (between 0 through 255 bytes), a Padding
Length field, and a Next Header field.

Original IP
datagram

IP Datagram

IP header TCP header Payload data

with ESP IP header ESP header TCP header Payload data

Encrypted

Authentication
(except for mutable fields)

Figure 20-6. Effect of ESP header on IP datagram.

ESP ESP
trailer authentication

490 I PART IV Application Layer Protocols and Services

The padding in the ESP trailer is used for several reasons:

• The ESP packet format requires that the Padding Length and Next Header
fields be right-aligned within a 4-byte word, and the padding is used to
achieve this.

• Some encryption algorithms require that the unencrypted plain text is a mul
tiple of some number of bytes and the padding can be used to expand the
plain text to the required length.

• Padding can also be used to conceal the payload's actual length, thus provid
ing a measure of additional security.

Summary
IPSec is a complex feature to install and configure, but provides application-transparent,
end-to-end security between two Windows 2000 computers, or for all traffic between two
IP routers configured to use IPSec tunnel mode when transmitting IP datagrams.

! I
I

Virtual Private Networks
(VPNs)

491

For most large and small organizations, computer networks have become a central part
of the corporate infrastructure. One specific challenge facing many of these network
centric organizations is how to connect remote sites and remote users.

Traditionally, remote sites have been connected by the use of leased lines or Frame-Relay
networks. Remote users have been served by providing dial-in networking facilities, often
using inbound free phone numbers. However, these approaches tend to be expensive
and inflexible. The basic unit costs of leased lines and inbound free phone facilities have
reduced steadily, but as more and more bandwidth is required, the overall costs to the
organization have been rising, along with an increasingly complex infrastructure to
manage. The lead time required for a leased line can be substantial, depending on the
source and destination. This extended lead time can limit flexibility.

VPN technology provides a secure, scalable, and cost-effective solution to this connec
tivity issue. It allows an organization to connect remote sites to a central site securely over
a public internetwork (such as. the Internet) and enable remote users to securely con
nect to the corporate network using the communications infrastructure that the Internet

· provides. In both scenarios, the connection is made using the Internet as a backbone,
while the connections appear to the user or the remote site as a private network.

Chapter Contents
The subject of VPNs is extensive enough to warrant a complete book of its own, and will
not be covered wholly in this book. For our purposes, this chapter gives an overview of
VPNs and focuses on the two VPN protocols that Microsoft Windows 2000 implements:
Point to Point Tunneling Protocol (PPTP) and Layer 2 Tunneling Protocol (L2TP). Because
the two VPN protocols leverage the Point to Point Protocol (PPP), the chapter also de
scribes this protocol in relation to VPNs. Additionally, there are Network Monitor traces
on the companion CD-ROM that demonstrate the PPTP and L2TP in operation.

492 I ?AIU IV Application Layer Protocols and Services

This chapter contains the following sections:

• Overview ofVPNs A description of VPNs and the VPN protocols

• PPTP A description of the PPTP VPN protocol

• L2TP A description of the L2TP VPN protocol

Overview of Virtual Private Networks
In this section we will discuss what a VPN is and the key protocols involved.

What Is a VPN?
As Figure 21-1 illustrates, a Virtual Private Network connects either a network or a single
computer to another network across an intermediate network, typically the Internet.

Remote user

Remote
workstation

Remote office

enabled
router

Figure 21-1. Virtual private networking.

Figure 21-1 shows the two main VPN usage scenarios: connecting a remote user to the
corporate network, and connecting a remote network to the corporate network.

When connecting a remote user using a VPN, the remote user first establishes a normal
Dial-Up Networking (DUN) connection to a local Internet Service Provider (ISP). After

Chapter 2:1 Virtual Private Networks (VPNs) I 493

this connection is established, the remote user can establish a second VPN connection
between the remote computer and the corporate VPN-enabled router.

When connecting a remote local area network (LAN) to the corporate network using a
VPN, a similar arrangement occurs. In this scenario, the remote office's VPN-enabled router
initiates the VPN connection on behalf of clients on the local LAN. The type of connec
tion between the remote router and the ISP isn't important, as long as it can carry IP traffic.

VPN Clients and Servers
In a VPN, the computer initiating the VPN connection is referred to as the VPN client.
The VPN client then makes a VPN connection to a remote computer, the VPN seroer. In
the remote-user scenario, the remote computer is also the VPN client that'll make a con
nection to the VPN server. This remote computer therefore will have two active DUN
connections established (one to the ISP, the other for the VPN). In the remote-office
scenario, it's the remote office's router that's the VPN client. In both scenarios, the VPN
C:::PMTPt" 1c ') CAM7Pr 1n t-hc::a l'"'Arf""'V"""\'f"'lf-A Aff1rD> t-h..,t- Fl("'f-C' nc t-ho OT""lrl -r"\r'\1 t- f'r"'\1'" t-h.o "\71Yl\T ,......r'\<t""\<t""\.O,.....t-~r"\<t""\

-· -- --- ---- ---. ---·-- ------ ----·- ----- --- ---- ----· .----- --- ---- . - - . -------------·

There are, therefore, the following two types of VPNs that can be constructed:

• The Remote User VPN A remote user accesses a corporate intranet and acts
as the VPN client.

• The Remote Network VPN The client is a remote router, and the VPN is en
tirely transparent to the end users.

VPN Protocols
Connections between a VPN client and a VPN server are implemented through the use
of one of two VPN protocols: PPTP or L2TP.

PPTP is a Layer 2 protocol that encapsulates PPP frames in IP datagrams for transmis
sion over an IP internetwork. PPTP is an older VPN protocol that Microsoft developed.
L2TP, on the other hand, is a newer network protocol based on both Cisco's Layer 2
Forwarding (L2F) protocol and Microsoft's PPTP protocol, which encapsulates PPP frames
to be sent over IP, X.25, Frame Relay, or Asynchronous Transfer Mode (ATM). Although
L2TP is more flexible than PPTP, it requires more central processing unit (CPU) power
than PPTP.

From an end user point of view, these protocols are functionally equivalent. PPTP is
described in the "Introduction to Point to Point Tunneling (PPTP)" section of this chap
ter. L2TP is also described later in the "Introduction to Layer 2 Tunneling Protocol (L2TP)"
section of this chapter.

The key technical differences between L2TP and PPTP are as follows:

• PPTP requires that the transit network be based on IP. L2TP requires only that
the transit network provide point-to-point connectivity. L2TP can be used over
IP or directly over Frame Relay, X.25, or ATM. PPTP can traverse these net-

494 I PART IV Application Layer Protocols and Services

works also, but additional protocol overhead is required because it must work
within IP.

• PPTP can support only a single tunnel between the VPN client and VPN server.
L2TP allows for the use of multiple tunnels between end points. With L2TP,
you can create different tunnels for different qualities of service or meet differ
ent security requirements.

• L2TP provides header compression. When header compression is enabled,
L2TP operates with 4 bytes of overhead, as compared to 6 bytes for PPTP.

For most existing users of Windows operating systems, PPTP will be the preferred pro
tocol today, because .it's supported in Microsoft Windows 95, Microsoft Windows 98,
Windows NT 4.0, and in Windows 2000. Windows 2000 provides support for L2TP, al
though third-party L2TP support can be provided by third-party implementations for
down-level operating systems.

Tunneling
Both L2TP and PPTP implement VPNs by means of tunneling. Tunneling is the encap
sulation of an IP datagram inside another datagram. As Figure 21-2 illustrates, the VPN
client encapsulates the original IP datagram, sent between two end systems, and sends
it to the VPN server, where the datagram is unwrapped and forwarded onto the local
network.

.... -,o
Original IP
datagram Tunnel

client
Original datagram encapsulated

in another datagram

Figure 21-2. Tunneling in VPNs.

-o
Tunnel
server

Original IP
datagram

As Figure 21-2 illustrates, an IP datagram to be sent between the client and a server using
a VPN is encapsulated inside a new IP datagram that's sent from both the tunnel client
and tunnel server. The new IP datagram has a header that provides the information
necessary to enable the packet to be properly forwarded across the transit network.

At the tunnel server, the datagram is unwrapped and the original IP datagram can then
be forwarded from the tunnel server. After the original datagram is unwrapped, the tun
nel server will act as a router and will make a forwarding decision on the original packet,
based on the configuration of the tunnel server and the state of the tunnel server's rout
ing table.

Chapter 2:1 Virtual Private Networks (VPNs) I 495

The VPN tunneling is achieved through the use of a Network Driver Interface Specifica
tion (NDIS) driver that becomes a client of IP. This is illustrated in Figure 21-3, which
shows the architecture of a VPN connection in the remote client scenario.

Win sock

NDIS mini port wrapper
T

Asyn¢ti • X.25. ISDN

1 1 1
Figure 21-3. Tunneling architecture.

Application

NetBIOS

User

Kernel

TCP/IP

NDIS wrapper

Ethernet Tokeri Ring FDDI

Fratn,e RelaY ·ATM x.20

An application on the remote computer will use either NetBIOS or Windows sockets to
send a datagram to a remote computer. The payload is sent to the TCP /IP component in
Windows 2000, which formats an IP datagram. At this stage in the process, the source IP
and destination IP addresses are set as if the two systems were communicating directly.

After the IP datagram has been constructed, it will be sent to the NDIS miniport for the
VPN protocol in use. The miniport driver then encapsulates the original IP datagram with
the header for the VPN and sends it back to the TCP /IP driver. The TCP /IP driver then
constructs a new IP datagram, which is sent to the appropriate NDIS driver for the tran
sit network. While the details of the encapsulation will be different in PPTP and L2TP,
this architectural model is used for both VPN protocols.

This encapsulation can be seen in Network Monitor traces 21-1and21-2. Network Monitor
trace 21-1 (Capture 21-01, included in the \Captures folder on the companion CD-ROM)
shows how PPTP encapsulates a datagram, while trace 21-2 (Capture 21-02, included in
the \Captures folder on the companion CD-ROM) shows this for a L2TP frame. These
traces show a single datagram to demonstrate the encapsulation.

496 I PART IV Application Layer Protocols and Services

Note Windows 2000 Servers ship with Microsoft Network Monitor 2.0 Lite
Version. This version doesn't decode all of these frames completely. You'll need
to use the full Network Monitor 2.0 product, supplied with SMS 2.0, to read these
frames fully. If you load the SMS version of Network Monitor, be sure to install
the Windows 2000 version first.

VPNs and PPP

Both VPN protocols leverage the PPP protocol for most of the underlying mechanisms,
such as authentication, compression, and so forth. In effect, the VPN creates a virtual PPP
connection between the VPN client and VPN server. This allows the original IP datagram
to be transmitted inside a PPP frame, which is then encapsulated in an outer IP datagram
for transmission across the transit network. This can be seen in the Network Monitor traces
noted above.

PPP has the following three main components:

• A method for encapsulating datagrams over serial links. The VPN protocols le
verage this method for encapsulating datagrams between the VPN client and
server.

• A Link Control Protocol (LCP) for establishing, configuring, and testing the
data-link connection. The LCP is used to establish the VPN link.

• A family of Network Control Protocols (NCPs) for establishing and configuring dif
ferent network layer protocols. These NCPs are used by VPN protocols as well.

Setting up a PPP link involves the following steps:

1. Phase 1: PPP link establishment PPP uses LCP to establish, maintain, and
end the connection. During the initial LCP phase, basic communication options
are selected. During the link-establishment phase (Phase 1), authentication
protocols are selected, but they're not actually implemented until the connec
tion-authentication phase (Phase 2). The actual choice of compression and en
cryption algorithms and other details occurs during Phase 4.

2. Phase 2: User authentication In this phase, the client PC presents the user's
credentials to the remote-access server. A secure authentication scheme pro
vides protection against replay attacks and remote-client impersonation.

3. Phase 3: PPP callback control The Microsoft implementation of PPP in
cludes an optional callback-control phase. This uses the Callback Control Pro
tocol (CBCP) to initiate callback, if configured.

4. Phase 4: Invoking network layer protocol(s) After the previous phases
have been completed, PPP invokes the various NCPs that were selected during
the link-establishment phase (Phase 1) to configure protocols used by the re
mote client. For example, during this phase, the IP Control Protocol (IPCP) can
assign a dynamic address for the VPN client. In addition, Compression Control
Protocol (CCP) is used to negotiate both data compression (using Microsoft

l'I

Chapter 21 Virtual Private Networks (VPNs) I 497

Point-to-Point Compression [MPPC]) and data encryption (using Microsoft Point
to-Point Encryption [MPPE]), for both are implemented in the same routine.

5. Phase 5: Data-transfer phase After the four previous phases of negotiation
have been completed, data can begin to flow over the VPN. Each transmitted
data packet is wrapped in a PPP header, plus additional VPN headers, which
the receiving system removes. If data compression was selected in phase 1 and
negotiated in phase 4, data will be compressed before transmission. If data en
cryption was selected and negotiated during the previous phase, data is en
crypted before transmission.

For more details on PPP and PPP encapsulation, see Chapter 2, "Wide Area Network
(WAN) Technologies."

VPN Authentication
To set up a VPN tunnel, it's necessary to authenticate the VP~ client to the VPN server,
'.lnrl n~tinn'.l llv '.lllthPntir'.ltP thP \TP1'T <::PnrPr tn thP rliPnt T"h1c 'lnthPnt1r'lt1r.n, urh1rh PPP

carries out as part of the user authentication phase noted above, enables the tunnel cli
ent and server to validate the credentials of the other end to ensure that only authorized
users can establish a VPN connection.

By default, authentication in PPP isn't mandatory. If authentication of the link is desired,
an implementation must specify the Authentication-Protocol Configuration Option dur
ing the link-establishment phase.

Windows 2000 supports the following primary means of authentication for VPN clients
and servers:

• Password Authentication Protocol (PAP) This is a simple authentication
method that relies on clear-text password transmission. The remote server re
quests a username and password, and the client returns these unencrypted.
This scheme offers no protection against man in the middle, replay, or client
impersonation attacks. Thus, while useful for establishing DUN connections to
a dial-up server, it's probably not a good choice for a VPN.

More Info PAP is described in RFC 1334, which can be found in the \RFC folder
on the companion GD-ROM.

• Shiva Password Authentication Protocol (SPAP) This proprietary protocol
is a variation of PAP, used when the tunnel server is a Shiva VPN server. SPAP
offers additional facilities beyond PAP, but can only be used in conjunction
with hardware devices from Shiva (now a division of Intel).

• Challenge Handshake Authentication Protocol (CHAP) This is an indus
try standard authentication method that provides secure encrypted authentica
tion. CHAP uses challenge-response combined with a one-way MDS hash of
the response (although the username is returned unhashed). This allows the

498 I PART IV Application Layer Protocols and Services

client to prove to the server that it knows the password without actually send
ing the password over the network.

More Info CHAP is defined in RFC 1994, which can be found in the \RFC folder
on the companion CD-ROM.

• Microsoft CHAP (MS-CHAP) This is a Microsoft adaptation of CHAP de
signed to authenticate remote Windows workstations. MS-CHAP supports the
ability to change passwords during login, a feature not available with CHAP.

More Info MS-CHAP is defined in RFC 2433, which can be found in the \RFC
folder on the companion CD-ROM.

• Microsoft CHAP V2 This is an improved version of MS-CHAP that provides
mutual authentication, stronger initial encryption keys, and different keys for
transmitting and receiving data. To reduce the risk of compromising pass
words, MS-CHAP V2 drops the support for password changes at login.

For the end user VPN, it's the end-user credentials-set in the DUN connection object
that are passed and used for authentication at the VPN server. For the remote-network
tunnel, the administrator will define the credentials to be passed. PAP, SPAP, CHAP, and
MS-CHAP are one-way authentication mechanisms that authenticate the tunnel client to
the tunnel server. MS-CHAP V2 also requires the tunnel server to authenticate itself to
the tunnel client, which can provide extra security, especially for dial-up connections. If
mutual authentication is required, the user credentials for the VPN server must have been
provided to the VPN client.

Extensible Authentication Protocol (EAP}
In addition to the basic forms of authentication noted above, Windows 2000 also sup
ports EAP. In Wind,ows 2000, EAP can be configured to provide authentication based on
either smart cards or machine certificates. It's also possible for third parties to write cus
tom EAP authentication modules that work with add-on hardware to enable other forms
of authentication, such as retinal eye scanning.

The use of a smart card provides an additional level of security, but it's more appropri
ate for the remote user VPN, because it might not be acceptable to leave the smart card
inserted into the remote network's router. For a remote network VPN, machine certifi
cates are more appropriate, but rely on a public key infrastructure to be in place. In both
cases, some degree of public key infrastructure will be required to manage and control
the certificates, which might limit their attractiveness.

VPN Address Assignment
In a VPN, the VPN client appears to be a part of a central network and will require an IP
address based on the central network. This means the VPN client will have at least two

I'
I

I'
I

Chapter 21 Virtual Private Networks (VPNs) I 499

IP addresses: one for the transit network (such as the Internet) and one for the VPN. The
Windows 2000 Remote Access Server (RAS) enables the IP addresses to be provided by
the user (as part of the DUN connection) or to be dynamically assigned. Dynamically
assigned addresses can be based on either a static pool of addresses or obtained by the
RAS server from a Dynamic Host Configuration Protocol (DHCP) server.

The dynamic assignment of client addresses is based on the NCP negotiation mechanism,
which is part of PPP, described earlier in this chapter in the "VPNs and PPP" section.
Although this is generally seamless, it does require the administrator to design and imple
ment a suitable addressing scheme to cater to the VPN users.

VPN Data Compression
The VPN protocols support a PPP-based compression scheme. In Windows 2000, both
PPTP and L2TP use MPPC, which is defined in RFC 2118. For Windows 2000 VPN cli
ents, the use of the MPPC software-compression method is controlled by settings in the
.L/Ul'I LVUUC::LUVU VUJC::Ll,

More Info MPPC is defined in RFC 2118, which can be found in the \RFC folder
on the companion CD-ROM.

MPPC can reduce the total amount of data being transferred across the transit network
by as much as 50-60 percent for text data, although for binary data, the compression might
only amount to 2-3 percent or less. As with all data compression schemes, the percent
age by which the original data can be compressed will vary with the nature of the data.

VPN Data Encryption
For the data to be transferred securely across an insecure transit network, some form of
data encryption is required. PPTP supports optional use of MPPE, based on the RSA/RC4
encryption algorithm. L2TP protocol uses IP Security (IPSec) encryption to protect the
data stream from the client to the tunnel server.

MPPE relies on the initial key generated during user authentication and then refreshes it
periodically. IPSec explicitly negotiates a common key during the ISAKMP exchange, and
also refreshes it periodically.

Introduction to Point-to-Point Tunneling Protocol (PPTP)
PPTP is a VPN protocol implemented at layer 2 in the Open Systems Interconnection (OSI)
model. PPTP encapsulates VPN data inside PPP frames, which are then further encapsu
lated in IP datagrams for transmission over a transit IP internetwork such as the Internet.

More Info PPTP is documented in RFC 2637, which can be found in the \RFC
folder on the companion CD-ROM.

500 I PA.Rf IV Application Layer Protocols and Services

Creation and maintenance of a PPTP tunnel is carried out using a TCP connection. The
VPN client uses an ephemeral port, while the PPTP VPN server responds on TCP port
1723. Subsequent data is encapsulated using Generic Routing Encapsulation (GRE), as
described in more detail in the following section.

Installation of PPTP
PPTP is a component of Windows 2000's Routing and Remote Access Service (RRAS),
which is installed by default on computers running on Windows 2000 Server Standard
Edition, Windows 2000 Advanced Server, or Windows 2000 Datacenter Server. The Win
dows 2000 RRAS service, however, isn't configured or enabled by default. This task must
be performed by the administrator after installation of Windows 2000.

When the RRAS service is first configured and enabled, by default, PPTP is configured
for five ports, thus enabling up to five VPN clients to connect simultaneously. The ad
ministrator can enable more or fewer PPTP ports by using the Routing and Remote Ac
cess Microsoft Management Console (MMC) Snap-in.

PPTP Encapsulation
As noted above, PPTP encapsulates the original IP datagram when it's transmitted be
tween the PPTP client and PPTP server. Figure 21-4 shows the encapsulation of a PPTP
packet.

IP GRE PPP

t Original IP datagram t
Encrypted PPP payload

Figure 21-4. PPTP packet structure.

Note When viewing Network Monitor captures of PPTP traffic, the IP datagram,
as shown in Figure 21-4, would be contained in some Data Link layer protocol such
as Ethernet or PPP. The Network Monitor traces included on the companion CD
ROM show the VPN being created across a dial-up link, and use PPP.

In Figure 21-4, the original datagram is first encapsulated in a PPP frame. Using PPP, this
part of the datagram can be compressed and encrypted, as discussed below. The PPP
frame is then encapsulated inside a GRE frame, which is the payload of a new IP datagram
sent between the PPTP client and PPTP server. The source and destination IP addresses
of this new datagram will correspond to the IP addresses of the PPTP client and PPTP
server. On the wire, this dat:;i.gram will be further encapsulated in a Data Link Layer frame,
with the appropriate header and trailer.

\1

II
I Chapter :2:1 Virtual Private Networks (VPNs) I 501

PPTP Encryption
When the original datagram is transmitted through the transit network, it must be en
crypted to ensure confidentiality. With PPTP, the PPP is used to provide the encryption.
In Windows 2000, the PPP frame is encrypted with MPPE. The encryption keys are gen
erated from the MS-CHAP or EAP-TLS authentication process. To provide for encryption,
the PPTP client must be configured to use either the MS-CHAP, MS-CHAP V2, or EAP
TLS authentication protocol.

Introduction to Layer 2 Tunneling Protocol (L2TP)
L2TP is a refinement of PPTP and Cisco's L2F protocol. L2TP was designed to combine
the best features of both PPTP and L2F.

L2TP operates, as its name suggests, at Layer 2 in the International Organization for Stan
rl:::i rrli7::::ition (TS()) morlPl :::inrl i.<;; :::i nPturnrk nrntnrnl th~t rrP~tP<;; ~ t11nnPl hPturPPn ~n T ?'TP

client and an L2TP server, and then encapsulates PPP frames to be sent over the tunnel.
When using IP as the transport protocol, L2TP can be used as a VPN protocol over the
Internet. L2TP has been designed so that it can be used directly over various wide area
network (WAN) media (such as Frame Relay) without an IP transport layer, which can
extend its usefulness in setting up corporate networks.

More Info L2TP is documented in RFC 2661, which can be found in the \RFC
folder on the companion CD-ROM.

When L2TP is used over IP internetworks, it uses UDP for both tunnel creation and
maintenance, and for data transmission. With L2TP, both the tunneled data and the con
trol messages share a single UDP stream, which can simplify the passing of VPN data
through corporate firewalls.

L2TP relies on IPSec for encryption services, a combination known as L2TP over IPSec.
Both the VPN client and the VPN server must support both L2TP and IPSec. For more
information about IPSec, see Chapter 20, "Securing IP Communications with IP Security
(IPSec)."

Installation of L2TP
Like PPTP, L2TP is a component of Windows 2000's RRAS, which is installed by default
on computers running Windows 2000 Server Standard Edition, Windows 2000 Advanced
Server, or Windows 2000 Datacenter Server. Although L2TP is installed by default, an ad
ministrator must enable it manually.

When the RRAS service is first configured and enabled, L2TP is configured for five VPN
ports (as for PPTP). The administrator can enable more or fewer L2TP ports by using the
Routing and Remote Access MMC Snap-In.

502 I ?AIU IV Application Layer Protocols and Services

L T2P relies on IPSec for encryption. IPSec is installed as part of the default installation
of Windows 2000, so the administrator will need to do some additional configuration of
IPSec policies to use IPSec with PPTP. See Chapter 20, "Securing IP Communications with
IP Security (IPSec)," for more details on IPSec.

L2TP Encapsulation
As with PPTP, L2TP encapsulates the original IP datagram when transferred through the
transit network. Since IPSec provides the encryption facilities, however, the L2TP encap
sulation takes place in two phases. Figure 21-5 illustrates phase 1, the initial L2TP en
capsulation, and phase 2, the IPSec encapsulation.

L2TP - without encryption

IP UDP L2TP ·PPP

L2TP - with IPSec encryption

IP Sec
IP ESP

header

t

IP
TCP
UDP User data

Original IP datagram

Original IP datagram

Encrypted with IPSec

Figure 21-5. Two phases of encapsulation over L2TP.

j

Note When viewing Network Monitor captures of L2TP traffic, the IP datagram,
as shown in Figure 21-4, would be contained in some Data Link layer protocol such
as Ethernet or PPP. The Network Monitor traces included on the companion CD
ROM show the VPN being created across a dial-up link, and use PPP.

As Figure 21-5 illustrates, the L2TP encapsulation involves the original datagram first being
wrapped in a PPP frame, as with PPTP. The PPP frame is then inserted into a new IP
datagram with a UDP header and an L2TP header.

The resulting datagram can then have the IPSec transform applied (as noted in Chapter
20). In this case, an IPSec Encapsulating Security Payload (ESP) header and trailer and
an IPSec Authentication trailer are applied. These provide message integrity and authen
tication. The IP header contains the source and destination IP addresses that correspond
to the VPN client and VPN server.

_:1 Chapter 21. Virtual Private Networks (VPNs) I 503

L2TP Encryption
As noted above, an L2TP frame is encrypted with the IPSec ESP encryption mechanism.
The encryption keys are from the IPSec authentication process. These mechanisms are
further described in Chapter 20.

It is possible to have a non-IPSec-based (non-encrypted) L2TP connection where the
PPP frame is sent in plain text. However, a non-encrypted L2TP connection isn't rec
ommended for VPN connections over the Internet, because communications of this
type aren't secure.

Summary
VPNs provide a good method of linking remote users or remote offices to corporate
networks in a secure and scalable way. Windows 2000 provides both PPTP and L2TP,
em1hlirn:J interoner~hilitv with RFC-comnli~nt thirrl~n~rtv .'>ol11tion'>. Tmnlementirn:1 VPNs

__.. __..

is very straightforward with Windows 2000 both on the client and server.

I

I

Glossary

A
Address Resolution Protocol A protocol for
resolving IP addresses into physical (MAC)
addresses. See also Inverse ARP and Reverse
ARP.

AH See Authentication Header.

APIPA See Automatic Private JP Addressing.

ARP See Address Resolution Protocol.

ARP Cache A table for each interface of
static or dynamically resolved IP addresses
and their corresponding media access con
trol (MAC) addresses.

Asynchronous Transfer Mode A very high
speed, connection-oriented networking
technology, based on small 53-byte cells.

Authentication Header A part of the IP
header provided by IP Security that is used
to provide authentication, data integrity, and
optional replay-prevention services.

ATM See Asynchronous Transfer Mode.

Automatic Private IP Addressing A feature
of Windows 2000 (and Windows 98) that
enables the system to self-configure an IP
address and subnet mask from the range
169.254.0.0/16 in the absence of a static
configuration or a DHCP server.

B
Bandwidth Allocation Protocol A protocol
that dynamically controls the use of multi
linked lines, adding extra connections when

505

additional bandwidth is required, and drop
ping lines when not required.

BAP See Bandwidth Allocation Protocol.

Berkeley. Internet Name Domain A version
of the DNS service, written initially for UNIX
and ported to a wide variety of operating

BIND See Berkeley Internet Name Domain.

c
CIDR See Classless Interdomain Routing.

CIFS See Common Internet Filing System.

Classless lnterdomain Routing A route
aggregation technique to express a range of
class C network IDs as a single route.

Common Internet Filing System A platform
independent, RFC-compliant file sharing sys
tem. CIFS evolved from Windows' legacy
NetBIOS-based file sharing.

Compressed SLIP A simple compression
scheme used to compress IP and TCP head
ers to a 3-5-byte header on a SLIP link.

Congestion Avoidance A TCP algorithm that
provides a linear scaling of the actual Send
window. The actual Send window is
increased by one MSS for each full window
of data acknowledged.

C-SLIP See Compressed SLIP.

506 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

D
DHCP See Dynamic Host Configuration
Protocol.

DHCP Server A Windows 2000 service that
provides DHCP-based IP addresses and IP
configuration details to DHCP clients.

Diffie-Hellman Algorithm An algorithm for
establishing a shared key over an insecure
medium, and a component of the Oakley
key determination protocol.

Digital, Intel, and Xerox A consortium
which created the original 10 Mbps version
of Ethernet (a.k.a. DIX Ethernet).

DIX See Digital, Intel, and Xerox.

DNS_ See Domain Name System.

Domain Name System A set of services for
holding, updating and resolving computer
names and associated IP addresses for com
puters and other resources on the Internet or
on private TCP /IP networks.

Dynamic Host Configuration Protocol A
protocol for providing computers with IP
host configuration details. Also used to en
sure DHCP servers are authorized.

E
Encapsulating Security Payload A part of
the IP header provided by IP Security that
enables data encryption to provide packet
level privacy.

ESP See Encapsulating Security Payload.

F
Fast Recovery A TCP algorithm that more
quickly scales the TCP Send window when a
segment is retransmitted using Fast Retransmit.

Fast Retransmit A TCP algorithm that
retransmits a segment before the retransmis
sion time-out expires when multiple dupli
cate acknowledgments of the previously
received contiguous segment are
received.

FCS See Frame Check Sequence.

FDDI See Fiber Distributed Data Interface.

Fiber Distributed Data Interface A LAN
technology based on optical fiber-based to
ken passing ring, with a bit rate of 100 Mbps.

File Transport Protocol A protocol for
transferring files between heterogeneous
servers and clients. Internet Explorer sup
ports FTP. Additionally, Windows 2000 in
cludes a command-line FTP client and an
FTP Server (as part of IIS).

Frame Check Sequence A field in data link
protocol (i.e., Ethernet, PPP) used to provide
bit-level integrity services for a single frame.

Frame Relay A virtual circuit-based WAN
technology designed for the transmission of
data. Frame Relay is a streamlined version of
X.25.

FTP See File Transport Protocol.

G
Gateway A TCP /IP node that has routing
capability (also called an IP router).

Gratuitous ARP An ARP Request message
sent to a host's own IP address. Gratuitous
ARPs are used to check for duplicate IP
addresses.

H
Hash A one-way cryptographic algorithm
that takes an input message of arbitrary

I,
I

length and produces a fixed-length digest for
use with IPSec. If the hash, created by a
sender and sent with a message, is the same
as what the receiver computes, the message
is assumed to have been unaltered. Two
hash algorithms used by Windows 2000 are
Secure Hash Algorithm (SHA) and Message
Digest 5 (MDS).

Host A TCP /IP node that does not have
routing capability.

Host Group The set of nodes listening for
IP multicast traffic on a specific IP multicast
address.

HTTP See Hyper Text Transfer Protocol.

Hyper Text Transfer Protocol An application
protocol for transferring text, graphics, and
other data between an HTTP client and
server. Windows 2000 includes an HTTP
client, Internet Explorer, and an HTTP Server
as part of IIS.

ICMP See Internet Control Message Protocol.

IETF See Internet Engineering Task Force.

rGMP See Internet Group Management
Protocol.

llS See Internet Information Seroer.

IKE See Internet Key Exchange.

INARP See Inverse ARP.

Integrated Systems Digital Network A
method of carrying digital transmissions over
traditional telephone copper wire to provide
higher speed dial-up connections.

Internet Control Message Protocol A pro
tocol that works with IP to report errors and
control the flow of data.

Glossary I 507

Internet Engineering Task Force This is the
body that defines the Internet protocol and
oversees the development of the Internet and
the evolution of the TCP /IP protocol suite.
The standards developed by the IETF and
IETF working parties are published as RFCs.

Internet Group Management Protocol A
protocol for managing multicast group
membership.

Internet Information Server A windows
2000 service that provides Web, file transfer,
newsgroup, and mail facilities.

Internet Key Exchange A method of ex
changing keys used by IP Security, based on
ISAMP and Oakley.

Internet Protocol An unreliable, datagram
delivery service that operates at the Internet
Layer (the Network Layer of the OSI model).

Internet Security Association and Key
Management Protocol A framework for
managing keys within IP Security.

Inverse ARP Obtains a remote systems' IP
address, based on its Network Interface
Layer address. Used mainly in Frame Relay.
See also Address Resolution Protocol and
Reverse ARP.

IP See Internet Protocol.

IPSec See IP Security.

IP Security A suite of protocols and services
that provide authentication, integrity, and
privacy of IP datagrams.

ISAKMP See Internet Security Association
and Key Management Protocol.

ISDN See Integrated Systems Digital Network.

L
LAN See Local Area Network.

508 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

LDAP See Lightweight Directory Access
Protocol.

Lightweight Directory Access Protocol A
protocol for communication with a directory.
Windows 2000 Active Directory makes heavy
use of LDAP.

Link State Advertisement A packet sent by
an OSPF router to other OSPF routers to ad
vise the state of a router.

LLC See Logical Link Control.

Local Area Network A network of intercon
nected computers within a relatively small
geographic area that can share resources.

Logical Link Control A sub-layer of the OSI
Data Link Layer.

LSA See Link State Advertisement.

M
MAC See Media Access Control, Jl1AC
Address.

MAC Address An NIC's hardware address
(for Ethernet, this will be the 48-bit Ethernet
address).

Maximum Receive Unit The maximum size
of a PPP frame.

Maximum Segment Size The maximum size
of a TCP segment.

Maximum Transmission Unit The largest
frame that can be sent in a packet or frame
based network (e.g., 1526 bytes for Ethernet).

Media Access Control A sub-layer of the
ISO Data Link layer, as defined by the IEEE.

MRU See Maximum Receive Unit.

MSS See Maximum Segment Size.

MTU See Maximum Transmission Unit.

N
NBMA See Non-Broadcast Multiple Access.

NCP See Network Control Protocol.

NetBIOS A network interface for applica
tions and a set of network protocols provid
ing name services, session services, and
datagram services for NetBIOS applications.

Network Control Protocol A protocol for
negotiating the Data Link characteristics of a
point-to-point connection.

Network News Transport Protocol A proto
col used by computers for managing the ar
ticles posted on network news newsgroups.
Windows 2000 includes an NNTP client,
Outlook Express, and an NNTP Server (as
part of IIS).

NNTP See Network News Transport Protocol.

Node A network device running the TCP /IP
protocol.

Non-Broadcast Multiple Access A Network
Interface Layer technology that supports an
IP network segment with more than two
nodes, but with no facility to broadcast a
single packet to multiple locations (X.25,
Frame Relay, and ATM are NBMA network
types).

0
Oakley A protocol, used by IP Security, for
exchanging keys securely, using the Diffie
Hellman algorithm.

Open Shortest Path First A link state
based dynamic routing protocol for use
within a single autonomous system.

OSPF See Open Shortest Path First.

p
Packet lnterNet Groper A troubleshooting
utility which uses ICMP Echo Request pack
ets to provide information about reachablity
for a destination node.

Path MTU Discovery A method of discover
ing the highest IP MTU for all links between
two hosts.

PDU See Protocol Data Unit.

Permanent Virtual Circuit A path through a
virtual circuit packet-switching network (e.g.,
X.25) that is statically programmed into the
switches within the network.

PING See Packet InterNet Groper.

PMTU See Path MTU Discovery.

Point-to-Point Protocol A standardized
point-to-point network encapsulation
method that provides frame delimitation,
protocol identification, and bit-level integrity
services.

POP3 See Post Office Protocol.

Post Office Protocol A protocol for retriev
ing email from a mail server. The latest
version of this protocol is known as POP3.
Outlook Express is a POP3 client.

PPP See Point-to-Point Protocol

Protocol Data Unit The payload field for an
Ethernet frame.

PVC See Permanent Virtual Circuit.

R
Reverse ARP Reverse ARP obtains an IP ad
dress of a host from an RARP server, based a
MAC address. See also Address Resolution
Protocol and Inverse ARP.

Glossary I 509

Request For Comment A formal document
or standard, developed by an individual, the
IETF, or an IETF working group that defines
some part of the Internet Protocol suite.
Some RFCs are informational in nature while
others are Internet standards. RFCs are never
re-issued, but are superceded by new RFCs.

RFC See Request For Comment.

RIP See Routing Information Protocol.

Router A TCP/IP node that has routing ca
pability (also called a gateway).

Routing Information Protocol A distance
vector-based dynamic routing protocol.

s
Serial Line Internet Protocol A simple
packet-framing protocol for use on point-to
point links that offers only frame delimita
tion services. It doesn't provide protocol
identification or bit-level int~grity services.

Simple Mail Transfer Protocol A protocol
for exchanging mail, typically between mail
servers. IIS includes a limited function SMTP
server.

SLIP See Serial Line Internet Protocol.

Slow Start A TCP algorithm that provides a
quick scaling of the actual Send window. The
actual Send window is increased by one MSS
for each acknowledgment segment received.

SMTP See Simple Mail Transfer Protocol.

SONET See Synchronous Optical Network.

SVC See Switched Virtual Circuit.

Switched Virtual Circuit A path through a
virtual circuit packet-switching network (e.g.,
X.25) that is negotiated using a signaling
protocol each time a connection is initiated.

510 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Synchronous Optical Network An ANSI
standard specification for synchronous data
transmission on optical media. SONET pro
vides standards for a number of line rates up
to the maximum line rate of 9.953 gigabits
per second (Gbps).

T
TCP See Transport Control Protocol.

TOI See Transport Driver Interj ace.

Time-To-Live A field in an IP datagram
header used to determine how many links
on which the datagram can travel before
being discarded by an IP router.

Transport Control Protocol A reliable
stream-based transport protocol that runs on
top of the Internet Protocol.

Transport Driver Interface A layer of the
Windows 2000 network architecture.

TTL See Time-To-Live.

u
UDP See User Datagram Protocol.

User Datagram Protocol An unreliable
datagram protocol at the Transport Layer that
provides Application Layer process identifi
cation and a checksum.

v
Variable Length Subnet Masks A technique
of subnetting that produces subnets of differ
ent sizes, all derived from an original net
work ID.

VLSM See Variable Length Subnet Masks.

w
WAN See Wide Area Network.

Wide Area Network A geographically dis
persed network, under private control, but
which typically uses network connections
from a third party telecommunications
vendor. See also Local Area Network.

Windows Internet Name Service A NetBIOS
Name server, used by clients to register
NetBIOS names to IP address mappings and
to resolve NetBIOS names into IP addresses.

Windows Sockets This is a series of APis
that an application can call to transfer data
using TCP/IP. Winsock is, effectively, a net
work interface.

WINS See Windows Internet Name Service.

WINSOCK See Windows Sockets.

World Wide Web The World Wide Web
refers to resources available on the Internet
and accessed by HTTP.

WWW See World Wide Web.

x
X.25 A WAN technology based on virtual
circuit-based packet switching. X.25 was de
signed in the 1970s and provides a reliable,
connection-oriented Network Interface Layer.

511

'I
1)

ribliography

This bibliography provides a list of additional resources that may be helpful to readers.
It is divided into two sections: Books and White Papers. The books are divided up by
topic while the white papers are those that are available on Microsoft's web site. Some
of the books, particularly those listed under TCP /IP, cover multiple-topic areas. To avoid
duplication we have not listed these books twice.

All of these books were available for sale at the time this bibliography was written, how
ever, some books may be out of print, or may have been superceded by new versions.

Books

DHCP

DNS

1ne oooKs are 11stea Dy topic area; within each topic, they are listed alphabetically by
author.

Droms, Ralph, and Ted Lemon. DHCP. Indianapolis: Macmillan Computer Publishing,
1999.

Albitz, Paul, and Cricket Liu. DNS and BIND. 2d ed. Sebastopol, Calif.: O'Reilly
& Associates, Inc., 1997.

Masterman, Michael, Herman Kneif, Scott Vinick, et al. Windows NT DNS. Indianapolis:
New Riders, 1998.

IP Security

Doraswamy, Naganand, and Dan Harkins. IP Sec: The New Security Standard for the Internet,
Intranets and Virtual Private Networks. Upper Saddle River, N.].: Prentice Hall, 1999.

Schneier, Bruce. Applied Cryptography. New York: John Wiley & Sons, 1995.

Stallings, William. Cryptography and Network Security. Upper Saddle River, N.J.: Prentice
Hall, 1998.

IP Version 6

Huitema, Christian. IPV6-Tbe New Internet Protocol. Upper Saddle River, N.J.: Prentice
Hall, 1997.

Thomas, Stephen A. IPNG and the TCP/IP Protocols. New York: Wiley Computer
Publishing, 1996.

512 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Microsoft Windows NT

Solomon, David. Inside Windows NT Seattle: Microsoft Press, 1998.

Routing

Huitema, Christian. Routing in the Internet. Upper Saddle River, N.J.: Prentice Hall, 1999.

Perlman, Radia. Interconnections: Bridges and Routers. Reading, Mass.: Addison-Wesley,
1992.

TCP/IP

Bisaillon, Teresa, and Brad Werner. Hands-On TCP/JP with Windows NT 5.0. New York:
McGraw-Hill Publishing Company, 1998.

Burk, Robin, Martin J Bligh, and Thomas Lee. TCP/IP Blueprints. Indianapolis: Sams
Publishing, 1997.

Comer, Douglas. Jnternetworking with TCP/IP: Principles, Protocols and Architecture.
Vol. 1. New York: Prentice Hall, 1995.

Heywood, Drew. Networking with Microsoft TCP/IP. Indianapolis: New Riders
Publishing, 1977.

Minasi, Mark, Tod Lammie, and Minica Lammie. Mastering TCP/IP for NT Server. Alameda,
Calif.: SYBEX, 1997.

Rose, Marshall T. Tbe Simple Book. Upper Saddle River, N.J.: Prentice Hall, 1996.

Stevens, W. Richard. TCP/JP Illustrated. Volume 1: Principles, Protocols, and Architecture.
3rd ed. New York: Prentice Hall, 1995.

Virtual Private Networks

Kosiur, Dave. Building and Managing Virtual Private Networks. New York: John Wiley
and Sons, 1998.

Microsoft White Papers and Other Documents
The following are networking-related white papers and other documents that can be found
on the Microsoft web site. The title, author, and URL are listed.

All of the following white papers are also available on the companion CD-ROM.

File and Print Sharing

Leach, Paul, and Dan Perry. "CIFS: A Common Internet File System." Seattle: Microsoft
Corporation, 1996.

http://www.microsoft.com/Mind/1196/CIFS.htm

Bibliography I 513

IP Security

Microsoft Corporation. "IP Security for Microsoft Windows 2000 Server." Seattle: Microsoft
Corporation, 1999.

http://www.microsoft.com/Windows/seroer/zipdocs/JPSecurity.exe

TCP/IP

MacDonald, Dave. "TCP/IP Implementation Details for Windows 2000 RC 1." Seattle:
Microsoft Corporation, 1999.

http://www.microsoft.com/windows/seroer/Technical/networkingltcpip _implement.asp

Virtual Private Networks

WINS

Microsoft Corporation. "Understanding PPTP." Seattle: Microsoft Corporation, 1997.

http://www. microsoft. com/ntseroer/zipdocs/understanding_pptp. exe

Merrick, L. "Windows Internet Naming Service (WINS) Architecture and Capacity Plan
ning." A white paper from Corporate Network Systems and the Business Systems Divi
sion. Seattle: Microsoft Corporation, 1999.

http://www.microsoft.com/Windows/seroer/zipdocs/win2000.exe

Index

A
AALs. See ATM Adaptation Layers (AALs)
Access Control field, IEEE 802.5, 17
ACKs (acknowledgements)

cumulative acknowledgments, 282-283
delayed acknowledgements, 282
establishing TCP connections and, 263-264
Karn's algorithm and, 315
RTO and, 301-302
selective acknowledgments, 283-284

Active Directory (AD)
authentication in, 479
IPP operation in, 424
IPSec policies and, 483-484
zone transfer and, 372

Active Directory-integrated zones
definition of, 358
RRs and, 375

adapter status
definition of, 398
determining, 403

address allocation, CIDR, 129-130
address space and, 130
class C network IDs and, 129-130

address assignment, VPNs, 498-499
address classes

host IDs and, 112
multicast address classes, 111
network IDs and, 112
unicast address classes, 110-111

address conflict exchange, ARP, 68-69
Address fields

Frame Relay, 44
PPP, 33

addressing. See also IP addressing; IPv6 addressing
anycast addresses, 212
group addresses, 192
LAN encapsulations and, 3
Link Layer addresses, 212
MAC addresses, 14-15, 21-22, 137-138

addressing (continued)
multicast addresses, 212
unicast addresses, 212
WAN encapsulations and, 29

address ranges
binary subnetting and, 121-122
decimal subnetting and, 124

Address Resolution Protocol (ARP) i::.,7_ 7?

cache and, 58-60
detecting duplicate addresses with, 67-69
Frame Padding field and, 66
frame structure of, 62-66
Inverse ARP and, 69-70
LAN technologies for ARP messages.

See also local area networks (LANs)
overview of, 57-58
proxy ARP and, 70-72
registry settings for, 60-61
requests/replies and, 64-66
updating MAC addresses, 58-60

515

WAN technologies for ARP messages. See wide
area networks (WANs)

address space, CIDR, 130
Aggregatable Global unicast addresses, 214-215
AH. See Authentication Header (AH)
aliases, resolving, 369-370
all-subnets-directed broadcast, 135
American National Standards Institute (ANSI), 23
analog phone lines

PPP and, 35
WANS and, 29

ANSI (American National Standards Institute), 23
anti-replay service, IPSec, 479
anycast addresses, 212, 216
API (Application Programming Interface), 479-480
APIPA. See Automatic Private IP Addressing (APIPA)
Application Layer

periodic advertisement and, 228
reliability and, 228

516 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

Application Layer (continued)
sending/receiving messages to/from DHCP

servers, 324-325
transporting data with TCP and UDP, 227, 235

Application Layer protocols
connecting to remote sites and users·. See Virtual

Private Networks (VPNs)
file sharing services. See Common Internet File

System (CIFS)
file transfer services. See File Transfer

Protocol (FTP)
IP configuration services. See Dynamic Host

Configuration Protocol (DHCP)
mail services. See Simple Mail Transfer

Protocol (SMTP)
naming services. See Domain Name Service (DNS);

Windows Internet Name Service (WINS)
printer sharing services. See Internet Printing

Protocol (IPP)
security services. See IP Security (IPSec)
Web publishing services. See HyperText Transfer

Protocol (HTTP)
Application Programming Interface (API), 479-480
ArpAlwaysSourceRoute, ARP registry settings, 61
ARPANET, 351, 477
ArpCacheLife, ARP registry settings, 59
ArpCacheMinReferencedLife, ARP registry

settings, 59-60
ArpRetryCount, ARP registry settings, 67
ArpTRSingleRoute, ARP registry settings, 61
ArpUseEtherSNAP, ARP registry settings,

13-14, 60-61
ASCII data type, FTP, 465
asynchoronous links, PPP, 35
Asynchronous Transfer Mode (ATM), 46-55.

See also ATM Adaptation Layers (AALs)
architecture of, 49-51
ATM cell and, 47-49
overview of, 46-47
WANs and, 29

ATM Adaptation Layers (AALs), 51-55
AAL5 fields and, 52
AAL5 segmentation flags and, 48
convergence sublayer and, 51
multiprotocol encapsulation with AAL5, 54-55
SAR sublayer and, 51
sending IP datagrams over ATM with AAL5, 53-54

authentication
CIFS and, 436
ESP and, 487
IPSec and, 477-479
PPP and, 496
VPNs and, 497-498

Authentication Header (AH), 485-487
computing authentication data and, 487
IPv6 and, 223
layout of, 486
overview of, 485
packet transform and, 486-487

Automatic Private IP Addressing (APIPA), 326

B
Backward Explicit Congestion Notification

(BECN), 46
binary method, subnetting, 117, 118-122
binary numbers, converting, 108
bit-level integrity

LAN encapsulations and, 3
WAN encapsulations and, 29-30

bit stuffing, PPP, 36
block mode, FTP, 466
B-node (broadcast node)

end-node types and, 390
Microsoft-modified, 391
name registration request and, 398
WINS proxy and, 393

Bootstrap Protocol (BOOTP)
BOOTP forwarding and, 325
BOOTP Support and, 327-328
DHCP and, 322, 350

bridging. See translational bridging
broadcast addressing. See IP broadcast addressing
broadcast links, IP routing, 140-141
broadcast node. See B-node (broadcast node)

c
cacheable, HTTP, 442
caching

HTTP, 442, 460-461
negative caching and, 361
resolver cache and, 360

Callback Control Protocol (CBCP), 496

canonical names (CNAME)
definition of, 355-356
RRs and, 355, 376

CBCP (Callback Control Protocol), 496
CCP (Compression Control Protocol), 496
Cell Loss Priority (CLP), ATM cells, 49
Challenge Handshake Authentication Protocol

(CHAP), 497-498
character stuffing

PPP and, 35
SLIP and, 30-31

chunked transfer codings, HTTP, 459
CIDR. See Classless Inter-Domain Routing (CIDR)
CIFS. See Common Internet File System (CIFS)
Class addresses

Class A, 110, 119
Class B, 111, 120
Class C, 111, 120, 129-130
Class D, 111
Class E, 111
subnetting, 119-120

class-based routing, 155-156
Classless Inter-Domain Routing (CIDR), 128-131

address allocation and, 129-130
routing and, 131

classless routing, 156
clients

DHCP, 322
DNS, 367
HTTP, 442

CLP (Cell Loss Priority), ATM cells, 49
CNAME. See canonical names (CNAME)
codings, HTTP

chunked transfer codings, 459
content codings, 458
transfer codings, 459

Command/Response (C/R) field, Frame Relay, 46
Common Internet File System (CIFS), 434-439

connection management with, 437
distributed file system operations of, 438
file and printer access with, 437
name resolution and connection establishment

in, 434-436
opportunistic locks of, 438-439
overview of, 423, 434
read-ahead and write-behind features of, 438
session disconnection in, 436-437

compression
CCP and, 496
FTP and, 466
MPPC and, 497
VPNs and, 499.

Index I 517

Compression Control Protocol (CCP), 496
confidentiality

ESP, 487
IPSec, 479

congestion collapse, 302-303
Connection Sharing, NAT, 396
content codings, HTTP, 458
content negotiation, HTTP

agent-driven, 459-460
server-driven, 460
transparent, 460

control rnnnPrtinn PTP

definition of, 461
FTP session connections and, 462

Control field
Frame Relay, 44
IEEE 802.2, 10-11
PPP, 33

Convergence sublayer (CS), AAL, 51
Copy field, IP options, 96
Cost field, IP header, 82
CIR field, Frame Relay, 46
cumulative acknowledgment scheme, 282-283
cwind variable, 317

D
data. See also Transmission Control Protocol (TCP)

data flow
frame formats for transmission of, 4
FTP connections for, 461, 462
FTP structures for, 464
FTP transfer of, 464
UDP and TCP data transportation of, 227, 235

data circuit-terminating equipment (DCE), X.25, 39
datagrams. See IP datagrams
Data Link Layer, OSI

LAN services of, 3
WAN services of, 29-30
X.25 and, 40

data terminal equipment (DTE), X.25, 39
Data Transfer Process (DTP), 461-462

518 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

DCE (data circuit-terminating equipment), X.25, 39
DE (Discard Eligibility), Frame Relay, 46
decimal method, subnetting, 117, 122-124
decimal numbers, converting, 109
DefaultTOS, 82
DefaultTTL, 84
defending node, ARP, 68
delayed acknowledgements, 282
Delay field, IP header, 81
delimitation

LAN encapsulations and, 3
SLIP and, 30-31
WAN encapsulations and, 29

denial-of-service attack. See SYN attacks
Destination Address field

Ethernet II, 5
FDDI, 24
IEEE 802.3, 10
IEEE 802.5, 17-18
IP, 86-87

Destination field, IP routing table, 143
destination host receiving process, 152-153
Destination Options header, IPv6, 221
Destination Service Access Point (DSAP), 10
DPS (Distributed File System), 434
DHCP. See Dynamic Host Configuration

Protocol (DHCP)
DHCPACK, DHCP messages, 325, 340-341
DHCPDECLINE, DHCP messages, 325, 341-343
DHCPDISCOVER, DHCP messages, 324, 334-336
DHCPINFORM, DHCP messages, 325, 346-347
DHCPNAK, DHCP messages, 325, 343-345
DHCPOFFER, DHCP messages, 324, 336-338
DHCPRELEASE, DHCP messages, 325, 345-346
DHCPREQUEST, DHCP messages, 324, 338-340
Dial-Up Networking (DUN) connection, 492
Digital Intel Xerox (DIX). See Ethernet II
directory-integrated zone replication, 363
Discard Eligibility (DE), Frame Relay, 46
discovery. See neighbor discovery
Distributed File System (DPS), 434
distributed file system operations, 438
DLCI field, Frame Relay, 45
DNS. See Domain Name Service (DNS)
domain names, 353
Domain Name Service (DNS)

background of, 351
CIFS and, 434

Domain Name Service (DNS) (continued)
compared with NetBIOS, 408-409
compared with WINS, 387
integration with DHCP, 326
resolver cache and, 360

Domain Name Service (DNS), key terms, 352-367
AD-integrated zones, 358
CNAMEs, 355-356
components of, 352-353
directory-integrated zone replication, 363
DNS resolver, 359-360
DNS resolver cache, 360
DNS zones, 356-357
domain names, 353
domain name space, 353
dynamic DNS, 365-366
forwarder and slave servers, 364-365
incremental zone transfers, 362-363
inverse queries, 359
IPv6 support and, 366-367
negative caching, 361
query classes, 359
query operations, 356
resource records (RRs), 354-355
reverse-lookup zones, 358
reverse queries, 359
round robin load balancing, 365
top-level domains, 353
update operations, 356
zone delegation, 363-364
zone transfer, 361-362.

Domain Name Service (DNS), messages, 377-384
name-query messages, 382
name-query response messages, 383
name update messages, 383-384
name update response messages, 384
query messages, 378-380
reverse-name query messages, 383
RR format and, 380-381
update messages, 381-382

Domain Name Service (DNS), operation of,
367-373

configuring client functions of, 367
dynamically updating, 332, 370-372
resolving aliases with, 369-370
resolving names with, 368-369
transferring zone information with, 372-373
updating DNS entries, 331-332

Domain Name Service (DNS), Resource Records
(RRs), 373-377

AD-integrated zone RRs and, 375
canonical names (CNAME) RR, 376
definition of, 373-375
host address (A) RR, 375
1Pv6 host record (AAAA) RR, 376
location of RRs, 375
mail exchanger (MX) RR, 376
pointer (PTR) RR, 376
service locator (SRV) RR, 376-377
Windows 2000 support and, 375-377
zone data and, 374-375

domains
domain names and, 353
IPSec policies and, 483-484
top-level domains and, 353
zones and, :55 7

Don't Fragment (DP) flag, fragmentation,
88, 93

dotted decimal notation, 114-115
drivers, IPSec, 482
DSAP (Destination Service Access Point), 10
DTE (data terminal equipment), X.25, 39
DTP (Data Transfer Process), 461-462
DUN (Dial-Up Networking) connection, 492
duplicate IP address detection.

See gratuitous ARP
Dynamic DNS

· definition of, 365-366
dynamic updating with, 332, 370-372

Dynamic Host Configuration Protocol (DHCP),
321-328

APIPA and, 326
BOOTP Support and, 327-328
clients and servers of, 322
DNS integration and, 326
function of, 322
IP configuration with, 321
leases/reservations and, 325
messages of, 324-325
multicast scopes and, 327
option classes of, 324
RAS and, 499
relay agents and, 325
RRAS and, 327
scopes and options of, 323
unauthorized DHCP servers and, 326

Index I 519

Dynamic Host Configuration Protocol (DHCP),
messages, 332-347

DHCPACK, 340-341
DHCPDECLINE, 341-343
DHCPDISCOVER, 334-336

· DHCPINFORM, 346-347
DHCPNAK, 343-345
DHCPOFFER, 336-338
DHCPRELEASE, 345-346
DHCPREQUEST, 338-340
general message format, 332-334
message fields and descriptions, 333-334

Dynamic Host Configuration Protocol (DHCP),
operation of, 328-332

changing subnets and servers, 329-330
detecting unauthorized DHCP servers, 331
obtaining initial leases, 328-329
renewing leases, 329
updating DNS entries, 331-332
using relay agents, 330-331

Dynamic Host Configuration Protocol (DHCP),
options of, 347-350

option formats, 347
options present in all DHCP messages, 348-349
options requested by DHCP clients, 349-350
options supported by Windows 2000, 348-350
vendor-specific options, 350

dynamic routing, 158-159
dynamic updates, DNS. See Dynamic DNS·

E
EA (Extended Address) field, Frame Relay, 45-46
EAP (Extensible Authentication Protocol), 498
EFCI (Explicit Forward Congestion Indication),

ATM cells, 48
embedded printing, IPP, 426
EnableDeadGWDetect, registry settings, 307
EnablePMTUBHDetect, registry settings, 174
EnablePMTUDiscovery, registry settings, 6
Encapsulating Security Payload (ESP), 487-488

header layout of, 488-489
packet layout and transform of, 489-490

encapsulation. See also LAN encapsulation
L2TP and, 502
PPTP and, 500
TCP segments and, 236
UDP messages and, 228-229

520 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

encryption
ESP and, 487
L2TP and, 503
MPPE and, 497
PPTP and, 501
VPNs and, 499

End Delimiter field
FDDI and, 25
IEEE 802.5; 18

end-nodes, 387
End Of Option List, IP options, 97
entity, HTIP, 443
ESP. See Encapsulating Security Payload (ESP)
Ethernet

Ethernet-based TCP connections and, 291
Frame Padding field and, 66
IEEE 802.3 frame format and, 9-14
interframe gap of, 7
LAN technologies and, 3
MAC addresses and, 14-15
multicast addresses and, 137
overview of, 4

Ethernet II frame format, 4-8
comparing with IEEE 802.3, 11
header and trailer fields of, 5-7
interframe gap of, 7
minimum frame size of, 7-8

EtherType field, Ethernet II, 5-6
Explicit Forward Congestion Indication (EFCI),

ATM cells, 48
Extended Address (EA) field, Frame Relay, 45-46
Extensible Authentication Protocol (EAP), 498

F
fan out printing, IPP, 425
fast recovery, 316
fast retransmit, 315-317

fast recovery and, 316
TcpMaxDupAcks and, 316

PCS. See Frame Check Sequence (PCS)
FECN (Forward Explicit Congestion Notification), 46
Fiber Distributed Data Interface (FDDI)

FDDI SNAP and, 26-28
header and trailer fields of, 23-26
IEEE 802.2 LLC header and, 25-26
LAN technologies and, 3

Fiber Distributed Data Interface (FDDI) (continued)
MAC addresses and, 28
multicast addresses and, 137-138

File ID (FID), CIFS, 436
file sharing. See also Common Internet File

System (CIFS)
accessing files, 437
overview of, 423

file structure, FTP, 464
File Transfer Protocol (FTP), 461-468

client-server sessions of, 463
commands of, 461, 467
connection management in, 465
data structures of, 464
data transfer with, 464
data types and, 464
introduction and terminology of, 461-462
operation of, 462-463
replies of, 467
response codes of, 468
restarting data transfers and, 466
server-to-server sessions of, 463

FIN segments, TCP, 270
Flags field

Frame Relay, 44
IP, 83
PPP, 33

flat routing, 156-157
flow control, TCP, 295-300
forwarder and slave servers, DNS, 364-365
Forward Explicit Congestion Notification

(FECN), 46
Forwarding IP Address field, 144
forwarding processes, IP router, 151-152
forward-path, SMTP, 469
FQDN (fully qualified domain name), 353
fragmentation, IP, 87-96

avoiding fragmentation, 93-96
changes in IP header and, 89
example of, 89-91, 91-92
fragmentation fields and, 88-89
fragmenting fragments and, 93
PMTU Discovery and, 171-172
reassembly and, 76

fragment blocks,. 89
Fragment header, IPv6, 222-223
Fragment Offset field, 83, 88-89

Frame Check Sequence (FCS)
Ethernet II, 6-7
FDDI, 25
Frame Relay, 44
IEEE 802.3, 10
IEEE 802.5, 18
PPP, 34

Frame Control field
FDDI, 23-24
IEEE 802.5, 17

frame formats, 4
Frame Padding field, 66
Frame Relay, 42-46

address field of, 45-46
compared with X.25, 43
encapsulation and, 44-46

remote site connections and, 491
WANs and, 29

frame size, Ethernet, 7-8
Frame Status field

FDDI, 25
IEEE 802.5, 19

frame structure, ARP, 62-66
FTP. See File Transfer Protocol (FTP)
fully qualified domain name (FQDN), 353
Functional Address bit, Token Ring, 22

G
gateways

HTTP and, 442
retransmission behavior and, 306-307

General Format Indicator (GFI), X.25, 41
Generic Float Control (GFC), ATM cells, 47-48
Generic Routing Encapsulation (GRE), 500
GFI (General Format Indicator), X.25, 41
GlobalMaxTcpWindowSize, registry

settings, 292
GPOs (Group policy Objects), 483-484
gratuitous ARP, 67-69

address conflict exchange and, 68-69
ArpRetryCount and, 67
defending node and, 68
offending node and, 67-68

GRE (Generic Routing Encapsulation), 500
Group policy Objects (GPOs), IPSec, 483-484

groups
addressing, 192

Index I 521

naming Internet groups, 388
Group-Specific Query message, IGMPv2, 201

H
handshaking

CHAP, 497-498
PAP, 497
TCP, 259

Hardware Address Length field, ARP, 63
Hardware Type field, ARP, 62-63
hash algorithms

AH and, 485
ESP and, 487

neac.ier \....necKsum ne10, l.l:' neaaer, ~()
Header Error Check (HEC), ATM cells, 49
Header Length field, IP header, 79
headers, HTTP

entity header fields, 455-456
general header fields, 457-458
request header fields, 451-454
response header fields, 454-455

headers, IP, 78-87
headers, IPv6

Authentication header, 223
Destination Options header and, 221
extension headers of, 220
fields of, 220
format of, 219
Fragment header, 222-223
Hop-by-Hop Options header and, 22.1
Routing header, 222

HEC (Header Error Check), ATM cells, 49
hierarchical routing, 156-157
H-node (hybrid node), 391, 393, 399
Hop-by-Hop Options header, IPv6, 221
host address (A) RR, 355, 375
host discovery, 218-219
hosted printing, IPP, 425
host group: See multicast group
host IDs, enumerating, 112
Host Membership Query messages, IGMPvl, 197
Host Membership Report messages, IGMPvl, 197
host routes, 144
hybrid node CH-node), 391, 393, 399

522 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

HyperText Transfer Protocol (HTTP), 441-461
caching and, 460-461
codings of, 458-459
content negotiation on, 459-460
introduction and terminology of, 441-443
IPP print jobs and, 423
messages and, 444-445
operation of, 441-443
request messages and, 445-446
response messages and, 446-458
URis and, 443-444

IANA (Internet Assigned Numbers Authority), 231
ICMP. See Internet Control Message

Protocol (ICMP)
ICMP Destination Unreachable, 167-171

code values and meanings of, 168-169
fields of, 167
tracing, 169-171

ICMP Echo/Echo Reply, 165-167
fields of, 166
structure of, 167

ICMP Parameter Problem, 182-183
ICMP Redirect, 176-178

fields of, 178
process of, 177
structure of, 177

ICMP Router Discovery, 178-181
registry settings for, 181
Router Advertisement and, 179-180
Router Solicitation and, 180-181

ICMP Source Quench, 174-176
fields of, 175-176
structure of, 175

ICMP Time Exceeded, 181-182
fields and structure of, 182
when to set, 181

Identification field, IP, 83, 87-88
IEEE 802.2, 10-11, 19, 25-26
IEEE 802.3 frame format, 9-14

ArpUseEtherSNAP and, 13-14
comparing with Ethernet II, 11
header and trailer fields of, 9-10
IEEE 802.2 LLC header and, 10-11
IEEE 802.3 SNAP and, 11-13

IEEE 802.5 frame format
Access Control field and, 17
header and trailer fields of, 17-19
IEEE 802.5 SNAP and, 19-21
LLC header and, 19
Token Ring and, 16-19

IETF (Internet Engineering Task Force), 322
I/G bit. See Individual/Group (l/G) bit
IGMPLevel, registry setting, 192
IGMP proxy mode, 205-206
IGMP router mode, 205

multicast group members on, 206-207
multicast sources on, 207

IGMP Version 1 (IGMPvl), 197-200
example of use of, 198-200
Host Membership Query messages and, 197
Host Membership Report messages and, 197
message structure of, 198

IGMP Version 2 (IGMPv2), 200-203
example of use of, 203
fields of, 202
Group-Specific Query message of, 201
Leave Group message of, 200-201
message structure of, 201-202
multicast queries and, 201

IIS. See Internet Information Server (IIS)
IKE (Internet Key Exchange), IPSec, 479
image data type, FTP, 465
InARP (Inverse ARP), 69-70
incremental zone transfers, 362-363, 372
Individual/Group (I/G) bit

Ethernet MAC addresses and, 14
Token Ring MAC addresses and, 21

informed discard, 163
Integrated Services Digital Network (ISDN)

PPP and, 36
WANs and, 29

integrity service, IPSec, 479
Interface field, IP routing table, 144
interfaces, 211
International Organization for Standardization

(ISO), 501
Internet, remote site connections and, 491
Internet Assigned Numbers Authority (IANA), 231
Internet Control Message Protocol (ICMP), 163-190.

See also entries under ICMP
message structure and fields of, 164

Internet Control Message Protocol (ICMP)
(continued)

message types, Destination Unreachable, 167-171
message types, Echo/Echo Reply, 165-167
message types, Parameter Problem, 182-183
message types, Redirect, 176-178
message types, Router Discovery, 178-181
message types, Source Quench, 174-176
message types, Time Exceeded, 181-182
overview of, 163
PATHPING utility and, 189-190
PING utility and, 184-185
PMTU Discovery and, 171-174
TRACERT utility and, 186-189

Internet Engineering Task Force (IETF), 322
Internet Group Management Protocol (IGMP),

1 01 _ ?(17 \.'on nlc:r. ,,.,.,1-,..;nc: .,.,.,,-1,.,,.. Tr!~!fD

IGMPvl and, 197-200
IGMPv2 and, 200-203
IP Multicasting and, 191-196
message structure of, 196-197
Windows 2000 support and, 204-207

Internet groups, NetBIOS names, 388
Internet Information Server (IIS). See File

Transfer Protocol (FTP); HyperText Transfer
Protocol (HTTP); Simple Mail Transfer
Protocol (SMTP)

Internet Key Exchange (IKE), IPSec, 479
Internet Layer. See Internet Control Message

Protocol (ICMP); Internet Group Management
Protocol (IGMP); Internet Protocol (IP);
Internet Protocol Version 6 (IPv6)

Internet Printing Protocol (IPP), 423-434
embedded printing and, 426
fan out printing and, 425
hosted printing and, 425
job-description attributes of, 431-432
job-template attributes of, 430
operation attributes of, 429
operations of, 428-429
overview of, 423-424
printer-description attributes of, 432-433
request/response mechanisms of, 427-428
security of, 433-434 .
specifications of, 426-427

Internet Protocol (IP), 75-106. See also entries under IP
configuration with DHCP, 321

Internet Protocol (IP) (continued)
datagrams and, 3-4, 77
fragmentation and, 87-96
header of, 78-87
MTU and, 77-78
options of, 96-106
services of, 75-77

Internet Protocol Version 4 (IPv4)
compared with IPv6, 209-210
embedded addresses and, 216
IPSec and, 478

Index I 523

Internet Protocol Version 6 (IPv6), 209-224. See also
entries under 1Pv6

addressing and, 212-219
developmental background of, 209-210
embedded IPv4 addresses and, 216
l....orirl.o 4=" 'l"'V'\,.,t- ,,,....,,..1 ",,t-:'",... ~c,,,....\.-.,..,-.:("'...-v'lor" c
--------- - -------- ------ - _, ------o ------------------- ----,

219-223
IPSec and, 478
IPv6 host record (AAAA) RR, 376
links, neighbors, link MTUs, and Link Address

layer, 212
overview of, 211-212
RFCs relating to, 211
transition mechanisms, IPv4 to IPv6, 224
Windows 2000 DNS support for, 366-367

Internet Security Association and Key Management
Protocol (ISAKMP), 481-482, 484-485

Internet Service Provider (ISP), 492
Internet Timestamp, 104-106

fields of, 104-105
setting with PING utility, 105-106

internetworks
protocols for, 75
remote site connections and, 491

Inverse ARP (InARP), 69-70
inverse queries, DNS, 359
IP. See Internet Protocol (IP)
IP addressing, 107-138. See also subnetting

binary/decimal conversions and, 108-109
broadcast addresses and, 134-136
DHCP and, 322
expression of, 107-108
IP header and, 109
multicast addresses and, 136-138
private addresses and, 132-134
public addresses and, 131-132

524 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

IP addressing (continued)
supernetting and, 128-131
types of, 107
unicast addresses and, 109-110
Windows 2000 private IP addressing and, 134

IP broadcast addressing, 134-136
all-subnets-directed broadcast, 135
limited broadcast, 135-136
network broadcast, 134-135
subnet broadcast, 135

IP datagrams
delivery of, 76
direct and indirect deliveries of, 139-140
IPSec and, 477
LAN technologies for, 4-28
Strict Source Route option for, 101
tunneling and, 494-496
WAN technologies for, 29-55

IP header
Cost field, 82
Delay field, 81
Destination Address field, 86
Flags field, 83
Fragment Offset field, 83
Header Checksum field, 86
Header Length field, 79
Identification field, 83
Options and Padding field, 86-87
Precedence field, 80-81
Protocol field, 85
Reliability field, 81
Reserved field, 82
Source Address field, 86
Throughput field, 81
Time To Live (TTL) field, 83-85
Total Length field, 83
Type Of Service (TOS) field, 80
Version field, 78-79

IP multicast addressing, 136-138. See also multicast
addresses

mapping to MAC addresses, 137-138
overview of, 136-137

IP multicasting, 191-196. See also entries under
multicast

host support for, 192-194
internetworks and, 195-196
overview of, 191-192

IP multicasting (continued)
receiving traffic on, 194
registry settings for, 192
router support for, 194-195
sending traffic on, 192-193
TTL settings for, 193

IP options
Copy field, 96
End Of Option List, 97
Internet Timestamp, 104-106
IP Router Alert, 103-104
Loose Source Route, 102-103
No Operation, 98
Option Class field, 96-97
Option Number field, 97
Record Route, 98-99
Strict Source Route, 100-102

IPP. See Internet Printing Protocol (IPP)
IP Router Alert, 103-104
IP routing, 139-162

class-based vs. classless routing, 155-156
direct and indirect deliveries of, 139-140
flat vs. hierarchical routing, 156-157
forwarding processes of, 151-153
overview of, 139-140
PMTU Discovery and, 173-174
single-path vs. multi-path routing, 154
single vs. multiple autonomous systems, 161
static vs. dynamic routing, 157-161
types of links for, 140-142
utilities for, 161-162
Windows 2000 and, 146-150

IP routing table, 143-146
destination values of, 143
field structure of, 143-144
route determination process of, 145-146
route types of, 144-145

IPSec policies, 479-480
applying, 484
obtaining, 483-484

IPSec Policy Agent, 479, 480-481
IPSec SA, 481, 485
IP Security (IPSec), operation of, 477-490

applying IPSec policies, 484
authentication header layout, 486
authentication header packet transform, 486-487
background of, 477-478

IP Security (IPSec), operation of (continued)
computing authentication header field

value of, 487
creating security associations (SAs) and, 484-485
ESP and, 487-488
ESP header layout and, 488-489
ESP packet layout and transform and, 489-490
generating new keys with, 485
obtaining IPSec policies, 483-484

IP Security (IPSec), terminology and concepts,
478-483

anti-replay service of, 479
architecture of, 479
authentication service of, 478-479
confidentiality service of, 479
driver for, 482
IKE and, 481
integrity service of, 479
IPSec policy and, 479-480
ISAKMP and, 481-482
key management service of, 479
modes of, 482-483
non-repudiation service of, 479
Oakley key determination protocol and, 482
Policy Agent and, 480-481
security associations (SAs) and, 481
SPI and, 482

IPv4 (Internet Protocol Version 4). See Internet
Protocol Version 4 (IPv4)

IPv6 (Internet Protocol Version 6). See Internet
Protocol Version 6 (IPv6)

IPv6 addressing
anycast addresses and, 216
multicast addresses and, 216-217
neighbor discovery and, 217-219
text representation of, 212-213
unicast addresses and, 213-216

IPv6 host record (AAAA) RR, 376
IPv6 support, 366-367
ISAKMP (Internet Security Association and Key

Management Protocol), 481-482, 484-485
ISDN (Integrated Services Digital Network), 29

PPP and, 36
ISO (International Organization for

Standardization), 501
ISP (Internet Service Provider), 492
iterative queries, DNS query classes, 359

Index I 525

J
job attributes, IPP, 426-427, 430-432

K
Karn's algorithm, 313-315
KeepAliveinterval, TCP connections, 270
keepalive segments, TCP connections, 259, 269
KeepAliveTime, TCP connections, 270
Kerberos authentication, 436, 479
keys

L

AH hasing, 485
determining with Oakley protocol, 482
ESP hashing, 487
generating new keys, 485
IPSec management service for, 479

L2TP. See Layer 2 Tunneling Protocol (L2TP)
LANs. See local area networks (LANs)
LAPB (Link Access Procedure-Balanced)

header and trailer fields of, 42
X.25 and, 40

lastack variable, timestamps, 311-313
Layer 2 Tunneling Protocol (L2TP), 501-503

comparing VPN protocols and, 493-494
encapsulation with, 502
encryption with, 503
installation of, 501-502
introduction to, 501

LCN (Logical Channel Number), X.25, 41-42
LCP (Link Control Protocol), 496
LDAP (Lightweight Directory Access Protocol), 484
leases, DHCP, 325

obtaining an initial lease, 328-329
renewing leases, 329

Leave Group message, IGMPv2, 200-201
Length field, IEEE 802.3, 10
Lightweight Directory Access Protocol (LDAP), 484
lightweight protocols, 228
Link Access Procedure-Balanced (LAPB)

header and trailer fields of, 42
X.25 and, 40

Link Control Protocol (LCP), 496
Link Layer addresses, 212
links, 212

526 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

LLC (Logical Link Control), 4
local area networks (LANs), 3-28

encapsulations and, 3-4
Ethernet and, 4-15
FDDI and, 22-28
Token Ring and, 15-22
VPNs and, 493

logical byte size, FTP, 462
Logical Channel Number (LCN), X.25, 41-42
Logical Link Control (LLC), 4
Loose Source Route, IP options, 102-103

fields of, 102
sending IP datagrams with, 102-103
setting with PING utility, 103

Lotus Notes, NetBIOS names, 389

M
mail exchanger (MX), RR, 355, 376
mail services. See Simple Mail Transfer

Protocol (SMTP)
MaxFreeTWTcbs, registry settings, 280
Maximum Receive Unit (MRU), 36
maximum segment size (MSS), 247-249

small segments and, 293
SWS and, 295

maximum transmission unit (MTU), 36
definition of, 212
IP and, 77-78
translational bridging and, 94-96

MaxUserPort, TCP ·ports, 240-241
MBONE (Multicast Backbone), 196
Media Access Control (MAC)

Ethernet special bits and, 14-15
FDDI special bits and, 21-22
frame formats and, 4
mapping MAC addresses to IP multicast

addresses, 137-138
Token Ring special bits and, 21-22
updating ARP cache entries and, 60

messages, DHCP
DHCPACK, DHCP messages, 340-341
DHCPDECLINE, DHCP messages, 341-343
DHCPDISCOVER, DHCP messages, 334-336
DHCPINFORM, DHCP messages, 346-347
DHCPNAK, DHCP messages, 343-345
DHCPOFFER, DHCP messages, 336-338

messages, DHCP (continued)
DHCPRELEASE, DHCP messages, 345-346
DHCPREQUEST, DHCP messages, 338-340
general format of, 332-334
sending and receiving application layer

messages, 324-325
messages, DNS, 377-384

name-query messages, 382
name-query response messages, 383
name update messages, 383-384
name 1.J.pdate response messages, 384
query messages, 378-380
reverse-name query messages, 383
RR format and, 380-381
update messages, 381-382

messages, HTTP, 444-458
definition of, 442
message headers, 445
message types, 444
request messages, 445-446
response messages, 446-458

messages, IGMP
IGMPvl, 198
IGMPv2, 201-202

messages, NetBIOS. See messages, WINS
messages, UDP, 228-229
messages, WINS, 404-420

format of, 404-405
Name Query Request message, 418-419
Name Query Response, 419
Name Refresh message, 416
Name Registration message, 413
Name Registration Response, 414-415
Name Release Request message, 416-417
Name Release Response message, 417-418
Name Response message, 419-420
Name Service header and, .405-407
NetBIOS name representation and, 408-409
question entries and, 409-410
resource record compression and, 412-413
resource records (RRs) and, 410-412
Wait Acknowledgement message, 420

methods, HTTP
method codes and, 445-446
safe methods and, 445-446

Metric field, IP routing table, 144
Microsoft CHAP (MS-CHAP), 498

Microsoft Exchange, NetBIOS names and, 389
Microsoft-modified B-node, 391
Microsoft Point-to-Point Compr~ssion (MPPC), 497, 499
Microsoft Point-to-Point Encryption (MPPE), 497, 499
Microsoft Windows 2000. See Windows 2000
M-node (mixed node), 390-391, 393, 399
More Fragments (MF) flag, 88
MP (Multilink Protocol). See Multilink Protocol (MP)
MPPC (Microsoft Point-to-Point Compression),

497, 499
MPPE (Microsoft Point-to-Point Encryption), 497, 499
MRU (Maximum Receive Unit), 36
MSS. See maximum segment size (MSS)
MTU. See maximum transmission unit (MTU)
multicast addresses, 216-217. See also IP multicast

addressing
......1...1 ,'.'.: ... :·•(°' 1,_,..t 111 -- ~~- ~---- ____ .._,._, --- ---~, ~ ~ ~

definition of, 212
fields of, 217
format of, 217

Multicast Backbone (MBONE), 196
multicast groups

definition of, 192
IGMP router mode and, 206-207

multicasting. See IP multicasting
multicast queries, IGMPv2, 201
multicast scopes, 327
multicast sources, IGMP router mode, 207
Multilink Protocol (MP), 36-38

function of, 36-37
header and trailer fields of, 37-38

multi-path routing, 154
multiple client protocols, 76

N
Nagle algorithm, 293-294
name defense, NetBIOS names, 392
name-query messages

DNS, 382, 383
NetBIOS, 402-403, 418-420

Name Refresh message, NetBIOS, 403, 416
name registration, NetBIOS, 391, 400-401
Name Registration message, NetBIOS, 413-415

format of, 413.
negative Name Registration Response, 414-415
positive Name Registration Response, 414

Index I 527

Name Registration Request, NetBIOS, 398-400
name renewal request, 400
negative reply, 399-400
positive reply, 399
wait acknowledgement, 400

name release, NetBIOS, 395
Name Release Request message, NetBIOS, 416-417
Name Release Response message, NetBIOS, 417-418
name representation, NetBIOS, 408-409
name resolution

CIFS, 434
DNS, 352, 368-369
WINS, 392-394

name servers (NS)
DNS components and, 353
RRs and, 355

Flags field of, 406-407
format of, 405
operation codes and meanings, 407

name service messages. See NetBIOS name service
messages

Name Service Question entries, 409-410
name spaces, 352. See also domain name space
name update messages, DNS, 383-384
name update response messages, DNS, 384
NAT (Network address translator), 244, 396
NBMA (non-broadcast multiple access) links,

IP routing, 142
NCP (Network Control Protocol), 496
NDIS (Network Driver Interface Specification),

482, 495
negative caching

definition of, 361
neighbor discovery, 217-219

host discovery and, 218-219
router discovery and, 218

neighbors, 212
NetBEUI, 385
NetBIOS

CIFS and, 434
file sharing and, 423
overview of, 385-386

NetBIOS names
format of, 404-405
header and, 405-407
name cache and, 394-395

528 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

NetBIOS names (continued)
name compression and, 412-413
name defense and, 392
name release and, 395, 401
name representation and, 408-409
name resolution and, 352, 392-'-394, 401-403
name service operations and, 389
question entries and, 409-410
refreshing, 403
registering, 398-401
resource records (RRs) and, 410-412
specifications of, 387-388
suffixes of, 388-389
time to live (TTL) and, 392
types of, 388

NetBI9S names, messages, 404-420
Name Query Request, 418-419
Name Query Response, 419
Name Refresh, 416
Name Registration, 413
Name Registration Response, 414-415
Name Release Request, 416-417
Name Release Response, 417-418
Name Response, 419-420
Wait Acknowledgement, 420

NetBIOS node types, 390-391
NetBIOS scope, 389-390
NetBIOS scope identifier, 390
Network address translator (NAT), 244, 396
network broadcast, 134-135
Network Control Protocol (NCP), 496
Network Driver Interface Specification (NDIS),

482, 495
network IDs

binary subnetting and, 118-121
classes and, 119-120
decimal subnetting and, 122-123
enumerating, 112
expressing and determining, 116-117
routes and, 144-145

Network Information Center (NIC), 351
Network Interface Layer. See also Address Resolution

Protocol (ARP); local area networks (LANs);
wide area networks (WANs)

IP independence form, 76
IP MTUs and, 77

Network Layer, OSI, 40

Network Layer Protocol Identifier (NLPID), X.25,
40-41, 44

Network Mask field, IP routing table, 143-144
Network Monitor

PING utility and, 185-186
TRACERT utility and, 187-188

network prefix notation, 115-116
network resources, 387
network-to-network interface (NNI), ATM cells, 47
network troubleshooting. See PING utility
NIC (Network Information Center), 351
NLPID (Network Layer Protocol Identifier), X.25,

40-41, 44
· NNI (network-to-network interface), ATM cells, 47

Node Operation, IP options, 98
nodes

definition of, 211
types of, 390-391

non-broadcast multiple access (NBMA) links,
IP routing, 142

non-repudiation service, IPSec, 479
NotRcvd/Inside data, receive window, 289
NotRcvd/Outside data, receive window, 289
NWLink (IPX), 385

0
Oakley key determination protocol, 482
offending node, 67-68
Open Systems Interconnection (OSI)

IP datagrams and, 3
PPTP and, 499
X.25 layers of, 40

Operation (Opcode) field, ARP header, 63
operation attributes, IPP, 427, 429
operations, DNS

query operations, 356
update operations, 356

operations, IPP, 428-429
opportunistic locks (oplocks)

batch oplocks, 439
exclusive oplocks, 438-439
level II oplocks, 439

option classes, DHCP, 324
Option Class field, IP options, 96-97
Option Number field, IP options, 97
options, DHCP, 347-350

options, DHCP (continued)
administration levels for, 323
option formats, 347
options present in all DHCP messages,

348-349
options requested by DHCP clients, 349-350
options supported by Windows 2000, 348-350
vendor-specific options, 350

Options and Padding field, IP header, 86-87
Organizational Unit (OU) policies, IPSec and,

483-484
OSPF, IP routing, 160
out of band data, 244
output devices, 424

p
packet assembler/disassembler (PAD), X.25, 39
packet-switched public data network (PSPDN),

X.25, 39
packet -switching, 7 6-77
Packet Type Identifier, X.25, 41-42
PAD (packet assembler/disassembler), X.25, 39
page structure, FTP, 464
Password Authentication Protocol (PAP), 497
Path MTU (PMTU) Discovery, 171-176

adjusting, 172-173
avoiding fragrrientation with, 171-172
registry settings for, 174
router support for, 173-174

PATHPING utility, 189-190
function of, 189-190
options of, 190
routing utilities and, 162

Payload field
Ethernet II, 6
FDDI, 25-26
IEEE 802.5, 18

payloads
IP payload and, 78
setting size of, 94

Payload Type Indicator (PTI), 48
PerformRouterDiscovery, Windows 2000, 181
permanent groups, 192
Physical Layer, OSI

ATM and, 50
X.25 and, 40

PID (Process ID), CIFS, 436

Index I 529

PING utility, 184-185
creating source-fragmented packets with, 94
example of use of, 185-186
options of, 184-185
routing utilities and, 162
setting DF flag with, 93
setting Loose Source Route with, 103
setting payload size with, 94
setting Record Route option with, 99
setting Strict Source Route with, 102
setting Timestamp option with, 105-106
setting TOS with, 82
setting TTL with, 85

PLP header, X.25, 40-41
PMTU Discovery. See Path MTU (PMTU) Discovery
P-node (point-to-point node), 390, 393, 398
nnintPr (P'rP) PP ~<::;<::; ~7h
.... , - - - , -
point-to-point links, IP routing, 141-142
Point-to-Point Protocol (PPP), 32-36

asynchoronous links and, 35
data link encapsulation and, 32
header and trailer fields of, 33-34
maximum transmission unit for, 36
synchronous links and, 35-36
VPNs and, 496-497

Point-to-Point Tunneling Protocol (PPTP), 499-501
comparing VPN protocols, 493-494
encapsulation with, 500
encryption with, 501
installation of, 500
introduction to, 499-500

Port numbers, IANA
TCP and, 240
UDP and, 232

PPP. See Point-to-Point Protocol (PPP)
PPTP. See Point-to-Point Tunneling Protocol (PPTP)
Preamble field

Ethernet II, 5
FDDI, 23
IEEE 802.3, 9-10

Precedence field, IP header, 80-81
printer attributes, IPP, 426, 432-433
printers

definition of, 424
installation of, 423-424

printer sharing. See also Internet Printing Protocol (IPP)
accessing printers, 437
overview of, 423

530 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

printing
embedded printing, 426
fan out printing, 425
hosted printing, 425

privacy, IPSec, 477
private addresses, IP addressing, 132-134
probing the window, 287
Process ID (PID), CIFS, 436
Protocol Address Length field, ARP, 63
Protocol field

IP, 85
PPP, 33

protocol identification
LAN encapsulations and, 3
WAN encapsulations and, 29

Protocol Interpreter (PI), 462
Protocol Type field, ARP, 63
proxy, HTIP, 442
proxy ARP, 70-72
PSPDN (packet-switched public data network),

X.25, 39
PTI (Payload Type Indicator), 48
public addresses, IP addressing, 131-132
public keys, 479

Q
queries, DNS

inverse queries, 359
query classes, 359
reverse queries, 359

query messages, DNS
flags field, 378-379
format of, 377
header fields of, 377-378
question entries and, 379-380

query operations, DNS, 356
query reply message, DNS, 356
question entries, NetBIOS, 409-410

R
range, HTIP, 442-443
RAS (Remote Access Server), 499
Rcvd/ ACKed/NotRetr data, receive window, 288-289
Rcvd/ACKed/Retr data, receive window, 288
Rcvd/UnACKed data, receive window, 289

read-ahead and write-behind operations, 438
reassembly, IP fragmentation and, 91-92
receiver-side flow control, 295
receiver-SMTP process, 469
receive window, TCP, 287-293

NotRcvd/Inside data of, 289
NotRcvd/Outside data of, 289
Rcvd/ ACKed/NotRetr data of, 288-289
Rcvd/ ACKed/Retr data of, 288
Rcvd/UnACKed data of, 289
setting size of, 290-293
shrinking the receive window, 290
sliding the receive window, 289-290

Record Route, IP options
fields of, 98
processing, 99
setting with PING utility, 99

record structure, FTP, 464
registry settings

EnableDeadGWDetect, 307
EnablePMTUBHDetect, 174
EnablePMTUDiscovery, 6
GlobalMaxTcpWindowSize, 292
MaxFreeTWTcbs, 280
SackOpts, 255
Tep 13230pts, 251
TcpDelAckTicks, 282
TcpinitialRTT, 309
TcpMaxConnectResponseRetransmissions, 268,

305-306
TcpMaxConnectRetransmissions, 265, 305
TcpMaxDataRetransmissions, 304-305
TcpMaxDupAcks, 316
TcpMaxHalfOpen, 268
TcpMaxHalfOpenRetried, 268
TcpMaxPortsExhausted, 269
TcpNumConnections, 265
TcpTimedWaitDelay, 279
TcpUseRFC1122UrgentPointer, 246
TcpWindowSize, 292-293

registry settings, ARP
ArpAlwaysSourceRoute, 61
ArpCacheLife, 59
ArpCacheMinReferencedLife, 59-60
ArpRetryCount, 67
ArpTRSingleRoute, 61
ArpUseEtherSNAP, 13-14, 60-61

registry settings, ICMP Router Discovery, 181
registry settings, PMTU Discovery, 174
registry settings, TCP connection establishment

process, 265-266
registry settings, TCP connection termination

process, 279-280
registry settings, Windows 2000

acknowledgment delay period and, 282
ARP and, 60-61
IP multicasting and, 192
PMTU and, 17 4
receive window size and, 292-293
Router Discovery and, 181
SYN attacks and, 268-269
TCP connection establishment and, 265-266
TCP connection termination and, 279-280
TCP SACK option and, 255
TCP Urgent Data and, 246
TCP Window Scale option and, 251

registry settings for ARP
Windows 2000, 60-61

registry settings for DefaultTOS
Windows 2000, 82

registry settings for DefaultTTL
Windows 2000, 85

registry settings for IP MTU
Windows 2000, 77

relay agents, DHCP, 325, 330-331
Reliability field, IP header, 81
Remote Access Server (RAS), 499
Remote Network VPN, 493
remote site connections. See Virtual Private

Networks (VPNs)
Remote User VPN, 493
replications, WINS, 397
replies, FTP, 461
request messages, HTTP, 445-446

header fields of, 451-454
method codes and, 445-446
overview of, 445
safe methods and, 445-446

request/response mechanisms, IPP, 427-428
requests, HTTP, 442
reservations, DHCP, 325
Reserved field, IP header, 82
resolver, DNS

definition of, 359-360

resolver, DNS (continued)
DNS components and, 353
resolving aliases, 369-370
resolving names, 368-369

Index I 531

resource record name compression, NetBIOS,
412-413

resource records (RRs)
definition of, 354-355, 373-375
DNS components and, 352
DNS messages and, 380-381
NetBIOS and, 410-412
Windows 2000 and, 355, 375-377
zone data and, 374-375

resource records (RRs), DNS, 373-377
AD-integrated zone RRs and, 375
canonical names (CNAME) RR, 376
host address (A) RR, 375
IPv6 host record (AAAA) RR, 376
location of RRs, 375
mail exchanger (MX) RR, 376
pointer (PTR) RR, 376
service locator (SRV) RR, 376-377

resources, HTTP, 442
response messages, HTTP, 446-458

definition of, 442
header fields of, 454-455
status codes and, 447-451

retransmission behavior, 303-308
calculating, 308-313
dead gateway detection and, 306-307
EnableDeadGWDetect and, 307
new connections and, 305-306
RTO and, 303
SACK option and, 307-308
TcpinitialRTT and, 309
TcpMaxConnectResponseRetransmissions and,

305-306
TcpMaxConnectRetransmissions and, 305
TcpMaxDataRetransmissions and, 304-305
timestamp options and, 309-313

retransmission time-out (RTO)
congestion collapse and, 302-303
Karn's algorithm and, 313-315
RTT and, 301-303

reverse-lookup zones, 358
reverse-name query messages, DNS, 383
reverse-path, SMTP, 469

532 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

reverse queries, DNS, 359
RIP, IP routing, 159
Rogue DHCP servers, 326
Rogue Server Detection, 331
round robin load balancing, 365
round-trip time (RTT), 301-303
route determination, 145
router discovery, 218
routers

definition of, 211
router support for IP multicasting, 194-195

ROUTE utility, 162
routing. See also Classless Inter-Domain Routing

(CIDR); IP routing
CIDR and, 131
dynamic routing, 158-159
flat vs. hierarchical routing, 156-157
host routes, 144
source routing, 100-103
static routing, 157-158
utilities for, 162
variable-length subnetting and, 128

Routing and Remote Access Server (RRAS), 204-207
DHCP and, 327
DHCP relay agents and, 325
IGMP proxy mode and, 205-206
IGMP router mode and, 205
multicast group members and, 206-207
multicast sources and, 207
PPTP and, 500
proxy ARP and, 71
WINS proxy and, 396

Routing header, IPv6, 222
Routing Information Indicator bit

Ethernet MAC addresses and, 15
Token Ring MAC addresses and, 22

RST (Reset) flag, TCP, 275
RTO. See retransmission time-out (RTO)
RTT (round-trip time), 301-303

s
SACK (selective acknowledgment scheme), 283-284,

307-308
SackOpts, registry settings, 255
SAP (Service Access Point), 11
SAR (Segmentation and Reassembly) sublayer, AAL, 51

SAs. See security associations (SAs)
scopes, DHCP, 323
Secure Sockets Layer (SSL), 433
security. See IP Security (IPSec)
security, IPP, 433-434
security associations (SAs), 481-485

IPSec SA and, 481
ISAKMP SA and, 481-482

Security Parameters Index (SPI), 482
Segmentation and Reassembly (SAR) sublayer,

AAL, 51
selective acknowledgment scheme (SACK), 283-284,

307-308
Sender Hardware Address (SHA) field, ARP, 63
Sender Protocol Address (SPA) field, ARP, 63
sender-side flow control, 295-300

congestion avoidance algorithm and, 298-300
slow start algorithm and, 296-298

sender-SMTP process, 469
sending host forwarding process, 151
send window, TCP, 284-287

Sent/ ACKed data of, 285
Sent/UnACKed data of, 285
sliding the send window, 286-287
Unsent/Inside data of, 286
Unsent/Outside data of, 286
zero send window and, 287

Sent/ ACKed data, 285
Sent/UnACKed data, 285
Serial Line Internet Protocol (SLIP), 30-32

character stuffing and, 30-31
frame delimitation services of, 30-31

Server Message Block (SMB)
CIFS and, 434
session setup and tear down, 436-437

servers
DHCP, 322, 326, 329-331
DNS, 364-365
HTTP, 442

Service Access Point (SAP), 11
service locator (SRV), RR, 355, 376-377
SHA (Sender Hardware Address) field, ARP, 63
Shiva Password Authentication Protocol (SPAP), 497
silent discard, 163
Silly Window Syndrome (SWS), 294-295

receiver-side avoidance of, 295
sender-side avoidance of, 295

Simple Mail Transfer Protocol (SMTP), 468-475
commands of, 471-474
introduction and terminology of, 468-469
operation of, 469-471
replies of, 474-475

single-path routing, 154
sliding windows, TCP, 284-293

receive window, 287-293
send window, 284-287

SLIP. See Serial Line Internet Protocol (SLIP)
small segments, 293-295

Nagle algorithm and, 293-294
SWS and, 294-295

SMB (Server Message Block)
CIFS and, 434
session setup and tear down, 436-437

SMTP. SAP SimnlP M~il Tr~nsfpr Prntnrnl ("MTPI

SNAP. See Sub-Network Access Protocol (SNAP)
encapsuation

SOA (start of authority), RR, 332, 355
SolicitationAddressBCast, Windows 2000, 181
SON (Synchronous Optical Network), PPP, 36
Source Address field

Ethernet II, 5
FDDI, 25
IEEE 802.3, 10
IEEE 802.5, 18
IP, 86

source routing, 100-103
Loose Source Route, 100-102
Strict Source Route, 100-102

Source Service Access Point (SSAP), IEEE 802.2, 10
SPA (Sender Protocol Address) field, ARP, 63
SPAP (Shiva Password Authentication Protocol), 497
SPI (Security Parameters Index), 482
SRV (service locator), RR, 355, 376-377
SSAP (Source Service Access Point), IEEE 802.2, 10
SSL (Secure Sockets Layer), 433
Stanford Research Institute (SRI), 351
Start Delimiter field

FDDI, 23
IEEE 802.3, 9
IEEE 802.5, 17

start of authority (SOA), RR, 332, 355
static routing, 157-158
status codes, HTTP

status code classes, 447
status code meanings, 447-451

sthresh variable, 317
stream mode, FTP, 466

Index I 533

Strict Source Route, IP options, 100-102
fields of, 101
sending IP datagrams with, 101
setting with PING utility, 102

subnet broadcast, 135
subnet masks, 114-116

dotted decimal notation and, 114-115
network prefix notation and, 115-116

subnetting, 113-128
all-zeros and all-ones, 125
binary method for, 117, 118-122
Class A network IDs, 119
Class B network IDs, 120
Class C network IDs, 120
rlPrim~ 1 mPthnrl fnr 117 1??_1 ?Li

DHCP messages, 329-330
dotted decimal notation and, 114-115
network IDs and, 116-117
network prefix notation and, 115-116
overview of, 113-114
process of, 117
subnet masks and, 114-116
variable-length subnetting, 125-128

Sub-Network Access Protocol (SNAP)
AAL5 and, 55
ArpUseEtherSNAP and, 13-14
IEEE 802.3 SNAP and, 11-13

supernetting, CIDR and, 128-131
SWS. See Silly Window Syndrome (SWS)
SYN (synchronize) segment

establishing TCP connections and, 259-262
retransmission behavior and, 305

SYN-ACK segment, 262-263
SynAttackProtect, 268
SYN attacks, 267-269

defending against, 268-269
example of, 267-268
results of, 267

synchronous links, PPP, 35-36
Synchronous Optical Network (SON), PPP, 36

T
Target Hardware Address (THA) field,

ARP, 64
Target Protocol Address (TPA) field, ARP, 64

534 I Microsoft Windows 2000 TCP Protocols and Services Technical Reference

T-carrier
PPP and, 36
WANs and, 29

Tcp13230pts, registry settings, 251
TCP connection establishment process, 260-266

ACK segment of, 263-264
registry settings for, 265-266
results of, 265
SYN (synchronize) segment of, 260-262
SYN-ACK segment of, 262-263

TCP connection reset, 275-277
TCP connections, maintaining

KeepAliveinterval, 270
keepalive segments and, 269
KeepAliveTime, 270

TCP connection states, 277-279
during connection establishment, 279
during connection termination, 279
table and illustration of, 277-278

TCP connection termination process, 270-275
FIN segments and, 270
registry settings for, 279-280
segment exchange in, 271-275

TcpDelAckTicks, registry settings, 282
TCP flags, 242-243
TCP header, 237-239

fields of, 237-239
structure of, 237

TcpinitialRTT, registry settings, 309
TcpMaxConnectResponseRetransmissions, registry

settings, 268, 305-306
TcpMaxConnectRetransmissions, registry settings,

265, 305
TcpMaxDataRetransmissions, registry settings,

304-305
TcpMaxDupAcks, registry settings, 316
TcpMaxHalfOpen, registry settings, 268
TcpMaxHalfOpenRetried, registry settings, 268
TcpMaxPortsExhausted, registry settings, 269
TcpNumConnections, registry settings, 265
TCP ports, 239-241

MaxUserPort and, 240-241
well known port numbers, 240

TCP pseudo header, 243-244
TCP segments, 236
TCP three-way handshake. See TCP connection

establishment process

TcpTimedWaitDelay, registry settings, 279
TCP Urgent Data, 244-246
TcpUseRFC1122UrgentPointer, registry settings, 246
TcpWindowSize, registry settings, 292-293
TFTP (Trivial File Transfer Protocol), 327
THA (Target Hardware Address) field, ARP, 64
Throughput field, IP header, 81
TID (Tree ID), CIFS, 436
timestamp, Internet Timestamp, 104-106

fields of, 104-105
setting with PING utility, 105-106

Timestamps option, TCP
delayed acknowledgments and, 311
Karn's algorithm and, 315
out-of-order segments and, 312
pauses in data and, 310
retransmission behavior and, 309-313

time to live (TTL)
definition of, 373
DNS, 367
NetBIOS, 392

Time To Live (TTL) field, IP header, 83-85
DefaultTTL and, 84
setting with PING utility, 85

Token Ring
IEEE 802.5 frame format and, 16-19
IEEE 802.5 SNAP and, 19-21
LAN technologies and, 3
MAC addresses and, 21-22
multicast addresses and, 138
overview of, 15-16

top-level domains, 353
Total Length field, IP header, 83
TPA (Target Protocol Address) field, ARP, 64
TRACERT utility, 186-189

Network Monitor and, 187-188
options of, 189
routing utilities and, 162
steps in function of, 186-187

transfer byte size, FTP, 462
transfer codings, HTTP, 459
transition mechanisms, IPv4 to IPv6, 224
translational bridging, 94-96
transmission channels; SMTP, 469
Transmission Control Protocol (TCP), 235-258.

See also entries under TCP
End Of Option List option, 246

Transmission Control Protocol (TCP) (continued)
flags of, 242-243
header format of, 237-239
MSS option, 247-249
No Operation option, 246
overview of, 235-236
ports of, 239-241
pseudo header of, 243-244
SACK option, 253-255
SACK-Permitted option, 252-253
TCP segments and, 236
Timestamps option, 255-258
urgent data and, 244-246
Window Scale option, 249-251

Transmission Control Protocol (TCP), connections,
259-280

LtCJ.1.lUUVJ.1 v1, £.//

establishing, 260-266
half-open connections and, 266-269
maintaining, 269-270
resetting, 275-277
states of, 277-278
terminating, 270-275, 279-280

Transmission Control Protocol (TCP), data flow,
281-300

ACK segments and, 281-284
data flow behavior overview, 281
sender-side flow control and, 295-300
sliding windows and, 284-293
small segments and, 293-295

Transmission Control Protocol (TCP), retransmission
and time-out, 301-317

calculating RTO, 308-313
fast retransmit and, 315-317
Karn's algorithm and, 313-315
retransmission behavior and, 303-308
RTO and, 301-303

Transport Layer. See also Transmission
Control Protocol (TCP); User Datagram
Protocol (UDP)

using TCP for reliability, 235
using UDP for minimum overhead, 227

transport mode, IPSec, 482-483
Tree ID (TID), CIFS, 436
Trivial File Transfer Protocol (TFTP), 327
tsrecent variable, 311-313
TTL (time to live)

definition of, 373

TTL (time to live) (continued)
DNS, 367
IP, 83--85
NetBIOS, 392

tunneling
HTTP and, 442

Index I 535

implementing VPNs by means of, 494-496
IPSec tunnel mode and, 482-483

Type Of Service (TOS) field, IP header, 80, 82

u
UDP. See User Datagram Protocol (UDP)
UDP header, 229-231

fields of, 229-230
structure of, 229

TT~n ~~-~'-~ ""l?'I ""l??
..._,~t"'.._, v, """'J.L "'-'JJ

MaxUserPort and, 232-233
well known port numbers, 232

UDP pseudo header, 230-231
U/L (Universal Locally) Administered bit

Ethernet MAC addresses and, 14-15
Token Ring MAC addresses and, 21

unauthorized DHCP servers, 326, 331
UNC (Universal Naming Convention), 423
UNI (user network interface), ATM, 47
unicast addresses

Aggregatable Global, 214-215
definition of, 212
local-use, 215
reserved, 213-214

unicast IP addressing, 109-110. See also subnetting
address classes and, 110-111
enumerating host IDs and, 112
enumerating network IDs and, 112

Uniform Resource Identifier (URI), 442-444
Uniform Resource Locator (URL), 442
unique names, 388
Universal Locally (U/L) Administered bit

Ethernet MAC addresses and, 14-15
Token Ring MAC addresses and, 21

Universal Naming Convention (UNC), 423
Unsent/Inside data, 286
Unsent/Outside data, 286
update messages, DNS

flags of, 381-382
format of, 381

update operations, DNS, 356

536 Microsoft Windows 2000 TCP Protocols and Services Technical Reference

URI (Uniform Resource Identifier), 442-444
URL (Uniform Resource Locator), 444
User class options, DHCP, 324, 350
User Datagram Protocol (UDP), 227-234

data transportation with, 227
DNS messages and, 377
header format of, 229-231
overview of, 227
ports of, 231-233
process for demultiplexing UDP messages, 233
UDP messages and, 228-229
uses for, 228

user network interface (UNI), ATM, 47

v
variable-length subnetting, 125-128

example of, 126-127
overview of, 125-126
routing and, 128

variant, HTIP, 443
VCis (Virtual Channel Identifiers), 48
VCs (virtual circuits), CIFS, 436
Vendor class options, DHCP, 324, 350
Version field, IP header, 78-79
Virtual Channel Identifiers (VCis), 48
virtual circuits (VCs), CIFS, 436
Virtual Path Identifiers (VPis), 48
Virtual Private Networks (VPNs), 491-503. See also

Layer 2 Tunneling Protocol (L2TP); Point-to
Point Tunneling Protocol (PPTP)

address assignment on, 498-499
authentication on, 497-498
clients and servers of, 493
data compression on, 499
data encryption on, 499
description of, 492-493
PPP and, 496-497
protocols for, 493-494
tunneling and, 494-496

VPis (Virtual Path Identifiers), 48
VPN. See Virtual Private Networks (VPNs)

w
Wait Acknowledgement message, NetBIOS, 420
WANs. See wide area networks (WANs)
Web publishing. See HyperText Transfer Protocol (HTTP)

wide area networks (WANs), 29-55
ATM encapsulation and, 46-55
Frame Relay encapsulation and, 42-46
point-to-point encapsulation and, 30-38
WAN encapsulations, 29-30
X.25 encapsulation and, 39-42

Windows 2000
authentication and, 479, 498
automatic private IP addressing and, 134
CIFS and, 434
controlling TCP connection terminations in, 279
DHCP and, 322-332
dynamic DNS implementation in, 332
dynamic routing and, 161
IP multicasting and, 204-207
maximum receive window size and, 290-293
name resolution in, 352
NetBIOS suffixes and, 388-389
RAS and, 499
registry settings for ARP, 60-61
registry settings for DefaultTOS, 82
registry settings for DefaultTTL, 85
registry settings for IP MTU, 77
Router Discovery and, 181
RRAS and, 71, 204-207, 500
RRs supported by, 375-377
static routing and, 158
WINS and, 387

Windows 2000 IP routing, 146-150
displaying example of, 146-147
maintenance of, 148-149
multihomed node example of, 148
process in, 149-150
route determination in, 150

Windows Internet Name Service (WINS), 398-403
CIFS and, 434
definition of, 387
determining·adapter status, 403
NetBIOS and, 352, 385-386
registering names, 398-400
releasing names, 401
resolving name registration conflicts, 400-401
resolving names, 401-403

Windows Internet Name Service (WINS), key terms
adapter status, 398
end-nodes, 387
Microsoft-modified B-node, 391
name defense, 392

Windows Internet Name Service (WINS),
key terms (continued)

name registration, 391
name release, 395
NetBIOS Name cache, 394-395
NetBIOS name resolution, 392-394
NetBIOS names, 387-388
NetBIOS name service operations, 389
NetBIOS names suffix, 388-389
NetBIOS name types, 388
NetBIOS node types, 390-391
NetBIOS scope, 389-390
network resources, 387
time-to-live (TIL), 392
WINS database entries, 397
WINS proxy, 396
WINS server replication, 397

wmaows internee Name service ~ WlNSJ, messages
format of, 404-405
Name Query Request message, 418-419
Name Query Response, 419
Name Refresh message, 416
Name Registration message, 413
Name Registration Response, 414-415
Name Release Request message, 416:_417
Name Release Response message, 417-418
Name Response message, 419-420
Name Service header and, 405-407
NetBIOS name representation and, 408-409
question entries and, 409-410
resource record compression and, 412-413
resource records (RRs) and, 410-412
Wait Acknowledgement message, 420

WINS. See Windows Internet Name Service (WINS)
WINS client, 387
WINS database entries, 397
WINS proxy, 396
WINS server replication, 397
write-behind and read-ahead operations, 438

x
X.25, 39-42

compared with Frame Relay, 43
encapsulation forms of, 40-42
overview of, 39-40
WANs and, 29

zero send window, 287
zones, DNS

AD-integrated zones, 358
compared with domains, 357

Index I 537

definition of, 356-357
directory-integrated zone replication, 363
incremental zone transfers, 362-363
reverse-lookup zones, 358
RRs and, 374-375
types of, 356
zone delegation, 363-364
zone transfer, 361-362, 372-373

is a Microsoft employee and technical writing lead for the
Microsoft Windows 2000 Resource Kit. He has been a technical writer and instructor of
TCP/IP and networking technology topics for six years and has written a large amount of
training material for both internal Microsoft training organizations and for a series of courses
for a local community college. As a Microsoft instructor and course designer, he has writ
ten introductory and advanced courses on TCP/IP and a course on the Windows NT 4.0
Routing and Remote Access Service. More recently, he wrote the Windows 2000 product
documentation and Resource Kit content for TCP /IP, routing, remote access, and virtual pri
vate networks. He has a Bachelor's degree in Engineering Physics and is a Microsoft Cer
tified Systems Engineer (MCSE), Microsoft Certified Trainer (MCT), and Master Certified
NetWare Engineer (MCNE).

is an independent computer consultant who has been working with Win
dows NT since 1993. After graduating with a BS in Computer Problem Solving from Carnegie
MAiion I Jniw~r~ity, hp \MnrkPrl nn twn c:111"f'~C:c:f1_11 ':'~~ ... ?!~~~ ~~'~!~~ ~~~j~~!~ (':~:-;:::::~:::-:'::::

Commander II and ICL's VME) before joining Andersen Consulting in 1981 where he was
a manager in the London office. He has been an independent consultant since 1987. Most
recently, he has worked in Redmond developing Windows 2000 Microsoft Official Curricu
lum (MOC) training material and is presently engaged in several consulting projects relat
ing tb Windows 2000. Thomas is a Fellow of the British Computer Society as well as a
Microsoft Certified Systems Engineer (MCSE), Microsoft Certified Trainer (MCT), and
Microsoft Valued Professional (MVP). Thomas lives in a cottage in the English countryside
with his wife Susan and daughter Rebecca.

The manuscript for this book was prepared and submitted to Microsoft Press in electronic form.
Text files were prepared using Microsoft Word 97 for Windows. Pages were composed by nSight,
Inc., using Adobe Pagemaker 6.5 for Windows, with text in Garamond Light and display type in
ITC Franklin Gothic. Composed pages were delivered to the printer as electronic prepress files.

Cover Designer:
Cover Illustrator:
Interior Graphic Designer:
Layout Artist:
Project Manager:
Tech Editor:
Copy Editor:
Proofreaders:
Indexer:

Girvin Strategic Branding & Design
Tom Draper Design
James D. Kramer
Tara Lynn Murray
Sarah Kimnach Hains
Tony Northrup
Judith Rothberg
Shimona Katz and Denise Sadler
Jack Lewis

There's no
substitute

for
experience.

Now you can apply the best practices from real

world implementations of Microsoft technologies

with NOTES FROM THE FIELD. Based on the extensive

field experiences of Microsoft Consulting Services,

these valuable technical references outline tried

and-tested solutions you can use in your own

company, right now.

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or
visit our Web site at mspress.microsoft.com. To locate your nearest
source for Microsoft Press products, or to order directly, call 1-800-
MSPRESS in the U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Deploying Microsoft® Office 2000
(Notes from the Field)
U.S.A. $39.99
U.K. £25.99 [V.A.T. included)

Canada $59.99
ISBN 0-7356-0727-3

Deploying Microsoft SQL Server™ 7.0
(Notes from the Field}
U.S.A. $39.99
U.K. £25.99
Canada $59.99
ISBN 0-7356-0726-5

Optimizing Network Traffic
(Notes from the Field}
U.S.A. $39.99
U.K. £25.99 [V.A.T. included)

Canada $59.99
ISBN 0-7356-0648-X

Managing a Microsoft Windows NT® Network
(Notes from the Field}
U.S.A. $39.99
U.K. £25.99
Canada $59.99
ISBN 0-7356-0647-1

Building an Enterprise Active Directory™
(Notes from the Field}
U.S.A. $39.99
U.K. £25.99 [V.A.T. included)

Canada $61.99
ISBN 0-7356-0860-1

Microsoft®
mspress.microsoft.com

Practical,
portable

guides for

troubleshooters
\ ,.·a\

For hands-on, immediate references
"'"""'""""'" , ... :11 .__,_ ·~-·· .L ... _ ••• _, __ , ___ ..a. ----'
\.I YW Ill I IVltJ JVU \.I VUUIV~l IVV'- CHIU

administer Microsoft Windows NT Server

4.0, Microsoft SQL Server 7.0, or

Microsoft Exchange 5.5, get the:

Microsoft® Windows NT® Server 4.0
Administrator's Pocket Consultant
ISBN 0-7356-057~-2 $29.99 ($44.99 Canada)

Microsoft SQL Server™ 7.0
Administrator's Pocket Consultant
ISBN 0-7356-0596-3 $29.99 ($44.99 Canada)

Microsoft Exchange 5.5
Administrator's Pocket Consultant
ISBN 0-7356-0623-4 $29.99 ($44.99 Canada)

Ideal at the desk or on the go, from workstation to workstation, these fast

answers guides focus on what needs to be done in specific scenarios to

support and manage these mission-critical IT products. Great software and

great learning solutions: Made for each other. Made by Microsoft.

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

NlicTOSoft®
mspress.microsoft.com

MICROSOFT LICENSE AGREEMENT
Book Companion CD

IMPORTANT-READ CAREFULLY: This Microsoft End-User License Agreement ("EULA") is a legal agreement between you
(either an individual or an entity) and Microsoft Corporation for the Microsoft product identified above, which includes computer
software and may include associated media, printed materials, and "online" or electronic documentation ("SOFTWARE PROD
UCT'). Any component included within the SOFTWARE PRODUCT that is accompanied by a separate End-User License
Agreement shall be governed by such agreement and not the terms set forth below. By installing, copying, or otherwise using the
SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you do not agree to the terms of this EULA, you are
not authorized to install, copy, or otherwise use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PROD
UCT, along with all printed materials and other items that form a part of the Microsoft product that includes the SOFTWARE
PRODUCT, to the place you obtained them for a full refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intel
lectual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the following rights:

a. Software Product. You may install and use one copy of the SOFTWARE PRODUCT on a single computer. The primary user
of the computer on which the SOFTWARE PRODUCT is installed may make a second copy for his or her exclusive use on a
portable computer.

b. Storage/Network Use. You may also store or install a copy of the SOFTWARE PRODUCT on a storage device, such as a
network server, used only to install or run the SOFTWARE PRODUCT on your other computers over an internal network;
however, you must acquire and dedicate a license for each separate computer on which the SOFTWARE PRODUCT is
installed or run from the storage device. A license for the SOFTWARE PRODUCT may not be shared or used concurrently on
different computers.

c. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may make the number of additional copies of
the computer software portion of the SOFTWARE PRODUCT authorized on the printed copy of this EULA, and you may use
each copy in the manner specified above. You are also entitled to make a corresponding number of secondary copies for
portable computer use as specified above.

d. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT that are identified within the SOFT
WARE PRODUCT as sample code (the "SAMPLE CODE"):

i. Use and Modification. Microsoft grants you the right to use and modify the source code version of the SAMPLE CODE,
provided you comply with subsection (d)(iii) below. You may not distribute the SAMPLE CODE, or any modified version
of the SAMPLE CODE, in source code form.

ii. Redistributable Files. Provided you comply with subsection (d)(iii) below, Microsoft grants you a nonexclusive, royalty
free right to reproduce and distribute the object code version of the SAMPLE CODE and of any modified SAMPLE
CODE, other than SAMPLE CODE, or any modified version thereof, designated as not redistributable in the Readme file
that forms a part of the SOFTWARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other
than the Non-Redistributable Sample Code is collectively referred to as the "REDISTRIBUTABLES."

iii. Redistribution Requirements. If you redistribute the REDISTRIBUTABLES, you agree to: (i) distribute the
REDISTRIBUT ABLES in object code form only in conjunction with and as a part of your software application product;
(ii) not use Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid
copyright notice on your software application product; (iv) indemnify, hold harmless, and defend Microsoft from and
against any claims or lawsuits, including attorney's fees, that arise or result from the use or distribution of your software
application product; and (v) not permit further distribution of the REDISTRIBUTABLES by your end user. Contact
Microsoft for the applicable royalties due and other licensing terms for all other uses and/or distribution of the
REDISTRIBUTABLES.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or
disassemble the SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable
law notwithstanding this limitation.

• Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be
separated f ~r use on more than one computer.

• Rental. You may not rent, lease, or lend the SOFTWARE PRODUCT.

• Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFTWARE
PRODUCT ("Support Services"). Use of Support Services is governed by the Microsoft policies and programs described in the

user manual, in "online" documentation, and/or in other Microsoft-provided materials. Any supplemental software code
provided to you as part of the Support Services shall be considered part of the SOFTWARE PRODUCT and subject to the
terms and conditions of this EULA. With respect to technical information you provide to Microsoft as part of the Support
Services, Microsoft may use such information for its business purposes, including for product support and development.
Microsoft will not utilize such technical information in a form that personally identifie~ you.

• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no copies, you
transfer all of the SOFTWARE PRODUCT (including all component parts," the media and printed materials, any upgrades,
this EULA, and, if applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this EULA.

• Termination. Without prejudice.to any other rights, Microsoft may terminate this EULA if you fail to comply with the
terms and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its
component parts.

3. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images,
photographs, animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUT ABLES, and "applets" incorporated into
the SOFTWARE PRODUCT) and any copies of the SOFTWARE PRODUCT are owned by Microsoft or its suppliers. The
SOFTWARE PRODUCT is protected by copyright laws and international treaty provisions. Therefore, you must treat the
SOFTWARE PRODUCT like any other copyrighted material except that you may install the SOFTWARE PRODUCT on a
single computer provided you keep the original solely for backup or archival purposes. You may not copy the printed materials
accompanying the SOFTWARE PRODUCT.

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subpara
graph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs
(c)(l) and (2) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is
Microsoft Corooration/One Microsoft Wav/Redmond. WA QRO'i?-n'NO

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereof,
or any process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing collectively referred to as the
"Restricted Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifically agree
not to export or re-export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted
the export of goods or services, which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North
Korea, Sudan, and Syria, or to any national of any such country, wherever located, who intends to transmit or transport the
Restricted Components back to such country; (ii) to any end user who you know or have reason to know will utilize the
Restricted Components in the design, development, or production of nuclear, chemical, or biological weapons; or (iii) to any
end user who has been prohibited from participating in U.S. export transactions by any federal agency of the U.S. government.
You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended, revoked, or denied your
export privileges.

DISCLAIMER OF WARRANTY

NO WARRANTIES OR CONDITIONS. MICROSOFT EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDIDON FOR
THE SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED "AS
IS" WITHOUT WARRANTY OR CONDIDON OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT
REMAINS WITH YOU.

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF
THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE
SUPPORT SERVICES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY
CASE, MICROSOFT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE LIMITED TO THE
GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED,
HOWEVER, IF YOU HA VE ENTERED INTO A MICROSOFT SUPPORT SERVICES AGREEMENT, MICROSOFT'S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT.
BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY,
THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

MISCELLANEOUS

This EULA is governed by the laws of the State of Washington USA, except and only to the extent that applicable law mandates
governing law of a different jurisdiction.

Should you have any questions concerning this EULA, or if you desire to contact Microsoft for any reason, please contact the
Microsoft subsidiary serving your country, or write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA
98052-6399.

PN 097-0002296 •

System Requirements
To use this book's companion CD-ROM, you need a computer equipped
with the following minimum configuration:

Microsoft Windows NT 4.0 with Service Pack 4 (or later) or
Windows 2000 Server.

Microsoft Network Monitor 2.0 (included in Windows 2000
Server).

A network adapter card that supports promiscuous mode.

133-MHz Pentium or higher central processing unit (CPU). A maxi
mum of four CPUs per computer are supported.

• 256 megabytes (MB) of RAM recommended minimum.

• A hard disk partition with approximately 1 GB free disk space; More
space might be needed, depending on the following:

The components being installed: the more components, the more
space needed.

The file system used: FAT requires 100-200 MB more free disk
space than other file systems.

The method used for installation: if installing from across network,
allow 100-200 MB more space than if installing from the CD-ROM.
(More driver files need to be available during installation across a
network.)

Microsoft Internet Explorer version 4.01, Service Pack 1 (or later).

VGA or higher-resolution monitor.

Keyboard.

Mouse or other pointing device (optional).

CD-ROM drive.

Also, you must be logged on ~o your computer as a user with Adminis
trative rights.

IT Professional

W~dows2000
TCP/IP Protocols
and Services
Technical Reference

Get complete details on TCP/IP
and Windows 2000 with this must
have reference!
Find the in-depth technical information you need to support
TCP/ IP on the Windows 2000 platform with the MICROSOFT
WINDOWS 2000 TCP/IP PROTOCOLS AND SERVICES TECHNICAL
REFERENCE. It steps you through TCP/IP protocols layer by layer
in the OSI model, while offering details to help you handle
daily connectivity tasks. Weaving concepts with ~ractical
examples, it presents a detailed picture of TCP/ IP protocols
and services for Windows 2000 networks and discusses how
to use these protocols and services to maximize LAN/ WAN
performance.

Expert instruction helps you understand:

• The Network Interface Layer: How the network architectures
that Windows 2000 supports carry data in a TCP/ IP network

• Internet Layer Protocols: How IP provides a reliable end-to-end
delivery system for individual datagrams, both for one-to-one
and for one-to-many communication

• Transport Layer Protocols: How TCP and UDP use IP to let
applications running on Windows 2000-based PCs
communicate with other applications and PCs, plus how TCP
manages the reliable flow of data between sender and receiver

• Applicati0n Layer Protocols and Services: How Windows 2000
implements key RFC-compliant application protocols

Included on CD-ROM: sample traces to help you monitor
your network!

..
$49.99 U.S.A.

U.K.
Canada

£32.99 [V.A.T. included]
$76.99

[Recommended]

Operating Systems/Microsoft Windows 2000

ISBN 0-7356-0556-4

7 90145 05564 4 9 780735 605565

90000

Get everything you need to deploy
and support Microsoft products
with the full line of Microsoft
IT books:
• Administrator's Companions

detail all aspects of product
deployment and support

• Administrator's Pocket
Consultants-step-by-step
answers to daily product
administration issues

• Microsoft Technlcal References
in-depth, detailed information
about key new technologies or
major product features

• Notes from the Field-real-world knowledge from
Microsoft Consulting Services best practices

• Readiness Reviews-Microsoft Certified Professional exam
readiness-assessment tools

• Resource Kits-deployment and maintenance expertise
from the Microsoft product groups

• Strategic Technology series-practical overviews of
important technologies and their business implications

• Training Kits-hands-on, self-paced training, plus complete
coverage of MCSE exams

• Web Technology series-hands-on details of important
Internet and Web technologies

For System Requirements, see the last page in the book.

USER LEVEL

Senior IT
Decision Maker

Une of Business

IT Decision Maker

IT Implementer

Corporate
IT Developer

IT Web Developer

IT LIFE CYCLE

Evaluation

Deployment

Support &
Maintenance

Sklll · ·
Develooment

~{ f;;-~:';J2.<..i.¢ ;?.:tJt::...~:;~

Microsoft®

