
CD-ROM

I MICROSOFJ8 PROGRAMMING SERIES

Inside
ofte

ndOWS2000
Th i rd Ed ition

David A. Solomon
Mark E. Russinovich

The Definitive Guide
to the Architecture
and Internals of
Microsoft's Premier
Operating System

Foreword by Jim Allchin
Historical perspective by David N. Cutler

Inside
oft® .
ndOWS2000

Third Edition

David A. Solomon
Mark E.Russinovich

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by David A. Solomon and Mark E. Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Solomon, David A.

Inside Microsoft Windows 2000 I David A. Solomon, Mark Russinovich.
p. em.

ISBN 0-7356-1021-5
1. Microsoft Windows (Computer file) 2. Operating systems (Computers) I.

Russinovich, Mark. II. Title.

QA76.76.063 S6285 2000
005.4'4769--dc21 00-031888

Portions previously published in Windows NT Magazine and Windows 2000 Magazine. Copyright ©
1997, 1998, 1999,2000 by Windows 2000 Magazine. Reprinted and modified with permission.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com. Send
comments to mspinput@microsojt.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. Active Directory, ActiveX, DirectX, Microsoft, Microsoft Press, MSDN, MS-DOS,
Visual Basic, Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted
herein are fictitious. No association with any real company, organization, product, person, or event is
intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Sally Stickney
Technical Editor: Jean Ross

To my wife, Shelly, my partner in life. I'll always love you.

-D.S.

For Susan, my soul mate.

-M.R.

CONTENTS

Historical Perspective ... xv

Foreword .. xvi i

Acknowledgments .. xix

Introduction ... xxv

CHAPTER ONE

Concepts and Tools 1
Foundation Concepts and Terms ~ 1

Win32 API ... 2

Services, Functions, and Routines .. 3

Processes, Threads, and Jobs .. 4

Virtual Memory ... 7

Kernel Mode vs. User Mode .. 9

Objects and Handles ; ... 14

Security .. 15

Registry .. 16

Unicode .. 17

Digging into Windows 2000 Internals .. 17
Tools on the Companion CD .. 19
Performance Tool ; , , .. 20

Windows 2000 Support Tools .. 20

Windows 2000 Resource Kits .. 21

Kernel Debugging Tools ; .. 21

Platform Software Development Kit (SDK) 24
Device Driver Kit (DDK) ... 24

Systems Internals Tools ... 25

CHAPTER TWO

System Architecture 27
Requireme"nts and Design Goals .. 27
Operating. System Model ~ .. 30

Portability•... 32

v

INSIDE MICROSOFT WINDOWS 2000

Symmetric Multiprocessing ... 33

Scalability ... 35
Architecture Overview ... 35
Windows 2000 Product Packaging ... 38

Checked Build ... 41
Multiprocessor-Specific System Files ... 42

Key System Components .. 46
Environment Subsystems and Subsystem DLLs 47
Ntdll.dll : .. 60
Executive .. 60
Kernel ... 63
Hardware Abstraction Layer .. 66
Device Drivers .. 67
Peering into Undocumented Interfaces .. 71

System Processes .. 74

CHAPTER THREE

System Mechanisms 89
Trap Dispatching ... 89

Interrupt Dispatching ... 91
Exception Dispatching .. 113
System Service Dispatching ... 121

Object Manager ... 125
Executive Objects .. 128

Object Structure ... 130
Synchronization , .. 153

Kernel Synchronization .. 154
Executive Synchronization ... 158

System Worker Threads ... 165
Windows 2000 Global Flags ... 168
Local Procedure Calls (LPCs) ;•... 171

CHAPTER FOUR

Startup and Shutdown 177
Boot Process .. 177

Pre boot ... 177

The Boot Sector and Ntldr ... 180

vi

Contents

Initializing the Kernel and Executive Subsystems 190
Smss, Csrss, and Winlogon .. 194

Safe Mode .. 196
Driver Loading in Safe Mode ... 197
Safe-Mode-Aware User Programs .. 199
Boot Logging in Safe Mode ... 200

Recovery Console .. 201
Shutdown ... 204
System Crashes .. 206

Why Does Windows 2000 Crash? ... 206
The Blue Screen ... 207
Crash Dump Files .. 210

CHAPTER FIVE

Management Mechanisms 215
The Registry .. 215

Registry Data Types ... 216
Registry Logical Structure ... 217
Registry Internals : ... 224

Services ... 236
Service Applications .. 237

Service Accounts ... 244
The Service Control Manager .. 247
Service Startup ' 251

Startup Errors ... 255

Accepting the Boot and Last Known Good 256
Service Failures .. 258

Service Shutdown .. 259
Shared Service Processes .. 260
Service Control Programs .. 264

Windows Management Instrumentation .. 265
WMI Architecture .. ; 266
Providers .. 268

The Common Information Model and the Managed Object
Format Language : 269

The WMI Namespace .. 272

Class Association ... 273

vii

INSIDE MICROSOFT WINDOWS 2000

viii

WMI Implementation .. 275

WMI Security .. 275

CHAPTER SIX

Processes, Threads, and Jobs 277
Process Internals .. 277

Data Structures .. 277

Kernel Variables ... 293

Performance Counters .. 293

Relevant Functions .. 294

Relevant Tools .. 295

Flow of CreateProcess ... 304
Stage 1: Opening the Image to Be Executed 306

Stage 2: Creating the Windows 2000 Executive Process Object 309
Stage 3: Creating the Initial Thread and Its Stack and Context .. 314

Stage 4: Notifying the Win32 Subsystem About the

New Process .. 314

Stage 5: Starting Execution of the Initial Thread 316

Stage 6: Performing Process Initialization in the

Context of the New Process .. 316

Thread Internals .. 317
Data Structures .. 317
Kernel Variables ... 329

Performance Counters .. 329

Relevant Functions .. 330

Relevant Tools .. 331

Flow of Create Thread ... 333
Thread Scheduling ... 337

Overview of Windows 2000 Scheduling 337

Priority Levels ... 341

Win32 Scheduling APls , 343

Relevant Tools .. 344

Real-Time Priorities .. 346

Interrupt Levels vs. Priority Levels .. 347

Thread States ... 348

Quantum ... 349

Scheduling Data Structures .. 353

Contents

Scheduling Scenarios .. 355

Context Switching .. 359

Idle Thread ... 359

Priority Boosts .. 360

Job Objects ... 374

CHAPTER SEVEN

Memory Management 379
Memory Manager Components ... 380

Configuring the Memory Manager .. 382

Examining Memory Usage ... 385

Services the Memory Manager Provides ... 389
Reserving and Committing Pages .. 390

Locking Memory .. 392

Allocation Granularity .. 392

Shared Memory and Mapped Files ... 393

Protecting Memory ... 395

Copy-on-Write .. 398
Heap Functions .. 400

Address Windowing Extensions .. 401

System Memory Pools .. 403
Look-Aside Lists .. 411

Driver Verifier .. 413

Address Space Layout ... 417
User Address Space Layout ... 420

System Address Space Layout ... 424
Address Translation .. , 429

Translating a Virtual Address ... 431

Page Directories , ; .. 433

Process and System Page Tables ; 435

Page Table Entrie,s ... 436

Byte Within Page .. , 438

Translation Look-Aside Buffer ' · 439

Physical Address Extension .. 442
Page Fault Handling .. 443

Invalid PTEs ... 445

Prototype PTEs ... 446

ix

INSIDE MICROSOFT WINDOWS 2000

x

In-Paging I/O .. 448

Collided Page Faults .. 449

Page Files ... 450

Virtual Address Descriptors ... 452
Working Sets ... 455

Paging Policies .. 455

Working Set Management ... 457

Balance Set Manager and Swap per ... 462

System Working Set ... 463

Page Frame Number Database ... 465
Page List Dynamics ... 469

Modified Page Writer ... 472

PFN Data Structures .. 474

Section Objects ... 478

CHAPTER EIGHT

Security 487
Security Ratings ... 487
Security System Components .. 490
Protecting Objects .. 494

Access Checks .. 494

Security Identifiers ... 497
Tokens .. 499

Impersonation .. 504

Restricted Tokens .. 506

Security Descriptors and Access Control 507

Security Auditing .. 515
Logon ... 521

Winlogon Initialization : 522

User Logon Steps .. 523

CHAPTER NINE

I/O System 527
Design Goals ... 527
1/0 System Compon'ents .. 528

The I/O Manager .. 531

Device Drivers .. 532

Contents

The Plug and Play (PnP) Manager .. 541
The Power Manager ... 546

1/0 Data Structures ... 553
File Objects .. 554
Driver Objects and Device Objects .. 556

I/O Request Packets .. 562
I/O Completion Ports ... 570

Driver Loading, Initialization, and Installation 573
The Start Value ... 574
Device Enumeration ... 575
Devnodes ... 579
Devnode Driver Loading ... 581
Driver Installation ... 583

1/0 Processing ... 586
Types of I/O .. 587

I/O Request to a Single-Layered Driver .. 590
I/O Requests to Layered Drivers ... 597

I/O Completion Port Operation .. 602
Synchronization .. 604

CHAPTER TEN

Storage Management 607
The Evolution of Windows 2000 Storage ... 607
Partitioning .. 609

Basic Partitioning ... 610

Dynamic Partitioning .. 611
Storage Drivers ... 617

Disk Drivers .. 618
Device Naming .. 619
Basic Disk Management .. 620
Dynamic Disk Management .. 621
Disk Performance Monitoring .. 624

Multipartition Volume Management .. 624
Spanned Volumes .. 625
Striped Volumes ... 626
Mirrored Volumes ... 627
RAID-5 Volumes ... 630

Volume I/O Operations .. 632

xi

INSIDE MICROSOFT WINDOWS 2000

The Volume Namespace ... 634
The Mount Manager ... 634
Mount Points .. 636
Volume Mounting ... 639

CHAPTER ELEVEN

Cache Manager 645
Key Features of the Windows 2000 Cache Manager 645

Single, Centralized System Cache .. 646
The Memory Manager ... 646
Cache Coherency .. 647
Virtual Block Caching .. 649
Stream-Based Caching ... 650
Recoverable File System Support ... 650

Cache Structure .. 651
Cache Size ... 654

Cache Virtual Size .. 654
Cache Physical Size .. 655

Cache Data Structures ... 659
Systemwide Cache Data Structures ... 660
Per-File Cache Data Structures ... 661

Cache Operation ... 665
Write-Back Caching and Lazy Writing .. 665
Intelligent Read-Ahead .. 669
System Threads ... , 671

Fast I/O ... 672
Cache Support Routines ... 675

Copying to and from the Cache .. 675
Caching with the Mapping and Pinning Interfaces 677
Caching with the Direct Memory Access Interfaces 679
Write Throttling ... 680

CHAPTER TWELVE

File Systems 683
Windows 2000 File System Formats .. 684

CDFS .. 685
UDF .. 685

xii

Contents

FAT12, FAT16, and FAT32 .. 685
NTFS ... 689

File System Driver Architecture .. 690
Local FSDs ... 690
Remote FSDs ... 692

File System Operation ... 694
NTFS Design Goals and Features .. 700

High-End File System Requirements .. 700
Advanced Features of NTFS ... 702

NTFS File System Driver .. 713
NTFS On-Disk Structure .. 717

Volumes .. 717

Clusters .. 717
Master File Table .. 718
File Reference Numbers .. 725
File Records ... ; 726
Filenames ... 729

Resident and Nonresident Attributes .. 732
Indexing ... 735

Data Compression and Sparse Files .. 737
Reparse Points ... 743
The Change Journal File ... 743
Object IDs .. 745
Quota Tracking ... 745

Consolidated Security ... 745
NTFS Recovery Support .. 746

Evolution of File System Design .. 746

Logging .. 749
Recovery .. 756

NTFS Bad-Cluster Recovery ... 761
Encrypting File System Security .. 766

Registering Callbacks ... 769

Encrypting a File for the First Time ... 769
The Decryption Process .. 775
Backing Up Encrypted Files .. 777

xiii

INSIDE MICROSOFT WINDOWS 2000

xiv

CHAPTER THIRTEEN

Networking 779
The 051 Reference Model .. 780

OSI Layers .. 781

Windows 2000 Networking Components 782

Networking APls ... 784
Named Pipes and Mailslots ... 785

Windows Sockets ... 793

Remote Procedure Call .. 798

Common Internet File System (CIFS) .. 803
NetBIOS ... 807

Other Networking APls .. 811

Network-Resource Name Resolution ... 814
Multiple Provider Router .. 814

Multiple UNC Provider ... 817

Domain Name System ... 819

Protocol Drivers .. 819
NDIS Drivers .. 823

Variations on the NDIS Miniport .. 828

Connection-Oriented NO IS .. 829

Binding ... 832
Layered Network Services ... 834

Remote Access .. 834

Active Directory ... 835

Network Load Balancing ... 837

File Replication Service ... 838

Distributed File System .. 839

TCP/IP Extensions .. 840

Glossary .. 845

Index .. 873

HISTORICAL PERSPECTIVE

I t is a pleasure to be able to write a few words about such a significant work as
this book, and I thank the authors for providing me the opportunity to do so.

I first met David Solomon when I was working at Digital Equipment
Corporation on the VMS operating system for VAX and he was only 16. Since
that time he has been involved with operating system development and teach
ing operating system internals. I met Mark Russinovich relatively recently but
have been aware of his expertise in the area of operating systems for some time.
He has done some amazing work, such as his NTFS file system running on
Microsoft Windows 98 and his "live" Microsoft Windows 2000 kernel debugger
that can be used to peer into the Windows 2000 system while it is running.

The beginnings of Microsoft Windows NT started in October 1988 with
a set of goals to produce a portable system that addressed OS/2 compatibility,
security, POSIX, multiprocessing, integrated networking, and reliability. With
the advent and huge success of Windows 3.0, the system goals were soon
changed to natively address Windows compatibility directly and move OS/2
compatibility to a subsystem.

We originally thought we could produce the first Windows NT system in
a little over two years. It actually ended up taking us four and a half years to the
first release in the summer of 1993, and that release supported the Intel i386,
the Intel i486, and the MIPS R4000 processors. Six weeks later we also intro
duced support for the Digital Alpha processors.

The first release of Windows NT was larger and slower than expected, so
the next major push was a project called Daytona, named after the speedway in
Florida. The main goals for this release were reducing the size of the system,
increasing the speed of the system, and of course trying to make it more reli
able. Six months after the release of Windows NT 3.5 in the fall of 1994, we
released Windows NT 3.51, which was an updated version containing support
for the IBM PowerPC processor.

The push for the next version of Windows NT was to update the user
interface to be compatible with Windows 95 and to incorporate the Cairo
technologies that had been under development at Microsoft for a couple of years.
This system took two more years to develop and was introduced in the sum
mer of 1996 as Windows NT 4.0.

xv

INSIDE MICROSOFT WINDOWS 2000

xvi

(Left to right) David Solomon, David Cutler, and Mark Russinovich

That brings us to the Windows 2000 system and what this book is about.
Windows 2000 is built on the same Windows NT technology as the previous
versions and introduces significant new features such as Active Directory.
Windows 2000 took three and a half years to produce and is the most tested
and tuned version of Windows NT technology produced to date. Windows 2000
is the culmination of over eleven years of development spanning implementa
tions on four architectures. The Windows 2000 code base is currently being
ported to the new Intel IA-64 architecture. Windbws 2000 is by far the best
version of Windows NT technology we have produced to date, but there's more
to come and we are busy working on the next release.

This book is the only definitive work on the internal structure and work
ings of Windows 2000. The authors have done a remarkable job of assimilat
ing the details of the Windows NT code base and producing examples and tools
that help the reader understand how things work. Every serious operating sys
tem developer should have a copy of this book on his or her desk.

David N. Cutler
Senior Distinguished Engineer
Microsoft Corporation

FOREWORD

We began in earnest on Microsoft Windows 2000 in August 1996. About three
and a half years later, on December 15, 1999, we released Windows 2000 Pro
fessional, Windows 2000 Server, and Windows 2000 Advanced Server to manu
facturing. With more than 5000 people contributing in one way or another,
Windows 2000 represents the single largest operating system effort ever within
Microsoft and probably within the entire industry. It also presents the most reli
able and comprehensive system we have ever produced. It was quite a journey.

Today, Windows 2000 runs some of the largest Internet Web sites and
enterprises in the world and is quickly becoming the standard client operating
system for businesses and even some homes. Windows 2000 includes an amazing
amount of technology. It can be used for desktop or laptop systems, and an as
tonishing array of servers, including file, print, Web, database, transactioning,
dial-in, routing, streaming media, line-of-business applications, and many others.
Understanding all these pieces is a daunting task. But if you start at the core
concepts of the system and work out, the puzzle fits together a lot easier.

If you're like me, you like to figure out how things really work. Reading
"how to use" books or standard Help information has never been sufficient for
me. If you understand how something works internally, you know how to bet
ter use it, maximize performance and security, diagnose failures, and frankly have
more fun. That's what this book is about.

David and Mark have done an outstanding job detailing the real "inside"
technical story of Windows 2000. And the tools that are highlighted (or in
cluded) are a great resource for direct hands-on training and diagnostics work.
Mter you read this book, you'll have a much greater understanding of how the
system fits together, the improvements done as part of this release, and how to
get the most out of the system.

I know Windows 2000 pretty well, but reading this book taught me a few
things about the system that I didn't know. So open the book and open the hood
on one of the most impressive operating systems ever created.

Jim Allchin
Group Vice President, Platforms
Microsoft Corporation

xvii

ACKNOWLEDGMENTS

This book wouldn't contain the depth of technical detail or the level of accur
acy it has without the review, input, and support of key members of the
Microsoft Windows 2000 development team. Therefore, we would like to jointly
thank the following people from Microsoft for both their technical review as well
as the time they spent with us explaining the rationale for the myriad details that
comprise this world-renowned operating system:

• First and foremost, Dave Cutler, Senior Distinguished Engineer and
the original architect of Microsoft Windows NT. Dave originally
approved David Solomon's source code access and has been support
ive of his work to explain the internals of Windows NT through his
training business as well as during the writing of Inside Windows NT,
second edition. Besides reviewing the chapter on processes and
threads, Dave answered many questions on the kernel architecture
of the system and wrote a historical perspective for this edition.

III Jim Allchin, for writing the Foreword to this book and for prodding
us to add a chapter on networking.

• Lou Perazzoli, Distinguished Engineer (previously director of the
Windows 2000 Base Team and author of the original memory
manager for Windows NT). Lou was the primary champion for
Inside Windows NT, second edition (he wrote the Foreword) and
continued this role during the initial phases of the development
of Windows 2000.

• Rob Short, vice president of the Windows 2000 Base Team, who
made sure we had the resources we needed as well as access to the
relevant people. Rob also provided direction on the overall content
of the book.

• Landy Wang, lead developer for the memory manager, for making us
feel welcome on the numerous times we stopped by and interrupted
him to ask questions. Landy was always willing to take time to review
chapter drafts as well as provide the rationale for the intricacies of
this very complicated part of the system, even when others were
waiting in line in the hallway to see him!

xix

INSIDE MICROSOFT WINDOWS 2000

xx

III Mark Lucovsky, Distinguished Engineer and architect in the
Windows 2000 Base Team, for answering technical questions about
many areas of the system.

III Richard Ward, for reviewing multiple drafts of the security chapter as
well as the section on services. Richard also met with us more than
once to provide technical review input.

III John Vert, who reviewed the sections on interrupt handling, the
HAL, and the registry. John was also a key source for the rationale
behind early Windows NT design decisions.

III Neil Clift, whose intimate knowledge of the Windows 2000 kernel
components helped us iron out several details about the object
manager and other areas.

III Dan Lovinger, for reviewing the cache manager, storage management,
and file systems chapters.

III Adrian Oney and Nar Ganapathy, for reviewing the I/O chapter and
helping to make the presentation of Plug and Play more lucid. Adrian
was especially generous with his time and clarified some of the trickier
aspects of the I/O system.

III Tom Fout, who guided the content of the networking chapter and
coordinated the chapter's review by the key developers.

III Dragos Sambotin, for reviewing the registry section.

III Praerit Garg and Robert Reichel, for reviewing the security chapter.

III Michael Maston and Alan Warwick, for reviewing the WMI section.

III Keith Kaplan, for reviewing the storage and file systems chapters.

III Catharine van Ingen for reviewing the storage chapter.

III David Golds, Brian Andrews, and Mark Zbikowski, for reviewing the
file systems chapter.

III Tim Moore, Ryszard Kott, Mario Goertzel, Yun Lin, Steven Nelson,
nan Caron, Gurdeep Singh Pall, David Orbits, and the other net
working developers, who improved the accuracy and organization of
the networking chapter.

III Andre Vachon, for helping us with facets of the kernel de buggers
(and for building a new set!).

Acknowledgments

• Jon Schwartz, who reviewed the most chapters of any single Microsoft
employee-thanks for your excellent comments!

• Joseph Joy, for reviewing the first two chapters from the reader's
point of view.

We also want to thank the following people from Microsoft Press (two of
whom have since left) for their contribution to this book:

• Eric Stroo, previously acquisitions manager (but now enjoying the
spoils of life after Microsoft), who, as with the previous edition, main
tained a stern but supportive stance in regard to the book schedule.

• Ben Ryan, previously acquisitions editor (but now with another pub
lisher), who took the reins from Eric but was gentler in his prodding
for chapter deliveries.

• Sally Stickney, project editor, whose art and skill with the English
language combined with her dogged attention to detail yet again
amazed us throughout the whole process. Sally: you were kinder
this time.

• Jean Ross, technical editor, who strove to catch each and every
technical inconsistency. Jean continually amazed both of us with her
tenacious verification of technical details.

We also want to thank Mark Smith, Karen Forster, Dianne Russell, and the
. rest of the staff of Windows 2000 Magazine (www.win2000mag.com) for grant
ing us permission to draw content from Mark's "Internals" columns for the book.

Finally, the following external reviewers also merit special thanks:

• Jamie Hanrahan, of Azius Developer Training (www.azius.com), who
coauthored the Windows NT/Windows 2000 Internal Architecture
class from which this book was based. Jamie, who has a real knack
for explaining complicated concepts in a simple and practical fashion,
developed several of the explanations and a number of the diagrams
and figures.

• Brian Catlin, also of Azius Developer Training, for reviewing
Chapters 2, 3, and 9 and for providing both technical input as well
as excellent suggestions that improved the clarity of presentation.

xxi

INSIDE MICROSOFT WINDOWS 2000

II Jeffrey Richter, ofWintellect (www.wintellect.com). who, as with the
previous edition, reviewed several chapters and cajoled the authors
throughout the entire process. All those dinners in Bellevue with Jeff
at the end of long hard days of writing kept us going.

II Rich Neves, ofReefEdge Inc. (www.reefedge.com). for reviewing the
I/O and networking chapters.

II Andrew Tanenbaum, of the University of Amsterdam, who provided
us with a slew of suggestions for improving the file systems chapter's
organization and presentation.

II John Tracey, ofIBM Research, for reviewing the networking chapter.

II Keith Moore, previously of Microsoft, for reviewing the networking
chapter.

There were others who answered questions in the hallway or cafeteria and
provided technical material-if we missed you, please forgive us!

The next two sections contain the authors' individual acknowledgments.

Acknowledgments from David Solomon

xxii

When Mark Russinovich first approached me about collaborating on this third
edition, I was both excited and nervous. Would Microsoft accept such a notori
ous hacker of Windows NT to work on the official book about the internal archi
tecture of their premier operating system? Would I be able to meet the technical
challenge of working with such a Windows NT expert?

Fortunately, the answer to both questions was yes, and Mark and I had a
ball working together on this project. Although Mark didn't look at the source
code (oilly I did), I was constantly amazed at how quickly he could solve tech
nical questions using his disassembled binary ofNtoskrnl.exe in combination
with SoftlCE. I know my knowledge of Windows 2000 has deepened. (We even
kept track of "dumb things learned" for the times we would say to each other
"I can't believe you didn't know that!")

I have to thank Mark for much of the new content in this third edition:
Chapters 4,5, 10,and 13 were completely new chapters based on his original
content. Mark also made significant contributions to the det3.il in Chapters 3,
8,9, and 12.

Acknowledgments

I also want to thank Mark's wife, Susan, for putting up with me on the long
work days at Mark's house and for providing such yummy lunches and dinners
(and the strong coffee!).

I thank Frank Artale for originally asking me to write Inside Windows NT,
second edition, and for all the support from Windows NT Development (espe
cially from Lou Perazzoli and Dave Cutler) while it was being written back in
1997 and 1998.

I want to thank my Mom and Dad for bringing me up and for giving me
the support, guidance, and opportunities that molded me into who I am today.

Last but not least, I want to thank wife, Shelly, and our three children,
Daniel, Rebecca, and Sarah, for going through the pain of another book pro
ject. This time, I got less sympathy for being late on deadlines-and rightly so.
Thanks for bearing up.

Acknowledgments from Mark Russinovich
When I picked up a copy of Inside Windows NT, second edition, I was suitably
impressed. Dave had done a fantastic job of detailing the operation of Windows
NT, while at the same time making the description accessible through interesting
experiments and lucid writing. I was working on my own Windows NT internals
book but was quickly realizing the enormous effort required to pull off some
thing like Dave had. Oil the off chance that he would agree, I e-mailed Dave
with the suggestion that we work together on the third edition. I was thrilled
when he brought me on board, and I thank him for the opportunity.

As Dave has said already, we learned a tremendous amount from each other
and had a great time. There are as many "dumb things Mark learned from Dave"
as "dumb things Dave learned from Mark" (well, not quite as many), which just
highlights how our different perspectives made the book better. Often, neither
of us would know the answer to a complex question about Windows NT behav
ior one of us had pondered for years, triggering furious multihour research efforts
in which only our combined resources met the challenge. I look forward to
working with him on future editions.

I also have to thank Bryce Cogswell and Edwin Brasch ofWinternals Soft
ware for their patience and support while I devoted several months to the book.

lowe Rich Neves thanks for being a good friend and for enabling my effort
on the book to be part of my official responsibilities while I worked at IBM
Research.

xxiii

INSIDE MICROSOFT WINDOWS 2000

xxiv

My parents, Nicholas and Vera Russinovich, provided unlimited support
and encouragement through my educational years, instilling in me the desire
to learn as much as I can. My father, who passed away while I was writing this
book, would have been especially proud of this achievement.

Finally, I want to thank my wife, Susan, who is the most important person
in my life. She not only sacrificed the many nights and weekends that I devoted
to this book by keeping me company, but she also encouraged me through
the whole process. Her tolerance of my omnipresent computers without a
doubt merits a medal.

INTRODUCTION

The third edition of Inside Microsoft Windows 2000 is intended for advanced
computer professionals (both developers and system administrators) who want
to understand how the core components of the Microsoft Windows 2000 oper
ating system work internally. With this knowledge, developers can better com
prehend the rationale behind design choices when bUilding applications specific
to the Windows 2000 platform. Such knowledge can also help developers debug
complex problems. System administrators can benefit from this information as
well because understanding how the operating system works under the covers
facilitates understanding the performance behavior of the system and makes it
easier to troubleshoot system problems when things go wrong. After reading
this book, you should have a better understanding of how Windows 2000 works
and why it behaves as it does.

Structure of the Book
The first two chapters (Concepts and Tools, and System Architecture) lay the
foundation with terms and concepts used throughout the rest of the book. The
next three chapters-System Mechanisms, Startup and Shutdown, and Manage
ment Mechanisms-describe key underlying mechanisms in the system. The
remaining chapters-Processes, Threads, and Jobs; Memory Management;
Security; I/O System; Storage Management; Cache Manager; File Systems;
and Networking-explain the core components of the Windows 2000 oper
ating system.

Differences in the Third Edition
This new edition of Inside Microsoft Windows 2000 covers many topics that
weren't in the second edition of Inside. Windows NT, such as startup and shut
down, service internals, registry internals, file system drivers? and networking.
It also covets the kernel-related changes and enhancements in Windows 2000,
such as the Windows Driver Model (WDM), Plug and Play, power management,
Wmdows Management Instrumentation (WMI), encryption, the job object, and
Terminal Services.

xxv

INSIDE MICROSOFT WINDOWS 2000

For the first time, the book includes a companion CD with useful tools
for exploring Windows 2000 system internals. Also included on the CD is a
searchable electronic version of the book. Also, many new hands-on experiments
have been added to the book that show how to use tools such as the kernel
debugger to examine internal Windows 2000 system state.

Hands-on Experiments
When a tool can be used to expose or demonstrate some aspect ofWmdows 2000
internal behavior, the steps necessary to try the tool yourself are listed in "Experi
ment" boxes. These appear throughout the book, and we encourage you to try
these as you're reading-seeing visible proof of how Windows 2000 works in
ternally will make much more of an impression on you than just reading about
it. Many of the experiments use the kernel debugger. The live kernel debugger
tool (LiveKd) included on the book's companion CD makes these experiments
easy and safe to try.

Topics Not Covered
Windows 2000 is a large and complex operating system. This book doesn't cover
everything relevant to Windows 2000 internals but instead focuses on the base
system components. For example, this book doesn't describe COM+, the foun
dation of the Windows distributed object-oriented programming infrastructure.

Because this is an internals book and not a user, programming, or system
administration book, it doesn't describe how to use, program, or configure
Windows 2000.

A Warning and Caveat

xxvi

Because this book describes the internal architecture and operation of Windows
2000, much of the information is subject to change between releases (although
external interfaces, such as the Win32 API, are not subject to incompatible
changes).For example, we refer to internal Windows 2000 system routines, data
structures, and kernel variables as well as to algorithms and values used inter
nally to make resource-sizing and performance-related decisions. These details,
by definition, can change between releases.

By "subject to change," we don't necessarily mean that details described
in this book will change between releases-but you can't count on them not
changing. Any software that uses these undocumented interfaces might not work

Introduction

on future releases of Windows 2000. Even worse, software that runs in kernel
mode (such as device drivers) that uses these undocumented interfaces might
result in a system crash when upgrading to a newer release of Windows 2000.

Using the Companion CD
The CD included with this book contains the complete contents of the Sysinternals
Web site (www.sysinternals.com)-the Web site maintained by Mark Russinovich
(this book's coauthor) and Bryce Cogswell-as well as other helpful tools.
The CD also includes a fully searchable electronic version of the book as well
as debugging tools and symbols. (See the Readme. txt file on the CD for infor
mation on using the debugging tools and the symbols.)

To view the contents of the CD, insert the CD into your CD-ROM drive.
If you have the autorun feature in Windows enabled, a splash screen will auto
matically appear on your screen that will provide you with viewing options. To
start this screen manually, run StartCD from the root directory of the CD.

Sysinternals

Tools

The contents of the Web site www.sysinternals.com have been included on this
CD for your convenience. You can find the tools from this Web site that are used
in the experiments in this book in the \Sysint folder. You can run these tools from
the CD, or you can install them onto your hard drive by selecting Run Setup
from the autorun splash screen and following the instructions in Setup.

You can also browse the CD version of the entire Web site by selecting
Browse CD Sysinternals from the autorun splash screen or by opening
Ntinternals.htm from the \Sysinternals-WebSite folder. You can copy the entire
Web site to your hard disk by selecting Run Setup from the splash screen and
following the Setup instructions.

For the most up-to-date versions of the Sysinternals Web site and tools,
visit www.sysinternals.com (which you can do from the splash screen by select
ing Browse Online Sysinternals).

Additional tools have been provided on this CD and are located in the \Tools
folder. Among the tools is a performance monitor DLL extension (KVarPerf) that
allows you to monitor internal Wmdows 2000 kernel variables from the Perfor
mance tool. Another tool is LiveKd, a special tool that allows use of the standard
Microsoft kernel debugger tools (such as Kd.exe, Windbg.exe, I386kd.exe, and
so on) on a live system with no special debugging options enabled.

xxvii

INSIDE MICROSOFT WINDOWS 2000

To install the tools, select the Run Setup option from the autorun splash
screen (or run Setup.exe in the \Setup folder) and follow the Setup instructions.
You can also run these tools directly from the CD, although LiveKd must be
run from the \De buggers directory on the CD rather than the \Tools directory.
See the Readme.txt file in the root of the companion CD for more informa
tion on running LiveKd from the CD and on setting up your system for kernel
debugging.

System Requirements
The following is a list of system requirements necessary to use the contents
of the companion CD:

III Any supported Microsoft Windows 2000 Professional, Server,
Advanced Server, or Datacenter Server configuration.

III To install the tools needed for the experiments from the Tools and
Sysint folders, approximately 5 MB of disk space is required. If you
choose to install the copy of the www.sysinternals.com site, approxi
mately 30 MB of disk space is required. Installing the contents of the
Debuggers folder requires approximately 20 MB of disk space, and
the full contents of Symbols requires 20 MB.

III Some of the experiments in this book require the use of tools from
the Windows 2000 Support Tools, debugging tools, and resource kit
(Professional or Server edition). These tools and their locations are
listed in Chapter 1.

E-book
This CD contains an electronic version of the book. This e-book allows you to
view the book text on screen and to search the contents. For information on
installing and using the e-book, see the Readme.txt file in the \Ebook folder.

Support

xxviii

Every effort has been made to ensure the accuracy of this book and the contents
of the companion CD. Should you run into any problems or issues, please refer
to the following sources.

Introduction

From the Authors
This book isn't perfect. No doubt it contains some inaccuracies; or possibly,
we've omitted some topics we should have covered. If you find anything you
think is incorrect or if you believe we should have included material that isn't
here, please feel free to send e-mail toinsidew2k@sysinternals.com. Updates and
corrections will be posted on the page www.sysinternals.comlinsidew2k.

From Microsoft Press
Microsoft also provides corrections for books through the World Wide Web at
the following address:

http://mspress. microsoft. com/support/

In addition to sending feedback directly to the authors, if you have com
ments, questions, or ideas regarding the presentation or use of this book or the
companion CD, you can send them to Microsoft using either of the following
methods:

Postal Mail:

Microsoft Press
Attn: Inside Microsoft Window 2000 Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft·com

Please note that product support isn't offered through the ~bove mail
addresses. For support illformation regarding MicrQsoft WiIldows 2000, g()to
www.microsoft.comlwindows2000 .. You cat) also call Standard·Support at (425)
635-7011 weekdays between 6 a.m. and 6 p.m. Pacific time, or you can search
Microsoft's Support . Online . at support:microsoft.comlsupport ..

xxix

C HAP T E R ONE

Concepts and Tools

In this chapter, we'll introduce the key Microsoft Windows 2000 concepts and
terms we'll be using throughout this book, such as the Microsoft Win32 API,
processes, threads, virtual memory, kernel mode and user mode, objects, handles,
security, and the registry. We'll also introduce the tools that you can use to
explore Windows 2000 internals, such as the Performance tool, the kernel
debugger, the special tools on the companion CD, and the various add-on tool
packages such as the Windows 2000 Support Tools, Windows 2000 debugging
tools, Windows 2000 resource kits, and the Platform Software Development Kit
(SDK). In addition, we'll explain how you can use the Windows 2000 Device
Driver Kit (DDK) as a resource for finding further information on Windows
2000 internals.

Be sure that you understand everything in this chapter-the remainder of
the book is written assuming that you do.

Foundation Concepts and Terms
In the course of this book, we'll be referring to some structures and concepts
that might be unfamiliar to some readers. In this section, we'll define the terms
we'll be using throughout. You should become familiar with them before pro
ceeding to subsequent chapters.

1

INSIDE MICROSOFT WINDOWS 2000

Win32 API

2

The Win32 application programming interface (API) is the primary program
ming interface to the Microsoft Windows operating system family, including
Windows 2000, Windows 95, Windows 98, Windows Millennium Edition, and
Windows CEo Although we don't describe the Win32 APlin this book, we do
explain the internal behavior and implementation of key Win32 API functions.
For a comprehensive guide to programming the Win32 API, see Jeffrey Richter's
book Programming Applications for Microsoft Windows (fourth edition,
Microsoft Press, 1999).

Each operating system implements a different subset ofWin32. For the
most part, Windows 2000 is a superset of all Win32 implementations. The spe
cifics of which services are implemented on which platforms are included in the
reference documentation for the Win32 API. This documentation is available
for free viewing on line at msdn.microsoft.com and is on the MSDN Library
CD-ROMs. The information in this documentation is also detailed in the file
\Program Files\Microsoft Platform SDK\Lib\Win32apLcsv (a comma-delimited
text file) installed as part of the Platform SDK, which comes with MSDN Pro
fessional or can be downloaded for free from msdn.microsoft.com. (See the sec
tion "Platform Software Development Kit (SDK)" later in this chapter.)

NOT E MSDN stands for Microsoft Developer Network, Microsoft's
support program for developers. MSDN offers three CD-ROM sub
scription programs: MSDN Library, Professional, and Universal. The
content ofMSDN Library is also available for free on line at the MSDN
Web site. For more information, see msdn.microsoft.com.

For the purposes of this book, the Win32 API refers to the base set of
functions that cover areas such as processes, threads, memory management,
security, I/O, windowing, and graphics. The Win32 API is included as part of
the Platform SDK. The internals of the other major categories in the Platform
SDK, such as transactions, databases, messaging, multimedia, and networking
services, are not covered in this book.

Although Windows 2000 was designed to support multiple programming
interfaces, Win32 is the primary, or preferred, interface to the operating sys
tem. Win32 has this position because, of the three environment subsystems
(Win32, POSIX, and OS/2), it provides the greatest access to the underlying
Wmdows 2000 system services. As we'll explain in Chapter 2, application programs
on Windows 2000 don't call native Windows 2000 system services directly
rather, they must use one of the APIs provided by an environment subsystem.

ONE: Concepts and Tools

Services, Functions, and Routines
Several terms in the Windows 2000 user and programming documentation have
different meanings in different contexts. For example, the word service can refer
to a callable routine in the operating system, a device driver, or a server process.
The following list describes what certain terms mean in this book:

II Win32 API functions Documented, callable subroutines in the Wm32
API. Examples indude CreateProcess, CreateFile, and GetMessage.

II System services (or executive system services) Native functions
in the Windows 2000 operating system that are callable from user
mode. (For a definition of native functions, see the section "System
Service Dispatchihg" in Chapter 3.) For example, NtCreateProcessis
the internal system service the Win32 CreateProcesS function calls to
create a new process.

3

INSIDE MICROSOFT WINDOWS 2000

• Kernel support functions (or routines) Subroutines inside the
kernel-mode (defined later in this chapter) part of the Wmdows 2000
operating system. For example, &A1locatePool is the routine that device
drivers call to allocate memory from the Windows 2000 system heaps.

• Win32 services Processes started by the Windows 2000 service
control manager. (Although the registry defines Windows 2000
device drivers as "services," we don't refer to them as such in this
book.) For example, the Task Scheduler service is a user-mode pro
cess that supports the at command (which is similar to the UNIX
commands at or cron).

• DLL (dynamic-link library) A set of callable subroutines linked
together as a binary file that can be dynamically loaded by applica
tions that use the subroutines. Examples include Msvcrt.dll (the C
run-time library) and Kernel32.dll (one of the Win32 API subsystem
libraries). Windows 2000 user-mode components and applications
use DLLs extensively. The advantage DLLs provide over static libraries
is that applications can share DLLs, and Windows 2000 ensures that
there is only one in-memory copy of a DLL's code among the appli
cations that are referencing it.

Processes, Threads, and Jobs

4

Although programs and processes appear similar on the surface, they are fun
damentally different. A program is a static sequence of instructions, whereas a
process is a container for a set of resources used by the threads that execute the
instance of the program. At the highest level of abstraction, a Windows 2000
process comprises the following:

• A private virtual address space, which is a set of virtual memory
addresses that the process can use

• An executable program, which defines initial code and data and is
mapped into the process's virtual address space

• A list of open handles to various system resources, such as sema
phores, communication ports, and files, that are accessible to all
threads in the process

ONE: Concepts and Tools

• A security context called an access token that identifies the user,
security groups, and privileges associated with the process

• A unique identifier called a process ID (internally called a client ID)

• At least one thread of execution

A thread is the entity within a process that Windows 2000 schedules for
execution. Without it, the process's program can't run. A thread includes the
following essential components:

• The contents of a set of CPU registers representing the state of the
processor

• Two stacks, one for the thread to use while executing in kernel mode
and one for executing in user mode

• A private storage area called thread-local storage (TLS) for use by
subsystems, run-time libraries, and DLLs

• A unique identifier called a thread ID (also internally called a
client ID-process IDs and thread IDs are generated out of the same
namespace, so they never overlap)

• Threads sometimes have their own security context that is often used
by multithreaded server applications that impersonate the security
context of the clients that they serve

The volatile registers, the stacks, and the private storage area are called the
thread's context. Because this information is different for each machine architec
ture that Windows 2000 runs on, this structure, by necessity, is architecture
specific. In fact, the CONTEXT structure returned by the Wm32 GetThreadContext
function is the only public data structure in the Win32 API that is machine
dependent.

Although threads have their own execution context, every thread within
a process shares the process's virtual address space (in addition to the rest of
the resources belonging to the process), meaning that all the threads in a
process can write to and read from each other's memory. Threads can't refer
ence the address space of another process, however, urilessthe other process

5

INSIDE MICROSOFT WINDOWS 2000

6

makes available part of its private address space as a shared memory section (called
a file mapping object in the Win32 API) or unless one process opens another
process and uses the ReadProcessMemory and WriteProcessMemory functions.

In addition to a private address space and one or more threads, each pro
cess has a security identification and a list of open handles to objects such as files,
shared memory sections, or one of the synchronization objects such as mutexes,
events, or semaphores, as illustrated in Figure 1-1.

~-.--~~------~~ ~ ~
Virtual address descriptors (VADs)

Handle table

r========::1.....:J.~[Object J

Thread Thread

Figure 1-1
A process and its resources

Every process has a security context that is stored in an object called an
access token. The process access token contains the security identification and
credentials for the process. By default, threads don't have their own access token,
but they can obtain one, thus allowing individual threads to impersonate the
security context of another process-including processes running on a remote
Windows 2000 ~ystem-without affecting other threads in the process. (See
Chapter 8 for more details on process .and thread security.)

The virtual address descriptors (V ADs) are data structures that the memory
manager uses to keep track of the virtual addresses the process is using. These data
structures are described in more depth in Chapter 7.

ONE: Concepts and Tools

Windows 2000 introduces an extension to the process model called ajoh.
A job object's main function is to allow groups of processes to be· managed
and manipulated as a unit. A job object allows control of certain attributes and
provides limits for the process or processes associated with the job. It also
records basic accounting information for all processes associated with the job
and for all processes that were associated with the job but have since termi
nated. In some ways, the job object compensates for the lack of a structured
process tree in Windows 2000-yet in many ways is more powerful than a
UNIX-style process tree.

You'll find out much more about the internal structure of jobs, processes
and threads, the mechanics of process and thread creation, and the thread
scheduling algorithms in Chapter 6.

Virtual Memory
Windows 2000 implements a virtual memory system based on a flat (linear)
32-bit address space. Thirty-two bits of address space translates into 4 GB
of virtual memory. On most systems, Windows 2000 allocates half tPis address
space (the lower half of the 4-GB virtual address space, from xOOOOOOOO
through x7FFFFFFF) to processes for their unique private storage and uses
the other half (the upper half,addresses x80000000 through xFFFFFFFF)
for its own protected operating system memory utilization.· The mappings
of the lower half change to reflect the virtual address space of the currently
executing process, but the mappings of the upper half always consist of the oper
ating system's virtual memory. Windows 2000 Advanced Server and Datacenter
Server support a boot-time option (the 13GB qualifier in Boot.ini) that gives
processes running specially marked programs (the large address space aware flag
must be set in the header of the executable image)a 3-GB private address space
(leaving 1 GB for the operating system). This option allows applications such
as database servers to keep larger portions of a database in the process address
space, thus reducing the need to map subset views of the database. Figure 1-2
shows.the two: virtual address space layouts supported by Windows 2000.

7

INSIDE MICROSOFT WINDOWS 2000

8

Default address space layout

100000000

Unique per
process

17FFFFFFF

I'''·''''
Systemwide

I FFFFFFFF

Figure 1-2

2-G8 user
process
space

2-G8 system space
KerneVexecutive/HAL

800t drivers
System cache

Paged pool
Nonpaged pool

Windows 2000 Advanced Server
(booted with /3GB)

00000000

BFFFFFFF
C0000000

FFFFFFFF

3-G8 user
process
space

1-G8
system
space

Unique per

:J
I
Systemwide

~

Address space layouts supported by Windows 2000

Although 3 GB is better than 2 GB, it's still not enough virtual address space
to map very large (multigigabyte) databases. To address this need, Windows 2000
has a new mechanism called Address Windowing Extensions (AWE), which allows
a 32-bit application to allocate up to 64 GB of physical memory and then map
views, or windows, into its 2-GB virtual address space. Although using AWE
puts the burden of managing mappings of virtual to physical memory on the
progrartuner, it does solve the immediate need of being able to directly access
more physical memory than can be mapped at anyone time in a 32-bit process
address space. The long-term solution to this address space limitation is 64-bit
Windows.

Recall that a process's virtual address space is the set of addresses available
for the process's threads to use. Vrrtualmemory provides a logical view of memory
that might not correspond to its physical layout. At run time the memory man
ager, with assistance from hardware, translates, or maps, the virtual addresses
into physical addresses, where the data is actually stored. By controlling the
protection and mapping, the operating system can ensure that individual processes
don't bump into one another or overwrite operating system data. Figure 1-3
illustrates three virtually contiguous pages mapped to three discontiguous pages
in physical memory.

ONE: Concepts and Tools

Virtual memory

Physical memory

Figure 1-3
Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total vir
tual memory in use by the running processes (2 GB or 3 GB for each process),
the memory manager transfers, or pages, some of the memory contents to disk.
Paging data to disk frees physical memory so that it can be used for other pro
cesses or for the operating system itself. When a thtead accesses a virtual address
that has been paged to disk, the virtual memory manager loads the information
back into memory from disk. Applications don't have to be altered in any way
to take advantage of paging because hardware support enables the memory
manager to page without the knowledge or assistance of processes or threads.

Details of the implementation of the memory manager, including how
address translation works and how Windows 2000 manages physical memory,
are described in detail in Chapter 7.

Kernel Mode vs. User Mode
To protect user applications from accessing and/or modifYing critical operat
ing system data, Windows 2000 uses two processor access modes (even if the pro
cessor on which Windows 2000 is running supports more than two): user mode
and kernel mode. User application code runs in user mode, whereas operating
system code (such as system services and device drivers) runs in kernel mode.
Kernel mode refers to a mode of execution in a processor that grants access to
all system memory and all CPU instructions. By providing the operating sys
tem software with a higher privilege level than the application software has, the

9

INSIDE MICROSOFT WINDOWS 2000

10

processor provides a necessary foundation for operating system designers to
ensure that a misbehaving application can't disrupt the stability of the system
as a whole.

NOT E The architecture of the Intel x86 processor defines four
privilege levels, or rings) to prQtect system code and data from being
overwritten either inadvertently or maliciously by code of lesser
privilege. Windows 2000 uses privilege level 0 (or ring 0) for ker-
nel mode and privilege level 3 (or ring 3) for user mode. The rea-
son Windows 2000 uses only two levels is that some of the hardware
architectures that were supported in the past (such as Compaq Alpha
and Silicon Graphics MIPS) implemented only two privilege levels.

Although each Win32 process has its own private memory space, kernel-
mode operating system and device driver code share a single virtual address space.
Each page in virtual memory is tagged as to what access mode the processor must
be in to read and/or write the page. Pages in system space can be accessed only
from kernel mode, whereas all pages in the user address space are accessible from
user mode. Read-only pages (such as those that contain executable code) are
not writable from any mode.

Windows 2000 doesn't provide any protection to private read/write system
memory being used by components running in kernel mode. In other words, once
in kernel mode, operating system and device driver code has complete access to
system space memory and can bypass Windows 2000 security to access objects.
Because the bulk of the Windows 2000 operating system code runs in kernel
mode, it is vital that components that run in kernel mode be carefully designed
and tested to ensure that they don't violate system security.

This lack of protection also emphasizes the need to take care when loading
a third-party device driver, because once in kernel mode the software has com
plete access to all operating system data. This vulnerability was one of the rea
sons behind the driver-signing mechanism introduced in Windows 2000, which
warns the user if an attempt is made to add an unauthorized (unsigned) driver.
(See Chapter 9 for more information on driver signing.) Also, a mechanism
called Driver Verifier helps device driver writers to find bugs (such as memory
leaks). Driver Verifier is explained in Chapter 7.

As you'll see in Chapter 2, user applications switch from user mode to
kernel mode when they make a system service call. For example, a Win32
ReadFile function eventually needs to call the internal Windows 2000 routine
that actually handles reading data from a file. That routine, because it accesses
internal system data structures, must run in kernel mode. The transition from

ONE: Concepts and Tools

user mode to kernel mode is accomplished by the use of a special processor
instruction that causes the processor to switch to kernel mode. The operating
system traps this instruction, notices that a system service is being requested,
validates the arguments the thread passed to the system function, and then
executes the internal function. Before returning control to the user thread, the
processor mode is switched back to user mode. In this way, the operating sys
tem protects itself and its data from perusal and modification by user processes.

NOT E A transition from user mode to kernel mode (and back) does
not affect thread scheduling per se-a mode transition is not a con
text switch. Further details on system service dispatching are included
in Chapter 3.

Thus, it's normal for a user thread to spend part of its time executing in
user mode and part in kernel mode. In fact, because the bulk of the graphics
and windowing system also runs in kernel mode, graphics-intensive applications
spend more of their time in kernel mode than in user mode. An easy way to test
this is to run a graphics-intensive application such as Microsoft Paint or Microsoft
Pinball and watch the time split between user mode and kernel mode using one
of the performance counters listed in Table 1-1.

Table 1-1 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time

Processor: % User Time

Process: % Privileged Time

Process: % User Time

Thread: % Privileged Time

Thread: % User Time

Percentage of time that an individual CPU
(or all CPUs) has run inkernel mode during
a specified interval

Percentage of time that an individual CPU
(or all CPUs) has run in user mode during a
specified interval

Percentage of time that the threads in a
process have run in kernel mode during a
specified interval

Percentage of time that the threads in a
process have run in user mode during a
specified interval

Percentage of time that a thread has run in
kernel mode during a specified interval

Percentage of time that a thread has run in
user mode during a specified interval

11

INSIDE MICROSOFT WINDOWS 2000

ONE: Concepts and Tools

13

INSIDE MICROSOFT WINDOWS 2000

Objects and Handles

14

In the Windows 2000 operating system, an object is a single, run-time instance
of a statically defined object type. An object type comprises a system-defined data
type, functions that operate on instances of the data type, and a set of object
attributes. If you write Win32 applications, you might encounter process, thread,
file, and event objects, to name just a few examples. These objects are based on
lower-level objects that Windows 2000 creates and manages. In Windows 2000,
a process is an instance of the process object type, a file is an instance of the file
object type, and so on.

An object attribute is a field of data in an object that partially defines the
object's state. An object of type process) for example, would have attributes that
include the process ID, a base scheduling priority, and a pointer to an access
token object. Object methods, the means for manipulating objects, usually read or
change the object attributes. For example, the open method for a process would
accept a process identifier as input and return a pointer to the object as output.

NOT E Although there is a parameter named ObjectAttributes that
a caller supplies when creating an object using either the Win32 API
or native object services, that parameter shouldn't be confused with
the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data
structure is that the internal structure of an object is hidden. You must call an object
service to get data out of an object or to put data into it. You can't directly read
or change data inside an object. This difference separates the underlying imple
mentation of the object from code that merely uses it, a technique that allows
object implementations to be changed easily over time.

Objects provide a convenient means for accomplishing the following four
important operating system tasks:

II Providing human-readable names for system resources

II Sharing resources and data among processes

II Protecting resources from unauthorized access

• Reference tracking, which allows the system to know when an object
is no longer in use so that it can be automatically deallocated

Not all data structures in the Windows 2000 operating system are objects.
Only data that needs to be shared, protected, named, or made visible to user
mode programs (via system services) is placed in objects. Structures used by only

ONE: Concepts and Tools

one component of the operating system to implement internal functions are not
objects. Objects and handles (references to an instance of an object) are discussed
in more detail in Chapter 3.

Security
Windows 2000 supports C2-level security as defined by the u.s. Department
of Defense Trusted Computer System Evaluation Criteria (DoD 5200.28-STD,
December 1985). This standard includes discretionary (need-to-know) protec
tion for all shareable system objects (such as files, directories, processes, threads,
and so forth), security auditing (for accountability of subjects, or users, and the
actions they initiate), password authentication at logon, and the prevention of
one user from accessing uninitialized resources (such as free memory or disk
space) that another user has deallocated.

Windows NT 4 was formally evaluated at the C2level and is on the U.S.
government Evaluated Products List. (Windows 2000 is still in the evaluation
process.) Also, Windows NT 4 has met the European organization ITSEC (IT
Security Evaluation Criteria) at the FC2/E3 (functional level C2 and assurance
levelE3, something normally associated only with B-level systems) security level.
Achieving a government-approved security rating allows an operating system to
compete in that arena. Of course, many of these required capabilities are advan
tageous features for any multiuser system.

Windows 2000 has two forms of access control over objects. The first
form-discretionary access control-is the protection mechanism that most
people think of when they think of protection under Windows 2000. It's the
method by which owners of objects (such as files or printers) grant or deny access
to others. When users log in, they are given a set of security credentials, or a
security context. When they attempt to access objects, their security context is
compared to the access control list on the object they are trying to access to
determine whether they have permission to perform the requested operation.

Privileged access control is necessary for those times when discretionary
access control isn't enough. It's a method of ensuring that someone can get to
protected objects if the owner isn't available. For example, if an employee leaves
a company, the administrator needs a way to gain access to files that might have
been accessible only to that employee. In that case, under Windows 2000, the
administrator can take ownership of the file so that you can manage its rights
as necessary.

15

INSIDE MICROSOFT WINDOWS 2000

Security pervades the interface of the Win32 API. The Win32 subsystem
implements object-based security in the same way the operating system does;
the Win32 subsystem protects shared Windows objects from unauthorized access
by placing Windows 2000 security descriptors on them. The first time an appli
cation tries to access a shared object, the Wm32 subsystem verifies the application's
right to do so. If the security check succeeds, the Win32 subsystem allows the
application to proceed.

The Win32 subsystem implements object security on a number of shared
objects, some of which were built on top of native Windows 2000 objects. The
Win32 objects include desktop objects, window objects, menu objects, files,
processes, threads, and several synchronization objects.

For a comprehensive description of Windows 2000 security, see Chapter 8.

Registry

16

If you've worked at all with Windows operating systems, you've probably heard
about or looked at the registry. You can't talk much about Windows 2000 internals
without referring to the registry because it's the system database that contains
the information required to boot and configure the system, systemwide soft
ware settings that control the operation of Windows 2000, the security data
base, and per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such
as the current hardware state of the system (what device drivers are loaded, the
resources they are using, and so on) as well as the Windows 2000 performance
counters. The performance counters, which aren't actually "in" the registry, are
accessed through the registry functions. See Chapter 5 for more on how per
formance counter information is accessed from the registry.

Although many Windows 2000 users and administrators will never need
to look directly into the registry (since you can view or change most of the
configuration settings with standard administrative utilities), it is still a useful
source of Windows 2000 internals information because it contains many set
tings that affect system performance and behavior. (If you decide to directly
change registry settings, you must exercise extreme caution; any changes might
adversely affect system performance or, worse, cause the system to fail to boot
successfully.) You'll find references to individual registry keys throughout this
book as they pertain to the component being described. Most registry keys
referred to in this book are under HKEY_LOCAL_MACHINE, which we'll
abbreviate throughout as HKLM.

For further information on the registry and its internal structure, see
Chapter 5.

ONE: Concepts and Tools

Unicode
Windows 2000 differs from most other operating systems in that most inter
nal text strings are stored and processed as 16-bit-wide Unicode characters.
Unicode is an international character set standard that defines unique 16-bit
values for most of the world's known character sets. (For more information about
Unicode, see www.unicode.ot;!Jas well as the programming documentation in
the MSDN Library.)

Because many applications deal with 8-bit (single-byte) ANSI character
strings, Win32 functions that accept string parameters have two entry points: a
Unicode (wide, 16-bit) and an ANSI (narrow, 8-bit) version. The Windows 95,
Windows 98, and Windows Millennium Edition implementations ofWin32 don't
implement all the Unicode interfaces to all the Win32 functions, so applications
designed to run on one of these operating systems as well as Windows 2000 typi
cally use the narrow versions. If you call the narrow version of a Win32 func
tion, input string parameters are converted to Unicode before being processed
by the system and output parameters are converted from Unicode to ANSI
before being returned to the application. Thus, if you have an older service or
piece of code that you need to run on Windows 2000 but this code is written
using ANSI character text strings, Windows 2000 will convert the ANSI char
acters into Unicode for its own use. Hovyever, Windows 2000 never converts
the data inside files-it's up to the application to decide whether to store data
as Unicode or as ANSI.

In previous editions of Windows NT, Asian and Middle East editions were
a superset of the core U.S. and European editions and contained additional
Win32 functions to handle more complex text input and layout requirements
(such as right to left text input). In Windows 2000, all language editions con
tain the same Win32 functions. Instead of having separate language versions,
Windows 2000 has a single worldwide binary so that a single installation can
support multiple languages (by adding various language packs). Applications
can also take advantage ofWin32 functions that allow single worldwide appli
cation binaries that can support multiple languages.

Digging into Windows 2000 Internals
Although much of the information in this book is based on the Windows 2000
source code, you don't have to take everything on faith. Many details about the
internals of Windows 2000 can be exposed and demonstrated by using a variety

17

INSIDE MICROSOFT WINDOWS 2000

18

of available tools, such as those that come with Windows 2000, the Windows 2000
Support Tools, the Windows 2000 resource kits, and the Windows 2000 dec
bugging tools. These tool packages are briefly described later in this section.

To encourage your exploration of Windows 2000 internals, we've included
"Experiment" sidebars throughout the book that describe steps you can take
to examine a particular aspect of Windows 2000 internal behavior. (You already
saw one of these sections earlier in this chapter.) We encourage you to try these
experiments so that you can see in action many of the internals topics described
in this book.

In addition, this book comes with a CD-ROM that contains the latest
version of the tools from www.sysinternals.com (a popular site for 32-bit Windows
internals-related tools and information), as well as tools that are available only
with this book.

Table 1-2 shows a list of the tools used in this book and where they come
from. Although the capabilities of many of these tools overlap quite a bit in terms
of the information that they can display, each of them shows at least one unique
piece of information not available in any other utility.

Table 1-2 Tools for Viewing Windows 2000 Internals

Tool Image Name Origin

Dependency DEPENDS Support Tools, Platform SDK
Walker

Dump Check DUMPCHK Support Tools, debugging tools,
Platform SDK, Windows 2000
DDK

EFS Information EFSDUMP www.sysinternals.com*
Dumper

File Monitor FILEMON www.sysinternals.com

Get SID tool GETSID Resource kits

Global Flags GFLAGS Support Tools, Platform SDK,
Windows 2000 DDK

Handle/DLL HANDLEEX, www.sysinternals.com
Viewer NTHANDLE

Junction tool JUNCTION www.sysinternals.com/misc.htm

Kernel I386KD, Debugging tools, Platform SDK,
debuggers WINDBG,KD Windows 2000 DDK

Object Viewer WINOBJ Platform SDK, www.sysinternals.com

Open Handles OH Resource kits

Page Fault PFMON Resource kits, Platform SDK
Monitor

Tool

Performance
tool

PipeList tool

Pool Monitor

Process Explode

Process Statistics

Process Viewer

Quantum

Quick Slice

Registry Monitor

Service Control
tool

Task (Process) List

Task Manager

TDImon

Image Name

PERFMON

PIPE LIST

POOLMON

PVIEW

PSTAT

PVIEWER(in
the Support
Tools) or
PVIEW (in
the Platform
SDK)

QUANTUM

QSLICE

REGMON

SC

TLIST

TASKMAN

TDIMON

ONE: Concepts and Tools

Origin

Windows 2000

www.sysinternals.com/tips.htm

Support Tools, Windows 2000
DDK

www.reskit.com

Platform SDK, www.reskit.com

Support Tools, Platform SDK

companion CD

Resource kits

www.sysinternals.com

Resource kits

Support Tools

Windows 2000

www.sysinternals.com

* All tools from wwwsysinternals.com are also included on the companion CD.

Tools on the Companion CD
The companion CD contains the following unique tools that will assist you in
exploring the internals of Windows 2000:

II LiveKd This tool allows you to use the standard Microsoft kernel
debuggers,I386kd.exe and Windbg.exe (as well as the new Kd.exe,
which replaces both of these tools in newer versions of the debugging
tools), to display internal information from the currently running
system, without requiring a second computer to act as the host (via a
null modem cable). This tool is explained in the section "Kernel
Debugging Tools" later in this chapter.

II Kernel variable performance counter extension DLL This exten
sion to the Windows 2000 Performance tool allows you to examine
the value of any exported kernel variable from the core kernel image,
Ntoskrnl.exe.

19

INSIDE MICROSOFT WINDOWS 2000

Many of the experiments throughout this book use the kernel debugger
because it can easily display many internal Windows 2000 data structures and
other details not available from any user-mode utility. Therefore, LiveKd will
make trying these experiments much easier because it allows the kernel debugger
to be used on a live system without requiring a second computer.

Whereas LiveKd displays internal kernel variables, the kernel variable per
formance counter extension DLL monitors the values of these variables over
time. For example, these variables can contain numeric values of interest that might
not be accessible through any of the Windows 2000 performance counters.

For more information about these tools, see the documentation provided
on the CD as part of the tools installation. As a reminder, only people who buy
this book can install and use these tools. They can't be further distributed. (See
the license agreement in the back of this book for details.)

Performance Tool
We'll refer to the Performance tool found in the Administrative Tools folder on
the Start menu (or via Control Panel) throughout this book. The Performance
tool has three functions: system monitoring, viewing performance counter logs,
and setting alerts. For simplicity, when we refer to the Performance tool, we are
referring to the System Monitor function within the tool.

The Performance tool can provide more information about how your sys
tem is operating than any other single utility. It includes hundreds of counters
for various objects. For each major topic described in this book, a table of the
relevant Windows 2000 performance counters is included.

The Performance tool contains a brief description for each counter. To see
the descriptions, select a counter in the Add Counter window and click the
Explain button. Or open the Performance Counter Reference help file in the
resource kit. For information on how to interpret these counters to detect
bottlenecks or plan capacity, see the section "Performance Monitoring" in the
Windows 2000 Server Operations Guide) which is part of the Windows 2000
Server Resource Kit. These chapters provide an excellent description to anyone
seriously interested in understanding Windows 2000 performance.

Note that all the Windows 2000 performance counters are accessible pro
grammatically. The section "HKEY_PERFORMANCE_DATA" in Chapter 5
has a brief description of the components involved in retrieving performance
counters through the Win32 API.

Windows 2000 Support Tools

20

The Windows 2000 Support Tools consist of about 40 tools useful in admin
istering and troubleshooting Windows 2000 systems. Many of these tools were
formerly part of the Windows NT 4 resource kits.

ONE: Concepts and Tools

You can install the Support Tools by running Setup.exe in the \Support\
Tools folder on any Windows 2000 product distribution CD. (That is, the Sup
port Tools are the same on Windows 2000 Professional, Server, and Advanced
Server.)

Windows 2000 Resource Kits
The Windows 2000 resource kits supplement the Support Tools, adding some
200 additional tools. Besides including many tools useful for displaying internal
system state, they contain useful internals documentation, such as the Registry
Reference and Performance Counters help files.

There are two editions of the resource kits: the Windows 2000 Professional
Resource Kit and the Windows 2000 Server Resource Kit. Although the latter
kit is a superset of the former and can be installed on Windows 2000 Profes
sional systems, none of the experiments in this book use the tools that are included
only with the Windows 2000 Server Resource Kit. Be sure you visit www.reskit.com
for updates to tools as well as for new tools.

Kernel Debugging Tools
Kernel de buggers are tools that device driver developers use to debug their
drivers and support personnel use to troubleshoot hung systems and examine
crash dumps (a copy of system memory saved in a file that can be analyzed to
try and determine the cause of the system crash). Although a kernel debugger
is used mainly for analyzing crash dumps or debugging device drivers, it is also
a useful tool for investigating Windows 2000 internals because it can display
internal Windows 2000 system information not visible through any standard
utility. For example, it can dump internal data structures such as thread blocks,
process blocks, page tables, I/O, and pool structures. Throughout this book,
the relevant kernel debugger commands and output are included as they apply
to each topic being discussed.

Microsoft Kernel Debuggers
There are two versions of the Microsoft kernel debuggers: a command-line ver
sion (I386kd.exe for x86 systems*) and a graphical user interface (GUI) version
(Windbg.exe). There is also a new version, Kd.exe, that replaces both of these.
These tools are part of the debugger tools package, which is shipped in three places:

II Windows 2000 Customer Support Diagnostics (downloadable from
www.microsoft.com)

* Even though Windows 2000 doesn't run on the Intel 80386 processor (early versions of
Windows NT did), for historical reasons, the x86 directories on the Windows 2000 distribution
media are still called i386. Thus, the x86 kernel debugger is called I386kd.exe.

21

INSIDE MICROSOFT WINDOWS 2000

22

III Platform SDK (part of MSDN Professional and Universal,
and downloadable from msdn.microsoft.com)

III Windows 2000 DDK (Device Driver Kit-also part of MSDN and
freely downloadable from www.microsoft.comlhwdev)

NOT E New versions of the debugging tools package are released
independently of new versions of Windows 2000. Hence, you should
occasionally check the Download section of Microsoft's Web site for
the latest versions of these three packages. The debugging tools include
a package called the OEM Support Tools, which is updated indepen
dently of the debugging tools and therefore might have newer versions
of debugging-related tools (such as Kdex2x86.dll, a kernel debugger
extension DLL with additional debugging commands).

The debugging tools help file, provided with each of the three packages
just mentioned, explains how to set up and use the kernel debuggers (as well
as other debugging and support tools that are part of the package). Additional
details on using the kernel debuggers that are aimed primarily at device driver
writers can be found in the Wmdows 2000 DDK documentation. There are also
several useful Knowledge Base articles on the kernel debugger. Search for
"debugref" in the Windows 2000 Knowledge Base (an online database of tech
nical articles) on support.microsoft.com.

The kernel debugger has two modes of operation:

III Open a crash dump file created as a result of a Windows 2000 or
Windows NT 4 system crash. (See the section "System Crashes" in
Chapter 4 for more information on crash dumps.)

III Connect to a live, running system and examine the system state (or set
breakpoints, if you're debugging device driver code). This operation
requires two computers-a target and a host. The target is the system
being debugged, and the host is the system running the debugger.
The target system can be either local (connected to the host via a null
modem cable) or remote (connecting tothe host.via a modem). The
target system must be booted with the /DEBUG qualifier (either by
pressing F8 during the boot process and selecting Debug Mode or
by adding a boot selection entry in C:\Boot.ini).

ONE: Concepts and Tools

Detailed setup instructions can be found in the debugging tools documen
tation referred to previously.

LiveKdTool
The companion CD contains a tool called LiveKd that allows the use of the
standard Microsoft kernel debugger on a live system, without needing two com
puters. LiveKd can be used for most of the experiments in the book and thus
will be a helpful tool in exploring Windows 2000 internals.

You run LiveKd just as you would 1386kd, Windbg, or Kd. LiveKd passes
any command-line options you specify through to the debugger you select. By
default, LiveKd runs the new command-line kernel debugger (Kd). IfKd is not
found in the current directory, LiveKd tries 1386kd. To run the GUI debugger
(Windbg), specify the -w switch. To see the help on the switches for LiveKd,
specify the -? switch.

LiveKd presents a simulated crash dump file to the debugger, so you can
perform any operations in LiveKd that are supported on a crash dump. Because
LiveKd is relying on physical memory to back the simulated dump, the kernel
debugger might run into situations in which data structures are in the middle
of being changed by the system and are inconsistent. Each time the debugger
is launched, it gets a snapshot of system state, so if you want to refresh the
snapshot, quit the debugger (with the "q" command) and LiveKd will ask you
whether you want to start it again. If the debugger gets in a loop in printing
output, press Ctrl+C to interrupt the output, quit, and rerun it. lfit hangs, press
Ctrl+ Break, which will terminate the debugger process and ask you whether you
want to run the debugger again.

SoHleE
Another debugging tool that doesn't require two machines for live kernel debug
ging is a third-party kernel debugger called SoftICE, which you can buy from
Compuware NuMega. (See www.numega.comfor details.)

Symbols for Kernel Debugging
To use any of the kernel debugging tools listed previously to examine internal
Windows,2000 data structures (such as the process list, thread blocks, loaded
driver list, memory usage information, and so on), you must have the correct
symbol files for at least the kernel image, Ntoskrnl.exe. (The section "Architec
ture Overview" in Chapter 2 explains more about this file.) The symbols are part
of the Customer Support Diagnostics package (which, as mentioned earlier, is
downloadable from www.microsoft.com). They are installed separately from the
debugging tools and by default reside in the \Winnt\Symbols folder.

23

INSIDE MICROSOFT WINDOWS 2000

Later in the book, you'll see how you can use these symbol table files to
display the names of internal Wmdows 2000 system routines and global variables.

NOT E Symbol table files must match the version of the image they
were taken from. For example, if you install a Windows 2000 Service
Pack, you must obtain the matching, updated symbol files for at least
the kernel image; otherwise, you'll get a checksum error when you
try to load them with the kernel debugger. These updated symbol files
are not typically included or installed when you download and install
a Service Pack from www.microsoft.com-they must be downloaded
separately. (If you receive MSDN Professional or TechNet, they're
included on the Service Pack CD-ROMs.)

Platform Software Development Kit (SDK)
The Platform SDK is part of the MSDN Professional (and Universal) subscrip
tion and can also be downloaded for free from msnd.microsoft.com. It contains
the C header files and libraries necessary to compile and link Win32 applications.
(Although Microsoft Visual C++ comes with a copy of these header files, the
versions contained in the Platform SDKalways match the latest version of the
Windows operating systems, whereas the version that comes with Visual C++
might be an older version that was current when Visual C++ was released.) From
an internals perspective, items of interest in the Platform SDK include the Wm32
API header files (\Program Files\Microsoft Platform SDK\Include) as well as
several utilities (Pfmon.exe, Pstat.exe, Winobj.exe). Some of the tools in the
Platform SDK also come with the resource kits. Finally, a few of these tools are
also shipped as example source code in both the Platform SDK and the MSDN
Library.

Device Driver Kit (DDK)

24

The Windows 2000 DDKis part of the MSDN Professional (and Universal)
subscription, but it is also available for free download at www.microsoft.com/hwdev.
Although the DDKis aimed at device driver developers, the DDKis an abun
dant source of Windows 2000 internals information. For example, the DDK
documentation contains a comprehensive description of the Windows 2000 I/O
system in both a tutorial and reference form, including the internal system rou
tines and data structures used by device drivers.

ONE: Concepts and Tools

Besides the documentation, the D D K contains header flies that define key
internal data structures and constants as well as interfaces to many internal sys
tem routines (in particular, Ntddk.h). These files are useful when exploring
Windows 2000 internal data structures with the kernel debugger because although
the general layout and content of these structures are shown in this book, detailed
field -level descriptions (such as size and data types) are not. A number of these
data structures (such as object dispatcher headers, wait blocks, events, mutants,
semaphores, and so on) are, however, fully defined in the DDK. In addition,
the !dso command in the kernel debugger displays the format of many internal
Windows 2000 data structures that are not defined in the DDK header files.

Systems Internals Tools
Many of the experiments in this book use freeware tools that you can download
from www.sysinternals.com. Mark Russinovich, coauthor of this book, wrote most
of these tools. Copies of these tools are in the \Sysint directory on the companion
CD. In addition, a complete copy of the Web site www.sysinternals.comis also
on the CD. (Keep in mind that although the version of www.sysinternals.com
on the companion CD has the latest versions of tools available when this book
was published, it won't have any new tools or updates that have been added to
the live site later.) Many of these utilities involve the installation and execution
of kernel-mode device drivers and thus require administrator privileges.

Conclusion
In this chapter, you've been introduced to the key Windows 2000 technical
concepts and terms that will be used throughout the book. You've also glimpsed
at the many useful tools available for digging into Windows 2000 internals. Now
we're ready to begin our exploration of the internal design of the system, begin
ning with an overall view of the system architecture and its key components.

25

C HAP T E R TWO

System Architecture

Now that we've covered the terms, concepts, and tools you need to be famil
iar with, we're ready to start our exploration of the internal design goals and
structure of Microsoft Windows 2000 (originally Windows NT). This chap
ter explains the overall architecture of the system-the key components, how
they interact with each other, and the context in which they run. To provide
a framework for understanding the internals of Windows 2000, let's first review
the requirements and goals that shaped the original design and specification
of the system.

Requirements and DeSign Goals
The following requirements drove the specification of Windows NT back in 1989:

II Provide a true 32-bit, preemptive, reentrant; virtual memory
operating system

II Run on multiple hardware architectures and platforms

• Run and scale well on symmetric multiprocessing systems

II Be a great distributed computing platform, both as a network client
and as a server

II Run most existing 16~bit MS-DOS and Microsoft Windows 3.1
applications

II Meet government requirements for POSIX·1 003.1· compliance

II Meet government and industry requirements for operating system
security

II Be easily adaptable to the global market by supporting U mcode

27

INSIDE MICROSOFT WINDOWS 2000

28

To guide the thousands of decisions that had to be made to create a system
that met these requirements, the Windows NT design team adopted the follow
ing design goals at the beginning of the project:

III Extensibility The code must be written to comfortably grow and
change as market requirements change.

III Portability The system must be able to run on multiple hardware
architectures and must be able to move with relative ease to new
ones as market demands dictate.

III Reliability and robustness The system should protect itself from
both internal malfunction and external tampering. Applications should
not be able to harm the operating system or other applications.

III . Compatibility Although Windows NT should extend existing tech
nology, its user interface and APIs should be compatible with older
versions of Windows and with MS~DOS. It should also interoperate
well with other systems such as UNIX, OS/2, and NetWare.

III Performance Within the constraints of the other design goals, the
system should be as fast and responsive as possible on each hardware
platform.

As we explore the details of the internal structure and operation of Windows
2000, you'll see how these original design goals and market requirements were
woven successfully into the construction of the system. But before we start
that exploration, let's examine the overall design model for Windows 2000
and compare it with other modern operating systems.

TWO: System Architecture

(continued)

29

INSIDE MICROSOFT WINDOWS 2000

Windows 2000 vs. Consumer Windows continued

Operating System Model

30

In most multiuser operating systems, applications are separated from the oper
ating system itself-the operating system code runs in a privileged processor
mode (referred to as kernel mode in this book), with access to system data and
to the hardware; application code. runs in a nonprivileged processor mode (called
user mode), with a limited set of interfaces available, limited access to system data,
and no direct access to hardware. When a user-mode program calls a system
service, the processor traps the call and then switches the calling thread to ker
nel mode. Wlien the system service completes, the operating system switches
the thread context back tp user mode and allows the caller to continue.

Windows 2000 is similar to most UNIX systems in that it's a monolithic
operating system in the sense that the l;mlk of the operating system and device
driver code shares the same kernel-mode protected memory space. This means
that any operating system component or device driver can potentially corrupt
data being used by other operating system components.

TWO: System Architecture

All these operating syst~m compon~nts are, of course, fully protected from
errant applications. because applications don't have direct access to the code and
data of the privilegeci part of the operating system (though they can quickly call
other kernel services). This protection is one of th.e reasons that Windows 2000
has the reputation for being both robust and stable as an application server and
as a workstation platform yet fast and nimble from the perspective of core oper
ating system services, such as virtual memory management, file. I/O , network
ing, and file and print sharing.

31

INSIDE MICROSOFT WINDOWS 2000

The kernel-mode components of Windows 2000 also embody basic object
oriented design principles. For example, they don't reach into one another's data
structures to access information maintained by individual components. Instead,
they use formal interfaces to pass. parameters and access and/or modify data
structures.

Despite its pervasive use of objects to represent shared system resources,
Wmdows 2000 is not an object-oriented system in the strict sense. Most of the
operating system code is written in C for portability and because C development
tools are widely available. C doesn't directly support object-oriented constructs,
such as dynamic binding of data types, polymorphic functions, or class inherit
ance. Therefore, the C-based implementation of objects in Wmdows 2000 bor
rows from, but doesn't depend on, features of particular object-oriented languages.

Portability

32

Windows 2000 was designed to run on a variety of hardware architectures,
including Intel-based CISC systems as well as RISC systems. The initial release
of Windows NT supported the x86 and MIPS architecture. Support for the
Digital Equipment Corporation (DEC) Alpha AXP was added shortly thereaf
ter. Support for a fourth processor architecture, the Motorola PowerPC, was
added in Windows NT 3.51. Because of changing market demands, however,
support for the MIPS and PowerPC architectures was dropped before devel
opment began on Windows 2000. Later Compaq withdrew support for the
Alpha AXP architecture, resulting in Windows 2000 being supported only on
the x86 architecture.

NOT E The next architecture to be supported by a future version
of Windows 2000 is the new Intel Itanium processor family, the first
implementation of the 64-bit architecture family being jointly devel
oped by Intel and Hewlett-Packard, called IA-64 (for Intel Architec
ture 64). The 64-bit version of Windows will provide a much larger
address space for both user processes and the system. Although this
is a major enhancement that extends the scalability of the system sig
nificantly, to date, moving Windows 2000 to a 64-bit platform hasn't
necessitated major changes in the kernel architecture of the system
(other than the support in the memory manager, of course). For infor
mation on preparing applications now so that they can be ported to 64-
bit Windows more easily later,see the section of the Platform SDK
documentation entitled ''Win64 Programming Preview" (also available
online at msdn.microsoft.com). For general information on 64-bit
Windows, search for the keyword "64-bit" on www.microsoft.coml
windows.

TWO: System Architecture

Windows 2000 achieves portability across hardware architectures and plat
forms in two primary ways:

III Windows 2000 has a layered design, with low-level portions of the
system that are processor-architecture-specific or platform-specific
isolated into separate modules so that upper layers of the system can
be shielded from the differences between architectures and among
hardware platforms. The two key components that provide operating
system portability are the kernel (contained in Ntoskrnl.exe) and the
hardware abstraction layer (contained in Hal.dll). (Both these com
ponents are described in more detail later in this chapter.) Functions
that are architecture-specific (such as thread context switching and
trap dispatching) are implemented in the kernel. Functions that c.an
differ among systems within the same architecture (for example, dif
ferent motherboards) are implemented in the HAL.

III The vast majority of Windows 2000 is written in C, with some
portions in C++. Assembly language is used only for those parts of
the operating system that need to communicate direcdy with system
hardware (such as the interrupt trap handler) or that are extremely
performance-sensitive (such as context switching). Assembly language
code exists not only in the kernel and the HAL but also in a few
other places within the core operating system (such as the routines
that implement interlocked instructions as well as one module in
the local procedure call facility), in the kernel-mode part of the
Win32 subsystem, and even in some user-mode libraries, such as
the process startup code in Ntdll.dll (a system library explained
later in this chapter).

Symmetric Multiprocessing
Multitasking is the operating system technique for sharing a single processor
among multiple threads of execution. When a computer has more than one
processor, however, it can execute two threads simultaneously. Thus, whereas
a multitasking operating system only appears to execute multiple threads at the
same time, a multiprocessing operating system actually does it, executing one
thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals
for Windows NT was that it had to run well on multiprocessor computer systems.
Wmdows 2000 is also a symmetric multiprocessing (SMP) operating system. There
is no master processor-the operating system as well as user threads can be
scheduled to run on any processor. Also, all the processors share just one memory

33

INSIDE MICROSOFT WINDOWS 2000

34

space. This model contrasts with asymmetric multiprocessing (ASMP), in which
the operating system typically selects one processor to execute operating system
code while other processors run only user code. The differences in the two
multiprocessing models are illustrated in Figure 2-1.

Symmetric

Memory

Processor A Processor B

110 devices

Figure 2-1
Symmetric vs. asymmetric multiprocessing

Processor A

Operating
system

Asymmetric

110 devices

Although Windows NT was originally designed to support up to 32 pro
cessors, nothing inherent in the multiprocessor. design limits the number of
processors to 32-that number is simply an obvious and convenient limit be
cause 32 processors can easily be represented as a bit mask using a native 32-bit
data type.

The actua1.number of supported processors depends on the edition of
Windows 2000 being used. (The various editions of Windows 2000 are de
scribed in the next section.) This number is stored in the registry value

TWO: System Architecture

HKLM\SYSTEM\ CurrentControlSet\ Control\Session \Manager\Licensed
Processors. Keep in mind that tampering with that data is a violation of the
software license and will likely result in a system crash upon rebooting because
modifying the registry to allow use of more processors involves more than just
changing this value.

Scalability
One of the key issues with multiprocessor systems is scalability. To run correctly
on an SMP system, operating system code must adhere to strict guidelines and
rules. Resource contention and other performance issues are more complicated
in multiprocessing systeIIlsthan in uniprocessor systems and must be accounted
for in the system's design. Windows 2000 incorporates several features that are
crucial to its success as a multiprocessor operating system:

• The ability to run operating system code on any available processor
and on multiple processors at the same time

.• Multiple threads of execution within a single process, each of which
can execute simultaneously on different processors

• Fine-grained synchronization within the kernel as well as within
device drivers and server processes, which allows more components
to run concurrently on multiple processors

In addition, Windows 2000 provides mechanisms (such as I/O completion
ports-described in Chapter 9) that facilitate theefficierrt implementation of
multithreaded server processes that can scale well on multiprocessor systems.

Multiprocessor synchronization is described in Chapter 3. Multiprocessor
thread scheduling details are covered in Chapter 6.

Architecture Overview
With this brief overview of the design goals and packaging of Windows 2000,
let's take a look at the key system components that comprise its architecture. A
simplified version of this architecture is shown in Figure 2-2. Keep in mind that
this diagram is basic-it doesn't show everything. The various components of
Windows 2000 are covered in detail later in this chapter.

35

INSIDE MICROSOFT WINDOWS 2000

36

System
Service User

support
processes applications

processes

t t
Subsystem DLLs

, .. f f

Executive

Kernel I Device drivers

Hardware abstraction layer (HAL)

Figure 2·2
Simplified Windows 2000 architecture

Environment
subsystems

' t

Windowing
and graphics

User mode

Kernel mode

In Figure 2-2, first notice the line dividing the user-mode and kernel-mode
parts of the Windows 2000 operating system. The boxes above the line rep
resent user-mode processes, and the components below the line are kernel-mode
operating system services. As mentioned in Chapter 1, user-mode threads exe
cute in a protected process address space (although while they are executing in
kernel mode, they have access to system space). Thus, system support processes,
service processes, user applications, and environment subsystems each have their
own private process address space.

The four basic types of user-mode processes are described as follows:

III Fixed (or hardwired) system support processes, such as the logon process
and the session manager, that are not Windows 2000 services (that
is, not started by the service control manager).

III Service processes that host Win32 services, such as the Task Scheduler
and Spooler services. Many Windows 2000 server applications, such
as Microsoft SQL Server and Microsoft Exchange Server, also include
components that run as services.

III User applications, which can be one of five types: Win32, Windows
3.1, MS-DOS, POSIX, or OS/2 1.2.

III Environment subsystems, which expose the native operating system
services to user applications through a set of callable functions, thus
providing an operating system environment, or personality. Windows
2000 ships with three environment subsystems: Win32, POSIX,
and OS/2.

TWO: System Architecture

In Figure 2-2, notice the "Subsystem DLLs" box below the "Service pro
cesses" and "User applications" boxes. Under Windows 2000, user applications
don't call the native Windows 2000 operating system services directly; rather,
they go through one or more subsystem dynamic-link libraries (DLLs). The role
of the subsystem DLLs is to translate a documented function into the appro
priate internal (and undocumented) Windows 2000 system service calls. This
translation might or might not involve sending a message to the environment
subsystem process that is serving the user application.

The kernel-mode components of Windows 2000 include the following:

II The Windows 2000 executive contains the base operating system
services, such as memory management, process and thread manage
ment, security, I/O, and interprocess communication.

II The Windows 2000 kernel consists of low-level operating system
functions, such as thread scheduling, interrupt and exception dis
patching, and multiprocessor synchronization. It also provides a set
of routines and basic objects that the rest of the executive uses to
implement higher-level constructs.

II Device drivers include both hardware device drivers that translate
user I/O function calls into specific hardware device I/O requests as
well as file system and network drivers.

II The hardware abstraction layer (HAL) is a layer of code that isolates
the kernel, device drivers, and the rest of the Windows 2000 execu
tive from platform-specific hardware differences (such as differences
between motherboards).

II The windowing and graphics system implements the graphical user
interface (GUI) functions (better known as the Win32 USER and
GDI functions), such as dealing with windows, user interface con
trols, and drawing.

Table 2-1 lists the filenames of the core Windows 2000 operating system
components. (You'll need to know these filenames because we'll be referring
to some system files by name.) Each of these components is covered in greater
detail both later in this chapter and in the chapters that follow.

37

INSIDE MICROSOFT WINDOWS 2000

Table 2-1 Core Windows 2000 System Files

Filename

Ntoskrnl.exe

Ntkrnlpa.exe

Hal.dll

Win32k.sys

Ntdll.dll

Kernel32.dll,
Advapi32.dll,
User32.dll,
Gdi32.dll

Components

Executive and kernel

Executive and kernel with support for Physical Address
Extension (PAE), which allows addressing of up to
64 GB of physical memory

Hardware abstraction layer

Kernel-mode part of the Win32 subsystem_

Internal support functions and system service dispatch
stubs to executive functions

Core Win32 subsystem DLLs

Before we dig into the details of these system components, though, let's
examine the differences between Windows 2000 Professional and the various
editions of Windows 2000 Server.

Windows 2000 Product Packaging

38

There are four editions of Windows 2000: Windows 2000 Professional, Wmdows
2000 Server, Windows 2000 Advanced Server, and Windows 2000 Datacenter
Server. These editions differ by:

III The number of processors supported

III The amount of physical memory supported

III The number of concurrent network connections supported

III Layered services .that come with Server editions that don't come
with the Professional edition

These differences are surnrnarized in Table 2-2.

TWO: System Architecture

Table 2-2 Differences Between Windows 2000 Professional and
Server Editions

Edition

Windows 2000
Professional

Windows 2000
Server

Windows 2000
Advanced Server

Windows 2000
Datacenter Server

Number of
Processors
Supported

2

4

8

32

Physical
Memory
Supported

4GB

4 GB

8 GB

64 GB**

Number of
Concurrent
Client Network
Connections*

10

Unlimited

Unlimited

Unlimited

Additional
Layered
Services

Ability to be a
domain controller,
Active Directory
service, software
based RAID,
Dynamic Host
Configuration
Protocol (DHCP)
server, Domain
Name System
(DNS) server,
Distributed File
System (DFS)
server, Certificate
Services, Remote
install, and Termi
nal Services

Two-node clusters

Four-node clusters,
Process Control
Manager toolt

* The End-User License Agreement for Windows 2000 Professional (contained in \Winnt\System32\
Eula.txt) states, "You may permit a maximum often (10) computers or other electronic devices (each a
"Device") to connect to the Workstation Computer to utilize the services of the Product solely for file
and print services, internet information services, and remote access (including connection sharing and
telephony services)." This limit is enforced for file and print sharing and remote access but not for
Internet Information Services.

* * Theoretical limit-the supported limit might be less than this due to availability of commercial
hardware.

See page 376 in Chapter 6 for more on the Process Control Manager tool.

39

INSIDE MICROSOFT WINDOWS 2000

40

What is not different between the various flavors of Windows 2000 are
the core system files: the kernel image, Ntoskrnl.exe (and the PAE version,
Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system utili
ties and DLLs. All these files are the same for all editions of Windows 2000. For
example, there are no special server versions of the HAL.

However, a number of these components operate differently depending on
which edition is running. Windows 2000 Server systems are optimized for sys
tem throughput as high-performance application servers, whereas Windows 2000
Professional, although it has server capabilities, is optimized for response time
for interactive desktop use. For example, based on the product type, several
resource allocation decisions are made differently at system boot time, such as
the size and number of operating system heaps (or pools), the number of inter
nal system worker threads, and the size of the system data cache. Also, run -time
policy decisions, such as the way the memory manager trades off system and
process memory demands, differ between the Windows 2000 Server editions
and Windows 2000 Professional. Even some thread-scheduling details have
different default behavior in the two edition families. Where there are signifi
cant operational differences in the two products, these are highlighted in the
pertinent chapters throughout the rest of this book. Unless otherwise noted,
everything in this book applies to both the Windows 2000 Server editions as
well as Windows 2000 Professional.

If the kernel image is the same across the various product editions of
Windows 2000, how does the system know which edition is booted? By que
rying the registry values ProductType and ProductSuite under the HKLM\
SYSTEM\CurrentControISet\Control\ProductOptions key. ProductType is used
to distinguish whether the system is a Windows 2000 Professional system or a
Windows 2000 Server system (any edition). The valid values are listed in Table
2-3. The result is stored in the system global variable MmProductType, which
can be queried from a device driver using the kernel-mode support function
MmIsThisAnNtAsSystem, documented in the Windows 2000 DDK.

Table 2-3 ProductType Registry Values

Edition of Windows 2000

Windows 2000 Professional
Windows 2000 Server (domain controller)
Windows 2000 Server (server only)

Value of ProductType

WinNT
LanmanNT
ServerNT

TWO: System Architecture

A different registry value, ProductSuite, distinguishes Windows 2000 Ser
ver, Advanced Server, and Datacenter Server as well as whether Terminal Services
have been installed (Server systems only). On Windows 2000 Professional systems,
this value is blank.

If user programs need to determine which edition of Windows 2000 is
running, they can call the Win32 VerijY Versionlnfo function, documented in the
Platform SDK. Device drivers can call the kernel-mode function RtlGetVersion,
documented in the Windows 2000 DDK.

Checked Build
There is a special debug version of Windows 2000 Professional called the
checked build. This version is available only with the MSDN Professional (or
Universal) CD subscription. It is provided to aid device driver developers
the checked build performs more stringent error checking on kernel-mode
functions called by device drivers or other system code. For example, if a driver
(or some other piece of kernel-mode code) makes an invalid call to a system
function that is checking parameters (such as acquiring a spinlock at the wrong
interrupt level), the system will stop execution when the problem is detected
rather than allow some data structure to be corrupted and the system to pos
sibly crash at a later time.

The checked build is a recompilation of the Windows 2000 source code with
the compile-time flag DEBUG set to TRUE. Much of the additional code in
the checked-build binaries is a result of using the ASSERT macro, which is
defined in the DDK header file Ntddk.h and documented in the DDK docu
mentation. This macro tests a condition (such as the validity of a data structure
or parameter), and if the expression evaluates to FALSE, the macro calls the
kernel-mode function RtlAssert, which calls DbgPrintto pass the text of the debug
message to a kernel debugger (if one is attached) to be displayed and then
prompts the user for what to do (breakpoint, ignore, terminate process, or ter
minate thread). If the system wasn't booted with the kernel debugger (using
the /DEBUG switch in Boot.ini) and no kernel debugger is currently attached,
failure of an ASSERT test will crash the system.

Although Microsoft doesn't supply a checked-build version of Windows
2000 Server, Advanced Server, or Datacenter Server, you can manually copy the
checked (debug) version of the kernel image onto a Windows 2000 Server sys
tem, reboot, and run with a checked kernel. (You could also do this for other

41

INSIDE MICROSOFT WINDOWS 2000

system files, but most developers who use the checked build really only need
the checked version of the kernel image-not the checked versions of every
device driver, utility, and DLL.)

Multiprocessor-Specific System Files

42

Six system files * are different on a multiprocessor system than on a uniprocessor
system. (See Table 2-4.) At installation time, the appropriate file is selected
and copied to the local \Winnt\System32 directory. To determine which files
were copied, see the file \Winnt\Repair\Setup.log, which itemizes all the files
that were copied to the local system disk and where they came from off the
distribution media.

Table 2-4 Multiprocessor-Specific vs. Uniprocessor-Specific
System Files

Name of Name of Name of
File on Uniprocessor Multiprocessor
System Disk Version on CD Version on CD

Ntoskrnl.exe \1 386\Ntoskrnl.exe \1386\Ntkrnlmp.exe

Ntkrnlpa.exe Ntkrnlpa.exe in \1386\ Ntkrpamp.exe in
Driver.cab \1386\Driver.cab

Hal.dll Depends on system Depends on system type
type (See the list of (See the list ofHALs in
HALs in Table 2-5.) Table 2-5.)

Win32k.sys \1386\ UN1PROC\ Win32k.sys in
Win32k.sys \1386\Driver.cab

Ntdll.dll \1386\ UN1PROC\ \1386\Ntdll.dll
Ntdll.dll

Kerne132.dll \1386\ UN1PROC\ \1386\Kernel32.dll
Kerne132.dll

* If you look in the \I386\UNIPROC folder on a Windows 2000 CD, you'll see a file named
Winsrv.dll-although this file exists in a folder named UNIPROC, implying that there is a
uniprocessor version, in fact there is only one version of this image for both multiprocessor
and uniprocessor systems.

TWO: System Architecture

43

INSIDE MICROSOFT WINDOWS 2000

44

The reason for having uniprocessor versions of these key system mes is
performance-multiprocessor synchronization is inherently more complex and
time consuming than the use of a single processor, so by having special
uniprocessor versions of the key system files, this overhead is avoided on
uniprocessor systems (which constitute the vast majority of systems running
Windows 2000).

Interestingly, although the uniprocessor and multiprocessor versions of
Ntoskrnl are generated using conditionally compiled source code, the uniprocessor
versions of Ntdll.dll and Kernel32.dll are created by patching the x86 LOCK
and UNLOCK instructions, which are used to synchronize multiple threads with
no-operation (NaP) instructions (which do nothing).

The rest of the system files that comprise Windows 2000 (including all
utilities, libraries, and device drivers) have the same version on both uniprocessor
and multiprocessor systems (that is, they handle multiprocessor synchronization
issues correctly). You should use this approach on any software you build, whether
it is a Win32 application or a device driver-keep multiprocessor synchronization
issues in mind when you design your software, and test the software on both
uniprocessor and multiprocessor systems.

On the checked build CD, if you compare Ntoskrnl.exe and Ntkrnlmp.exe
or Ntkrnlpa.exe and Ntkrpatnp.exe, you'll find that they are identical-they are
all multiprocessor versions of the same meso In other words, there is no debug
uniprocessor version of the kernel images provided with the checked build.

TWO: System Architecture

(continued)

45

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Checking Which Ntoskrnl Version You're Running continued

Key System Components

46

Now that we've looked at the high-level architecture of Windows 2000, let's
delve deeper into the internal structure and the role each of the key operating
system components plays. Figure 2-3 is a more detailed and complete diagram
of the Windows 2000 system architecture and components than was shown
earlier in the chapter (in Figure 2-2).

The following sections elaborate on each major element of this diagram.
Chapter 3 explains the primary control mechanisms the system uses (such as the
object manager, interrupts, and so forth). Chapter 4 describes the process of
starting and shutting down Windows 2000, and Chapter 5 details management
mechanisms such as the registry, service processes, and Windows Management
Instrumentation (WMI). Then the remaining chapters explore in even more detail
the internal structure and operation of key areas such as processes and threads,
memory management, security, the I/O manager, storage management, the cache
manager, the Windows 2000 file system (NTFS), and networking.

System support
processes

System
threads

I/O manager

Device
.and file
system
drivers

Service processes Applications

System service dispatcher

Kernel

<
5:
c:
!!!.

.~
3
o
-<

"1J a
-0
::T(1)
ii! III
III III
0.(1)
III III

~

Hardware abstraction layer (HAL)

Hardware interfaces

TWO: System Architecture

Environment
subsystems

OS/2

(Buses, 110 devices, interrupts, interval timers, DMA, memory cache control, and so on)

Figure 2-3
Windows 2000 architecture

Environment Subsystems and Subsystem DLLs
As shown in Figure 2-3, Windows 2000 has three environment subsystems:
OS/2, POSIX, and Win32. As we'll explain shortly, of the three, the Wfu32 sub
system is special in that Windows 2000 can't run without it. (It owns the keyboard,
mouse, and display, and it is required to be present even on server systems with
no interactive users logged in.) In fact, the othertwo subsystems are configured
to start on demand, whereas the Win32 subsystem mustalways be running.

47

INSIDE MICROSOFT WINDOWS 2000

48

The subsystem startup information is stored under the registry key HKLM\
SYSTEM\CurrentControISet\Control\Session Manager\SubSystems. Figure 2-4
shows the values under this key.

REG_EXPAND_SZ
AEG_EXPAND_SZ %S.YitemAoot%\iystem32wm32k.S!'t
REGJ",jULTI_SZ 012 Po:Wc
AEG_EXPAND_SZ %SY$temA~%*.\Istem32\oa28:8.e:-:e

REG_EXPAND_SZ %SystemRoot%\~tem32\pl:m.II>le

REG_MULTI_52 DebugW'i"dowt
REG_EXPAND _S2 %SystemRoot%\s.y:stem32\c8l1t.e!Ce ObiectDiecto.y.\. ..

Figure 2-4
Registry Editor showing Windows 2000 startup information

The Required value lists the subsystems that load when the system boots.
The value has two strings: Windows and Debug. The Wmdows value contains the
file specification of the Wm32 subsystem, Csrss.exe, which stands for Client/Server
Run-Time Subsystem. * Debug is blank (it's used for internal testing) and there
fore does nothing. The Optional value indicates that the OS/2 and POSIX sub
systems will be started on demand. The registry value Kmode contains the filename
of the kernel-mode portion of the Win32 subsystem, Win32k.sys (explained later
in this chapter).

The role of an environment subsystem is to expose some subset of the base
Windows 2000 executive system services to application programs. Each subsys
tem can provide access to different subsets of the native services in Wmdows 2000.
That means that some things can be done from an application built on one
subsystem that can't be done by an application built on another subsystem. For
example, a Win32 application can't use the POSIXfork function.

Each executable image (.exe) is bound to one and only one subsystem.
When an image is run, the process creation code examines the subsystem type
code in the image header so that it can notify the proper subsystem of the new
process. This type code is specifled with the /SUBSYSTEM qualifier of the
link command in Microsoft Visual C++ and can be viewed with the Exetype
tool in the Wmdows 2000 resource kits.

* As a historical note, the reason the Wm32 subsystem process is called Csrss.exe is that in the
Original design of Windows NT, all the subsystems were going to execute as threads inside a
single systemwide environment subsystem process; when the POSIX and OS/2 subsystems were
removed and put in their own processes, the filename for the Win32 subsystem process wasn't
changed.

TWO: System Architecture

Function calls can't be mixed between subsystems. In other words, a POSIX
application can call only services exported by the POSIX subsystem, and a Wm32
application can call only services exported by the Win32 subsystem. As you'll
see later, this restriction is the reason that the POSIX subsystem, which imple
ments a very limited set of functions (only POSIX 1003.1), isn't a useful envi
ronment for porting UNIX applications.

As mentioned earlier, user applications don't call Windows 2000 system
services direcdy. Instead, they go through one or more subsystem DLLs. These
libraries export the documented interface that the programs linked to that sub
system can call. For example, the Win32 subsystem DLLs (such as Kernel32.dll,
Advapi32.dll, User32.dll, and Gdi32.dll) implement the Win32 API functions.
The POSIX subsystem DLL implements the POSIX 1003.1 API.

49

INSIDE MICROSOFT WINDOWS 2000

50

When an application calls a function in a subsystem DLL, one of three
things can occur:

II The function is entirely implemented in user mode inside the sub
system DLL. In other words, no message is sent to the environment
subsystem process, and no Windows 2000 executive system services
are called. The function is performed in user mode, and the results
are returned to the caller. Examples of such functions include Get
CurrentProcess (which always returns -1, a value that is defmed to
refer to the current process in all process-related functions) and
GetCurrentProcessld (the process ID doesn't change for a running
process, so this ID is retrieved from a cached location, thus avoiding
the need to call into the kernel).

II The function requires one or more calls to the Windows 2000
executive. For example, the Win32 ReadFile and WriteFile functions
involve calling the underlying internal (and undocumented) Windows
2000 I/O system services NtReadFile and NtWriteFile, respectively.

II The function requires some work to be done in the environment
subsystem process. (The environment subsystem processes, running
in user mode, are responsible for maintaining the state of the client
applications running under their control.) In this case, a client/server
request is made to the environment subsystem via a message sent to
the subsystem to perform some operation. The subsystem DLL then
waits for a reply before returning to the caller.

Some functions can be a combination of the second and third items above, such
as the Win32 CreateProcess and Create Thread functions.

Although Windows 2000 was designed to support multiple, independent
environment subsystems, from a practical perspective, having each subsystem
implement all the code to handle windowing and display I/O would result in
a large amount of duplication of system functions that, ultimately, would have
negatively affected both system size and performance. Because Win32 was the
primary subsystem,the Windows 2000 designers decided to locate these basic
functions there and have the other subsystems calIon the Win32 subsystem to
perform display I/O. Thus~ thePOSIX and OS/2 subsystems call services in
the Win32 subsystem to perform display I/O. (In fact, if you examine the sub
system type for these images, you'll see that they are Win32 executables.)

Let's take a closer look at each of the environment subsystems.

TWO: System Architecture

Win32 Subsystem
The Win32 subsystem consists 'of the following major components:

• The environment subsystem process (Csrss.exe) contains support for:

o Console (text) windows

o Creating and deleting processes and threads

o Portions of the support for 16-bit virtual DOS machine (VDM)
processes

o Other miscellaneous functions, such as GetTempFile, DefineDos
Device, Exit WindowsEx, and several natural language support
functions

• The kernel-mode device driver (Win32k.sys) contains:

o The window manager, which controls window displays; manages
screen output; collects input from keyboard, mouse, and other
devices; and passes user messages to applications.

o The Graphics Device Interface (GDI), which is a library offunc
tions for graphics output devices. It includes functions for line,
text, and figure drawing and for graphics manipulation.

• Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and
Gdi32.dll) translate documented Win32 API functiorts into the appro
priate undocumented kernel-mode system service calls to Ntoskrnl.exe
and Win32k.sys.

• Graphics device drivers are hardware-dependent graphics display
drivers, printer drivers, and video miniport drivers.

Applications call the standard USER functions to create user interface
controls, such as windows and buttons, on tl}e display. Thewindo~ manager
communicates these requests to the GDI, which passes them to the graphics
device drivers, where they are formatted for the display device. Adisplay driver
is paired with a video miniport driver to complete video display support.

The GDI provides a set of standard tw()Cdimensional funct;ions that let
applications communicate with graphics devices without mowing anything
about the devices. GDI functions mediate between applications and graphics
devices such as display drivers and printer drivers. The GDI interprets application
requests for graphic output and sends the requests to graphicsdisplaydrivers. It
also provides a standard interface for applicatic:ms to use varying graphics out
put deVices. This interface enables application code to be independent of the

51

INSIDE MICROSOFT WINDOWS 2000

52

hardware devices and their drivers. The GDI tailors its messages to the capa
bilities of the device, often dividing the request into manageable parts. For
example, some devices can understand directions to draw an ellipse; others require
the GDI to interpret the command as a series of pixels placed at certain coordi
nates. For more information about the graphics and video driver architecture, see
the Design Guide section of the book Graphics Drivers in the Windows 2000 DDK.

Prior to Windows NT 4, the window manager and graphics services were
part of the user-mode Win32 subsystem process. In Windows NT 4, the bulk
of the windowing and graphics code was moved from running in the context
of the Win32 subsystem process to a set of callable services running in kernel
mode (in the file Win32k.sys). The primary reason for this shift was to improve
overall system performance. Having a separate server process that contains the
Win32 graphics subsystem required multiple thread and process context switches,
which consumed considerable CPU cycles and memory resources even though
the original design was highly optimized.

For example, for each thread on the client side there was a dedicated, paired
server thread in the Win32 subsystem process waiting on the client thread for
requests. A special interprocess communication facility called fast LPCwas used
to send messages between these threads. Unlike normal thread context switches,
transitions between paired threads via fast LPC don't cause a rescheduling event
in the kernel, thereby enabling the server thread to run for the remaining time
slice of the client thread before having to take its turn in the kernel's preemp
tive thread scheduler. Moreover, shared memory buffers were used to allow fast
passing oflarge data structures, such as bitmaps, and clients had direct but read
only access to key server data structures to minimize the need for thread/process
transitions between clients and the Win32 server. Also, GDI operations were
(and still are) batched. Batching means that a series of graphics calls by a Win32
application aren't "pushed" over to the server and drawn on the output device
until a GDI batching queue is filled. You can set the size of the queue by using
the Win32 GdiSetBatchLimitfunction, and you can flush the queue at any time
with GdiFlush. Conversely, read -only properties and data structures of GD I, once
they were obtained from the Win32 subsystem process, were cached on the client
side for fast subsequent access.

Despite these optimizations, however, the overall system performance was
still not adequate for graphics-intensive applications. The obvious solution was
to eliminate the need for the additional threads and resulting context switches
by moving the windowing and graphics system into kernel mode. Also, once ap
plications have called into the window manager and the GDI, those subsystems
can access other Windows 2000 executive components directly without the cost
of user-mode or kernel-mode transitions. This direct access is especially impor
tant in the case of the GD I calling through video drivers, a process that involves
interaction with video hardware at high frequencies and high bandwidths.

TWO: System Architecture

(continued)

53

INSIDE MICROSOFT WINDOWS 2000

Is Windows 2000 Less Stable with Win32 USER and GOI in Kernel Mode? continued

54

TWO: System Architecture

So, what remains in the user-mode process part of the Win32 subsystem?
All the drawing and updating for console or text windows are handled by it, since
console applications have no notion of repainting a window. It's easy to see this
activity-simply open a command prompt and drag another window over it, and
you'll see the Win32 subsystem process running like crazy as it repaints the
console window. But other than console window support, only a few Win32
functions result in sending a message to the Win32 subsystem process anymore:
process and thread creation and termination, network drive letter mapping, and
creation of temporary flies. In general, a running Win32 application won't be
causing many, if any, context switches to the Win32 subsystem process.

POSIX Subsystem
POSIX, an acronym loosely defined as "a portable operating system interface
based on UNIX," refers to a collection of international standards forUNIX
style operating system interfaces. The POSIX standards encourage vendors

55

INSIDE MICROSOFT WINDOWS 2000

56

implementing UNIX -style interfaces to make them compatible so that pro
grammers can move their applications easily from one system to another.

Windows 2000 implements only one of the many POSIX standards,
POSIX.1, formally known as ISO/IEC 9945-1:1990 or IEEE POSIX standard
1003.1-1990. This standard was included primarily to meet U.S. government
procurement requirements set in the mid-to-Iate 1980s that mandated POSIX.1
compliance as specified in Federal Information Processing Standard (PIPS)
151-2, developed by the National Institute of Standards and Technology.
Windows NT 3.5,3.51, and 4 have been formally tested and certified according
to PIPS 151-2.

Because POSIX.1 compliance was a mandatory goal for Windows 2000,
the operating system was designed to ensure that the required base system sup
port was present to allow for the implementation of a POSIX.1 subsystem (such
as the fork function, which is implemented in the Windows 2000 executive, and
the support for hard file links in the Windows 2000 file system). However,
because POSIX.1 defines a limited set of services (such as process control,
interprocess communication, simple character cell I/O, and so on), the POSIX
subsystem that comes with Windows 2000 isn't a complete programming envi
ronment. And because applications can't mix calls between subsystems on
Windows 2000, by default, POSIX applications are limited to the strict set of
services defined in POSIX.1. This restriction means that a POSIX executable
on Windows 2000 can't create a thread or a window or use remote procedure
calls (RPCs) or sockets.

To address this limitation, Microsoft provides a product called Interix,
which includes an enhanced POSIX subsystem environment that provides nearly
2000 UNIX functions and 300 UNIX-like tools and utilities. (See www.microsoft
. com/WINDO WS2000/guidelserver Isolutionslinterix.asp for more information
on Microsoft Interix.) With this enhancement, it is more viable to port UNIX
applications to the POSIX subsystem. However, because the programs are still
linked as POSIX executables, they cannot call Win32 functions.

To port UNIX applications to Windows 2000 and allow the use ofWin32
functions, you can purchase a UNIX-to-Win32 porting library, such as the one
included with the MKS NuTCRACKER Professional product available from
Mortice Kern Systems Inc. (www.mks.com). With this approach, a UNIX appli
cation can be recompiled and relinked as a Win32 executable and can slowly start
to integrate calls to native Win32 functions.

TWO: System Architecture

57

INSIDE MICROSOFT WINDOWS 2000

58

To compile and link a POSIX application in Windows 2000 requires the
POSIX headers and libraries from the Platform SD K POSIX executables are linked
against the POSIX subsystem library, Psxdll.dll. Because by default Windows 2000
is configured to start the POSIX subsystem on demand, the first time you run
a POSIX application, the POSIX subsystem process (Psxss.exe) must be started.
It remains running until the system reboots. (If you kill the POSIX subsystem
process, you won't be able to run more POSIX applications until you reboot.)
The POSIX image itselfisn't run directly-instead, a special support image called
Posix.exe is launched, which in turn creates a child process to run the POSIX
application.

For more information about the POSIX subsystem and about porting
UNIX applications to Windows 2000, do a search for POSIX and UNIX in
MSDN Library.

OS/2 Subsystem
The OS/2 environment subsystem, like the built-in POSIX subsystem, is fairly
limited in usefulness in that it supports only OS/2 1.2 16-bit character-based
or video I/O (VIO) applications. Although Microsoft did sell a replacement
OS/2 1.2 Presentation Manager subsystem for Windows NT 4, it didn't sup
port OS/2 2.x (or later) applications (and it isn't available for Windows 2000).

Also, because Windows 2000 doesn't allow direct hardware access by user
applications, OS/2 programs that contain I/O privilege segments that attempt
to perform IN/OUT instructions (to access some hardware device) as well
as advanced video I/O (AVIO) aren't supported. Applications that use the
CLI/STI instructions are supported-but all the other OS/2 applications in
the system and all the other threads in the OS/2 process issuing the CLI instruc
tions are suspended until an STI instruction is executed. Also worth noting is
the special support for calling 32-bit DLLs from OS/2 16-bit applications on
Windows 2000, which can be useful in porting programs.

The 16-MB memory limitation on native OS/2 1.2 doesn't apply to
Windows 2000-the OS/2 subsystem uses the 32-bit virtual address space of
Windows 2000 to provide up to 512 MB of memory to OS/2 1.2 applications,
as illustrated in Figure 2-5.

Win32 code and data
OS/2 client code and data
RTLcode

32-bit
~,,~ o ~~o ~

16-bit
Logical video buffer (LVB) mapped
to both 16-bit application code and
32-bit OS/2 subsystem code

Heap area (used for 32-bit
structures that can be mapped into
16-bit application space)

16-bit DLLs and executables

16-bit application shared memory

16-bit application private memory
(OosAllocSec and so on)

Rtf heap and more

Figure 2-5
OS/2 subsystem virtual memory layout

TWO: System Architecture

2GB

High 32-bit user-mode area

Tiled area (512 MB)

Low 32-bit user-mode area
o

The tiled area is 512 MB of virtual address space that is reserved up front
and then committed or decommitted when 16-bit applications need segments.
The OS/2 subsystem maintains a local descriptor table (LDT) for each process,
with shared memory segments at the same LDT slot for all OS/2 processes.

As we'll discuss in detail in Chapter 6, threads are the elements of a program
that execute, and as such they must be scheduled for processor time. Although
Windows 2000 priority levels range from 0 through 31, the 64 OS/2 priority levels
(0 through 63) are mapped to Windows 2000 dynamic priorities 1 through 15.
OS/2 threads never receive Windows 2000 real-time priorities 16 through 3l.

As with the POSIX subsystem, the OS/2 subsystem starts autornatically
the first time you activate a compatible OS/2 image. It remains running until
the system is rebooted.

59

INSIDE MICROSOFT WINDOWS 2000

For more information on how Windows 2000 handles running POSIX
and OS/2 applications, see the section "Flow of CreateProcess" beginning on
page 304 in Chapter 6 of this book.

Ntdll.dll
Ntdll.dll is a special system support library primarily for the use of subsystem
DLLs. It contains two types of functions:

II System service dispatch stubs to Windows 2000 executive system
serVICes

II Internal support functions used by subsystems, subsystem DLLs, and
other native images

The first group of functions provides the interface to the Windows 2000
executive system services that can be called from user mode. There are more than
200 such functions, such as NtCreateFile, NtSetEvent, and so on. As noted
earlier, most of the capabilities of these functions are accessible through the Win32
API. (A number are not, however, and are for Microsoft internal use only.)

For each of these functions, Ntdll contains an entry point with the same
name. The code inside the function contains the architecture-specific instruction
that causes a transition into kernel mode to invoke the system service dispatcher
(explained in more detail in Chapter 3), which after verifYing some parameters,
calls the actual kernel-mode system service that contains the real code inside
N toskrnl.exe.

Ntdll also contains many support functions, such as the image loader
(functions that start with Ldr), the heap manager, and Win32 subsystem pro
cess communication functions (functions that start with Csr), as well as general
run-time library routines (functions that start with Rtf). It also contains the user
mode asynchronous procedure call (APC) dispatcher and exception dispatcher.
(APCs and exceptions are explained in Chapter 3.)

Executive

60

The Windows 2000 executive is the upper layer of Ntoskrnl.exe. (The kernel
is the lower layer.) The executive includes the following types of functions:

TWO: System Architecture

III Functions that are exported and callable from user mode. These
functions are called system services and are exported via Ntdll. Most
of the services are accessible through the Win32 API or the APIs of
another environment subsystem. A few services, however, aren't avail
able through any documented subsystem function. (Examples include
LPCs and various query functions such as NtQuerylnformationxxx,
specialized functions such as NtCreatePagingFile, and so on.)

III Functions that can be called only from kernel mode that are exported
and documented in the Windows 2000 DDK or Windows 2000
Installable File System (IFS) Kit. (For information on the Windows
2000 IFS Kit, go to www.microsoft.comlddklifskit.)

III Functions that are exported and callable from kernel mode but are
not documented in the Windows 2000 DDK or IFS Kit (such as the
functions called by the boot video driver, which start with lnbv).

III Functions that are defined as global symbols but are not exported.
These would include internal support functions called within
Ntoskrnl, such as those that start with lop (internal I/O manager
support functions) or Mi (internal memory mana.gement support
functions) .

III Functions that are internal to a module that are not defined as global
symbols.

The executive contains the following major components, each of which
is covered in detail in a subsequent chapter of this boole

III The configuration manager (explained in Chapter 5) is responsible
for implementing and managing the system registry.

III The process and thread manager (explained in Chapter 6) creates and
terminates processes and threads. The underlying support for pro
cesses and threads is implemented in the Windows 2000 kernel; the
executive adds additional semantics and functions to these lower
level objects.

61

INSIDE MICROSOFT WINDOWS 2000

62

• The security reference monitor (described in Chapter 8) enforces
security policies on the local computer. It guards operating system
resources, performing run-time object protection and auditing.

• The I/O manager (explained in Chapter 9) implements device
independent I/O and is responsible for dispatching to the appropriate
device drivers for further processing.

• The Plug and Play (PnP) manager (explained in Chapter 9) deter
mines which drivers are required to support a particular device and
loads those drivers. It retrieves the hardware resource requirements
for each device during enumeration. Based on the resource require
ments of each device, the PnP manager assigns the appropriate
hardware resources such as I/O ports, IRQs, DMA channels, and
memory locations. It is also responsible for sending proper event
notification for device changes (addition or removal of a device) on
the system.

• The power manager (explained in Chapter 9) coordinates power
events and generates power management I/O notifications to device
drivers. When the system is idle, the power manager can be configured
to reduce power consumption by putting the CPU to sleep. Changes
in power consumption by individual devices are handled by device
drivers but are coordinated by the power manager.

• The "WDM Windows Management Instrumentation routines (explained
in Chapter 5) enable device drivers to publish performance and
configuration information and receive commands from the user
mode WMI service. Consumers ofWMI information can be on the
local machine or remote across the network.

• The cache manager (explained in Chapter 11) improves the perfor
mance of file-based I/O by causing recently referenced disk data to
reside in main memory for quick access (and by deferring disk writes
by holding the updates in memory for a short time before sending
them to the disk). As you'll see, it does this by using the memory
manager's support for mapped files.

TWO: System Architecture

III The virtual memory manager (explained in Chapter 7) implements
virtual memory, a memory management scheme that provides a large,
private address space for each process that can exceed available physi
cal memory. The memory manager also provides the underlying sup
port for the cache manager.

In addition, the executive contains four main groups of support functions
that are used by the executive components just listed. About a third of these
support functions are documented in the DDK because device drivers also use
them. These are the four categories of support functions:

Kernel

III The object manager, which creates, manages, and deletes Windows
2000 executive objects and abstract data types that are used to repre
sent operating system resources such as processes, threads, and the
various synchronization objects. The object manager is explained in
Chapter 3.

III The LPC facility (explained in Chapter 3) passes messages between
a client process and a server process on the same computer. LPC is
a flexible, optimized version of remote procedure call (RPC), an
industry-standard communication facility for client and server pro
cesses across a network.

III A broad set of common run-time library functions, such as string
processing, arithmetic operations, data type conversion, and security
structure processing.

III Executive support routines, such as system memory allocation (paged
and nonpaged pool), interlocked memory access, as well as two special
types of synchronization objects: resources and fast mutexes.

The kernel consists of a set of functions in NtoskrnLexe that provide fundamental
mechanisms (such as thread scheduling and synchronization services) used by
the executive components, as well as low-level hardware architecture-dependent

63

INSIDE MICROSOFT WINDOWS 2000

64

support (such as interrupt and exception dispatching), that are different on each
processor architecture. The kernel code is written primarily in C, with assem
bly code reserved for those tasks that require access to specialized processor
instructions and registers not easily accessible from C.

Like the various executive support functions mentioned in the preced
ing section, a number of functions in the kernel are documented in the DDK
(search for functions beginning with Ke) because they are needed to imple
ment device drivers.

Kernel Objects
The kernel provides a low-level base of well-defined, predictable operating system
primitives and mechanisms that allow higher-level components of the executive
to do what they need to do. The kernel separates itself from the rest of the
executive by implementing operating system mechanisms and avoiding policy
making. It leaves nearly all policy decisions to the executive, with the exception
of thread scheduling and dispatching, which the kernel implements.

Outside the kernel, the executive represents threads and other shareable
resources as objects. These objects require some policy overhead, such as object
handles to manipulate them, security checks to protect them, and resource
quotas to be deducted when they are created. This overhead is eliminated in the
kernel, which implements a set of simpler objects, called kernel objects, that help
the kernel control central processing and support the creation of executive
objects. Most executive-level objects encapsulate one or more kernel objects,
incorporating their kernel-defmed attributes.

One set of kernel objects, called control objects, establishes semantics for
controlling various operating system functions. This set includes the APC object,
the deferred procedure call (DPC) object, and several objects the I/O manager
uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates
synchronization capabilities that alter or affect thread scheduling. The dis
patcher objects include the kernel thread, mutex (called mutant internally),
event, kernel event pair, semaphore, timer, and waitable timer. The executive
uses kernel functions to create instances of kernel objects, to manipulate them,
and to construct the more complex objects it provides to user mode. Objects
are explained in more detail in Chapter 3, and processes and threads are de
scribed in Chapter 6.

TWO: System Architecture

Hardware Support
The other major job of the kernel is to abstract or isolate the executive and
device drivers from variations between the hardware architectures supported
by Windows 2000. This job includes handling variations in functions such as
interrupt handling, exception dispatching, and multiprocessor synchronization.

Even for these hardware-related functions, the design of the kernel attempts
to maximize the amount of common code. The kernel supports a set of inter
faces that are portable and semantically identical across architectures. Most of
the code that implements this portable interface is also identical across archi
tectures.

Some of these interfaces are implemented differently on different archi
tectures, however, or some of the interfaces are partially implemented with
architecture-specific code. These architecturally independent interfaces can be
called on any machine, and the semantics of the interface will be the same
whether or not the code varies by architecture. Some kernel interfaces (such as
spinlock routines, which are described in Chapter 3) are actually implemented
in the HAL (described in the next section) because their implementation can
vary for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specificinterfaces
needed to support old MS-DOS programs. These x86 interfaces aren't portable
in the sense that they can't be called on a machine based on any other archi
tecture; they won't be present. This x86-specific code, for example, supports
calls to manipulate global descriptor tables (GDTs) and LDTs, hardware fea
tures of the x86.

Other examples of architecture-specific code in the kernel include the
interface to provide translation buffer and CPU cache support. This support
requires different code for the different architectures because of the way caches
are implemented.

Another example is context switching. Although at a high level the same
algorithm is used for thread selection and context switching (the context of
the previous thread is saved, the context of the new thread is loaded, and the
new thread is started), there are architectural differences among the imple
mentations on different processors. Because the context is described by the
processor state (registers and so on), what is saved and loaded varies depend
ing on the architecture.

65

INSIDE MICROSOFT WINDOWS 2000

Hardware Abstraction Layer

66

As mentioned at the beginning of this chapter, one of the crucial elements of
the Wmdows 2000 design is its portability across a variety of hardware platforms.
The hardware abstraction layer (HAL) is a key part of making this portability
possible. The HAL is a loadable kernel-mode module (Hal.dll) that provides
the low-level interface to the hardware platform on which Windows 2000 is run
ning. It hides hardware-dependent details such as I/O interfaces, interrupt con
trollers, and multiprocessor communication mechanisms-any functions that are
both architecture-specific and machine-dependent.

So rather than access hardware directly, Windows 2000 internal components
as well as user-written device drivers maintain portability by calling the HAL
routines when they need platform-dependent information. For this reason, the
HAL routines are documented in the Windows 2000 DDK To fmd out more
about the HAL and its use by device drivers, refer to the DDK

Although several HALs are included on the Windows 2000 CD (see
Table 2-5), only one is chosen at installation time and copied to the system disk
with the filename Hal.dll. (Other operating systems, such as VMS, select the
equivalent of the HAL at system boot time.) Therefore, you can't assume that a
system disk from one x86 installation will boot on a different processor if the
HAL that supports the other processor is different.

HAL File Name

Hal.dll

Halacpi.dll

Halapic.dlI

Halaacpi.dll

Halmps.dll

Halmacpi.dll

Halborg.dll

Halsp.dll

Table 2-5 List of HALs

Systems Supported

Standard PCs

Advanced Configuration and Power Interface
(ACPI) PCs

Advanced Programmable Interrupt Controller
(APIC) PCs

APIC ACPI PCs

Multiprocessor PCs

Multiprocessor ACPI PCs

Silicon Graphics Workstation (no longer
marketed)

Compaq SystemPro

TWO: System Architecture

Device Drivers
Although devic,e drivers are explained in detail in Chapter 9, this section provides
a brief overview of the types of drivers and explains how to list the drivers installed
and loaded on your system.

Device drivers are loadable kernel-mode modules (typically ending in .sys)
that interface between the I/O manager and the relevant harc;lwar.e. They run
in kernel mode in one of three contexts:

• In the context of the user thread that initiated an I/O function

• In the context Df a kernel-mode system thread

• As a result of an interrupt (and therefore not in the context of any
particular process or thread-whichever process or thread was current
when the interrupt occurred)

67

INSIDE MICROSOFT WINDOWS 2000

68

As stated in the preceding section, device drivers in Windows 2000 don't
manipulate hardware directly, but rather they call functions in the HAL to inter
face with the hardware. Drivers are typically written in C (sometimes C++) and
therefore, with proper use of HAL routines, can be source code portable across
the CPU architectures supported by Windows 2000 and binary portable within
an architecture family.

There are several types of device drivers:

• Hardware device drivers manipulate hardware (using the HAL) to
write output to or retrieve input from a physical device or network.
There are many types of hardware device drivers, such as bus drivers,
human interface drivers, mass storage drivers, and so on.

• File system drivers are Windows 2000 drivers that accept file-oriented
I/O requests and translate them into I/O requests bound for a par
ticular device.

• File system filter drivers, such as those that perform disk mirroring
and encryption, intercept I/Os and perform some added-value pro
cessing before passing the I/O to the next layer.

• Network redirectors and servers are file system drivers that transmit
file system I/O requests to a machine on the network and receive
such requests, respectively.

• Protocol drivers implement a networking protocol such as TCP JIP,
NetBEUI, and IPX/SPX.

• Kernel streaming filter drivers are chained together to perform signal
processing on data streams, such as recording or displaying audio
and video.

Because installing a device driver is the only way to add user-written kernel
mode code to the system, some programmers have written device drivers simply
as a way to access internal operating system functions or data structures that are
not accessible from user mode (but that are documented and supported in the
DDK). For example, many of the utilities from www.sysinternals.com combine
a Win32 GUI application and a device driver that is used to gather internal system
state not accessible from the Win32 API.

Windows 2000 Device Driver Enhancements
Wmdows 2000 adds support for Plug and Play, Power Options, and an extension
to the Windows NT driver model called the Windows Driver Model (WDM).
Windows 2000 can run legacy Windows NT 4 drivers, but because these don't

TWO: System Architecture

support Plug and Play and Power Options, systems running these drivers will
have reduced capabilities in these two areas.

From the WDM perspective, there are three kinds of drivers:

II A bus driver services a bus controller, adapter, bridge, or any device
that has child devices. Bus drivers are required drivers, and Microsoft
generally provides them; each type of bus (such as PCI, PCMCIA,
and USB) on a system has one bus driver. Third parties can write bus
drivers to provide support for new buses, such as VMEbus, Multibus,
and Futurebus.

II Afunction driver is the main device driver and provides the opera
tional interface for its device. It is a required driver unless the device
is used raw (an implementation in which I/O is done by the bus
driver and any bus filter drivers, such as SCSI PassThru). A function
driver is by definition the driver that knows the most about a par
ticular device, and it is usually the only driver that accesses device
specific registers.

II A filter driver is used to add functionality to a device (or existing
driver) or to modify I/O requests or responses froni other drivers
(often used to fix hardware that provides incorrect information about
its hardware resource requirements). Filter drivers are optional and
can exist in any number, placed above or below a function driver
and above a bus driver. Usually, system original equipment manu
facturers (OEMs) or independent hardware vendors (IHVs) supply
filter drivers.

In the WDM driver environment, no single driver controls all aspects of
a device: a bus driver is concerned with reporting the devices on its bus to the
PnP manager, while a function driver manipulates the device.

In most cases, lower-level filter drivers modify the behavior of device hard
ware. For example, if a device reports to its bus driver that it requires four I/O
ports when it actually requires 16 I/O ports, a lower-level device-specific func
tion filter driver could intercept the list of hardware resources reported by the
bus driver to the PnP manager, and update the count ofI/O ports.

Upper-level filter drivers usually provide added-value features for a device.
For example, anupper-Ievel device filter driver for a keyboard can enforce addi
tional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O
manager, WDM, Plug and Play, and Power Options are included in Chapter 9.

69

INSIDE MICROSOFT WINDOWS 2000

A(]JIEC K.ernelDriver Slopped OK
aQJu1Enn Kernel Driver Slopped OK
AFD Networking SUPPOl't E ... Kernel Driver Running OK
Aha1541C Kernel Driver Slopped OK
aic11l»1 KetneiDriver Slopped

Kernel Driver Slopped

70

TWO: System Architecture

Peering into Undocumented Interfaces
Just examining the names of the exported or global symbols in key system images
(such as Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening-you can get
an idea of the kinds of things Windows 2000 can do versus what happens to be
documented and supported today. Of course, just because you know the names
of these functions doesn't mean that you can or should call them-the inter
faces are undocumented and are subject to change. We suggest that you look
at these functions purely to gain more insight into the kinds of internal func
tions Windows 2000 performs, not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list
of all the system services that Windows 2000 provides to user-mode subsystem
DLLs versus the subset that each subsystem exposes. Although many of these
functions map clearly to documented and supported Win32 functions, several
are not exposed via the Win32 API. (See the article "Inside the Native API"
from www.sysinternals.com. a copy of which is on this book's companion CD.)

Conversely, it's also interesting to examine the imports ofWin32 subsystem
D LLs (such as Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.

71

INSIDE MICROSOFT WINDOWS 2000

72

Another interesting image to dump is Ntoskrnl.exe-although many of the
exported routines that kernel-mode device drivers use are documented in the
Windows 2000 DDK, quite a few are not. You might also find it interesting to
take a look at the import table for Ntoskrnl and the HAL; this table shows the
list of functions in the HAL that Ntoskrnl uses and vice versa.

Table 2-6 lists most of the commonly used function name prefixes for the
executive components. Each of these major executive components also uses
a variation of the prefix to denote internal functions-either the first letter of
the prefix followed by an i (for internal) or the full prefix followed by a p (for
private). For example, Ki represents internal kernel functions, and Psp refers to
internal process support functions.

Prefix

Cc

Cm
Ex

FsRtl

Hal

fo
1(e

Lpc

Lsa

Mm

Nt

Db

Po

Pp
Ps

Rtf

Se

Wmi
Zw

Table 2-6 Commonly Used Prefixes

Component

Cache manager

Configuration manager

Executive support routines

File system driver run-time library

Hardware abstraction layer

I/O manager

Kernel

Local Procedure Call

Local security authentication

Memory manager

Windows 2000 system services (most of which are exported as
Win32 functions)

Object manager

Power manager

PnP manager

Process support

Run-time library

Security

Windows Management Instrumentation

Mirror entry point for system services (beginning with Nt) that sets
previous access mode to kernel, which eliminates parameter valida
tion, since Nt system services validate parameters only if previous
access mode is user

TWO: System Architecture

You can decipher the names of these exported functions more easily if you
understand the naming convention for Windows 2000 system routines. The
general format is:

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Opera
tion tells what is being done to the object or resource, and Object identifies what
is being operated on.

73

INSIDE MICROSOFT WINDOWS 2000

For example, ExAltocatePoolWithTag is the executive support routine to
allocate from paged or nonpaged pool. KelnitializeThread is the routine that
allocates and sets up a kernel thread object.

System Processes
The following system processes appear on every Windows 2000 system. (Two
of these-Idle and System-are not full processes, as they are not running a user
mode executable.)

II Idle process (contains one thread per CPU to account for idle
CPU time)

II System process (contains the majority of the kernel-mode system
threads)

II Session manager (Smss.exe)

II Win32 subsystem (Csrss.exe)

II Logon process (Winlogon.exe)

II Service control manager (Services.exe) and the child service
processes it creates

II Local security authentication server (Lsass.exe)

To help you understand the relationship of these processes, use the tlist It
command in the Windows 2000 Support Tools to display the process "tree,"
that is, the parenti child relationship between processes. Here is a partial anno
tated output from tlist It:

System Process (0)
System (8)

Idle process
System process (default home for system threads)
Session Manager smss.exe (144)

csrss.exe (172)
winlogon.exe (192)

74

services.exe (220)
svchost.exe (384)
spoolsv.exe (480)
regsvc.exe (636)
mstask.exe (664)

lsass.exe (232)

Win32 subsystem process
Logon proces~ (als~ contains NetDDE service)
Service control manager
Generic service host image
Spool er se.rvi ce
Remote registry service
Task Scheduler service
Local security authentication server

TWO: System Architecture

The next sections explain the key system processes shown in this output.
Although these sections briefly indicate the order of process startup, Chapter 4
contains a detailed description of the steps involved in booting and starting
Windows 2000.

Idle Process
Despite the name shown, the first process listed in the preceding sample tlist It
output (process ID 0) is actually the System Idle process. As we'll explain in
Chapter 6, processes are identified by their image name. However, this process
(as well as process ID 8, named System) isn't running a real user-mode image.
Hence, the names shown by the various system display utilities differ from utility
to utility. Although most utilities call process ID 8 "System," not all do. Table 2-7
lists several of the names given to the Idle process (process ID 0). The Idle
process is explained in detail in Chapter 6.

Table 2-7 Names for Process 100 in Various Utilities

Utility

Task Manager

Process Viewer (Pviewer.exe)

Process Status (Pstat.exe)

Process Explode (Pview.exe)

Task List (Tlist.exe)

QuickSlice (Qslice.exe)

Name for Process 100

System Idle Process

Idle

Idle Process

System Process

System Process

Systemprocess

Now let's look at system threads and the purpose of each of the system
processes that are running real images.

System Process and System Threads
The System process (always process ID 8) is the home for a special kind of thread
that runs only in kernel mode: a kernel-mode system thread. System threads have
all the attributes and contexts of regular user-mode threads (such as a hardware
context, priority, and so on) but are different in that they run only in kernel
mode executing code loaded in system space, whether that is in Ntoskrnl.exe

75

INSIDE MICROSOFT WINDOWS 2000

76

or in any other loaded device driver. In addition, system threads don't have a
user process address space and hence must allocate any dynamic storage from
operating system memory heaps, such as paged or nonpaged pool.

System threads are created by the PsCreateSystemThread function (docu
mented in the DDK), which can be called only from kernel mode. Windows 2000
as well as various device drivers create system threads during system initializa
tion to perform operations that require thread context, such as issuing and
waiting for IjOs or other objects or polling a device. For example, the memory
manager uses system threads to implement such functions as writing dirty pages
to the page file or mapped files, swapping processes in and out of memory, and
so forth. The kernel creates a system thread called the balance set manager that
wakes up once per second to possibly initiate various scheduling and memory
management-related events. The cache manager also uses system threads to
implement both read-ahead and write-behind IjOs. The file server device driver
(Srv.sys) uses system threads to respond to network I/O requests for file data
on disk partitions shared to the network. Even the floppy driver has a system
thread to poll the floppy device (polling is more efficient in this case because
an interrupt-driven floppy driver consumes a large amount of system resources).
Further information on specific system threads is included in the chapters in
which the component is described.

By default, system threads are owned by the System process, but a device
driver can create a system thread in any process. For example, the Win32 sub
system device driver (Win32k.sys) creates system threads in the Win32 subsys
tem process (Csrss.exe) so that they can easily access data in the user-mode
address space of that process.

When you're troubleshooting or going through a system analysis, it's useful
to be able to map the execution of individual system threads back to the driver
or even to the subroutine that contains the code. For example, on a heavily
loaded file server, the System process will likely be consuming considerable CPU
time. But the knowledge that when the System process is running "some sys
tem thread" is running isn't enough to determine which device driver or oper
ating system component is running.

So if the System process is running, look at the execution of the threads
within that process (for example, with the Performance tool). Once you find
the thread (or threads) that is running, look up in which driver the system thread
began execution (which at least tells you which driver likely created the thread)
or examine the call stack (or at least the current address) of the thread in ques
tion, which would indicate where the thread is currently executing.

Both of these techniques are illustrated in the following experiments.

TWO: System Architecture

(continued)

77

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Identifying System Threads in the System Process continued

78

TWO: System Architecture

(continued)

79

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Mapping a System Thread to a Device Driver continued

80

TWO: System Architecture

(continued)

81

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Mapping a System Thread to a Device Driver continued

82

TWO: System Architecture

Session Manager (Smss)
The Session Manager (\ Winnt\System32\Smss.exe) is the first user-mode process
created in the system. The kernel-mode system thread that performs the final phase
of the initialization of the executive and kernel creates the actual Smss process.

The Session Manager is responsible for a number of important steps in
starting Windows 2000, such as opening additional page files, performing de
layed file rename and delete operations, and creating system environment vari
ables. It also launches the subsystem processes (normally just Csrss.exe) and the
Winlogon process, which in turn creates the rest of the system processes.

Much of the configuration information in the registry that drives the initiali
zation steps of Smss can be found under HKLM\SYSTEM\CurrentControISet\
Control\Session Manager. You'll find it interesting to examine the kinds of data
stored there. (For a description of the keys and values, see the Registry Entries
help file, Regentry.chm, in the Windows 2000 resource kits.)

After performing these initialization steps, the main thread in Smss waits
forever on the process handles to Csrss and Winlogon. If either of these processes
terminates unexpectedly, Smss crashes the system, since Windows 2000 relies
on their existence. Meanwhile, Smss waits for requests to load subsystems, new
subsystems starting up, and debug events. It also acts as a switch and monitor
between applications and debuggers.

Logon (Win logon)
The Windows 2000 logon process (\Winnt\System32\Winlogon.exe) handles
interactive user logons and logoffs. Winlogon is notified of a user logon request
when the secure attention sequence (SAS) keystroke combination is entered. The
default SAS on Windows 2000 is the combination Ctrl+A1t+Delete. The rea
son for the SAS is to protect users from password-capture programs that simu
late the logon process. Once the username and password have been captured,
they are sent to the local security authentication server process (described in the
next section) to be validated. If they match, Winlogon extracts the value of the
Userinit registry value under the registry key HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Winlogon and creates a process to run each exe
cutable image listed in that value. The default is to run a process named
Userinit.exe.

83

INSIDE MICROSOFT WINDOWS 2000

84

This process performs some initialization of the user environment (such
as restoring mapped drive letters, running the login script, and applying group
policies) and then looks in the registry at the Shell value (under the same
Winlogon key referred to previously) and creates a process to run the system
defined shell (by default, Explorer.exe). Then Userinit exits. This is the reason
Explorer.exe is shown with no parent-its parent has exited, and as explained
earlier, Tlist left-justifies processes whose parent isn't running. (Another way of
looking at it is that Explorer is the grandchild ofWinlogon.)

The identification and authentication aspects of the logon process are
implemented in a replaceable DLL named GINA (Graphical Identification and
Authentication). The standard Windows 2000 GINA, Msgina.dll, implements
the default Windows 2000 logon interface. However, developers can provide
their own GINA DLL to implement other identification and authentication
mechanisms in place of the standard Windows 2000 username/password method
(such as one based on a voice print). In addition, Winlogon can load additional

TWO: System Architecture

network provider DLLs that need to perform secondary authentication. This
capability allows multiple network providers to gather identification and authen
tication information all at one time during normal logon.

Winlogon is active not only during user logon and logoff but also when
ever it intercepts the SAS from the keyboard. For example, when you press
Ctrl+Alt+Delete while logged in, the Windows Security dialog box comes up,
providing the options to log off, start the Task Manager, lock the workstation,
shut down the system, and so forth. Winlogon is the process that handles this
interaction.

For more details on Winlogon, see Chapter 8.

Local Security Authentication Server (LSASS)
The local security authentication server process (\Winnt\System32\Lsass.exe)
receives authentication requests from Wmlogon and calls the appropriate authen
tication package (implemented as aD LL) to perform the actual verification, such
as checking whether a password matches what is stored in the active directory
or the SAM (the part of the registry that contains the definition of the users
and groups).

Upon a successful authentication, Lsass generates an access token object
that contains the user's security profile. Winlogon then uses this access token
to create the initial shell process. Processes launched from the shell then by
default inherit this access token.

For more details about Lsass and security authentication, see Chapter 8.
For details on the callable functions that interface with Lsass (the functions that
~tart with Lsa), see the. documentation in the Platform SDK.

Service Control Manager (SCM)
Recall from earlier in the chapter that "services)) on Windows 2000 can refer
either to a server process or to a device driver. This section deals with services
that are user-mode processes. Services are like UNIX "daemon processes)) or
VMS "detached processes" in that they can be configured to start automatically
at system boot time without requiring an interactive logon. They can also be
started manually (such as by running the Services administrative tool or by calling
the Win32 StartService function). Typically, services do not interact with the
logged on user, though there are special conditions when this is possible. (See
Chapter 5.)

The service control manager is a special system process running the image
\Winnt\System32\Services.exe .that is responsible for starting, stopping, and
interacting with service processes. Service programs are really just Win32 images

85

INSIDE MICROSOFT WINDOWS 2000

86

that call special Win32 functions to interact with the service control manager to
perform such actions as registering the service's successful startup, responding to
status requests, or pausing or shutting down the service. Services are defined in
the registry under HKLM\SYSTEM\CurrentControISet \Services. The resource
kit Registry Entries help file (Regentry.chm) documents the subkeys and values
for services.

Keep in mind that services have three names: the process name you see
running on the system, the internal name in the registry, and the display name
shown in the Services administrative tool. (Not all services have a display name
if a service doesn't have a display name, the internal name is shown.) With
Windows 2000, services can also have a description field that can contain up to
1024 characters that further detail what the service does.

To map a service process to the services contained in that process, use the
tlist /s command. Note that there isn't always one-to-one mapping between
service process and running services, however, because some services share a pro
cess with other services. In the registry, the type code indicates whether the ser
vice runs in its own process or shares a process with other services in the image.

A number of Windows 2000 components are implemented as services,
such as the spooler, Event Log, Task Scheduler, and various other network
ing components.

Manual
Started- Menual
Started Aul;olMtic

M-'
St«ted A\Jomatic
St",ted A\Jomo!llic
Sklted AlJomatic
Stated A\Jomalic

SloleSsewil;ynormati .. SWled AlJomatic
'Pro ... idesAPC:ll~ ... Started ~lMI:ic

Slated ALtomatic
Manu.!1

TWO: System Architecture

For more details on services, see Chapter 5.

·Conclusion
.. In 'this chapter, we've taken a broad look at the overall system architecnJeof .
Windows2000. We've examined the key components of Windows 2000 aiid
seen how they interrelate: In. the next chapter, we'll look in more detail at the
core system mechanisms th~Fthese components are built on, sllch as the object
manager and synchronization.

87

C HAP T E R T H R E E

System Mechanisms

Mcrosoft Windows 2000 provides several base mechanisms that kernel-mode
components such as the executive, the kernel, and device drivers use. This chapter
explains the following system mecha,nisms and describes how they are used:

• Trap dispatching, including interrupts, deferred procedure calls
(DPCs), asynchronous procedure calls (APCs), exception dispatching,
and system service dispatching

• The executive object manager

• Synchronization, including spinlocks, kernel dispatcher objects, and
how waits are implemented

• System worker threads

• Miscellaneous mechanisms such as Windows 2000 global flags

• Local procedure calls (LPCs)

Trap Dispatching
Interrupts and exceptions are operating system conditions that divert the processor
to code outside the normal flow of control. Either hardware or software can
detect them. The term trap refers to a processor's mechanism for capturing an
executing thread when an exception or an interrupt occurs and transferring
control to a fixed location in the operating system. In Windows 2000, the pro
cessor transfers control to a trap handler, a function specific to a particular in
terrupt or exception. Figure 3 -1 illustrates some of the conditions that activate
trap handlers.

89

INSIDE MICROSOFT WINDOWS 2000

90

Trap handlers

Interrupt -----.... 1

System service call -----; 1

Hardware exceptions _(Exception+-
Software exceptions frame)

Interrupt
service
routines

System
services

Exception
dispatcher

Virtual memory
Virtual address ----~.~I manager's

exceptions pager

Figure 3-1
Trap dispatching

~ Exception
handlers

The kernel distinguishes between interrupts and exceptions in the following
way. An interruptis an asynchronous event (one that can occur at any time) that
is unrelated to what the processor is executing. Interrupts are generated primarily
by I/O devices, processor clocks, or timers, and they can be enabled (turned on)
or disabled (turned oft). An exception, in contrast, is a synchronous condition that
results from the execution of a particular instruction. Running a program a
second time with the same data under the same conditions can reproduce excep
tions. Examples of exceptions include memory access violations, certain debugger
instructions, and divide-by-zero errors. The kernel also regards system service
calls as exceptions (although technically they're system traps).

Either hardware or software can generate exceptions and interrupts. For
example, a bus error exception is caused by a hardware problem, whereas a
divide-by-zero exception is the result of a software bug. Likewise, an I/O device
can generate an interrupt, or the kernel itself can issue a software interrupt (such
as an APC or DPC, described later in this chapter).

When a hardware exception or interrupt is generated, the processor records
enough machine state so that it can return to that point in the control flow and
continue execution as if nothing had happened. To do this, the processor cre
ates a trap frame on the kernel stack of the interrupted thread into which it stores
the execution state of the thread. The trap frame is usually a subset of a thread's

T H R E E: System Mechanisms

complete context. (Thread context is described in Chapter 6.) The kernel handles
software interrupts either as part of hardware interrupt handling or synchro
nously when a thread invokes kernel functions related to the software interrupt.

In most cases, the kernel installs front-end trap handling functions that
perform general trap handling tasks before and after transferring control to other
functions that field the trap. For example, if the condition was a device inter
rupt, a kernel hardware interrupt trap handler transfers control to the interrupt
service routine (ISR) that the device driver provided for the interrupting device.
If the condition was caused by a call to a system service, the general system service
trap handler transfers control to the specified system service function in the
executive. The kernel also installs trap handlers for traps that it doesn't expect
to see or doesn't handle. These trap handlers typically execute the system func
tion KeBugCheckEx, which halts the computer when the kernel detects problem
atic or incorrect behavior that, ifleft unchecked, could result in data corruption.
(For more information on bug checks, see the section "System Crashes" begin
ning on page 206 in Chapter 4.) The following sections describe interrupt,
exception, and system service dispatching in greater detail.

Interrupt Dispatching
Hardware-generated interrupts typically originate from I/O devices that must
notify the processor when they ne.ed service. Interrupt-driven devices allow the
operating system to get the maximum use out of the processor by overlapping
central processing with I/O operations. A thread starts an I/O transfer to or
from a device and then can execute other useful work while the device completes
the transfer. When the device is finished, it interrupts the processor for service.
Pointing devices, printers, keyboards, disk drives, and network cards are gen
erally interrupt driven.

System software can also generate interrupts. For example, the kernel can
issue a software interrupt to initiate thread dispatching and to asynchronously
break into the execution of a thread. The kernel can also disable interrupts so
that the processor isn't interrupted, but it does so only infrequently-at critical
moments while it's processing an interrupt or dispatching an exception, for
example.

The kernel installs interrupt trap handlers to respond to device interrupts.
Interrupt trap handlers transfer control either to an external routine (the ISR)
that handles the interrupt or to an internal kernel routine that responds to the
interrupt. Device drivers supply ISRs to service device interrupts, and the kernel
provides interrupt handling routines for other types of interrupts.

In the following subsections, you'll find out how the hardware notifies
the processor of device interrupts, the types of interrupts the kernel supports,

91

INSIDE MICROSOFT WINDOWS 2000

92

the way device drivers interact with the kernel (as a part of interrupt processing),
and the software interrupts the kernel recognizes (plus the kernel objects that
are used to implement them).

Hardware Interrupt Processing
On x86 systems, external I/O interrupts come into one of the lines on an inter
rupt controller. The controller in turn interrupts the processor on a single line.
Once the processor is interrupted, it queries the controller to get the interrupt
request (IRQ). The interrupt controller translates the IRQ to an interrupt num
ber, uses this number as an index into a structure called the interrupt dispatch
table (IDT), and transfers control to the appropriate interrupt dispatch routine.
At system boot time, Windows 2000 fills in the IDT with pointers to the kernel
routines that handle each interrupt and exception.

T H R E E: System Mechanisms

Windows 2000 maps hardware IRQs to interrupt numbers into the IDT,
and the system also uses the IDT to configure trap handlers for exceptions. For
example, the x86 exception number for a page fault (an exception that occurs
when a thread attempts to access a page of virtual memory that isn't defined
or present) is Oxe. Thus, entry Oxe in the IDT points to the system's page fault

93

INSIDE MICROSOFT WINDOWS 2000

94

handler. Although the x86 architecture can support up to 256 IDT entries, the
number ofIRQs a particular machine can support is determined by the design
of the interrupt controller the machine uses.

Most x86 systems rely on either the i8259A Programmable Interrupt
Controller (PIC) or a variant of the i82489 Advanced Programmable Inter
rupt Controller (APIC); the majority of new computers include an APIC. The
PIC standard originates with the original IBM PC. PICs work only with uni
processor systems and have 15 interrupt lines. APICs work with multiproces
sor systems and have 256 interrupt lines. Intel and other companies have defined
the Multiprocessor Specification (MP Specification), a design standard for x86
multiprocessor systems that centers on the use of APIC. To provide compati
bility with uniprocessor operating systems and boot code that starts a multipro
cessor system in uniprocessor mode, APICs support a PIC compatibility mode
with 15 interrupts and delivery of interrupts to only the primary processor.
Figure 3-2 depicts the APIC architecture. The APIC actually consists of sev
eral components: an I/O APIC that receives interrupts from devices, local APICs
that receive interrupts from the I/O APIC and that interrupt the CPU they are
associated with, and an i8259A-compatible interrupt controller that translates
APIC input into PIC-equivalent signals. The I/O APIC is responsible for imple
menting interrupt routing algorithms-which are software-selectable (the HAL
makes the selection on Windows 2000)-that both balance the interrupt load
across processors and attempt to take advantage oflocality, delivering interrupts
to the same processor that has just fielded a previous interrupt of the same type.

Figure 3-2
x86 MIC architecture

T H R E E: System Mechanisms

Each processor has a separate IDT so that different processors can run
different ISRs, if appropriate. For example, in a multiprocessor system, each
processor receives the clock interrupt, but only one processor updates the sys
tem clock in response to this interrupt. All the processors, however, use the
interrupt to measure thread quantum and to initiate rescheduling when a
thread's quantum ends. Similarly, some system configurations might require that
a particular processor handle certain device interrupts.

(continued)

95

INSIDE MICROSOFT WINDOWS 2000

96

EXPERIMENT: Viewing the PIC and APIC continued

Most of the routines that handle interrupts reside in the kernel. The kernel
updates the clock time, for example. However, external devices such as key
boards, pointing devices, and disk drives also generate many interrupts, and
device drivers need a way to tell the kernel which routine to call when a device
interrupt occurs.

Software Interrupt Request Levels (IRQLs)
Although interrupt controllers perform a level of interrupt prioritization,
Windows 2000 imposes its own interrupt priority scheme known as interrupt
request levels (IRQLs). The kernel represents IRQLs internally as a number
from 0 through 31, with higher numbers representing higher-priority inter-

. rupts. Although the kernel defines the standard set ofIRQLs for software in-

T H R E E: System Mechanisms

terrupts, the HAL maps hardware-interrupt numbers to the IRQLs. Figure 3-3
shows IRQLs defined for the x86 architecture.

31

30

29

28

27

26

3

2

o

Figure 3·3

Hardware interrupts

Software Interrupts

Normal thread execution

Interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a higher-priority interrupt
preempts the servicing of a lower-priority interrupt. When a high-priority inter
rupt occurs, the processor saves the interrupted thread's state and invokes the trap
dispatchers associated with the interrupt. The trap dispatcher raises the IRQL and
calls the interrupt's service routine. After the service routine executes, the inter
rupt dispatcher lowers the processor's IRQL to where it was before the interrupt
occurred and then loads the saved machine state. The interrupted thread resumes
executing where it left off. When the kernel lowers the IRQL, lower-priority
interrupts that were masked might materialize. If this happens, the kernel repeats
the process to handle the new interrupts.

IRQL priority levels have a completely different meaning than thread
scheduling priorities (which are described in Chapter 6). A scheduling priority
iSID attribute of a thread,whereas anIRQL is an attribute of an interrupt source,
such as a keyboard or a mouse. In addition, each processor has an IRQL set
ting that changes as operating system code executes.

97

INSIDE MICROSOFT WINDOWS 2000

98

Each processor's IRQL setting determines which interrupts that processor
can receive. IRQLs are also used to synchronize access to kernel-mode data
structUres. (You'll find out more about synchronization later in this chapter.)
As a kernel-mode thread runs, it raises or lowers the processor's IRQL either
directly by calling KeRaiselrql and KeLowerlrqlor, more commonly, indirectly

T H R E E: System Mechanisms

via calls to functions that acquire kernel synchronization objects. As Figure 3-4
illustrates, interrupts from a source with an IRQL above the current level in
terrupt the processor, whereas interrupts from sources with IRQLs equal to or
below the current level are masked until an executing thread lowers the IRQL.

Processor A

!IRQL = Clock!--'

Interrupts masked on
Processor A

Figure 3-4
Masking interrupts

IRQL setting

Processor B

............... !IRQL ;.; OPC/dispatch !

Interrupts masked on
Processor B

Because accessing a PIC is a relatively slow operation, HALs that use a PIC
implement a performance optimization, called lazylRQL, that avoids PIC accesses.
When the IRQL is raised, the HAL notes the new IRQL internally instead of
changing the interrupt mask. If a lower-priority interrupt subsequently occurs,
the HAL sets the interrupt mask to the settings appropriate for the first inter
rupt and postpones the lower-priority interrupt until the IRQL is lowered. Thus,
if no lower-priority interrupts occur while theIRQL is raised, the ,HAL doesn't
need to modify the PIC

A kernel-mode thread raises and lowers the IRQL of the processor on
which it's running, depending on what it's trying to do. For exaniple, when an
interrupt occurs, the trap handler (or perhaps the processor) raises the processor's
IRQL to the assigned. IRQL of the interrupt source. This elevation' masks ,all
interrupts at and below that IRQL (on that processor only), which ensures that
the processor servicing the interrupt isn'twaylaidby'atiinterrupt at the same
or a lower level. The masked interrupts are either handled by another processor

99

INSIDE MICROSOFT WINDOWS 2000

100

or held back until the IRQL drops. Therefore, all components of the system,
including the kernel and device drivers, attempt to keep the IRQL at passive level
(sometimes called low level). They do this because device drivers can respond
to hardware interrupts in a timelier manner if the IRQL isn't kept unnecessarily
elevated for long periods.

Because changing a processor's IRQL has such a significant effect on sys
tem operation, the change can be made only in kernel mode-user-mode threads
can't change the processor's IRQL. This means that a processor's IRQL is always
at passive level when it's executing user-mode code. Only when the processor
is executing kernel-mode code can the IRQL be higher.

Each interrupt level has a specific purpose. For example, the kernel issues
an inter-processor interrupt (IPI) to request that another processor perform an
action, such as dispatching a particular thread for execution or updating its trans
lation look-aside buffer cache. The system clock generates an interrupt at regular
intervals, and the kernel responds by updating the clock and measuring thread
execution time. If a hardware platform supports two clocks, the kernel adds
another clock interrupt level to measure performance. The HAL provides a
number of interrupt levels for use by interrupt-driven devices; the exact number
varies with the processor and system configuration. The kernel uses software
interrupts (described later in this chapter) to initiate thread scheduling and to
asynchronously break into a thread's execution.

Mapping interrupts to IRQLs These IRQL levels aren't the same as the inter
rupt requests (IRQs) of the x86 system-the x86 architecture doesn't implement
the concept ofIRQLs in hardware. So how does Wmdows 2000 determine what
IRQL to assign to an interrupt? The answer lies in the HAL. In Windows 2000,
a type of device driver called a bus driver determines the presence of devices on
its bus (PCI, USB, and so on) and what interrupts can be assigned to a device.
The bus driver reports this information to the Plug and Play manager, which
decides, after taking into account the acceptable interrupt assignments for all
other devices, which interrupt will be assigned to each device. Then it calls the
HAL function HalpGetSystemlnterruptVector, which maps interrupts to IRQLs.

The algorithm for assignment differs for the uniprocessor and multipro
cessor HALs that Windows 2000 includes. On a uniprocessor system, the HAL
performs a straightforward translation: the IRQL of a given interrupt vector is
calculated by subtracting the interrupt vector from 27. Thus, if a device uses
interrupt levelS, its ISR executes at IRQL 22. On a multiprocessor system, the
mapping isn't as simple. APICs support over 100 interrupt vectors,so there
aren't enough IRQLs for a one-to-one correspondence. The multiprocessor
HAL therefore assigns IRQLs to interrupt vectors in a round-robin manner,

T H R E E: System Mechanisms

cycling through the device IRQL (DIRQL) range. As a result, on a multiprocessor
system there's no easy way for you to predict or to know what IRQL Windows
2000 assigns to APIC IRQs. You can use the !idt kernel debugger command
(shown earlier in the chapter) to view IRQL assignments for hardware interrupts.

Predefined IRQLs Let's take a closer look at the use of the predefined IRQLs,
starting from the highest level shown in Figure 3-4:

II The kernel uses high level only when it's halting the system in
KeBugCheckEx and masking out all interrupts.

II Power fail level originated in the original Microsoft Windows NT
design documents, which specified the behavior of system power
failure code, but this IRQL has never been used.

II Inter-processor interrupt level is used to request another processor to
perform an action, such as dispatching a particular thread for execu
tion' updating the processor's translation look-aside buffer (TLB)
cache, system shutdown, or system crash.

II Clock level is used for the system's clock, which the kernel uses
to track the time of day as well as to measure and allot CPU time to
threads.

II The system's real-time clock uses profile level when kernel profiling,
a performance measurement mechanism, is enabled. When kernel
profiling is active, the kernel's profiling trap handler records the
address of the code that was executing when the interrupt occurred.
A table of address· samples is constructed over time that tools can
extract and analyze. The Windows 2000 resource kits include a tool
called KernelProfiler (Kernprof.exe) that you can use to configure
and view profiling-generated statistics .. See the Kernel Profiler experi
ment for more information on using Kernprof.

II The device IRQLs are used to prioritize device interrupts. (See
the previous section for how hardware interrupt levels are mapped
to IRQLs.)

II PPC/dtspatch-level and APC-level interrupts are software interrupts
that the kernel and device drivers generate. (DPCs and APCs are
explained in more detail later in this chapter.)

II The lowest IRQL, passive level, isn't really an interrupt level at all;
it's the setting at which normal thread execution takes place and all
interrupts are allowed to occur.

101

INSIDE MICROSOFT WINDOWS 2000

102

T H R E E: System Mechanisms

103

INSIDE MICROSOFT WINDOWS 2000

104

One important restriction on code running at DPC/ dispatch level or above
is that it can't wait on an object if doing so would necessitate the scheduler to
select another thread to execute. Another restriction is that only nonpaged
memory can be accessed at IRQL DPC/dispatch level or higher. This rule is
actually a side effect of the first restriction because attempting to access memory
that isn't resident results in a page fault. When a page fault occurs, the memory
manager initiates a disk I/O and then needs to wait for the file system driver
to read the page in from disk. This wait would in turn require the scheduler to
perform a context switch (perhaps to the idle thread if no user thread is wait
ing to run), thus violating the rule that the scheduler can't be invoked (be
cause the IRQL is still DPC/dispatch level or higher at the time of the disk
read). If either of these two restrictions is violated, the system crashes with an
IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 4 for a thorough
discussion of system crashes.) Violating these restrictions is a common bug in
device drivers. The Windows 2000 Driver Verifier, explained in the section
"Driver Verifier" in Chapter 7 (page 413), has an option you can set to assist
in finding this particular type of bug.

Interrupt objects The kernel provides a portable mechanism-a kernel con
trol object called an interrupt object-that allows device drivers to register ISRs
for their devices. An interrupt object contains all the information the kernel needs
to associate a device ISR with a particular level of interrupt, including the ad
dress of the ISR, the IRQL at which the device interrupts, and the entry in the
kernel's IDT with which the ISRshould be associated. When an interrupt object
is initialized, a few instructions of assembly language code,· called the dispatch
code, are copied from an interrupt handling template, KiInterruptTemplate, and
stored in the object. When an interrupt occurs,this code is executed.

This interrupt-object resident code calls the real interrupt dispatcher, the
kernel's KilnterruptDispatch routine, passing it a pointer to the interrupt ob
ject. The interrupt object contains information this second dispatcher routine
needs in order to locate and properly call the ISR the device driver provides.

The interrupt object also stores the IRQL associated with the interrupt
so that another routine, KiDispatchlnterrupt, can raise the IRQL to the cor
rect level before calling the ISR and then lower the IRQL after the ISR has
returned. This two-step process is required because there's no way to pass a
pointer to the interrupt object (or any other argumentfor that matter) on the
initial dispatch since the initial dispatch is done by hardware. On a multipro
cessor system, the kernel allocates and initializes an interrupt object for each
CPU, enabling the local APIC on that CPU to accept the particular interrupt.

T H R E E: System Mechanisms

(continued)

105

INSIDE MICROSOFT WINDOWS 2000

106

Windows 2000 and Real· Time Processing continued

Associating an ISRwith a particular level of interrupt is called connecting
an interrupt object, and dissociating an ISR from an IDT entry is called discon
necting an interrupt object. These operations, accomplished by calling the kernel
functions IoConnectlnterrupt and IoDisconnectlnterrupt, allow a device driver to
"turn on" an ISR when the driver is loaded into the system and to "turn off' the
ISR if the driver is unloaded.

Using the interrupt object to register an ISRprevents device drivers from
fiddling directly with interrupt hardware (which differs among processor archi
tectures) and from needing to know any details about the IDT. This kernel
feature aids in creating portable device drivers because it eliminates the need to
code in assembly language or to reflect processor differences in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt
object, the kernel can synchronize the execution of the ISR with other parts of
a device driver that might share data with the ISR. (See Chapter 9 for more
information about how device drivers respond to .interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than
one ISRforany interrupt level. If multiple device drivers create interrupt ob
jects and connect them to the same IDT entry, the interrupt dispatcher calls each
routine when an interrupt occurs at the specified interrupt line. This capability
allows the kernel to easily support "daisy-chain" configurations, in which sev
eral devices share the same interrupt line. The cl:lain breaks when one of the ISRs
claims ownership for the interrupt by returning a status to the interrupt dis
patcher; If multiple devices sharing the same interrupt require service at the
same time, devices not acknowledged by their ISRs will interrupt the sys
tem again once the interrupt dispatcher has lowered the IRQL. Chaining is
permitted only if all the. device drivers wanting to use the same interrupt
indicate to the kernel that they can share the interrupt; if they can't, the Plug

T H R E E: System Mechanisms

and Play manager reorganizes their interrupt assignments to ensure that it honors
the sharing requirements of each.

Software Interrupts
Although hardware generates most interrupts, the Windows 2000 kernel also
generates software interrupts for a variety of tasks, including these:

• Initiating thread dispatching

• Non~time-critical interrupt processing

• Handling timer expiration

• Asynchronously executing a procedure in the context of a particular
thread

• Supporting asynchronous I/O operations

These tasks are described in the following subsections.

Dispatch or deferred procedure call (Ope) interrupts When a thread can
no longer continue executing, perhaps because it has terminated or because it
voluntarily enters a wait state, the kernel calls the dispatcher directly to effect
an immediate context switch. Sometimes, however, the kernel detects that resched
uling should occur when it is deep within many layers of code. In this situation,
the ideal solution is to request dispatching but defer its occurrence until the
kernel completes its current activity. Using a DPC software interrupt is a con
venient way to achieve this delay.

The kernel always raises the processor's IRQL to DPC/dispatch level or
above when it needs to synchronize access to shared kernel structures. This
disables additional software interrupts and thread dispatching. When the ker
nel detects that dispatching should occur, it requests a DPC/dispatch-level
interrupt; but because the IRQL is at or above that level, the processor holds
the interrupt in check. When the kernel completes its current activity,it sees
that it's going to lower the IRQL below DPC/dispatch level and checks to
see whether any dispatch interrupts are pending. If there are, the IRQL drops
to D PC/dispatch level and the dispatch interrupts are processed. Activating the
thread dispatcher by using a software interrupt is a way to defer dispatching until
conditions are right. However, Windows 2000 uses software interrupts to de
fer other types of processing as well.

107

INSIDE MICROSOFT WINDOWS 2000

108

In addition to thread dispatching, the kernel also processes deferred pro
cedure calls (DPCs) at this IRQL. A DPC is a function that performs a system
task-a task that is less time-critical than the current one. The functions are called
deferred because they might not execute immediately.

DPCs provide the operating system with the capability to generate an
interrupt and execute a system function in kernel mode. The kernel uses DPCs
to process timer expiration (and release threads waiting on the timers) and to
reschedule the processor after a thread's quantum expires. Device drivers use
DPCs to complete I/O requests. To provide timely service for hardware inter
rupts, Windows 2000-with the cooperation of device drivers-attempts to
keep the IRQL below device IRQL levels. One way that this goal is achieved
is for device driver ISRs to perform the minimal work necessary to acknowl
edge their device, save volatile interrupt state, and defer data transfer or other
less time-critical interrupt processing activity for execution in a DPC at DPC/
dispatch IRQL. (See Chapter 9 for more information on DPCs and the I/O
system.)

A DPC is represented by a DPC object, a kernel control object that is not
visible to user-mode programs but is visible to device drivers and other sys
tem code. The most important piece ofinformation the DPC object contains
is the address of the system function that the kernel will call when it processes
the DPC interrupt. DPC routines that are waiting to execute are stored in
kernel-managed queues, one per processor, called DPC queues. To request a
DPC, system code calls the kernel to initialize a DPC object and then places
it in a DPC queue.

By default, the .kernel places DPC objects at the end of the DPC queue
of the processor on which the DPC was requested (typically the processor on
which the ISR executed). A device driver can override this behavior, however,
by specifYing a DPC priority (low, medium, or high, where medium is the de
fault) and by targeting the DPC at a particular processor. A DPC aimed at a
specific CPU is known as a tar;geted DPC. If the DPC has a low or medium
priority, the kernel places the DPC object at the end of the queue; if the DPC
has a high priority, the kernel inserts the DPC object at the front of the queue.

When the processor's IRQL is about to drop from an IRQL of DPC/
dispatch level or higher to a lower IRQL (APC or passive level), the kernel
processes DPCs. Windows 2000 ensures that the IRQL remains at DPC/dispatch
level and pulls DPC objects off the current processor's queue until the queue
is empty (that is, the kernel "drains" the queue), calling each DPC function in
turn. Only when the queue is empty will the kernel let the IRQL drop below
DPC/dispatch level and let regular thread execution continue. DPC processing
is depicted in Figure 3-5.

T H R E E: System Mechanisms

<D A timer expires, and the kernel
queues a ope that will release
any threads waiting on the
timer. The kernel then
requests a software interrupt.

Interrupt
dispatch table

High
1------1

Power failure

® When the IRQL drops below
OPe/dispatch level, a ope

® After the ope interrupt,
control transfers to the
(thread) dispatcher.

;rrterr"" 00,"" f DPCld:;~ i-----Il

Figure 3-5
Delivering a DPC

ope

@ The dispatcher executes each ope routine
in the ope queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.

DPC priorities can affect system behavior another way. The kernel usually
initiates DPC queue draining with a DPC/dispatch-Ievel interrupt. The kernel
generates such an interrupt only if the DPC is directed at the processor the ISR
is requested on and the DPC has a high or medium priority. If the DPC has a low
priority, the kernel requests the interrupt only if the number of outstanding D PC
requests for the processor rises above a threshold or if the number of DPCs
requested on the processor within a time window is low. If a DPC is targeted at
a CPU different from the one on which the ISRis running and the DPC's prior
ity is high, the kernel immediately signals the target CPU (by sending it a dispatch
IPI) to drain its DPC queue. If the priority is medium or low, the number ofDPCs
queued on the target processor must exceed a threshold for the kernel to trigger
a DPC/dispatch interrupt. The system idle thread also drains the DPC queue for
the processor it runs on. Although DPC targeting and priority levels are flexible,
device drivers rarely need to change the default behavior of their DPC objects.
Table 3-1 summarizes the situations that initiate DPC queue draining.

109

INSIDE MICROSOFT WINDOWS 2000

110

ope
Priority

Low

Medium

High

Table 3-1 ope Interrupt Generation Rules

ope Targeted at
ISR's Processor

DPC queue length exceeds
maximum DPC queue length
or
DPC request rate is less than
minimum D PC request rate

Always

Always

ope Targeted at
Another Processor

DPC queue length exceeds
maximum DPC queue length
or
System is idle

DPC queue length exceeds
maximum DPC queue length
or
System is idle

Always

Because user-mode threads execute at low IRQL, the chances are good
that a DPC will interrupt the execution of an ordinary user's thread. DPC rou
tines execute without regard to what thread is running, meaning that when a
DPC routine runs, it can't assume what process address space is currently
mapped. DPC routines can call kernel functions, but they can't call system ser
vices, generate page faults, or create or wait on dispatcher objects (explained
later in this chapter). They can, however, access nonpaged system memory ad
dresses, since system address space is always mapped regardless of what the
current process is.

DPCs are provided primarily for device drivers, but the kernel uses them
too. The kernel most frequently uses a DPC to handle quantum expiration. At
every tick of the system clock, an interrupt occurs at clock IRQL. The clock
interrupt handler (running at clock IRQL) updates the system time and then
decrements a counter that tracks how long the current thread has run. When
the counter reaches 0, the thread's time quantum has expired and the kernel
might need to reschedule the processor, a lower-priority task that should be done
at DPC/dispatch IRQL. The clock interrupt handler queues a DPC to initiate
thread dispatching and then finishes its work and lowers the processor's IRQL.
Because the DPC interrupt has a lower priority than do device interrupts, any
pending device interrupts that surface before the clock interrupt completes are
handled before the DPC interrupt occurs.

T H R E E: System Mechanisms

Asynchronous procedure call (APe) interrupts Asynchronous procedure
calls (APCs) provide a way fbr user programs and system code to execute in the
context ofa particular user thread (and hence a particular process address space).
Because APCs are queued to execute in the context of a particular thread and
run at an IRQL less than2, they don't operate under the same restrictions as a
DPC. An APC routine can acquire resources (objects), wait on object handles,
incur page faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs
waiting to execute reside in a kernel-managed APCqueue. Unlike the DPC
queue, which is systemwide, the APC queue is thread-specific-each thread has
its own APC queue. When asked to queue an APC, the kernel inserts it into the
queue belonging to the thread that will execute the APC routine. The kernel,
in turn, requests a software interrupt at APe level, and when the thread even
tually begins running, it executes the APC.

111

INSIDE MICROSOFT WINDOWS 2000

112

There are two kinds of APCs: kernel mode and user mode. Kernel-mode
APCs don't require "permission" from a target thread to run in that thread's
context, while user-mode APCs do. Kernel-mode APCs interrupt a thread and
execute a procedure without the thread's intervention or consent.

The executive uses kernel-mode APCs to perform operating system work
that must be completed within the address space (in the context) of a particular
thread. It can use kernel-mode APCs to direct a thread to stop executing an
interruptible system service, for example, or to record the results of an asynchro
nous I/O operation in a thread's address space. Environment subsystems use
kernel-mode APCs to make a thread suspend or terminate itself or to get or set
its user-mode execution context. The POSIX subsystem uses kernel-mode APCs
to emulate the delivery of POSIX signals to POSIX processes.

Device drivers also use kernel-mode APCs. For example, if an I/O op
eration is initiated and a thread goes into a wait state, another thread in another
process can be scheduled to run. When the device fmishes transferring data, the
I/O system must somehow get back into the context of the thread that initi
ated the I/O so that it can copy the results of the I/O operation to the buffer
in the address space of the process containing that thread. The I/O system uses
a kernel-mode APC to perform this action. (The use of APCs in the I/O system
is discussed in more detail in Chapter 9.)

Several Win32 APls, such as ReadFileEx, WriteFileEx, and QueueUserAPC,
use user-mode APCs. For example, the ReadFileEx and WriteFileEx functions
allow the caller to specify a completion routine to be called when the I/O op
eration finishes. The I/O completion is implemented by queueing an APC to
the thread that issued the I/O. However, the callback to the completion rou
tine doesn't necessarily take place when the APC is queued because user-mode
APCs are delivered to a thread only when it's in an alertable wait state. A thread
can enter a wait state either by waiting on an object handle and specifying that
its wait is alertable (with the Win32 WaitForMultipleObjectsExfunction) or by
testing directly whether it has a pending APC (using SleepEx). In both cases, if
a user-mode APC is pending, the kernel interrupts (alerts) the thread, transfers
control to the APC routine, and resumes the thread's execution when the APC
routine completes.

APC delivery can reorder the wait queues-the lists of which threads are
waiting on what, and in what order they are waiting. (Wait resolution is described
in the section "Executive Synchronization" later in this chapter.) If the thread

T H R E E: System Mechanisms

is in a wait state when an APC is delivered, after the APC routine completes,
the wait is reissued or reexecuted. If the wait still isn't resolved, the thread returns
to the wait state, but now it will be at the end of the list of objects it's waiting
on. For example, because APCs are used to suspend a thread from execution,
if the thread is waiting on any objects, its wait will be removed until the thread
is resumed, after which that thread will be at the end of the list of threads wait
ing to access the objects it was waiting on.

Exception Dispatching
In contrast to interrupts, which can occur at any time, exceptions are condi
tions that result directly from the execution of the program that is running.
Win32 introduced a facility known as structured exception handling, which
allows applications to gain control when exceptions occur. The application can
then fix the condition and return to the place the exception occurred, unwind
the stack (thus terminating execution of the subroutine that raised the excep
tion), or declare back to the system that the exception isn't recognized and
the system should continue searching for an exception handler that might
process the exception. This section assumes you're familiar with the basic
concepts behind Win32 structured exception handling-if you're not, you
should read the overview in the Win32 API reference documentation on the
Platform SDK or chapters 23-25 in Jeffrey Richter's book Programming Ap
plications for Microsoft Windows (fourth edition, Microsoft Press, 2000) be
fore proceeding. Keep in mind that although exception handling is made
accessible through language extensions (for example, the __ try construct in
Microsoft Visual C++), it is a system mechanism and hence isn't language
specific. Other examples of consumers of Windows 2000 exception handling
include C++ and Java exceptions.

On the x86, all exceptions have predefined interrupt numbers that directly
correspond to the entry in the IDT that points to the trap handler for a par
ticular exception. Table 3-2 shows x86-defined exceptions and their assigned
interrupt numbers. Because the first entries of the IDT are used for exceptions,
hardware interrupts are assigned entries later in the table, as mentioned earlier.

113

INSIDE MICROSOFT WINDOWS 2000

114

Table 3-2 x86 Exceptions and Their Interrupt Numbers

Interrupt Number

o
1

2

3

4

5
6

7
8

9

A

B

C

D

E
F

10
11

Exception

Divide Error

DEBUG TRAP

NMIjNPX Error

Breakpoint

Overflow

BOUND/Print Screen

Invalid Opcode

NPX Not Available

Double Exception

NPX Segment Overrun

Invalid Task State Segment (TSS)

Segment Not Present

Stack Fault

General Protection

Page Fault

Intel Reserved

Floating Point

Alignment Check

All exceptions, except those simple enough to be resolved by the trap
handler, are serviced by a kernel module called the exception dispatcher. The
exception dispatcher's job is to find an exception handler that can "dispose of"
the exception. Examples of architecture-independent exceptions that the ker
nel defines include memory access violations, integer divide-by-zero, integer
overflow, floating-point exceptions, and debugger breakpoints. For a complete
list of architecture-independent exceptions, consult the Win32 API reference
documentation.

The kernel traps and handles some of these exceptions transparently to
user programs. For example, encountering a breakpoint while executing a
program being debugged generates an exception, which the kernel handles

T H R E E: System Mechanisms

by calling the debugger. The kernel handles certain other exceptions by returning
an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For
example, a memory access violation or an arithmetic overflow generates an
exception that the operating system doesn't handle. An environment subsystem
can establish frame-based exception handlers to deal with these exceptions. The
term frame-based refers to an exception handler's association with a particular
procedure activation. When a procedure is invoked, a stack frame representing
that activation of the procedure is pushed onto the stack. A stack frame can have
one or more exception handlers associated with it, each of which protects a
particular block of code in the source program. When an exception occurs,
the kernel searches for an exception handler associated with the current stack
frame. If none exists, the kernel searches for an exception handler associated
with the previous stack frame, and so on, until it finds a frame-based excep
tion handler. If no exception handler is found, the kernel calls its own default
exception handlers.

When an exception occurs, whether it is explicitly raised by software or
implicitly raised by hardware, a chain of events begins in the kernel. The CPU
hardware transfers control to the kernel trap handler, which creates a trap frame
(as it does when an interrupt occurs). The trap frame allows the system to resume
where it left off if the exception is resolved. The trap handler also creates an
exception record that contains the reason for the exception and other pertinent
information.

If the exception occurred in kernel mode, the exception dispatcher simply
calls a routine to locate a frame-based exception handler that will handle the
exception. Because unhandled kernel-mode exceptions are considered fatal
operating system errors, you can assume that the dispatcher always finds an
exception handler.

If the exception occurred in user mode, the exception dispatcher does
something more elaborate. As you'll see in Chapter 6, the Win32 subsystem has
a debugger port and an exception port to receive notification of user-mode
exceptions in Win32 processes. The kernel uses these in its default exception
handling, as illustrated in Figure 3-6.

115

INSIDE MICROSOFT WINDOWS 2000

116

Trap
handler

- - - .. Function call

-~.~LPC

Figure 3-6
Dispatching an exception

......
.... y

Debugger
(first chance)

Frame-based
handlers

Debugger
(second chance)

Environment
subsystem

Kernel default
handler

Debugger breakpoints are common sources of exceptions. Therefore, the
first action the exception dispatcher takes is to see whether the process that
incurred the exception has an associated debugger process. If so, it sends the first
chance debug message (via an LPC port) to the debugger port associated with
the process that incurred the exception. (The message is sent to the session man
ager process, which then dispatches it to the appropriate debugger process.)

If the process has no debugger process attached, or if the debugger doesn't
handle the exception, the exception dispatcher switches into user mode and calls
a routine to find a frame- based exception handler. If none is found, or if none
handles the exception, the exception dispatcher switches back into kernel mode
and calls the debugger again to allow the user to do more debugging. (This is
called the second-chance notification.)

All Win32 threads have an exception handler declared at the top of the stack
that processes unhandled exceptions. This exception handler is declared in the
internal Win32 start-oJ-process or start-oJ-thread function. The start-of-process
function runs when the first thread in a process begins execution. It calls the
main entry point in the image. The start-of-thread function runs when a user
creates additional threads. It calls the user-supplied thread start routine speci
fied in the Create Thread call.

T H R E E: System Mechanisms

117

INSIDE MICROSOFT WINDOWS 2000

118

The generic code for these internal start functions is shown here:

void Win32StartOfProcess(

}

LPTHREAD_START_ROUTINE lpStartAddr.
LPVOID lpvThreadParm){

DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm);
ExitThread(dwThreadExitCode);

} __ except(UnhandledExceptionFilter(
GetExceptionInformation(») {

ExitProcess(GetExceptionCode(»;
}

Notice that the Win32 unhandled exception filter is called if the thread has
an exception that it doesn't handle. This function looks in the registry in the
HKLM\SOFTWARE\Microsoft\Windows N1\CurrentVersion\AeDebug key to
determine whether to run a debugger immediately or to ask the user first.

The default "debugger" on Windows 2000 is \Winnt\System32\Drwtsn-
32.exe (Dr. Watson), which isn't really a debugger but rather a postmortem tool
that captures the state of the application "crash" and records it in a log file
(Drwtsn32.log) and a process crash dump file (User.dmp), both found by de
fault in the \Documents And Settings\All U sers\Documents\DrWatson folder.
To see (or modifY) the configuration for Dr. Watson, run it interactively-it dis
plays a window with the current settings, as shown in Figure 3-7.

The log file contains basic information such as the exception code, the
name of the image that failed, a list of loaded DLLs, and a stack and instruc
tion trace for the thread that incurred the exception. For a detailed description
of the contents of the log file, run Dr. Watson and click the Help button shown
in Figure 3-7.

The crash dump file contains the private pages in the pr()cess at the time
of the exception. (The file doesn't include code pages from EXEs or DLLs.) This
file can be opened by WinDbg, the Windows debugger that comes with the
Windows 2000 debugging tools package (which is part of Windows 2000
Customer Support Diagnostics, Platform SDK, and DDK). Because the User.dmp

T H R E E: System Mechanisms

Figure 3-7
Dr. Watson default settings

file is overwritten each time· a process crashes, unless you rename or copy the
file after each process crash, you'll have only the latest one on your system.

If you install one of the Microsoft Visual Studio compilers, the Debugger
value of the AeDebug registry key is changed to Msdev.exe (including the path),
so that you can debug programs that incur unhandled exceptions. Another prod
uct that changes the Debugger value is Lotus Notes-it runs a. Notes:-specific
postmortem tool named Qnc.exe.

If the debuggerisn't running and no frame~based handlers are fourtd, the
kernelsends a message to the exception port associated with the thread's process.
This exception port, if one exists, was registered by the environhlent subsys
tem that controls this thread. The exception port gives the environment sub
system, which presumably is listt:ning at the port, the opportunity to translate
the exception into an environment-specific signal or exception. For example,
when POSIX gets a message from the kernel that one of its threads generated
an exception, .the POSIXsubsystcm sends a POSIX-style signal to the thread
that caused the exception. However, if the kernel progresses this far in processing
the exception and the. subsystem doesn't handle the exception, the kernel executes
a· default exception handier that simply terminates the process whose thread
caused the exception,

119

INSIDE MICROSOFT WINDOWS 2000

120

T H R E E: System Mechanisms

System Service Dispatching
As Figure 3-1 illustrated, the kernel's trap handlers dispatch interrupts, exceptions,
and system service calls. In the preceding sections, you've seen how interrupt
and exception handling work; in this section, you'll learn about system services.
A system service dispatch is triggered as a result of executing an int Ox2e instruc
tion (46 decimal) on x86 processors. Because executing the int instruction results
in a trap, Wmdows 2000 fills in entry 46 in the IDT to point to the system service
dispatcher. (Refer to Table 3-1.) The trap causes the executing thread to tran
sition into kernel mode and enter the system service dispatcher. A numeric argu
ment passed in the EAX processor register indicates the system service number
being requested, The EBX register points to the list of parameters the caller
passes to the system service. The following code illustrates the generic code
for a system service request:

NtWriteFil e:
mov eax. 0x0E
mov ebx. esp
int 0x2E
ret 0x2C

build 2195 system service number for Ntwr1teFile
pOint to parameters
execute system service trap
pop parameters off stack and return to caller

121

INSIDE MICROSOFT WINDOWS 2000

122

As Figure 3-8 illustrates, the kernel uses this argument to locate the system
service information in the system service dispatch table. This table is similar to
the interrupt dispatch table described earlier in the chapter except that each
entry contains a pointer to a system service rather than to an interrupt han
dling routine.

NOT E System service numbers can change between service packs
Microsoft occasionally adds or removes system services, and the sys
tem service numbers are generated automatically as part of a kernel
compile.

System
service call

L

Figure 3·8

System
service

dispatcher

System service exceptions

System service
dispatch table

01-__ ---11

User mode

Kernel mode

2 ... -......... System service 2
t-----tI

3

n

The·system service dispatcher, KiSystemService, verifies the correct mini
mum number of argumentS, copies the caller's arguments from the thread's user
mode stack to its kernel-mode stack (so that the user can't change the arguments
as the kernel is accessing them), and then executes the system service. If the
arguments passed to a system service point to buffers in user space, these buffers
must be probed for accessibility before kernel-mode code can copy data to or
from them.

As you'll see in Chapter 6, each thread has a pointer to its system ser
vice table. Windows 2000 has two built-in system service tables, but up to four
are supported. The system service dispatcher determines which table contains

T H R E E: System Mechanisms

the requested service by interpreting a 2-bit field in the 32-bit system service
number as a table index. The low 12 bits of the system service number serve
as the index into.the table specified by the table index. The fields are shown
in Figure 3-9.

Table Index

System service number

31

KeServiceDescriptorTable . KeServiceDescriptorTableShado~

Figure 3-9
System service number to system service translation

A primary default array table, Ke&rviceDescriptorTable, defines the core
executive system. services implemented in Ntosrknl.exe. The other table array,
KeServiceDescriptorTableShadow, includes the Win32 USER and GI)I services
impleinented in the kernel-mode part of the Win32 sU!Jsystem, Win32k.sys. The .
first time a Win32 thread calls a Win32 USER or GDI service, the address of
the thread's system service table is chi:mged to point to a table that includes the
Win32 USER and GDI services. The KeAddSystemServiceTable function al
lows Win32k.sys and other device drivers to add system service tables. If you
install Internet Information Services (liS) on Windows 2000, its support driver

123

INSIDE MICROSOFT WINDOWS 2000

(Spud.sys) upon loading defines an additional service table, leaving only one left
for definition by third parties. With the exception of the Wm32k.sys service table,
a service table added with KeAddSystemServiceTable is copied into both the
KeServiceDescriptorTable array and the KeServiceDescriptorTableShadow array.

The system service dispatch instructions for Windows 2000 executive
services exist in the system library Ntdll.dll. Subsystem DLLs call functions in
Ntdll to implement their documented functions. The exception is Win32 USER
and GDI functions, in which the system service dispatch instructions are imple
mented directly in User32.dll and Gdi32.dll-there is no Ntdll.dll. These two
cases are shown in Figure 3-10.

Win32 kernel APls
Win32 USER and

GDI APls

Win32 application Application

WriteFilein
Kernel32.dll

NtWriteFile in
Ntdll,dll

Win32-
specific

Used by all
subsystems

Gdi32.dll
or User32.dll

Win32-
specific

User mode

Kernel mode
Software interrupt Software interrupt

124

Figure 3-10
System service dispatching

Service entry point in
Win32k.sys

As shown in Figure 3-10, the Wm32 WriteFilefunction in Kernel32.dll calls
the NtWriteFile function in Ntdll.dll, which in turn executes the appropriate
instruction to cause a system service trap, passing the system service number

T H R E E: System Mechanisms

representing NtWriteFile. The system service dispatcher (function KiSystemService
in Ntoskrnl.exe) then calls the real NtWriteFileto process the I/O request. For
Win32 USER and GDI functions, the system service dispatch calls functions in
the loadable kernel-mode part of the Win32 subsystem, Wm32k.sys.

Object Manager
As mentioned in Chapter 2, Windows 2000 implements an object model to
provide consistent and secure access to the various internal services implemented
in the executive. This section describes the Windows 2000 object manager, the
executive component responsible for creating, deleting, protecting, and track
ing objects. Thedbject manager centralizes resource control operations that
otherwise would be scattered throughout the operating system. It was designed
to meet the goals listed on page 28.

(continued)

125

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Exploring the Object Manager continued

126

T H R E E: System Mechanisms

The object manager was designed to meet these goals:

• Provide a common, uniform mechanism for using system resources

• Isolate object protection to one location in the operating system so
that C2 security compliance can be achieved

• Provide a mechanism to charge processes for their use of objects so
that limits can be placed on the usage of system resources

• Establish an object-naming scheme that can readily incorporate
existing objects, such as the devices, files, and directories of a file
system, or other independent collections of objects

• Support the requirements of various operating system environments,
such as the ability of a pr()cess to inherit resources from a parent
process (needed by Win32 andPOSIX) and the ability to create
case-sensitive filenames (needed byPOSIX)·

• Establish uniform rules for object retention (that is, keeping an
object·available until all processes have finished using it)

Internally, Windows 2000 has two kinds of objects: executive objects and
kernel objects. Executive objects are objects implemented by various components
of the executive (such as the process manager, memory manager, I/O subsys
tem, and so on). Kernel objects are a more primitive set of objects implemented
by the Windows 2000 kernel. These objects are not visible to user-mode code
but are created and used only within the executive. Kernel objects provide fun
damental capabilities, such as synchronization, on which executive objects are
built. Thus, many executive objects contain (encapsulate) one or more kernel
objects, as shown in Figure 3-11.

Details about the structure of kernel objects and how they are used to
implement synchronization are given later in this chapter. In the remainder of
this se.ction, we'll focus on how the object manager works ancion the structure
of executive objects,handles, and handle tables. Here we'll just briefly describe
how objects are invQlved in implementing Windows 2000 security access check
ing; we'll cover this topic thoroughly in Chapter 8.

127

INSIDE MICROSOFT WINDOWS 2000

Owned by the
object manager

Owned by the
kernel

Owned by the
executive

Figure 3-11
Executive objects that contain kernel objects

Executive Objects

128

Each Windows 2000 environment subsystem projects to its applications a differ
ent image of the operating system. The executive objects and object services are
primitives that the environment subsystems use to construct their own versions
of objects and other resources.

Executive objects are typically created either by an environment subsystem
on behalf of a user application or by various components of the operating sys
tem as part of their normal operation. For example, to create a file, a Win32
application calls the Win32 CreateFile function, implemented in the Win32 sub
system DLL Kernel32.dll. After some validation and initialization, CreateFile
in turn calls the native Windows 2000 service NtCreateFile to create an execu
tive file object.

The set of objects an environment subsystem supplies to its applications
might be larger or smaller than the set the executive provides. The Win32 sub
system uses executive objects to export its own set of objects, many of which
correspond direcdy to executive objects. For example, the Win32 mutexes and
semaphores are direcdy based on executive objects (which are in turn based on
corresponding kernel objects). In addition, the Win32 subsystem supplies
named pipes and mailslots, resources that are based on executive file objects.
Some subsystems, such as POSIX, don't support objects as objects at all. The
POSIXsubsystem uses executive objects and services as the basis for present
ing POSIX-style processes, pipes, and other resources to its applications.

T H R E E: System Mechanisms

Table 3-3 lists the primary objects the executive provides and briefly describes
what they represent. You can find further details on executive objects in the chap
ters that describe the related executive components (or in the case of executive
objects directly exported to Win32, in the Wm32 API reference documentation).

Object Type

Symbolic link:

Process

Thread

Job
Section

File

Access token

Event

Semaphore

Mutex*

Timer

IoCompletion

Key

NOT E The executive implements a total of 27 object types in
Windows 2000, many of which are for use only by the executive com
ponent that defines them and not directly accessible by Win32 APIs.
Examples of these objects include Driver, Device, and EventPair.

Table 3-3 Executive Objects Exposed to Win32

Represents

A mechanism for referring to an object name indirectly.

The virtual address space and control information necessary for the
execution of a set of thread objects.

An executable entity within a process.

A collection of processes manageable asa single entity through the job.

A region of shared memory (called a file mapping object in Win32).

An instance of an opened file or an I/O device.

The security profile (security ID, user rights, and so on) of a process or
a thread.

An object with a persistent state (signaled or not signaled) that can be
used for synchronization or notification.

A counter that provides a resource gate by allowing some maximum
number of threads to access the resources protected by the semaphore.

A synchronization mechanism used to serialize access to a resource.

A mechanism to notifY a thread when a fixed period of time elapses.

A method for threads to enqueue and dequeue notifications of the
completion of I/O operations (called an I/O completion port in the
Win32 API).

A mechanism to refer to data in the registry. Although keys appear in
the object manager namespace, they are managed by the configuration
manager, in a way similar to that in which file objects are managed by
file system drivers. Zero or more key values are associated with akey
object; key values contain data about the key.

WindowStation An object that contains a clipboard, a set of global atoms, and a group
of desktop objects.

Desktop An object contained within a window station. A desktop has a logical
display surface and contains windows, menus, and hooks.

* Externally in the Win32 API, mutants are called mutexes. Internally, the kernel object that underlies
mutexes is called a mutant.

129

INSIDE MICROSOFT WINDOWS 2000

Object Structure

130

As shown in Figure 3-12, each object has an object header and an object body.
The object manager controls the object headers, and the owning executive
components control the object bodies of the object types they create. In addi
tion, each object header points to the list of processes that have the object open
and to a special object called the type object that contains information common
to each instance of the object.

Object header

Object body

Figure 3·12
Structure of an object

Object Head~rs and Bodies
The object manager uses the data stored in an object'S header to manage ob
jectswithout regard to their type. Table 3-4 briefly describes the object header

. attributes.

T H R E E: System Mechanisms

Table 3-4 Standard Object Header Attributes

Attribute

Object name
Object directory

Security descriptor

Quota charges

Open handle count

Open handles list

Object type

Reference count

Purpose

Makes an object visible to other processes for sharing
Provides a hierarchical structure in which to store
object names
Determines who can use the object and what they
can do with it
Lists the resource charges levied against a process
when it opens a handle to the object
Counts the number of times a handle has been
opened to the object
Points to the list of processes that have opened
handles to the object
Points to a type object that contains attributes
common to objects of this type
Counts the number of times a kernel-mode
component has referenced the address of the object

In addition to an object header, each object has an object body whose
format and contents are unique:: to its object type; all objects of the same type
share the same object body format. By creating an object type and supplying
services for it, an executive component can control the manipulation of data in
all object bodies of that type.

The object manager provides a small set of generic services that operate
on the attributes stored in.an object's header and can be used on objects of any
type (although some generic services don't make sense for certain objects). These
generic services, some of which the Win32 subsystem makes available to Win32
applications, are listed in Table 3-5.

Although these generic object services are supported for all object types,
each object has its own create, open, and query services. For example, the I/O
system implements a create file service for its file objects, and the process man
ager implements a create process service for its process objects. Although a single
create object service could have been implemented, such a routine would have

131

INSIDE MICROSOFT WINDOWS 2000

132

Table 3-5 Generic Object Services

Service

Close
Duplicate

Query object

Query security
Set security
Wait for a single object

Wait for multiple objects

Purpose

Closes a handle to an object
Shares an object by duplicating a handle
and giving it to another process
Gets information about an object's standard
attributes
Gets an object's security descriptor
Changes the protection on an object
Synchronizes a thread's execution with one
object
Synchronizes a thread's execution with
multiple objects .

been quite complicated, because the set of parameters required to initialize a
file object, for example, differs markedly from that required to initialize a pro
cess object. Also, the object manager would have incurred additional process
ing overhead each time a thread called an object service to determine the type
of object the handle referred to and to call the appropriate version of the ser
vice. For these reasons and others, the create, open, and query services are
implemented separately for each object type.

Type Objects
Object headers contain data that is common to all objects but that can take
on different values for each instance of an object. For example, each object
has a unique name and can have a unique security descriptor. However, ob
jects also contain some data that remains constant for all objects of a particu
lar type. For example, you can select from a set of access rights specific to a
type of object when you open a handle to objects of that type. The executive
supplies terminate and suspend access (among others) for thread objects and
read, write, append, and delete access (among others) for file objects. Another
example of an object-type-specific attribute is synchronization, which is de
scribed shortly.

To conserve memory, the object manager stores these static, object-type
specific attributes once when creating a new object type. It uses an object of its
own, a type object, to record this data. As Figure 3-13 illustrates, if the object
tracking debug flag (described on page 126) is set, a type object also links to
gether all objects of the same type (in this case the Process type), allowing the
object manager to find and enumerate them, if necessary.

T H R E E: System Mechanisms

Figure 3-13
Process objects and the process type object

133

INSIDE MICROSOFT WINDOWS 2000

134

Type objects can't be manipulated from user mode because the object
manager supplies no services for them. However, some of the attributes they
define are visible through certain native services and through Win32 API rou
tines. The attributes stored in the type objects are described in Table 3-6.

Table 3-6 Type Object Attributes

Attribute

Type name

Pool type

Default quota charges

Access types

Generic access rights mapping

Synchronization

Methods

Purpose

The name for objects of this type
("process," "event," "port," and so on)

Whether objects of this type should
be allocated from paged or nonpaged
memory

Default paged and nonpaged pool values
to charge to process quotas

The types of access a thread can request
when opening a handle to an object of
this type ("read," "write," "terminate,"
"suspend," and so ort)

A mapping between the four generic ac
cess rights (read, write, execute, and all)
to the type-specific access rights

Whether a thread can wait on objects of
this type

One or more routines that the object
manager calls automatically at certain

. points in an object's lifetime

Synchronization, one of the attributes visible to Win32 applications, refers
to a thread's ability to synchronize its execution by waiting for an object to
change from one state to another: A thread can synchronize with executive job,
process, thread, file, event, semaphore, mutex, and timer objects. Other executive
objects don't support synchronization. An object's ability to support synchro
nization is based on whether the object contains an embedded dispatcher object,
a kernel object that is covered in the section "Executive Synchronization" later
in this chapter.

T H R E E: System Mechanisms

Object Methods
The last attribute in Table 3-6, methods, comprises a set of internal routines that
are similar to C++ constructors and destructors-that is, routines that are auto
matically called when an object is created or destroyed. The object manager
extends this idea by calling an object method in other situations as well, such
as when someone opens or closes a handle to an object or when someone attempts
to change the protection on an object. Some object types specify methods,
whereas others don't, depending on how the object type is to be used.

When an executive component creates a new object type, it can register
one or more methods with the object manager. Thereafter, the object manager
calls the methods at well-defined points in the lifetime of objects of that type,
usually when an object is created, deleted, or modified in some way. The methods
that the object manager supports are listed in Table 3-7.

Method

Open

Close

Delete

Query name

Parse

Security

Table 3-7 Object Methods

When Method Is Called

When an object handle is opened

When an object handle is closed

Before the object manager deletes an object

When a thread requests the name of an object, such
as a file, that exists in a secondary object domain

When the object manager is searching for an object
nam.e that exists in .a secondary object domain

When a process reads or changes the protection of
an object, such as a file, that exists in a secondary
object domain

The object manager calls the open method whenever it creates a handle
to an object, which it does when an object is created or opened. However, only
one object type, the Desktop, defines an open method. The Desktop object type
requires an open method so that Win32k can share a piece of memory with the
process that serves as a desktop-related memory pool.

135

INSIDE MICROSOFT WINDOWS 2000

136

An example of the use of a close method occurs in the I/O system. The
I/O manager registers a close method for the file object type, and the object
manager calls the close method each time it closes a file object handle. This close
method checks whether the process that is closing the file handle owns any
outstanding locks on the file and, if so, removes them. Checking for file locks
isn't something the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it
deletes a temporary object from memory. The memory manager, for example,
registers a delete method for the section object type that frees the physical pages
being used by the section. It also verifies that any internal data structures the
memory manager has allocated for a section are deleted before the section object
is deleted. Once again, the object manager can't do this work because it knows
nothing about the internal workings of the memory manager. Delete methods
for other types of objects perform similar functions.

The parse method (and similarly, the query name method) allows the object
manager to relinquish control of finding an object to a secondary object man
ager ifit finds an object that exists outside the object manager namespace. When
the object manager looks up an object name, it suspends its search when it
encounters an object in the path that has an associated parse method. The object
manager calls the parse method, passing to it the remainder of the object name
it is looking for. There are two namespaces in Windows 2000 in addition to the
object manager's: the registry namespace, which the configuration manager
implements, and the file system namespace, which the I/O manager implements
with the aid offile system drivers. (See Chapter 5 for more information on the
configuration manager and Chapter 9 for more about the I/O manager and file
system drivers.)

For example, when a process opens a handle to the object named \Device\
FloppyO\docs\resume.doc, the object manager traverses its name tree until it
reaches the device object named FloppyO. It sees that a parse method is associ
ated with this object, and it calls the method, passing to it the rest of the ob
ject name it was searching for-in this case, the string \docs\resume.doc. The
parse method for device objects is an I/O routine because the I/O manager
defines the device object type and registers a parse method for it. The I/O
manager's parse routine takes the name string and passes it to the appropriate
file system, which finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse
method. It is called whenever a thread tries to query or change the security
information protecting a file. This information is different for files than for other

T H R E E: System Mechanisms

objects because security information is stored in the file itself rather than in
memory. The I/O system, therefore, must be called in order to find the secu
rity information and read or change it.

Object Handles and the Process Handle Table
When a process creates or opens an object by name, it receives a handle that
represents its access to the object. Referring to an object by its handle is faster
than using its name because the object manager can skip the name lookup and
find the object direcdy. Processes can also acquire handles to objects by inher
iting handles at process creation time (if the creator specifies the inherit handle
flag on the CreateProcess call and the handle was marked as inheritable, either
at the time it was created or afterward by using the Wm32 SetHandlelnformation
function) or by receiving a duplicated handle from another process. (See the
Win32 DuplicateHandle function.)

All user-mode processes must own a handle to an object before their
threads can use the object. Using handles to manipulate system resources isn't
a new idea. C and Pascal (and other language) run-time libraries, for example,
return handles to opened files. Handles serve as indirect pointers to system
resources; this indirection keeps application programs from fiddling direcdy with
system data structures.

NOT E Executive components and device drivers can access objects
direcdy because they are running in kernel mode and therefore have
access to the object structltres in system memory. However, they must
declare their usage of the object by incrementing either the open
handle count or the reference count so that the object won't be
deallocated while it's still being used. (See the section "Object Reten
tion" on page 143 for more details.)

Object handles provide additional benefits. First, except for what they refer
to, there is no difference between a file handle, an event handle, and a process
handle. This similarity provides a consistent interface to reference objects, regard
less of their type. Second, the object manager has the exclusive right to create
handles and to locate an object that a handle refers to. This means that the object .
manager can scrutinize every user-mode action that affects an object to see
whether the security profile of the caller allows the operation requested on the
object in question.

137

INSIDE MICROSOFT WINDOWS 2000

138

An object handle is an index into a process-specific handle table, pointed
to by the executive process (EPROCESS) block (described in Chapter 6). The
first handle index is 4, the second 8, and so on. A process's handle table con
tains pointers to all the objects that the process has opened a handle to. Handle
tables are implemented as a three-level scheme, similar to the way that the x86
memory management unit implements virtual to physical address translation.
(See Chapter 7 for details about memory management in x86 systems.) When
a process is created, the object manager allocates the top level of the handle table,
which contains pointers to the middle-level tables; the middle level, which con
tains the first array of pointers to subhandle tables; and the lowest level, which
contains the first subhandle table. The arrays at each level consist of256 entries,

T H R E E: System Mechanisms

allowing the initial handle table for a process to hold up to 255 handles. The
reason that there are only 255 handle entries instead of256 is that the last entry
in the subhandle table is initialized with a value of -1. The -1 is an indicator
to the object manager's handle allocation routine that it has come to the last
entry of a subhandle table and must move to the next entry or allocate a new
one if there are no free entries in the existing subhandle table. The object man
ager treats the low 24 bits of an object handle's value as three 8-bit fields that
index into each of the three levels in the handle table. Figure 3-14 illustrates
the Windows 2000 handle table architecture.

Process

Handle
table

Figure 3-14

255~
Top-level
pointers

255
Middle-level

pointers

Subhandle
table

Process handle table architecture in Windows 2000

NOT E In Windows NT 4, a handle table consists of a fixed header
and a variable size portion. The variable size part is an array of handle
table entries, each describing one open handle. If a process opens
more handles than can fit in the variable portion, the system allocates
a new, larger array and copies the old array into the new one. The
changes were made in Windows 2000 to improve handle table perfor
mance by avoiding copy operations and minimizing scenarios where
an entire handle table must be locked.

139

INSIDE MICROSOFT WINDOWS 2000

140

As shown in Figure 3-15, each handle entry consists ofa structure with
two 32-bit members. The first 32-bit member contains both a pointer to the
object header and four flags. Because object headers are always 32-bit aligned,
the low-order 3 bits of this field are free for use as flags. An entry's high bit is
used as a lock. When the object manager translates a handle to an object pointer,
it locks the handle entry while the translation is in progress. Because all objects
are located in the system address space, the high bit of the object pointer is set.
(The addresses are guaranteed to be higher than Ox80000000 even on systems
with the 13GB boot switch.) Thus, the object manager can keep the high bit
clear when a handle table entry is unlocked and, in the process of locking the
entry, set the bit and obtain the object's correct pointer value. The object
manager needs to lock a process's entire handle table, using a handle table lock
associated with each process, only when the process creates a new handle or closes
an existing handle. The second member of a handle table entry is the granted
access mask for that object. (Access masks are described in Chapter 8.)

Audit on close I r Protect from close

,LOCk I I ,Inheritable

I:.. ,-----p-O-in-te-r-t-o-O-b-je-c-t-h-ea-d-e-r----,..IA.:....,..,":"pTl--:"',1

1 Access mask I
I

32 bits

Figure 3-15
Structure of a handle table entry

The first flag is the inheritance designation-that is, whether processes
created by this process will get a copy of this handle in their handle tables. As
already noted, handle inheritance can be specified on handle creation or later
with the SetHandlelnformation function. The second flag indicates whether
the caller is allowed to close this handle. (This flag can also be specified with the
Win32 SetHandlelnformation function.) The third flag indicates whether closing
the object should generate an audit message. (This flag isn't exposed to Win32-
the object manager uses it internally.)

T H R E E: System Mechanisms

System components and device drivers often need to open handles to ob
jects that user-mode applications shouldn't have access to. In Windows NT 4,
such a handle had to be created in the System process, a process reserved for
system threads and kernel-mode handles.

To reference a handle from the System process on Windows NT 4 when
a kernel-mode function is executing on a user-mode thread, and therefore run
ning in the context of a user-mode process where the handle table in effect is
that of the user-mode process, the function would have to somehow switch into
the System process. Drivers and the executive components accomplished this
either by requesting that a system worker thread (described in the section "Sys
tem Worker Threads" later in this chapter), which executes in the context of the
System process, execute a function on the function's behalf to reference the appro
priate handle or by switching the current thread's process context to that of the
System process via the KeAttachProcess API function. Both options are tedious
and can negatively affect performance.

Microsoft introduces a special handle table called the kernel handle table
in Windows 2000 (referenced internally with the name ObpKernelHandleTable).
The handles in this table are accessible only from kernel mode and in any pro
cess context. This means that a kernel-mode function can reference the handle
in any process context with no performance impact. Handles from the kernel
handle table are differentiated from those of the current process's handle table
because the high bit of the handle is set-that is, all handles from the kernel
handle table have values greater than Ox80000000.

(continued)

141

INSIDE MICROSOFT WINDOWS 2000

142

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger continued

Object Security
When you open a file, you must specifY whether you intend to read or to write.
If you try to write to a file that is opened for read access, you get an error. Like
wise, in the executive, when a process creates an object or opens a handle to an
existing object, the process must specifY a set of desired access rwhts-that is, what
it wants to do with the object. It can request either a set of standard access rights
(such as read, write, and execute) that apply to all object types or specific ac
cess rights that vary depending on the object type. For example, the process can
request delete access or append access to a file object. Similarly, it might require
the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the
security reference monitor, the kernel-mode portion of the security system, send
ing it the process's set of desired access rights. The security reference monitor
checks whether the object's security descriptor permits the type of access the
process is requesting. Ifit does, the reference monitor returns a set of granted
access rights that the process is allowed, and the object manager stores them in

T H R E E: System Mechanisms

the object handle it creates. How the security system determines who gets access
to which objects is explored in Chapter 8.

Thereafter, whenever the process's threads use the handle, the object
manager can quickly check whether the set of granted access rights stored in the
handle corresponds to the usage implied by the object service the threads have
called. For example, if the caller asked for read access to a section object but then
calls a service to write to it, the service fails.

Object Retention
Because all user-mode processes that access an object must first open a handle
to it, the object manager can easily track how many of these processes, and even
which ones, are using an object. Tracking these handles represents one part in
implementing object retention-that is, retaining temporary objects only as long
as they are in use and then deleting them.

The object manager implements object retention in two phases. The first
phase is called name retention, and it is controlled by the number of open handles
to an object that exist. Every time a process opens a handle to an object, the
object manager increments the open handle counter in the object's header. As
processes finish using the object and close their handles to it, the object man
ager decrements the open handle counter. When the counter drops to 0, the
object manager deletes the object's name from its global namespace. This de
letion prevents new processes from opening a handle to the object.

The second phase of object retention is to stop retaining the objects them
selves (that is, to delete them) when they are no longer in use. Because operat
ing system code usually accesses objects by using pointers instead of handles,
the object manager must also record how many object pointers it has dispensed
to operating system processes. It increments a reference count for an object each
time it gives out a pointer to the object; when kernel-mode components finish
using the pointer, they call the object manager to decrement the object's ref
erence count. The system also increments the reference count when it increments
the handle count, and likewise decrements the reference count when the handle
count decrements, because a handle is also a reference to the object that must
be tracked. (For further details on object retention, see the DDK documenta
tion on the functions ObReferenceObjectByPointer and ObDereferenceObject.)

Figure 3-16 illustrates two event objects that are in use. Process A has the
first event open. Process B has both events open. In addition, the first event is
being referenced by some kernel-mode structure; thus, the reference count is
3. So even if processes A and B closed their handles to the first event object, it
would continue to exist because its reference count is 1. However, when process
B closes its handle to the second event object, the object would be deallocated.

143

INSIDE MICROSOFT WINDOWS 2000

144

Process A System space

Handles

L II Handle table ~ Event object """--r """
Index HandleCount=2

I ReferenceCount=3

• .,
, Other structure

DuplicateHandle

Process B

I • I ~
Handle table ~ Event object

i
HandleCount=1 • ~ ReferenceCount=1

-'" • ~ ,

Figure 3-16
Handles and reference counts

So even after an object's open handle counter reaches 0, the object's ref
erence count might remain positive, indicating that the operating system is still
using the object. Ultimately, the reference count also drops to O. When this
happens, the object manager deletes the object from memory.

Because of the way object retention works, an application can ensure that
an object and its name remain in memory simply by keeping a handle open
to the object. Programmers who write applications that contain two or more
cooperating processes need not be concerned that one process might delete
an object before the other process has finished using it. In addition, closing an
application's object handles won't cause an object to be deleted if the operat
ing system is still using it. For example, one process might create a second process
to execute a program in the background; it then immediately closes its handle
to the process. Because the operating system needs the second process to run
the program, it maintains a reference to its process object. Only when the back
ground program finishes executing does the object manager decrement the
second process's reference count and then delete it.

T H R E E: System Mechanisms

Resource Accounting
Resource accounting, like object retention, is closely related to the use of object
handles. A positive open handle count indicates that some process is using that
resource. It also indicates that some process is being charged for the memory
the object occupies. When an object'S handle count drops to 0, the process that
was using the object should no longer be charged for it.

Many operating systems use a quota system to limit processes' access to
system resources. However, the types of quotas imposed on processes are
sometimes diverse and complicated, and the code to track the quotas is spread
throughout the operating system. For example, in some operating systems, an
I/O component might record and limit the number of files a process can open,
whereas a memory component might impose a limit on the amount of memory
a process's threads can allocate. A process component might limit users to some
maximum number of new processes they can create or a maximum number of
threads within a process. Each of these limits is tracked and enforced in differ
ent parts of the operating system.

In contrast, the Windows 2000 object manager provides a central facility
for resource accounting. Each object header contains an attribute called quota
chat;ges that records how much the object manager subtracts from a process's
allotted paged and/or nonpaged pool quota when a thread in the process opens
a handle to the object.

Each process on Windows 2000 points to a quota structure that records
the limits and current values for nonpaged pool, paged pool, and page file usage.
However, all the processes in an interactive session share the same quota block
(there's no documented way to create processes with their own quota blocks),
and system processes, such as services, have no quota limits.

Although the system implements code to track quotas, it currently doesn't
enforce them. A process's paged pool and nonpaged pool quotas default to 0
(no limit). There are registry values to override these defaults, but the limits are
soft, in that the system attempts to increase process quotas automatically when
they are exceeded. If opening an object will exceed the paged or nonpaged quota,
the memory manager is called to see whether the quotas can be increased. The
memory manager makes this decision based on the amount of memory remain
ing in the system pools. If it determines that the quota can't be increased, the
open request to the object fails with a "quota exceeded" error. But on most
systems, quotas continue to grow as needed.

145

INSIDE MICROSOFT WINDOWS 2000

146

Object Names
An important consideration in creating a multitude of objects is devising a suce

cessful system for keeping track of them. The object manager requires the fol
lowing information to help you do so:

II A way to distinguish one object from another

II A method for finding and retrieving a particular object

T H R E E: System Mechanisms

The first requirement is served by allowing names to be assigned to objects.
This is an extension of what most operating systems provide-the ability to name
selected resources, files, pipes, or a block of shared memory, for example. The
executive, in contrast, allows any resource represented by an object to have a
name. The second requirement, finding and retrieving an object, is also satis
fied by object names. If the object manager stores objects by name, it can find
an object by looking up its name.

Object names also satisfy a third requirement, which is to allow processes
to share objects. The executive's object namespace is a global one, visible to all
processes in the system. One process can create an object and place its name in
the global namespace, and a second process can open a handle to the object by
specifying the object's name. If an object isn't meant to be shared in this way,
its creator doesn't need to give it a name.

To increase efficiency, the object manager doesn't look up an object'S name
each time someone uses the object. Instead, it looks up a name under only two
circumstances. The first is when a process creates a named object: the object
manager looks up the name to verify that it doesn't already exist before storing
the new name in the global namespace. The second is when a process opens a
handle to a named object: the object manager looks up the name, finds the
object, and then returns an object handle to the caller; thereafter, the caller uses
the handle to refer to the object. When looking up a name, the object manager
allows the caller to select either a case-sensitive or a case-insensitive search, a
feature that supports POSIX and other environments that use case-sensitive
filenames.

Where the names of objects are stored depends on the object type. Table 3-8
lists the standard object directories found on all Windows 2000 systems and what
types of objects have their names stored there. Of the directories listed, only
\BaseNamedObjects and \?? are visible to user programs.

Because the base kernel objects such as mutexes, events, semaphores,
waitabletimers, and sections have their names stored in a single object direc
tory, no two of these objects can have the same name, even if they are of a dif
ferent type. This restriction emphasizes the need to choose names carefully so
that they don't collide with other names (for example, prefix names with your
company and product name).

147

INSIDE MICROSOFT WINDOWS 2000

148

Table 3-8 Standard Object Directories

Directory

\??

\BaseNamedObjects

\Callback

\Device
\Driver
\FileSystem

\KnownDlls

\Nls

\0 bjectTypes
\RPC Control

\Security

\Windows

Types of Object Names Stored

MS-DOS device names (\DosDevices is a
symbolic link to this directory.)

Mutexes, events, semaphores, waitable timers,
and section objects
Callback objects
Device objects

Driver objects
File system driver objects and file system
recognizer device objects
Section names and path for known DLLs
(DLLs mapped by the system at startup time)
Section names for mapped national language
support tables
Names of types of objects
Port objects used by remote procedure calls
(RPCs)
Names of objects specific to the security
subsystem

Win32 subsystem ports and window stations

Object names are global to a single computer (or to all processors on a
multiprocessor computer), but they're not visible across a network. However,
the object manager's parse method makes it possible to access named objects
that exist on other computers. For example, the I/O manager, which supplies
file object services, extends the functions of the object manager to remote files.
When asked to open a remote file object, the object manager calls a parse
method, which allows the I/O manager to intercept the request and deliver it
to a network redirector, a driver that accesses files across the network. Server
code on the remote Windows system calls the object manager and the I/O man
ager on that system to find the file object and return the information back across
the network.

'· .. a ArcName
.• NLS
....• Driver
; .• WmiGuid
tlJ. Device
itJ. Window,
itJ·. Se .. ion,
: • RPC Control

rnaIN'.'",.??
:. FileSy,tem
L ..• ObjectType,
; .• Security
L .• Callback
L... KnownD II,

T H R E E: System Mechanisms

149

INSIDE MICROSOFT WINDOWS 2000

150

Object directories The object directory object is the object manager's means
for supporting this hierarchical naming structure. This object is analogous to a
file system directory and contains the names of other objects, possibly even other
object directories. The object directory object maintains enough information
to translate these object names into pointers to the objects themselves. The
object manager uses the pointers to construct the object handles that it returns
to user-mode callers. Both kernel-mode code (including executive components
and device drivers) and user-mode code (such as subsystems) can create object
directories in which to store objects. For example, the I/O manager creates an
object directory named \Device, which contains the names of objects repre
senting I/O devices.

Symbolic links In certain file systems (on NTFS and some UNIX systems,
for example), a symbolic link lets a user create a filename or a directory name
that, when used, is translated by the operating system into a different file or
directory name. Using a symbolic link is a simple method for allowing users to
indirectly share a file or the contents of a directory, creating a cross-link between
different directories in the ordinarily hierarchical directory structure.

The object manager implements an object called a symbolic link object)
which performs a similar function for object names in its object namespace. A
symbolic link can occur anywhere within an object name string. When a caller
refers to a symbolic link object's name, the object manager traverses its object
namespace until it reaches the symbolic link object. It looks inside the symbolic
link and finds a string that it substitutes for the symbolic link name. It then
restarts its name lookup.

One place in which the executive uses symbolic link objects is in trans
lating MS-DOS-style device names into Windows 2000 internal device names.
In Win32, a user refers to floppy and hard disk drives using the names A:, B:,
C:, and so on. Moreover, the user can add pseudo drive names with the subst
(substitute) command or by mapping a drive letter to a network share. Once
they are created, these drive names must be visible to all processes on the system.

The Win32 subsystem makes drive letters protected, global data by placing
them in the object manager namespace under the \?? object directory. (Prior to
Windows NT 4, this directory was named \DosDevices; it was renamed \?? for
performance reasons-that name places it first alphabetically.) When the user
or an application creates a new drive letter, the Win32 subsystem adds another
object under the \?? object directory.

T H R E E: System Mechanisms

Terminal Services Namespace
Windows NT was written with the assumption that only one user would log on
to the system interactively and that the system would run only one instance of
any interactive application. When you install Windows 2000 Terminal Services,
these assumptions are violated, so for Windows 2000 supporting multiple inter
active users required changes to the object manager.

A user logging on to the console has access to the global namespace, a
namespace that serves as the first instance of the namespace. Users logging on
remotely at terminals are given a view of the namespace known as a local
namespace. The parts of the namespace that are localized for each remote user
include \DosDevices, \Windows, and \BaseNamedObjects. Making separate
copies of the same parts of the namespace is known as instancing the namespace.
Instancing \DosDevices makes it possible for each user to have different drive
letters and Win32 objects such as serial ports. The \Windows directory is where
Win32k.sys creates the interactive window station, \WinStaO. A Terminal Services
environment can support multiple interactive users, but each user needs an
individual version of WinS taO to preserve the illusion that he or she is accessing
the predefmed interactive window station in Windows 2000. Finally, applica
tions and the system create shared objects in \BaseNamedObjects, including
events, mutexes, and memory sections. If two users are running an application
that creates the named object ApplicationInitialized, each user session must have
a private version of the object so that the two instances of the application don't
interfere with one another by accessing the same object.

The object manager implements a local namespace by creating the private
versions of the three directories mentioned under a directory associated with
the user's session under \Sessions\X (where X is the session identifier of the user).
When a Win32 application in remote session two creates a named event, for
example, the object manager transparently redirects the object's name from
\BaseNamedObjects to \Sessions\2\BaseNamedObjects.

All object manager functions related to namespace management are aware
of the instanced directories and participate in providing the illusion that nonconsole
sessions use the same namespace as the console session. As an optimization, the
process object has a field named De:viceMap that points to a data structure shared
by other processes in the same session, which locates the \DosDevices object
manager directory that belongs to the session as well asa list of drive letters that
are valid for the session. The object manager uses the data structure when look
ing up objects in \DosDevices.

151

INSIDE MICROSOFT WINDOWS 2000

152

Under certain circumstances, applications that are Terminal Services-aware
need to access objects in the console session even if the application is running
in a remote session. The application might want to do this to synchronize with
instances of itself running in other remote sessions or with the console session.
For these cases, the object manager provides the special override "\Global" that
an application can prefix to any object name to access the global namespace. For
example, an application in session two opening an object named \Global\
Applicationlnitialized is directed to \BasedNamedObjects\Applicationlnitialized
instead of\Sessions\2\BaseN amedO bjects\Applicationlnitialized.

T H R E E: System Mechanisms

Synchronization
The concept of mutual exclusion is a crucial one in operating systems develop
ment. It refers to the guarantee that one, and only one, thread can access a
particular resource at a time. Mutual exclusion is necessary when a resource
doesn't lend itself to shared access or when sharing would result in an unpre
dictable outcome. For example, if two threads copy a file to a printer port at
the same time, their output could be interspersed. Similarly, if one thread reads
a memory location while another one writes to it, the first thread will receive
unpredictable data. In general, writable resources can't be shared without re
strictions, whereas resources that aren't subject to modification can be shared.
Figure 3-17 illustrates what happens when two threads running on different
processors both write data to a circular queue.

Time

Get queue tail
Insert data at current location

Increment tail pointer

Figure 3-17
Incorrect sharing of memory

Get queue tail

Insert data at current location I*ERROR*/
Increment tail pointer

Because the second thread got the value of the queue tail pointer before
the first thread had finished updating it,the second thread inserted its data into
the same location that the first thread had used, overwriting data and leaving

153

INSIDE MICROSOFT WINDOWS 2000

one queue location empty. Even though this figure illustrates what could happen
on a multiprocessor system, the same error could occur on a single-processor
system if the operating system were to perform a context switch to the second
thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical
sections. To ensure correct code, only one thread at a time can execute in a
critical section. While one thread is writing to a file, updating a database, or
moditying a shared variable, no other thread can be allowed to access the same
resource. The pseudocode shown in Figure 3-17 is a critical section that incor
rectly accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating systems,
is especially important (and intricate) for a tightly coupled, symmetric multi pro
cessing(SMP) operating system such as Windows 2000, in which the same sys
tem code runs simultaneously on more than one processor, sharing certain data
structures stored in global memory. In Windows 2000, it is the kernel's job to
provide mechanisms that system code can use to prevent two threads from
moditying the same structure at the same time. The kernel provides mutual
exclusion primitives that it and the rest of the executive use to synchronize their
access to global data structures.

In the following sections, you'll find out how the kernel uses mutual exclu
sion to protect its global data structures and what mutual-exclusion and synchro
nization mechanisms the kernel provides to the executive that it, in turn, provides
to user mode.

Kernel Synchronization

154

At various stages during its execution, the kernel must guarantee that one, and
only one, processor at a time is executing within a critical section. Kernel criti
cal sections are the code segments that modify a global data structure such as
the kernel's dispatcher database or its DPC queue. The operating system can't
function correctly unless the kernel can guarantee that threads access these data
structures in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might
be updating a global data structure when an interrupt occurs whose interrupt
handling routine also modifies the structure. Simple single-processor operating
systems sometimes prevent such a scenario by disabling all interrupts each time
they access global data, but the Windows 2000 kernel has a more sophisticated
solution. Before using a global resource, the kernel temporarily masks those
interrupts whose interrupt handlers also use the resource. It does so by raising

T H R E E: System Mechanisms

the processor's IRQL to the highest level used by any potential interrupt source
that accesses the global data. For example, an interrupt at DPC/dispatch level
causes the dispatcher, which uses the dispatcher database, to run. Therefore, any
other part of the kernel that uses the dispatcher database raises the IRQL to
DPC/dispatch level, masking DPC/dispatch-level interrupts before using the
dispatcher database.

This strategy is fine for a single-processor system, but it's inadequate for
a multiprocessor configuration. Raising the IRQL on one processor doesn't
prevent an interrupt from occurring on another processor. The kernel also needs
to guarantee mutually exclusive access across several processors.

The mechanism the kernel uses to achieve multiprocessor mutual exclu
sion is called a spinlock. A spinlock is a locking primitive associated with a global
data structure, such as the DPC queue shown in Figure 3-18.

Processor A

00
Try to acquire'---~
OPC queue
spin lock

Until SUCCESS

Release OPC queue spin lock

lIB Critical section

Figure 3-18
Using It spinlock

ProcessorB

00
""!""---- Try to acquire

OPC queue
spinlock

Until SUCCESS

Re.lease OPC queue spinlock

Before entering either critical section shown in the figure, the kernel must
a:cquire the spinlock: associated with the protected DPC queue. If the spinlock
isn't free,the kernel keeps trying to acquire the lock until it succeeds . .The
spinlock gets its name from the fact that the kernel (and thus, the processor) is
held in limbo, "spinning," uritil it gets the lock. '

155

INSIDE MICROSOFT WINDOWS 2000

156

Spinlocks, like the data structures they protect, reside in global memory.
The code to acquire and release a spinlock is written in assembly language for
speed and to· exploit whatever locking mechanism the underlying processor
architecture provides. On many architectures, spinlocks are implemented with
a hardware-supported test-and-set operation, which tests the value of a lock
variable and acquires the lock in one atomic instruction. Testing and acquiring
the lock in one instruction prevents a second thread from grabbing the lock
between the time when the first thread tests the variable and the time when it
acquires the lock.

All kernel-mode spinlocks in Windows 2000 have an associated IRQL that
is always at DPC/dispatch level or higher. Thus, when a thread is trying to
acquire a spinlock, all other activity at the spinlock's IRQL or lower ceases on
that processor. Because thread dispatching happens at DPC/dispatch level, a
thread that holds a spinlock is never preempted because the IRQL masks the
dispatching mechanisms. This masking allows code executing a critical section
protected by a spinlock to continue executing so that it will release the lock
quickly. The kernel uses spinlocks with great care, minimizing the number of
instructions it executes while it holds a spinlock.

NOTE Because the IRQL is an effective synchronization mecha
nism on uniprocessors, the spinlock acquisition and release functions
of uniprocessor HALs don't implement spinlocks-they simply raise
and lower the IRQL.

The kernel makes spinlocks available to other parts of the executive through
a set of kernel functions, including KeAcquireSpinlock and KeReleaseSpinlock.
Device drivers, for example, require spinlocks in order to guarantee that device
registers and other global data structures are accessed by only one part of a
device driver (and from only one processor) at a time. Spinlocks are not for
use by user programs-user programs should use the objects described in the
next section.

Kernel spinlocks carry with them restrictions for code that uses them.
Because spinlocks always have an IRQL of DPC/dispatch level or higher, as
explained earlier, code holding a spinlock will crash the system ifit attempts to
make the scheduler perform a dispatch operation or if it causes a page fault.

Wmdows 2000 introduces a special type of spinlock called a queued spinlock,
which is used only by the kernel and not exported for executive components
or device drivers. A queued spinlock is a form of spinlock that scales better on
multiprocessors than a standard spinlock. A queued sPinlock work like this: When
a processor wants to acquire a queued spinlock that is currently held, it places

T H R E E: System Mechanisms

its identifier in a queue associated with the spinlock. When the processor that's
holding the spinlock releases it, it hands the lock over to the first processor
identified in the queue. In the meantime, a processor waiting for a busy spinlock
checks the status not of the spinlock itself but of a per-processor flag that the
processor ahead of it in the queue sets to indicate that the waiting processor's
turn has arrived.

The fact that queued spinlocks result in spinning on per-processor flags
rather than global spinlocks has two effects. The first is that the multiprocessor's
bus isn't as heavily trafficked by interprocessor synchronization. The second is
that instead of a random processor in a waiting group acquiring a spinlock, the
queued spinlock enforces first-in, first-out (FIFO) ordering to the lock. FIFO
ordering means more consistent performance across processors accessing the
same locks.

Microsoft hasn't converted all the kernel's locks to queued spinlocks, just
the half-dozen or so locks that protect the core data structures of the kernel,
such as the cache manager's database, the scheduler's thread database, and the
memory manager's physical memory database.

157

INSIDE MICROSOFT WINDOWS 2000

Executive Synchronization

158

Executive software outside the kernel also needs to synchronize access to global
data structures in a multiprocessor environment. For example, the memory
manager has only one page frame database, which it accesses as a global data
structure, and device drivers need to ensure that they can gain exclusive access
to their devices. By calling kernel functions, the executive can create a spinlock,
acquire it, and release it.

Spinlocks only partially fill the executive's needs for synchronization mecha
nisms, however. Because waiting on a spinlock literally stalls a processor, spinlocks
can be used only under the following strictly limited circumstances:

III The protected resource must be accessed quickly and without
complicated interactions with other code.

III The critical section code can't be paged out of memory, can't make
references to pageable data, can't call external procedures (including
system services), and can't generate interrupts or exceptions.

These restrictions are confining and can't be met under all circumstances.
Furthermore, the executive needs to perform other types of synchronization in
addition to mutual exclusion, and it must also provide synchronization mecha
nisms to user mode.

The kernel furnishes additional synchronization mechanisms to the execu
tive in the form of kernel objects, known collectively as dispatcher objects. The
user-visible synchronization objects acquire their synchronization capabilities
from these kernel dispatcher objects. Each user-visible object that supports
synchronization encapsulates at least one kernel dispatcher object. The executive's
synchronization semantics are visible to Win32 programmers through the
WaitForSingleObject and WaitForMultipleObjects functions, which the Win32
subsystem implements by calling analogous system services the object manager
supplies. A thread in a Win32 application can synchronize with a Win32 pro
cess, thread, event, semaphore, mutex, waitable timer, I/O completion port,
or file object.

One other type of executive synchronization object worth noting is called
executive resources. Executive resources provide both exclusive access (like a
mutex) as well as shared read access (multiple readers sharing read-only access
toa structure). However, they're available only to kernel-mode code and thus
aren't accessible from the Win32 API. Executive resources are not dispatcher
objects but rather data structures allocated directly from nonpaged pool that

T H R E E: System Mechanisms

have their own specialized services to initialize, lock, release, query, and wait on
them. The executive resource structure is defined in Ntddk.h, and the execu
tive support routines are documented in the DDK reference documentation.

The remaining subsections describe the implementation details of waiting
on dispatcher objects.

Waiting on Dispatcher Objects
A thread can synchronize with a dispatcher object by waiting on the object's
handle. Doing so causes the kernel to suspend the thread and change its dis
patcher state from running to waiting, as shown in Figure 3-19. The kernel
removes the thread from the dispatcher ready queue and no longer considers
it for execution.

NOT E Figure 3-19 is a process state transition diagram with focus
on the ready, waiting, and running states (the states related to wait
ing on objects). The other states are described in Chapter 6 .

...... ~ .. -----
" ~ # ~ , ,

· .~ . ..J
, Xi: . I

---------_.-.- -,'

Figure 3-19
Waiting on a dispatcher object

, II I
, I I

, I I I
, I.. I ,

,

, ,

159

INSIDE MICROSOFT WINDOWS 2000

160

At any given moment, a synchronization object is in one of two states:
either the signaled state or the nonsignaled state. A thread can't resume its exe
cution until the kernel changes its dispatcher state from waiting to ready. This
change occurs when the dispatcher object whose handle the thread is waiting
on also undergoes a state change, from the nonsignaled state to the signaled
state (when a thread sets an event object, for example). To synchronize with
an object, a thread calls one of the wait system services the object manager
supplies, passing a handle to the object it wants to synchronize with. The
thread can wait on one or several objects and can also specify that its wait
should be canceled ifithasn't ended within a certain amount of time. When
ever the kernel sets an object to the signaled state, the kernel's KiWaitTest
function checks to see whether any threads are waiting on the object. If they
are, the kernel releases one or more of the threads from their waiting state so
that they can continue executing.

The following example of setting an event illustrates how synchronization
interacts with thread dispatching:

1. A user-mode thread waits on an event object's handle.

2. The kernel changes the thread's scheduling state from ready to
waiting and then adds the thread to a list of threads waiting for
the event.

3. Another thread sets the event.

4. The kernel marches down the list of threads waiting on the event. If
a thread's conditions for waiting are satisfied, * the kernel changes
the thread's state from waiting to ready. If it is a variable-priority
thread, the kernel might also boost its execution priority.

5. Because a new thread has become ready to execute, the dispatcher
reschedules. If it finds a running thread with a priority lower than
that of the newly ready thread, it preempts the lower-priority thread
and issues a software interrupt to initiate a context switch to the
higher-priority thread.

6. If no processor can be preempted, the dispatcher places the ready
thread in the dispatcher ready queue to be scheduled later.

* Some threads might be waiting for more than one object, so they continue waiting.

T H R E E: System Mechanisms

What Signals an Object
The signaled state is defined differently for different objects. A thread object is
in the nonsignaled state during its lifetime and is set to the signaled state by the
kernel when the thread terminates. Similarly, the kernel sets a process object to
the signaled state when the process's last thread terminates. In contrast, the timer
object, like an alarm, is set to "go off" at a certain time. When its time expires,
the kernel sets the timer object to the signaled state.

When choosing a synchronization mechanism, a program must take into
account the rules governing the behavior of different synchronization objects.
Whether a thread's wait ends when an object is set to the signaled state varies
with the type of object the thread is waiting on, as Table 3-9 illustrates.

Table 3-9 Definitions of the Signaled State

Object Set to Signaled Effect on
Type State When Waiting Threads

Process Last thread terminates All released
Thread Thread terminates All released

File I/O operation All released
completes

Event Thread sets the event All released
(notification type)

Event Thread sets the event One thread released;
(synchronization type) event object reset

Semaphore Semaphore count drops One thread released
by 1

Timer Set time arrives or time All released
(notification type) interval expires
Timer Set time arrives or time One thread released
(synchronization type) interval expires

Mutex Thread releases the One thread released
mutex

File I/O completes All threads released

Queue Item is placed on queue One thread released

When an object is set to the signaled state, waiting threads are generally
released from their wait states immediately. Some of the kernel dispatcher objects
and the system events that induce their state changes are shown in Figure 3-20.

161

INSIDE MICROSOFT WINDOWS 2000

162

Dispatcher
object

Mutex (kernel
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Timer

Thread

Figure 3-20

System events
and resulting
state change

Owning thread
releases the mutex.

I Nonsignaled J;:OOOO: ~ Signaled

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Resumed thread
acquires the mutex.

One thread releases the
semaphore, freeing a resource.

Effect of signaled state
on waiting threads

Kernel resumes one
waiting thread.

Kernel resumes one
waiting thread.

II"N-on-s-ig-n-a-Ie-d"'~ ~;--S-i-gn-a-Ie-d-'I Kernel resumes one or
· ~ • more waiting threads.

A thread acquires the
semaphore. More resources

are not available.

A thread sets the event.

1"1 N-On-S-ig-n-a-Ie-d"'~ ~;--S-i-g-na-I-ed-'I Kernel resumes one or
· ~ • more waiting threads.

Kernel resumes one
or more threads.

Dedicated thread sets one
event in the event pair.

1"1 N-On-S-ig-n-a-Ie-d"'~ ~;--S-i-gn-a-I-ed-'I Kernel resumes waiting
· ~ . dedicated thread.

Kernel resumes the
other dedicated thread.

Thread terminates.

I Nonsignaled r;::::::: ~ Signaled ·1
A thread reinitializes the

thread object.

Kernel resumes all
waiting threads.

Kernel resumes all
waiting threads.

Selected kernel dispatcher objects

T H R E E: System Mechanisms

For example, a notification event object (called a manual reset event in the
Win32 API) is used to announce the occurrence of some event. When the event
object is set to the signaled state, all threads waiting on the event are released.
The exception is any thread that is waiting on more than one object at a time;
such a thread might be required to continue waiting until additional objects
reach the signaled state.

In contrast to an event object, a mutex object has ownership associated
with it. It is used to gain mutually exclusive access to aresource, and only one
thread at a time can hold the mutex. When the mutex object becomes free, the
kernel sets it to the signaled state and then selects one waiting thread to exe
cute. The thread selected by the kernel acquires the mutex object, and all other
threads continue waiting.

This brief discussion wasn't meant to enumerate all the reasons and appli
cations for using the various executive objects but rather to list their basic func
tionality and synchronization behavior. For information on how to put these
objects to use in Win32 programs, see the Win32 reference documentation
on synchronization objects or Jeffrey Richter's Programming Applicationsfor
Microsoft Windows.

Data Structures
Two data structures are key to tracking who is waiting on what: dispatcher headers
and wait blocks. Both these structures are publicly defined in the DDKinclude
file Ntddk.h. The definitions are reproduced here for convenience:

typedef struct _DISPATCHEILHEADER {
UCHAR Type.;
UCHAR Absolute;
UCHAR Size;
UCHAR Inserted;
LONG SignalState;
LIST_ENTRY WaitListHead;

} DISPATCHEILHEADER;

typedef struct _KWAIT_BLOCK {
LIST_ENTRY WaitListEntry;
struct _KTHREAD *RESTRI cnD_POI NTER Threa1:l;
PVOID Qbject;
struct _KWAILBLOCK *RESTRIPED_POINTER NextWaitBlock;
USHORT WaitKey;
USHQRT WaitType;

} KWAILBLOCK. *PKWAILBLOCK.*RESTRICTED_POINTER PRKWAILBLOCK;

The dispatcher header contains the object type, signaled state, and a list
of the threads waiting on that object. The wait block represents a thread wait
ing on an object. Each thread that is in a wait state has a list of the wait blocks

163

INSIDE MICROSOFT WINDOWS 2000

164

that represent the objects the thread is waiting on. Each dispatcher object has
a list of the wait blocks that represent which threads are waiting on the object.
This list is kept so that when a dispatcher object is signaled, the kernel can quickly
determine who is waiting on that object. The wait block has a pointer to the
object being waited on, a pointer to the thread waiting on the object, and a
pointer to the next wait block (if the thread is waiting on more than one ob
ject). It also records the type of wait (any or all) as well as the position of that
entry in the array of handles passed by the thread on the WaitForMultipleObjects
call (zero if the thread was waiting on only one object).

Figure 3-21 shows the relationship of dispatcher objects to wait blocks to
threads. In this example, thread 1 is waiting on object B, and thread 2 is wait
ing on objects A and B. If object A is signaled, the kernel will see that because
thread 2 is also waiting on another object, thread 2 can't be readied for execu
tion. On the other hand, if object B is signaled, the kernel can ready thread 1
for execution right away since it isn't waiting on any other objects.

Thread objects

.I .o/IL

Thread 1 Thread 2 ~
Walt block list Wait block list

Di spatcher objects

Size I Type """-

State
... L Wait blocks

ObJect A I- Wait list head
J ~ List entry -

Object-type- Thread
specific data Object

Key I Type

Next link • ~

Size I Type ...
thread 2 walt block

State '" .lo.

J

,
I-Wait list head '" .I

List entry -List entry
Object B

Object-type- (--~ Thread - ~ Thread

specific data Object Object

Key I Type Key I Type

Next link Next link

Thread 1 wait block Thread 2 wait block

Figure 3-21
Wait data structures

T H R E E: System Mechanisms

System Worker Threads
During system initialization, Wmdows 2000 creates several threads in the System
process, called system worker threads, that exist solely to perform work on be
half of other threads. In many cases, threads executing at DPC/dispatch level
need to execute functions that can be performed only at a lower IRQL. For

165

INSIDE MICROSOFT WINDOWS 2000

166

example, a DPC routine, which executes in an arbitrary thread context (DPC
execution can usurp any thread in the system) at DPC/dispatch level IRQL,
might need to access paged pool or wait on a dispatcher object used to synchro
nize execution with an application thread. Because a DPC routine can't lower
the IRQL, it must pass such processing to a thread that executes at an IRQL
below DPC/dispatch level.

Some device drivers and executive components create their own threads
dedicated to processing work at passive level; however, most use system worker
threads instead, which avoids the unnecessary scheduling and memory overhead
associated with having additional threads in the system. A device driver or an
executive component requestS a system worker thread's services by calling the
executive functions ExQueue WorkItem or IoQueue Workltem. These functions
place a work item on a queue dispatcher object where the threads look for work.
(Queue dispatcher objects are described in more detail in the section "I/O
Completion Ports" on page 570 in Chapter 9.) Work items include a pointer
to a routine and a parameter that the thread passes to the routine when it pro
cesses the work item. The routine is implemented by the device driver or execu
tive component that requires passive-level execution.

For example, a DPC routine that must wait on a dispatcher object can
initialize a work item that points to the routine in the driver that waits on the
dispatcher object, and perhaps to a pointer to the object. At some stage, a sys
tem worker thread will remove the work item from its queue and execute the
driver's routine. When the driver's routine finishes, the system worker thread
checks to see whether there are more work items to process. If there aren't any
more, the system worker thread blocks until a work item is placed on the queue.
The DPC routine might or might not have finished executing when the system
worker thread processes its work item. (On a uniprocessor system, a DPC rou
tine always finishes executing before its work item is processed because thread
scheduling doesn't take place when the IRQL is at DPC/dispatch level).

There are three types of system worker threads:

II Delayed worker threads execute at priority 12, process work items
that aren't considered time-critical, and can have their stack paged
out to a paging file while they wait for work items.

II Critical worker threads execute at priority 13, process time-critical
work items, and on Windows 2000 Server installations have their
stacks present in physical memory at all times.

II A single hypercritical worker thread executes at priority 15 and also
keeps.its stack in memory. The process manager uses the hypercritical
work item to execute the thread "reaper" function that frees termi
nated threads.

T H R E E: System Mechanisms

The number of delayed and critical worker threads created by the executive's
ExpWorkerlnitialization function, which is called early in the boot process,
depends on the amount of memory present on the system and whether the
system is a server. Table 3-10 shows the default number of threads created on
different system configurations. You can specify that Explnitialize Worker create
up to 16 additional delayed and 16 additional critical worker threads with the
AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values
under the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Executive.

Table 3-10 Number of System Worker Threads

System Memory

Worker Thread 12-19MB 20-64MB > 64MB

Delayed 3 3 3

Critical 3 Professional: 3 Professional: 5

Server: 6 Server: 10

Hypercritical 1 1 1

The executive tries to match the number of critical worker threads with
changing workloads as the system executes. Once every second; the executive
function Exp WorkerThreadBalanceManager determines whether it should create
a new critical worker thread. The critical worker threads that are created by
Exp WorkerThreadBala11cceManager are called dynamic worker threads, and all the
following conditions must be satisfied before such a thread is created:

III Work items exist in the critical work queue.

III The number of inactive critical worker threads (ones that are either
blocked waiting for work items or that have blocked on dispatcher
. objects while executing a work routine) must be less than the number
of processors on the system.

III There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the
workload dictates, the executive call create up to 16 dynamic worker threads.

167

INSIDE MICROSOFT WINDOWS 2000

Windows 2000 Global Flags

168

Windows 2000 has a set of flags stored in a systemwide global variable named
NtGlobalFlag that enable various internal debugging, tracing, and validation
support in the operating system. The system variable NtGlobalFlagis initialized
from the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager in the value GlobalFlag at system boot time. By default, this registry
value is 0, so it's likely that on your systems, you're not using any global flags.
In addition, each image has a set of global flags that also turn on internal tracing
and validation code (though the bit layout of these flags is entirely different than
the systemwide global flags). These flags aren't documented or supported for
customer use, but they can be useful tools for exploring the internal operation
of Windows 2000.

Fortunately, the Platform SDK and the debugging tools contain a utility
named Gflags.exe that allows you to view and change the system global flags (either
in the registry or in the running system) as well as image global flags. Gflags

T H R E E: System Mechanisms

has both a command-line and a GUI interface. To see the command-line flags,
type gflags I?~ If you run the utility without any switches, the dialog box shown
in Figure 3-22 is displayed.

Figure 3-22
Setting system debugging options with Gflags

You can toggle between the settings in the registry (by clicking System
Registry) and the current value of the variable in system memory (by clicking
Kernel Mode). You must press the Apply button to make the changes. (You'll
exit if you press the OK button.) Although you can change flag settings on a
running system, most flags require a reboot to take effect, and there's no docu
mentation on which do and which don't require rebooting. So when in doubt,
reboot after changing a global flag.

The Image File Options choice requires that you fill in the filename of
a valid executable image. This option is used to change a set of global flags
that apply to an individual image (rather than to the whole system). In Fig
ure 3-23, notice that the flags are different than the operating system ones
shown in Figure 3-22.

169

INSIDE MICROSOFT WINDOWS 2000

Figure 3-23
Setting image global flags with Gflags

170

T H R E E: System Mechanisms

Local Procedure Calls (LPCs)
Alocal procedure call (LPC) is an interprocess communication facility for high
speed message passing. It is not directly available through the Win32 API; it is
an internal mechanism available only to Windows 2000 operating system com
ponents. Here are some examples of where LPCs are used:

II Win32 applications that use remote procedure calls (RPCs), a docu
mented API, indirectly use LPCs when they specifY local-RPC, a form
of RPC used to communicate between processes on the same system.

II A few Win32 APIs result in sending messages to the Win32. subsys
tem process.

171

INSIDE MICROSOFT WINDOWS 2000

172

III Winlogon uses LPCs to communicate with the local security authenti
cation server process, Lsass.

III The security reference monitor (an executive component explained
in Chapter 8) uses LPCs to communicate with the Lsass process.

T H R E E: System Mechanisms

(continued)

173

INSIDE MICROSOFT WINDOWS 2000

174

EXPERIMENT: Viewing LPC Port Objects continued

Typically, LPCs are used between a server process and one or more client
processes of that server. An LPC connection can be established between two user
mode processes or between a kernel-mode component and a user-mode process.
For example, as noted in Chapter 2, Win32 processes send occasional messages
to the Win32 subsystem by using LPCs. Also, some system processes use LPCs
to communicate, such as Winlogon and Lsass. An example of a kernel-mode com
ponent using an LPC to talk to a user process is the communication between
the security reference monitor and the Lsass process.

LPCs are designed to allow three methods of exchanging messages:

II A message that is shorter than 256 bytes can be sent by calling
the LPC with a buffer containing the message. This message is
then copied from the address space of the sending process into
system address space, and from there to the address space of the
receiving process.

II If a client and a server want to exchange more than 256 bytes of
data, they can choose to use a shared section to which both are
mapped. The sender places message data in the shared section and
then sends a small message to the receiver with pointers to where the
data is to be found in the shared section.

II When a server wants to read or write larger amounts of data than
will fit in a shared section, data can be directly read from or written
to a client's address space. The LPC component supplies two func
tions that a server can use to accomplish this. A message sent by the
first function is used to synchronize the message passing.

An LPC exports a single executive object called the port object to maintain
the state needed for communication. Although an LPC uses a single object type,
it has several kinds of ports:

T H R E E: System Mechanisms

II Server connection port A named port that is a server connection
request point. Clients can connect to the server by connecting to
this port.

II Server communication port An unnamed port a server uses to
communicate with a particular client. The server has one such port
per active client.

II Client communication port An unnamed port a particular client
thread uses to communicate with a particular server.

II Unnamed communication port An unnamed port created for use
by two threads in the same process.

LPCs are typically used as follows: A server creates a named server connec
tion port object. A client makes a connect request to this port. If the request is
granted, two new unnamed ports, a client communication port and a server
communication port, are created. The client gets a handle to the client com
munication port, and the server gets a handle to the server communication port.
The client and the server will then use these new ports for their communication.

A completed connection between a client and a server is shown in Fig
ure 3-24.

Client address
space

Figure 3·24
Use of LPC ports

Kernel address space

Connection port

Server address
space

175

INSIDE MICROSOFT WINDOWS 2000

Conclusion

176

In this chapter, we've examined the key base system mechanisms on which the
Windows 2000 executive is built. The next chapter details the steps involved in
booting Windows 2000 and explains why Windows 2000 sometimes crashes and
what you can do about it.

C HAP T E R F 0 U R

Startup and Shutdown

In this chapter, we'll describe the steps required to boot Microsoft Windows 2000
and the options that can affect system startup. We'll then explain what occurs
on an orderly system shutdown. Finally, we'll discuss the reasons that Windows
2000 might crash and what you can do when you're dealing with a system crash.
Understanding the details of the boot process will help you diagnose problems
that can arise during a boot.

Boot Process
In describing the Windows 2000 boot process, we'll start with the installation
of Windows 2000 and proceed through the execution ofNtldr and Ntdetect.
Device drivers are a crucial part of the boot process, so we'll explain the way
that they control the point in the boot process at which they load and initial
ize. Then we'll describe how the executive subsystems initialize and how the
kernel launches the user-mode portion of Windows 2000 by starting the Ses
sion Manager process (Smss.exe), the Win32 subsystem, and the logon process
(Winlogon). Along the way, we'll highlight the points at which various text
appears on the screen to help you correlate the internal process with what you
see when you watch Windows 2000 boot. Table 4-1 presents a summary of boot
process components with their execution modes and responsibilities.

Preboot
The Windows 2000 boot process doesn't begin when you power on your com
puter or press the reset button. It begins when you install Windows 2000 on
your computer. At some point during the execution of the Windows 2000 Setup
program, the system's primary hard disk is prepared with code that takes part
in the boot process. Before we get into what this code does, let's look at how

177

INSIDE MICROSOFT WINDOWS 2000

178

Table 4-1 Boot Process Components

Processor
Component Execution Responsibilities

Master boot record 16-bit real mode Reads and loads partition
(MBR) code boot sectors

Boot sector 16-bit real mode Reads the root directory to
load Ntldr

Ntldr 16-bit real mode Reads Boot.ini, presents boot
and 32-bit menu, and loads Ntoskrnl.exe,
protected mode; Bootvid.dll, Hal.dll, and
turns on paging boot-start device drivers

Ntoskrnl.exe 32-bit protected Initializes executive subsystems
mode with paging and boot and system-start device

drivers, prepares the system for
running native applications, and
runs Smss.exe

Smss 32-bit native Loads Win32 subsystem,
application including Win32k.sys and

Csrss.exe, and starts Winlogon
process

Winlogon 32-bit native Starts the service control
application manager (SCM), the Local

Security Subsystem (Lsass), and
presents interactive logon
dialog box

Service control 32-bit native Loads and initializes auto-start
manager (SCM) application device drivers and Win32

services

and where Windows 2000 places the code on a disk. Since the early days of
MS-DOS, a standard has existed on x86 systems for the way physical hard disks
are divided into volumes. Microsoft operating systems split hard disks into dis
crete areas known as partitions and use file systems (such as FAT and NTFS) to
format each partition into a volume. A hard disk can contain up to four primary
partitions. Because this apportioning scheme would limit a disk to four volumes,
a special partition type, called an extended partition, further allocates up to four
additional partitions within each primary partition. Extended partitions can
contain extended partitions, which can contain extended partitions, and so on,
making the number of volumes an operating system can place on a disk effec
tively infinite. Figure 4-1 shows an example of a hard disk layout. (You can learn

.1}
~ Partition table

Partition 1 Partition 2

~
MBR Boot Extended partition

sector boot record

Figure 4-1
Example hard disk layout

F 0 U R: Startup and Shutdown

Partitions within an
extended partition

I

Partition 3
(Extended)

Partition 4

more about Windows 2000 partitioning in Chapter 10, which covers storage
management.)

Physical disks are addressed in units known as sectors. A hard disk sector
on an IBM-compatible PC is typically 512 bytes. Utilities that prepare hard disks
for the definition of logical drives, including the MS-DOS Fdisk utility or the
Windows 2000 Setup program, write a sector of data called a master boot record
(MBR) to the first sector on a hard disk. The MBR includes a fixed amount of
space that contains executable instructions (called boot code) and a table (called
a partition table) with four entries that define the locations of the primary parti
tions on the disk. When an IBM -compatible computer boots, the first code it
executes is called the BIOS, which is encoded into the computer's ROM. The
BIOS reads the MBRinto memory and transfers control to the code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated
into Windows 2000 Setup and the Disk Management MMC snap-in, go through
a similar process of reading and transferring control. First, an MBR's code scans

179

INSIDE MICROSOFT WINDOWS 2000

the primary partition table until it locates a partition containing a flag that sig
nals the partition is bootable. When the MBRfinds at least one such flag, it reads
the first sector from the flagged partition into memory and transfers control to
code within the partition. This type of partition is called a boot partition) and
the first sector of such a partition is called a boot sector.

Operating systems generally write boot sectors to disk without a user's
involvement. For example, when Windows 2000 Setup writes the MBR to a hard
disk, it also writes a boot sector to the first bootable partition of the disk. You
might have used the MS-DOS sys command to manually write MS-DOS boot
sectors to disks. Windows 2000 Setup checks to see whether the boot sector it
will overwrite with a Windows 2000 boot sector is a valid MS-DOS boot sec
tor. Ifit is, Windows 2000 Setup copies the boot sector's contents to a file named
Bootsect.dos in the root directory of the partition.

Before writing to a partition's boot sector, Windows 2000 Setup ensures
that the partition is formatted with a file system that Windows 2000 supports
(FAT, FAT32, or NTFS) by formatting the boot partition (and any other par
tition) with a file system type you specifY. If partitions are already formatted, you
can instruct Setup to skip this step. After Setup formats the boot partition, Setup
copies the files Windows 2000 uses to the logical disk drive, including two files
that are part of the boot sequence, Ntldr and Ntdetect.com.

Another of Setup's roles is to create a boot menu file, Boot.ini, in the root
directory of the boot partition. This file contains options for starting the ver
sion of Windows 2000 that Setup installs and any preexisting Windows 2000
installations. If BQotsect.dos contains a valid MS-DOS boot sector, one of the
entries Boot.ini creates is to boot into MS-DOS. The following output shows
an example Boot.ini file from a dual-boot computer on which MS-DOS is installed
before Windows 2000:

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINNT
[operating systems]
multi(0)disk(0)rdisk(0)partition(1)
\WINNT="Microsoft Windows 2000 Professional" Ifastdetect
C:\="Microsoft Windows"

The Boot Sector and Ntldr

180

Setup must know the partition format before it writes a boot sector because the
contents of the boot sector vary depending on the format. For example, if the
boot partition is a FAT partition, Windows 2000 writes code to the boot sec-

F 0 U R: Startup and Shutdown

tor that understands the FAT file system. But if the partition is in NTFS for
mat, Windows 2000 writes NTFS-capable code. The role of the boot-sector code
is to give Windows 2000 information about the structure and format of a logi
cal disk drive and to read in the Ntldr file from the root directory of the logical
disk drive. Thus, the boot-sector code contains just enough read-only file sys
tem code to accomplish this task. After the boot-sector code loads Ntldr into
memory, it transfers control to Ntldr's entry point. If the boot-sector code can't
find Ntldr in the logical disk drive's root directory, it displays the error message
"BOOT: Couldn't find NTLDR" if the boot file system is FAT or "NTLDRis
missing" if the file system is NTFS.

Ntldr begins its existence while a system is executing in an x86 operating
mode called real mode. In real mode, no virtual-to-physical translation of memory
addresses occurs, which means that programs that use the memory addresses
interpret them as physical addresses and that only the first 1 MB of the computer's
physical memory is accessible. Simple MS-DOS programs execute in a real mode
environment. However, the first action Ntldr takes is to switch the system to
protected mode. Still no virtual-to-physical translation occurs at this point in the
boot process, but a full 32 bits of memory becomes accessible. After the sys
tem is in protected mode, Ntldr can access all of physical memory. After creat
ing enough page tables to make memory below 16 MB accessible with paging
turned on, Ntldr enables paging. Protected mode with paging enabled is the
mode in which Windows 2000 executes in normal operation.

After Ntldr enables paging, itis fully operational. However, it still relies
on functions supplied by the boot code to access IDE-based system and boot
disks as well as the display. The boot-code functions briefly switch off paging
and switch the processor back to a mode in which services provided by the BIOS
can be executed. If either the boot or system drives are SCSI-based, Ntldr loads
a file named Ntbootdd.sys and uses it instead of the boot-code functions for disk
access. Ntldr next reads the Boot.ini file from the root directory using built-in
file system code. Like the boot sector's code, Ntldr contains read-only NTFS and
FAT code; unlike the boot sector's code, however, Ntldr's file system code can
read subdirectories.

Ntldr clears the screen and if there is more than one boot-selection entry
in Boot.ini, it presents the user with the boot-selection menu. (If there is only
one entry, Ntldr bypasses the menu and proceeds to displaying the startup
progress bar.) Selection entries in Boot.ini direct Ntldr to the partition on which
the Windows 2000 system directory (typically\Winnt) of the selected installa
tion resides. This partition might be the same as the boot partition, or it might
be another primary partition.

181

INSIDE MICROSOFT WINDOWS 2000

If the Boot.ini entry refers to an MS-DOS installation (that is, by referring
to C:\ as the system partition), Nddr reads the contents of the Bootsect.dos
file into memory, switches back to 16-bit real mode, and calls the MBR code
in Bootsect.dos. This action causes the Bootsect.dos code to execute as if the MBR
had read the code from disk. Code in Bootsect.dos continues an MS-DOS-specific
boot, such as is used to boot Microsoft Windows 98 or Microsoft Windows 95
on a computer on which these operating systems are installed with Windows 2000.

Entries in Boot.ini can include optional arguments that Nddr and other
components involved in the boot process interpret. Table 4-2 contains a com
plete list of these options and their effects.

Table 4-2 Boot.ini Switches

Bootini Qualifier Meaning

/3GB

/BASEVIDEO

/BAUDRATE=

/BOOTLOG

/BREAK

182

Increases the size of the user process address space from
2 GB to 3 GB (and therefore reduces the size of system
space from 2 GB to 1 GB). Giving virtual-memory
intensive applications such as database servers a larger
address space can improve their performance. For an
application to take advantage of this feature, however,
two additional conditions must be met: the system must
be running Windows 2000 Advanced Server or Datacenter
Server and the application .exe must be flagged as a 3-GB
aware application. (See the section "Address Space Lay
out" in Chapter 7 for more information.)

Causes Windows 2000 to use the standard VGA display
driver for GUI-mode operations.

Enables kernel-mode debugging and specifies an
override for the default baud rate (19200) at which a
remote kernel debugger host will connect. Example:
/BAUDRATE=1l5200.

Causes Windows 2000 to write a log of the boot to the
file %SystemRoot%\Ntbtlog.txt.

Causes the hardware abstraction layer (HAL) to stop at
a breakpoint at HAL initialization. The first thing the
Windows 2000 kernel does when it initializes is to initial
ize the HAL, so this brealcpoint is the earliest one pos
sible. The HAL will wait indefinitely at the breakpoint
until a kernel-debugger connection is made. If the switch
is used without the /DEBUG switch, the system will
Blue Screen with STOP code of Ox00000078 (PHASEO_
EXCEPTION).

Bootini Qualifier

/BURNMEMORY=

/CLKLVL

/CRASHDEBUG

/DEBUG

/DEBUGPORT =

/FASTDETECT

/INTAFFINITY

F 0 U R: Startup and Shutdown

Meaning

Specifies an amount of memory Windows 2000 can't use
(similar to the /MAXMEM switch). The value is specified
in megabytes. Example: /BURNMEMORY=128 would
indicate that Windows 2000 can't use 128 MB of the
total physical memory on the machine.

Causes the standard x86 multiprocessor HAL
(Halmps.dll) to configure itself for a level-sensitive
system clock rather then an edge-triggered clock. Level
sensitive and edge-triggered are terms used to describe
hardware interrupt types.

Causes the kernel debugger to be loaded when the system
boots, but to remain inactive unless a crash occurs. This
allows the serial port that the kernel debugger would use
to be available for use by the system until the system
crashes (vs. /DEBUG, which causes the kernel debugger
to use the serial port for the life of the system session).

Enables kernel-mode debugging.

Enables kernel-mode debugging and specifies an override
for the default serial port (COM1) to which a remote
kernel-debugger host is connected. Example:
/DEBUGPORT=COM2.

Default boot option for Windows 2000. Replaces the
Windows NT 4 switch /NOSERIALMICE. The reason
the qualifier exists (vs. just having NTDETECT perform
this operation by default) is so that NTDETECT can sup
port booting Windows NT 4. Windows 2000 Plug and
Play device drivers perform detection of parallel and serial
devices, but Windows NT 4 expects NTDETECT to per
form the detection. Thus, specifying /FASTDETECT
causes NTDETECT to skip parallel and serial device
enumeration (actions that are not required when booting
Windows 2000), whereas omitting the switch causes
NTDETECT to perform this enumeration (which is
required for booting Windows NT 4).

Directs the standard x86 multiprocessor HAL
(Halmps.dll) to set interrupt affinities such that only
the. highest numbered processor will receive interrupts.
Without the switch, the HAL defaults to its normal
behavior of letting all processors receive interrupts.

(continued)

183

INSIDE MICROSOFT WINDOWS 2000

Table 4-2 continued

Bootini Qualifier

/KERNEL=/HAL=

184

Meaning

Enable you to override Ntldr's default filename for the
kernel image (Ntoskrnl.exe) and/or the HAL (Hal.dll).
These options are useful for alternating between a checked
kernel environment and a free (retail) kernel environment
or even to manually select a different HAL. If you want
to boot a checked environment that consists solely of
the checked kernel and HAL, which is typically all that
is needed to test drivers, follow these steps on a system
installed with the free build:

1. Copy the checked versions of the kernel images from
the checked build CD to your \ Winnt\System32
directory, giving the images different names than the
default. For example, if you're on a uniprocessor, copy
Ntoskrnl.exe to Ntoschk.exe and Ntkrnlpa.exe to
Ntoschkpa.exe. If you're on a multiprocessor, copy
Ntkrnlmp.exe to Ntoschk.exe and Ntkrpamp.exe to
Ntoschkpa.exe. The kernel filename must be an 8.3-
style short name.

2. Copy the checked version of the appropriate HAL
needed for your system from \I386\Driver.cab on the
checked build CD to your \Winnt\System32 directory,
naming it Halchk.dll. To determine which HAL to
copy, open \Winnt\Repair\Setup.log and search for
Hal.dll; you'll find a line like \ WINNT\system32\
hal.dll="halacpi.dll", "ld8al". The name immediately
to the right of the equals sign is the name of the HAL
you should copy. The HAL filename must be an 8.3-
style short name.

3. Make a copy of the default line in the system's
Boot.ini file.

4. In the string description of the boot selection, add
something that indicates that the new selection will
be for a checked build environment (for example,
"Windows 2000 Professional Checked").

5. Add the following to the end of the new selection's
line: /KERNEL=NTOSCHK.EXE /HAL=
HALCHK.DLL

Now when the selection menu appears during the boot
process you can select the new entry to boot a checked
environment or select the entry you were using to boot
the free build.

Bootini Qualifier

/MAXMEM=

/MAXPROCSPERCLUSTER=

/NODEBUG

/NOGUIBOOT

/NOLOWMEM

/NOPAE

/NOSERIALMICE=[COMx I
COMx,y,z ...]

/NUMPROC=

F 0 U R: Startup and Shutdown

Meaning

Limits Windows 2000 to ignore (not use) physical
memory beyond the amount indicated. The number is
interpreted in megabytes. Example: /MAXMEM=32
would limit the system to using the first 32 MB of
physical memory even if more were present.

For the standard x86 multiprocessor HAL (Halmps.dll),
forces cluster-mode Advanced Programmable Interrupt
Controller (APIC) addressing (not supported on systems
with an 82489DX external APIC interrupt controller).

Prevents kernel-mode debugging from being initialized.
Overrides the specification of any of the three debug
related switches, /DEBUG, /DEBUGPORT, and
/BAUDRATE.

Instructs Windows 2000 not to initialize the VGA video
driver responsible for presenting bitmapped graphics
during the boot process. The driver is used to display
boot progress information, so disabling it will disable the
ability of Windows 2000 to show this information.

Requires that the /PAE switch be present and that the
system have more than 4 GB of physical memory. If these
conditions are met, the PAE-enabled version of the
Windows 2000 kernel, Ntkrnlpa.exe, won't use the first
4 GB of physical memory. Instead, it will load all applica
tions and device drivers, and allocate all memory pools,
from above that boundary. This switch is useful only to
test device driver compatibility with large memory systems.

Forces Ntldr to load the non-Physical Address Extension
(PAE) version of the Windows 2000 kernel, even if the
system is detected as supporting x86 PAEs and has more
than 4 GB of physical memory.

Obsolete Windows NT 4 qualifier-replaced by the
absence of the /FASTDETECT switch. Disables serial
mouse detection of the specified COM ports. This
switch was used if you had a device other than a mouse
attached to a serial port during the startup sequence.
Using /NOSERIALMICE without specifying a COM
port disables serial mouse detection on all COM ports.
See Microsoft Knowledge Base article Q131976 for more
information.

Specifies the number of CPUs that can be used on a mul
tiprocessor system. Example: /NUMPROC=2 on a four
way system will prevent Windows 2000 from using two
of the four processors.

(continued)

185

INSIDE MICROSOFT WINDOWS 2000

Table 4-2 continued

Bootini Qualifier

/ONECPU

/PAE

/PCILOCK

/SAFEBOOT:

/SCSIORDINAL:

/SOS

186

Meaning

Causes Windows 2000 to use only one CPU on a multi
processor system.

Causes Ntldr to load Ntkrnlpa.exe, which is the version
of the x86 kernel that is able to take advantage of x86
PAEs. The PAE version of the kernel presents 64-bit
physical addresses to device drivers, so this switch is helpful
for testing device driver support for large memory systems.

Stops Windows 2000 from dynamically assigning IO/IRQ
resources to PCI devices and leaves the devices config
ured by the BIOS. See Microsoft Knowledge Base article
Q148501 for more information.

Specifies options for a safe boot. You should never have
to specify this option manually, since Ntldr specifies it for
you when you use the F8 menu to perform a safe boot.
(A safe boot is a boot in which Windows 2000 only loads
drivers and services that are specified by name or group
under the Minimal or Network registry keys under
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot.)
Following the colon in the option you must specify one
of three additional switches: MINIMAL, NETWORK, or
DSREPAIR. The MINIMAL and NETWORK flags corre
spond to safe boot with no network and safe boot with
network support, respectively. The DSREPAIR (Directory
Services Repair) switch causes Windows 2000 to boot
into a mode in which it restores the Active Directory
directory service from a backup medium you present. An
additional option you can append is (ALTERNATE
SHELL), which tells Windows 2000 to use the program
specified by the HKLM\SYSTEM\CurrentControlSet\
SafeBoot\AlternateShell value as the graphical shell rather
than to use the default, which is Windows Explorer.

Directs Windows 2000 to the SCSI ID of the controller.
(Adding a new SCSI device to a system with an on-board
SCSI controller can cause the controller's SCSI ID to
change.) See Microsoft Knowledge Base article QI03625
for more information.

Causes Windows 2000 to list the device drivers marked
to load at boot time and then to display the system ver
sion number (including the build number), amount of
physical memory, and number of processors.

Bootini Qualifier

/TIMERES=

/USE8254

jWIN95

jWIN95DOS

/yEAR=

F 0 U R: Startup and Shutdown

Meaning

Sets the resolution of the system timer on the standard
x86 multiprocessor HAL (Halmps.dll). The argument is
a number interpreted in hundreds of nanoseconds, but
the rate is set to the closest resolution the HAL supports
that isn't larger than the one requested. The HAL sup
ports the following resolutions:

Hundreds of
nanoseconds

9766

19532

39063

78125

Milliseconds (ms)

0.98

2.00

3.90

7.80

The default resolution is 7.8 ms. The system timer reso
lution affects the resolution of waitable timers. Example:
/TIMERES=21000 would set the timer to a resolution
of2.0 ms.

Instructs the HAL to use the 8254 timer chip as its base
timer (for systems with older BIOS's). See Microsoft
Knowledge Base article Q169901 for more information.

Directs Ntldr to boot the Consumer Windows boot sector
stored in Bootsect.w40. This switch is pertinent only on
a triple-boot system that has MS-DOS, Consumer
Windows, and Windows 2000 installed. See Microsoft
Knowledge Base article Q 157992 for more information.

Directs Ntldr to boot the MS-DOS boot sector stored in
Bootsect.dos. This switch is pertinent only on a triple
boot system that has MS-DOS, Consumer Windows, and
Windows 2000 installed. See Microsoft Knowledge Base
article Q157992 for more information.

Instructs the Windows 2000 core time function to ignore
the year that the computer's real-time clock reports and
instead use the one indicated. Thus, the year used in
the switch affects every piece of software on the system,
including the Windows 2000 kernel. Example:
jYEAR=2001. (This switch was created to assist in Y2K
testing.)

187

INSIDE MICROSOFT WINDOWS 2000

188

If the user doesn't select an entry from the selection menu within the
timeout period the Boot.ini file specifies, Ntldr chooses the default selection.
Once the boot selection has been made, Ntldr loads and executes Ntdetect.com,
a 16-bit real-mode program that uses a system's BIOS to query the computer
for basic device and configuration information. This information includes the
following:

III The time and date information stored in the system's CMOS
(nonvolatile memory)

III The types of buses (for example, ISA, PCI, EISA, Micro Channel
Architecture [MCA]) on the system and identifiers for devices
attached to the buses

III The number, size, and type of disk drives on the system

III The types of mouse input devices connected to the system

III The number and type of parallel ports configured on the system

This information is gathered into internal data structures that will be stored
under the HKLM\HARDWARE\DESCRIPTION registry key later in the boot.

Ntldr then clears the screen and displays the "Starting Windows" progress
bar. This progress bar remains empty until Ntldr begins loading boot drivers.
(See step 5 in the following list.) Below the progress bar is the message "For
troubleshooting and advanced startup options for Windows 2000, press F8."
If the user presses F8, the advanced boot menu is presented, which allows the
user to select such options as booting from last known good, safe mode, debug
mode, and so on.

Next, Ntldr begins loading the files from the boot partition needed to start
the kernel initialization:

1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and
Hal.dll by default). If Ntldr fails to load either of these files, it prints
the message "Windows 2000 could not start because the following
file was missing or corrupt", followed by the name of the file.

2. Reads in the SYSTEM registry hive, \Winnt\System32\Config\
System, so that it can determine which device drivers need to be
loaded to accomplish the boot. (A hive is a file that contains a regis
try subtree. You'll find more details about the registry in Chapter 5.)

3. Scans the in-memory SYSTEM registry hive and locates all the boot
device drivers. Boot device drivers are drivers necessary to boot the
system. These drivers are indicated in the registry by a start value of

F 0 U R: Startup and Shutdown

SERVICE_BOaT_START. Every device driver has a registry subkey
under HKLM\SYSTEM\CurrentControISet\Services. For example,
Services has a subkey named Dmio for the Logical Disk Manager
driver, which you can see in Figure 4-2. (For a detailed description of
the Services registry entries, see the section "Services" on page 236 in
Chapter 5.)

REG_SZ Logical Disk Manager Driver

REG_DWORD OxOOOOOOOl {ll
REG_5Z S.I'stem Bus b:tender
REG_EXPAN D.. S -,,"stem32\D RIVER S \dmio. sys
REG_DWORD OxOOOOOOOO (OJ
REG_DWORD O~OOOOOOOd (13)
REG_DWORD O~OOOOOOOl (1)

Figure 4-2
Logical Disk Manager driver service settings

4. Adds the file system driver that's responsible for implementing the
code for the type of partition (FAT, FAT32, or NTFS) on which the
installation directory resides to the list of boot drivers to load. Ntldr
must load this driver at this time; if it didn't, the kernel would require
the drivers to load themselves, a requirement that would introduce a
circular dependency.

5. Loads the boot drivers. To indicate the progress of the loading, Ntldr
updates a progress bar displayed below the text "Starting Windows".
The progress bar moves for each driver loaded. (It assumes there are
80 boot device drivers-each successful load moves the progress bar
by 1.25 percent.) If the /SOS switch is specified in the Boot.ini selec
tion, Ntldr doesn't display the progress bar but instead displays the
filenames of each boot driver. Keep in mind that the drivers are loaded
but not initialized at this time-they initialize later in the boot
sequence.

6. Prepares CPU registers for the execution ofNtoskrnl.exe.

This action is the end of Ntldr's role in the boot process. At this point,
Ntldr calls the main function in Ntoskrnl.exe to perform the rest of the system
initialization.

189

INSIDE MICROSOFT WINDOWS 2000

Initializing the Kernel and Executive Subsystems

190

When Ntldr calls Ntoskrnl, it passes a data structure that contains a copy of the
line in Boot.ini that represents the selected menu option for this boot, a pointer
to the memory tables Ntldr generated to describe the physical memory on the
system, a pointer to the in-memory copy of the HARDWARE and SYSTEM
registry hives, and a pointer to the list of boot drivers Ntldr loaded.

Ntoskrnl then begins the first ofits two-phase initialization process, called
phase 0 and phase 1. Most executive subsystems have an initialization function
that takes a parameter that identifies which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build
the rudimentary structures required to allow the services needed in phase 1 to
be invoked. Ntoskrnl's main function calls KiSystemStartup, which in turn calls
HallnitializeProcessor and KilnitializeKernel for each CPU. KilnitializeKernel,
if running on the boot CPU, performs systemwide kernel initialization, such
as initializing internallistheads and other data structures that all CPUs share.
Each instance of KilnitializeKernel then calls the function responsible for orches
trating phase 0, ExplnitializeExecutive.

ExplnitializeExecutive starts by calling the HAL function HallnitSystem,
which gives the HAL a chance to gain system control before Windows 2000
performs significant further initialization. One responsibility of HallnitSystem
is to prepare the system interrupt controller of each CPU for interrupts and to
configure the interval clock timer interrupt, which is used for CPU time account
ing. (See the section "Quantum Accounting" on page 349 in Chapter 6 for more
on CPU time accounting.)

Only on the boot processor does ExplnitializeExecutive perform initiali
zation other than calling HalinitSystem. When HallnitSystem returns control,
ExplnitializeExecutive on the boot CPU proceeds by processing the
/BURNMEMORY Boot.ini switch (if the switch is present in the line from the
Boot.ini file that corresponds to the menu selection the user made when choos
ing which installation to boot) and discarding the amount of memory the switch
specifies.

Next, ExplnitializeExecutive calls the phase 0 initialization routines for the
memory manager, object manager, security reference monitor, process manager,
and Plug and Play manager. These components perform the following initiali
zation steps:

F 0 U R: Startup and Shutdown

1. The memory manager constructs page tables and internal <;lata
structures that are necessary to provide basic memory services. The
memory manager also builds and reserves an area for the system file
cache and creates memory areas for the paged and nonpaged pools.
The other executive subsystems, the kernel, and the device drivers
use these two memory pools for allocating their data structures.

2. During the object manager initialization, the objects that are necessary
to construct the object manager namespace are defined so that other
subsystems can insert objects into it. A handle table is created so that
resource tracking can begin.

3. The security reference monitor initializes the token type object and
then uses the object to create and prepare the first token for assign
ment to the initial process.

4. The process manager performs most of its initialization in phase 0,
defining the process and thread object types and setting up lists to
track active processes and threads. The process manager also creates
a process objectfor the initial process and names it Idle. As its last
step, the process manager creates the System process and creates a
system thread to execute the routine Phase1Initialization. This thread
doesn't start running right away because interrupts are still disabled.

5. The Plug and Play manager's phase 0 initialization then takes place,
which involves simply initializing an executive resource used to syn
chronize bus resources.

When control returns to the KilnitializeKernel function on each pro
cessor, control proceeds to the Idle loop, which then causes the system thread
created in step 4 of the previous process description to begin executing phase 1.
(Secondary processors wait to begin their initialization until step 5 of phase 1,
described in the following list.) Phase 1 consists of the following steps. (The steps
at which the progress bar on the screen is updated are included in this list.)

1. HallnitSystem is called to prepare the system to accept interrupts
from devices and to enable interrupts.

2. The boot video driver (\Winnt\System32\Bootvid.dll) is called, which
in turn displays the Windows 2000 startup screen.

191

INSIDE MICROSOFT WINDOWS 2000

192

3. The power manager's initialization is called.

4. The system time is initialized (by calling HalQueryRealTimeClock)
and then stored as the time the system booted.

5. On a multiprocessor system, the remaining processors are initialized
and execution starts.

6. The progress bar is set to 5 percent.

7. The object manager creates the namespace root directory,
\ObjectTypes directory, \?? directory, and the \DosDevices link: to
the \?? directory.

8. The executive is called to create the executive object types, including
semaphore, mutex, event, and timer.

9. The kernel initializes scheduler (dispatcher) data structures and the
system service dispatch table.

10. The security reference monitor creates the \Security directory in the
object manager namespace and initializes auditing data structures if
auditing is enabled.

11. The progress bar is set to 10 percent.

12. The memory manager is called to create the section object and the
memory manager's system worker threads (explained in Chapter 7).

13. National language support (NLS) tables are mapped into system
space.

14. Ntdll.dll is mapped into the system address space.

15. The cache manager initializes the file system cache data structures
and creates its worker threads.

16. The configuration manager creates the \Registry key object in the
object manager namespace and copies the initial registry data passed
by Ntldr into the HARDWARE and SYSTEM hives.

17. Global file system driver data structures are initialized.

18. The Plug and Play manager calls the Plug and Play BIOS.

19. The progress bar is set to 20 percent.

20. The local procedure call (LPC) subsystem initializes the LPC Pot:t
type object.

F 0 U R: Startup and Shutdown

21. If the system was booted with boot logging (lBOOTLOG), the
boot log file is initialized.

22. The progress bar is set to 25 percent.

23. The I/O manager initialization now takes place. This stage is a
complex phase of system startup that accounts for 50 percent of the
"progress" reported in the progress bar. The I/O manager considers
each successful driver load to be another 2 percent of progress for
the boot. (If there are more than 25 drivers to load, the progress bar
stops at 75 percent.)

The I/O manager first initializes various internal structures and
creates the driver and device object types. It then calls the Plug and
Play manager, power manager, and the HAL to begin the various
stages of dynamic device enumeration and initialization. (Because
this process is complex and specific to the I/O system, we'll save the
details for Chapter 9.) Then the Windows Management Instrumen
tation (WMI) subsystem is initialized, which provides WMlsupport
for device drivers that adhere to the Windows Driver Model
(WDM). (See the section "Windows Management Instrumentation"
on page 265 in Chapter 5 for more information.) Next, all the boot
start drivers are called to perform their driver-specific initialization,
and the system-start device drivers are loaded and initialized. (Details
on the processing of the driver load control information on the regis
try are also covered in Chapter 9.) Finally, the MS-DOS device .!lames
are created as symbolic links in the object manager's namespace.

24. The progress bar is set to 75 percent.

25. If booting in safe mode, this fact is recorded in the registry.

26. Unless explicitly disabled in the registry, paging of kernel-mode code
(in Ntoskrnl and drivers) is enabled.

27. The progress bar is set to 80 percent.

28. The power manager is called to initialize various power management
structures.

29. The progress bar is set to 85 percent.

30. The security reference monitor is called to create the Command
Server Thread that communicates with Lsass. (See the section
"Security System Components:' on page 490 in Chapter 8 for more
on how security is enforced in Windows 2000.)

193

INSIDE MICROSOFT WINDOWS 2000

31. The progress bar is set to 90 percent.

32. The last step is to create the Session Manager subsystem (Smss)
process (introduced in Chapter 2). Smss is responsible for creating
the user-mode environment that provides the visible interface to
Windows 2000-its initialization steps are covered in the next section.

33. The progress bar is (finally) set to 100%.

As a final step before considering the executive and kernel initialization
complete, the phase 1 initialization thread waits on the handle to the Session
Manager process with a timeout value of 5 seconds. If the Session Manager pro
cess exits before the 5 seconds elapses, the system crashes itselfwith a SESSION5_
INITIALIZATION_FAILED bug check code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session
Manager is assumed to have started succ~ssfully, and the phase 1 initialization
function calls the memory manager's zero page thread function (explained in
Chapter 7). Thus, this system thread becomes the zero page thread for the
remainder of the life of the system.

Smss, Csrss, and Winlogon

194

Smss is like any other user-mode process except for two differences: First,
Wmdows 2000 considers Smss a trusted part of the operating system. Second,
Smss is a native application. Because it's a trusted operating system component,
Smss can perform actions few other processes can perform, such as creating
security tokens. Because it's a native application, Smss doesn't use Win32 APIs
it uses only core executive APIs known collectively as the Windows 2000 na
tive API. Smss doesn't use the Win32 APIs because the Win32 subsystem isn't
executing when Smss launches. In fact, one of Smss's first tasks is to start the
Win32 subsystem.

Smss then calls the configuration manager executive subsystem to finish
initializing the registry, fleshing the registry out to include all its keys. The
configuration manager is programmed to know where the core registry hives
are stored on disk (excluding hives corresponding to user profiles) and records
the paths to the hives it loads in the HKLM\SYSTEM\CurrentControISet\
Control\hivelist key.

The main thread of Smss performs the following initialization steps:

1. Creates an LPC port object (\SmApiPort) and two threads to wait
for client requests (such as to load a new subsystem or create a
session).

F 0 U R: Startup and Shutdown

2. Defines the symbolic links for MS-DOS device names (such as COMI
and LPTl).

3. If Terminal Services is installed, creates the \Sessions directory in the
object manager's namespace (for multiple sessions).

4. Runs any programs defined in HKLM\SYSTEM\CurrentControISet\
Control\Session Manager\BootExecute. Typically, this value contains
one command to run Autochk (the boot-time version of Chkdsk).

5. Performs delayed file rename operations as directed by HKLM\
SYSTEM\CurrentControISet\Control\Session Manager\PendingFile
RenameOperations. Pending file deletes are in PendingFileRename
Operations2.

6. Opens known DLLs.

7. Creates additional paging files.

8. Initializes the registry. The configuration manager fleshes out the
registry by loading the registry hives for the HKLM\SAM, HKLM\
SECURITY, and HKLM\SOFTWARE keys. Although HKLM\
SYSTEM\CurrentControISet\Control\hivelist locates the hive files on
disk, the configuration manager is coded to look for them in \Winnt\
System32\Config.

9. Creates system environment variables.

10. Loads the kernel-mode part of the Win32 subsystem (Win23k.sys).
Smss determines the location ofWin32k.sys and other components
it loads by looking for their paths in HKLM\SYSTEM\Current
ControlSet\Control\Session Manager. The initialization code in
Win32k.sys uses the video driver to switch the screen to the resolu
tion defined by the default profile, so this is the point at which the
screen changes from the VGA mode the bOQt video driver uses to
the default resolution chosen for the system.

11. Starts the subsystem processes, including Csrss. (As noted in
Chapter 2, the POSIX and OS,I2 subsystems are defined to start
on demand.)

12. Starts the logon process (Winlogon). The startup steps ofWinlogon
are described shordy.

13. Creates LPC ports for debug event messages (DbgSsApiPort and
DbgUiApiPort) and threads to listen on those ports.

195.

INSIDE MICROSOFT WINDOWS 2000

After performing these initialization steps, the main thread in Smss waits
forever on the process handles to Csrss and Winlogon. If either of these pro
cesses terminates unexpectedly, Smss crashes the system, since Windows 2000
relies on their existence.

Winlogon then performs its startup steps, such as creating the initial win
dow station and desktop objects, loading GINA DLLs, and so on. It then cre
ates the service control manager (SCM) process (\Winnt\System32\Services.exe),
which loads all services and device drivers marked for auto-start, and the local
security authentication subsystem (Lsass) process (\ Winnt\System32\Lsass.exe).
(For more details on the startup sequence for Winlogon and Lsass, see the sec
tion "Winlogon Initialization" on page 522 in Chapter 8.)

After the SCM initializes the auto-start services and drivers and a user has
successfully logged on at the console, the SCM deems the boot successful. The
registry last known good control set (as indicated by HKLM\SYSTEM\Select\
LastKnownGood) is updated to match \CurrentControISet. If a user chooses
to boot to the last known good menu during the first steps of a boot, or if a
driver returns a severe or critical error, the system uses the LastKnownGood value
as the current control set. Doing so increases the chances that the system will
boot successfully, because at least one previous boot using the last known good
profile was successful.

That action brings us to the end of the boot process.

Safe Mode

196

Perhaps the most common reason Windows 2000 systems become unbootable
is that a device driver crashes the machine during the boot sequence. Because
software or hardware configurations can change over time, latent bugs can sur
face in drivers at any time. Wmdows 2000 offers a way for an administrator to
attack the problem: booting in safe mode. Safe mode is a concept Windows 2000
borrows from Consumer Windows-a boot configuration that consists of the
minimal set of device drivers and services. By relying on only the drivers and
services that are necessary for booting, Windows 2000 avoids loading third-party
and other nonessential drivers that might crash.

When Windows 2000 boots, you press the F8 key to enter a special boot
menu that contains the safe-mode boot options. You typically choose from three
safe-mode variations: Safe Mode, Safe Mode With Networking, and Safe Mode
With Command Prompt. Standard safe mode comprises the minimum number
of device drivers and services necessary to boot successfully. Networking-enabled

F 0 U R: Startup and Shutdown

safe mode adds network drivers and services to the drivers and services that
standard safe mode includes. Finally, safe mode with command prompt is iden
tical to standard safe mode except that Windows 2000 runs the command
prompt application (Cmd.exe) instead of Windows Explorer as the shell when
the system enables GUI mode.

Windows 2000 includes a fourth safe mode-Directory Services Restore
mode-which is different from the standard and networking-enabled safe modes.
You use Directory Services Restore mode to boot the system into a mode that
lets you restore the Active Directory directory service of a domain controller
from backup media. All drivers and services load during a Directory Services
Restore mode boot; therefore, you wouldn't use Directory Services Restore
mode to boot unbootable systems.

Driver Loading in Safe Mode
How does Windows 2000 know which device drivers and services are part of
standard and networking-enabled safe boots? The answer lies in the HKLM\
SYSTEM\CurrentControISet\Control\SafeBoot registry key. This key contains
the Minimal and Network subkeys. Each subkey contains more subkeys that
specifY the names of device drivers or services or of groups of drivers. For example,
the vga.sys subkey identifies the VGA display device driver thatthe startup con
figuration includes. The VGA display driver provides basic graphics services for
any PC-compatible display adapter. The system uses this driver as the safe-mode
display 'driver in lieu of a driver that might take advantage of an adapter's advanced
hardware features but that might also prevent the system from booting. Each
subkey under the SafeBoot key has a default value that describes what the subkey
identifies; the vga.sys subkey's default value is Driver.

The Boot file system subkey has as its default value Driver Group. When
developers design a device driver's installation script, they can specify that the
device driver belong to a driver group. The driver groups that a system defines
are listed in the List value of the HKLM\SYSTEM\CurrentControISet\
Control\ServiceGroupOrder key. A developer specifies a driver as a member of
a group to indicate to Windows 2000 at what point during the boot process the
driver should start. The Service Group Order key's primary purpose is to define
the order in which driver groups load; some driver types must load either before
or after other driver types. The Group value beneath a driver's configuration
registry key associates the drivetwith a group. Driver and service configuration
keys reside beneath HKLM\SYSTEM\CurrentControlSet\Services. If you look
under this key, you'll find the VgaSave key for the VGA display device driver,

197

INSIDE MICROSOFT WINDOWS 2000

198

which you can see in the registry is a member of the Video Save group. Any file
system drivers that Windows 2000 requires for access to the Windows 2000
system drive are in the Boot file system group. If the system drive is NTFS, the
NTFS driver is part of this group (the value of Group under the Ntfs key is Boot
file system); otherwise, the Fastfat file system driver (which supports FAT12,
FAT16, and FAT32 drives in Windows 2000) is part of this group. Other file
system drivers are part of the File system group, which the standard and net
working-enabled safe-mode configurations also include.

When you boot into a safe-mode configuration, the boot loader (Ntldr)
passes an associated switch to the kernel (Ntoskrnl.exe) as a command-line pa
rameter, along with any switches you've specified in the Boot.ini file for the
installation you're booting. If you boot into any safe mode, Ntldr passes the
/SAFEBOOT: switch. Ntldr appends one or more additional strings to
/SAFEBOOT:, depending on which type of safe mode you select. For stan
dard safe mode, Ntldr appends MINIMAL, and for networking-enabled safe
mode, it adds NETWORK. Ntldr adds MINIMAL(ALTERNATESHELL) for
safe mode with command prompt and DSREP AIR for Directory Services Re
store mode.

The Windows 2000 kernel scans boot parameters in search of the safe-mode
switches early during the boot and sets the internal variable InitSafeBootMode to
a value that reflects the switches the kernel finds. The kernel writes the
InitSafeBootModevalue to the registry value HKLM\SYSTEM\CurrentControISet\
Control\SafeBoot\Option\Option Value so that user-mode components, such
as the SCM, can determine what boot mode the system is in. In addition, if
the system is booting safe mode with command prompt, the kernel sets the
HKLM\SYSTEM\CurrentControISet\Control\SafeBoot\Option\ U seAlternate
Shell value to 1. The kernel records the parameters that Ntldr passes to it in the
value HKLM\SYSTEM\CurrentControISet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\
SYSTEM\CurrentControISet\Services specifies, the I/O manager executes the
function IopLoadDriver. When the Plug and Play manager detects a new device
and wants to dynamically load the device driver for the detected device, the Plug
and Play manager executes the function IopCaliDriver AddDevice. Both these
functions call the function IopSafeBootDriverLoad before they load the driver
in question. IopSafeBootDriverLoad checks the value of InitSafeBootMode and
determines whether the driver should load. For example, if the system boots in
standard safe mode, IopSafeBootDriverLoad looks for the driver's group, if the

F 0 U R: Startup and Shutdown

driver has one, under the Minimal subkey. If IopSafeBootDriverLoad finds the
driver's group listed, IopSafeBootDriverLoad indicates to its caller that the driver
can load. Otherwise, IopSafeBootDriverLoad looks for the driver's name under
the Minimal subkey. If the driver's name is listed as a subkey, the driver can load.
If IopSafeBootDriverLoad can't find the driver group or driver name subkeys,
the driver can't load. If the system boots in networking-enabled safe mode,
IopSafeBootDriverLoad performs the searches on the Network subkey. If the
system doesn't boot in safe mode, IopSafeBootDriverLoad lets all drivers load.

A loophole exists regarding the drivers that safe mode excludes from a boot:
Ntldr, rather than the kernel, loads any drivers with a Start value of 0 in their
registry key, which specifies loading the drivers at boot time. Because Ntldr
doesn't check the SafeBoot registry key to identify which drivers to load, Ntldr
loads all boot-start drivers.

Safe-Made-Aware User Programs
When the service control manager (SCM) user-mode component (which
Services.exe implements) initializes during the boot process, the SCM checks
the value of HKLM\SYSTEM\CurrentControISet\Control\SafeBoot\Option\
Option Value to determine whether the system is performing a safe boot. If so,
the SCM mirrors the actions of IopSafeBootDriverLoad. Although the SCM
processes the services listed under HKLM\SYSTEM\CurrentControISet\Services,
it loads only those services that the appropriate safe-mode subkey specifies by
name. You can find more information on the SCM initialization process in the
section "Services" on page 236 in Chapter 5.

Userinit (\Winnt\System32\Userinit.exe) is another user-mode component
that needs to know whether the system is booting in safe mode. Userinit, the
component that initializes a user's environment when the user logs on, checks
HKLM\SYSTEM\CurrentControISet\Control\SafeBoot\Option\UseAlternate
Value. If this value is set, Userinit runs the program specified as the user's shell
in the value HKLM\SYSTEM\CurrentControISet\Control\SafeBoot\Alternate
Shell rather than executing Explorer.exe. Windows 2000 writes the program
name Cmd.exe to the AlternateShell value during installation, making the Win32
command prompt the default shell for safe mode with command prompt. Even
though command prompt is the shell, you can type Explorer.exe at the command
prompt to start Windows Explorer, and you can run any other GUI program
from the command prompt as well.

199

INSIDE MICROSOFT WINDOWS 2000

How does an application determine whether the system is booting in safe
mode? By calling the Win32 GetSystemMetrics(SM_ CLEANBOOT) function.
Batch scripts that need to perform certain operations when the system boots in
safe mode look for the SAFEBOOT_OPTION environment variable because
the system defines this environment variable only when booting in safe mode.

Boot Logging in Safe Mode

200

When you direct the system to boot into safe mode, Ntldr hands the string speci
fied by the /BOOTLOG option to the Windows 2000 kernel as a parameter,
together with the parameter that requests safe mode. When the kernel initializes,
it checks for the presence of the boot log parameter, whether or not any safe
mode parameter is present. If the kernel detects a boot log string, the kernel
records the action the kernel takes on every device driver it considers for loading.
For example, if IopSafeBootDriverLoad tells the I/O manager not to load a
driver, the I/O manager calls IopBootLog to record that the driver wasn't loaded.
Likewise, after IopLoadDriver successfully loads a driver that is part of the safe
mode configuration, IopLoadDriver calls IopBootLog to record that the driver
loaded. You can examine boot logs to see which device drivers are part of a boot
configuration.

Because the kernel wants to avoid modifYing the disk until Chkdsk executes,
late in the boot process, IopBootLogcan't simply dump messages into a log file.
Instead, IopBootLogrecords messages in the HKLM\SYSTEM\CurrentControl
Set\BootLog registry value. As the first user-mode component to load during
a boot, the Session Manager (\Winnt\System32\Smss.exe) executes Chkdsk to
ensure the system drives' consistency and then completes registry initialization
by executing the NtlnitializeRegistry system call. The kernel takes this action
as a cue that it can safely open a log file on the disk, which it does, invoking the
function IopCopyBootLogRegistryToFile. This function creates the file Ntbtlog.txt
in the Windows 2000 system directory (\Winnt by default) and copies the con
tents of the BootLog registry value to the file. IopCopyBootLogRegistryToFile also
sets a flag for IopBootLog that lets IopBootLog know that writing directly to the
log file, rather than recording messages in the registry, is now OK. The following
output shows the partial contents of a sample boot log:

Microsoft (R) Windows 2000 (R) Version 5.0 (Build 2195)
2 11 2000 10:53:27.500

Loaded dri ver \WINNT\System32\ntoskrnl. exe
Loaded driver \WINNT\System32\hal.dll
Loaded driver \WINNT\System32\BOOTVID.DLL

F 0 U R: Startup and Shutdown

Loaded driver ACPI.sys
Loaded driver \WINNT\System32\DRIVERS\WMILIB.SYS
Loaded driver pci .sys
Loaded driver isapnp.sys
Loaded driver compbatt.sys
Loaded driver \WINNT\System32\DRIVERS\BATTC.SYS
Loaded driver intelide.sys
Loaded driver \WINNT\System32\DRIVERS\PCIIDEX.SYS
Loaded driver pcmcia.sys
Loaded driver ftdisk.sys
Loaded driver Diskperf.sys
Loaded driver dmload.sys
Loaded driver dmio.sys

Did not load driver Media Control Devices
Did not load driver Communications Port
Did not load driver Audio Codecs

Recovery Console
Safe mode is a satisfactory fallback for systems that become unbootable because
a device driver crashes during the boot sequence, but in some situations a safe
mode boot won't help the system boot. For example, if a driver that prevents
the system from booting is a member of a Safe group, safe-mode boots will
fail. Another example of a situation in which safe mode won't help the sys
tem boot is when a third-party driver, such as a virus scanner driver, that loads
at the boot prevents the system from booting. (Boot-start drivers load whether
or not the system is in safe mode.) Other situations in which safe-mode boots
will fail are when a system module or critical device driver file that is part of a
safe-mode configuration becomes corrupt or when the system drive's master
boot record (MBR) is damaged. You can get around these problems by using
the Windows 2000 Recovery Console. The Recovery Console allows you to boot
into a limited command-line shell from the Windows 2000 CD or boot disks
to repair an installation without having to boot the installation.

When you boot a system from the Windows 2000 CD or boot disks, you
eventually see a screen that gives you the choice of either installing Windows 2000
or repairing an existing installation. If you choose to repair an installation, the
system prompts you to insert the Windows 2000 CD (if it isn't already loaded
in the system's CD drive) and then to choose among two repair options: to start

201

INSIDE MICROSOFT WINDOWS 2000

202

the Recovery Console or to initiate the emergency repair process. If you press
the FlO key at the Setup Welcome screen, you bypass the menu options and take
a shortcut directly to the Recovery Console.

When you start the Recovery Console, it gives you a list of Windows NT
and Windows 2000 installations to choose from that it compiled when it scanned
the computer's hard disks. After you make a selection, the system prompts you
to enter the Administrator account password to log on to the installation as the
administrator. If you successfully log on, the system puts you into a command
shell that is similar to an MS-DOS environment. The command set is flexible
and lets you perform simple file operations (such as copy, rename, and delete),
enable and disable services and drivers, and even repair MBRs and boot records.
However, the Recovery Console won't let you access directories other than root
directories, the system directory of the installation you logged on to, or direc
tories on removable drives such as CDs and 3.5-inch floppy disks. This prohi
bition provides a certain level of security for data that an administrator might
not usually be able to access.

The Recovery Console uses the native Windows 2000 system call interface
to perform file I/O to support commands such as Cd, Rename, and Move. The
Enable and Disable commands, which let you change the startup modes of device
drivers and services, work differently. For example, when you tell the Recovery
Console that you want to disable a device driver, it reaches into the installation's
Services key and manipulates the Start value of the specified driver's key, chang
ing the value to SERVICE_DISABLED. The next time the installation boots,
that device driver won't load. (The Recovery Console also loads the SYSTEM
hive [\Winnt\System32\Config\System] for the installation you log on to. This
hive contains the information stored in the HKLM\SYSTEM\CurrentControl
Set\Services registry key.)

When you boot from the Windows 2000 CD or the boot disks, by the time
the system gives you the choice to install or repair Windows 2000, the CD has
booted a copy of the Windows 2000 kernel, induding all necessary supporting
device drivers (for example, NTFS or FAT drivers, SCSI drivers, a video driver).
On x86 systems, the Txtsetup.siffile in the 1386 directory of the Windows 2000
CD guides the boot from the CD; the file contains directives that identifY which
files need to load and where the files are located on the CD. Just as when you
boot Windows 2000 from a hard disk, the first user-mode program the kernel
executes is Session Manager (Smss.exe), located in the I386\System32 folder. The

F 0 U R: Startup and Shutdown

Session Manager that Windows 2000 Setup uses differs from the standard
installation Session Manager. The former component presents you with the
menus that let you install or repair Windows 2000 and the menu that asks you
what type of repair you want to perform. If you're installing Windows 2000,
Session Manager is the component that guides you through choosing a parti
tion to install to and copies files to the hard disk.

When you run the Recovery Console, Session Manager loads and starts
two device drivers that implement the Recovery Console: Spcmdcon.sys and
Setupdd.sys. Spcmdcon.sys presents an interactive command prompt and per
forms high-level command processing. Setupdd.sys is a support driver that gives
Spcmdcon.sys a set of functions that let Spcmdcon.sys manage disk partitions,
load registry hives, and display and manage video output. Setupdd.sys also
communicates with disk drivers to manage disk partitions and uses basic video
support built into the Windows 2000 kernel to display messages on the screen.

When you choose an installation to log on to and the Recovery Console
accepts your password, the Recovery Console must validate your logon attempt,
even though the installation's Windows 2000 security subsystem isn't up and
running. Thus, the Recovery Console alone must determine whether your
password matches the system's Administrator account. The Recovery Console's
first step in this process is to use Setupdd.sys to load the installation's Security
Accounts Manager (SAM) registry hive, which stores password information, from
the hard disk. The SAM hive resides in \Winnt\System32\Config\Sam. After load
ing the hive,.the Recovery Console locates the·system key in the installation's
registry and uses the system key to decrypt the in-memory copy of the SAM.
SAM hive encryption is a feature introduced in Windows NT 4 Service Pack 3
that adds protection against MS-DOS-based password snoopers who try to read
passwords directly out of a hive file.

Next, the Recovery Console (Spcmdcon.sys)locates the Administrator
account password in the SAM, and in the final authentication step, the Recovery
Console uses the RC4 hash algorithm~the same algorithm that the Windows
2000 logon process uses-to hash the password entered and compares the hash
against the hashed password that theSAMstores. If the Recovery Console finds
a match, the system considers you logged on. If the Recovery Console doesn't
find a match, the system denies you aCcess to the Recovery Console.

203

INSIDE MICROSOFT WINDOWS 2000

Shutdown

204

If someone is logged on and a process initiates a shutdown by calling the Win32
ExitWindowsExfunction, a message is sent to Csrss instructing it to perform the
shutdown. Csrss in turn impersonates the caller and sends a Windows message
to a hidden window owned by Winlogon telling it to perform a system shut
down. Winlogon then impersonates the currently logged on user (who might
or might not have the same security context as the user who initiated the system
shutdown) and calls ExitWindowsExwith some special internal flags. Again, this
call causes a message to be sent to Csrss requesting a system shutdown.

This time, Csrss sees that the request is from Winlogon and loops through
all the processes in the logon session of the interactive user (again, not the user
who requested a shutdown). For each process that owns a top-level window,
Csrss sends the WM_QUERYENDSESSION message to each thread in the
process that has a Windows message loop. If the thread returns TRUE, the sys
tem shutdown can proceed. Csrss then sends the WM_ENDSESSION Windows
message to the thread to request it to exit. Csrss waits the number of seconds
defined in HKCU\Control Panel\Desktop\HungAppTimeout for the thread to
exit. (The default is 5000 milliseconds.)

If the thread doesn't exit before the timeout, Csrss displays the hung
program dialog box shown in Figure 4-3. (You can disable this dialog box by
changing the registry value HKCU\Control Panel\Desktop\AutoEndTasks to
1). This dialog box indicates that a program isn't shutting down in a timely
manner and gives the user a choice of either killing the process or aborting the
shutdown. (There is no timeout on this dialog box, which means that a shut
down request could wait forever at this point.)

Figure 4-3
Hung program dialog box

F 0 U R: Startup and Shutdown

If the thread does exit before the timeout, Csrss continues sending the
WM_QUERYENDSESSION/WM_ENDSESSION message pairs to the other
threads in the process that own windows. Once all the threads that own win
dows in the process have exited, Csrss terminates the process and goes on to
the next process in the interactive session.

If Csrss finds a console application, it invokes the console control handler
by sending the CTRL_LOGOFF _EVENT event. (Only service processes receive
the CTRL_SHUTDOWN_EVENT event on shutdown.) If the handler returns
FALSE, Csrss kills the process. If the handler returns TRUE or doesn't respond
by the number of seconds defined by HKCU\Control Panel\Desktop\
WaitToKillAppTimeout (the default is 20000 milliseconds), Csrss displays the
hung-program dialog box shown in Figure 4-3.

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM
processes that are part of the interactive user's session.

At this point, all the processes in the interactive user's session have been
terminated. Winlogon calls Exit WindowsEx again, but this time in the system
process context, which again sends a message to Csrss, which looks at all the
processes belonging to the system context and performs and sends the WM_
QUERYENDSESSION/WM_ENDSESSION messages to GUI threads (as
before). Instead of sending CTRL_LOGOFF _EVENT, however, it sends CTRL_
SHUTDOWN_EVENT to console applications that have registered control
handlers. Note that the SCM is a console program that does register a control
handler. When it receives the shutdown request, it in turn sends the service
shutdown control message to all services that registered for shutdown notifi
cation. For more details on service shutdown (such as the shutdown timeout
Csrss uses for the SCM), see the "Services" section on page 236 in Chapter 5.

Although Csrss performs the same timeouts as when it was terminating
the user processes, it doesn't display any dialog boxes and doesn't kill any pro
cesses. (The registry values for the system process timeouts are taken from the
default user profile.) These tinieouts simply allow system processes a chance to
clean up and exit before the system shuts down. Therefore, many system pro
cesses are in fact still running when the system shuts down, such as Smss,
Winlogon, the SCM, and Lsass.

Once Csrss has finished its pass notifying system processes that the system
is shutting down, Winlogon finishes the shutdown process by calling the execu
rive subsystem function NtShutdownSystem. This function calls the function

205

INSIDE MICROSOFT WINDOWS 2000

NtSetSystemPowerState to orchestrate the shutdown of drivers and the rest of
the executive subsystems (Plug and Play manager, power manager, executive,
I/O manager, configuration manager, and memory manager).

For example, NtSetSystemPowerState calls the I/O manager to send shut
down I/O packets to all device drivers that have requested shutdown notifica
tion. This action gives device drivers a chance to perform any special processing
their device might require before Windows 2000 exits. The configuration man
ager flushes any modified registry data to disk, and the memory manager writes
all modified pages containing file data back to their respective files. If the option
to clear the paging file at shutdown is enabled, the memory manager clears the
paging file at this time. The I/O manager is called a second time to inform the
file system drivers that the system is shutting down. System shutdown ends in
the power manager. The action the power manager takes depends on whether
the user specified a shutdown, a reboot, or a power down.

System Crashes
Almost every Windows NT or Windows 2000 user has heard of, if not experi
enced' the infamous "blue screen of death." This ominous term refers to the
blue screen that is displayed when Windows 2000 crashes, or stops executing,
because of a catastrophic fault or an internal condition that prevents the system
from continuing to run.

In this section, we'll cover the basic problems that cause Windows 2000
to crash, describe the information presented on the blue screen, and explain the
various configuration options available to create a crash dump, a record of system
memory at the time of a crash that can help you figure out which component
caused the crash. This section is not intended to provide detailed troubleshooting
information on how to analyze a Windows 2000 system crash.

Why Does Windows 2000 Crash?

206

Windows 2000 crashes (stops execution and displays the blue screen) for the
following reasons: .

• A device driver or an operating system function runrting in kernel
mode incurs an unhandled exception, such as a memory access viola
tion (whether attempting to write to a read-only page or attempting
to read an address that isn't currently mapped).

F 0 U R: Startup and Shutdown

III A call to a kernel support routine results in a reschedule, such as
waiting on an unsignaled dispatcher object, when the interrupt
request level (IRQL) is DPC/dispatch level or higher. (See Chap
ter 3 for details on IRQLs.)

III A page fault on memory backed by data in a paging ftle or a memory
mapped file occurs at an IRQL of DPC/dispatch level or above
(which would require the memory manager to have to wait for an
I/O operation to occur-as just stated, waits can't occur at DPC/
dispatch level or higher because that would require a reschedule).

III A device driver or operating system function explicitly crashes the
system (by calling the system function KeBugCheckEx) because it
detects an internal condition that indicates either a corruption or
some other situation that indicates the system can't continue execu
tion without risking data corruption.

III A hardware error, such as a machine check or a Non-Maskable
Interrupt (NMI), occurs.

When a kernel-mode device driver or subsystem causes an illegal exception,
Wmdows 2000 faces a difficult dilemma. It has detected that a part of the oper
ating system with the ability to access any hardware device and any valid memory
has done something it wasn't supposed to do.

But why does that mean Windows 2000 has to crash~ Couldn't it just
ignore the exception and let the device driver or subsystem continue as if nothing
had happened? The possibility exists that th.e error was isolated and that the
component will somehow recover. But what's more likely is that the detected
exception resulted from deeper problems-for example, from a general corrup
tion of memory or from a hardware device. that's not functioning properly.
Permitting the system to continue operating would probably result in more
exceptions, and data stored on disk or other peripherals could become corrupt
a risk that's too high to take.

The Blue .Screen
Regardless ·of the reason for a system crash, the function that actually performs
the crash is KeBugCheckEx (documented in the Wmdows 2000 DDK). This func
tion takes a stop code (sometimes called a bug check code), and four parameters that
. are interpreted on a per-stop code basis. After KeBugCheckEx masks out all

207

INSIDE MICROSOFT WINDOWS 2000

208

interrupts on all processors of the system, it switches the display into blue-screen
mode (80-columns-by-50-lines text mode), paints a blue background, and then
displays the stop code, followed by some text suggesting what the user can do.
(It's possible that system data structures have been so seriously corrupted that
the blue screen isn't displayed.) Figure 4-4 shows a sample blue screen.

Figure 4-4
Example blue screen

The first line lists the stop code and the four additional parameters passed
to KeBugCheckEx. The text line below the stop code provides the text equiva
lent of the stop code's numeric identifier. According to the example in Figure 4-4,
the stop code OxOOOOOOOA is an IRQL_NOT_LESS_OR...EQUAL crash. When
a parameter contains an address of a piece of operating system or device driver
code (as in Figure 4-4), Windows 2000 displays the base address of the mod
ule the address falls in, the date stamp, and the file name of the device driver.
This information alone might help you pinpoint the faulty component.

Although there are more than a hundred unique stop codes, most are rarely,
if ever, seen on production systems. Instead, just a few common stop codes
represent the majority of Windows 2000 system crashes. Also, the meaning of
the four additional parameters depends on the stop code (and not all stop codes
have extended parameter information). Nevertheless, looking up the stop code
and the meaning of the parameters· (if applicable) might at least assist you in
diagnosing the component that is failing (or the hardware device that is causing
the crash). You can find stop code information in the following places:

• The section "Bug Checks (Blue Screens)" in the Debugging help file
(Ddkdbg.chm), which is shipped in three places: the Windows 2000
debugging tools (Customer Support Diagnostics), the Platform SDK,
and the Windows 2000 DDK.

• The subsection "Windows 2000 Stop Messages" in the Trouble
shooting chapter in the Windows 2000 Server Operations Guide (part
of the Windows 2000 Server Resource Kit). This section includes de
tails such as the meaning of the stop code parameters for the com
mon stop codes.

F 0 U R: Startup and Shutdown

II You can also search Microsoft's online Knowledge Base (support.
microsoft. com) for the stop code and the name of the suspect hardware
or application. You might find information about a workaround, an
update, or a service pack that fixes the problem you're having. Knowl
edge Base article QI03059 lists the majority of the stop codes and
provides details on the meaning of the parameters. (This article applies
to Windows NT, but the information holds true for Windows 2000.)

II The Bugcodes.h file in the Windows 2000 DDK contains a complete
list of the 150 or so stop codes with some additional details on the
reasons for some of them.

You often begin seeing blue screens after you install a new software product
or piece of hardware. If you've just added a driver, rebooted, and gotten a blue
screen early in system initialization, you can reset the machine, press the F8 key
when instructed, and then select Last Known Good Configuration. Enabling
last known good causes Windows 2000 to revert to a copy of the registry's device
driver registration key (HKLM\SYSTEM\CurrentControISet\Services) from the
last successful boot (before you installed the driver). From the perspective of
last known good, a successful boot is one in which all services and drivers have
finished loading and at least one logon has succeeded.

If you keep getting blue screens, an obvious approach is to uninstall the
components you added just before the first blue screen appeared. If some time
has passed since you added something new or you added sevelfll things at about
the same time, you need to note the names of the device drivers referenced in
any of the parameters. If you recognize any of the names as being related to
something you just added (such as Scsiport.sys if you put on a new SCSI drive),
you've possibly found your culprit.

Many device drivers have cryptic names, but one approach you can take
to figure out which application or hardware device is associated with a name is
to find out the name of the service in the registry associated with a device driver
by searching for the name of the device driver under th~ HKLM\SYSTEM\
CurrentControlSet\Services key. This branch of the registry is where Windows
2000 stores registration information for every device driver in the system. If you
find a match, look for values named DisplayName and Description.Some drivers
fill in these values to describe the device driver's purpose. For example, you might
find the string "Virus Scanner"in the DisplayNamevalue, which can implicate
the antivirus software you have running. The list of drivers can be displayed in the

209

INSIDE MICROSOFT WINDOWS 2000

Computer Management tool (from the Start menu, select Programs/Adminis
trative Tools/Computer Management). In Computer Management, expand
System Tools, System Information, and Software Environment, and then select
Drivers.

More often than not, however, the stop code and the four associated pa
rameters aren't enough information to troubleshoot a system crash. For example,
you might need to examine the kernel-mode call stack to pinpoint the driver
or system component that triggered the crash. Also; because the default behavior
on Windows 2000 systems is to automatically reboot after a system crash, it's
unlikely that you would have time to record the information displayed on the
blue screen. That is why, by default, Windows 2000 attempts to record infor
mation about the system crash to the disk for later analysis, which takes us to
our fmal topic, crash dump files.

Crash Dump Files

210

By default, all Windows 2000 systems are configured to attempt to record infor
mation about the state of the system when the system crashes. You can see these
settings by opening the System tool in Control Panel, then in the System Prop
erties dialog box, click the Advanced tab and then click the Startup And Recovery
button. The default settings for a Windows 2000 Professional system are shown
in Figure 4-5.

Figure 4-5
Crash dump settings

F 0 U R: Startup and Shutdown

Three levels of information can be recorded on a system crash:

• Complete memory dump A complete memory dump contains all of
physical memory at the time of the crash. This type of dump requires
that a page file be at least the size of physical memory. Because it can
require an inordinately large page file on large memory systems, this
type of dump file is the least common setting. Windows NT 4 sup
ported only this type of crash dump file.

• Kernel memory dump A kernel memory dump (the default on
Windows 2000 Server systems) contains only the kernel-mode read/
write pages present in physical memory at the time of the crash. This
type of dump doesn't contain pages belonging to user processes.
Because only kernel-mode code can directly cause Windows 2000 to
crash, however, it's unlikely that user process pages are necessary to
debug a crash. There is no way to predict the size of a kernel memory
dump because its size depends on the amount of kernel-mode
memory allocated by the operating system and drivers present on the
machine. As an example, on a test system running Windows 2000 on
a 128-MB laptop, a kernel memory dump took up 35 MB.

• Small memory dump A small memory dump (the default on
Windows 2000 Professional), which is 64 KB in size, contains the
stop code and parameters, the list of loaded device drivers, the data
structures that describe the current process and thread (called the
EPROCESS and ETHREAD-described in Chapter 6), and the
kernel stack for the thread that caused the crash.

When Windows 2000 is configured to write crash dump information, it
writes the information to the paging file because trying to create a new file on .
the disk would depend on more of the system data structures being intact. (If
there is more than one paging file, the first or primary page file is used.) After
the system reboots, the logon process (Winlogon.exe) creates a child process
(Savedump.exe) to copy the crash dump information out of the page file and
into a new file. Small memory dumps are by default created in the directory
\Winnt\Minidump and are given unique file names consisting of the strillg "Mini"
plus the date plus a sequence number (for example,Mini031000-01.dmp).
Kernel memory and complete memory dumps are copied to a file named \Winnt\
Memory.dmp, which means that only the latest dump file is retained on the disk.

211

INSIDE MICROSOFT WINDOWS 2000

212

As mentioned earlier, there's no guarantee that the crash dump information
will be recorded since the data structures used to access the paging file might
themselves be corrupted, thus preventing the system from being able to write
anything to disk. If the system isn't able to record the crash dump, you can try
booting the crashing system with the kernel debugger so that you can gain
control from a host debugger when the system crashes. In that way, you can use
the interactive kernel debugger to look at the kernel stack or examine other
operating system structures to try and determine the reason for the crash. For
more information on how to set up the kernel debugger, see the Windows 2000
Debugging help file (Ddkdbg.chm) mentioned earlier.

Once you have a crash dump file (whether it's a small memory dump, a kernel
memory dump, or a complete memory dump), how can you retrieve the stop
code or perform further analysis? The simplest tool to use is Dumpchk (avail
able in the Windows 2000 Support Tools, the Platform SDK, the Windows 2000
DDK, and the debugging tools). By default, Dumpchk opens a dump file and
displays the basic information about a crash, such as the operating system version,
stop code, and parameters. If you call it with the "-e" option, it displays more
details, such as the list ofloaded device drivers, the current process and thread,
and the kernel stack. (This option requires the symbol file for Ntoskrnl.exe
to match the version of Windows 2000 that crashed. See the section "Symbols
for Kernel Debugging" on page 23 in Chapter 1 for more information on
symbol files).

Finally, an advanced tool called the Kernel Memory Space Analyzer
(Kanalyze.exe) might also be useful in debugging a crash dump. This tool is part
of the debugging tools package, the Windows 2000 DDK, and the Platform
SDK and is documented in a separate Microsoft Word document called OEM
Tool Help. (You can find this file at \program Files\Debuggers\bin\kanalyze\user
docs.doc if you have the Windows 2000 debugging tools installed. You can also
find it in the Platform SDK and the DDK directory trees.)

Unfortunately, you can't run a magical program to identify the exact cause
of blue screens or to make them go away. Even with extensive knowledge of
Windows 2000 internals and device drivers, analyzing a blue screen or a crash
dump can be very difficult. However, being able to retrieve the stop code and
parameters can at lea~t point you in the right direction.

F 0 U R: Startup and Shutdown

Conclusion
In this chapter, we've examined the detailed steps involved in starting and shut
ting down Windows 2000 (both normally and in error cases). In the next chapter,
we'll look at three important mechanisms involved in the management infra
structure of Windows 2000: the registry, services, and Windows Management
Instrumentation (WMI).

213

C HAP T E R F V E

Management Mechanisms

This chapter describes three fundamental mechanisms in Microsoft Windows
2000 that are critical to the management and configuration of the system:

• The registry

• Services

• Windows Management Instrumentation

The Registry
The registry plays a key role in the configuration and control of Windows 2000
systems. It is the repository for both systemwide and per-user settings. Although
most people think of the registry as static data stored on the hard disk, as you'll
see in this section, the registry is also a window into various in-memory struc
tures maintained by the Windows 2000 executive and kernel. This section isn't
meant to be a complete reference to the contents of the Windows 2000 regis
try. That kind of in -depth information is documented in the Technical Refer
ence to the Windows 2000 Registry help file in the Windows 2000 resource kits
(Regentry.chm).

We'll start by providing you with an overview of the registry structure, a
discussion of the data types it supports, and a brief tour of the key information
Windows 2000 maintains in the registry. Then we'll look inside the internals
of the configuration manager, the executive component responsible for imple
mentingthe registry database. Among the topics we'll cover are the internal
on -disk structure of the registry, how Windows 2000 retrieves configuration
information when an application requests it, and what measures are employed
to protect this critical system database.

215

INSIDE MICROSOFT WINDOWS 2000

Registry Data Types
The registry is a database whose structure is similar to that of a logical disk drive.
The registry contains keys) which are similar to a disk's directories, and values)
which are comparable to files on a disk. A key is a container that can consist of
other keys (subkeys) or values. Values, on the other hand, store data. Top-level
keys are root keys. Throughout this section, we'll use the words subkey and key
interchangeably. (Only root keys are not subkeys.)

Both keys and values borrow their naming convention from the file system.
Thus, you can uniquely identifY a value with the name mark, which is stored in
a key called trade, with the name trade\mark. One exception to this naming
scheme is each key's unnamed value. The two Registry Editor utilities, Regedit
and Regedt32, display these values differently: Regedit displays the unnamed
value as (Default); Regedt32 uses <No Name>.

Values store different kinds of data and can be one of the 11 types listed in
Table 5-1. The majority of registry values are REG_DWORD, REG_BINARY,
or REG_SZ. Values of type REG_DWORD can store numbers or Booleans (onl
offvalues); REG_BINARY values can store numbers larger than 32 bits or raw
data such as encrypted passwords; REG_SZ values store strings (Unicode, of
course) that can represent elements such as names, filenames, paths, and types.

Table 5-1 Registry Value Types

Value Type Description

REG_BINARY

REG_DWORD

REG_DWORD_LITTLE_ENDIAN

REG_DWORD_BIG_ENDIAN

REG_LINK

REG_MULTCSZ

REG_RESOURCE_LIST

REG_FULL_RESOURCE_DESCRlPTOR

REG_RESOURCE_REQUIREMENTS_LIST

216

No value type
Fixed-length Unicode NULL-terminated
string

Variable-length Unicode NULL
terminated string that can have embedded
environment variables

Arbitrary-length binary data

32-bit number

32-bit number, low byte first. This is
equivalent to REG_DWORD.

32-bit number, high byte first

Unicode symbolic link

Array of Unicode NULL-terminated
strings

Hardware resource description

Hardware resource description

Resource requirements

F I V E: Management Mechanisms

The REG_LINK type is particularly interesting because it lets a value trans
parendy point to another key or value. When you traverse the registry through
a link, the path searching continues at the target of the link. For example, if
\Rootl \Link has a REG_LINK value of\Root2\RegKey, and RegKey contains
the value RegValue, two paths identify RegValue: \Rootl \Link\RegValue and
\Root2\RegKey\RegValue. As explained in the next section, Windows 2000
prominendy uses registry links: three of the six registry root keys are links to
subkeys within the three nonlink root keys. Links aren't saved; they must be
dynamically created after each reboot.

Registry Logical Structure
You can chart the organization of the registry via the data stored within it. There
are six root keys (you can't add new root keys or delete existing ones) that store
information as follows:

Iii HKEY _CURRENT _USER Stores data associated with the currendy
logged-on user

Iii HKEY _USER Stores information about all the accounts on the
machine

Iii HKEY _CLASSES_ROOT Stores file association and Component
Object Model (COM) object registration information

Iii HKEY_LOCAL_MACHINE Stores system-related information

Iii HKEY _PERFORMANCE_DATA Stores performance information

Iii HKEY_CURRENT_CONFIG Stores some information about the
current hardware profile

Why do root-key names begin with an H? Because the root-key names
represent Win32 handles (H) to keys (KEY). As mentioned in Chapter 1,
HKLM is an abbreviation used for HKEY_LOCAL_MACHINE. Table 5-2
lists all the root keys and their abbreviations. The following sections explain
in detail the contents and purpose of each of these six root keys. Again, see
the Technical Reference to the Windows 2000 Registry help file (Regentry.chm)
in the Windows 2000 resource kits for details on the contents of these keys.

217

INSIDE MICROSOFT WINDOWS 2000

Table 5-2 Registry Root Keys

Root Key Abbreviation Description Link

HKEY_CURRENT_USER HKCU Points to the Subkey under
user profile HKEY_USERS
of the corresponding
currently to currently
logged-on logged-on user
user

HKEY_USERS HKU Contains Not a link
subkeys for
all loaded
user profiles

HKEY_CLASSES_ROOT HKCR Contains file HI<LM\
association SOFTWARE\
and COM Classes
registration
information

HKELLOCAL_MACHINE HKLM Placeholder- Not a link
contains
other keys

HKEY_CURRENT_CONFIG HKCC Current HKLM\
hardware ·SYSTEM\
profile CurrentControlSet\

Hardware Profiles\
Current

HKEY_PERFORMANCE_DATA HKPD Performance Not a link
counters

HKEY_CURRENT_USER
The HKCU root key contains data regarding the preferences and software
configuration of the locally logged-on user. It points to the currently logged
on user's user profile, located on the hard disk at \Documents and Settings\
<username>\Ntuser.dat. (See the section "Registry Internals" later in this chapter
to find out how root keys are mapped to files on the hard disk.) Whenever a user
profIle is loaded (such as at logon time or when a service process runs under the
context of a specific username), HKCU is created as a link to the user's key under
HKEY_USERS. Table 5-3 lists some of the subkeys under HKCU.

218

F I V E: Management Mechanisms

Table 5-3 HKEY_CURRENT_USER Subkeys

Subkey

AppEvents

Console

Control Panel

Environment

Keyboard Layout

Network

Printers

Software

UNICODE Program Groups

Windows 3.1 Migration Status

HKEY_USERS

Description

Sound/event associations

Command window settings (for example,
width, height, and colors)

Screen saver, desktop scheme, keyboard,
and mouse settings as well as accessibility
and regional settings

Environment variable definitions

Keyboard layout setting (for example, U.S.
or U.K)

Network drive mappings and settings

Printer connection settings

User-specific software preferences

User-specific start menu group definitions

File status data for systems that upgrade
from Windows 3.x to Windows 2000

HKU contains a subkey for each loaded user profile and user class registration
database on the system. It also contains. a subkey named HKU\.DEFAULT that
is linked to the default workstation profile (used by processes running under the
local system account, described in more detail in the section "Services" later in
this chapter).

HKEY_CLASSES_ROOT
HKCR consists of two types of information: file extension associations and COM
class registrations. A key exists for every registered filename extension. Most keys
contain a REG_SZ value that points to another key in HKCR containing the
association information for the class of files that extension represents. For example,
HKCR\.xls would point to information on Microsoft Excel files in a key such
.as BKCU\Excel.Sheet.8. Other keys contain configuration details for COM
objects registered on the system.

219

INSIDE MICROSOFT WINDOWS 2000

220

The data under HKEY_CLASSES_ROOT comes from two sources:

• The per-user class registration data in HKCU\SOFTWARE\Classes
(mapped to the file on hard disk \Documents and Settings\
<username>\Local Settings\Application Data\Microsoft\Windows\
Usrclass.dat)

• Systemwide class registration data in HKLM\SOFTWARE\Classes

The addition of per-user class registration data is new to Windows 2000.
This change was made to separate per-user registration data from systemwide
state so that roaming profiles can contain these customizations. It also closes a
security hole: in Microsoft Windows NT 4, a nonprivileged user could change
or delete keys in HKEY_ CLASSES_ROOT, thus affecting the operation of ap
plications on the system. In Windows 2000, nonprivileged users and applica
tions can read systemwide data but can modify only their private data.

HKEY _LOCAL_MACHINE
iIKLM is the root key that contains all the systemwide configuration subkeys:
HARDWARE, SAM, SECURITY, SOFTWARE, and SYSTEM.

The HKLM\HARDWARE subkey maintains descriptions of the system's
hardware and all hardware device-to-driver mappings. The Device Manager tool
(available by running System from Control Panel, clicking the Hardware tab,
and then clicking Device Manager) lets you view registry hardware information
that it obtains by simply reading values out of the HARDWARE key.

HKLM\SAM holds local account and group information, such as user
passwords, group definitions, and domain associations. Windows 2000 Server
systems that are operating as domain controllers store domain accounts and groups
in Active Directory, a database that stores domainwide settings and information.
(Active Directory isn't described in this book.) By default, the security descriptor
on the SAM key is configured such that even the administrator account doesn't
have access. You can change the security descriptor to allow read access to admin
istrators if you want to peer inside, but that glimpse won't be very revealing
because the data is undocumented and the passwords are encrypted with one
way mapping-that is, you can't determine a password from its encrypted form.

HKLM\SECURITY stores systemwide security policies and user-rights as
signments. HKLM\SAM is linked into the SECURITY subkey under HKLM\
SECURITY\SAM. By default, you can't view the contents ofHKLM\SECURITY

F I V E: Management Mechanisms

or HKLM\SAM\SAM because the security settings of those keys allow access
only by the system account. (System accounts are discussed in greater detail later
in this chapter.)

HKLM\SOFTWARE is where Windows 2000 stores systemwide configu
ration information not needed to boot the system. Also, third-party applications
store their systemwide settings here, such as paths to application files and direc
tories, and licensing and expiration date information.

HKLM\SYSTEM contains the systemwide configuration information needed
to boot the system, such as which device drivers to load and which services to start.
Because this information is critical to starting the system, Windows 2000 also
maintains a copy of part of this information, called the last known good control
set, under this key. The maintenance of a copy allows an administrator to select
a previously working control set in the case that configuration changes made
to the current control set prevent the system from booting. For details on when
Window 2000 declares the current control set "good," see the section "Accept
ing the Boot and Last Known Good" on page 256.

HKEY _CURRENT _CONFIG
HKEY_CURRENT_CONFIG is just a link to the current hardware profile,
stored under HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current.
Hardware profiles allow the administrator to configure variations to the base
system driver settings. Although the underlying profile might change from
boot to boot, applications can always reference the currently active profile
through this key.

221

INSIDE MICROSOFT WINDOWS 2000

222

HKEY_PERFORMANCE_DATA
The registry is the mechanism to access performance counter values on Windows
2000, whether those are from operating system components or server applica
tions. One of the side benefits of providing access to the performance counters
via the registry is that remote performance monitoring works "for free" because
the registry is easily accessible remotely through the normal registry APIs.

You can access the registry performance counter information directly by
opening a special key named HKEY_PERFORMANCE_DATA and querying
values beneath it. You won't find this key by looking in the Registry Editor; this
key is available only programmatically through the Win32 registry functions,
such as RegQuery ValueEx. Performance information isn't actually stored in
the registry; the registry functions use this key to locate the information from
performance data providers.

You can also access performance counter information by using the Perfor
mance Data Helper (PDH) functions available through the Performance Data
Helper API (Pdh.dll). Figure 5-1 shows the components involved in accessing
performance counter information.

Performance
monitoring
applications

Programming
interfaces

Figure 5-1

II Custom -U application A

System
performance

DLL

Registry performance counter architecture

Custom
application B

Performance
extension

DLL

Performance
tool

High
performance
data provider

object

mmc.exe:564
1'MIC.8!e:564
ITITIC.sce:564
tmIC.e)Ce:51i4
llIre.ece:5S4
rrwnc.exe:564
mmc.",,5&4
"""",,5&4
mmc.exe:5S4
mmc.",,5&4
mmc. ... 5S4
mmc.exe:5S4
"""' ... 5&4
mnc.8IIe:5S4
1'MIC.e:-ce:!i64
mmc.etle:564
rmlC.eIoIe:564
lmlC.ece:564
lTITIC.ece:564
1TITlC.e!e:564
lTITIC.exe:564
"""-,,,,5&4
rimc.exe:5S4
""", ... 5&4
_=5&4

QuerWo!Ilu!!
Openi<ey
OpenK"
Quef,VVakJe
0""",,,
QUIII'WlIk.ie
QU8IWlllue
QUIII'WakJe
QIMIWll1ue
QUI!II'W.!Iiue
QtMlWi!llue
QUIII'WlIiue
QuerW.!Ik.le
GlueryVakJe
QueryVo!lJe
~..."v
o,.n<oy
OperK~

OpenK"
OpenK ..
QuerWakJe
0""",,,
OpeN:;e,ll

F I V E: Management Mechanisms

HKCU\Softwae\Microsoft\Winclorm\C~reri\fersiort\Po1icies\Expbrer\DortShowS~r... NOTFOUND
HKLM\SoftwO!!lre\Microsoft\WndowS"\ClJF/enlVe~ion\Poicies'ElipIOl'er NOTFOUND
HKOJ\~oftware\M!cl08oft\W'n:IoW8'\o..,enLVersion\P~\E)lplorer ~~W~t~D

;
HKLM\Software\Mieroooft\Wn::Iows
HKLM\Software\Microsol't\Wnfows
HKLM\Software\Microsoft\\ifndom
HKLM\Software\Microsoft\Wndom
HKLM\Software\MicrOlloft\W'"rdow8
HKlM\Software\Miaosofl\WindowI
HKt.M\Scftwa'e\Microsofl\Wif'Idow3,
HKl.M\SoItrM'e\Microsofl\\if\l"ldol.rvl
HI<L.M\SoItwcIe\Microsoft\Wi~

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

i. SUCCESS
. SUCCESS

NOTFOUND
NOTFOUND
NOTFOUND
SUCCESS
NOTFOUND
NOTFOUND
NOTFOUND
NOTFOUND
NOTfOUND

"","'EL
ll<1
M
M
M
ll<1
M
M
M
0.0
0.1
0.0

223

INSIDE MICROSOFT WINDOWS 2000

Registry Internals
In this section, you'll fmd out how the configuration manager-the executive
subsystem that implements the registry-organizes the registry's on-disk files.
We'll examine how the configuration manager manages the registry as applica
tions and other operating system components read and change registry keys and
values. We'll also discuss the mechanisms by which the configuration manager
tries to ensure that the registry is always in a recoverable state, even if the system
crashes while the registry is being modified.

Hives
On disk, the registry isn't simply one large file but rather a set of discrete files called
hives. Each hive contains a registry tree, which has a key that serves as the root or
starting point of the tree. Subkeys and their values reside beneath the root. You
might think that the root keys displayed by the Registry Editor tools correlate to
the root keys in the hives, but such is not the case. Table 5-4 lists registry hives
and their on-disk filenames. The pathnames of all hives except for user profiles
are coded into the configuration manager. As the configuration manager loads
hives, including system profiles, it notes each hive's path in the values under the
HKLM\SYSTEM\CurrentControISet\Control\hivelist subkey, removing the path
if the hive is unloaded. (User profiles are unloaded when not referenced.) It cre
ates the root keys, linking these hives together to build the registry structure
you're familiar with and that the Registry Editor displays.

Table 5-4 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\SYSTEM

HKEY_LOCAL_MACHINE\SAM

HKEY_LOCAL_MACHINE\SECURITY

HKEY_LOCAL_MACHINE\SOFTWARE

HKEY_LOCAL_MACHINE\HARDWARE

HKEY_LOCAL_MACHINE\SYSTEM\Clone

HKEY_USERS\<security ID ofusername>

HKEY_ USERS\<security ID of username> _Classes

HKEY_USERS\.DEFAULT

224

\Winnt\System32\Config\System

\Winnt\System32\Config\Sam

\Winnt\System32\Config\Security

\ Winnt\System32\Config\Software

Volatile hive

Volatile hive

\Documents and Settings\
<username>\Ntuser.dat

\Documents and Settings\
<username> \Local Settings\
Application Data\Microsoft\
Windows\ U srclass.dat

\Winnt\System32\Config\Default

F I V E: Management Mechanisms

You'll notice that some of the hives listed in Table 5-4 are volatile and don't
have associated files. The system creates and manages these hives entirely in
memory; the hives are therefore temporary. The system creates volatile hives
every time it boots. An example of a volatile hive is the HKLM\HARDWARE
hive, which stores information about physical devices and the devices' assigned
resources. Resource assignment and hardware detection occur every time the
system boots, so not storing this data on disk is logical.

225

INSIDE MICROSOFT WINDOWS 2000

226

A special type of key known as a symbolic link makes it possible for the
configuration manager to link hives to organize the registry. A symbolic link is
a key that redirects the configuration manager to another key. Thus, the key
HKLM\SAM is a symbolic link to the key at the root of the SAM hive.

Hive Structure
The configuration manager logically divides a hive into allocation units called
blocks in much the same way that a file system divides a disk into clusters. By
definition, the registry block size is 4096 bytes (4 KB). When new data expands
a hive, the hive always expands in block-granular increments. The first block
of a hive is the base block. The base block includes global information about
the hive, including a signature-regf-that identifies the file as a hive, updated
sequence numbers, a time stamp that shows the last time a write operation was
initiated on the hive, the hive format version number, a checksum, and the hive
file's internal filename (for example, \Device\HarddiskVolume1\WINN1\
CONFIG\SAM). We'll clarify the significance of the updated sequence num
bers and time stamp when we describe how data is written to a hive file. The
hive format version number specifies the data format within the hive. Hive for
mats changed from Windows NT 3.51 to Windows NT 4, so if you try to load
a Windows NT 4 or Windows 2000 hive on earlier versions of Windows NT,
you'll fail.

Windows 2000 organizes the registry data that a hive stores in containers
called cells. A cell can hold a key, a value, a security descriptor; a list of subkeys,
ot a list of key values. A field at the beginning of a cell's data describes the data's
type. Table 5-5 describes each cell data type in detail. A cell's header is a field
that specifies the cell's size. When a cell joins a hive and the hive must expand
to contain the cell, the system creates an allocation unit called a bin. A bin is
the size of the new cell rounded up to the next block boundary. The system
considers any space between the end of the cell and the end of the bin free
space that it can allocate to other cells. Bins also have headers that contain a·
signature, hbin, and a field that records the offset·into the hive file of the bin
and the bin's size.

F I V E: Management Mechanisms

Table 5-5 Cell Data Types

Data Type Description

Key cell A cell that contains a registry key, also called a key node. A key cell
contains a signature (kn for a key, kl for a symbolic link), the time
stamp of the most recent update to the key, the cell index of the
key's parent key cell, the cell index of the subkey-list cell that iden
tifies the key's subkeys, a cell index for the key's security descriptor
cell, a cell index for a string key that specifies the class name of the
key, and the name of the key (for example, CurrentControISet).

Value cell A cell that contains information about a key's value. This cell
includes a signature (kv), the value's type (for example, REG_
DWORD or REG_BINARY), and the value's name (for example,
Boot-Execute). A value cell also contains the cell index of the cell
that contains the value's data.

Subkey-list cell

Value-list cell

Security-descriptor cell

A cell composed of a list of cell indexes for key cells that are all
subkeys of a common parent key.

A cell composed of a list of cell indexes for value cells that are all
values of a common parent key.

A cell that contains a security descriptor. Security-descriptor cells
include a signature (ks) at the head of the cell and a reference count
that records the number of key nodes that share the security
descriptor. Multiple key cells can share security-descriptor cells.

By using bins, instead of cells, to track active parts of the registry, Windows
2000 minimizes some management chores. For example, the system usually
allocates and deallocates bins less frequently than it does cells, which lets the
configuration manager manage memory more efficiently. When the configura
tion manager reads a registry hive into memory, it can choose to read only bins
that contain cells (that is, active bins) and to ignore empty bins. When the sys
tem adds and deletes cells in a hive, the hive can contain empty bins interspersed
with active bins. This situation is similar to disk fragmentation, which occurs
when the system creates and deletes files on the disk. When a bin becomes empty,
the configuration manager joins to the empty bin any adjacent empty bins to
form as large a contiguous empty bin as possible. The configuration manager
also joins adjacent deleted cells to form larger free cells. (The configuration

227

INSIDE MICROSOFT WINDOWS 2000

228

manager never tries to compact a registry hive-you can compact the registry by
backing it up and restoring it using the Win32 RegSaveKey and RegReplaceKey
functions, which are used by the Windows Backup utility.)

The links that create the structure of a hive are called cell indexes. A cell
index is the offset of a cell into the hive file. Thus, a cell index is like a pointer
from one cell to another cell that the configuration manager interprets relative
to the start of a hive. For example, as you saw in Table 5-5, a cell that describes
a key contains a field specifYing the cell index of its parent key; a cell index for
a subkey specifies the cell that describes the subkeys that are subordinate to the
specified subkey. A subkey-list cell contains a list of cell indexes that refer to the
subkey's key cells. Therefore, if you want to locate, for example, the key cell of
subkey A, whose parent is key B, you must first locate the cell containing key
B's subkey list using the subkey-list cell index in key B's cell. Then you locate
each of key B's subkey cells by using the list of cell indexes in the subkey-list
cell. For each subkey cell, you check to see whether the subkey's name, which
a key cell stores, matches the one you want to locate, in this case, subkey A.

The distinction between cells, bins, and blocks can be confusing, so let's
look at an example of a simple registry hive layout to help clarifY the differences.
The sample registry hive file in Figure 5-2 contains a base block and two bins.
The first bin is empty, and the second bin contains several cells. Logically, the
hive has only two keys: the root key Root, and a subkey of Root, Sub Key. Root
has two values, Vall and Val 2. A subkey-list cell locates the root key's subkey,
and a value-list cell locates the root key's values. The free spaces in the second
bin are empty cells. The figure doesn't show the security cells for the two keys,
which would be present in a hive.

I':,;;:: Key cell (key node)
. Value cell

Value-list cell

Subkey-list cell

Free space

Figure 5-2

Block boundaries

Empty bin

Bin 1

Internal structure of a registry hive

Bin 2

F I V E: Management Mechanisms

Figure 5-3 shows an example of the Disk Probe utility (Dskprobe.exe)
examining the first bin in a SYSTEM hive. Notice the bin's signature, hbin, at
the top right side of the image. Look beneath the bin signature and you'll see
the signature nk. This signature is the signature of a key cell (kn). The signa
ture displays backward because of the way x86 computers store data. The cell
is the SYSTEM hive's root cell, which the configuration manager has named
internally $$$PROTO.HIV, as specified by the name that follows the nk
signature.

0050
0060
0070
OoBD
0090
GOAD
OOBO
ODeD
O[)DO
ODED
DOFO
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
DaD
01BO
Oleo
OlDO
OlEO
(llFO

00 00 10 00 00
6C 7F 76 SF 01
00 00 DO 00 DO
00 FF FF FF FF

SO 00 00 DO FF FF FF FF 22 00 00 00 00 00 00

Bin signature

VYI:!~_""""''---+- Key cell signature

00 DO 00 00 00 00 00 DO 00 00 00 00 DC 00 00 00 ij~~p!i~~-r-
24 24 24 50 52 4F 54 4F 2E 48 49 56 00 DO 00 00 Name
DO FE FF FF 73 6B FF FF 10 02 DO 00 90 6C 00 00
01 00 00 DO 14 01 00 00 01 00 04 94 F8 DO DO DO ... 1121.
DB 01 00 00 00 00 DO 00 14 DO 00 00 02 00 E4 00 .a.
DA. 00 00 00 00 00 14 00 19 00 02 00 01 01 00 00
00 00 DO 05 DB DO 00 00 DO OA 14 00 00 00 00 80 I
01 01 00 DO 00 00 00 05 DB aD 00 00 DO 00 18 00
19 00 02 00 01 02 00 00 DO 00 00 05 20 00 00 DO
25 02 00 00 00 OA. 18 00 DO 00 00 80 01 02 00 00 . I

~~ ~~ ~~ ~~ 5~ ~~ ~~ ~~ 5~ ~5 ~~ .~~ ~~ ~~ 6~ ~~ ?' ... %
20 02 00 00 00 Oll 18 00 00 00 00 10 01 02 00 00
00 00 00 05 20 00 00 00 20 02 00 00 00 00 14 00
3F DO OF 00 01 01 00 00 00 00 00 05 12 00 00 00 ?
00 OA 14 00 00 00 00 10 01 01 00 00 00 00 00 05
12 00 00 00 00 00 18 00 3F 00 OF 00 01 02 00 00 .?
00 00 00 05 20 00 00 00 20 02 00 00 00 Oll. 14 00
00 00 00 10 01 01 00 00 00 00 00 03 00 00 00 00
01 02 00 00 00 00 00 05 20 00 00 00 20 02 00 00

25 ~~ ~~ ~~ ~~ ~g ~~ ~5 ~~ gg ~g ~g ~~ ~~ ~ ~~ ·Y~Y~k· :~~~i:v6·
00 00 00 00 20 00 00 00 04 00 00 00 00 00 00 00
FO 03 10 00 FF FF FF FF 00 00 00 00 FF FF FF FF 8 .. yyyy ... yyyy
10 02 00 00 FF FF FF FF 24 00 00 00 00 00 00 00 ... yyyy$.
00 00 00 00 00 00 00 00 00 00 00 DODD 00 00 00

Figure 5-3
Binary contents of first bin in the SYSTEM hive

To optimize searches for both values and subkeys, the configuration man
ager sorts subkey-list cells alphabetically. The configuration manager can then
perform a binary search when it looks for a subkey within a list of subkeys. The
configuration manager examines the sub key in the middle of the list, and if the
name of the subkey the configuration manager is looking for is alphabetically
before the name of the middle sub key, the configuration manager knows that
the subkey is in the first half of the subkey list; otherwise, the subkey is in the
second half of the subkey list. This splitting process continues until the configu
ration manager locates the subkey or finds no match. Value-list cells aren't sorted,
however, so new values are always added to the end of the list.

229

INSIDE MICROSOFT WINDOWS 2000

230

Cell Maps
The configuration manager doesn't access a hive's image on disk every time a
registry access occurs. Instead, Windows 2000 keeps a version of every hive in
the kernel's address space. When a hive initializes, the configuration manager
determines the size of the hive file, allocates enough memory from the kernel's
paged pool to store it, and reads the hive file into memory. (For more informa
tion on paged pool, see Chapter 7.) Because all loaded registry hives are read
into paged pool, that registry data is typically the largest consumer of paged pool.
(To check paged pool allocation, use the Poolmon utility, described in the experi
ment "Monitoring Pool Usage" on page 406 in Chapter 7.)

If hives never grew, the configuration manager could perform all its regis
try management on the in-memory version of a hive as if the hive were a file.
Given a cell index, the configuration manager could calculate the location in
memory of a cell simply by adding the cell index, which is a hive file offset, to
the base of the in-memory hive image. Early in the system boot, this process is
exactly what Ntldr does with the SYSTEM hive: Ntldr reads the entire SYSTEM
hive into memory as a read-only hive and adds the cell indexes to the base of
the in-memory hive image to locate cells. Unfortunately, hives grow as they take
on new keys and values, which means the system must allocate paged pool memory
to store the new bins that contain added keys and values. Thus, the paged pool
that keeps the registry data in memory isn't necessarily contiguous.

F I V E: Management Mechanisms

231

INSIDE MICROSOFT WINDOWS 2000

232

To deal with noncontiguous memory buffers storing hive data in memory,
the configuration manager adopts a strategy similar to what the Windows 2000
memory manager uses to map virtual memory addresses to physical memory
addresses. The configuration manager employs a two-level scheme, which Fig
ure 5 -4 illustrates, that takes as input a cell index (that is, a hive file offset) and
returns as output both the address in memory of the block the cell index resides
in and the address in memory of the bin the cell resides in. Remember that a bin
can contain one or more blocks and that hives grow in bins, so Windows 2000
always represents a bin with a contiguous memory buffer. Therefore, all blocks
within a bin occur within the same portion of a paged pool.

Cell index

Hive cell map directory pOinter

Figure 5-4
Structure of a cell index

To implement the mapping, the configuration manager divides a cell index
logically into fields, in the same way that the memory manager divides a virtual
address into fields. Windows 2000 interprets a cell index's first field as an index
into a hive's cell map directory. The cell map directory contains 1024 entries, each
of which refers to a cell map table that contains 512 map entries. An entry in this
cell map table is specified by the second field in the cell index. That entry locates
the bin and block memory addresses of the cell. In the final step of the transla
tion process, the configuration manager interprets the last field of the cell index
as an offset into the identified block to precisely locate a cell in memory. When
a hive initializes, the configuration manager dynamically creates the mapping
tables, designating a map entry for each block in the hive, and adds and deletes
tables from the cell directory as the changing size of the hive requires.

F I V E: Management Mechanisms

The Registry Namespace and Operation
The configuration manager defines a key object object type to integrate the
registry's namespace with the kernel's general namespace. The configuration
manager inserts a key object named Registry into the root of the Windows 2000
namespace, which serves as the entry point to the registry. Regedit shows key
names in the form HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet,
but the Win32 subsystem translates such names into their object namespace form
(for example, \Registry\Machine\System\CurrentControlSet). When the Windows
2000 object manager parses this name, it encounters the key object by the name
of Registry first and hands the rest of the name to the configuration manager.
The configuration manager takes over the name parsing, looking through its
internal hive tree to find the desired key or value. Before we describe the flow
of control for a typical registry operation, we need to discuss key objects and
key control blocks. Whenever an application opens or creates a registry key, the
object manager gives a handle with which to reference the key to the applica
tion. The handle corresponds to a key object that the configuration manager
allocates with the help of the object manager. By using the object manager's
object support, the configuration manager takes advantage of the security and
reference-counting functionality that the object manager provides.

For each open registry key, the configuration manager also allocates a key
control block. A key control block stores the full pathname of the key, includes
the cell index of the key node that the control block refers to, and contains a
flag that notes whether the configuration manager needs to delete the key cell
that the key control block refers to when the last handle for the key closes.
Windows 2000 places all key control blocks into an alphabetized binary tree to
enable quick searches for existing key control blocks by name. A key object points
to its corresponding key control block, so if two applications open the same
registry key, each will receive a key object, and both key objects will point to a
common key control block.

When an application opens an existing registry key, the flow of control starts
with the application specifying the name of the key in a registry API that invokes
the object manager's name-parsing routine. The object manager, upon encoun
tering the configuration manager's registry key object in the namespace, hands
the pathname to the configuration manager. The configuration manager uses
the in-memory hive data structures to search through keys and subkeys to find
the specified key. If the configuration manager finds the key cell, the configu
ration manager searches the key control block tree to determine whether the
key is open (by the same or another application). The search routine is optimized
to always start from the closest ancestor with a key control block already opened.

233

INSIDE MICROSOFT WINDOWS 2000

234

For example, if an application opens \Registry\Machine\Keyl\Subkey2, and
\Registry\Machine is already opened, the parse routine uses the registry control
block of\Registry\Machine as a starting point. If the key is open, the configu
ration manager increments the existing key control block's reference count. If
the key isn't open, the configuration manager allocates a new key control block
and inserts it into the tree. Then the configuration manager allocates a key object,
points the key object at the key control block, and returns control to the object
manager, which returns a handle to the application.

When an application creates a new registry key, the configuration manager
first finds the key cell for the new key's parent. The configuration manager then
searches the list of free cells for the hive in which the new key will reside to
determine whether cells exist that are large enough to hold the new key cell. If
there aren't, the configuration manager allocates a new bin and uses it for the
cell, placing any space at the end of the bin on the free cell list. The new key cell
fills with pertinent information-including the key's name-and the configu
ration manager adds the key cell to the subkey list of the parent key's subkey
list cell. Finally, the system stores the cell index of the parent cell in the new
subkey's key cell.

The configuration manager uses a key control block's reference count to
determine when to delete the key control block. When all the handles that refer
to a key in a key control block close, the reference count becomes 0, which
denotes that the key control block is no longer necessary. If an application that
calls an MIto delete the key sets the delete flag, the configuration manager can
delete the associated key from the key's hive because it knows that no applica
tion is keeping the key open.

Stable Storage
To make sure that a nonvolatile registry hive (one with an on -disk file) is always
in a recoverable state, the configuration manager uses log hives. Each nonvola
tile hive has an associated log hive, which is a hidden file with the same base name
as the hive and a .log extension. For example, if you look in your \Winnt\
System32\Config directory (and you have the Show Hidden Files And Folders
folder option selected), you'll see System.log, Sam.log, and other .log files. When
a hive initializes, the configuration manager allocates a bit array in which each
bit represents a 512-byte portion, or sector., of the hive. This array is called the
dirty sector array because an on bit in the array means that the system has modi
fied the corresponding sector in the hive in memory and must write the sector
back to the hive file. (An offbit means that the corresponding sector is up to
date with the in-memory hive's contents.)

F I V E: Management Mechanisms

When the creation of a new key or value or the modification of an existing
key or value takes place, the configuration manager notes the sectors of the hive
that change in the hive's dirty sector array. Then the configuration manager
schedules a lazy write operation, or a hive sync. The hive lazy writer system thread
wakes up 5 seconds after the request to synchronize the hive and writes dirty
hive sectors for all hives from memory to the hive files on disk. Thus, the system
flushes, at the same time, all the registry modifications that take place between
the time a hive sync is requested and the time the hive sync occurs. When a hive
sync takes place, the next hive sync will occur no sooner than 5 seconds later.

If the lazy writer simply wrote all a hive's dirty sectors to the hive file and
the system crashed in midoperation, the hive file would be in an inconsistent
(corrupted) and unrecoverable state. To prevent such an occurrence, the lazy
writer first dumps the hive's dirty sector array and all the dirty sectors to the hive's
log file, increasing the log file's size if necessary. The lazy writer then updates
a sequence number in the hive's base block and writes the dirty sectors to the
hive. When the lazy writer is finished, it updates a second sequence number in
the base block. Thus, if the system crashes during the write operations to the
hive, at the next reboot the configuration manager will notice that the two
sequence numbers in the hive's base block don't match. The configuration
manager can update the hive with the dirty sectors in the hive's log file to roll
the hive forward. The hive is then up to date and consistent.

To further protect the integrity of the crucial SYSTEM hive, the configu
ration manager maintains a mirror of the SYSTEM hive on disk. If you look at
the nonhidden files in your \Winnt\System32\Config directory, you'll see three
files with the base name System: System, System.alt, and System.sav. System.alt
is the alternate hive. Whenever a hive sync flushes dirty sectors to the SYSTEM
hive, the hive sync also updates the System.alt hive. If the configuration man
ager detects that the SYSTEM hive is corrupt when the system boots, the con
figuration manager attempts to load the hive's alternate. If that hive is usable,
it then uses that alternate to update the original SYSTEM hive.

System.sav is a copy of the SYSTEM hive that exists when Windows 2000
finishes installing. Thiscopy can be used, usually only in extreme circumstances,
to restore the computer's configuration to its initial state.

Registry Optimizations
The configuration manager makes a few noteworthy performance optimizations.
First, virtually every registry key has a security descriptor that protects access
to the key. Storing a unique security-descriptor copy for every key in a hive would
be highly inefficient, however, because the same security settings often apply to

235

INSIDE MICROSOFT WINDOWS 2000

entire subtrees of the registry. When the system applies security to a key, the
configuration manager first checks the security descriptors associated with the key's
parent key and then checks all the parent's subkeys. If any of those security
descriptors match the security descriptor the system is applying to the key, the
configuration manager simply shares the existing descriptors with the key, em
ploying a reference count to track how many keys share the same descriptor.

The configuration manager also optimizes the way it stores key and value
names in a hive. Although the registry is fully Unicode-capable and specifies all
names using the Unicode convention, if a name contains only ASCII charac
ters, the configuration manager stores the name in ASCII form in the hive. When
the configuration manager reads the name (such as when performing name
lookups), it converts the name into Unicode form in memory. Storing the name
in ASCII form can significantly reduce the size of a hive.

To minimize memory usage, key control blocks don't store full key regis
try pathnames. Instead, they reference only a key's name. For example, a key
control block that refers to \Registry\System\Control would refer to the name
Control rather than to the full path. A further memory optimization is that the
configuration manager uses key name control blocks to store key names, and
all key control blocks for keys with the same name share the same key name
control block. To optimize performance, the configuration manager stores the
key control block names in a hash table for quick lookups.

To provide fast access to key control blocks, the configuration manager
stores frequently accessed key control blocks in the cache table, which is con
figured as a hash table. When the configuration manager needs to look up a key
control block, it first checks the cache table. Finally, the configuration manager
has another cache, the delayed close table, that stores key control blocks that
applications close, so that an application can quickly reopen a key it has recently
closed. The configuration manager removes the oldest key control blocks from
the delayed close table as it adds the most recently closed blocks to the table.

Services

236

Almost every operating system has a mechanism to start processes at system startup
time that provide services not tied to an interactive user. In Windows 2000, such
processes are called services, or Win32 services, because they rely on the Win32
API to interact with the system. Services are similar to UNIX daemon processes
and often implement the server side of client/server applications. An example
of a Win32 service might be a Web server since it must be running regardless

F I V E: Management Mechanisms

of whether anyone is logged on to the computer and it must start running when
the system starts so that an administrator doesn't have to remember, or even
be present, to start it.

Win32 services consist of three components: a service application, a service
control program (SCP), and the service control manager (SCM). First, we'll
describe service applications, service accounts, and the operations of the SCM.
Then we'll explain how auto-start services are started during the system boot.
We'll also cover the steps the SCM takes when a service fails during its startup
and the way the SCM shuts down services.

Service Applications
Service applications, such as Web servers, consist of at least one executable that
runs as a Win32 service. A user wanting to start, stop, or configure a service uses
an SCPo Although Windows 2000 supplies built-in SCPs that provide general
start, stop, pause, and continue functionality, some service applications include
their own SCP that allows administrators to specify configuration settings par
ticular to the service they manage.

Service applications are simply Win32 executables (GUI or console) with
additional code to receive commands from the SCM as well as to communicate
the application's status back to the SCM. Because most services don't have a
user interface, they are built as console programs.

When you install an application that includes a service, the application's
setup program must register the service with the system. To register the service,
the setup program calls the Win32 CreateService function, a services-related func
tion implemented in Advapi32.dll (\Winnt\System32\Advapi32.dll). Advapi32,
the "Advanced API" DLL, implements all the client-side SCM APIs.

When a setup program registers a service by calling CreateService, a mes
sage is sent to the SCM on the machine where the service will reside. The SCM
then creates a registry key for the service under HKLM\SYSTEM\Current
ControISet\Services. The Services key is the nonvolatile representation of the
SCM's database. The individual keys for each servic~ define the path of the
executable image that contains the service as well as parameters and configura
tion options.

After creating a service, an installation or management application can start
the service via the StartService function. Because some service-based applica
tionsalso must initialize during the boot process to function, it's not unusual
for a setup program to register a service as an auto-start service, ask the user to
reboot the system to complete an installation, and let the SCM start the service
as the system boots.

237

INSIDE MICROSOFT WINDOWS 2000

238

When a program calls CreateService, it must specify a number of parameters
describing the service's characteristics. The characteristics include the service's
type (whether it's a service that runs in its own process rather than a service that
shares a process with other services), the location of the service's executable
image fIle, an optional display name, an optional account name and password
used to start the service in a particular account's security context, a start type
that indicates whether the service starts automatically when the system boots
or manually under the direction of an SCP, an error code that indicates how the
system should react if the service detects an error when starting, and, if the service
starts automatically, optional information that specifies when the service starts
relative to other services.

The SCM stores each characteristic as a value in the service's registry key.
Figure 5-5 shows an example of a service registry key.

Figure 5-5
Example ofa service registry key

AEIi_MUl TLSZ
REG_MULTlSZ
REG_52
REG_52
REIi_D'W'ORD
REG_EXPAND_SZ

LanmanWorkstation
Notifies selected users and com!Uef*
AIoote<
0<Il000000111)
%SystemRoot%\System32\s:ervice;.ele
Loc!llSystem
I><!lIlImXl2I2I
0.00000020 1321

Table 5-6 lists all the service characteristics. (Not every characteristic applies
to every type of service.) If a service needs to store configuration information that
is private to the service, the convention is to create a subkey named Parameters
under its service key and then store the configuration information in values under
that subkey. The service then can retrieve the values by using standard registry
functions.

Value Name

Start

ErrorControl

F I V E: Management Mechanisms

Table 5-6 Service and Driver Registry Parameters

Value Setting

SERVICE_DEMAND _START (3)

SERVICE_DISABLED (4)

Value Setting
Description

Ntldr or Osloader preloads
the driver so that it is in
memory during the boot.
These drivers are initialized
just prior to SERVICE_
SYSTEM_START drivers.

The driver loads and ini
tializes after SERVICE_
BOOT_START drivers
have initialized.

The SCM starts the driver
or service.

The SCM must start
the driver or service on
demand.

The driver or service
doesn't load or initialize.

The I/O manager ignores
errors the driver returns.
No warning is logged or
displayed.

If the driver reports an
error, a warning displays.

If the driver returns an
error and last known good
isn't being used, reboot
into last known good; other
wise, continue the boot.

If the driver returns an
error and last known good
isn't being used, reboot
into last known good;
otherwise, stop the boot
with a blue screen crash.

(continued)

239

INSIDE MICROSOFT WINDOWS 2000

Table 5-6 continued

Value Name

Type

Group

Tag

ImagePath

DependOnGroup

Value Setting

SERVICE_KERNEL_DRIVER (1)

SERVICE_FILE_SYSTEM_DRIVER
(2)
SERVICE_RECOGNIZER_DRIVER
(8)
SERVICE_ WIN32_0WN_PROCESS
(16)

SERVICE_WIN32_SHARE_PROCESS
(32)

SERVICE_INTERACTIVE_PROCESS
(256)

Group name

Tag number

Path to service or driver executable me

Group name

DependOnService Service name

240

Value Setting
Description

Device driver.

Kernel-mode me system
driver.
File system recognizer
driver.
The service runs in a
process that hosts only one
service.

The service runs in a
process that hosts multiple
services.

The service is allowed to
display windows on the
console and receive user
input.

The driver or service ini
tializes when its group is
initialized.

The specified location in a
group initialization order.
This parameter doesn't
apply to services.

IfImagePath isn't speCified,
the I/O manager looks for
drivers in \Winnt\System32\
Drivers and the SCM looks
for services in \ Winnt\
System32.

The driver or service won't
load unless a driver or
service from the specified
group loads.

The service won't load until
after the specified service
loads. This parameter
doesn't apply to device
drivers.

Value Name

ObjectName

DisplayName

Description

FailureActions

FailureCommand

Security

F I V E: Management Mechanisms

Value Setting

Usually LocalSystem but can be an
account name, such as .\Administrator

Name of service

Description of service

Description of actions the SCM should
take when service process exits
unexpectedly

Program command line

Security descriptor

Value Setting
Description

Specifies the account in
which the service will run.
If ObjectName isn't
specified, LocalSystem is
the account used. This
parameter doesn't apply to
device drivers.

The service application
shows services by this
name. If no name is speci
fied, the name of the
service's registry key
becomes its name.

Up to l024-byte descrip
tion of the service.

Failure actions include
restarting the service
process, rebooting the
system, and running a
specified program. This
value doesn't apply to
drivers.

The SCM reads this value
only if FailureActions
specifies that a program
should execute upon service
failure. This value doesn't
apply to drivers.

This value contains the
security descriptor that
defmes who has what access
to the service.

Notice that Type values include three that apply to device drivers: device
driver, file system driver, and file system recognizer. These are used by Windows
2000 device drivers, which also store their parameters as registry data in the Ser
vices registry key. The SCM is responsible for starting drivers with a Start value
of SERVICE_AU TO_START, so it's natural for the SCM database to include
drivers. Services use the other types, SERVICE_WIN32_0WN_PROCESS

241

INSIDE MICROSOFT WINDOWS 2000

242

and SERVICE_ WIN32_SHARE_PROCESS, which are mutually exclusive. An
executable that hosts more than one service specifies the SERVICE_WIN32_
SHARE_PROCESS type. An advantage to having a process run more than one
service is that the system resources that would otherwise be required to run them
in distinct processes are saved. A potential disadvantage is that if one of the ser
vices of a collection running in the same process causes an error that terminates
the process, all the services of that process terminate.

When the SCM starts a service process, the process immediately invokes
the StartServiceCtrlDispatcher function. StartServiceCtrlDispatcher accepts a
list of entry points into services, one entry point for each service in the pro
cess. Each entry point is identified by the name of the service the entry point
corresponds to. After making a named pipe communications connection to the
SCM, StartServiceCtrlDispatcher sits in a loop waiting for commands to come
through the pipe from the SCM. The SCM sends a service-start command each
time it starts a service the process owns. For each start command it receives,
the StartServiceCtrlDispatcher function creates a thread, called a service thread,
to invoke the starting service's entry point and implement the command loop
for the service. StartServiceCtrlDispatcherwaits indefinitely for commands from
the SCM and returns control to the process's main function only when all the
process's service threads have terminated, allowing the service process to clean
up resources before exiting;

A service entry point's first action is to call the RegisterServiceCtrlHandler
function. This function receives and stores a table of functions that the service
implements to handle various commands it receives from the SCM. Register
ServiceCtrlHandler doesn't communicate with the SCM, but it stores the table
in local process memory for the StartServiceCtrlDispatcher function. The service
entry point continues initializing the service, which can include allocating
memory, creating communications end points, and reading private configura
tion data from the registry. A convention most services follow is to store their
parameters under a subkey of their service registry key, named Parameters. While
the entry point is initializing the service, it might periodically send status mesc
sages to the SCM indicating how the service's startup is progressing. After the
entry point finishes initialization, a service thread usually sits in a loop waiting
for requests from client applications. For example, a Web server would initial
ize a TCP listen socket and wait for inbound HTTP connection requests.

A service process's main thread, which executes in the StartService
CtrlDispatcher function, receives SCM commands directed at services in the
process and uses the service's table of handler functions (stored by Register
ServiceCtrlHandler) to locate and invoke the service function responsible for
responding to a command. SCM commands include stop, pause, resume, inter
rogate, and shutdown, or application-defined commands. Figure 5-6 shows the

Main thread

1. StartServiceCtrlDispatcher launches service thread.
2, Service thread registers service handlers.

F I V E: Management Mechanisms

Service thread

3. StartServiceCtrlDispatcher calls handlers in response to SCM commands.
4. Service thread processes client requests.

Figure 5-6
Inside a service process

internal organization of a service process. Pictured are the two threads that make
up a process hosting one service: the main thread and the service thread.

243

INSIDE MICROSOFT WINDOWS 2000

Service Accounts

244

The security context of a service is an important consideration for service de
velopers as well as for system administrators because it dictates what resources
the process can access. Unless a service installation program or administrator
specifies otherwise, services run in the security context of the local system account
(displayed sometimes as SYSTEM and other times as LocalSystem). The fol
lowing two subsections describe the special characteristics of this account.

The Local System Account
The local system account is the same account in which all the Windows 2000
user-mode operating system components run, including the Session Manager
(\ Wmnt\System32\Smss.exe), the Win32 subsystem process (Csrss.exe), the local
security authority subsystem (\Winnt\System32\Lsass.exe), and the Winlogon
process (\ Winnt\System32\Winlogon.exe).

From a security perspective, the local system account is extremely power
ful-more powerful than any local or domain account when it comes to security
ability on a local system. This account has the following characteristics:

II It is a member of the local administrators group.

II It has the right to enable virtually every privilege (even privileges not
normally granted to the local administrator account, such as creating
security tokens).

II Most files and registry keys grant full access to the local system
account. (Even if they don't grant full access, a process running under
the local system account can exercise the take-ownership privilege to
gain access.)

II Processes running under the local system account run with the default
user profile (HKU\.DEFAULT). Therefore, they can't access con
figuration information stored in the user profiles of other accounts.

II When a system is a member of a Windows 2000 domain, the local
system account includes the machine security identifier (SID) for the
computer on which a service process is running. Therefore, a service
running in the local system account will be automatically authenticated
on other machines in the same forest by using its computer account.
(A forest is a grouping of domains.)

F I V E: Management Mechanisms

II Unless the machine account is specifically granted access to resources
(such as network shares, named pipes, and so on), a process can access
network resources that allow null sessions-that is, connections that
require no credentials. You can specify the shares and pipes on a par
ticular computer that permit null sessions in the NullSessionPipes and
NullSessionShares registry values under HKLM\SYSTEM\Current
ControlSet\Services\lanmanservet\parameters.

Running Services in Alternate Accounts
Because of the restrictions just oudined, some services need to run with the
security credentials of a user account. You can configure a service to run in an
alternate account when the service is created or by specifying an account and
password that the service should run under with the Windows 2000 Services
MMC snap-in. In the Services snap-in, right-click on a service and select Prop
erties, click the Log On tab, and select the This Account option, as shown in
Figure 5-7.

Figure 5~7
Service account settings

245

INSIDE MICROSOFT WINDOWS 2000

246

Interactive Services
Another restriction for services running under the local system account is that
they can't (without using a special flag on the MessageBox function, discussed
in a moment) display dialog boxes or windows on the interactive user's desk
top. This limitation isn't the direct result of running under the local system
account but rather a consequence of the way the service controller assigns ser
vice processes to window stations.

The Win32 subsystem associates every Win32 process with a window sta
tion. A window station contains desktops and desktops contain windows. Only
one window station can be visible on a console and receive user mouse and
keyboard input. In a Terminal Services environment, one window station per
session is visible, but services all run as part of the console session. Wm32 names
the visible window station WinStaO, and all interactive processes access WinStaO.

Unless otherwise directed, the SCM associates services with a nonvisible
window station named Service-OxO-3e7$ that all noninteractive services share.
The number in the name, 3e7, represents the logon session identifier Lsass assigns
to the logon session the SCM uses for noninteractive services running in the local
system account.

Services configured to run under a user account (that is, not the local
system account) are run in a different nonvisible window station named with
the Lsass logon identifier assigned for the service's logon session. Figure 5-8
shows an example display from \Sysint\Winobj (which you'll find on this book's

Ba.eNamedObiect.
??
Fit.Sy.tem
ObjectType.
Security
Calback
KnownOn.

Figure 5-8
List of window stations

WindowStation
WindowStation
WondowStation
WindowStation

F I V E: Management Mechanisms

companion CD) viewing the object manager directory in which Win32 places
window station objects. Visible are the interactive window station (WinStaO),
the noninteractive system service window station (Service-OxO-3e7$), and a
noninteractive window station assigned to a service process logged on as a user
(Service-OxO-6368f$).

Regardless of whether services are running in a user account or in the local
system account, services that aren't running on the visible window station can't
receive input from a user or display windows on the console. In fact, if a service
were to pop up a normal dialog box on the window station, the service would
appear hung because no user would be able to see the dialog box, which of course
would prevent the user from providing keyboard or mouse input to dismiss it
and allow the service to continue executing. (The one exception is if the spe
cial flag MB_SERVICE_NOTIFICATION or MB_DEFAULT_DESKTOP_
ONLY is set on the MessageBox call-if MB_SERVICE_NOTIFICATION is
specified, the message box will always be displayed on the interactive window
station, even if the service wasn't configured with permission to interact with
the user; if MB_DEFAULT_DESKTOP _ONLY is specified, the message box
is displayed on the default desktop of the interactive window station.)

Although rare, some services can have a valid reason to interact with the
user via dialog boxes or windows. An example of a built-in Windows 2000 ser
vice that has this requirement is the Windows Installer-the interactive user
rieeds to see messages relating to on -demand software installation. To con
figure a service with the right to interact with the user, the SERVICE_
INTERACTIVE_PROCESS modifier must be present in the service's registry
key's Type parameter. (Note that services configured to run under a user account
can't be marked as interactive.) When the SCM starts a service marked as inter
active, it launches the service's process in the local system account's security
context but connects the service with WinS taO instead of the noninteractive
service window station. This connection to WinStaOallows the service to dis
play dialog boxes and windows on the console and allows those windows to
respond to user input.

The Service Control Manager
The SCM's executable file is \Winnt\System32\Services.exe, and like most service
processes, it runs as a Win32 console program. The Winlogon process starts the
SCM early during the system boot. (Refer to Chapter 4 for details on the boot
process.) The SCM's startup function, SvcCtrlMain, orchestrates the launching
of services that are configured for automatic startup. SvcCtrlMain executes shortly
after the screen switches to a blank: desktop but generally before Winlogon has
loaded the graphical identification and authentication interface (GINA) that
presents a logon dialog box.

247

INSIDE MICROSOFT WINDOWS 2000

248

SvcCtrlMain first creates a synchronization event named SvcCtrlEvenc
A3752DX that it initializes as nonsignaled. Only after the SCM completes steps
necessary to prepare it to receive commands from SCPs does the SCM set the
event to a signaled state. The function that an SCP uses to establish a dialog with
the SCM is OpenSCManager. OpenSCManager prevents an SCP from trying
to contact the SCM before the SCM has initialized by waiting for SvcCtrl
EvencA3752DX to become signaled.

Next, SvcCtrlMain gets down to business and calls ScCreateServiceDB, the
function that builds the SCM's internal service database. ScCreateServiceDB
reads and stores the contents ofHKLM\SYSTEM\CurrentControISet\Control\
ServiceGroupOrder\List, a REG_MULTI_SZ value that lists the names and
order of the defined service groups. A service's registry key contains an optional
Group value if that service or device driver needs to control its startup ordering
with respect to services from other groups. For example, the Windows 2000
networking stack is built from the bottom up, so networking services must specifY
Group values that place them later in the startup sequence than networking device
drivers. SCM internally creates a group list that preserves the ordering of the
groups it reads from the registry. Groups include (but are not limited to) NDIS,
TDI, Primary Disk, Keyboard Port, and Keyboard Class. Add-on and third-party
applications can even define their own groups and add them to the list. Microsoft
Transaction Server, for example, adds a group named MS Transactions.

ScCreateServiceDB then scans the contents ofHKLM\SYSTEM\Current
ControISet\Services, creating an entry in the service database for each key it
encounters. A database entry includes all the service-related parameters defined
for a service as well as fields that track the service's status. The SCM adds entries
for device drivers as well as for services because the SCM starts services and
drivers marked as auto-start and detects startup failures for drivers marked boot
start and system-start. The I/O manager loads drivers marked boot-start and
system-start before any user-mode processes execute, and therefore any drivers
having these start types load before the SCM starts.

ScCreateServiceDB reads a service's Group value to determine its member
ship in a group and associates this value with the group's entry in the group
list created earlier. The function also reads and records in the database the
service's group and service dependencies by querying its DependOnGroup and
DependOnService registry values. Figure 5-9 shows how the SCM organizes
the service entry and group order lists. Notice. that the service list is alphabeti
cally sorted. The reason this list is sorted alphabetically is that the SCM creates
the list from the Services registry key, and Windows 2000 stores registry keys
alphabetically.

F I V E: Management Mechanisms

Service database
Group order list

Group1 Group2 I Group3
Service entry list

I'

Service1 Service2 Service3

Type Type Type
Start Start Start
DependOnGroup DependOnGroup DependOnGroup
DependOnService DependOnService DependOnService
Status Status Status
Group i-- Group Group

" " " , , ,

figure 5-9
Organization of a service database

During service startup, the SCM might need to call on Lsass (for example,
to log on a service in a user account), so the SCM waits for Lsass to signal the
LSA_RPC_SERVER_ACTIVE synchronization event, which it does when it
finishes initializing. Winlogon also starts the Lsass. process, so the initialization
of Lsass is concurrent with that of the SCM, and the order in which Lsass and
the SCM complete initialization can vary. Then SvcCtrlMain calls ScGetBootAnd
SystemDriverState to scan the service database looking for boot-start and system
start device driver entries. ScGetBootAndSystemDriverState determines whether
or not a driver successfully started by looking up its name in the object man
ager namespace directory named \Driver. When a device driver successfully loads,
the I/O manager inserts the driver's .object in the namespace under this direc
tory, so if its name isn't present, it hasn't loaded; Figure 5-10 shows Winobj
displaying the contents of the Driver directory. If a driver isn't loaded, the SCM
looks for its name in the list of drivers returned by the PnP_DeviceListfunction.
PnP_DeviceList supplies the drivers included in the system's current hardware
profile. SvcCtrlMain Q.otes the names of drivers that haven't started and that
are part of the current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more
steps. It creates its remote procedure call (RPC) named pipe, which is named
\Pipe\Ntsvcs, and then launches a thread to listen on the pipe for incoming
messages from SCPs. It then signals its initialization-complete event, SvcCtrl
EvencA3752DX. Registering a console application shutdown event handler
and registering with the Win32 subsystem process via RegisterServiceProcess
prepares the SCM for system shutdown.

249

INSIDE MICROSOFT WINDOWS 2000

Figure 5-10
List of driver objects

250

F I V E: Management Mechanisms

Service Startup
SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services
that have a Start value designating auto-start. ScAutoStartServices also starts
auto-start device drivers. To avoid confusion, you should assume that the term
services means services and drivers unless indicated otherwise. The algorithm in
ScAutoStartServices for starting services in the correct order proceeds in phases,
whereby a phase corresponds to a group and phases proceed in the sequence
defined by the group ordering stored in the HKLM\SYSTEM\CurrentControl
Set\Control\ServiceGroupOrder\List registry value. The List value, shown in
Figure 5-11, includes the names of groups in the order that the SCM should
start them. Thus, assigning a service to a group has no effect other than to fine
tune its startup with respect to other services belonging to different groups.

Figure 5-11
ServiceGroupOrder registry key

System Reserved Boot Bus Extender System 8 LIt Extender ...

When a phase starts, ScAutoStartServicesmarks all the service entries belong
ing to the phase's group for startup. Then ScAutoStartServices loops through the
marked services seeing whether it can start each one. Part of the check it makes
consists of determining whether the service has a dependency on another group,
as specified by the existence of the DependOnGroup value in the service's reg
istry key. If a dependency exists, the group on which the service is dependent
must have already initialized, and at least one service of that group must have
successfully started. If the service depends on a group that starts later than the
service's group in the group startup sequence, the SCM notes a "circular de
pendency" error for the service. If ScAutoStartServices is considering a Win32

251

INSIDE MICROSOFT WINDOWS 2000

252

service and not a device driver, it next checks to see whether the service depends
on one or more other services, and if so, if those services have already started.
Service dependencies are indicated with the DependOnService registry value in
a service's registry key. If a service depends on other services that belong to
groups that come later in the ServiceGroupOrder\List, the SCM also generates
a "circular dependency" error and doesn't start the service. If the service de
pends on any services from the same group that haven't yet started, the service
is skipped.

When the dependencies of a service have been satisfied, ScAutoStartServices
makes a final check to see whether the service is part of the current boot con
figuration before starting the service. When the system is booted in safe mode,
the SCM ensures that the service is either identified by name or by group in the
appropriate safe boot registry key. There are two safe boot keys, Minimal and
Network, under HKLM\SYSTEM\CurrentControISet\Control\SafeBoot, and
the one that the SCM checks depends on what safe mode the user booted. If
the user chose Safe Mode or Safe Mode With Command Prompt at the special
boot menu (which you can access by pressing F8 when prompted in the boot
process), the SCM references the Minimal key; if the user chose Safe Mode With
Networking, the SCM refers to Network. The existence of a string value named
Option under the SafeBoot key indicates not only that the system booted in safe
mode but also the type of safe mode the user selected. For more information
about safe boots, see the section "Safe Mode" on page 196 in Chapter 4.

Once the SCM decides to start a service, it calls ScStartService, which takes
different steps for services than for device drivers. When ScStartService starts a
Win32 service, it first determines the name of the file that runs the service's pro
cess by reading the ImagePath value from the service's registry key. It then ex
amines the service's Type value, and if that value is SERVICE_ WIN32_
SHARE_PROCESS (Ox20), the SCM ensures that the process the service runs
in, if already started, is logged on using the same account as specified for the
service being started. A service's ObjectName registry value stores the user
account in which the service should run. A service with no ObjectName or an
ObjectName of LocalSystem runs in the local system account.

The SCM verifies that the service's process hasn't already been started in
a different account by checking to see whether the service's ImagePath value
has an entry in an internal SCM database called the image database. If the image
database doesn't have an entry for the ImagePath value, the SCM creates one.
When the SCM creates a new entry, it stores the logon account name used for
the service and the data from the service's ImagePath value. The SCM requires
services to have an ImagePath value. If a service doesn't have an ImagePath value,

F I V E: Management Mechanisms

the SCM reports an error stating that it couldn't find the service's path and isn't
able to start the service. If the SCM locates an existing image database entry
with matching ImagePath data, the SCM ensures that the user account infor
mation for the service it's starting is the same as the information stored in the
database entry-a process can be logged on as only one account, so the SCM
reports an error when a service specifies a different account name than another
service that has already started in the same process.

The SCM calls ScLogonAndStartlmage to log on a service if the service's
configuration specifies and to start the service's process. The SCM logs on services
that don't run in the system account by calling the Lsass function LsaLogon User.
LsaLogon User normally requires a password, but the SCM indicates to Lsass that
the password is stored as a service's Lsass "secret" under the key HKLM\
SECURITY\Policy\Secrets in the registry. (Keep in mind that the contents of
the SECURITY aren't typically visible because its default security settings permit
access only from the system account.) When the SCM calls LsaLogon User, it
specifies a service logon as the logon type, so Lsass looks up the password in
the Secrets subkey that has a name in the form _SC_ <service name>. The SCM
directs Lsass to store a logon password as a secret when an SCP configures a
service's logon information. When a logon is successful, LsaLogon User returns
a handle to an access token to the caller. Windows 2000 uses access tokens to
represent a user's security context, and the SCM later associates the access token
with the process that implements the service.

After a successful logon, the SCM loads the account's profile information,
if it's not already loaded, by calling the UserEnv DLL's (\Winnt\System32\
Userenv.dll) LoadUserProfile function. The value HKLM\SOFlWARE\Microsoft\
Windows NT\CurrentVersion\profileList\<user profile key>\ProfileImagePath
contains the location on disk of a registry hive that LoadUserProfile loads into
the registry, making the information in the hive the HKEY_CURRENT_USER
key for the service.

An interactive service must open the WinS taO window station, but be
fore ScLogonAndStartlmage allows an interactive service to access WinS taO
it checks to see whether the value HKLM\SYSTEM\CurrentControISet\Control\
Windows\NoInteractiveServices is set. Administrators set this value to prevent
services marked as interactive from displaying windows on the console. This
option is desirable in unattended server environments in which no user is present
to respond to popups from interactive services.

As its next step, ScLogonAndStartlmage proceeds to launch the service's
process, if the process hasn't already been started (for another service, for example).
The SCM starts the process in a suspended state with the CreateProcessAsUser

253

INSIDE MICROSOFT WINDOWS 2000

254

Win32 function. The SCM next creates a named pipe through which it com
municates with the service process, and it assigns the pipe the name \Pipe\Net\
NetControlPipeX, where Xis a number that increments each time the SCM creates
a pipe. The SCM resumes the service process via the ResumeT'hread function and
waits for the service to connect to its SCM pipe. If it exists, the registry value
HKLM\SYSTEM\CurrentControISet\Control\ServicesPipeTimeout determines
the length of time that the SCM waits for a service to call StartServiceCtrl
Dispatcher and connect before it gives up, terminates the process, and concludes
that the service failed to start. If ServicesPipeTimeout doesn't exist, the SCM
uses a default timeout of 3 0 seconds. The SCM uses the same timeout value for
all its service communications.

When a service connects to the SCM through the pipe, the SCM sends the
service a start command. If the service fails to respond positively to the start com
mand within the timeout period, the SCM gives up and moves on to start the next
service. When a service doesn't respond to a start request, the SCM doesn't ter
minate the process, as it does when a service doesn't call StartServiceCtrlDispatcher
within the timeout; instead, it notes an error in the system Event Log that indi
cates the service failed to start in a timely manner.

If the service the SCM starts with a call to ScStartService has a Type reg
istry value of SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_
DRIVER, the service is really a device driver, and so ScStartService calls ScLoad
DeviceDriver to load the driver. ScLoadDeviceDriver enables the load driver
security privilege for the SCM process and then invokes the kernel service
NtLoadDriver, passing in the data in the ImagePath value of the driver's reg
istry key. Unlike services, drivers don't need to specifY an ImagePath value, and
if the value is absent, the SCM builds an image path by appending the driver's
name to the string \Winnt\System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to
a group until all the services have either started or generated dependency errors.
This looping is the SCM's way of automatically ordering services within a
group according to their DependOnService dependencies. The SCM will start
the services that other services depend on in earlier loops, skipping the depen
dent services until subsequent loops. Note that the SCM ignores Tag values for
Win32 services, which you might come across in subkeys under the HKLM\
SYSTEM\CurrentControISet\Services key; the I/O manager honors Tag values
to order device driver startup for boot and system-start drivers.

Once the SCM completes phases for all the groups listed in the Service
GroupOrder\List value, it performs a phase for services belonging to groups not
listed in the value and a final phase for services without a group.

F I V E: Management Mechanisms

Startup Errors
If a driver or a service reports an error in response to the SCM's startup command,
the ErrorControl value of the service's registry key determines how the SCM
reacts. If the ErrorControl value is SERVICE_ERRORJGNORE (0) or the
ErrorControl value isn't specified, the SCM simply ignores the error and continues
processing service startups. If the ErrorControl value is SERVICE_ERROR_
NORMAL (1), the SCM writes an event to the system Event Log that says, "The
<service name> service failed to start due to the following error:" The SCM in
cludes the textual representation of the Win32 error code that the service re
turned to the SCM as the reason for the startup failure in the Event Log record.
Figure 5-12 shows the Event Log entry that reports a service startup error.

Figure 5-12
Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR,...SEVERE
(2) or SERVICE_ERROR_CRITICAL (3) reports a startup error, the SCM
logs a record to the Event Log and then calls the internal function ScRevert
ToLastKnownGood. This function switches the system's registry configuration to
a version, named last known good, with which the system last booted success
fully. Then it restarts the system using the NtShutdownSystem system service,

255

INSIDE MICROSOFT WINDOWS 2000

which is implemented in the executive. If the system is already booting with
the last known good configuration, the system just reboots.

Accepting the Boot and Last Known Good

256

Besides starting services, the system charges the SCM with determining when the
system's registry configuration, HKLM\SYSTEM\CurrentControISet, should be
saved as the last known good control set. The CurrentControlSet key contains
the Services key as a subkey, so CurrentControlSet includes the registry repre
sentation of the SCM database. It also contains the Control key, which stores
many kernel-mode and user-mode subsystem configuration settings. By default,
a successful boot consists of a successful startup of auto-start services and a suc
cessful user logon. A boot fails if the system halts because a device driver crashes
the system during the boot or if an auto-start service with an ErrorControl value
ofSERVICE_ERROR..SEVERE or SERVICE_ERROR_CRITICAL reports a
startup error.

The SCM obviously knows when it has completed a successful startup
of the auto-start services, but Winlogon (\ Winnt\System32\ Winlogon.exe)
must notify it when there is a successful logon. Winlogon invokes the NotifY
BootConfigStatusfunction when a user logs on, and NotifyBootConfigStatus sends
a message to the SCM. Following the successful start of the auto-start services
or the receipt of the message from NotifyBootConfigStatus (whichever comes
last), the SCM calls the system function NtlnitializeRegistry to save the cur
rent registry startup configuration.

Third-party software developers can supersede Winlogon's definition of
a successful logon with their own definition. For example, a system running
Microsoft SQL Server might not consider a boot successful until after SQL
Server is able to accept and process transactions. Developers impose their
definition of a successful boot by writing a boot-verification program and installing
the program by pointing to its location on disk with the value stored in the regis
try key HKLM\SYSTEM\CurrentControISet\Control\BootVerificationProgram.
In addition, a boot-verification program's installation must disable Winlogon's
call to NotifyBootConfigStatus by setting HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Winlogon\ReportBootOk to o. When a boot
verification program is installed, the SCM launches it after finishing auto-start
services and waits for the program's call to NotifyBootConfigStatus beforesav
ing the last known good control set.

Wmdows 2000 maintains several copies of CurrentControlSet, and Current
ControlSet is really a symbolic registry link that points to one of the copies. The
control sets have names in the form HKLM\SYSTEM\ControISetnnn, where

F I V E: Management Mechanisms

nnn is a number such as 001 or 002. The HKLM\SYSTEM\Select key contains
values that identifY the role of each control set. For example, if CurrentControlSet
points to ControlSetOO 1, the Current value under Select has a value of 1. The
LastKnownGood value under Select contains the number of the last known good
control set, which is the control set last used to boot successfully. Another value
that might be on your system under the Select key is Failed, which points to the
last control set for which the boot was deemed unsuccessful and aborted in favor
of an attempt at booting with the last known good control set. Figure 5-13
displays a system's control sets and Select values.

Figure 5-13
Control set selection key

NtlnitializeRegistry takes the contents of the last known good control
set and synchronizes it with that of the CurrentControlSet key's tree. If this
was the system's first successful boot, the last known good won't exist and the
system will create a new control set for it. If the last known good tree exists,
the system simply updates it with differences between it and CurrentControlSet.

Last known good is helpful in situations in which a change to Current
ControlSet, such as the modification of a system performance-tuning value under
HKLM\SYSTEM\Control or the addition of a service or device driver, causes
the subsequent boot to fail. Users can press F8 early in the boot process to bring
up a menu that lets them direct the boot to use the last known good control
set, rolling the system's registry configuration back to the way it was the last time
the system booted successfully.

257

INSIDE MICROSOFT WINDOWS 2000

Service Failures

258

A service can have optional FailureActions and FailureCommand values in its
registry key that the SCM records during the service's startup. The SCM reg
isters with the system so that the system signals the SCM when a service pro
cess exits. When a service process terminates unexpectedly, the SCM determines
which services ran in the process and takes the recovery steps specified by their
failure-related registry values.

Actions that a service can configure for the SCM include restarting the
service, running a program, and rebooting the computer. Furthermore, a ser
vice can specifY the failure actions that take place the first time the service pro
cess fails, the second time, and subsequent times, and can indicate a delay period
that the SCM waits before restarting the service if the service asks to be restarted.
The service failure action of the IIS Admin Service results in the SCM running
the IISReset application, which performs cleanup work and then restarts the
service. You can easily manage the recovery actions for a service with the Re
covery tab of the service's Properties dialog box in the Services MMC snap-in,
as shown in Figure 5-14.

Figure 5-14
Service recovery options

F I V E: Management Mechanisms

Service Shutdown
When Winlogon calls the Wm32 ExitWindowsEx function, ExitWindowsEx sends
a message to Csrss, the Win32 subsystem process, to invoke Csrss's shutdown
routine. Csrss loops through the active processes and notifies them that the
system is shutting down. For every system process except the SCM, Csrss waits
up to the number of seconds specified by HKU\.DEFAUL1\Control Panel\
Desktop\WaitToKillAppTimeout (which defaults to 20 seconds) for the process
to exit before moving on to the next process. When Csrss encounters the SCM
process, it also notifies it that the system is shutting down but employs a timeout
specific to the SCM. Csrss recognizes the SCM using the process ID Csrss saved
when the SCM registered with Csrss using the RegisterServicesProcess function
during system initialization. The SCM's timeout differs from that of other pro
cesses because Csrss knows that the SCM communicates with services that need
to perform cleanup when they shutdown, and so an administrator might need
to tune only the SCM's timeout. The SCM's timeout value resides in the HKLM\
SYSTEM\CurrentControISet\Control\WaitToKillServiceTimeout registry value,
and it defaults to 20 seconds.

The SCM's shutdown handler is responsible for sending shutdown notifi
cations to all the services that requested shutdown notification when they ini
tialized with the SCM. The SCM function SeShutdownAllServices loops through
the SCM services database searching for services desiring shutdown notification
and sends each one a shutdown command. For each service to which it sends
a shutdown command, the SCM records the value of the service's wait hint, a
value that a service also specifies when it registers with the SCM. The SCM keeps
track of the largest wait hint it receives. After sending the shutdown messages,
the SCMwaits either until one of the services it notified of shutdown exits or
until the time specified by the largest wait hint passes.

If the wait hint expires without a service exiting, the SCM determines
whether one or more of the services it was waiting on to exit have sent a message
to the SCM telling the SCM that the service is progressing in its shutdown
process. If at least one service made progress, the SCM waits again for the
duration of the wait hint. The SCM continues executing this wait loop until
either all the services have exited or m;>ne of the services upon which it's wait
ing has notified it of progress within the wait hint timeout period.

While the SCM is busy telling services to shut down and waiting for them
to exit, Csrss waits for the SCM to exit. If Csrss's wait ends without the SCM
having exited (the WaitToKilIServiceTimeout time expires), Csrss simply moves

259

INSIDE MICROSOFT WINDOWS 2000

on, continuing the shutdown process. Thus, services that fail to shut down in
a timely manner are simply left running, along with the SCM, as the system shuts
down. Unfortunately, there's no way for administrators to know whether they
should raise the WaitToKillServiceTimeout value on systems where services
aren't getting a chance to shut down completely before the system shuts down.

Shared Service Processes

260

Running every service in its own process instead of having services share a process
whenever possible wastes system resources. However, sharing processes means
that if any of the services in the process has a bug that causes the process to exit,
all the services in that process terminate.

Of the Windows 2000 built-in services, some run in their Own process and
some share a process with other services. For example, the SCM process hosts
the Event Log service, the file server service (LanmanServer), and the LAN
Manager name resolution service. The services that SCM hosts in Windows 2000
are listed in Table 5-7. (Not all these services are active on every system.)

Table 5·7 Windows 2000 Services That Run in the SCM

Service

Alerter

AppMgmt

Browser

Dhcp

Dmserver

Dnscache

Eventlog

Service Description

Notifies selected users and computers of administrative
alerts.

Provides software installation services such as Assign,
Publish, and Remove.

Maintains an up-to-date list of computers on your
network and supplies the list to programs that
request it.

Manages network· configuration by registering and
updating IP addresses and Domain Name System
(DNS) names.

Logical Disk Manager Watchdog Service

Resolves and caches DNS names.

Logs event messages that applications and Windows
issue .. Event Log reports contain information that can
be useful in diagnosing problems. Reports are viewed
in Event Viewer.

Service

LanmanServer

Lanman Workstation

LmHosts

Messenger

PlugPlay

ProtectedStorage

Seclogon

TrkSvr

TrkWks

W32Time

Wmi

F I V E: Management Mechanisms

Service Description

Provides remote procedure call (RPC) support and
file, print, and named pipe sharing.

Provides network connections and communications.

Enables support for NetBIOS over TCP lIP (NetBT)
service and for NetBIOS name resolution.

Sends and receives messages that administrators or
the Alerter service transmit.

Manages device installation and configuration and
notifies programs of device changes.

Provides protected storage for sensitive data, such as
private keys, to prevent access by unauthorized
services, processes, or users.

Enables starting processes under alternate credentials.

Stores information so that files moved between vol
umes can be tracked for each volume in the domain.

Sends notifications of files moving between NTFS
volumes in a network domain.

Sets the computer clock.

Provides systems management information to and
from drivers.

The security-related services, such as the Security Accounts Manager (SamSs)
service, the Net Logon (Netlogon) service, and the IPSec Policy Agent (Policy
Agent) service, share the Lsass process.

There is also a "generic" process named Service Host (SvcHost - \Winnt\
System32\Svchost.exe) to contain multiple services. Multiple instances ofSvcHost
can be running in different processes. Services that run in SvcHost processes
include Telephony (TapiSrv), Remote Procedure Call (RpcSs), and Remote
Access Connection Manager (RasMan). Windows 2000 implements services
that run in SvcHost as D LLs and includes an ImagePath definition of the form
"%SystemRoot%\System32\svchost.exe -k netsvcs" in the service's registry key.
The service's registry key must also have a registry value named ServiceDll under
a Parameters subkey that points to the service's DLL file.

261

INSIDE MICROSOFT WINDOWS 2000

262

All services that share a common SvcHost process specifY the same parameter
("-k netsvcs" in the example in the preceding paragraph) so that they have a
single entry in the SCM's image database. When the SCM encounters the first
service that has a SvcHost ImagePath with a particular parameter during ser
vice startup, it creates a new image database entry and launches a SvcHost pro
cess with the parameter. The new SvcHost process takes the parameter and
looks for a value having the same name as the parameter under HKLM\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost reads
the contents of the value, interpreting it as a list of service names, and notifies
the SCM that it's hosting those services when SvcHost registers with the SCM.
Figure 5-15 presents an example Svchost registry key that shows that a SvcHost
process started with the "-k netsvcs" parameter is prepared to host a number
of different network-related services.

Figure 5-15
Svchost registry key

AEG_MULTI. ..
REG_MULTI. ..
AEG_MUL n.. T apiSIV

When the SCM encounters a SvcHost service during service startup with
an ImagePath matching an entry it already has in the image database, it doesn't
launch a second process but instead just sends a start command for the service
to the SvcHost it already started for that ImagePath value. The existing SvcHost
process reads the ServiceDll parameter in the service's registry key and loads the
DLL into its process to start the service.

F I V E: Management Mechanisms

263

INSIDE MICROSOFT WINDOWS 2000

Service Control Programs

264

Service control programs are standard Win32 applications that use the SCM func
tions CreateService, OpenService, StartService, ControlService, QueryServiceStatus,
and DeleteService. To use the SCM functions, an SCP must first open a com
munications channel to the SCM by calling the OpenSCManager function. At
the time of the open call, the SCP must specify what types of actions it wants
to perform. For example, if an SCP simply wants to enumerate and display the
services present in the SCM's database, it requests enumerate-service access in
its call to OpenSCManager. During its initialization, the SCM creates an internal
object that represents the SCM database and uses the Windows 2000 security
functions to protect the object with a security descriptor that specifies what
accounts can open the object with what access permissions. For example, the
security descriptor indicates that the Everyone group (of which every account
is a member) can open the SCM object with enumerate-service access. However,
only administrators can open the object with the access required to create or
delete a service.

As it does for the SCM database, the SCM implements security for services
themselves. When an SCP creates a service by using the CreateService function,
it specifies a security descriptor that the SCM associates internally with the
service's entry in the service database. The SCM stores the security descriptor
in the service's registry key as the Security value, and it reads that value when
it scans the registry's Services key during initialization so that the security set
tings persist across reboots. In the same way that an SCP must specify what types
of access it wants to the SCM database in its call to OpenSCManager, an SCP
must tell the SCM what access it wants to a service in a call to OpenService.
Accesses that an SCP can request include the ability to query a service's status
and to configure, stop, and start a service.

The SCP you're probably most familiar with is the Services MMC snap
in that's included in Windows 2000, which resides in \Winnt\System32\
Filemgr.dll. The Windows 2000 resource kits include a command-line SCP
named Sc.exe (Service Controller tool) and a GUI SCP named Srvinstw.exe
(Service Creation Wizard).

SCPs sometimes layer service policy on top of what the SCM implements.
A good example is the timeout that the Services MMC snap-in implements when
a service is started manually. The snap-in presents a progress bar that represents
the progress of a service's startup. Whereas the SCM waits indefinitely for a
service to respond to a start command, the Services snap-in waits only 2 min
utes before the progress bar reaches 100 percent and the snap-in announces that
the service didn't start in a timely manner. Services indirectly interact with SCPs
by setting their configuration status to reflect their progress as they respond to

F I V E: Management Mechanisms

SCM commands such as the start command. SCPs query the status with the
QueryServiceStatus function. They can tell when a service actively updates the
status versus when a service appears to be hung, and the SCM can take appro
priate actions in notifYing a user about what the service is doing.

Windows Management Instrumentation
Windows NT has always had integrated performance and system-event monitoring
tools. Applications and the system typically use the Event Manager to report
errors and diagnostic messages. The Event Viewer utility lets administrators view
event output from either the local computer or another computer on the network.
Similarly, the performance counter mechanism lets applications and operat
ing system components report performance-related statistics to performance
monitoring applications such as the Performance Monitor.

Although the Windows NT 4 event-monitoring and performance-monitoring
features met their design goals, they had limitations. For example, the program
ming interfaces differ from one another, and this variation increases the com
plexity of applications that use both event and performance monitoring to collect
data. The level of granularity the performance counter mechanism provides can
be poor, especially across a network, because it retrieves all the performance
counters defined on the system and not just the object you're interested in. It's
an all-or-nothing proposition: no way exists for an application to query the
performance information of only specific components. Perhaps the biggest
drawback to the monitoring facilities in Windows NT 4 is that they have little
or no extensibility and that neither event logging nor performance data collec
tion provides the two-way interaction necessary in a management API. Appli
cations must provide data in predefined formats. The Performance API provides
no way for an application to receive notification of performance-related events,
and applications that request notification of Event Manager events can't restrict
notification to specific event types or sources. Finally, clients of either collec
tion facility can't communicate with event-data or performance-data providers
through the Event Manager or Performance API.

To address these limitations as well as to provide management capabilities
for other types of data sources, Windows 2000 has a new management mecha
nism, Windows Management Instrumentation (WMI). WMI is an implemen
tation of Web-Based Enterprise Management (WBEM), a standard that the
Distributed Management Task Force (DMTF-an industry consortium) defines.
The WBEM standard encompasses the design of an extensible enterprise data
collection and data-management facility that has the flexibility and extensibility
required to manage local and remote systems that comprise arbitrary components.

265

INSIDE MICROSOFT WINDOWS 2000

WMI support was added to Windows NT 4 in Service Pack 4. It is also supported
in Windows 95 OSR2 and Windows 98. Although most of this section applies
to all the Windows platforms that support WMI, implementation details are
specific to Windows 2000.

WMI Architecture

266

WMI consists of four main components, as shown in Figure 5-16: manage
ment applications, WMI infrastructure, providers, and managed objects. Man
agement applications are Windows applications that access and display or process
data that the applications obtain about managed objects. A simple example of
a management application is a Performance tool replacement that relies on WMI
rather than the Performance API to obtain performance information. A more
complex example is an enterprise-management tool that lets administrators per
form automated inventories of the software and hardware configuration of every
computer in their enterprise.

Figure 5-16
WMI architecture

Management
applications

WMI infrastructure

Providers

Managed objects

F I V E: Management Mechanisms

Developers typically must target management applications to collect data
from and manage specific objects. An object might represent one component, such
as a network adapter device, or a collection of components, such as a computer.
(The computer object might contain the network adapter object.) Providers need
to define and export the representation of the objects that management appli
cations are interested in. For example, the vendor of a network adapter might
want to add adapter-specific properties to the network adapter WMI support
that Windows 2000 includes, querying and setting the adapter's state and be
havior as the management applications direct. In some cases (for example, for
device drivers), Microsoft supplies a provider that has its own API to help de
velopers leverage the provider's implementation for their own managed objects
with minimal coding effort.

The YVMI infrastructure, the heart of which is the Common Information
Model (CIM) Object Manager (CIMOM), is the glue that binds management
applications and providers. (CIM is described later in this chapter.) The infra
structure also serves as the object-class store and, in many cases, as the storage
manager for persistent object properties. WMI implements the store, or reposi
tory, as an on-disk database named the CIMOM Object Repository. As part of
its infrastructure, WMI supports several APIs through which management appli
cations access object data and providers supply data and class definitions.

Win32 programs use the WMI COM API, the primary management API,
to direcdy interact with WMI. Other APIs layer on top of the COM API and
include an Open Database Connectivity (ODBG) adapter for the Microsoft
Access database application. A database developer uses the WMI ODBC adapter
to embed references to object data in the developer's database. Then the devel
oper can easily generate reports with database queries that contain WMI -based
data. WMI ActiveX controls support another layered API. Web developers use
the ActiveX controls to construct Web-based interfaces to WMI data. Another
management API is the WMI scripting API, for use in script-based applica
tions and Microsoft Visual Basic programs. WMI scripting support exists for
all Microsoft programming language technologies.

As they are for management applications, WMI COM interfaces constitute
the primary API for providers. However, unlike management applications, which
are COM clients, providers are COM or Distributed COM (DCOM) servers
(that is, the providers implement COM objects that WMI interacts with). Pos
sible embodiments of a WMI provider include DLLs that load into WMl's man
ager process and stand-alone Win32 applications or Win32 services. Microsoft
includes anumber of built-in providers that present data from well-known sources,
such as the Performance API, the registry, the Event Manager, Active Directory,
SNMP, and Windows Driver Model (WDM) device drivers. The WMI SDK lets
developers develop third-party WMI providers.

267

INSIDE MICROSOFT WINDOWS 2000

Providers

268

At the core of WBEM is the DMTF-designed CIM specification. The CIM speci
fies how management systems represent, from a systems management perspec
tive, anything from a computer to an application or device on a computer.
Provider developers use the CIM to represent the components that make up the
parts of an application for which the developers want to enable management. De
velopers use the Managed Object Format (MOF) language to implement a CIM
representation.

In addition to defining classes that represent objects, a provider must inter
face WMI to the objects. WMI classifies providers according to the interface
features the providers supply. Table 5-8 lists WMI provider classifications. Note
that a provider can implement one or more features; therefore, a provider can
be, for example, both a class and an event provider. To clarifY the feature defi
nitions in Table 5-8, let's look at a provider that implements several of those
features. The Event Log provider defines several objects, including an Event Log
Computer, an Event Log Record, and an Event Log File. The Event Log pro
vider is a Class provider because it defines these objects by using classes and must
give the class definitions to WMI. This provider is an Instance provider as well
because it can define multiple instances for several of its classes. One class for
which the Event Log provider defines multiple instances is the Event Log File
class; the Event Log provider defines an instance of this class for each of the
system's event logs (that is, System Event Log, Application Event Log, and
Security Event Log).

Table 5-8 Provider Classifications

Classification

Class

Instance

Property

Method

Event

Event consumer

Description

Can supply, modifY, delete, and enumerate a provider
specific class. Can also support query processing. Active
Directory is a rare example of a service that is class
provider.

Can supply, modifY, delete, and enumerate instances of
system and provider-specific classes. An instance represents
a managed object. Can also support query processing.

Can supply and modifY individual object property values.

Supplies methods for a provider-specific class.

Generates event notifications.

Maps a physical consumer to a logical consumer to
support event notification.

F I V E: Management Mechanisms

The Event Log provider defines the instance data and lets management
applications enumerate the records. To let management applications use WMI
to back up and restore the Event Log illes, the Event Log provider implements
backup and restore methods for Event Log File objects. Doing so makes the
Event Log provider a Method provider. Finally, a management application can
register to receive notification whenever a new record writes to one of the Event
Logs. Thus, the Event Log provider serves as an Event provider when it uses
WMI event notification to tell WMI that Event Log records have arrived.

The Common Information Model and the
Managed Object Format Language

The CIM follows in the steps of object-oriented languages such as C++ and Java,
in which a modeler designs representations as classes. Working with classes lets
developers use the powerful modeling techniques of inheritance and composi
tion. Subclasses can inherit the attributes of a parent class, and they can add their
own characteristics and override the characteristics they inherit from the parent
class. A class that inherits properties from another class derives from that class.
Classes also compose: a developer can build a class that includes other classes.

The DMTF provides multiple classes as part of the WBEM standard. These
classes are CIM's basic language and represent objects that apply to all areas
of management. The classes are part of the elM core model An example of a
core class is CIM_ManagedSystemElement. This· class contains.a few basic
properties that identify physical components such as hardware devices, and
logical components such as processes and files. The properties include a cap
tion, description, installation date, and status. Thus, the CIM_LogicalElement
and CIM_PhysicalElement Classes inherit the attributes of the CIM_Managed
SystemElement class. These two classes are also part of the CIM core model.
The WBEM standard calls these classes abstract classes because they exist solely
as classes that other classes inherit (that is, no object instances of an abstract class
exist). You can therefore think of abstract classes as templ.1tes that define prop
erties for use in other classes.

A second category of classes represents objects that are specific to man
agement areas but independent of a particular implementation. These classes
constitute the common model and are considered an extension of the core model.
An example of a common-model class is the CIM_FileSystem class, which inher
its the attributes of CIM_LogicalElement. Because virtually every operating
system, including Windows 2000, Linux, and other varieties of UNIX, rely on
ille-system-based structured storage, the CIM_FileSystem class is an appropriate
constituent of the common model.

269

INSIDE MICROSOFT WINDOWS 2000

270

The final class category comprises technology-specific additions to the
common model. Windows 2000 defines a large set of these classes to represent
objects specific to the Win32 environment. Because all operating systems store
data in files, the ClM common model includes the ClM_LogicalFile class. The
ClM_DataFile class inherits the ClM_LogicalFile class, and Win32 adds the
Win32_PageFile and Win32_ShortcutFile file classes for those Win32 file types.

The Event Log provider makes extensive use of inheritance. Figure 5-17
shows a view of the WMl ClM Studio, a class browser that ships with the WMl
SDK. (Microsoft supplies the WMl SDK with MSDN software and the Platform
SDK.) You can see where the Event Log provider relies on inheritance in the
provider's Win32_NTEventlogFile class, which derives from ClM_DataFile.
Event Log files are data files that have additional Event Log-specific attributes
such as a log file name (LogfileName) and a count of the number of records that
the file contains (NumberOfRecords). The tree that the class browser shows
reveals that Win32_NTEventlogFile is based on several levels of inheritance,
in which ClM_DataFile derives from ClM_LogicalFile, which derives from
ClM_LogicalElement, and ClM_LogicalElement derives from ClM_Managed
SystemElement.

Figure 5-17
WMl elM Studio

F I V E: Management Mechanisms

As stated earlier, WMl provider developers write their classes in the MOF
language. The following output shows the definition of the Event Log provider's
Win32_NTEventlogFile, which is selected in Figure 5-17. Notice the correla
tion between the properties that the right panel in Figure 5 -17 lists and those
properties' definitions in the MOF file below. elM Studio uses yellow arrows
to tag those properties that a class inherits. Thus, you don't see those proper
ties specified in Win32_NTEventlogFile's definition.

[dynamic,provider("MS_NLEVENTLOG_PROVIDER"),Locale(1033l,
UUID("{8502C57B-5FBB-IID2-AACI-006008C78BC7}")]
class Win32_NTEventlogFile : CIM_DataFile
{

} ;

[read] string LogfileName;
[read,write] uint32 MaxFileSize;
[read] uint32 NumberOfRecords;
[read,volatile,ValueMap{"0", "1 .. 365", "4294967295"}]

string OverWritePolicy;
[read,write,Units("Days"),Range("0-365 I 4294967295")]

uint32 OverwriteOutDated;
[read] string Sources[];
[implemented,Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}]

uint32 ClearEventlog([in] string ArchiveFileName);
[implemented,Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}]

uint32 BackupEventlog([inJ string ArchiveFileName);

One term worth reviewing is dynamic) which is a descriptive designator
for the Win32_NTEventlogFile class that the MOF file in the preceding out
put shows. Dynamic means that the WMl infrastructure asks the WMl provider
for the values of properties associated with an object of that class whenever a
management application queries the object's properties. A static class is one in
the WMl repository; the WMl infrastructure refers to the repository to obtain
the values instead of asking a provider for the values. Because updating the
repository is a relatively expensive operation, dynamic providers are more effi
cient for objects that have properties that change frequently.

After constructing classes in MOF, WMl developers can supply the class
definitions to WMl in several ways. WDM provider developers compile an MOF
file into a binary MOF (BMF) file-a more compact binary representation than
an MOF file-and give the BMFfiles to the WDM infrastructure. Another way

271

INSIDE MICROSOFT WINDOWS 2000

is for the provider to compile the MOF and use WMI COM APIs to give the
definitions to the WMI infrastructure. Finally, a provider can use the MOF
Compiler (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled
representation directly.

The WMI Namespace

272

Classes define the properties of objects, and objects are class instances on a
system. WMI uses a namespace that contains several subnamespaces that WMI
arranges hierarchically to organize objects. A management application must
connect to a namespace before the application can access objects within the
namespace.

WMI names the namespace root directory root. All WMI installations have
four predefined namespaces that reside beneath root: CIMV2, Default, Secu
rity, and WMI. Some of these namespaces have other namespaces within them.
For example, CIMV2 includes the Applications and ms_409 namespaces as
subnamespaces. Providers sometimes define their own namespaces; you can see
the WMI namespace (which the Windows device driver WMI provider defines)
beneath root on Windows 2000.

Unlike a file system namespace, which comprises a hierarchy of directories
and files, a WMI namespace is only one level deep. Instead of using names as a
file system does, WMI uses object properties that it defines as keys to identifY
the objects. Management applications specifY class names with key names to
locate specific objects within a namespace. Thus, each instance of a class must
be uniquely identifiable by its key values. For example, the Event Log provider
uses the Win32_NTLogEvent class to represent records in an Event Log. This
class has two keys: Logfile, a string; and RecordNumber, an unsigned integer.
A management application that queries WMI for instances of Event Log records
obtains them from the provider key pairs that identifY records. The application
refers to a record using the syntax that you see in this example object pathname:

\\PICKLES\CIMV2:Win32_NTLogEvent.Logfile="Application".
RecordNumber="l"

The first component in the name (\\PICKLES) identifies the computer
on which the object is located, and the second component (\CIMV2) is the
namespace in which the object resides. The class name follows the colon, and
key names and their associated values follow the period. A comma separates the
key values.

F I V E: Management Mechanisms

WMI provides interfaces that let applications enumerate all the objects in
a particular class or to make queries that return instances of a class that match
a query criteria.

Class Association
Many object types are related to one another in some way. For example, a com
puter object has a processor, software, an operating system, active processes, and
so on. WMI lets providers construct an association class to represent a logical
connection between two different classes. Association classes associate one class
with another, so the classes have only two properties: a class name and the Ref
modifier. The following output shows an association in which the Event Log
provider's MOF file associates the Win32_NTLogEvent class with the Win32_
ComputerSystem class. Given an object, a management application can query
associated objects. In this way, a provider defines a hierarchy of objects.

[dynamic,provider("MS_NLEVENTLOLPROVIDER"),
EnumPrivileges{"SeSecurityPrivilege"},locale(1033),
UUID("{8S02CS7F-SFBB-IID2-AACl-006008C78BC7}"),
Association: ToInstance]

class Win32_NTLogEventComputer
{

} ;

[keY,read] Win32_ComputerSystem Ref Computer;
[key,read] Win32_NTLogEvent Ref Record;

Instance of __ Win32Provider as $EventProv
{

Name. = "MS_NLEVENTLOG_EVENLPROVIDER";
ClsId = "{FSSCSB4C"S17D-lldl-ABS7-00C04FD91S9E}";

} ;

Figure 5-18 shows the WMI Object Browser (another development tool that
the WMI SDK includes) displaying the root of the CIMV2 namespace. Win32
system components typically place their objects within the CIMV2 namespace.
The Object Browser first locates the Win32-,-ComputerSystem object instance
DSOLOMQN, which is the object that represents .the computer. Then, the
Object Browser obtains the objects associated with Win32_ComputerSystem

273

INSIDE MICROSOFT WINDOWS 2000

274

Figure 5-18
WMI Object Browser

and displays them beneath DSOLOMON. The Object Browser user interface
displays association objects with a double-arrow folder icon. The associated class
type's objects display beneath the folder.

You can see in the Object Browser that the Event Log provider's asso
ciation class Win32_NTLogEventComputer is beneath DSOLOMON and
that numerous instances of the Win32_NTLogEvent class exist. Refer to the
preceding output to verifY that the MOF file defines the Win32_NTLogEvent
Computer class to associate the Win32_ComputerSystem class with the Win32_
NTLogEvent class. Selecting an instance ofWin32_NTLogEvent in the Object
Browser reveals that class's properties under the Properties tab in the right-hand
pane. Microsoft intended the Object Browser to help WMI developers examine
their objects, but a management application would perform the same operations
and display properties or collected information more intelligibly.

F I V E: Management Mechanisms

WMI Implementation
The WMI infrastructure implements primarily in the \ Winnt\System32\Wbem\
Winmgmt.exe file. This file runs as a Win32 service that the Windows 2000 SCM
starts the first time a management application or WMI provider tries to access
WMI APIs. Most WMI components reside by default in \Winnt\System32 and
\ Winnt\System32\ Wbem, including Win32 MOF files, built-in provider DLLs,
and management application WMI DLLs. Look in the \Winnt\System32\Wbem
directory, and you'll find Ntevt.mof, the Event Log provider MOF file. You'll
also find Ntevt.dll, the Event Log provider's DLL, which Winmgmt.exe loads.

Directories beneath \ Winnt\System32\ Wbem store the repository, log files,
and third-party MOF files. WMI implements the repository-named the CIMOM
repository-as the file \Winnt\System32\Wbem\Repository\Cim.rep. Winmgmt
honors numerous registry settings related to the repository (including various
internal performance parameters such as CIMOM backup locations and intervals)
that the repository's HKLM\SOFTWARE\Microsoft\WBEM\CIMOM registry
key stores.

Device drivers use special interfaces to provide data to and accept com
mands-called the WMI System Control commands-from WMI. These inter
faces are part of the WD M, which is explained in Chapter 9. Because the interfaces
are cross-platform, they fall under the \root\WMI namespace.

WMI Security
WMI implements security at the namespace level. If a management application
successfully connects to a namespace, the application can view and access the
properties of all the objects in that namespace. An administrator can use the WMI
Control application to control which users can access a namespace. To start the
WMI Control application, from the Start menu, select Programs, Administrative
Tools, Computer Management. Next, open the Services And Applications
branch. Right-clickWMI Control and select Properties to launch the WMI
Control Properties dialog box, which Figure 5-19 shows. To configure security
for namespaces, click the Security tab, select the namespace, and click Security.
The other tabs in the WMI Control Properties dialog box let you modifY the
performance and backup settings that the registry stores.

275

INSIDE MICROSOFT WINDOWS 2000

Figure 5-19
WMI security properties

Conclusion

276

So far, we've examined the overall structure of Windows 2000 and the core
system mechanisms that get the system going, keep it running, and eventually
shut it down. With this foundation laid, we're ready to explore the individual
executive components in more detail, starting with processes and threads.

C HAP T E R S I X

Processes, Threads, and Jobs

In this chapter, we'll explain the data structures and algorithms that deal with
processes, threads, and jobs in Microsoft Windows 2000. The first section focuses
on the internal structures that make up a process. The second section outlines
the steps involved in creating a process (and its initial thread). The internals of
threads and thread scheduling are then described. The chapter concludes with
a description of the job object.

Where relevant performance counters or kernel variables exist, they are
mentioned. Although this book isn't a Win32 programming book, the pertinent
process, thread, and job Win32 functions are listed so that you can pursue addi
tional information on their use.

Because processes and threads touch so many components in Windows 2000,
a number of terms and data structures (such as working sets, objects and handles,
system memory heaps, and so on) are referred to in this chapter but are explained
in detail elsewhere in the book. To fully understand this chapter, you need to
be familiar with the terms and concepts explained in chapters 1 and 2, such as
the difference between a process and a thread, the Windows 2000 virtual address
space layout, and the difference between user mode and kernel mode.

Process Internals
This section describes the key Windows 2000 process data structures. Also listed
are key kernel variables, performance counters, and functions and tools that relate
to processes.

Data Structures
Each Windows 2000 process is represented by an executive process (EPROCESS)
block. Besides containing many attributes relating to a process, an EPROCESS
block contains and points to a number of other related data structures. For
example, each process has one or more threads represented by executive thread

277

INSIDE MICROSOFT WINDOWS 2000

278

(ETHREAD) blocks. (Thread data structures are explained in the section
"Thread Internals" later in this chapter.) The EPROCESS block and its related
data structures exist in system space, with the exception of the process environ
ment block (PEB), which exists in the process address space (because it con
tains information that is modified by user-mode code).

In addition to the EPROCESS block, the Win32 subsystem process (Csrss)
maintains a parallel structure for each Windows 2000 process that executes a
Win32 program. Also, the kernel-mode part of the Wm32 subsystem (Win32k.sys)
has a per-process data structure that is created the first time a thread calls a Win32
USER or GDI function that is implemented in kernel mode.

Figure 6-1 is a simplified diagram of the process and thread data structures.
Each data structure shown in the figure is described in detail in this chapter.

Process
environment

block

Process address space

Thread
environment

block

----------------------------- ----

Process
block

Figure 6-1

System address space

~I Win32 process block I
~ Handle table I

.......
Thread

,. block

Data structures associated with processes and threads

5 I X: Processes, Threads, and Jobs

First let's focus on the process block. (We'll get to the thread block in the
section "Thread Internals" later in the chapter.) Figure 6-2 shows the key fields
in an EPROCESS block.

Kernel process block (or PCB)

Process 10

Parent process 10

Exit status

Create and exit times

PsActiveProcessHead --. Next process block MEPROCESS

Quota block

Memory management information

Exception port

Debugger port

"-
I Primary access token It

'" Handle table II I
Device map

Process environment block

Image filename

Image base address

Process priority class

'" W;o32 pm'~ ::I
"- Job object ,.

Figure 6-2
Structure of an executive process block

279

INSIDE MICROSOFT WINDOWS 2000

280

S I X: Processes, Threads, and Jobs

(continued)

281

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Displaying the Format of an EPROCESS Block continued

282

S I X: Processes, Threads, and Jobs

(continued)

283

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Displaying the Format of an EPROCESS Block continued

284

S I X: Processes, Threads, and Jobs

(continued)

285

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Displaying the Format of an EPROCESS Block continued

286

S I X: Processes, Threads, and Jobs

(continued)

287

INSIDE MICROSOFT WINDOWS 2000

288

EXPERIMENT: Displaying ,the Format of an EPROCESS Block continued

Table 6-1 explains some of the fields in the preceding experiment in more
detail and includes references to other places in the book where you can find more
information about them. As we've said before and will no doubt say again, pro
cesses and threads are such an integral part of Windows 2000 that it's impossible

S I X: Processes, Threads, and Jobs

to talk about them without referring to many other parts of the system. To keep
the length of this chapter manageable, however, we've covered those related
subjects (such as memory management, security, objects, and handles) elsewhere.

Element

Kernel process
(KPROCESS) block

Process identification

Quota block

Virtual address
descriptors (V ADs)

Working set
information

Virtual memory
information

Exception local
procedure call
(LPC) port

Table 6-1 Contents of the EPROCESS Block

Purpose

Common dispatcher object header,
pointer to the process page directory,
list ofkernel thread (KTHREAD) blocks
belongihg to the process, default base
priority, quantum, affinity mask, and total
kernel and user time for the threads in
the process.

Unique process ID, creating process ID,
name of image, being run, window station
process is running on.

Limits on nonpaged pool, paged pool,
and page file usage plus current and peak
process nonpaged and paged pool usage.
(Note: Several processes can share this
structure: all the system processes point
to the single systemwide default quota
block; all the processes in the interactive
session share a single quota block
Winlogon sets up.

Series of data structures that describes the
status of the portions of the address space
that exist in the process.

Pointer to working set list (MMWSL
structure); current, peak, minimum, and
maximum working set size; last trim time;
page fault count; memory priority; outswap
flags; page fault history.

Current and peak virtual size, page file
usage, hardware page table entry for
process page directory.

Interprocess communication channel to
which the process manager sends a
message when one of the process's threads
causes an exception.

Additional
Reference

Thread scheduling
(page 337)

Memory
management
(Chapter 7)

Memory
management
(Chapter 7)

Memory
management
(Chapter 7)

Local procedure
calls (Chapter 3,
page 171)

(continued)

289

INSIDE MICROSOFT WINDOWS 2000

Table 6-1 continued

Element Purpose
Additional
Reference

Debugging LPC port Interprocess communication channel to
which the process manager sends a
message when one of the process's threads
causes a debug event.

Local procedure
calls (Chapter 3,
page 171)

Access token
(ACCESS_TOKEN)

Executive object describing the security
profIle of this process.

Security (Chapter 8)

Handle table Address of per-process handle table. Object handles
(Chapter 3,
page 137)

Device map Address of object directory to resolve
device name references in (supports
multiple users).

Object manager
(Chapter 3)

Process environment
block (PEB)

Image information (base address, version
numbers, module list), process heap
information, and thread-local storage
utilization. (Note: The pointers to the
process heaps start at the fIrst byte after
the PEB.)

Page 312

Win32 subsystem
process block
(W32PROCESS)

Process details needed by the kernel-mode
component of the Win32 subsystem.

290

The kernel process (KPROCESS) block, which is part of the EPROCESS
block, and the process environment block (PEB), which is pointed to by the
EPROCESS block, contain additional details about the process object. The
KPROCESS block (which is sometimes called the PCB, or process control
block) is illustrated in Figure 6-3. It contains the basic information that the
Windows 2000 kernel needs to schedule threads. (Page directories are cov
ered in Chapter 7, and kernel thread blocks are described in more detail later
in this chapter.)

The PEB, which lives in the user process address space, contains infor
mation needed by the image loader, the heap manager, and other Win32 sys
tem DLLs that need to be writable from user mode. (The EPROCESS and
KPROCESS blocks are accessible only from kernel mode.) The PEB is always
mapped at address Ox7FFDFOOO. The basic structure of the PEB is illustrated
in Figure 6-4 and is explained in more detail later in this chapter.

SIX: Processes, Threads, and Jobs

Dispatcher header

" .1 Process page directory ~
"I

Kernel time

User time

Inswap/Outswap list entry
I

" I KTHREAD ~ ••• ,
., "."".""""'~

Process spin lock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

Figure 6-3
Structure of the kernel process block

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

i
'" I Process heap f

4*,~""" m ' ,Q ~~

GDI shared handle table

Operating system version number information

Image version information

Image process affinity mask

Figure 6-4
Fields of the process environment block

291

INSIDE MICROSOFT WINDOWS 2000

292

S I X : Processes, Threads, and Jobs

Kernel Variables
A few of the key kernel global variables that relate to processes are listed in
Table 6-2. These variables are referred to later in the chapter, when the steps
in creating a process are described.

Table 6-2 Process-Related Kernel Variables

Variable

PsActiveProcessHead
PsldleProcess
PslnitialSystemProcess

PspCreateProcessNotifyRoutine

Type

Queue header

EPROCESS
Pointer to
EPROCESS

Array of pointers

PspCreateProcessNotifyRoutineCount DWORD

PspLoadlmageNotifyRoutine

PspLoadlmageNotifyRoutineCount

PspCidTable

Performance Counters

Array of pointers

DWORD

Pointer to
HANDLE_TABLE

Description

List head of process blocks
Idle process block
Pointer to the process block of
the initial system process
(process ID 2) that contains
the system threads
Array of pointers to routines
to be called on process
creation and deletion
(maximum of eight)
Count of registered process
notification routines
Array of pointers to routines
to be called on image load
Count of registered image
load notification routines
Handle table for process and
thread client IDs

Wmdows 2000 maintains a number of counters with which you can track the pro
cesses running on your system; you can retrieve these counters programmatically
or view them with the Performance tool. Table 6-3 lists the performance counters
relevant to processes (except for memory management and I/O-related counters,
which are described in chapters 7 and 9, respectively).

293

INSIDE MICROSOFT WINDOWS 2000

Table 6-3 Process-Related Performance Counters

Object: Counter

Process: % Privileged Time

Process: % Processor Time

Process: % User Time

Process: Elapsed Time

Process: ID Process

Process: Creating Process ID

Process: Thread Count

Process: Handle Count

Function

Describes the percentage of time that the
threads in the process have run in kernel
mode during a specified interval.

Describes the percentage of CPU time that
the threads in the process have used during
a specified interval. This count is the sum
of% Privileged Time and % User Time.

Describes the percentage of time that the
threads in the process have run in user
mode during a specified interval.

Describes the total elapsed time in seconds
since this process was created.

Returns the process ID. This ID applies
only while the process exists because
process IDs are reused.

Returns the process ID of the creating
process. This value isn't updated if the
creating process exits.

Returns the number of threads in the
process.

Returns the number of handles open in
the process.

Relevant Functions

294

For reference purposes, some of the Win32 functions that apply to processes
are described in Table 6-4. For further information, consult the Win32 API
documentation in the MSDN Library.

Table 6-4 Process-Related Functions

Function

CreateProcess

CreateProcessAs User

CreateProcess WithLogon W

Description

Creates a new process and thread using
the caller's security identification

Creates a new process and thread with
the specified alternate security token

Creates a new process and thread with
the specified alternate security token,
allowing the user profile to be loaded

Function

OpenProcess

ExitProcess

TerminateProcess

FlushlnstructionCache

GetProcessTimes

GetExitCodeProcess

GetCommandLine

GetCurrentProcessld
GetProcess Version

GetStartuplnJo

GetEnvironmentStrings

Get Environment Variable
Get/SetProcessShutdownParameters

GetGuiResources

Relevant Tools

S I X: Processes, Threads, and Jobs

Description

Returns a handle to the specified
process object

Ends a process and notifies all attached
DLLs

Ends a process without notifying the
DLLs

Empties the specified process's
instruction cache

Obtains a process's timing information,
describing how much time the process
has spent in user and kernel mode

Returns the exit code for a process,
indicating how and why the process
shut down

Returns a pointer to the command-line
string passed to the current process

Returns the ID of the current process

Returns the major and minor versions
of the Windows version on which the
specified process expects to run

Returns the contents of the START
UPINFO structure specified during
CreateProcess
Returns the address of the environ
ment block

Returns a specific environment variable

Defines the shutdown priority and
number of retries for the current
process

Returns a count of USER and GDI
handles .

A number of tools for viewing (and modifying) processes and process informa
tion are available. These tools are included within Windows 2000 itself and
within the Windows 2000 Support Tools, Windows 2000 debugging tools,

295

INSIDE MICROSOFT WINDOWS 2000

Windows 2000 resource kits, the Platform SDK, and the DDK. The trouble is,
you can't get all the information you need with one single tool. However, most
information is available from more than one tool, but the data is sometimes
identified by different names (and sometimes assigned different values) in each
of the tools. To help you determine which tool to use to get the basic process
information you need, consult Table 6-5. This table isn't a comprehensive list
of all the information available about a process-for example, you'll find out what
tools you can use to gather memory management information in Chapter 7-
but if you need the basics, you'll find them here.

Process ID

Image Name

Total CPU Time

% CPU Time

Handle Count

Thread Count

View Priority Class

% User Time

% Privileged Time

Total User Time

Total Privileged Time

Quota Limits

Elapsed Time

Creating Process

Current Directory

Command Line

Security ID

./

./

./

./

./

./

./

Table 6-5 Process-Related Tools

./

./

./

./

./

./

./

./

./

./

./

./

./

./

./

./

./

./
./
./

./

./

./

./

./

./

./

./ ./

./ ./

./

./

./

./

./

./

./

./

The following experiments illustrate the various views of process infor
mation you can obtain with some of these tools.

296

S I X : Processes, Threads, and Jobs

(continued)

297

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing Process Information with Task Manager continued

298

S I X: Processes, Threads, and Jobs

(continued)

299

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing the Process Tree continued

300

S I X : Processes, Threads, and Jobs

(continued)

301

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing Process Details with Process Viewer continued

302

S I X : Processes, Threads, and Jobs

0063c000 ObjectTable: ff7063c8 TableSize:
Image: Explorer.exe
VadRoot ff70d6e8 Clone 0 Private 229. Modified 236. Locked 0.
FF7041DC MutantState Signalled OwningThread 0
Token e1462030

QuotaPoolUsage[NonPagedPool] 3824
Working Set Sizes (now,min,max) (727, 20, 45) (2908KB, 80KB, l80KS)
PeakWorkingSetSize 757
VirtualSize 29 Mb
PeakVirtualSize 31 Mb
PageFaultCount 1396
MemoryPriority FOREGROUND

8

303

INSIDE MICROSOFT WINDOWS 2000

Flow of CreateProcess

304

So far in this chapter, you've seen the structures that are part of a process and
the API functions with which you (and the operating system) can manipulate
processes. You've also found out how you can use tools to view how processes
interact with your system. But how did those processes come into being, and
how do they exit once they've fulfilled their purpose? In the following sections,
you'll discover how a Win32 process comes to life.

A Win32 process is created when an application calls one of the process
creation functions, such as CreateProcess, CreateProcessAsUser, or CreateProcess
WithLogon W Creating a Win32 process consists of several stages carried out in
three parts of the operating system: the Win32 client-side library Kernel32.dll,
the Windows 2000 executive, and the Win32 subsystem process (Csrss). Because
of the multiple environment subsystem architecture of Windows 2000, creating
a Windows 2000 executive process object (which other subsystems can use) is
separated from the work involved in creating a Win32 process. So, although the
following description of the flow of the Wm32 CreateProcess function is compli
cated, keep in mind that part of the work is specific to the semantics added by the
Wm32 subsystem as opposed to the core work needed to create a Windows 2000
executive process object.

The following list summarizes the main stages of creating a process with
the Win32 CreateProcess function. The operations performed in each stage are
described in detail in the subsequent sections.

1. Open the image file (.exe) to be executed inside the process.

2. Create the Windows2000 executive process object.

3. Create the initial thread (stack, context, and Windows 2000
executive thread object).

4. NotifY the Win32 subsystem of the new process so that it can set up
for the new process and thread.

5. Start execution of the initial thread (unless the CREATE_
SUSPENDED flag was specified).

6. In the context of the new process and thread, complete the initiali
zation of the address space (such as load required DLLs) and begin
execution of the program.

Figure 6-5 shows an overview of the stages Windows 2000 follows to create
a process.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 6-5

Creating
process

Open EXE and
create selection

object

Win32
subsystem

The main stages of process creation

S I X: Processes, Threads, and Jobs

Stage 6

Before describing these stages in more detail, we should mention a few
notes that pertain to all the stages.

iii In CreateProcess, the priority class for the new process is specified
as independent bits in the CreationFtags parameter. Thus, you can
specify more than one priority class for a single CreateProcess call.
Wmdows 2000 resolves the question of which priority class to assign
to the process by choosing the lowest-priority class set.

305

INSIDE MICROSOFT WINDOWS 2000

• If no priority class is specified for the new process, the priority class
defaults to Normal unless the priority class of the process that created
it is Idle or Below Normal, in which case the priority class of the new
process will have the same priority as the creating class.

• If a Real-time priority class is specified for the new process and the
process's caller doesn't have the Increase Scheduling Priority privilege,
the High priority class is used instead. In other words~ CreateProcess
doesn't fail just because the caller has insufficient privileges to create
the process in the Real-time priority class; the new process just won't
have as high a priority as Real-time.

• All windows are associated with desktops, the graphical representation
of a workspace. If no desktop is specified in CreateProcess, the process
is associated with the caller's current desktop.

Enough background. The steps of CreateProcess are described in detail in
the following sections.

NOT E Many steps of CreateProcess are related to the setup of the
process virtual address space and hence refer to many memory man
agement terms and structures, which are defined in Chapter 7.

Stage 1: Opening the Image to Be Executed

306

As illustrated in Figure 6-6, the first stage in CreateProcess is to find the appro
priate Win32 image that will run the executable file specified by the caller and
to create a section object to later map it into the address space of the new pro
cess. If no image name is specified, the first token of the command line (defined
to be the first part of the command-line string ending with a space or tab that
is a valid file specification) is used as the image filename.

If the executable file specified is a Win32 .exe, it is used directly. Ifit's not
a Win32 .exe (for example, ifit's an MS-DOS, a Win16, a POSIX, or an OS/2
application), CreateProcessgoes through a series of steps to find a Win32 support
image to run it. This process is necessary because non-Win32 applications aren't
run directly-Windows 2000 instead uses one of a few special support images
that in turn are responsible for actually running the non-Win32 program. For
example, if you attempt to run a POSIX application, CreateProcess identifies it
as such and changes the image to be run on the Win32 executable file Posix.exe.
If you attempt to run an MS-DOS or a Win16 executable, the image to be run

S I X: Processes, Threads, and Jobs

Run Cmd.exe

"
Run Ntvdm.exe

t
Use .exe directly

/"
or Win32

,v,,,,,,-u,",,,, .exe, .
. com,or~

Run Os2.exe Run Posix.exe Run Ntvdm.exe

Figure 6~6
Choosing a Win32 image to activate

becomes the Win32 executable Ntvdm.exe. In short, you can't directly create
a process that is not a Win32 process. If Windows 2000 can't find a way to
resolve the activated image as a Win32 process (as shown in Table 6-6),
CreateProcess fails.

Table 6-6 Decision Tree fQrStage 1 of CreateProcess

If the image is alan

POSIX executable file

OS/2 l.x image

MS-DOS application with
an .exe, a .com, or a: .pif
extension

Win16 application

Command procedure
MS-DOS application with
a .bat or a .cmd extension

This image
will run And this will happen

Posix.exe CreateProcess restarts Stage 1

Os2.exe CreateProcess restarts Stage 1

Ntvdm.exe CreateProcess restarts Stage 1

Ntvdm.exe

Cmd.exe

CreateProcess restarts Stage 1

CreateProcess restarts Stage 1

307

INSIDE MICROSOFT WINDOWS 2000

308

Specifically, the decision tree that CreateProcess goes through to run an
image is as follows:

• If the image is an OS/2 Lx application, the image to be run changes
to Os2.exe and CreateProcess restarts at Stage 1.

• If the image is an MS-DOS application with an .exe, a .com, or a
.pif extension, a message is sent to the Win32 subsystem to check
whether an MS-DOS support process (Ntvdm.exe, specified in the
registry value HKLM\SYSTEM\CurrentControISet\Control\WOW\
cmdline) has already been created for this session. If a support process
has been created, it is used to run the MS-DOS application (the
Win32 subsystem sends the message to the VDM [Virtual DOS
Machine] process to run the new image) and CreateProcess returns.
If a support process hasn't been created, the image to be run changes
to Ntvdm.exe and CreateProcess restarts at Stage 1.

• If the file to run has a . bat or a .cmd extension, the image to be
run becomes Cmd.exe, the Windows 2000 command prompt, and
CreateProcess restarts at Stage 1. (The name of the batch file is passed
as the first parameter to Cmd.exe.)

• If the image is a Win16 (Windows 3.1) executable, CreateProcess must
decide whether a new VDM process must be created to run it or
whether it should use the default systemwide shared VDM process
(which might not yet have been created). The CreateProcess flags
CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_
WOW _ VDM control this decision. If these flags aren't specified, the
registry value HKLM\SYSTEM\CurrentControISet\Control\WOW\
DefaultSeparateVDM dictates the default behavior. If the application
is to be run in a separate VDM, the image to be run changes to
the value of HKLM\SYSTEM\CurrentControISet\Control\WOW\
wowcmdline and CreateProcess restarts at Stage 1. Otherwise, the
Win32 subsystem sends a message to see whether the systemwide
VDM process exists and can be used. (If the VDM process is running
on a different desktop or isn't running under the same security as
the caller, it can't be used and a new VDM process must be created.)
If a systemwide VDM process can be used, the Win32 subsystem
sends a message to it to run the new image and CreateProcess returns.
If the VDM process hasn't yet been created (or if it exists but can't
be used), the image to be run changes to the VDM support image
and CreateProcess restarts at Stage 1.

S I X: Processes, Threads, and Jobs

At this point, CreateProcess has successfully opened a valid Windows 2000
executable file and created a section object for it. The object isn't mapped into
memory yet,but it is open. Just because a section object has been successfully
created doesn't mean that the file is a valid Win32 image, however; it could be
a DLL or a POSIX executable. If the file is a POSIX executable, the image to
be run changes to Posix.exe and CreateProcess restarts from the beginning of
Stage 1. If the file is a DLL, CreateProcessfails.

Now that CreateProcess has found a valid Win32 executable, it looks in the
registry under HKLM\SOFTWARE\Microsoft\ Windows N1\CurrentVersion\
Image File Execution Options to see whether a subkey with the filename and
extension of the executable image (but without the directory and path infor
mation-for example, Image.exe) exists there. Ifit does, CreateProcess looks for
a value named Debugger for that key. If the value isn't null, the image to be run
becomes the string in that value and CreateProcess restarts at Stage 1.

TIP You can take advantage of this CreateProcess behavior and de
bug the startup code of Windows 2000 service processes before they
start rather than attach the debugger after starting the service, which
doesn't allow you to debug the startup code. If you're feeling mis
chievous, you can also exploit this behavior to confuse people by
causing another file to be run rather than the one they specified.

Stage 2: Creating the Windows 2000 Executive Process Object
At this point, CreateProcess has opened a valid Wm32 executable file and created
a section object to map it into the new process address space. Next it creates a
Wmdows 2000 executive process object to run the image by calling the internal
system function NtCreateProcess. Creating the executive process object (which
is done by the creating thread) involves the following substages:

A. Setting up the EPROCESS block

B. Creating the initial process address space

C. Creating the kernel process block

D. Concluding the setup of the process address space

E. Setting up the PEB

F. Completing the setup of the executive process object

NOT E The only time there won't be a parent process is during
system initialization. After that point, a parent process is always required
in order to provide a security contextfor the new process.

309

INSIDE MICROSOFT WINDOWS 2000

310

Stage 2A: Setting Up the EPROCESS Block
This substage involves five steps:

1. Allocate and initialize the Windows 2000 EPROCESS block.

2. Set the new process's quota block to the address of its parent
process's quota block, and increment the reference count for the
parent's quota block.

3. Store the parent process's process ID and session ID (if applicable)
in the InheritedFrom UniqueProcessld field in the new process object.

4. Set the new process's exit status to STATUS_PENDING.

5. Create the process's primary access token (a duplicate of its parent's
primary token). New processes inherit the security profile of their
parent. If the CreateProcessAsUser function is being used to specifY a
different access token for the new process, the token is then changed
appropriately.

Stage 2B: Creating the Initial Process Address Space
The initial process address space consists of three pages:

II Page directory

II Hyperspace page

II Working set list

To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map
the three initial pages.

2. To account for these new pages, the value 3 is deducted from the
kernel variable MmTotalCommittedPages and added to MmProcess
Commit.

3. The systemwide default process minimum working set size
(PsMinimumWorkingSet) is deducted from MmResident
A1JailablePages.

4. The page table pages for the nonpaged portion of -system space and
the system cache are mapped into the process.

5. The process minimum and maximum working set size are set to
the values of PsMinimum WorkingSet and, PsMaximum WorkingSet,
respectively.

S I X: Processes, Threads, and Jobs

Stage 2C: Creating the Kernel Process Block
The next stage of CreateProcess is the initialization of the KPROCESS block,
which contains a pointer to a list of kernel threads. (The kernel has no knowl
edge of handles, so it bypasses the object table.) The kernel process block also
points to the process's page table directory (used to keep track of the process's
virtual address space), the total time the process's threads have executed, the
process's default base-scheduling priority (which starts as Normal, or 8, unless
the parent process was set to Idle or Below Normal, in which case the setting
is inherited), the default processor affinity for the threads in the process, and
the initial value of the process default quantum, which is taken from the value
of PspForegroundQJtantum[OJ, the first entry in the systemwide quantum array.

NOT E The default initial quantum differs between Windows 2000
Professional and Windows 2000 Server. For more information on
thread quantums, turn to their discussion in the section "Thread
Scheduling" on page 337.

Stage 20: Concluding the Setup of the Process Address Space
Setting up the address space for a new process is somewhat complicated, so let's
look at what's involved one step at a time. To get the most out of this section,
you should have some familiarity with the internals of the Windows 2000
memory manager, which are described in Chapter 7.

1. The virtu:al memory manager sets the value of the process's last trim
time to the current time. The working set manager (which runs in
the context of the balance set manager system thread) uses this value
to determine when to initiate working set trimming.

2. The page frame number (PFN) database for the page directory as well
as the page directory entry, which maps hyperspace, are initialized.

3. The memory manager initializes the process's working set list-page
faults can now betaken.

4. The major and minor version numbers are copied from the executable
file to the. EPROCESS block.

S. The section (created when the image file was opened) is now.mapped
into the new process's address space, and the process section base
address is set to the base address of the image.

6. Ntdll.dll is mapped into the process.

7. The systemwide national language support (NLS) tables are mapped
into the process's address space.

311

INSIDE MICROSOFT WINDOWS 2000

NOT E POSIX processes clone the address space of their parents,
so they don't have to go through these steps to create a new address
space. In the case of PO SIX applications, the new process's section
base address is set to that of its parent process and the parent's PEB
is cloned for the new process.

8. If the parent process was contained in a job, the new process is added
to the job. (Jobs are described at the end of this chapter.)

9. CreateProcess inserts the new process block at the end of the
Windows 2000 list of active processes (PsActiveProcessHead).

Stage 2E: Setting Up the PEB
CreateProcess allocates a page for the PEB and initializes a number of fields,
which are described in Table 6-7.

Table 6-7 Initial Values of the Fields of the PEB

Field

ImageBaseAddress
NumberOjProcessors
NtGlobalFlag

CriticalSection Timeout
HeapSegmentReserve
HeapSegmentCommit

HeapDeCommitTotalFreeThreshold
HeapDeCommitFreeBlockThreshold
NumberOjHeaps
MaximumNumberOjHeaps
ProcessHeaps

OSMajor Version
OSMinor Version
OSBuildNumber

OSPlatjormld

Initial Value

Base address of section

KeNumberProcessors kernel variable

NtGlobalFlag kernel variable

MmCriticalSectionTimeout kernel variable

MmHeapSegmentReserve kernel variable

MmHeapSegmentCommit kernel variable

MmHeapDeCommitTotalFreeThreshold kernel variable

MmHeapDeCommitFreeBlockThreshold kernel variable

o
(Size of a page - size of a PEB) / 4

First byte after PEB

NtMajorVersion kernel variable

NtMinor Version kernel variable

NtBuitdNumber kernel variable & Ox3FFF

2

If the image file specifies explicit Win32 version values, this information
replaces the initial values shown in Table 6-7. The mapping from image version
information fields to PEB fields is described in Table 6-8.

312

S I X: Processes, Threads, and Jobs

Table 6-8 Win32 Replacements for Initial PEB Values

Field Name Value Taken from Image Header

OSMajor Version

OSMinor Version

OSBuildNumber

OSPlatj'ormld

OptionalHeader.Win32Version Value & OxFF

(OptionalHeader.Win32VersionValue » 8) & OxFF

(OptionalHeader.Win32VersionValue» 16) & Ox3FFF

(OptionalHeader.Win32VersionValue» 30) 1\ Ox2

Stage 2F: Completing the Setup of the Executive Process Object
Before the handle to the new process can be returned, a few final setup steps
must be completed:

1. The process handle table is initialized; if the inherit handles flag is set
for the parent process, any inheritable handles are copied from the
parent's object handle table into the new process. (For more infor
mation about object handle tables, see Chapter 3.)

2. If you're running Windows 2000 Professional·and the image header
specifies IMAGE_FILE_AGGRESIVE_WS_TRIM, the PS_WS_
TRIM_FROM....:EXE_HEADER flag is set in the process block. This
causes the working set manager to aggressively steal pages from the
process. If you're running Windows 2000 Professional ona small
memory x86 system, the PS_WS_TRIM_BACKGROUND_ONLY_
APP flag is set in the process block, which limits the aggressive trim
ming to processes that aren't·associated with the foreground window.
These working set flags are not set for processes created on systems
running Windows 2000 Server.

3. If the image header characteristics IMAGE_FILE_UP_SYSTEM_
ONLY flag is set (indicating that the image can run only on a
uniprocessor system), a single CPU is chosen for all the threads in
this new process to run on. This choosing process is done by simply
cycling through the available processors-"--each time this type of image
is run, the next processor is used. In this way,these types of images
are spread out across the processors evenly.

4. If the image specifies an explicit processor affinity mask (for example,
a field in the configuration header), this value IS copied to the PEB
and later set as the default process affinity mask.

313

INSIDE MICROSOFT WINDOWS 2000

5. If the parent process had an Event Log section in its PEB, the Event
Log is copied to the new process and a handle is duplicated to the
section for the new process.

6. If systemwide auditing of processes is enabled (which is accomplished
through the Group Policy snap-in), .the process's creation is written
to the Audit Log.

7. The process's creation time is set, the handle to the new process is
returned to the caller (CreateProcess in Kernel32.dll), and execution
returns to the original caller of CreateProcess.

Stage 3: Creating the Initial Thread and Its Stack and Context
At this point, the Windows 2000 executive process object is completely set up.
It still has no thread, however, so it can't do anything yet. Before the thread can
be created, it needs a stack and a context in which to run, so these are set up
now. The stack size for the initial thread is taken from the image-there's no
way to specify another size.

Now the initial thread can be created, which is done by calling NtCreate
Thread. (For a detailed description of how a thread is created, see the section
"Flow of Create Thread" on page 333.) The thread parameter (which can't be
specified in CreateProcess but can be specified in Create Thread) is the address
of the PEB. This parameter will be used by the initialization code that runs in
the context of this new thread (as described in Stage 6). However, the thread
won't do anything yet-it is created in a suspended state and isn't resumed until
the process is completely initialized (as described in Stage 5).

Stage 4: Notifying the Win32 Subsystem About the New Process
After all the necessary executive process and thread objects have been created,
Kernel32.dll sends a message to the Win32 subsystem so that it can set up for
the new process and thread. The message includes the following information:

314

III Process and thread handles

III Entries in the creation flags

III ID of the process's creator

III Flag indicating whether the process belongs to a Win32 application
(so that Csrss can determine whether or not to show the startup
cursor)

S I X: Processes, Threads, and Jobs

The Win32 subsystem performs the following steps when it receives this
message:

1. CreateProcess duplicates a handle for the process and thread. In this
step, the usage count of the process and the thread is incremented
from 1 (set at creation time) to 2.

2. If a process priority class isn't specified, ·CreateProcess sets it according
to the algorithm described on page 306.

3. The Csrss process block is allocated.

4. The new process's exception port is set to be the general function
port for the Win32 subsystem so that the Win32 subsystem will
receive a message when an exception occurs in the process. (For
further information on exception handling, see Chapter 3.)

5. If the process is being debugged (that is, if it is attached to a debugger
process), the process debug port is set to the Win32 subsystem's
general function port. This setting ensures that Windows 2000 will
send debug events that occur in the new process (such as thread
creation and deletion, exceptions, and so on) as messages to the
Win32 sU,bsystem so that it can then dispatch the events to the process
that is acting as the n~w process's debugger.

6. The Csrss thread block is allocated and initialized.

7. CreateProcessinsertsthe thread in the list of threads for the process.

8. The count of processes in this session is incremented.

9. The process shutdown level is set to x280 (the default process shut
down level-see SetProcessShutdownParameters in the MSDN Library
documentation for more information).

10. The new process block is inserted into the list ofWin32 subsystem
wide processes.

11. The per-process data structure used by the kernel-mode part of
the Win32 subsystem (W32PROCESS structure) is allocated and
initialized.

315

INSIDE MICROSOFT WINDOWS 2000

12. The application start cursor is displayed. This cursor is the familiar
arrow with an hourglass attached-the way that Windows 2000 says
to the user, "I'm starting something, but you can use the cursor in
the meantime." If the process doesn't make a GUI call after 2 sec
onds, the cursor reverts to the standard pointer. If the process does
make a GUI call in the allotted time, CreateProcess waits 5 seconds
for the application to show a window. After that time, CreateProcess
will reset the cursor again.

Stage 5: Starting Execution of the Initial Thread
At this point, the process environment has been determined, resources for its
threads to use have been allocated, the process has a thread, and the Wm32 sub
system knows about the new process. Unless the caller specified the CREATE_
SUSPENDED flag, the initial thread is now resumed so that it can start run
ning and perform the remainder of the process initialization work that occurs
in the context of the new process (Stage 6).

Stage 6: Performing Process Initialization in the Context of the
New Process

316

KilnitializeContextThread, which is called by KelnitializeThread, builds the
initial context of the thread and the thread's kernel stack. The new thread begins
life running the kernel-mode thread startup routine KiThreadStartup. (For a
more detailed description of the thread startup steps leading to this, see the
section "Flow of Create Thread" on page 333.) The KiThreadStartup routine
performs the following steps:

1. Lowers the IRQL level from DPC/dispatch level to APC
(asynchronous procedure call) level.

2. Enables working set expansion.

3. Queues a user-mode APC to the new thread to execute the user
mode thread startup routine LdrlnitializeThunk inside Ntdll.dll.

4. Lowers the IRQL level to 0, causing the APC to fire and
LdrlnitializeThunk to be called. The LdrlnitializeThunk routine
initializes the loader, heap manager, NLS tables, thread-local storage
(TLS) array, and critical section structures. It then loads any required
DLLs and calls the DLL entry points with the DLL_PROCESS_
ATTACH function code.

S I X: Processes, Threads, and Jobs

5. If the process being created is a debuggee, all threads in the process
are suspended. (Threads might have been created during step 3.) A
create process message is then sent to the process's debug port (the
Win32 subsystem function port because this is a Win32 process) so
that the subsystem can deliver the process startup debug event
(CREATE_PROCESS_DEBUG_INFO) to the appropriate debugger
process. KiThreadStartup then waits for the Win32 subsystem to get
the reply from the debugger (via the ContinueDebugEvent function).
When the Win32 subsystem replies, all the threads are resumed.

6. Finally, the image begins execution in user mode. This is done by
creating a trap frame that specifies the previous mode as user and the
address to return to as the main entry point of the image. Thus,
when the trap that caused the thread to start execution in kernel
mode is dismissed, the program begins running in user mode at the
right place.

Thread Internals
Now that we've dissected processes, let's turn our attention to the structure of
a thread. Unless explicitly stated otherwise, you can assume that anything in this
section applies to both normal user-mode threads and kernel-mode system
threads (described in Chapter 3).

Data Structures
At the operating system level, a Windows 2000 thread is represented by an
executive thread (ETHREAD) block, which is illustrated in Figure 6-7. The
ETHREAD block and the structures it points to exist in the system address space,
with the exception of the thread environment block (TEB), which exists in the
process address space. In addition, the Win32 subsystem process (Csrss) main
tains a parallel structure for each thread created in a Win32 process. Also, for
threads that have called a Win32 subsystem USER or GDI function, the kernel
mode portion of the Win32 subsystem (Win32k.sys) maintains a per-thread data
structure (called the W32THREAD structure) that the ETHREAD block
points to.

317

INSIDE MICROSOFT WINDOWS 2000

318

KTHREAD ,. TEB

Create and exit times

Process ID

'" EPROCESSI

Thread start address

, I Access token I
Impersonation information

LPC message information

Timer information

I Pending 1/0 requests I
Figure 6-7
Structure of the executive thread block

Most of the fields illustrated in Figure 6-7 are self-explanatory. The first
field is the kernel thread (KTHREAD) block. Following that are the thread
identification information, the process identification information (including

S I X: Processes, Threads, and Jobs

a pointer to the owning process so that its environment information can be
accessed), security information in the form of a pointer to the access token and
impersonation information, and finally, fields relating to LPC messages and
pending I/O requests. As you can see in Table 6-9, some of these key fields are
covered in more detail elsewhere in this book.

Element

KTHREAD
block
Thread time
information
Process
identification
Start address
Impersonation
information
LPC
information
I/O
information

Table 6-9 Key Contents of the Executive Thread Block

Description

See Table 6-10

Thread create and exit time

Process ID and pointer to EPROCESS block
of the process that the thread belongs to
Address of thread start routine
Access token and impersonation level (if the
thread is impersonating a client)
Message ID that the thread is waiting for and
address of message
List of pending I/O request packets (IRPs)

Additional Reference

Page 320

Security (Chapter 8)

Local procedure calls
(Chapter 3, page 171)
I/O system (Chapter 9)

For more details 'on the internal structure of an ETHREAD block, you can
use the kernel debugger !threadfields or !kdex2x86.strct ethread command to dis
play the offsets in hexadecimal for almost every field in the structure. Although
many of the field names are self-explanatory, the output doesn't give the data
type of the fields, nor does it show the format of the structures that are included
within or pointed to by the ETHREAD block.

Let's take a closer look at two of the key thread data structures referred
to above: the KTHREAD block and the TEB. The KTHREAD block contains
the information that the Windows 2000 kernel needs to access to perform thread
scheduling and synchronization on behalf of running threads. Its layout is illus
trated in Figure 6-8.

319

INSIDE MICROSOFT WINDOWS 2000

Dispatcher header

Total user time

Total kernel time

'" Kernel stack information I
...

System service table I
Thread-scheduling information

Trap frame

Thread-local storage array I
Synchronization information

List of pending APCs

Timer block and wait block

List of objects thread is waiting on

TEB

Figure 6-8
Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 6-10.

Element

Dispatcher header

Execution time

Pointer to kernel
stack information
Pointer to system
service table

Scheduling
information

320

Table 6-10 Key Contents of the KTHREAD Block

Description

Because the thread is an object that
can be waited on, it starts with a
standard kernel dispatcher object header.

Total user and kernel CPU time.

Base and upper address of the kernel stack.

Each thread starts out with this field
pointing to the main system service table
(KeServiceDescriptorTable). When a thread
first calls a Win32 GUI service, its system
service table is changed to one that includes
the GDI and USER services in Win32k.sys.

Additional Reference

Dispatcher objects
(Chapter 3, page 158)

Memory management
(Chapter 7)
System service dispatching
(Chapter 3, page 121)

Base and current priority, quantum, affinity Thread scheduling
mask, ideal processor, scheduling state, (page 337)
freeze count, and suspend count.

Element

Wait blocks

Wait information

Mutant list

APC queues

Timer block

Queue list

Pointer to TEB

S I X: Processes, Threads, and Jobs

Description

The thread block contains four built-in
wait blocks so that wait blocks don't have
to be allocated and initialized each time
the thread waits on something. (One wait
block is dedicated to timers.)

List of objects the thread is waiting on,
wait reason, and time at which the thread
entered the wait state.

List of mutant objects the thread owns.

List of pending user-mode and kerne1-
mode APCs, and alertable flag.

Built-in timer block (also a corresponding
wait block).

Pointer to queue object that the thread is
associated with.

Thread ID, TLS information, PEB pointer,
and GDI and OpenGL information.

Additional Reference

Synchronization
(Chapter 3, page 134)

Synchronization
(page 134)

Synchronization
(page 134)

APC queues (Chapter 3,
page Ill)

Synchronization
(page 134)

(continued)

321

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures continued

322

S I X: Processes, Threads, and Jobs

(continued)

323

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures continued

324

S I X: Processes, Threads, and Jobs

(continued)

325

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures continued

326

S I X: Processes, Threads, and Jobs

The TEB, illustrated in Figure 6-9, is the only data structure explained
in this section that exists in the process address space (as opposed to the sys
tem space).

The TEB stores context information for the image loader and various
Win32 DLLs. Because these components run in user mode, they need a data
structure writable from user mode. That's why this structure exists in the pro
cess address space instead of in the system space, where it would be writable only
from kernel mode. You can find the address of the TEB with the kernel debugger
!thread command.

327

INSIDE MICROSOFT WINDOWS 2000

Exception list

Stack base

Stack limit

... Subsystem thread information block (TIS) I
--"" Fiber information I ,

Thread 10

Active RPC handle

... PES

LastError value

Count of owned critical sections

Current locale

User32 client information

GDI32 information

OpenGL information

TLS array

... Winsock data I

Figure 6·9
Fields of the thread environment block

328

S I X: Processes, Threads, and Jobs

Kernel Variables
As with processes, a number of Windows 2000 kernel variables control how threads
run. Table 6-11 shows the kernel-mode kernel variables that relate to threads.

Table 6-11 Thread-Related Kernel Variables

Variable Type

PspCreateThreadNotifyRoutine Array of
pointers

PspCreateThreadNotifyRoutineCount DWORD

PspCreateProcessNotifyRoutine Array of
pointers

PspCreate ProcessNotifyRoutineCount DWORD

PspCidTable Handle
table

Performance Counters

Description

Array of pointers to routines to be
called on during thread creation and
deletion (maximum of eight).
Count of registered thread -notification
routines.
Array of pointers to routines to be
called on during process creation and
deletion (maximum of eight).
Count of registered process
notification routines.
Handle table that stores process and
thread objects. Using a thread's or
process's handle value as its thread or
process ID guarantees uniqueness.

Most of the key information in the thread data structures is exported as perfor
mance counters,which are listed in Table 6-12. You can extract much information
about the internals of a thread just by using the Performance tool in Windows 2000.

Table 6-12 Thread";Related Performance Counters

Object: Counter

Process: Priority Base

Thread: % Privileged Time

Function

Returns the current base priority of the process. This is
the starting priority for threads created within this process.

Describes the percentage of time that the thread has run
in kernel mode during a specified interval.

329

INSIDE MICROSOFT WINDOWS 2000

Table 6-12 continued

Object: Counter Function

Thread: % Processor Time Describes the percentage of CPU time that the thread has
used during a specified interval. This count is the sum of
% Privileged Time and % User Time.

Thread: % User Time

Thread: Context Switches/Sec

Thread: Elapsed Time

Describes the percentage of time that the thread has run
in user mode during a specified interval.
Returns the number of context switches per second that
the system is executing. The higher this number, the more
threads of an equal priority are attempting to execute.
Returns the amount of CPU time (in seconds) that the
thread has consumed.

Thread: ID Process Returns the process ID of the thread's process. This ID is
valid only during the process's lifetime because process
IDs are reused.

Thread: ID Thread

Thread: Priority Base

Thread: Priority Current
Thread: Start Address

Thread: Thread State

Thread: Thread Wait Reason

Relevant Functions

Returns the thread's thread ID. This ID is valid only dur
ing the thread's lifetime because thread IDs are reused.
Returns the thread's current base priority. This number
might be different from the thread's starting base priority.
Returns the thread's current dynamic priority.
Returns the thread's starting virtual address (Note: This
address will be the same for most threads.)

Returns a value from 0 through 7 relating to the current
state of the thread.
Returns a value from 0 through 19 relating to the reason
why the thread is in a wait state.

Table 6-13 shows the Win32 functions for creating and manipulating threads. This
table doesn't include functions that have to do with thread scheduling and pri
orities-those are included in the section "Thread Scheduling" later in this chapter.

330

Table 6~13 Win32 Thread Functions

Function

Create Thread

CreateRemoteThread

ExitThread

TerminateThread

GetExitCodeThread

GetThreadTimes

Description

. Creates a new thread

Creates a thread in another process
Ends execution of a thread normally
Terminates a thread
Gets another thread's exit code

Returns another thread's timing information

Function

Get/SetThreadContext

GetThreadSelector Entry

Relevant Tools

S I X: Processes, Threads, and Jobs

Description

Returns or changes a thread's CPU registers

Returns another thread's descriptor table entry
(applies only to x86 systems)

Besides the Performance tool, several other tools expose various elements of the
state of Windows 2000 threads. (The tools that show thread-scheduling infor
mation are listed in the section "Thread Scheduling" on page 337.) These tools
are itemized in Table 6-14.

NOT E To display thread details with Tlist, you must type tlist xxx,
where xxx is a process image name or window title. (Wildcards are
supported.)

Table 6-14 Thread-Related Tools and Their Functions

c,'- {000 ~ ~e~ ~ \\X'~e
7;.0

00.0\0 «e~<':' «--i\e «--i\0 «~,'-'O- ~\Ge
0'0 -<,.\\'0'- 'f..'V .

Thread ID ./ ./ ./ ./ ./

Actual start address ./ ./ ./ ./ ./

Win32 start address ./ ./

Current address ./ ./ ./ ./

Number of context switches ./ ./ ./ ./

Total user time ./ ./ ./

Total privileged time ./ ./ ./

Elapsed time ./ ./ ./

Thread state ./ ./ ./ ./

Reason for wait state ./ ./ ./ ./

Last error ./
Security descriptor ./

Access token ./

Percentage of CPU time ./ ./

Percentage of user time ./ ./ ./

Percentage of privileged time ./ ./ ./

Address of TEB ./

Address of ETHREAD ./

Objects waiting on ./

331

INSIDE MICROSOFT WINDOWS 2000

332

808e9d60 SynchronizationEvent
Not imersonati ng Objects being waited on

Owning Process 81b44880----- Address of EPROCESS for owning process
WaitTime (seconds) 953945
Context Swi tch Count 2697 LargeStack
UserTime 0:00:00.0289 Actual thread

KernelTime 0:00:04.0644 start address
Start Address kerna1321BaseProcessStart (0x77e8f268) ____ ... 1
Wi n32 Start Address 0x020d9d98 Address of user thread function
Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0
Pri ori ty 14 BasePri ority 9 Pri orityDecrement 6 DecrementCount

Kernal stack not resident.
13,

1 dEBP RetAddr Args to Chil d
F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl I Ki SwapThreadExit

Priority
information

F7817c50 de011gec 00000001 00000000 00000000 ntoskrnllKeWaitForSingleObject+0x2a0
F7817cc0 de0123f4 00000001 00000000 00000000 wi n32k lxxxSl eepThread+0x23c
F7817d10 de0lf2f0 00000001 00000000 00000000 win32klxxxlnternalGetMessage+0x504
F7817d80 800bab58 00000001 00000000 00000000 wi n32kl NtUserGetMessage+0x58
F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnllKiSystemServiceEndAddress+0x4

S I X: Processes, Threads, and Jobs

Flow of Create Thread
A thread's life cycle starts when a program creates a new thread. The request
filters down to the Windows 2000 executive, where the process manager allo
cates space for a thread object and calls the kernel to initialize the kernel thread
block. The steps in the following list are taken inside the Win32 Create Thread
function in Kernel32.dll to create a Win32 thread. The work that occurs inside
the Windows 2000 executive are substeps of step 3, and the work that occurs
in the context of the new thread are substeps of step 7. Because process crea
tion includes creating a thread, some of the information here is repeated from
the earlier description of the flow of CreateProcess.

1. Create Thread creates a user-mode stack for the thread in the process's
address space.

2. CreateThread initializes the thread's hardware context (CPU
architecture-specific). (For further information on the thread
context block, see the Win32 API reference documentation on the
CONTEXT structure.)

333

INSIDE MICROSOFT WINDOWS 2000

334

3. NtCreateThread is called to create the executive thread object in the
suspended state. The following steps execute in kernel mode inside
the Windows 2000 executive and kernel:

a. The thread count in the process object is incremented.

b. An executive thread block (ETHREAD) is created and initialized.

c. A thread ID is generated for the new thread.

d. The thread's kernel stack is allocated from the nonpaged pool.

e. The TEB is set up in the user-mode address space of the process.

f. The thread start address (KiThreadStartup) is stored on the kernel
stack. (The kernel stack address is stored in the KTHREAD.) The
user's specified Win32 start address is stored in the ETHREAD
block.

g. KelnitializeThread is called to set up the KTHREAD block. The
thread's initial and current base priorities are set to the process's
base priority, and its affinity and quantum are set to that of the
process. This function also sets the initial thread ideal processor
based on the process thread seed (a random number set during
execution of CreateProcess). The seed is then incremented so that
each thread in the process will have a different ideal processor,
assuming the system has more than one. KelnitializeThread next
sets the thread's state to Initialized and initializes the machine
dependent hardware context for the thread, including the context,
trap, and exception frames. The thread's context is set up so that
the thread will start in kernel mode in SwapContext, the context
switch code. SwapContext loads the thread's context from the
thread's kernel stack, which results in the thread starting its execu
tion in the systemwide startup routine KiThreadStartup (described
in step 6a), the function that was stored in the stack by step 3f.

h. Any registered systemwide thread creation notification routines
are called.

i. The thread's access token is set to point to the process access token,
and an access check is made to determine whether the caller has
the right to create the thread. This check will a.lways succeed if
you're creating a thread in the local process but might fail if you're
using CreateRemoteThread to create a thread in another process
and the process creating the thread doesn't have the debug privi
lege enabled.

5 I X: Processes, Threads, and Jobs

4. CreateThread notifies the Win32 subsystem about the new thread,
and the subsystem does some setup work for the new thread.

5. The thread handle and the thread ID (generated during step 3) are
returned to the caller.

6. Unless the caller created the thread with the CREATE_SUSPENDED
flag set, the thread is now resumed so that it can be scheduled for
execution. When the thread starts running, it executes the following
additional steps (in the context of the new thread) before calling the
actual user's specified start address. (A flowchart of this final part of
thread creation is shown in Figure 6-10.)

a. KiThreadStartup lowers the thread's IRQL level from DPC/
dispatch level to APC level and then calls the system initial thread
routine, Psp UserThreadStartup. The user-specified thread start
address is passed as a parameter to this routine.

b. The system initial thread routine enables working set expansion and
then queues a user-mode APC to run the image loader initialization
routine (LdrlnitializeThunk in Ntdll.dll). The IRQL is lowered to
0, thus causing the pending APC to fire.

c. The loader initialization routine then performs a number of
additional thread-specific initialization steps, such as calling loaded
D LLs to notify them of the new thread. (The detailed steps of the
initialization of the Win32 subsystem DLLs, such as USER32,
KERNEL32, and GDI32, are beyond the scope of this book.)

d. If the process has a debugger attached, the thread startup routine
suspends all other active threads in the process and notifies the
Win32 subsystem so that it can deliver the thread startup debug
event (CREATE_THREAD_DEBUG_INFO) to the appropriate
debugger process. The startup routine then waits for the Win32
subsystem to get the reply from the debugger (via the Continue
DebugEventfunction). When the Win32 subsystem receives a reply
from the debugger, it in turn replies to the thread startup routine
and all the threads are resumed.

e. Finally, the main thread begins execution in user mode at the entry
point to the image being run. Execution begins when the trap
that started the thread execution, using a trap frame (built earlier
when the kernel thread block was being initialized) that specifies
previous mode as user and the PC as the start address of the thread,
is dismissed.

335

INSIDE MICROSOFT WINDOWS 2000

336

Thread Startup
Inside new thread

I

Kernel mode Kernel mode

Queue user-mode
APC to run APC fires

LdrlnitializeThunk 1i----------t~1
and lower IRQL

to 0

Figure 6-10

message to
subsystem

Resume all
threads

In-context thread initialization

User mode

Perform in-process
context initialization·

(Initialize loader,
load required
DLLs, etc.)

LPC send/receive

Inside Csrss

Notify debugger
process of new

process and wait
for reply

S I X: Processes, Threads, and Jobs

Thread Scheduling
This section describes the Windows 2000 scheduling policies and algorithms.
The first subsection provides a condensed description of how scheduling works
on Windows 2000 and a definition of key terms. Then Windows 2000 priority
levels are described from both the Win32 API and the Windows 2000 kernel
points of view. After a review of the relevant Win32 functions and Windows 2000
utilities and tools that relate to scheduling, "the detailed data structures and
algorithms that comprise the Windows 2000 scheduling system are presented.

Overview of Windows 2000 Scheduling
Windows 2000 implements a priority-driven, preemptive scheduling system
the highest-priority runnable (ready) thread always runs, with the caveat that
the thread chosen to run might be limited by the processors on which the thread
is allowed to run, a phenomenon called processor affinity. By default, threads can
run on any available processor, but you can alter processor affinity by using one
of the Win32 scheduling functions.

337

INSIDE MICROSOFT WINDOWS. 2000

338

When a thread is selected to run, it runs for an amount of time called a quan
tum. A quantum is the length of time a thread is allowed to run before Wmdows
2000 interrupts the thread to find out whether another thread at the same pri-
0rity level or higher is waiting to run or whether the thread's priority needs to
be reduced. Quantum values can vary from thread to thread (and differ between
Wmdows 2000 Professional and Wmdows 2000 Server). (Quantums are described
in more detail on page 349.) A thread might not get to complete its quantum,
however. Because Wmdows 2000 implements a preemptive scheduler, if another
thread with a higher priority becomes ready to run, the currently running thread
might be preempted before finishing its time slice. In fact, a thread can be selected
to run next and be preempted before even beginning its quantum!

The Windows 2000 scheduling code is implemented in the kernel. There's
no single "scheduler" module or routine, however-the code is spread throughout
the kernel in which scheduling-related events occur. The routines that perform
these duties are collectively called the kernel's dispatcher. Thread dispatching
occurs at DPC/dispatch level and is triggered by any of the following events:

II A thread becomes ready to execute-for example, a thread has been
newly created or has just been released from the wait state.

II A thread leaves the running state because its time quantum ends, it
terminates, or it enters a wait sta.te.

II A thread's priority changes, either because of a system service call or
because Windows 2000 itself changes the priority value.

II The processor affinity of a running thread changes.

At each of these junctions, Windows 2000 must determine which thread
should run next. When Windows 2000 selects a new thread to run, it performs
a context switch to it. A context switch is the procedure of saving the volatile
machine state associated with a running thread, loading another thread's vola
tile state, and starting the new thread's execution.

As already noted, Windows 2000 schedules at the thread granularity. This
approach makes sense when you consider that processes don't run but only
provide resources and a context in which their threads run. Because scheduling
decisions are made strictly on a thread basis, no consideration is given to what
process the thread belongs to. For example, ifptocess A has 10 runnable threads
and process B has 2 runnable threads, and all 12 threads are at the same priority,
each thread would receive one-twelfth of the CPU time-Wmdows 2000 wouldn't
give 50 percent of the CPU to process A and 50 percent to process B.

To understand the thread-scheduling algorithms, you must first understand
the priority levels that Windows 2000 uses.

S I X: Processes, Threads, and Jobs

(continued)

339

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Thread-Scheduling State Changes continued

340

S I X: Processes, Threads, and Jobs

Priority Levels
As illustrated in Figure 6-11, internally, Windows 2000 uses 32 priority levels,
ranging from 0 through 31. These values divide up as follows:

II Sixteen real-time levels (16-31)

II Fifteen variable levels (1-15)

II One system level (0), reserved for the zero page thread

....------.·31

16 real-time levels

15 variable levels

~==~hO--1 system level
(Zero page thread, one per system)

Figure 6-11
Thread priority levels

Thread priority levels are assigned from two different perspectives: those
of the Win32 API and those of the Windows 2000 kernel. The Win32 API first

341

INSIDE MICROSOFT WINDOWS 2000

342

organizes processes by the priority class to which they are assigned at creation
(Real-time, High, Above Normal, Normal, Below Normal, and Idle) and then
by the relative priority of the individual threads within those processes (Time
critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Win32 API, each thread has a priority based on a combination of
its process priority class and its relative thread priority. The mapping from Wm32
priority to internal Windows 2000 numeric priority is shown in Figure 6-12.

o Used for zero page thrElad-not available to Win32 applications

Figure 6-12
Kernel priorities in Win32 vs. Windows 2000

S I X: Processes, Threads, and Jobs

The priorities shown in Figure 6-12 are thread base priorities. Threads start
out inheriting the process base priority, which can be changed with Task Man
ager (as described in the section "Relevant Tools" on the following page) or with
the Win32 SetPriorityClass function.

Normally, the process base priority (and hence the starting-thread base
priority) will default to the value at the middle of each process priority range (24,
13,10,8,6, or 4). However, some Windows 2000 system processes (such as the
Session Manager, service controller, and local security authentication server) have
a base process pri()rity slightly higher than the default for the Normal class (8).
This higher default value ensures that the threads in these processes will all start
at a higher priority than the default value of 8. A system process uses internal
Windows 2000 functions to set its process base priority to a numeric value other
than its default starting Win32 base priority.

Whereas a process has only a single priority value (base priority), each
thread has two priority values: current and base. The current priority for threads
in the dynamic range (1 through 15) might be, and often is, higher than the
base priority. Windows 2000 never adjusts the priority of threads in the real-time
range (16 through 31), so they always have the same base and current priority.

Win32 Scheduling APls
The Win32 API functions that relate to thread scheduling are listed in Table 6-15.
(For more. information, see the Win32 API reference documentation.)

Table 6-15 Scheduling-Related APls and Their Functions

API

Suspend/ResumeThread

Get/SetPriorityctass

Get/SetThreadPriority

Get/SetProcessAffinityMask

SetThreadAffinityMC/rsk

Get/SetThreadPriorityBoost

Function

Suspends or resumes a paused thread from
execution.
Returns or sets a process's priority class (base
priority).
Returns or sets a thread's priority (relative to
its process base priority).
Returns or sets a process's affinity mask.
Sets a thread's affinity mask (must be a subset
of the proces~s affinity mask) for a particular
set of processors, restricting it to running on
those processors.
Returns or sets the ability for Windows 2000
to boost the priority of a thread temporarily
(applies only to threads in the dynamic range).

(continued)

343

INSIDE MICROSOFT WINDOWS 2000

Table 6·15 continued

API

SetThreadldealProcessor

GetlSetProcessPriorityBoost

SwitchToThread
Sleep

SleepEx

Function

Establishes a preferred processor for a particular
thread but doesn't restrict the thread to that
processor.

Returns or sets the default priority boost
control state of the current process. (This
function is used to set the thread priority boost
control state when a thread is created.)

Yields execution for one or more quantums.

Puts the current thread into a wait state for a
specified time interval (figured in milliseconds
[msec]). A zero value relinquishes the rest of
the thread's quantum.

Causes the current thread to go into a wait
state until either an I/O completion callback is
completed, an APC is queued to the thread, or
the specified time interval ends.

Relevant Tools
You can view (and change) the base-process priority class with Task Manager,
Pview, or Pviewer. You can view the numeric base-process priority value with the
Performance tool or Pstat. You can view thread priorities with the Performance
tool, Pview, Pviewer, and Pstat. There is no general utility to change relative thread
priority levels, however. Table 6-16 lists the tools related to thread scheduling.

Table 6·16 Tools Related to Thread Scheduling

~~'0 ~p'0 ~e~
e.o . (,\ 'e--tl «<O\~\

\\'{\~e
0'0\0 ~~<o~ «e(l. ~,0 «-.l~ 'f-O'

Process priority class ./ ./ ./

Process base priority ./ ./

Thread base priority ./
Thread current priority ./ ./

The only way to specify a starting priority class for a process is with the
start command in the Windows 2000 command prompt.

344

S I X: Processes, Threads, and Jobs

(continued)

345

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Examining and Specifying Process and Thread
Priorities continued

Real-Time Priorities

346

You can raise or lower thread priorities within the dynamic range in anyappli
cation; however, you must have the increase scheduling priority privilege to enter
the real-time range. (If you attempt to move a process into the Real-time pri
ority class and don't have the privilege, the operation doesn't fail-the High
class is used.)

Be aware that many important Windows 2000 kernel-mode system threads
run in the real-time priority range, so if your process spends excessive time
running in this range, it might be blocking critical system functions in the
memory manager, cache manager, local and network file systems, and even other
device drivers. It won't block hardware interrupts because they have a higher
priority than any thread, but it might block system threads from running.

There is one behav,ioral difference forthreads in the real-time range (men
tioned in the section "Preemption" on page 356): their thread quantum is reset
if they are preempted.

S I X: Processes, Threads, and Jobs

NOT E Although Windows 2000 has a set of priorities called real
time) they are not real-time in the common definition of the term in
that Windows 2000 doesn't provide true real-time operating system
facilities, such as guaranteed interrupt latency or a way for threads to
obtain a guaranteed execution time. For more information, see the
sidebar "Windows 2000 and Real-Time Processing" on page 105 in
Chapter 3 as well as the MSDN Library article "Real-Time Systems
and Microsoft Windows NT."

Interrupt levels vs. Priority levels
As illustrated in Figure 6-13, all threads run at IRQL 0 or 1. (For a description
of how Windows 2000 uses interruptlevels, see page 000 in Chapter 3.) U ser
mode threads run at IRQL 0; only kernel-mode APCs execute at IRQL 1, since
they interrupt the execution of a thread. (For more information on APCs, see
page III in Chapter 3.) Also, threads running in kernel mode can raise IRQ L.
Because of this, no user-mode thread, regardless of its priority, blocks hardware
interrupts (although high-priority real-time threads can block the execution of
important system threads).

IRQLs

31 High

30 Power fail

29 Inter-processor interrupt

28 Clock

27 Profile

26 Device n

3 Device 1

2

Th""", p""riIlos 1>-3' {

Figure 6-13

DPC/dispatch

APC

Interrupt priorities vs. thread priorities

Hardware interrupts

Software interrupts

347

INSIDE MICROSOFT WINDOWS 2000

Thread -scheduling decisions are made at D PC/dispatch level. Thus, while
the kernel is deciding which thread should run next, no thread can be running
and possibly changing scheduling-related information (such as priorities). On
a multiprocessor system, access to the thread-scheduling data structures is syn
chronized by acquiring the Dispatcher spinlock (KiDispatcherLock).

Thread States

348

Before you can comprehend the thread-scheduling algorithms and data structures,
you need to understand the various execution states that a thread can be in.
Figure 6-14 illustrates the state transitions for a Windows 2000 thread. More
details on what happens at each transition are included later in this section.

Create and initialize
thread object

Initialized

Preempt (or time __ .1

quantum ends)

execution

______ Context-switch to it and start _____ ..1

Figure 6-14
Thread states

its execution (dispatching)

The thread states are as follows:

Preempt

• Ready When looking for a thread to execute, the dispatcher con
siders only the pool of threads in the ready state. These threads are
simply waiting to execute.

Quantum

S I X: Processes, Threads, and Jobs

II Standby A thread in the standby state has been selected to run next
on a particular processor. When the correct conditions exist, the dis
patcher performs a context switch to this thread. Only one thread
can be in the standby state for each processor on the system.

II Running Once the dispatcher performs a context switch to a thread,
the thread enters the running state and executes. The thread's exe
cution continues until the kernel preempts it to run a higher priority
thread, its quantum ends, it terminates, or it voluntarily enters the
wait state.

II Waiting A thread can enter the wait state in several ways: a thread
can voluntarily wait on an object to synchronize its execution, the
operating system (the I/O system, for example) can wait on the
thread's behalf, or an environment subsystem can direct the thread
to suspend itself. When the thread's wait ends, depending on the
priority, the thread either begins running immediately or is moved
back to the ready state.

II Transition A thread enters the transition state if it is ready for execu
tion but its kernel stack is paged out of memory. For example, the
thread's kernel stack might be paged out of memory. Once its kernel
stack is brought back into memory, the thread enters the ready state.

II Terminated When a thread finishes executing, it enters the termi
nated state. Once terminated, a thread object might or might not be
deleted. (The object manager sets policy regarding when to delete
the object.) If the executive has a pointer to the thread object, it can
reinitialize the thread object and use it again.

II Initialized Used internally while a thread is being created.

As mentioned earlier in the chapter, a quantum is the amount of time a thread
gets to run before Windows 2000 checks whether another thread at the same
priority should get to run. If a thread completes its quantum and there are no
other threads .at its priority, Windows 2000 reschedules the thread to run for
another quantum.

Each thread has a quantum value that represents how long the thread can
run until its quantum expires. This value isn't a time length but rather an integer
value, which we'll call quantum units.

349

INSIDE MICROSOFT WINDOWS 2000

350

Quantum Accounting
By default, threads start with a quantum value of 6 on Windows 2000 Professional
and 36 on Windows 2000 Server. (We'll explain how you can change these val
ues later.) The rationale for the longer default value on Windows 2000 Server is
to minimize context switching. By having a longer quantum, server applications
that wake up as the result of a client request have a better chance of completing
the request and going back into a wait state before their quantum ends.

Each time the clock interrupts, the clock-interrupt routine deducts a fixed
value (3) from the thread quantum. If there is no remaining thread quantum,
the quantum end processing is triggered and another thread might be selected
to run. On Windows 2000 Professional, because 3 is deducted each time the clock
interrupt fires, by default a thread runs for 2 clock intervals; on Windows 2000
Server, by default a thread runs for 12 clock intervals.

Even if the system were at DPC/dispatch level or above (for example, if
a DPC or an interrupt service routine was executing) when the clock interrupt
occurred, the current thread would still have its quantum decremented, even
if it hadn't been running for a full clock interval. If this was not done and device
interrupts or DPCs occurred right before the clock interval timer interrupts,
threads might not ever get their quantum reduced.

The length of the clock interval varies according to the hardware platform.
The frequency of the clock interrupts is up to the HAL, not the kernel. For
example, the clock interval for most x86 uniprocessors is 10 milliseconds, and
for most x86 multiprocessors, 15 milliseconds.

S I X: Processes, Threads, and Jobs

The reason quantum is expressed in terms of a multiple of 3 quantum units
per clock tick rather than as single units is to allow for partial quantum decay
on wait completion. When a thread that has a base priority less than 14 executes
a wait function (such as WaitForSingleObject or WaitForMultipleObjects), its
quantum is reduced by 1 quantum unit. (Threads running at priority 14 or
higher have their quantums reset after a wait.)

This partial decay addresses the case in which a thread enters a wait state
before the clock interval timer fires. If this adjustment were not made, it would
be possible for threads never to have their quantums reduced. For example, if
a thread ran, entered a wait state, ran again, and entered another waitstate but
was never the currently running thread when the clock interval timer fired, it
would never have its quantum charged for the time it was running.

Controlling the Quantum
The registry value HKLM\SYSTEM\CurrentControISet\Control\Priority
Control\Win32PrioritySeparation allows you to specify the relative length of
thread quantums(short or long) and whether or not threads in the foreground
process should have their quantums boosted (and if so, the amount of the
boost). This value consists of 6 bits divided into the three 2-bit fields shown
in Figure 6-15.

2

Short vs. Long Variable vs. Fixed Foreground
Quantum Boost

Figure 6-15
Fields of the Win32PrioritySeparation registry value

• Short vs. Long 1 specifies long, and 2 specifies short. 0 or 3 indi
cates that the default will be used (short for Windows 2000 Profes
sional, long for Windows 2000 Server) .

• Variablevs. Fixed 1 means to vary the quantum for the foreground
process, and 2 means that quantum values don't change for fore
ground processes. 0 or 3 means that the default will be used (variable
for Windows 2000 Professional,· fixed for Windows 2000 Server).

351

INSIDE MICROSOFT WINDOWS 2000

352

• Foreground Quantum Boost This field, which must have a value of
0, 1, or 2 (3 is invalid and treated as 2) is an index into a three-entry
quantum table used to obtain the quantum for the threads in the
foreground process. The quantum for threads in background pro
cesses is taken from the first entry in this quantum table. The field's
value is stored in the kernel variable PsPrioritySeparation.

The foreground process is the process that owns the thread that owns the
window that's in focus. When the foreground window changes to one owned
by a thread in a process higher than the Idle priority class, the Win32 subsystem
changes the quantum values for all the threads in that process by using the lower
order 2 bits of the Win32PrioritySeparation registry value as an index into a
three-element array named PspForegroundQuantum. This array contains values
determined by the other two bit fields in the Win32PrioritySeparation registry
value. Table 6-17 shows the possible settings for PspForegroundQuantum.

Variable

Fixed

Table 6-17 Quantum Values

Short

6 12 18
18 18 18

Long

12 24 36
36 36 36

The reason that Windows 2000 boosts the quantum of foreground threads
and not the priority is best illustrated with the following example, which shows
the potential problems resulting from an approach based on foreground priority
boosting. Suppose you start a long-running spreadsheet recalculation and then
switch to a CPU-intensive application (such as a graphics-intensive game). The
spreadsheet process running in the background will get litde CPU time if the
game process, which is in the foreground, has its priority boosted. Increasing
the quantum of the game process doesn't prevent the spreadsheet calculation
from running but instead favors the game process. If you do want to run an
interactive application at a higher priority than all other interactive processes,
you can always change the priority class to Above Normal or High using Task
Manager (or start the application from the command prompt with the command
start /abovenormal or start /bigb).

S I X: Processes, Threads, and Jobs

When you're setting the quantum length by modifying the Win32Priority
Separation registry value directly, you can select any combination. When you're
using the Performance Options dialog box, you can choose from only two
combinations. To see this dialog box (shown in Figure 6-16), open the System
utility in Control Panel (or right-click on My Computer and select Properties),
click the Advanced tab, and then click the Performance Options button.

Figure 6-16
Adjusting the quantum settings

The Applications option under Optimize Performance For designates the
use of short, variable quantums-the default for Windows 2000 Professional.
The Background Services option designates the use of long, fixed quantums-:
the default for Windows 2000 Server. If you install Terminal Services on Wmdows
2000 Advanced Server or Wmdows 2000 Datacenter Server and configure the
server as an application server, this setting is changed to optimize for applications.

Scheduling Data Structures
To make thread-scheduling decisions, the kernel maintains a set of data structures
known collectively as the dispatcher database, which is illustrated in Figure
6-17. The dispatcher database keeps track of which threads are waiting to exe
cute and which processes are executing which threads. The most important
structure in the dispatcher database is the dispatcher ready queue (located at
KiDispatcherReadyListHead). This queue is really a series of queues, one queue
for each scheduling priority. The queues contain threads that are in the ready
state, waiting to be scheduled for execution.

353

INSIDE MICROSOFT WINDOWS 2000

354

.<!-~~ eau asepnony P';;~ Process • Default processor affinity
D f It b "t y Default quantum

Thread Thread I YThread'
,

Dispatcher ready queue

31

0

31

Figure 6-17
Dispatcher database

o 31

• Base priority
,

• Current priority
• Processor affinity
• Quantum

o

Thread I
J I'

To speed up the selection of which thread to run or preempt, Windows 2000
maintains a 32-bit bitmask called the ready summary (KiReadySummary). Each
bit set indicates one or more threads in the ready queue for that priority level.
(Bit 0 represents priority 0, and so on.) Windows 2000 maintains another
bitmask, the ·idle summary (KildleSummary), in which each set bit represents
an idle processor.

As noted earlier, thread dispatching takes place at DPC/dispatch level. In
addition to preventing other threads from running, being at DPC/ dispatch level
synchronizes access to the dispatcher database. On a multiprocessor system,
however; changes to the dispatcher database require the additional step of ac
quiring the kernel dispatcher spinlock (KiDispatcherLock). Table 6-18 shows the
kernel-mode kernel variables that are related to thread scheduling.

S I X: Processes, Threads, and Jobs

Table 6-18 Thread-Scheduling Kernel Variables

Variable

KiDispatcher Lock

KeNumber Processors

KeActiveProcessors

KiIdleSummary

KiReadySummary

KiDispatcher ReadyListHead

Scheduling Scenarios

Type

Spinlock

Byte

Bitmask (32 bits)

Bitmask (32 bits)

Bitmask (32 bits)

Array of 32 list
entries

Description

Dispatcher spinlock

Number of processors
active in system

Bitmask of active
processors in system

Bitmask of idle
processors

Bitmask of priority
levels that have one or
more ready threads

List heads for the 32
ready queues

Windows 2000 bases the question of "Who gets the CPU?" on thread priority;
but how does this approach work in practice? The following sections illustrate
just how priority-driven preemptive multitasking works on the thread level. Note
that there are differences in the way Windows 2000 handles scheduling decisions
on a multiprocessor system vs. on a uniprocessor system. These differences are
explained in the section "Thread Scheduling on Symmetric Multiprocessing
Systems" later in this chapter.

Voluntary Switch
First a thread might voluntarily relinquish use of the processor by entering a wait
state on some object (such as an event, a mutex, a semaphore, an I/O comple
tion port, a process, a thread, a window message, and so on) by calling one of the
many Win32 wait functions (such as WaitForSingleObject or WaitForMultiple
Objects). Waiting on objects is described in more detail in Chapter 3.

Voluntary switching is roughly equivalent to a thread ordering an item that
isn't ready to go at a fast-food counter. Rather than hold up the queue of the
other diners, the thread will step aside and let the next thread place its order
(execute its routine) while the first thread's hamburger is being prepared. When
the hamburger is ready, the first thread goes to the end of the ready queue of the
priority level. However, as you'll see later in the chapter, most wait operations
result in a temporary priority boost so that the thread can pick up its hamburger
right away and start eating.

355

INSIDE MICROSOFT WINDOWS 2000

356

Figure 6-18 illustrates a thread entering a wait state and Windows 2000
selecting a new thread to run.

Priority

20

19

18

17

16

15

14

Running

To wait state

Figure 6-18
Voluntary switching

Ready

In Figure 6-18, the top block (thread) is voluntarily relinquishing the
processor so that the next thread in the ready queue can run (as represented by
the halo it has when in the Running column). Although it might appear from
this figure that the relinquishing thread's priority is being reduced, it's not
it's just being moved to the wait queue of the objects the thread is waiting on.
What about any remaining quantum for the thread? The quantum value isn't
reset when a thread enters a wait state-in fact, as explained earlier, when the
wait is satisfied, the thread's quantum value is decremented by 1 quantum unit,
equivalent to one-third of a clock interval (except for threads running at priority
14 or higher-they have their quantum reset after a wait).

Preemption
In this scheduling scenario, a lower-priority thread is preempted when a higher
priority thread becomes ready to run. This situation might occur for a couple
of reasons .

• A higher-priority thread's wait completes. (The event that the other
thread was waiting on has occurred.)

• A thread priority is increased or decreased.

5 I X: Processes, Threads, and Jobs

In either of these cases, Windows 2000 must determine whether the cur
rently running thread should still continue to run or whether it should be pre
empted to allow a higher-priority thread to run.

NOT E Threads running in user mode can preempt threads running
in kernel mode-the mode in which the thread is running doesn't
matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for
the priority it was running at. Threads running in the real-time priority range have
their quantum reset to a full time slice while threads running in the dynamic priority
range finish their quantum when they get to run again. Figure 6-19 illustrates this
situation.

Priority
Running Ready

18 .+------ From wait state

17

16

15

14

13

Figure 6-19
Preemptive thread scheduling

In Figure 6-19, a thread with priority 18 emerges from a wait state and
repossesses the CPU, causing the thread that had been running (at priority 16)
to be bumped to the head of the ready queue. Notice that the bumped thread
isn't going to the end of the queue but to the beginning; when the preempt
ing thread has finished running, the bumped thread can complete its quantum.
In this example, the threads are in the real-time range; as explained in the note
on page 361, in the section "Priority Boosts," no dynamic priority boosts are
allowed for threads in the real-time range.

357

INSIDE MICROSOFT WINDOWS 2000

358

If voluntary switching is roughly equivalent to a thread letting another
thread place its lunch order while the first thread waits for its meal, preemption
is roughly equivalent to a thread being bumped from its place in line because
the president of the United States has just walked in and ordered a hamburger.
The preempted thread doesn't get bumped to the back of the line but is sim
ply moved aside while the president gets his lunch. As soon as the president
leaves, the first thread can resume ordering its meal.

Quantum End
When the running thread exhausts its CPU quantum, Windows 2000 must
determine whether the thread's priority should be decremented and then whether
another thread should be scheduled on the processor.

If the thread priority is reduced, Windows 2000 looks for a more appro
priate thread to schedule. (For example, a more appropriate thread would be a
thread in a ready queue with a higher priority than the new priority for the
currently running thread.) If the thread priority isn't reduced and there are other
threads in the ready queue at the same priority level, Windows 2000 selects the
next thread in the ready queue at that same priority level and moves the previ-
0usly running thread to the tail of that queue (giving it a new quantum value and
changing its state from running to ready). This case is illustrated in Figure 6-20.
If no other thread of the same priority is ready to run, the thread gets to run
for another quantum.

Priority

15

14

13

12

11

Figure 6-20
Quantum end thread scheduling

S I X: Processes, Threads, and Jobs

Termination
When a thread finishes running (either because it returned from its main routine,
called ExitThread, or was killed with TerminateThread), it moves from the
running state to the terminated state. If there are no handles open on the thread
object, the thread is removed from the process thread list and the associated data
structures are deallocated and released.

Context SWitching
A thread's context and the procedure for context switching vary depending on
the processor's architecture. A typical context switch requires saving and reload
ing the following data:

• Program counter

• Processor status register

• Other register contents

• User and kernel stack pointers

• A pointer to the address space in which the thread runs (the
process's page table directory)

The kernel saves this information from the old thread by pushing it onto
the current (old thread's) kernel-mode stack, updating the stack pointer, and
saving the stack pointer in the old thread's KTHREAD block. The kernel stack
pointer is then set to the new thread's kernel stack, and the new thread's context
is loaded. If the new thread is in a different process, it loads the address of its
page table directory into a special processor register so that its address space is
available. (See the description of address translation in Chapter 7.) If a kernel
APC that needs to be delivered is pending, an interrupt at IRQL 1 is requested.
Otherwise,control passes to the new thread's restored program counter and the
thread resumes execution.

Idle Thread
When no runnable thread exists on a CPU, Windows 2000 dispatches the per
CPU idle thread. Each CPU is allotted one idle thread because on a multipro
cessor system one CPUcan be executing a thr.ead while other CPUs might have

359

INSIDE MICROSOFT WINDOWS 2000

no threads to execute. Windows 2000 reports the priority of the idle thread as
O. In reality, however, such threads don't have a priority level because they run
only when there are no threads to run. (Remember, only one thread per Windows
2000 system is actually running at priority O-the zero page thread.) In fact,
the idle loop runs at DPC/ dispatch level, polling for work to do: deferred pro
cedure calls (DPCs) to deliver or threads to dispatch to. Although some details
of the flow vary between architectures, the basic flow of control of the idle thread
is as follows:

1. Enables and disables interrupts (allowing any pending interrupts to
be delivered).

2. Checks whether any DPCs (described in Chapter 3) are pending on
the processor. If DPCs are pending, clears the pending software
interrupt and delivers them.

3. Checks whether a thread has been selected to run next on the
processor, and if so, dispatches that thread.

4. Calls the HAL processor idle routine (in case any power management
functions need to be performed).

Various Windows 2000 process viewer utilities report the idle process using
different names. Task Manager calls it "System Idle Process," Process Viewer
reports it as "Idle," Pstat calls it "Idle Process," Process Explode and Tlist call
it "System Process," and Qslice calls it "SystemProcess."

Priority Boosts

360

In five cases, Windows 2000 can boost (increase) the current priority value
of threads:

• On completion of I/O operations

• After waiting on executive events or semaphores

• After threads in the foreground process complete a wait operation

• When GUI threads wake up because of windowing activity

• When a thread that's ready to run hasn't been running for some
time (CPU starvation)

S I X: Processes, Threads, and Jobs

The intent of these adjustments is to improve overall system throughput
and responsiveness as well as resolve potentially unfair scheduling scenarios. Like
any scheduling algorithms, however, these adjustments aren't perfect, and they
might not benefit all applications.

NOT E Windows 2000 never boosts the priority of threads in the
real-time range (16 through 31). Therefore, scheduling is always
predictable with respect to other threads in the real-time range.
Windows 2000 assumes that if you're using the real-time thread pri
orities, you know what you're doing.

Priority Boosting After I/O Completion
Windows.2000 gives temporary priority boosts upon completion of certain I/O
operations so that threads that were waiting on an I/O will have more of a
chance to run right away and process whatever was being waited on. Recall
that 1 quantum unit is deducted from the thread's remaining quantum when
it wakes up so that I/O bound threads aren't unfairly favored. Although you'll
find recommended boost values in the DDK header files (search for "#define
10" in Wdm.h or Ntddk..h-these values are listed in Table 6-19), the actual
value for the boost is up to the device driver. It is the device driver that specifies
the boost when it completes an I/O request on its call to the kernel function
10 Co mpleteRequest. In Table 6-19, notice that I/O requests to devices that
warrant better responsiveness have higher boost values.

Table 6-19 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

The boost is always applied to a thread's base priority, not its current pri
ority. As illustrated in Figure 6-21, after the boost is applied, the thread gets to
tun for one quantum at the elevated priority level. After the thread has completed
its quantum, it decays one priority level and then runs another quantum. This

361

INSIDE MICROSOFT WINDOWS 2000

362

cycle continues until the thread's priority level has decayed back to its base
priority. A thread with a higher priority can still preempt the boosted thread,
but the interrupted thread gets to finish its time slice at the boosted priority level
before it decays to the next lower priority.

~~ant~~
, ,

j'" 7 P'o';\y deoa, al ,"""'om '"'

Boost I Round-robin at

complete (before quantum end) /
upon wait Preempt ~base prority

Base priority - -+----- ------------------------------------ ---------.
Run Wait Run Run

Time

Figure 6-21
Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority
range (0 through 15). No matter how large the boost is, the thread will never
be boosted beyond level 15 into the real-time priority range. In other words, a
priority 14 thread that receives a boost of 5 will go up to priority 15. A priority
15 thread that receives a boost will remain at priority 15.

Boosts After Waiting for Events and Semaphores
When a thread that was waiting on an executive event or a semaphore object
has its wait satisfied (because of a call to the function SetEvent, PulseEvent, or
ReleaseSemaphore), it receives a boost of 1. (See the value for EVENT_
INCREMENT and SEMAPHORE_INCREMENT in the DDK header files.)
Threads that wait for events and semaphores warrant a boost for the same rea
son that threads that wait on I/O operations do-threads that block on events
are requesting CPU cycles less frequently than CPU-bound threads. This ad
justment helps balance the scales.

This boost operates the same as the boost that occurs after I/O completion
as described in the previous section: the· boost is always applied to the base
priority (not the current priority), the priority will never be boosted over 15,
and the thread gets to run at the elevated priority for its remaining quantum
(as described earlier, quantums are reduced by 1 when threads exit a wait) before
decaying one priority level at a time until it reaches its original base priority.

S I X: Processes, Threads, and Jobs

Priority Boosts for Foreground Threads After Waits
Whenever a thread in the foreground process completes a wait operation on a
kernel object, the kernel function KiUnwaitThread boosts its current (not base)
priority by the current value of PsPrioritySeparation. (The windowing system
is responsible for determining which process is considered to be in the fore
ground.) As described in the section on quantum controls, PsPrioritySeparation
reflects the quantum-table index used to select quantums for the threads of
foreground applications.

The reason for this boost is to improve the responsiveness of interactive
applications-by giving the foreground application a small boost when it com
pletes a wait, it has a better chance of running right away, especially when other
processes at the same base priority might be running in the background.

Unlike other types of boosting, this boost applies to both Windows 2000
Professional and Windows 2000 Server, and you can)tdisable this boost, even
if you've disabled priority boosting using the Win32 SetThreadPriorityBoost
function.

(continued)

363

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Watching Foreground Priority Boosts and Decays continued

364

5 I X: Processes, Threads, and Jobs

Priority Boosts After GUI Threads Wake Up
Threads that own windows receive an additional boost of2 when they wake up
because of windowing activity, such as the arrival of window messages. The
windowing system (Win32k.sys) applies this boost when it calls KeSetEvent to
set an event used to wake up a GUI thread. The reason for this boost is similar
to the previous one-to favor interactive applications.

365

INSIDE MICROSOFT WINDOWS 2000

366

S I X: Processes, Threads, and Jobs

Priority Boosts for CPU Starvation
Imagine the following situation: you've got a priority 7 thread that's running,
preventing a priority 4 thread from ever receiving CPU time; however, a prior
ity 11 thread is waiting on some resource that the priority 4 thread has locked.
But because the priority 7 thread in the middle is eating up all the CPU time, the
priority 4 thread will never run long enough to finish whatever it's doing and
release the resource blocking the priority 11 thread. What does Windows 2000
do to address this situation? Once per second, the balance set manager (a sys
tem thread that exists primarily to perform memory management functions and
is described in more detail in Chapter 7) scans the ready queues for any threads
that have been in the ready state (that is, haven't run) for longer than 300 clock
ticks (approximately 3 to 4 seconds, depending on the clock interval). If it finds

367

INSIDE MICROSOFT WINDOWS 2000

368

such a thread, the balance set manager boosts the thread's priority to 15 and
gives it double the normal quantum. Once the 2 quantums are up, the thread's
priority decays immediately to its original base priority. If the thread wasn't fin
ished and a higher priority thread is ready to run, the decayed thread will return
to the ready queue, where it again becomes eligible for another boost ifit remains
there for another 300 clock ticks.

The balance set manager doesn't actually scan all ready threads every time
it runs. To minimize the CPU time it uses, it scans only 16 ready threads; if
there are more threads at that priority level, it remembers where it left off and
picks up again on the next pass. Also, it will boost only 10 threads per pass
if it finds 10 threads meriting this particular boost (which would indicate an
unusually busy system), it stops the scan at that point and picks up again on
the next pass.

Will this algorithm always solve the priority inversion issud No-it's not
perfect by any means. But over time, CPU-starved threads should get enough
CPU time to finish whatever processing they were doing and reenter a wait state.

Thread Scheduling on Symmetric Multiprocessing Systems
If scheduling access to system processors is based on thread priority, what hap
pens if you're using more than one processor? While Windows 2000 attempts
to schedule the highest priority runnable threads on all available CPUs, sev
eral factors influence the choice of which CPU a thread will run on such that
Windows 2000 is only guaranteed to be running the (single) highest priority
thread. Before we describe the algorithms, we need to define a few terms.

Affinity
Each thread has an affinity mask that specifies the processors on which the
thread is allowed to run. The thread affinity mask is inherited from the pro
cess affinity mask. By default, all processes (and therefore all threads) begin
with an affinity mask that is equal to the set of active processors on the system
in other words, all threads can run on all processors.

Two things can alter that:

III A call made by the application to the SetProcessAffinityMask or
SetThreadAffinityMask function

III An imagewide affinity mask specified in the image header (For more
information on the detailed format of Windows 2000 images, see
the article "Portable Executable and Common Object File Format
Specification" in the MSDN Library.)

S I X: Processes, Threads, and Jobs

(continued)

369

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Watching Priority Boosts for CPU Starvation continued

370

S I X: Processes, Threads, and Jobs

Ideal and Last Processor
. Each thread has two CPU numbers stored in the kernel thread block:

II Ideal processor, or the preferred processor that this thread should
run on

II Last processor, or the processor on which the thread last ran

The ideal processor is chosen randomly when a thread is created, based
on a seed in the process block. The seed is incremented each time a thread is
created so that the ideal processor for each new thread in the process will rotate
through the available processors on the system. Windows 2000 doesn't change
the ideal processor once the thread is created; however, an application can
change the ideal processor value for a thread by using the SetThreadldeal
Processor function.

371

INSIDE MICROSOFT WINDOWS 2000

372

Choosing a Processor for a Ready Thread
When a thread becomes ready to run, Windows 2000 first tries to schedule the
thread to run on an idle processor. If there is a choice of idle processors, pref
erence is given first to the thread's ideal processor, then to the thread's last pro
cessor, and then to the currently executing processor (that is, the CPU on which
the scheduling code is running). Ifnone of these CPUs are idle, Windows 2000
picks the first available idle processor by scanning the idle processor mask from
highest to lowest CPU number.

If all processors are currently busy and a thread becomes ready, Windows
2000 looks to see whether it can preempt a thread in the running or standby
state on one of the CPUs. Which CPU is examined? The first choice is the
thread's ideal processor, and the second choice is the thread's last processor. If
neither of those CPUs are in the thread's affinity mask, Windows 2000 selects
the highest processor in the active processor mask that the thread can run on.

If the processor selected already has a thread selected to run next (wait
ing in the standby state to be scheduled) and that thread's priority is less than
the priority of the thread being readied for execution, the new thread preempts
that first thread out of the standby state and becomes the next thread for that
CPU. If there is already a thread running on that CPU, Wmdows 2000 checks
whether the priority of the currently running thread is less than the thread being
readied for execution: If so, the currently running thread.is marked to be pre
empted and Windows 2000 queues an interprocessor interrupt to kick off the
currently running thread in favor of this new thread.

NOTE Wmdows 2000 doesn't look at the priority of the current
and next threaqs on all the CPUs-just on the one CPU selected as
described above. Ifno thread can be preempted on that one CPU,
the new thread is put in the ready queue for its priority level, where
it awaits its turn to get scheduled.

Selecting a Thread to Run on a Specific CPU
In several cases (such as when a thread lowers its priority, changes its affinity,
or delays or yields execution), Windows 2000 must find a new thread to run
on the CPU that the currently executing thread is running on. On a single
processor system, Wmdows 2000 simply picks the first thread in the ready queue,
starting with the highest-priority ready queue with at least one thread and
working its way down. On a multiprocessor system, however, Windows 2000

S I X: Processes, Threads, and Jobs

doesn't simply pick the first thread in the ready queue. Instead, it looks for a
thread that meets one of the following conditions:

!II Ran last on the specified processor

!II Has its ideal processor set to the specified processor

!II Has been ready to run for longer than 2 quantums

!II Has a priority greater than or equal to 24

Threads that don't have the specified processor in their hard affinity mask
are skipped, obviously. If Windows 2000 doesn't find any threads that meet one
of these conditions, it picks the thread at the head of the ready queue it began
searching from.

Why does it matter which processor a thread was last running on? As usual,
the answer is speed-giving preference to the last processor a thread executed
on maximizes the chances that thread data remains in the secondary cache of
the processor in question.

When the Highest-Priority Ready Threads Are Not Running
As just explained, on a multiprocessor system, Windows 2000 doesn't always
select the highest-priority thread to run on a given cpu. Thus, a thread with
a higher priority than the currently running thread on a given cpu can become
ready but might not immediately preempt the current thread.

Another situation in which the highest-priority thread might not preempt
the current thread is when a thread's affinity mask is set as a subset of the avail
able CPUs. In that case, the processors to which the thread has affinity are
currently running higher-priority threads and the thread must wait for one of
those processors-even if another processor is free or running lower-priority
threads that it could otherwise preempt. Windows 2000 won't move a running
thread that could run on a different processor from one cpu to a second pro
cessor to permit a thread with an affinity for the first processor to run on the
first processor.

For example, consider this scenario: cpu 0 is running a priority 8 thread
that can run on any processor, and CPU 1 is running a priority 4 thread that
can run on any processor. A priority 6 thread.that can run on only CPU 0 be
comes ready. What happens? Windows 2000 won't move the priority 8 thread
from CPU 0 to CPU 1 (preempting the priority 4 thread) so that the priority
6 thread can run; the priority 6 thread has to wait.

373

INSIDE MICROSOFT WINDOWS 2000

Job Objects

374

A job object is a nameable, securable, shareable kernel object that allows con
trol of one or more processes as a group. A job object's basic function is to allow
groups of processes to be managed and manipulated as a unit. A process can be
a member of only one job object. By default, its association with the job object
can't be broken and all processes created by the process and its descendents are
associated with the same job object as well. The job object also records basic
accounting information for all processes associated with the job and for all pro
cesses that were associated with the job but have since terminated. Table 6-20
lists the Win32 functions to create and manipulate job objects.

Table 6-20 Win32 API Functions for Jobs

Function

Create]obObject

Open]obObject

AssignProcessTo]obObject

Terminate]obObject

Setlnformation]obObject

Querylnformation]obObject

Description

Creates a job object (with an optional name)

Opens an existing job object by name

Adds a process to a job

Terminates all processes in a job

Sets limits

Retrieves information about the job, such
as CPU time, page fault count, number of
processes, list of process IDs, quotas or limits,
and security limits

The following are some of the CPU -related and memory-related limits you
can specify for a job:

III Maximum number of active processes Limits the number of
concurrently executing processes in the job.

III Jobwide user-mode CPU time limit Limits the maximum amount
of user-mode CPU time that the processes in the job can consume
(including processes that have run and exited). Once this limit is
reached, by default all the processes in the job will be terminated
with an error code and no new processes can be created in the job
(unless the limit is reset). The jobobject is signaled, so any threads
waiting on the job will be released. ¥oucan change this default be
havior with a call to EndOfJobTimeAction.

5 I X: Processes, Threads, and Jobs

III Per-process user-mode CPU time limit Allows each process in the
job to accumulate only a fixed maximum amount of user-mode CPU
time. When the maximum is reached, the process terminates (with
no chance to clean up).

III Job scheduling class Sets the length of the time slice (or quantum)
for threads in processes in the job. This setting applies only on systems
running with long, fixed quantums (the default for Windows 2000
Server). The value of the job-scheduling class determines the quan
tum as shown here:

Scheduling Class

o
1

2

3
4

5
6

Quantum Units

6

12
18
24

30

36

42

7 48

8 54

9 Infinite if real-time; 60 otherwise

III Job processor affinity Sets the processor affinity mask for each
process in the job. (Individual threads can alter their affinity to any
subset of the job affinity, but processes can't alter their process affinity
setting.)

III Job process priority class Sets the priority class for each process in
the job. Threads can't increase their priority relative to the class (as
they normally can). Attempts to increase thread priority are ignored.
(No error is returned on calls to SetThreadPriority, but the increase
doesn't occur.)

III Default working set minimum and maximum Defines the specified
working set minimum and maximum for each process in the job.
(This setting isn't jobwide-each process has its own working set
with the same minimum and maximum values.)

375

INSIDE MICROSOFT WINDOWS 2000

376

II Process and job committed virtual memory limit Defines the
maximum amount of storage that can be committed by either a single
process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object,
which other threads might be waiting on with the Win32 GetQueuedCompletion
Status function.

You can also place security limits on processes in a job. You can set a job
such that each process runs under the same jobwide access token. You can then
create a job to restrict processes from impersonating or creating processes that
have access tokens that contain the local administrator's group. In addition, you
can apply security filters such that when threads in processes contained in a job
impersonate client threads, certain privileges and security IDs (SIDs) can be
eliminated from the impersonation token.

Finally, you can also place user interface limits on processes in a job. Such
limits include being able to restrict processes from opening handles to win
dows owned by threads outside the job, reading and/or writing to the clip
board, and changing the many user interface system parameters via the Win32
SystemParameterslnfo function.

Windows 2000 Datacenter Server has a tool called the Process Control
Manager that allows an administrator to define job objects, the various quotas
and limits that can be specified for a job, and which processes, if run, should
be added to the job. A service component monitors process activity and adds
the specified processes to the jobs.

S I X: Processes, Threads, and Jobs

(continued)

377

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing the Job Object continued

Conclusion

378

In this chapter, we've examined the structure of processes and threads, seen how
they are created and destroyed, and looked at how Windows 2000 decides which
threads should run and for how long.

Many references in this chapter are to topics related to memory manage
ment. Because threads run inside processes and processes in large part define
an address space, the next logical topic is how Windows 2000 performs virtual
and physical memory management-the subjects of Chapter 7.

C HAP T E R 5 EVE N

Memory Management

In this chapter, you'll learn how Microsoft Windows 2000 implements virtual
memory and how it manages the subset of virtual memory kept in physical
memory. These jobs involve two primary tasks:

Ii Translating, or mapping, a process's virtual address space into physical
memory so that when a thread running in the context of that pro
cess reads or writes to the virtual address space, the correct physical
address is referenced. (The subset of a process's virtual address space
that is physically resident is called the working set. Working sets are
described in more detail later in this chapter.)

Ii Paging some of the contents of memory to disk when it becomes
overcommitted-that is, when running threads or system code try to
use more physical memory than is currently available-and bringing
the contents back into physical memory when needed.

As you saw in Chapter 2 (Table 2-2 on page 39), Windows 2000 Profes
sional and Server systems support up to 4 GB of physical memory, Windows
2000 Advanced Server supports up to 8 GB, and Windows 2000 Datacenter
Server up to 64 GB. (Actual supported maximum memory for Windows 2000
Datacenter Server depends on available hardware. Windows 2000 Datacenter
Server wasn't released at the time we wrote this book, so we were unable to verify
whether the hardware currently available will support the operating system
maximum of 64 GB.)

Because Windows 2000 is a 32-bit operating system, user processes have
a flat 4-GB 32-bit virtual address space. How a 32-bit process can allocate and
use large amounts of physical memory is explained in the section "Address
Windowing Extensions" later in this chapter.

379

INSIDE MICROSOFT WINDOWS 2000

NOT E Microsoft has publicly announced plans to provide a true
64-bit version of Windows that will support the Intel Itanium pro
cessor family. A new 64-bit API, called Win64 , will support true 64-
bit addresses. The reason for supporting this platform is the same
reason Microsoft moved from a 16-bit to a 32-bit address space-ever
increasing requirements for storing and processing huge amounts of
data in memory. The 64-bit version of Windows alleviates the address
space limitations of Windows 2000 by providing a large, flat64-bit
virtual address space for processes. For more on 64-bit Windows, see
the section "Getting Ready for 64-bit Windows" in the Platform SDK
or the information on Microsoft's Web site at www.microsoft.coml
windows2000IguidelplatformlstrategicIMbit.asp.

In addition to providing virtual memory management, the memory man
ager provides a core set of services on which the various Windows 2000 envi
ronment subsystems are built. These services include memory mapped files
(internally called section objects), copy-on-write memory, and support for appli
cations using large, sparse address spaces. In this chapter, we'll summarize these
basic services and review pertinent concepts such as reserved versus committed
memory and shared memory. We'll also describe the internal structure and
components that make up the memory manager, including key data structures
and algorithms.

Memory Manager Components

380

The memory manager is part of the Windows 2000 executive and therefore exists
in the file Ntoskrnl.exe. No parts of the memory manager exist in the HAL. The
memory manager consists of the following components:

II A set of executive system services for allocating, deallocating, and
managing virtual memory, most of which are exposed through the
Win32 API or kernel-mode device driver interfaces

II A translation-not-valid and access fault trap handler for resolving
hardware-detected memory management exceptions and making
virtual pages resident on behalf of a process

S EVE N: Memory Management

II Several key components that run in the context of six different
kernel-mode system threads:

D The working set manager (priority 16), which the balance set
manager (a system thread the kernel creates) calls once per second
as well as when free memory falls below a certain threshold, drives ,
the overall memory management policies, such as working set
trimming, aging, and modified page writing.

D The process/stack swapper (priority 23) performs both process and
kernel thread stack inswapping and outswapping. The balance set
manager and the thread-scheduling code in the kernel awaken this
thread when an inswap or outswap operation needs to take place.

D The modified page writer (priority 17) writes dirty pages on the
modified list back to the appropriate paging files. This thread is
awakened when the size of the modified list needs to be reduced.
(See the section "Modified Page Writer" on page 472 to fmd out
how you can change this default value.) ,

D The mapped page writer (priority 17) writes dirty pages in mapped
files to disk. It is awakened when the size of the modified list needs
to be reduced or if pages for mapped files have been on the modi
fied list for more than 5 minutes. This second modified page writer
thread is necessary because it can generate page faults that result
in requests for free pages. If there were no free pages and there
was only one modified page writer thread, the system could dead
lock waiting for free· pages.

D The dereference segment thread (priority 18) is responsible for
system cache and page file growth and shrinkage. (For example, if
there is no virtual address space for paged pool growth, this thread
reduces the size of the system cache.)

D The zero page thread (priority 0) zeros out pages on the free list
so that a cache of zero pages is available to satisfY future demand
zero page faults.

Each of these components is covered in more detail later in the chapter.

381

INSIDE MICROSOFT WINDOWS 2000

Like all other components of the Windows 2000 executive, the memory
manager is fully reentrant and supports simultaneous execution on multipro
cessor systems-that is, it allows two threads to acquire resources in such a way
that they don't corrupt each other's data. To accomplish the goal of being fully
reentrant, the memory manager uses several different internal synchronization
mechanisms to control access to its own internal data structures, such as spinlocks
and executive resources. (Synchronization objects are discussed in Chapter 3.)

Systemwide resources to which the memory manager must synchronize
access include the page frame number (PFN) database (controlled by a spinlock),
section objects and the system working set (controlled by executive resources),
and page file creation (controlled by a mutex), as well as other internal struc
tures. Per-process memory management data structures are synchronized us
ing two per-process mutexes: the working set lock (held while changes are being
made to the working set list) and the address space lock (held whenever the
address space is being changed).

Configuring the Memory Manager
Like most of Windows 2000, the memory manager attempts to automatically
provide optimal system performance for varying workloads on systems of varying
sizes and types. You can use registry values under the key HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management to over
ride these default performance calculations. Some of these values are listed in
Table 7-1. For more details, see the Windows 2000 resource kit Technical Ref
erence to the Registry help file.

Table 7-1 Registry Values That Affect the Memory Manager

Registry Value Description

ClearPageFileAtShutdown Specifies whether inactive pages in the paging file are filled with
zeros when the system is shut down. This is a security feature.

DisablePagingExecutive Specifies whether user-mode and kernel-mode drivers and
kernel-mode system code can be paged to disk when not in
use. If the value of this entry is 0 (the default), drivers and the
kernel must remain in physical memory. If the value is 1, they
can be paged to disk as needed.

IoPageLockLimit Specifies the limit of the number of bytes that can be locked in
a user process for I/O operations. When this value is 0, the
system uses the default (512 KB). The maximum value is
approximately the equivalent of physical memory minus 7 MB.
This registry key isn't used in Windows 2000 Datacenter
Server and is no longer used in Windows 2000 starting with
Windows 2000 Service Pack 1.

382

Registry Value

LargePageMinimum

LargeSystemCache

NonPagedPoolQuota

NonPagedPoolSize

PagedPoolQuota

PagedPoolSize

SystemPages

5 EVE N: Memory Management

Description

Indicates the minimum number of megabytes necessary to map
Ntoskrnl and HAL using large (4-MB) pages. (This value isn't
documented and isn't present by default; you must add it
manually.)

Mfects whether the file system cache or the working sets of
processes are given priority when it comes to memory trade-offs.
Also affects the size of the file system cache. (On Windows 2000
Server systems, you can adjust this value indirectly by setting
the properties of the file server service-see page 666 in
Chapter 11 for details.)

Indicates the maximum nonpaged pool that can be allocated
by any process (in megabytes). If the value of this entry is 0,
the system calculates the value.

Indicates the initial size of nonpaged pool in bytes. When this
value is 0, the system calculates the value.

Indicates the maximum paged pool (in megabytes) that any
process can allocate. If the value of this entry isO, the system
calculates the value.

Indicates the maximum size of paged pool in bytes. When the
value of this entry is 0, the system calculates the value. A value
of -1 indicates that the largest possible size is selected, which
means allowing a larger paged pool in favor of system page
table entries (PTEs).

Indicates the number of system page table entries reserved for
mapping I/O buffers, device drivers, kernel thread stacks, or
pages for programmed I/O into the system address space. If the
value is 0, the system calculates the value. If the value is -1, the
inaximum number of system PTEs will be reserved. (This value
might be needed to support, for example, a device that requires
a large number of system PTEs, such asa video card with 512
MB of video rt;lemory that has to be mapped all at one time.)

Most of the interesting "knobs" or controls· that affect memory manager
policy are kernel variables that contain various thresholds and limits computed at
system boot titne on the basis of memory size and product type (Windows 2000
Professional being optimized fat desktop interactive use and Windows 2000 Server
systems for running server applications) .. ExaIllples of these knobs include the
sizingot system memory (paged pool; nonpaged pool, system cache, number
of system page table entries); page read <;luster size, counters that trigger working
set trimming, and thresholds for the modified page writer. To find some of

383

INSIDE MICROSOFT WINDOWS 2000

384

these, search for global variables in Ntoskrnl.exe that have names beginning
with Mm that contain the word "maximum" or "minimum."

WAR N I N G Although you'll find references to many of these knobs,
you shouldn't change them. Windows 2000 has been tested to oper
ate properly with the current possible permutations of these values that
can be computed. Changing the value of these kernel variables on a
running system can result in unpredictable system behavior, including
system hangs or even crashes.

The current memory sizes that determine whether Windows 2000 con
siders a system to have a small, medium, or large amount of memory are listed
in Table 7-2. The memory manager uses this value in many of its boot-time
calculations.

Table 7-2 Values That Determine System Memory Size

System Memory Size

Small

Medium

Large

Physical Memory

<19MB

20-32 MB

>32 MB if Windows 2000 Professional

>64 MB if Windows 2000 Server

S EVE N: Memory Management

Examining Memory Usage
The Memory and Process performance counter objects provide access to most
of the details about system and process memory utilization. Throughout the
chapter, we'll include references to specific performance counters that contain
information related to the c()mponent being described.

Besides the Performance tool, a number of tools in the Windows 2000
Support Tools and Windows 2000 resource kits display different subsets of
memory usage information. We've included relevant examples and experiments
throughout the chapter. One word of caution, however--different utilities use
varying and sometimes inconsistent or confusing names when displaying memory
information. The following experiment illustrates this point. (We'll explain the
terms used in this example in subsequent sections.)

(continued)

385

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing System Memory Information continued

386

S EVE N: Memory Management

(continued)

387

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Accounting for Physical Memory Use continued

388

S EVE N: Memory Management

Services the Memory Manager Provides
The memory manager provides a set of system services to allocate and free vir
tual memory, share memory between processes, map filesinto memory, flush
virtual pages to disk, retrieve information about a range of virtual pages, change
the protection of virtual pages, and lock the virtual pages into memory.

Like other Windows 2000 executive services, the memory management
services allow their caller to supply a process handle, indicating the particular
process whose virtual memory is to be manipulated. The caller can thus manipu
late either its own memory or (with the proper permissions) the memory of
another process. For example, if a process creates a child process, by default it
has the right to manipulate the child process's virtual memory. Thereafter, the
parent process can allocate, deallocate, read, and write memory on behalf of the
child process by calling virtual memory services and passing a handle to the child
process as an argument. This feature is used by subsystems to manage the
memory of their client processes, and it is also key for implementing debuggers
because debuggers must be able to read a1ld write to the memory of the pro
cess being debugged.

389

INSIDE MICROSOFT WINDOWS 2000

Most of these services are exposed through the Win32 API. The Win32
API has three groups of functions for managing memory in applications: page
granularity virtual memory functions (Virtualxxx), memory-mapped file func
tions (CreateFileMapping, Map View OfFile) , and heap functions (Heapxxx and
the older interfaces Localxxx and Globalxxx). (We'll describe the heap manager
later in this section.)

The memory manager also provides a number of services, such as allo
cating and de allocating physical memory and locking pages in physical memory
for direct memory access (DMA) transfers, to other kernel-mode components
inside the executive as well as to device drivers. These functions begin with
the prefix Mm. In addition, though not strictly part of the memory manager,
executive support routines that begin with Ex are used to allocate and deallocate
from the system heaps (paged and nonpaged pool) as well as to manipulate
look-aside lists. We'll touch on these topics later in this chapter, in the section
"System Memory Pools" on page 403.

Although we'll be referring to Win32 functions and kernel-mode memory
management and memory allocation routines provided for device drivers, we
won't cover the interface and programming details but rather the internal opera
tions of these functions. Refer to the Win32 API and Device Driver Kit (DDK)
documentation on MSDN for a complete description of the available functions
and their interfaces.

Reserving and Committing Pages

390

Pages in a process address space are free, reserved, or committed. Applications
can first reserve address space and then commit pages in that address space. Or
they can reserve and commit in the same function call. These services are exposed
through the Win32 VirtualAlloc and VirtualAllocEx functions.

Reserved address space is simply a way for a thread to reserve a range of
virtual addresses for future use. Attempting to access reserved memory results
in an access violation because the page isn't mapped to any storage that can
resolve the reference.

Committed pages are pages that, when accessed, ultimately translate to
valid pages in physical memory. Committed pages are either private and not
shareable or mapped to a view of a section (which might or might not be mapped
by other processes). Sections are described in the next section as well as in "Sec
tion Objects" on page 478.

If the pages are private to the process and have never been accessed before,
they are created at the time of first access as zero-initialized pages (or demand

S EVE N: Memory Management

zero). Private committed pages can later be automatically written to the paging
file by the operating system if memory demands dictate. Committed pages that
are private are inaccessible to any other process unless they're accessed using cross
process memory functions, such as ReadProcessMemory or WriteProcessMemory.
If committed pages are mapped to a portion of a mapped file, they might need
to be brought in from disk when accessed unless they've already been read earlier,
either by the process accessing the page or by another process that had the same
file mapped and had accessed the page.

Pages are written to disk through normal modified page writing as pages
are moved from the process working set to the modified list and ultimately to
disk. (Working sets and the modified list are explained later in this chapter.)
Mapped file pages can also be written back to disk as a result of an explicit call
to Flush ViewOjFile.

You can decommit pages and/or release address space with the VirtualFree
or VirtualFreeEx functions. The difference between decommittal and release is
similar to the difference between reservation and committal-de committed
memory is still reserved, but released memory is neither committed nor reserved.
(It's free.)

Using the two-step process of reserving and committing memory can
reduce memory usage by deferring committing pages until needed. Reserving
memory is a relatively fast and inexpensive operation under Windows 2000
because it doesn't consume any committed pages (a precious system resource)
or process page file quota (a limit on the number of committed pages a process
can consume-not necessarily page file space). All that needs to be updated or
constructed is the relatively small internal data structures that represent the state
of the process address space. (We'll explain these data structures; called virtual
address descriptors, . or V ADs, later in the chapter.)

Reserving and then committing memory is useful for applications that need
a potentially large contiguous memory buffer; rather than committing pages for
the entire region, the address space can be reserved and then committed later
when needed. A utilization of this technique in the operating system is the user
mode stack for each thread. When a thread is created, a stack is reserved. (1 MB
is the default; you can override this size with the Create Thread function call or
on an imagewide basis by using the /STACK linker flag.) By default, the ini
tial page in the stack is committed and the next page is marked asa guard page,
which isn't committed, that traps references beyond the end of the committed
portion of the stack and expands it.

391

INSIDE MICROSOFT WINDOWS 2000

Locking Memory
Pages can be locked in memory in two ways:

!II Device drivers can call the kernel-mode functions MmProbeAndLock
Pages, MmLockPagableCodeSection, MmLockPagableDataSection, or
MmLockPagableSectionByHandle. Pages locked using this mechanism
remain in memory until explicitly unlocked. Although no quota is
imposed on the number of pages a driver can lock in memory, a driver
can't lock more pages than the resident available page count will allow.
Also, each page does use a system page table entry (PTE), which is a
limited resource. (PTEs are described later in the chapter.)

!II Win32 applications can call the VirtualLock function to lock pages in
their process working set. Note that such pages are not immune
from paging-if all the threads in the process are in a wait state, the
memory manager is free to remove such pages from the working set
(which, for modified pages, ultimately would result in writing the
pages to disk) if memory demands dictate. In such cases, locking
pages in your working set can actually degrade performance because
when a thread wakes up to run, the memory manager must first read
in all the locked pages before the thread can begin execution. There
fore, in general, it's better to let the memory manager decide which
pages remain in physical memory. The number of pages a process can
lock can't exceed its minimum working set size minus eight pages.

Allocation Granularity

392

Windows 2000 aligns each region of reserved process address space to begin on
an integral boundary defined by the value of the system allocation granularity,
which can be retrieved from the Win32 GetSystemlnfo function. Currently, this
value is 64 K13. This size was chosen so that if support were added for future
processors with large page sizes (for example, up to 64 KB), the risk of requir
ing changes to applications that made assumptions about allocation alignment
would be reduced. (Windows 2000 kernel-mode code isn't subject to the same
restrictions; it can reserve memory on a single-page granularity.)

Finally, when a region of address space is reserved, Windows 2000 ensures
that the size of the region is a multiple of the system page size, whatever that
might be. For example, because x86 systems use 4-KB pages, if you tried to
reserve a region of memory 18 KB in size, the actual amount reserved on an
x86 system would be 20 KB.

S EVE N: Memory Management

Shared Memory and Mapped Files
As is true with most modern operating systems, Windows 2000 provides a
mechanism to share memory among processes and the operating system. Shared
memory can be defined as memory that is visible to more than one process or
that is present in more than one process virtual address space. For example, if
two processes use the same DLL, it would make sense to load the referenced
code pages for that D LL into physical memory only once and share those pages
between all processes that map the DLL, as illustrated in Figure 7-1.

Process 1 virtual

Process 2 virtual

Figure 7-1
Sharing memory between processes

393

INSIDE MICROSOFT WINDOWS 2000

394

Each process would still maintain its private memory areas in which to store
private data, but the program instructions and unmodified data pages could be
shared without harm. As we'll explain later, this kind of sharing happens automati
cally because the code pages in executable images are mapped as execute-only and
writable pages are mapped copy-on-write. (See the section "Copy-on-Write" on
page 398 for more information.)

The underlying primitives in the memory manager used to implement
shared memory are called section objects, which are called file mapping objects in
the Win32 API. The internal structure and implementation of section objects
are described later in this chapter (beginning on page 478).

This fundamental primitive in the memory manager is used to map virtual
addresses, whether in main memory, in the page file, or in some other file that
an application wants to access as if it were in memory. A section can be opened
by one process or by many; in other words, section objects don't necessarily
equate to shared memory.

A section object can be connected to an open file on disk (called a mapped
file) or to committed memory (to provide shared memory). Sections mapped to
committed memory are called page file backed sections because the pages can be
written to the paging file if memory demands dictate. (Because Windows 2000
can run with no paging file, page file backed sections might in fact be "backed"
only by physical memory). As with private committed pages, shared committed
pages are always zero-filled when they are first accessed.

To create a section object, call the Win32 CreateFileMapping function,
specifying the file handle to map it to (or INVALID_HANDLE_ VALUE for a
page file backed section), and optionally a name and security descriptor. If the
section has a name, other processes can open it with OpenFileMapping. Or you
can grant access to section objects through handle inheritance (by specifying that
the handle be inheritable when opening or creating the handle) or handle duplica
tion (by using DuplicateHandle). Device drivers can also manipulate section
objects with the ZwOpenSection,ZwMapViewOjSection, andZwUnmapView
OjSection functions.

A section object can refer to files that are much larger than can fit in the
address space of a process. (If the paging file backs a section object, sufficient
space must exist in the paging file to contain it.) To access a very large section
object, a process can map only the portion of the section object that it requires
(called a view of the section) by calling the Map ViewOjFile function.and then
specifying the range to map. Mapping views permits processes to conserve address
space because only the views of the section object needed at the time must be
mapped into memory.

S EVE N: Memory Management

Win32 applications can use mapped files to conveniendy perform I/O to
files by simply making them appear in their address space. User applications aren't
the only consumers of section objects: the image loader uses section objects to
map executable images, DLLs, and device drivers into memory, and the cache
manager uses them to access data in cached files. (For information on how the
cache manager integrates with the memory manager, see Chapter 11.)

How shared memory sections are implemented both in terms of address
translation and the internal data structures is explained later in this chapter.

Protecting Memory
As explained in Chapter 1, Windows 2000 provides memory protection so that
no user process can inadvertendy or deliberately corrupt the address space of
another process or the operating system itself. Windows 2000 provides this
protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel"
mode system components can be accessed only while in kernel mode-user-mode
threads can't access these pages. If they attempt to do so, the hardware generates
a fauit, which in turn the memory manager reports to the thread as an access
violation.

NOT E In contrast, Microsoft Windows 95, Microsoft Windows 98,
and Microsoft Windows Millennium Edition have some pages in sys
tem address space that are writable from user mode, thus allowing
an errant application to corrupt key system data structures and crash
the system.

Second, each process has a separate, private address space, protected from
being accessed by any thread belonging to another process. The only exceptions
are if the process is sharing pages with other processes or if another process has
virtual memory read or write access to the process object and thus can use the
ReadProcessMemoryor WriteProcessMemory functions. Each time a thread refer
ences an address, the virtual memory hardware, in. concert with the memory
manager, intervenes and translates the virtual address into a physical one. By
controlling how virtu.al addresses are translated, Windows 2000 can ensure that
threads running in one process don't inappropriately access a page belonging
to another process.

Third, in addition to the implicit protection virtual-to-physical address
tr(l1lslation offers, all processors supported by Windows 2000 provide some form
of hardware-controlled memory protection (such as rea.d/write, read-only, and
so on); the exact details of such protection vary according to the processor. For
example, code pages in the address space of a process are marked read-only and

395

INSIDE MICROSOFT WINDOWS 2000

396

are thus protected from modification by user threads. Code pages for loaded
device drivers are similarly marked read -only.

NOTE By default, system-code write protection doesn't apply to
Ntoskrnl.exe or Hal.dll on systems with 128 MB or more of physical
memory. On such systems, Windows 2000 maps the first 512 MB of
system address space with large (4-MB) pages to increase the efficiency
of the translation look -aside buffer (explained later in this chapter).
Because image sections are mapped at a granularity of 4 KB, the use
of 4-MB pages means that a code section of an image might reside
on the same page as a data section. Thus, marking such a page read
only would prevent the data on that page from being modifiable. You
can override this value by adding the DWORD registry value HKLM\
SYSTEM\CurrentControlSet\Control\SessionManager\Memory
Management\LargePageMinimum as the number of megabytes
required on the system to map Ntoskrnl and the HAL with large pages.

Table 7 -3 lists the memory protection options defmed in the Win32 API.
(See the VirtualProtect, VirtualProtectEx, VirtualQuery, and VirtualQ;leryEx
functions.)

Table 7-3 Memory Protection Options Defined in the Win32 API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or
execute code in this region causes an
access violation.

PAGE_READ ONLY Any attempt to write to or execute
code in memory causes an access vio
lation, but reads are permitted.

PAGE_READWRITE The page is readable and writable-no
action will cause an access violation.

PAGE_EXECUTE * Any attempt to read from or write to
code in memory in this region causes
an access violation, but execution is
permitted.

PAGE_EXECUTE_READ* Any attempt to write to code in
memory in this region causes an access
violation, but executes and reads are
permitted.

PAGE_EXECUTE_READWRITE * The page is readable, writable, and
executable-no action will cause an
access violation.

Attribute

S EVE N: Memory Management

Description

Any attempt to write to memory in
this region causes the system to give
the process a private copy of the page.
Attempts to execute code in memory
in this region cause an access violation.

Any attempt to write to memory in
this region causes the system to give
the process a private copy of the page.

Any attempt to read from or write to
a guard page raises an EXCEPTION_
GUARD_PAGE exception and turns
off the guard page status. Guard
pages thus act as a one-shot alarm.
Note that this flag can be specified
with any of the page protections listed
in this table except
PAGE_NOACCESS.

* The x86 architecture doesn't implement execute· only access (that is, code can be executed
in any readable page), so Windows 2000 doesn't support this option in any practical sense
(though IA-64 does). Windows 2000 treats PAGE_EXECUTE_READ as PAGE_
READONLY and PAGE_EXECUTE_READWRITE as PAGE_READWRITE.

And finally, shared memory section objects have standard Windows 2000
access-control lists (ACLs) that are checked when processes attempt to open
them, thus limiting access of shared memory to those processes with the proper
rights. Security also comes into play when a thread creates a section to contain
a mapped file. To create the section, the thread must have at least read access
to the underlying ftle object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are
still subject to the memory manager and the hardware-based page protections
described earlier, A thread can change the page-level protection on virtual pages
in a section if the change doesn't violate the permissions in the ACL for that
section object. For example, the memory manager allows a thread to change the
pages of a read-only section to have copy-on-write access but not to have read/
write access. The copy-on-writeaccess is permitted because it has no effect on
other processes sharing the data.

These four primary memory protection mechanisms are part of the rea
son that Windows 2000 is a robust, reliable operating system that is impervi
ous to and resilient to application errors.

397

INSIDE MICROSOFT WINDOWS 2000

Copy-on-Write

398

Copy-on-write page protection is an optimization the memory manager uses
to conserve physical memory. When a process maps a copy-on-write view of a
section object that contains read/write pages, instead of making a process pri
. vate copy at the· time the view is mapped (as the Compaq Open VMS operating
system does), the memory manager defers making a copy of the pages until the
page is written to. All modern UNIX systems use this technique as well. For
example, as shown in Figure 7-2, two processes are sharing three pages, each
marked copy-on-write, but neither of the two processes has attempted to modifY
any data on the pages.

Process
address
space

Figure 7-2
The cCbefore)) of copy-an-write

Proc!!ss
address
space

If a thread in either process writes to a page, a memory management fault
is generated. The memory manager sees that the write is to a copy-on-write page,
so instead of reporting the fault as an access violation, it allocates a hew read/
write page in physical memory, copies the contents of the original page to the
new page, updates the corresponding page-mapping information (explained later
in this chapter) in this process to point to the new location, and dismisses the
. exception, thus causing the instruction that generated the fault to be reexecuted.
This time,the write operation succeeds, but as shown in Figure 7-3, the newly
copied page is now private to the process that did the writing and isn't visible
to the other processes still sharing the copy-on-write page. Each neW process
that writes to that same shared page will also get its own private copy.

Process
address
space

Figure 7-3
The CCafter)) of copy-on-write

S EVE N: Memory Management

Process
address
space

One application of copy-on-write is to implement breakpoint support in
debuggers. For example, by default, code pages start out as execute-only. If a
programmer sets a breakpoint while debugging a program, however, the debugger
must add a breakpoint instruction to the code. It does this by first changing the
protection on the page to PAGE_EXECUTE_READWRITE and then chang
ing the instruction stream. Because the code page is part of a mapped section,
the memory manager creates a private copy for the process with the breakpoint
set, while other processes continue using the unmodified code page.

Copy-on~write is one example of an evaluation technique known as lazy
evaluation that the memory manager uses as often as possible. Lazy-evaluation
algorithms avoid performing an expensive operation until absolutely required
if the operation is never required, no time is wasted on it.

The POSIX subsystem takes advantage of copy-on-write to implement the
fork function. Typically, when a UNIX application calls the fork function to create
another process, the first thing that the new process does is call the exec func
tion to reinitialize the address space with an executable program. Instead of
copying the entire address space on fork, the new process shares the pages in
the parent process by marking them copy-on-write. If the child writes to the data,
a process private copy is made. If not, the two processes continue sharing and
no copying takes place. One way or the other, the memory manager copies only
the pages the process tries to write to rather than the entire address space.

To examine the rate of copy-on-write faults, see the performance counter
Memory: Write Copies/Sec.

399

INSIDE MICROSOFT WINDOWS 2000

Heap Functions

400

A heap is a region of one or more pages of reserved address space that can be
subdivided and allocated in smaller chunks by the heap manager. The heap
manager is a set of functions that can be used to allocate and deallocate vari
able amounts of memory (not necessarily on a page-size granularity as is done
in the VirtualAlioc function). The heap manager functions exist in two places:
Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such as the Win32 heap APIs)
call the functions in Ntdll, and various executive components and device drivers
call the functions in Ntoskrnl.

Every process starts out with a default process heap, usually 1 MB in size
(unless specified otherwise in the image file by using the jHEAP linker flag).
This size is just the initial reserve, however-it will expand automatically as
needed. (You can also specifY the initial committed size in the image ftle.) Win32
applications as well as several Win32 functions that might need to allocate tem
porary memory blocks use this process default heap. Processes can also create
additional private heaps with the HeapCreate function. When a process no longer
needs a private heap, it can recover the virtual address space by calling HeapDestroy.
Only a private heap created with HeapCreate-not the default heap-can be
destroyed during the life of a process.

To allocate memory from the default heap, a thread must obtain a handle
to it by calling GetProcessHeap. (This function returns the address of the data
structure that describes the heap, but callers should never rely on that.) A thread
can then use the heap handle in calls to HeapAlloc and HeapFree to allocate and
free memory blocks from that heap. The heap manager also provides an option
for each heap to serialize allocations and deallocations so that multiple threads
can call heap functions simultaneously without corrupting heap data structures.
The default process heap is set to have this serialization by default (though you
can override this on a call-by-call basis). For additional private heaps, a flag passed
to HeapCreate is used to specifY whether serialization should be performed.

The heap manager supports a number of internal validation checks that,
although not currently documented, you can enable on a systemwide or a per
image basis by using the Global Flags (Gflags.exe) utility in the Windows 2000
Support Tools, Platform SDK, and DDK. Many of the flags are self-explanatory
in terms of what they cause the heap manager to do. In general, enabling these
flags will cause invalid use or corruption of the heap-to generate error notifi
cations to an application either through the use of exceptions or through returned
error codes. (See Chapter 3 for information about exceptions.)

For more information on the heap functions, see the Win32 API reference
documentation on MSDN.

S EVE N: Memory Management

Address Windowing Extensions
Although Windows 2000 systems can support up to 64 GB of physical memory
(as shown in Table 2-2 on page 39), each 32-bit user process has only a 2-GB
or 3-GB virtual address space (depending on whether the 13GB boot switch
is enabled). To allow a 32-bit process to allocate and access more physical
memory than can be represented in its limited address space, Windows 2000
provides a set of functions called Address Windowing Extensions (AWE). For
example, on a Windows 2000 Advanced Server system with 8 GB of physical
memory, a database server application could use AWE to allocate and use nearly
8 GB of memory as a database cache.

Allocating and using memory via the AWE functions is done in three steps:

1. Allocating the physical memory to be used

2. Creating a region of virtual address space to act as a window to map
views of the physical memory

3. Mapping views of the physical memory into the window

To allocate physical memory, an application calls the Win32 function
AllocateUserPhysicalPages. (This function requires the Lock Pages in Memory
user right.) The application then uses the Win32 VirtualAlloc function with the
MEM_PHYSI CAL flag to create a window in the private portion of the process's
address space that is mapped to some or all of the physical memory previously
allocated. The AWE-allocated memory can then be used with nearly all the
Win32 APIs. (For example, the Microsoft DirectX functions can't use AWE
memory.)

If an application creates a 256-MB window in its address space and allocates
4 GB of physical memory (on a system with more than 4 GB of physical memory),
the application can use the Map User PhysicalPages or Map User PhysicalPagesScatter
Win32 functions to access any portion of the physical memory by mapping the
memory into the 256-MB window. The size of the application's virtual address
space window determines the amount of physical memory that the application
can access with a given mapping. Figure 7-4 shows an AWE window in a server
application address space mapped to a portion of physical memory previously
allocated by Allocate User PhysicalPages.

401

INSIDE MICROSOFT WINDOWS 2000

402

System
address
space

4GB

2GB

User address
space

o

Figure 7-4

Server application
address space

64 GB ,.-------.

01.-_____ -11

Physical memory

Using AWE to map physical memory

memory

The AWE functions exist on all editions of Windows 2000 and are usable
regardless of how much physical memory a system has. However, AWE is most
useful on systems with more than 2 GB of physical memory because it's the only
way for a 32-bit process to directly use more than 2 GB of memory.

Finally, there are some restrictions on memory allocated and mapped by
the AWE functions:

III Pages can't be shared between processes.

III The same physical page can't be mapped to more than one virtual
address in the same process.

III Page protection is limited to read/write.

For a description of the page table data structures used to map memory
on systems with more than 4 GB of physical memory, see the section "Physical
Address Extension" on page 442.

S EVE N: Memory Management

System Memory Pools
At system initialization, the memory manager creates two types of dynamically
sized memory pools that the kernel-mode components use to allocate system
memory:

• Nonpaged pool Consists of ranges of system virtual addresses that
are guaranteed to reside iri physical memory at all times and thus can
be accessed at any time (from any IRQL level and from any process
context) without incurring a page fault. One of the reasons nonpaged
pool is required is due to the rule described in Chapter 2: page faults
can't be satisfied at DPC/dispatch level or above.

• Paged pool A region of virtual memory in system space that can be
paged in and out of the system. Device drivers that don't need to
access the memory from DPC/ dispatch level or above can use paged
pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space
and are mapped in the virtual address space of every process. (In Table 7-10
on page 427, you'll find out where in the system memory they start.) The
executive provides routines to allocate and deallocate from these pools; for
information on these routines, see the functions that start with ExAllocatePool
in the Windows 2000 DDK documentation.

There are two types of nonpaged pools: one for general use and a small
one (four pages) reserved for emergency use when nonpaged pool is full and
the caller can't tolerate allocation failures. (This 'latter pool type should no longer
be used; device drivers should be written to properly handle low memory con
ditions. Driver Verifier, discussed later in this chapter, makes it easier to test such
conditions.) Uniprocessor systems have three paged pools; multiprocessor systems
have five. Having more than one paged pool reduces the frequency of system
code blocking on simultaneous calls to pool routines. Both nonpaged and paged
pool start at an initial size based on the amount of physical mernory on the system
and then grow, if necessary, up to a maximum size computed at system boot
time. You can override the initial size of these pools by changing the values
NonPagedPoolSize and PagedPoolSize in the registry key HKLM\SYSTEM\
CurrentControISet\Control\Session Manager\Memory Management from 0
(which causes the system to compute the size) to the size desired in bytes. You
can't, however, go beyond the maximum pool sizes listed in Table 7-4.

403

INSIDE MICROSOFT WINDOWS 2000

Pool Type

Nonpaged

Paged

Table 7-4 Maximum Pool Sizes

Maximum Size

256 MB (128 MB if booted 13GB)

491.875 MB

The computed sizes are stored in four kernel variables, three of which are
exposed as performance counters. These variables and counters, as well as the
two registry keys that can alter the sizes, are listed in Table 7-5.

Table 7-5 System Pool Size Variables and Performance Counters

Kernel Performance Registry Key
Variable Counter to Override Description

MmSizeOJNonPaged- Memory: Pool Not applicable Current size of
PoollnBytes Nonpaged Bytes nonpaged pool

MmMaximumNon- Not available HKLM\SYSTEM\ Maximum size of
PagedPoollnBytes CurrentControlSet\ nonpaged pool

Control\Session
Manager\Memory
Management\
NonPagedPoolSize

Not available Memory: Pool Not applicable Current virtual size
Paged Bytes of paged pool

MmPagedPoolPage Memory: Pool Not applicable Current physical
(number of pages) Paged Resident (resident) size of

Bytes paged pool
MmSizeOjPagedPool- Not available HKLM\SYSTEM\ Maximum (virtual)
InBytes CurrentControlSet\ size of paged pool

Control\Session
Manager~emory
Management\
PagedPoolSize

404

S EVE N: Memory Management

405

INSIDE MICROSOFT WINDOWS 2000

406

S EVE N: Memory Management

(continued)

407

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Monitoring Pool Usage continued

408

S EVE N: Memory Management

(continued)

409

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Monitoring Pool Usage continued

410

5 EVE N: Memory Management

Look-Aside Lists
Windows 2000 also provides a fast memory allocation mechanism called look
aside lists. The basic difference between pools and look-aside lists is that while
general pool allocations can vary in size, a look-aside list contains only fixed
sized blocks. Although the general pools are more flexible in terms of what they
cart supply, look-aside lists are faster because they don't use any spinlocks and
also because the system doesn't have to search for free memory that fits a vary
ing size allocation.

Executive components and device drivers can create look-aside lists that
match the size. of frequently allocated data structures using the Exlnitialize
NPagedLookasideList and ExlnitializePagedLookasideListfunctions (documented
in the DDK). To miniinize the overhead of multiprocessor synchronization, several
executive subsystems (such as~e I/0 manager, cache manager, and object man
ager) create separate look-aside lists for each processor for their frequently accessed
data structures.·The executive also creates·a general per-processor paged and
nonpaged look-aside list for small allocations (256 bytes or less).

If a look-aside list is empty (as itis when it's first created), the system must
allocate from paged or nonpaged pool. But if it contains a freed structure, the
allocation can be satisfied very quickly. (The liSt grows as structures are returned

411

INSIDE MICROSOFT WINDOWS 2000

412

to it.) The pool allocation routines automatically tune the number of freed
buffers that look-aside lists store according to how often a device driver or
executive subsystem allocates from the list-the more frequent the allocations,
the more buffers are stored on a list. Look-aside lists are automatically reduced
in size if they aren't being allocated from. (This check happens once per second
when the balance set manager system thread wakes up and calls the function
KiAdjustLookasideDepth.)

S EVE N: Memory Management

Driver Verifier
Driver Verifier is a mechanism that can be used to help find and isolate com
monly found bugs in device driver or other kernel-mode system code. Microsoft
uses Driver Verifier to check all device drivers that vendors submit for Hardware
Compatibility List (HCL) testing. Doing so ensures that the drivers on the HCL
are compatible with Windows 2000 and free from common driver errors.

Driver Verifier consists of support in several system components: the
memory manager, I/O manager, HAL, and Win32k.sys all have driver verifica
tion options that can be enabled. This section describes the memory management
related verification options Driver Verifier provides.

Driver Verifier Configuration and Initialization
To configure Driver Verifier and view statistics about its operation,run the Driver
Verifier Manager (\ Winnt\System32\ Verifier.exe). As shown in Figure 7 -5, when
you run Driver Verifier, it displays several tabbed pages. You use the Settings
tab to specify which device drivers you want to verifY (there's an option to Verify
All Drivers) and what types of verification you want performed.

Figure 7-5
The Driver Verifier Manager

The settings are stored in the registry under HKLM\SYSTEM\Current
ControlSet\Control\Session Manager\Memory Management. The value VerifY
DriverLevel contains a bitmask that represents the verification types enabled.
The VerifYDrivers value contains the names of the drivers to validate. (These

413

INSIDE MICROSOFT WINDOWS 2000

414

values won't exist in the registry until you select drivers to verify in the Driver
Verifier Manager.) If you choose to verify all drivers, VerifyDrivers is set to an
asterisk (*) character. After you've entered or changed Driver Verifier settings,
you might need to reboot the system for verification to occur.

Early in the boot process, the memory manager reads the Driver Verifier
registry values to determine which drivers to verify and which Driver Verifier
options you enabled. Subsequently, if you've selected at least one driver for veri
fication, the kernel checks the name of every device driver it loads into memory
against the list of drivers you've selected for verification. For every device driver
that appears in both places, the kernel invokes the MiApplyDriver Verifier func
tion, which replaces the driver's references to any of approximately 40 kernel
functions with references to Driver Verifier-equivalent versions of those func
tions. For example, ExAliocatePoolis replaced with a call to VerifierAliocatePool.
The windowing system driver also makes similar changes to use Driver Verifier
equivalent functions.

Now that we've reviewed how to set up Driver Verifier, let's examine the
four memory-related verification options that can be applied to device driv
ers: Special Pool, Pool Tracking, Force IRQL Checking, and Low Resources
Simulation.

Special Pool The Special Pool option causes the pool allocation routines to
bracket pool allocations with an invalid page so that references before or after
the allocation will result in a kernel-mode access violation, thus crashing the
system with the finger pointed at the buggy driver. Special pool also causes some
additional validation checks to be performed when a driver allocates or frees
memory.

When special pool is enabled, the pool allocation routines allocate a region
of kernel memory for Driver Verifier to use. Driver Verifier redirects memory
allocation requests that drivers under verification make to the special pool area
rather than to the standard kernel-mode memory pools. When a device driver
allocates memory from special pool, Driver Verifier rounds up the allocation to
an even-page boundary. Because Driver Verifier brackets the allocated page with
invalid pages, if a device driver attempts to read or write past the end of the buffer,
the driver will access an invalid page and the memory manager will raise a kernel
mode access violation.

Figure 7-6 shows an example of the special pool buffer that Driver Veri
fier allocates to a device driver when Driver Verifier checks for overrun errors.

S EVE N: Memory Management

Page 0

Invalid page

Page 1
Random signature

Driver buffer

Page 2

Invalid page

Figure 7-6
Layout of special pool allocations

By default, Driver Verifier performs overrun detection. It does this by plac
ing the buffer that the device driver uses at the end of the allocated page and fills
the beginning of the page with a random pattern. Although the Driver Verifier
Manager doesn't let you specify underrun detection, you can set this type of
detection manually by adding the DWORD registry value HKLM\SYSTEM\
CutrentControISet\Control\Session Manager\MemoryManagement\PooITag
Overruns and setting it to 1 (or by running the Gflags utility and selecting the
Verify Start option instead of the default option Verify End). When Windows 2000
enforces underrun detection, Driver Verifier allocates the driver's buffer at the
beginning of the page rather than at the end.

The overrun-detection configuration includes some measure of under run
detection as well. When the driver frees its buffer to return the memory to Driver
Verifier, Driver Verifier ensures that the pattern preceding the buffer hasn't
changed. If the pattern is modified, the device driver has underrun the buffer
and written to memory outside the buffer.

Special pool allocations also check to ensure that the processor IRQL at
the time of an allocation and de allocation is legal. This check catches an error
that some device drivers make: allocating pageable memory from an IRQL at
DPC; dispatch level or above.

You can also configure special pool manually by adding the DWORD
registry value HKLM\SYSTEMCurrentControISet\Control\Session Manager\
Memory Mimagement\P6olTag, which represents the allocation tag the system.
uses for special pool. Thus, even i~Driver Verifier isn't configured to verify a

415

INSIDE MICROSOFT WINDOWS 2000

416

particular device driver, if the tag the driver associates with the memory it allo
cates matches what is specified in the PoolTag registry value, the pool alloca
tion routines will allocate the memory from special pool. If you set the value
of Pool Tag to Ox0000002a or the wildcard (*), all memory that drivers allo
cate is from special pool, provided there's enough virtual and physical memory.
(The drivers will revert to allocating from regular pool if there aren't enough
free pages-bounding exists, but each allocation uses two pages).

Pool Tracking When device drivers allocate memory, they can specifY an op
tional four-letter tag in their allocation requests. When you disable pool track
ing, Windows 2000 ignores the tag. When you enable pool tracking, however,
the pool allocation routines associate the tag with memory the driver allocates.
Using Poolmon (part of the Windows 2000 Support Tools), a developer can
view how much memory Windows 2000 assigned to each tag. Monitoring driver
memory usage lets a developer detect memory leaks, an error that occurs when
a driver fails to deallocate memory it no longer requires. Driver Verifier also
shows general pool statistics on the Driver Verifier Manager's Pool Tracking tab.
You can also use the !verifier kernel debugger command. This command shows
more information than Driver Verifier and is useful to driver writers.

If pool tracking is enabled, the memory manager checks at driver unload
time whether the driver freed all the memory allocations it made. If it didn't,
it crashes the system, indicating the buggy driver.

Force IRQL Checking One of the most common device driver bugs occurs
when a driver accesses pageable data or code when the processor on which the
device driver is executing is at an elevated IRQL. As explained in Chapter 3, the
memory manager can't service a page fault when the IRQL is DPC/dispatch
level or above. The system often doesn't detect instances of a device driver accessing
pageable data when the processor is executing at a high IRQL level because the
page able data being accessed happens to be physically resident at the time. At
other times, however, the data might be paged out, which results in a system
crash with the stop code IRQL_NOT_LESS_O~EQUAL (that is, the IRQL
wasn't less than or equal to the level required for the operation attempted-in
this case, accessing pageable memory).

Although testing device drivers for this kind of bug is usually difficult,
Driver Verifier makes it easy. If you select the Force IRQL Checking option,
Driver Verifier forces all kernel-mode pageable code and data out of the system
working set whenever a device driver under verification raises the IRQL. The
internal function that does this is MmTrimAllSystemPagableMemory. With this

S EVE N: Memory Management

setting enabled, whenever a device driver under verification accesses pageable
memory when the IRQL is elevated, the system instantly detects the violation
and the resulting system crash identifies the faulty driver.

Low Resources Simulation Enabling Low Resources Simulation causes Driver
Verifier to randomly fail memory allocations that verified device drivers perform.
In the past, developers wrote many device drivers under the assumption that
kernel memory would always be available and that if memory ran out, the device
driver didn't have to worry about it because the system would crash anyway.
However, because low-memory conditions can occur temporarily, it's impor
tant that device drivers properly handle allocation failures that indicate kernel
memory is exhausted.

Beginning 7 minutes after the system boots-which is enough time to get
past the critical initialization period in which a low-memory condition might
prevent a device driver from loading-Driver Verifier starts randomly failing
allocation calls for device drivers it is verifYing. If a driver doesn't correctly handle
allocation failures, this will likely show up as a system crash.

Driver Verifier is a valuable addition to the arsenal of verification and debug
ging tools available to device driver writers. Many device drivers that first ran
with Driver Verifier had bugs that Driver Verifier was able to expose. Thus, Driver
Verifier has resulted in an overall improvement in the quality of all kernel-mode
code running on Windows 2000.

Address Space Layout
By default, each user process on the 32-bit version of Windows 2000 can have
up to a 2 GB private address space; the operating system takes the remaining 2
GB. Windows 2000 Advanced Server and Windows 2000 Datacenter Server
support a boot-time option that allows 3-GB user address spaces. These two
possible address space layouts are shown in Figure 7-7.

The 3-GB address space option (enabled by the 13GB tlagin Boot.ini)
gives processes a 3-GB address space (leaving 1 GB for system space). This fea
ture was added as a short-term solution to accommodate the need for applica
tions such as database servers to keep more data in memory than could be done
with a 2-GB address space. The AWE functions described earlier in this chapter
provide a much better solution to the need for accessing more data than can fit
in the limited 2-GB (or 3-GB) process address space.

417

INSIDE MICROSOFT WINDOWS 2000

418

00000000

-

I

Application code
Global variables
Per-thread stacks

DLLcode

I

7FFFFFFF '-______11

80000000

Kernel and executive
HAL

Boot drivers

cooooooo
Process page tables

Hyperspace

C0800000
System cache

Paged pool
Nonpaged pool

FFFFFFFF

Figure 7-7
x86 virtual address space layouts

J
I

3-GB user space

- -..
BFFFFFFF 10_. ______11

COOOOOOO

1-GB system space

FFFFFFFF ________11

For a process to access the full3-GB address space, the image file must have
the IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image header.
Otherwise, Windows 2000 reserves the third gigabyte so that the application
won't see Virtual addresses greater than Ox7FFFFFFF. You set this flag by speci
tying the linker flag jLARGEADDRESSAWARE when building the executable.
This flag has no effect when running the application on a system with a 2-GB
user address space. (If you boot Windows 2000 Professional or Windows 2000
Server with the 13GB switch, system space is reduced to 1 GB, but user pro
cesses are still limited to 2 GB, even if the large-address-space aware flag is set
on an image that is run.)

S EVE N: Memory Management

User accessible

419

INSIDE MICROSOFT WINDOWS 2000

User Address Space Layout
Table 7-6 details the layout of the 2-GB Windows 2000 user process address space.

Table 7-6 Windows 2000 User Process Address Space Layout

Range

OxO through
OxFFFF

Oxl0000 through
Ox7FFEFFFF

Ox7FFDEOOO through
Ox7FFDEFFF

Ox7FFDFOOO through
Ox7FFDFFFF

Ox7FFEOOOO through
Ox7FFEOFFF

Ox7FFEI000 through
Ox7FFEFFFF

Ox7FFFOOOO through
Ox7FFFFFFF

Size

64KB

2 GB minus at
least 192 KB

4KB

4KB

4KB

60 KB

64 KB

Function

No-access region to aid programmers in
avoiding incorrect pointer references;
attempts to access an address within this
range will cause an access violation. (Note
that this range of addresses could be used
this is just a convention to assist in
finding bugs.)

The private process address space.

Thread environment block (TEB) for first
thread. (See Chapter 6.) Additional TEBs
are created at the page prior to this page
(starting at address Ox7FFDDOOO and
working backward).

Process environment block (PEB). (See
Chapter 6.)

Shared user data page. This read-only page is
mapped to a page in system space that contains
information such as system time, clock tick
count, and version number. This page exists so
that this data is directly readable from user
mode without requiring a kernel-mode
transition.

No-access region (remainder of 64-KB region
following shared user data page).

No-access region that prevents threads
from passing buffers that straddle the user/
system space boundary. MmUserProbeAddress
contains the start of this page.

The system variables shown in Table 7-7 define the range of the user ad
dress space.

420

S EVE N: Memory Management

Table 7-7 Windows 2000 User Address Space System Variables

System
Variable

MmHighestUser Address

Mm UserProbeAddress

x862-G8
Description User Space

Highest user address Ox7FFEFFFF
(The highest usable
address is actually less
because of TEBs and
PEBs.)

Highest user address Ox7FFFOOOO
+ 1 (used in probing
accessibility of user
buffers)

x863-G8
User Space

OxBFFEFFFF

OxBFFFOOOO

The performance counters listed in Table 7-8 provide information about
total system virtual memory utilization.

Table 7-8 Windows 2000 Virtual Memory Use Performance Counters

Performance
Counter

Memory: Committed
Bytes

Memory; Commit
Limit

Memory: % Committed
Bytes In USe

System Variable

MmTotalCommittedPages

MmTotalCommitLimit

MmTotalCommittedPages /
MmTotalCommitLimit

Description

The amount of committed
private address space (of which
some can be in physical memory
and some in the paging files)

The amount (in bytes) of
memory that can be committed
without increasing the size of
the paging file (Page files are
extensible.)

Ratio of committed bytes to
commit limit

You can obtain the address space utilization of a single process via the
process performance counters in Table 7-9.

421

INSIDE MICROSOFT WINDOWS 2000

422

Table 7-9 Windows 2000 Address Space Use for Single Process's
Performance Counters

Performance
Counter

Process: Virtual Bytes

Process: Private Bytes

Process: Page File Bytes

Process: Page File
Bytes Peak

Description

Total size of the process address space
(including shared as well as private pages)

Size of the private (nonshared) committed
address space (same as Process: Page File Bytes)

Size of the private (nonshared) committed
address space (same as Process: Private Bytes)

Peak of Process: Page File Bytes

There is also a performance object named Process Address Space that the
Performance tool doesn't display. There are 32 counters associated with this
object that identify the address space usage of the selected process. For each of
the four types of process address space (Image, Mapped, Reserved, and Unas
signed), eight separate counters exist (No Access, Read Only, Read/Write, Write
Copy, Executable, Exec Read Only, Exec Read/Write, and Exec Write Copy).
In addition, there are counters for the total process address space reserved and
free. For even more details about user address space layouts, you can query the
Image performance object to report per-image (for example, DLLs) memory
utilization.

2,792 K
224K

3,272 K
1,144K
2,560 K
1,752 K
1,832 K
5,288K
l,104K
1,616K

376K

1,184K
I,092K
6,716 K
1,284K
2,648K
2,I64K
1,216K
7,416K

496K

S EVE N: Memory Management

(continued)

423

INSIDE MICROSOFT WINDOWS 2000

System Address Space Layout

424

This section describes the detailed layout and contents of system space. Fig
ure 7-8 shows the overall structure on x86 systems with a 2-GB system space.
(The details of x86 systems with a I-GB system space are included later in this
section.)

S EVE N: Memory Management

80000000

AOOOOOOO

A4000000

COOOOOOO

C0400000

C0800000

COCOOOOO

C1000000

E1000000

EBOOOOOO (min)

FFBEOOOO

FFCOOOOO

Figure 7-8

x86

System code (Ntoskrnl, HAL) and
initial nonpaged pool on some systems

System mapped views
(e.g., Win32k.sys) or session space

Additional system PTEs
(Cache can extend here)

Process page tables
and page directory

Hyperspace and process
working set list

System working set list

System cache

Paged pool

System PTEs

pool expansion

Crash dump information

usage

x86 system space layout (not proportional)

The x86 architecture has the following components in system space:

II System code Contains the operating system image, HAL, and
device drivers used to boot the system.

II System mapped views Used to map Win32k.sys, the loadable
kernel-mode part of the Win32 subsystem, as well as kernel-mode
graphics drivers it uses. (See Chapter 2 for more information on
Win32k.sys.)

425

INSIDE MICROSOFT WINDOWS 2000

426

• Session space Used to map information specific to a user session.
(Windows 2000 supports multiple user sessions when Terminal Ser
vices is installed.) The session working set list describes the parts of
session space that are resident and in use.

• Process page tables and page directory Structures that describe
the mapping of virtual addresses.

• Hyperspace A special region used to map the process working set
list and to temporarily map other physical pages for such operations
as zeroing a page on the free list (when the zero list is empty and a
zero page is needed), invalidating page table entries in other page
tables (such as when a page is removed from the standby list), and
on process creation to set up a new process's address space.

• System working set list The working set list data structures that
describe the system working set. *

• System cache VIrtual address space used to map files open in the
system cache. (See Chapter 11 for detailed information about the
cache manager.)

• Paged pool Page able system memory heap.

• System page table entries (PTEs) Pool of system PTEs used to map
system pages such as I/O space, kernel stacks, and memory descriptor
lists. You can see how many system PTEs are available by examining
the value of the Memory: Free System Page Table Entries counter in
the Performance tool.

• Nonpaged pool Nonpageable system memory heap, usually existing
in two parts-one in the lower end of system space and one in the
upper end.

• Crash dump information Reserved to record information about the
state of a system crash.

• HAL usage System memory reserved for HAL-specific structures.

* Internally, the system working set is called the system cache working set. This term is misleading,
however, because it includes not only the system cache but also the paged pool, pageable system
code and data, and pageable driver code and data.

S EVE N: Memory Management

The rest of this section consists of two tables that list the detailed structure
of system space. Table 7-10 lists the kernel variables that contain start and end
addresses of various system space regions. Some of these regions are fixed; some
are computed at system boot time on the basis of memory size and whether
the system is running Windows 2000 Professional or Windows 2000 Server.
Table 7 -11 lists the structure of system space on x86 systems. Keep in mind that
these tables reflect non-PAE systems. Systems running the PAE-enabled kernel
image have a slightly different system address space layout.

Table 7-10 System Variables That Describe System Space Regions

x862-G8 x861-G8
System Space System Space

System Variable Description (non-PAE) (non-PAE)

MmSystemRangeStart Start address of Ox80000000 OxCOOOOOOO
system space

MmSystemCache- System working OxCOCOOOOO OxCOCOOOOO
WorkingSetList set list
MmSystemCacheStart Start of system cache OxCI000000 OxCI000000

MmSystemCacheEnd End of system cache Calculated Calculated

MiSystemCacheStart- Start of system cache OxA4000000 0
Extra or system PTE

extension
MiSystemCacheEnd- End of system cache OxCOOOOOOO 0
Extra or PTE extension

MmPagedPoolStart Start of paged pool OxEI000000 OxEI000000

MmPagedPoolEnd End of paged pool Calculated Calculated
(maximum size (maximum size
is 482 MB) is 160 MB)

MmNonPagedSystem- Start of system Calculated Calculated
Start PTEs (lowest value

is OxEBOOOOOO)

MmNonPagedPoolStart Start of nonpaged pool Calculated Calculated
MmNonPagedPool- Start of nonpaged pool Calculated Calculated
ExpansionStart expansion
MmNonPagedPoolEnd End of nonpaged pool OxFFBEOOOO OxFFBEOOOO

427

INSIDE MICROSOFT WINDOWS 2000

Table 7-11 x86 System Space (non-PAE)

Range

Ox80000000 through
Ox9FFFFFFF

OxAOOOOOOO through
OxA2FFFFFF

OxA3000000 through
OxA3FFFFFF

OxA4000000 through
OxBFFFFFFF

OxCOOOOOOO through
OxC03FFFFF

OxC0400000 through
OxC07FFFFF

OxC08000000 through
OxCOBFFFFF

OxCOCOOOOO through
OxCOFFFFFF

OxCI000000 through
OxEOFFFFFF

OxEI000000 through
OxEAFFFFFF*

oxEBQOOOOO through
OxFFBDFFFF

OxFFBEOOOO through
OxFFFFFFFF

Size

512 MB

48MB

16MB

448MB

4MB

4MB

4MB

4MB

512 MB
(maximum)

160MB
(maximum)

331.875 MB
(339,840 KB)

4.125 MB
(4224 KB)

Function

System code used to boot the system
(Ntoskrnl.exe and Hal.dll) and the initial part
of nonpaged pool. On x86 systems with a
2-GB system space and 128 MB or more of
RAM, the first 512 MB are mapped using x86
large page PDEs.

System mapped views if Terminal Services
not installed; otherwise, session space. (See
Table 7-12.)

System mapped views for systems running
Terminal Services.

Additional system PTEs (used for kernel stacks,
mapping I/O space, and so on) or additional
system cache (for systems with large system
cache enabled).

Process page tables (page directory is at
OxC03000000 and is 4 KB in size). This is per
process data mapped in system space.

Working set list and hyperspace. This is per
process data mapped in system space.

Unused.

System working set list.

System cache (size calculated at boot time).

Paged pool (size calculated at boot time).

System PTEs and nonpaged pool (size calculated
at boot time). If the registry PagedPoolSize
value is set to -1, system PTEs move from the
OxEBOOOOOO range to the OxA4000000 range,
which lets paged pool grow to use this area of
the address space.

Crash dump structures and private HAL data
structures.

* Because paged pool is limited by the start address of the region containing nonpaged pool and the system
PTEs, it can go beyond address OxEBOOOOOO only if those addresses aren't used.

428

Range

S EVE N: Memory Management

Session Space
A session consists of the processes and other system objects (such as the window
station, desktops, and windows) that represent a single user's workstation logon
session. Each session has a session-specific paged pool area used by the kernel
mode portion of the Win32 subsystem (Win32k.sys) to allocate session-private
GUI data structures. In addition, each session has its own copy of the Win32
subsystem process (Csrss.exe) and logon process (Winlogon.exe). The session
manager process (Smss.exe) is responsible for creating new sessions, which includes
loading a session-private copy ofWin32k.sys, creating the session-private ob
ject manager namespace, and creating the session-specific instances of the Csrss
and Winlogon processes.

To virtualize sessions, all sessionwide data structures are mapped into a
region of system space called session space that begins at address OxAOOOOOOO
and extends through address OxA2FFFFFF. When a process is created, this range
of addresses is mapped to the pages appropriate to the session that the process
belongs to. Table 7-12 lists the layout of session space on systems with Terminal
Services installed.

Table 7-12 Session Space Layout

Size Function

OxAOOOOOOO through
OxA07FFFFF

8 MB Win32k.sys and rebased Windows NT 4 print drivers

OxA0800000 through
OxAOBFFFFF

OxAOCOOOOO through
OxAIFFFFFF

0xA2000000 through
OxA2FFFFFF

4 MB MM_SESSION_SPACE structure and session working
set lists

20 MB Mapped .views for this session

16 MB Paged pool for this session

Address Translation
Now that you've seen how Windows 2000 structures the 32-bit virtual address
space, let's look at how it maps these address spaces to real physical pages. We'll
describe what happens when such a translation doesn't resolve to a physical

429

INSIDE MICROSOFT WINDOWS 2000

430

memory address (paging) and explain how Windows 2000 manages physical
memory via working sets and the page frame database.

User applications reference 32-bit virtual addresses. Using data structures
the memory manager creates and maintains, the CPU translates virtual addresses
into physical addresses. For example, Figure 7-9 shows three consecutive virtual
pages mapped to three physically dis contiguous pages.

00000000

7FFFFFFF
80000000

COOOOOOO

C1000000

FFFFFFFF

Figure 7-9

D

Virtual
pages

Mapping virtual addresses to physical memory

Physical memory

The dashed line connecting the virtual pages to the PTEs in Figure 7-9
represents the indirect relationship between virtual pages and physical memory.
Virtual addresses aren't mapped directly to physical ones. Instead, as you'll
discover in this section, each virtual address is associated with a system-space

S EVE N: Memory Management

structure called a page table entry (PTE), which contains the physical address
to which the virtual one is mapped.

NOT E Kernel-mode code (such as device drivers) can reference
physical memory addresses by mapping them to virtual addresses. For
more information, see the memory descriptor list (MDL) support
routines described in the DDK documentation.

Throughout the remainder of this section, we'll explain the details of how
Windows 2000 accomplishes this mapping.

Translating a Virtual Address
By default, Windows 2000 on an x86 system uses a two-level page table struc
ture to translate virtual to physical addresses. (Systems running the PAE kernel
use a three-level page table-this section assumes non-PAE systems.) A 32-bit
virtual address is interpreted as three separate components-the page directory
index, the page table index, and the byte index-that are used as indexes into
the structures that describe page mappings, as illustrated in Figure 7-10. The
page size and the PTE width dictate the width of the page directory and page
table index fields. For example, on x86 systems, the byte index is 12 bits because
pages are 4096 bytes (212 = 4096).

31 o (LSB)

Virtual page number

Figure 7-10
Components of a 32-bit virtual address on x86 systems

The page directory index is used to locate the page table in which the vir
tual address's PTE is located. The page table index is used to locate the PTE, which,
as mentioned earlier, contains the physical address to which a virtual page maps.
The byte index finds the proper address within that physical page. Figure 7-11
shows the relationship· of these three values and how they are used to map a
virtual address into a physical address.

431

INSIDE MICROSOFT WINDOWS 2000

KPROCESS

Page directory I
index

CRa t-- Physical address

PDE-I--.......

Page directory
(one per process, 1024 entries)

Figure 7-11

Page table
index

Page tables
(up to 512 per process

plus up to 512 systemwide,
1024 entries per table)

Translating a valid virtual address (x86-speciftc)

Desired
page

..... --+- Desired
byte

Physical address
space

The following basic steps are involved in translating a virtual address:

432

1. The memory management hardware locates the page directory for
the current process. On each process context switch, the hardware is
told the address of a new process page directory, typically by the oper
ating system setting a special CPU register.

2. The page directory index is used as an index into the page directory
to locate the page directory entry (PDE) that describes the location
of the page table needed to map the virtual address. The PDE
contains the page frame number (PFN) of the page table (if it is
resident-page tables can be paged out).

3. The page table index is used as an index into the page table to locate
the PTE that describes the physical location of the virtual page in
question.

S EVE N: Memory Management

4. The PTE is used to locate the page. If the page is valid, it contains
the PFN of the page in physical memory that contains the virtual
page. If the PTE indicates that the page isn't valid, the memory
management fault handler locates the page and tries to make it valid.
(See the section on page fault handling on page 443.) If the page
can't be made valid (for example, because of a protection fault), the
fault handler generates an access violation or a bug check.

S. When the PTE is pointed to a valid page, the byte index is used to
locate the address of the desired data within the physical page.

Now that you have the overall picture, let's look at the detailed structure
of page directories, page tables, and PTEs.

Page Directories
Each process has a single page directory, a page the memory manager creates to
map the location of all page tables for that process. The physical address of the
process page directory is stored in the kernel process (KPROCESS) block but
is also mapped virtually at address OxC0300000 on x86 systems (OxC06000000
on systems running the P AE kernel image). All code running in kernel mode
references virtual addresses, not physical ones. (For more detailed information
about KPROCESS and other process data structures, refer to Chapter 6.)

The CPU knows the location of the page directory page because a special
register (CR3 on x86 systems) inside the CPU that is loaded by the operating
system contains the physical address of the page directory. Each time a con
text switch occurs to a thread that is in a different process than that of the
currently executing thread, this register is loaded from the KPROCESS block
of the target process being switched to by the context-switch routine in the
kernel. Context switches between threads in the same prOCeSS don't result in
reloading the physical address of the page directory because all threads within
the same process share the same process address space.

The page directory is composed of page directory entries (PDEs), each of
which is 4 bytes long (8 bytes on systems running the PAE kernel image) and
describes the. state and location of all the possible page tables for that process.
(As described later in the chapter, page tables are created on demand, so the page
directory for most processes points only toa small set of page tables.) The for
mat of a PDE isn't repeated here because it's mostly the same as a hardware PTE
(shown on page 437).

433

INSIDE MICROSOFT WINDOWS 2000

434

On x86 systems, 1024 page tables (2048 on PAE systems) are required
to describe the fu1l4-GB virtual address space. The process page directory that
maps these page tables contains 1024 PDEs. Therefore, the page directory index
needs to be 10 bits wide (210 = 1024).

S EVE N: Memory Management

Process and System Page Tables
Before referencing a byte within a page with the byte offSet, the CPU first needs
to be able to find the page that contains the desired byte of data. To find this
page, the operating system constructs another page of memory that contains
the mapping information needed to find the desired page containing the data.
This page of mapping information is called a page table. Because Windows 2000
provides a private address space for each process, each process has its own set
of process page tables to map that private address space because the mappings
will be different for each process.

The page tables that describe system space are shared among all processes,
however. When a process is created, system space PDEs are initialized to point
to the existing system page tables. But as shown in Figure 7-12, not all processes
have the same view of system space. For example, if paged pool expansion requires
the allocation of a new system page table, the memory manager doesn't go back
and update all the process page directories to point to the new system page table.
Instead, it updates the process page directories when the processes reference the
new virtual address.

Thus, a process can take a page fault when referencing paged pool that is
in fact physically resident because its process page directory doesn't yet point
to the new system page table that describes the new area of pool. Page faults
don't occur when accessing nonpaged pool, even though it too can be expanded,
because Windows 2000 builds enough system page tables to describe the maxi
mum size during system initialization.

System PTEs aren't an infinite resource-Windows 2000 calculates how
many system PTEs to allocate based on the memory size. You can see how many
system PTEs are available by examining the value of the Memory: Free System
Page Table Entries counter in the Performance tool. You can also override the
calculation made at boot time by setting the registry value HKLM\SYSTEM\
CurrentControISet\Control\Session Manager\Memory Management\System
Pages to the number ofPTEs you want. However, the maximum that Windows
2000 will allocate is 128,000 on x86 systems.

435

INSIDE MICROSOFT WINDOWS 2000

Process 1
page tables

Process 2
page tables

PTE 0 ~ ~ PTE 0

Process 1 page Process 2 page
directory directory

· roe PDEO Private --. PDEO • · · ·
· · · · · · · ·

PDE 511 PDE 511
PDE 512 • roe PDE 512

· · · · · ·
PDEn PDEn ~ Process hasn't

· · yet referenced · · system page · ·
System

table

page tables

~ System PTE 0 ~

· · ·
~ System PTE n

· ,

· ·
Figure 7-12
System and process-private page tables

Page Table Entries

436

As mentioned earlier, page tables are composed of an array of page table entries
(PTEs). You can use the !pte command in the kernel debugger to examine PTEs.
(See the experiment "Translating Addresses" on page 440.) Valid PTEs (the kind
we'll be discussing here; we'll cover invalid PTEs in a later section) have two
main fields: the page frame number (PFN) of the physical page containing the
data or of the physical address of a page in memory, and some flags that describe
the state and protection of the page, as shown in Figure 7-13.

S EVE N: Memory Management

'" ,.

~" ,.

'" ,.

-"

Reserved (writable on multi
processor systems)
Reserved
Reserved
Global
Reserved (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on multi
processor systems)

Valid

I Page frame number I u I P wi Gil LID I A ICd IWt I 0 I W I V I
31 121110,9 8 7 6 5,4 3 2 1 0

Protection

Figure 7-13
Valid x86 hardware PTEs

As you'll see later, the bits labeled Reserved in Figure 7-13 are used only
when the PTE isn't valid (the bits are interpreted by software). Table 7 -13 briefly
describes the hardware-defined bits in a valid PTE.

Name of Bit

Accessed

Cache disabled

Dirty

Global

Large page

Owner

Valid
Write through

Write

Table 7-13 PTE Status and Protection Bits

Meaning

Page has been read.

Disables caching for that page.

Page has been written to.

Translation applies to all processes. (For example, a translation buffer flush
won't affect this PTE.)

Indicates that the PDE maps a 4-MB page (used to map Ntoskrnl and HAL,
initial nonpaged pool, etc.) on systems with 128 MB or more of memory.

Indicates whether user-mode code can access the page or whether the page
is limited to kernel-mode access.

Indicates whether the translation maps to a page in physical memory.

Disables caching of writes to this page so that changes are immediately
flushed to disk.

On uniprocessor systems, indicates whether the page is read/write or
read-only; on multiprocessor systems, indicates whether the page is
writable. (The Write bit is stored in a reserved bit in the PTE.)

437

INSIDE MICROSOFT WINDOWS 2000

On x86 systems, a hardware PTE contains a Dirty bit and an Accessed bit.
The Accessed bit is clear if a physical page represented by the PTE hasn't been
read or written; the processor sets this bit when the page is first read or written.
The processor sets the Dirty bit only when a page is first written. In addition
to those two bits, the x86 architecture has a Write bit that provides page pro
tection-when this bit is clear, the page is read-only; when it is set, the page is
read/write. If a thread attempts to write to a page with the Write bit clear, a
memory management exception occurs and the memory manager's access fault
handler (described in the next section) must determine whether the thread can
write to the page (for example, if the page was really marked copy-on-write) or
whether an access violation should be generated.

Hardware PTEs on multiprocessor x86 systems have an additional Write
bit implemented in software that is intended to avoid stalls when flushing the
PTE cache (called the translation look-aside buffer) across processors. This bit
indicates that a page has been written to by a thread running on some processor.

On the x86 hardware platform, PTEs are always 4 bytes (32 bits) in size
(8 bytes for systems running with PAE enabled), so each page table contains
1024 PTEs (512 on PAE systems) (4096 bytes per page at 4 bytes per PTE)
and therefore can map 1024 pages (512 pages PAE), for a total of 4 MB (2 MB
PAE) of data pages.

The virtual address's page table index field indicates which PTE within the
page table maps the data page in question. On x86 systems, the page table index
is 10 bits wide (9 on PAE), allowing you to reference up to 1024 PTEs (512
on PAE). However, because Windows 2000 provides a 4-GB private virtual
address space, more than one page table is needed to map the entire address
space. To calculate the number of page tables required to map the entire 4-GB
process virtual address space, divide 4 GB by the virtual memory mapped by a
single page table. Recall that each page table on an x86 system maps 4 MB (2 MB
on P AE) of data pages. Thus, 1024 page tables (4 GB /4 MB)-or 2048 page
tables,4 GB/2 MB for PAE-are required to map the full4-GB address space.

Byte Within Page

438

Once the memory manager has found the physical page in question, it must find
the requested data within that page. This is where the byte index field comes
in. The byte index field tells the CPU which byte of data in the page you want
to reference. On x86 systems, the byte index is 12 bits wide, allowing you to
reference up to 4096 bytes of data (the size of a page).

S EVE N: Memory Management

Translation Look-Aside Buffer
As we've learned so far, each address translation requires two lookups: one to
find the right page table in the page directory and one to find the right entry
in the page table. Because doing two additional memory lookups for every
reference to a virtual address would result in unacceptable system performance,
most CPUs cache address translations so that repeated accesses to the same
addresses don't have to be retranslated. The x86 processor provides such a cache
in the form of an array of associative memory called the translation look-aside
buffer, or TLB. Associative memory, such as the TLB, is a vector whose cells can
be read simultaneously and compared to a target value. In the case of the TLB,
the vector contains the virtual-to-physical page mappings of the most recently
used pages, as shown in Figure 7-14, and the type of page protection applied
to each page. Each entry in the TLB is like a cache entry, whose tag holds por
tions of the virtual address and whose data portion holds a physical page num
ber, protection field, valid bit, and usually a dirty bit indicating the condition
of the page to which the cached PTE corresponds. If a PTE's global bit is set
(used for system space pages that are globally visible to all processes), .the TLB
entry isn't invalidated on process context switches. .

Match
Virtual address

Virtual page number: 17 -.---.---------
.;:.:

"-...... ,.";",, ----... ~, '!......
", ".. ':i:.

TLB

~ Virtual. page 5 ! Page frame 290

- ~irtual page 64 : Invalid

Figure 7-14

" " ., ,
" . " , " ,

... <~
" , " . . ' ,

\. "" .. '''.
Simultaneous read .. ,,'.

\. " '\
and compare .. " • , , . , , .. ' ,

, · · , , . , , , . , . , · ,

· , , , , , · , · , ... , ..

Accessing the translation look-aside buffer

Virtual page 1 ~ Page frame
""'" . 1004

·
·
·
,

Virtual page 7
,

Invalid , , ,
,

Virtual page 6 : Page frame 14
,

Virtual page 65 : Page frame 801

439

INSIDE MICROSOFT WINDOWS 2000

440

Virtual addresses that are used frequently are likely to have entries in the
TLB, which provides extremely fast virtual-to-physical address translation and,
therefore, fast memory access. If a virtual address isn't in the TLB, it might still
be in memory, but multiple memory accesses are needed to find it, which makes
the access time slightly slower. If a virtual page has been paged out of memory
or if the memory manager changes the PTE, the memory manager must explic
itly invalidate the TLB entry. If a process accesses it again, a page fault occurs
and the memory manager brings the page back into memory and re-creates an
entry for it in the TLB.

To maximize the amount of common code, the memory manager treats
all PTEs the same whenever possible, whether they are maintained by hardware
or by software. For example, the memory manager calls a kernel routine when
a PTE changes from invalid to valid. The job of this routine is to load this new
PTE into the TLB in whatever hardware-specific manner the architecture requires.
On x86 systems, the code is a NOP because the processor loads the TLB with
out any intervention from the software.

S EVE N: Memory Management

(continued)

441

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Translating Addresses continued

Physical Address Extension

442

All of the Intel x86 family processors since the Pentium Pro include a memory
mapping mode called Physical Address Extension (PAE). With the proper chipset,
the PAE mode allows access to up to 64 GB of physical memory. When the x86
executes in PAE mode, the memory management unit (MMU) divides virtual
addresses into four fields, as shown in Figure 7-15.

The MMU still implements page directories and page tables, but a third
level, the page directory pointer table, exists above them. PAE mode can ad
dress more memory than the standard translation mode not because of the extra
level of translation but because PDEs and PTEs are 64-bits wide rather than 32-
bits. The system represents physical addresses internally with 24 bits, which gives
the x86 the abilitY to support a maximum of224+12 bytes, or 64 GB, of memory.

As explained in Chapter 2, there is a special version of the core kernel image
(Ntoskrnl.exe) with support for PAE called Ntkrnlpa.exe. (The multiprocessor
version is called Ntkrpamp.exe.) To select this PAE-enabled kernel, you must
boot with the /PAE switch in Boot.ini.

This special version of the kernel image is installed on all Windows 2000
systems, even Windows 2000 Professional systems with small memory. The
reason for this is t() facilitate testing. Because the PAE kernel presents 64-bit
addresses to device drivers and other system code, booting JPAE even on a small
memory system allows a device· driver developer to test parts of their drivers
with large addresses. The other relevant Boot.ini switch is jNOLOWMEM,

Figure 7-15

Page directory
(up to 4 per process,
512 entries per table,

8 bytes wide)

Page mappings with PAE

S EVE N: Memory Management

Page table
index

20

Page tables
(512 entries per table,

8 bytes wide)

Desired
page

Desired
byte

Physical address
space

which discards memory below 4 GB and relocates device drivers above this range,
thus guaranteeing that these drivers will be presented with physical addresses
greater than 32 bits.

Only Windows 2000 Advanced Server and Windows 2000 Datacenter Ser
ver are required to support more than 4 GB of physical memory. (See Table 2-2
on page 39.) Using the AWE Win32 functions (described on page 401), 32-bit
user processes can allocate and control large amounts of physical memory on
these systems.

Page Fault Handling
Earlier, you saw how address translations are resolved ",hen the PTE is valid.
When the PTE valid bit is clear, this indicates that the desired page is for some
reason not (currently) accessible to the process. This section describes the types
of invalid PTEs and how references. to them are resolved.

443

INSIDE MICROSOFT WINDOWS 2000

444

A reference to an invalid page is called a page fault. The kernel trap handler
(introduced in Chapter 3 on page 89) dispatches this kind of fault to the
memory manager fault handler (MmAccessFault) to resolve. This routine runs
in the context of the thread that incurred the fault and is responsible for attempt
ing to resolve the fault (if possible) or raise an appropriate exception. These faults
can be caused by a variety of conditions, as listed in Table 7-14.

Table 7-14 Reasons for Access Faults

Reason for Fault

Accessing a page that isn't resident in
memory but is on disk in a page fIle or
a mapped file

Accessing a page that is on the standby
or modified list

Accessing a page that isn't committed
(for example, reserved address space
or address space that isn't allocated)

Accessing a page from user mode that
can be accessed only in kernel mode

Writing to a page that is read-only

Accessing a demand-zero page

Writing to a guard page

Writing to a copy-on-write page

Referencing a page in system space
that is valid but not in the process
page directory (for example, if paged
pool expanded after the process page
directory was created)

On a multiprocessor system, writing
to a page that is valid but hasn't yet
been written to

Result

Allocate a physical page and read
the desired page from disk and
into the working set

Transition the page to the process
or system working set

Access violation

Access violation

Access violation

Add a zero-filled page to the
process working set

Guard-page violation (if a reference
to a user-mode stack, perform
automatic stack expansion)

Make process-private (or session
private) copy of page and replace
original in process, session, or
system working set

Copy page directory entry from
master system page directory
structure and dismiss exception

Set dirty bit in PTE

The following section describes the four basic kinds of invalidPTEs that
are processed by the access fault handler. Following that is an explanation of

5 EVE N: Memory Management

a special case of invalid PTEs, prototype PTEs, which are used to implement
shareable pages.

Invalid PTEs
The following list details the four kinds of invalid PTEs and their structure. Some
of the flags are the same as those for a hardware PTE as described in Table 7-13
on page 437.

• Page file The desired page resides within a paging file. An in-page
operation is initiated, as illustrated here:

II r----------i:~;~~~~~: rv~~
1211 10 9 o

Page file offset

• Demand zero The desired page must be satisfied with a page of
zeros. The pager looks at the zero page list. If the list is empty, the
pager takes a page from the free list and zeros it. If that list is empty,
it takes a page from the standby list and zeros it. The PTE format is
the same as the page file PTE shown in the previous entry, but the
page file number and offset are zeros.

• Transition The desired page is in memory on either the standby,
modified, or modified-no-write list. The page is removed from the
list and added to the working set, as shown here:

PFN

r------------"""'I~ Transition
..... ----------... Prototype r---------'""""i .. Protection r------. cache disable

445

INSIDE MICROSOFT WINDOWS 2000

III Unknown The PTE is zero, or the page table doesn't yet exist. In
both cases, this flag means that you should examine the virtual address
descriptors (V ADs) to determine whether this virtual address has
been committed. If so, page tables are built to represent the newly
committed address space. (See the discussion ofVADs on page 452.)

Prototype PTEs

446

If a page can be shared between two processes, the memory manager relies on
a software structure called prototype page table entries (prototype PTEs) to map
these potentially shared pages. An array of prototype PTEs is created when a
section object is first created. These prototype PTEs are part of the segment
structure, described at the end of this chapter.

When a process first references a page mapped to a view of a section object
(recall that the VADs are created only when the view is mapped), the memory
manager uses the information in the prototype PTE to fill in the real PTE used
for address translation in the process page table. When a shared page is made
valid, both the process PTE and the prototype PTE point to the physical page
containing the data. To track the number of process PTEs that reference a valid
shared page, a counter in the PFN database entry (described on page 465) is
incremented. Thus, the memory manager can determine when a shared page
is no longer referenced by any page table and thus can be made invalid and
moved to a transition list or written out to disk.

When a shareable page is invalidated, the PTE in the process page table is
filled in with a special PTE that points to the prototype PTE entry that describes
the page, as shown in Figure 7-16.

31

PTE address
(bits 7 through 27)

Figure 7-16

PTE address
(bits 0 through 6)

: Prototype

r valid

o

Structure of an invalid PTE that points to the prototype PTE

5 EVE N: Memory Management

Thus, when the page is later accessed, the memory manager can locate
the prototype PTE using the information encoded in this PTE, which in turn
describes the page being referenced. A shared page can be in one of six dif
ferent states as described by the prototype PTE entry:

• Active/valid The page is in physical memory as a result of another
process that accessed it.

• Transition The desired page is in memory on the standby or
modified list.

• Modified-no-write The desired page is in memory and on the
modified-no-write list. (See Table 7-22 onpage 466.)

• Demand zero The desired page should be satisfied with a page
of zeros.

• Page file The desired page resides within a page file.

• Mapped file The desired page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that of
the real PTE entries described earlier, these prototype PTEs aren't used for
address translation-they are a layer between the page table and the page frame
number database and never appear directly in page tables.

By having all the accessors of a potentially shared page point to a prototype
PTE to resolve faults, the memory manager can manage shared pages without
needing to update the page tables of each process sharing the page. For example,
a shared code or data page might be paged out to disk at some point. When the
memory manager retrieves the page from disk, it needs only to update the pro
totype PTE to point to the page's new physical location-the PTEs in each of
the processes sharing the page remain the same (with the valid bit clear and still
pointing to the prototype PTE). Later, as processes reference the page, the real
PTE will get updated.

Figure 7-17 illustrates two virtual pages in a mapped view. One is valid,
and the other is invalid. As shown, the first page is valid and is pointed to by
the process PTE and the prototype PTE. The second page is in the paging file
the prototype PTE contains its exact location. The process PTE (and any other
processes with that page mapped) points to this prototype PTE.

447

INSIDE MICROSOFT WINDOWS 2000

PFN

Segment
structure

Valid- PFN 5

Invalid - in
page file

PFN n

PFN n

..... ----..... --l PTE address

Page directory Page table
Share count=1

Figure 7-17
Prototype page table entries

Prototype page
table

Physical
memory

PFN database
entry

In-Paging 1/0

448

In-paging I/O occurs when a read operation must be issued to a file (paging
or mapped) to satisfy a page fault. Also, because page tables are pageable, the
processing of a page fault can incur additional page faults when the system is
loading the page table page that contains the PTE or the prototype PTE that
describes the original page being referenced.

The in-page I/O operation is synchronous-that is, the thread waits on
an event until the I/O completes-and isn't interruptible by asynchronous
procedure call (APC) delivery. The pager uses a special modifier in the I/O
request function to indicate paging I/O. Upon completion of paging I/O, the
I/O system triggers an event, which wakes up the pager and allows it to con
tinue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn't
own any critical memory management synchronization objects. Other threads
within the process are allowed to issue virtual memory functions and handle page
faults while the paging I/O takes place. But a number of interesting conditions
that the pager must recognize when the I/O completes are exposed.

S EVE N: Memory Management

• Another thread in the same process or a different process could have
faulted the same page (called a collided page fault and described in
the next section).

• The page could have been deleted (and remapped) from the virtual
address space.

• The protection on the page could have changed.

• The fault could have been for a prototype PTE, and the page that
maps the prototype PTE could be out of the working set.

The pager handles these conditions by saving enough state on the thread's
kernel stack before the paging I/O request such that when the request is com
plete, it can detect these conditions and, if necessary, dismiss the page fault
without making the page valid. When the faulting instruction is reissued, the
pager is again invoked and the PTE is reevaluated in its new state.

Collided Page Faults
The case when another thread or process faults a page that is currently being
in-paged is known as a collided page fault. The pager detects and handles collided
page faults optimally because they are common occurrences in multithreaded
systems. If another thread or process faults the same page, the pager detects the
collided page fault, noticing that the page is in transition and that a read is in
progress. (This information is in the PFN database entry.) In this case, the pager
issues a wait operation on an event specified in the PFN database entry. This
event was initialized by the thread that first issued the I/O needed to resolve
the fault.

When the I/O operation completes, all threads waiting on the event have
their wait satisfied. The first thread to acquire the PFN database lock is respon
sible for performing the in-page completion operations. These operations consist
of checking I/O status to ensure the I/O operation completed successfully,
clearing the read-in-progress bit in the PFN database, and updating the PTE.

When subsequent threads acquire the PFN database lock to complete the
collided page fault, the pager recognizes that the initial updating has been per
formed as the read-in-progress bit is clear and checks the in-page error flag in
the PfN database element to ensure that the in-page I/O completed success
fully. If the in-page error flag is set, the PTE isn't updated and an in-page error
exception is raised in the faulting thread.

449

INSIDE MICROSOFT WINDOWS 2000

Page Files

450

Page files are used to store modified pages that are still in use by some process
but have had to be written to disk (because of modified page writing). Page file
space isn't reserved until pages are written out to disk, not when they are com
mitted. However, the system commit limit is charged for private pages as they
are created. Thus, the Process: Page File Bytes performance counter is actually
the total process private committed memory, of which none, some, or all may
be in the paging file. (In fact, it's the same as the Process: Private Bytes perfor
mance counter.)

The memory manager keeps track of private committed memory usage on
a global basis, termed commitment) and on a per-process basis as page file quota.
(Again, this memory usage doesn't represent page file usage-it represents pri
vate committed memory usage.) Commitment and page file quota are charged
whenever virtual addresses that require new private physical pages are committed.
Once the global commit limit has been reached (physical memory and the page
files are full), allocating virtual memory will fail until processes free committed
memory (for example, when a process exits).

Windows 2000 supports up to 16 paging files. When the system boots,
the session manager process (described in Chapter 2) reads the list of page files
to open by examining the registry value HKLM\SYSTEM\CurrentControISet\
Control\Session Manager\Memory Management\PagingFiles. If no paging files
are specified, a default 20-MB page file is created on the boot partition. (Embed
ded versions, such as Windows NT 4 Embedded, have no page file by default.)
Once open, the page files can't be deleted while the system is running because
the System process (also described in Chapter 2) maintains an open handle to
each page file.

S EVE N: Memory Management

To add a new page file, Control Panel uses the (internal only) NtCreate
PagingFile system service defined in Ntdll.dll. Page files are always created as
noncompressed files, even if the directory they are in is compressed. To keep
new page files from being deleted, a handle is duplicated into the System pro
cess so that when the creating process closes the handle to the new page file,
another process can still open the page file.

The performance counters listed in Table 7-15 allow you to examine pri
vate committed memory usage on a systemwide or per-page-file basis. There's
no way to determine how much of a process's private committed memory is
resident verses paged out to paging files.

. .
Table 7-15 Committed Memory and Page File

Performance Counters

Performance
Counter

Memory: Committed Bytes

Memory: Commit Limit

Paging File: % Usage

Paging File: % Usage Peak

Description

Number of bytes of virtual (not reserved)
memory that has been committed: This
nwnberdoesn't necessarily represent page
file usage because it.includes private
committed pages in physical memory that
have never been paged out. Rather, it
represents the amount of page file space that
would be used if the process was completely
made nonresident.

Number of bytes of virtual memory that can
be committed without having to extend the
paging files; if the paging files can be
extended, this limit is soft.

Percentage of the paging file committed.

Highest percentage of the paging file
committed.

451

INSIDE MICROSOFT WINDOWS 2000

Virtual Address Descriptors

452

The memory manager uses a demand-paging algorithm to know when to load
pages into memory, waiting until a thread references an address and incurs a page
fault before retrieving the page from disk. Like copy-on-write, demand paging
is a form of lazy evaluation-waiting to perform a task until it is required.

The memory manager uses lazy evaluation not only to bring pages into
memory but also to construct the page tables required to describe new pages.
For example, when a thread commits a large region of virtual memory with
VirtualAJloc, the memory manager could immediately construct the page tables
required to access the entire range of allocated memory. But what if some of
that range is never accessed? Creating page tables for the entire range would
be a wasted effort. Instead, the memory manager waits to create a page table

S EVE N: Memory Management

until a thread incurs a page fault, and then it creates a page table for that page.
This method significantly improves performance for processes that reserve and/
or commit a lot of memory but access it sparsely.

With the lazy-evaluation algorithm, allocating even large blocks of memory
is a fast operation. This performance gain isn't without its trade-offs, however:
when a thread allocates memory, the memory manager must respond with a
range of addresses for the thread to use. Because the memory manager doesn't
build page tables until the thread actually accesses the memory, it can't look to
determine which virtual addresses are free. To solve this problem, the memory
manager maintains another set of data structures to keep track of which virtual
addresses have been reserved in the process's address space and which have not.
These data structures are known as virtual address descriptors (V ADs). For each
process, the memory manager maintains a set ofVADs that describes the status
of the process's address space. VADs are structured as a self-balancinp binary tree
to make lookups efficient. A diagram of a V AD tree is. shown in Figure 7-18.

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through OOOOFFFF
Protection: Read-only
Inheritance: No

Range: 4EOOOOOO through 4FOOOOOO
Protection: Copy-on-write
Inheritance: Yes

Range: 32000000 through 3300FFFF
Protection: Read-only

Range: 7 AAAOOOO through 7 AAAOOFF
Protection: Read/write

Inheritance: No Inheritance: No

Figure 7-18
Virtual address descriptors

When a process reserves address space or maps a view of a section, the
memory manager creates a V AD to store any information supplied by the allo
cation request, such as the range of addresses being reserved, whether the range
will be shared or private, whether a child process can inherit the contents of the
range, and the page protection applied to pages in the range.

453

INSIDE MICROSOFT WINDOWS 2000

454

When a thread first accesses an address, the memory manager must create
a PTE for the page containing the address. To do so, it finds the VAD whose
address range contains the accessed address and uses the information it finds to
fill in the PTE. If the address falls outside the range covered by the VAD or in
a range of addresses that are reserved but not committed, the memory manager
knows that the thread didn't allocate the memory before attempting to use it
and therefore generates an access violation.

S EVE N: Memory Management

Working Sets
In the last several sections, we've concentrated on the virtual view of a Windows
2000 process-page tables, PTEs, and VADs. In the remainder of this chapter,
we'll explain how Windows 2000 keeps a subset of virtual addresses in physical
memory.

As you'll recall, the term used to describe a subset of virtual pages resident
in physical memory is called a working set. There are two kinds of working sets
process working sets and the system working set.

NOT E The kernel extensions to support Terminal Services for
Windows 2000 (which supports multiple independent interactive user
sessions on a single Windows 2000 server system) add a third type
of working set: the session working set. A session consists of a set of
processes as well as a session working set for kernel-mode session
specific data structures allocated by the kernel-mode part of the
Win32 subsystem (Win32k.sys), the session working set's code and
data, session paged pool, session mapped views, and other sesslon
space device drivers.

Before examining the details of each type of working set, let's look at the
overall policy for deciding which pages are brought into physical memory and
how long they remain. After that, we'll explore the two types of working sets.

Paging Policies
Virtual memory systems generally define three policies that dictate how (or when)
paging is performed: a fetch policy, a placement policy, and a replacement policy.

A fetch policy determines when the pager brings a page from disk into
memory. One type of fetch policy attempts to load the pages a process will need
before it asks for them. Other fetch policies, called demand-paging policies, load
a page into physical memory only when a page fault occurs. In a demandcpaging
system, a process incurs many page faults when its threads first begin executing
because the 'threads reference the initial set of pages they need to get going. Once
this set of pages is loaded into memory,the paging activity of the process decreases.

N () T E To optimize the startup time of an image, a tool nanledthe
Working Set Tuner has been provided in the Platform SDK. This
utility reorders the pages in an executable image, placing them in the
order in which they are referenced during image startup and thus
decreasing load time.

455

INSIDE MICROSOFT WINDOWS 2000

456

The Windows 2000 memory manager uses a demand-paging algorithm
with clustering to load pages into memory. When a thread receives a page fault,
the memory manager loads into memory the faulted page plus a small number
of pages following it. This strategy attempts to minimize the number of paging
I/Os a thread will incur. Because programs, especially large ones, tend to exe
cute in small regions of their address space at any given time, loading clusters
of virtual pages reduces the number of disk reads. The values that determine the
default page read cluster sizes depend on physical memory size and are listed
in Table 7-16. Notice that the values differ for pages in executable images versus
other pages.

Table 7-16 Page Fault Read Clustering Values

Cluster Size Cluster Size Cluster Size
Memory for Code Pages for Data Pages for All Other
Size* in Images in Images Pages

< 12MB 3 2 5
12-19 MB 3 2 5
> 19MB 8 4 8

* Note that the minimum memory size supported by Windows 2000 is 32 MB. However,
future embedded versions might support systems with less memory.

When a thread receives a page fault, the memory manager must also deter
mine where in physical memory to put the virtual page. The set of rules it uses
to determine the best position is called a placement policy. Windows 2000 con
siders the size of CPU memory caches when choosing page frames to minimize
unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is
used to determine which virtual page must be removed from memory to make
room for the new page. Common replacement policies include least recently used
(LRU) and first in, first out (FIFO). The LRU algorithm requires the virtual
memory system to track when a page in memory is used .. When a new page frame
is required, the page that hasn't been used for the greatest amount of time is
paged to disk and its frame is freed to satisfY the page fault. The FIFO algorithm
is somewhat simpler; it removes the page that has been in physical memory for
the greatest amount of time, regardless of how often it's been used.

S EVE N: Memory Management

Replacement policies can be further characterized as either global or local.
A global replacement policy allows a page fault to be satisfied by any page frame,
whether or not that frame is owned by another process. For example, a global
replacement policy using the FIFO algorithm would locate the page that has
been in memory the longest and would free it to satisfy a page fault; a local
replacement policy would limit its search for the oldest page to the set of pages
already owned by the process that incurred the page fault. Global replacement
policies make processes vulnerable to the behavior of other processes-an ill
behaved application can undermine the entire operating system by inducing
excessive paging activity in all processes.

On multiprocessor systems, Windows 2000 implements a variation of a
local FIFO replacement policy. On uniprocessor systems, it implements some
thing closer to a least recently used policy (LRU) (known as the clock algorithm)
as implemented in most versions of UNIX). It allocates a number of page frames
(dynamically adjusted) to each process, called the process working set (or in the
case of pageable system code and data, to the system working set). When a pro
cess working set reaches its limit and/or a working set needs to be trimmed
because of demands for physical memory from other processes, the memory man
ager removes pages from the working set until it has determined there are enough
free pages. How working sets are managed is described in the next section.

Working Set Management
Every process starts with the same default working set minimum and maximum.
These values, which are listed in Table 7-17, are calculated at system initializa
tion time and are based strictly on the size of physical memory. (For an expla
nation of small, medium, and large memory systems, see page 384.)

Table 7-17 Default Minimum and Maximum Working Set Sizes

Default Minimum Default Maximum
Working Set Size Working Set Size

Memory Size (in Pages) (in Pages)

Small 20 45
Medium 30 145
Large 50 345

457

INSIDE MICROSOFT WINDOWS 2000

458

You can change these default values on a per-process basis with the Win32
SetProcessWorkingSetSizefunction, though you must have the "increase sched
uling priority" user right to do this. The maximum working set size can't exceed
the systemwide maximum calculated at system initialization time and stored
in the kernel variable MmMaximum WorkingSetSize. This value is set to be the
number of available pages (the size of the zero, free, and standby list) at the
time the computation is made minus 512 pages. However, this computed value
has a fixed limit of 1984 MB or 3008 MB on a system running with a 3-GB
user space.

When a page fault occurs, the process's working set limits and the amount
of free memory on the system are examined. If conditions permit, the memory
manager allows a process to grow to its working set maximum (or beyond
the maximum can be exceeded if enough free pages are available). However, if
memory is tight, Windows 2000 replaces rather than adds pages in a working
set when a fault occurs.

Although Windows 2000 attempts to keep memory available by writing
modified pages to disk, when modified pages are being generated at a very high
rate, more memory is required in order to meet memory demands. Therefore,
when physical memory runs low (MmAvailablePagesis less than MmMinimum
FreePages), the working set manage1) a routine that runs in the context of the
balance set manager system thread (described in the next section), is called to
initiate automatic working set trimming to increase the amount of free memory
available in the system. (With the Win32 SetProcess WorkingSetSize function
mentioned earlier, you can also initiate working set trimming of your own pro
cess, for example, after your application is initialized.)

The working set manager examines available memory and decides which,
if any, working sets need to be trimmed. If there is ample memory, the working
set manager calculates how many pages could be removed from working sets if
needed. If trimming is needed, it looks at working sets that are above their
minimum setting. It also dynamically adjusts the rate at which it examines
working sets as well as arranges the list of processes that are candidates to be
trimmed into an optimal order. For example, larger processes that have been idle
longer are considered before smaller processes that are running more often; the
process running the foreground application is considered last; and so on.

Some of the kernel variables that affect working set expansion and trimming
are listed in Table 7-18. The values of these variables are fixed or system set and
can't be adjusted by registry values.

S EVE N: Memory Management

Table 7-18 Working Set-Related System Control Variables

Variable Value Description

Mm WorkingSetSize- 6 The number of pages to add to a working set
if there are sufficient available pages and the
working set is below its maximum.

Increment

Mm WorkingSetSize- 20 The number of pages by which to expand the
maximum working set if it is at its maximum
and there are sufficient available pages.

Expansion

Mm WsExpandThreshold 90 The number of pages that must be available to
expand the working set above its maximum.

MmPagesAbove Ws- Dynamic The number of pages that wo{ud be removed
from working sets if every working set was at
its minimum.

Minimum

MmPagesAbove Ws- 37 If memory is getting short and MmPagesAbove Ws
Minimum is above this value, trim working sets. Threshold

Mm WsAdjustThreshold 45 The number of pages required to be freed by
working set reduction before working set
reduction is attempted

Mm WsTrimReduction- 29 The total number of pages to reduce by working
set trimming. Goal

When it finds processes using more than their minimums, the working set
manager looks for pages to remove from their working sets, making the pages
available for other uses. If the amount of free memory is still too low, the working
set manager continues removing pages from processes' working sets until it
achieves a minimum number of free pages on the system.

If a process has incurred more than a few page faults since the last time it
was trimmed, it becomes exempt from trimming, the theory being that if the
working set manager makes a mistake and trims pages that were being used, it
won't trim any more out until the next periodic trim cycle (6 seconds later).

The algorithm to. determine which pages to remove fr0111 a working set is
different on a single-processor system than on a multiprocessor system. On a
single-processor system, the. working set manager tries to remove pages that
haven't been accessed recently. It does this by checking the accessed bit in the
hardware PTE to see wheth~rt;hepage has been accessed.lfthe bitis clear, the
page is aged, that is, a count is incremented indicating that the page hasn't been
referenced since the last working set tr~ scan. Later, the age of pages is used
to locate candidate pages to remove from the working set.

459

INSIDE MICROSOFT WINDOWS 2000

460

If the hardware PTE accessed bit is set, the working set manager clears it
and goes on to examine the next page in the working set. In this way, if the
accessed bit is clear the next time the working set manager examines the page,
it knows that the page hasn't been accessed since the last time it was examined.
This scan for pages to remove continues through the working set list until either
the number of desired pages has been removed or the scan has returned to the
starting point. (The next time the working set is trimmed, the scan picks up
where it left off last.)

On a multiprocessor system, the working set manager doesn't check the
access bit; clearing it would require invalidating TLB entries on other proces
sors, which would result in unnecessary TLB cache misses by threads in the same
process that might be running on other processors. Thus, on a multiprocessor
system, pages are removed from the working set without regard to the state of
the accessed bit.

5 EVE N: Memory Management

(continued)

461

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing the Working Set List continued

Balance Set Manager and Swap per

462

Working set expansion and trimming take place in the context of a system thread
called the balance set manager (routine KeBalanceSetManager). The balance set
manager is created during system initialization. Although the balance set man
ager is technically part of the kernel, it calls the memory manager's working set
manager to perform working set analysis and adjustment.

The balance set manager waits on two different event objects: an event that
is signaled when a periodic timer set to fire once per second expires and an
internal working set manager event that the memory manager signals at various
points when it determines that working sets need to be adjusted. For example,
if the system is experiencing a high page fault rate or the free list is too small,
the memory manager wakes up the balance set manager so that it will call the
working set manager to begin trimming working sets. When memory is more
plentiful, the working set manager will permit faulting processes to gradually
increase the size of their working sets by faulting pages back into memory, but
the working sets will grow only as needed.

When the balance set manager wakes up as the result of its I-second timer
expiring, it takes the following four steps:

1. Every fourth time the balance set manager wakes up because its 1-
second timer has expired, it signals an event that wakes up another
system thread called the swapper (routine KeSwapProcessOrStack).

2. The balance set manager then checks the look-aside lists and adjusts
their depths if necessary (to improve access time and to reduce pool
usage and pool fragmentation).

3. It looks for threads that might warrant having their priority boosted
because they are CPU starved. (See the section "Priority Boosts for
CPU Starvation" in Chapter 6 on page 367.)

S EVE N: Memory Management

4. It calls the memory manager's working set manager. (The working
set manager has its own internal counters that regulate when to
perform working set trimming and how aggressively to trim.)

The swapper is also awakened by the scheduling code in the kernel if a
thread that needs to run has its kernel stack swapped out or if the process has
been swapped out. The swapper looks for threads that have been in a wait state
for a specified amount of time (3 seconds on small memory systems, 7 sec
onds on medium or large memory systems). Ifit finds one, it puts the thread's
kernel stack in transition (moving the pages to the modified or standby lists)
so as to reclaim its physical memory, operating on the principle that, if a thread's
been waiting that long, it's going to be waiting even longer. When the last
thread in a process has its kernel stack removed from memory, the process is
marked to be entirely outswapped. That's why, for example, processes that have
been idle for a long time (such as Winlogon is after you log on) can have a
zero working set size.

System Working Set
Just as processes have working sets, the pageable code and data in the operating
system are managed by a single system working set. Five different kinds of pages
can reside in the system working set:

III System cache pages

III Paged pool

III Page able code and data in Ntoskrnl.exe

III Page able code and data in device drivers

III System mapped views (sections mapped at OxAOOOOOOO, such as
Win32k.sys)

You can examine the size of the system working set or the size of the five
components that contribute to it with the performance counters or system
variables shown in Table 7-19. Keep in mind that the performance counter values
are in bytes whereas the system variables are measured in terms of pages.

You can also examine the paging activity in the system working set by
examining the Memory: Cache Faults/Sec performance counter, which de
scribes page faults that occur in the system working set (both hard and soft).

463

INSIDE MICROSOFT WINDOWS 2000

Table 7-19 System Working Set Performance Counters

Performance
Counter (in Bytes)

Memory: Cache
Bytes *

Memory: Cache
Bytes Peak

Memory: System
Cache Resident Bytes

Memory: System
Code Resident Bytes

Memory: System
Driver Resident Bytes

Memory: Pool Paged
Resident Bytes

System Variable
(in Pages)

MmSystemCache Ws. Work
ingSetSize

MmSystemCache Ws.Peak

MmSystemCachePage

MmSystemCodePage

MmSystemDriverPage

MmPagedPoolPage

Description

Total size of system working set
(including the cache, paged pool,
pageable Ntoskrnl and driver code,
and system mapped views); this is not
the size of the system cache alone,
even though the name implies that it is.

Peak system working set size.

Physical memory consumed by the
system cache.

Physical memory consumed by
pageable code in Ntoskrnl.exe.

Physical memory consumed by
pageable device driver code.

Physical memory consumed by
paged pool.

* Internally, this working set is called the system cache working set, even though the system cache is just one
of five different components in it. Thus, several utilities think they are displaying the size of the file cache
when they are displaying the total size of the system working set.

464

The system variable that contains the value for this counter is MmSystemCache
Ws.PageFaultCount.

The minimum and maximum system working set size is computed at sys
tem initialization time based on the amount of physical memory on the machine
and whether the system is running Windows 2000 Professional or Windows 2000
Server. The initial values, which are listed in Table 7-20, are chosen based on
system memory size.

Table 7-20 Minimum and Maximum Size of System Working Set

System Working Set System Working Set
Memory Size Minimum (in Pages) Maximum (in Pages)

Small 388 500
Medium 688 1150
Large 1188 2050

S EVE N: Memory Management

These numbers are further altered if the registry value HKLM\
SYSTEM\CurrentControISet\Control\Session Manager\Memory Management\
LargeSystemCache is set to 1 (the default on Windows 2000 Server systems)
and the number of available pages (MmAvailablePages, as described in Table 7-25
on page 478) is greater than 350 plus 6 MB (a total ofl886 pages on x86 sys
tems). In this case, the system working set maximum is set to available pages
minus 4 MB. If this value is greater than the maximum working set size sup
ported by Windows 2000 (1984 MB for normal x86 systems or 3008 MB on
a system running with a 3-GB user space), the system working set maximum is
reduced to that maximum value minus 5 pages.

Windows 2000 then checks to see whether the new system working set
maximum is greater than the virtual size of the system cache-ifit is, the working
set maximum is reduced to the virtual size of the system cache. In other words,
the system working set could potentially expand to use all the virtual memory
reserved for the system cache. (See Chapter 11 for more information about the
virtual size of the system cache.)

Finally, a check is made to determine whether the difference between the
system working set minimum and maximum is less than 500 pages. If it is, the
working set minimum is reduced to the working set maximum minus 500 pages.

The final calculated working set minimum and maximum are then stored
inthe system variables shown in Table 7-21. (These variables aren't available
through any performance counter.)

Table 7-21 System Variables That Store Working Set Minimums
or Maximums

Variable Type Description

MmSystemCacheWsMinimum or ULONG Minimum working set size
MmSystemCache Ws.Minimum WorkingSetSize

MmSystemCacheWsMaximum or
MmSystemCache Ws.Maximum WorkingSetSize ULONG Maximum working set size

Page Frame Number Database
Whereas working sets describe the resident pages owned bya process or the
system, the page frame number (PFN) database describes the state of each page
in physical memory. Pages are in one of eight states, as shown in Table 7-22.

465

INSIDE MICROSOFT WINDOWS 2000

466

Status

Active (also
called Valid)

Transition

Standby

Modified

Modified
no-write

Free

Zeroed

Bad

Table 7-22 Page States

Description

The page is part of a working set (either a process working
set or the system working set) or it's not in any working set
(e.g. nonpaged kernel page), and a valid PTE points to it.

A temporary state for a page that isn't owned by a working
set and isn't on any paging list. A page is in this state when
an I/O to the page is in progress. The PTE is encoded so
that collided page faults can be recognized and handled
properly.

The page previously belonged to a working set but was
removed. The page wasn't modified since it was last written
to disk. The PTE still refers to the physical page but is
marked invalid and in transition.

The page previously belonged to a working set but was
removed. However, the page was modified while it was in use
and its current contents haven't yet been written to disk. The
PTE still refers to the physical page but is marked invalid and
in transition. It must be written to disk before the physical
page can be reused.

Same as a modified page, except that it has been marked so
that the memory manager's modified page writer won't write
it to disk. The cache manager marks pages as modified no
write at the request of file system drivers. For example, NTFS
uses this state for pages containing me system metadata so
that it can first ensure that transaction log entries are flushed
to disk before the pages they are protecting are written to
disk. (NTFS transaction logging is explained in Chapter 12.)

The page is free but has unspecified dirty data in it. (These
pages can't be given as a user page to a user process without
being initialized with zeros, for security reasons.)

The page is free and has been initialized with zeros by the
zero page thread.

The page has generated parity or other hardware errors and
can't be used.

The PFN database consists of an array of structures that represent each
physical page of memory on the system. The PFN database and its relationship
to page tables are shown in Figure 7-19. As this figure shows, valid PTEs point
to entries in the PFN database, and the PFN database entries (for nonprototype
PFNs) point back to the page table that is using them. For prototype PFNs, they
point back to the prototype PTE.

S EVE N: Memory Management

Process 1
page table . PFN database

Valid
l......f ••••••••••••••••••••• I "

Invalid:
! •

\ ,
disk address

Invalid:
~ .. transition

Process 2
page table

Valid ~ ..
Invalid:

• Prototype PTE r: disk address

Valid [\ : ~I 1<l1li(······ .. ,

'" ,
'00«'"

........

Process 3
page table

Valid

Invalid:
transition ~ -

Invalid:
disk address

: . : .

Forward pointer •

Backward pointer • - - - - •

Figure 7-19
Page tables and the page frame number database

In use

Standby list

In use

In use

Modified list

. .

467

INSIDE MICROSOFT WINDOWS 2000

468

Of the page states listed in Table 7-22, six are organized into linked lists
so that the memory manager can quickly locate pages of a specific type. (Active/
valid pages and transition pages aren't in any systemwide page list.) Figure 7-20
shows an example of how these entries are linked together.

PFN database

I Zeroed
I •

Active

.;

~
~

~

I Free

W I
Standby

~ •
I

I Bad
I Active

Active

I Modified ~ • ~

• ~

~

W I
Modified no-

I write •
.

Figure 7-20
Page lists in the PFN database

In the next section, you'll find out how these linked lists are used to satisty
page faults and how pages move to and from the various lists.

S EVE N: Memory Management

Page List Dynamics
Figure 7-21 shows a state diagram for page frame transitions. For simplicity, the
modified-no-write list isn't shown.

Page frames move between the paging lists in the following ways:

III When the memory manager needs a zero-initialized page to service a
demand-zero page fault (a reference to a page that is defined to be
all zeros or to a user-mode committed private page that has never
been accessed), it first attempts to get one from the zero page list; if
the list is empty, it gets one from the free page list and zeros the
page. If the free list is empty, it goes to the standby list and zeros
that page.

One reason zero-initialized pages are required is to meet C2
security requirements. C2 specifies that user-mode processes must be
given initialized page frames to prevent them from reading a previous

469

INSIDE MICROSOFT WINDOWS 2000

470

Process
working

sets

Page read from
disk or kernel

Free
page
list

Zero
page
list

Bad
page
list

Figure 7-21
State diagram for page frames

process's memory contents. Therefore, the memory manager gives
user-mode processes zeroed page frames unless the page is being
read in from a mapped file. If that's the case, the memory manager
prefers to use nonzeroed page frames, initializing them with the data
off the disk.

The zero page list is populated from the free list by a system
thread called the zero page thread (thread 0 in the System process).
The zero page thread waits on an event object to signal it to go to
work. When the free list has eight or more pages, this event is
signaled. However, the zero page thread will run only if no other
threads are running, because the zero page thread runs at priority 0
and the lowest priority that a user thread can be set to is 1.

S EVE N: Memory Management

III When the memory manager doesn't require a zero-initialized page,
it goes first to the free list; if that's empty, it goes to the zeroed list.
If the zeroed list is empty, it goes to the standby list. Before the
memory manager can use a page frame from the standby list, it must
first backtrack and remove the reference from the invalid PTE (or
prototype PTE) that still points to the page frame. Because entries in
the PFN database contain pointers back to the previous user's page
table (or to a prototype PTE for shared pages), the memory man
ager can quickly find the PTE and make the appropriate change.

III When a process has to give up a page out of its working set (either
because it referenced a new page and its working set was full or the
memory manager trimmed its working set), the page goes to the
standby list if the page was clean (not modified) or to the modified
list if the page was modified while it was resident. When a process
exits, all the private pages go to the free list. Also, when the last ref
erence to a page file backed section is closed, these pages also go to
the free list.

(continued)

471

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing Page Fault Behavior continued

When the modified list gets too big, or if the size of the zeroed and standby
lists falls below a minimum threshold (as indicated by the kernel variable Mm
MinimumFreePages, which is computed at system boot time), a system thread
called the modified page writer is awakened to write pages back to disk and move
the pages to the standby list.

Modified Page Writer

472

The modified page writer is responsible for limiting the size of the modified page
list by writing pages back to disk when the list becomes too big. It consists of
two system threads: one to write out modified pages (MiModifiedPage Writer)
to the paging file and a second one to write modified pages to mapped files
(MiMappedPage Writer). Two threads are required to avoid creating a deadlock,
which would occur if the writing of mapped fIle pages caused a page fault that
in turn required a free page when no free pages were available (thus requiring
the modified page writer to create more free pages). By having the modified page
writer perform mapped fIle paging l/Os from a second system thread, that
thread can wait without blocking regular page file I/O.

Both threads run at priority 17 and, after initialization, wait on separate
event objects to trigger their operation. The modified page writer event is trig
gered forone of two reasons:

S EVE N: Memory Management

II When the number of modified pages exceeds the maximum value
computed at system initialization (MmModifiedPageMaximum)

II When the number of available pages (MmAvailablePages) goes below
MmMinimumFreePages

Table 7-23 shows the number of pages that trigger the waking of the
modified page writer to reduce the size of the modified list and how many pages
it leaves on the list. As with other memory management variables, this value is
computed at system boot time and depends on the amount of physical memory.

Table 7-23 Modified Page Writer Values

Modified Page Retain Modified
Memory Size Threshold Pages

< 12MB 100 40

12-19 MB 150 80

19-33 MB 300 150

>33 MB 400 800
(special case)

The modified page writer waits on an additional event (MiMappedPages
TooOldBvent) that is set after a predetermined number of seconds (MmModified
PageLifelnSeconds) to indicate that mapped pages (not modified pages) should
be written to disk. By default, this value is 300 seconds (5 minutes). (You can
override this value by adding the DWORD registry value HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\Modified
PageLife). The reason for this additional event is to reduce data loss in the case
of a system crash or power failure by eventually writing out modified mapped
pages even if the modified list hasn't reached the thresholds listed in Table 7-23.

When invoked, the mapped page writer attempts to write as many pages
as possible to disk with a single I/O request. It accomplishes this byexamin
ing the original PTE field of the PFN database elements for pages on the modi
fied page list to locate pages in contiguous locations on the disk. Once a list is
created, the pages are removed from the modified list, an I/O request is issued,
and at successful completion of the I/O request, the pages are placed at the tail
of the standby list.

473

INSIDE MICROSOFT WINDOWS 2000

Pages that are in the process of being written can be referenced by another
thread. When this happens, the reference count and the share count in the PFN
entry that represents the physical page are incremented to indicate that another
process is using the page. When the I/O operation completes, the modified page
writer notices that the share count is no longer 0 and doesn't place the page on
the standby list.

PFN Data Structures

474

Although PFN database entries are of fixed length, they can be in several dif
ferent states, depending on the state of the page. Thus, individual fields have
different meanings depending on the state. The states of a PFN entry are shown
in Figure 7-22.

Working set index

~

PFN for a page in a
working set

Figure 7-22
States of PFN database entries

Event address

S EVE N: Memory Management

Several fields are the same for several of the PFN types, but others are
specific to a given type ofPFN. The following fields appear in more than one
PFN type:

II PTE address Virtual address of the PTE that points to this page.

II Reference count The number of references to this page. The
reference count is incremented when a page is first added to a working
set and/or when the page is locked in memory for I/O (for example,
by a device driver). The reference count is decremented when the
share count becomes 0 or when pages are unlocked from memory.
When the share count becomes 0, the page is no longer owned by a
working set. Then, depending on the reference count, the PFN data
base entry that describes the page is updated to add the page to the
free, standby, or modified list.

II Type The type of page represented by this PFN (active/valid,
transition, standby, modified, modified-no-write, free, zeroed, bad,
and transition).

II Flags The information contained in the flags field is shown in
Table 7-24.

II Original PTE contents All PFN database entries contain the original
contents of the PTE that pointed to the page (which could be a pro
totype PTE). Saving the contents of the PTE allows it to be restored
when the physical page is no longer resident.

II PFN of PTE Physical page number of the page table page containing
the PTE that points to this page.

Table 7-24 Flags Within PFN Database Entries

Flag

Modified state

Prototype PTE

Parity error

Meaning

Indicates whether the page was modified. (If the
page is modified, its contents must be saved to
disk before removing it from memory.)
Indicates that the PTE referenced by the PFN entry
is a prototype PTE. (For example, this page is
sharable.)
Indicates that the physical page contains parity or
error correction control errors.

(continued)

475

INSIDE MICROSOFT WINDOWS 2000

476

Table 7-24 continued

Flag

Read in progress

Write in progress

Start of nonpaged pool

End of nonpaged pool

In-page error

Meaning

Indicates that an in-page operation is in progress
for the page. The first DWORD contains the
address of the event object that will be signaled
when the I/O is complete; also used to indicate
the first PFN for nonpaged pool allocations.

Indicates that a page write operation is in progress.
The first DWORD contains the address of the
event object that will be signaled when the I/O is
complete; also used to indicate the last PFN for
nonpaged pool allocations.

For nonpaged pool pages, indicates that this is the
first PFN for a given nonpaged pool allocation.

For nonpaged pool pages, indicates that this is the
last PFN for a given nonpaged pool allocation.

Indicates that an I/O error occurred during the
in-page operation on this page. (In this case, the
first field in the PFN contains the error code.)

The remaining fields are specific to the type ofPFN. For example, the first
PFN in Figure 7-22 represents a page that is active and part of a working set.
The share count field represents the number of PTEs that refer to this page.
(Pages marked read-only, copy-on-write, or shared read/write can be shared by
multiple processes.) For page table pages, this field is the number of valid PTEs
in the page table. As long as the share count is greater than 0, the page isn't eli
gible for removal from memory.

The working set index field is an index into the process working set list
(or the system or session working set list, or zero if not in any working set) where
the virtual address that maps this physical page resides. If the page is a private
page, the working set index field refers directly to the entry in the working set
list because the page is mapped only at a single virtual address. In the case of a
shared page, the working set index is a hint that is guaranteed to be correct
only for the first process that made the page valid. (Other processes will try
to use the same index where possible.) The process that initially sets this field is
guaranteed to refer to the proper index and doesn't need to add a working set

S EVE N: Memory Management

list hash entry referenced by the virtual address into its working set hash tree.
This guarantee reduces the size of the working set hash tree and makes searches
faster for these particular direct entries.

The second PFN in Figure 7-22 is for a page on either the standby or the
modified list. In this case, the forward and backward link fields link the elements
of the list together within the list. This linking allows pages to be easily manipu
lated to satisfy page faults. When a page is on one of the lists, the share count
is by definition 0 (because no working set is using the page) and therefore can
be overlaid with the backward linle. However, the reference count might not be
o because an I/O could be in progress for this page (for example, when the page
is being written to disk).

The third PFN in Figure 7-22 is for a page on the free or zeroed list. Be
sides being linked together within the two lists, these PFN database entries use
an additional field to link physical pages by "color," their location in the proces
sor CPU memory cache. Windows 2000 attempts to minimize unnecessary thrash
ing of CPU memory caches by using different physical pages in the CPU cache.
It achieves this optimization by avoiding using the same cache entry for two dif
ferent pages wherever possible. For systems with direct mapped caches, optimally
using the hardware's capabilities can result in a significant performance advantage.

The fourth PFN in Figure 7-22 is for a page that has an I/O in progress
(for example, a page read). While the I/O is in progress, the first field points
to an event object that will be signaled when the I/O completes. If an in-page
error occurs, this field contains the Windows 2000 error status code representing
the I/O error. This PFN type is used to resolve collided page faults.

(continued)

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing PFN Entries continued

In addition to the PFN database, the system variables in Table 7-25 describe
the overall state of physical memory.

Table 7-25 System Variables That Describe Physical Memory

Variable

MmNumberOjPhysicalPages

MmAvailablePages

MmResidentAvailablePages

Description

Total number of physical pages available on
the system

Total number of available pages on the
system-the sum of the pages on the zeroed,
free, and standby lists

Total number of physical pages that would be
available if every process were at its minimum
working set size

Section Objects

478

As you'll remember from the section on shared m~mory earlier in the chapter,
the section object, which the Win32 subsystem calls a file mapping object, repre
sents a block of memory that two or more processes can share. A section object
can be mapped to the paging file or to another file on disk.

S EVE N: Memory Management

The executive uses sections to load executable images into memory, and
the cache manager uses them to access data in a cached file. (See Chapter 11
for more information on how the cache manager uses section objects.) You can
also use section objects to map a file into a process address space. The file can
then be accessed as a large array by mapping different views of the section ob
ject and reading or writing to memory rather than to the file (an activity called
mapped file I/O). When the program accesses an invalid page (one not in physical
memory), a page fault occurs and the memory manager automatically brings
the page into memory from the mapped file. If the application modifies the
page, the memory manager writes the changes back to the file during its normal
paging operations (or the application can flush a view by using the Win32
Flush ViewOjFile function).

Section. objects, like other objects, are allocated and deallocated by the
object manager. The object manager creates and initializes an object header,
which it uses to manage the objects; the memory manager defines the body of
the section object. The memory manager also implements services that user
mode threads can call to retrieve and change the attributes stored in the body
of section objects. The structure of a section object is shown in Figure 7-23.

Object type Section

:

Object body attributes Maximum size
Page protection
Paging file/Mapped file
Based/Not based

Services Create section
Open section
Extend section ;

Map/Unmap view
Query section

Figure 7-23
A section object

Table 7-26 summarizes the unique attributes stored in section objects.

479

INSIDE MICROSOFT WINDOWS 2000

Table 7-26 Section Object Body Attributes

Attribute

Maximum size

Page protection

Paging file/Mapped file

Based/Not based

480

Purpose

The largest size to which the section can grow in
bytes; if mapping a file, the maximum size is the
size of the file.

Page-based memory protection assigned to all
pages in the section when it is created.

Indicates whether the section is created empty
(backed by the paging file-as explained earlier,
page file backed sections use page-file resources
only when the pages need to be written out to
disk) or loaded with a fIle (backed by the
mapped file).

Indicates whether a section is a based section,
which must appear at the same virtual address for
all processes sharing it, or a non based section,
which can appear at different virtual addresses for
different processes.

S EVE N: Memory Management

The data structures maintained by the memory manager that describe
mapped sections are shown in Figure 7-24. These structures ensure that data
read from mapped files is consistent, regardless of the type of access (open file,
mapped file, and so on).

481

INSIDE MICROSOFT WINDOWS 2000

V~D
~ Section .L

~ -~ object

~ • File object

~ ...,.
pointers -- • Data section Segment

-'" J '"

Soctloo o~'" f ~
~ . control area

PFN

--

482

,;

Subsection • ~ ~
Prototype .. database

• , PTEs entry

Next
subsection

~~

• File pbject
~ Image section control area II

(if file is an executable image)

Page

directory • + Page table •

Figure 7·24
Internal section structures

For each open file (represented by a file object), there is a single section
object pointers structure. (This structure is also discussed in Chapter 11.) This
structure is the key to maintaining data consistency for all types of file access as
well as to providing caching for files. The section object pointers structure points
to one or two control areas. One control area is used to map the file when it is
accessed as a data file, and one is used to map the file when it is run as an exe
cutable image.

A control area in turn points to subsection structures that describe the
mapping information for each section of the file (read-only, read-write, copy
on-write, and so on). The control area also points to a segment structure allo-

S EVE N: Memory Management

cated in paged pool, which in turn points to the prototype PTEs used to map
to the actual pages mapped by the section object. As described earlier in the
chapter, process page tables point to these prototype PTEs, which in turn map
the pages being ref(!renced.

Although Windows 2000 ensures that any process that accesses (reads or
writes) a file will always see the same, consistent data, there is one case in which
two copies of pages of a file can reside in physical memory (but even in this case,
all accessors get the latest copy and data consistency is maintained). This du
plication can happen when an image file has been accessed as adata file (having
been read or written) and then run as an executable image (for example, when
an image is linked and then run-the linker had the file open for data access,
and then when the image was run,the image loader mapped it as an executable).
Internally, the following actions occur:

1. When the image file is created, a data control area is created
to represent the data pages in the image file being read or
written.

2. When the image is run and the section object is created to map the
image as an 'executable, the memory manager finds that the section
object pointers for the image file point to a data control area and
flushes the section. This step is necessary to ensure that any modified
pages have been written to disk before accessing the image through
the image control area . .

3. The memory manager then creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in
from the image file.

Because the pages mapped by the data control area might still be resident
(on. the standby list), this is the one case in which two copies of the same data
are in two different pages, in memory. However, this duplication doesn't result
in a data consistency issue because, as mentioned, the data control area has already
been flushed to disk, so the pages read from the image are up to date.

483

INSIDE MICROSOFT WINDOWS 2000

484

S EVE N: Memory Management

(continued)

485

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing Control Areas continued

Conclusion

486

In this chapter, we've examined how the Windows 2000 memory manager
implements virtual memory management. As with most 32-bit operating sys
tems, each process is given access to a private 32-bit address space, protecting
one process's memory from another's but allowing processes to share memory
efficiently and securely. Advanced capabilities, such as the inclusion of mapped
files and the ability to sparsely allocate memory, are also available. The Win32
environment subsystem makes most of the memory manager's capabilities avail
able to applications through the Win32 API.

The memory manager's implementation relies on lazy-evaluation techniques
whe.o.ever possible to avoid performing time-consuming and unnecessary opera
tions unless they are required. It is alsO' self-tuning, adapting to both large
multiprocessor servers as well as uniprocessor desktop workstations.

One aspect of the memory manager that we didn't describe in this chapter
is its tight integration with the cache manager, which we'll cover in Chapter 11.
But before we get to that, let's take a closer look at the Windows 2000 secu
rity mechanisms.

C HAP T E R E I G H T

Security

Reventing unauthorized access to sensitive data is essential in any environment
in which multiple users have access to the same physical or network resources.
An operating system, as well as individual users, must be able to protect files,
memory, and configuration settings from unwanted viewing and modification.
Operating system security includes obvious mechanisms such as accounts, pass
words, and file protection. It also includes less obvious mechanisms such as
protecting the operating system from corruption, preventing less privileged
users from performing actions (rebooting the computer, for example), and not
alloWing user programs to adversely affect the programs of other users or the
operating system.

In this chapter, we explain how every aspect of the design and implemen
tation of Microsoft Windows 2000 was influenced in some way by the stringent
requirements· of providing robust security.

Security Ratings
The National Computer Security Center (NCSC, at www.radium.ncsc.mil) was
established in 1981 as part of the U.S. Department of Defense's (DoD) National

. Security Agency (N$A) to help the government, corporations, and home users
protect proprietary and personal data stored in computer systems. As part of
this goai, the NCSC created a range of security ratings, listed in Table 8-1,
that are used to indicate the degree of protection commercial operating sys
tems, network components, and trusted applications offer. These security
ratings, which are assigned based on the DoD's Trusted Computer System
Evaluation Criteria (TCSEC), were defined in 1983 and are commonly referred
to as "the Orange Book."

487

INSIDE MICROSOFT WINDOWS 2000

488

Table 8-1 TCSEC Rating Levels

Rating Description

Al Verified Design
B3 Security Domains
B2 Structured Protection
B 1 Labeled Security Protection
C2 Controlled Access Protection
C 1 Discretionary Access Protection (obsolete)
D Minimal Protection

The TCSEC standard consists of "levels of trust" ratings, where higher
levels build on lower levels by adding more rigorous protection and validation
requirements. No operating system meets the AI, or "Verified Design," rating.
Although a few operating systems have earned one of the B-Ievel ratings, C2
is considered sufficient and the highest rating practical for a general-purpose
operating system.

In July 1995, Microsoft Windows NT 3.5 (Workstation and Server) with
Service Pack 3 was the first version of Windows NT to earn the C2 rating. In
March 1999, Windows NT 4 with Service Pack 3 achieved an E3 rating from
the U.K government's Information Technology Security (ITSEC) organiza
tion, a rating equivalent to a U.S. C2 rating. In November 1999, Wmdows NT 4
with Service Pack 6a earned a C2 rating in both stand-alone and networked
configurations.

The rating process takes several years, so although Windows 2000 has been
submitted to international security certification organizations, it will probably
be some time before its evaluations are complete. However, the fundamental
security architecture of Windows 2000 is, if anything, a more robust evolution
of that in Windows NT 4, just as Windows NT 4 evolved the Windows NT 3.5
implementation. Windows 2000 will almost certainly achieve the same ratings
that Windows NT 4 has.

What's involved in earning a C2 security rating? The following are the key
requirements:

II A secure logon facility, which requires that users can· be uniquely
identified and that they must be granted access to the computer only
after they have been authenticated in some way.

E I G H T: Security

II Discretionary access control, which allows the owner of a resource to
determine who can access the resource and what they can do with it.
The owner grants rights that permit various kinds of access to a user
or to a group of users.

II Security auditing, which affords the ability to detect and record
security-related events or any attempts to create, access, or delete
system resources. Logon identifiers record the identities of all users,
making it easy to trace anyone who performs an unauthorized action.

II Object reuse protection, which prevents users from seeing data that
another user has deleted or from accessing memory that another user
previously used and then released. For example, in some operating
systems, it's possible to create a new me of a certain length and then
examine the contents of the me to see data that happens to have
occupied the location on the disk where the me is allocated. This
data might be sensitive information that was stored in another user's
me but that has been deleted. Object reuse protection prevents this
potential security hole by initializing all objects, including files and
memory, before they are allocated to a user.

Windows NT also meets two requirements ofB-level security:

II Trusted path functionality, which prevents Trojan horse programs
from being able to intercept users' names and passwords as they try
to log on. The trusted path functionality in Windows NT comes in
the form of its Ctrl+Alt+Delete logon-attention sequence. This
sequence of keystrokes, which is also known as the secure attention
sequence (SAS), always pops up a logon dialog box, so would-be
Trojan horses can easily be recognized: a Trojan horse presenting a
fake logon dialog box will be bypassed when the SAS is entered.

II Trusted facility manfl-gement, which requires support for separate
account roles for administrative functions. For example, separate
accounts are provided for administration (Administrators), user ac
counts charged with backing up the computer, and standard users.

Wmdows 2000 meets all of these requirements through its security subsys
tem au.d related components.

489

INSIDE MICROSOFT WINDOWS 2000

Security System Components

490

Here are some of the components and databases that implement Windows 2000
security:

III Security reference monitor (SRM) A component in the Windows
2000 executive (\ Winnt\System32\Ntoskrnl.exe) that is responsible
for performing security access checks on objects, manipulating
privileges (user rights), and generating any resulting security
audit messages.

III Local security authority sUbsystem (Lsass) A user-mode process
running the iinage \Winnt\System32\Lsass.exethat is responsible for
the local system security policy (such as which users are allowed to
log on to the· machine, password policies, privileges granted to users
and groups, and the system security auditing settings), user authenti
cation, and sending security audit messages to the Event Log. The
local security authority service (Lsasrv-\Winnt\System32\Lsasrv.dll),
a: library that Lsass loads, implements most of this functionality.

III Lsass policy database A database that contains the local system
security policy settings. This database is stored in the registry under
HKLM\SECURITY. It includes such information as what domains

E I G H T: Security

are entrusted to authenticate logon attempts, who has permission to
access the system and how (interactive, network, and service logons),
who is assigned which privileges, and what kind of security auditing
is to be performed. The Lsass policy database also stores "secrets"
that include logon information used for cached domain logons and
Win32 service user-account logons. (See Chapter 5 for more infor
mation on Win32 services.)

• Security Accounts Manager (SAM) service A set of subroutines
responsible for managing the database that contains the usernames
and groups defined on the local machine. The SAM service, which
is implemented as \ Winnt\System32\Samsrv.dll, runs in the Lsass
process.

• SAM database A database that contains the defined local users and
groups, along with their passwords and other attributes. This data
base is stored in the registry under HKLM\SAM.

• Active Directory A directory service that contains a database that
stores information about objects in a domain. A domain is a collection
of computers and their associated security groups that are managed
as a single entity. Active Directory stores information about the
objects in the domain, including users, groups, and computers. Pass
word information and privileges for domain users and groups are
stored in Active Directory, which is replicated across the computers
that are designated as domain controllers of the domain. The Active
Directory server, implemented as \Winnt\System32\Ntdsa.dll, runs
in the Lsass process.

• Authentication packages DLLs that run in the context of the Lsass
process and that implement Windows 2000 authentication policy.
An authentication DLL is responsible for checking whether a given

.username and password match, and ifso, returning to the Lsassinfor
mation detailing th.e user's security identity .

. • Logon process {Win logon) A user-mode process running \Winnt\
System32\Wmlogon.exe that is responsible for responding to the SAS
and for managing interactive. logon sessions.Winlogon creates a user's
shell (user-interface) process when the user logs on, for example.

• Graphical Identification and Authenticatioo (GINA) A user-mode
DLL that runs in the Winlogon process and that Winlogon uses to
obtain a user's Ilame.and password or smart card PIN. The standard
GINA is \Winnt\System32\Msgina.dll.

491

INSIDE MICROSOFT WINDOWS 2000

492

II! Net Logon service (Netlogon) A Win32 service (\Winnt\
System32\Netlogon.dll) that runs inside Lsass and responds to
Microsoft LAN Manager 2 Windows NT (pre-Windows 2000)
network logon requests. Authentication is handled as locallogons
are, by sending them to Lsass for verification. Netlogon also has a
locator service built into it for locating domain controllers.

II! Kernel Security Device Driver (KSecDD) A kernel-mode library of
functions that implement the local procedure call (LPC) interfaces
that other kernel-mode security components, including the Encrypt
ing File System (EFS), use to communicate with Lsass in user mode.
KSecDD is located in \Winnt\System32\Drivers\Ksecdd.sys.

Figure 8-1 shows the relationships among some of these components and
the databases they manage.

System
threads

(Kernel-mode callable interfaces)

1/0 manager

Device
and file
system
drivers

Kernel

<
5:
r::
8!.
3
eo
3
o
-<

"U a - (') :::Teo
~ (J)
eo (J)
Pl eo
0.(J)
(J) Pl

:::l
0.

Hardware abstraction layer (HAL)

Hardware interfaces

Event
Logger

User mode

(Buses, 1/0 devices, interrupts, interval timers, DMA, memory cache control, and so on)

Figure 8-1
Windows 2000 security components

E I G H T: Security

The SRM, which runs in kernel mode, and Lsass, which runs in user mode,
communicate using the LPC facility described in Chapter 3. During system
initialization, the SRM creates a port, named SeRmCommandPort, to which
Lsass connects. When the Lsass process starts, it creates an LPC port named
SeLsaCommandPort. The SRM connects to this port, resulting in the creation
of private communication ports. The SRM creates a shared memory section for
messages longer than 256 bytes, passing a handle in the connect call. Once the
SRM and Lsass connect to each other during system initialization, they no longer
listen on their respective connect ports. Therefore, a later user process has no
way to connect successfully to either of these ports for malicious purposes-the
connect request will never complete.

Figure 8-2 shows the communication paths as they exist after system
initialization.

Set audit event
Create logon session Local security
Delete logon session authority (LSA) server

Communication
SeLsaCommandPort

Communication
port port

I')

User mode

Kernel mode
f' , I Sha~ed I

Communication Communication SeRmCommandPort section
port port

Security reference Write audit message
monitor (SRM) Delete logOn session

Figure 8-2
Communication between the SRM and Lsass

493

INSIDE MICROSOFT WINDOWS 2000

Protecting Objects
Object protection and access accounting is the essence of discretionary access
control and auditing. The objects that can be protected on Windows 2000
include fUes, devices, mailslots, pipes (named and anonymous), jobs, processes,
threads, events, mutexes, semaphores, shared memory sections, I/O completion
ports, LPC ports, waitable timers, access tokens, window stations, desktops,
network shares, services, registry keys, and printers.

Because system resources that are exported to user mode (and hence require
security validation) are implemented as objects in kernel mode, the Windows 2000
object manager plays a key role in enforcing object security. (For more infor
mation on the object manager, see Chapter 3.) To control who can manipulate
an object, the security system must first be sure of each user's identity. This need
to guarantee the user's identity is the reason that Wmdows 2000 requires authen
ticated logon before accessing any system resources. When a process requests a
handle to an object, the object manager and the security system use the caller's
security identification to determine whether the caller should be assigned a
handle that grants the process access to the object it desires.

As we'll discuss later in this chapter, a thread can assume a different secu
rity context than that of its process. This mechanism is called impersonation, and
when a thread is impersonating, security validation mechanisms use the thread's
security context instead of that of the thread's process. When a thread isn't
impersonating, security validation falls back on using the security context of the
thread's owning process. It's important to keep in mind that all the threads in
a process share the same handle table, so when a thread opens an object-even
if it's impersonating-all the threads of the process have access to the object.

Access Checks

494

The Windows 2000 security model requires that a thread specifY up front, at
the time that it opens an object, what types of actions it wants to perform on
the object. The system performs access checks based on a thread's desired access,
and if the access is granted, a handle is assigned to the thread's process with which
the thread (or other threads in the process) can perform further operations on
the object. As explained in Chapter 3, the object manager records the access
permissions granted for a handle in the process's handle table.

One event that causes the object manager to perform security access vali
dation is when a process opens an existing object using a name. When an ob
ject is opened by name, the object manager performs a lookup of the specified

E I G H T: Security

object in the object manager namespace. If the object isn't located in a secondary
namespace, such as the configuration manager's registry namespace or a file
system driver's file system namespace, the object manager calls the internal
function ObpCreateHandle once it locates the object. As its name implies,
ObpCreateHandle creates an entry in the process's handle table that becomes
associated with the object. However, ObpCreateHandle calls the executive
function ExCreateHandle to create the handle only if another object manager
function, ObplncrementHandleCount, indicates that the thread has permission
to access the object. Another object manager function, ObCheckObjectAccess,
actually carries out the security access check and returns the results to Obp
I ncrementHandleCount.

ObplncrementHandleCountpasses ObCheckObjectAccessthe security creden
tials of the thread opening the object, the types of access to the object that the
thread is requesting (read, write, delete, and so forth), and a pointer to the object.
ObCheckObjectAccess first locks the object'S security and the security context of
the thread. The object security lock prevents another thread in the system from
changing the object'S security while the access check is in progress. The lock on
the thread's security context prevents another thread of that process ora differ
ent process from altering the security identity of the thread while security vali
dation is in progress. ObCheckObjectAccess then calls the object'S security method
to obtain the security settings of the object. (See Chapter 3 for a description of
object methods.) The call to the security method might invoke a function in a
different executive component. However, many executive objects rely on the
system's default security management support.

When an executive component defining an object doesn't want to over
ride the SRM's default security policy, it marks the object type as having de
fault security. Whenever the SRM calls an object's security method, it first
checks to see whether the object has default security. An object with default
security stores its security information in its header, and its security method
is SeDefaultObjectMethod. An object that doesn't rely on default security must
manage its own security information and supply a specific security method.
Objects that rely on default security include mutexes, events, and semaphores.
A file object is an example of an object that overrides default security. The I/O
manager, which defines the file object type, has the file system driver on which
a file resides manage (or choose not to implement) the security for its files. Thus,
when the system queries the security on a file object that represents a file on an

495

INSIDE MICROSOFT WINDOWS 2000

496

NTFS volume, the I/O manager file object security method retrieves the file's
security using the NTFS file system driver. Note, however, that ObCheckObject
Access isn't executed when files are opened because they reside in secondary
namespaces; the system invokes a file object's security method only when a thread
explicitly queries or sets the security on a file (with the Win32 SetFileSecurity
or GetFileSecurity functions, for example).

Mter obtaining an object's security information, ObCheckObjectAccess
invokes the SRM function SeAccessCheck. SeAccessCheck is one of the functions
at the heart of the Windows 2000 security model. Among the input parameters
SeAccessCheck accepts are the object's security information, the security iden
tity of the thread as captured by ObCheckObjectAccess, and the access that the
thread is requesting. SeAccessCheck returns True or False, depending on whether
the thread is granted the access it requested to the object.

Another event that causes the object manager to execute access validation
is when a process references an object using an existing handle. Such references
often occur indirectly, as when a process calls on a Win32 API to manipulate
an object and passes an object handle. For example, a thread opening a file can
request access to the object that permits it to read from the file. If the thread
has permission to access the object in this way, as dictated by its security con
text and the security settings of the file, the object manager creates a handle
representing the file-in the handle table of the thread's process. The accesses
the process is granted through the handle are stored with the handle by the object
manager.

Subsequently, the thread can attempt to write to the file using the WriteFile
Win32 function, passing the file's handle as a parameter. The system service
NtWriteFile, which WriteFile calls via Ntdll.dll, uses the object manager func
tion ObReferenceObjectByHandle to obtain a pointer to the file object from the
handle. ObReferenceObjectByHandle accepts the access that the caller wants
from the object as a parameter. Mter finding the handle entry in the process's
handle table, ObReferenceObjectByHandle compares the access being requested
with the access granted at the time the file was opened. In this case, ObReftrence
ObjectByHandle will indicate that the write operation should fail because the
caller didn't obtain write access when the file was opened.

The Windows 2000 security functions also enable Win32 applications to
define their own private objects and to calIon the services of the SRM to enforce
the Windows 2000 security model on those objects. Many kernel-mode functions

E I G H T: Security

that the object manager and other executive components use to protect their
own objects are exported as Win32 user-mode APIs. The user-mode equivalent
of SeAccessCheck is AccessCheck, for example. Win32 applications can therefore
leverage the flexibility of the security model and transparently integrate with the
authentication and administrative interfaces that are present in Windows 2000.

The essence of the SRM's security model is an equation that takes three
inputs: the security identity of a thread, the access that the thread wants to an
object, and the security settings of the object. The output is either "yes" or "no"
and indicates whether or not the security model grants the thread the access it
desires. The following sections describe the inputs in more detail and then
document the model's access validation algorithm.

Security Identifiers
Instead of using names (which might or might not be unique) to identifY enti
ties that perform actions in a system, Windows 2000 uses security identifiers
(SIDs). Users have SIDs, and so do local and domain groups, local computers,
domains, and domain members. A SID is a variable-length numeric value that
consists of a SID structure revision number, a 48-bit identifier authority value,
and a variable number of 32-bit subauthority or relative identifier (RID) values.
The authority value identifies the agent that issued the SID, and this agent is
typically a Windows 2000 local system or a domain. Subauthority values iden
tifY trustees relative to the issuing authority, and RIDs are simply a way for
Windows 2000 to create unique SIDs based on a common-base SID. Because
SIDS are long and Windows 2000 talces care to generate truly random values
within each SID, it is virtually impossible for Windows 2000 to issue the same
SID twice on machines or domains anywhere in the world.

When displayed textually, each SID carries an S prefix, and its various
components are separated with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the
Windows 2000 security authority), and four sub authority values plus one RID
(1128) make up the remainder of the SID. This SID is a domain SID, but a local
computer on the domain would have a SID with the same revision number,
identifier authority value, and number of sub authority values.

497

INSIDE MICROSOFT WINDOWS 2000

498

When you install Windows 2000, the Windows 2000 Setup program issues
the computer a SID. Windows 2000 assigns SIDs to local accounts on the com
puter. Each local-account SID is based on the source computer's SID and has a
RID at the end. RIDs for user accounts and groups start at 1000 and increase
in increments of 1 for each new user or group. Similarly, Windows 2000 issues
a SID to each newly created Windows 2000 domain. Windows 2000 issues to
new domain accounts SIDS that are based on the domain SID and have an
appended RID (again starting at 1000 and increasing in increments of 1 for each
new user or group). A RID of 1028 indicates that the SID is the 29th SID the
domain issued.

Windows 2000 issues SIDS that consist of a computer or domain SID with
a predefined RID to many predefined accounts and groups. For example, the
RID for the administrator account is 500, and the RID for the guest account
is 501. A computer's local administrator account, for example, has the computer
SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

E I G H T: Secu rity

Windows 2000 also defines a number of built-in local and domain SIDs
to represent groups. For example, a SID that identifies any and every account
is the Everyone, or World, SID: S-1-1-0. Another example of a group that a SID
can represent is the network group, which is the group that represents users who
can log on to a machine from the network. The network-group SID is S-1-
5-2. Table 8-2, reproduced here from the Platform SDK documentation, shows
some of the basic well-known SIDs, their numeric values, and their use.

Tokens

SID

S-1-1-0
S-1-2-0

S-1-3-0

S-1-3-1

Table 8-2 Well-Known SICs

Group

Everyone

Local

Creator Owner ID

Creator Group ID

Use

A group that includes all users.

Users who log on to terminals locally
(physically) connected to the system.

A security identifier to be replaced by the
security identifier' of the user who created a
new object. This SID is used in inheritable
access-control entries (ACEs).

Identifies a security identifier to be replaced
by the primary-group SID of the user who
created a new object. Use this SID in inher
itable ACEs.

The SRM uses an object called a token (or access token) to identify the security
context of a process or thread. A security context consists of information that
describes the privileges, accounts, and groups associated with the process or
thread. During the logon process (described at the end of this chapter), Winlogon
creates an initial token to represent the userlogging on and attaches the token
to the user's logon shell process. All programs the user executes inherit a copy
of the initial token. You can also generate a token by using the Win32 Logon User
function. You can then use this token to create a process that runs within the
security context of the user logged on by the Logon User function by passing
the token to the Win32 CreateProcessAsUser function. Tokens vary in size
because different user accounts have different sets of privileges and associated
group accounts. However, all tokens contain the same information, shown in
Figure 8-3.

499

INSIDE MICROSOFT WINDOWS 2000

500

Token source

Impersonation type

Token ID

Authentication ID

Modified ID

Expiration time

Defaul primary group

Default DACL

User account SID

Group 1 SID

i.-

Group nSID

Restricted SID 1

Restricted SID n

Privilege 1

1 Privilege n

Figure 8-3
Access tokens

,
I

I

~

-
J

The security mechanisms in Windows 2000 use two token components to
determine what a token's thread or process can do. One component comprises
the token's user account SID and group SID fields. The SRM uses SIDs to
determine whether a process or thread can obtain requested access to a secur
able object, such as an NTFS file.

The group SIDs in a token signify which groups a user's account is a
member of. A server application can disable specific groups to restrict a token's
credentials when the server application is performing actions a client requests.
Disabling a group produces nearly the same effect as if the group wasn't present
in the token. (Disabled SIDs are used as part of security access checks, described
later in the chapter.)

The second component in a token that determines what the token's thread
or process can do is the privilege array. A token's privilege array is a list of rights
associated with the token. An example privilege is the right for the process or

E I G H T: Security

thread associated with the token to shut down the computer. There are about
two-dozen token privileges, and a few of the most commonly used are shown
in Table 8-3.

Table 8-3 Some Common Privileges

Privilege Name

SeBackup

SeDebug

SeShutdown

SeTakeOwnership

Privilege Usage

Bypasses security checks during backups

Required to debug a process

Required to shut down a local system

Required to take ownership of an object without being
granted discretionary access

A token's default primary group field and default discretionary access
control list (DACL) field are security attributes that Windows 2000 applies to
objects that a process or thread creates when it uses the token. By including
security information in tokens, Windows 2000 makes it convenient for a process
or thread to create objects with standard security attributes because the process
or thread doesn't need to request discrete security information for every object
it creates.

Each token's type distinguishes a primary token (a token that identifies the
security context of a process) from an impersonation token (a token threads use
to temporarily adopt a different security context, usually of another user). Imper
sonation tokens carry an impersonation level that signifies what type of imperson
ation is active in the token. We'll describe impersonation in more detail shortly.

The remainder of the fields in a token serve informational purposes. The
token source field contains a short textual description of the entity that created
the token. Programs that want to know where a token originated use the token
source to distinguish among sources such as the Windows 2000 Session Manager,
a network file server, or the remote procedure call (RPC) server. The token iden
tifier is a locally unique identifier (LUID) that the SRM assigns to the token when
it creates the token. The Windows 2000 executive maintains the executive LUID,
a counter it uses to assign a unique numeric identifier to each token.

The token authentication ID is another kind of LUID. A token's creator
assigns the token's authentication ID. Lsass is typically the only token creator on
a system, and Lsass obtains the LUID from the executive LUID. Lsass then
copies the authentication ID for all tokens descended from an initial logon token.
A program can obtain a token's authentication ID to see whether the token
belongs to the same logon session as other tokens the program has examined.

501

INSIDE MICROSOFT WINDOWS 2000

502

The executive LUID refreshes the modified ID every time a token's char
acteristics are modified. An application can test the modified ID to discover
changes in a security context since the context's last use.

Tokens contain an expiration time field that has been present but unused
in Windows NT technology since Windows NT 3.1. A future version of Windows
2000 might allow for tokens that are valid for a period of time before expiring.
Consider a user for which the systems administrator sets an account expiration
time. Currently, if the user logs on and remains logged on past the account
expiration, the system will let the user continue to access resources. The only
way to prevent the user from accessing resources is to forcibly log the user off
the machine. If Windows 2000 supported token expiration, the system could
prevent the user from opening resources past the token expiration time.

E I G H T: Security

503

INSIDE MICROSOFT WINDOWS 2000

Impersonation

504

Impersonation is a powerful feature Windows 2000 uses frequently in its secu
rity model. Windows 2000 also uses impersonation in its client/server pro
gramming model. For example, a server application can export resources such
as files, printers, or databases. Clients wanting to access a resource send a request
to the server. When the server receives the request, it must ensure that the client
has permission to perform the desired operations on the resource. For example,
if a user on a remote machine tries to delete a file on an NTFS share, the server
exporting the share must determine whether the user is allowed to delete the
file. The obvious process to determine whether a user has permission is for the
server to query the user's account and group SIDs, and scan the security attributes
on the file. This process is tedious to program, prone to errors, and wouldn't
permit new security features to be supported transparently. Thus, Windows 2000
provides impersonation services to simplify the server's job.

Impersonation lets a server notify the SRM that the server is temporarily
adopting the security profile of a client making a resource request. The server
can then access resources on behalf of the client, and the SRM carries out the
access validations. Usually, a server has access to more resources than a client
does and loses some of its security credentials during impersonation. How
ever, the reverse can be true: the server can gain security credentials during
impersonation.

A server impersonates a client only within the thread that makes the imper
sonation request. Thread-control data structures contain an optional entry for
an impersonation token. However, a thread's primary token, which represents
the thread's real security credentials, is always accessible in the process's con
trol structure.

Windows 2000 makes impersonation available through several mechanisms.
If a server communicates with a client through a named pipe, the server can use
the ImpersonateNamedPipeClient Win32 API function to tell the SRM that it
wants to impersonate the user on the other end of the pipe. If the server is
communicating with the client through Dynamic Data Exchange (DDE) or an
RPC, it can make similar impersonation requests using DdelmpersonateClient
and RpclmpersonateClient. A thread can create an impersonation token that's
simply a copy of its process token with the ImpersonateSelJfunction. The thread
can then alter its impersonation token, to disable SIDs or privileges, for example.
Finally, a Security Support Provider Interface (SSPI) package can impersonate
its clients with ImpersonateSecurityContext. SSPIs implement a network secu
rity model such as LAN Manager 2 or Kerberos.

E I G H T: Security

Mter the server thread fmishes its task, it reverts to its primary security
profile. These forms of impersonation are convenient for carrying out specific
actions at the request of a client. The disadvantage to these forms of imperson
ation is that they can't execute an entire program in the context of a client. In
addition, an impersonation token can't access files or printers on network shares
unless the file or printer share supports null sessions. (A null session is one that
results from an anonymous logon.)

If an entire application must execute in a client's security context or must
access network resources, the client must be logged on to the system. The
Logon User Win32 API function enables this action. Logon User takes an account
name, a password, a domain or computer name, a logon type (such as interactive,
batch, or service), and a logon provider as input, and it returns a primary token.
A server thread can adopt the token as an impersonation token, or the server
can start a program that has the client's credentials as its primary token. From
a security standpoint, the process that Logon User creates to run the program in
an interactive logon session looks like a program a user starts by logging on to
the machine interactivdy.

A second way Wmdows 2000 provides for impersonation of a client's security
context that is similar to the use of Logon User is by taking a client's access to
ken, duplicating it, and using it as the primary token that is passed to the
CreateProcessAs User command. The disadvantage to using the Logon User and
CreateProcessAsUser approaches is that a server must obtain the user's account
name and password. If the server transmits this information across the net
work, the server must encrypt it securely so that a malicious user snooping
network traffic can't capture it.

To prevent the misuse of impersonation, Windows 2000 doesn't let serv
ers perform impersonation without a client's consent. A client process can limit
the level of impersonation that a server process can perform by specifying a
security quality of service (SQOS) when connecting to the server. A process
can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION,
SECURITY_IMPERSONATION, and SECURITY_I?ELEGATION as flags
for theWm32 CreateFile function. Each level1ets a server perform different types
of operations with respect to the client's security context;

• Security Anonymous is the most restrictive level of impers~nation
the server can't impersonate or identify the client.

II Securityldentification level lets the server obtain the identity (the
SIDs) of the client and the client's privileges; but the server can't
impersonate the client.

505

INSIDE MICROSOFT WINDOWS 2000

II Securitylmpersonation level lets the server identify and impersonate
the client on the local system.

II SecurityDelegation is the most permissive level of impersonation. It
lets the server impersonate the client on local and remote systems.
Windows NT 4 and earlier don't fully support SecurityDelegation
level impersonation.

If the client doesn't set an impersonation level, Windows 2000 chooses
the SecurityImpersonation level by default. The CreateFile function also accepts
SECURITY_EFFECTIVE_ONLY and SECURITY_CONTEXT_TRACKING
as modifiers for the impersonation setting:

II SECURITY_EFFECTIVE_ONLY prevents a server from accessing a
client's privileges or groups while the server is impersonating.

II SECURITY_CONTEXT_TRACKING specifies that any change a
client makes to its security context is reflected in a server that is
impersonating it. If this option isn't specified, the server adopts the
context of the client at the time of the impersonation and doesn't
receive any changes. This option is honored only when the client
and server processes are on the same system.

Restricted Tokens

506

Wmdows 2000 introduces a new type of token called a restricted token. A restricted
token is created from a primary or impersonation token using the Create
RestrictedToken function. The restricted token is a copy of the token it's derived
from, with the following possible modifications:

II Privileges can be removed from the token's privilege array.

II SIDs in the token can be marked as deny-only.

II SIDS in the token can be marked as restricted.

The behavior of deny-only and restricted SIDs is covered shortly. Restricted
tokens are useful when an application wants to impersonate a client at a reduced
security level, primarily for safety reasons when running untrusted code. For
example, the restricted token can have the reboot-system privilege removed
from it to prevent code executed in the restricted token's security context from
rebooting the system.

E I G H T: Security

Security Descriptors and Access Control
Tokens, which identify a user's credentials, are only part of the object security
equation. Another part of the equation is the security information associated
with an object, which specifies who can perform what actions on the object. The
data structure for this information is called a security descriptor. A security de
scriptor consists of the following attributes:

Ii Revision number The version of the SRM security model used to
create the descriptor.

Ii Flags Optional modifiers that define the behavior or characteristics
of the descriptor. An example is the SE_DACL_PROTECTED flag,
which prevents the descriptor from inheriting a security setting from
another object.

• Owner SID The owner's security ID.

• Group SID The security ID of the primary group for the object
(used only by POSIX).

• Discretionary access-control list (DACL) Specifies who has what
access to the object.

• System access-control list (SACL) Specifies which operations by
which users should be logged in the security audit log.

An access-control list (ACL) is made up of a header and zero or more access
control entry (ACE) structures. There are two types of ACLs: DACLs and
SACLs. In a DACL, each ACE contains a SID and an access mask (and a set of
flags, explained shortly). Four types of ACEs can appear in a DACL: access
allowed, access denied, allowed-object, and denied-object. As you would expect,
the access-allowed ACE grants access to a user, and the access-denied ACE denies
the access rights specified in the access mask.

The difference between allowed -object and access allowed, and between
denied-object and access denied, is that the object types are used only within
Active Directory. ACEs of these types have a GUID (globally unique identifier)
field that indicates that the ACE applies only to particular objects or.subobjects
(those that have GUID identifiers). In addition, another optional GUID indi
cates what type of child object will inherit the ACE when a child is created within
an Active Directory container that has the ACE applied to it. (A GUID is a
128-bit identifier guaranteed to be universally unique.)

507

INSIDE MICROSOFT WINDOWS 2000

508

The accumulation of access rights granted by individual ACEs forms the
set of access rights granted by an ACL. If no DACL is present (a null DACL)
in a security descriptor, everyone has full access to the object. If the DACL is
empty (has 0 ACEs), no user has access to the object.

The ACEs used in DACLs also have a set of flags that control and specifY
characteristics of the ACE related to inheritance. Some object namespaces have
container objects and leaf objects (or just objects). A container can hold other
container objects and leaf objects, which are its child objects. Examples of con
tainers are directories in the file system namespace and keys in the registry
namespace. Certain flags in an ACE control how the ACE propagates to child
objects of the container associated with the ACE. Table 8-4, reproduced in part
from the Platform SDK, lists the inheritance rules for ACE flags.

Table 8-4 Inheritance Rules for ACE Flags

Flag

INHERITED_ACE

Inheritance Rule

Child objects that are containers,
such as directories, inherit the ACE
as an effective ACE. The inherited
ACE is inheritable unless the NO_
PROPAGATE_INHERIT_ACE bit
flag is also set.

Indicates an inherit-only ACE that
doesn't control access to the object
it's attached to.

Indicates that the ACE was inherited.
The system sets this bit when it
propagates an inheritable ACE to a
child object.

If the ACE is inherited by a child
object, the system clears the
OBJECT_INHERIT_ACE and
CONTAINER_INHERIT_ACE
flags in the inherited ACE. This
action prevents the ACE from being
inherited by subsequent generations
of objects.

Noncontainer child objects inherit
the ACE as an effective ACE. For
child objects that are containers, the
ACE is inherited as an inherit-only
ACE unless the NO_PROPAGATE_
INHERIT_ACE bit flag is also set.

E I G H T: Security

A SACL contains two types of ACEs, system audit ACEs and system audit
object ACEs. These ACEs specifY which operations performed on the object by
specific users or groups should be audited. Audit information is stored in the
system Audit Log. Both successful and unsuccessful attempts can be audited.
Like their DACL object-specific ACE cousins, system audit-object ACEs specifY
a GUID indicating the types of objects or subobjects that the ACE applies to
and an optional GUID that controls propagation of the ACE to particular child
object types. If a SACL is null, no auditing takes place on the object. (Security
auditing is described later in this chapter.) The inheritance flags that apply to
DACL ACEs also apply to system audit and system audit-object ACEs.

Figure 8-4 is a simplified picture of a file object and its DACL.

ACE ACE ACE

Figure 8-4
Discretionary access-control list (DACL)

As shown in Figure 8-4, the first ACE allows USER1 to read the file. The
second ACE allows members of the group TEAM1 to have read and write access
to the file, and the third ACE grants all other users (Everyone) execute access.

ACL Assignment
To determine which DACL to assign to a new object, the security system uses
the first applicable rule of the following four assignment rules:

1. If a caller explicitly provides a security descriptor when creating the
object, the security system applies it to the object. If the object has a
name and resides in a container object (for example, a named event
object in the \BaseNamedSecurity object manager namespace direc
tory), the system merges any inheritable ACEs (ACEs that might
propagate from the object'S container) into the DACL unless the
security descriptor has the SE_DACL_PROTECTED flag set, which
prevents inheritance.

509

INSIDE MICROSOFT WINDOWS 2000

510

2. If a caller doesn't supply a security descriptor and the object has a
name, the security system looks at. the security descriptor in the
container in which the new object name is stored. Some of the object
directory's ACEs might be marked as inheritable, meaning that they
should be applied to new objects created in the object directory. If
any of these inheritable ACEs are present, the security system forms
them into an ACL, which it attaches to the new object. (Separate
flags indicate ACEs that should be inherited only by container objects
rather than by objects that aren't containers.)

3. If no security descriptor is specified and the object doesn't inherit
any ACEs, the security system retrieves the default DACL from the
caller's access token and applies it to the new object. Several sub
systems on Windows 2000 have hard -coded DACLs that they assign
on object creation (for example, services, LSA, and SAM objects).

4. If there is no specified descriptor, no inherited ACEs, and no default
DACL, the system creates the object with no DACL, which allows
everyone (all users and groups) full access to the object. This rule is
the same as the third rule when a token contains a null default DACL.

The rules the system uses when assigning a SACL to a new object are
similar to those used for DACL assignment, with a couple exceptions. The first
is that inherited system audit ACEs don't propagate to objects with security
descriptors marked with the SE_SACL_PROTECTED flag (similar to the
SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are
no specified security audit ACEs and there is no inherited SACL, no SACL is
applied to the object. This behavior is different than that used to apply default
DACLs because tokens don't have a default SACL.

When a new security descriptor containing inheritable ACEs is applied to
a container, the system automatically propagates the inheritable ACEs to the
security descriptors of child objects. (Note that a security descriptor's DACL
doesn't accept inherited DACL ACES if its SE_DACL_PROTECTED flag is
enabled, and its SACL doesn't inherit SACL ACES if the descriptor has the
SE_SACL_PROTECTED flag set.) The order with which inheritable ACEs are
merged with an existing child object's security descriptor is such that any ACEs
that were explicitly applied to the ACL are kept ahead of ACEs that the object
inherits. The system uses the following rules for propagating inheritable ACEs:

• If a child object with no DACL inherits an ACE, the result is a child
object with a DACL containing only the inherited ACE.

E I G H T: Security

II If a child object with an empty DACL inherits an ACE, the result is
a child object with a DACL containing only the inherited ACE.

II For objects in Active Directory only, if an inheritable ACE is removed
from a parent object, automatic inheritance removes any copies of
the ACE inherited by child objects.

II For objects in Active Directory only, if automatic inheritance results
in the removal of all ACEs from a child object'S DACL, the child
object has an empty DACL rather than no DACL.

As you'll soon discover, the order of ACEs in an ACL is an important aspect
of the Windows 2000 security model.

NOT E Because inheritance isn't supported for file system directories
and registry keys, Windows Explorer and Regedt32 manually propa
gate security settings that you specifY to apply to a directory and its
contents or to an entire registry sub key.

Determining Access
Two algorithms are used for determining access to an object:

II aneta determine the maximum access allowed to the object, a
form of which is exported to user mode with the Win32 GetEffective
RightsFromAcl function.

II One to determine whether a specific desired access is allowed, which
can be done with the Win32 AccessCheck function or the AccessCheck
ByType function.

The first algorithm examines the entries in the DACL as follows:

1. If the object has no DACL (a null DACL), the object has no
protection and the security system grants all access.

2. If the caller has the take-ownership privilege, the security system
grants write-owner access before examining the DACL. (Take
ownership privilege and write-owner access are explained in a
moment.)

3. If the caller is the owner of the object, the read-control and write
DACL access rights are granted.

4. For each access-denied ACE that contains a SID that matches one in
the caller's access token, the ACE's access mask is removed from the
granted-access mask.

511

INSIDE MICROSOFT WINDOWS 2000

512

5. For each access-allowed ACE that contains a SID that matches one
in the caller's access token, the ACE's access mask is added to the
granted-access mask being computed, unless that access has already
been denied.

When all the entries in the DACL have been examined, the computed
granted-access mask is returned to the caller as the maximum allowed access to
the object. This mask represents the total set of access types that the caller will
be able to successfully request when opening the object.

The preceding description applies only to the kernel-mode form of the
algorithm. The Win32 version implemented by GetEffectiveRightsFromAcl dif
fers in that it doesn't perform step 2, and it considers a single user or group SID
rather than an access token.

The second algorithm is used to determine whether a specific access request
can be granted, based on the caller's access token. Each open function in the
Win32 API that deals with securable objects has a parameter that specifies the
desired access mask, which is the last component of the security equation. To
determine whether the caller has access, the following steps are performed:

1. If the object has no DACL (a null DACL), the object has no
protection and the security system grants the desired access.

2. If the caller has the take-ownership privilege, the security system
grants write-owner access and then examines the DACL. However, if
write-owner access was the only access requested by a caller with talce
ownership privilege, the security system grants that access and never
examines the DACL.

3. If the caller is the owner of the object, the read -control and write
DACL access rights are granted. If these rights were the only access
rights that caller requested, access is granted without examining the
DACL.

4. Each ACE in the DACL is examined from first to last. An ACE is
processed if one of the following conditions is satisfied:

a. The SID in the ACE matches an enabled SID (SIDs can be enabled
or disabled) in the caller's access token (whether that be the pri
mary SID or a group SID).

b. The ACE is an access-allowed ACE and the SID in the ACE
matches a SID in the caller's token that isn't of type deny-only.

E I G H T: Security

c. It is the second pass through the descriptor for restricted-SID
checks, and the SID in the ACE matches a restricted SID in the
caller's access token.

If it is an access-allowed ACE, the rights in the access mask in the
ACE that were requested are granted; if all the requested access
rights have been granted, the access check succeeds. If it is an
access-denied ACE and any of the requested access rights are in
the denied-access rights, access is denied to the object.

5. If the end of the DACL is reached and some of the requested access
rights still haven't been granted, access is denied.

6. If all accesses are granted but the caller's access token has at least one
restricted SID, the system rescans the DACL's ACEs looking for
ACEs with access-mask matches for the accesses the user is requesting
and a match of the ACE's SID with any of the caller's restricted SIDs.
Only if both scans of the DACL grant the requested access rights is
the user granted access to the object.

The behavior of both access-validation algorithms depends on the relative
ordering of allow and deny ACEs. Consider an object with only two ACEs where
one ACE specifies that a certain user is allowed full access to an object and the
other ACE denies the user access. If the allow ACE precedes the deny ACE, the
user can obtain full access to the object, but if the order is reversed, the user
can not gain any access to the object.

Older Win32 functions, such as AddAccessAliowedAce, add ACEs to the
end of a DACL, which usually isn't the desired behavior, so most Win32 appli
cations prior to Windows 2000 were forced to construct DACLs manually, with
deny ACEs placed at the front of the list. New Windows 2000 functions such
as SetSecuritylnfo and SetNamedSecuritylnfo apply ACEs in the preferred order
of deny ACEs preceding allow ACEs. Note that the security editor dialog boxes
with which you edit permissions on NTFS files and registry keys, for example,
construct security descriptors by placing all the deny ACEs at the front of the
list. SetSecuritylnfo and SetNamedSecuritylnfo also apply ACE inheritance rules
to the security descriptor on which they are applied.

Figure 8-5 shows an example access validation demonstrating the importance
of ACE ordering. In the example, access is denied a user wanting to open a file
even though an ACE in the object's DACL grants the access (by virtue of the
user's membership in the Writers group) because the ACE denying the user
access precedes the ACE granting access.

513

INSIDE MICROSOFT WINDOWS 2000

514

Access token

User: DaveC

Group1: Administrators

requested: Write

ACE

ACE

Security descriptor

Figure 8-5
Access validation example

As we stated earlier, because it wouldn't be efficient for the security system
to process the DACL every time a process uses a handle, the SRM makes this
access check only when a handle is opened, not each time the handle is used.
Thus, once a process successfully opens a handle, the security system can't revoke
the access rights that have been granted, even if the object's DACL changes.
Also keep in mind that because kernel-mode code uses pointers rather than
handles to access objects, the access check isn't performed when the operating
system uses objects. In other words, the Windows 2000 executive "trusts" itself
in a security sense.

E I G H T: Security

The fact that an object's owner is always granted write-DACL access to
an object means that users can never be prevented from accessing the objects
they own. If, for some reason, an object had an empty DACL (no access), the
owner would still be able to open the object with write-DACL access and then
apply a new DACL with the desired access permissions.

The take-ownership privilege is a similarly powerful tool for accounts, such
as the Administrator account, to which it is assigned. Any object on the system
is accessible using this privilege. Consider an object that is owned by another
user and that explicitly denies the Administrator account all access to the ob
ject. With the take-ownership privilege, an administrator can open the object
with write-owner permission and change the owner to Administrator. Then the
administrator can close and reopen the object with write-DACL access and
change the DACL to give the Administrator account full access to the object.

Security Auditing
The object manager can generate audit events aSa result of an access check,
and Win32 functions available to user applications can generate them directly.
Kernel-mode code is always allowed to generate an audit event. Two privileges,
SeSecurityPrivilege and SeAuditPrivilege, relate to auditing. A process must have
the SeSecurityPrivilege privilege to manage the security Event Log and to view
or set an object's SACL. Processes that call audit system services, however, must
have the SeAuditPrivilege privilege to successfully generate a.n audit record.

The audit policy of the local system controls the decision to audit a particular
type of secunty event. The audit policy, also called the local security policy, is
one part of the security policy Lsass maintains on the local system. Lsass sends
messages to the SRM to inform it of the auditing policy at system initialization
tirp.e and wheilthe policy changes. Lsass is responsible for receiving audit records
generated based on the audit events from the SRM, editing the records, and
sending them to the Event Logger. Lsass (instead of the SRM) sends these
records because it adds pertinent details, such as the information needed to more
completely identify the. process that is being audited.

The SRM sends audit records via its LPG connection to Lsass. The Event
Logger then writes the audit recordto the security Event Log. In addition to
audit records the SRM passes, both Lsass and the SAM gerierate audit records
that Lsass sends directly to the Event Logger. Figure 8-6 depicts this overall flow.

515

INSIDE MICROSOFT WINDOWS 2000

516

Protected
subsystem

Audit calls

Win32
server

Security subsystem

LSA
authentication

LSA
auditing

SAM

LPC LPC

Audit system

RPC Event
Logger

service calls Audit policy Audit records

Figure 8-6

Security
reference

monitor (SRM)

Flow of security audit records

Object manager
I/O parse
NTFS
Mailslot
NPFS
Configuration registry
Process manager

Log

User mode

Kernel mode

Audit records are put on a queue to be sent to the LSA as they are received
they are not submitted in batches. The audit records are moved·from the SRM
to the security subsystem in one of two ways. If the audit record is small (less
than the maximum LPC message size), it is sent as an LPC message. The audit
records are copied from the address space of the SRM to the address space of
the Lsass process. If the audit record is large, the SRM uses shared memory
to make the message available to Lsass and simply passes a pointer in an LPC
message.

Figure 8-7 brings together the concepts covered so far in this chapter by
illustrating the basic process and thread security structures. In the figure, notice
that the process object and the thread objects have ACLs, as do the access-token
objects themselves. Also in this figure, thread 2 and thread 3 each has an imper
sonation token, whereas thread 1 defaults to the process access token.

E I G H T: Security

5)--------.

Thread 1

Figure 8-7

Group SIDs

Privileges

Owner SID

Primary group SID

DefauitACL

Process and thread security structures

Access token

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

DefaultACL

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

DefaultACL

(continued)

517

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing Process and Thread Security Information continued

518

E I G H T: Security

(continued)

519

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing Process and Thread Security Information continued

520

E I G H T: Security

Logon
Interactive logon (as opposed to network logon) occurs through the interaction
of the logon process (Winlogon), Lsass, one or more authentication packages,
and the SAM or Active Directory. Authentication packages are DLLs that per
form authentication checks. Kerberos is the Windows 2000 authentication
package for interactive logon to a domain, and MSVl_O is the Windows 2000
authentication package for interactive logon to a local computer, for domain
logons to trusted pre-Windows 2000 domains, and for when no domain con
troller is accessible.

Winlogon is a trusted process responsible for managing security-related
user interactions. It coordinates logon, starts the user's shell at logon, handles
logoff, and manages various other operations relevant to security, including
entering passwords at logon, changing passwords, and locking and unlocking
the workstation. The Winlogon process must ensure that operations relevant
to security aren't visible to any other active processes. For example, Winlogon
guarantees that an untrusted process can't get control of the desktop during one
of these operations and thus gain access to the password.

Winlogon relies on a Graphical Identification and Authentication (GINA)
DLL to obtain a user's account name and password. The default GINA is Msgina
(\ Winnt\System32\Msgina.dll). Msgina presents the standard Windows 2000
logon dialog box. Allowing for other GINAs to replace Msgina enables Windows
2000 to use different user identification mechanisms. For example, a third party
might supply a GINA that uses a thumbprint recognition device to identify users
and extract their passwords from an encrypted database.

Winlogon is the only process that intercepts logon requests from the key
board. After obtaining a username and password from the GINA, Winlogon calls
Lsass to authenticate the user attempting to log on. If the user is authenticated,
the logon process activates alogon shell on behalf of that user. The interaction
between the components involved in logon is illustrated in Figure 8-8.

In addition to supporting alternate GINAs, Winlogon can load additional
network provider DLLs that need to perform secondary authentication. This
capability allows multiple network providers to gatheridentification and authen
tication information all at one time during normal logon. A user logging on to
a Windows 2000 system might simultaneously be authenticated on a UNIX
server. That user would then be able to access resources of the UNIX server from
the Windows 2000 machine without requiring additional authentication. Such
a capability is known as one form of single sign-on.

521

INSIDE MICROSOFT WINDOWS 2000

Winlogon
process

Figure 8-8

LPC

: Lsass
I

LSA server

Q
:::r
~

Net Logon
service

I

I

~ ;::::::::::::000=::0: ; ~ Network

Kerberos ~
service I

Authentication

...... ~IJ packages

Active Directory
server

SAM
server

Components involved in logon

Winlogon Initialization

522

During system initialization, before any user applications are active, Winlogon
performs the following steps to ensure that it controls the workstation once the
system is ready for user interaction:

1. Creates and opens the interactive window station, \Windows\WinStaO,
to represent the keyboard, mouse, and monitor. Winlogon creates a
security descriptor for the station that has one and only one ACE
containing only the Winlogon SID. This unique security descriptor
ensures that no other process can access the workstation unless explic
itly allowed by Winlogon.

2. Creates and opens three desktops: an application desktop (\Windows\
WinStaO\Default), a Winlogon desktop (\Windows\WinStaO\
Winlogon), and a screen saver desktop (\Windows\WinStaO\Screen
Saver). The security on the Winlogon desktop is created so that only
Winlogon can access that desktop. The other two desktops allow
both Winlogon and users to access them. This arrangement means

E I G H T: Security

that any time the Winlogon desktop is active, no other process
has access to any active code or data associated with the desktop.
Windows 2000 uses this feature to protect the secure operations that
involve passwords and locking and unlocking the desktop.

Before anyone logs on to a computer, the visible desktop is
Winlogon's. After a logon, typing Ctrl+A1t+Delete switches the desk
top from Default to Winlogon. (This explains why all the windows
on your interactive desktop seem to disappear when you press
Ctrl+A1t+Delete and then return when you dismiss the Windows
Security dialog box.) Thus, the SAS always brings up a secure desk
top controlled by Winlogon.

3. Establishes an LPC connection with Lsass's LsaAuthenticationPort.
This connection will be used for exchanging information during
logon, logoff, and password operations and is made by calling Lsa
Register LogonProcess.

Winlogon then performs the following Windows operations to set up the
window environment:

4. Initializes and registers a window class data structure that associates
a Winlogon procedure with the window it subsequently creates.

5. Registers the SAS associating it with the window just created, guar
anteeing that Winlogon's window procedure is called whenever the
user enters the SAS. This measure prevents Trojan horse programs
from gaining control of the screen when the SAS is entered.

6. Registers the window so that the procedure associated with this
window gets called if a user logs off or if the screen saver times out.
The Win32 subsystem· checks to verify that the process requesting
notification is the Winlogon process. .

Once the Winlogon desktop is created during initialization, it becomes the
active desktop. When the Wmlogon desktop is active, itisalwayslocked. Wmlogon
unlocks its desktop only to switch to the application desktop or the screen saver
desktop. (Only the Winlogon process can lock or unlock a desktop.)

User Logon Steps
Logon begins when a user presses the SAS (Ctrl+A1t+Delete). After the SAS is
pressed, Winlogon calls the GINA to obtain a username and password. Winlogon
also creates a unique local group for this user that it assigns to this instance of

523

INSIDE MICROSOFT WINDOWS 2000

524

the desktop (keyboard, screen, and mouse). Winlogon passes this group to Lsass
as part of the LsaLogon User call. If the user is successfully logged on, this group
will be included in the logon process token-a step that protects access to the
desktop. For example, another user logging on to the same account but on a
different system will be unable to write to the first user's desktop because this
second user won't be in the first user's group.

When the username and password have been entered, Winlogon calls each
of the registered authentication packages in turn. Authentication packages are
listed in the registry under HKLM\SYSTEM\CurrentControISet\Control\Lsa.
Winlogon retrieves a handle to a package by calling the Lsass function LsaLookup
AuthenticationPackage. Winlogon passes package logon information via LsaLogon
User. Once a package authenticates a user, Winlogon continues the logon process
for that user. If none of the authentication packages indicates a successful logon,
the logon process is aborted.

Windows 2000 uses two standard authentication packages: Kerberos and
MSVl_O. The default authentication package on a stand-alone Windows 2000
system is MSVl_O (\Winnt\System32\Msvl_0.dll), an authentication package
that implements LAN Manager 2 protocol. Lsass also uses MSVl_O on domain
member computers to authenticate pre-Windows 2000 domains and computers
that can't locate a domain controller for authentication. (Laptop computers that
are disconnected from the network fall into this latter category.) The Kerberos
authentication package, \Winnt\System32\Kerberos.dll, is used on computers
that are members of Windows 2000 domains. The Windows 2000 Kerberos
package, with the cooperation of Kerberos services running on a domain con
troller, supports version 5, revision 6, of the Kerberos protocol. This protocol
is based on Internet RFC 1510. (Visit the Internet Engineering Task Force [IETF]
Web site, www.ietf01:!J, for detailed information on the Kerberos standard.)

The MSVLO authentication package takes the username and a hashed
version of the password and sends a request to the local SAM to retrieve the
account information, which includes the password, the groups to which the user
belongs, and any account restrictions. MSVl_O first checks the account restric
tions, such as hours or type of accesses allowed. If the user can't log on because
of the restrictions in the SAM database, the logon call fails and MSVl_O returns
a failure status to the LSA.

MSVl_O then compares the hashed password and username to that stored
by the SAM. In the case of a cached domain logon, MSVl_O accesses the cached
information by using Lsass functions that store and retrieve "secrets" from the
LSA database (the SECURITY hive of the registry). If the information matches,
MSVl_O generates an LUID for the logon session and creates the logon session

E I G H T: Security

by calling Lsass, associating this unique identifier with the session and passing
the information needed to ultimately create an access token for the user. (Recall
that an access token includes the user's SID; group SIDs; and user profile infor
mation, such as home directory.)

If MSVl_O needs to authenticate using a remote system, as when a user
logs on to a trusted pre-Windows 2000 domain, MSVl_O uses the Net Logon
service to communicate with an instance of Netlogon on the remote system.
Netlogon on the remote system interacts with the MSVl_O authentication
package on that system, passing back authentication results to the system on
which the logon is being performed.

The basic control flow for Kerberos authentication is the same as the flow
for MSVl_O. However, in most cases, domain logons are performed from
member workstations or servers (rather than on a domain controller), so the
authentication package must communicate across the network as part of the
authentication process. The package does so by communicating via the Kerberos
TCP JIP port (port 88) with the Kerberos service on a domain controller. The
Kerberos service (\Winnt\System32\Kdcsvc.dll), which implements the Kerberos
authentication protocol, runs in the Lsass process on domain controllers.

After validating hashed username and password information with Active
Directory's user account objects (using the Active Directory server - \Winnt\
System32\Ntdsa.dll), Kdcsvc returns domain credentials to Lsass, which returns
the result of the authentication and ¢.e user's domain logon credentials (if the
logon was successful) across the network to the system where the logon is tak
ing place.

NOT E This description of Kerb eros authentication is highly simpli
fied' but it highlights the roles of the various components involved.
Although the Kerberos authentication protocol plays a key role in
distributed domain security in Windows 2000, its details are outside
the scope of this book.

After a logon has been authenticated, Lsass looks in the local policy data
base for the user's allowed access-interactive, network, or service process. If
the requested logon doesn't match the allowed access, the logon attempt will
be terminated. Lsass deletes the newly created logon session by cleaning up any
of its data structures and thenreturns failure to Winlogon, which in turn displays
an appropriate message to the user. If the requested access is allowed, Lsass adds
any additional security IDs (such as Everyone, Interactive, and the like). It then
checks its policy database for any granted privileges for all the IDs for this user
and adds these privileges to the user's access token.

525

INSIDE MICROSOFT WINDOWS 2000

When Lsass has accumulated all the necessary information, it calls the
executive to create the access token. The executive creates a primary access token
for an interactive or a service logon and an impersonation token for a network
logon. After the access token is successfully created, Lsass duplicates the token,
creating a handle that can be passed to Winlogon, and closes its own handle. If
necessary, the logon operation is audited. At this point, Lsass returns success
to Winlogon along with a handle to the access token, the LUID for the logon
session, and the profile information, if any, that the authentication package
returned.

Winlogon then looks in the registry at the value HKLM\SOFTWARE\
Microsoft\Windows N1\Current Version\Winlogon\Userinit and creates a pro
cess to run whatever the value of that string is. (This value can be several .exes
separated by commas.) The default value is Userinit.exe, which loads the user
profile and then creates a process to run whatever the value is of HKLM\
SOFTWARE\Microsoft\Windows N1\Current Version\Winlogon\Shell, which
defaults to Explorer.exe. Userinit then exits (which is why Explorer.exe shows
up as having no parent when examined with commands such as tlist It).

Conclusion

526

Wmdows 2000 provides an extensive array of security functions that meet the
key requirements of both government agencies and commercial installations. In
this chapter, we've taken a brief tour of the internal components that are the
basis of these security features.

In the next chapter, we'll look at the last major executive component
considered in this book: the I/O system.

C HAP T E R N N E

I/O System

The Microsoft Windows 2000 I/O system consists of several executive com
ponents that together manage hardware devices and provide interfaces to hard
ware devices for applications and the system. In this chapter, we'll first list the
design goals of the I/O system, which have influenced its implementation. We'll
then cover the components that malce up the I/O system, including the I/O
manager, Plug and Play (PnP) manager, and power manager. Then we'll examine
the structure and components of the I/O system and the various types of device
drivers. We'll look at the key data structures that describe devices, device driv
ers, and I/O requests, after which we'll describe the way device detection and
driver installation works. Finally, we'll go over the steps necessary to complete
I/O requests as they move through the system.

DeSign Goals
The design goals for the Windows 2000 I/O system include the following:

II Make I/O processing fast on both single and multiprocessor systems.

II Protect shareable resources by using the standard Windows 2000
security mechanisms (described in Chapter 8).

II Meet the requirements for I/O services dictated by the Microsoft
Win32, OS/2, and POSIX subsystems.

II Provide services to make device driver development as easy as
possible and allow drivers to be written in a high-level language.

II Allow device drivers to be added or removed from the system dynami
cally, based on user direction or automatic configuration as the result
of the addition or removal of a hardware device from the system.

527

INSIDE MICROSOFT WINDOWS 2000

• Allow for the addition of drivers that transparently modify the
behavior of other drivers or devices, without requiring any changes
to the driver whose behavior or device is modified.

• Provide support for multiple installable file systems, including FAT,
the CD-ROM file system (CDFS), the Universal Disk Format (UDF)
file system, and the Windows 2000 file system (NTFS). (See Chapter
12 for more specific information on file system types and architecture.)

• Allow the system and individual hardware devices to enter and leave
low-power states to prolong battery life and conserve energy.

In subsequent sections, we'll look at how the I/O system components are
implemented to meet these goals.

1/0 System Components

528

The Windows 2000 I/O system consists of several executive components as well
as device drivers, which are shown in Figure 9-1.

• The I/O manager connects applications and system components to
virtual, logical, and physical devices, and defines the infrastructure
that supports device drivers.

• A device driver typically provides an I/O interface for a particular
type of device. Device drivers receive commands routed to them
by the I/O manager that are directed at devices they manage, and
they inform the I/O manager when those commands complete.
Device drivers often use the I/O manager to forward I/O com
mands to other device drivers that share in the implementation of a
device's interface or control.

• The PnP manager works closely with the I/O manager and a type of
device driver called a bus driver to guide the allocation of hardware
resources as well as to detect and respond to the arrival and removal
of hardware devices. The PnP manager and bus drivers are respon
sible for loading a device's driver when the device is detected. When
a device is added to a system that doesn't have an appropriate device
driver, the executive Plug and Play component calls on the device
installation services of a user-mode PnP manager.

N I N E: 1/0 System

WMI
service

Applications Win32
services

User-mode
PnP

I/O system r -,---->._-_--_-_--_-,--, -,--_-_--_--'-_-_--_--,------

Drivers

WDMWMI
routines

PnP
manager

Setup
components

Kernel mode

... OM _,

Power 1/0
manager manager

i

11 II I mm.mmm.m mmJ .. __ m_mm_mmmm .. _.

Figure 9-1
I/O system components

III The power manager also works closely with the I/O manager to guide
the system, as well as individual device drivers, through power-state
transitions.

III Windows Management Instrumentation (WMI) support routines,
called the Windows Driver Model (WDM) WMI provider, allow
device drivers to indirectly act as providers, using the WDM WMI
provider as an intermediary to communicate with the WMI service
in user mode. (For more information on WMI, see the section
"Windows Management Instrumentation" on page 265 in Chapter 5.)

529

INSIDE MICROSOFT WINDOWS 2000

530

III The registry serves as a database that stores a description of basic
hardware devices attached to the system as well as driver initializa
tion and configuration settings.

III INF files, which are designated by the .inf extension, are driver instal
lation files. INF files are the link between a particular hardware device
and the driver that assumes primary control of the device. They are
made up of scriptlike instructions describing the device they corre
spond to, the source and target locations of driver files, required
driver-installation registry modifications, and driver dependency infor
mation. Digital signatures that Windows 2000 uses to verifY that a
driver file has passed testing by the Microsoft Windows Hardware
Quality Lab (WHQL) are stored in .cat files.

III The hardware abstraction layer (HAL) insulates drivers from the
specifics of the processor and interrupt controller by providing APls
that hide differences between platforms. In essence, the HAL is the
bus driver for all the devices on the computer's motherboard that
aren't controlled by other drivers.

Most I/O operations don't involve all the components just described. A
typical I/O request starts with an application executing an I/O-related func
tion (for example, reading data from a device) that is processed by the I/O
manager, one or more device drivers, and the HAL.

In Windows 2000, threads perform I/O on virtual files. The operating
system abstracts all I/O requests as operations on a virtual file, hiding the fact
that the target of an I/O operation might not be a file-structured device. This
abstraction generalizes an application's interface to devices. A virtual file refers
to any source or destination for I/O that is treated as if it were a file (such as
files, directories, pipes, and mailslots). All data that is read or written is regarded
as a simple stream of bytes directed to these virtual files. User-mode applications
(whether Win32, POSIX, or OS/2) call documented functions, which in turn
call internal I/O system functions to read from a file, write to a file, and per
form other operations. The I/O manager dynamically directs these virtual file
requests to the appropriate device driver. Figure 9-2 illustrates the basic struc
ture of a typical I/O request flow.

N I N E: 1/0 System

1/0 ports and registers

Figure 9-2
The flow of a typical I/O request

In the following sections, we'll be looking at these components more
closely, examining the I/O manager in more detail, covering the various types
of device drivers and the key I/O system data structures. Then we'll cover the
operation and roles of the PnP manager and the power manager.

The 1/0 Manager
The I/O manager defines the orderly framework, or model, within which I/O
requests are delivered to device drivers. The I/O system is packet driven. Most
I/O requests are represented by an I/O request packet (IRP), which travels from
one I/O system component to another. (As you'll discover on page 588, fast
I/O is the exception; it doesn't use IRPs.) The design allows an individual
application thread to manage multiple I/O requests concurrently. An IRP is a

531

INSIDE MICROSOFT WINDOWS 2000

data structure that contains information completely describing an I/O request.
(You'll find more information about IRPs in the section "I/O Request Packets"
on page 562.)

The I/O manager creates an IRP that represents an I/O operation, pass
ing a pointer to the IRP to the correct driver and disposing of the packet when
the I/O operation is complete. In contrast, a driver receives an IRP, performs the
operation the IRP specifies, and passes the IRP back to the I/O manager, either
for completion or to be passed on to another driver for further processing.

In addition to creating and disposing ofIRPs, the I/O manager supplies
code that is common to different drivers and that the drivers call to carry out
their I/O processing. By consolidating common tasks in the I/O manager,
individual drivers become simpler and more compact. For example, the I/O
manager provides a function that allows one driver to call other drivers. It also
manages buffers for I/O requests, provides timeout support for drivers, and
records which installable file systems are loaded into the operating system. There
are close to a hundred different routines in the I/O manager that can be called
by device drivers.

The I/O manager also provides flexible I/O services that allow environment
subsystems, such as Win32 and POSIX, to implement their respective I/O func
tions. These services include sophisticated services for asynchronous I/O that
allow developers to build scalable high-performance server applications.

The uniform, modular interface that drivers present allows the I/O man
ager to call any driver without requiring any special knowledge of its structure
or internal details. As we stated earlier, the operating system treats all I/O requests
as if they were directed at a file; the driver converts the requests from requests
made to a virtual file to hardware-specific requests. Drivers can also call each
other (using the I/O manager) to achieve layered, independent processing of
an I/O request.

Besides the normal open, close, read, and write functions, the Wmdows 2000
I/O system provides several advanced features, such as asynchronous, direct,
buffered, and scatter/gather I/O, which are described in the "Types ofI/O"
section later in this chapter.

Device Drivers

532

To integrate with the I/O manager and other I/O system components, a
device driver must conform to implementation guidelines specific to the type
of device it manages and the role it plays in managing the device. In this sec-

N I N E: 1/0 System

tion, we'll look at the types of device drivers Windows 2000 supports as well
as the internal structure of a device driver.

Types of Device Drivers
Windows 2000 supports a wide range of different device driver types and pro
gramming environments. Even within a type of device driver, programming
environments can differ, depending on the specific type of device for which a
driver is intended. In this chapter, the focus is on kernel-mode device drivers.
There are many different types of kernel-mode drivers, which can be divided into
the following broad categories:

III File system drivers accept I/O requests to files and satisfy the requests
by issuing their own, more explicit requests to mass storage or net
work device drivers.

III Windows 2000 drivers are device drivers that integrate with the
Windows 2000 power manager and PnP manager, when required.
They include drivers for mass storage devices, protocol stacks, and
network adapters.

III Legacy drivers are device drivers written for Microsoft Windows NT
but that run unchanged on Windows 2000. They are differentiated
from other Windows 2000 drivers in that they don't support power
management or work with the Windows 2000 PnP manager. If the
driver controls a hardware device, that driver might limit the power
management and Plug and Play capabilities of the system.

III Wm32 subsystem display drivers translate device-independent graphics
requests into device-specific requests. The device-specific requests
are then paired with a kernel-mode video miniport driver to complete
video display support. A display driver is responsible for implementing
drawing operations, either by writing direcdy to the frame buffer or by
communicating with the graphics accelerator chip on the controller.
The miniport driver is responsible for global changes to the state of
the display controller, such as mode setting (screen resolution, refresh
rate, pixel depth, and so on) as well as cursor (pointer) positioning
and loading the color lookup table.

533

INSIDE MICROSOFT WINDOWS 2000

534

• WDM drivers are device drivers that adhere to the Windows Driver
Model (WDM). WDM includes support for Windows 2000 power
management, Plug and Play, and WMI. WDM is implemented on
Windows 2000, Windows 98, and Windows Millennium Edition, so
WDM drivers are source-compatible between these operating sys
tems and in many cases are also binary compatible. There are three
types ofWDM drivers:

o Bus drivers manage a logical or physical bus. Example buses include
PCMCIA, PCI, USB, IEEE 1394, and ISA. A bus driver is respon
sible for detecting and informing the PnP manager of devices
attached to the bus it controls as well as managing the power set
ting of the bus.

o Function drivers manage a particular type of device. Bus drivers
present devices to function drivers via the PnP manager. The func
tion driver is the driver that exports the operational interface of
the device to the operating system. In general, it's the driver with
the most knowledge about the operation of the device.

o Filter drivers logically layer above or below function drivers, aug
menting or changing the behavior of a device or another driver.
For example, a keyboard capture utility could be implemented
with a keyboard filter driver that layers above the keyboard func
tion driver.

In WDM, no one driver is responsible for controlling all aspects
of a particular device. The bus driver is responsible for detecting bus
membership changes (device addition or removal), assisting the PnP
manager in enumerating the devices on the bus, accessing bus-specific
configuration registers, and in some cases, controlling power to de
vices on the bus. The function driver is generally the only driver that
accesses the device's hardware.

N OT E The role of the HAL in Windows 2000 differs from the role
it had in Windows NT. Prior to Windows 2000, third-party hardware
vendors that wanted to add support for hardware buses not natively
supported had to implement a custom HAL. Windows 2000 allows
third parties to implement a bus driver to provide support for hard
ware buses not natively supported.

In addition to the above device driver types, Windows 2000 also supports
several types of user-mode drivers:

N I N E: 1/0 System

• Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS
applications. They trap what an MS-DOS application thinks are refer
ences to I/O ports and translates them into native Win32 I/O func
tions, which are then passed to the actual device driver. Because
Windows 2000 is a fully protected operating system, user-mode
MS-DOS applications can't access hardware directly and thus must
go through a real kernel-mode device driver.

• Win32 subsystem printer drivers translate device-independent graphics
requests to printer-specific commands. These commands are then
typically forwarded to a kernel-mode port driver such as the parallel
port driver (Parport.sys) or the universal serial bus (USB) printer port
driver (U sbprint.sys).

Support for an individual piece of hardware is often divided among sev
eral drivers, each providing a part of the functionality required to make the device
work properly. In addition to WDM bus drivers, function drivers, and filter
drivers, hardware support might be split between the following components:

• Class drivers implement the I/O processing for a particular class of
devices, such as disk, tape, or CD-ROM.

• Port drivers implement the processing of an I/O request specific to a
type ofI/O port, such as SCSI, and are also implemented as kernel
mode libraries of functions rather than actual device drivers.

III Miniport drivers map a generic I/O request to a type or port into an
adapter type, such as a specific SCSI adapter. Miniport drivers are ac
tual device drivers that import the functions supplied by a port driver.

An example will help demonstrate how these device drivers work. A file
system driver accepts a request to write data to a certain location within a particu
lar file. It translates the request into a request to write a certain number of bytes
to the disk at a particular "logical" location. It then passes this request (via the
I/O manager) to a simple disk driver. The disk driver, in turn, translates the
request into a physical location (cylinder Itra~k/ sector) on the disk and manipu-
1ates the disk heads to write the data. This layering is illustrated in Figure 9-3.

This figure illustrates the divisionoflabor between two layered drivers. The
I/O manager receives a write request that is relative to the beginning ofa par
ticular file. The I/O manager passes the request to the file system driver, which
translates the write operation from a file-relative operation to a startingloca
tion (a sector boundary on the disk) and a number of bytes to read. The file
system driver calls the I/O manager to pass the request to the disk driver, which
translates the request to a physical disk location and transfers the data.

535

INSIDE MICROSOFT WINDOWS 2000

536

CD NtWriteFile(file_handle, chacbuffer)

File system
driver

System services

® Write data at specified
byte offset within a file

-'-.
~

I/O
manager

" ,
I

• ,
® Translate file-relative byte

offset into a disk-relative
byte offset and call next
driver (via 1/0 manager)

~

r---------,. ""-_---------1 .. ~ #

DIsk driver

Figure 9·3

@ Call driver to write data
at disk-relative byte offset

® Translate disk-relative byte
offset into physical location
and transfer data

Layering of a file system driver and a disk driver

User mode

Kernel mode

Because all drivers-both device drivers and file system drivers-present
the same framework to the operating system, another driver can easily be inserted
into the hierarchy without altering the existing drivers or the I/O system. For
example, several disks can be made to seem like a very large single disk by add
ing a driver. Such a driver exists in Windows 2000 to provide fault tolerant disk
support. (Whereas the driver is present on all versions of Windows 2000, fault
tolerant disk support is available only on Windows 2000 Server versions.) This
logical, volume manager driver is located between the file system and the disk
drivers, as shown in Figure 9-4.

N I N E: I/O System

User mode

CD NtWriteFile(file_handle, char_buffer)
Kernel mode

System services

® Write data at specified
byte offset within a file 110

manager
File system

driver
~

® Translate file-relative byte
~

\

offset into a disk-relative \

byte offset and call next
,

driver (via I/O manager) • • @ Call next driver to write ,
data at disk-relative byte

, ,
offset #

Volume

manager disk
driver ~

® Translate disk-relative
\
~

byte offset into disk ,
number and offset, and •
call next driver (via I/O

, ,
manager) ,

® Call next driver to write
data to disk 3at disk-
relative byte offset

2 3

Figure 9-4
Adding a layered driver

537

INSIDE MICROSOFT WINDOWS 2000

acpi
~cpiec ACPlEC
adpullnn _160m Kernel Drivel
.~ AFD Netl"lOlking Support E ... Kernel Driver
ehel~ Aho!l154K Kernel Driver
aie11&! aiell&.! Kernel Driwlr
eic78u2 "'78J2 Kernel Driver
aic7810c ",7Qoo KelnslDriver
amru <ril1t Kernel Driver
amlin! om ... KemelDriveJ'
.so .. 0 KemeiDriver
,""""p asc3350p KernelD,iver
.0c3550 asc3550 KemetDrivel
ae}'ncrnac RAS Asynchrooou; Media ... Kernel Driver
at.!pi S~d IDE/ESDI Hoard ... KernelD,ivel
atdisk Atdok

538

N I N E: lID System

Structure of a Driver
The I/O system drives the execution of device drivers. Device drivers consist of
a set of routines that are called to process the various stages of an I/O request.
Figure 9-5 illustrates the key driver-function routines, which are described on the
following page.

Add-device
routine

Initialization
routine

Figure 9-5
Primary device driver routines

Interrupt
service routine

ope routine

539

INSIDE MICROSOFT WINDOWS 2000

540

Ii An initialization routine The I/O manager executes a driver's ini
tialization routine, which is typically named DriverEntry, when it loads
the driver into the operating system. The routine fills in system data
structures to register the rest of the driver's routines with the I/O
manager and performs any global driver initialization that's necessary.

Ii An add-device routine A driver that supports Plug and Play imple
ments an add-device routine. The PnP manager sends a driver noti
fication via this routine whenever a device for which the driver is
responsible is detected. In this routine, a driver typically allocates a
device object (described later in this chapter) to represent the device.

Ii A set of dispatch routines Dispatch routines are the main functions
that a device driver provides. Some examples are open, close, read,
and write and any other capabilities the device, file system, or net
work supports. When called on to perform an I/O operation, the
I/O manager generates an IRP and calls a driver through one of
the driver's dispatch routines.

Ii A start 1/0 routine The driver can use a start I/O routine to initiate
a data transfer to or from a device. This routine is defined only in
drivers that rely on the I/O manager for IRP serialization. The I/O
manager serializes IRPs for a driver by ensuring that the driver pro
cesses only one IRP at a time. Most drivers process multiple IRPs
concurrently, but serialization makes sense for some drivers, such as
a keyboard driver.

Ii An interrupt service routine (ISR) When a device interrupts, the
kernel's interrupt dispatcher transfers control to this routine. In the
Windows 2000 I/O model, ISRs run at device interrupt request
level (DIRQL), so they perform as little work as possible to avoid
blocking lower-level interrupts unnecessarily. (See Chapter 3 for
more information on IRQLs.) An ISR queues a deferred procedure
call (DPC), which runs at a lower IRQL (DPC/dispatch level), to
execute the remainder of interrupt processing. (Only drivers for
interrupt-driven devices have ISRs; a file system driver, for example,
doesn't have one.)

Ii An interrupt-servicing ope routine A DPC routine performs most
of the work involved in handling a device interrupt after the ISR
executes. The DPC routine executes at a lower IRQL (DPC/dispatch
level) than that of the ISR, which runs at device level, to avoid block
ing other interrupts unnecessarily. A DPC routine initiates I/O
completion and starts the next queued I/O operation on a device.

N I N E: I/O System

Although the following routines aren't shown in Figure 9-5, they're found
in many types of device drivers:

II One or more 1/0 completion routines A layered driver might have
I/O completion routines that will notifY it when a lower-level driver
finishes processing an IRP. For example, the I/O manager calls a file
system driver's I/O completion routine after a device driver finishes
transferring data to or from a file. The completion routine notifies the
file system driver about the operation's success, failure, or cancellation,
and it allows the file system driver to perform cleanup operations.

II A cancel 1/0 routine If an I/O operation can be canceled, a driver
can define one or more cancel I/O routines. When the driver receives
an IRP for an I/O request that can be canceled, it assigns a cancel
routine to the IRP. If a thread that issues an I/O request exits before
the request is completed or cancels the operation (with the GaneelIo
Win32 function, for example), the I/O manager executes the IRP's
cancel routine if one is assigned to it. A cancel routine is responsible
for performing whatever steps are necessary to release any resources
acquired during the processing that has already taken place for the
IRP as well as completing the IRP with a canceled status.

II An unload routine An unload routine releases any system resources
a driver is using so that the I/O manager can remove them from
memory. Any resources acquired in the initialization routine are
usually released in the unload routine. A driver can be loaded and
unloaded while the system is running.

II A system shutdown notification routine This routine allows driver
cleanup on system shutdown.

II Error-logging routines When unexpected errors occur (for example,
when a disk block goes bad), a driver's error-logging routines note
the occurrence ,and notifY the I/O manager. The I/O manager writes
this information to an error log file.

The Plug and Play (PnP) Manager
The PnP manager is the primary component involved in supporting the ability
of Windows 2000 to recognize and adapt to changing hardware configurations.
A user doesn't need to understand the intricacies of hardware or manual con
figuration in order to install and remove devices. For example, it's the PnP

541

INSIDE MICROSOFT WINDOWS 2000

542

manager that enables a running Windows 2000 laptop that is placed on a docking
station to automatically detect additional devices located in the docking station
and make them available to the user.

Plug and Play support requires cooperation at the hardware, device driver,
and operating system levels. Industry standards for the enumeration and iden
tification of devices attached to buses are the foundation of Windows 2000 Plug
and Play support. For example, the USB standard defines the way that devices on
a USB bus identifY themselves. With this foundation in place, Windows 2000 Plug
and Play support provides the following capabilities:

Ii The PnP manager automatically recognizes installed devices, a process
that includes enumerating devices attached to the system during a
boot and detecting the addition and removal of devices as the system
executes.

Ii Hardware resource allocation is a role the PnP manager fills by gath
ering the hardware resource requirements (interrupts, I/O memory,
I/O registers, or bus-specific resources) of the devices attached to a
system and, in a process called resource arbitration) optimally assign
ing resources so that each device meets the requirements necessary
for its operation. Because hardware devices can be added to the system
after boot-time resource assignment, the PnP manager must also be
able to reassign resources to accommodate the needs of dynamically
added devices.

Ii Loading appropriate drivers is another responsibility of the PnP
manager. The PnP manager determines, based on the identification
of a device, whether a driver capable of managing the device is
installed on the system, and if one is, instructs the I/O manager to
load it. If a suitable driver isn't installed, the kernel-mode PnP man
ager communicates with the user-mode PnP manager to install the
device, possibly requesting the user's assistance in locating a suit
able set of drivers.

Ii The PnP manager also implements application and driver mecha
nisms for the detection of hardware configuration changes. Appli
cations or drivers sometimes require a specific hardware device to
function, so Windows 2000 includes a means for them to request
notification of the presence, addition, or removal of devices.

N I N E: lID System

Level of Plug and Play Support
Windows 2000 aims to provide full support for Plug and Play, but the level of
support possible depends on the attached devices and installed drivers. If a single
device or driver doesn't support Plug and Play, the extent of Plug and Play
support for the system can be compromised. In addition, a driver that doesn't
support Plug and Play might prevent other devices from being usable by the
system. Table 9-1 shows the outcome of various combinations of devices and
drivers that can and can't support Plug and Play.

Table 9-1 Device and Driver Plug and Play Capability

Type of Device

Plug and Play

Non-Plug and Play

Type of Driver

Plug and Play

Full Plug and Play

Possible partial Plug
and Play

Non-Plug and Play

No Plug and Play

No Plug and Play

A device that isn't Plug and Play compatible is one that doesn't support
automatic dc;:tection, such as a legacy ISA sound card. Because the operating
system doesn't know where the hardware physically lies, certain operations, such
as laptop undocking, sleep, and hibernation, are disallowed. However, if a Plug
and Play driver is manually installed for the device, the driver can at least imple
ment PnP manager-directed resource assignment for the device.

Drivers that aren't Plug and Play compatible include legacy drivers, such
as those that ran on Windows NT 4. Although these drivers continue to function
on Windows 2000, the PnP manager can't reconfigure the resources assigned
to such devices in the event that resource reallQcation is necessary to accommo
date the needs of a dynarnicallyadded device. For example, a device might be
able to use I/O memory ranges A and B, and during the boot thePnP man
ager assigns it raiIge A. If a device that can. use only A is attached to.the system
later, the PnP manager. can't direct the first device's driver to reconfigure itself
to use range B.. This prevents the second device from obtaining required resources,
which results in the device being unavailable for use by the system. Legacy drivers
also impair a machine's ability to sleep or hibernate. (See the section "The Power
Manager" on page 546 for more details.)

543

INSIDE MICROSOFT WINDOWS 2000

544

Driver Support for Plug and Play
To support Plug and Play, a driver must implement a Plug and Play dispatch
routine as well as an add-device routine. Bus drivers must support different types
of Plug and Play requests than function or filter drivers do, however. For example,
when the PnP manager is guiding device enumeration during the system boot
(described in detail later in this chapter), it asks bus drivers for a description
of the devices that they find on their respective buses. The description includes
data that uniquely identifies each device as well as the resource requirements
of the devices. The PnP manager takes this information and loads any func
tion or filter drivers that have been installed for the detected devices. It then
calls the add-device routine of each driver for every installed device the drivers
are responsible for.

Function and filter drivers prepare to begin managing their devices in their
add-device routines, but they don't actually communicate with the device hard
ware. Instead, they wait for the PnP manager to send a start-device command
for the device to their Plug and Play dispatch routine. The start-device com
mand includes the resource assignment that the PnP manager determined
during resource arbitration. When a driver receives a start-device command, it
can configure its device to use the specified resources.

After a device has started, the PnP manager can send the driver additional
Plug and Play commands, including ones related to a device's removal from the
system or to resource reassignment. For example, when the user invokes the
remove/eject device utility, shown in Figure 9-6 (accessible by right-clicking
on the PC card icon in the taskbar and selecting Unplug Or Eject Hardware),
to tell Windows 2000 to eject a PCMCIA card, the PnP manager sends a query
remove notification to any applications that have registered for Plug and Play
notifications for the device. Applications typically register for notification on their
handles, which they close during a query-remove notification. If no applications
veto the query-remove request, the PnP manager sends a query-remove com
mand to the driver that owns the device being ejected. At that point, the driver
has a chance to deny the removal or to ensure that any pending I/O operations
involving the device have completed and to begin rejecting further I/O requests
aimed at the device. If the driver agrees to the remove request and no open
handles to the device remain, the PnP manager next sends a remove command
to the driver to request that the driver discontinue accessing the device and
release any resources the driver has allocated on behalf of the device.

N I N E: I/O System

Figure 9-6
PC card remove/eject utility

When the PnP manager needs to reassign a device's resources, itftrst asks
the driver whether it can temporarily suspend further activity on the device by
sending the driver a query-stop command. The driver either agrees to the request,
if doing so wouldn't cause data loss or corruption, or.denies the request. As with
a query-remove command, if the driver agrees to the request, the driver com
pletes pending I/O operations and won't initiate further I/O requests for the
device that can't be aborted and subsequently restarted. The driver typically
queues new I/O requests so that the resource reshuffling is transparent to
applications currently accessing the device. The PnP manager then .sendsthe
drjver a stop command. At that point, the PnPmanager can direct the driver to
assign different resources to the device and once again send the driver a start
device command for the device.

The various Plug and Play commands essentially guide a device through
an assortment of operational states, forming a well-deftned state-transition table,
which is shown in simplifted form in Figure 9-7. (Several possible transitions and
Plug and Play commands have been omitted for clarity. Also, the state diagram
depicted is. that implemented by function drivers. Bus drivers implement a more
complex state diagram.) A state shown in the ftgure that we haven't discussed
is the one that results from the PnP manager's surprise-remove command. This

545

INSIDE MICROSOFT WINDOWS 2000

start-device
command

Figure 9-7

start-device
command

query-stop
command

stop
command

query-remove
command

surprise-remove
command

Device Plug and Play state transitions

remove
command

remove
command

command results when either a user removes a device without warning, as when
the user ejects a PCMCIA card without using the remove/eject utility, or the
device fails. The surprise-remove command tells the driver to immediately cease
all interaction with the device because the device is no longer attached to the
system and to cancel any pending I/O requests.

The Power Manager

546

Just as Windows 2000 Plug and Play features require support from a system's
hardware, its power-management capabilities require hardware that complies
with the Advanced Configuration and Power Interface (ACPI) specification
(available at www.teleport.coml-acpilspec.htm). As a result of this requirement,
the computer's BIOS (Basic Input Output System), the code that runs when
the computer turns on, must also conform to the ACPI standard. Most x86
computers manufactured since the end of 1998 are ACPI compliant.

N I N E: I/O System

NOT E Some computers, especially ones more than few years old,
don't comply with the ACPI standard. Instead, they often conform to
the older Advanced Power Management (APM) standard, which man
dates fewer power-management capabilities than ACPI. Wmdows 2000
provides limited power management for APM systems, but we won't
go into the details of that topic here. In this book, we focus on the
behavior of Windows 2000 on ACPI computers.

The ACPI standard defines various power levels for a system and for de
vices. The six system power states are described in Table 9-2. They are referred
to as SO (fully on or working) through S5 (fully off>. Each state has the follow
ing characteristics:

State

SO (fully on)

Sl (sleeping)

S2 (sleeping)

S3 (sleeping)

II Power consumption The amount of power the computer consumes

II Software resumption The software state from which the computer
resumes when moving to a "more on" state

II Hardware latency The length of time it takes to return the
computer to the fully on state

Table 9-2 System Power-State Definitions

Power
Consumption

Maximum

Less than SO,
more than S2

Less than S 1,
more than S3

Le&S than S2;
processor is off

Software
Resumption

Not. applicable

System resumes where
it left off (returns to SO)

System resumes where
it left off (returns to SO)

System resumes whe/:'e
it left off (returns to SO)

Hardware
Latency

None

Less than
2 seconds

2 or more
seconds
Same as S2

S4 (hibernating) Trickle current System restarts from Long and
undefined to power button

and wake
circuitry

S5 (fully off) Trickle current
to power button

saved hibernate file and
resumes where it left off
prior to hibernation
(returns to SO)

System boot Long and
undefined

547

INSIDE MICROSOFT WINDOWS 2000

548

States Sl through S4 are sleeping states, in which the computer appears
to be off because of reduced power consumption. However, the computer retains
enough information, either in memory or on disk, to move to SO. For states Sl
through S3, enough power is required to preserve the contents of the computer's
memory so that when the transition is made to SO (when the user or a device
wakes up the computer), the power manager continues executing where it left
offbefore the suspend. When the system moves to S4, the power manager saves
the compressed contents of memory to a hibernation file named Hiberfile.sys,
which is large enough to hold the uncompressed contents of memory, in the
root directory of the boot volume. (Compression is used to minimize disk I/O
and to improve hibernation and resume-from-hibernation performance.) After
it finishes saving memory, the power manager shuts off the computer. When a user
subsequently turns on the computer, a normal boot process occurs except that
Ntldr checks for and detects a valid memory image stored in the hibernation
file. If the hibernation file contains saved system state, Ntldr reads the contents
of the file into memory, and then resumes execution at the point in memory
that is recorded in the hibernation file.

The computer never directly transitions between states Sl and S4; instead,
it must move to state SO first. As illustrated in Figure 9-8, when the system is
moving from any of states Sl through S5 to state SO, it's said to be waking, and
when it's transitioning from state SO to any of states Sl through S5, it's said to
be sleeping.

Sleeping

Waking

Figure 9~8
System power-state transitions

N I N E: 1/0 System

Although the system can be in one of six power states, ACPI defines devices
as being in one offour power states, DO through D3. State DO is fully on, and
state D3 is fully of! The ACPI standard leaves it to individual drivers and de
vices to define the meanings of states D1 and D2, except that state D1 must
consume an amount of power less than or equal to that consumed in state DO,
and when the device is in state D2, it must consume power less than or equal
to that consumed in D 1. Microsoft, in conjunction with the major hardware
OEMs, has defined a series of power management reference specifications
(available on Microsoft's Web site at www.microsoft.comlhwdevlspecslpmrej) that
specify the device power states that are required for all devices in a particular
class (for the major device classes: display, network, SCSI, and so on). For some
devices, there's no intermediate power state between fully on and fully off, which
results in these states being undefined.

Power Manager Operation
Power management policy in Windows 2000 is split between the power man
ager and the individual device drivers. The power manager is the owner of the
system power policy. This ownership means that the power manager decides
which system power state is appropriate at any given point, and when a sleep,
hibernation, or shutdown is required, the power manager instructs the power
capable devices in the system to perform appropriate system power-state tran
sitions. The power manager decides when a system power-state transition is
necessary by considering a number of factors:

III System activity level

III System battery level

III Shutdown, hibernate, or sleep requests from applications

III User actions, such as pressing the power button

III Control Panel power settings

When the PnP manager performs device enumeration, part of the infor
mation it receives about a device is its power-management capabilities. A driver
reports whether or not its devices support device states D 1 and D2 and,· option
ally, the latencies, or times required, to move from states D1 through D3 to DO.
To help the power manager determine when to make system power-state tran
sitions, bus drivers also return a table that implements a mapping between each
of the system power states (SO through S5) and the device power states that a
device supports. The table lists the lowest possible device power state for each
system state and directly reflects the state of vahous power planes when the

549

INSIDE MICROSOFT WINDOWS 2000

550

machine sleeps or hibernates. For example, a bus that supports all four device
power states might return the mapping table shown in Table 9-3. Most device
drivers turn their devices completely off (D3) when leaving SO to minimize
power consumption when the machine isn't in use. Some devices, however, such
as network adapter cards, support the ability to wake up the system from a sleep
ing state. This ability, along with the lowest device power state in which the
capability is present, is also reported during device enumeration.

Table 9-3 Example System-to-Device Power Mappings

System Power State

SO (fully on)

SI (sleeping)

S2 (sleeping)

S3 (sleeping)

S4 (hibernating)

S5 (fully off)

Driver Power Operation

Device Power State

DO (fully on)

D2

D2

D2

D3 (fully off)

D3 (fully off)

When the power manager decides to make a transition between system power
states, it sends power commands to a driver's power dispatch routine. More than
one driver can be responsible for managing a device, but only one of the drivers
is designated as the device power-policy owner. This driver determines, based
on the system state, a device's power state. For example, if the system transi
tions between state SO and Sl, a driver might decide to move a device's power
state from DO to D 1. Instead of directly informing the other drivers that share
the management of the device of its decision, the device power-policy owner
asks the power manager, via the PoRequestPowerlrp function, to tell the other
drivers by issuing a device power command to their power dispatch routines.
This behavior allows the power manager to control the number of power com
mands that are active on a system at any given time. For example, some devices
in the system might require a significant ainount of current to power up. The
power manager ensures that such devices aren't powered up simultaneously.

Many power cominands have corresponding query commands. For example,
when the system is moving to a sleep state, the power manager will first ask the
devices on the system if the transition is acceptable. A device that is busy perform
ing time-critical. operations or interacting With device hardware might reject the
command, which results irithe system maintaining its current system power
state setting.

N I N E: 1/0 System

(continued)

551

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Viewing the System Power Capabilities and Policy continued

552

N I N E: 1/0 System

Driver Control of Device Power
Besides responding to power manager commands related to system power-state
transitions, a driver can unilaterally control the device power state of its devices.
In some cases, a driver might want to reduce the power consumption of a device
it controls when the device is left inactive for a period of time. A driver can either
detect an idle device itself or use facilities provided by the power manager. If
the device uses the power manager, it registers the device with the power man
ager by calling the PoRegisterDeviceForldleDetection function. This function
informs the power manager of the timeout values to use to detect a device as
idle and of the device power state that the power manager should apply when
it detects the device as being idle. The driver specifies two timeouts: one to use
when the user has configured the computer to conserve energy and the other
to use when the user has configured the computer for optimum performance.
After calling PoRegister DeviceFor IdleDetection, the driver must inform the power
manager, by calling the PoSetDeviceBusyfunction, whenever the device is active.

1/0 Data Structu res
Four primary data structures are associated with I/O requests: file objects, driver
objects, device objects, and I/O request packets (IRPs). Each of these struc
tures is defined in the DDK header file Ntddk.h as well as in the DDK docu
mentation. You can display each of them with the kernel debugger by using the
!file, !drvobJ~ !devobj, and !irp commands.

553

INSIDE MICROSOFT WINDOWS 2000

File Objects

554

File objects are the kernel-mode constructs for handles to files or devices. File
objects clearly fit the criteria for objects in Windows 2000: they are system re
sourc.es that two or more user-mode processes can share, they can have names,
they are protected by object-based security, and they support synchronization.
Although most shared resources in Windows 2000 are memory-based resources,
most of those that the I/O system manages are located on physical devices or
represent actual physical devices. Despite this difference, shared resources in the
I/O system, like those in other components of the Windows 2000 executive,
are manipulated as objects. (See Chapter 3 for a description of the object man
ager and Chapter 8 for information on object security.)

File objects provide a memory-based representation of resources that
conform to an I/O-centric interface, in which they can be read from or writ
ten to. Table 9-4 lists some of the file object's attributes. For specific field dec
larations and sizes, see the structure definition for FILE_OBJECT in Ntddk.h.

Table 9-4 File Object Attributes·

Attribute

Filename

Current byte offset

Share modes

Open mode flags

Pointer to device object

Pointer to the volume
parameter block (VPB)

Pointer to section object
pointers

Pointer to private cache
map

Purpose

Identifies the physical file that the file object
refers to

Identifies the current location in the file (valid
only for synchronous I/O)

Indicate whether other callers can open the file
for read, write, or delete operations while the
current caller is using it

Indicate whether I/O will be synchronous or
asynchronous, cached or noncached, sequential
or random, and so on

Indicates the type of device the file resides on

Indicates the volume, or partition, that. the file
resides on

Indicates a root structure that describes a
mapped file

Identifies which parts of the file are cached by the
cache manager and where they reside in the cache

When a caller opens a file or a simple device, the I/O manager returns a
handle to a file object. Figure 9-9 illustrates what occurs when a file is opened.

<D fp = fopen("D:lmyfiJe.dat", r)

run-time
DLL

® CreateFiJe("D:lmyfiJe.dat", ...)

""""'1'_""'''''111(.... ..
~
~
~

N I N E: I/O System

Win32
subsystem

~
~

® Return file handle , ,
® NtCreateFiJe("D:lmyfiJe.dat", .. .)

, ,

\
,
• • • • User mode

"
• Kernel mode •
I

System services ~:
@ Create filelObject-

~ ... -- .. "@Return object handle .. ~ ~ '.--......
~VOmanager

File systems B

Security Local Virtual
Cache manager 8

Device drivers II
Object reference procedure memory

manager monitor callfaci lity manager Network drivers"

"" Kernel

Figure 9-9
Opening a file object

In this example, (1) a C program calls the run -time library function fopen,
which in turn (2) calls the Win32 CreateFile function. The Win32 subsystem
DLL (in this case, Kernel32.dll) then (3) calls the native NtCreateFilefunction
in Ntdll.dll. The routine in Ntdll.dll contains the appropriate instruction to cause
a transition into kernel mode to the system service dispatcher, which then (4)
calls the real NtCreateFile routine in Ntoskrnl.exe. (See Chapter 3 for more
information about system service dispatching.)

555

INSIDE MICROSOFT WINDOWS 2000

Like other executive objects, file objects are protected by a security descriptor
that contains an access-control list (ACL). The I/O manager consults the secu-

. rity subsystem to determine whether the file's ACL allows the process to access
the file in the way its thread is requesting. If it does, (5,6) the object manager
grants the access and associates the granted access rights with the file handle that
it returns. If this thread or another thread in the process needs to perform addi
tional operations not specified in the original request, the thread must open
another handle, which prompts another security check. (See Chapter 8 for more
information about object protection.)

Because a file object is a memory-based representation of a shareable resource
and not the resource itself, it's different from other executive objects. A file object
contains only data that is unique to an object handle, whereas the file itself
contains the data or text to be shared. Each time a thread opens a file handle,
a new file object is created with a new set of handle-specific attributes. For
example, the current byte offset attribute refers to the location in the file at which
the next read or write operation using that handle will occur. Each handle to a
file has a private byte offset even though the underlying file is shared. A file object
is also unique to a process, except when a process duplicates a file handle to
another process (by using the Win32 DuplicateHandle function) or when a child
process inherits a file handle from a parent process. In these situations, the two
processes have separate handles that refer to the same file object.

Although a file handle might be unique to a process, the underlying
physical resource is not. Therefore, as with any shared resource, threads must
synchronize their access to shareable files, file directories, and devices. If a thread
is writing to a file, for example, it should specifY exclusive write access when
opening the file handle to prevent other threads from writing to the file at the
same time. Alternatively, by using the Win32 LockFile function, the thread could
lock a portion of the file while writing to it.

Driver Objects and Device Objects

556

When a thread opens a handle to a file object, the I/O manager must determine
from the file object's name which driver (or drivers) it should call to process the
request. Furthermore, the I/O manager must be able to locate this informa
tion the next time a thread uses the same file handle. The following system
objects fill this need:

II A driver object represents an individual driver in the system. The I/O
manager obtains the address of each of the driver's dispatch routines
(entry points) from the driver object.

N I N E: I/O System

II A device object represents a physical or logical device on the system
and describes its characteristics, such as the alignment it requires for
buffers and the location of its device queue to hold incoming IRPs.

The I/O manager creates a driver object when a driver is loaded into the
system, and it then calls the driver's initialization routine (for example, Driver
Entry), which fills in the object attributes with the driver's entry points.

After loading, a driver can create device objects to represent devices, or even
an interface to the driver, at any time by calling IoCreateDevice. However, most
Windows 2000 and WDM drivers create devices with their add-device routine
when the PnP manager informs them of the presence of a device for them to
manage. Legacy drivers, on the other hand, usually create device objects when
the I/O manager invokes their initialization routine. The I/O manager unloads
a driver when its last device object has been deleted and no references to the
device remain.

When a driver creates a device object, the driver can optionally assign the
device a name .. A name places the device object in the object manager namespace,
and a driver can either explicitly define a name or let the I/O manager auto
generate one. (The object manager namespace is described in Chapter 3.) By
convention, device objects are placed in the \Device directory in the namespace,
which is inaccessible by applications using the Win32 API.

NOT E Some drivers place device objects in directories other than
\Device.For example, the Wmdows 2000 Logical Disk Manager vol
ume manager creates device objects that represent disk pllrtitions in
the \Device\HarddiskDmVolumes directory. See Chapter 10 for a
description of storage architecture, including the way storage drivers
use device objects.

If a driver needs to make it possible for applications to open the device
object, it must create a symbolic link in the \?? directory to the device object's
name in the\Device directory. Legacy drivers and non-hardware-oriented driv
ers (such as file system drivers) typically create a symbolic link with a well-known
name (for example, \Device\Hardware2). Because well-known names don't
work well in an environment in which hardware appears and disappears dyna
mically, Plug and Play drivers expose one or more interfaces by calling the
IoRegisterDevicelnterface function, specifying a GUID (globally unique iden
tifier) thatrepresents the type of functionality exposed. GUIDs are l28-bit values
that you can generate by using a tool included with the D D K and the Platform
SDK, called Guidgen. Given the range of values that 128 bits represents, it's
statistically almost certain that each GUID Guidgen creates will be forever and
globally unique.

557

INSIDE MICROSOFT WINDOWS 2000

558

IoRegisterDevicelnterface determines the symbolic link: that is associated
with a device instance; however, a driver must call IoSetDevicelnterfaceState to
enable the interface to the device before the I/O manager actually creates the
link. Drivers usually do this when the PnP manager starts the device by send
ing the driver a start-device command.

An application wanting to open a device object represented with a GUID
can call Plug and Play setup functions in user space, such as SetupDiEnum
Devicelnterfaces, to enumerate the interfaces present for a particular GUID and
to obtain the names of the symbolic links it can use to open the device objects.
For each device reported by SetupDiEnumDevicelnterfaces, an application ex
ecutes SetupDiGetDevicelnterfaceDetail to obtain additional information about
the device, such as its auto generated name. After obtaining a device's name from
SetupDiGetDevicelnterfaceDetail, the application can execute theWin32 func
tion CreateFile to open the device and obtain a handle.

~cll[)liY80

P~sica[),i¥el

RdpOrDvMgr
Ro_PDD>IIU..22..V2..0#{884J>96c3-56,f-11d1-bcSc-~"
Roottl"PNP040CUIPnPBIOS_2O#{97f7SefO.fBB3-11d).8fllffiJOf[..
Rocdl"PNPOflIlIPnPBIOS_'4#{4dffie978.e325.1 1 ce-bfcl.Q80IL.

i
RooUlMSjlDISWANBH#OCOl*Ifad493944-762f·l1d).8dcb-OOcO ... SynboIicLink
RootUMS_NDlSWANIPmJOOOll:{ad498944·762f-' 1 dO.a±b-OOC04... SyrOOoIicLink \Device\004433:'
RocdlMS_PPTPMINIPORT:IIOCOOIj:{ad498944-762f·11dl-8dcb-OO ... S~icLink \Device\OO4537
RoctUMS_PTIMINIPORTUOODDII~d498944-7S2f. 1 , dO·Bdcb.()()c... SyrrOOIicLink \0 !!vic;e\OO4637
Roct*lSYSTEM*'OCIOO#{OO5affOO.62ce-11 cf-a5dS-28db04cl0000} SynboIicLink \Device\005Q33
Root:llSYST~MUOOOO#(2eb07ea().7e70-11 d0-a5d6·2Q:l)(l4clIDJO} S~d.ink \De",ice\OO5038
RoolJlSYSTEMmxJOO*I{3c01fi01a-14(h. 11 dl.fl40f·QOI!IOc922319B} SyrrboIiclink \De¥ice\OO5Q3B
AooUISYSTEM#OOOO#(3e227e7&69Od-l1 d2-8161-OOllfSn5bf1} S~nk \Device\OO5038
RooUtSYSTEMUOOOD*l{4747b32().62arl1 cf·a5d6·28dbD4c1 DODO} S~nk \De ice\OO5D311
RooHlSVSTEMIOlDmt(531 72400-4791·11 dD-«5d6·2lJd)l)4clIll10} S~nk. \Deyice\005038
RocdlSYSTEMUOOOD*l{65e8773d-8f56·11dl-a3b9-00aOc9223196} S~nk \De ice\()[)50311

II'Ro""I,,.Sl'EMOOOOllO(65.EI7730-WIS6-11_:Ib9-Clo.Oc,9223196} S_nk 10"",1005038
RooUtSYSTEMIOlOD*l{6994acl14-93ef·l1dl-a3cc-OOaOc9223196} S~k \De ice\OO50311
RooHlSYSTEMIIll00lt{97abMcb-9fbd.11dEh!3e~&61 SyrrboIict..ink \De ice\OO50311
RooUISYSTEMIOlOOl{a7c7.a5bl·5af3·11d1·9ced-OOa024bf0407} SyrrboIicl...ink
Ao,,"SYS1,EM1IIllOOO{od498944-762f-11c1l-8dcb,OOc04fC331i8c} S_k

N I N E: 1/0 System

559

INSIDE MICROSOFT WINDOWS 2000

560

When a file is opened, the filename includes the name of the device ob
ject on which the file resides. For example, the name \Device\FloppyO\Myfile.dat
refers to the file Myfile.dat on floppy disk drive A. The substring \Device\
FloppyO is the name of the internal Windows 2000 device object representing
that floppy disk drive. When opening Myfile.dat, the I/O manager creates a file
object and stores a pointer to the FloppyO device object in the file object and
then returns a file handle to the caller. Thereafter, when the caller uses the file
handle, the I/O manager can find the FloppyO device object directly. Keep in
mind that internal Windows 2000 device names can't be used in Win32 appli
cations-instead, the device name must appear in a special directory in the object
manager's namespace, \?? (named \DosDevices prior to Windows NT 4). This
directory contains symbolic links to the real, internal Windows 2000 device
names. Device drivers are responsible for creating links in this directory so that
their devices will be accessible to Win32 applications. You can examine or even
change these links programmatically with the Win32 QueryDosDevice and
DefineDosDevice functions.

SymbolicLink
SymbolicLink
SymbolicLink
SymbolicLink
SymbolicLink
SymbolicLink
Symb~licLirII.

SyrrbolictiM.

\Device\P~r.lVdrrD

\Devic!!\FIopp¢l
\OosOevices\coM1
\Device\Harddid<.Vobne1
\Oevice\SerialO
\DeW;e\Seriatl
\Oevice\CdRomO
\Di!Mce\Hi!lrddiskVobne2
\Device\Vdeo1 .
\Oevice\V!de02
\DeviceWideo3

N I N E: 1/0 System

As Figure 9-10 illustrates, a device object points back to its driver object,
which is how the I/O manager knows which driver routine to call when it receives
an I/O request. It uses the device object to find the driver object representing
the driver that services the device. It then indexes into the driver object by using
the function code supplied in the original request; each function code corre
sponds to a driver entry point. (The function codes shown in Figure 9-10 are
described in the section "IRP Stack Locations" later in this chapter.)

A driver object often has multiple device objects associated with it. The
list of device objects represents the physical and logical devices that the driver
controls. For example, each partition of a hard disk has a separate device ob
ject that contains partition-specific information. However, the same hard disk
driver is used to access all partitions. When a driver is.unloaded from the sys
tem, the I/O manager uses the queue of device objects to determine which
devices will be affected by the removal of the driver.

561

INSIDE MICROSOFT WINDOWS 2000

Driver object

Function
code 1

Function
code 2

Function
code n

Figure 9-10

---+-"Read

---"'.Write

---.... Device control

---.... Start 1/0

---.... Unload

---.... Cancel

The driver object

Devices
operated by
this driver

Using objects to record information about drivers means that the I/O
manager doesn't need to know details about individual drivers. The I/O man
ager merely follows a pointer to locate a driver, thereby providing a layer of por
tability and allowing new drivers to be loaded easily. Representing devices and
drivers with different objects also makes it easy for the I/O system to assign driv
ers to control additional or different devices if the system configuration changes.

1/0 Request Packets

562

The I/O request packet (IRP) is where the I/O system stores information it
needs to process an I/O request. When a thread calls an I/O service, the I/O
manager constructs an IRP to represent the operation as it progresses through
the I/O system. If possible, the I/O manager allocates IRPs from one of two
per-processor IRP nonpaged look-aside lists: the small-IRP look-aside list stores

N I N E: liD System

IRPs with one stack location (IRP stack locations are described shortly), and
the large-IRP look-aside list contains IRPs with eight stack locations. If an IRP
requires more than eight stack locations, the I/O manager allocates IRPs from
nonpaged pool. After allocating and initializing an IRP, the I/O manager stores
a pointer to the caller's file object in the IRP.

Figure 9-11 shows an example I/O request that demonstrates the relation
ship between an IRP and the file, device, and driver objects described in the
preceding sections. Although this example shows an I/O request to a single
layered device driver, most I/O operations aren't this direct; they involve one
or more layered drivers. (This case will be shown later in this section.)

563

INSIDE MICROSOFT WINDOWS 2000

<D An application writes a
file to the printer, passing
a handle to the file object.

I/O system services

® The I/O manager creates an
IRP and initializes the first
stack location.

IRP stack {
location

® The I/O manager uses the
driver object to locate the
WRITE dispatch routine and
calls it, passing the IRP.

I/O manager

IRP header

WRITE
parameters

'-__ -tlV

IRP

~ --
1

---... -----------
Dispatch
routine(s)

Start liD ISR
DPC

routine

Device driver

Figure 9-11
Data structures involved in a single-layered driver I/O request

IRP Stack Locations

~~

User mode

Kernel mode

An IRP consists of two parts: a fixed header (often referred to as the IRP's body)
and one or more stack locations. The fixed portion contains information such
as the type and size of the request, whether the request is synchronous or asyn
chronous, a pointer to a buffer for buffered I/O, and state information that
changes as the request progresses. An IRP stack location contains a function code
(consisting of a major code and a minor code), function-specific parameters, and
a pointer to the caller's file object. The major function code identifies which of
a driver's dispatch routines the I/O manager invokes when passing an IRP to

564

N I N E: I/O System

a driver. An optional minor function code sometimes serves as a modifier of the
major function code. Power and Plug and Play commands always have minor
function codes.

Most drivers specifY dispatch routines to handle only a subset of possible
major function codes, including create (open), read, write, device I/O control,
power, Plug and Play, System (for WMI commands), and close. (See the fol
lowing experiment for a complete listing of major function codes.) File system
drivers are an example of a driver type that often fills in most or all of its dis
patch entry points with functions. The I/O manager sets any dispatch entry
points that a driver doesn't fill to point to its own IoplnvatidDeviceRequest,
which returns an error code to the caller indicating that the function specified
for the device is invalid.

(continued)

565

INSIDE MICROSOFT WINDOWS 2000

566

EXPERIMENT: Looking at Driver Dispatch Routines continued

While active, each IRP is usually stored in an IRP list associated with the
thread that requested the I/O. This arrangement allows the I/O system to find
and cancel any outstanding IRPs if a thread terminates or is terminated with
outstanding I/O requests.

N I N E: I/O System

IRP Buffer Management
When an application or a device driver indirectly creates an IRP by using the
NtReadFile, NtWriteFile, or NtDeviceloControlFilesystem services (the Win32
API functions corresponding to these services are ReadFile, WriteFile, and
DeviceloControl), the I/O manager determines whether it needs to participate
in the management of the caller's input or output buffers. The I/O manager
performs three types of buffer management:

• Buffered I/O The I/O manager allocates a buffer in nonpaged pool
of equal size to the caller's buffer. For write operations, the I/O man
ager copies the caller's buffer data into the allocated buffer when cre
ating the IRP. For read operations, the I/O manager copies data from
the allocated buffer to the user's buffer when the IRP completes and
then frees the allocated buffer.

• Direct 1/0 When the I/O manager creates the IRP, it locks the user's
buffer into memory (makes it nonpaged). When the I/O manager
has finished using the IRP, it unlocks the buffer. The I/O manager
stores a description of the memory in the form of a memory descriptor
list (MD L). An MD L specifies the physical memory occupied by a
buffer. (See the Windows 2000 DDKfor more information on MDLs.)
Devices that perform directory memory access (DMA) require only
physical descriptions of buffers, so an MDL is sufficient for the opera
tion of such devices .. (Devices that support DMA transfer data directly
between the device and the computer's memory, without using the
CPU.) Ifa driver must access the contents ofa buffer, however, it
can map the buffer into the system's address space.

• Neither 1/0 The I/O manager doesn't perform any buffer man
agement. Instead, buffer management is left to the discretion of
the device driver, which can choose to manually perform the steps
the I/O manager performs with the other buffer management types.

For each type of buffer management, the I/O manager places applicable
references in the IRP to the locations of the input and output buffers, The type
of buffer management the I/O manager performs depends on the type of buffer
management a driver requests for each type of operation. A driver registers the
type of buffer management it desires for read and write operations in the device
object that represents the device. DeviceI/O control operations (those per
formed by NtDeviceloControlFile) are specified with driver-defined I/O con
trol codes, and a control code includes a description of the buffer management
the I/O manager should use when issuing IRPs that contain that code.

567

INSIDE MICROSOFT WINDOWS 2000

568

Drivers commonly use buffered I/O when callers transfer requests smaller
than one page (4 KB) and use direct I/O for larger requests. A page is approxi
mately the buffer size at which the trade-off between the copy operation of
buffered I/O matches the overhead of the memory lock performed by direct
I/O. File system drivers commonly use neither I/O because no buffer manage
ment overhead is incurred when data can be copied from the file system cache
into the caller's original buffer. The reason that most drivers don't use neither
I/O is that a pointer to a caller's buffer is valid only while a thread of the caller's
process is executing. If a driver must transfer data from or to a device in an ISR
or a DPC routine, it must ensure that the caller's data is accessible from any
process context, which means that the buffer must have a system virtual address.

N I N E: lID System

(continued)

569

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Examining IRPs and the Thread IRP Queue continued

1/0 Completion Ports

570

Writing a high-performance server application requires implementing an efficient
threading model. Having either too few or too many server threads to process
client requests can lead to performance problems. For example, if a server cre
ates a single thread to handle all requests, clients can become starved because
the server will be tied up processing one request at a time. A single thread could
simultaneously process multiple requests, switching from one to another as

N I N E: I/O System

I/O operations are started, but this architecture introduces significant complex
ity and can't take advantage of multiprocessor systems. At the other extreme, a
server could create a big pool of threads so that virtually every client request is
processed by a dedicated thread. This scenario usually leads to thread-thrashing,
in which lots of threads wake up, perform some CPU processing, block while
waiting for I/O, and then, after request processing is completed, block again
waiting for a new request. If nothing else, having too many threads results in
excessive context switching, caused by the scheduler having to divide processor
time among multiple active threads.

The goal of a server is to incur as few context switches as possible by hav
ing its threads avoid unnecessary blocking, while at the same time maximizing
parallelism by using multiple threads. The ideal is for there to be a thread actively
servicing a client request on every processor and for those threads not to block
when they complete a request if additional requests are waiting. For this opti
mal process to work correctly, however, the application must have a way to
activate another thread when a thread processing a client request blocks on I/O
(such as when it reads from a file as part of the processing).

The loCompletion Object
Applications use the IoCompletion executive object, which is exported to Win32
as a completion port, as the focal point for the completion ofI/O associated with
multiple file handles. Once a file is associated with a completion port, anyasyn
chronous I/O operations that complete on the file result in a completion packet
being queued to the completion port. A thread can wait for any outstanding
IjOs to complete on multiple files simply by waiting for a completion packet
to be queued to the completion port. The Win32 API provides similar func
tionality with the WaitForMultipleObjects API function, but the advantage that
completion ports have is that concurrency, or the number of threads that an
application has actively servicing client requests, is controlled with the aid of
the system.

When an application creates a completion port, it specifies a concurrency
value. This value indicates the maximum number of threads associated with
the port that should be running at any given time. As stated earlier, the ideal
is to have one thread active at any given time for every processor in the system.
Windows 2000 uses the concurrency value associated with a port to control how
many threads an application has active. If the number of active threads associ
ated with a port equals the concurrency value, a thread that is waiting on the
completion port won't be allowed to run. Instead, it is expected that one of the

571

INSIDE MICROSOFT WINDOWS 2000

572

active threads will finish processing its current request and check to see whether
another packet is waiting at the port. If one is, the thread simply grabs the packet
and goes off to process it. When this happens, there is no context switch, and
the CPUs are utilized nearly to their full capacity.

USing Completion Ports
Figure 9-12 shows a high-level illustration of completion port operation. A
completion port is created with a call to the Win32 API function Create
IoCompletionPort. Threads that block on a completion port become associated
with the port and are awakened in last in, first out (LIFO) order so that the
thread that blocked most recently is the one that is given the next packet. Threads
that block for long periods of time can have their stacks swapped out to disk,
so if there are more threads associated with a port than there is work to pro
cess, the in-memory footprints of threads blocked the longest are minimized.

Incoming client request

Perform CPU processing
(active)

Perform CPU processing
(active)

Figure 9-12
I/O completion port operation

Threads blocked on the completion port

N I N E: 1/0 System

A server application will usually receive client requests via network end
points that are represented as file handles. Examples include Windows Sockets 2
(Winsock2) sockets or named pipes. As the server creates its communications
endpoints, it associates them with a completion port and its threads wait for
incoming requests by calling GetQueuedCompletionStatus on the port. When
a thread is given a packet from the completion port, it will go off and start
processing the request, becoming an active thread. A thread will block many
times during its processing, such as when it needs to read or write data to a file
on disk or when it synchronizes with other threads. Windows 2000 detects this
activity and recognizes that the completion port has one less active thread.
Therefore, when a thread becomes inactive because it blocks, a thread waiting
on the completion port will be awakened if there is a packet in the queue.

Microsoft's guidelines are to set the concurrency value roughly equal to
the number of processors in a system. Keep in mind that it's possible for the
number of active threads for a completion port to exceed the concurrency limit.
Consider a case in which the limit is specified as 1. A client request comes in,
and a thread is dispatched to process the request, becoming active. A second
request arrives, but a second thread waiting on the port isn't allowed to pro
ceed because the concurrency limit has been reached. Then the first thread blocks
waiting for a file I/O, so it becomes inactive. The second thread is then released,
and while it's still active, the first thread's file I/O is completed, making it active
again. At that point-and until one of the threads blocks-the concurrency value
is 2, which is higher than the limit of 1. Most of the time, the active count will
remain at or just above the concurrency limit.

The completion port API also makes it possible for a server application to
queue privately defined completion packets to a completion port by using the
PostQueuedCompletionStatus function. A server typically uses this function to
inform its threads of external events, such as the need to shut down gracefully.

Driver Loading, Initialization, and Installation
Driver loading and initialization on Windows 2000 consists of two types of
loading: explicit loading and enumeration-based loading. Explicit loading is
guided by the HKLM\SYSTEM\CurrentControISet\Services branch of the reg
istry,as described in the section "Service Applications" on page 237 in Chap
ter 5. Enumeration-based loading results when the PnP manager dynamically
loads drivers for the devices that a bus driver reports during bus enumeration.

573

INSIDE MICROSOFT WINDOWS 2000

The Start Value

574

In Chapter 5, we explained that every driver and Win32 service has a registry
key under the Services branch of the current control set. The key includes val
ues that specifY the type of the image (for example, Win32 service, driver, and
file system), the path to the driver or service's image file, and values that con
trol the driver or service's load ordering. There are two main differences between
explicit device driver loading and Win32 service loading:

II Only device drivers can specifY Start values of boot-start (0) or system
start (1).

II Device drivers can use the Group and Tag values to control the order
of loading within a phase of the boot, but unlike services, they can't
specifY DependOnGroup or DependOnService values.

Chapter 4 describes the phases of the boot process and explains that a driver
Start value of 0 means that the operating system loader loads the driver. A Start
value of 1 means that the I/O manager loads the driver after the executive
subsystems have finished initializing. The I/O manager calls driver initializa
tion routines in the order that the drivers load within a boot phase. Like Win32
services, drivers use the Group value in their registry key to specifY which group
they belong to; the registry value HKLM\SYSTEM\CurrentControISet\Control\
ServiceGroupOrder\List determines the order that groups are loaded within a
boot phase.

A driver can further refine its load order by including a Tag value to con
trol its order within a group. The I/O manager sorts the drivers within each
group according to the Tag values defined in the drivers' registry keys. Drivers
without a tag go to the end of the list in their group. You might assume that
the I/O manager initializes drivers with lower-number tags before it initializes
drivers with higher-number tags, but such isn't necessarily the case. The regis
try key HKLM\SYSTEM\CurrentControISet\Control\GroupOrderList defines
tag precedence within a group; with this key, Microsoft and device driver devel
opers can take liberties with redefining the integer number system.

Here are the guidelines by which drivers set their Start value:

II Legacy drivers set their Start value to reflect the boot phase they want
to load in.

II Drivers, including legacy and Windows 2000 drivers, that must be
loaded by the boot loader during the system boot specifY a Start value
of boot-start (0). Examples include system bus drivers and the boot
file system driver.

N I N E: I/O System

III A driver that isn't required for booting the system and that detects a
device that a system bus driver can't enumerate specifies a Start value
of system-start (1). An example is the serial port driver, which informs
the PnP manager of the presence of standard PC serial ports that were
detected by Setup and recorded in the registry.

III A Windows 2000 driver that doesn't have to support Plug and Play
or a legacy driver that doesn't have to be present when the system
boots specifies a Start value of auto-start (2). An example is the Mul
tiple Universal Naming Convention (UNC) Provider (MUP) driver,
which provides support for UNC-based path names to remote re
sources (for example, (\\REMOTECOMPUTERNAME\SHARE).

III Plug and Play drivers that aren't required to boot the system specifY
a Start value of demand-start (3). Examples include network adapter
drivers.

The only purpose that the Start values for Plug and Play drivers and drivers
for enumerable devices have is to ensure that the operating system loader loads
the driver-if the driver is required for the system to boot successfully. Beyond
that, the PnP manager's device enumeration process, described next, determines
the load order for Plug and Play drivers.

Device Enumeration
The PnP manager begins device enumeration with a virtual bus driver called
Root, which represents the entire computer system and that acts as the bus driver
for legacy drivers and for the HAL. The HAL acts as a bus driver that enumer
ates devices directly attached to the motherboard as well as system components
such as batteries. Instead of actually enumerating, the HAL relies on the hard
ware description the Setup process recorded in the registry to detect the pri
mary bus (a PCI bus in most cases) and devices such as batteries and fans.

The primary bus driver enumerates the devices on its bus, possibly find
ing other buses, for which the PnP manager initializes drivers. Those drivers in
turn can detect other devices, including other subsidiary buses. This recursive
process of enumeration, driver loading (if the driver isn't already loaded), and
further enumeration proceeds until all the devices on the system have been
detected and configured.

As the bus drivers report detected devices to the PnP manager, the PnP
manager creates an internal tree called the device tree that represents the rela
tionships between devices. Nodes in the tree are called devnodes) and a devnode
contains information about the device objects that represent the device as well

575

INSIDE MICROSOFT WINDOWS 2000

as other Plug and Play-related information stored in the devnode by the PnP
manager. Figure 9-13 shows an example of a simplified device tree. This sys
tem is ACPI -compliant, so an ACPI -compliant HAL serves as the primary bus
enumerator. A PCI bus serves as the system's primary bus, which USB, ISA, and
SCSI buses are connected to.

External i
Joystick Camera Plug and Play

modem

I I
I

USB hub , Plug and Play
Serial port Keyboard Mouse Disk ,

ISA sound card

I I I I I I I

USB controller
PCI to ISA

SCSI adapter
bridge

I

576

ACPI fan

Figure 9-13
Example device tree

I

I
I

PCI bus

I
I

ACPI

Root device

I

ACPI battery
,

I

The Device Manager utility, which is accessible from the Computer Man
agement snap-in in the Programs/Administrative Tools folder of the Start menu
(and also from the Hardware tab of the System utility in Control Panel), shows
a simple list of devices present on a system in its default configuration. You can
also select the Devices By Connection option from the Device Manager's View
menu to see the devices as they relate to the device tree. Figure 9-14 shows an
example of the Device Manager's Devices By Connection view.

ACPI Fan
ACPI Lid
ACPI Power B yUan
ACPI Sleep BuUon
ACPI ThermalZOl'1e
Microsoft AC Adapter
Microsoft ACPI-Compliant Control Method Batter},
Microsoft ACPI-Compjiant Control Method Batter.!'
PCI bus

!±}. E55 MaestroZE PCI AudioDrive [W'DM) Ifl",. Intel 82371AB/EB PCI to ISA bridge [EIO mode)
Ef}-~ Intel 82371AB/EB PCI to USB Universal Host Comroller
B"'5 Intel 824438X Pentiumlr)II Processor to AGP Controller

a--I' All RAGE MOBILITY-PAGPZ>< (English)

:"""1 ~~i~~I~~~~:~el (1024K768)
Intel 82443BX Pentiumlr) II Processor to PCI Bridge
Intellr) 82371AB/EB PCI Bus Master IDE Controller
LTWinModem

Figure 9-14
Device Manager showing the device tree

N I N E: I/O System

Taking device enumeration into account, the load and initialization order
of drivers is as follows:

1. The I/O manager invokes the driver entry routine of each boot-start
driver. If a boot driver has child devices, the I/O manager enumer
ates those devices, reporting their presence to the PnP manager. The
child devices are configured and started if their drivers are boot-start
drivers. If a device has a driver that isn't a boot-start driver, the PnP
manager creates a devnode for the device but doesn't start it or load
its driver.

2. Mter the boot-start drivers are initialized, the PnP manager walks
the device tree, loading the drivers for devnodes that weren't loaded
in step 1 and starting their devices. As each device starts, the PnP
manager enumerates its child devices, if it has any, starting those
devices' drivers and performing enumeration of their children as
required. The PnP manager loads the drivers for detected devices in
this step regardless of the driver)s Start value. (The one exception is if
the Start value is set to disabled.) At the end of this step, all Plug
and Play devices have their drivers loaded and are started, except
devices that aren't enumerable and the children of those devices.

577

INSIDE MICROSOFT WINDOWS 2000

578

3. The PnP manager loads any drivers with a Start value of system-start
that aren't yet loaded. Those drivers detect and report their
nonenumerable devices. The PnP manager loads drivers for those
devices until all enumerated devices are configured and started.

4. The Service Control Manager loads drivers marked as auto-start.

The device tree serves to guide both the PnP manager and the power
manager as they issue Plug and Play and power IRPs to devices. In general, IRPs
flow from the top of a devnode to the bottom, and in some cases a driver in one
devnode creates new IRPs to send to other devnodes, always moving toward
the root. The flow of Plug and Play and power IRPs is further described later
in this chapter.

N I N E: I/O System

A record of all the devices detected since the system was installed is recorded
under the HKLM\SYSTEM\CurrentControlSet\Enum registry key. Subkeys are
in the form <Enumerator>\<Device ID>\<lnstance ID>, where the enumera
tor is a bus driver, the device ID is a unique identifier for a type of device, and
the instance ID uniquely identifies different instances of the same hardware.

Devnodes
Figure 9-15 shows that a devnode is made up of at least two, and sometimes
more, device objects:

II A physical device object (PDO) that the PnP manager instructs a bus
driver to create when the bus driver reports the presence of a device
on its bus during enumeration. The PD~ represents the physical
interface to the device.

579

INSIDE MICROSOFT WINDOWS 2000

580

Devnode

,
,

, ,

~~~ ------------

Upper-level 
filter driver 

Function 
driver 

Lower-level 
filter driver 

Bus 
filter driver 

Bus 
driver 

Figure 9-15 
Devnode internals 

• One or more optional filter device objects (FiDOs) that layer between 
the PD~ and the FDO (described next), and that are created by bus 
filter drivers. 

• One or more optional FiDOs that layer between the PD~ and the 
FDO (and that layer above any FiDOs created by bus filter drivers) 
that are created by lower-level Jilter drivers. 

• A Junctional device object (FDO) that is created by the driver, which 
is called a Junction driver, that the PnP manager loads to manage a 
detected device. An FDO represents the logical interface to a device. 
A function driver can also act as a bus driver if devices are attached 
to the device represented by the FDO. The function driver often 
creates an interface (described earlier) to the FDO's corresponding 
PD~ so that applications and other drivers can open the device and 
interact with it. Sometimes function drivers are divided into a separate 
class/port driver and miniport driver that work together to manage 
I/O for the FDO. 

• One or more optional FiDOs that layer above the FDO and that are 
created by upper-level filter drivers. 



N I N E: I/O System 

Devnodes are built from the bottom up and rely on the I/O manager's 
layering functionality, so IRPs flow from the top of a devnode toward the bot
tom. However, any level in the devnode can choose to complete an IRP. For 
example, the function driver can handle a read request without passing the IRP 
to the bus driver. Only when the function driver requires the help of a bus driver 
to perform bus-specific processing does the IRP flow all the way to the bottom 
and then into the devnode containing the bus driver. 

Devnode Driver Loading 
So far, we've avoided answering two important questions: How does the PnP 
manager determine what function driver to load for a particular device? and How 
do filter drivers register their presence so that they are loaded at appropriate times 
in the creation of a devnode? 

The answer to both these questions lies in the registry. When a bus driver 
performs device enumeration, it reports device identifiers for the devices it 
detects back to the PnP manager. The identifiers are bus-specific; for a USB bus, 
an identifier consists of a vendor ID (VID) for the hardware vendor that made 
the device and a product ID (PID) that the vendor assigned to the device. (See 
the DDKfor more information on device ID formats.) Together these IDs form 
what Plug and Play calls a device ID. The PnP manager also queries the bus driver 
for an instance ID to help it distinguish different instances of the same hard
ware. The instance ID can describe either a bus relative location (for example, 
the USB port) or a globally unique descriptor (for example, a serial number). 
The device ID and instance ID are combined to form a device instance ID 
(DIID), which the PnP manager uses to locate the device's key in the enumera
tion branch of the registry (HKLM\SYSTEM\CurrentControISet\Enum). Fig
ure 9-16 presents an example of a keyboard's enumeration subkey. The device's 
key contains descriptive data and includes values named Service and ClassGUID 
(which is obtained from a driver's INF file) that help the PnP manager locate 
the device's drivers. 

581 



INSIDE MICROSOFT WINDOWS 2000 

582 

(value not set] 
0:<00000000 (0) 
{40 36E 968-E325-1 , CE -BFCl -080028£1 031 B} 

REG_MUl TI_5Z P52_KEYBOARD 
REG_D'WORD O:-rooOOOOO (0) 
REG_5Z PC/AT Enhanced PS/2 Kl!!yboatd (10l/102·Key] 
REG_5Z {4D36E86B-E325-' 1 CE-BFC1-08002BEl 031 8}\OO03 

F'mw".'d<,",'f,.d REGY,"ORD 0><00000001 [11 
REG_MULTI_5Z 'PNP030b 
REG_52 (Standard keyboards) 
REG_5Z i8042prt 

Figure 9-16 
Keyboard enumeration key 

Using the ClassGUID value, the PnP manager locates the device's class 
key under HKLM\SYSTEM\CurrentControISet\Control\Class. The keyboard 
class key is shown in Figure 9 -17. The enumeration key and class key supply the 
PnP manager the information it needs to load the drivers necessary for the device's 
devnode. Drivers are loaded in the following order: 

1. Any lower-level filter drivers specified in the LowerFilters value of 
the device's enumeration key. 

2. Any lower-level filter drivers specified in the LowerFilters value of 
the device's class key. 

3. The function driver specified by the Service value in the device's 
enumeration key. This value is interpreted as the driver's key under 
HKLM\SYSTEM\CurrentControISet\Services. 

4. Any upper-level filter drivers specified in the UpperFilters value of 
the device's enumeration key. 

5. Any upper-level filter drivers specified in the UpperFilters value of 
the device's class key. 

In all cases, drivers are referenced by the name of their key under HKLM\ 
SYSTEM\CurrentControISet\Services. 



N I N E: 1/0 System 

.Boot\lerificationProgram 
Clan 

{36FCSE 60-C465-11 CF·805S-444553540000} 
14D36E965.£325-11 C£ -BFCl-080028El 0318} 
14D36E966-E325-11 CE -8FC1-oooJ2BEl 0318} 
14D36E967-E325-11 C£ -8FCl-080028El 0318} 
14D3JE968-E325-11 CE -BFCl-080028El 0318} 
{4D36E969.£325·11 CE ·8FC1-OOO028 El 031 B} 

Figure 9-17 
Keyboard class key 

SysSetUp.D~.Keybo.afdcmslnlltft 

1 
lmool.ctm..hdw-'~~boo!ldhtm 

REGJ\~UlT1_SZ khdcIass:ctrl2cap 

NOTE The DDKrefers to a device's enumeration key as its hard
ware key and to the class key as the software key. 

The keyboard device shown in Figure 9-16 and Figure 9-17 has no lower 
filter drivers. The function driver is the i8042prt driver, and there are two upper 
filter drivers specified in the keyboard's class key: kbdclass and ctrl2cap. 

Driver Installation 
If the PnP manager encounters a device for which no driver is installed, it relies 
on the user-mode PnP manager to guide the installation process. If the device 
is detected during the system boot, a devnode is defined for the device but the 
loading process is postponed until the user-mode PnP manager starts. (The user
mode PnP manager is implemented in \Winnt\System32\Umpnpmgr.dll and 
runs as a service in the Services.exe process.) 

The components involved in a driver's installation are shown in Figure 9-18. 
Shaded objects in the figure correspond to components generally supplied by 
the system, whereas objects that aren't shaded are included in a driver's instal
lation files. First, a bus driver informs the PnP manager of a device it enumer
ates using a DIID (1). The PnP manager checks the registry for the presence 
of a corresponding function driver, and when it doesn't find_one, it informs the 
user-mode PnP manager (2) of the new device by its D IID. The user-mode PnP 
manager first tries to perform an automatic install without user intervention. 

583 



INSIDE MICROSOFT WINDOWS 2000 

584 

If the installation process involves the posting of dialog boxes that require user 
interaction and the currently logged -on user has administrator privileges, (3) 
the user-mode PnP manager launches the Rundll32.exe application (the same 
application that hosts Control Panel utilities) to execute the Hardware Instal
lation Wizard (\Winnt\System32\Newdev.dll). If the currently logged"on user 
doesn't have administrator privileges (or if no user is logged on) and the instal
lation of the device requires user interaction, the user-mode PnP manager de
fers the installation until a privileged user logs on. The Hardware Installation 
Wizard uses Setup and CfgMgr (Configuration Manager) API functions to 
locate INF files that correspond to drivers that are compatible with the detected 
device. This process might involve having the user insert installation media 
containing a vendor's INF files, or the wizard might locate a suitable INF file 
in the .cab (Cabinet) file under\Winnt\Driver Cache\i386\Driver.cab that con
tains drivers that ship with Windows. 2000. 

Figure 9-18 
Driver installation components 

Class installers 
... --t~1 and coinstallers 

User mode 

Kernel mode 

Filter driver 

F 

<D 

To find drivers for the new device, the installation process gets a list of 
hardware IDs and compatible IDs from the bus driver. These IDs describe all the 
various ways the hardware might be identified in a driver installation file (.inf). 



N I N E: I/O System 

The lists are ordered so that the most specific description of the hardware is listed 
first. If matches are found in multiple INFs, more precise matches are preferred 
over less precise matches, digitally signed INFs are preferred over unsigned ones, 
and newer signed INFs are preferred over older signed ones. If a match is found 
based on a compatible ID, the Hardware Installation Wizard can choose to 
prompt for media in case a more up-to-date driver came with the hardware. 

The INF file locates the function driver's files and contains commands that 
fill in the driver's enumeration and class keys, and the INF file might direct the 
Hardware Installation Wizard to (4) launch class or device coinstaller D LLs that 
perform class or device-specific installation steps, such as displaying configura
tion dialog boxes that let the user specifY settings for a device. 

Before actually installing a driver, the user-mode PnP manager checks the 
system's driver-signing policy. The policy is stored in the registry key HKLM\ 
SOFTWARE\Microsoft\Driver Signing\Policy if the administrator has designated 
a systemwide policy and in the key HKCU\Software\Microsoft\Driver Signing\ 
Policy if there are only per-user policies. The policy is configurable using the 
Driver Signing Options dialog box, accessed from the Hardware tab in the 
System Control Panel utility, which is shown in Figure 9-19. If the settings 
specifY that the system should block or warn of the installation of unsigned 
drivers, the user-mode PnP manager checks the driver's INF file for an entry 
that locates a catalog (a file that ends with the .cat extension) containing the 
driver's digitalsignaturt. 

Figure 9-19 
Driver-signing policy options 

585 



INSIDE MICROSOFT WINDOWS 2000 

Microsoft's WHQL tests the drivers included with Windows 2000 and 
those submitted by hardware vendors. When a driver passes the WHQL tests, 
it is "signed" by Microsoft. This means that WHQL obtains a hash) or unique 
value representing the driver image file, and then cryptographically signs it with 
Microsoft's private driver-signing key. The signed hash is stored in a catalog file 
and included on the Windows 2000 installation media or returned to the ven
dor that submitted the driver for inclusion with its driver. 

As it's installing a driver, the user-mode PnP manager extracts the driver's 
signature from its catalog file, decrypts the signature using the public half of 
Microsoft's driver-signing private/public key pair, and compares the resulting 
hash with a hash of the driver file it's about to install. If the hashes match, the 
driver is verified as having passed WHQL testing. If a driver fails the signature 
verification, the user-mode PnP manager acts according to the settings of the 
system driver-signing policy, either failing the installation attempt, warning the 
user that the driver is unsigned, or silently installing the driver. 

NOT E Drivers installed using setup programs that manually con
figure the registry and copy driver files to a system and driver files that 
are dynamically loaded by applications aren't checked for signatures. 
Only drivers installed using INF files are validated against the system's 
driver-signing policy. 

After a driver is installed, the kernel-mode PnP manager (step 5 in Fig
ure 9 -18) starts the driver and calls its add -device routine to inform the driver 
of the presence of the device it was loaded for. The construction of the devnode 
then continues as described earlier. 

1/0 Processing 

586 

Now that we've covered the structure and types of drivers and the data structures 
that support them, let's look at how I/O requests flow through the system. I/O 
requests pass through several predictable stages of processing. The stages vary 
depending on whether the request is destined for a device operated by a single
layered driver or for a device reached through a multilayered driver. Processing 
varies further depending on whether the caller specified synchronous or asyn
chronous I/O, so we'll begin our discussion ofI/O types with these two then 
move on to others. 



N I N E: I/O System 

Types of I/O 
Applications have several options for the I/O requests they issue. For example, 
they can specify synchronous or asynchronous I/O, I/O that maps a device's 
data into the application's address space for access via application virtual memory 
rather than I/O APls, and I/O that transfers data between a device and non
contiguous application buffers in a single request. Furthermore, the I/O man
ager gives the drivers the choice of implementing a shortcut I/O interface that 
can often mitigate IRP allocation for I/O processing. In this section, we'll 
explain each of these I/O variations. 

Synchronous I/O and Asynchronous I/O 
Most I/O operations that applications issue are synchronous; that is, the appli
cation waits while the device performs the data transfer and returns a status code 
when the I/O is complete. The program can then continue and access the trans
ferred data immediately. When used in their simplest form, the Win32 ReadFile 
and WriteFile functions are executed synchronously. They complete an I/O 
operation before returning control to the caller. 

Asynchronous I/O allows an application to issue an I/O request and then 
continue executing while the device transfers the data. This type of I/O can 
improve an application's throughput because it allows the application to con
tinue with other work while an I/O operation is in progress: To use asynchro
nous I/O, you must specify the FILE_FLAG_OVERLAPPED flag when you 
call the Win32 CreateFiltfunction. Of course, after issuing an asynchronous I/O 
operation, the thread must be careful not to access any data from the I/O op
eration until the device driver has finished the data transfer. The thread must 
synchronize its execution with the completion of the I/O request by moni
toring a handle of a synchronization object (whether that's an event object, an 
I/O completion port,orthe file object itself) that will be signaled when the I/O 
is complete. 

Regardless of the type of I/O request, internally, I/O operations repre
sented by IRPs are performed asynchronously; that is, once an I/O request.has 
been initiated, the device driver returns to the I/O system. Whether or not the 
I/O, system returns immediately to the caller depends on whether the file was 
openedfor synchronous or asynchronous I/Q. Figure 9-20 illustrates the flow 
of control when a read operation is initiated. Notice that if a wait is done, which 
depends on the overlapped flag in the file object, it is done in kernel mode by 
the NtReadFile function. 

587 



INSIDE MICROSOFT WINDOWS 2000 

588 

Call ReadFile() 

ReadFile 

NtReadFile .--__ -l-__ --.. 

KiSystemService 

NtReadFile 

Whether to wait depends ---oJI.~ 
on overlapped flag 

Figure 9-20 
Control flow for an I/O operation 

Return to caller 

Application 

Kernel32.dll 

Ntdll.dll 

User mode 

Kernel mode 

Ntoskrnl.exe 

Ntoskrnl.exe 

Driver.sys 

You can test the status of a pending asynchronous I/O with the Win32 
HasOverlappedloCompleted function. If you're using I/O completion ports, you 
can use the GetQueuedCompletionStatus function. 

Fast 1/0 
Fast I/O is a special mechanism that allows the I/O system to bypass generat
ing an IRP and instead go directly to the file system driver or cache manager 
to complete an I/O request. (Fast I/O is described in detail in Chapters 11 and 
12.) A driver registers its fast I/O entry points by entering them in a structure 
pointed to by the PFAST_IO_DISPATCH pointer in its driver object. 



N I N E: liD System 

Mapped File 110 and File Caching 
Mapped file I/O is an important feature of the I/O system, one that the I/O 
system and the memory manager produce jointly. (See Chapter 7 for details on 
how mapped files are implemented. ) Mapped file I/O refers to the ability to view 
a file residing ondisk as part of a process's virtual memory. A program can access 
the file as a large array without buffering data or performing disk I/O. The 

589 



INSIDE MICROSOFT WINDOWS 2000 

program accesses memory, and the memory manager uses its paging mechanism 
to load the correct page from the disk file. If the application writes to its vir
tual address space, the memory manager writes the changes back to the file as 
part of normal paging. 

Mapped ftle I/O is available in user mode through theWin32 CreateFile
Mapping and Map ViewOjFile functions. Within the operating system, mapped 
ftle I/O is used for important operations such as ftle caching and image activa
tion (loading and running executable programs). The other major consumer of 
mapped file I/O is the cache manager. File systems use the cache manager to 
map ftle data in virtual memory to provide better response time for I/O-bound 
programs. As the caller uses the file, the memory manager brings accessed pages 
into memory. Whereas most caching systems allocate a fixed number of bytes 
for caching ftles in memory, the Windows 2000 cache grows or shrinks depend
ing on how much memory is available. This size variability is possible because the 
cache manager relies on the memory manager to automatically expand (or shrink) 
the size of the cache, using the normal working set mechanisms explained in 
Chapter 7. By taking advantage of the memory manager's paging system, the cache 
manager avoids duplicating the work that the memory manager already performs. 
(The workings of the cache manager are explained in detail in Chapter 11.) 

Scatter/Gather I/O 
Windows 2000 also supports a special kind of high-performance I/O that is 
called scatter/gather, available via the Win32 ReadFileScatter and WriteFile
Gather functions. These functions allow an application to issue a single read or 
write from more than one buffer in virtual memory to a contiguous area of a 
file on disk. To use scatter/gather I/O, the file must be opened for noncached 
I/O, the user buffers being used have to be page-aligned, and the I/Os must 
be asynchronous (overlapped). Furthermore, if the I/O is directed at a mass stor
age device, the I/O must be aligned on a device sector boundary and have a 
length that is a multiple of the sector size. 

I/O Request to a Single-Layered Driver 

590 

This section traces a synchronous I/O request to a single-layered kernel-mode 
device driver. Handling a synchronous I/O to a single-layered driver consists 
of seven steps: 

1. The I/O request passes through a subsystem DLL. 

2. The subsystem DLL calls the I/O manager's NtWriteFile service. 

3. The I/O manager allocates an IRP describing the request and sends 
it to the driver (a device driver in this case) by calling its own IoCall
Driver function. 



N I N E: 1/0 System 

4. The driver transfers the data in the IRP to the device and starts the 
I/O operation. 

5. The driver signals I/O completion by interrupting the CPU. 

6. When the device completes the operation and interrupts the CPU, 
the device driver services the interrupt. 

7. The driver calls the I/O manager's IoCompleteRequest function to 
inform it that it has finished processing the IRP's request, and the 
I/O manager completes the I/O request. 

These seven steps are illustrated in Figure 9-21. 

<D 1/0 request passes 
through subsystem DLL 

® NtWriteFile(file_hand/e, ... , 
chacbuffer) 

® Create IRP and send 
it to device driver 

GBEJ 

@ Transfer data 
specified in IRP 

Figure 9-21 

Services 

110 manager 

Device 
driver 

o Complete IRP and return 
success or error status 

® Handle interrupt and 
return success or 
error status 

Queuing and completing a synchronous request 

User mode 

Kernel mode 

591 



INSIDE MICROSOFT WINDOWS 2000 

592 

Now that we've seen how an I/O is initiated, let's take a closer look at 
interrupt processing and I/O completion. 

Servicing an Interrupt 
Mter an I/O device completes a data transfer, it interrupts for service and the 
Windows 2000 kernel, I/O manager, and device driver are called into action. 
Figure 9-22 illustrates the first phase of the process. (Chapter 3 describes the 
interrupt dispatching mechanism, including DPCs. We've included a brief re
cap here because DPCs are key to I/O processing.) 

Device driver 

\ Dispatch 
routine(s) 

\ 

Start 1/0 

® The ISR stops the device 
interrupt and queues a DPC. 

( DPC 1-<- -~ ..... - - .. ~ 
# 

# 

DPe queue 

<D The device 
interrupts for 
service. 

Figure 9-22 

High 

Device IRQL 

OPeldispatch 

APe 

Passive 

Servicing a device interrupt (phase 1) 

ISR 
ope 

routine(s) 

® The kernel's interrupt 
dispatcher transfers control 
to the device's service routine. , 
-./ 

IRQL 



N I N E: I/O System 

When a device interrupt occurs, the processor transfers control to the kernel 
trap handler, which indexes into its interrupt dispatch table to locate the ISR 
for the device. ISRs in Windows 2000 typically handle device interrupts in two 
steps. When an ISRis first invoked, it usually remains at device IRQL only long 
enough to capture the device status and then stop the device's interrupt. It then 
queues a DPC and exits, dismissing the interrupt. Later, when the DPC rou
tine is called, the device finishes processing the interrupt. When that's done, the 
device calls the I/O manager to complete the I/O and dispose of the IRP. It 
might also start the next I/O request that is waiting in the device queue. 

The advantage of using a DPC to perform most of the device servicing is 
that any blocked interrupt whose priority lies between the device IRQL and the 
DPC/dispatch IRQL is allowed to occur before the lower-priority DPC pro
cessing occurs. Intermediate-level interrupts are thus serviced more promptly 
than they otherwise would be. This second phase of an I/O (the DPC process
ing) is illustrated in Figure 9-23. 

Completing an 1/0 Request 
After a device driver's DPC routine has executed, some work still remains before 
the I/O request can be considered finished. This third stage of I/O process
ing is called I/O completion and is initiated when a driver calls IoCompleteRequest 
to inform the I/O manager that it is through processing the request specified 
in the IRP (and the stack location that it owns). The steps I/O completion entails 
vary with different I/O operations. For example, all the I/O services record the 
outcome of the operation in an I/O status block, a data structure the caller sup
plies. Similarly, some services that perform buffered I/O require the I/O sys
tem to return data to the calling thread. 

In both cases, the I/O system must copy some data that is stored in system 
memory into the caller's virtual address space. If the IRP completed synchro
nously, the caller's address space is current and directly accessible, but if the IRP 
completed asynchronously, the I/O manager must delay IRP completion until 
it can access the caller's address spac:e. To gain access to the caller's virtual address 
space, the I/O manager must transfer the data "in the context of the caller's 
thread"-that is, while the caller's thread is executing (which means that caller's 
process is the current process and has its address space active on the processor). 
It does so by queuing a kernel-mode asynchronous procedure call (APC) to the 
thread. This process is illustrated in Figure 9-24. 

As explained in Chapter 3, APCs execute in the context of a particular 
thread, whereas a DPC executes in arbitrary thread context, meaning that the 
DPC routine can't touch the user-mode process address space. Remember too 
that DPCs have a higher software interrupt priority than APCs. 

593 



INSIDE MICROSOFT WINDOWS 2000 

Device driver 

Dispatch 
routine(s) Start 1/0 

® The DPC routine starts the next 1/0 
request in the device queue and 
then completes interrupt servicing. 

~-->~"-~ 
Device queue 

ISR 

High 

Device IRQL 

<D The IRQL drops, and 

DPe processing occurs. DPe/dispatch 

[DPC] > APe 

........ ~ Passive 
## 

DPe 
routine(s) 

® The interrupt dispatcher 
transfers control to the 
driver's DPe routine. 

\ · 
· r 

· 

· 
· 
· -../ 

• IRQL 
~ 

~"- -§}<- - -@Q) 
DPCqueue 

Figure 9-23 
Servicing a device interrupt (phase 2) 

594 



N I N E: I/O System 

I/O manager 

"7 
® The I/O manager queues an 

APC to complete the I/O request 
in the caller's context. 

"' '~ CD The DPC routine calls the I/O 
manager to complete the 
original I/O request. 

Device driver 

Figure 9-24 

IRP 

Dispatch 
routine(s) 

-> 

Start I/O 

IRP 

Thread's APe queue 

Completing an I/O request (phase 1) 

ISR 
ope 

routine(s) 

The next time that thread begins to execute at low IRQL, the pending APC 
is delivered. The kernel transfers control to the I/O manager's APC routine, 
which copies the data (if any) and the return status into the original caller's 
address space, frees the IRP representing the I/O operation, and sets the caller's 
file handle (and any caller-supplied event or I/O completion port) to the sig
naled state. The I/O is now considered complete. The original caller or any other 
threads that are waiting on the file (or other object) handle are released from 
their waiting state and readied for execution. 

Figure 9-25 illustrates the second stage ofI/O completion. 

595 



INSIDE MICROSOFT WINDOWS 2000 

Device printer 

User mode 

Kernel mode 

® The kernel-mode 
APC routine writes 
data to the thread's 
address space, sets 
the original file 
handle to the 
signaled state, 
queues any user
mode APCs for 
execution, and 
disposes of the IRP. 

<D The next time the 
caller's thread 
runs, an APC 
interrupt occurs. 

® The interrupt 
dispatcher transfers 
control to the 110 
manager's APC 
routine. 

596 

DPC/dispatch 
1------11 IRP IRP 

_~-~APC 
I-----ii 

Passive 

Thread's APe queue IRQL 

Figure 9-25 
Completing an I/O request (phase 2) 

A final note about I/O completion: the asynchronous I/O functions Read
FileEx and WriteFileEx allow a caller to supply a user-mode APe as a parameter. 
If the caller does so, the I/O manager queues this APe to the caller's thread 
APe queue as the last step of I/O completion. This feature allows a caller to 
specify a subroutine to be called when an I/O request is completed or canceled. 
User-mode APe completion routines execute in the context of the requesting 
thread and are delivered only when the thread enters an alertable wait state (such 
as calling the Win32 SleepEx, WaitForSingleObjectEx, or WaitFor MultipleObjectsEx 
function). 



N I N E: 1/0 System 

1/0 Requests to Layered Drivers 
The preceding section showed how an I/O request to a simple device controlled 
by a single device driver is handled. I/O processing for file-based devices or for 
requests to other layered drivers happens in much the same way. The major 
difference is, obviously, that one or more additional layers of processing are 
added to the model. 

Figure 9-26 shows how an asynchronous I/O request travels through 
layered drivers. It uses as an example a disk controlled by a file system. 

Once again, the I/O manager receives the request and creates an I/O 
request packet to represent it. This time, however, it delivers the packet to a file 
system driver. The file system driver exercises great control over the I/O opera
tion at that point. Depending on the type of request the caller made, the file 
system can send the same IRP to the disk driver or it can generate additional 
IRPs and send them separately to the disk driver. 

The file system is most likely to reuse an IRP if the request it receives trans
lates into a single straightforward request to a device. For example, if an appli
cation issues a read request for the first 512 bytes in a file stored on a floppy 
disk, the FAT file system would simply call the disk driver, asking it to read one 
sector from the floppy disk, beginning at the file's starting location. 

To accommodate its reuse by multiple drivers in a request to layered drivers, 
an IRP contains a series of IRP stack locations (not to be confused with the stack 
used by threads to store function parameters and return addresses). These data 
areas, one for every driver that will be called, contain the information that each 
driver needs in order to execute its part of the request-for example, function 
code, parameters, and driver context information. As Figure 9-26 illustrates, 
additional stack locations are filled in as the IRP passes from one driver to the 
next. You can think of an IRP as being similar to a stack in the way data is added 
to it and removed from it during its lifetime. However, an IRP isn't associated 
with any particular process, and its allocated size doesn't grow and shrink. The 
I/O manager allocates an IRP from one ifits IRP look-aside lists or nonpaged 
system memory at the beginning of the I/O operation. 

After the disk driver finishes a data transfer, the disk interrupts and the 
I/O completes, as shown in Figure 9-27. 

597 



INSIDE MICROSOFT WINDOWS 2000 

<D Call 1/0 service 

® 1/0 manager creates IRP, fills 
in first stack location, and calls 
a file system driver. 

current---"fil:IJ1~;~:;":] 

® File system driver fills in a 
second IRP stack location 
and calls the disk driver. 

@ Send IRP data to device (or 
queue IRP) and return 

Figure 9-26 

Services 

1/0 manager 

system 
driver 

Disk 
driver 

<V Return 1/0 pending status 

® Return 1/0 pending status 

® Return 1/0 pending status 

Queuing an asynchronous request to layered drivers 

598 

User mode 

Kernel mode 



Services 

vo manager 

File 
system 
driver 

Disk 
driver 

Figure 9-27 

N I N E: I/O System 

@) During I/O completion, results are returned 
to the caller's address space. 

User mode 

Kernel mode 

® The file system driver performs 

~ 
any necessary cleanup work. 

IRP 
f"!2f)!w'dWfl,!.- Current 

® The disk driver services the interrupt 
and then queues a DPC to complete 
the 110, which will "pop" the second 
stack location off the IRP stack and 
call the file system driver. 

Device-level interrupt occurs 

Completing a layered I/O request 

As an alternative to reusing a single IRP, a file system can establish a group 
of associated IRPs that work in parallel on a single I/O request. For example, 
if the data to be read from a file is dispersed across the disk, the file system driver 
might create several IRPs, each of which reads some portion of the request from 
a different sector. This queuing is illustrated in Figure 9-28. 

599 



INSIDE MICROSOFT WINDOWS 2000 

600 

<D Call I/O service 

® I/O manager creates an IRP 
and calls a file system driver. 

[IRPO) 

® File system driver creates 
associated IRPs and calls 
the disk driver one or more 
times. 

~"'[IRPn) 

@ Queue IRPs to the 
device and return 

~".[IRPn) 

Figure 9-28 
Queuing associated IRPs 

Services 

UO manager 

system 
driver 

<V Return I/O pending status 

User mode 

Kernel mode 

® Return I/O pending status 

® Return I/O pending status 

The file system driver delivers the associated IRPs to the device driver, 
which queues them to the device. They are processed one at a time, and the file 
system driver keeps track of the returned data. When all the associated IRPs com
plete, the I/O system completes the original IRP and returns to the caller, as 
shown in Figure 9-29. 



N I N E: 1/0 System 

@ When all associated IRPs complete, the 
original IRP completes, returning status 
information or data to the caller. User mode 

Kernel mode 

Services 

110 manager 

File 
system 
driver 

Disk 
driver 

Figure 9-29 
Completing associated IRPs 

® Step 9 repeats, completing IRPs 
2 through n, and the file system 
performs cleanup after each one. 

® The disk driver services the interrupt and 
then queues a ope, which starts the next 
IRP on the device and calls the 1/0 
manager to complete the first IRP. 

CD After transferring data for one IRP, 
the device interrupts. 

NOT E All Windows 2000 file system drivers that manage disk
based file systems are part of a stack of drivers that is at least three layers 
deep: the file system driver sits at the top, a volume manager in the 
middle, and a disk driver at the bottom. In addition, any number of 
filter drivers can be interspersed above and below these drivers. For 
clarity, the preceding example oflayered I/O requests includes only 
a file system driver and a disk device driver. See Chapter 10, on stor
age management, for more information. 

601 



INSIDE MICROSOFT WINDOWS 2000 

1/0 Completion Port Operation 

602 

Win32 applications create completion ports by calling the Win32 API CreateIo
CompletionPort and specifying a NULL completion port handle. This results 
in the execution of the NtCreateIoCompletion system service. The executive's 
IoCompletion object is based on the kernel synchronization object called a queue. 
Thus, the system service creates a completion port object and initializes a queue 
object in the port's allocated memory. (A pointer to the port also points to the 
queue object because the queue is at the start of the port memory.) A queue 
object has a concurrency value that is specified when a thread initializes one, 
and in this case the value that is used is the one that was passed to CreateIo
CompletionPort. KeInitializeQueue is the function that NtCreateIoCompletion 
calls to initialize a port's queue object. 

When an application calls CreateIoCompletionPort to associate a file handle 
with a port, the NtSetInformationFile system service is executed with the file 
handle as the primary parameter. The information class that is set is FileCompletion
Information, and the completion port's handle and the CompletionKey parameter 
from CreateIoCompletionPort are the data values. NtSetInformationFile derefer
ences the file handle to obtain the file object and allocates a completion context 
data structure. 

Finally, NtSetlnformationFile sets the Completion Context field in the file 
object to point at the context structure. When an asynchronous I/O opera
tion completes on a file object, the I/O manager checks to see whether the 
CompletionContextfield in the file object is non-NULL. Ifit is, the I/O man
ager allocates a completion packet and queues it to the completion port by calling 
KeInsertQueuewith the port as the queue on which to insert the packet. (Remem
ber that the completion port object and queue object are synonymous.) 

When a server thread invokes GetQueuedCompletionStatus, the system 
service NtRemoveIoCompletion is executed. Mter validating parameters and 
translating the completion port handle to a pointer to the port, NtRemoveIo
Completion calls KeRemoveQueue. 

As you can see, KeRemoveQ;teue and KeInsertQueue are the engines behind 
completion ports. They are the functions that determine whether a thread 
waiting for an I/O completion packet should be activated. Internally, a queue 
object maintains a count of the current number of active threads and the maxi
mum number of active threads. If the current number equals or exceeds the 
maximum when a thread calls KeRemoveQueue, the thread will be put (in LIFO 
order) onto a list of threads waiting for a turn to process a completion packet. 
The list of threads hangs off the queue object. A thread's control block data 



N I N E: 1/0 System 

structure has a pointer in it that references the queue object of a queue that it's 
associated with; if the pointer is NULL, the thread isn't associated with a queue. 

Windows 2000 keeps track of threads that become inactive because they 
block on something other than the completion port by relying on the queue 
pointer in a thread's control block. The scheduler routines that possibly result 
in a thread blocking (such as KeWaitForSingleObject, KeDelayExecutionThread, 
and so on) check the thread's queue pointer. If the pointer isn't NULL, the 
functions call KiActivate WaiterQueue, a queue-related function that decrements 
the count of active threads associated with the queue. If the resultant number 
is less than the maximum and at least one completion packet is in the queue, 
the thread at the front of the queue's thread list is awakened and given the oldest 
packet. Conversely, whenever a thread that is associated with a queue wakes up 
after blocking, the scheduler executes the function KiUnwaitThread, which 
increments the queue's active count. 

Finally, the PostQ;.teuedCompletionStatus Win32 API function results in the 
execution of the NtSetloCompletion system service. This function simply inserts 
the specified packet onto the completion port's queue by using KelnsertQueue. 

Figure 9-30 shows an example of a completion port object in operation. 
Even though two threads are ready to process completion packets, the concurrency 
value of 1 allows only one thread associated with the completion port to be 
active, and so the two threads are blocked on the completion port. 

Figure 9-30 
I/O completion port operation 

603 



INSIDE MICROSOFT WINDOWS 2000 

Synchronization 

604 

Drivers must synchronize their access to global driver data and hardware regis
ters for two reasons: 

• The execution of a driver can be preempted by higher-priority 
threads and time-slice (or quantum) expiration or can be interrupted 
by interrupts. 

• On multiprocessor systems, Windows 2000 can run driver code 
simultaneously on more than one processor. 

Without synchronization, corruption could occur-for example, because 
device driver code running at a passive IRQL when a caller initiates an I/O 
operation can be interrupted by a device interrupt, causing the device driver's 
ISR to execute while its own device driver is already running. If the device driver 
was modifying data that its ISR also modifies, such as device registers, heap 
storage, or static data, the data can become corrupted when the ISR executes. 
Figure 9-31 illustrates this problem. 

~ __ ~.".. Device IRQL 

Passive IRQL 

Figure 9-31 

""'-I-nt-e-rr-u-pt--" ® ISR executes and 
service writes shared data, 
routine possibly corrupting it 

(ISR) 

Dispatch 
routlne(s) 

<D Device driver is 
writing shared data 

Queuing an asynchronous request to layered drivers 

To avoid this situation, a device driver written for Windows 2000 must 
synchronize its access to any data that the device driver shares with its ISR Before 



N I N E: 110 System 

attempting to update shared data, the device driver must lock out all other 
threads (or CPUs, in the case of a multiprocessor system) to prevent them from 
updating the same data structure. 

The Windows 2000 kernel provides special synchronization routines that 
device drivers must call when they access data that their ISRs also access. These 
kernel-synchronization routines keep the ISR from executing while the shared 
data is being accessed. On a single CPU system, these routines raise the IRQL 
to a specified level before updating a structure. On a multiprocessor system, 
however, because a driver can execute on two or more processors at once, this 
technique isn't enough to block other accessors. Therefore, another mechanism, 
a spin/ack) is used to lock a structure for exclusive access from a particular CPU. 
(Spinlocks are explained in the section "Kernel Synchronization" in Chapter 3.) 

By now, you should realize that although ISRs require special attention, 
any data that a device driver uses is subject to being accessed by the same device 
driver running on another processor. Therefore, it's critical for device driver code 
to synchronize its use of any global or shared data (or any accesses to the physi
cal device itself). If the ISR uses that data, the device driver must use kernel
synchronization routines; otherwise, the device driver can use a kernel spinlock. 

Conclusion 
The I/O system defines the model of I/O processing on Windows 2000 and 
performs functions that are common to or required by more than one driver. 
Its chief responsibility is to create IRPs representing I/O requests and to shep
herd the packets through various drivers, returning results to the caller when 
an I/O is complete. The I/O manager locates various drivers and devices by 
using I/O system objects, including driver and device objects. Internally, the 
Windows 2000 I/O system operates asynchronously to achieve high perfor
mance and provides both synchronous and asynchronous I/O capabilities to 
user-mode applications. 

Device drivers include not only traditional hardware device drivers but also 
file system, network, and layered filter drivers. All drivers have a common struc
ture and communicate with one another and the I/O manager by using com
mon mechanisms. The I/O system interfaces allow drivers to be written in a 
high-level language to lessen development time and to enhance their portabil
ity. Because drivers present a common structure to the operating system, they 

605 



INSIDE MICROSOFT WINDOWS 2000 

606 

can be layered one on top of another to achieve modularity and reduce dupli
cation between drivers. Also, all Windows 2000 device drivers should be designed 
to work correctly on multiprocessor systems. 

Finally, the role of the PnP manager is to work with device drivers to dyna
mically detect hardware devices and to build an internal device tree that guides 
hardware device enumeration and driver installation. The power manager works 
with device drivers to move devices into low-power states when applicable to 
conserve energy and prolong battery life. 

The final four chapters cover additional topics related to the I/O system: 
storage management, file systems (including details on the NTFS file system), 
the cache manager, and networking. 



C HAP T E R TEN 

Storage Management 

Storage management defines the way that an operating system interfaces with 
nonvolatile storage devices and media. The term storage encompasses many 
different devices, including tape drives, optical media, CD jukeboxes, floppy 
diskettes, and hard disks. Microsoft Windows 2000 provides specialized support 
for each of these classes of storage media. Because our focus in this book is on 
the kernel components of Windows 2000, in this chapter we'll concentrate on 
just the fundamentals of the hard disk storage subsystem in Windows 2000. 
Significant portions of the Windows 2000 support for removable media and 
remote storage (offline archiving) are implemented in user mode. 

In this chapter, we'll define basic and dynamic disks and explain how they 
are partitioned. We'll then examille how kernel-mode device drivers interface 
file system drivers to disk media. We'll also go over the implementation of 
multipartition disk-management features in Windows 2000, including replicat
ing and dividing ftle system data across physical disks for reliability and for per
formance enhancement. We conclude the chapter with a look at the process that 
Windows 2000 uses to assign drive letters and a discussion of how file system 
drivers mount volumes they are. responsible for managing. 

The Evolution of Windows 2000 Storage 
The evolution of storage management in Windows 2000 begins with MS-DOS, 
Microsoft's first operating system. As hard disks became larger, MS-DOS needed 
to accommodate them. To do so, one of the first steps Microsoft took was to 
let MS-DOS create multiple partitions, or logical disks, on a physical disk. 
MS-DOS could format each partition with a different ftlesystem type (FAT12 
orFAT16) and assign each partition a different drive letter. MS-DOS versions 
3 and 4 were severely limited in the size and number of partitions they could 
create, but in MS-DOS 5 the partitioning scheme fully matured. MS-DOS 5 
was able to divide.a disk into any number of partitions of any size. 

607 



INSIDE MICROSOFT WINDOWS 2000 

608 

Windows NT borrowed the partitioning scheme that evolved in MS-DOS 
both to provide disk compatibility with MS-DOS and Windows 3.x and to let 
the Windows NT development team rely on proven tools for disk management. 
Microsoft extended the basic concepts ofMS-DOS disk partitioning in Windows 
NT to support storage-management features that an enterprise-class operating 
system requires: disk spanning and fault tolerance. Starting with the first ver
sion of Windows NT, version 3.1, systems administrators have been able to create 
volumes that comprise multiple partitions, which allows large volumes to con
sist of partitions from multiple physical disks and to implement fault tolerance 
through software-based data redundancy. 

Although this MS-DOS-style partitioning support in versions of 
Windows NT prior to Wmdows 2000 is flexible enough to support most storage
management tasks, it suffers from several drawbacks. One drawback is that most 
disk-configuration changes require a reboot before taking effect. In today's 
world of servers that must remain on line for months or even years at a time, 
any reboot-even a planned reboot-is a major inconvenience. Another draw
back is that the Windows NT 4 registry stores multipartition disk-configuration 
information for MS-DOS-style partitions. This arrangement means that moving 
configuration information is onerous when you move disks between systems, 
and you can easily lose configuration information when you need to reinstall the 
operating system. Finally, a requirement that each volume have a unique drive 
letter in the A through Z range plagues users of all Microsoft operating systems 
prior to Windows 2000 with an upper limit on the number of possible local and 
remote volumes they can create. 

To fully understand the rest of this chapter, you need to be familiar with 
some basic terminology: 

III Disks are a physical storage device such as a hard disk, a 3.5-inch 
floppy disk, or a CD-ROM. 

III A disk is divide9. into sectors, addressable blocks of fixed size. Sector 
sizes are determined by hardware. All current x86-processor hard disk 
sectors are 512 bytes, and CD-ROM sectors are typically 2048 bytes. 
(Future x86 systems might support larger hard disk sector sizes.) 

III Partitions are collections of contiguous sectors on a disk. A partition 
table or other disk-management database stores a partition's starting 
sector, size, and other characteristics. 

III Simple volumes are objects that represent sectors from a single 
partition that file system drivers manage as a single unit. 



TEN: Storage Management 

• Multipartitionvolumes are objects that represent sectors from 
multiple partitions and that file system drivers manage as a single 
unit. Multipartition volumes offer performance, reliability, and sizing 
features that simple volumes do not. 

Partitioning 
Windows 2000 introduces the concept of basic and dynamic disks. Windows 
2000 calls disks that rely on the MS-DOS-style partitioning scheme basic disks. 
In a sense, basic disks are Windows 2000 legacy disks. Dynamic disks are new to 
Windows 2000 and implement a more flexible partitioning scheme than that of 
basic disks. The fundamental difference between basic and dynamic disks is that 
dynamic disks support the creation of new multipartition volumes. (Basic disks 
support only multipartition volumes carried forward from an upgraded Windows 
NT 4 installation.) Recall from the list of terms in the preceding section that 
multipartition volumes provide performance, sizing, and reliability features not 
supported by simple volumes. Multipartition-volume configuration information 
for basic disks is stored in the registry; storage of multipartition-volume con
figuration information for dynamic disks is on-disk. Storing multipartition
volume configuration information on-disk rather than in the registry ties the 
dynamic disk to the storage it describes, soJosing configuration data is less likely 
and moving disks between systems is easier .. 

Windows 2000 manages all disks as basic disks unless you manually create 
dynamic disks or convert existing basic disks (with enough free space) to dynamic 
disks. To encourage administrators to use dynamic disks, Microsoft has imposed 
some usage limitations on basic disks. For example, you can create new multi
partition volumes only on dynamic disks. (If you upgrade a Windows NT 4 
system, Windows 2000 will support existing multipartition volumes.) Another 
limitation is that Wmdows 2000 lets you dynamically grow NTFS volumes only 
on dynamic disks. A disadvantage to dynamic disks is that the partitioning for
mat they use is proprietary and incompatible with other operating systems, 
including all other versions of Windows. Thus, you can't access dynamic disks 
in a dual-boot environment. 

NOT E For a number of reasons, including the fact that laptops 
usually have only one disk and laptop disks typically don't move easily 
between computers, Windows 2000 uses only basic disks on laptops. 
In addition, only fixed disks can be dynamic, and disks located on 
IEEE 1394 or USB buses as well as on shared cluster server disks are 
always basic disks. 

609 



INSIDE MICROSOFT WINDOWS 2000 

Basic Partitioning 

610 

When you install Windows 2000 on a computer, one of the first things it requires 
you to do is to create a partition on the system's primary physical disk. Windows 
2000 defines the system volume on this partition to store the files that it invokes 
early in the boot process. In addition, Windows 2000 Setup requires you to 
create a partition that serves as the home for the boot volume, onto which the 
setup program installs the Windows 2000 system files and creates the system 
directory (\Winnt). The system and boot volumes can be the same volume, in 
which case you don't have to create a new partition for the boot volume. The 
nomenclature that Microsoft defines for system and boot volumes is somewhat 
confusing. The system volume is where Windows 2000 places boot files, includ
ing the boot loader (Ntldr) and Ntdetect, and the boot volume is where Wmdows 
2000 stores operating system files such as Ntoskrnl.exe, the core kernel file. 

The standard BIOS implementations that x86 hardware uses dictate one 
requirement of the partitioning format in Windows 2000-that the first sector 
of the primary disk contains the master boot record (MBR). When an x86 pro
cessor boots, the computer's BIOS reads the MBRand treats part of the MBR's 
contents as executable code. The BIOS invokes the MBR code to initiate an 
operating system boot process after the BIOS performs preliminary configura
tion of the computer's hardware. In Microsoft operating systems, including 
Windows 2000, the MBR also contains a partition table. A partition table con
sists of four entries that define the locations of as many as four primaryparti
tions on a disk. The partition table also records a partition's type. Numerous 
predefined partition types exist, and a partition's type specifies which file system 
the partition includes. For example, partition types exist for FAT32 and NTFS. 
A special partition type, an extended partition, contains another MBR with its 
own partition table. By using extended partitions, Microsoft's operating systems 
overcome the apparent limit of four partitions per disk. In general, the recur
sion that extended partitions permit can continue indefinitely, which means that 
no upper limit exists to the number of possible partitions on a disk. Figure 4-1 
on page 179 shows an example disk-partitioning scenario.The Windows 2000 
boot process makes evident the distinction between primary and extended par
titions. The system must mark one primary partition of the primary disk as active. 
The Windows 2000 code in the MBR loads the code stored in the first sector 
of the active partition (the system volume) into memory and then transfers 
control to that r.:ode. Because of the role in the boot process played by this first 
sector in the primary partition, Windows 2000 designates the first sector of any 
partition as the boot sector. Recall from Chapter 4 that every partition formatted 



TEN: Storage Management 

with a file system has a boot sector that stores information about the structure 
of the file system on that partition. 

NOT E Because Windows 2000 doesn't support the creation of 
multipartition volumes on basic disks, a new basic disk partition (as 
opposed to a multipartition volume migrated from a Windows NT 4 
upgrade) is the equivalent of a volume. For this reason, the Disk 
Management MMC snap-in uses the term partition when you create 
a volume on a basic disk. 

Dynamic Partitioning 
As we've stated, dynamic disks are the favored disk format in Windows 2000 
and are necessary for creating new multipartition volumes. The Logical Disk 
Manager (LDM) subsystem in Windows 2000, which consists of user-mode and 
device driver components, oversees dynamic disks. Microsoft licenses LDM 
from VERITAS Software, which originally developed LDM technology for 
UNIX systems. Working closely with Microsoft, VERITAS ported its LDM 
to Windows 2000 to provide the operating system with more robust partitioning 
and multipartition volume capabilities. A major difference between LDM's par
titioning and MS-DOS-style partitioning is that LDM maintains one unified 
database that stores partitioning information for all the dynamic disks on a sys
tem-including multipartitioncvolume configuration. LDM's UNIX version 
incorporates disk groups) in which all the dynamic disks that the system assigns 
to a disk group share a common database. VERITAS's commercial volume
management software for Windows 2000 also includes disk groups, but the 
Windows 2000 LDM implementation includes only one disk group. 

The LDM database resides in a 1-MB reserved space at the end of each 
dynamic disk. The need for this space is the reason Windows 2000 requires free 
space at the end of a basic disk before you can convert it to a dynamic disk. 
Although the partitioning data of a dynamic disk resides in the LDM data
base, LDM implements an MS-DOS-style partition table so that legacy disk
management utilities, including those that run under Windows 2000 and under 
other operating systems in dual-boot environments, don't mistakenly believe a 
dynamic disk isunpartitioned. Because LDM partitions aren't described in the 
MS-DOS-style partition table of a disk, they are called soft partitions; MS-DOS
style partitions 3.fe called hard partitions. 

Another reason LDM creates an MS-DOS-style partition table is so that 
the Windows 2000 boot code can find the system and boot volumes, even if the 
volumes are on dynamic disks. (Ntldr, for example, knows nothing about LDM 

611 



INSIDE MICROSOFT WINDOWS 2000 

612 

partitioning.) If a disk contains the system or boot volumes, hard partitions in 
the MS-DOS partition table describe the location of those volumes. Otherwise, 
one hard partition begins at the first cylinder of the disk (typically 63 sectors into 
the disk) and extends to the beginning of the LDM database. LDM marks this 
partition as type "LDM," an MS-DOS-style partition type new to Windows 2000. 
The region encompassed by this place-holding MS-DOS-style partition is where 
LDM creates soft partitions that the LDM database organizes. Figure 10-1 
illustrates this dynamic disk layout. 

Master boot record LDM partition area LDM database 

Figure 10-1 
Internal dynamic disk organization 

The LDM database consists of four regions, which Figure 10-2 shows: 
a header sector that LDM calls the Private Header, a table of contents area, a 
database records area, and a transactional log area. (The fifth region shown in 
Figure 10-2 is simply a copy of the Private Header.) The Private Header sector 
resides 1 MB before the end of a dynamic disk and anchors the database. As you 
spend time with Windows 2000, you'll quickly notice that it uses GUIDs to 
identify just about everything, and disks are no exception. A GUID (globally 
unique identifier) is a 128 -bit value that various components in Windows 2000 
use to uniquely identify objects. LDM assigns each dynamic disk a GUID, and 
the Private Header sector notes the GUID of the dynamic disk on which it 
resides-hence the Private Header's designation as information that is private 
to the disk. The Private Header also stores the name of the disk group, which 
is the name of the computer concatenated with DgO (for example, SusanDgO 
if the computer's name is Susan), and a pointer to the beginning of the data
base table of contents. (As mentioned earlier, the Windows 2000 implemen
tation ofLDM includes only one disk group, so the disk group name will always 
end with DgO.) For reliability, LD M keeps a copy of the Private Header in the 
disk's last sector. 

The database table of contents is 16 sectors in size and contains informa
tion regarding the database's layout. LDM begins the database record area 
immediately following the table of contents with a sector that serves as the 



Private Header 

Figure 10-2 

Database 
record header 

LDM databaselayout 

1 MB 

Database 
records 

TEN: Storage Management 

Private Header 
mirror 

database record header. This sector stores information about the database record 
area, including the number of records it contains, the name and GUID of the 
disk group the database relates to, and a sequence number identifier that LDM 
uses for the next entry it creates in the database. Sectors following the database 
record header contain l28-byte fixed-size records that store entries that describe 
the disk group's partitions and volumes. 

A database entry can be one of four types: partition, disk, component, and 
volume. LDMuses the database entry types to identify three levels that describe 
volumes. LDM connects entries with internal obje~t identifiers. At the lowest 
level, partition entries describe soft partitions, which are contiguous regions on 
a disk; identifiers stored in a partition entry link the entry to a component and 
disk entry. A disk entry represents a dynamic disk that is part of the disk group 
and includes the disk's GUID. A component entry serves as a connector between 
one or mote partition entries and the volume entry each partition is associated 
with. A volume entry stores the GUID of the volume, the volume's total size 

. and state, and a drive-letter hint. Disk entries that are larger than a database 
record span multiple records; partition, component, and volume entries rarely 
span multiple records. 

LDM requires three entries to describe a simple volume: a partition, com
ponent,and volume entry. The following listing shows the contents of a simple 
LDMdatabase that defines one 200-MB volume that consists of one partition: 

Dis~ Entry Volume Entry 
~ame: Diskl ~ame: Volumel 
GUID: XXX-XX ... ID: 0x408 
Disk ID: 0x404 State: ACTIVE 

Size: 200MB 
GUID: XXX-XX .•. 
Drive Hint: H: 

Component Entry 
~ame: Volumel-0l 
ID: 0x409 
Parent ID: 0x408 

Partition Entry 
Name: Di skl-0I 
ID: 0x407 
Parent ID: 0x409 
Disk ID: 0x404 
Start: 300MB 
Size: 200MB 

613 



INSIDE MICROSOFT WINDOWS 2000 

614 

The partition entry describes the area on a disk that the system assigned 
to the volume, the component entry connects the partition entry with the vol
ume entry, and the volume entry contains the GUID that Windows 2000 uses 
internally to identify the volume. Multipartition volumes require more than three 
entries. For example, a striped volume (striped volumes are described later in 
the chapter) consists of at least two partition entries, a component entry, and a 
volume entry. The only volume type that has more than one component entry 
is a mirror; mirrors have two component entries, each of which represents one
half of the mirror. LDM uses two component entries for mirrors so that when 
you break a mirror, LDM can split it at the component level, creating two vol
umes with one component entry each. Because a simple volume requires three 
entries and the 1-MB database contains space for approximately 8000 entries, the 
effective upper limit on the number of volumes you can create on a Wmdows 2000 
system is approximately 2500. 

The final area of the LDM database is the transactional log area, which 
consists of a few sectors for storing backup database information as the infor
mation is modified. This setup safeguards the database in case of a crash or power 
failure because LDM can use the log to return the database to a consistent state. 



TEN: Storage Management 

615 



INSIDE MICROSOFT WINDOWS 2000 

616 



TEN: Storage Management 

Storage Drivers 
As you saw in Chapter 4, Ntldr is the Windows 2000 operating system file that 
conducts the first portion of the Windows boot process. Ntldr resides on the 
system volume; the boot-sector code on the system volume executes Ntldr. Ntldr 

617 



INSIDE MICROSOFT WINDOWS 2000 

reads the Boot.ini file from the system volume and presents the computer's boot 
choices to the user. The partition names that Boot.ini designates are in the form 
multi( 0 )disk( 0 )rdisk( 0 )partition( 1). These names are Advanced RISC Com
puting (ARC) names because they're part of a standard partition-naming scheme 
that Alpha firmware and other RISC processors use. Ntldr translates the name 
of the Boot.ini boot entry that a user selects to the appropriate boot partition 
and then loads the Windows 2000 system files (starting with the registry, 
Ntoskrnl.exe, and the boot drivers) into memory to continue the boot process. 

Disk Drivers 

618 

During initialization, the Windows 2000 I/O manager starts the hard disk 
storage drivers. Storage drivers in Windows 2000 follow a class/port/miniport 
architecture, in which Microsoft supplies a storage class driver that implements 
functionality common to all storage devices and a storage port driver that imple
ments functionality common to a particular bus, such as a Small Computer 
System Interface (SCSI) bus or an Integrated Devise Electronics (IDE) system, 
and OEMs supply miniport drivers that plug into the port driver to interface 
Windows 2000 to a particular implementation. 

In the disk storage driver architecture, only class drivers conform to the 
standard Windows 2000 device driver interfaces. Miniport drivers use a port 
driver interface instead of the device driver interface, and the port driver simply 
implements a collection of device driver support routines that interface miniport 
drivers to Windows 2000. This approach simplifies the role of miniport driver 
developers and, because Microsoft supplies operating system-specific port driv
ers, gives miniport drivers binary portability between Microsoft Windows 98, 
Microsoft Windows Millennium Edition, and Windows 2000. 

Windows 2000 includes Disk (\Winnt\System32\Drivers\Disk.sys), a class 
driver that implements functionality common to disks. Windows 2000 also 
provides a handful of disk port drivers. For example, Scsiport.sys is the port driver 
for disks on SCSI buses, and Pciidex.sys is a port driver for IDE-based systems. 
Wmdows 2000 ships with several miniport drivers, including one-Aha154x.sys
for Adaptec's 1540 family of SCSI controllers. On systems that have at least one 
ATAPI-based IDE device, one driver-Atapi.sys-combines port and miniport 
functionality. Most Windows 2000 installations include one or more of the 
drivers mentioned. 



TEN: Storage Management 

Device Naming 
The Windows 2000 disk class driver creates device objects that represent disks 
and partitions. Device objects that represent disks have names of the form \Device\ 
HarddiskX\DRX; the number that identifies the disk replaces both Xs. The disk 
class driver uses the I/O manager's IoReadPartitionTable function to identify 
device objects that represent partitions. As miniport drivers present the disks that 
they identify early in the boot process to the disk class driver, the disk class driver 
invokes the IoReadPartition Table function for each disk. IoReadPartition Table 
invokes sector-level disk I/O that the class, port, and miniport drivers provide 
to read a disk's MS-DOS-style partition table and construct an internal repre
sentation of the disk's hard partitioning. The disk class driver creates device 
objects to represent each primary partition (including primary partitions within 
extended partitions) that the driver obtains from IoReadPartitionTable. The 
following is an example partition object name: 

\Device\HarddiskO\DP( 1 )Ox7 eOOO-Ox7ffSOcOO+2 

This name identifies the first partition on a system's first disk. The first two 
hexadecimal numbers (Ox7eOOO and Ox7ffSOcOO) designate the start and length 
of the partition, and the last number is an internal identifier that the class driver 
assigns. 

To maintain compatibility with applications that use the Windows NT 4 
naming conventions, the disk class driver creates symbolic links with Windows 
NT 4-formatted names that refer to the device objects the driver created. For 
example, the Disk class driver creates the link \Device\HarddiskO\partitionO to refer 
to \Device\HarddiskO\DRO, and \Device\HarddiskO\Partitionl to refer to the 
first partition device object of the first disk. The class driver also creates the same 
Win32 symbolic links in Windows 2000 that represent physical drives that it 
created in Windows NT 4 systems. Thus, for example, the link \? ?\PhysicalDriveO 
references \Device\HarddiskO\D RO. Figure 10-3 shows the Wmobj utility (avail
able on the companion CD in \Sysint\Winobj.exe) displaying the contents of a 
Harddisk directory for a basic disk. You can see the physical disk and partition 
device objects in the right-hand pane. 

619 



INSIDE MICROSOFT WINDOWS 2000 

j i· H5Oisk2 
; L. WilDls: 
riHillW_ $ ... 5 .. _ 
, ...• RPCCont/OI 
S .. \iiiI BateN.ernedObiec~ 
; I ..... R_'" 
1 .. -&l7? 
j .. ··.FileSysiem 
; ..... ObjectType$ 
! ..... SeCl.lity 

1:= .. 

Figure 10-3 

i~:~=E:'~:'5 De,;,. 
D"';" 
SymboIicLilk \Oevice\HardciskO\DRO 
S~boIicUJk \Oeyice\HardliskVoUrie1 
S}lmbolc:t.Wt \De ... ica\HarddiskVobne2 
SymboicLilk \Deyice\H~uddiakVok.ma3 

Winobj showing a Harddisk directory of a basic disk 

As you saw in Chapter 3, the Win32 API is unaware of the Windows 2000 
object manager namespace. Windows 2000 reserves two different namespace 
subdirectories for Win32 to use, one of which is the \?? subdirectory. (The other 
is the \BaseNamedObjects subdirectory, which is covered in Chapter 3.) In this 
subdirectory, Windows 2000 makes available device objects that Win32 applica
tions interact with-including COM and parallel ports-as well as disks. Because 
disk objects actually reside in other subdirectories, Windows 2000. uses symbolic 
links to connect names under \?? with objects located elsewhere in the namespace. 
For each physical disk on a system, the I/O manager creates a \??\PhysicalDriveX 
link that points to \Device\HarddiskX\PartitionO. (Numbers, starting from 0, 
replace X.) Win32 applications that directly interact with the sectors on a disk 
open the disk by calling the Win32 CreateFile function and specifying the name 
\ \.\physicalDriveX (in which X is the disk number) as a parameter. The Win32 
application layer converts the name to \? ?\PhysicalDriveX before handing the 
name to the Windows 2000 object manager. 

Basic Disk Management 

620 

The FtDisk driver (\ Winnt\System32\Drivers\Ftdisk.sys) creates disk device ob
jects that represent volumes on basic disks. FtDisk is present in Windows NT 4 
only when at least one multipartition volume is present; in Windows 2000, 
FtDisk plays an integral role in managing all basic disk volumes, including simple 
volumes. For each volume, FtDisk creates a device object of the form \Device\ 



TEN: Storage Management 

HarddiskVolumeX, in which X is a number (starting from I) that identifies the 
volume. FtDisk uses the basic disk configuration information that the registry 
key HKLM\SYSTEM\Disk stores to determine what basic volumes, multipartition 
and otherwise, a system includes. Note that the Disk key is only on Windows 2000 
systems that were upgraded from Windows NT 4 (or Windows 98) and that 
already had a Disk key from previous disk -management activity (such as assigning 
drive letters to volumes or creating multipartition volumes). To avoid reliance 
on the registry, FtDisk migrates configuration information from the Disk key 
to hidden sectors on disk. 

FtDisk is actually a bus driver because it's responsible for enumerating 
basic disks to detect the presence of basic volumes and report them to the 
Windows 2000 Plug and Play(PnP) manager. To implement this enumera
tion, FtDisk leverages the PnP manager, with the aid of the partition manager 
(Partmgr.sys) driver, to determine what basic disk partitions exist. The parti
tion manager registers with the PnP manager so that Windows 2000 can inform 
the partition manager whenever the disk class driver creates a partition device 
object. The partition manager informs FtDisk about new partition objects 
through a private interface and creates filter device objects that the partition 
manager then attaches to the partition objects. The existence of the filter ob
jects prompts Windows 2000 to inform the partition manager whenever a parti
tion device object is deleted so that the partition manager can update FtDisk. The 
disk class driver deletes a partition device object when a partition in the Disk 
Management Microsoft Management Console (MMC) snap-in is deleted. As 
FtDisk becomes aware of partitions, it uses the basic disk configuration infor
mation to determine the correspondence of partitions to volumes and creates 
a volume device object when it has been informed of the presence of all the 
partitions in a volume's description. 

Windows 2000 volume drive-letter assignment, a process described shortly, 
creates drive-letter symbolic links under the \?? object manager directory that point 
to the volume device objects that FtDisk creates. When the system or an. appli
cation accesses a volume for the first time, Windows 2000 performs a mount 
operation that gives file system drivers the opportunity to recognize and claim 
ownership for volumes formatted with a file system type they manage. (Mount 
operations are described in the section "Volume Mounting" later in this chapter.) 

Dynamic Disk Management 
The Disk Management MMC sriap~in DLL (DMDiskManager, located in Wmnt\ 
System32\Dmdskmgr.dll), shown in Figure 10-4, uses the DMAdmin, the LDM 
Disk Administrator service (Winnt\System32\Dmadmin.exe), to create and change 

621 



INSIDE MICROSOFT WINDOWS 2000 

622 

Figure 10-4 
Disk Management MMC snap-in 

the contents of the LDM database. When you launch the Disk Management 
MMC snap-in, DMDiskManager loads into memory and starts DMAdmin, if 
it's not already running. DMAdmin reads the LDM database from each disk and 
returns the information it obtains to DMDiskManager. IfDMAdmin detects a 
database from another computer's disk group, it notes that the volumes on the 
disk are foreign and lets you import them into the current computer's database 
if you want to use them. As you change the configuration of dynamic disks, 
DMDiskManager informs DMAdmin of the changes and DMAdmin updates 
its in-memory copy of the database. When DMAdmin commits changes, it 
passes the updated database to DMIO, the Dmio.sys device driver. DMIO is 
the dynamic disk equivalent ofFtDisk, so it controls access to the on-disk data
base and creates device objects that represent the volumes on dynamic disks. 
When you exit Disk Management, DMDiskManager stops and unloads the 
DMAdmin service. 

DMIO doesn't know how to interpret the database it oversees. DMConfig 
(Winnt\System32\Dmconfig.dll), a DLL that DMAdmin loads, and another 
device driver, DMBoot (Dmboot.sys), are responsible forinterpreting the data
base. DMConfig knows how to both read and update the database; DMBoot 
knows only how to read the database. DMBoot loads during the boot process 



TEN: Storage Management 

if another LDM driver, DMLoad (Dmload.sys), determines that at least one 
dynamic disk is present on the system. DMLoad makes this determination by 
asking DMIO, and if at least one dynamic disk is present, DMLoad starts DMBoot, 
which scans the LDM database. DMBoot informs DMIO of the composition of 
each volume it encounters so that DMIO can create device objects to represent 
the volumes. DMBoot unloads from memory immediately after it finishes its 
scan. Because DMIO has no database interpretation logic, it is relatively small. 
Its small size is beneficial because DMIO is always loaded. 

Like FtDisk, DMIO is a bus driver and creates a device object for each 
dynamic disk volume with a name in the form \Device\HarddiskDmVolumes\ 
PhysicalDmVolumes\BlockVolumeX, in which X is an identifier that DMIO 
assigns to the volume. In addition, DMIO creates another device object that 
represents raw (unstructured) I/O in a volume named \Device\HarddiskDm
Volumes\PhysicaIDmVolumes\RawVolumeX. Figure 10-5 shows the device 
objects that DMIO created on a system that consists of two dynamic disk volumes. 
DMIO also creates numerous symbolic links in the object manager namespace 
for each volume, starting with one link in the form \Device\HarddiskDm Volumes\ 
Computer NameDgO\VolumeY for each volume. DMIOreplaces Computer Name 
with the name of the computer, and replaces Y with a volume identifier ( different 
from the internal identifier that DMIO assigns to the device objects). These links 
refer to the block-device objects under the PhysicalDmVolumes directory. 

Figure 10-5 
DMIO dril'erdtnJice objects 

623 



INSIDE MICROSOFT WINDOWS 2000 

Disk Performance Monitoring 
Windows 2000 I/O architecture permits the dynamic layering of device objects, 
which Chapter 9 describes in detail. A device driver can create a device object and 
attach it to a target device object. The I/O manager routes requests directed 
at a target device object to that object's attached device object, if one exists. 
Device drivers use this mechanism to monitor, augment, or change the behav
ior of device objects that belong to other device drivers. A driver that relies on 
layering is a filter driver, and when a filter driver receives an I/O request packet 
(IRP) aimed at a target device, the filter driver has full control over the request. 
The filter driver can fail the request, create new subrequests, or pass the unmodified 
request to the target device. (IRPs are covered in more detail in Chapter 9.) 

Windows 2000 storage drivers commonly use layering in two places. The 
first place involves file system filter drivers. At the highest level, file system fil
ter drivers attach to the target device objects that represent mounted partitions 
that file system drivers create. A file system filter driver therefore intercepts 
requests aimed at mounted volumes so that the driver can implement function
ality such as monitoring, encryption, or on-access virus scanning. File Monitor, 
a utility included on the companion CD under \Sysint\Filemon.exe, is an example 
of a file system filter driver. 

The second place storage drivers commonly use layering is to implement 
monitoring. Windows 2000 includes a layered storage driver named DiskPerf 
(Disk Performance driver - \Winnt\System32\Drivers\Diskperf.sys) to do this. 
DiskPerf attaches to the device objects that represent physical disks (for example, 
\Device\HarddiskO\partitionO) so that it can generate performance-related sta
tistics for the Performance tool to present. Statistics include bytes read and 
written per second, transfers per second, and the amount of time spent perform
ing disk I/O. 

Multipartition Volume Management 

624 

FtDisk and DMIO are responsible for presenting volumes that file system driv
ers manage and for mapping I/O directed at volumes to the underlying partitions 
that they're made of. For simple volumes, this process is straightforward: the 
volume manager ensures that volume-relative offsets are translated to disk-rela
tive offsets by adding the volume-relative offset to the volume's starting disk offset. 

Multipartition volumes are more complex because the partitions that make 
up a volume can be located on discontiguous partitions or even on different disks. 
Some types of multipartition volumes use data redundancy, so they require more 



TEN: Storage Management 

involved volume-to-disk-offset translation. Thus, FtDisk and DMIO must 
process all I/O requests aimed at the multipartition volumes they manage by 
determining which partitions the I/O ultimately affects. 

The following types of multipartition volumes are available in Windows 
2000: 

III Spanned volumes 

III Mirrored volumes 

III Striped volumes 

III RAID-5 volume 

After describing multipartition-volume partition configuration and logical 
operation for each of the multipartition-volume types, we'll cover the way that 
the FtDisk and DMIO drivers handle IRPs that a file system driver sends to 
multipartition volumes. The term volume manager is used to represent both 
FtDisk and DMIO throughout the explanation of multi partition volumes be
cause both FtDisk and DMIO support the same multipartition-volume types. 

Spanned Volumes 
A spanned volume is a single logical volume composed of a maximum of 32 free 
partitions on one or more disks. The Windows 2000 Disk Management MMC 
snap-in combines the partitions into a spanned volume, which can then be for
matted for any of the Windows 2000-supported file systems. Figure 10-6 shows 
a 100-MB spanned volume identified by drive letter D:that has been created 
from the last third of the first disk and the first third of the second. Spanned 
volumes were called volume sets in Windows NT 4. 

c: 
(100 MB) 

D: 
(50 MB) 

NTFS 
Volume 1 

Figure 10-6 
Spanned volume 

D: 
(50 MB) 

E: 
(100 MB) 

625 



INSIDE MICROSOFT WINDOWS 2000 

A spanned volume is useful for consolidating small areas of free disk space 
into one larger volume or for creating a single, large volume out of two or more 
small disks. If the spanned volume has been formatted for NTFS, it can be 
extended to include additional free areas or additional disks without affecting 
the data already stored on the volume. This extensibility is one of the biggest 
benefits of describing all data on an NTFS volume as a file. NTFS can dynami
cally increase the size of a logical volume because the bitmap that records the 
allocation status of the volume is just another file-the bitmap file. The bitmap 
file can be extended to include any space added to the volume. Dynamically 
extending a FAT volume, on the other hand, would require the FAT itself to 
be extended, which would dislocate everything else on the disk. 

A volume manager hides the physical configuration of disks from the file 
systems installed on Windows 2000. NTFS, for example, views volume D: in 
Figure 10-6 as an ordinary 100-MB volume. NTFS consults its bitmap to de
termine what space in the volume is free for allocation. It then calls the volume 
manager to read or write data beginning at a particular byte offset on the volume. 
The volume manager views the physical sectors in the spanned volume as num
bered sequentially from the first free area on the first disk to the last free area 
on the last disk. It determines which physical sector on which disk corresponds 
to the supplied byte offset. 

Striped Volumes 

626 

A striped volume is a series of up to 32 partitions, one partition per disk, that 
combines into a single logical volume. Striped volumes are also known as RAID 
level 0 (RAID-O) volumes. Figure 10-7 shows a striped volume consisting of 
three partitions, one on each of three disks. (A partition in a striped volume need 
not span an entire disk; the only restriction is that the partitions on each disk 
be the same size.) 

Stripe 1 

2 

3 

4 

5 

6 

7 

Figure 10-7 
Striped volume 

1 

2 

3 

4 

5 

6 

7 



TEN: Storage Management 

To a file system, this striped volume appears to be a single 450-MB volume, 
but a volume manager optimizes data storage and retrieval times on the striped 
volume by distributing the volume's data among the physical disks. The volume 
manager accesses the physical sectors of the disks as if they were numbered 
sequentially in stripes across the disks, as illustrated in Figure 10-8. 

Figure 10-8 
Logical numbering of physical sectors on a striped volume 

Because each stripe is a relatively narrow 64 KB (a value chosen to prevent 
individual reads and writes from accessing two disks), the data tends to be dis
tributed evenly among the disks. Stripes thus increase the probability that 
multiple pending read and write operations will be bound for different disks. 
And because data on all three disks can be accessed simultaneously, latency time 
for disk I/O is often reduced, particularly on heavily loaded systems. 

Spanned volumes make managing disk volumes more convenient, and 
striped volumes spread the I/O load over multiple disks. These two volume
management features don't provide the ability to recover data if a disk fails, 
however. For data recovery, a volume manager implements three redundant 
storage schemes: mirrored volumes, RAID-5 volumes, and sector sparing. (Sec
tor sparing and NTFS support for sector sparing are deScribed in Chapter 12.) 
These features are created with the Windows 2000 Disk Management admin
istrative tool. 

Mirrored Volumes 
In a mirrored volume, the contents of a partition on one disk are duplicated in 
an equal-sized partition on another disk. Mirrored volumes are sometimes referred 
to as RAID level 1 (RAID-I). A mirrored volume is shown in Figure 10-9. 

627 



INSIDE MICROSOFT WINDOWS 2000 

628 

C: 

Figure 10-9 
1kfirroredvolu1.ne 

C: 
(mirror) 

When a program writes to drive C:, the volume manager writes the same 
data to the same location on the mirror partition. If the first disk or any of the 
data on its C: partition becomes unreadable because of a hardware or software 
failure, the volume manager automatically accesses the data from the mirror 
partition. A mirror volume can be formatted for any of the Windows 2000-
supported file systems. The file system drivers remain independent and are not 
affected by the volume manager's mirroring activity. 

Mirrored volumes can aid in I/O throughput on heavily loaded systems. 
When I/O activity is high, the volume manager balances its read operations 
between the primary partition and the mirror partition (accounting for the 
number of unfinished I/O requests pending from each disk). Two read opera
tions can proceed simultaneously and thus theoretically finish in half the time. 
When a file is modified, both partitions of the mirror set must be written, but 
disk writes are done asynchronously, so the performance of user-mode programs 
is generally not affected by the extra disk update. 

Mirrored volumes are the only multipartition volume type supported for 
system and boot volumes. The reason for this is that the Windows 2000 boot 
code, including the MBR code and Ntldr, don't have the sophistication required 
to understand multipartition volumes-mirrored volumes are the exception 
because the boot code treats them as simple volumes, reading from the half of 
the mirror marked as the boot or system drive in the MS-DOS-style partition 
table. Because the boot code doesn't modifY the disk, it can safely ignore the 
other half of the mirror. 



TEN: Storage Management 

(continued) 

629 



INSIDE MICROSOFT WINDOWS 2000 

RAID-5 Volumes 

630 

A RAID-S volume is a fault tolerant variant of a regular striped volume. RAID-5 
volumes implement RAID levelS. They are also known as striped volumes with 
parity because they are based on the striping approach taken by striped volumes. 
Fault tolerance is achieved by reserving the equivalent of one disk for storing parity 
for each stripe. Figure 10-10 is a visual representation of a RAID-5 volume. 



Stripe 1 

2 

3 

4 

5 
6 

7 

Disk 1 

• Parity 

Figure 10-10 
RAID-5 volume 

TEN: Storage Management 

Disk 2 Disk 3 

In Figure 10-10, the parity for stripe 1 is stored on disk 1. It contains a 
byte-for-byte logical sum (XOR) of the fIrst stripe on disks 2 and 3. The parity 
for stripe 2 is stored on disk 2, and the parity for stripe 3 is stored on disk 3. 
Rotating the parity across the disks in this way is an I/O optimization technique. 
Each time data is written to a disk, the parity bytes corresponding to the modifIed 
bytes must be recalculated and rewritten. If the parity were always written to 
the same disk, that disk would be busy continually and could become an I/O 
bottleneck. . 

Recovering a failed disk in a RAID-S volume relies on a simple arithmetic 
principle: in an equation with n variables, if you know the value of n -1 of the 
variables, you can determine the value of the missing variable by subtraction . 
. For example, in the equation x + y = z, where Z represents the parity stripe, the 
volume manager computes z - y to determine the contents of x; to fInd y, it 
computes z - x. The volume manager uses similar logic to recover lost data. If 
a disk in a RAID-S volume fails or if data on ()ne disk becomes unreadable, the 
volume manager reconstructs the missing data by using the XOR operation 
(bitwise logical addition). 

If disk 1 in Figure 10-10 fails, the contents of its stripes 2 and 5 are calcu
lated by XORing the corresponding stripes of disk 3 with the parity stripes on 
disk 2. The contents of stripes 3 and 6 on disk 1 are similarlydetermilled by 

631 



INSIDE MICROSOFT WINDOWS 2000 

XORing the corresponding stripes of disk 2 with the parity stripes on disk 3. 
At least three disks (or rather, three same-sized partitions on three disks) are 
required to create a RAID-5 volume. 

Volume I/O Operations 

632 

File system drivers manage data stored on volumes but rely on volume managers 
to interact with storage drivers to transfer data to and from the disk or disks on 
which a volume resides. File system drivers obtain references to a volume 
manager's volume objects through the mount process (described later in this 
chapter) and then send the volume manager requests via the volume objects. 
Applications can also send the volume manager requests, bypassing file system 
drivers, when they want to directly manipulate a volume's data. File-undelete 
programs are an example of applications that do this, and so is the DiskProbe 
utility that's part of the Windows 2000 resource kits. 

Whenever a file system driver or application sends an I/O request to a 
device object that represents a volume, the Windows 2000 I/O manager routes 
the request (which comes in an IRP-a self-contained package) to the volume 
manager that created the target device object. Thus, if an application wants to 
read the boot sector of the second volume on the system (which is a simple 
volume in this example), it opens the device object \Device\HarddiskVolume2 
and then sends the object a request to read 512 bytes starting at offset zero 
on the device. The I/O manager sends the application's request in the form of 
an IRP to the volume manager that owns the device object, notifYing it that the 
IRP is directed at the HarddiskVolume2 device. 

Because partitions are logical conveniences that Windows 2000 uses to 
represent contiguous areas on a physical disk, the volume manager must trans
late offsets that are relative to a partition to offsets that are relative to the begin
ning of a disk. If partition 2 begins 3449 sectors into the disk, the volume manager 
would adjust the IRP's parameters to designate an offset with that value before 
passing the request to the disk class driver. The disk class driver uses a miniport 
driver to carry out physical disk I/O and read requested data into an applica
tion buffer designated in the IRP. 

Some examples of a volume manager's operations will help clarifY its role 
when it handles requests aimed at multipartition volumes. If a striped volume 
consists of two partitions, partition 1 and partition 2, that are represented by the 
device object\Device\HarddiskDm Volumes\physicalDm Volumes\BlockVolume3, 
as Figure 10-11 shows, and an administrator has assigned drive letter D: to the 
stripe, the I/O manager defines the link \??\D:to reference \Device\Harddisk
Dm Volumes\Computer NameDgO\Volume3, where Computer Name is the name 



TEN: Storage Management 

of the computer. Recall from earlier that this link: is also a symbolic link, and it 
points to the corresponding volume device object in the PhysicalDm Volumes 
directory (in this case, BlockVolume3). The DMIO device object intercepts file 
system disk I/O aimed at \Device\HarddiskDm Volumes\PhysicalDm Volumes\ 
BlockVolume3, and the DMIO driver adjusts the request before passing it to the 
Disk class driver. The adjustment that DMIO makes configures the request to 
refer to the correct offset of the request's target stripe on either partition 1 or 
partition 2. If the I/O spans both partitions of the volume, DMIO must issue 
two subsidiary I/O requests, one aimed at each disk. 

HarddiskO 

<D File system driver issues 
sector-level 110. 

® I/O manager routes IRP 
to DMIO driver. 

DMIOdriver 

® DMIO driver determines which 
partition of the spanned volume 
the IRP is directed at and creates 
a subsidiary IRP directed at the 
disk the partition is located on. 

@ I/O manager routes the IRP 
to the disk class driver. 

® Disk class driver r---------" performs hardware 1/0 to 
access the disk. 

Harddisk1 ~""" ________ ..!I 

Figure 10-11 
DMIO I/O operations 

633 



INSIDE MICROSOFT WINDOWS 2000 

In the case of writes to a mirrored volume, DMIO splits each request so 
that each half of the mirror receives the write operation. For mirrored reads, 
DMIO performs a read from half of a mirror, relying on the other half when a 
read operation fails. 

The Volume Namespace 
Drive-letter assignment is an aspect of storage management that changed signifi
cantly from Windows NT 4 to Windows 2000. Even so, Windows 2000 includes 
support for migrating drive-letter assignments made in a Windows NT 4 instal
lation that upgrades to Windows 2000. Windows NT 4 drive-letter assignments 
are stored in HKLM\SYSTEM\Disk. After the upgrade procedure reads and 
stores the information in Windows 2000-specific locations, the system no longer 
references the Disk key. 

The Mount Manager 

634 

A new driver in Windows 2000, the Mount Manager (Mountmgr.sys), assigns 
drive letters for dynamic disk volumes and for basic disk volumes created after 
Windows 2000 is installed. Windows 2000 stores all drive-letter assignments 
under HKLM\SYSTEM\MountedDevices. If you look in the registry under that 
key, you'll see values with names such as \??\Volume{X} (where Xis a GUID) 
and values such as??\C:. Every volume has a volume name entry, but a volume 
doesn't necessarily have an assigned drive letter. Figure 10-12 shows the con
tents of an example Mount Manager registry key. Note that the MountedDevices 
key, like the Disk key in Windows NT 4, isn't included in a control set and so 
isn't protected by the last known good boot option. (See the section "Accepting 
the Boot and Last Known Good" on page 256 in Chapter 5 for more informa
tion on control sets and the last known good boot option.) 

The data that the registry stores in values for basic disk volume drive letters 
and volume names is the Windows NT 4-style disk signature and the starting 
offset of the first partition associated with the volume. The data that the registry 
stores in values for dynamic disk volumes includes the volume's DMIO inter
nal GUID.When the Mount Manager initializes during the boot process, it 
registers with the Windows 2000 Plug and Play subsystem so that it receives 
notification whenever either FtDlsk or DMIO creates a volume. When the 



Figure 10-12 

117\1/,',m,,(o5051731_9-_,_ REG_BINARY 'Ii REG_BINARY REG_BINARY 
REB_BINARY 
REG..,BINARY 
REG_BINARY 
REG..,BINARY 
REG_BINARY 
REG_BINARY 
REG..,BINAAY 
Rm_BlNARY 

1??"'",,,",",o7,'60bHl258-.. , REG..,BINAAY 
1 ?71V,,I,.,lfc701l1>2-81251!-.. , REB_BINARY 

REG_BINARY 

TEN: Storage Management 

Mounted devices listed in the Mount Manager)s registry key 

Mount Manager receives such a notification, it determines the new volume's 
GUID or disk signature and then asks either FtDisk or DMIO (whichever cre
ated the volume) for a suggested drive-letter assignment. FtDisk doesn't return 
suggestions (as it does during an upgrade from Windows NT 4 when it queries 
the Windows NT 4 HKLM\SYSTEM'\Disk key), and DMIOlooks at the drive
letter hint in the volume's database entry. 

If no suggested drive~letier assignment exists for the volume, the Mount 
Manager uses the volume GUID or signature as a, guide and looks in its internal 
database, which reflects the contents of the registry key. The Mount Manager then 
determines whether its internal database contains the drive-letter assignment. If 
it doesn't, the Mount Manager uses the first unassigned drive letter (if one exists), 
defines a new assignment, Creates a symbolic link for the assignment (for example, 
\??\D:), and updates th~ MountedDevices registry key.lfthere are no available 
drive letters, no drive letter assignment is made. At the same time, the Mount 
Manager creates a volume symbolic link (that is, \??\Volume{X}) that defines a 
new volume GUID, if the volume doesn't already have one. This GUID is dif
ferent fr,om the volume GUIDs that DMIO uses internally. 

635 



INSIDE MICROSOFT WINDOWS 2000 

Mount Points 

636 

Mount points) a mechanism new to Windows 2000, let you link volumes 
through directories on NTFS volumes, which makes volumes with no drive
letter assignment accessible. For example, an NTFS directory that you've 
named C:\Projects could mount another volume (NTFS or FAT) that contains 
your project directories and files. If your project volume had a file you named 
CurrentProject\Description. txt, you could access the file through the path 
C:\Projects\CurrentProject\Description.txt. What makes mount points pos
sible is reparse point technology. (Reparse points are discussed in more detail 
in Chapter 12.) 

A reparse point is a block of arbitrary data with some fixed header data that 
Windows 2000 associates with an NTFS file or directory. An application or the 
system defines the format and behavior of a reparse point, including the value 
of the unique reparse point tag that identifies reparse points belonging to the 
application or system and specifies the size and meaning of the data portion of 
a reparse point. (The data portion can be as large as 16 KB.) Reparse points store 
their unique tag in a fixed segment. Any application that implements a reparse 
point must supply a file system filter driver to watch for reparse-related return 
codes for file operations that execute on NTFS volumes, and the driver must 
take appropriate action when it detects the codes. NTFS returns a reparse status 
code whenever it processes a file operation and encounters a file or directory 
with an associated reparse point. 

The Windows 2000 NTFS file system driver, the I/O manager, and the 
object manager all partly implement reparse point functionality. The object 
manager initiates pathname-parsing operations by using the I/O manager to 
interface with file system drivers. Therefore, the object manager must retry 
operations for which the I/O manager returns a reparse status code. The I/O 
manager implements pathname modification that mount points and other 
reparse points might require, and the NTFS file system driver must associate and 
identify reparse point data with files and directories. You can therefore think of 
the I/O manager as the reparse point file system filter driver for many Microsoft
defined reparse points. 



TEN: Storage Management 

An example of a reparse point application is a Hierarchical Storage Manage
ment (HSM) system that uses reparse points to designate files that an adminis
trator moves to offline tape storage. When a user tries to access an offline file, 
the HSM filter driver detects the reparse status code that NTFS returns, com
municates with a user-mode service to retrieve the file from offline storage, 
deletes the reparse point from the file, and lets the file operation retry after the 
service retrieves the file. This is exactly how the Windows 2000 Remote Storage 
Services (RSS) filter driver, Rsfilter.sys, uses reparse points. 

If the I/O manager receives a reparse status code from NTFS and the file 
or directory for which NTFS returned the code isn't associated with one of a 
handful of built-in Windows 2000 reparse points, no filter driver claimed the 
reparse point. The I/O manager .then returns an error to the object manager 
that propagates as a "file cannot be accessed by the system" error to the appli
cation making the file or directory access. 

Mount points are reparse points that store a volume name (\??\Volume{X}) 
as the reparse data. When you use the Disk Management MMC snap-in to assign 
or remove path assignments for volumes, you're creating mount points. You can 
also create and display mount points by using the built-in command-line tool 
Mountvol.exe (\Winnt\System32\Mountvol.exe). 

The Mount Manager maintains the Mount Manager remote database on 
every NTFS volume, in which the Mount Manager records any mount points 
defined for that volume. The database file, $MountMgrRemoteDatabase, resides 
in the NTFSroot directory. Mount points move when a disk moves from one 
system to another and in.dual-boot environments-that is, when booting be
tween multiple Windows 2000 installations-because of the Mount Manager 
remote database's existence. NTFS also keeps track of mount points in the 
NTFS metadata file \$Extend\$Reparse. (NTFS doesn't make any of its metadata 
files available for viewing by applications.) NTFS stores mount-point informa
tion in the metadata file so that Windows 2000 can easily enumerate the mount 
points defined for a volume when a Win32 application, such as Disk Manage
ment, requests mount-point definitions. 

637 



INSIDE MICROSOFT WINDOWS 2000 

638 



cmd.e~e 

IRP _MJ_DIRECTDRY _CONTROL 
IRP _MJ_DIRECTORY _CONTROL 
IRP_MJ_CLEANUP 
IRP_MJ_CLOSE 
FSCTUS_ VOLUME_MOUNTED 
IRP_MJ_CREATE 
IRP_MJ_CREATE 
IRP_MJ_CREATE 
IRP_MJ_CREATE 
IRP-"!\J_CREATE 
lAP _MJ_DIRECTORY _CONTROL 
IRP _MJ_DIRECTORY _CONTROL 
IRP _MJ_DIRECTORY _CONTROL 
IRP _MJ_ClEANUP 
IRP_MJ_CLOSE 
FSCTLjS_VOLUME_MOUNTED 
IRP_MJ_CREATE 
IRP_MJ_CREATE 
IRP 

Volume Mounting 

1:\reculse\recurse\recurse\recurse\ 
I: I, \reculsel,recurse\reculse 
1:\\reclJlsel,recurse 
I:\\recurse 
1:1, 
1:\ 
1:\ 
1:\ 
1:\ 
1:\ 
1:\ 
I: \reculsel,recurse\recurse\recurse\recurse\ 
I: I, \recurse\recuIse\recUlse\recurse 
I:\\recurse\recu[se\reoculse 
1:\\recUTse\recurse 
I:\\recurse 
1:\ 
1:1, 
1:\ 

SUCCESS 
NO MORE FILES 
SUCCESS 
SUCCESS 
SUCCESS 
REPARsE 
REPARSE 
REPARSE 
REPARSE 
SUCCESS 
SUCCESS 
SUCCESS 
NO MORE FILES 
SUCCESS 
SUCCESS 
SUCCESS 
REPARSE 
REPARSE 
REPARSE 
REPARSE 
REPARSE 
SUCCESS 
SUCCESS 
SUCCESS 

TEN: Storage Management 

Attributes: AI1r' Optio". 
Attributes: An,Y 0 ptio .. . 
Attributes: Any Optio .. . 
Attributes: Any Optio .. . 
Attributes: At'I.I' Optio ... 
FileB othO itectof,Ylnlo 
FileBothDirectoryinfo. 
FileBothDirector,Ylnfo. 

Because Windows 2000 assigns a drive letter to a partition doesn't mean that 
the partition contains data that has been organized in a file system format that 
Windows 2000 recognizes. The volume-recognition process consists of a file 
system claiming ownership for a partition; the process takes place the first time 
the kernel, a device driver, or an application accesses a file or directory on a 
partition. After a file system driver signals its responsibility for a partition, the 
I/O manager directs all IRPs aimed at the partition to the owning driver. Mount 
operations in Windows 2000 consist of three components: file system driver 
registration, volume parameter blocks (VPBs), and mount requests. 

The I/O manager oversees the mount process and is aware of available file 
system drivers because all file system drivers register with the I/O manager when 
they initialize. The I/O manager provides the IoRegisterFileSystem function to 
local disk (rather than network) file system drivers for this registration. When 
a file system driver registers, the I/O manager stores areference to the driver 
in a list that the I/O manager uses during mount operations. 

639 



INSIDE MICROSOFT WINDOWS 2000 

640 

Every device object contains a VPB data structure, but the I/O manager 
treats VPBs as meaningful only for volume device objects. A VPB serves as the 
link between a volume device object and the device object that a file system driver 
creates to represent a mounted file system instance for that volume. If a VPB's 
file system reference is empty, no file system has mounted the volume. The I/O 
manager checks a volume device object's VPB whenever an open API that speci
fies a filename or a directory name on a volume device object executes. 

For example, if the mount manager assigns drive letter D to the second 
volume on a system, it creates a \??\D: symbolic link that resolves to the device 
object \Device\HarddiskVolume2. A Win32 application that attempts to open 
the \Temp\Test.txt file on the D: drive specifies the name D:\Temp\Test.txt, 
which the Win32 subsystem converts to \??\D:\Temp\Test.txt before invoking 
NtCreateFile, the kernel's file-open routine. NtCreateFile uses the object 
manager to parse the name, and the object manager encounters the \Device\ 
HarddiskVolume2 device object with the path \Temp\Test.txt still unresolved. At 
that point, the I/O manager checks to see whether\Device\HarddiskVolume2's 
VPB references a file system. Ifit doesn't, the I/O manager asks each registered 
file system driver via a mount request whether the driver recognizes the format 
of the volume in question as the driver's own. 



TEN: Storage Management 

The convention followed by file system drivers for recognizing volumes 
mounted with their format is to examine the volume's boot record, which is 
stored in the first sector of the volume. Boot records for Microsoft file systems 
contain a field that stores a file system format type. File system drivers usually 
examine this field, and ifit indicates a format they manage, they look at other 
information stored in the boot record. This information usually includes a file 
system name field and enough data for the file system driver to locate critical 

641 



INSIDE MICROSOFT WINDOWS 2000 

642 

metadata files on the volume. NTFS, for example, will recognize a volume only 
if the type field is NTFS, the name field is "NTFS", and the critical metadata 
files described by the boot record are consistent. 

If a file system driver signals affirmatively, the I/O manager fills in the 
VPB and passes the open request with the remaining path (that is, \Test) to 
the file system driver. The file system driver completes the request by using 
its file system format to interpret the data that the partition stores. Mter a 
mount fills in a partition device object's VPB, the I/O manager hands sub
sequent open requests aimed at the partition to the mounted file system driver. 
If no file system driver claims a partition, Raw-a file system driver built into 
Windows 2000-claims the partition and fails all requests to open files on that 
partition. Figure 10-13 shows a simplified example (that is, the figure omits 
the file system driver's interactions with the Windows 2000 cache manager) 
of the path that I/O directed at a mounted partition follows. 

Application 1/0 request 

VPB file 
system 

reference 

Figure 10-13 

system device 
object. 

Mounted volume I/O flow 

CD Application directs file"level (e.g., D:\temp\test.txt) 
1/0 request at drive letter corresponding to partition 
\Device\HarddiskVolume2. 

® 1/0 manager 
NTFS file system driver 

routes 1/0 request "-""""lI,-------""'" 
to file system driver 
that owns the file 
system device 
object. 

class driver. 

@ File system performs 
sector-level disk 1/0 to 
service 1/0 request. 



T EN: Storage Management 

Instead of having every file system driver loaded, regardless of whether 
or not they have any volumes to manage, Windows 2000 tries to minimize 
memory usage by using a surrogate driver named File System Recognizer 
(Winnt\System32\Drivers\FsJec.sys) to perform preliminary file system recog
nition. File System Recognizer knows enough about each file system format that 
Windows 2000 supports to be able to examine a boot record and determine 
whether it's associated with a Windows 2000 file system driver. When the sys
tern boots, File System Recognizer registers as a file system driver, and when 
the I/O manager calls it during a file system mount operation for a new vol
ume, File System Recognizer loads the appropriate file system driver if the boot 
record corresponds to One that isn't loaded. After loading a file system driver, 
File System Recognizer forwards the mount IRP to the driver: and Jets the file 
system .driver claim ownership of the volume. 

Aside from the boot volume, which a driver mounts while the kernel is 
initializing, file system drivers mount most volumes when the Chkdsk file system. 
consistency-checking application runs during a boot sequence. Theboot~.time· 
version of Chkdsk is ~ native application' (as opposed to a Win32 application) 
named Autochk.exe (\Winnt\Systeril32\Autochk.exe), and the Session Manager 
(\Winnt\System32\Smss.exe) runs it because it is specified as a boot~run pro
gram in the HKLM\SYSTEM\CurrentControISet\Colltrol\Session Manager\ 
BootExecute. value. Chkdsk accesses each drive letter.to see whether the volume 

.. a~sociated with the letter requires aconSistellCY cheek.. 
One place in which mounting can o(:':cur:moreth.an once for: the same disk 

IS with removable media. Windows2000 file system drivers respond to media 
changdhy querying the disk's volume identifier. If they see the volume iden
tifier change, the <h-iver dismounts the disk and attempts to remount it. 

ConClusion 
In this chapter, we've reviewed the on-diskotganization, camponents, and 

"operation,.ofWindmvs.2000.diskstoragemanagement. In the next' chapter, we 
. ddv~irit6,the.cache·manager, an executive cOltlponent integraltio the operation 
. offile system 4rivers th~tmount,the voluIl,le types presented in .thlschapter. 

'643 





C HAP T E R E LEV E N 

Cache Manager 

The Microsoft Windows 2000 cache manager is a set of kernel-mode functions 
and system threads that cooperate with the memory manager to provide data 
caching for all Windows 2000 file system drivers (both local and network). In 
this chapter, we'll explain how the Windows 2000 cache manager, including its 
key internal data structures and functions, works; how it is sized at system initiali
zation time; how it interacts with other elements of the operating system; and 
how you can observe its activity through performance counters. We'll also de
scribe the five flags on the Win32 CreateFile function that affect file caching. 

NOT E None of the cache manager's internal functions are outlined 
in this chapter beyond the depth required to explain how the cache 
manager works. The programming interfaces to the cache manager are 
documented in the Windows 2000 Installable File System (IFS) kit. For 
more information about the IFS kit, see microsoft.comlddklifskit/. 

Key Features of the Windows 2000 Cache Manager 
The Windows 2000 cache manager has several key features: 

• Supports all fIle system types (both local and network), thus removing 
the need for each file system to implement its own cache manage
ment code 

• Uses the memory manager to control what parts of what fIles are in 
physical memory (trading off demands for physical memory between 
user processes and the operating system) 

645 



INSIDE MICROSOFT WINDOWS 2000 

II Caches data on a virtual block basis (offsets within a file )-in contrast 
to most caching systems, which cache on a logical block basis (off
sets within a disk partition)-allowing for intelligent read-ahead and 
high-speed access to the cache without involving file system drivers. 
(This method of caching, called fast I/O, is described later in this 
chapter.) 

II Supports "hints" passed by applications at file open time (such as 
random versus sequential access, temporary file creation, and so on) 

II Supports recoverable file systems (for example, those that use trans
action logging) to recover data after a system failure 

Although we'll talk more throughout this chapter about how these features 
are used in the cache manager, in this section we'll introduce you to the con
cepts behind these features. 

Single, Centralized System Cache 
Some operating systems rely on each individual file system to cache data, a prac
tice that results either in duplicated caching and memory management code in 
the operating system or in limitations on the kinds of data that can be cached. 
In contrast, Windows 2000 offers a centralized caching facility that caches all 
externally stored data, whether on local hard disks, floppy disks, network file 
servers, or CD-ROMs. Any data can be cached, whether it's user data streams 
(the contents of a file and the ongoing read and write activity to that file) or 
file system metadata (such as directory and file headers). As you'll discover in 
this chapter, the method Windows 2000 uses to access the cache depends on 
the type of data being cached. 

The Memory Manager 

646 

One unusual aspect of the Windows 2000 cache manager is that it never knows 
how much cached data is actually in physical memory. This statement might 
sound strange, since the purpose of a cache is to keep a subset of frequently 
accessed data in physical memory as a way to improve I/O performance. The 
reason the Windows 2000 cache manager doesn't know how much data is in 



E LEV EN: Cache Manager 

physical memory is that it accesses data by mapping views of files into system 
virtual address spaces, using standard section objects (file mapping objects in Win32 
terminology). (Section objects are the basic primitive of the memory manager 
and are explained in detail in Chapter 7.) As addresses in these mapped views 
are accessed, the memory manager pages in blocks that aren't in physical memory. 
And when memory demands dictate, the memory manager pages data out of 
the cache and back to the files that are open in (mapped into) the cache. 

By caching on the basis of a virtual address space using mapped files, the 
cache manager avoids generating read or write I/O request packets (IRPs) to 
access the data for files it's caching. Instead, it simply copies data to or from the 
virtual addresses where the portion of the cached file is mapped and relies on 
the memory manager to fault in (or out) the data into (or out of) memory as 
needed. This process allows the memory manager to make global trade-offs on 
how much memory to give to the system cache versus to the user processes. (The 
cache manager also initiates I/O, such as lazy writing, which is described later 
in this chapter; however, it calls the memory manager to write the pages.) Also, 
as you'll learn in the next section, this design makes it possible for processes that 
open cached files to see the same data as do those processes mapping the same 
files into their user address spaces. 

Cache Coherency 
One important function of a cache manager is to ensure that any process access
ing cached data will get the most recent version of that data. A problem can arise 
when one process opens a file (and hence the file is cached) while another pro
cess maps the file into its address space directly (using the Win32 Map ViewOjFile 
function). This potential problem doesn't occur under Windows 2000 because 
both the cache manager and the user applications that map files into their address 
spaces use the same memory management file mapping services. Because the 
memory manager guarantees that it has only one representation of each unique 
mapped file (regardless of the number of section objects or mapped views), it 
maps all views of a file (even if they overlap) to a single set of pages in physical 
memory, as shown in Figure 11-1. (For more information on how the memory 
manager works with mapped files, see Chapter 7.) 

647 



INSIDE MICROSOFT WINDOWS 2000 

648 

Process 1 
virtual memory 

4 GB ....------..:... 

System 
cache 

System address 
space 

2 GB 1-------11 

Mapped file 

User address 
space 

o "'-_____ ..t 

4GB 

System 
cache 

2GB 

Figure 11-1 

Process 2 
virtual memory 

System address 
space 

User address 
space 

Coherent caching scheme 

0 

Physical 
memory 

So, for example, if Process 1 has a view (View 1) of the file mapped into 
its user address space and Process 2 is accessing the same view via the system 
cache, Process 2 will see any changes that Process 1 makes as they're made, not 



E LEV EN: Cache Manager 

as they're flushed. The memory manager won't flush all user-mapped pages
only those that it knows have been written to (because they have the modified 
bit set). Therefore, any process accessing a file under Windows 2000 always sees 
the most up-to-date version of that file, even if some processes have the file open 
through the I/O system and others have the file mapped into their address space 
using the Win32 file mapping functions. 

NOT E Cache coherency is somewhat more difficult for network 
redirectors than for local file systems because network redirectors must 
implement additional flushing and purge operations to ensure cache 
coherency when accessing network data. See Chapter 13 for a descrip
tion of opportunistic locking, the Windows 2000 distributed cache 
coherency mechanism. 

Virtual Block Caching 
Most operating system cache managers (including Novell NetWare, OpenVMS, 
OS/2, and older UNIX systems) cache data on the basis of logical blocks. With 
this method, the cache manager keeps track of which blocks of a disk partition 
are in the cache. The Windows 2000 cache manager, in contrast, uses a method 
known as virtual block caching, in which the cache manager keeps track of which 
parts of which files are in the cache. The cache manager is able to monitor these 
file portions by mapping 256-KB views of files into system virtual address spaces, 
using special system cache routines located in the memory manager. This approach 
has the following key benefits: 

• It opens up the possibility of doing intelligent read-ahead; because 
the cache tracks which parts of which files are in the cache, it can 
predict where the caller might be going next . 

• It allows the I/O system to bypass going to the file system for 
requests for data that is already in the cache (fast I/O). Because the 
cache manager knows which parts of which files are in the cache, it 
can return the address of cached data to satisfy an I/O request with
out having to call the file system. 

Details of how intelligent read-ahead and fast I/O work are provided later 
in this chapter. 

649 



INSIDE MICROSOFT WINDOWS 2000 

Stream-Based Caching 
The Windows 2000 cache manager is also designed to do stream caching) as 
opposed to ftle caching. A stream is a sequence of bytes within a ftle. Some file 
systems, such as NTFS, allow a ftle to contain more than one stream; the cache 
manager accommodates such ftle systems by caching each stream independendy. 
NTFS can exploit this feature by organizing its master file table (described in 
Chapter 12) into streams and by caching these streams as well. In fact, although 
the Windows 2000 cache manager might be said to cache ftles, it actually caches 
streams (all files have at least one stream of data) identified by both a ftlename 
and, if more than one stream exists in the ftle, a stream name. 

Recoverable File System Support 

650 

Recoverable ftle systems such as NTFS are designed to reconstruct the disk 
volume structure after a system failure. This capability means that I/O operations 
in progress at the time of a system failure must be either entirely completed or 
entirely backed out from the disk when the system is restarted. Half-completed 
I/O operations can corrupt a disk volume and even render an entire volume 
inaccessible. To avoid this problem, a recoverable ftle system maintains a log ftle 
in which it records every update it intends to make to the ftle system structure 
(the file system's metadata) before it writes the change to the volume. If the 
system fails, interrupting volume modifications in progress, the recoverable ftle 
system uses information stored in the log to reissue ~e volume updates. 

NOT E The term metadata applies only to changes in the ftle system 
structure: ftle and directory creation, renaming, and deletion. 

To guarantee a successful volume recovery, every log file record documenting 
a volume update must be completely written to disk before the update itself is 
applied to the volume. Because disk writes are cached, the cache manager and 
the ftlesystem must work together to ensure that the following actions occur, 
in sequence: 

1. The file system writes a log file record documenting the volume 
update it intends to make. 

2. The file system calls .the cache manager to flush .the log file record 
to disk. 



E LEV EN: Cache Manager 

3. The file system writes the volume update to the cache; that is, it 
modifies its cached metadata. 

4. The cache manager flushes the altered metadata to disk, updating 
the volume structure. (Actually, log file records are batched before 
being flushed to disk, as are volume modifications.) 

When a file system writes data to the cache, it can supply a logical sequence 
number (LSN) that identifies the record in its log file, which corresponds to the 
cache update. The cache manager keeps track of these numbers, recording the 
lowest and highest LSNs (representing the oldest and newest log file records) 
associated with each page in the cache. In addition, data streams that are pro
tected by transaction log records are marked as "no write" by NTFS so that the 
modified page writer won't inadvertently write out these pages before the cor
responding log records are written. (When the modified page writer sees a page 
marked this way, it moves the page to a special list that the cache manager then 
flushes at the appropriate time, such as when lazy writer activity takes place.) 

When it prepares to flush a group of dirty pages to disk, the cache man
ager determines the highest LSN associated with the pages to be flushed and 
reports that number to the file system. The file system can then call the cache 
manager back, directing it to flush log file data up to the point represented by 
the reported LSN. After the cache manager flushes the log file up to that LSN, 
it flushes the corresponding volume structure updates to disk, thus ensuring that 
it records what it's going to do before actually doing it. These interactions 
between the file system and the cache manager guarantee the recoverability of 
the disk volume after a system failure. 

Cache Structure 
Because the Windows 2000 system cache manager caches data on a virtual basis, 
it is given a region of system virtual address spaces to manage (instead of a region 
of physical memory). The cache manager then divides each address space region 
into 256-KB slots called views, as shown in Figure 11-2. (For a detailed descrip
tion of the layout of system space, see Chapter 7.) 

651 



INSIDE MICROSOFT WINDOWS 2000 

652 

Figure 11-2 
System cache address space 

At afile's first I/O (read or write) operation, the cache manager maps a 
256-KB view of the 256-KB-aligned region of the file that contains the requested 
data into a free slot in the system cache address space. For example, if10 bytes 
starting at an offset of 300,000 bytes were read into a file, the view that would 
be mapped would begin at offset 262144 (the second 256-KB-aligned region 
bfthe file) and extend for 256 KB. 



E LEV EN: Cache Manager 

The cache manager maps views of files into slots in the cache's address space 
on a round-robin basis, mapping the first requested view into the first 256-KB 
slot, the second view into the second 256-KB slot, and so forth, as shown in 
Figure 11-3. In this example, File B was mapped first, File A second, and File C 
third, so File B's mapped chunk: occupies the first slot in the cache. Notice that 
only the first 256-KBportion of File B has been mapped, which is due to the 
fact that only part of the file has been accessed and that although File C is only 
100 KB (and thus smaller than one of the views in the system cache), it requires 
its own 256-KB slot in the cache. 

System cache 

View 0 

View 1 

View 2 

View 3 

View 4 

ViewS 

View 6 

View 7 

View 8 

Viewn 

Figure 11-3 

~ 

~ 

\-_______ File A (500 KB) 

" Section 0 
\- 3> •••••• +-----11 

" \ Section 1 
•• 3> •• \ ............ __ --'1 

\ \\ \ 
\\ \ \ F"I B ( 0 KB) Ie 75 

Section 0 \\ 
\\ 
\\ 
\\ 
\\ 

\ 

\\ 
\\ 

\1 

Section 1 

Section 2 

File C (100 KB) 

Section 0 I 

Files of varying sizes mapped into the system cache 

The cache manager guarantees that a view is mapped only as long as it's 
active. A view is marked active, however, only during a read or write operation 
to or from the file. Unless a process opens a file by specifying the FILE_ 
FLAG_RAND OM_ACCESS flag in the call to CreateFile, the cache manager 
unmaps inactive views of a file as it maps new views for the file. Pages for unmapped 

653 



INSIDE MICROSOFT WINDOWS 2000 

views are sent to the standby or modified lists (depending on whether they have 
been changed), and because the memory manager exports a speCial interface for 
the cache manager, the cache manager can direct the pages to be placed at the 
end or front of these lists. Pages that correspond to views of files opened with 
the FILE_FLAG_SEQUENTIAL_SCAN flag are moved to the front of the lists, 
whereas all others are moved to the end. This scheme encourages the reuse of 
pages belonging to sequentially accessed files and speCifically prevents a large 
file copy operation from affecting more than a small part of physical memory. 

If the cache manager needs to map a view of a file and there are no more 
free slots in the cache, it will unmap the least recently mapped inactive view and 
use that slot. If no views are available, an I/O error is returned, indicating that 
insuffiCient system resources are available to perform the operation. Given that 
views are marked active only during a read or write operation, however, this 
scenario is extremely unlikely because thousands of files would have to be accessed 
simultaneously for this situation to occur. 

Cache Size 
In the following sections, we'll explain how Windows 2000 computes the size 
of the system cache (both virtually and physically). As with most calculations 
related to memory management, the size of the system cache depends on a 
number of factors, including memory size and which version of Windows 2000 
is running. 

Cache Virtual Size 

654 

The virtual size of the system cache is a function of the amount of physical 
memory installed. The default size is 64 MB. If the system has more than 4032 
pages (16 MB) of physical memory, the cache size is set to 128 MB plus 64 MB 
for each additional 4 MB of physical memory. Using this algorithm, the virtual 
size of the system cache for a computer with 64 MB of physical memory will be: 

128 MB + (64 MB -16 MB) / 4 MB * 64 MB = 896 MB 

Table 11-1 shows the minimum and maximum virtual size of the system 
cache, along with the start and end addresses. If the system calculates a cache 
virtual size that is greater than 512 MB, the cache is assigned virtual memory 
from an additional address range known as cache extra memory. 



E LEV EN: Cache Manager 

Table 11-1 Size and Location of System Data Cache 

Platform Address Range 

x86 2-GB system space OxCI000000-EOFFFFFF, 
OxA4000000-BFFFFFFF 

x86 I-GB system space OxCI000000-DBFFFFFF 

x86 I-GB system space OxCI000000-DCFFFFFF 
with Terminal Services 

Minimum/ 
Maximum 
Virtual Size 

64-960 MB 

64-432 MB 

64-448 MB 

Table 11-2 lists the system variables that contain the virtual size and ad
dress of the system cache. 

Table 11-2 System Variables for the Virtual Size and Address of the 
System Cache 

System Variable 

MmSystemCacheStart 

MmSystemCacheEnd 

MiSystemCacheStartExtra 

MiSystemCacheEndExtra 

MmSizeOjSystemCachelnPages 

Cache Physical Size 

Description 

Starting virtual address of cache 

Ending virtual address of cache 

Starting virtual address of cache extra 
memory if cache size > 512 MB 

Ending virtual address of cache extra 
memory if cache size> 512 MB 

Maximum size of cache in pages 

As mentioned earlier, one of the key differences in the design of the Windows 2000 
cache manager from that of other operating systems is the delegation of physi
cal memory management to the global memory manager. Because of this, the 
existing code that handles working set expansion and trimming as well as man
ages the modified and standby list is also used to control the size of the system 
cache, dynamically balancing detriands for physical memory between processes 
and the operating system. 

655 



INSIDE MICROSOFT WINDOWS 2000 

The system cache doesn't have its own working set but rather shares a 
single system set that includes cache data, paged pool, pageable Ntoskrnl code, 
and page able driver code. As explained in the section "System Working Set" 
in Chapter 7 (on page 463), this single working set is called internally the system 
cache working set even though the system cache is just one of the components 
that contribute to it. For the purposes of this book, we'll refer to this working 
set simply as the system working set. 

You can examine the physical size of the system cache compared to that 
of the total system working set as well as page fault information on the system 
working set by examining the performance counters or system variables listed 
in Table 11-3. 

Table 11-3 System Variables for the Physical Size of the System 
Cache and Page Fault Information 

Performance Counter 
(in bytes) 

System Variable 
(in pages) Description 

Memory: System Cache 
Resident Bytes 

Memory: Cache Bytes 

Memory: Cache Bytes Peak 

Memory: Cache Faults/Sec 

MmSystemCachePage 

MmSystemCache Ws. Working
SetSize 

MmSystemCache Ws.Peak 

MmSystemCache Ws.Page
FaultCount 

Physical memory consumed 
by the system cache. 

Total size of the system 
working set (including the 
cache, paged pool, pageable 
code, and system mapped 
views). This is not the size 
of the cache (as the name 
implies)! 

Peak system working set 
SIze. 

Page faults in the system 
working set (not just the 
cache). 

Most utilities that claim to display the size of the system cache (such as Task 
Manager, Pview, Pstat, Pmon, Perfintr, and so on) in fact display the total system 
working set size, not just the cache size .. The reason for this inaccuracy is that 
the performance counter Memory: Cache Bytes (see Table 11-3) returns the 

656 



E LEV EN: Cache Manager 

total system working set size, which includes the system cache, paged pool, 
pageable system code, and system mapped views, even though the name and 
explanatory text imply that it represents just the cache size. For example, if you 
start Task Manager (by pressing Ctrl+Shift+ Esc) and click the Performance tab, 
the field named System Cache is actually the system working set size, as you can 
see in Figure 11-4. 

Figure 11-4 

This isn't the size of 
the system cache. 

The Windows2000 Task Manager doesn't report the size of the system cache 

A number of internal system variables control working set expansion and 
trimming, such as Mm WorkingSetReductionMaxCache Ws, Mm WorkingSet
ReductionMinCache Ws,· Mm WorkingSet VolReductionMaxCache Ws, and Mm
PeriodicAgressiveCache WsMin. Although we don't cover these variables in detail 
in this book, in Chapter 7, we do describe the memory manager's general policies 
for working set management. 

657 



INSIDE MICROSOFT WINDOWS 2000 

658 



E LEV EN: Cache Manager 

Cache Data Structures 
The cache manager uses the following data structures to keep track of cached files: 

• Each 2S6-KB slot in the system cache is described by a VACB. 

• Each separately opened cached file has a private cache map, which 
contains information used to control read-ahead (discussed later in 
the chapter). 

• Each cached file has a single shared cache map structure, which points 
to slots in the system cache that contain mapped views of the file. 

These structures and their relationships are described in the next sections. 

659 



INSIDE MICROSOFT WINDOWS 2000 

Systemwide Cache Data Structures 

660 

The cache manager keeps track of the state of the views in the system cache by 
using an array of data structures called virtual address control blocks (VACBs). 
During system initialization, the cache manager allocates a single chunk of 
nonpaged pool to contain all the VACBs required to describe the system cache. 
It stores the address of the VACB array in the variable CcVacbs. Each VACB 
represents one 256-KB view in the system cache, as shown in Figure 11-5. The 
structure of a VACB is shown in Figure 11-6. 

System cache 

System VACB array ~ 
VACBO • 

VACB1 ~ 
VACB2 • 

~ VACB3 

• VACB4 

VACB5 

VACB6 

VACB7 

VACBn 
.~ 

Figure 11-5 
System VACB array 

Virtual address of data in system cache 

Pointer to shared cache map 

File offset 

Active count 

Figure 11-6 
VACB structure 

View 0 

View 1 

View 2 

View 3 

View 4 

View 5 

View 6 

View 7 

ViewS 

Viewn 



E LEV EN: Cache Manager 

As you can see in Figure 11-6, the first field in a VACB is the virtual address 
of the data in the system cache. The second field is a pointer to the shared cache 
map structure, which identifies which file is cached. The third field identifies the 
offset within the file at which the view begins (always based on a 256-KB granu-
1arity). Finally, the VACB contains the number of references to the view-that 
is, how many active reads or writes are accessing the view. During an I/O opera
tion on a ftle, the ftle's VACB reference count is incremented and then it's 
decremented when the I/O operation is over. For access to file system metadata, 
the active count represents how many file system drivers have the pages in that 
view locked into memory. 

Per-File Cache Data Structures 
Each open handle to a file has a corresponding ftle object. (File objects are 
explained in detail in Chapter 9.) If the file is cached, the file object points to 
a private cache map structure that contains the location of the last two reads so 
that the cache manager can perform intelligent read-ahead (described in the 
section "Intelligent Read-Ahead" on page 669). In addition, all the private cache 
maps for a file object are linked together. 

Each cached file (as opposed to file object) has a shared cache map structure 
that describes the state of the cached ftle, including its size and (for security 
reasons) its valid data length. (The function of the valid data length field is 
explained in the section "Write-Back Caching and Lazy Writing" on page 665.) 
The shared cache map also points to the section object (maintained by the memory 
manager, and which describes the file's mapping into virtual memory), the list of 
private cache maps associated with that file, and any VACBs that describe currently 
mapped views of the file in the system cache. (See page 482 in Chapter 7 for more 
about section object pointers.) The relationships among these per-file cache data 
structures are illustrated in Figure 11-7. 

When asked to read from a particular file, the cache manager must deter
mine the answers to two questions: 

1. Is the file in the cache? 

2. If so, which VACB, if any, refers to t/le requested location? 

In other words, the cache manager must find. out whether a view of the 
file at the desired address is mapped into the system cache. If no VACB con
tains the desired file offset, the. requested data isn't currently mapped into the 
system cache. 

661 



INSIDE MICROSOFT WINDOWS 2000 

662 

File object 

~ Private cache map 

--- --. 
Read-ahead inforniation Next private 

,. cache map for 
this file 

Section object pointers 
" 
~ 
~ .. hared cache map 

.1 Next shared I 
~ I cache map 

\ List of private 

File object cache maps 

Open count 

File size 

Valid data length 
I 

VACB I Entry 0 

Entry 1 

) VACe '"<Iex '"'" Entry 2 

Entry 3 
" I VACB index I 

Additional VACB I array 

Figure 11-7 
Per-jile cache data structures 

To keep track of which views for a given file are mapped into the system 
cache, the cache manager maintains an array of pointers to VACBs, the VACB 
index array. The first entry in the VACB index array refers to the first 256 KB 
of the file, the second entry to the second 256 KB, and so on. The diagram in 
Figure 11-8 shows four different sections from three different fues that are 
currently mapped into the system cache. 

When a process accesses a particular file in a given location, the cache 
manager looks in the appropriate entry in the file's VACB index array to see 
whether the requested data has been mapped into the cache. If the array entry 
is nonzero (and hence contains a pointer to a VACB), the area of the file being 
referenced is in the cache. The VACB, in turn, points to the location in the system 
cache where the view of the file is mapped. If the entry is zero, the cache man
ager must fmd a free slot in the system cache (and therefore a free VACB) to 
map the required view. 



File A (500 KB) ~ 
Section 0 V 

I------f 
Section 1 

FileAVACB 
index array 

E LEV EN: Cache Manager 

System cache 

E to... . ~ View 0 
n ry ... System VACB array ./;,.1------1 

Entry 1 __ ~ VACB 0 .'" ~1-_V_ie_w_1_--I! 
E t 2 i' "1 /';' View 2 

n ry i ~ I' VACB 1 ../ .:-1--------11 
Entry 3 /,1' VACB2 .,. ~ View 3 

./' View 4 
~ VACB3. 1--------11 

ViewS 
File B VACB VACB 4 1-------11 
"d ~~6 

File B (750 KB) 

Section 0 

In ex array VACB S 1------1 
__ Entry 0 4 View 7 

. 1------1 VACB6 

Section 1 

Section 2 

Entry 1 

Entry 2 

Entry 3 

FlleC VACB 
index array 

./ Entry 0 • 
File C (100 KB) ./'1------1 

Section 0 Entry 1 

Entry 2 

Entry 3 

Figure 11-8 
VACB index arrays 

ViewS 
VACB7 

VACBn 

Viewn 

As a size optimization, the shared cache map contains a VACB index array 
that is 4 entries in size. Because each VACB describes 256 KB, the entries in this 
small fixed-size index array can point to VACB array entries that together de
scribe a file of up to 1 MB. If a file is larger than 1 MB, a separate VACBindex 
array is allocated from nonpaged pool, based on the size of the file divided by 
256 KB and rounded up in the case of a remainder. The shared cache map then 
points to this separate structure. 

As a further optimization,the VACB index array allocated from nonpaged 
pool becomes a sparse multilevel index array if the file is larger than 32 GB, where 
each index array consists ofl28 entries. You can calculate the number oflevels 
required for a file with the following formula: 

(Number of bits required to represent file size - 18) /7 

Round the result of the equation up to the next whole number. The value 
18 in the equation comes from the fact that aVACB represents 256KB, and 
256 KB is 218 • The value 7 comes from the fact that each level in the array has 

663 



INSIDE MICROSOFT WINDOWS 2000 

664 

128 entries and 27 is 128. Thus, a file that has a size that is the maximum that 
can be described with 63 bits (the largest size the cache manager supports) would 
require only seven levels. The array is sparse because the only branches that the 
cache manager allocates are ones for which there are active views at the lowest
level index array. Figure 11-9 shows an example of a multilevel VACB array for 
a sparse file that is large enough to require three levels. 

VACB 

Shared 
cache map 0 .--_---" 

VACBarray 

127 ...... _-..11 

127 ...... ---' 

127 ............... ......11 

Figure 11-9 
Multilevel VACB arrays 

This scheme is required to efficiently handle sparse files that might have 
extremely large file sizes with only a small fraction of valid data because only 
enough of the array is allocated to handle the currently mapped views of a file. 



E LEV EN: Cache Manager 

For example, a 32-GB sparse file for which only 256 KB is mapped into the 
cache's virtual address space would require a VACB array with three allocated 
index arrays because only one branch of the array has a mapping and a 32-GB 
(235 bytes) file requires a three-level array. If the cache manager didn't use the 
multilevel VACB array optimization for this file, it would have to allocate a VACB 
array with 128,000 entries, or the equivalent of 1000 index arrays. 

Cache Operation 
In this section, you'll see how the cache manager implements reading and writing 
file data on behalf of file system drivers. Keep in mind that the cache manager 
is involved in file I/O only when a file is opened (for example, using the Win32 
CreateFile function). Mapped files don't go through the cache manager, nor 
do files opened with the FILE_FLAG_NO_BUFFERING flag set. 

Write-Back Caching and Lazy Writing 
The Windows 2000 cache manager implements a write-back cache with lazy 
write. This means that data written to files is first stored in memory in cache pages 
and then written to disk later. Thus, write operations are allowed to accumu
late for a short time and are then flushed to disk all at once, reducing the over
all number of disk I/O operations. 

The cache manager must explicitly call the memory manager to flush cache 
pages because otherwise the memory manager writes memory contents to disk 
only when demand for physical memory exceeds supply, as is appropriate for 
volatile data. Cached file data, however, represents nonvolatile disk data. If a 
process modifies cached data, the user expects the contents to be reflected on 
disk in a timely manner. 

The decision about how often to flush the cache is an important one. If 
the cache is flushed too frequently, system performance will be slowed by unnec
essary I/O. If the cache is flushed too rarely, you risk losing modified file data 
in the cases of a system failure (a loss especially irritating to users who know that 
they asked the application to save the changes) and running out of physical 
memory (because it's being used by an excess of modified pages). 

To balance these concerns, once per second a system thread created by 
the cache manager-the lazy writer-queues one-eighth of the dirty pages in the 
system cache to be written to disk. If the rate at which dirty pages are being 
produced is greater than the amount the lazy writer had determined it should 

665 



INSIDE MICROSOFT WINDOWS 2000 

write, the lazy writer writes an additional number of dirty pages that it calculates 
are necessary to match that rate. System worker threads from the systemwide 
critical worker thread pool actually perform the I/O operations. 

NOT E For C2-secure file systems (such as NTFS), the cache man
ager provides a means for the file system to track when and how much 
data has been written to a file. After the lazy writer flushes dirty pages 
to the disk, the cache manager notifies the file system, instructing it 
to update its view of the valid data length for the file. 

You can examine the activity of the lazy writer by examining the cache 
performance counters or system variables listed in Table 11-4. 

Table 11-4 System Variables for Examining the Activity of the 
Lazy Writer 

Performance Counter 
(frequency) 

System Variable 
(count) Description 

Cache: Lazy Write Flushes/Sec 

Cache: Lazy Write Pages/Sec 

CcLazyWritelos Number of lazy writer flushes 

CcLazy WritePages Number of pages written by the 
lazy writer 

666 

Calculating the Dirty Page Threshold 
The dirty page threshold is the number of pages that the system cache keeps in 
memory before waking up the lazy writer system thread to write out pages back 
to the disk. This value is computed at system initialization time and depends on 
physical memory size and the value of the registry value HKLM\SYSTEM\ 
CurrentControISet\Control\SessionManager\Memory Management\Large
SystemCache. This value is 0 by default on Windows 2000 Professional and 1 
on Windows 2000 Server systems. You can adjust this value through the GUIon 
Windows 2000 Server systems by modifYing the properties of the file server 
service. (Bring up the properties for a network connection, and double-click on 
File And Printer Sharing For Microsoft Networks.) Even though this service exists 
on Wmdows 2000 Professional, its parameters can't be adjusted. Figure 11-10 
shows the dialog box you use when modifYing the amount of memory allocated 
for local and network applications in the Server network service. 



E LEV EN: Cache Manager 

Figure 11-10 
File And Printer Sharing For Microsoft Networks Properties dialog box, 
which is used to modify the properties of the Windows 2000 Server 
network service 

The setting shown in Figure 11-10, Maximize Data Throughput For File 
Sharing, is the default for Server systems running with Terminal Services installed
the LargeSystemCache value is 1. Choosing any of the other settings will set the 
LargeSystemCache value to o. Although each of the four settings in the Opti
mization section of the File And Printer Sharing For Microsoft Networks Prop
erties dialog box affect the behavior of the system cache, they also modify the 
behavior of the file server service. 

Table 11-5 contains the algorithm used to calculate the dirty page thresh
old. The calculations in Table 11-5 are overridden if the system maximum 
working set size is greater than 4 MB-and it often is. (See page 457 in Chap
ter 7 to find out how the memory manager chooses system working set sizes
that is, how it determines whether the size is small, medium, or large.) When 
the maximum working set size exceeds 4 MB, the dirty page threshold is set to 
the value of the system maximum working set size minus 2 MB. 

667 



INSIDE MICROSOFT WINDOWS 2000 

Table 11-5 Algorithm for Calculating the Dirty Page Threshold 

System Memory Size 

Small 

Medium 

Large 

Dirty Page Threshold 

Physical pages / 8 

Physical pages / 4 
Sum of the above two values 

Disabling Lazy Writing for a File 
If you create a temporary file by specifying the flag FILE_ATTRIBUTE_ 
TEMPORARY in a call to the Win32 CreateFile function, the lazy writer won't 
write dirty pages to the disk unless there is a severe shortage of physical memory 
or the file is closed. This characteristic of the lazy writer improves system 
performance-the lazy writer doesn't immediately write data to a disk that might 
ultimately be discarded. Applications usually delete temporary files soon after 
closing them. 

Forcing the Cache to Write Through to Disk 
Because some applications can't tolerate even momentary delays between writing 
a file and seeing the updates on disk, the cache manager also supports write
through caching on a per-file basis; changes are written to disk as soon as they're 
made. To turn on write-through caching, set the FILE_FLAG_ WRITE_ 
THROUGH flag in the call to the CreateFile function. Alternatively, a thread 
can explicitly flush an open file, by using the Win32 FlushFileBuffers function, 
when it reaches a point at which the data needs to be written to disk. You can 
observe cache flush operations that are the result of write-through I/O requests 
or explicit calls to FlushFileBuffersvia the performance counters or system vari
ables shown in Table 11-6. 

Table 11-6 System Variables for Viewing Cache Flush Operations 

Performance Counter 
(frequency) 

System Variable 
(count) Description 

Cache: Data Flushes/Sec 

Cache: Data Flush Pages/Sec 

668 

CcDataFlushes 

CcDataPages 

Number of times cache pages were 
flushed explicitly or because of write 
through 

Number of pages flushed explicitly or 
because of write through 



E LEV EN: Cache Manager 

Flushing Mapped Files 
If the lazy writer must write data to disk from a view that's also mapped into 
another process's address space, the situation becomes a little more complicated 
because the cache manager will only know about the pages it has modified. 
(Pages modified by another process are known only to that process because the 
modified bit in the page table entries for modified pages are kept in the pro
cess private page tables.) To address this situation, the memory manager informs 
the cache manager when a user maps a file. When such a file is flushed in the 
cache (for example, as a result of a call to the Win32 FlushFileBuffers function), 
the cache manager writes the dirty pages in the cache and then checks to see 
whether the file is also mapped by another process. When the cache manager 
sees that the file is, the cache manager then flushes the entire view of the sec
tion in order to write out pages that the second process might have modified. 
If a user maps a view of a file that is also open in the cache, when the view is 
unmapped, the modified pages are marked as dirty so that when the lazy writer 
thread later flushes the view, those dirty pages will be written to disk. This pro
cedure works as long as the sequence occurs in the following order: 

1. A user unmaps the view. 

2. A process flushes file buffers. 

If this sequence isn't followed, you can't predict which pages will be written 
to disk. 

Intelligent Read-Ahead 
The Windows 2000 cache manager uses the principle of spatial locality to perform 
intelligent read-ahead by predicting what data the calling process is likely to read 
next based on the data that it is reading currently. Because the system cache is 
based on virtual addresses, which are contiguous for a particular file, it doesn't 
matter whether they're juxtaposed in physical memory. File read-ahead for logical 
block caching is more complex and requires tight cooperation between file 
system drivers and the block cache because that cache system is based on the 
relative positions of the accessed data on the disk, and of course, flIes aren't 
necessarily stored contiguously on disk. 

669 



INSIDE MICROSOFT WINDOWS 2000 

670 

The two types of read -ahead-virtual address read -ahead and asynchronous 
read-ahead with history-are explained in the next two sections. You can exam
ine read-ahead activity by using the Cache: Read Aheads/Sec performance 
counter or the CcReadAheadlos system variable. 

Virtual Address Read-Ahead 
Recall from Chapter 7 that when the memory manager resolves a page fault, 
it reads into memory several pages near the one explicitly accessed, a method 
called clustering. For applications that read sequentially, this virtual address 
read-ahead operation reduces the number of disk reads necessary to retrieve 
data. The only disadvantage to the memory manager's method is that because 
this read-ahead is done in the context of resolving a page fault it must be 
performed synchronously, while the thread waiting on the data being paged 
back into memory is waiting. 

Asynchronous Read-Ahead with History 
The virtual address read -ahead performed by the memory manager improves 
I/O performance, but its benefits are limited to sequentially accessed data. To 
extend read -ahead benefits to certain cases of randomly accessed data, the cache 
manager maintains a history of the last two read requests in the private cache 
map for the fIle handle being accessed, a method known as asynchronous read
ahead with history. If a pattern can be determined from the caller's apparently 
random reads, the cache manager extrapolates it. For example, if the caller reads 
page 4000 and then page 3000, the cache manager assumes that the next page 
the caller will require is page 2000 and prereads it. 

NOT E Although a caller must issue a minimum of three read opera
tions to establish a predictable sequence, only two are stored in the 
private cache map. 

To make read-ahead even more efficient, the Win32 CreateFile function 
provides a flag indicating sequential fIle access: FILE_FLAG_SEQUENTIAL_ 
SCAN. If this flag is set, the cache manager doesn't keep a read history for the 
caller for prediction but instead performs sequential read-ahead. However, as 
the file is read into the cache's working set, the cache manager unmaps views 
of the fIle that are no longer active and directs the memory manager to place the 



E LEV EN: Cache Manager 

pages belonging to the unmapped views at the front of the standby list or 
modified list (if the pages are modified) so that they will be quickly reused. It 
also reads ahead three times as much data (192 KB instead of 64 KB, for example) 
by using a separate I/O operation for each read. As the caller continues read
ing, the cache manager prereads additional blocks of data, always staying about 
one read (of the size of the current read) ahead of the caller. 

The cache manager's read-ahead is asynchronous because it is performed 
in a thread separate from the caller's thread and proceeds concurrently with the 
caller's execution. When called to retrieve cached data, the cache manager first 
accesses the requested virtual page to satisfy the request and then queues an 
additional I/O request to retrieve additional data toa system worker thread. 
Theworker thread then executes in the background, reading additional data in 
anticipation of the caller's next read request. The preread pages are faulted into 
memory while the program continues executing so that when the caller requests 
the data it's already in memory. 

Although the asynchronous read-ahead with history technique uses more 
memory than the standard read-ahead, it minimizes disk I/O and further improves 

. the performance of applications reading large amounts of cached sequential data. 
The Cache: Read Aheads/Sec performance counter indicates sequential access 
read-ahead operations. . 

For applications that have no predictable read pattern, the FILE_FLAG_ 
RANDOM_ACCESS flag can be specified when the CreateFile function is called. 
This flag instructs the cach~ manager not toattelllptt,opredict where the appli
. cation is reading .next and thus disables read ~ahead. The flag also stops the cache 
manager from aggressively unmapping views of the file as the file is accessed so 
as to minimize the mapping/unmapping activity for the file when the applica
tion revisits portions of the file. 

System Threads 
As mentioned earlier, the .cache manager performs lazy write and read-ahead I/O 
operations by submitting requests to the.commoncriticalsystem worker thread 
pool. However, it does limit the uSe Of these threads to one less than the total 
number of critical worker system threads for small and medium memory systems 
(two less than the total for large memory systems). 

671 



INSIDE MICROSOFT WINDOWS 2000 

Internally, the cache manager organizes its work requests into two lists 
(though these are serviced by the same set of executive worker threads): 

II The express queue is used for read-ahead operations. 

II The regular queue is used for lazy write scans (for dirty data to flush), 
write behinds, and lazy closes. 

To keep track of the work items the worker threads need to perform, the 
cache manager creates its own internal per-processor look-aside list, a fixed -length 
list--one for each processor--of worker queue item structures. (Look -aside lists 
are discussed in Chapter 7.) The number of worker queue items depends on 
system size: 32 for small-memory systems, 64 for medium-memory systems, 128 
for large-memory Windows 2000 Professional systems, and 256 for large
memory Windows 2000 Server systems. 

Fast 110 

672 

Whenever possible, reads and writes to cached files are handled by a high-speed 
mechanism named fast I/O. Fast I/O is a means of reading or writing a cached 
file without going through the work of generating an IRP, as described in 
Chapter 9. With fast I/O, the I/O manager calls the file system driver's fast I/O 
routine to see whether I/O can be satisfied directly from the cache manager 
without generating an IRP. 

Because the Windows 2000 cache manager keeps track of which blocks of 
which files are in the cache, file system drivers can use the cache manager to access 
file data simply by copying to or from pages mapped to the actual file being 
referenced without going through the overhead of generating an IRP. 

Fast I/O doesn't always occur. For example, the first read or write to a 
file requires setting up the file for caching (mapping the file into the cache and 
setting up the cache data structures, as explained earlier in the section "Cache 
Data Structures" on page 659). Also, if the caller specified an asynchronous read 
or write, fast I/O isn't used because the caller might be stalled during paging 
I/O operations required to satisfY the buffer copy to or from the system cache 
and thus not really providing the requested asynchronous I/O operation. But 
even on a synchronous I/O, the file system driver might decide that it can't 
process the I/O operation by using the fast I/O mechanism, say, for example, 
if the file in question has a locked range of bytes (as a result of calls to the Win32 
LockFile and UnlockFile functions). Because the cache manager doesn't know 
what parts of which files are locked, the file system driver must check the validity 
of the read or write, which requires generating an IRP. The decision tree for fast 
I/O is shown in Figure 11-11. 



NtReadFi'e 

Yes 

No 

No 

Generate IRP 

Figure 11-11 
Fast I/O decision tree 

E LEV EN: Cache Manager 

File system driver Cache manager 

Yes Cache manager 
::.0--+-...... 1 copies data to or 

No 

from process buffer 

Cache manager 
initializes cache 

Cache complete 

These steps are involved in servicing a read or a write with fast I/O: 

1. A thread performs a read or write operation. 

2. If the file is cached and the I/O is synchronous, the request passes 
to the fast I/O entry point of the file system driver. If the file isn't 
cached, the file system driver sets up the file for caching so that the 
next time, fast I/O can be used to satisfy a read or write request. 

3. If the file system driver's fast I/O routine determines that fast I/O is 
possible, it calls the cache manager read or write routine to access the 
file data directly in the cache. (If fast I/O isn't possible, the file system 
driver returns to the I/O system, which then generates an IRP for the 
I/O and eventually calls the file system's regular read routine.) 

4. The cache manager translates the supplied file offset into a virtual 
address in the cache. 

673 



INSIDE MICROSOFT WINDOWS 2000 

5. For reads, the cache manager copies the data from the cache into the 
buffer of the process requesting it; for writes, it copies the data from 
the buffer to the cache. 

6. One of the following actions occurs: 

a. For reads, the read-ahead information in the caller's private cache 
map is updated. 

b. For writes, the dirty bit of any modified page in the cache is set so 
that the lazy writer will know to flush it to disk. 

c. For write-through files, any modifications are flushed to disk. 

NOT E The fast I/O path isn't limited to occasions when the re
quested data already resides in physical memory. As noted in steps 5 
and 6 of the preceding list, the cache manager simply accesses the 
virtual addresses of the already opened file where it expects the data 
to be. If a cache miss occurs, the memory manager dynamically pages 
the data into physical memory. 

The performance counters or system variables listed in Table 11-7 can be 
used to determine the fast I/O activity on the system. 

Table 11-7 System Variables for Determining Fast I/O Activity 

Performance Couhter 
(frequency) 

System Variable 
(count) Description 

Cache: Sync Fast Reads/Sec 

Cache: Async Fast Reads/Sec 

Cache: Fast Read Resource 
Misses/Sec 

Cache: Fast Read Not 
Possibles/Sec 

674 

CcFastReadWait 

CcFastReadNo Wait 

CcFastReadResourceMiss 

CcFastReadNotPossible 

Synchronous reads that were 
handled as fast I/O requests 

Asynchronous reads that were 
handled as fast I/O requests 
(These are always zero because 
asynchronous fast reads aren't 
done in Windows 2000.) 

Fast I/O operations that 
couldn't be satisfied because 
of resource conflicts (This 
situation can occur with FAT 
but not with NTFS.) 

Fast I/O operations that 
couldn't be satisfied (The file 
system driver decides; for 
example, files with byte range 
locks can't use fast I/O.) 



E LEV EN: Cache Manager 

Cache Support Routines 
The first time a file's data is accessed for a read or write operation, the file system 
driver is responsible for determining whether some part of the file is mapped 
in the system cache. If it's not, the file system driver must call the Cclnitialize
CacheMap function to set up the per-file data structures described in the pre
ceding section. 

Once a file is set up for cached access, the file system driver calls one of 
several functions to access the data in the file. There are three primary methods 
for accessing cached data, each intended for a specific situation: 

II The copy read method copies user data between cache buffers in 
system space and a process buffer in user space. 

II The mapping and pinning method uses virtual addresses to read and 
write data directly to cache buffers. 

II The physical memory access method uses physical addresses to read 
and write data directly to cache buffers. 

File system drivers must provide two versions of the file read operation
cached and noncached-to prevent an infinite loop when the memory manager 
processes a page fault. When the memory manager resolves a page fault by calling 
the file system to retrieve data from the file (via the device driver, of course), 
it must specify this noncached read operation by setting the "no cache" flag 
in the IRP. 

The next three sections explain these cache access mechanisms, their pur
pose, and how they're used. 

Copying to and from the Cache 
Because the system cache is in system space, it is mapped into the address space 
of every process. As with all system space pages, however, cache pages aren't 
accessible from user mode because that would be a potential security hole. (For 
example, a process might not have the rights to read a file whose data is cur
rently contained in some part of the system cache.) Thus, user application file 
reads and writes to cached files must be serviced by kernel-mode routines that 
copy data between the cache's buffers in system space and the application's 
buffers residing in the process address space. The functions that file system drivers 
can use to perform this operation are listed in Table 11-8. 

675 



INSIDE MICROSOFT WINDOWS 2000 

Table 11-8 Kernel-Mode Functions for Copying to and 
from the Cache 

\ 

Function Description 

CcCopyRead Copies a specified byte range from the system cache to a 
user buffer 

CcFastCopyRead Faster variation of CcCopyRead but limited to 32-bit file 
offsets and synchronous reads (used by NTFS, not FAT) 

CcCopy Write Copies a specified byte range from a user buffer to the 
system cache 

CcFastCopyWrite Faster variation of CcCopyWrite but limited to 32-bit file 
offsets and synchronous, non-write-through writes (used 
by NTFS, not FAT) 

You can examine read activity from the cache via the performance counters 
or system variables listed in Table 11-9. 

Table 11-9 System Variables for Examining Read Activity 
from the Cache 

Performance Counter 
(frequency) 

System Variable 
(count) Description 

Cache: Copy Read Hits % 

Cache: Copy Reads/Sec 

Cache: Sync Copy Reads/Sec 

Cache: Async Copy Reads/Sec 

676 

( CcCopyReadWait + 
CcCopyReadNo Wait) / 
( CcCopyReadWait + 
( CcCopyReadWaitMiss + 
CcCopyReadNo Wait) + 
CcCopyReadNo WaitMiss) 

CcCopyReadWait + 
CcCopyReadNo Wait 

CcCopyReadWait 

CcCopyReadNo Wait 

Percentage of copy reads to 
parts of files that were in the 
cache (A copy read can still 
generate paging I/O-the 
Memory: Cache Faults/Sec 
counter reports page fault 
activity for the system 
working set but includes both 
hard and soft page faults, so 
the counter still doesn't 
indicate actual paging I/O 
caused by cache faults.) 

Total copy reads from the 
cache 

Synchronous copy reads from 
the cache 

Asynchronous copy reads 
from the cache 



E LEV EN: Cache Manager 

Caching with the Mapping and Pinning Interfaces 
Just as user applications read and write data in files on a disk, file system drivers 
need to read and write the data that describes the files themselves (the metadata, 
or volume structure data). Because the file system drivers run in kernel mode, 
however, they could, if the cache manager were properly informed, modify data 
directly in the system cache. To permit this optimization, the cache manager 
provides the functions shown in Table 11-10. These functions permit the file 
system drivers to find where in virtual memory the file system metadata resides, 
thus allowing direct modification without the use of intermediary buffers. 

Table 11-10 Functions for Finding Metadata Locations 

Function 

CcMapData 

CcPinRead 

CcPreparePin Write 

CcPinMappedData 

CcSetDirtyPinnedData 

Cc UnpinData 

Description 

Maps the byte range for read access 

Maps the byte range for read/write access 
and pins it 

Maps and pins the byte range for write access 

Pins a previously mapped buffer 

Notifies the cache manager that the data has been modified 

Releases the pages so that they can be removed from memory 

If a file system driver needs to read file system metadata in the cache, it 
calls the cache manager's mapping interface to obtain the virtual address of the 
desired data. The cache manager touches all the requested pages to bring them 
into memory and then returns control to the file system driver. The file system 
driver can then access the data directly. 

If the file system driver needs to modify cache pages, it calls the cache 
manager's pinning services, which keep the pages being modified in memory. 
The pages aren't actually locked into memory (such as when a device driver locks 
pages for direct memory access transfers). Instead, the memory manager's 
mapped page writer (explained in Chapter 7)sees that these pages are pinned 
and doesn't write the pages to disk until the file system driver unpins (releases) 
them. When the pages are released, the cache manager flushes any changes to 
disk and releases the cache view that the metadata occupied. 

The mapping and pinning interfaces solve one thorny problem of imple
menting a file system: buffer management. Without directly manipulating cached 
metadata, a file system must predict the maximum number of buffers it will need 
when updating a volume's structure. By allowing the file system to access and 

677 



INSIDE MICROSOFT WINDOWS 2000 

update its metadata directly in the cache, the cache manager eliminates the 
need for buffers, simply updating the volume structure in the virtual memory 
the memory manager provides. The only limitation the file system encounters 
is the amount of available memory. 

You can examine pinning and mapping activity in the cache via the perfor
mance counters or system variables listed in Table 11-11. 

Table 11-11 System Variables for Examining Pinning and 
Mapping Activity 

Performance Counter 
(frequency) 

Cache: Data Map Hits % 

Cache: Data Maps/Sec 

Cache: Sync Data Maps/Sec 

Cache: Async Data Maps/Sec 

Cache: Data Map Pins/Sec 

Cache: Pin Read Hits % 

Cache: Pin Reads/Sec 

Cache: Sync Pin Reads/Sec 

Cache: Async Pin Reads/Sec 

678 

System Variable 
(count) 

( CcMapData Wait + 
CcMapDataNo Wait)/ 
( CcMapData Wait + 
CcMapDataNo Wait) + 
(CcMapData WaitMiss + 
CcMapDataNo WaitMiss) 

CcMapData Wait + 
CcMapDataNo Wait 

CcMapData Wait 

CcMapDataNo Wait 

CcPinMappedDataCount 

( CcPinReadWait + 
CcPinReadNo Wait) / 
( CcPinReadWait + 
CcPinReadNo Wait) + 
( CcPinReadWaitMiss + 
CcPinReadNo WaitMiss) 

CcPinReadWait + 
CcPinReadNo Wait 

CcPinReadWait 

CcPinReadNo Wait 

Description 

Percentage of data maps to 
parts of files that were in the 
cache (A copy read can still 
generate paging I/O.) 

Total data maps from the 
cache 

Synchronous data maps from 
the cache 

Asynchronous data maps 
from the cache 

Number of requests to pin 
mapped data 

Percentage of pinned reads to 
parts of files that were in the 
cache (A copy read can still 
generate paging I/O.) 

Total pinned reads from the 
cache 

Synchronous pinned reads 
from the cache 

Asynchronous pinned reads 
from the cache 



E LEV EN: Cache Manager 

Caching with the Direct Memory Access Interfaces 
In addition to the mapping and pinning interfaces used to access metadata direcdy 
in the cache, the cache manager provides a third interface to cached data: direct 
memory access (DMA). The DMA functions are used to read from or write to 
cache pages without intervening buffers, such as when a network file system 
is doing a transfer over the network. 

The DMA interface returns to the file system the physical addresses of 
cached user data (rather than the virtual addresses, which the mapping and 
pinning interfaces return), which can then be used to transfer data direcdy from 
physical memory to a network device. Although small amounts of data (1 KB 
to 2 KB) can use the usual buffer-based copying interfaces, for larger transfers, 
the DMA interface can result in significant performance improvements for a 
network server processing file requests from remote systems. 

To describe these references to physical memory, a memory descriptor list 
(MDL) is used. (MDLs were introduced in Chapter 7.) The four separate func
tions described in Table 11-12 create the cache manager's DMA interface. 

Table 11-12 Functions That Create the DMA Interface 

Function 

CcMdlRead 

CcMdlReadComplete 

CcMdlWrite 

CcMdlWriteComplete 

Description 

Returns an MDL describing the specified 
byte range 

Frees the MDL 

Returns an MDL describing a specified byte 
range (possibly containing zeros) 

Frees the MDL and marks the range for writing 

You can examine MD L activity from the cache via the performance counters 
or system variables listed in Table 11-13. 

679 



INSIDE MICROSOFT WINDOWS 2000 

Table 11-13 System Variables for Examining MOL Activity 
from the Cache 

Performance Counter 
(frequency) 

System Variable 
(count) Description 

Cache: MDL Read Hits % ( CcMdlReadWait + 
CcMdlReadNo Wait) / 

Percentage of MDL reads to 
parts of files that were in the 
cache (References to pages 
satisfied by an MD L read can 
still generate paging I/O.) 

( CcMdlReadWait + 
CcMdlReadNo Wait) + 
(CcMdlReadWaitMiss + 
( CcMdlReadWaitMiss + 
CcMdlReadNo WaitMiss) 

Cache: MDL Reads/Sec CcMdlReadWait + 
CcMdlReadNo Wait 

Total MDL reads from the 
cache 

Cache: Sync MDL Reads/Sec CcMdlReadWait Synchronous MDL reads 
from the cache 

Cache: Async MDL Reads/Sec CcMdlReadNo Wait Asynchronous MD L reads 
from the cache 

Write Throttling 

680 

Windows 2000 must determine whether the scheduled writes will affect system 
performance and then schedule any delayed writes. First it asks whether a cer
tain number of bytes can be written right now without hurting performance and 
blocks that write if necessary. Then it sets up callback for automatically writing 
the bytes when writes are again permitted. Once it's notified of an impending 
write operation, the cache manager determines how many dirty pages are in the 
cache and how much physical memory is available. If few physical pages are free, 
the cache manager momentarily blocks the file system thread that's request
ing to write data to the cache. The cache manager's lazy writer flushes some 
of the dirty pages to disk and then allows the blocked file system thread to 
continue. This write throttling prevents system performance from degrading 
because of a lack of memory when a file system or network server issues a large 
write operation. 

Write throttling is also useful for network redirectors transmitting data over 
slow communication lines. For example, suppose a local process writes a large 
amount of data to a remote file system over a 9600-baud line. The data isn't 



E LEV EN: Cache Manager 

written to the remote disk until the cache manager's lazy writer flushes the cache. 
If the redirector has accumulated lots of dirty pages that are flushed to disk at 
once, the recipient could receive a network timeout before the data transfer 
completes. By using the CcSetDirtyPageThreshold function, the cache manager 
allows network redirectors to set a limit on the number of dirty cache pages they 
can tolerate, thus preventing this scenario. By limiting the number of dirty 
pages, the redirector ensures that a cache flush operation won't cause a net
work timeout. 

681 



INSIDE MICROSOFT WINDOWS 2000 

Conclusion 

682 

The Windows 2000 cache manager provides a high-speed, intelligent mechanism 
for reducing disk I/O and increasing overall system throughput. By caching on 
the basis of virtual blocks, the Windows 2000 cache manager can perform intel
ligent read-ahead. By relying on the global memory manager's mapped file 
primitive to access file data, the cache manager can provide the special fast I/O 
mechanism to reduce the CPU time required for read and write operations and 
also leave all matters related to physical memory management to the single 
Windows 2000 global memory manager, thus reducing code duplication and 
increasing efficiency. 



C HAP T E R T W E L V E 

File Systems 

In this chapter, we present an overview of the file system formats supported 
by Microsoft: Windows 2000. We then describe the types of file system drivers 
and their basic operation, including how they interact with other system com
ponents such as the memory manager and the cache manager. Windows 2000 
includes a native file system format called the NTFS file system. In the bal
ance of the chapter, we fb.cus on the on -disk layout of NTFS volumes and the 
advanced features of NTFS, such as compression, recoverability, quotas, and 
encryption. 

To fully understand this chapter, you should be familiar with the termi
nology introduced in Chapter 10, including the ternis volume and partition. 
You'll also need to be acquainted with these additional terms: 

II Sectors are hardware7addressable blocks on a storage medium. Hard· 
disks for x86 systems almost always define a 512-byte sector size. 
Thus, if the operating system wants to modify the 632nd byte on a 
disk, it must write a 512-byte block of data to the second sector on 
the disk. . .. 

II File system formats define the way that file data is stored on storage 
media and impact a file system's features. For example, a format that 
doesn't allow user permissions to be associated with files and direc
tories can't support security. A file system format can.also impose 
limits on the sizes of files and storage devices that the file system 
supports. Finally, some file system formats efficiently implement sup
port for either large or small files or for large or small disks. 

683 



INSIDE MICROSOFT WINDOWS 2000 

II Clusters are the addressable blocks that many file system formats 
use. Cluster size is always a multiple of the sector size, as shown in 
Figure 12-1. File system formats use clusters to manage disk space 
more efficiently; a cluster size that is larger than the sector size 
divides a disk into more manageable blocks. The potential trade-off 
of a larger cluster size is wasted disk space, or internal fragmentation, 
that results because file sizes typically aren't perfect multiples of 
cluster sizes. 

Figure 12-1 
Sectors and a cluster on a disk 

Cluster 
(4 sectors) 

II Metadata is data stored on a volume in support of file system 
format management. It isn't typically made accessible to applications. 
Metadata includes the data that defines the placement of files and 
directories on a volume, for example. 

Windows 2000 File System Formats 

684 

Windows 2000 includes support for the following file system formats: 

II CDFS 

II UDF 

II FAT12, FAT16, and FAT32 

II NTFS 

Each of these formats is best suited for certain environments, as you'll see 
in the following sections. 



CDFS 

UDF 

T W E LV E: File Systems 

CDFS, or CD-ROM file system, is a relatively simple format that was defined in 
1988 as the read-only formatting standard for CD-ROM media. Windows 2000 
implements ISO 9660-compliant CDFS in \Winnt\System32\Drivers\Cdfs.sys, 
with long filename support defined by Level 2 of the ISO 9660 standard. 
Because of its simplicity, the CDFS format has a number of restrictions: 

• Directory and file names must be fewer than 32 characters long. 

• Directory trees can be no more than eight levels deep. 

CDFS is considered a legacy format because the industry has adopted the 
Universal Disk Format (UDF) as the standard for read-only media. 

The Windows 2000 UDF file system implementation is ISO 13346-compliant 
and supports UDF versions 1.02 and 1.5. OSTA (Optical Storage Technology 
Association) defined UDF in 1995 as a format to replace CDFS for magneto
optical storage media, mainly DVD-ROM. UDF is included in the DVD speci
fication and is more flexible than CDFS. UDF file systems howe the following traits: 

• Filenames can be 255 characters long. 

• The maximum path length is 1023 characters. 

• Filenames can be upper and lower case. 

Although the UDF format was designed with rewritable media in mind, 
the Windows 2000 UDF driver (\Winnt\System32\Drivers\Udfs.sys) provides 
read-only support. 

FAT12,FAT16,andFAT32 
Windows 2000 supports the FAT file system primarily to enable upgrades from 
other versions of Micros oft Windows, for compatibility with other operating sys
tems in multiboot systems, and as a floppy disk format. The .Windows 2000 FAT 
file system driver is implemented in \Winnt\System32\Drivers\Fastfat.sys. 

Each FAT format includes a number that indi.cates the number of bits the 
format uses to identify clusters on a disk. FATl2's 12-bit cluster identifier lim
its a partition to storing a maximum of212 (4096) clusters. Windows 2000 uses 

685 



INSIDE MICROSOFT WINDOWS 2000 

686 

cluster sizes from 512 bytes to 8 KB in size, which limits a FAT12 volume size 
to 32 MB. Therefore, Windows 2000 uses FATl2 as the format for all 51f4-inch 
floppy disks and 3.5-inch floppy disks, which store up to 1.44 MB of data. 

FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On 
Wmdows 2000, FAT16 cluster sizes range from 512 bytes (the sector size) to 64 
KB, which limits FAT16 volume sizes to 4 GB. The cluster size Windows 2000 
uses depends on the size of a volume. The various sizes are listed in Table 12-1. 
If you format a volume that is less than 16 MB as FAT by using the format 
command or the Disk Management snap-in, Windows 2000 uses the FAT12 
format instead ofFAT16. 

Table 12-1 Default FAT16 Cluster Sizes in Windows 2000 

Volume Size Cluster Size 

0-32 MB 512 bytes 
33 MB-64MB 1 KB 
65 MB-128 MB 2KB 
129 MB-256 MB 4KB 
257 MB-511 MB 8KB 
512 MB-I023 MB 16KB 
1024 MB-2047 MB 32 KB 
2048 MB-4095 MB 64KB 

A FAT volume is divided into several regions, which are shown in Fig
ure 12-2. The file allocation table, which gives the FAT file system format its 
name, has one entry for each cluster on a volume. Because the file allocation 
table is critical to the successful interpretation of a volume's contents, the FAT 
format maintains two copies of the table so that if a file system driver or con
sistency-checking program (such as Chkdsk) can't access one (because of a bad 
disk sector, for example) it can read from the other. . 

Boot File allocation 
File allocation 

Root table 2 Other directories and a" files 
sector table 1 

(duplicate) 
directory 

Figure 12-2 
FAT format01;ganization 



TW E LV E: File Systems 

Entries in the file allocation table define file-allocation chains (shown in 
Figure 12-3) for files and directories, where the links in the chain are indexes 
to the next cluster of a file's data. A file's directory entry stores the starting cluster 
of the file. The last entry of the file's allocation chain is the reserved value of 
OxFFFF for FAT16 and OxFFF for FATI2. The FAT entries for unused clusters 
have a value ofO. You can see in Figure 12-3 that FILEI is assigned clusters 2, 
3, and 4; FILE2 is fragmented and uses clusters 5, 6, and 8; and FILE3 uses 
only cluster 7. 

Figure 12-3 
Example FAT file-allocation chains 

The root directory ofFAT12 and FAT16 vollimes are preassigned enough 
space at the start of a volume to store 256 directory entries, which places an 
upper limit on. the number of files and directories that can be stored in the root 
directory. (There's no preassigned space or size limit on FAT32 root directo
ries.) A FAT directory entry is 32 bytes and stores a file's name, size, starting 
cluster, and time stamp (last-accessed, created, and so on) information. If a file 
has a name that is Unicode or that doesn't follow the MS-DOS 8~3 naming con
vention, additional directory entries are allocated to store the long filename. The 
supplementary entries precede the fil~'s main entry. Figure 12~4 shows an example 
directory entry for a file named "The quick brown fox." The system has cre
ated a THEQUI-1.FOX 8.3 representation of the name (you don't see a"." 
in the directory entry because it is assumed to come after the eighth character) 
and used two more directory entries to store the Unicode long filename. Each 
row in the figure is made up of 16 bYtes. 

687 



INSIDE MICROSOFT WINDOWS 2000 

~ Second (and last) 
long entry 

-~O-x-~~I----w---~:--n----:~----~:----f---~:~o--~I-o-xm~-ox-oo-rIC-!-~~~--~.~---, 

OxFFFF 
.. I I I I I I 

OxOOOO OxFFFF OxFFFF I OxFFFF I OxFFFF OxOOOO OxFFFF 

:~~--~I---.--~J--~--L--.---L--r-~---,--+--,~~--,--1 

OxOl IT: h : e: : ql OxOF OxOO ICshu~k ~ 
~ I I II II I I I i c k b OxOOOO r 0 

~~ T I HiE I Q i u I I : _ : 1 : F : 0 : x I 0)(20 NT i c~eate ti~e 
creat~ date II Last ~ccess II OXO~OO I Last modified I Last modified I First cluster File size 

date time date 

Short entry 

J.....- First long entry 

688 

Figure 12-4 
FAT directory entry 

FAT32 is the most recently defined FAT-based file system format, and it's 
included with Windows 95 OSR2, Windows 98, and Windows Millennium 
Edition. FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so 
in effect it has 28-bit cluster identifiers. Because FAT32 cluster sizes can be as 
large as 32 KB, FAT32 has a theoretical ability to address 8-terabyte (TB) vol
umes. Although Windows 2000 works with existing FAT32 volumes of larger 
sizes (created in other operating systems), it limits newFAT32 volumes to a 
maximum of 32 GB. FAT32's higher potential cluster numbers let it more effi
ciently manage disks than FAT16; it can handle up to 128-MB volumes with 
512-byte clusters. Table 12-2 shows default cluster sizes for FAT32 volumes. 

Table 12-2 Default Cluster Sizes for FAT32 Volumes 

Partition Size 

32 MB to S GB 

S GB to 16 GB 

16 GB to 32 GB 

32 GB 

Cluster Size 

4KB 

SKB. 

16KB 

32 KB 



NTFS 

T W E L V E: File Systems 

Besides the higher limit on cluster numbers, other advantages FAT32 has 
over FAT12 and FAT16 include the fact that the FAT32 root directory isn't 
stored at a predefined location on the volume, the root directory doesn't have 
an upper limit on its size, and FAT32 stores a second copy of the boot sector 
for reliability. A limitation FAT32 shares with FAT16 is that the maximum file 
size is 4 GB because directories store file sizes as 32-bit values. 

As we said at the beginning of the chapter, the NTFS file system is the native file 
system format of Windows 2000. NTFS uses 64-bit cluster indexes. This capa
city gives NTFS the ability to address volumes of up to 16 exabytes (16 billion 
GB); however, Windows 2000 limits the size of an NTFS volume to that addres
sable with 32-bit clusters, which is 128 TB (using 64-KB clusters). Table 12-3 
shows the default cluster sizes for NTFS volumes. (You cart override the default 
when you format an NTFS volume.) 

Table 12-3 Default Cluster Sizes for NTFS Volumes 

Volume Size 

512 MB or less 

513 MB-1024 MB (1 GB) 
1025 MB-,-:2048 MB (2 GB) 

Greater than 2048 MB 

Default Cluster Size 

512 bytes 

1 KB 

2KB 

4KB 

NTFS includes a number of advanced features, such as file and directory 
security, disk quotas, file compression, directory-based symbolic links, and encryp
tion. One of its most significant features is recoverability. If a system is halted 
unexpectedly, the metadata of a FAT volume can be left in an inconsistent state, 
leading to the corruption of large amounts of file and directory data. NTFS logs 
changes to metadata in a transactional manner so that file system structures can 
be repaired to a consistent state with no loss of file or directory structure infor
mation. (File data can be lost, however.) 

We'll describe NTFS data structures and advanced features in detail later 
in this chapter. 

689 



INSIDE MICROSOFT WINDOWS 2000 

File System Driver Architecture 
File system drivers (FSDs) manage ftle system formats. Although FSDs run in 
kernel mode, they differ in a number of ways from standard kernel-mode driv
ers. Perhaps most significant, they must register as an FSD with the I/O man
ager and they interact more extensively with the memory manager and the cache 
manager. Thus, they use a superset of the exported Ntoskrnl functions that 
standard drivers use. Whereas you need the Windows 2000 DDK in order to 
build standard kernel-mode drivers, you must have the Windows 2000 Install
able File System (IFS) Kit to build file system drivers. (See Chapter 1 for more 
information on the DDK, and see www.microsoft.comlddklifskitformore infor
mation on the IFS Kit.) 

Windows 2000 has two different types of file system drivers: 

III Local FSDs manage volumes directly connected to the computer. 

III Network FSDs allow users to access data volumes connected to remote 
computers. 

Local FSDs 

690 

Local FSDs include Ntfs.sys, Fastfat.sys, Udfs.sys, Cdfs.sys, and the Raw FSD 
(integrated in Ntoskrnl.exe). Figure 12-5 shows a simplified view of how local 
FSDs interact with the I/O manager and storage device drivers. As we described 
in the section "Volume Mounting" in Chapter 10, a local FSD is responsible 
for registering with the I/O manager. Once the FSD is registered, the I/O 
manager can call on it to perform volume recognition when applications or the 
system initially access the volumes. Volume recognition involves an examination 
of a volume's boot sector and often, as a consistency check, the file system 
metadata. 

The first sector of every Windows 2000-supported file system format is 
reserved as the volume's boot sector. A boot sector contains enough information 
so that a local FSD can both identify the volume on which the sector resides as 
containing a format that the FSD manages and locate any other metadata nec
essary to identify where metadata is stored on the volume. 

When a local FSD recognizes a volume, it creates a device object that 
represents the mounted file system format. The I/O manager makes a connec
tion through the volume parameter block (VPB) between the volume's device 



Application Application 

Figure 12-5 
LocalFSD 

110 manager 

File system driver 

Storage device drivers 

T W E L V E: File Systems 

User mode 

Kernel mode 

object (which is created by a storage device) and the device object that the FSD 
created. The VPB's connection results in the I/O manager redirecting I/O 
requests targeted at the volume device object to the FSD device object. (See 
Chapter 10 for more information on VPBs.) 

To improve performance, local FSDs usually use the cache manager to 
cache file system data, including metadata. They also integrate with the memory 
manager so that mapped files are implemented correcdy. For example, t;hey must 
query the memory manager whenever an application attempts to truncate a file 
in order to verify that no processes have mapped the part of the file beyond the 
truncation point. Windows 2000 doesn't permit file data that is mapped by an 
application to be deleted either through truncation or file deletion. 

Local FSDs also support file system dismount operations, which permit 
the system to disconnect the FSD from the volume object. A dismount occurs 
whenever an application requires raw access to the on-disk contents of a vol
ume or the media associated with a volume is changed; The first time an appli
cation accesses the media after a dismount, the I/O manager reinitiates a volume 
mount operation for the media. 

691 



INSIDE MICROSOFT WINDOWS 2000 

Remote FSDs 

692 

Remote FSDs consist of two components: a client and a server. A client-side 
remote FSD allows applications to access remote files and directories. The client 
FSD accepts I/O requests from applications and translates them into network 
file system protocol commands that the FSD sends across the network to a server
side remote FSD. A server-side FSD listens for commands coming from a net
work connection and fulfills them by issuing I/O requests to the local FSD that 
manages the volume on which the file or directory that the command is intended 
for resides. Figure 12-6 shows the relationship between the client and server sides 
of a remote FSD interaction. 

Clleht Server 

Figure 12-6 
Remote FSD operation 



T W E L V E: File Systems 

Windows 2000 includes a client-side remote FSD named LANMan 
Redirector (redirector) and a server-side remote FSD server named LANMan 
Server (server). The redirector is implemented as a port/miniport driver combi
nation, where the port driver (\Winnt\System32\Drivers\Rdbss.sys) is imple
mented as a driver subroutine library and the miniport (\Winnt\System32\ 
Drivers\Mrxsmb.sys) uses services implemented by the port driver. The port/ 
miniport model simplifies redirector development because the port driver, 
which all remote FSD miniport drivers share, handles many of the mundane 
details involved with interfacing a client-side remote FSD to the Windows 2000 
I/O manager. In addition to the FSD components, both LANMan Redirector 
and LANMan Server include Win32 services named Workstation and Server, 
respectively. 

Wmdows 2000 relies on the Common Internet File System (CIFS) pro
tocol to format messages exchanged between the redirector and the server. CIFS 
is an enhanced version of Microsoft's Server Message Block (SMB) protocol. 
(For more information on CIFS, go to www.cifs.com.) 

Like local FSDs, client-side remote FSDs usually use cache manager services 
to locally cache file data belonging to remote files and directories. However, 
client-side remote FSDs must implement a distributed cache coherency proto
col, called oplocks (opportunistic locking), so that the data an application sees 
when it accesses a remote file is the same as the data applications running on 
other computers that are accessing the same file see. Although server-side remote 
FSDs participate in maintaining cache coherency across their clients, they don't 
cache data from the local FSDs because local FSDs cache their own data. 
(Oplocks, redirector, and server are described in more detail in the section 
"Common Internet File System (CIFS)" on page 803 in Chapter 13.) 

NOT E A filter driver that layers over a file system driver is called 
a file-system filter driver. The ability to see all file system requests and 
optionally modify or complete them enables a range of applications, 
including on-access virus scanners and remote file replication services. 
Filemon, on the companion CD as \Sysint\Filemon, is an example of 
a file-system filter driver that is a pass-through filter. Filemon displays 
file .system activity in real time without modifying the requests it seeS. 

693 



INSIDE MICROSOFT WINDOWS 2000 

File System Operation 

694 

Applications and the system access files in two ways: directly, via file I/O func
tions (such as ReadFile and WriteFile), and indirectly, by reading or writing 
a portion of their address space that represents a mapped file section. (See 
Chapter 7 for more information on mapped files.) Figure 12-7 is a simplified 
diagram that shows the components involved in these file system operations 
and the ways in which they interact. As you can see, an FSD can be invoked 
through several paths: 

81 From a user or system thread performing explicit file I/O 

81 From the memory manager's modified page writer 



TW E LV E: File Systems 

NtReadFilelNtWriteFile NtCreateSection 

IRP ~ 
It Page fault 

loPageRead handler 
File system loAsynchronousPageWrite Virtual 

driver ..... memory 
Modified and manager 

'C~ mapped page 
CD 01 writer 

.s::: c: 0._ 

~ l? J ,~ c: a. 
0'0 
Z c: s::: s::: 

ttl 

~ ~ 
Storage ~ .l!l 

~ device CIS 
~ 

driver U it 

~ ~ 
CcCopyRead 
CcCopyWrite I Lazy writer I ,. Cache Page fault 

manager I Read-ahead I Fast/oRead, Fast/oWrite 
,. 

Figure 12·7 
Components involved in file system I/O 

II Indirectly from the cache manager's lazy writer 

II Indirectly from the cache manager's read-ahead thread 

II .From the memory manager's page fault handler 

Page fault 

~ 

The following sections describe the circumstances surrounding each of 
these scenarios and the steps FSDs typically take in response to each one. You'll 
see how much FSDs rely on the memory manager and the cache manager. 

Explicit File VO 
The most obvious wayan application accesses files is by calling Win32 I/O 
functions such as CreateFile, ReadFile, arid WriteFile. An application opens a 
file with CreateFile and then reads, writes, or deletes the file by passing the handle 
r~turned from CreateFile to other Win32 functions. The CreateFile function, 
which is implemented in the Kernel32.dll Win32 client~side DLL,invokes the 
native function NtCreateFile, forming a complete root-relative pathname for 

695 



INSIDE MICROSOFT WINDOWS 2000 

696 

the path that the application passed to it (processing"." and" .. " symbols in 
the pathname) and prep ending the path with "\??" (for example, \??\C:\ 
Susan\Todo.txt). 

The NtCreateFile system service uses ObOpenObjectByName to open the 
file, which parses the name starting with the object manager root directory and 
the first component of the path name ("??"). \?? is a subdirectory that contains 
symbolic links representing volumes that are assigned drive letters (and symbolic 
links to serial ports and other device objects that Win32 applications access 
directly), so the "C:" component of the name resolves to the \??\C: symbolic 
link. The symbolic link points to a volume device object under \Device, so when 
the object manager encounters the volume object, the object manager hands 
the rest of the pathname to the parse function that the I/O manager has regis
tered for device objects, IopParseDevice. (In volumes on dynamic disks, a sym
bolic link points to an intermediary symbolic link, which points to a volume 
device object.) Figure 12-8 shows how volume objects are accessed through the 
object manager namespace. The figure shows how the \??\C: symbolic link points 
to the \Device\HarddiskVolume1 volume device object. 

Figure 12-8 
Drive-letter name resolution 

\DI!I ... ice\Seri~I' 
\OeYice\Q:Floml 

\Device\Hl!lrckhkVolume2 
\De¥iceWideo1 
\De'liceWideo2 



T W E L V E: File Systems 

After locking the caller's security context and obtaining security informa
tion from the caller's token, 10pParseDevice creates an I/O request packet (IRP) 
of type IRP _ML CREATE, creates a file object that stores the name of the file 
being opened, follows the VPB of the volume device object to find the volume's 
mounted file system device object, and uses 10 Call Driver to pass the IRP to the 
file system driver that owns the file system device object. 

When an FSD receives an IRP _ML CREATE IRP, it looks up the specified 
file, performs security validation, and if the file exists and the user has permis
sion to access the file in the way requested, returns a success code. The object 
manager creates a handle for the file object in the process's handle table, and 
the handle propagates back through the calling chain, finally reaching the appli
cation as a return parameter from CreateFile. If the file system fails the create, 
the I/O manager deletes the file object it created for it. 

We've skipped over the details of how the FSD locates the file being opened 
on the vohllne, but a ReadFile function call operation shares many of the FSD's 
interactions with the cache manager arid storage driver. The path into the kernel 
taken as the result of a call· to ReadFile is the same as for a call to CreateFile, 
but the NtReadFile system service doesn't need to perform a name lookup
it calls on the object manager to translate the handle passed from ReadFile into 
a file object pointer. If the handle indicates that the caller obtained permission to 
read the file when the file was opened, NtReadFile proceeds to create an IRP of 
type IRP _MLREAD and sends it to the FSD on which the file resides. NtReadFile 
obtains the FSD's device object, which is stored in the file object, and calls 
1oCallDriver, and the I/O manager locates the FSD from the device object and 
gives the IRP to the FSD. 

If the file being read can be cached (the FILE_FLAG_NO_BUFFERING 
flag wasn't passed to CreateFile when the file was opened), the FSD checks to 
see whether caching has already been initiated for the file object. The Private
CacheYap field in a file object points to a private cache map data structure (which 
we described in Chapter 11) if caching is initiated for a file object. If the FSD 
hasn't initialized caching for the file object (which it does the first time a file 
object is read from or written to), .the PrivateCacheYap field will be null. The 
FSD calls the cache manager Cc1nitializeCacheYap function to initialize cach
ing, which involves the cache manager creating a private cache map and, if 
another file object referring to the same file hasn't initiated caching, a shared 
cache map and a section object. 

After it has verified that caching is enabled for the file, theFSp copies the 
requested file data from the cache manager's virtual memory to the buffer that 
the thread passed to the ReadFile function. The file system performs the copy 

697 



INSIDE MICROSOFT WINDOWS 2000 

698 

within a try/except block so that it catches any faults that are the result of an 
invalid application buffer. The function the file system uses to perform the copy 
is the cache manager's CcCopyRead function. CcCopyRead takes as parameters 
a file object, file offset, and length. 

When the cache manager executes CcCopyRead, it retrieves a pointer to 
a shared cache map, which is stored in the file object. Recall from Chapter 11 
that a shared cache map stores pointers to virtual address control blocks (VACBs), 
with one VACB entry per 256-KB block of the file. If the VACB pointer for a 
portion of a file being read is null, CcCopyRead allocates a VACB, reserving a 
256-KB view in the cache manager's virtual address space, and maps (using 
MmCreateSection and MmMapViewOfSection) the specified portion of the file 
into the view. Then CcCopyRead simply copies the file data from the mapped 
view to the buffer it was passed (the buffer originally passed to ReadFile). If the 
file data isn't in physical memory, the copy operation generates page faults, which 
are serviced by MmAccessFault. 

When a page fault occurs, MmAccessFaultexamines the virtual address that 
caused the fault and locates the virtual address descriptor (VAD) in the VAD 
tree of the process that caused the fault. (See Chapter 7 for more information 
on VAD trees.) In this scenario, the VAD describes the cache manager's mapped 
view of the file being read, so MmAccessFault calls MiDispatchFault to handle a 
page fault on a valid virtual memory address. MiDispatchFault locates the con
trol area (which the VAD points to) and through the control area finds a file object 
representing the open file. (If the file has been opened more than once, there might 
be a list of file objects linked through pointers in their private cache maps.) 

With the file object in hand, MiDispatchFault calls the I/O manager 
function IoPageRead to build an IRP (of type IRP _MLREAD) and sends the 
IRP to the FSD that owns the device object the file object points to. Thus, the 
file system is reentered to read the data that it requested via CcCopyRead, but 
this time the IRP is marked as noncached and paging I/O. These flags signal 
the FSD that it should retrieve file data directly from disk, and it does so by 
determining which clusters on disk contain the requested data and sending IRPs 
to the volume manager that owns the volume device object on which the file 
resides. The volume parameter block (VPB) fie1din the FSD's device object 
points to the volume device object. 

The virtual memory manager waits for the FSD to complete the IRP read 
and then returns control to the cache manager, which continues the copyopera
tion that was interrupted by a page fault. When CcCopyRead completes, the FSD 
returns control to the thread that called NtReadFile, having copied the requested 
file data-with the aid of the cache manager and the virtual memory manager
to the thread's buffer. 



T W E LV E: File Systems 

The path for WriteFile is similar except that the Nt WriteFile system service 
generates an IRP of type IRP _ML WRITE and the FSD calls CcCopy Write 
instead of CcCopyRead. CcCopy Write, like CcCopyRead, ensures that the por
tions of the file being written are mapped into the cache and then copies to the 
cache the buffer passed to WriteFile. 

If a file's data is already stored in the system's working set, there are several 
variants on the scenario we've just described. If a file's data is already stored in 
the cache, CcCopyRead doesn't incur page faults. Also, under certain conditions, 
NtReadFile and NtWriteFile call an FSD's fast I/O entry point instead of im
mediately building and sending an IRP to the FSD. Some of these conditions 
follow: the portion of the file being read must reside in the first 4 GB of the 
file, the file can have no locks, and the portion of the file being read or written 
must fall within the file's currently allocated size. 

The fast I/O read and write entry points for most FSDs call the cache 
manager's CcFastCopyRead and CcFastCopy Write functions. These variants on the 
standard copy routines ensure that the file's data is mapped in the file system cache 
before performing a copy operation. If this condition isn't met, CcFastCopyRead 
and CcFastCopy Write indicate that fast I/O isn't possible. When fast I/O isn't 
possible, NtReadFile and NtWriteFile fall back on creating an IRP. (See the 
section "Fast I/O" on page 672 in Chapter 11 for a more complete descrip
tion offast I/O.) 

Memory Manager's Modified and Mapped Page Writer 
The memory manager's modified and mapped page writer threads wake up 
periodically to flush modified pages. The threads call IoAsynchronousPage Write 
to create IRPs of type IRP _ML WRITE and write pages to either a paging file 
or a file that was modified after being mapped. Like the IRPs that MiDispatchFault 
creates, these IRPs are flagged as noncached and paging I/O. Thus, an FSD 
bypasses the file system cache and issues IRPs directly to a storage driver to write 
the memory to disk. 

Cache Manager's Lazy Writer 
The cache manager's lazy writer thread also plays a role in writing modified pages 
because it periodically flushes views of file sections mapped in the cache that it 
knows are dirty. The flush operation, which the cache manager performs by 
calling MmFlushSection, triggers the memory manager to write any modified 
pages in the portion of the section being flushed to disk. Like the modified and 
mapped page writers, MmFlushSection uses IoAsynchronousPage Write to send 
the data to the FSD. 

699 



INSIDE MICROSOFT WINDOWS 2000 

Cache Manager's Read-Ahead Thread 
The cache manager includes a thread that is responsible for attempting to read 
data from files before an application, a driver, or a system thread explicitly requests 
it. The read -ahead thread uses the history of read operations that were performed 
on a file, which are stored in a file object's private cache map, to determine how 
much data to read. When the thread performs a read-ahead, it simply maps the 
portion of the file it wants to read into the cache (allocating VACBs as neces
sary) and touches the mapped data. The page faults caused by the memory 
accesses invoke the page fault handler, which reads the pages into the system's 
working set. 

Memory Manager's Page Fault Handler 
We described how the page fault handler is used in the context of explicit file I/O 
and cache manager read -ahead, but it is also invoked whenever any application 
accesses virtual memory that is a view of a mapped file and encounters pages that 
represent portions of a file that aren't part of the application's working set. The 
memory manager's MmAccessFault handler follows the same steps it does when 
the cache manager generates a page fault from CcCopyRead or CcCopy Write, 
sending IRPs via IoPageRead to the file system on which the file is stored. 

NTFS Design Goals and Features 
In the following section, we'll look at the requirements that drove the design 
ofNTFS. Then in the subsequent section, we'll examine the advanced features 
ofNTFS. 

High-End File System Requirements 

700 

From the start, NTFS was designed to include features required of an enterprise
class file system. To minimize data loss in the face of an unexpected system outage 
or crash, a file system must ensure that the integrity of the file system's metadata 
be guaranteed at all times, and to protect sensitive data from unauthorized access, 
a file system must have an integrated security model. Finally, a file system must 
allow for software-based data redundancy as a low-cost alternative to hardware
redundant solutions for protecting user data. In this section, you'll find out how 
NTFS implements each of these capabilities. 

Recoverability 
To address the requirement for reliable data storage and data access, NTFS 
provides file system recovery based on the concept of an atomic transaction. 
Atomic transactions are a technique for handling modifications to a database so 
that system failures don't affect the correctness or integrity of the database. 



T W E LV E: File Systems 

The basic tenet of atomic transactions is that some database operations, called 
transactions, are all-or-nothing propositions. (A transaction is defined as an I/O 
operation that alters file system data or changes the volume's directory struc
ture.) The separate disk updates that make up the transaction must be executed 
atomically; that is, once the transaction begins to execute, all its disk updates 
must be completed. If a system failure interrupts the transaction, the part that 
has been completed must be undone, or rolled back. The rollback operation 
returns the database to a previously known and consistent state, as if the trans
action had never occurred. 

NTFS uses atomic transactions to implement its file system recovery feature. 
If a program initiates an I/O operation that alters the structure of an NTFS 
drive-that is, changes the directory structure, extends a file, allocates space for 
a new file, and so on-NTFS treats that operation as an atomic transaction. It 
guarantees that the transaction is either completed or, if the system fails while 
executing the transaction, rolled back. The details of how NTFS does this are 
explained in the section "NTFS Recovery Support" on page 746. 

In addition, NTFS uses redundant storage for vital file system information 
so that if a sector on the disk goes bad, NTFS can still access the volume's critical 
file system data. This redundancy of file system data contrasts with the on-disk 
structures of both the FAT file system and the HPFS file system (OS/2's native 
file system format), which have single sectors containing critical file system data. 
On these file systems, if a read error occurs in one of those sectors an entire 
volume is lost. 

Security 
Security in NTFS is derived directly from the Windows 2000 object model. Files 
and directories are protected from being accessed by unauthorized users. (For 
more information on Windows 2000 security, see Chapter 8.) An open file is 
implemented as a file object with a security descriptor stored on disk as a part 
of the file. Before a process can open a handle to any object, including a file 
object, the Windows 2000 security system verifies that the process has appro
priate authorization to do so. The security descriptor, combined with the require
ment that a user log on to the system and provide an identifYing password, 
ensures that no process can access a file unless given specific permission to do 
so by a system administrator or by the file's owner. (For more information about 
security descriptors, see the section "Security Descriptors and Access Control" 
on page 507 in Chapter 8, and for more details about file objects, see the sec
tion "File Objects" on page 554 in Chapter 9.) 

701 



INSIDE MICROSOFT WINDOWS 2000 

Data Redundancy and Fault Tolerance 
In addition to recoverability of file system data, some customers require that their 
own data not be endangered by a power outage or catastrophic disk failure. The 
NTFS recovery capabilities do ensure that the file system on a volume remains 
accessible, but they make no guarantees for complete recovery of user files. 
Protection for applications that can't risk losing file data is provided through 
data redundancy. 

Data redundancy for user files is implemented via the Windows 2000 lay
ered driver model (explained in Chapter 9), which provides fault tolerant disk 
support. NTFS communicates with a volume manager, which in turn commu
nicates with a hard disk driver to write data to disk. A volume manager can 
mirror, or duplicate, data from one disk onto another disk so that a redundant 
copy can always be retrieved. This support is commonly called RAID levell. 
Volume managers also allow data to be written in stripes across three or more 
disks, using the equivalent of one disk to maintain parity information. If the data 
on one disk is lost or becomes inaccessible, the driver can reconstruct the disk's 
contents by means of exclusive-OR operations. This support is called RAID level 
5. (See Chapter 10 for more information on striped volumes, mirrored volumes, 
and RAID-5 volumes.) 

Advanced Features of NTFS 

702 

In addition to NTFS being recoverable, secure, reliable, and efficient for mission
critical systems, it includes the following advanced features that allow it to sup
port a broad range of applications. Some of these features are exposed as APIs 
for applications to leverage, and others are internal features: 

iii Multiple data streams 

iii Unicode-based names 

iii General indexing facility 

iii Dynamic bad -cluster remapping 

iii Hard links and junctions 

iii Compression and sparse files 

iii Change logging 

iii Per-user volume quotas 



T W E L V E: File Systems 

• Link tracking 

• Encryption 

• POSIX support 

• Defragmentation 

The following sections provide an overview of these features. 

Multiple Data Streams 
In NTFS, each unit of information associated with a file, including its name, its 
owner, its time stamps, its contents, and so on, is implemented as a file attri
bute (NTFS object attribute). Each attribute consists ofa single stream, that is, 
a simple sequence of bytes. This generic implementation makes it easy to add 
more attributes (and therefore more streams) to a ftle. Because a file's data is 
"just another attribute" of the file and because new attributes can be added, 
NTFS ftles (and file directories) can contain multiple data streams. 

An NTFS file has one default data stream, which has no name. An appli
cation can create additional, named data streams and access them by referring 
to their names. To avoid altering the Microsoft Win32 I/O APIs, which take a 
string as a filename argument, the name of the data stream is specified by appending 
a colon (:) to the filename. Because the colon is a reserved character, it can serve 
as a separator between the filename and the data stream name, as illustrated in 
this example: 

myfile.dat:stream2 

Each stream has a separate allocation size (how much disk space has been 
reserved for it), actual size (how many bytes the caller has used), and valid data 
length (how much of the stream has been initialized). In addition, each stream 
is given a separate ftle lock that is used to lock byte ranges and to allow con
current access. 

One component in Windows 2000 that uses multiple data streams is the 
Apple Macintosh file server support that comes with Windows 2000 Server. 
Macintosh systems use two streams per file-one to store data and the other to 
store resource information, such as the ftle type and the icon used to represent 
the ftle. Because NTFS allows multiple data streams, a Macintosh user can copy 
an entire Macintosh folder to a Windows 2000 server, and another Macintosh 
user can copy the folder from the server without losing resource information. 

703 



INSIDE MICROSOFT WINDOWS 2000 

704 

Windows Explorer is another application that uses streams. When you 
right-click on an NTFS file and select Properties, the Summary tab of the result
ing dialog box lets you associate information with the file, such as a title, sub
ject, author, and keywords. Windows Explorer stores the information in an 
alternate stream it adds to the file, named "Summary Information." 

Other applications can use the multiple data stream feature as well. A 
backup utility, for example, might use an extra data stream to store backup
specific time stamps on files. Or an archival utility might implement hierarchical 
storage in which files that are older than a certain date or that haven't been 
accessed for a specified period of time are moved to tape. The utility could copy 
the file to tape, set the file's default data stream to 0, and add a data stream that 
specifies the name and location of the tape on which the file is stored. 



T W E LV E: File Systems 

Unicode-Based Names 
Like Windows 2000 as a whole, NTFS is fully Unicode enabled, using Unicode 
characters to store names of files, directories, and volumes. Unicode, a 16-bit 
character-coding scheme, allows each character in each of the world's major 
languages to be uniquely represented, which aids in moving data easily from one 
country to another. Unicode is an improvement over the traditional represen
tation of international characters-using a double-byte coding scheme that stores 
some characters in 8 bits and others in 16 bits, a technique that requires load
ing various code pages to establish the available characters. Because Unicode 
has a unique representation for each character, it doesn't depend on which code 
page is loaded. Each directory and filename in a path can be as many as 255 
characters long and can contain Unicode characters, embedded spaces, and 
multiple periods. 

General Indexing Facility 
The NTFS architecture is structured to allow indexing of file attributes on a disk 
volume. This structure enables the file system to efficiently locate files that match 
certain criteria-for example, all the files in a particular directory. The FAT fIle 
system indexes filenames but doesn't sort them, making lookups in large direc
tories slow. 

Several NTFS features take advantage of general indexing, including con
solidated security descriptors, in which the security descriptors of a volume's fIles 
and directories are stored in a single internal stream, have duplicates removed, 
and are indexed using an internal security identifier that NTFS defines. 

Dynamic Bad-Cluster Remapping 
Ordinarily, if a program tries to read data from a bad disk sector, the read opera
tion fails and the data in the allocated cluster becomes inaccessible. If the disk 
is formatted as a fault tolerantNTFS volume, however, the Windows 2000 fault 
tolerant driver dynamically retrieves a good copy of the data that was stored on 
the bad sector and then sends NTFS a warning that the sector is bad. NTFS 
allocates a new cluster, replacing the cluster in which the bad sector resides, and 
copies the data to the new cluster. It flags the bad cluster and no longer uses it. 
This data recovery and dynamic bad-cluster remapping is an especially useful 
feature for file servers and fault tolerant systems or for any application that can't 
afford to lose data. If the volume manager isn't loaded when a sector goes bad, 
NTFS still replaces the cluster and doesn't reuse it, but it can't recover the data 
that was on the bad sector. 

705 



INSIDE MICROSOFT WINDOWS 2000 

706 

Hard Links and Junctions 
A hard link allows multiple paths to refer to the same file or directory. If you create 
a hard linle named C:\Users\Documents\Spec.doc that refers to the existing file 
C:\My Documents\Spec.doc, the two paths link to the same on-disk file and you 
can make changes to the file using either path. Processes can create hard links 
with the Win32 CreateHardLink function or the In POSIX function. 

In addition to hard links, NTFS supports another type of redirection called 
junctions. Junctions, also called symbolic links, allow a directory to redirect file 
or directory pathname translation to an alternate directory. For example, if the 
path C:\Drivers is a junction that redirects to C:\Winnt\System32\Drivers, an 
application reading C:\Drivers\Ntfs.sys actually reads C:\Winnt\System\Drivers\ 
Ntfs.sys. Junctions are a useful way to lift directories that are deep in a directory 
tree to a more convenient depth without disturbing the original tree's structure 
or contents. The example just cited lifts the drivers directory to the volume's 
root directory, reducing the directory depth ofNtfs.sys from three levels to one 
when Ntfs.sys is accessed through the junction. You can't use junctions to link 
to remote directories-only to directories on local volumes. 

Junctions are based on an NTFS mechanism called reparse points. (Reparse 
points are discussed further in the section "Reparse Points" later in this chap
ter. ) A reparse point is a file or directory that has a block of data called reparse 
data associated with it. Reparse data is user-defined data about the file or direc
tory, such as its state or location, that can be read from the reparse point by the 
application that created the data, a file system filter driver, or the I/O manager. 
When NTFS encounters a reparse point during a file or directory lookup, it 
returns a reparse status code, which signals file system filter drivers that are at
tached to the volume, and the I/O manager, to examine the reparse data. Each 
reparse point type has a unique reparse tag. The reparse tag allows the compo-



T W E L V E: File Systems 

nent responsible for interpreting the reparse point's reparse data to recognize 
the reparse point without having to check the reparse data. A reparse tag owner, 
either a file system filter driver or the I/O manager, can choose one of the fol
lowing options when it recognizes reparse data: 

III The reparse tag owner can manipulate the pathname specified in the 
file I/O operation that crosses the reparse point and let the I/O 
operation reissue with the altered pathname. Junctions take this 
approach to redirect a directory lookup, for example. 

III The reparse tag owner can remove the reparse point from the file, 
alter the file in some way, and then reissue the file I/O operation. 
The Windows 2000 Hierarchical Storage Management (HSM) 
system uses reparse points in this way. HSM archives files by moving 
their contents to tape, leaving reparse points in their place. When a 
process accesses a file that has been archived, the HSM filter driver 
(\ Winnt\System32\Drivers\Rsfilter.sys) removes the reparse point 
from the file, reads the file's data from the archival media, and reis
sues the access. Thus, the retrieval of the offline data is transparent 
to a process accessing an archived file. 

There are no Win32 functions for creating reparse points. Instead, pro
cesses must use the FSCTL_SET_REPARSE_POINT file system control code 
with the Win32 DeviceloControl function. A process can query a reparse point's 
contents with the FSCTL_GET_REPARSE_POINT file system control code. 
The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a reparse point's file 
attributes, so applications can check for reparse points by using the Win32 
GetFileAttributes function. 

707 



INSIDE MICROSOFT WINDOWS 2000 

708 

Compression and Sparse Files 
NTFS supports compression of file data. Because NTFS performs compression 
and decompression procedures transparently, applications don't have to be 
modified to take advantage of this feature. Directories can also be compressed, 
which means that any files subsequently created in the directory are compressed. 

Applications compress and decompress files by passing DeviceloControl the 
FSCTL_SET_COMPRESSION file system control code. They query the com
pression state of a file or directory with the FSCTL_ GET _ COMPRESSION file 
system control code. A file or directory that is compressed has the FILE_ 
ATTRIBUTE_COMPRESSED flag set in its attributes, so applications can also 
determine a file or directory's compression state with GetFileAttributes. 

A second type of compression is known as sparse files. If a file is marked 
as sparse, NTFS doesn't allocate space on a volume for portions of the file that 
an application designates as empty. NTFS returns O-filled buffers when an appli
cation reads from empty areas of a sparse file. This type of compression can be 
useful for client/server applications that implement circular-buffer logging, in 
which the server records information to a file and clients asynchronously read 
the information. Because the information that the server writes isn't needed after 
a client has read it, there's no need to store the information in the file. By making 
such a file sparse, the client can specifY the portions of the file it reads as empty, 
freeing up space on the volume. The server can continue to append new infor
mation to the file, without fear that the file will grow to consume all available 
space on the volume. 

As for compressed files, NTFS manages sparse files transparently. Appli
cations specifY a file's sparseness state by passing the FSCTL_SET_SPARSE 
file system control code to DeviceloControl. To set a range of a file to empty, 
applications use the FSCTL_SET_ZERO_DATA code, and they can ask NTFS 
for a description of what parts of a file are sparse by using the control code 
FSCTL_QUERY_ALLOCATED_RANGES. One application of sparse files is 
the NTFS change journal, described next. 

Change Logging 
Many types of applications need to monitor volumes for file and directory 
changes. For example, an automatic backup program might perform an initial 
full backup and then incremental backups based on file changes. An obvious way 
for an application to monitor a volume for changes is for it to scan the volume, 
recording the state of files and directories, and on a subsequent scan detect 
differences. This process can adversely affect system performance, however, 
especially on computers with thousands or tens of thousands of files. 



T W E LV E: File Systems 

An alternate approach is for an application to register a directory notifi
cation by using the FindFirstChangeNotification or ReadDirectoryChangesW 
Win32 functions. As an input parameter, the application specifies the name of 
a directory it wants to monitor, and the function returns whenever the con
tents of the directory changes. Although this approach is more efficient than 
volume scanning, it requires the application to be running at all times. Using 
these functions can also require an application to scan directories because 
FindFirstChangeNotification doesn't indicate what changed-just that some
thing in the directory has changed. An application can pass a buffer to Read
DirectoryChanges W that the FSD fills in with change records. If the buffer 
overflows, however, the application must be prepared to fall back on scanning 
the directory. 

NTFS provides a third approach that overcomes the drawbacks of the first 
two: an application can configure the NTFS change journal facility by using the 
DeviceloControl function's FSCTL_CREATE_USN_JOURNAL file system 
control code to have NTFS record information about ftle and directory changes 
to an internal file called the change journal. A change journal is usually large 
enough to virtually guarantee that applications get a chance to process changes 
without missing any. Applications use the FSCTL_QUERY_USNJOURNAL 
file system control to read records from a change journal, and they can specifY 
that the DeviceloControl function not complete until new records are available. 

Per-User Volume Quotas 
Systems administrators often need to track or limit user disk space usage on 
shared storage volumes, so NTFS includes quota-management support. NTFS 
quota-management support allows for per-user specification of quota enforce
ment, which is useful for usage tracking and tracking when a user reaches warning 
and limit thresholds. NTFS can be configured to log an event indicating the 
occurrence to the system Event Log if a user surpasses his warning limit. Simi
larly, if a user attempts to use more volume storage then her quota limit per
mits, NTFS can log an event to the system Event Log and fail the application 
ftle I/O that would have caused the quota violation with a "disk full" error code. 

NTFS tracks a user's volume usage by relying on the fact that it tags files 
and directories with the security ID (SID) of the user who created them. (See 
Chapter 8 for a definition of SIDs.) The logical sizes of ftles and directories a 
user owns count against the user's administrator-defined quota limit. Thus, a 
user can't circumvent his or her quota limit by creating an empty sparse file that 
is larger than the quota would allow and then filling the file with nonzero data. 
Similarly, whereas a 50-KB file might compress to 10 KB, the full 50 KB is used 
for quota accounting. 

709 



INSIDE MICROSOFT WINDOWS 2000 

710 

By default, volumes don't have quota tracking enabled. You need to use 
the Quota tab of a volume's Properties dialog box, shown in Figure 12-9, to 
enable quotas, to specify default warning and limit thresholds, and to configure 
the NTFS behavior that occurs when a user hits the warning or limit threshold. 
The Quota Entries tool, which you can launch from this dialog box, enables an 
administrator to specify different limits and behavior for each user. Applications 
that want to interact with NTFS quota management use COM quota interfaces, 
including IDiskQuotaControl, IDiskQuota User, and IDiskQuotaEvents. 

Figure 12-9 
Volume Properties dialog box 

Link Tracking 
Shell shortcuts allow users to place files in their shell namespace (on their desk
top, for example) that link to files located in the file system namespace. The 
Windows 2000 Start menu uses shell shortcuts extensively. Similarly, object link
ing and embedding (OLE) links allow documents from one application to be 
transparently embedded in the documents of other applications. The products 
of the Microsoft Office 2000 suite, including PowerPoint, Excel, and Word, use 
OLE linking. 



T W E L V E: File Systems 

Although shell and OLE links provide an easy way to connect files with 
one another and with the shell namespace, they have in the past been difficult 
to manage. If a user moves the source of a shell or OLE link (a link source is 
the file or directory to which a link points) in Windows NT 4, Windows 95, or 
Windows 98, the link will be broken and the system has to rely on heuristics to 
attempt to locate the link's source. NTFS in Windows 2000 includes support for 
a service application called distributed link-tracking, which maintains the integ
rity of shell and OLE links when linlc targets move. Using the NTFS link-tracking 
support, if a link source located on an NTFS volume moves to any other NTFS 
volume within the originating volume's domain, the link-tracking service can trans
parently follow the movement and update the link to reflect the change. 

NTFS link-tracking support is based on an optional file attribute known 
as an object ID. An application can assign an object ID to a file by using the 
FSCTL_CREATE_OR_GET_OBJECT_ID (which assigns an ID if one isn't 
already assigned) and FSCTL_SET_OBJECT_ID file system control codes. 
Object IDs are queried with the FSCTL_CREATE_O~GET_OBJECT_ID 
and FSCTL_GET_OBJECT_ID file system control codes. The FSCTL_ 
DELETE_OBJECT_ID file system control code lets applications delete object 
IDs from files. 

Encryption 
Corporate users often store sensitive information on their computers. Although 
data stored on company servers is usually safely protected with proper network 
security settings and physical access control, data stored on laptops can be exposed 
when a laptop is lost or stolen. NTFS file permissions don't offer protection 
because NTFS volumes can be fully accessed without regard to security by using 
NTFS file-reading software that doesn't require Windows 2000 to be running. 
Furthermore, NTFS file permissions are rendered useless when an alternate 
Windows 2000 installation is used to access files from an administrator account. 
Recall from Chapter 8 that the administrator account has the take-ownership 
and backup privileges, both of which allow it to access any secured object by 
overriding the object's security settings. 

NTFS includes a facility called Encrypting File System (BFS), which users 
can use to encrypt sensitive data. The operation ofEFS, as that of file compres
sion, is completely transparent to applications, which means that file data is 
automatically decrypted when an application running in the account of a user 
authorized to view the data reads it and is automatically encrypted when an 
authorized application changes the data. 

711 



INSIDE MICROSOFT WINDOWS 2000 

712 

NOT E NTFS doesn't permit the encryption of files located in the 
system volume's root directory or under the \Winnt directory because 
many of the files in these locations are required during the boot pro
cess and EFS isn't active during the boot process. 

EFS relies on cryptographic services supplied by Windows 2000 in user 
mode, and so it consists of both a kernel-mode device driver that tightly integrates 
withNTFS as well as user-mode DLLs that communicate with the Local Secu
rity Authority Subsystem (Lsass) and cryptographic DLLs. 

Files that are encrypted can be accessed only by using the private key of 
an account's EFS private/public key pair, and private keys are locked using an 
account's password. Thus, EFS-encrypted files on lost or stolen laptops can't 
be accessed using any means (other than a brute-force cryptographic attack) 
without the password of an account that is authorized to view the data. 

Applications can use the EncryptFile and DecryptFile Win32 API functions 
to encrypt and decrypt files, and FileEncryptionStatus to retrieve a file or directory's 
EFS-related attributes, such as whether the file or directory is encrypted. 

POSIX Support 
As explained in Chapter 2, one of the mandates for Windows 2000 was to fully 
support the POSIX 1003.1 standard. In the file system area, the POSIX standard 
requires support for case-sensitive file and directory names, traversal permissions 
(where security for each directory of a path is used when determining whether 
a user has access to a file or directory), a "file-change-time" time stamp (which 
is different than the MS-DOS "time-last-modified" stamp), and hard links 
(multiple directory entries that point to the same file). NTFS implements each 
of these features. 

Defragmentation 
A common myth that many people have held since the introduction of NTFS 
is that it automatically optimizes file placement on disk so as not to fragment 
the files. A file is fragmented if its data occupies dis contiguous clusters. For 
example, Figure 12-10 shows a fragmented file consisting of three fragments. 
However, like most file systems (including versions of FAT on Windows 2000), 
NTFS malces no special efforts to keep files contiguous, other than to reserve 
a region of disk space known as the master file table (MFT) zone for the MFT. 
(NTFS lets other files allocate from the MFT zone when volume free space runs 
low.) Keeping an area free for the MFT can help it stay contiguous, but it, too, 
can become fragmented. (See the section "Master File Table (MFT)" later in 
this chapter for more information on MFTs.) 



T W E LV E: File Systems 

Fragmented file 

Figure 12-10 
Fragmented and contiguous files 

To facilitate the development of third-party disk defragmentation tools, 
Windows 2000 includes a defragmentation API that such tools can use to move 
file data so that files occupy contiguous clusters. The API consists of file system 
controls that let applications obtain a map of a volume's free and in-use clusters 
(FSCTL_ GET_ VOLUME_BITMAP), obtain a map of a file's cluster usage 
(FSCTL_GET_RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_ 
FILE). 

Windows 2000 includes a built-in defragmentation tool that is accessible 
by using the Disk Defragmenter utility (\Winnt\System32\Dfrg.msc). The built
in defragmentation tool has a number of limitations, such as an inability to be 
run from the command prompt or to be automatically scheduled. Third-party 
disk defragmentation products typically offer a richer feature set. 

NTFS File System Driver 
As described in Chapter 9, in the framework of the Windows 2000 I/O system, 
NTFS and other file systems are loadable device drivers that run in kernel mode. 
They are invoked indirectly by applications that use Win32 or other I/O APIs 
(such as POSIX). As Figure 12-11 shows, the Windows 2000 environment 
subsystems call Windows 2000 system services, which in turn locate the appro
priate loaded drivers and call them. (For a description of system service dispatching, 
see the section "System Service Dispatching" on page 121 in Chapter 3.) 

713 



INSIDE MICROSOFT WINDOWS 2000 

714 

Windows 
2000 

executive 

Figure 12-11 
Components of the Windows 2000 I/O system 

Environment 
subsystem 

orDll 

User mode 

Kernel mode 

The layered drivers pass I/O requests to one another by calling the Windows 
2000 executive's I/O manager. Relying on the I/O manager as an intermediary 
allows each driver to maintain independence so that it can be loaded or unloaded 
without affecting other drivers. In addition, the NTFS driver interacts with the 
three other Windows 2000 executive components, shown in the left side of 
Figure 12-12, that are closely related to file systems. 

The log file service (LFS) is the part of NTFS that provides services for 
maintaining a log of disk writes. The log file LFS writes is used to recover an 
NTFS-formatted volume in the case of a system failure. (See the section "Log 
File Service (LFS)" on page 750 for more information on LFS.) 

The cache manager is the component of the Windows 2000 executive that 
provides systemwide caching services for NTFS and other file system drivers, 
including network file system drivers (servers and redirectors). All file systems 
implemented for Windows 2000 access cached files by mapping them into sys
tem address space and then accessing the virtual memory. The cache manager 
provides a specialized file system interface to the Windows 2000 memory man
ager for this purpose. When a program tries to access a part of a file that isn't 



Figure 12-12 
NTFS and related components 

T W E LV E: File Systems 

Read/write a 
mirrored or 
striped volume 

Read/write 
the disk 

loaded into the cache (a cache miss), the memory manager calls NTFS to access 
the disk driver and obtain the file contents from disk. The cache manager op
timizes disk I/O by using its lazy writer threads to call the memory manager 
to flush cache contents to disk as a background activity (asynchronous disk writ
ing). (For a complete description of the cache manager, see Chapter 11.) 

NTFS participates in the Windows 2000 object model by implementing files 
as objects. This implementation allows files to be shared and protected by the 
object manager, the component of Windows 2000 that manages all executive-level 
objects. (The object manager is described in the section "Object Manager" on 
page 125 in Chapter 3.) 

An application creates and accesses files just as it does other Windows 2000 
objects: by means of object handles. By the time an I/O request reaches NTFS, 
the Windows 2000 object manager and security system have already verified that 
the calling process has the authority to access the file object in the way it is 
attempting to. The security system has compared the caller's access token to the 
entries in the access-control list for the file object. (See Chapter 8 for more 
information about access-control lists. ) The I/O manager has also transformed 
the file handle into a pointer to a file object. NTFS uses the information in the 
file object to access the file on disk. 

715 



INSIDE MICROSOFT WINDOWS 2000 

716 

Figure 12-13 shows the data structures that link a file handle to the file 
system's on-disk structure. 

Obj~ I 
manager 1 data 

structures 

Figure 12-13 
NTFS data structures 

NTFSdata 
structures 

(used to manage 
the on-disk 
structure) 

Stream 
control 
blocks 

File 
control 
block 

NTFS 
database 
(on disk) 

Master file 
table 

NTFS follows several pointers to get from the file object to the location 
of the file on disk. As Figure 12-13 shows, a file object, which represents a single 
call to the open-file system service, points to a stream control block (SCB) for 
the file attribute that the caller is trying to read or write. In Figure 12-13, a 
process has opened both the unnamed data attribute and a named stream (alter
nate data attribute) for the file. The SCBs represent individual file attributes and 
contain information about how to find specific attributes within a file. All the 
SCBs for a file point to a common data structure called a file control block 
(FCB). The FCB contains a pointer (actually, a file reference, explained in the 
section "File Reference Numbers" later in this chapter) to the file's record in 
the disk-based master file table (MFT), which is described in detail in the fol
lowing section. 



T W E LV E: File Systems 

NTFS On-Disk Structure 
This section describes the on-disk structure of an NTFS volume, including how 
disk space is divided and organized into clusters, how files are organized into 
directories, how the actual file data and attribute information is stored on disk, 
and finally, how NTFS data compression works. 

Volumes 
The structure ofNTFS begins with a volume. A volume corresponds to a logical 
partition on a disk, and it is created when you format a disk or part of a disk 
for NTFS. You can also create a RAID volume that spans multiple disks by using 
the Windows 2000 Disk Management MMC snap-in. 

A disk can have one volume or several. NTFS handles each volume inde
pendently of the others. Three sample disk configurations for a 150-MB hard 
disk are illustrated in Figure 12-14. 

c: c: 
(75 MB) NTFS (60 MB) FAT 

Volume c: NTFS Volume 1 
(150 MB) Volume 

0: 0: NTFS 
(75 MB) NTFS (90 MB) Volume 

Volume 2 

Figure 12-14 
Sample disk configurations 

A volume consists of a series of files plus any additional unallocated space 
remaining on the disk partition. In the FAT file system, a volume also contains 
areas specially formatted for use by the ftle system. An NTFS volume, however, 
stores all file system data, such as bitmaps and directories, and even the system 
bootstrap, as ordinary files. 

Clusters 
The cluster size on an NTFS volume, or the cluster factor, is established when 
a user formats the volume with either the format command or the Disk Man
agement MMC snap-in. The default cluster factor varies with the size of the 

717 



INSIDE MICROSOFT WINDOWS 2000 

volume, but it is an integral number of physical sectors, always a power of 2 (1 
sector,2 sectors, 4 sectors, 8 sectors, and so on). The cluster factor is expressed 
as the number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB. 

Internally, NTFS refers only to clusters. (However, NTFS forms low-level 
volume I/O operations such that it is sector-aligned and its length is a multiple 
of the sector size.) NTFS uses the cluster as its unit of allocation to maintain 
its independence from physical sector sizes. This independence allows NTFS to 
efficiently support very large disks by using a larger cluster factor or to support 
nonstandard disks that have a sector size other than 512 bytes. On a larger 
volume, use of a larger cluster factor can reduce fragmentation and speed allo
cation, at a small cost in terms of wasted disk space. Both the format command 
available from the Windows 2000 Command Prompt and the Format menu 
option under the All Tasks option on the Action menu in the Disk Management 
MMC snap-in choose a default cluster factor based on the volume size, but you 
can override this size. 

NTFS refers to physical locations on a disk by means of logical cluster 
numbers (LCNs). LCNs are simply the numbering of all clusters from the begin
ning of the volume to the end. To convert an LCN to a physical disk address, 
NTFS multiplies the LCN by the cluster factor to get the physical byte offset 
on the volume, as the disk driver interface requires. NTFS refers to the data 
within a file by means of virtual cluster numbers (VCNs). VCNs number the 
clusters belonging to a particular file from 0 through m. VCNs aren't necessarily 
physically contiguous, however; they can be mapped to any number of LCNs 
on the volume. 

Master File Table 

718 

In NTFS, all data stored on a volume is contained in files, including the data 
structures used to locate and retrieve files, the bootstrap data, and the bitmap 
that records the allocation state of the entire volume (the NTFS metadata). 
Storing everything in files allows the file system to easily locate and maintain 
the data, and each separate file can be protected by a security descriptor. In 
addition, if a particular part of the disk goes bad, NTFS can relocate the metadata 
files to prevent the disk from becoming inaccessible. 

The MFT is the heart of the NTFS volume structure. The MFT is imple
mented as an array of file records. The size of each file record is fixed at 1 KB, 
regardless of cluster size. (The structure of a file record is described in the "File 



T W E LV E: File Systems 

Records" section on page 726.) Logically, the MFT contains one record for each 
file on the volume, including a record for the MFT itself. In addition to the MFT, 
each NTFS volume includes a set of metadata files containing the information 
that's used to implement the file system structure. Each of these NTFS metadata 
files has a name that begins with a dollar sign ($), although the signs are hid
den. For example, the fliename of the MFT is $Mft. The rest of the flies on an 
NTFS volume are normal user files and directories, as shown in Figure 12-15. 

File 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

$Mft - MFT 

$MftMirr - MFT mirror 

$LogFile - Log file 

$Volume - Volume file 

$AttrOef - Attribute definition table 

\ - Root directory 

$Bitmap - Volume cluster allocation file 

$Boot - Boot sector 

$BadClus - Bad-cluster file 

$Secure - Security settings file 

$UpCase - Uppercase character mapping 

$Extend - Extended metadata directory 

Unused 

15 Unused 

16 User files and directories 

Figure 12-15 

Reserved for NTFS 
metadata files 

File records for NTFS metadata files in the MFT 

Usually, each MFT record corresponds to a different file. If a file has a large 
number of attributes or becomes highly fragmented, however, more than one 
record might be needed for a single flie. In such cases, the MFT first record, 
which stores the locations of the others, is called the base file record. 

719 



INSIDE MICROSOFT WINDOWS 2000 

720 



T W E LV E: File Systems 

(continued) 

721 



INSIDE MICROSOFT WINDOWS 2000 

EXPERIMENT: Viewing the MFT continued 

722 



T W E L V E: File Systems 

When it first accesses a volume, NTFS must mount it-that is, read metadata 
from the disk and construct internal data structures so that it can process appli
cation file system accesses. To mount the volume, NTFS looks in the boot sec
tor to find the physical disk address of the MFT. The MFT's Own file record is 

723 



INSIDE MICROSOFT WINDOWS 2000 

724 

the first entry in the table; the second file record points to a file located in the 
middle of the disk called the MFTmirror (filename $MftMirr) that contains a 
copy of the first few rows of the MFT. This partial copy of the MFT is used to 
locate metadata files if part of the MFT file can't be read for some reason. 

Once NTFS finds the file record for the MFT, it obtains the VCN-to
LCN mapping information in the file record's data attribute and stores it in 
memory. Each run has a VCN-to-LCN mapping and a run length because 
that's all the information necessary to locate an LCN for any VCN. This map
ping information tells NTFS where the runs composing the MFT are located 
on the disk. (Runs are explained later in this chapter in the section "Resident 
and Nonresident Attributes.") NTFS then processes the MFT records for 
several more metadata files and opens the files. Next, NTFS performs its file 
system recovery operation (described in the section "Recovery" on page 756), 
and finally, it opens its remaining metadata files. The volume is now ready for 
user access. 

As the system runs, NTFS writes to another important metadata file, the 
log file (filename $ LogFile ). NTFS uses the log file to record all operations that 
affect the NTFS volume structure, including file creation or any commands, such 
as Copy, that alter the directory structure. The log file is used to recover an NTFS 
volume after a system failure. 

Another entry in the MFT is reserved for the root directory (also known 
as "\"). Its file record contains an index of the files and directories stored in the 
root of the NTFS directory structure. When NTFS is first asked to open a file, 
it begins its search for the file in the root directory's file record. After opening 
a file, NTFS stores the file's MFT file reference so that it can directly access the 
file's MFTrecord when it reads and writes the file later. 

NTFS records the allocation state of the volume in the bitmap file (file
name $Bitmap). The data attribute for the bitmap file contains a bitmap, each 
of whose bits represents a cluster on the volume, identifying whether the clus
ter is free or has been allocated to a file. 

The security file (filename $Secure) stores the volumewide security de
scriptor database. NTFS files and directories have individually settable secu
rity descriptors, but to conserve space, NTFS stores the settings in a common 
file, which allows files and directories that have the same security settings to 
reference the same security descriptor. In most environments, entire directory 
trees have the same security settings, so this optimization provides a signifi
cant savings. 



T W E LV E: File Systems 

Another system file, the bootfile (filename $Boot)) stores the Windows 2000 
bootstrap code. For the system to boot, the bootstrap code must be located at 
a specific disk address. During formatting, however, the format command defines 
this area as a file by creating a file record for it. Creating the boot file allows NTFS 
to adhere to its rule of making everything on the disk a file. The boot file as well 
as NTFS metadata files can be individually protected by means of the security 
descriptors that are applied to all Windows 2000 objects. Using this "everything 
on the disk is a file" model also means that the bootstrap can be modified by 
normal file I/O, although the boot file is protected from editing. 

NTFS also maintains a bad-cluster file (filename $BadClus) for recording 
any bad spots on the disk volume and a file known as the volume file (filename 
$Volume)) which contains the volume name, the version ofNTFS for which the 
volume is formatted, and a bit that when set signifies that a disk corruption has 
occurred and must be repaired by the Chkdsk utility. (The Chkdsk utility is cov
ered in more detail later in the chapter.) The uppercase file (filename $UpCase) 
includes a translation table between lowercase and uppercase characters. NTFS 
maintains a file containing an attribute definition table (filename $AttrDef) that 
defines the attribute types supported on the volume and indicates whether they 
can be indexed, recovered during a system recovery operation, and so on. 

NTFS stores several metadata files in the extensions (directory name $Ex
tend) metadata directory, including the object identifier file (filename $ObjId), 
the quota file (filename $Quota), the change journal file (filename $UsnJrnl), 
and the reparse point file (filename $Reparse). These files store information 
related to optional features ofNTFS. The object identifier file stores file object 
IDs, the quota file stores quota limit and behavior information on volumes that 
have quotas enabled, the change journal file records file and directory changes, 
and the reparse point file stores information about which files and directories 
on the volume include reparse point data. 

File Reference Numbers 
A file on an NTFS volume is identified by a 64-bit value called a file reference. 
The file reference consists of a file number and a sequence number. The file 
number corresponds to the position of the file's file record in the MFT minus 
1 (or to the position of the base file record minus 1 if the file has more than 
one file record). The file reference sequence number, which is incremented 
each time an MFT file record position is reused, enables NTFS to perform 
internal consistency checks. A file reference is illustrated in Figure 12-16. 

725 



INSIDE MICROSOFT WINDOWS 2000 

63 47 

I Sequence 
• number 

Figure 12-16 
File reference 

o 

File number 

File Records 

726 

Instead of viewing a file as just a repository for textual or binary data, NTFS 
stores files as a collection of attribute/value pairs, one of which is the data it 
contains (called the unnamed data attribute). Other attributes that comprise 
a ftle include the filename, time stamp information, and possibly additional 
named data attributes. Figure 12-17 illustrates an MFT record for a small file. 

Master file table 

Figure 12-17 
MFT record for a small file 

Each file attribute is stored as a separate stream of bytes within a file. Strictly 
speaking, NTFS doesn't read and write files-it reads and writes attribute streams. 
NTFS supplies these attribute operations: create, delete, read (byte range), and 
write (byte range). The read and write services normally operate on the file's 
unnamed data attribute. However, a caller can specifY a different data attribute 
by using the named data stream syntax. 

Table 12-4 lists the attributes for files on an NTFS volume. (Not all attributes 
are present for every ftle.) 



Attribute 

Volume information 

Standard information 

Filename 

Security descriptor 

Data 

Index root, 
index allocation, 
and index bitmap 

T W E LV E: File Systems 

Table 12-4 Attributes for NTFS Files 

Attribute Name 

$VOLUME_ 
INFORMATION, 
$VOLUME_NAME 
$STANDARD_ 
INFORMATION 

$SECURITY_ 
DESCRIPTOR 

$DATA 

$INDEX_ROOT, 
$INDEX_ 
ALLOCATION, 
$BITMAP 

Description 

These attributes are present only in the 
$Volume metadata file. They store 
volume version sand label information. 
File attributes such as read-only, archive, 
and so on; time stamps, including when 
the file was created or last modified; and 
how many directories point to the file (its 
hard link count). 

The file's name in Unicode characters. A 
file can have multiple filename attributes, 
as it does when a hard link. to a file exists 
or when a file with a long name has an 
automatically generated "short name" 
for access by MS-DOS and 16-bit 
Microsoft Windows applications. 

This attribute is present for backward 
compatibility with previous versions 
of NTFS. The Windows 2000 version 
of NTFS stores all security descriptors 
in the $Secure metadata file, sharing 
descriptors among files and directories 
that have the same settings. Previous 
versions of NTFS stored private security 
descriptor information with each file 
and directory. 

The contents of the file. In NTFS, a file 
has one default unnamed data attribute 
and can have additional named data 
attributes; that is, a file can have multiple 
data streams. A directory has no·default 
data attribute but can have optional 
named data attributes. 

Three attributes used to implement 
filename allocation and bitmap indexes 
for large directories (directories only). 

(continued) 

727 



INSIDE MICROSOFT WINDOWS 2000 

Table 12-4 continued 

Attribute Attribute Name Description 

Attribute list $ATTRIBUTE LIST A list of the attributes that make up the 
file and the file reference of the MFT file 
record in which each attribute is located. 
This seldom-used attribute is present 
when a file requires more than one MFT 
file record. 

Object ID A 64-byte identifier for a file or directory, 
with the lowest 16 bytes (128 bits) 
unique to the volume. The link-tracking 
service assigns object IDs to shell shortcut 
and OLE link source files. NTFS provides 
APIs so that files and directories can be 
opened with their object ID rather than 
their filename. 

Reparse information This attribute stores a file's reparse point 
data. NTFS junctions and mount points 
include this attribute. 

Extended attributes $EA, $EA_ 
INFORMATION 

Extended attributes aren't actively 
used but are provided for backward 
compatibility with OS/2 applications. 

EFS information $LOGGED_ 
UTILITY_STREAM 

EFS stores data in this attribute that's 
used to manage a file's encryption, such 
as the encrypted version of the key 
needed to decrypt the file and a list of 
users that are authorized to access the 
file. The word logged is in the attribute's 
name because changes to this attribute 
are recorded in the volume log file 
(described later in this chapter) for 
recoverability. 

728 

Table 12-4 shows attribute names; however, attributes actually correspond 
to numeric type codes, which NTFS uses to order the attributes within a ftle 
record. The ftle attributes in an MFT record are ordered by these type codes 
(numerically in ascending order), with some attribute types appearing more than 
once-if a ftle has multiple data attributes, for example, or multiple ftlenames. 

Each attribute in a ftle record is identifted with its attribute type code and 
has a value and an optional name. An attribute's value is the byte stream com
posing the attribute. For example, the value of the $FILE_NAME attribute 
is the ftle's name; the value of the $DATA attribute is whatever bytes the user 
stored in the ftle. 



T W E LV E: File Systems 

Most attributes never have names, though the index-related attributes and 
the $DATA attribute often do. Names distinguish among multiple attributes of 
the same type that a file can include. For example, a file that has a named data 
stream has two $DATA attributes: an unnamed $DATA attribute storing the 
default unnamed data stream and a named $DATA attribute having the name 
of the alternate stream and storing the named stream's data. 

Filenames 
Both NTFS and FAT allow each filename in a path to be as many as 255 charac
ters long. Filenames can contain Unicode characters as well as multiple periods 
and embedded spaces. However, the FAT file system supplied with MS-DOS is 
limited to 8 (non-Unicode) characters for its filenames, followed by a period and 
a 3-character extension. Figure 12-18 provides a visual representation of the dif
ferent file namespaces Windows 2000 supports and shows how they intersect. 

Figure 12-18 
Windows 2000 file names paces 

Examples 

"TrailingDots ... " 
"SameNameDifferentCase" 
"samenamedifferentcase" 

--""'i~ "Tra i 1 i ngSpaces " 

"LongFileName" 
"Un i codeName. <p.'lITA" 
"File.Name.With.Dots" 
"File.Name2.With.Dots" 
"Name With Embedded Spaces" 
".BeginningDot" 

--... "EIGHTCHR.123" 
"CASEBLND.TYP" 

The POSIX subsystem requires the biggest namespace of all the appli
cation execution environments that Windows 2000 supports, and therefore 
the NTFS namespace is equivalent to the POSIX namespace. The POSIX sub
system can create names that aren't visible to Win32 and MS-DOS applica
tions, including names with trailing periods and trailing spaces. Ordinarily, 
creating a file using the large POSIX namespace isn't a problem because you 
would do that only if you intended the POSIX subsystem or POSIX client 
systems to use that file. 

729 



INSIDE MICROSOFT WINDOWS 2000 

730 

The relationship between 32-bit Windows (Win32) applications and MS
DOS Windows applications is a much closer one, however. The Win32 area in 
Figure 12-18 represents filenames that the Win32 subsystem can create on an 
NTFS volume but that MS-DOS and 16-bit Windows applications can't see. 
This group includes filenames longer than the 8.3 format of MS-DOS names, 
those containing Unicode (international) characters, those with multiple period 
characters or a beginning period, and those with embedded spaces. When a 
file is created with such a name, NTFS automatically generates an alternate, 
MS-DOS-style filename for the file. Windows 2000 displays these short names 
when you use the Ix option with the dir command. 

The MS-DOS filenames are fully functional aliases for the NTFS files and 
are stored in the same directory as the long filenames. The MFT record for a 
file with an autogenerated MS-DOS filename is shown in Figure 12-19. 

Standard NTFS 
information filename 

MS-DOS 
filename 

I 
New filename attribute 

Figure 12-19 

Data 

MFT file record with an MS-DOS filename attribute 

The NTFS name and the generated MS-DOS name are stored in the same 
file record and therefore refer to the same file. The MS-DOS name can be used 
to open, read from, write to, or copy the file. If a user renames the file using 
either the long filename or the short filename, the new name replaces both the 
existing names. If the new name isn't a valid MS-DOS name, NTFS generates 
another MS-DOS name for the file. 

NOT E POSIX hard links are implemented in a similar way. When 
a hard link to a POSIX file is created, NTFS adds another filename 
attribute to the file's MFT file record. The two situations differ in one 
regard, however. When a user deletes a POSIX file that has multiple 
names (hard links), the file record and the file remain in place. The 
file and its record are deleted only when the last filename (hard link) 
is deleted. If a file has both an NTFS name and an auto generated 
MS-DOS name, however, a user can delete the file using either name. 



T W E LV E: File Systems 

Here's the algorithm NTFS uses to generate an MS-DOS name from a long 
filename: 

1. Remove from the long name any characters that are illegal in 
MS-DOS names, including spaces and Unicode characters. Remove 
preceding and trailing periods. Remove all other embedded periods, 
except the last one. 

2. Truncate the string before the period (if present) to six characters, 
and append the string "-n" (where n is a number, starting with 1, 
that is used to distinguish different files that truncate to the same 
name). Truncate the string after the period (if present) to three 
characters. 

3. Put the result in uppercase letters. MS-DOS is case-insensitive, and 
this step guarantees that NTFS won't generate a new name that differs 
from the old only in case. 

4. If the generated name duplicates an existing name in the directory, 
increment the -n string. 

Table 12-5 shows the long Win32 filenames from Figure 12-18 and their 
NTFS-generated MS-DOS versions. The current algorithm and the examples 
in Figure 12-18 should give you an idea of what NTFS-generated MS-DOS-style 
filenames look like. Application developers shouldn't depend on this algorithm, 
though, because it might change in the future. 

Table 12-5 NTFS-Generated Filenames 

Win32 Long Name 

LongFileNarne 

U nicodeN arne. ct>MIA 

File.Name.With.Dots 

File.Name2.With.Dots 

Name With Ernbedd.ed Spaces 

.BeginningDot 

NTFS-Generated Short Name 

LONGFI-I 

UNICOD-I 

FILENA-I.DOT 

FILENA-2.DOT 

NAMEWI-I 

BEGINN-I 

731 



INSIDE MICROSOFT WINDOWS 2000 

Resident and Nonresident Attributes 

732 

If a file is small, all its attributes and their values (its data, for example) fit in the 
file record. When the value of an attribute is stored directly in the MFT, the 
attribute is called a resident attribute. (In Figure 12-17, for example, all attributes 
are resident.) Several attributes are defined as always being resident so that NTFS 
can locate nonresident attributes. The standard information and index root 
attributes are always resident, for example. 

Each attribute begins with a standard header containing information about 
the attribute, information that NTFS uses to manage the attributes in a generic 
way. The header, which is always resident, records whether the attribute's value 
is resident or nonresident. For resident attributes, the header also contains the 
offset from the header to the attribute's value and the length of the attribute's 
value, as Figure 12-20 illustrates for the filename attribute. 

Standard 
information Filename Data 

... Attribute header 

C:=J Attribute value 

Figure 12-20 

MYFILE.DAT 

Resident attribute header and value 

When an attribute's value is stored directly in the MFT, the time it talces 
NTFS to access the value is greatly reduced. Instead oflooking up a file in a table 
and then reading a succession of allocation units to find the file's data (as the 
FAT file system does, for example), NTFS accesses the disk once and retrieves 
the data immediately. 

The attributes for a small directory, as well as for a small file, can be resi
dent in the MFT, as Figure 12-21 shows. For a small directory, the index root 
attribute contains an index of file references for the files and the subdirectories 
in the directory. 



Standard 
information Filename 

Figure 12-21 

Index root 

MFT file record for a small directory 

T W E LV E: File Systems 

Of course, many files and directories can't be squeezed into a 1-KB fixed
size MFT record. If a particular attribute, such as a file's data attribute, is too 
large to be contained in an MFT file record, NTFS allocates clusters for the 
attribute's data separate from the MFT. This area is called a run (or an extent). 
If the attribute's value later grows (if a user appends data to the file, for example), 
NTFS allocates another run for the additional data. Attributes whose values are 
stored in runs rather than in the MFT are called nonresident attributes. The file 
system decides whether a particular attribute is resident or nonresident; the 
location of the data is transparent to the process accessing it. 

When an attribute is nonresident, as the data attribute for a large file might 
be, its header contains the information NTFS needs to locate the attribute's value 
on the disk. Figure 12-22 shows a nonresident data attribute stored in two runs. 

Standard 
information 

Figure 12-22 

Data Data 

MFT file record for a large file with two data runs 

Among the standard attributes, only those that can grow can be nonresi
dent. For files, the attributes that can grow are the data and the attribute list 
(not shown in Figure 12-22). The standard information and filename attributes 
are always resident. 

A large directory can also have nonresident attributes (or parts of attributes), 
as Figure 12-23 shows. In this example, the MFT file record doesn't have 
enough room to store the index of files that make up this large directory. A part 

733 



INSIDE MICROSOFT WINDOWS 2000 

734 

Standard Index 
information Filename Index root allocation Bitmap 

file4 file8 I I I • 

Index b"""'S~ t;~1 
t t 

file2 file3 I I file5 file6 I 
Figure 12-23 
MFT file record for a large directory with a nonresident filename index 

of the index is stored in the index root attribute, and the rest of the index is stored 
in nonresident runs called index buffers. The index root, index allocation, and 
bitmap attributes are shown here in a simplified form. They are described in more 
detail in the next section. The standard information and filename attributes are 
always resident. The header and at least part of the value of the index root at
tribute are also resident for directories. 

When a file's (or a directory's) attributes can't fit in an MFT file record 
and separate allocations are needed, NTFS keeps track of the runs by means of 
veN-to-LeN mapping pairs. LeNs represent the sequence of clusters on an 
entire volume from 0 through n. yeNs number the clusters belonging to a 
particular file from 0 through m. For example, the clusters in the runs of a 
nonresident data attribute are numbered as shown in Figure 12-24. 

Standard 
information Filename Data 

File 16 

VCN o f 2 3 4 7 

LCN 1355 1356 1357 1358 1588 1589 1590 1591 

Figure 12-24 
VCNs for a nonresident data attribute 



TW E LV E: File Systems 

If this ftle had more than two runs, the numbering of the third run would 
start with VCN 8. As Figure 12-25 shows, the data attribute header contains 
VCN-to-LCN mappings for the two runs here, which allows NTFS to easily find 
the allocations on the disk. 

File 16 

VCN r--=--T-":"""T"""'::"""""';:;"" 

LCN 1355 1356 1357 1588 1589 1590 1591 

Figure 12-25 
VCN-to-LCN mappings for a nonresident data attribute 

Although Figure 12-25 shows just data runs, other attributes can be stored 
in runs if there isn't enough room in the .MFT ftle record to contain them. And 
if a particular ftle has too many attributes to fit in the MFT record, a second MFT 
record is used to contain the additional attributes (or attribute headers for 
nonresident attributes). In this case, an attribute called the attribute list is added. 
The attribute list attribute contains the name and type code of each of the file's 
attributes and the ftle reference of the MFT record where the attribute is located. 
The attribute list attribute is provided for those cases in which a ftle grows so 
large or so fragmented that a singleMFT record can't contain the multitude 
ofVCN -to-LCN mappings needed to find all its runs. Files with more. than 200 
runs typically require an attribute list. 

Indexing 
In NTFS, a ftle directory is simply an index of ftlenames-that is, a collection 
of filenames (along with their ftle references) organized in a particular way for 
qui~k access. To create a directory, NTFSindexes the ftlename attributes of the 
files in the directory. The MFTrecord for the roOt directory of a volume is shown 
in Figure 12-26. 

735 



INSIDE MICROSOFT WINDOWS 2000 

736 

File 5 

VCN 0 1 

! fileO ! file1 

LCN 1355 1356 1357 1358 LCN 2033 2034 2035 2036 

VCN 4 5 6 7 

I file6! file8! ! file9! 

LCN 1588 1589 1590 1591 

Figure 12-26 
Filename index for a volume)s root directory 

Conceptually, an MFT entry for a directory contains in its index root attri
bute a sorted list of the files in the directory. For large directories, however, the 
filenames are actually stored in 4-KB fixed -size index buffers that contain and 
organize the filenames. Index buffers implement a h+ tree data structure, which 
minimizes the number of disk accesses needed to find a particular file, especially 
for large directories. The index root attribute contains the first level of the b+ 
tree (root subdirectories) and points to index buffers containing the next level 
(more subdirectories, perhaps, or files). 

Figure 12-26 shows only filenames in the index root attribute and the index 
buffers (Jile6, for example), but each entry in an index also contains the file 
reference in the MFT where the file is described and time stamp and file size 
information for the file. NTFS duplicates the time stamp and file size informa
tion from the file's MFT record. This technique, which is used by FAT and 
NTFS, requires updated information to be written in two places. Even so, it's 
a significant speed optimization for directory browsing because it enables the 
file system to display each file's time stamps and size without opening every file 
in the directory. 

The index allocation attribute maps the VCNs of the index buffer runs to 
the LCNs that indicate where the index buffers reside on the disk, and the bit
map attribute keeps track of which VCNs in the index buffers are in use and 
which are free. Figure 12-26 shows one file entry per VCN (that is, per cluster), 
but filename entries are actually packed into each cluster. Each 4-KB index buffer 
can contain about 20 to 30 filename entries. 



T W E LV E: File Systems 

The b+ tree data structure is a type of balanced tree that is ideal for orga
nizing sorted data stored on a disk because it minimizes the number of disk 
accesses needed to find an entry. In the MFT, a directory's index root attribute 
contains several filenames that act as indexes into the second level of the b+ tree. 
Each filename in the index root attribute has an optional pointer associated with 
it that points to an index buffer. The index buffer it points to contains filenames 
with lexicographic values less than its own. In Figure 12-26, for example,jile4 
is a first-level entry in the b+ tree. It points to an index buffer containing 
filenames that are (lexicographically) less than itself-the filenames jileO,jile1, 
and jile3. Note that the names jilel,jile2, and so on that are used in this example 
are not literal filenames but names intended to show the relative placement of files 
that are lexicographically ordered according to the displayed sequence. 

Storing the filenames in b+ trees provides several benefits. Directory look
ups are fast because the filenames are stored in a sorted order. And when higher
level software enumerates the files in a directory, NTFS returns already-sorted 
names. Finally, because b+ trees tend to grow wide rather than deep, NTFS's 
fast lookup times don't degrade as directories grow. 

NTFS also provides general support for indexing data besides filenames. 
As we stated earlier, a file can have an object ID assigned to it, which is stored 
in the file's $OBJECT _ID attribute. NTFS provides an API that allows appli
cations to open a file by using the file's object ID instead of its name. NTFS 
therefore must make the process of translating an object ID to a file's file number 
an efficient one. To do so, it stores a mapping of all a volume's object IDs to 
their file reference numbers in the \$Extend\$ObjId metadata file. NTFS sorts 
the object IDs in the $ObjId's $0 index. As are filenames in filename indexes, 
the object ID index is stored as a b+ tree. 

Data Compression and Sparse Files 
NTFS supports compression on a per-file, per-directory, or per-volume basis. 
(NTFS compression is performed only on user data, not file system metadata. ) 
You can tell whether a volume is compressed by using the Win32 Get Volume
Information function. To retrieve the actual compressed size of a file, use the 
Win32 GetCompressedFileSize function. Finally, to examine or change the come 
pression setting for a file or directory, use the. Win32 DeviceloControl function. 
(See the FSCTL_GET_COMPRESSION and FSCTL_SET_COMPRESSION 
file system control codes.) Keep in mind that although setting a file's compres
sion state compresses (or decompresses) the file right away, setting a directory's 
or volume's compression state dbesn't cause any immediate compression or 
decompression. Instead, setting a directory's or volume's compression state 
sets a default compression state that will be given to all newly created files and 
subdirectories within that directory or volume. 

737 



INSIDE MICROSOFT WINDOWS 2000 

738 

The following section introduces NTFS compression by examining the 
simple case of compressing sparse data. The subsequent sections extend the 
discussion to the compression of ordinary files and sparse files. 

Compressing Sparse Data 
Sparse data is often large but contains only a small amount of nonzero data 
relative to its size. A sparse matrix is one example of sparse data.As described 
earlier, NTFS uses VCNs, from 0 through m, to enumerate the clusters of a file. 
Each VCN maps to a corresponding LCN, which identifies the disk location of 
the cluster. Figure 12-27 illustrates the runs (disk allocations) of a normal, 
noncompressed file, including its VCNs and the LCNs they map to. 

VCN 0 2 3 4 5 6 7 8 9 10 11 

I +a I I +a II ""'-.....Io--D~I.....-ta ............... 
LCN 1355 1356 1357 1358 1588 1589 1590 1591 2033 2034 2035 2036 

Figure 12·27 
Runs of a noncompressed file 

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 
12 clusters. Figure 12-28 shows the MFT record for this file. As described ear
lier, to save space, the MFT record's data attribute, which contains VCN-to
LCN mappings, records only one mapping for each run, rather than one for each 
cluster. Notice, however, that each VCN from 0 through 11 has a correspond
ing LCN associated with it. The first entry starts at VCN 0 and covers 4 clus
ters, the second entry starts at VCN 4 and covers 4 clusters, and so on. This entry 
format is typical for a noncompressed file. 

Standard 
Information 

Figure 12·28 
MFT record for a noncompressed file 



T W E LV E: File Systems 

When a user selects a file on an NTFS volume for compression, one NTFS 
compression technique is to remove long strings of zeros from the file. If the 
file's data is sparse, it typically shrinks to occupy a fraction of the disk space it 
would otherwise require. On subsequent writes to the file, NTFS allocates space 
only for runs that contain nonzero data. 

Figure 12-29 depicts the runs of a compressed file containing sparse data. 
Notice that certain ranges of the file's VCNs (16-31 and 64-127) have no disk 
allocations. 

~ Q 

I I I I \ I I I D~ta I I I I I I I I 
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 

~ ~ 

I I I I I I I I D~ta I II I I I II 
96 97 98 99 100101102103.104105106107108109110111 

128 143 

I I I I I I II D~ta I I I I I I II 
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 

Figure 12-29 
Runs of a compressed file containing sparse data 

The MFT record for this compressed file omits blocks ofVCNs that con
tain zeros and therefore have no physical storage allocated to them. The first 
data entry in Figure 12-30, for example, starts at VCN 0 and covers 16 clus
ters. The second entry jumps to VCN 32 and covers 16 clusters. 

739 



INSIDE MICROSOFT WINDOWS 2000 

740 

Standard 
information 

Figure 12-30 
MFT record for a compressed file containing sparse data 

When a program reads data from a compressed file, NTFS checks the MFT 
record to determine whether a VCN-to-LCN mapping covers the location being 
read. If the program is reading from an unallocated "hole" in the file, it means 
that the data in that part of the file consists of zeros, so NTFS returns zeros 
without accessing the disk. If a program writes nonzero data to a "hole," NTFS 
quietly allocates disk space and then writes the data. This technique is very effi
cient for sparse file data that contains a lot of zero data. 

Compressing Nonsparse Data 
The preceding example of compressing a sparse file is somewhat contrived. It 
describes "compression" for a case in which whole sections of a file were filled 
with zeros but the remaining data in the file wasn't affected by the compres
sion. The data in most files isn't sparse, but it can still be compressed by the 
application of a compression algorithm. 

In NTFS, users can specifY compression for individual files or for all the 
files in a directory. (New files created in a directory marked compressed are 
automatically compressed-existing files must be compressed individually.) 
When it compresses a file, NTFS divides the file's unprocessed data into com
pression units 16 clusters long (equal to 8 KB for a 512-byte cluster, for example). 
Certain sequences of data in a file might not compress much, if at all; so for each 
compression unit in the file, NTFS determines whether compressing the unit 
will save at least 1 cluster of storage. If compressing the unit won't free up at 
least 1 cluster, NTFS allocates a 16-cluster run and writes the data in that unit 
to disk without compressing it. If the data in a 16-cluster unit will compress to 
15 or fewer clusters, NTFS allocates only the number of clusters needed to 
contain the compressed data and then writ!!s it to disk. Figure 12-31 illustrates 



T W E LV E: File Systems 

LeN 19 20 21 22 

23 24 25 26 27 28 29 30 

32 

I I I I I 
97 98 99100101102103104105106107108109110111112 

113114115116117118119120121122 

Figure 12-31 
Data runs of a compressed file 

the compression of a file with four runs. The unshaded areas in this figure rep
resent the actual storage locations that the file occupies after compression. The 
first, second, andfourth runs were compressed; the third run wasn't. Even with 
one noncompressed run, compressing this file saved 26 clusters of disk space, 
or 41 percent. 

NOT E Although the diagrams in this chapter show contiguous 
LCNs, a compression unit need not be stored in physically contiguous 
clusters. Runs that occupy noncontiguous clusters produce slightly 
more complicated MFT records than the one shown in Figure 12-32. 

Whenit writes data,to a compressed file, NTFS ensures that each run 
begins on a virtual 16-cluster boundary. Thus the starting VCN of each run 
isa multiple of 16, and the runs are no longer than 16 clusters. NTFS reads 
and writes at least one compression unit at a time when it accesses compressed 
files. When it writes compressed data, however, NTFS tries to store compres
sion units in physically contiguous locations so that it. can read them all in a single 
I/O operation. The 16-cluster size of the NTFS compression unit was chosen 
to reduce internal fragmentation: the larger the compression unit? the less the 
overall disk space needed to store the data. This 16-cluster compression unit 

741 



INSIDE MICROSOFT WINDOWS 2000 

742 

size represents a trade-off between producing smaller compressed files and 
slowing read operations for programs that randomly access files. The equiva
lent of 16 clusters must be decompressed for each cache miss. (A cache miss 
is more likely to occur during random file access.) Figure 12-32 shows the 
MFT record for the compressed file shown in Figure 12-31. 

Standard 
information 

Figure 12-32 
MFT record for a compressed file 

One difference between this compressed file and the earlier example of a 
compressed file containing sparse data is that three of the compressed runs in 
this file are less than 16 clusters long. Reading this information from a file's MFT 
file record enables NTFS to know whether data in the file is compressed. Any 
run shorter than 16 clusters contains compressed data that NTFS must decom
press when it first reads the data into the cache. A run that is exactly 16 clusters 
long doesn't contain compressed data and therefore requires no decompression. 

If the data in a run has been compressed, NTFS decompresses the data into 
a scratch buffer and then copies it to the caller's buffer. NTFS also loads the 
decompressed data into the cache, which makes subsequent reads from the same 
run as fast as any other cached read. NTFS writes any updates to the file to the 
cache, leaving the lazy writer to compress and write the modified data to disk 
asynchronously. This strategy ensures that writing to a compressed file produces 
no more significant delay than writing to a noncompressed file would. 

NTFS keeps disk allocations for a compressed file contiguous whenever 
possible. As the LeNs indicate, the first two runs of the compressed file shown 
in Figure 12-31 on page 741 are physically contiguous, as are the last two. When 
two or more runs are contiguous, NTFS performs disk read-ahead, as it does 
with the data in other files. Because the reading and decompression of con-



T W E LV E: File Systems 

tiguous file data take place asynchronously before the program requests the data, 
subsequent read operations obtain the data direcdy from the cache, which gready 
enhances read performance. 

Sparse Files 
Sparse files (the NTFS file type, as opposed to files that consist of sparse data, 
described earlier) are essentially compressed files for which NTFS doesn't apply 
compression to the file's nonsparse data. However, NTFS manages the run data 
of a sparse file's MFT record the same way it does for compressed files that consist 
of sparse and nonsparse data. 

Reparse Points 
As described earlier in the chapter, a reparse point is a block of up to 16 KB of 
application-defined reparse data and a 32-bit reparse tag that are stored in the 
$REPARSE_POINT attribute of a file or directory. Whenever an application 
creates or deletes a reparse point, NTFS updates the \$Extend\$Reparse metadata 
file, in which NTFS stores entries that identify the file record numbers of files and 
directories that contain reparse points. Storing the records in a central location 
enables NTFS to provide interfaces for applications to enumerate all a volume's 
reparse points or just specific types ofreparse points, such as mount points. (See 
Chapter 10 for more information on mount points.) The \$Extend\$Reparse 
file uses the general indexing facility ofNTFS by collating the file's entries (in 
an index named $R) by reparse point tags. 

The Change Journal File 
The change journal file, \$Extend\$UsnJrnl, is a sparse file that NTFS creates 
only when an application enables change logging. The journal stores change 
entries in the $J data stream. Entries include the following information about 
a file or directory change: 

II The time of the change 

II The change type (delete, rename, size extend, and so on) 

II The file or directory's attributes 

II The file or directory's name 

II The file or directory's file reference number 

II The file reference number of the file's parent directory 

743 



INSIDE MICROSOFT WINDOWS 2000 

744 

The journal is sparse so that it never overflows; when the journal's on-disk 
size exceeds the maximum defmed for the file, NTFS simply begins zeroing the 
file data that precedes the window of change information having a size equal 
to the maximum journal size, as shown in Figure 12-33. To prevent constant 
resizing when an application is continuously exceeding the journal's size, NTFS 
shrinks the journal only when its size is twice an application -defined value over 
the maximum configured size. 

Offset 0 r---------. 

Start of nonsparse data 

D Deleted change entries 

• Change entries 

Figure 12-33 
Changejournal ($Usn]rnIJ space allocation 

Virtual size of $UsnJrnl 

Physical size of $UsnJrnl 



T W E LV E: File Systems 

Object IDs 
In addition to storing the object ID assigned to a file or directory in the 
$OBJECT_ID attribute of its MFT record, NTFS also keeps the correspondence 
between object IDs and their file reference numbers in the $0 index of the 
\$Extend\$ObjId metadata file. The index collates entries by object ID, making 
it easy for NTFS to quickly locate a file based on its ID. This feature allows 
applications, using undocumented native API functionality, to open a file or 
directory using its object ID. 

Quota Tracking 
The NTFS quota-tracking facility associates an owner ID with each user who 
creates files and stores the user's owner ID with each file or directory the user 
creates. To determine whether a user has been assigned an ID, NTFS uses the 
user's SID as a key to index the $0 index of the \$Extend\$Quota metadata file. 
If an ID isn't located, NTFS allocates a unique ID for the user and records the 
association in the $0 index. 

\$Extend\$Quota also contains an index named $Q that NTFS uses to store 
per-user quota information entries, collating the entries by owner ID. When a 
user attempts to allocate space on a volume, NTFS uses the owner ID to look 
up the user's quota entry and determine whether there is sufficient disk space 
left in the user's quota to allow the allocation. 

Consolidated Security 
Another example of general indexing is seen in the \$Secure metadata file, which 
stores security descriptors for all the files and directories on a volume. NTFS 
assigns each unique security descriptor an NTFS security ID. (These are different 
than the SIDs described in Chapter 8.) 

When a process applies a security descriptor to a file or directory, NTFS 
obtains a 32-bit hash of the descriptor and looks up the corresponding secu
rity ID in an index named $SDH that is stored in the \$Secure file. Multiple 
security descriptors can hash to the same value, so NTFS compares the security 
descriptor being applied with any that have the same hash to verify an exact 
match. If it locates the applied security descriptor in the $SDH index, NTFS 
assigns the file the associated security ID. Otherwise, it allocates a new security 

745 



INSIDE MICROSOFT WINDOWS 2000 

ID, updates the $SDH index, ancj. adds the security descriptor to the $SII index. 
The $SII index is collated by security ID so that when a user attempts to open 
a file or directory, NTFS can quickly locate the file or directory's security de
scriptor by using the file or directory's security ID. 

NTFS Recovery Support 
NTFS recovery support ensures that if a power failure or a system failure occurs, 
no file system operations (transactions) will be left incomplete and the struc
ture of the disk volume will remain intact without the need to run a disk repair 
utility. The NTFS Chkdsk utility is used to repair catastrophic disk corruption 
caused by I/O errors (bad disk sectors, electrical anomalies, or disk failures, for 

. example) or software bugs. But with the NTFS recovery capabilities in place, 
Chkdsk is rarely needed. 

As mentioned earlier (in the section "Recoverability" on page 700), NTFS 
uses a transaction-processing scheme to implement recoverability. This strate
gy ensures a full disk recovery that is also extremely fast (on the order of sec
onds) for even the largest disks. NTFS limits its recovery procedures to file system 
data to ensure that at the very least the user will never lose a volume because. 
of a corrupted file system; however, unless an application takes specific action 
(such as flushing cached files to disk), NTFS doesn't guarantee user data to be 
fully updated if a crash occurs. Transaction-based protection of user data is avail
able in most of the database products available for Windows 2000, such as 
Microsoft SQL Server. The decision not to implement user data recovery in the 
file system represents a trade-off between a fully fault tolerant file system and 
one that provides optimum performance for all file operations. 

The following sections describe the evolution of file system reliability as a 
context for an introduction to recoverable file systems, detail the transaction
logging scheme NTFS uses to record modifications to file system data structures, 
and explain how NTFS recovers a volume if the system fails. 

Evolution of File System Design 

746 

The development of a recoverable file system was a step forward in the evolution 
of file system design. In the past, two techniques were common for constructing 
a file system's I/O and caching support: careful write and lazy write. The file 
systems developed for Digital Equipment Corporation's (now Compaq's) VAX/ 
VMS and for some other proprietary operating systems employed a careful write 
algorithm, while OS/2 HPFS and most older UNIX file systems used a lazy write 
file system scheme. 



T W E LV E: File Systems 

The next two subsections briefly review these two types of file systems and 
their intrinsic trade-offs between safety and performance. The third subsection 
describes NTFS's recoverable approach and explains how it differs from the other 
two strategies. 

Careful Write File Systems 
When an operating system crashes or loses power, I/O operations in progress 
are immediately, and often prematurely, interrupted. Depending on what I/O 
operation or operations were in progress and how far along they were, such an 
abrupt halt can produce inconsistencies in a file system. An inconsistency in this 
context is a file system corruption-a filename appears in a directory listing, for 
example, but the file system doesn't know the file is there or can't access the 
file. The worst file system corruptions can leave an entire volume inaccessible. 

A careful write file system doesn't try to prevent file system inconsistencies. 
Rather, it orders its write operations so that, at worst, a system crash will pro
duce predictable, noncritical inconsistencies, which the file system can fix at 
its leisure. 

When any kind of file system receives a request to update the disk, it must 
perform several suboperations before the update will be complete. In a file sys
tem that uses the careful write strategy, the suboperations are always written to 
disk serially. When allocating disk space for a file, for example, the file system 
first sets some bits in its bitmap and then allocates the space to the file. If the 
power fails immediately after the bits are set, the careful write file system loses 
access to some disk space-to the'Space represented by the set bits-but existing 
data isn't corrupted. 

Serializing write operations also means that I/O requests are filled in the 
order in which they are received. If one process allocates disk space and shortly 
thereafter another process creates a file, a careful write file system completes 
the disk allocation before it starts to create the file because interleaving the 
sub operations of the two I/O requests could result in an inconsistent state. 

NOT E The FAT file system uses a write-through algorithm that 
causes disk modifications to be immediately written to the disk. Unlike 
the careful write approach, the write-through technique doesn't require 
the file system to order its writes to prevent inconsistencies. 

The main advantage of a careful write file system is that in the event of 
a failure the volume stays consistent and usable without the need to immedi
ately run a slow volume repair utility. Such a utility is needed to correct the 

747 



INSIDE MICROSOFT WINDOWS 2000 

748 

predictable, nondestructive disk inconsistencies that occur as the result of a 
system failure, but the utility can be run at a convenient time, typically when 
the system is rebooted. 

Lazy Write File Systems 
A careful write file system sacrifices speed for the safety it provides. A lazy write 
file system improves performance by using a write-back caching strategy; that 
is, it writes file modifications to the cache and flushes the contents of the cache 
to disk in an optimized way, usually as a background activity. 

The performance improvements associated with the lazy write caching 
technique take several forms. First, the overall number of disk writes is reduced. 
Because serialized, immediate disk writes aren't required, the contents of a buffer 
can be modified several times before they are written to disk. Second, the speed 
of servicing application requests is greatly increased because the file system can 
return control to the caller without waiting for disk writes to be completed. 
Finally, the lazy write strategy ignores the inconsistent intermediate states on a 
file volume that can result when the sub operations of two or more I/O requests 
are interleaved. It is thus easier to make the file system multithreaded, allow
ing more than one I/O operation to be in progress at a time. 

The disadvantage of the lazy write technique is that it creates intervals 
during which a volume is in too inconsistent a state to be corrected by the file 
system. Consequently, lazy write file systems must keep track of the volume's 
state at all times. In general, lazy write file systems gain a performance advantage 
over careful write systems-at the expense of greater risk and user inconvenience 
if the system fails. 

Recoverable File Systems 
A recoverable file system such as NTFS tries to exceed the safety of a careful write 
file system while achieving the performance of a lazy write file system. A recov
erable file system ensures volume consistency by using logging techniques (some
times called journaling) originally developed for transaction processing. If the 
operating system crashes, the recoverable file system restores consistency by 
executing a recovery procedure that accesses information that has been stored 
in a log file. Because the file system has logged its disk writes, the recovery 
procedure takes only seconds, regardless of the size of the volume. 

The recovery procedure for a recoverable file system is exact, guaranteeing 
that the volume will be restored to a consistent state. In NTFS, none of the 
inadequate restorations associated with lazy write file systems can happen. 



T W E LV E: File Systems 

A recoverable file system incurs some costs for the safety it provides. Every 
transaction that alters the volume structure requires that one record be written 
to the log file for each of the transaction's suboperations. This logging over
head is ameliorated by the file system's hatching of log records-writing many 
records to the log file in a single I/O operation. In addition, the recoverable 
file system can employ the optimization techniques of a lazy write file system. 
It can even increase the length of the intervals between cache flushes because 
the file system can be recovered if the system crashes before the cache changes 
have been flushed to disk. This gain over the caching performance oflazy write 
file systems makes up for, and often exceeds, the overhead of the recoverable 
file system's logging activity. 

Neither careful write nor lazy write file systems guarantee protection of user 
file data. If the system crashes while an application is writing a file, the file can 
be lost or corrupted. Worse, the crash can corrupt a lazy write file system, destroy
ing existing files or even rendering an entire volume inaccessible. 

The NTFS recoverable file system implements several strategies that improve 
its reliability over that of the traditional file systems. First, NTFS recoverability 
guarantees that the volume structure won't be corrupted, so all files will remain 
accessible after a system failure. 

Second, although NTFS doesn't guarantee protection of user data in the 
event of a system crash-some changes can be lost from the cache-applications 
can take advantage of the NTFS write-through and cache-flushing capabilities 
to ensure that file modifications are recorded on disk at appropriate intervals. 
Both cache write-throug~forcing write operations to be immediately recorded 
on disk-and cache flushinJrforcing cache contents to be written to disk-are 
efficient operations. NTFS doesn't have to do extra disk I/O to flush modifi
cations to several different file system data structures because changes to the data 
structures are recorded-in a single write operation-in the log file; if a failure 
occurs and cache contents are lost, the file system modifications can be recovered 
from the log. Furthermore, unlike the FAT file system, NTFS guarantees that 
user data will be consistent and available immediately after a write-through 
operation or a cache flush, even if the system subsequently fails. 

Logging 
NTFS provides file system recoverability by means of a transaction-processing 
technique called logging. In NTFS logging, the suboperations of any transac
tion that alters important file system data structures are recorded in a log file 

749 



INSIDE MICROSOFT WINDOWS 2000 

750 

before they are carried through on the disk. That way, if the system crashes, 
partially completed transactions can be redone or undone when the system comes 
back on line. In transaction processing, this technique is known as write-ahead 
logging. In NTFS, transactions include writing to the disk or deleting a file and 
can be made up of several suboperations. 

Log File Service (LFS) 
The log file service (LFS) is a series of kernel-mode routines inside the NTFS 
driver that NTFS uses to access the log file. Although originally designed to 
provide logging and recovery services for more than one client, the LFS is used 
only by NTFS. The caller-NTFS in this case-passes the LFS a pointer to an 
open file object, which specifies a log file to be accessed. The LFS either initializes 
a new log file or calls the Windows 2000 cache manager to access the existing 
log file through the cache, as shown in Figure 12-34. 

Call the virtual memory 
manager to access 

the mapped file 

~ 
Figure 12-34 
Log file service (LFS) 

the transaction 

Write the 
volume updates 

The LFS divides the log file into two regions: a restart area and an "infi
nite" logging area) as shown in Figure 12-35. 



LFS restart area 

Copy 1 Copy 2 

Figure 12-35 
Log jile regions 

T W E LV E: File Systems 

Logging area 

~---------------

NTFS calls the LFS to read and write the restart area. NTFS uses the restart 
area to store context information such as the location in the logging area at which 
NTFS will begin to read during recovery after a system failure. The LFS main
tains a second copy of the restart data in case the first becomes corrupted or 
otherwise inaccessible. The remainder of the log file is the logging area, which 
contains transaction records NTFS writes in order to recover a volume in the 
event of a system failure. The LFS makes the log file appear infinite by reusing 
it circularly (while guaranteeing that it doesn't overwrite information it needs). 
The LFS uses logical sequence numbers (LSNs) to identify records written to the 
log file. As the LFS cycles through the file, it increases the values of the LSNs. 
NTFS uses 64 bits to represent LSNs, so the number of possible LSNs is so large 
as to be virtually infinite. 

NTFS never reads transactions from or writes transactions to the log file 
direcdy. The LFS provides services NTFS calls to open the10g file, write log 
records, read log records in forward or backward order, flush log records up to 
a particular LSN, or set the beginning of the log file to a higher LSN. During 
recovery, NTFS calls the LFS to perform the follOwing actions: read forward 
through the log records to redo any transacti()n,s that were recorded in the log 
file but weren't flushed to disk at the time of the system failure; read backward 
through the log records to undo, or roll back" any transactions that weren't 
completely logged before the crash; and set the beginning of the log file to a 
record with a higher LSN when NTFS no longer needs the older transaction 
records in the log file. 

Here's how the system guarantees that the volume can be recovered: 

l.NTFS first calls theLFS to record in the (cached) log file any trans
actions that will·modify .the volume structure. 

2. NTFS modifies the volume (also in the cache). 

751 



INSIDE MICROSOFT WINDOWS 2000 

752 

3. The cache manager prompts the LFS to flush the log file to disk. 
(The LFS implements the flush by calling the cache manager back, 
telling it which pages of memory to flush. Refer back to the calling 
sequence shown in Figure 12-34 on page 750.) 

4. After the cache manager flushes the log file to disk, it flushes the 
volume changes (the metadata operations themselves) to disk. 

These steps ensure that if the file system modifications are ultimately unsuc
cessful, the corresponding transactions can be retrieved from the log file and can 
be either redone or undone as part of the file system recovery procedure. 

File system recovery begins automatically the first time the volume is used 
after the system is rebooted. NTFS checks whether the transactions that were 
recorded in the log file before the crash were applied to the volume, and if 
they weren't, it redoes them. NTFS also guarantees that transactions not com
pletely logged before the crash are undone so that they don't appear on the 
volume. 

Log Record Types 
The LFS allows its clients to write any kind of record to their log files. NTFS 
writes several types of records. Two types, update records and checkpoint records, 
are described here. 

Update records Update records are the most common type of record NTFS 
writes to the log file. Each update record contains two kinds of information: 

• Redo information How to reapply one suboperation of a fully 
logged ("committed") transaction to the volume if a system failure 
occurs before the transaction is flushed from the cache 

• Undo information How to reverse one suboperation of a transaction 
that was only partially logged ("not committed") at the time of a 
system failure 

Figure 12-36 shows thr~e update records in the log file. Each record rep
resents one sub operation of a transaction, creating a new file. The redo entry 
in each update record tells NTFS how to reapply the suboperation to the vol
ume, and the undo entry tells NTFS how to roll back (undo) the suboperation. 



T W E L V E: File Systems 

LFS restart area 

Redo: Allocate/initialize an MFT file record 
Undo: Deallocate the file record 

Redo: Set bits 3-9 in the bitmap 
Undo: Clear bits 3-9 in the bitmap 

Redo: Add the filename to the index 
Undo: Remove the filename from the index 

Figure 12-36 
Update records in the log file 

Mter logging a transaction (in this example, by calling the LFS to write 
the three update records to the log file), NTFS performs the suboperations on 
the volume itself, in the cache. When it has finished updating the cache, NTFS 
writes another record to the log file, recording the entire transaction as com
plete-a suboperation known as committing a transaction. Once a transaction 
is committed, NTFS guarantees that the entire transaction will appear on the 
volume, even if the operating system subsequently fails. 

When recovering after a system failure, NTFS reads through the log file and 
redoes each committed transaction. Although NTFScompleted the committed 
transactions before the system failure, it doesn't know whether the cache man
ager flushed the volume modifications to disk in time. The updates might have 
been lost from the cache when the system failed. Therefore, NTFS executes the 
committed transactions again just to be sure that the disk is up to date. 

Mter redoing the committed transactions during a file system recovery, 
NTFS locates all the transactions in the log file that weren't committed at failure 
and rolls back (undoes) each suboperation that had been logged. In Figure 12-36, 
NTFS would first undo the Tl c suboperation and then follow the backward 
pointer to Tl b and undo that suboperation. It would continue to follow the 
backward pointers, undoing suboperations, until it reached the first suboperation 
in the transaction. By following the pointers, NTFS knows how many and which 
update records it must undo to roll back a transaction. 

Redo and undo information can be expressed either physically or logically. 
Physical descriptions specify volume updates in terms of particular byte ranges 
on the disk that are to be changed, moved, and so on. Logical descriptions 

753 



INSIDE MICROSOFT WINDOWS 2000 

754 

express updates in terms of operations such as "delete file A.dat." As the lowest 
layer of software maintaining the file system structure, NTFS writes update 
records with physical descriptions. Transaction-processing or other applica
tion-level software might benefit from writing update records in logical terms, 
however, because logically expressed updates are more compact than physi
cally expressed ones. Logical descriptions necessarily depend on NTFS to under
stand what operations such as deleting a file involve. 

NTFS writes update records (usually several) for each of the following 
transactions: 

II Creating a file 

II Deleting a file 

II Extending a file 

II Truncating a file 

II Setting file information 

II Renaming a file 

II Changing the security applied to a file 

The redo and undo information in an update record must be carefully 
designed because although NTFS undoes a transaction, recovers from a system 
failure, or even operates normally, it might try to redo a transaction that has 
already been done or, conversely, to undo a transaction that never occurred or 
that has already been undone. Similarly, NTFS might try to redo or undo a 
transaction consisting of several update records, only some of which are com
plete on disk. The format of the update records must ensure that executing 
redundant redo or undo operations is idempotent) that is, has a neutral effect. 
For example, setting a bit that is already set has no effect, but toggling a bit that 
has already been toggled does. The ftle system must also handle intermediate 
volume states correctly. 

Checkpoint records In addition to update records, NTFS periodically writes 
a checkpoint record to the log ftle, as illustrated in Figure 12-37. 



T W E L V E: File Systems 

LFS restart area 

NTFS restart 

Checkpoint record 

Figure 12-37 
Checkpoint record in the log file 

A checkpoint record helps NTFS determine what processing would be 
needed to recover a volume if a crash were to occur immediately. Using infor
mation stored in the checkpoint record, NTFS knows, for example, how far back 
in the log file it must go to begin its recovery. After writing a checkpoint record, 
NTFS stores the LSN of the record in the restart area so that it can quickly find 
its most recently written checkpoint record when it begins file system recovery 
after a crash occurs. 

Although the LFS presents the log file to NTFS as if it were infinitely large, 
it isn't. The generous size of the log file and the frequent writing of checkpoint 
records (an operation that usually frees up space in the log file) make the possi
bility of the log file's filling up a remote one. Nevertheless, the LFS accounts 
for this possibility by tracking several numbers: 

II The available log space 

II The amount of space needed to write an incoming log record and to 
undo the write, should that be necessary 

II The amount of space needed to roll back all active (noncommitted) 
transactions, should that be necessary 

If the log file doesn't contain enough available space to accommodate the 
total of the last two items, the LFS retUrns a "log file full" error and NTFS raises 
an exception. The NTFS exception handler rolls back the current transaction 
and places it in a queue to be restarted later. 

To free up space in the log file, NTFS must momentarily prevent further 
transactions on files. To do so, NTFS blocks file creation and deletion and then 
requests exclusive access to all system files and shared access to all user files. 

755 



INSIDE MICROSOFT WINDOWS 2000 

Gradually, active transactions either are completed successfully or receive the 
"log file full" exception. NTFS rolls back and queues the transactions that 
receive the exception. 

Once it has blocked transaction activity on ftles as just described, NTFS 
calls the cache manager to flush unwritten data to disk, including unwritten log 
ftle data. After everything is safely flushed to disk, NTFS no longer needs the 
data in the log ftle. It resets the beginning of the log file to the current posi
tion' making the log ftle "empty." Then it restarts the queued transactions. 
Beyond the short pause in I/O processing, the "log ftle full" error has no effect 
on executing programs. 

This scenario is one example of how NTFS uses the log ftle not only for 
file system recovery but also for error recovery during normal operation. You'll 
find out more about error recovery in the following section. 

Recovery 

756 

NTFS automatically performs a disk recovery the first time a program accesses 
an NTFS volume after the system has been booted. (Ifno recovery is needed, 
the process is trivial.) Recovery depends on two tables NTFS maintains in 
memory: 

• The transaction table keeps track of transactions that have been 
started but aren't yet committed. The sub operations of these active 
transactions must be removed from the disk during recovery . 

• The dirty page table records which pages in the cache contain modi
fications to the ftle system structure that haven't yet been written to 
disk. This data must be flushed to disk during recovery. 

NTFS writes a checkpoint record to the log file once every 5 seconds. Just 
before it does, it calls the LFS to store a current copy of the transaction table 
and of the dirty page table in the log file. NTFS then records in the checkpoint 
record the LSNs of the log records containing the copied tables. When recovery 
begins after a system failure, NTFS calls the LFS to locate the log records con
taining the most recent checkpoint record and the most recent copies of the 
transaction and dirty page tables. It then copies the tables to memory. 

The log ftle usually contains more update records following the last check
point record. These update records represent volume modifications that occurred 
after the last checkpoint record was written. NTFS must update the transaction 



T W E L V E: File Systems 

and dirty page tables to include these operations. After updating the tables, NTFS 
uses the tables and the contents of the log file to update the volume itself. 

To effect its volume recovery, NTFS scans the log file three times, loading 
the file into memory during the first pass to minimize disk I/O. Each pass has 
a particular purpose: 

1. Analysis 

2. Redoing transactions 

3 . Undoing transactions 

Analysis Pass 
During the analysis pass) as shown in Figure 12-38, NTFS Scans forward in the 
log file from the beginning of the last checkpoint operation to find update 
records and use them to update the transaction and dirty page tables it copied 
to memory. Notice in the figure that the checkpoint operation stores three 
records in the log file and that update records might be interspersed among these 
records. NTFS therefore must start its scan at the beginning of the checkpoint 
operation. 

Analysis pass 

... Dirty pagel I Update I I Transaction I ICheckPoint I 
table record table record 

I Update I I Update I 
record record' • • 

Beginning of checkpoint operation 

End of checkpoint operation 

Figure 12-38 
Analysis pass 

Most update records that appear in the log file after the checkpoint opera
tion begins represent a modification to either the transaction table or the dirty 
page table. If an update record is a "transaction committed" record, for example, 
the transaction the record represents must be removed from the transaction table. 
Similarly, if the update record is a "page update" record that modifies a file sys
tem data structure, the dirty page table must be updated to reflect that change. 

757 



INSIDE MICROSOFT WINDOWS 2000 

758 

Once the tables are up to date in memory, NTFS scans the tables to deter
mine the LSN of the oldest update record that logs an operation that hasn't been 
carried out on disk. The transaction table contains the LSNs of the noncommitted 
(incomplete) transactions, and the dirty page table contains the LSN s of records 
in the cache that haven't been flushed to disk. The LSN of the oldest update 
record that NTFS finds in these two tables determines where the redo pass will 
begin. If the last checkpoint record is older, however, NTFS will start the redo 
pass there instead. 

Redo Pass 
During the redo pass) as shown in Figure 12-39) NTFS scans forward in the log 
file from the LSN of the oldest update record, which it found during the analysis 
pass. It looks for "page update" records, which contain volume modifications 
that were written before the system failure but that might not have been flushed 
to disk. NTFS redoes these updates in the cache. 

Dirty page 
table 

Redo pass 

Beginning of checkpoint operation 

Oldest unwritten log record 

Figure 12-39 
Redo pass 

When NTFS reaches the end of the log file, it has updated the cache with 
the necessary volume modifications and the cache manager's lazy writer can 
begin writing cache contents to disk in the background. 

Undo Pass 
After it completes the redo pass, NTFS begins its undo pass) in which it rolls back 
any transactions that weren't committed when the system failed. Figure 12-40 
shows two transactions in the log file; transaction 1 was comtted before the 
power failure, but transaction 2 wasn't. NTFS must undo transaction 2. 



T W E LV E: File Systems 

Transaction 1 

D Transaction 2 

Figure 12-40 
Undo pass 

Power failure 

Undo pass 

"Transaction committed" record 

Suppose that transaction 2 created a file, an operation that comprises three 
suboperations, each with its own update record. The update records of a trans
action are linked by backward pointers in the log file because they are usually 
not contiguous. 

The NTFS transaction table lists the LSN of the last-logged update record 
for each noncommitted transaction. In this example, the transaction table iden
tifies LSN 4049 as the last update record logged for transaction 2. As shown 
from right to left in Figure 12-41, NTFS rolls back transaction2. 

Transaction 1 

D Transaction 2 

Redo: Set bits 3-9 in the bitmap 
Undo: Clear bits 3-9 in the bitmap 

Undo: Remove the filename from the index 

Redo: Allocate/initialize an MFT file record 
Undo: Deallocate the file record 

Figure 12-41 
Undoing a transaction 

After locating LSN 4049, NTFS finds the undo information and executes 
it, clearing bits 3 through 9 in its allocation bitmap. NTFS then follows the 
backward pointer to LSN 4048, which directs it to remove the new filename 

759 



INSIDE MICROSOFT WINDOWS 2000 

760 

from the appropriate filename index. Finally, it follows the last backward pointer 
and deallocates the MFT file record reserved for the file, as the update record 
with LSN 4046 specifies. Transaction 2 is now rolled back. If there are other 
noncommitted transactions to undo, NTFS follows the same procedure to roll 
them back. Because undoing transactions affects the volume's file system struc
ture, NTFS must log the undo operations in the log file. After all, the power 
might fail again during the recovery, and NTFS would have to redo its undo 
operations! 

When the undo pass of the recovery is finished, the volume has been restored 
to a consistent state. At this point, NTFS flushes the cache changes to disk to 
ensure that the volume is up to date. NTFS then writes an "empty" LFS restart 
area to indicate that the volume is consistent and that no recovery need be done 
if the system should fail again immediately. Recovery is complete. 

NTFS guarantees that recovery will return the volume to some preexisting 
consistent state, but not necessarily to the state that existed just before the sys
tem crash. NTFS can't make that guarantee because, for performance, it uses a 
"lazy commit" algorithm, which means that the log file isn't immediately flushed 
to disk each time a "transaction committed" record is written. Instead, numerous 
"transaction committed" records are batched and written together, either when 
the cache manager calls the LFS to flush the log file to disk or when the LFS 
writes a checkpoint record (once every 5 seconds) to the log file. Another rea
son the recovered volume might not be completely up to date. is that several 
parallel transactions might be active when the system crashes and some of their 
"transaction committed" records might make it to disk whereas others might 
not. The consistent volume that recovery produces includes all the volume 
updates whose "transaction committed" records made it to disk and none of 
the updates whose "transaction committed" records didn't make it to disk. 

NTFS uses the log file to recover a volume after the system fails, but it also 
takes advantage of an important "freebie" it gets from logging transactions. File 
systems necessarily contain a lot of code devoted to recovering from file system 
errors that occur during the course of normal file I/O. Because NTFS logs each 
transaction that modifies the volume structure, it can use the log file to recover 
when a file system error occurs and thus can greatly simplifY its error handling 
code. The "log file full" error described earlier is one example of using the log 
file for error recovery. 

Most I/O errors a program receives aren't file system errors and therefore 
can't be resolved entirely by NTFS. When called to create a file, for example, 
NTFS might begin by creating a file record in the MFT and then enter the new 



T W E LV E: File Systems 

file's name in a directory index. When it tries to allocate space for the file in its 
bitmap, however, it could discover that the disk is full and the create request 
can't be completed. In such a case, NTFS uses the information in the log file 
to undo the part of the operation it has already completed and to deallocate the 
data structures it reserved for the file. Then it returns a "disk full" error to the 
caller, which in turn must respond appropriately to the error. 

NTFS Bad-Cluster Recovery 
The volume managers included with Windows 2000, FtDisk (for basic disks) 
and Logical Disk Manager (LDM, for dynamic disks), can recover data from a 
bad sector on a fault tolerant volume, but if the hard disk doesn't use the SCSI 
protocol or runs out of spare sectors, a volume manager can't perform sector 
sparing to replace the bad sector. (See Chapter 10 for more information on the 
volume managers.) When the file system reads from the sector, the volume 
manager instead recovers the data and returns the warning to the file system that 
there is only one copy of the data. 

The FAT file system doesn't respond to this volume manager warning. 
Moreover, neither these file systems nor the volume managers keep track of the 
bad sectors, so a user must run the Chkdsk or Format utility to prevent a vol
ume manager from repeatedly recovering data for the file system. Both Chkdsk 
and Format are less than ideal for removing bad sectors from use. Chkdsk can 
take a long time to find and remove bad sectors, and Format wipes all the data 
off the partition it's formatting. 

In the file system equivalent of a volume manager's sector sparing, NTFS 
dynamically replaces the cluster containing a bad sector and keeps track of the 
bad cluster so that it won't be reused. (Recall that NTFS maintains portability 
by addressing logical clusters rather than physical sectors. ) NTFS performs these 
functions when the volume manager can't perform sector sparing. When a 
volume manager returns a bad-sector warning or when the hard disk driver 
returns a bad-sector error, NTFS allocates a new cluster to replace the one 
containing the bad sector. NTFS copies the data that the volume manager has 
recovered into the new cluster to reestablish data redundancy. 

Figure 12-42 shows an MFT record for a user file with a bad cluster in one 
of its data runs as it exited before the cluster went bad. When it receives a bad
sector error, NTFS reassigns the cluster containing the sector to its bad-cluster 
file. This prevents the bad cluster from being allocated to another file. NTFS 

761 



INSIDE MICROSOFT WINDOWS 2000 

762 

User 
file 

Standard 
information 

VCN o 

LCN 1355 1356 1357 

Figure 12-42 
MFT record for a user file with a bad cluster 

3 4 5 

1588 1589 1590 

then allocates a new cluster for the file and changes the file's VCN-to-LCN 
mappings to point to the new cluster. This bad-cluster remapping (introduced 
earlier in this chapter) is illustrated in Figure 12-43. Cluster number 1357, which 
contains the bad sector, is replaced by a new cluster, number 1049. 

Bad-sector errors are undesirable, but when they do occur, the combination 
ofNTFS and volume managers provides the best possible solution. If the bad 
sector is on a redundant volume, the volume manager recovers the data and 
replaces the sector if it can. If it can't replace the sector, it returns a warning to 
NTFS and NTFS replaces the cluster containing the bad sector. 

If the volume isn't configured as a redundant volume, the data in the bad 
sector can't be recovered. When the volume is formatted as a FAT volume and 
the volume manager can't recover the data, reading from the bad sector yields 
indeterminate results. Ifsome of the file system's control structures reside in the 
bad sector, an entire file or group of files (or potentially, the whole disk) can 
be lost. At best, some data in the affected file ( often, all the data in the file beyond 
the bad sector) is lost. Moreover, the FAT file system is likely to reallocate the 
bad sector to the same or another file on the volume, causing the problem to 
resurface. 

Like the other file systems, NTFS can't recover data from a bad sector 
without help from a volume manager. However, NTFS greatly contains the 



Bad
cluster 

file 

User 
file 

Standard 
information 

VCN 

LCN 1357 

Standard 
information Filename 

VCN 0 r---..,...--.., 

LCN 1355 1356 

Figure 12-43 
Bad-cluster remapping 

T W E LV E: File Systems 

Data 

1049 1588 1589 1590 

damage a bad sector can cause. IfNTFS discovers the bad sector during a read 
operation, it remaps the cluster the sector is in, as shown in Figure 12-43. If 
the volume isn't configured as a redundant volume, NTFS returns a "data read" 
error to the calling program. Although the data that was in that cluster is lost, 
the rest of the file-and the file system-remains intact; the calling program can 
respond appropriately to the data loss, and the bad cluster won't be reused in 
future allocations. IfNTFS discovers the bad cluster on a write operation rather 
than a read, NTFS remaps the cluster before writing and thus loses no data and 
generates no error. 

763 



INSIDE MICROSOFT WINDOWS 2000 

764 

The same recovery procedures are followed if file system data is stored in 
a sector that goes bad. If the bad sector is on a redundant volume, NTFS replaces 
the cluster dynamically, using the data recovered by the volume manager. If the 
volume isn't redundant, the data can't be recovered and NTFS sets a bit in the 
volume file that indicates corruption on the volume. The NTFS Chkdsk utility 
checks this bit when the system is next rebooted, and if the bit is set, Chkdsk 
executes, fixing the file system corruption by reconstructing the NTFS metadata. 

In rare instances, file system corruption can occur even on a fault tolerant 
disk configuration. A double error can destroy both file system data and the 
means to reconstruct it. If the system crashes while NTFS is writing the mirror 
copy of an MFT file record, of a filename index, or of the log file, for example, 
the mirror copy of such file system data might not be fully updated. If the sys
tem were rebooted and a bad-sector error occurred on the primary disk at exactly 
the same location as the incomplete write on the disk mirror, NTFS would be 
unable to recover the correct data from the disk mirror. NTFS implements a 
special scheme for detecting such corruptions in file system data. If it ever finds 
an inconsistency, it sets the corruption bit in the volume file, which causes 
Chkdsk to reconstruct the NTFS metadata when the system is next rebooted. 
Because file system corruption is rare on a fault tolerant disk configuration, 
Chkdsk is seldom needed. It is supplied as a safety precaution rather than as a 
first-line data recovery strategy. 

The use of Chkdsk on NTFS is vastly different from its use on the FAT 
file system. Before writing anything to disk, FAT sets the volume's dirty bit and 
then resets the bit after the modification is complete. If any I/O operation is 
in progress when the system crashes, the dirty bit is left set and Chkdsk runs 
when the system is rebooted. On NTFS, Chkdsk runs only when unexpected 
or unreadable file system data is found and NTFS can't recover the data from 
a redundant volume or from redundant file system structures on a single vol
ume. (The system boot sector is duplicated, as are the parts of the MFT required 
for booting the system and running the NTFS recovery procedure. This redun
dancy ensures that NTFS will always be able to boot and recover itself.) 

Table 12-6 summarizes what happens when a sector goes bad on a disk 
volume formatted for one of the Windows 2000-supported file systems accord
ing to various conditions we've described in this section. 



Scenario 

T W E L V E: File Systems 

Table 12-6 Summary of NTFS Data Recovery Scenarios 

With a SCSI 
disk that has 
spare sectors 

With a non-SCSI 
disk or a disk with 
no spare sectors* 

Fault tolerant volume * * 1. Volume manager 
recovers the data. 

1. Volume manager 
recovers the data. 

Non-fault-tolerant 
volume 

2. Volume manager 
performs sector sparing 
(replaces the bad sector). 

3. File system remains 
unaware of the error. 

1. Volume manager can't 
recover the data. 

2. Volume manager sends a 
bad-sector error to the 
file system. 

3. NTFS performs cluster 
remapping. Data is lostt. 

2. Volume manager sends the 
data and a bad-sector error 
to the file system. 

3. NTFS performs cluster 
remapping. 

1. Volume manager can't 
reCOver the data. 

2. Volume manager sends a 
bad-sector error to the 
file system. 

3. NTFS performs cluster 
remapping. Data is lostt. 

* In neither of these cases can a volume manager perform sector sparing: (1) hard disks that 
don't use the SCSI protocol have no standard interface for providing sector sparing; (2) 
some hard disks don't provide hardware support for sector sparing, and SCSI hard disks that 
do provide sector sparing can eventually run out of spare sectors if a lot of sectors go bad. 

* * A fault tolerant volume is one of the following: a mirror set or a RAID-5 set. 

t In a write operation, no data is lost: NTFS remaps the cluster before the write. 

If the volume on which the bad sector appears is a fault tolerant volume 
(a mirrored or RAID-5 volume) and if the hard disk is one that supports sec
tor sparing (and that hasn't run out of spare sectors), which file system you're 
using-FAT or NTFS-doesn't matter. The volume manager replaces the bad 
sector without the need for user or file system intervention. 

If a bad sector is located on a hard disk that doesn't support sector spar
ing, the file system is responsible for replacing (remapping)the bad sector or
in the case ofNTFS-the cluster in which the bad sector resides. The FAT file 

765 



INSIDE MICROSOFT WINDOWS 2000 

system doesn't provide sector or cluster remapping. The benefits ofNTFS cluster 
remapping are that bad spots in a file can be fixed without harm to the file (or 
harm to the file system, as the case may be) and that the bad cluster won't be 
reallocated to the same or another file. 

Encrypting File System Security 

766 

EFS security relies on Windows 2000 cryptography support, which Microsoft 
introduced in Windows NT 4. The fIrst time a file is encrypted, EFS assigns the 
account of the user performing the encryption a private/public key pair for use 
in file encryption. Users can encrypt files via Windows Explorer by opening a 
file's Properties dialog box, pressing Advanced, and selecting the Encrypt 
Contents To Secure Data option, as shown in Figure 12-44. Users can also 
encrypt files via a command-line utility named cipher. Windows 2000 automati
cally encrypts files that reside in directories that are designated as encrypted 
directories. When a file is encrypted, EFS generates a random number for the 
file that EFS calls the file's file encryption key (FEK). EFS uses the FEK to 
encrypt the file's contents with a stronger variant of the Data Encryption Stan
dard (DES) algorithm-DESX. EFS stores the file's FEK with the file but encrypts 
the file with the user's EFS public key by using the RSA public key-based encryp
tion algorithm. After EFS completes these steps, the file is secure: other users 
can't decrypt the data without the file's decrypted FEK, and they can't decrypt 
the FEK without the private key. 

Figure 12-44 
Encrypt files by using the Advanced Attributes dialog box 



T W E LV E: File Systems 

EFS uses a private/public key algorithm to encrypt FEKs. To encrypt file 
data, EFS uses DESX because DESX is a symmetric encryption algorithm, which 
means it uses the same key to encrypt and decrypt data. Symmetric encryption 
algorithms are typically very fast, which makes them suitable for encrypting large 
amounts of data, such as file data. However, symmetric encryption algorithms 
have a weakness: you can bypass their security if you obtain the key. If multiple 
users want to share one encrypted file protected only by DESX, each user would 
require access to the file's FEK. Leaving the FEK unencrypted would obviously 
be a security problem, but encrypting the FEK once would require all the users 
to share the same FEK decryption key-another potential security problem. 

Keeping the FEK secure is a difficult problem, which EFS addresses with 
the public key-based half of its encryption architecture. Encrypting a file's FEK 
for individual userswho access the file lets multiple users share an encrypted file. 
EFS can encrypt a file's FEK with each user's public key and can store each user's 
encrypted FEK with the file. Anyone can access a user's public key, but no one 
can use a public key to decrypt the data that the public key encrypted. The only 
way users can decrypt a file is with their private key, which the operating sys
tem must access and typically stores in a secure location. A user's private key 
decrypts the user's encrypted copy of a file's FEK. Windows 2000 stores private 
keys on a computer's hard disk (which isn't terribly secure), but subsequent 
releases of the operating system will let users store their private key on portable 
media such as smart cards. Public key-based algorithms are usually slow, but EFS 
uses these algorithms only to enq:ypt FEKs. Splitting key management between 
a publicly available key and a private key makes key management a little easier 
than symmetric encryption algorithms do and solves the dilemma of keeping 
the FEK secure .. 

Several components work together to make .EFS work, as the diagram of 
EFS architecture in Figure 12-45 shows. As you can see, EFS is implemented 
as a device. driver that runs in kernel mode and is tightly connected with the 
NTFS file system driver. Whenever NTFS encounters an encrypted file, NTFS 
executes functions in the EFS driver that the EFS driver registered with NTFS 
when EFS initialized. The EFS functipns encrypt and decrypt file data as appli
cations access encrypted files. Although EFS stores an FEK with a file's data, users' 
public keys encrypt the FEK. To encrypt or decrypt file data, BFS must decrypt 
the file'sFEKwith the aid of cryptography services that reside in user mode. 

767 



INSIDE MICROSOFT WINDOWS 2000 

768 

Lsass 

LPC 

Figure 12-45 
BFS architecture 

Cryptographic 
service 

providers 

EFS 
callouts 

Application 

User mode 

Kernel mode 

Encrypted 
file access 

NTFS 

The Local Security Authority Subsystem (Lsass - \Wmnt\System32\Lsass.exe) 
manages logon sessions but also handles EFS key management chores. For 
example, when the EFS driver needs to decrypt an FEK in order to decrypt file 
data a user wants to access, the EFSdriver sends a request to Lsass. EFS sends 
the request via a local procedure call (LPC). The KSecDD (\Winnt\System32\ 
Drivers\Ksecdd.sys) device driver exports functions for other drivers that need 
to send LPC messages to Lsass. The Local Security Authority Server (Lsasrv
\Winnt\System32\Lsasrv.dll) component ofLsass that listens for remote proce
dure call (RPC) requests passes requests to decrypt an FEK to the appropriate 
EFS-related decryption function, which also resides in Lsasrv. Lsasrvuses func
tions in Microsoft CryptoAPI (also referred to as CAPI) to decrypt the FEK, 
which the EFS driver sent to Lsass in encrypted form. 

CryptoAPI comprises cryptographic service provider (CSP) DLLs that 
make various cryptography services (such as encryption/decryption and hashing) 
available to applications. The CSP DLLs manage retrieval of user private and 



T W E LV E: File Systems 

public keys, for example, so that Lsasrv doesn't need to concern itself with the 
details of how keys are protected or even with the details of the encryption algo
rithms. After Lsasrv decrypts an FEK, Lsasrv returns the FEK to the EFS driver 
via an LPC reply message. After EFS receives the decrypted FEK, EFS can use 
DESX to decrypt the file data for NTFS. Let's look at the details of how EFS 
integrates with NTFS and how Lsasrv uses CryptoAPI to manage keys. 

Registering Callbacks 
NTFS doesn't require the EFS driver's (Wmnt\System32\Drivers\Efs.sys) presence 
to execute, but encrypted files won't be accessible if the EFS driver isn't present. 
NTFS has a plug-in interface for the EFS driver, so when the EFS driver initial
izes, it can attach itself to NTFS. The NTFS driver exports several functions for 
the EFS driver to use, including one that EFS calls to notify NTFS both of the 
presence of EFS and of the EFS-related APIs EFS is making available. 

Encrypting a File for the First Time 
The NTFS driver calls only the EFS functions that register when NTFS encoun
ters an encrypted file. A file's attributes record that the file is encrypted in the same 
way that a file records that it is compressed (discussed earlier in this chapter). NTFS 
and EFS have specific interfaces for converting a file from nonencrypted to 
encrypted form, but user-mode components primarily drive the process. Wmdows 
2000 lets you encrypt a file in two ways: by using the cipher command-line utility 
or by checking the Encrypt Contents To Secure Data check box in the Advanced 
Attibutes dialog box for a file in Windows Explorer. Both Windows Explorer 
and the cipher command rely on the EncryptFile Win32 API that the Advapi32.dll 
(Advanced Win32 APIs DIL) exports. Advapi32 loads another DLL, Feclient.dll 
(File Encryption Client DLL), toobtainAPIs that Advapi32 can use to invoke 
EFS interfaces in Lsasrv via LPCs. 

When Lsasrv receives an LPC message from Feclient to encrypt a file, 
Lsasrv uses the Windows 2000 impersonation facility to impersonate the user 
that ran the application (either cipher or Windows Explorer) that is encrypting 
the file. This procedure lets Windows 2000 treat the file operations that Lsasrv 
performs as if the user who wants to encrypt the file is performing them. Lsasrv 
usually runs in the System account. (The System account is described in Chap
ter 8.) In fact, ifit doesn't impersonate the user, Lsasrv usually won't have per
mission to access the file in question. 

769 



INSIDE MICROSOFT WINDOWS 2000 

770 

Lsasrv next creates a log file in the volume's System Volume Information 
directory into which Lsasrv records the progress of the encryption process. The 
log file usually has the name EfsO.log, but if other files are undergoing encryp
tion, increasing numbers replace the 0 until a unique log file name for the cur
rent encryption is created. 

CryptoAPI relies on information that a user's registry profile stores, so 
Lsasrv next uses the LoadUserProfile API function ofUserenv.dll (User Envi
ronment DLL) to load the profile into the registry of the user it is impersonat
ing. Typically, the user profile is already loaded because Winlogon loads a user's 
profile when a user logs on. However, if a user uses the Windows 2000 RunAs 
command to log on to a different account, when you try to access encrypted 
files from that account, the account's profile might not load. 

Lsasrv then generates an FEK for the file by using the RSA encryption 
facilities of the Microsoft Base Cryptographic Provider 1.0 CSP. 

Constructing Key Rings 
At this point, Lsasrv has an FEK and can construct EFS information to store 
with the file, including an encrypted version of the FEK Lsasrv reads the HKEY_ 
CURRENT _ USER\Software\Microsoft\Windows N,!\CurrentVersion\EFS\ 
CurrentKeys\CertificateHash value of the user performing the encryption to 
obtain the user's public key signature. (Note that this key doesn't appear in the 
registry until a file or folder is encrypted.) Lsasrv uses the signature to access 
the user's public key and encrypt FEKs. 

Lsasrv can now construct the information that EFS stores with the file. EFS 
stores only one block of information in an encrypted file, and that block con
tains an entry for each user sharing the file. These entries are called key entries, 
and EFS stores them in the Data Decryption Field (DDF) portion of the file's 
EFS data. A collection of multiple key entries is called a key ring because, as 
mentioned earlier, EFS lets multiple users share encrypted files. 

Figure 12-46 shows a file's EFS information format and key entry format. 
EFS stores enough information in the first part of a key entry to precisely describe 
a user's public key. This data includes the user's security ID (SID), the container 
name in which the key is stored, the cryptographic provider name, and the 
private/public key pair certificate hash. The second part of the key entry con
tains an encrypted version of the FEK Lsasrv uses the CryptoAPI to encrypt 
the FEK with the RSA algorithm and the user's public key. 



EFS information 

Version 
Header 1----------1 

Data 
decryption 

field 

Data 
recovery 

field 

Figure 12-46 
Format of EFS information and key entries 

T W E LV E: File Systems 

Key entry 

Next, Lsasrv creates another key ring that contains recovery key entries. 
EFS stores information about recovery key entries in a file's Data Recovery Field 
(DRF). The format of DRF entries is identical to the format ofDDF entries. 
The DRF's purpose is to let designated accounts, or Recovery Agents, decrypt 
a user's file when administrative authority must have access toth~ user's data. 
For example, suppose a company employee used a CryptoAPI that let him store 
his private key on a smart card, and then he lost the card. Without Recovery 
Agents, no one could recover his encrypted data. 

Recovery Agents are defined with the Encrypted Data Recovery Agents 
security policy of the local computer or domain. This policy is available from 
the Group Policy MMC snap-in, as shown in Figure 12~47. When you use the 
Recovery Agent Wizard (by right-clicking on Encrypted Data Recovery Agents 
and selecting Encrypted Recovery Agent from the New option), you can add 
Recovery Agents and specify which private/public key pairs (designated by their 
certificates) the Recovery Agents use for EFS recovery. Lsasrv interprets the 
recovery policy when it initializes and when it receives notification that the 
recovery policy has changed. EFS creates a DRF key entry for each Recovery 
Agent by lising the cryptographic provider registered for EFS recovery. The 
default Recovery Agent provider is the RSA encryption facility of Base Cryp
tographic Provider-l.O-the same provider Lsasrv uses for user keys. 

771 



INSIDE MICROSOFT WINDOWS 2000 

772 

Figure 12·47 
Encrypted Data Recovery Agents group policy 

In the final step in creating EFS information for a file, Lsasrv calculates 
a checksum for the DDF and DRF by using the MD5 hash facility of Base 
Cryptographic Provider 1.0. Lsasrv stores the checksum's result in the EFS 
information header. EFS references this checksum during decryption to ensure 
that the contents of a file's EFS information haven't become corrupted or been 
tampered with. 

Encrypting File Data 
Figure 12-48 illustrates the flow of the encryption process. After Lsasrv constructs 
the necessary information for a file a user wants to encrypt, it can begin encrypt
ing the file. Lsasrv creates a backup file, EfsO.tmp, for the file undergoing encryp
tion. (Lsasrv uses higher numbers in the backup filename if other backup files 
exist.) Lsasrv creates the backup file in the directory that contains the file under
going encryption. Lsasrv applies a restrictive security descriptor to the backup 
file so that only the System account can access the file's contents. Lsasrv next 
initializes the log file that it created in the first phase of the encryption process. 
Finally, Lsasrv records in the log file that the backup file has been created. Lsasrv 
encrypts the original file only after the file is completely backed up. 

Lsasrv next sends the EFS device driver, through NTFS, a command to 
add to the original file the EFS information that it just created. NTFS receives 
this command, but because NTFSdoesn't understand EFS commands, NTFS 
calls 'the EFS driver. The EFS driver takes the EFS information that Lsasrv sent 
and uses exported NTFS functions to apply the information to the file. The 
exported NTFS functions let EFS add the $LOGGED_UTILITY_STREAM 



EFS driver 
@ 

NTFS asks EFS driver 
to encrypt file contents 

headed to disk. 

Figure 12-48 
Flow ofEFS 

T W E LV E: File Systems 

Application 

<D Application writes data 
to an encrypted file. 

® NTFS places data in ...... _...z..._--. 
file system cache. 

NTFSfile 

system driver ..... ~--------~ 
® Cache manager lazy writes 

data to disk via NTFS. 

® NTFS writes encrypted 
file contents to disk. 

User mode 

Kernel mode 

attribute to NTFS file. Execution returns to Lsasrv, which copies the contents 
of the file undergoing encryption to the backup file. When the backup copy is 
complete, including backups of all alternate data streams, Lsasrv records in the 
log file that the backup file is up to date. Lsasrv then sends· another command 
to.NTFS to tell NTFS to encrypt the contents of the original file. 

When NTFS receives the EFS command to encrypt the file., NTFS deletes 
the contents"of the original file and copies the backup data to the file. After NTFS 
copies each section of the file, NTFS flushes the section's data from the file 
system cache, which prompts the cache manager to tell NTFS to write the file's 
data to disk. Because the file is marked as encrypted, at this point in the file
writing process, NTFS calls EFS to encrypt the data before NTFS writes the data 

773 



INSIDE MICROSOFT WINDOWS 2000 

774 

to disk. EFS uses the unencrypted FEK that NTFS passes it to perform DESX 
encryption of the file, one sector (512 bytes) at a time. 

On Windows 2000 versions approved for export outside the United States, 
the EFS driver implements a 56-bit key DESX encryption. For the U.S.-only 
version of Windows 2000, the key is 128 bits long. 

After EFS encrypts the file, Lsasrv records in the log file that the encryp
tion was successful and deletes the file's backup copy. Finally, Lsasrv deletes the 
log file and returns control to the application that requested the file's encryption. 

Encryption Process Summary 
The following list summarizes the steps EFS performs to encrypt a file: 

1. The user profile is loaded if necessary. 

2. A log file is created in the System Volume Information directory 
with the name Efsx.log, where x is a unique number (for example, 
EfsO.log). As subsequent steps are performed, records are written to 
the log so that the file can be recovered in case the system fails during 
the encryption process. 

3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK 
for the file. 

4. A user EFS private/public key pair is generated or obtained. HKEY_ 
CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\ 
EFS\CurrentKeys\CertificateHash identifies the user's key pair. 

5. A DDF key ring is created for the file that has an entry for the user. 
The entry contains a copy of the FEK that has been encrypted with 
the user's EFS public key. 

6. A DRF key ring is created for the file. It has an entry for each 
Recovery Agent on the system, with each entry containing a copy 
of the FEK encrypted with the agent's EFS public key. 

7. A backup file with a name in the form EfsO. tmp is created in the 
same directory as the file to be encrypted. 

8. The DDF and DRF key rings are added to a header and augment 
the file as its EFS attribute. 



TW E LV E: File Systems 

9. The backup file is marked encrypted, and the original file is copied 
to the backup. 

10. The original file's contents are destroyed, and the backup is copied 
to the original. This copy operation results in the data in the original 
file being encrypted because the file is now marked as encrypted. 

11. The backup file is deleted. 

12. The log file is deleted. 

13. The user profile is unloaded (if it was loaded in step 1). 

If the system crashes during the encryption process, either the miginal file 
remains intact or the backup file contains a consistent copy. When Lsasrv initial
izes after a system crash, it looks for log files under the System Volume Informa
tion subdirectory on each NTFS volume on the system. If Lsasrv finds one or 
more log files, it examines their contents and determines how recovery should 
take place. Lsasrv deletes the log file and the corresponding backup file if the 
original file wasn't modified at the time of the crash; otherwise, Lsasrv copies 
the backup file over the original, partially encrypted file and then deletes the log 
and backup. After Lsasrv processes log files, the file system will be in a consis
tent state with respect to encryption, with no loss of user data. 

The Decryption Process 
The decryption process begins when a user opens an encrypted file. NTFS exam
ines the file's attributes when opening the file and then executes a callback .func
tion in the EFS driver. The EFS driver reads the $LOGGED_UTILITY_ 
STREAM attribute associated with the encrypted file. To read the attribute, the 
driver calls EFS support functions that NTFS exports for EFS's use. NTFS 
completes the necessary steps to open the file. The EFS driver ensures that the 
user opening the file has access privileges to the file's encrypted data (that is, 
that an encryptedFEK in either the DDF or DRF key rings corresponds to a 
private/public key pair associated with the user). As EFS performs this valida
tion, EFS obtains the file's decrypted FEK to use in subsequent data operations 
the user might perform on the file. 

775 



INSIDE MICROSOFT WINDOWS 2000 

776 

EFS can't decrypt an FEKand relies on Lsasrv (which can use CryptoAPI) 
to perform FEK decryption. EFS sends an LPC message by way of the Ksecdd.sys 
driver to Lsasrv that asks Lsasrv to obtain the decrypted form of the encrypted 
FEKin the $LOGGED_UTILITY_STREAM attribute data (the EFS data) that 
corresponds to the user who is opening the file. 

When Lsasrv receives the LPC message, Lsasrv executes the Userenv.dll 
(User Environment DLL) LoadUserProfile API function to bring the user's 
profile into the registry, if the profile isn't already loaded. Lsasrv proceeds 
through each key field in the EFS data, using the user's private key to try to 
decrypt each FEK. For each key, Lsasrv attempts to decrypt a DDF or DRF key 
entry's FEK. If the certificate hash in a key field doesn't refer to a key the user 
owns, Lsasrv moves on to the next key field. If Lsasrv can't decrypt any DDF 
or DRF key field's FEK, the user can't obtain the file's FEK. Consequently, EFS 
denies access to the application opening the file. However, if Lsasrv identifies 
a hash as corresponding to a key the user owns, it decrypts the FEK with the 
user's private key using CryptoAPI. 

Because Lsasrv processes both DDF and DRF key rings when decrypting 
an FEK, it automatically performs file recovery operations. If a Recovery Agent 
that isn't registered to access an encrypted file (that is, it doesn't have a correspond
ing field in the DDF key ring) tries to access a file, EFS will let the Recovery 
Agent gain access because the agent has access to a key pair for a key field in 
the DRF key ring. 

Decrypted FEK Caching 
Traveling the path from the EFS driver to Lsasrv and back can take a relatively 
long time-in the process of decrypting an FEK, CryptoAPI uses results in more 
than 2000 registry API calls and 400 file system accesses on a typical system. 
The EFS driver, with the aid ofNTFS, uses a cache to try to avoid this expense. 

Decrypting File Data 
After an application opens an encrypted file, the application can read from and 
write to the file. NTFS calls the EFS driver to decrypt file data as NTFS reads 
the data from the disk and before NTFS places the data in the file system cache. 
Similarly, when an application writes data to a file, the data remains in unencrypted 
form in the file system cache until the application or the cache manager uses 



TWELVE: File Systems 

NTFS to flush the data back to disk. When an encrypted file's data writes back 
from the cache to the disk, NTFS calls the EFS driver to encrypt the data. 

As stated earlier, the EFS driver performs encryption and decryption in 
512-byte units. The 512-byte size is the most convenient for the driver because 
disk reads and writes occur in multiples of the 512-byte sector. 

Backing Up Encrypted Files 
An important aspect of any file encryption facility's design is that file data is never 
available in unencrypted form except to applications that access the file via the 
encryption facility. This restriction particularly affects backup utilities, in which 
archival media store files. EFS addresses this problem by providing a facility for 
backup utilities so that the utilities can back up and restore files in their encrypted 
states. Thus, backup utilities don't have to be able to decrypt file data, nor do 
they need to decrypt file data in their backup procedures. 

Backup utilities use the new EFS API functions OpenEncryptedFileRaw, 
ReadEncryptedFileRaw, WriteEncryptedFileRaw, and CloseEncryptedFileRaw in 
Windows 2000 to access a file's encrypted contents. The Advapi32.dlllibrary 
provides these API functions, which all use LPCs to invoke corresponding func
tions in Lsasrv. For example, after a backup utility opens a file for raw access 
during a backup operation, the utility calls ReadEncryptedFileRaw to obtain the 
file data. The Lsasrv function EftReadFileRaw issues control commands (which 
the EFS session key encrypts with DESX) to the NTFS driver to read the file's 
EFS attribute first and then the encrypted contents. 

EftReadFileRaw might have to perform multiple read operations to read 
a large file. As EftReadFileRaw reads each portion of such a file, Lsasrv sends 
an RPC message to Advapi32.dll that executes a callback function that the 
backup program specified when it issued the ReadEncryptedFileRaw API func
tion. EftReadFileRaw hands the encrypted data it just read to the callback func
tion, which can write the data to the backup media. Backup utilities restore 
encrypted files in a similar manner. The utilities call the WriteEncryptedFileRaw 
API function, which invokes a callback function in the backup program to obtain 
the unencrypted data from the backup media while Lsasrv's Eft WriteFileRaw 
function is restoring the file's contents. 

777 



INSIDE MICROSOFT WINDOWS 2000 

Conclusion 

778 

As you saw in the introduction to this chapter, the overriding goal for NTFS 
was to provide a file system that wasn't only reliable but also fast. The per
formance of Windows 2000 disk I/O isn't due solely to the implementation 
of NTFS, however. It comes in large measure from synergy between NTFS 
and the Windows 2000 cache manager. Together, NTFS and the cache man
ager achieve respectable I/O performance while providing an unprecedented 
level of reliability and high -end data storage features for both workstation and 
server systems. 



C HAP T E R T H R TEE N 

Networking 

Mcrosoft Wmdows 2000 was designed with networking in mind, and it includes 
broad networking support that is integrated with the I/O system and the Win32 
API. The four basic types of networking software are services, APIs, protocols, 
and network adapter device drivers, and each is layered on the next to form a 
network stack. Windows 2000 has well-defined interfaces for each layer, so in 
addition to using the wide variety of different APIs, protocols, and adapter device 
drivers that ship with Windows 2000, third parties can extend the operating 
system's networking capabilities by developing their own. 

In this chapter, we take you from the top of the Windows 2000 network
ing stack to the bottom. First, we present the mapping between the Windows 
2000 networking software components and the Open Systems Interconnec
tion (OSI) reference model. Then we briefly describe the networking APIs 
available on Windows 2000 and explain how they are implemented. You'll learn 
how network-resource name resolution works and how protocol drivers are 
implemented. After looking at the implementation of network adapter device 
drivers, we examine binding, which is the glue that connects protocols to 
network adapters. Finally, we briefly describe layered networking services included 
with Windows 2000, such as Active Directory directory service and File Rep
lication service (FRS). 

779 



INSIDE MICROSOFT WINDOWS 2000 

The 051 Reference Model 

780 

The goal of network software is to take a request (usually an I/O request) from 
an application on one machine, pass it to another machine, execute the request 
on the remote machine, and return the results to the first machine. In the 
course of this process, the request must be transformed several times along 
the way. A high -level request, such as "read x number of bytes from file y on 
machine z," requires software that can determine how to get to machine z and 
what communication software that machine understands. Then the request 
must be altered for transmission across a network-for example, divided into 
short packets of information. When the request reaches the other side, it must 
be checked for completeness, decoded, and sent to tpe correct operating sys
tem component for execution. Finally, the reply must be encoded for send
ing back across the network. 

To help different computer manufacturers standardize and integrate their 
networking software, in 1974 the International Organization for Standardiza
tion (ISO) defined a software model for sending messages between machines. 
The result is the Open Systems Interconnection (OSI) reference model. The model 
defines seven layers of software, as shown in Figure 13-1. 

7 Application 7 

6 Presentation .111!!!!!! ••••••••••• 6 

5 Session Session 5 
4 Transport Transport 4 

3 Network Network 3 

2 Data-link 2 

.... _-- Transmission medium ----.. 

Figure 13-1 
OSI reference model 

The OSI reference model is an idealized scheme that few systems implement 
precisely, but it's often used to frame discussions of networking principles. Each 
layer on one machine assumes that it is "talking to" the same layer on the other 



T H I R TEE N: Networking 

machine. Both machines "speak:" the same language, or protocol, at the same 
level. In reality, however, a network transmission must pass down each layer on 
the client machine, be transmitted across the network, and then pass up the layers 
on the destination machine until it reaches a layer that can understand and 
implement the request. 

OSI Layers 
The purpose of each layer in the OSI model is to provide services to higher layers 
and to abstract how the services are implemented at lower layers. Detailing the 
purpose of each layer is beyond the scope of this book, but here are some brief 
descriptions of the various layers: 

II Application layer Handles information transfer between two 
network applications, including functions such as security checks, 
identification of the participating machines, and initiation of the 
data exchange. 

II Presentation layer Handles data formatting, including issues such 
as whether lines end in carriage return/line feed (CRjLF) or just 
carriage return (CR), whether data is to be compressed or encoded, 
and so forth. 

II Session layer Manages the connection between cooperating 
applications, including high-level synchronization and monitoring 
of which application is "talking" and which is "listening." 

II Transport layer On the client, this layer divides messages into 
packets and assigns them sequence numbers to ensure that they are 
all received in the proper order. On the destination, it assembles 
packets that have been received. It also shields the session layer from 
the effects of changes in hardware. 

II Network layer Creates packet headers and handles routing, con
gestion control, and internetworking. It is the highest layer that 
understands the network's topology) that is, the physical configura
tion of the machines in the network, any limitations in bandwidth, 
and so on. 

781 



INSIDE MICROSOFT WINDOWS 2000 

III Data-link layer Transmits low-level data frames, waits for acknowl
edgment that they were received, and retransmits frames that were 
lost over unreliable lines. 

III Physical layer Passes bits to the network cable or other physical 
transmission medium. 

The dashed lines in Figure 13-1 represent protocols used in transmitting 
a request to a remote machine. As stated earlier, each layer of the hierarchy 
assumes that it is speaking to the same layer on another machine and uses a 
common protocol. The collection of protocols through which a request passes 
on its way down and back up the layers of the network is called a protocol stack. 

Windows 2000 Networking Components 

782 

Figure 13-2 provides an overview of the components of Windows 2000 network
ing, showing how each component fits into the OSI reference model and which 
protocols are used between layers. The mapping between OSI layers and net
working components isn't precise, which is the reason that some components 
cross layers. The various components include the following: 

III Networking APIs provide a protocol-independent way for applications 
to communicate across a network. Networking APIs can be imple
mented in user mode or in both user mode and kernel mode, and in 
some cases are wrappers around another networking API that imple
ments a specific programming model or provides additional services. 
(Note that the term networking API also describes any programming 
interfaces provided by networking-related software.) 

III Transport Driver Interface (TDI) clients are kernel-mode device 
drivers that usually implement the kernel-mode portion of a net
working API's implementation. TDI clients get their name from the 
fact that the I/O request packets (IRPs) they send to protocol drivers 
are formatted according to the Windows 2000 Transport Driver In
terface standard (documented in the DDK). This standard specifies a 
common programming interface for kernel-mode device drivers. 
(See Chapter 9 for more information about IRPs.) 



T HI R TEE N: Networking 

• TDI transports, also known as transports, Network Driver Interface 
Specification (NDIS) protocol drivers, and protocol drivers, are kernel
mode protocol drivers. They accept IRPs from TDI clients and pro
cess the requests these IRPs represent. This processing might require 
network communications with a peer, prompting the TDI transport 
to add protocol-specific headers (such as TCP, UDP, IPX) to data 
passed in the IRP and to communicate with adapter drivers using 
NDIS functions (also documented in the DDK). TDI transports 
generally facilitate application network communications by transpar
ently performing message operations such as segmentation and reas
sembly, sequencing, acknowledgment, and retransmission. 

• The NDIS library (Ndis.sys) provides encapsulation for adapter 
drivers, hiding from them specifics of the Windows 2000 kernel
mode environment. The NDIS library exports functions for use by 
TDI·transports as well as support functions for adapter drivers. 

• NDIS miniport drivers are kernel-mode drivers that are responsible 
for interfacing TDI transports to particular network adapters. NDIS 
minipott drivers are written so that they are wrapped by the 
Windows 2000 NDIS library. The encapsulation provides cross
platform compatibility with Microsoft Consumer Windows. NDIS 
miniport drivers don't process IRPs; rather, they register a call-table 
interface to the NDIS library that contains pointers to functions cor
responding to ones that the NDIS library exports to TDI transports. 
NDIS miniport drivers communicate with network adapters. by using 
NDIS library functions that resolvc·to hardware abstraction layer 
(HAL) functions. 

As the figure shows, the OSI layers don't correspond to actual software. 
TDI transports, for example, frequently cross several boundaries. In fact, the 
bottom four layers of software are often referred to collectively as "the trans
port." Software components residing inthe upper three layers are referred to 
as "users of the transport." 

783 



INSIDE MICROSOFT WINDOWS 2000 

Networking application 

INetworlking API DLL 

Protocol driver-TDI transport 
(TCP/IP, NetBEUI, IPXlSPX, ... ) 

Figure 13-2 

TOI 

NOIS 

HAL 

OS1 model and Windows 2000 networking components 

In the remainder of this chapter, we'll examine the networking components 
shown in Figure 13-2 (as well as others not shown in the figure), looking at how 
they fit together and how they relate to Windows 2000 as a whole. 

Networking APls 

784 

Windows 2000 implements multiple networking APIs to provide support for 
legacy applications and compatibility with industry standards. In this section, 
we'll briefly look at the networking APIs and describe how applications use them. 



T H I R TEE N: Networking 

It's important to keep in mind that the decision about which API an application 
uses depends on characteristics of the API, such as which protocols the API can 
layer over, whether the API supports reliable or bidirectional communication, 
and the API's portability to other Windows platforms the application might run 
on. We'll discuss the following networking APIs: 

II Named pipes and mailslots 

II Windows Sockets (Winsock) 

II Remote procedure call (RPC) 

II Common Internet File System (CIFS) 

II NetBIOS 

In addition, we'11 briefly describe several APIs that build on the APIs listed 
here and that are widely used on a typical Windows 2000 system. 

Named Pipes and Mailslots 
Named pipes and mailslots are programming APIs that Microsoft originally 
developed for OS/2 LAN Manager and then ported to Windows NT. Named 
pipes provide for reliable bidirectional communications, whereas mailslots pro
vide unreliable unidirectional data transmission. An advantage of mailslots is that 
they support broadcast capability. In Windows 2000, both APIs take advantage 
of Windows 2000 security, which allows a server to control precisely which clients 
can connect to it. 

The names servers assign to named pipes and clients conform to the 
Windows 2000 Universal Naming Convention (UNC), which is a protocol
independent way to identifY resources on a Windows network. The implemen
tation ofUNC names is described later in the chapter. 

Named Pipe Operation 
Named pipe communication consists of a named pipe server and a named pipe 
client. A named pipe server is an application that creates a named pipe to which 
clients can connect. A named pipe's name has the format\\Server\Pipe\pipeName. 
The Server component of the name specifies the computer on which the named 
pipe server is executing (a named pipe server can't create a named pipe on a 

785 



INSIDE MICROSOFT WINDOWS 2000 

786 

remote system), and the name can be a DNS name (for example, mspress. 
microsoft.com), a NetBIOS name (mspress), or an IP address (255.0.0.0). The 
Pipe component of the name must be the string "Pipe", and PipeName is the 
unique name assigned to a named pipe. The unique portion of the named pipe's 
name can include subdirectories; an example of a named pipe name with a sub
directory is \\MyComputer\Pipe\MyServerApp\ConnectionPipe. 

A named pipe server uses the CreateNamedPipe Win32 function to create 
a named pipe. One of the function's input parameters is a pointer to the named 
pipe name, in the form\\.\Pipe\PipeName. The "\\.\" is a Win32-defined alias 
for "this computer." Other parameters the function accepts include an optional 
security descriptor that protects access to the named pipe, a flag that specifies 
whether the pipe should be bidirectional or unidirectional, a value indicating 
the maximum number of simultaneous connections the pipe supports, and a flag 
specifYing whether the pipe should operate in byte mode or message mode. 

Most networking APIs operate only in byte mode, which means that a 
message sent with one send function might require the receiver to perform 
multiple receives, building up the complete message from fragments. Named 
pipes operating in message mode simplify the implementation of a receiver be
cause there is a one-to-one correspondence between sends and receives. A re
ceiver therefore obtains an entire message each time it completes a receive and 
doesn't have to concern itselfwith keeping track of message fragments. 

The first call to CreateNamedPipe for a particular name creates the first 
instance of that name and establishes the behavior of all named pipe instances 
having that name. A server creates additional instances, up to the maximum 
specified in the first call, with additional calls to CreateNamedPipe. After cre
ating at least one named pipe instance, a server executes the ConnectNamedPipe 
Win32 function, which enables the named pipe the server created to establish 
connections with clients. ConnectNamedPipe can be executed synchronously or 
asynchronously, and it doesn't complete until a client.establishes a connection 
with the instance (or an error occurs). 

A named pipe client uses the Win32 CreateFile or CallNarlfedPipe function, 
specifYing the name of the pipe a server has created, to connect to a server. If 
the server has performed a ConnectNamedPipe call, the client's security profile 
and the access it requests to the pipe (read, write) are validated against the named 
pipe's security descriptor. (See Chapter 8 for more information on the security
check algorithms Windows 2000 uses.) If the client is granted access to a named 
pipe, it receives a handle representing the client side of a named pipe connec
tion and the server's call to ConnectNamedPipe completes. 



T H I R TEE N: Networking 

After a named pipe connection is established, the client and server can use 
the ReadFile and WriteFile Win32 functions to read from and write to the pipe. 
Named pipes support both synchronous and asynchronous operation for mes
sage transmittal. Figure 13-3 shows a server and client communicating through 
a·named pipe instance. 

· · Server 
::::: ~ I \\Server\PipelAppPipe · I "'" '" 

Client · application · I.... ,. application · Named pipe · Client named pipe · instances endpoint 

Figure 13-3 
Named pipe communications 

A unique characteristic of the named pipe networking API is that it allows 
a server to impersonate a client by using the ImpersonateNamedPipeClientfunc
tion. See the section "Impersonation" on page 504 in Chapter 8 for a discus
sion of how impersonation is used in client/server applications. 

Mailslot Ope.ration 
Mailslots provide an unreliable unidirectional broadcast mechanism. One example 
of an application that can use this type of communication is a time synchroniza
tion service, which might broadcast a source time across the domain every few 
seconds. Receiving the source-time message isn't crucial for every computet on 
the network and is therefore a good candidate for the use of mailslots. 

Like named pipes, mailslots are integrated with the Win32 API. A mailslot 
server creates a mailslot by using the CreateMailslot function. CreateMailslot 
accepts a name of the form "\\.\Mailslot\MailslotName" as an input parameter. 
Again like named pipes, a mailslot server can create mailslots only on the machine 
it's executing on, and the name it assigns to a mailslot can include subdirectories. 
CreateMailslotalso takes·a security descriptor that controls client access to the 
mailslot. The handles returned by CreateMailslot are overlapped, which means 
that operations performed on the handles, such as sending and receiving mes
sages, are asynchronous. 

Because mailslots are unidirectional and unreliable,CreateMailslot doesn't 
take many of the parameters that CreateNamedPipe does. After it creates a mailslot, 
a server simply listens for incoming client messages by executing the ReadFile 
function on the handle representing the mailslot. 

787 



INSIDE MICROSOFT WINDOWS 2000 

788 

Mailslot clients use a naming format similar to that used by named pipe 
clients but with variations that make it possible to broadcast messages to all the 
mailslots of a given name within the client's domain or a specified domain. To 
send a message to a particular instance of a mailslot, the client calls CreateFile, 
specifYing the computer-specific name. An example of such a name is ',\\Server\ 
Mailslot\MailslotName". (The client can specify "\\.\" to represent the local 
computer.) If the client wants to obtain a handle representing all the mailslots 
of a given name on the domain it's a member of, it specifies the name in the 
format "\\ *\Mailslot\MailslotName", and if the client wants to broadcast to all 
the mailslots of a given name within a different domain, the format it uses is 
"\\DomainName\Mailslot\MailslotN arne". 

After obtaining a handle representing the client side of a mailslot, the cli
ent sends messages by calling WriteFile. Because of the way mailslots are imple
mented, only messages smaller than 425 bytes can be broadcast. If a message 
is larger than 425 bytes, the mailslot implementation uses a reliable communi
cations mechanism that requires a one-to-one client/server connection, which 
precludes broadcast capability. Also, a quirk of the mailslot implementation 
causes messages of 425 or 426 bytes to be truncated to 424 bytes. These limi
tations make mailslots generally unsuitable for messages larger than 424 bytes. 
Figure 13-4 shows an example of a client broadcasting to multiple mailslot 
servers within a domain. 

Server 
application 

Server 
application 

Figure 13·4 
Mailslot broadcast 

"*'Mailslo!\AppSlot 

Client mailslot 
endpoint 

Named Pipe and Mailslot Implementation 

Client 
application 

As evidence of their tight integration with Win32, named pipe and mailslot 
. functions are all implemented in the Kernel32.dll Win32 client-side DLL. 
ReadFile and WriteFile, which are the functions applications use to send and 



T H I R TEE N: Networking 

receive messages using named pipes and mailslots, are the primary Win32 I/O 
routines. The CreateFile function, which a client uses to open either a named 
pipe or a mailslot, is also a standard Win32 I/O routine. However, the names 
specified by named pipe and mailslot applications specify file system namespaces 
managed by the named pipe file system driver (\ Winnt\System32\Drivers\Npfs.sys) 
and the mailslot file system driver (\ Winnt\System32\Drivers\Msfs.sys), as shown 
in Figure 13-5. The named pipe file system driver creates a device object named 
\Device\NamedPipe and a symbolic link to that object named \??\Pipe, and the 
mailslot file system driver creates a device object named \Device\Mailslot and a 
symbolic link named \??\Mailslot that points to that object. (See Chapter 3 for 
an explanation of the \?? object manager directory.) Names passed to CreateFile 
of the form \\.\Pipe\ ... and \\.\Mailslot\. .. have their prefix of\ \.\ translated to 
\??\ so that the names resolve through a symbolic link to a device object. The 
special functions CreateNamedPipe and CreateMailslot use the corresponding 
native functions NtCreateNamedPipeFile and NtCreateMailslotFile. 

Application Kernel32.dll 

NtReadFile, NtWriteFile, 
NtCreateFile, NtCreateNamedPipeFile, 

NtCreateMailslotFile User mode 

IDeviceINamedPipe 

Named pipe FSD 

Figure 13-5 

IDeviceIMai/s/ot 

Mailslot FSD 

Named pipe and mailslot implementation 

Kernel mode 

Later in .the chapter, we'll discuss how the redirector file system driver is 
involved when a name that specifies a remote named pipe or mailslot resolves 
to a remote system. However, when a named pipe or mailslot is created by a 
server or opened bya client, the appropriate file system driver (FSD) on the 
machine where the named pipe or mailslot is located is eventually invoked. There 

789 



INSIDE MICROSOFT WINDOWS 2000 

790 

are several reasons why FSDs in kernel mode implement named pipes and 
mailslots, the main one being that they integrate with the object manager 
namespace and can use file objects to represent opened named pipes andmailslots. 
This integration results in several benefits: 

II The FSDs use kernel-mode security functions to implement standard 
Windows 2000 security for named pipes and mailslots. 

II Applications can use CreateFile to open a named pipe or mailslot 
because FSDs integrate with the object manager namespace. 

II Applications can use Win32 functions such as ReadFile and WriteFile 
to interact with named pipes and mailslots. 

II The FSDs rely on the object manager to track handle and reference 
counts for file objects representing named pipes and mailslots. 

II The FSDs can implement their own named pipe and mailslot 
namespaces, complete with subdirectories. 

Because named pipes and mailslot name resolution uses the redirector FSD 
to communicate across the network, they indirectly rely on the CIFS protocol 
(described later). CIFS works by using the IPX, TCP/IP, and NetBEUI pro
tocols, so applications running on systems that have at least one of these in 
common can use named pipes and mailslots. 



T H I R TEE N: Networking 

(continued) 

791 



INSIDE MICROSOFT WINDOWS 2000 

792 

EXPERIMENT: Listing the Named Pipe Namespace and Watching Named 
Pipe Activity continued 

PIPE DISCONNECTED 
SUCCESS Attributes: AI'\Y Op!iOos: Open 
SUCCESS Filel1Jelnformation 
SUCCESS Offset: 0 Len¢t 72 
SUCCESS Offset: 0 Len¢.: 1024 
PIPE BROKEN Offset: 0 Length; 1024 
SUCCESS 
SUCCESS 

SUCCESS 
SUCCESS 
SUCCESS 
SUCCESS 
SUCCESS 
SUCCESS 
SUCCESS 

Offset: o Length: 1024 

Offset: o Length: 68 
W'ritelerr. 33 Raden; 1024 
Orrn.o, alongt" 1024 
Oil,." 0 Lon,"" 1024 

SUCCESS Offeel:: 0 Len!1h: 48 
SUCCESS W'ritelen: SSRe.edlen: 1024 
SUCCESS Oil,." a longllt 1024 
SUCCESS Offset: 0 Length: 48 
SUCCESS \IIril:eLen: 44 Re.eIdLen: 1024 
PIPE BROKEN Offset: 0 Length: 1024 
SUCCESS 01'-'1:: 0 Length: 48 

~~~51~~ONNECTED 
SUCCESS Altihlter. Ar1I Oplionl: Open
SUCCESS FiePipeiriannilition
SUCCESS Offset: 0 Length: 72
SUCCESS orm", a longth, 1024

T H I R TEE N: Networking

Windows Sockets
Windows Sockets (Winsock) is Microsoft's implementation of BSD (Berkeley
Software Distribution) Sockets, a programming API that became the standard
by which UNIX systems have communicated over the Internet since the 1980s.
Support for sockets on Windows 2000 makes the task of porting UNIX network
ing applications to Windows 2000 relatively straightforward. Winsock includes
most of the functionality of BSD Sockets but also includes Microsoft-specific
enhancements, which continue to evolve. Winsock supports reliable-connection
oriented communication as well as unreliable-connectionless communication.
Windows 2000 provides Winsock 2.2, which is also either included with or avail
able as an add-on for all versions of Consumer Windows.

Winsock includes the following features:

Ii Support for scatter-gather and asynchronous application I/O.

Ii Quality of service (QoS) conventions so that applications can
negotiate latency and bandwidth requirements when the underlying
network supports QoS.

Ii Extensibility so that Winsock can be used with protocols other than
those Windows 2000 requires it to support.

Ii Support for integrated namespaces other than those defined by a
protocol an application is using with Winsock. A server can publish
its name in Active Directory, for example, and using namespace exten
sions, a client can look up the server's address in Active Directory.

Ii Support for multipoint messages where messages transmit to mul
tiple receivers simultaneously.

We'll examine typical Winsock operation and then describe ways that
Winsock can be extended.

Winsock Operation
After initializing the Winsock API with a call to an initialization function, the
first step a Winsock application takes is to create a socket that will represent a
communications endpoint. A socket must be bound to an address on the local
computer, so binding is the second step the application performs. Winsock is
a protocol-independent API, so an address can be specified for any protocol

793

INSIDE MICROSOFT WINDOWS 2000

794

installed on the system over which Winsock operates (NetBEUI, TCP lIP, IPX).
After binding is complete, the steps taken by a server and client diverge, as do
steps for connection -oriented and connectionless socket operation.

A connection-oriented Winsock server performs a listen operation on the
socket, indicating the number of connections that it can support for the socket.
Then it performs an accept operation to allow a client to connect to the socket.
If there is a pending connection request, the accept call completes immediately;
otherwise, it completes when a connection request arrives. When a connection
is made, the accept function returns a new socket that represents the server's end
of the connection. The server can perform receive and send operations by using
functions such as recv and send.

Connection-oriented clients connect to a server by using the Winsock
connect function that specifies a remote address. When a connection is estab
lished, the client can send and receive messages over its socket. Figure 13-6 shows
connection-oriented communication between a Winsock client and server.

Server listen

application
Listen socket

Figure 13-6

Connection-oriented Winsock operation

Client socket
Client

application

Mter binding an address, a connectionless server is no different from a
connectionless client: it can send and receive messages over the socket simply
by specifYing the remote address with each message. When using connectionless
messages, which are also called datagrams) a sender learns that a message wasn't
received when the sender obtains an error code the next time a receive opera
tion is performed.

Winsock Extensions
A powerful feature from a Windows programming point of view is that the
Winsock API is integrated with Windows messages. A Winsock application can
take advantage of this feature to perform asynchronous socket operations and
receive notification of an operation's completion via a standard Windows mes-

T H I R TEE N: Networking

sage or through the execution of a callback function. This capability simplifies
the design of a Windows application because the application doesn't need to be
multithreaded or manage synchronization objects to both perform network I/O
and respond to user input or requests from the window manager to update
the application windows. The names of message-based versions of BSD-style
Winsock functions usually begin with the prefix WSA-for example, WSAAccept.

In addition to supporting functions that correspond directly to those
implemented in BSD Sockets, Microsoft has added a handful of functions that
aren't part of the Winsock standard. Two of these functions, AcceptEx and
TransmitFile, are worth describing because many Web servers on Wmdows 2000
use them to achieve high performance. AcceptExis a version of the acceptfunc
tion that, in the process of establishing a connection with a client, returns the
client's address and the client's first message. With this function, a Web server
avoids executing multiple Winsock functions that would otherwise be required.

After establishing a connection with a client, a Web server usually sends a
file, such as a Web page, to the client. The TransmitFile function's implemen
tation is integrated with the Windows 2000 cache manager so that a client can
send a file directly from the file system cache. Sending data in this way is called
zero-copy because the server doesn't have to touch the file data to send it; it
simply specifies a handle to a file and the ranges of the file to send. In addi
tion, TransmitFile allows a server to prepend or append data to the file's data
so that the server can send header information, which might include the name
of the Web server and a field that indicates to the. client the size of the message
the server is sending. InternetInformation Services (lIS) 5.0, which is bundled
with Windows 2000, uses both AcceptEx and TransmitFile.

Extending Winsock
Winsock is an extensible API on Windows 2000 because third parties can add
a transport service provider that interfaces Winsock with other protocols as well
as a names pace service provider to augment Winsock's name-resolution facilities.
Service providers plug in to Winsock using the Winsock service provider interface
(SPI).When a transport service provider is registered with Winsock, Winsock
uses the transport service provider to implement socket functions, such as con
nect and accept, for the address types that the provider indicates it implements.
There are no restrictions on how the transport service provider implements the
functions, but the implementation usually involves communicating with a trans
port driver in kernel mode.

795

INSIDE MICROSOFT WINDOWS 2000

796

A requirement of any Winsock client/server application is for the server to
make its address available to clients so that the clients can connect to the ser
ver. Standard services that execute on the TCP /IP protocol use "well-known
addresses" to make their addresses available. As long as a browser knows the
name of the computer a Web server is running on, it can connect to the Web
server by specifying the well-known Web server address (the IP address of the
server concatenated with :80, the port number used for HTTP). Namespace
service providers make it possible for servers to register their presence in other
ways. For example, one namespace service provider might on the server side
register the server's address in Active Directory, and on the client side look up
the server's address in Active Directory. Namespace service providers supply this
functionality to Winsock by implementing standard Winsock name-resolution
functions such as gethostbyaddr, getservbyname, and getservbyport.

T H I R TEE N: Networking

Winsock Implementation
Winsock's implementation is shown in Figure 13-7. Its application interface
consists of an API DLL, Ws2_32.dll (\Winnt\System32\Ws2_32.dll), which
provides applications access to Winsock functions. Ws2_32.dll calls on the services
of namespace and transport service providers to carry out name and message
operations. The Msafd.dlilibrary acts as a transport service provider for the pro
tocols Microsoft provides support for in Winsock, and Msafd.dll uses Winsock
Helper libraries that are protocol specific to communicate with kernel-mode pro
tocol drivers. For example, Wshtcpip.dll is the TCP lIP helper, and Wshnetbs.dll
is the NetBEUI helper. Mswsock.dll (\Wmnt\System32\Mswsock.dll) implements
the Microsoft Winsock extension functions, such as TransmitFile, AcceptEx, and
WSARecvEx. Windows 2000 ships with helper DLLs for TCP/IP, NetBEUI,
AppleTalk, IPX/SPX, ATM, and IrDA (Infrared Data Association) and namespace
service providers for DNS (TCP lIP), Active Directory, and IPX/SPX.

Application

I...... ___ -!-.;..-.---..,........I. SPI

Service providers 1-__ _,

-------~---.- .. ---.---.----.----.-

Protocol drivers IPx/SPX

Figure 13-7
Winsock implementation

NtReadFile, NtWriteFile,
NtCreateFile,
NtDeviceloControlFile

IDevicelAFD

AFD FSD

User mode

Kernel mode

.•.•••..•••.••.•••••••••.••.•• TOI

NetBEUI TCP/IP

797

INSIDE MICROSOFT WINDOWS 2000

Like the named pipe and mailslot APls, Winsock integrates with the Win32
I/O model and uses file handles to represent sockets. This support requires the
aid of a kernel-mode file system driver, so Msafd.dll uses the services of the
Ancillary Function Driver (AFD - \ Winnt\System32\Drivers\Afd.sys) to imple
ment socket-based functions. AFD is a TDI client and executes network socket
operations, such as sending and receiving messages, by sending TDI IRPs to
protocol drivers. AFD isn't coded to use particular protocol drivers; instead,
Msafd.dll informs AFD of the name of the protocol used for each socket so that
AFD can open the device object representing the protocol.

Remote Procedure Call

798

Remote procedure call (RPC) is a network programming standard originally
developed in the early 1980s. The Open Software Foundation (now The Open
Group) made RPC part of the distributed computing environment (DCE) dis
tributed computing standard. Although there is a second RPC standard, SunRPC,
the Microsoft RPC implementation is compatible with the OSF /DCE standard.
RPC builds on other networking APls, such as named pipes or Winsock, to
provide an alternate programming model that in some sense hides the details
of networking programming from an application developer.

RPe Operation
An RPC facility is one that allows a programmer to create an application con
sisting of any number of procedures, some that execute locally and others that
execute on remote computers via a network. It provides a procedural view of
networked operations rather than a transport-centered view, thus simplifying the
development of distributed applications.

Networking software is traditionally structured around an I/O model of
processing. In Wmdows 2000, for example, a network operation is initiated when
an application issues a remote I/O request. The operating system processes it
accordingly by forwarding it to a redirector, which acts as a remote file system
by making the client interaction with the remote file system invisible to the client.
The redirector passes the operation to the remote file system, and after the
remote system fills the request and returns the results, the local network card
interrupts. The kernel handles the interrupt, and the original I/O operation
completes, returning results to the caller.

RPC takes a different approach altogether. RPC applications .are like other
structured applications, with a main program that calls procedures or procedure
libraries to perform specific tasks. The difference between RPC applications and

T H I R TEE N: Networking

regular applications, however, is that some of the procedure libraries in an RPC
application execute on remote computers, as shown in Figure 13-8, whereas
others execute locally.

RPe client application

ServerFunctionO -+

• RPC stub library RPC stub library

f ---Network --_

Figure 13-8
RPC operation

To the RPC application, all the procedUres appear to execute locally. In
other words, instead of making a programmer actively write code to transmit
computational or I/O-related requests across a network, handle network pro
tocols, deal with network errors, wait for results, and so forth, RPC software
handles these tasks automatically. And the Windows 2000 RPC facility can
operate over any available transports loaded into the system.

To write an RPC application, the programmer decides which procedures
will execute locally and which will execute remotely. For example, suppose an
ordinary workstation has a network connection to a Cray supercomputer or to
a machine designed specifically for high-speed vector operations. If the pro
grammer were writing an application that manipulated large matrices, it would
make sense from a performance point of view to offload the mathematical calcu
lations to the remote computer by writing the program as an RPC application.

RPC applications work like this: As an application runs, it calls local pro
cedures as well as procedures that aren't present on the local machine. To handle
the latter case, the application is linked to a local static-link library or D LL that
contains stub procedures) one for each remote procedure. For simple applications,
the stub procedures are statically linked with the application, but for bigger
components the stubs are included in separate DLLs. In DCOM, covered later

. in the chapter, the latter method is typically used. The stub procedures have the
same name and use the same interface as the remote procedures, but instead of

799

INSIDE MICROSOFT WINDOWS 2000

800

performing the required operations, the stub takes the parameters passed to it
and marshals them for transmission across the network. Marshaling parameters
means ordering and packaging them in a particular way to suit a network link,
such as resolving references and picking up a copy of any data structures that a
pointer refers to.

The stub then calls RPC run-time procedures that locate the computer
where the remote procedure resides, determine which transport mechanisms that
computer uses, and send the request to it using local transport software. When
the remote server receives the RPC request, it unmarshals the parameters (the
reverse of marshaling them), reconstructs the original procedure call, and calls
the procedure. When the server fmishes, it performs the reverse sequence to
return results to the caller.

In addition to the synchronous function-call-based interface described here,
Windows 2000 RPC also supports asynchronous RPG. Asynchronous RPC lets
an RPC application execute a function but not wait until the function completes
to continue processing. Instead, the application can execute other code and later,
when a response has arrived from the server, the RPC run time signals an event
object the client associates with the asynchronous call. The client can use stan
dard Win32 functions, such as WaitForSingleObject, to learn of the function's
completion.

Besides the RPC run time, Microsoft's RPC facility includes a compiler,
called the Microsoft Interface Definition Language (MIDL) compiler. TheMIDL
compiler simplifies the creation of an RPC application. The programmer writes
a series of ordinary function prototypes (assuming a C or c++ application) that
describe the remote routines and then places the routines in a file. The pro
grammer then adds some additional information to these prototypes, such as
a network-unique identifier for the package of routines and a version num
ber, plus attributes that specify whether the parameters are input, output, or
both. The embellished prototypes form the developer's Interface Definition
Language (IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL
compiler, which produces both client-side and server-side stub routines, men
tioned previously, as well as header files to be included in the application. When
the client-side application is linked to the stub routines file, all remote proce
dure references are resolved. The remote procedures are then installed, using
a similar process, on the server machine. A programmer who wants to call an
existing RPC application need only write the client side of the software and link
the application to the local RPC run-time facility.

T H I R TEE N: Networking

The RPC run time uses a generic RPC transport provider interface to talk
to a transport protocol. The provider interface acts as a thin layer between the
RPC facility and the transport, mapping RPC operations onto the functions
provided by the transport. The Windows 2000 RPC facility implements trans
port provider DLLs for named pipes, NetBIOS, and TCP JIP. You can write new
provider DLLs to support additional transports. In a similar fashion, the RPC
facility is designed to work with different network security facilities.

Most of the Windows 2000 networking services are RPC applications,
which means that both local processes and processes on remote computers can
call them. Thus, a remote client computer can call the server service to list shares,
open files, write to print queues, or activate users on your server, or it can call
the messenger service to direct messages to you (all subject to security con
straints, of course).

Server name publishing) which is the ability of a server to register its name
in a location accessible for client lookup, is in RPC and is integrated with Active
Directory. If Active Directory isn't installed, the RPC name locator services
fall back on NetBIOS broadcast. This behavior ensures interoperability with
Windows NT 4 systems and allows RPC to function on stand -alone servers and
workstations.

RPC Security
Wmdows 2000 RPC includes integration with security support providers (SSPs)
so that RPC clients and servers can use authenticated or encrypted communi
cations. When an RPC server wants secure communication, it must register its
SSP-specific principal name with an SSP. A client registers its security creden
tials when it binds to a server, specifying the server's principal name. At the cime
of the binding, the client also specifies the authentication level it wants. Vari
ous authentication levels exist to ensure that only authorized clients connect to
a server, verify that each message a server receives originates at an authorized
client, check the integrity of RPC messages to detect manipulation, and even
encrypt RPC message data; Obviously, highetauthentication levels require more
processing.

An SSP handles the details of performing network communication authen
tication and encryption, not only forRPC but also for Winsock. Windows 2000
includes a number of built-in SSPs, including a Kerberos SSP to implement
Kerberos version 5 authentication, and Secure Channel (SChannel), which
implements Secure Sockets Layer (SSL), Transport Layer Security (TLS) pro
tocol, and private communication technology (PCT). In the absence of a speci
fied SSP, RPC software uses the built-in security of named pipes.

801

INSIDE MICROSOFT WINDOWS 2000

802

Another feature ofRPC security is the ability of a server to impersonate the
security identity of a client with the RpclmpersonateClient function. After a ser
ver has finished performing impersonated operations on behalf a client, it returns
to its own security identity by calling RpcRevertToSelf or RpcRevertToSelfEx. (See
Chapter 8 for more information on impersonation.)

RPe Implementation
RPC implementation is depicted in Figure 13-9, which shows that an RPC-based
application links with the RPC run-time DLL (\Winnt\System32\Rpcrt4.dll).
The RPC run-time DLL provides marshaling and unmarshaling functions for
use by an application's RPC function stubs as well as functions for sending and
receiving marshaled data. The RPC run-time DLL includes support routines to
handle RPC over a network as well as a form of RPC called local RPe. Local
RPC can be used for communication between two processes located on the same
system, and the RPC run-time DLL uses the local procedure call (LPC) facilities
in kernel mode as the local networking API. (See Chapter 3 for more informa
tion on LPCs.) When RPC is based on nonlocal communication mechanisms,
the RPC run-time DLL uses the Winsock, named pipe, or Message Queuing
(described shortly) APIs.

Application
Client
stubs

Named pipe FSD

Figure 13-9

Rpcrt4.dll
Winsock Named

Winsock service
providers

Ntdll.dll

AFD FSD

RPe implementation

LPC

Svchost.exe

Local procedure
call facility

Rpcss.dll

User mode

Kernel mode

T H I R TEE N: Networking

For name registry and lookup, RPC applications link with the RPC name
services DLL (\Winnt\System32\Rpcns4.dll). The DLL communicates with the
RPC Subsystem (RPCSS - \Winnt\System32\Rpcss.dll), which is implemented as
a Win32 service. RPCSS is itself an RPC application that communicates with
instances of itself on other systems to perform name lookup and registration. (For
clarity, Figure 13-9 doesn't show RPCSS link with the RPC run-time DLL.)

Common Internet File System (CIFS)
Common Internet File System (CIFS) is an enhanced form of the Server Mes
sage Block (SMB) protocol, which is the protocol Windows 2000 uses to
implement file sharing. Because applications access remote files using standard
Win32 file I/O functions, applications don't directly use the CIFS protocol,
but the protocol is used to process the I/O request. CIFS defines printer
sharing conventions, so Windows 2000 uses CIFS for that as well. Although
CIFS isn't itself an API, we cover it in this section because file and printer sharing
is built on CIFS and is exposed to applications via the Win32 API.

CIFS is a published Microsoft standard (documented in the Platform SDK)
that allows third parties to interoperate with Windows 2000 file servers and with
Windows 2000 file sharing clients. For example, the Samba shareware suite
allows UNIX systems to serve files to Windows 2000 clients and for UNIX
applications to access files served by Windows 2000 systems. Other platforms
that support CIFS include DEC vMs and Apple Macintosh.

File sharing on Windows 2000 is based on a redirector FSD (redirector,
for short) executing on a client machine that communicates with a serverFSD
executing on the server. The redirector FSD intercepts Win32 file I/O directed
at files residing on the server and transmits CIFS messages to the server file
system to execute client requests. The server receives CIFS messages and trans
lates them back to I/O operations that it issues to local FSDs, such as NTFS,
running on the server. Figure 13-10 shows a redirector and server communi
cating with one another.

803

INSIDE MICROSOFT WINDOWS 2000

804

Client

Client
application

Kernel32.dll

Server

User mode

Kernel mode

Cache
manager

File data
Network

Figure 13-10
CIFS file sharing

Because they are integrated with the Wmdows 2000 I/O system, redirector
and server FSDs have several advantages over alternate user-space implemen
tations of file servers:

III They can interact directly with TDI transports and local FSDs.

III They can integrate with the cache manager to seamlessly cache server
file data on client systems. (The caching protocol Windows 2000
uses is described shortly.)

III Applications can use standard Win32 file I/O functions, such as
CreateFile, ReadFile, and WriteFile to access remote files.

T H I R TEE N: Networking

Windows 2000 redirector and server FSDs rely on standard network
resource naming conventions that all kernel-mode file servers and client soft
ware use. If a remote file share is connected using a drive letter, network file
names are specified in the same way as local names. However, redirector also
supports UNC names. Network-resource name resolution is described in the
section "Network-Resource Name Resolution" later in this chapter.

CIFS Implementation
The redirector FSD on Windows 2000 is implemented in a port/miniport model
common to many other device driver types. (See Chapter 9 for information on
device drivers.) Microsoft provides a redirector library named \ Winnt\System32\
Drivers\Rdbss.sys to which developers can write a redirector miniport. The
redirector library hides many details of implementing a redirector, such as inte
grating with the cache manager, the memory manager, and TDI transports. The
CIFS miniport driver is named \Winnt\System32\Drivers\Mrxsmb.sys.

Rdbss uses the cache manager services described in Chapter 11 and Chapter
12 to cache file data and to take advantage of intelligent read-ahead. The CIFS
miniport driver sends CIFS commands to a remote server by way of the TDI
API. It can use any transport that supports the TDI interface, such as NetBEUI,
NetBT (NetBIOS over TCP lIP), and TCP lIP.

On a system acting as a file server, the server (\Winnt\System32\Drivers\
Srv.sys) FSD listens for CIFS commands originating on client machines and acts
as a surrogate interface to the local FSD on which accessed files reside. The server
FSD uses file system interfaces implemented by native Windows 2000 FSDs to
implement zero-copy send capability. The interfaces allow for the server FSD
to obtain a memory descriptor list (MDL) description of a file's data residing
in the file system cache of the server and to pass the MD L to a TD I transport for
transmission across the network using a network adapter driver. (See Chapter 7
for more information on MDLs.) Without the support of local FSDs and the
cache manager,the server FSD would have to copy file data into its own buffers
that it would subsequently pass to TDI transports.

Both the server FSD and the redirector have corresponding Win32 services,
Server and Workstation, that execute in the service control manager (SCM)
process to provide administrative management interfaces to the drivers.

805

INSIDE MICROSOFT WINDOWS 2000

806

Distributed File Caching
If a single client accesses a ftle on a server, it's obvious that the client can safely
cache the file's data on the client system. When two clients access the same file,
however, steps must be taken to provide a consistent view of the file between
the two clients and the server. The Windows 2000 solution to this problem,
which is known as distributed cache coherency, is implemented through a mecha
nism called an opportunistic lock (oplock). When a client wants to access a server
ftle, it must first request an oplock. The type of oplock that the server grants
the client dictates the kind of caching that the client can perform.

There are three main types of oplock:

II A Level I oplock is granted when a client has exclusive access to a
file. A client holding this type of oplock for a ftle can cache both
reads and writes on the client system.

II A Level II oplock represents a shared ftle lock. Clients that hold a
Level II oplock can cache reads, but writing to the ftle invalidates
the Level II oplock.

II A Batch oplock is the most permissive kind of oplock. A client with
this oplock can cache both reads and writes to the file as well as open
and close the file without requesting additional oplocks. Batch
oplocks are typically used only to support the execution of batch
files, which can open and close a file repeatedly as they execute.

If a client has no oplock, it can cache neither read nor write data locally
and instead must retrieve data from the server and send all modifications directly
to the server.

An example, shown in Figure 13 -11, will help illustrate oplock operation.
The server automatically grants a Level I oplock to the first client to open a server
file for access. The redirector on the client caches the file data for both reads
and writes in the ftle cache of the client machine. If a second client opens the
file, it too requests a Level I oplock. However, because there are now two clients
accessing the same file, the server must take steps to present a consistent view
of the ftle's data to both clients. If the first client has written to the file, as is
the case in Figure 13-11, the server revokes its oplock and grants neither client
an oplock. When the first client's oplock is revoked, or broken) the client flushes
any data it has cached for the ftle back to the server.

If the first client hadn't written to the file, the first client's oplock would have
been broken to a Level II oplock, which is the same type of oplock the server grants
to the second client. Now both clients can cache reads, but if either writes to the

T H I R TEE N: Networking

Time Client 1 Client 2

.-----------,I.~~PIO_Ck ~.~~!~st~~.~~"~~,._~~~.,~'""~~.~
"--_F~il_e_o_pe_n __ i~~~~~,~~~."'~~~'"~.~~~".~~~~,~""~-~""'~,_

Cached read(s)
Cached write(s)

"--___ ~ ____ ""',iOplock break

to none

Oplock
request

m==""=w==m<',,;.

Flushes cached
modified data

~....;."~-t~"-~~"-~~~ .. ~+,,,,-.~~,~

Noncached read(s)
Noncached write(s)

, Data flush

Noncached read(s)
Noncached write(s);

Figure 13-11
Oplock example

Server

Grant Level I
oplock to Client 1

Break Client 1
to no oplock

Do not grant
Client 2 oplock

file, the server revokes their oplocks so that noncached operation commences.
Once oplocks are broken, they aren't granted again for the same open instance
of a file. However, if a client closes a file and then reopens it, the server reas
sesses what level of oplock to grant the client based on what other clients have
the file open and whether or not at least one of them has written to the file.

NetBIOS
Until the 1990s, the Network Basic Input/Output System (NetBIOS) program
ming API had been the most widely used programming API on PCs. NetBIOS
allows for both reliable-connection -oriented and unreliable-connectionless
communication. Windows 2000 supports NetBIOS,for its legacy applications.
Microsoft discourages application developers from using NetBIOS because other
APIs, such as named pipes and Winsock, are much more flexible and portable.
NetBIOS is supported by the TCP /IP, NetBEUI, and IPX/SPX protocols on
Windows 2000.

NetBIOS Names
NetBIOS relies on a naming convention whereby computers and network services
are assigned a 16-byte name called a NetBIOS name. The 16th byte of a NetBIOS
name is treated as a modifier that can specifY a name as unique or as part of a group.
Only one instance of a unique NetB10S name can be assigned to a network, but

807

INSIDE MICROSOFT WINDOWS 2000

808

multiple applications can assign the same group name. A client can broadcast
messages by sending them to a group name.

To support interoperability with Windows NT 4 systems as well as Consumer
Windows, Windows 2000 automatically defines a NetBIOS name for a domain
that is the first 15 bytes of the Domain Name System (DNS) name that an
administrator assigns to the domain. For example, if a domain were named
mspress.microsoft.com, the NetBIOS name of the domain would be mspress.
Similarly, Windows 2000 requires an administrator to assign each computer a
NetBIOS name at the time of installation.

Another concept used by NetBIOS is that of LAN adapter (LANA) num
bers. A LANA number is assigned to every NetBIOS-compatible protocol that
layers above a network adapter. For example, if a computer has two network
adapters and TCP lIP and NetBEUI can use either adapter, there would be four
LANA numbers. LANA numbers are important because a NetBIOS application
must explicitly assign its service name to each LANA through which it's willing
to accept client connections. If the application listens for client connections on
a particular name, clients can access the name only via protocols on the network
adapters for which the name is registered.

A networking service called Windows Internet Name Service (WINS) main
tains the mapping between NetBIOS names and TCP lIP protocol addresses.
If WINS isn't installed, NetBIOS uses name broadcasting to propagate names
within a Windows network. Note that NetBIOS names are secondary to DNS
names; computer names are registered and resolved first through DNS, with
Windows 2000 falling back on NetBIOS names only ifDNS name resolution
fails. (DNS name resolution is described in the section "Network-Resource
Name Resolution" later in this chapter.)

NetBIOS Operation
A NetBIOS server application uses the NetBIOS API to enumerate the LANAs
present on a system and assign a NetBIOS name representing the application's
service to each LANA. If the server is connection oriented, it performs a NetBIOS
listen command to wait for client connection attempts. After a client is connected,
the server executes NetBIOS functions to send and receive data. Connectionless
communication is similar, but the server simply reads messages without estab
lishing connections.

A connection-oriented client uses NetBIOS functions to establish a con
nection with a NetBIOS server and then executes further NetBIOS functions
to send and receive data. An established NetBIOS connection is also known as
a session. If the client wants to send connectionless messages, it simply specifies
the NetBIOS name of the server with the send function.

T H I R TEE N: Networking

NetBIOS consists of a number of functions, but they all route through the
same interface: Netbios. This routing scheme is the result of a legacy left over
from the time when NetBIOS was implemented on MS-DOS as an MS-DOS
interrupt service. A NetBIOS application would execute an MS-DOS interrupt
and pass a data structure to the NetBIOS implementation that specified every
aspect of the command being executed. As a result, the Netbios function in
Windows 2000 takes a single parameter, which is a data structure that contains
the parameters specific to the service the application requests.

809

INSIDE MICROSOFT WINDOWS 2000

810

NetBIOS API Implementation
The components that implement the NetBIOS API are shown in Figure 13-12.
The Netbiosfunction is exported to applications by\Winnt\System32\Netapi32.
dll. Netapi32.dll opens a handle to the kernel-mode driver named the Net BIOS
emulator (\Winnt\System32\Drivers\Netbios.sys) and issues Win32 DeviceIo
Control file commands on behalf of an application. The NetBIOS emulator
translates NetBIOS commands issued by an application into TDI commands that
it sends to protocol drivers.

Application Netapi32.dll
Netbios

Ntdll.dll

NtDeviceloControlFile

IOevicelNetbios

NetBIOS
emulation driver

User mode

Kernel mode

------------------------------------~---- ---~------------------------ TDI

IOevicelNwlinknb
NwLinkNB TDI IRPs

IPX NetBEUI

Figure 13-12
NetBIOS API implementation

IOevicelNetbU<XX

NetBT

TCP/IP
'--___ i

If an application wants to use NetBIOS over the TCP lIP protocol, the
NetBIOS emulator requires the presence of the NetBT driver (\Winnt\System32\
Drivers\Netbt.sys). NetBT is known as the NetBIOS over TCP/IP driver and
is responsible for supporting NetBIOS semantics that are inherent to the NetBEUI
protocol (described later in this chapter), but not the TCP lIP protocol. For

T H I R TEE N: Networking

example, NetBIOS relies on NetBEUI's message-mode transmission and
NetBIOS name resolution facilities, so the NetBT driver implements them on
top of the TCP lIP protocol. Similarly, the NwLinkNB driver implements
NetBIOS semantics over the IPX/SPX protocol.

Other Networking APls
Windows 2000 includes other networking APIs that are used less frequently
or are layered on the APIs already described (and outside the scope of this
book). Three of these, however, Telephony API (TAPI), Distributed Com
ponent Object Model (DCOM), and Message Queuing, are important enough
to the operation of a Windows 2000 system and many applications to merit
brief descriptions.

Telephony API
Telephony integrates computers with communications devices such as telephones
and modems. In Windows 2000, telephony also encompasses applications such
as Voice over Internet Protocol (VoIP), multicast multimedia conferencing, and
real-time collaboration (RTC). Windows 2000 includes the Telephony API
(TAPI) for applications that want to communicate over telephony-supported
devices. TAPI abstracts the details of device management so that TAPI appli
cations can work over different devices without change. Windows 2000 ships
with two versions ofTAPI, TAPI 2.2 for C applications, and TAPI 3.0 for COM
applications.

TAPI can be broken down into subset APIs for device, session, and media
control. Device control interfaces allow TAPI to communicate device charac
teristics and changes to those characteristics to a TAPI application and for a TAPI
application to query the device's characteristics. Characteristics include lines,
address identifiers, device events, and media types. Session control interfaces let
an application establish a connection between two or more addresses. Session
control operations are similar to the ones supported by sophisticated telephones
and include session initiation, answer, accept, forward, park, transfer, and drop.
Finally, media control interfaces allow a TAPI application to perform operations
such as tone-detection and dialing.

The Microsoft Telephony architecture, shown in Figure 3-13, is centered
on the TAPI service (\Winnt\System32\Tapisrv.dll), which runs as a Win32 ser
vice in a Service Host process. (See Chapter 5 for more information on Win32
services.) TAPI applications use the TAPI client-side DLL (\Winnt\System32\
Tapi32.dll) to communicate via RPCs with the TAPI service.

811

INSIDE MICROSOFT WINDOWS 2000

812

Unimodem
NDPTSP

TSP

I' I'

if

NDIS
proxy

if
I'

Unimodem
driver

., if

NDIS5
miniport

Modem

Figure 13-13
TAP! architecture

TAP I application

Tapi32.dll + MSP DLL

J

RPC ,
TAPI server
(Tapisrv.dll)

IP
KMDDTSP H.323TSP Conference RemoteTSP

TSP

, JI')

User mode

'f' , Kernel mode

TCP/IP

NDIS4
miniport

To support device abstraction, the TAPI service loads TAPI service providers
(TSPs) that provide interfaces to a particular device or class of devices. For
example, the Unimodem TSP interfaces the TAPI service with most types of
modems. TAPI also includes Media Service Providers (MSPs) that allow a TAPT
application enhanced media -specific control over a medium. An MSP D LL loaded
by the application has a corresponding TSP in the TAPI server. Other TSPs that
come with Windows 2000 include the following:

II Remote TSP provides access to remote communications resources
such as modem pools.

II H.323 TSP allows TAPI applications to make and receive video and
audio calls according to the H.323 telephony protocol.

T H I R TEE N: Networking

III NDIS Proxy TSP (NDPTSP) presents NDIS 5 miniports (described
later in the chapter) as TAPI lines.

III Kernel-Mode Device Driver (KMDD) TSP presents legacy NDIS 4
miniports for WAN devices as TAPI lines.

III IP Conference TSP supports conferencing over TCP lIP connections.

The TAPI architecture and documentation also make it possible for third
parties to develop their own TAPI TSPs.

DeOM
Microsoft's COM API lets applications consist of different components, each
component being a replaceable self contained module. A COM object exports
an object-oriented interface to methods for manipulating the data within the
object. Because COM objects present well-defined interfaces, developers can
implement new objects to extend existing interfaces and dynamically update
applications with the new support.

DCOM extends COM by letting an application's components reside on
different computers, which means that applications don't need to be concerned
that one COM object might be on the local computer and another might be
across the LAN. DCOM thus provides location transparency, which simplifies
developing distributed applications. DCOM isn't a self-contained API but relies
on RPC to carry out its work.

Message Queuing
Microsoft's newest networking service, Message Queuing, was introduced in
Windows NT 4 Enterprise Edition. Message Queuing is a general-purpose plat
form for developing distributed applications that take advantage of loosely
coupled messaging. Message Queuing is therefore an API and a messaging
infrastructure. Its flexibility comes from the fact that its queues serve as mes
sage repositories in which senders can queue messages for receivers, and receivers
can dequeue the messages at their discretion. Senders and receivers do not need
to establish connections to use Message Queuing, nor do they even need to be
executing at the same time, which allows for disconnected asynchronous mes
sage exchange.

A notable feature of Message Queuing is that it is integrated with
Microsoft Transaction Server (MTS) and SQL Server, soit can participate in
Microsoft Distributed Transaction Coordinator (MS DTC) coordinated trans
actions. Using MS DTC with Message Queuing allows you to develop reli
able transaction functionality to three-tier applications.

813

INSIDE MICROSOFT WINDOWS 2000

Network-Resource Name Resolution
Applications can examine or access resources on remote systems in two ways.
One way is by using the UNC standard with Win32 functions to directly address
a remote resource; a second way is by using the Windows Networking (WNet)
API to enumerate computers and resources that those computers export for
sharing. Both these approaches use the capabilities of a redirector to find their
way to the network. As we stated earlier, to access CIFS servers from a client,
Microsoft supplies a CIFS redirector, which has a kernel-mode component called
the redirector FSD and a user-mode component called the Workstation service.
Microsoft also makes available a redirector that can access resources shared by
Novell NetWare servers, and third parties can add their own redirectors to
Windows 2000. In this section, we'll examine the software that decides which
redirector to invoke when remote I/O requests are issued. Here are the respon
sible components:

III Multiple provider router (MPR) is a DLL that determines which
network to access when an application uses the Win32 WNet API
for browsing remote file systems.

III Multiple UNe Provider (MUP) is a driver that determines which
network to access when an application uses the Win32 I/O API to
open remote files.

We'll conclude this section by describing Domain Name System (DNS),
the heart of computer name resolution in Windows 2000.

Multiple Provider Router

814

The Win32 WNet functions allow applications (including the Windows Explorer
My Network Places) to connect to network resources, such as file servers and
printers, and to browse the contents of any type of remote file system. Because
the WNet API can be called to work across different networks using different
transport protocols, software must be present to send the request correctly over
the network and to understand the results that the remote server returns. Fig
ure 13-14 shows the redirector software responsible for these tasks.

Application

Figure 13-14
MPR components

+

T H I R TEE N: Networking

Mpr.dll
~ WNetAPI

i

Ntlanman.dll
Other redirector ...

provider

I' I'
RPC

~.

Workstation
service

Ntdll.dll

I' User mode

if' if' Kernel mode

I
Redirector FSD I Other redirector

A provider is software that establishes Windows 2000 as a client of a remote
network server. Some of the operations a WNet provider performs include mak
ing and breaking network connections, printing remotely, and transferring data.
The built-in WNet provider includes a DLL, the Workstation service, and the
redirector. Other network vendorsrteed to supply only a DLL and a redirector.

When an application calls a WNet routine, the call passes directly to the
MPR D LL. MPR takes the call and determines which WN et provider recognizes
the resource being accessed. Each provider DLL beneath MPR supplies a set
of standard functions collectively called the provider interface. This interface
allows MPR to determine which network the application is trying to access and
to direct the request to the appropriate WNet provider software. The redirector's
provider is \ Winnt\System32\Ntlanman.dll, as directed by the ProviderPath value
under the HKLM\SYSTEM\CurrentControISet\Services\lanmanworkstation\
NetworkProvider registry key.

815

INSIDE MICROSOFT WINDOWS 2000

816

When called by the WNetAddConnection API function to connect to a
remote network resource, MPR checks the HKLM\SYSTEM\CurrentControlSet\
Control\NetworkProvider\Order\ProviderOrder registry value to determine
which network providers are loaded. It polls them one at a time in the order in
which they're listed in the registry until a redirector recognizes the resource or
until all available providers have been polled. You can change the ProviderOrder
by using the Advanced Settings dialog box, shown in Figure 13-15. (Only one
provider is installed on the system from which the screen shot was taken.) This
dialog box is accessible from the Advanced menu of the Network And Dial-Up
Connections application. You can access the Network And Dial-Up Connec
tions application by right-clicking the My Network Places icon on the desk
top and selecting Properties from the pop-up menu or by selecting it from the
Settings option from the Start menu.

Figure 13-15
The provider order editor

The WNetAddConnection function can also assign a drive letter or device
name to a remote resource. When called to do so, WNetAddConnection routes
the call to the appropriate network provider. The provider, in turn, creates a
symbolic-link object in the object manager namespace that maps the drive let
ter being defined to the redirector (that is, the remote FSD) for that network.

T H I R TEE N: Networking

Figure 13-16 shows the \?? directory, where you can see several driver letters
representing connections to remote file shares. The figure shows that the
redirector creates a device object named \Device\LanmanRedirector and that the
additional text included in the symbolic link's value indicates to the redirector
which remote resource the drive letter corresponds to. When a user opens
X:\Book\Chap13.doc, the redirector is passed the unparsed portion of the path
that resolves through the symbolic link, which is ";X:O\dual\e\Book\Chap13.doc".
The redirector notes that the resource being accessed is located on the E share
of server dual.

Figure 13-16

.. S~bolicUnk \De¥ice\HardciskVoUne5

.. SymooticLink \l)e",ice\l-!MddiskVobne6
.. SymbaIicI..D. \Oevice\H8TddskVoIume2
.. S.l'mbolicl...rit \Device\HartlchkVoIume7
.. Symbofrcl.ink \Device\Ho!Ird!kkVoIumel
.. SymbolicUnk \Device\UFlorril
. SymbolicUnk \OeYice\FloppyO

SymbolicLink \De¥ice\WMIDaliliDevice
Sl'tlboncLink \De¥ice\WMISeIVioeDevice
Symbo~cUnk \De",ice\WANAAP

i \Devic~~9

Resolving a network resource name

Like the built-in redirector, other redirectors create a device object in the
object manager namespace when they are loaded into the system and initialized.
Then, when the WNet or other API calls the object manager to open a resource
on a different network, the object manager uses the device object as a jumping
off point into the remote file system. It calls an I/O manager parse method
associated with the device object to locate the redirector FSD that can handle
the request. (See Chapter 12 for more information on file system drivers.)

Multiple UNC Provider
The Multiple UNC Provider (MUP) is a networking component similar to
MPR. It fields I/O requests destined for a file or a device that has fl UNC name
(names beginning with the characters \\, indicating that the resource exists on
the network). MUP takes such requests and, like MPR, determines which local

817

INSIDE MICROSOFT WINDOWS 2000

818

redirector recognizes the remote resource. Unlike MPR, MUP is a device driver
(loaded at system boot time) that issues I/O requests to lower-layer drivers, in
this case to redirectors, as shown in Figure 13 -17 .

Application Kernel32.dll
•• FileVOAPI

Ntdll.dll

, if

\Device\MUP

MUP

Redirector
FSO

~'I'
UNC mapping ----. ~"'"

cache I --..
Other

redirector

User mode

Kernel mode

··,v·····t······················· TOI

Figure 13-17
Multiple UNC Provider (MUP)

Protocol driver
(TOI transport)

The MUP driver is activated when an application first attempts to open a
remote file or device by specifying a UNC name (instead of a redirected drive
letter, as described earlier). When the Win32 client-side DLL Kernel32.dll
(which is the DLL that exports file-I/O-related APls) receives such a request,
the subsystem appends the UNC name to the string \??\UNC and then calls the
NtCreateFile system service to open the file. This object name is the name of a
symbolic link that resolves to\Device\Mup, a device object that represents the
MUP driver.

The MUP driver receives the request and sends an IRP asynchronously to
each registered redirector, waiting for one of them to recognize the resource
name and reply. When a redirector recognizes the name, it indicates how much
of the name is unique to it. For example, if the name is \\WIN2KSERVER\
PUBLIC\insidew2k\chap13.doc, the redirector recognizes it and claims the
string \\WIN2KSERVER\PUBLIC as its own. The MUPdriver caches this infor
mation and thereafter sends requests beginning with that string directly to the

T H I R TEE N: Networking

redirector, skipping the polling operation. The MUP driver's cache has a timeout
feature, so after a period of inactivity, a string's association with a particular
redirector expires. If more than one redirector claims a particular resource, the
MUP driver uses the registry's Provider Order value's list ofloaded redirectors
to determine which redirector takes precedence.

Domain Name System
Domain Name System (DNS) is a standard by which Internet names (such as
www.microsoft.com) are translated to their corresponding IP addresses. A network
application that wants to resolve a DNS name to an IP address sends a DNS
lookup request using the TCP /IP protocol to a DNS server. DNS servers imple
ment a distributed database of name/IP address pairs that are used to perform
translations, and each server maintains the translations for a particular zone.
Describing the details ofDNS are outside the scope of this book, but DNS is the
foundation of naming in Windows 2000 and so it is the primary Windows 2000
name resolution protocol.

The Windows 2000 DNS server is implemented as a Win32 service (\Winnt\
System32\Dns.exe) that is included in server versions of Windows 2000. Standard
DNS server implementation relies on a text file as the translation database, but
the Windows 2000 DNS server can be configured to store zone information
in Active Directory.

Protocol Drivers
Networking API drivers must take API requests and translate them into low
level network protocol requests for transmission across the network. The API
drivers rely on transport protocol drivers in kernel mode to do the actual trans
lation. Separating APIs from underlying protocols gives the networking archi
tecture the flexibility of letting each API use a number of different protocols.
The protocol drivers that Windows 2000 includes are Data Link Control (DLC),
NetBEUI, TCP/IP, and NWLink, although other protocols might be present
as options, such as the AppleTalk protocol installed with Services For Macintosh
on Windows 2000 servers. Here's a brief description of each protocol:

II DLC is a relatively primitive protocol that some IBM mainframes as
well as some Hewlett-Packard network printers use. It is a "raw"
protocol in the sense that no networking APIs can use it; applications
that want to use DLC must interface directly to the DLC transport
protocol device driver.

819

INSIDE MICROSOFT WINDOWS 2000

820

II IBM and Microsoft introduced NetBEUI in 1985, and Microsoft
adopted NetBEUI as the default protocol for LAN Manager and the
NetBIOS API. Microsoft has since enhanced NetBEUI, but the
protocol is limited because it's not routable and performs poorly on
WANs. NetBEUI (NetBIOS Extended User Interface) was so named
because it is tighdy integrated with the NetBIOS API, but the pro
tocol Microsoft's NetBEUI protocol driver implements is NetBIOS
Frame (NBF) format. Windows 2000 includes NetBEUI solely for
interoperability with legacy Windows systems (Windows NT 4 and
Consumer Windows).

II The Internet's explosive growth and reliance on the TCP lIP protocol
has made TCP lIP the preeminent protocol in Windows 2000. The
Defense Advanced Research Projects Agency (DARPA) developed
TCP lIP in 1969 specifically as the foundation for the Internet; there
fore, TCPIIP has WAN-friendly characteristics such as routability and
good WAN performance. TCP lIP is the preferred Windows 2000
protocol and is the only one installed by default.

II NWLink consists of Novell's IPX and SPX protocols. Windows 2000
includes NWLink for interoperability with Novell NetWare servers.

TDI transports in Windows 2000 generally implement all the protocols
associated with their primary protocol. For example, the TCP lIP driver (\ Winnt\
System32\Drivers\Tcpip.sys) implements TCP, UDP, IP, ARP, ICMP, and IGMP.
A TDI transport generally creates device objects that represent particular pro
tocols so that clients can obtain a file object representing a protocol and issue
network I/O to the protocol by using IRPs. The TCP lIP driver creates three
device objects that represent various TDI -client accessible protocols: \Device\Tcp,
\Device\Udp, and \Device\Ip.

So that networking API drivers don't need to employ various interfaces
for each transport protocol they might want to use, Microsoft established the
Transport Driver Interface (TDI) standard. As mentioned earlier in this chapter,
a TDI interface is essentially a convention for the way network requests format
into IRPs and for the way network addresses and communications are allocated.
Transport protocols that adhere to the TDI standard export the TDI interface
to their clients, which include networking API drivers such as AFD and the
redirector. A transport protocol implemented as a Windows 2000 device driver
is known as a TDI transport. Because TDI transports are device drivers, they
format requests they receive from clients as IRPs.

T H I R TEE N: Networking

Support functions in the \Winnt\System32\Drivers\Tdi.sys library, along
with definitions developers include in their drivers, make up the TDI interface.
The TDI programming model is very similar to that of Win sock. A TDI client
executes the following steps to establish a connection with a remote server:

1. The client allocates and formats an address open TDI IRP to allocate
an address. The TDI transport returns a ftle object, which is known
as an address object, that represents the address. This step is the equiva
lent of using the bind Winsock function.

2. The client then allocates and formats a connection open TDI IRP, and
the TDI transport returns a ftle object, which is known as a connection
object, that represents the connection. This step is the equivalent of
the use of the Winsock socket function.

3. The client associates the connection object to the address object
with an associate address TDI IRP. (There's no equivalent to this step
in Winsock.)

4. A TDI client that accepts remote connections issues a listen TDI
IRP specifYing the number of connections supported for a connection
object and then issues an accept TDI IRP, which completes when a
remote system establishes a connection (or an error occurs). These
operations are equivalent to the use of the Winsock listen and accept
functions.

5. A TDI client that wants to establish a connection with a remote server
issues a connect TDI IRP, specifying the connection object, that the
TDI transport completes when a connection is established (or an
error occurs). Issuing a connectTDI IRP is the equivalent of using
the connect Winsock function.

TDI also supports connectionless communications for connectionless
protocols such as UDP. In addition, TDI provides a means whereby a TDI
client can register event callbacks (that is, functions that are directly invoked)
with TDI transports. When it receives data from across the network, a TDI trans
port can invoke a registered client receive callback, for example. This event-based
callback feature ofTD I allows the TD I transport to notify its clients of network
events, and clients that rely on event callbacks don't need to preallocate resources
such as buffers when receiving network data because they can view the contents
of the buffers supplied by a TDI protocol driver.

821

INSIDE MICROSOFT WINDOWS 2000

822

8 .. TOI_SEND TCP:D.O.O.D:'4S2
8..1D1_SEND UDp:127.nO.1:1426
B .. TOI_EVENT _RECEIVE_DA... UDP:127.o.o.1:1426
8.. TDI_EVENTJJiAINED_RE ... TCP:O.O.O.D:1463
8 .. TDlSEND TCP:O.o.o.O:1463
8 .. TDlSEND UDP:127.0.o. 1:1426
8 .. TOI_EVENT _AECEIVE_DA... UDP:127.0.o. 1:1426
8 .. TDlEVENT_CHAINED_RE ... TCP:O.O.o.O:1462
8 .. TOI_SEND TCP:O.O.o.O:1462
8 .. TOt_SEND UDP:127.0.o.1:1426
8 .. TDI_EVENT_RECEIV£..DA ... UDP:127.0.0.1:1426
8 .. TDI_EVENT_CHAINED_AE ... TCP:D.O.o.O:1463
8 .. TOI_SEND TCP:D.O.o.O:1463
8.. TDlSEND UDp:127.nO.l:1426
8.. TOI_EVENT _RECEIVE_DA... UOP:127.o.0.1:1426
B.. _CHAlNED_RE ... TCP:O.O.o.O:1462
8.. TCP,O.O.o.n1462
B.. UDP:127.o.0.1:1426
8.. UDP:127.0.0.1:1426
8.. TCP:o.O.o.O:1463
8.. TCP:O.O.o.O:1463
8.. UDP:127.0.0.1:1426
a. UDP:127.0.0.1:1426
8.. TCP:0.0.0.0:1462
a. TCP:0.0.0.0:1462

216.140.182.250:80 SUCCESS·, 258 Length:275
127.0.0.1:1426 SUCCESS·125o Length:1
127.0.0.1:1426 SUCCESS Bytesl!ken: 1 Fla ..
216.140.132.250:00 PENDING l.ength:997F1!gs: ...
216.140.182.250:00 SUCCESS·1264 Length:200
127.0.0. 1:1426 SUCCESS·1256 Length:1
127.0.0.1:1426 SUCCESS Bj.llestaken: 1 Fla ...
216.140.182.250:80 PENDING Length:897 Flag:t: ...
216.140.182.250:80 SUCCESS·l270 length:281
127.0.0. 1:1426 SUCCESS·l262 length:1
127.0.0.1:1426 SUCCESS 8j.1lestaken: 1 Fla .. .
216.140.182.250:80 PENDING Length:1223 Flag .. .
216.140.182.250:80 SUCCESS·1276 Length:276
127.0.Q1:1426 SUCCESS·12GB """,,1
127.0.0.1:1426 SUCCESS BlItestaken: 1 Fla ..
216.140.182.:250::00 PENDING
216.140.182.250:00 SUCCESS·1282
127.0.0.1:1426 SUa::ESS·1274
127.0.0.1:1426 SUCCESS
216.140.182.250:111 PENDING
216.140.182.250:111
127.0.0.1:1426
127.0.0.1:1426 SUCCESS
216.140.182.250:80 PENDING
216.140.182.250:80

T H I R TEE N: Networking

N DIS Drivers
When a protocol driver wants to read or write messages formatted in its protocol's
format from or to the network, the driver must do so using a network adapter.
Because expecting protocol drivers to understand the nuances of every network
adapter on the market (proprietary network adapters number in the thousands)
isn't feasible, network adapter vendors provide device drivers that can take
network messages and transmit them via the vendors' proprietary hardware. In
1989, Microsoft and 3Com jointly developed the Network Driver Interface
Specification (NDIS), which lets protocol drivers communicate with network
adapter drivers in a device-independent manner. Network adapter drivers that
conform to NDIS are called NDIS drivers or NDIS miniport drivers. The ver
sion ofNDIS that ships with Windows 2000 is NDIS 5.

On Windows 2000, the NDIS library (\Winnt\System32\Drivers\Ndis.sys)
implements the ND IS boundary that exists between TD I transports (typically)
and NDIS drivers. As is Tdi.sys, the NDIS library is a helper library that NDIS
driver clients use to format commands they send to NDIS drivers. NDIS drivers
interface with the library to receive requests and send back responses. Figure 13-18
shows the relationship between various NDIS-related components.

TOI transport

NOIS IRPs

------------------- ------------------------------------ NOIS

NOIS protocol interface
NOIS 5 library

.------------E NOIS miniport interface
NOIS intermediate driver

'----------L NOIS protocol interface

.------------L NOIS miniport interface
NOIS miniport driver

- -- -- - - - --- -- - - - -- - - -- - - - -- -- - - -- --- - - - - - - -- - -- - -- - - - - HAL

Figure 13-18
NDIS components

823

INSIDE MICROSOFT WINDOWS 2000

824

One of Microsoft's goals for its network architecture was to let network
adapter vendors easily develop NDIS drivers and take driver code and move
it between Consumer Windows and Windows 2000. Thus, instead of merely
providing the NDIS boundary helper routines, the NDIS library provides
NDIS drivers an entire execution environment. NDIS drivers aren't genuine
Windows 2000 drivers because they can't function without the encapsulation
the NDIS library gives them. This insulation layer wraps NDIS drivers so
thoroughly that NDIS drivers don't accept and process IRPs. Rather, the
NDIS library receives IRPs from TDI servers and translates the IRPs into calls
into the NDIS driver. NDIS drivers also don't have to worry about reentrancy,
in which the NDIS library invokes an NDIS driver with a new request before
the driver has finished servicing a previous request. Exemption from reentrancy
means that NDIS driver writers don't need to worry about complex synchro
nization, which is made even more tricky because of the parallel execution
possible on a multiprocessor.

NOT E The NDIS library hides from both TDI transports and
NDIS miniport drivers the fact that it uses IRPs to represent net
work requests. It does so by requiring TDI transports to allocate an
NDIS packet by calling NdisAliocatePacket and then passing the
packet to an NDIS miniport by calling an NDIS library function
(N disSend, for example). On Windows 2000, the ND IS library uses
IRPs to implement NDIS packets, but on Consumer Windows, it
doesn't.

Although the NDIS library'S serialization ofNDIS drivers simplifies devel
opment, serialization can hamper multiprocessor scalability. Standard NDIS 4
drivers (the Windows NT 4 version of the NDIS library) don't scale well for
certain operations on multiprocessors. Microsoft gave developers a deserialized
operation option in NDIS 5. NDIS 5 drivers can indicate to the NDIS library
that they don't want to be serialized; the ND IS library will then forward requests
to the driver as fast as it receives the IRPs that describe the requests. Respon
sibility for queuing and managing multiple simultaneous requests falls on the
NDIS driver, but de serialization confers the benefit of higher multiprocessor
performance.

T H I R TEE N: Networking

NDIS 5 also includes the following features:

• NDIS drivers can report whether or not their network medium is
active, which allows Windows 2000 to display a network connectedl
disconnected icon on the taskbar. This feature also allows protocols
and other applications to be aware of this state and react accordingly.
The TCP lIP transport, for example, will use this information to
determine when it should reevaluate addressing information it
receives from DHCP.

• TCP lIP task offloading allows a miniport to use advanced features
of a network adapter to perform operations such as packet checksums
and Internet Protocol security (IPSec). This task offloading can
improve system performance by relieving the CPU from these
operations.

• Fast packet forwarding allows the network adapter hardware to route
packets not destined for a computer to remote systems without ever
delivering them to the CPU.

• Wake-on-LAN allows a wake-on-LAN-capable network adapter to
bring Windows 2000 out of a suspend power state. Events that can
trigger the network adapter to signal the system include media
connections (such as plugging a network cable into the adapter),
the receipt of protocol-specific patterns registered by a protocol (the
TCP lIP transport asks to be woken for Address Resolution Protocol
[ARP] requests), and, for Ethernet adapters, the receipt of a magic
packet (a network packet that contains 16 contiguous copies of the
adapter's Ethernet address).

• Connection-oriented NDIS allows NDIS drivers to manage connec
tion-oriented media such as Asynchronous Transfer Mode (ATM)
devices. (Connection-oriented NDIS is described in more detail
shortly.)

The interfaces that the NDIS library provides for NDIS drivers to inter
face with network adapter hardware are available via functions that translate
directly to corresponding functions in the HAL.

825

INSIDE MICROSOFT WINDOWS 2000

826

T H I R TEE N: Networking

(continued)

827

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Listing the Loaded NOIS Miniports continued

Variations on the NOIS Miniport

828

The NDIS model also supports hybrid TDI transport-NDIS drivers, called NDIS
intermediate drivers. These drivers lie between TDI transports and NDIS drivers.
To an NDIS driver, an NDIS intermediate driver looks like a TDI transport; to
a TDI transport, an NDIS intermediate driver looks like an NDIS driver. NDIS
intermediate drivers can see all network traffic taking place on a system because
the drivers lie between protocol drivers and network drivers. Software that pro
vides fault tolerant and load balancing options for network adapters, such as
Microsoft's Network Load Balancing Provider, are based on NDIS intermediate
drivers. The packet scheduler that is part of Microsoft's Quality of Service (QoS)
implementation is another example of an NDIS intermediate driver.

T HI R TEE N: Networking

Connection-Oriented NDIS
NDIS 5 introduces a new type ofNDIS driver-a connection-oriented NDIS
miniport driver. Support for connection-oriented network hardware (for example,
ATM) is therefore native in Windows 2000, which makes connection manage
ment and establishment standard in the Windows 2000 network architecture.
Connection-oriented NDIS drivers use many of the same APIs that standard
NDIS drivers use; however, connection-oriented NDIS drivers send packets
through established network connections rather than place them on the network
medium.

In addition to miniport support for connection-oriented media, NDIS 5
includes definitions for drivers that work to support a connection-oriented
miniport driver:

• Call managers are NDIS drivers that provide call setup and teardown
services for connection-oriented clients (described shortly). A call
manager uses a connection-oriented miniport to exchange signaling
messages with other network entities such as network switches or
other call managers. A call manager supports one or more signaling
protocols, such as ATM User-Network Interface (UNI) 3.1.

• An integrated miniport call manager (MCM) is a connection-oriented
miniport driver that also provides call manager services to connection
oriented clients. An MCM is essentially an NDIS miniport driver
with a built-in call manager.

• A connection-oriented client uses the call setup and teardown services
of a call manager or MCM and the send and receive services of a
connection-oriented NDIS miniport driver. A connection-oriented
client can provide its own protocol services to higher levels in the
network stack, or it can implement an emulation layer that interfaces
connectionless legacy protocols and connection-oriented media. An
example of an emulation layer fulfilled by a connection-oriented client
is a LAN emulation (LANE), which hides the connected-oriented
characteristics of ATM and presents a connectionless media (such as
Ethernet) to protocols above it.

Figure 13-19 shows the relationships between these components.

829

INSIDE MICROSOFT WINDOWS 2000

830

Connection-oriented
client

--------------------------- ---------------------- NDIS
Connection management Data

transmission
NDIS 5 library and receipt

Call manager Data

Figure 13-19

management

NDIS 5 library

Connection-oriented
NDIS mini port driver

Connection-oriented NDIS drivers

NDIS 5 library

MCM driver

T H I R TEE N: Networking

"'" C transact2 HAP,KLAP

5.247545 TYAN C100119'7 LOCAL "Ill P. transactZ "" 10.0.0.1 HAllRLAP

5.247545 LOCAL TYAN C1001197 , ... C Nl create "" HARKtAP 10.0.0.1

5.24"'545 TYAN (;100197 LOCAL 'lIB R NT create HARKLAP

5.247545 TYAN CI001197 C close file .. HARKLAP

5.247545 TYAN C100.ll97 C NT create MARRLAP

R NT create

'lIB

R NT create
5.257560 LOCAL DUAL c/o }l.PC Bind .. _ MARKLAP DUAL
5.257560 DUAL LOCAL];I write .. X,. DUAL

C read 6. X,
5.257560 c/o RPC Bind .. DUAL HAP.KLAP

clo RPe Requ ..
5.257560 DUAL c/o RPC Resp __ DUAL HA.llXLAP

C close file ..

.5.257560 LOCAL "Ill It close file DUAL HAPRLAP

C NI create .
5.267574 R NT create DUAL HAP.KLAP

5.267574 cia RPC Bind ..
LOCAL R write .. X,. HAPF;LAP

(continued)

831

INSIDE MICROSOFT WINDOWS 2000

EXPERIMENT: Using Network Monitor to Capture Network Packets continued

Binding

832

The final piece in the Windows 2000 networking architecture puzzle is the way
in which the components at the various layers-networking API layer, TDI
transport driver layer, NDIS driver layer-locate one another. The name of the
process that connects the layers is binding. You've witnessed binding taking place
if you've changed your network configuration by adding or removing a com
ponent using Network Properties.

When you install a networking component, you must supply an INF file for
the component. (INF files are described in Chapter 9.) This file includes direc
tions that setup API routines must follow to install and configure the component,
including binding dependencies or binding relationships. A developer can specifY

T H I R TEE N: Networking

binding dependencies for a proprietary component so that the SCM will not only
load the component in the correct order but will also load the component only
if other components the proprietary component depends on are present on the
system. Binding relationships, which the bind engine determines with the aid
of additional information in a component's INF file, establish connections be
tween components at the various layers. The connections specify which com
ponents a network component on one layer can use on the layer beneath it.

For example, the Workstation service (redirector) will automatically bind
to the NBF (NetBEUI) and TCP lIP protocols if they are both present on a
system. The order of the binding, which you can examine on the Adapters And
Bindings tab in the Advanced Settings dialog box, shown in Figure 13-20,
determines the priority of the binding. (See the section "Network-Resource
Name Resolution" on page 814 for instructions on how to launch the Advanced
Settings dialog box.) When the redirector receives a request to access a remote
file, it submits the request to both protocol drivers simultaneously. When the re
sponse comes, the redirector waits until it has also received responses from any
higher-priority protocol drivers. Only then will the redirector return the result
to the caller. Thus, it can be advantageous to reorder bindings so that bindings
of high priority are also the most performance efficient or applicable to most
of the computers in your network. You can also manually remove bindings with
the Advanced Settings dialog box.

Figure 13-20
Editing bindings with the Advanced Settings dialog box

833

INSIDE MICROSOFT WINDOWS 2000

The Bind value, in the Linkage subkey of a network component's registry
configuration key, stores binding information for that component. For example,
if you examine HKLM\SYSTEM\CurrentControISet\Services\Lanman Work
station\Linkage\Bind, you'll see the binding information for the Workstation
serVICe.

Layered Network Services
Windows 2000 includes network services that build on the APIs and components
we've presented in this chapter. Describing the capabilities and detailed internal
implementation of these services is outside the scope of this book, but this sec
tion provides a brief overview of remote access, Active Directory, Network Load
Balancing, File Replication service (FRS), and Distributed File System (DFS).
In addition, Windows 2000 supports several services that are based on exten
sions to the TCP lIP protocol. These include network address translation (NAT),
Internet Protocol security (IPSec), and Quality of Service (QoS), and we con
clude with a look at each.

Remote Access

834

Remote access, which is available with Windows 2000 Server, allows remote
access clients to connect to remote access servers and access network resources
such as files, printers, and network services as if the client were physically con
nected to the remote access server's network. Windows 2000 provides two types
of remote access:

II Dial-up remote access is used by clients that connect to a remote
access server via a telephone or other telecommunications infra
structure. The telecommunications medium is used to create a
temporary physical or virtual connection between the client and
the server.

II Virtual private network (VPN) remote access lets a VPN client
establish a virtual point-to-point connection to the server over an
IP network such as the Internet.

Remote access differs from remote control solutions because remote access
acts as a proxy connection to a Windows 2000 network, whereas remote con
trol software executes applications on a server, presenting a user interface to
the client.

T H I R TEE N: Networking

Active Directory
Active Directory is the Windows 2000 implementation of Lightweight Directory
Access Protocol (LDAP) directory services. Active Directory is based on a data
base that stores objects representing resources defined by applications in a
Windows 2000 network. For example, the structure and membership of a
Windows 2000 domain, including the user account and password information,
are stored in Active Directory.

Object classes and the attributes that define properties of objects are
specified by a schema. The objects in the Active Directory schema are hierar
chically arranged, much like the registry's logical organization, where container
objects can store other objects, including other container objects. (See Chapter 8
for more information on container objects.)

Active Directory supports a number of APls that clients can use to access
objects within an Active Directory database:

III The LDAP C API is a C language API that uses the LDAP network
ing protocol. Applications written in C or C++ can use this API
directly, and applications written in other languages can access the
APls through translation layers.

III Active Directory Service Interfaces (ADSI) is a COM interface to
Active Directory that abstracts the details of LDAP programming.
ADSI supports multiple languages, including Microsoft Visual Basic,
C, and Microsoft Visual C++. ADSI can also be used by Microsoft
Windows Script Host (WSH) applications.

III Messaging API (MAPI) is supported for compatibility with Microsoft
Exchange client and Outlook Address Book client applications.

III Security Account Manager (SAM) APls are built on top of Active
Directory to provide an interface to logon authentication packages
such as MSVl_O (\Winnt\System32\Msvl_0.dll, which is used for
legacy NT LAN Manager authentication) and Kerberos (\ Winnt\
System32\Kdcsvc.dll).

III Windows NT 4 networking APls (Net APls) are used by Windows
NT 4 clients to gain access to Active Directory through SAM.

Active Directory is implemented as a database file that is named \ Winnt\
Ntds\Ntds.dit, and that is replicated across the domain controllers in a domain.
The Active Directory directory service, which is a Win32 service that executes in

835

INSIDE MICROSOFT WINDOWS 2000

836

the Local Security Authority Subsystem (Lsass) process, manages the database,
using DLLs that implement the on-disk structure of the database as well as pro
vide transaction-based updates to protect the integrity of the database. The Ac
tive Directory database store is based on a version of the Extensible Storage Engine
(ESE) database that is used by Microsoft Exchange Server version 5 .5 client/server
messaging and groupware. Figure 13-21 shows the Active Directory architecture.

Remote Net Logon service
(for legacy support only)

Figure 13-21
Active Directory architecture

Kerberos client
authentication DLL

(Kerberos.dll)

Net API

LDAP/ADSI

MAPI

T H I R TEE N: Networking

Network Load Balancing
As we stated earlier in the chapter, Network Load Balancing, which is included
with Windows 2000 Advanced Server, is based on NDIS intermediate-driver
technology. Network Load Balancing allows for the creation of a cluster con
taining up to 32 computers, which are called cluster hosts in Network Load
Balancing. The cluster maintains a single virtual IP address that is published for
access by clients, and client requests go to all the computers in the cluster.
However, only one cluster host responds to the request. The Network Load
Balancing NDIS drivers effectively partition the client space among available
cluster hosts in a distributed manner. This way, each host handles its portion of
incoming client requests and every client request always gets handled by one
and only one host. The cluster host that determines it should handle a client
request allows the request to propagate up to the TCP lIP protocol driver and
eventually a server application; the other cluster hosts don't. If a cluster host
fails, the rest of the cluster realizes thatthe cluster host is no longer a candidate
for processing requests and redistributes the incoming client requests to the
remaining cluster hosts. No new client requests are sent to the downed cluster
host. Another cluster host can be added to the cluster as a replacement, and it
will then seamlessly start handling client requests.

Network Load Balancing isn't a general-purpose clustering solution because
the server application that clients communicate with must have certain charac
teristics: the first is that it must be TCP lIP-based, and the second is that it must
be able to handle client requests on any system in a Network Load Balancing
cluster. This second requirement typically means that an application that must
have access to shared state in order to service client requests must manage the
shared state itself-Network Load Balancing doesn't include services for auto
matically distributing shared state across cluster hosts. Applications that are
ideally suited for Network Load Balancing include a Web server that serves static
content, Windows Media Server, and Terminal Services. Figure 13-22 shows
an example of a Network Load Balancing operation.

837

INSIDE MICROSOFT WINDOWS 2000

Computer 1

Network Load
Balancing NDIS

intermediate driver

NDIS miniport driver

Figure 13-22
Network Load Balancing operation

Computer 2

Network Load
Balancing NDIS

intermediate driver

NDIS miniport driver

Clients

File Replication Service

838

File Replication service (FRS) is included with Windows 200 Server. Its primary
purpose is to replicate the contents of a domain controller's \SYSVOL directory,
which is where Windows 2000 domain controllers store logon scripts and group
policies. (Group policies permit administrators to define usage and security
policies for the computers that belong to a domain.) In addition, FRS can be
used to replicate Distributed File System (DFS) shares between systems. FRS
allows for distributed multimaster replication, ,which enables any server to per
form replication activity. When a replicated directory or file is changed, the
changes are propagated to the other domain controllers.

The fundamental concept in FRS is a replica set, which consists of two or
more systems that replicate between themselves the contents of a directory tree
according to an administratively defined schedule and topology. Only directories
on NTFS volumes can be replicated because FRS relies on the NTFS change

T H I R TEE N: Networking

journal to detect changes to files in directories in a replica set. Because FRS is
based on multimaster replication, it can theoretically support hundreds or even
thousands of systems as part of a replica set, and the computers of a replica set
can be connected with arbitrary network topologies (such as ring, star, or
mesh). Computers can also be members of multiple replica sets.

FRS is implemented as a Win32 service (\Winnt\System32\Ntfrs.exe) that
uses authenticated RPC with encryption to communicate between instances of
itself running on different computers. In addition, because Active Directory
contains its own replication capabilities, FRS uses Active Directory APIs to
retrieve FRS configuration information from a domain's Active Directory.

Distributed File System
Distributed File System (DFS) is a service that layers on top of the Workstation
service to connect together file shares into a single namespace. The file shares
can reside on the same or on different computers, and DFS provides client access
to the resources in a location-transparent manner. The root of a DFS namespace
must be a file share defined on a Windows 2000 server.

In addition to delivering a unified network-resource namespace, DFS pro
vides other benefits through DFS replica sets, which are based on FRS rep
lica sets. An administrator can create DFS replica sets from two or more shares
so that FRS copies data between the shares of a replica set to keep their con
tents synchronized. DFS provides a limited form ofload balancing by randomly
selecting a member of a replica set to fulfill a client request for data on the rep
lica set. In addition, DFS achieves high availability by routingrequests to the
working member or members of a replica set when a member becomes un
available.

The components that make up the DFS architecture are shown in Fig
ure 13-23. The server-side implementation ofDFS consists ofa Win32 service
(\Winnt\System32\Dfssvc.exe) and a device driver (\Winnt\System32\Drivers\
Dfs.sys). The DFS service is responsible for exporting DFStopology manage
ment interfaces and maintaining the DFS topology in either the registry (on
non-Active Directory systems) or Active Directory. The D FS driver performs
topology lookups when it receives a client request so that it can direct the client
to the system where the file it is requesting resides.

839

INSIDE MICROSOFT WINDOWS 2000

DFS client

Application Kernel32.dll
API

Ntdll.dll

MUP

Figure 13·23
DFS components

User mode

Kernel mode

Redirector
FSD

Dfssvc.exe

Dfs.sys

DFS server

User mode

Kernel mode

On the client side, the implementation ofDFS relies on support from the
MUP driver and the NetWare and CIFS redirector. When a client issues a file
I/O request that specifies a file in the DFS namespace, the MUP driver on the
client communicates with a DFS server by using the appropriate redirector.

TCPIIP Extensions

840

Other Windows 2000 networking services extend basic networking features
of the TCP lIP protocol driver by relying on add -on drivers that integrate with
the TCP lIP protocol driver using private interfaces. These include network
address translation (NAT), Internet Protocol security (IPSec), and Quality of
Service (QoS).

Network Address Translation
Network address translation (NAT) is a routing service that allows multiple local
IP addresses to map to a single IP address. Without NAT, each computer of a
LAN must be assigned a public IP address to communicate across the Internet.
NAT allows one computer of the LAN to be assigned an IP address and the other
computers to be connected to the Internet through that computer. NAT trans
lates between LAN addresses and the public IP address as necessary, routing
packets from the Internet to the appropriate LAN computer.

T H I R TEE N: Networking

NAT components on Windows 2000 consist of a NAT device driver that
interfaces with the TCP /IP stack as well as editors that an administrator uses
to define address translations. NAT can be installed as a protocol with the
Routing And Remote Access MMC snap-in or by configuring Internet connec
tion sharing using the Network And Dial-Up Connections tool (though NAT
is much more configurable when installed using the Routing And Remote Access
MMC snap-in).

Internet Protocol Security
Internet Protocol security (IPSec), which is integrated with the Windows 2000
TCP lIP stack, provides protection for IP data against snooping.and manipula
tion and defends against IP-based attacks. Both goals are met through cryptog
raphy-based protection services, security protocols, and dynamic key management.
IPSec-based communication includes these properties:

• Authentication verifies the origin and integrity of an IP message.

• Integrity protects· IP data from being modified in transit without
being detected.

• Confidentiality uses encryption to ensure that only valid recipients of
a message can decipher the contents of the message.

• Antireplay ensures that each packet is unique and can't be reused.
This property prevents a snooper from replying to captured messages
to establish a session or gain unauthorized access to data. .

IPSec on Windows 2000 relies on group policies that are stored in Active
Directory for configuration, and it uses Active Directory's Kerberos version 5
authentication to authenticate computers that participate in IPSec message
exchange. IPSec uses private/public keys pairs based on the Windows 2000
CryptoAPI cerrificate services for encrypting and decrypting IPSec message data
and passwords as part of its authentication process. (See the section "Encrypt
ing File System Security" on page 766 in Chapter 12 for more information on
CryptoAPI.)

IPSec's implementation consists of an IPSec device driver (\Winnt\
System32\Drivers\Ipsec.sys) that integrates with the TCP /IP protocol driver.
In user space, a policy agent obtains IPSec configuration information from Active
Directory and passes IPSec filtering information (IP address filters for which

841

INSIDE MICROSOFT WINDOWS 2000

842

IPSec communications should be used) to the IPSec driver and security settings
to an Internet Key Exchange (IKE) module. The IKE module waits for security
association requests from the IPSec driver and negotiates the requests, passing the
results back to the IPSec driver for use during authentication and encryption.

Quality of Service
If no.special measures are taken, IP traffic is delivered over a network on a first
come-first-serve basis. Applications have no control over the priority of their
messages and can experience bursty network behavior, where they occasionally
obtain high throughput and low latencies but otherwise receive poor network
performance. Although this level of service is acceptable in most situations, an
increasing number of network applications demand more consistent service
levels, or Quality of Service (QoS) guarantees. Video conferencing, media
streaming, and enterprise resource planning (ERP) are examples of applications
that require good network performance. QoS allows an application to specifY
minimum bandwidth and maximum latencies, which can be satisfied only if every
networking software and hardware component between a sender and receiver
supports QoS standards such as IEEE 802.1p, an industry standard that speci
fies the format ofQoS packets and how OSI layer 2 devices (switches and net
work adapters) respond to them.

Windows 2000 QoS support is based on a handful of Microsoft-defined
Winsock APIs that allow an application to request QoS for traffic over their
Winsock sockets. For example, an application uses WSClnstatlQOSTemplate to
install a QoS template that specifies desired bandwidth and latency. (Onlyappli
cations with administrative privileges can use QoS.) A second API, the traffic
control (TC) API, lets an administrative application more precisely control the
traffic flow over networks attached to the computer.

The heart of the Windows 2000 QoS implementation is the Resource
Reservation Setup Protocol (RSVP) Win32 service (\Wrnnt\System32\Rsvp.exe),
as shown in Figure 13-24. The RSVP Winsock service provider (\Winnt\
System32\Rsvp.dll) communicates application QoS requests via RPC to the
RSVP service. The RSVP service in turn uses the TC API to control traffic flow.
The TC API, which is implemented in\Winnt\System32\Traffic.dll, sends I/O
control commands to the Generic Packet Classifier (GPC) driver (\Winnt\
System32\Drivers\Msgpc.sys). The GPC driver communicates closely with the
QoS packet scheduler NDIS intermediate driver (\Wmnt\System32\Drivers\

T H I R TEE N: Networking

Psched.sys) to control the flow of packets to the network from the computer
so that the QoS levels promised to particular applications can be met and to
ensure that appropriate QoS headers can be placed on packets for which QoS
is desired.

RPe • QoSAPls

RSVP service

Traffic.dll

I'
,.

Generic Packet
Classifier

I'

Figure 13-24
QpS architecture

Conclusion

,.

QoS application

Rsvp.dll WS2_32.dll

I'

Communication APls

User mode

,.
Kernel mode

AFO

* TCP/IP
protocol driver

* Packet scheduler
"

NOIS miniport
NOIS

The Windows 2000 network architecture provides a flexible infrastructure for
networking APIs, network protocol drivers, and network adapter drivers. The
Windows 2000 networking architecture takes advantage ofl/O layering to give

843

INSIDE MICROSOFT WINDOWS 2000

844

networking support the extensibility to evolve as computer networking evolves.
When new protocols appear, developers can write a TDI transport to implement
the protocol on Windows 2000. Similarly, new APIs can interface to existing
Windows 2000 protocol drivers. Finally, the range of networking APIs imple
mented on Windows 2000 affords network application developers a range of
possible implementations, each with different programming models and pro
tocol support.

GLOSSARY

access-control list (ACL) The part of a security descriptor that enumerates who has what
access to an object. The owner of an object can change the object's ACL to allow or
disallow others access to the object. An ACL is made up of an ACL header and zero or
more access-control entry (ACE) structures. An ACL with zero ACEs is called a null ACL
and indicates that no user has access to the object.

access token A data structure that contains the security identification of a process or a
thread, which includes its security ID (SID), the list of groups that the user is a member
of, and the list of privileges that are enabled and disabled. Each process has a primary
access token that it inherits by default from its creating process.

add-device routine A routine implemented by drivers that supports Plug and Play. The
Plug and Play manager sends a driver notification via this routine whenever a device for
which the driver is responsible is detected. In this routine, a driver typically allocates a
device object to represent the device.

Address Windowing Extensions (AWE) A mechanism in Windows 2000 that allows
a 32-bit application to allocate up to 64 GB of physical memory and then map views,
or windows, into its 2-GB virtual address space. Using AWE puts the burden of man
aging mappings of virtual-to-physical memory on the programmer but solves the imme
diate need of being able to direcdy access more physical memory than can be mapped
at anyone time in a 32-bit process address space.

affinity mask A bitrnask that specifies the processors on which the thread is allowed to
run. The initial thread affinity mask is inherited from the process affinity mask.

aging A process performed on a page that increments a count indicating that the page
hasn't been referenced since the last working set trim scan. On a single-processor sys
tem, the working set manager tries to remove pages that haven't been accessed recendy.
It does this by first clearing the accessed bit in the hardware page table entry (PTE) and
then later checking the bit to see whether the page has been accessed. If the bit remains
clear, the page wasn't accessed between scans and is aged. Later, the age of pages is used
to locate candidate pages to remove from the working set.

alertable wait state A thread state that the thread enters either by waiting on an object
handle and specifying that its wait is alertable (with the Win32 WaitForMultipleObjectsEx
function) or by testing direcdy whether it has a pending APC (using SleepEx). In both
cases, if a user-mode APC is pending, the kernel interrupts (alerts) the thread, transfers con
trol to the APC routine, and resumes the thread's execution when the APC routine com
pletes. User-mode APCs are delivered to a thread only when it's in an alertable wait state.

allocation granularity The granularity with which virtual memory is allocated. Windows
2000 aligns each region of reserved process address space to begin on an integral bound
ary defined by the system allocation granularity value, which can be retrieved from the
Win32 GetSystemlnfo function. Currendy, this value is 64 KB. This size waS chosen so

845

INSIDE MICROSOFT WINDOWS 2000

846

that if support were added for future processors with large page sizes (for example, up
to 64 KB), the risk of requiring changes to applications that made assumptions about
allocation alignment would be reduced. (Windows 2000 kernel-mode code isn't sub
ject to the same restrictions; it can reserve memory on a single-page granularity.)

alternative hive A hive that acts as a backup to the crucial SYSTEM hive. The alternate
hive is stored in \Winnt\System32\Config as System.alt. Whenever a hive sync flushes dirty
sectors to the SYSTEM hive, the hive sync also updates the System.alt hive. If the con
figuration manager detects that the SYSTEM hive is corrupt when the system boots, the
configuration manager attempts to load the alternate hive. If that hive is usable, it then
uses that alternate to update the original SYSTEM hive.

APC queue A queue in which asynchronous procedure calls (APCs) waiting to execute
reside. The APC queues (one for user mode and one for kernel mode) are thread-specific
each thread has its own APC queues (unlike the DPC queue, which is processor-wide).

asymmetric multiprocessing (ASMP) A system of processing on a multiprocessor sys
tem that typically selects one processor to execute operating system code while other
processors run only user code.

asynchronous 1/0 An I/O model that allows an application to issue an I/O request and
then continue executing while the request is completed. This type of I/O can improve
an application's throughput because it allows the application to continue with other work
while an I/O operation is in progress.

asynchronous procedure call (APC) A function that provides a way for user programs
and system code to execute code in the context of a particular user thread (and hence a
particular process address space). An APC can be either kernel mode or user mode.
(Kernel-mode APCs don't require "permission" from a target thread to run in that
thread's context, as user-mode APCs do.)

atomic transaction A technique for handling modifications to a database so that system
failures don't affect the correctness or integrity of the database. The basic tenet of atomic
transactions is that some database operations, called transactions, are all-or-nothing propo
sitions. The separate disk updates that make up the transaction must be executed atomi
cally; that is, once the transaction begins to execute, all its disk updates must be completed.
If a system failure interrupts the transaction, the part that has been completed must be
undone, or rolled back. The rollback operation returns the database to a previously known
and consistent state, as if the transaction had never occurred. See also transaction.

attribute list A special kind of file attribute in an NTFS file header that contains addi
tional attributes. The attribute list is created if a particular file has too many attributes
to fit in the master file table (MFT) record. The attribute list attribute contains the name
and type code of each of the file's attributes and the file reference of the MFT record
where the attribute is located.

authentication packages Dynamic-link libraries (DLLs) that run in the context of the
Lsass process and that implement Windows 2000 authentication policy. An authentica
tion DLL is responsible for checking whether a given username and password match,
and if so,returning to Lsass information detailing the user's security identity. Windows
2000 authentication packages include Kerberos and MSVl_O.

Glossary

automatic working set trimming A technique the memory manager uses when physical
memory runs low to increase the amount of free memory available in the system.

bad-cluster file A system file (filename $BadClus) that records any bad spots on the disk
volume.

balance set manager A system thread that wakes up once per second to check and
possibly initiate various scheduling and memory management-related events.

basic disk A disk that relies on the MS-DOS-style partitioning scheme. See also dynamic
disk.

bitmap file A system file (filename $Bitmap) in which NTFS records the allocation state
of the volume. The data attribute for the bitmap file contains a bitmap, each of whose
bits represents a cluster on the volume, identifying whether the cluster is free or has been
allocated to a file.

boot code Instructions executed when a system is booted.

boot device drivers Device drivers necessary to boot the system.

boot file A system file (filename $Boot) that stores the Wmdows 2000 bootstrap code.

boot partition The partition that contains core operating system files. The boot partition
is identified by the system at startup. The code in a master boot record (MBR) scans the
primary partition table until it locates a partition containing a flag that signals the par
tition is bootable. When the MBR finds at least one such flag, it reads the first sector from
the flagged partition into memory and transfers control to code within the partition.

bus driver Driver that services a bus controller, adapter, bridge, or any device that has
child devices .. Bus drivers are required drivers, and Microsoft generally provides them;
each type of bus (such as PCI, PCMCIA, and USB) on a system has one bus driver.

cache manager The component of the Windows 2000 executive that provides systemwide
caching services for NTFS mId other file system drivers, including network file system
drivers (servers and redirectors).

careful write A technique for constructing a file system's I/O and caching support. See
also write-through.

change journal An internal file where an NTFS file system Gm record information that
allows applications to efficiently monitor file and directory changes. A change journal
is usually large enough to virtually guarantee that applications get a chance to process
changes without missing any.

checked build Aspecial debug version of Windows 2000 Professional that is available
only as part of the MSDN Professional (or Universal) subscription. (No checked build
is available for Wmdows 2000 Server.) The checked build is created by compiling the
Wmdows 2000 sources with the compile-time flag DEBUG set to TRUE.

checkpoint record A record that helps NTFS determine what processing would, be needed
to recover a volume if a crash were to occur immediately. This record also includes redo
and undo information.

847

INSIDE MICROSOFT WINDOWS 2000

848

class driver A type of kernel-mode device driver that implements the I/O processing
for a particular class of devices, such as disk, tape, or CD-ROM.

clock algorithm A working set page replacement policy implemented on uniprocessor
systems, similar to a least recently used policy (as implemented in most versions of UNIX) .

clock interrupt handler A system routine that updates the system time and then decre
ments a counter that tracks how long the current thread has run.

cluster factor The cluster size on a volume, which is established when a user formats the
volume with either the format command or the Disk Management Microsoft Manage
ment Console (MMC) snap-in.

cluster remapping A process in which NTFS dynamically retrieves good data from a
cluster with a bad sector, allocates a new cluster, and copies the data to the new cluster.

clustering A method by which the memory manager resolves a page fault by reading into
memory several pages near the page explicitly accessed.

clusters Same-size allocation units into which a volume is divided. Each cluster must be
uniquely numbered using 16 bits.

collided page fault A fault that occurs when another thread or process faults a page that
is currently being in-paged.

commitment The process by which the memory manager keeps track of private committed
memory usage on a global basis.

common model A set of classes in the Common Information Model (CIM) that repre
sent objects that are specific to management areas of a system but independent of a
particular implementation. These classes are considered an extension of the CIM core
model. See also core model.

complete memory dump A memory dump that contains all of physical memory at the
time of the crash. This type of dump requires that a page file be at least the size of physical
memory. Because it can require an inordinately large page file on large memory systems,
this type of dump file is the least common. Wmdows NT 4 supported only this type of
crash dump file.

completion port A mechanism to deliver I/O completion notification to threads. Once
a file is associated with a completion port, any asynchronous I/O operations that com
plete on the file result in a completion packet being queued to the completion port. A
thread Can wait for any outstanding I/Os to complete on multiple files simply by wait
ing for a completion packet to be queued to the completion port. With completion ports,
concurrency, or the number of threads that an application has actively servicing client
requests, is controlled with the aid of the system.

configuration manager A major component of the executive that's responsible for imple
menting and managing the system registry.

container object A namespace object that can hold other objects, including other con
tainer objects. Examples of containers are directories in the file system namespace and
keys in the registry namespace.

Glossary

context switch The procedure of saving the volatile machine state associated with a
running thread, loading another thread's volatile state, and starting the new thread's
execution.

control objects A set of kernel objects that establishes semantics for controlling various
operating system functions. This set includes the kernel process object, the asynchronous
procedure call (APC) object, the deferred procedure call (DPC) object, and several objects
the I/O system uses, such as the interrupt object.

core model A set of classes in the Common Information Model (CIM) provided as part
of the WBEM standard. These classes are CIM's basic language and represent objects
that apply to all areas of management. See also common model.

deferred procedure call (OPC) A routine that performs most of the work involved in
handling a device interrupt after the interrupt service routine (ISR) executes. The DPC
routine executes at an interrupt request level (IRQL) that is lower than that of the ISR
to avoid blocking other interrupts unnecessarily. A DPC routine initiates I/O comple
tion and starts the next queued I/O operation on a device.

deferred procedure call (OPC) object A kernel control object that describes a request
to defer interrupt processing to DPC/dispatch level. (See interrupt request levels
(IRQLs).) This object isn't visible to user-mode programs but is visible to device drivers
and other system code. The most important piece of information the DPC object
contains is the address of the system function that the kernel will call when it processes
the DPC interrupt.

demand-paging policies A fetch policy that loads a page into physical memory only when
a page fault occurs. In a demand-paging system, a process incurs many page faults when
its threads first begin executing because the threads reference the initial set of pages they
need to get going. Once this set of pages is loaded into memory, the paging activity of
the process decreases.

device drivers Loadable kernel-mode modules (typically ending in .sys) that interface
between the I/O system and the relevant hardware. Device drivers on Windows 2000
don't manipulate hardware devices directly, but rather they call parts of the hardware
application layer (HAL) to interface with the hardware.

device 10 A device identifier reported to the Plug and Play manager. The identifiers are
bus-specific; for a USB bus, an identifier consists of a vendor ID (VID) for the hardware
vendor that made the device and a product ID (PID) that the vendor assigned to the
device.

device instance 10 (0110) An identifier consisting of a device ID and an instance ID that
the Plug and Play manager uses to locate the device's key in the enumeration branch of
the registry (HKLM\SYSTEM\CurrentControISet\Enum).

device object A data structure that represents a physical, logical, or virtual device on the
system and describes its characteristics, such as the alignment it requires for buffers and
the location of its device queue to hold incoming I/O request packets.

device tree An internal tree the Plug and Play manager creates that represents the rela
tionships between devices. Nodes in the tree are called devnodes. See also devnode.

849

INSIDE MICROSOFT WINDOWS 2000

850

devnode A node in a device tree. A devnode contains information about the device objects
that represent the device as well as other Plug and Play-related information the Plug and
Play manager stores. See also device tree.

dirty page threshold The number of pages that the system cache keeps in memory before
waking up the cache manager's lazy writer system thread to write out pages back to the
disk. This value is computed at system initialization time and depends on physical memory
size and the value of the registry value HKLM\SYSTEM\CurrentControISet\Control\
Session Manager\Memory Management\LargeSystemCache.

disk group Dynamic disks that share a common database. VERITAS's commercial volume
management software for Windows 2000 includes disk groups, but the Windows 2000
Logical Disk Manager (LDM) implementation includes only one disk group.

dispatch code Instructions of assembly language code stored in an interrupt object when
it is initialized. When an interrupt occurs, this code is executed.

dispatch routines The main functions that a device driver provides. Some examples of
dispatch routines are open, close, read, and write, and any other capabilities the device,
file system, or network supports. When called on to perform an I/O operation, the I/O
manager generates an IRP and calls a driver through one of the driver's dispatch routines.

dispatcher A set of routines in the kernel that implement Windows 2000 scheduling.
Windows 2000 doesn't have a single "scheduler" module or routine-the code is spread
throughout the kernel in which scheduling-related events occur.

dispatcher database A set of data structures the kernel maintains to make thread-sched
uling decisions. The dispatcher database keeps track of which threads are waiting to
execute and which processors are executing which threads. See also dispatcher ready
queue.

dispatcher header A data structure that contains the object type, the signaled state, and
a list of the threads waiting on that object.

dispatcher objects A set of kernel objects that incorporate synchronization capabilities
and alter or affect thread scheduling. The dispatcher objects include the kernel thread,
mutex (called mutant internally) , event, kernel event pair, semaphore, timer, and waitable
timer.

dispatcher ready queue The most important structure in the dispatcher database (located
at KiDispatcherReadyListHead). The dispatcher ready queue is really a series of queues,
one queue for each scheduling priority. The queues contain threads that are in the ready
state, waiting to be scheduled for execution.

display driver Driver that translates device-independent graphics requests into device
specific requests. The device-specific requests are then paired with a kernel-mode video
miniport driver to complete video display support. A display driver is responsible for
implementing drawing operations, either by writing directly to the frame buffer or by
communicating with the graphics accelerator chip on the controller.

driver object Data structure that represents an individual driver in the system and records
for the I/O manager the address of each of the driver's dispatch routines (entry points).

driver support routines Routines that device drivers call to accomplish their I/O requests.

Glossary

dynamic disk A disk that supports multipartition volumes, providing a more flexible
partitioning scheme than that of a basic disk. See also basic disk.

dynamic-link library (OLL) A set of callable subroutines linked as a binary image that
can be dynamically loaded by applications that use them.

environment subsystems User processes that expose the native operating system services
to user applications, thus providing an operating system environment, or personality.
Wmdows 2000 ships with three environment subsystems: Win32, POSIX, and OS/2 1.2.

event An object with a persistent state (signaled or not signaled) that can be used for
synchronization; also, a system occurrence that triggers an action.

exception A synchronous condition that results from the execution of a particular instruc
tion. Running a single program with the same data under the same conditions can repro
duce exceptions.

exception dispatcher A kernel module that services all exceptions, except those simple
enough to be resolved by the trap handler. The exception dispatcher's job is to find an
exception handler that can "dispose of' the exception.

executive The upper layer ofNtoskrnl.exe. (The kernel is the lower layer.) The executive
contains the base operating system services, such as the process and thread manager, the
virtual memory manager, the memory manager, the security reference monitor, the I/O
system, and the cache manager. See also kernel.

executive objects Objects implemented by various components of the executive (such
as the process manager, memory manager, I/O subsystem, and so on). The executive
objects and object services are primitives that the environment subsystems use to con
struct their own versions of objects and other resources. Because executive objects are
typically created either by an environment subsystem on behalf ofa user, application or
by various components of the operating system as part of their normal operation, many
of them contain (encapsulate) one or more kernel objects. See also kernel objects.

executive resources Resources that provide both exclusive access (such as a mutex) as
well as shared read access (multiple readers sharing read-only access to a structure).
Because executive resources are available only to kernel-mode code, they aren't accessible
from the Win32 API.

extended partition A special partition type that,contains a master boot record (MBR)
with its own partition table. By using extended partitions, Microsoft's operating systems
overcome the apparent limit of four partitions per disk. In general, the recursion that
extended partitions permit can continue indefinitely, which means that no upper limit
exists to the number of possible partitions on a disk. See also partition.

fast 1/0 A means of reading or writing a cached file without going through the work of
generating an I/O request packet (IRP).

fast LPC A special interprocess communication facility used to send messages between
threads.

file mapping objects Wm32 API underlying primitives in the memory manager that are
used to implement shared memory (called section objectsinternally). Sec, also section object.

851

INSIDE MICROSOFT WINDOWS 2000

852

file reference A 64-bit value that identifies a file on an NTFS volume. The file reference
consists of a file number and a sequence number. The file number corresponds to the
position of the file's file record in the master file table minus 1 (or to the position of the
base file record minus 1 if the file has more than one file record).

file system driver (FSD) A type of kernel-mode device driver that accepts I/O requests
to files and satisfies the requests by issuing its own, more explicit, requests to physical
device drivers. See also local file system driver (FSD), network file system driver (FSD).

file system filter driver A type of kernel-mode device driver that intercepts I/O requests,
performs additional processing, and passes them on to lower-level drivers.

file system format Defines the way that file data is stored on storage media and impacts
a file system's features. For example, a format that doesn't allow user permissions to be
associated with files and directories can't support security. A file system format can also
impose limits on the sizes of files and storage devices that the file system supports.

filter device object (FiDO) A device object that can be part of a devnode. One or more
optional FiDOs can layer either between the physical device object (PDO) and the func
tional device object (FDO) or above the FDO. See also devnode, functional device object
(FDO), physical device object (PDO).

filter driver See file system filter driver.

foreground application The process that owns the thread that owns the window that's
in focus.

free build The version of the Windows 2000 system that can be purchased as a retail
product. It is built with full compiler optimizations turned on and has internal symbol
table information stripped out from the images. See also checked build.

function driver The main device driver that provides the operational interface for its
device. It is a required driver unless the device is used raw (an implementation in which
I/O is done by the bus driver and any bus filter drivers, such as SCSI PassThru). A func
tion driver is the driver that knows the most about a particular device and is usually the
only driver that accesses device-specific registers.

functional device object (FDO) A device object that is a required part of a devnode. The
function driver that the Plug and Play manager loads to manage a detected device creates
the FDO. An FDO represents the logical interface to a device. See also devnode, filter
device object (FiDO), physical device object (PDO).

Graphical Identification and Authentication (GINA) A user-mode DLL that runs in
the Wmlogon process and that Winlogon uses to obtain a user's name and password or
smart card PIN. The standard GINA is \Wmnt\System32\Msgina.dll.

handle An object identifier. A process receives a handle to an object when it creates or
opens an object by name. Referring to an object by its handle is faster than using its name
because the object manager can skip the name lookup and find the object directly.

handle table A table that contains pointers to all the objects that the process has opened
a handle to. Handle tables are implemented as a three-level scheme, similar to the way that
the x86 memory management unit implements virtual-to-physical address translation.

Glossary

hardware abstraction layer (HAL) A loadable kernel-mode module (Hal.dll) that pro
vides the low-level interface to the hardware platform on which Wmdows 2000 is running.
The HAL hides hardware-dependent details such as I/O interfaces, interrupt controllers,
and multiprocessor communication mechanisms-any functions that are architecture
specific and machine-dependent.

hash A statistically unique value that is generated from a block of data (for example, a file)
using cryptographic algorithms. Because different data results in different hashes, hashes
can be used to detect changes to data from corruption or tampering. The Wmdows 2000
driver signing facility uses hashes.

heap A region of one or more pages that can be subdivided and allocated in smaller chunks
by a set of functions provided by the heap manager.

heap manager A set of functions that allocate and deallocate variable amounts of memory
(not on a page-size granularity). The heap manager functions exist in two places: Ntdll.dll
and Ntoskrnl.exe. The subsystem APls (such as the Wm32 heap APls) use the copy in
Ntdll, and various executive components and device drivers use the copy in Ntoskrnl.

hive One of a number of files stored on disk that contain registry information. Each hive
contains a registry tree, which has a key that serves as the root or starting point of the tree.

hyperspace A special region used to map the process working set list and to temporarily
map other physical pages for such operations as zeroing a page on the free list (when the
zero list is empty and a zero page is needed), invalidating page table entries in other page
tables (such as when a page is removed from the standby list), and on process creation
setting up a new process's address space.

I/O cornpletion routine A routine implemented by a layered driver that will notify the
driver when a lower-level driver finishes processing an I/O request packet (IRP). For
example, the I/O manager calls a file system driver's I/O completion routine after a
device driver finishes transferring data to or·from a file. The completion routine noti
fies the file system driver about the operation's success, failure, or cancellation, and it
allows the file system driver to perform cleanup operations.

I/O request packet (IRP) A data structure that controls how the I/O operation is pro
cessed at each stage. Most I/O requests are represented by an IRP, which travels from
one I/O system component to another.

1/0 subsystern API The internal executive system services (such as NtReadFile and
NtWriteFile) that subsystem DLLs call to implement a subsystem's documented I/O
functions.

I/O system The Wmdows 2000 executive component that accepts I/O requests (from both
user-mode and kernel-mode callers) and delivers them, in a different form, to I/O devices.

ideal processor The preferred processor that a particular thread should run on.

idle summary A bitmask (KildleSummary) in which each set bit represents an idle pro
cessor.

impersonation A capability that allows threads to have a different access token than that
of the process.

853

INSIDE MICROSOFT WINDOWS 2000

854

initialization routine A driver routine that the I/O manager executes when it loads the
driver into the operating system. The initialization routine creates system objects that
the I/O manager uses to recognize and access the driver.

in-paging 1/0 A condition that occurs when a read operation must be issued to a file
(paging or mapped) to satisfy a page fault. The in-page I/O openition is synchronous
the thread waits on an event until the I/O completes-and isn't interruptible byasyn
chronous procedure call (APC) delivery.

instancing The term for making separate copies of the same parts of a namespace. Instancing
\DosDevices makes it possible for each user to have different drive letters and Win32
objects such as serial ports.

intelligent file read-ahead A technique that predicts what data the calling thread is likely
to read next based on the data it's currently reading.

inter-processor interrupt (IPI) An interrupt the kernel issues to request that another
processor perform an action, such as dispatching a particular thread for execution or
updating its translation look-aside buffer cache.

interrupt An asynchronous event (one that can occur at any time) that is unrelated to what
the processor is executing. Interrupts are generated primarily by I/O devices, processor
clocks, or timers, and they can be enabled or disabled.

interrupt dispatch table (lOT) A data structure that Wmdows 2000 uses to locate the
routine that will handle a particular interrupt. The interrupt request level (IRQL) of the
interrupting source serves as a table index, and table entries point to the interrupt-han
dling routines.

interrupt dispatcher A submodule of the kernel's trap handler that responds to interrupts.

interrupt object A kernel control object that allows device drivers to register interrupt
service routines (ISRs) for their devices. An interrupt object contains all the information
the kernel needs to associate a device ISR with a particular level of interrupt, including the
address of the ISR, the interrupt request level (IRQL) at which the device interrupts, and
the entry in the kernel's interrupt dispatch table with which the ISR should be associated.

interrupt request (IRQ) A value identifying an interrupt. On x86 systems, external I/O
interrupts come into one of the lines on an interrupt controller. The controller in turn
interrupts the processor on a single line. Once the processor is interrupted, it queries the
controller to get the interrupt request (IRQ). The interrupt controller translates the IRQ
to an interrupt number, uses this number as an index into the interrupt dispatch table
(IDT), and transfers control to the appropriate interrupt dispatch routine. At system boot
time, Windows 2000 fills in the IDT with pointers to the kernel routines that handle each
interrupt and exception.

interrupt request levels (IRQLs) An interrupt priority scheme imposed by Windows
2000. The kernel represents IRQLs internally as a number from 0 through 31, with higher
numbers representing higher-priority interrupts. Although the kernel defines the stan
dard set of IRQLs for software interrupts, the HAL maps hardware-interrupt numbers
to the IRQLs,

Glossary

interrupt service routine (ISR) A device driver routine that the kernel's interrupt dis
patcher transfers control to when a device issues an interrupt. In the Windows 2000 I/O
model, ISRs run at a high device interrupt request level (IRQL), so they perform as little
work as possible to avoid blocking lower-level interrupts unnecessarily. An ISR queues
a deferred procedure call (DPC), which runs at a lower IRQL, to execute the remainder
of interrupt processing. Only drivers for interrupt-driven devices have ISRs; a fIle system,
for example, doesn't have one.

job object A nameable, securable, shareable object in Windows 2000 that controls cer
tain attributes of processes associated with the job. A job object's basic function is to allow
groups of processes to be managed and manipulated as a unit. The job object also records
basic accounting information for all processes associated with the job and for all processes
that were associated with the job but have since terminated.

journaling A logging technique originally developed for transaction processing that a
recoverable fIle system such as NTFS uses to ensure volume consistency.

kernel The lowest layer in Ntoskrnl.exe. The kernel, a component of the executive, deter
mines how the operating system uses the processor or processors and ensures that they
are used prudently. The kernel provides thread scheduling and dispatching, trap handling
and exception dispatching, interrupt handling and dispatching, and multiprocessor
synchronization. See also executive.

kernel debugger A tool used to debug drivers, troubleshoot hung systems, and examine
crash dumps. It is also a useful tool for investigating Windows 2000 internals because
it can display internal Windows 2000 system information not visible through any stan
dard utility. (The LiveKd tool on the companion CD allows the use of the standard kernel
debuggers on a live system.)

kernel handle table A table (referenced internally with the name ObpKernelHandleTable)
whose handles are accessible only from kernel mode and in any process context. A kernel
mode function can reference the handles in this table in any process context with no
performance impact.

kernel memory dump A type of memory dump (the default on Windows 2000 Server
systems) that contains only the kernel-mode read/write pages present in physical memory
at the time of the crash. A kernel memory dump doesn't contain pages belonging to user
processes. Because only kernel-mode code can directly cause Windows 2000 to crash,
however, it's unlikely that user process pages are necessary to debug a crash. There is no
way to predict the size of a kernel memory dump because its size depends on the amount
of kernel-mode memory allocated by the operating system and drivers present on the
machine.

kernel mode A privileged mode of code execution in a processor in which all memory is
totally accessible and all CPU instructions can be issued. Operating system code (such
as system services and device drivers) runs in kernel mode. See also user mode.

kernel objects A primitive set of objects implemented by the Windows 2000 kernel. These
objects aren't visible to user-mode code but are created and used only within the execu
tive. Kernel objects provide fundamental capabilities, such as synchronization, on which
executive objects are built. See also executive objects.

855

INSIDE MICROSOFT WINDOWS 2000

856

kernel streaming filter drivers Kernel-mode drivers chained together to perform signal
processing on data streams, such as recording or displaying audio and video.

kernel-mode device driver The only type of driver that can directly control and access
hardware devices.

kernel-mode graphics driver A Win32 subsystem display or print device driver that
translates device-independent graphics (GDI) requests into device-specific requests.

key A mechanism to refer to data in the registry. Although keys appear in the object
manager namespace,the registry manages them in a way similar to how it manages file
objects. Zero or more key values are associated with a key object; key values contain data
about the key.

key control block A structure that stores the full pathname of a registry key, includes
the cell index of the key node that the control block refers to, and contains a flag that
notes whether the configuration manager needs to delete the key cell that the key con
trol block refers to when the last handle for the key closes. In Windows 2000, all key
control blocks are in an alphabetized binary tree to enable quick searches for existing key
control blocks by name. A key object points to its corresponding key control block, so
if two applications open the same registry key, each will receive a key object and both
key objects will point to a common key control block.

key object An object type the configuration manager defines to integrate the registry's
namespace with the kernel's general namespace.

last known good control set A copy of the critical boot-time information under the
registry key HKLM\SYSTEM\CurrentControISet, made when a user successfully logs on.
The last known good control set can be selected at boot time in case configuration changes
made to the registry result in the system not being able to boot successfully.

lazy IRQL A performance optimization that avoids Programmable Interrupt Controller
(PIC) accesses. When the interrupt request level (IRQL) is raised, the HAL notes the
new IRQL internally instead of changing the interrupt mask. If a lower-priority inter
rupt subsequently occurs, the HAL sets the interrupt mask to the settings appropriate
for the first interrupt and postpones the lower-priority interrupt until the IRQL is low
ered. Thus, if no lower-priority interrupts occur while the IRQL is raised, the HAL
doesn't need to modify the PIC.

lazy writer A set of system threads that call the memory manager to flush cache contents
to disk as a background activity (asynchronous disk writing). The cache manager opti
mizes disk I/O by using its lazy writer.

legacy drivers Device drivers written for Microsoft Windows NT but that run unchanged
on Windows 2000. They are differentiated from other Windows 2000 drivers in that
they don't support power management or work with the Windows 2000 Plug and Play
manager.

local file system driver (FSD) A driver that manages volumes directly connected to the
computer. See also file system driver.

local procedure call (LPC) An interprocess communication facility for high-speed mes
sage passing (not available through the Win32 API but rather through an internal
mechanism available only to Windows 2000 operating system components). LPCs are

Glossary

typically used between a server process and one or more client processes of that server.
An LPC connection can be established between two user-mode processes or between a
kernel-mode component and a user-mode process.

local security authority (lSA) server A user-mode process running the image \Winnt\
System32\Lsass.exe that is responsible for the local system security policy (such as which
users are allowed to log on to the machine, password policies, privileges granted to users
and groups, and the system security auditing settings), user authentication, and send
ing security audit messages to the Event Log. The LSA service (Lsasrv - \Winnt\System32\
Lsasrv.dll), a library that Lsass loads, implements most of this functionality.

local security authority (lSA) server policy database A database (stored in the reg
istry under HKLM\SECURITY) that contains the system security policy settings. This
database includes such information as what domains are trusted to authenticate logon
attempts, who has permission to access the system and how (interactive, network, and
service logons), who is assigned which privileges, and what kind of security auditing is
to be performed.

log file A metadata file (filename $LogFile) NTFS uses to record all operations that affect
the NTFS volume structure, including file creation or any commands, such as Copy,
that alter the directory structure. The log file is used to recover an NTFS volume after
a system failure.

log hive A registry hive the configuration manager uses to make sure that a nonvolatile
registry hive (one with an on-disk file) is always in a recoverable state. Each nonvolatile
hive has an associated log hive, which is a hidden file with the same base name as the hive
and a .log extension. See also hive.

logging A transaction-processing technique NTFS uses to maintain file system integrity
in case of system crashes or other failures. In NTFS logging, the sub operations of any
transaction that alters important file system data structures are recorded in a log file before
they are carried through on the disk so that if the system crashes, partially completed
transactions can be redone or undone when the system comes back on line.

logical cluster numbers (leNs) The numbers of all clusters from the beginning of the
volume to the end with which NTFS refers to physical locations ona disk. To convert
an LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to get
the physical byte offset on the volume, as the disk driver interface requires.

logical sequence numbers (lSNs) The numbers that NTFS uses to identity records
written to the log file.

logon process A user-mode process running Winlogon.exe that is responsible for capturing
the username and password, sending them to the local security authority server for veri
fication, and creating the initial process in the user's session.

look-aside list A fast memory allocation mechanism that contains only fixed-sized blocks.
Look-aside lists can be either pageable or nonpageable, so they are allocated from paged
or nonpaged pool.

mapped file I/O The ability to view a file residing on disk as part of a process's virtual
memory. A program can access the file as a large array without buffering data or per
forming disk I/O. The program accesses memory, and the memory manager uses its

857

INSIDE MICROSOFT WINDOWS 2000

858

paging mechanism to load the correct page from the disk file. If the application writes
to its virtual address space, the memory manager writes the changes back to the file
as part of normal paging.

mask The process whereby interrupts wait for an executing thread to lower the IRQL
before the interrupt is processed. Interrupts from a source with an IRQL above the
current level interrupt the processor, whereas interrupts from sources with IRQLs equal
to or below the current level are masked until an executing thread lowers the IRQL.

master file table (MFT) The heart of the NTFS volume structure. The MFT is imple
mented as an array of file records. The size of each me record is fixed at 1 KB, regard
less of cluster size.

memory manager The Windows 2000 executive component that implements demand
paged virtual memory, giving each process the illusion that it has a 4-GB 32-bit address
space (while mapping a subset of that address space to physical memory).

metadata Data that describes the files on a disk; also called volume structure data.

metadata files A set of files in each NTFS volume that contains the information used to
implement the file system structure.

MFT mirror An NTFS metadata file (filename $MFTMirr) located in the middle of the
disk called that contains a copy of the first few rows of the master file table.

miniport driver A type ofkernel-mode device driver that maps a generic I/O request to
a type of port into an adapter type, such as a specific SCSI adapter.

mirrored volume A volume on which the contents of a partition on one disk are dupli
cated in an equal-sized partition on another disk. Mirrored volumes are sometimes referred
to as RAID level 1 (RAID-I).

mirror set A technique by which the contents of a partition on one disk are duplicated
in an equal-size partition on another disk.

modified page writer A thread in the virtual memory manager that is responsible for
limiting the size of the modified page list by writing pages to their backing store loca
tions when the list becomes too big. The modified page writer consists of two system
threads: one to write out modified pages (MiModifiedPageWriter) to the paging file and
a second one to write modified pages to mapped files (MiMappedPageWriter).

mount A technique NTFS uses when it first accesses a volume; in this context, to mount
means to prepare the volume for use. To mount the volume, NTFS looks in the boot
file to find the physical disk address of the master file table.

mount points A mechanism that permits the linking of volumes through directories on
NTFS volumes, which makes volumes accessible with no drive-letter assignment. Reparse
points in NTFS make mount points possible.

MSDN Microsoft Developer Network, Microsoft's support program for developers. MSDN
offers three CD-ROM subscription programs: MSDN Library, Professional, and Uni
versal.For more information, see msdn. microsoft. com.

Glossary

multipartition volumes Objects that represent sectors from multiple partitions and that
file system drivers manage as a single unit. Multipartition volumes offer performance,
reliability, and sizing features that simple volumes don't.

mutant Internal name for a mutex.

mutex A synchronization mechanism used to serialize access to a resource.

name retention The first phase of object retention, which the object manager implements.
Name retention is controlled by the number of open handles to an object that exist. Every
time a process opens a handle to an object, the object manager increments the open
handle counter in the object's header. As processes finish using the object and close their
handles to it,the object manager decrements the open handle counter. When the counter
drops to 0, the object manager deletes the object's name from its global namespace. This
deletion prevents new processes from opening a handle to the object.

native application An application that uses only system service APIs provided by Ntdll
and that isn't a client of the Win32 subsystem. Smss (Session Manager) is an example
of a native application.

network file system driver (FSD) A driver that allows users to access data volumes
connected to remote computers. See also file system driver.

network logon service A user-mode service inside the Services.exe process that responds
to network logon requests. Authentication is handled as locallogons are, by sending them
to the Lsass process for verification.

network redirectors and servers File system drivers that transmit remote I/O requests
to a machine on the network and receive such requests, respectively.

nonpaged pool Memory pool that consists of ranges of system virtual addresses that are
guaranteed to be resident in physical memory at all times and thus can be accessed from
any address space without incurring paging I/O. Nonpaged pool is created at system
initialization and is used by kernel-mode components to allocate system memory.

Ntdll.dll A special system-support library primarily for the use of subsystem DLLs that
contains System service dispatch stubs to Wmdows 2000 executive system services and
internal support functions used by subsystems, subsystem DLLs, and other native images.

Ntkrnlmp.exe The executive and kernel for multiprocessor systems.

Ntoskrnl.exe The executive and kernel for uniprocessor systems.

object In the Windows 2000 executive, a single, run-time instance of a statically defined
object type.

object attribute A field of data in an object that partially defines the object'S state.

object directory A container object for other objects. The object directory is used to
implement the hierarchical namespace within which other object types are stored.

859

INSIDE MICROSOFT WINDOWS 2000

860

object handle An index into a process-specific handle table, pointed to by the executive
process (EPROCESS) block.

object manager The Windows 2000 executive component responsible for creating,
deleting, protecting, and tracking objects. The object manager centralizes resource
control operations that would otherwise be scattered throughout the operating system.

object methods The means for manipulating objects, usually to read or change the object
attributes. For example, the open method for a process would accept a process identifier
as input and return a pointer to the object as output.

object reuse protection A means of preventing users from seeing data that another user
has deleted or from accessing memory that another user previously used and then released.
Object reuse protection prevents potential security holes by initializing all objects, including
files and memory, before they are allocated to a user.

object type A system-defined data type, including services that operate on instances of
the data type and a set of object attributes; sometimes called an object class.

page directory A page the memory manager creates to map the location of all page tables
for that process. Each process has a single page directory.

page directory entries (PDEs) The page directory is composed ofPDEs, each of which
is 4 bytes long and describes the state and location of all the possible page tables for that
process.

page fault A reference to an invalid page. The kernel trap handler dispatches this kind
offault to the memory manager fault handler (MmAccessFault) to resolve.

page file backed section A section object that is mapped to committed memory.

page file quota A limit on the number of committed pages a process can consume-not
necessarily page file space.

page frame database A database that describes the state of each page in physical memory.
Pages are in one of eight states: active (also called valid), transition, standby, modified,
modified-no-write, free, zeroed, or bad.

page frame number (PFN) database Describes the state of each page in physical memory.

page table· A page of mapping information (made up of an array of page table entries)
the operating system constructs that describes the location of the virtual pages in a pro
cess address space. Because Windows 2000 provides a private address space for each
process, each process has its own set of process page tables to map that private address
space because the mappings will be different for each process. The page tables that describe
system space are shared among all processes.

page table entry (PTE) An entry in a process's page table that contains the address to which
the virtual address is mapped. The page can be in physical memory or it can be on disk.

paged pool A region of virtual memory in system space that can be paged in and out of
the system process's working set. Paged pool is created at system initialization and is used
by kernel-mode components to allocate system memory. Uniprocessor systems have two
paged pools; multiprocessor systems have four. Having more than one paged pool reduces
the frequency of system code blocking on simultaneous calls to pool routines.

Glossary

paging The process of moving memory contents to disk, freeing physical memory so that
it can be used for other processes or for the operating system itself. Because most systems
have much less physical memory than the total virtual memory in use by the running
processes (2 GB or 3 GB for each process), the memory manager transfers, or pages, some
of the memory contents to disk.

partition A discrete area of the hard disk in Microsoft operating systems. File systems (such
as FAT and NTFS) format each partition into a volume. A hard disk can contain up to
four primary partitions. See also extended partition.

partition table A part of the master boot record (MBR) that consists of four entries that
define the locations of as many as four primary partitions on a disk. The partition table
also records a partition's type. Numerous predefined partition types exist, and a partition's
type specifies which file system the partition includes.

Physical Address Extension (PAE) A memory-mapping mode included in all Intel x86
processors since the Pentium Pro. With.the proper chipset, the PAE mode allows access
to up to 64 GB of physical memory. When the x86 executes in PAE mode, the memory
management unit (MMU) divides virtual addresses into four fields.

physical device object (PDO) A device object that's a required part of a devnode. The
PDO represents the physical interface to a device. See also devnode.

Plug and Play (PnP) manager A major component of the executive that determines
which drivers are required to support a particular device and loads those drivers. The PnP
manager retrieves the hardware resource requirements for each device during enumera
tion. Based on the resource requirements of each device, the PnP manager assigns the
appropriate hardware resources such as I/O ports, IRQs, DMA channels, and memory
locations. It is also responsible for sending proper event notification for device changes
(addition or removal of a device) on the system.

port driver A type of kernel-mode device driver that implements the processing of an I/O
request specific to a type of I/O port, such as SCSI.

port object A single executive object a local procedure call (LPC) exports to maintain
the state needed for communication.

power manager A major component of the executive that coordinates power events and
generates power management I/O notifications to device drivers. When the system is
idle, the power manager can be configured to reduce power consumption by putting the
CPU to sleep. Changes in power consumption by individual devices are handled by device
drivers but are coordinated by the power manager.

printer driver A driver that translates device-independent graphics requests to printer
specific commands. These commands are then typically forwarded toa kernel-mode port
driver such as the parallel port driver (Parport.sys) or the USB printer port driver
(Usbprint.sys).

private cache map A structure that. contains the location of the last two reads so that
the cache manager can perform intelligent reaq.cahead.

process The virtual address space and. control information necessary for the execution
of a set of thread objects.

861

INSIDE MICROSOFT WINDOWS 2000

862

process 10 A unique identifier for a process (internally called a client ID).

process working set The subset of a process's virtual address space that is resident and
owned by the running process. See also system working set.

processor affinity The set of processors a thread is permitted to run on.

processor control register (peR) A data structure that along with its extension, the
processor control block (PRCB), contains information about the state of each processor
in the system, such as the current interrupt request level (IRQL), a pointer to the hard
ware interrupt dispatch table (IDT), the currently running thread, and the next thread
selected to run. The kernel and the HAL use this information to perform architecture
specific and. machine-specific actions. Portions of the PCR and PRCB structures are
defined publicly in the Windows 2000 Device Driver Kit (DDK) header file Ntddk.h.

protected-mode A state during the boot process in which no virtual-to-physical trans
lation occurs but a full 32 bits of memory becomes accessible. After the system is in
protected-mode, Ntldr can access all of physical memory.

protocol driver A driver that implements a networking protocol such as TCP /IP,
NetBEUI, or IPX/SPX.

prototype page table entries (prototype PTEs) A software structure the memory
manager relies on to map potentially shared pages when a page can be shared between
two processes. An array of prototype PTEs is created when a section object is first created.

quality of service (Qos) A networking technology that ensures that critical network
applications receive highest priority.

quantum The length of time a thread is allowed to run before Windows 2000 interrupts
the thread to find out whether another thread at the same priority level is waiting to run
or whether the thread's priority needs to be reduced.

quantum unit A value that represents how long a thread can run until its quantum expires.
This value is an integer value, not a length of time.

queue A method for threads to enqueue and dequeue notifications of the completion of
I/O operations (called an I/O completion port in the Wm32 API).

queued spinlock Aspecial type of spinlock that is used only by the kernel and not exported
for executive components or device drivers. A queued spinlock scales better on multi
processor systems than a standard spinlock does. See also spinlock.

quota charges In the Windows 2000 object manager, the record of how much the object
manager subtracts from a process's allotted paged and/or nonpaged pool quota when
a thread in the process opens a handle to the object.

RA10-5 volume A fault tolerant variant of a regular stripe volume. Fault tolerance is
achieved by reserving the equivalent of one disk for storing parity for each stripe. Also
called stripe volume with parity.

ready summary A 32-bit mask (KiReadySummary) that Windows 2000 maintains to
speed up the selection of which thread to run or preempt.

Glossary

real-mode An operating mode in which no virtual-to-physical translation of memory
addresses occurs, which means that programs that use the memory addresses interpret
them as physical addresses and that only the first 1 MB of the computer's physical memory
is accessible. Simple MS-DOS programs execute in a real-mode environment.

recoverability An advanced feature of NTFS that allows a system to recover from an
unexpected system halt. If a system is halted unexpectedly, the metadata of a FAT vol
ume can be left in an inconsistent state, leading to the corruption of large amounts of
file and directory data. NTFS implements recoverability by logging changes to metadata
in a transactional manner so that file system structures can be repaired to a consistent state
with no loss of file or directory structure information. (File data can be lost, however.)

redo information Information included in the NTFS checkpoint record that explains how
to reapply one suboperation of a fully logged (committed) transaction to the volume if
a system failure occurs before the transaction is flushed from the cache.

reference count The object manager's record of how many object pointers it has dispensed
to operating system processes. The object manager increments a reference count for an
object each time it gives out a pointer to the object; when kernel-mode components finish
using the pointer, they call the object manager to decrement the object's reference count.

reparse data User-defined data about the file or directory, such as its state or location,
that can be read from the reparse point by the application that created the data, a file
system filter driver, or the I/O manager.

reparse point An NTFS file or directory that has a block of data called reparse data asso
ciated with it.

resident attribute An attribute that is stored directly in the master file table. (If a file is
small, all its attributes and their values [its data, for example] fit in the file record.)

resource arbitration A process by which the Plug and Play (PnP) manager optimally
assigns hardware resources so that each device meets the requirements necessary for its
operation. Because hardware devices can be added to the system after boot-time resource
assignment, the PnP manager must also be able to reassign resources to accommodate
the needs of dynamically added devices.

restricted token A token created from a primary or impersonation token using the
CreateRestrictedToken function. The restricted token is a copy of the token it's derived
from, with some possible modifications: Privileges can be removed from the token's
privilege array. SIDs in the token can be marked as deny-only. SIDS in the token can be
marked as restricted.

ring A privilege level defined in the Intel x86 processor architecture to protect system code
and data from being overwritten either inadvertently or maliciously by code of lesser
privilege. Windows2000 uses privilege level 0 (or ring 0) for kernel mode and privilege
level 3 (or ring 3) for user mode.

safe mode A boot configuration that consists of the minimal set of device drivers and
services. By relying on only the drivers and services that are necessary for booting,
Windows 2000 avoids loading third-party and other nonessential drivers that might crash.

863

INSIDE MICROSOFT WINDOWS 2000

864

SAM database A database (stored in the registry under HKLM\SAM) that contains the
defined users and groups, along with their passwords and other attributes.

scatter/gather I/O A kind of high-performance I/O Wmdows 2000 supports, available
via the Wm32 ReadFileScatter and WriteFileGather functions. These functions allow an
application to issue a single read or write from more than one buffer in virtual memory
to a contiguous area of a file on disk. To use scatter/gather I/O, the file must be opened
for noncached I/O, the user buffers being used have to be page-aligned, and the I/Os
must be asynchronous (overlapped).

section object An object that represents a block of memory that two or more processes
can share. A section object can be mapped to the paging file or to another file on disk.
The executive uses section objects to load executable images into memory, and the cache
manager uses them to access data in a cached file. In the Win32 subsystem, a section
object is called a flle-mapping object.

section object pOinters Structure for each open file (represented by a file object) that
is the key to maintaining data consistency for all types of file access as well as to providing
caching for files. The section object pointers structure points to one or two control areas.
One control area is used to map the file when accessed as a data file; and one is used to
map the file when it is run as an executable image.

sector A hardware-addressable portion of a physical disk. A hard disk sector on an IBM
compatible PC is typically 512 bytes. Utilities that prepare hard disks for the definition
oflogical drives, including the MS-DOS Fdisk utility or the Windows 2000 Setup pro
gram, write a sector of data called a master boot record (MBR) to the first sector on a
hard disk. The MBR includes a fixed amount of space that contains executable instruc
tions (called boot code) and a partition table with four entries that define the locations
of the primary partitions on the disk. See also boot code, partition table.

secure attention sequence (SAS) A keystroke combination that when entered notifies
Wmlogon of a user logon request.

Security Accounts Manager (SAM) service A set of subroutines responsible for man
aging the database that contains the usernames and groups defined on the local machine
or for a domain (if the system is a domain controller). The SAM runs in the context of
the Lsass process.

security auditing A way in which Windows 2000 detects and records important security
related events or any attempts to create, access, or delete system resources. Logon iden
tifiers record the identities of all users, making it easier to trace anyone who performs
an unauthorized action.

security identifier (SID) A means of uniquely identifying entities that perform actions
in a system. A SID is a variable-length numeric value that consists of a SID structure
revision number, a 48-bit identifier authority value, and a variable number of 32-bit
subauthority or relative identifier (RID) values.

security reference monitor (SRM) A component in the Windows 2000 executive
(Ntoskrnl.exe) that enforces security policies on the local computer. It guards operating
system resources, performing run-time object protection and auditing.

Glossary

semaphore A counter that provides a resource gate by allowing some maximum number
of threads to access the resources protected by the semaphore.

server processes User processes that are Windows 2000 services, such as the Event Log
and Schedule services. Many add-on server applications, such as Microsoft SQL Server and
Microsoft Exchange Server, also include components that run as Windows 2000 services.

session Consists of the processes and other system objects (such as the window station,
desktops, and windows) that represent a single user's workstation logon session. Each
session has a session-specific paged pool area used by the kernel-mode portion of the
Win32 subsystem (Win32k.sys) to allocate session-private GUI data structures. In addi
tion, each session has its own copy of the Win32 subsystem process (Csrss.exe) and logon
process (Winlogon.exe).

session space A component of system space used to map information specific to a user
session. (Windows 2000 supports multiple user sessions when Terminal Services is installed.)
The session working set list describes the parts of session space that are resident and in use.

shared cache map A structure that describes the state of a cached file, including its size
and (for security reasons) its valid data length.

shared memory Memory visible to more than one process or that is present in more than
one virtual address space.

signal state The state of a synchronization object.

simple volume A set of objects that represent sectors from a single partition that file
system drivers manage as a single unit.

single sign-on The ability for logon information to be simultaneously authenticated on
more than one system. For example, a user logging on to a Windows 2000 system might
simultaneously be authenticated on a UNIX server. That user would then be able to
access resources of the UNIX server from the machine running Windows 2000 with
out requiring additional authentication.

small memory dump A small memory dump (the default on Windows 2000 Professional,
64 KB in size) containing the stop code and parameters, the list of loaded device drivers,
the data structures that describe the current process and thread (called the EPROCESS
and ETHREAD), and the kernel stack for the thread that caused the crash.

spanned volume A single logical volume composed of a maximum of 32 free partitions
on one or more disks. The Windows 2000 Disk Management Microsoft Management
Console (MMC) snap-in combines the partitions into a spanned volume, which can then
be formatted for any of the file systems that Windows 2000 supports.

sparse files Files, often large, that contain only a small amount of nonzero data relative
to their size.

spinlock The locking mechanism the kernel uses to achieve multiprocessor mutual exclu
sion. The spinlock gets its name from the fact that the kernel (and thus, the processor)
is held in limbo, "spinning," until it gets the lock. Spinlocks, like the data structures they
protect, reside in global memory. See also queued spinlock.

865

INSIDE MICROSOFT WINDOWS 2000

866

stack frame Information, representing the activation of a procedure, that is pushed onto
the stack when a procedure is invoked. A stack frame can have one or more exception
handlers associated with it, each of which protects a particular block of code in the source
program.

stream A sequence of bytes within a file.

striped volume Series of up to 32 partitions, one partition per disk, that combines into
a single logical volume. Striped volumes are also known as RAID level a (RAID-a) vol
umes. A partition in a striped volume need not span an entire disk; the only restriction
is that the partitions on each disk be the same size.

structured exception handling A type of exception handling that allows applications
to gain control when exceptions occur. The application can then fix the condition and
return to the place the exception occurred, unwind the stack (thus terminating execu
tion of the subroutine that raised the exception), or declare back to the system that the
exception isn't recognized, and continue searching for an exception handler that might
process the exception.

subsection A structure that describes the mapping information for each section of the
file (read-only, read-write, copy-on-write, and so on).

subsystem dynamic-link libraries (OLLs) DLLs that translate a documented function
into the appropriate undocumented Windows 2000 system service calls. This translation
might or might not involve sending a message to the environment subsystem process that
is serving the user application.

symbolic link A mechanism for referring to an object name indirectly.

symmetric encryption algorithm An algorithm that uses the same key to encrypt and
decrypt data. Symmetric encryption algorithms are typically very fast, which makes them
suitable for encrypting large amounts of data, such as file data. They do have a weak
ness, however; their security can be bypassed if their key is obtained.

symmetric multiprocessing (SMP) A multiprocessing operating system in which there
is no master processor-the operating system as well as user threads can be scheduled
to run on any processor. All the processors share just one memory space.

synchronization A thread's ability to synchronize its execution by waiting for an object
to change from one state to another. A thread can synchronize with executive process,
thread, file, event, semaphore, mutex, and timer objects. Section, port, access token,
object directory, symbolic-link, profile, and key objects don't support synchronization.

synchronous 1/0 A model for I/O in which a device performs a data transfer and returns
a status code when the I/O is complete. The program can then access the transferred
data immediately. When used in their simplest form, the Win32 ReadFile and WriteFile
functions are executed synchronously. They complete an I/O operation before return
ing control to the caller.

system access-control list (SACL) Specifies which operations by which users should
be logged in the security audit log.

Glossary

system audit ACE An access-control entry (ACE) contained by a system access-control
list (SACL) that, along with the system audit-object ACE, specifies which operations
performed on the object by specific users or groups should be audited. System audit
object ACEs specify a GUID indicating the types of objects or subobjects that the ACE
applies to and an optional GUID that controls propagation of the ACE to particular child
object types. If an SACL is null, no auditing takes place on the object.

system cache Pages used to map files open in the system cache.

system page table entries (PTEs) Pool of system PTEs used to map system pages such
as I/O space, kernel stacks, and memory descriptor lists.

system service dispatch table Table in which each entry contains a pointer to a system
service rather than to an interrupt handling routine.

system services (or executive system services) Native functions in the Wmdows 2000
operating system that are callable from user mode. For example, NtCreateProcess is the
internal system service the. Win32 CreateProcess function calls to create a new process.

system support processes User processes, such as the logon process and the Session
. Manager, that are not Windows 2000 services (that is, not started by the service con
troller).

system thread A kind of thread that runs only in kernel mode. System threads always
reside in the System process (always process ID 2). These threads have all the attributes
and contexts of regular user-mode threads (such as a hardware context, priority, and so
on) but run only in kernel-mode executing code loaded in system-space code, whether
that be in Ntoskrnl.exe orin any other loaded device driver. System threads don't have
a user pro(:ess address space and hence must allocate any dynamic storage from operat
ing system memory heaps, such as paged or nonpaged pool.

system worker threads Threads created in the System process during system initiali
zation that exist solely to perform work on behalf of other threads.

system working set The physical memory being used by the system cache, paged pool,
pageable code in Ntoskrnl.exe, and pageable code in device drivers. See also process
working set.

thread An entity within a process that Windows 2000 schedules for execution. A thread
includes the contents of a set of volatile registers representing the state of the proces
sor; two stacks, one for the thread to use while executing in kernel mode and one for
executing in user mode; a private storage area for use by subsystems, run-time libraries,
and DLLs; and a unique identifier called a thread ID (also internally called a client ID).

thread context A thread's volatile registers, the stacks, and the private storage area.
Because this information is different for each machine architecture that Windows 2000
runs on, this structure is architecture-specific. In fact, the CONTEXT structure returned
by the Wm32 GetThreadContextfunction is the only public data Structure in the Win32
API that is machine-dependent.

timer A mechanistn that notifies a thread when a fixed period of time elapses.

867

INSIDE MICROSOFT WINDOWS 2000

868

transaction An I/O operation that alters ftle system data or changes the volume's direc
tory structure. The separate disk updates that make up the transaction must be executed
atomically; that is, once the transaction begins to execute, all its disk updates must be
completed. If a system failure interrupts the transaction, the part that has been completed
must be undone, or rolled back. The rollback operation returns the database to a previ
ously known and consistent state, as if the transaction had never occurred.

transaction table A table that keeps track of transactions that have been started but that
aren't yet committed. The suboperations of these active transactions must be removed
from the disk during recovery.

transition A kind ofinvalid page table entry (PTE) in which the desired page is in memory
on either the standby, modified, or modified-no-write list. The page is removed from
the list and added to the working set.

translation look-aside buffer A CPU cache of recendy translated virtual page numbers.

trap A processor's mechanism for capturing an executing thread when an exception or
an interrupt occurs, switching it from user mode into kernel mode, and transferring
control to a fixed location in the operating system. In Windows 2000, the processor
transfers control to the kernel's trap handler.

trap frame A data structure in which the execution state of the interrupted thread is
stored. This information allows the kernel to resume execution of the thread after
handling the interrupt or the exception. The trap frame is usually a subset of a thread's
complete context.

trap handler A module in the kernel that acts as a switchboard, fielding exceptions and
interrupts detected by the processor and transferring control to code that handles the
condition.

type object An internal system object that contains information common to each instance
of the object.

Unicode An international character set standard that defines unique 16-bit values for most
of the world's known character sets.

update records The most common type of record NTFS writes to the log file. Each
update record contains the information needed to redo an operation that updated the
file system structure.

user mode The nonprivileged processor mode that applications run in. A limited set
of interfaces is available in this mode, and the access to system data is limited. See also
kernel mode.

view The portion of the section object requires by a process. A section object can refer
to files that are much larger than can fit in the address space of a process. (If the paging
file backs a.section object, sufficient space must exist in the paging ftle to contain it.) To
access a very large section object, a process can map only a view of the section by call
ing the Map ViewOjFi/e function and then specifYing the range to map. Mapping views
permits processes to conserve address space because only the views of the section object
needed at the time must be mapped into memory. See also section object.

Glossary

virtual address descriptors (VADs) Data structures the memory manager maintains
that keep track of which virtual addresses have been reserved in the process's address space.
VADs are structured as a self-balancing binary tree to make lookups efficient.

virtual address space A set of virtual memory addresses that a process can use.

virtual block caching A method the Windows 2000 cache manager uses to keep track
of which parts of which ftles are in the cache.

virtual cluster numbers (VeNs) VCNs number the clusters belonging to a particular
file from 0 through m. VCNs aren't necessarily physically contiguous, but they can be
mapped to any number of logical cluster numbers (LCNs) on a volume.

virtual device drivers (V DDs) Drivers used to emulate 16-bit MS-DOS applications.
They trap what an MS-DOS application thinks are references to I/O ports and trans
late them into native Win32 I/O functions. Because Windows 2000 is a fully protected
operating system, user-mode MS-DOS applications can't access hardware directly and
thus must go through a teal kernel-mode device driver.

virtual memory manager Implements virtual memory, a memory management scheme
that provides a large, private address space for each process that can exceed available
physical memory.

volume One or more logical disk partitions that are treated as a single unit.

volume file A system ftle (ftlename $Volume) that contains the volume name, the version
ofNTFS for which the volume is formatted, and a bit that when set signifies that a disk
corruption has occurred and must be repaired by the Chkdsk utility.

volume manager A term used to represent both FtDisk and DMIO because both FtDisk
and DMIO support the same multipartition-volume types.

volume set A single logical volume composed of a maximum of 32 areas of free space
on one or more disks.

wait block A data structure that represents a thread waiting on an object. Each thread
that is in a wait state has a list of the wait blocks that represent the objects the thread is
waiting on. Each dispatcher object has a list oEthe wait blocks that represent which threads
are waiting on the object.

wait hint A value indicating how long a service should wait before informing the system
a shutdown is complete.

WDM drivers Device drivers that adhere to the Windows Driver Model (WDM). WDM
includes suppOrt for Windows 2000 power management, Plug and Play, and Windows
Management Instrumentation (WMI). WDM is implemented on Wmdows 2000,
Wmdows 98, and Wmdows Millennium Edition, so WDM drivers are source compatible
between these operating systems and in many cases are also binary compatible. There
are three types ofWDM drivers: bus drivers, function drivers, and filter drivers.

Win32 application programming interface (API) The primary programming interface
to the Microsoft Wmdows operating system family, including Wmdows NT 4, Windows
2000, Microsoft Wmdows 95, Windows 98, Windows Millennium Edition, and Microsoft
Windows CEo

869

INSIDE MICROSOFT WINDOWS 2000

870

Win32 services A mechanism to start processes at system startup time that provide ser
vices not tied to an interactive user. Services are similar to UNIX daemon processes and
often implement the server side of client/server applications.

window station A window station contains desktops, and desktops contain windows. Only
one window station can be visible on a console and receive user mouse and keyboard
input. In a Terminal Services environment, one window station per session is visible, but
services all run as part of the console session. .

Windows 2000 drivers Device drivers that integrate with the Windows 2000 power
manager and Plug and Play manager, when required. They include drivers for mass stor
age devices, protocol stacks, and network adapters.

Windows Management Instrumentation (WMI) manager A component of the execu
tive that enables device drivers to publish performance and configuration information
and receive commands from the user~mode WMI service. Consumers ofWMI informa
tion can be on the local machine or remote across the network.

work item A unit of work placed on a queue dispatcher object when a device driver or
an executive component requests a system worker thread's services by calling the executive
functions ExQueueWorkItem or IoQueueWorkItem. Work items include a pointer to a
routine and a parameter that the thread passes to the routine when it processes the work
item. The routine is implemented by the device driver. or executive component that
requires passive-level execution.

working set A subset of virtual pages resident in physical memory. There are two kinds
of working sets-process working sets and the system working set.

working set manager A routine that runs in the context of the balance set manager
system thread to initiate automatic working set trimming to increase the amount of free
memory available in the system. Although Windows 2000 attempts to keep memory
available by writing modified pages to disk, when modified pages are being generated
at a very high rate, more memory is required to meet memory demands. The working
set manager is called when physical memory runs low (when MmAvailablePages is less
than MmMinimumFreePages).

write-back A caching strategy the lazy write file system uses to improve performance. In
write-back, the file system writes file modifications to the cache and flushes the contents
of the cache to disk in an optimized way, usually as a background activity.

write-through An algorithm the FAT file system uses that causes disk modifications to
be immediately written to the disk, Unlike the careful-write approach, the write-through
technique doesn't require the file system to order its writes to prevent inconsistencies.
See also careful write.

zero page thread A kernel-mode system thread (thread 0 in the System process). A zero
page thread zeros out pages on the free list so that a cache of zero pages is available to
satisfY future demand-zero page faults.

INDEX

Note: Italicized page references indicate figures, tables, or code listings.

A
access, remote, 834

access checks, 494-97

access-control, 507-15, 508, 509

ACL assignment, 509-11

determining access, 511-15, 514

forms of, 15

security descriptors and, 507-9,508, 509

access-control lists (ACLs), 507

assignment of, 509-11

discretionary (DACLs), 15,507-9,509

access modes, processor, 9-13, 11, 30-32. See also
kernel mode; user mode

access rights, 142-43

access tokens, 5, 6, 499-503, 500, 501

Lsass and, 85

restricted, 506

viewing, with kernel debugger, 502-3

accounts, service, 244-47

interactive services, 246-47, 247

local system account, 244-45

running services in alternate, 245, 245

ACLs. See access-control lists (ACLs)

Active Directory, '491, 835'-36,836

address space

concluding setup of process, 311-12

in Consumer Windows; 419

creating initial process, 310

layout (see address space layout)

process, 4, 8

address space layout, 417-29, 418

in Consumer Windows, 419

session space, 429, 429

address space layout, continued

system, 424-29,425,427, 428, 429

user, 420-24, 420, 421, 422

viewing process memory utilization, 422-24

address translation, 429-43, 430. See also mapping

AWE and, 401-2,402

byte within page, 438

examining page directory and PDEs, 434

example, 440-42

look-aside buffer, 439-42, 439

page directories, 433-34

page table entries, 436-38, 437

Physical Address Extension (PAE), 442-43,443

process and system page tables, 435, 436

of virtual address, 431-33,431,432

Address Windowing Extensions (AWE),
401-2,402

Administrative Tools, 86-87

affinity

processor, 337, 338, 375

thread, 368

allocation granularity, 392

alterable wait states, 112

alternative hive, 235

analysis pass of recovery, 757-58, 757

ANSI text strings, 17

APC (asynchronous procedure call) interrupts,
111-13

APIC (Advanced Programmable Interrupt
Controller), 94, 95-96

APIs. See functions; Win32 API

application programming interfaces. See functions;
Win32 API

871

INSIDE MICROSOFT WINDOWS 2000

applications

running any, as service, 243

safe-mode-aware user, 199-200

service, 237-43, 238, 239-41, 243

service control, 264-65

user, 36

assembly lariguage, 33

association class, WMI, 273-74, 274

asymmetric multiprocessing (ASMP), 34, 34

asynchronous I/O, 587-88, 588

asynchronous procedure call (APC)
interrupts, 111-13

asynchronous read-ahead with history, 670-71

atomic transactions, 700-701

attributes

file object, 554

NTFS file, 727-28

object, 14

object header, 131

resident and nonresident file, 732-35, 732,
733, 734, 735

section object, 480

type object, 134

auditing, security, 515-20, 516, 517

authentication, Kerberos, 525

AWE (Address Windowing Extensions),
401-2,402

B
backing up encrypted files, 777

bad-cluster recovery, NTFS, 705, 761-66, 762,
763,765

balance set manager, 76,367-68,462-63

base blocks, hive, 226

base named objects, viewing, 149

basic disks, 609, 620-21

basic partitioning, 610-11

batching, 52

bin, hive, 226-27

binding, 832-34, 833

blocks, hive, 226

872

blue screen mode, 207-10, 208

bodies, object, 130-32, 131, 132

boosts. See priority boosts, thread

boot code, 179, 181

Boot.ini switches, 180-82, 182-87

boot logging in safe mode, 200-201

boot partition and boot sector, 180

boot process, 177-96, 178

accepring boot and last known
good, 256-57, 257

boot sector and Ntldr, 180-89, 182-87, 189

components, 178

initializing kernel and executive subsystems,
190-94

preboot, 177-80, 179

Recovery Console and, 201-3

safe mode, 196-201

Session Manager, Win32 subsystem, and logon
process, 194-96

virtual memory and, 7

broadcasts, mailslot, 787-88, 788. See also named
pipes and mailslots

Bsod.exe tool, 213

buffer management, IRP, 567-70

bug check code. See stop code

bus drivers, 69, 100, 528, 534

byte index, 431,432

byte within page data, 438

c
C and C++ languages, 32, 33

C2-level security, 15,488-89,666

cache manager, 645-82, 714-15

cache coherency, 647-49, 648

cache data structures, 659-65

cache operation, 665-74

cache size, 654-59

cache structure, 651-54, 652, 653

cache support rourines, 675-81

executive and, 62

fast I/O, 672-74, 673, 674

cache manager, continued

file system operation and, 699-700

intelligent read-ahead, 669-71

key features, 645-51

memory manager and, 646-47

recoverable file system support, 650-51

single, centralized system cache, 646

stream-based caching, 650

system threads, 671-72

virtual block caching, 649

write-back caching and lazy writing,
665--69, 666

caching. See also cache manager

decrypted FEK, 776

distributed file, 806-7, 807

file, 589-90

recoverable file systems and, 749

callbacks, registering, 769

careful write file systems, 747-48

CD, companion~ 18-19, 19"':'20,25

CDFS (CD-ROM file system) format, 685

cell indexes, 228, 232, 232

cell maps, 230-32, 232

cells, hive, 226-32, 227, 228

centralized cache, 646

change journal file, 708-9, 743-44, 744

change logging, NTFS, 708-9

checked build version, 41-42

checkpoint records, 754-56, 755

CIFS. See Common Internet File System (CIFS)

CIM (Common Information Model), 267,
269-72,270

cipher utility, 766, 769

circular dependency errors, 251-52

class association, 273-74, 274

class drivers, 535

classes, CIM, 269-72, 270

client communication port, 175

client IDs, 5

clock interval frequency, determining, 350

close method, 136

clustering, 456, 670

clusters, 684, 717-18

dynamic remapping of bad, 705

recovery of bad, 761--66,762, 763, 765

sizes, 686, 688, 689

coherency, cache, 647-49, 648

collided page faults, 449

COM,813

committing pages, 390-91

Common Criteria (CC), 490

Common Information Model (CIM), 267,
269-72,270

Common Internet File System (CIFS),
803-7,804

distributed file caching, 806:-7, 807

implementation, 805

companion CD tools, 18-19, 19-20, 25

compatibility, 28, 30

complete memory dumps, 211

completion ports. See I/O completion ports

compression, NTFS, 708, 737-43

nonsparse data, 740-43, 741, 742

sparse data, 738-40, 738, 739, 740

sparse files, 743

Computer Management, 70, 210, 538

configuration

Driver Verifier, 413-17, 413, 415

last known good, 209, 221, 256-57, 257

memory manager, 382-84, 382-83,384

registry data, 220-21

configuration manager, 61, 192,215. See
also registry

connection-oriented NDIS, 829, 830

consolidated security, NTFS, 745-46

Index

Consumer Wmdows. See also Microsoft Windows
operating system family

virtual address space in, 419

Windows 2000 vs., 28-30

contexts

device driver, 67

initial thread, 314

873

INSIDE MICROSOFT WINDOWS 2000

contexts, continued

security, 5

thread,5

context switching, 11, 338, 359

control areas, 482, 484-86

control objects, 64

copying to and from cache, 675-76, 676

copy-on-write page protection, 398-99, 398, 399

CPU. See also processor

selecting thread to run on specific, 372-73

time limit for jobs, 374-75

CPU starvation, priority boosts for, 367-71

CPU Stress tool, 363-65, 369-71

crash dumps, 118,206,210-13,210

crashes. See system crashes

CreateProcess function, 304-17, 305

creating initial thread, 314

creating executive process object, 309-14,
312,313

notifYing Win32 subsystem about process,
314-16

opening image to be executed, 306-9, 307

performing process initialization, 316-17

starting execution of initial thread, 316

CreateThread function, 333-35, 336

critical sections, 154

critical worker threads, 166

CryptoAPI (CAPI), 768-69

Csrss. See Win32 subsystem (Csrss)

Ctrl+Alt+Delete key combination, 83, 297

Ctrl+Shift+Esc key combination, 297

Customer Support Diagnostics, 21, 23

D
DACLs (discretionary access-control lists), 15,

507-9,509

daisy-chain configurations, 106-7

data compression. See compression, NTFS

Data Link Control (DLC), 819

data redundancy, NTFS, 702

data streams. See streams

874

data structures

cache, 659-65

executive synchronization, 163-65, 164

I/O (see data structures, I/O)

NTFS,716

objects vs., 14

PFN, 474-78, 474, 475-76, 478

process (see data structures, process)

thread (see data structures, thread)

thread-scheduling, 353-54, 354, 355

data structures, I/O, 553-73

driver objects and device objects, 556-62, 562

file objects, 554-56, 554, 555

I/O completion ports, 570-73, 602-3, 603

I/O request packets (IRPs) (see I/O request
packets (IRPs))

data structures, process, 277-92, 278, 279,
289-90,291

contents of EPROCESS block, 289-90

displaying format of EPROCESS block, 280-88

examining PEB, 292

structure ofKPROCESS block and PEB, 291

data structures, thread, 317-29, 318, 319, 320-21,
327, 328

contents ofETHREAD block, 319

contents of KTHREAD block, 320-21

displaying ETHREAD and KTHREAD
structures, 321-27

dumping, 330-31

examining TEB, 328-29, 328

fibers vs. threads, 318

structure ofETHREAD block, 318

data types, registry, 216-17, 216, 227

DCOM,813

DDK. See Device Driver Kit (DDK)

debugging. See also errors; exception dispatching;
kernel debuggers; kernel debugging tools

debug version of Windows 2000, 41-42

Dr. Watson and, 118-21

decays, priority, 362, 363-65

decryption, 775-77. See also Encrypting File
System (EFS) security

deferred procedure call objects, 64

deferred procedure calls, 107-11

defragmentation, NTFS, 712-13, 713

delayed worker threads, 166

delete method, 136

demand-paging policies, 455

Dependency Walker tool

listing undocumented functions, 73

viewing image subsystem type, 49

dereference segment thread, 381

design

evolution of file system, 746-49

NTFS, 700-702

Windows 2000 I/O system, 527-28

Windows NT, 27-30

desired access rights, 142

desktops, 246, 297

Device directory, 558-59

Device Driver Kit (DDK), 22, 24-25

device drivers, 37, 67-71, 532-41

boot, 188-89

control of device power, 553

device enumeration, 575-79, 576, 577

devnode driver loading, 581-83, 582, 583

devnodes, 579-81, 580

disk,618

driver installation, 583-86, 584, 585

Driver Verifier and, 413-17, 413

dumping device tree, 578-79

I/O interface, 528

I/O request to layered, 597-601, 598, 599,
600,601

I/O request to single-layered, 590-96, 591

listing dispatch routines, 565-66

listing fast I/O routiries, 589

loading, initialization, and installation
of, 573-86

loading, in safe mode, 197-99

mapping system threads to, 79-83

memory protection and, 10

NDIS (see NDIS drivers)

device drivers, continued

nonpaged pools and, 403

object access, 137

physical memory access, 431

Plug and Play support, 544-46, 545, 546

power operation, 550

registry parameters, 239-41

startup, 251-54, 251

Start value, 574-75

storage (see storage drivers)

structure of, 539-41, 539

system crashes and, 196,206,207

types of, 67-68,533-39, 536, 537

viewing installed, 70-71

viewing loaded driver list, 538-39

Windows 2000 enhancements, 68-69

device enumeration, 575-79, 576, 577

Device Manager, 67, 220, 576, 577

device objects, 556-62, 562

displaying, 563

viewing device name mappings, 560-61

viewing device names, 558-59

device tree, 575-76, 576, 578-79

devnodes, 575, 579-83, 580, 582, 583

DFS (Distributed File System), 839-40, 840

dial-up remote access, 834

direct memory access. See DMA (direct
memory access)

directories

Active Directory, 491,835-36, 836

Device, 558-59

encryption and root, 712

object, 148, 150

page, 433-34

root, 724

Directory Services Restore mode, 197

dirty page table, 756-57

dirty page threshold, calculating, 666-67,
667, 668

dirty sector array, 234

Index

875

INSIDE MICROSOFT WINDOWS 2000

discretionary access-control lists (DACLs), 15,
507-9,509

Disk Defragmenter utility, 713

Disk Manager, 629

Disk Probe utility, 229, 229

disks, 608. See also storage management

basic and dynamic, 609

defragmenting,713

drive letters (see drive letters)

drivers, 618

forcing cache to write through to, 668, 668

management of basic, 620-21

management of dynamic, 621-23, 622, 623

monitoring performance, 624

dispatch code, 104

dispatcher database, 353, 354

dispatcher headers, 163-64

dispatcher objects

executive synchronization and, 158

as kernel objects, 64

signaled state, 161-63, 161, 162

waiting on, 159-60, 159

dispatcher ready queue, 353

dispatching, thread, 338

dispatching, trap. See trap dispatching

dispatch procedure calls, 107-11

dispatch routines, listing driver, 565-66

display drivers, 533

distributed file caching, 806-7, 807

Distributed File System (DFS), 839-40, 840

DLC (Data Link Control), 819

DLLs (dynamic-link libraries), 4

subsystem, 37,47-50,60 (see also environment
subsystems)

DMA (direct memory access)

cache manager interface, 679, 679, 680

memory manager services, 390

DmDiag tool, 614-15

Domain Name System (DNS), 819

DPC (deferred procedure call) interrupts, 107-11

DPC objects, 64

876

drive letters

assignment, 634

name resolution, 696, 696

object directory and, 150

SCM and network, 250

driver objects, 556-58, 563. See also
device objects

drivers

device (see device drivers)

ND IS (see ND IS drivers)

protocol, 819-22

Drivers utility, 70, 538

Driver Verifier, 10, 104,413-17, 413, 415

Dr. Watson tool, 120-21

Dumpbin utility, 82

Dumpchk tool, 212, 213

dump files, crash, 118,206,210-13,210

dynamic bad-cluster remapping, 705

dynamic disk management, 609, 621-23,
622,623

dynamic-link libraries. See DLLs (dynamic-link
libraries)

dynamic partitioning, 611-17, 612, 613

dynamic worker threads, 167

E
echo command, 704

editions, Wmdows 2000. See product packaging

EFSDump utility, 778

Encrypting File System (EFS) security, 711-12,
766-78, 766, 768

backing up encrypted files, 777

constructing key rings, 770-72, 771, 772

decrypting FEK caching, 776

decrypting file data, 776-77

decryption process, 775-77

encrypting file data, 772-74, 773

encrypting file for first time, 769-75

encryption process summary, 774--75

registering callbacks, 769

viewing EFS information, 778

enumeration, device, 575-79, 576, 577

environment subsystems, 36,47-60,48

OS/2 subsystem, 58-60, 59

POSIX subsystem, 55-58 (see also POSIX
subsystem)

subsystem DLLs and, 47-50,48

viewing image subsystem type, 49

Win32 stability, 53-55

Win32 subsystem, 2-3, 51-55 (see also Win32
subsystem (Csrss»

EPROCESS (executive process) block,
277-79,279

contents of, 289-90

displaying format of, 280-88

setting up, 310

errors. See also exception dispatching

exceptions, 89, 90

service failures, 258, 258

service startup, 251-52, 255-56, 255

ETHREAD (executive thread) blocks, 278,
317-19, 318, 319, 321-27

Event Log, 255, 255, 268-69

Event Manager, 265

events

objects, 149

priority boosts after waiting for, 362

Event Viewer, 44-45, 265

exception dispatching, 113-21, 114, 116, 119. See
also errors

exceptions, 89, 90

unhandled exceptions, 120-21

viewing real user start address for Win32
threads, 117

executable image. See image, executable

executive, 37, 60-63

initializing, 190-94

object access, 137

objects, 127, 128-29, 128, 129

process objects (see executive process objects)

resources, 158-59

support routines, 63

Index

executive, continued

synchronization (see executive synchronization)

system services, 3

executive process block. See EPROCESS
(executive process) block

executive process objects, 309-14

completing setup of, 313-14

concludirig setup of process address
space, 311-12

creating initial process address space, 310

creating kernel process block, 311

setting up EPROCESS block, 310

setting up PEB, 312, 312, 313

executive synchronization, 158-65

data structures, 163-65, 164

viewing wait queues, 165

waiting on dispatcher objects, 159-60, 159

what signals an object, 161-63, 161, 162

executive thread blocks. See ETHREAD
(executive thread) blocks

Exetype tool, 48, 49

explicit file I/O, 695-99, 696

extended partitions, 178-79,179,610

extending Winsock, 795-96

extensibility, 28

extensions, Winsock, 794-95

F
F8 key, 188, 196, 209

FlO key, 202

failures, service, 258, 258

fast I/O, 588-89

cache manager and, 649, 672-74, 673, 674

listing driver routines for, 589

fast LPC, 52

FAT12, FAT16, and FAT32 formats, 685-89,
686, 687, 688

fault tolerance, NTFS, 702

FEK (file encryption key), 776

fetch policy, 455

877

INSIDE MICROSOFT WINDOWS 2000

fibers vs. threads, 318

file caching, 589-90

distributed, 806-7, 807

file control block (FCB), 716

file encryption key (FEK), 776

file I/O, explicit, 695-99, 696

file mapping objects, 6, 30, 394, 478. See also
section objects

Filemon tool, 638-39, 639,792, 792

filenames, NTFS, 729-31, 729, 730, 731

file objects, 554-56, 554, 555

file records, 726-29, 726, 727-28

file reference numbers, 725, 726

File Replication service (FRS), 838-39

files

crash dump, 210-13,210

disabling lazy writing for, 668

encrypting (see Encrypting File System
(EFS) security)

mapped (see mapped files; section objects)

NTFS file records, 718-25, 719

per-file cache data structures, 661-65, 662,
663,664

registry hives, 224-29, 224

resident and nonresident attributes, 732-35,
732, 733, 734, 735

sparse, 708, 743

system files (see system files)

systems (see file systems)

file system drivers (FSDs), 68, 533, 690-700

executive and, 62

file system operation, 694-700, 695

local, 690-91, 691

NTFS, 713-16, 714, 715, 716

remote, 692-94, 692

viewing list of registered file systems, 694

volume mounting and, 641-43

file-system filter drivers, 68, 693

File System Recognizer, 643

878

file systems, 683-778

cache manager and recoverable, 650-51

cache manager's lazy writer and, 699

cache manager's read-ahead thread and, 700

careful write, 747-48

CDFS, 685

driver architecture (see file system drivers
(FSDs))

encryption (see Encrypting File System (EFS)
security)

evolution of, 746-49

explicit I/O, 695-99, 696

FATl2, FAT16, and FAT32, 685-89, 686,
687, 688

lazy write, 748

memory manager's modified and mapped page
writer and, 699

memory manager's page fault handler and, 700

NTFS, 689, 689 (see also NTFS format)

operation, 694-700, 695

preboot and, 180

recoverable, 748-49

UDF, 685

viewing list of registered, 694

Windows 2000 formats, 684-89

filter drivers, 68, 69, 534, 693

flags. See global flags

flushing

mapped files, 669

variables for cache, 668

foreground threads, 352-53, 352, 353

priority boosts and decays, 363-65

fork function, POSIX, 399

formats, file system, 684-89

CDFS, 685

FATl2, FATl6, and FAT32, 685-89, 686,
687, 688

NTFS, 689,689

UDF,685

frame-based exception handlers, 115

freeware tools, 25

function drivers, 69, 534

functions, 3-4

Active Directory, 835

cache support (see functions, cache support)

determining clock interval frequency, 350

determining system memory size, 384

DLL,4

encrypted file, 778

environmental subsystems and, 49

executive, 60-63

heap, 400

job-related, 374

listing driver dispatch, 565-66

listing fast I/O, 589

listing undocumented, 73

locking pages, 392

memory mariager, 390

process creation (see CreateProcess function)

process-related, 294, 294-95

registry, 16

run-time library, 63

start-of-process and start-of-thread, 116-18

subsystem DLL, 60

system memory size, 384

thread creation, 333-35, 336

thread-related, 330, 330-31

thread scheduling-related, 343-44

Unicode and, 17

Win32 API, 2-3

windowing and graphics system, 37

Windows 2000 kernel support, 4

functions, cache support, 675-81

copying to and from cache, 675-76, 676

direct memory access (DMA) interfaces, 679,
679,680

mapping and pinning interfaces, 677-78,
677, 678

viewing write-throttle parameters, 681

write throttling, 680-81

G
GDI (Graphics Device Interface), 37,

51-52, 53-55

general indexing facility, 705

GetSID utility, 498

GetSystemTimeAdjustment function, 350

GetThreadContext function, 5

Gflags tool, 168-69, 169, 170-71, 170

GINA (Graphical Identification and
Authentication), 84-85,247,491

global flags, 168-71, 169, 170-71, 170

global namespace, 151

global variables. See variables, kernel

Graphical Identification and Authentication
(GINA), 84-85, 247, 491

Graphics Device Interface (GDI), 37,
51-52,53-55

granted access rights, 142

granularity

allocation, 392

thread,338

groups, service, 248, 249

GUI (graphical user interface), 37

GUID partition table partitioning, 616-17

GUI threads, priority boosts and, 365-67

H
HandleEx tool, 126, 225, 481

handles

object (see handles, object)

processes and, 4

registry, 217

viewing hive, 225

handles, object, 14-15, 137-42, 139, 140

viewing open, 126

viewing open, with Nthandle, 138

handle tables

kernel,141

process, 137-42, 139, 140

viewing, 141-42

Index

879

INSIDE MICROSOFT WINDOWS 2000

hard disks. See disks

hard faults, 471

hard links, 706-7

hardware

architectures, 32-33

device drivers, 68

interrupts (see hardware interrupt processing)

kernel support, 65

profiles, 221

PTEs, 436-38, 437

hardware abstraction layer (HAL), 37, 66-67,
66,530,534

determining, 67

portability and, 33

Hardware Compatibility List (HCL) testing, 413

hardware interrupt processing, 92-96, 94

viewing contents ofIDT, 92-93

viewing PIC and APIC, 95-96

headers, object, 130-32, 131, 132

heap and heap manager, 400

heap functions, 400

hives, 224-29, 224

stable storage, 234-35

structure, 226-29, 227, 228, 229

viewing hive handles, 225

viewing paged pool usage, 230-31

hive sync, 235

HKEY_CLASSES_ROOT key, 217, 218, 219-20

HKEY_CURRENLCONFIG key, 217, 218, 221

HKEY_CURRENT_USER key, 217, 218,
218,219

HKEY_LOCAL_MACHINE key, 217, 218,
220-21

HKEY]ERFORMANCE_DATA key, 217,
218,222

HKEY_USERS key, 217, 218, 219

hypercritical worker threads, 166

hyperspace, 426

880

I
I386kd.exe, 19,21. See also kernel debuggers

i82489 Advanced Programmable Interrupt
Controller (APIC), 94, 95-96

i8259A Programmable Interrupt Controller
(PIC), 94, 95-96

ideal processor, 371, 372

Idle process, 13, 74, 75, 75, 360

idle thread, 359-60

IDT (interrupt dispatch table), viewing contents
of, 92-93

image, executable

enabling image loader tracing, 170-71

opening, for process creation, 306-9, 307

viewing subsystem type, 49

image database, 252-53

impersonation, 494, 504-6

increase scheduling priority privilege, 346

indexing, file attribute, 705, 735-37, 736

INF files, 530

inheritance designation, 140

inheritance rules for ACEs, 508

initialization

Driver Verifier, 413-17, 413, 415

kernel and executive subsystems, 188-94

process, 316-17

thread, 335, 336

Winlogon, 522-23

initialized threads, 349

initial threads, 309, 310

in-paging I/O, 448-49

installation, driver, 583-86, 584, 585

installed device drivers, viewing, 70-71

installed services, listing, 86-87

instancing, namespace, 151, 152

Intel Itanium processor family, 32, 380

intelligent read-ahead, 669-71

asynchronous, with history, 670-71

file system operation and, 700

virtual address, 670

interactive services, 246-47, 247

interfaces

cache manager DMA, 679,679,680

cache manager mapping and pinning, 677-78,
677, 678

viewing undocumented, 71-74, 72

Interix, 56

Internet Protocol security (IPSec), 841-42

inter-processor interrupt (IPI), 100

interrupt dispatching, 91-113

hardware interrupt processing, 92-96, 94

monitoring interrupt and DPC activity, III

software interrupt request levels (IRQLs),
96-107, 97, 99

software interrupts, 107-13

using Kernel Profiler to profile execution,
102-3

viewing IDT contents, 92-93

viewing IRQL, 98

viewing PIC and APIC, 95-96

Wmdows 2000 and real-time processing, 105

interrupt dispatch table (IDT), viewing contents
of,92-93

interrupt request levels (IRQLs), 96-107, 97, 99

forcing IRLQ checking, 416-17

interrupt objects, 104-7

mapping interrupts to, 100-101

predefined, 101-4

priority levels vs., 347-48, 347

synchronization and, 156

using Kernel Profiler to profile
execution, 102-3

viewing, 98

Wmdows 2000 and real-time processing, 105

interrupt requests (IRQs), 92

interrupts, 89, 90

dispatching (see interrupt dispatching)

exceptions and, 114

hardware (see hardware interrupt processing)

IRPs and servicing, 592-93, 592, 594

interrupts, continued

mapping, to IRQLs, 100-101

objects, 104-7

software (see software interrupts)

interrupt service routine (ISR), 91

I/O
explicit file, 695-99, 696

fast, 588-89

in-paging, 448-49

listing fast I/O routines, 589

mapped file, and file caching, 589-90

processing (see I/O processing)

scatter/gather, 590

Index

synchronous and asynchronous, 587-88, 588

system (see I/O system)

types of, 587-90

IoCompletion object, 571-72

I/O completion ports, 570-73 .

IoCompletion object, 571

operation, 602-3, 603

using, 572-73, 572

I/O manager, 62, 193, 528, 531-32

I/O processing, 586-605

I/O completion port operation, 602-3, 603

I/O request to layered drivers, 597-601, 598,
599, 600, 601

I/O request to single-layered driver,
590-96,591

synchronization, 604-5, 604

types ofI/O, 587-90

volume, 632-34, 633

watching mirrored volume, 629-30

I/O request packets (IRPs), 531-32,
562-70,564

buffer management, 567-70

examining thread IRP queue and, 568~70

to layered drivers, 597-601, 598, 599, 600, 601

listing driver dispatch routines, 565-66

to single-layered driver, 590-96, 591

stack locations, 564-66

881

INSIDE MICROSOFT WINDOWS 2000

I/O system, 527-606

components, 528-53, 529, 531

data structures, 553-73

device drivers, 532-41 (see also device drivers)

driver loading, initialization, and
installation, 573-86

I/O manager, 531-32

I/O processing (see I/O processing)

Plug and Play (PnP) manager, 541-46

power manager, 546-53, 547, 548

priority boosting after I/O completion,
361-62, 361, 362

Wmdows 2000 design goals, 527-28

IRPs. See I/O request packets (IRPs)

IRQLs. See interrupt request levels (IRQLs)

J
job objects, 7, 374-78, 374. See also processes

junctions, 706-7

Junction tool, 707

K
Kd.exe tool, 19,21

KeBugCheckEx function, 91, 101

Kerberos authentication, 525

kernel,37

handle table, 141

hardware support, 65

initializing, 188-94

memory dumps, 211

mode (see kernel mode)

Ntoskrnl and, 63-65 (see also Ntoskrnl)

objects, 64,127

portability and, 33

support functions, 4

synchronization, 154-57, 155

variables (see. variables, kernel)

kernel debugger commands

!ca command, 485-86

!defwrites command, 681

!devnode command, 578-79

882

kernel debugger commands, continued

!devobj command, 563

!drivers command, 77, 389, 539

!drvobj command, 563, 565-66, 589,640-41

!ethread command, 321-27

!exqueue command, 168

!filecache command, 658-59

!file command, 484

19f1ag and 19f1ags commands, 171

!handle command, 126, 151-52, 303, 4;84

Udt command, 92-93, 101

Urp command, 569-70

Urpfind command, 570

!job command, 376-78

Ilookaside command, 412

Ilpe command, 173

!memusage command, 388-89, 469, 484-85

!miniport and !miniports commands, 826-28

!object command, 126, 558-59

!pcr command, 98

!peb command, 292

!pfo command, 477-78

!pic and !apic commands, 95-96

!pocaps command, 551-52

!poolused command, 407-8

!popolicy command, 552-53

!process command, 165,281, 302-3, 332,434,
441,503

!processfields command, 280-88

!pte command, 441-42, 436

!qlock command, 157

!ready command, 337

!regpool command, 230-31

!session command, 84

!stacks command, 77-78, 83, 568

!strct command, 282, 303

!teb command, 328-29

!thread command, 165, 303, 332, 569

!token command, 503

!tokenfields command, 502-3

Ivad command, 454

kernel debugger commands, continued

!verifier command, 416

!vm command, 386-87

!vpb command, 640-41

!wsle command, 461-62

!xpool command, 408-11

kernel de buggers

accounting for physical memory use, 388-89

booting and, 41

displaying driver and device objects, 563

displaying EPROCESS block format, 280-88

displaying EPROCESS block information,
302-3

displaying ETHREAD and KTHREAD
structures, 321-27

displaying PDE and PTE, 441-42

displaying system memory information, 386-87

dumping device tree, 578-79

dumping thread data structures, 332

examining IRPs and thread IRP queue, 568-70

examining page directory and PDEs, 434

examining PEB, 292

examining PTEs, 436

examining TEB, 328-29

identifYing system threads, 77-78

listing global symbols, 82

listing loaded NDIS miniports, 826-28

listing system worker threads, 168

LiveKd and, 19-20

Microsoft, 21-23

monitoring pool usage, 407-11

viewing access tokens, 502-3

viewing cache working set, 658-59

viewing control areas, 484-86

viewing device names, 558-59

viewing driver dispatch routines, 565-66

viewing driver fast I/O routines, 589

viewing handle table, 141-42

viewing hive paged pool usage, 230-31

viewing IDT, 92-93

viewing IRQL, 98

kernel debuggers, continued

viewing job objects, 376-78

viewing look -aside lists, 412

viewing LPC port objects, 173-74

viewing multiple sessions, 84

viewing NtGlobalFlag kernel variable, 171

viewing object manager database, 126

viewing PFN database, 469

viewing PFN entries, 477-78

viewing PIC and APIC, 95-96

viewing pool statistics, 416

Index

viewing power capabilities and policy, 551-53

viewing queued spinlocks, 157

viewing ready threads, 337

viewing V ADs, 454

viewing VPBs, 640-41

viewing wait queues, 165

viewing working set list, 461-62

viewing write-throttle parameters, 681

kernel debugging tools, 21-24

LiveKd tool, 23

Microsoft, 19,21-23 (see also kernel debuggcrs)

SoftICE,23

symbols for kernel debugging, 23-24

Kernel Memory Space Analyzer, 212

kernel mode

APCs,112

components, 36, 36, 37

stability and, 53-55

system thread, 75 (see also system threads)

thread scheduling and, 357

user mode vs., 9-13, 11, 30-32

kernel process blocks. See KPROCESS (kernel
process) blocks

Kernel Profller tool, 101, 102-3

kernel security device driver, 492

kernel streaming filter drivers, 68

kernel thread blocks. See KTHREAD (kernel
thread) blocks

kernel variable performance counter extension
DLL,19-20

883

INSIDE MICROSOFT WINDOWS 2000

key control blocks, 233-34

key objects, 233

key rings, constructing, 770-72, 771, 772

keys

registry, 216 (see also registry; root keys,
registry)

WMI,272

Knowledge Base, 22

KPROCESS (kernel process) blocks, 290, 291

creating, 305, 311

dumping, 441

KTHREAD (kernel thread) blocks, 319, 320-21

displaying, 321-27

L
last known good control sets, 209, 221,

256-57,257

last processor, 371, 372

layered design, 33

layered drivers, 537, 597-601, 598, 599, 600, 601

layered network services, 834-43

Active Directory, 835-36, 836

Distributed File System (DFS), 839-40, 840

File Replication service (FRS), 838-39

Network Load Balancing, 837, 838

remote access, 834

TCP lIP extensions, 840-43, 843

layers, OSI, 781-82

lazy evaluation, 399,452-53

lazy IRQL, 99

lazy write file systems, 748-49

lazy writing. See write-back caching and lazy
writing

LDM (Logical Disk Manager) database,
611-15, 613

Linkd tool, 707

links, hard, 706-7

link tracking, NTFS, 710-11

LiveKd tool, 19-20,23,405

In utility, 706

load balancing, network, 837, 838

884

loaded driver list, viewing, 538-39

local file system drivers (FSDs), 690-91, 691

local namespace, 151

local procedure calls (LPCs), 171-75, 175

executive and, 63

viewing LPC port objects, 172-74

local security authentication server process
(Lsass), 74, 85,172,173,249,490

local system account, 244-45

locking memory, 392

log file service (LFS), 714, 750-52, 750, 751

logging

boot, in safe mode, 200-201

change, 708-9 (see also logging, NTFS)

error event, 255

hives, 234-35

logging, NTFS, 650, 708-9, 724, 749-56

log file service (LFS), 750-52, 750, 751

log record types, 752-56

log hives, 234-35

logical blocks, 649

logical cluster numbers (LCNs), 718

Logical Disk Manager (LDM) database,
611-15, 613

logon process (Winlogon), 521-26, 522,491

boot process and, 194-96

crash dumps and, 211

LPCs and, 172

as system process, 74, 83-85

user logon steps, 523-26

Winlogon initialization, 522-23

log record types, NTFS, 752-56

checkpoint records, 754-56, 755

update records, 752-54, 753

look-aside buffer, translation, 439-42, 439

look-aside lists, 411-12,672

low resources simulation, 417

LPCs. See local procedure calls (LPCs)

Lsass. See local security authentication server
process (Lsass)

M
mailslots. See named pipes and mailslots

Managed Object Format (MOF) language,
269-72,270

management mechanisms. See registry;
services; Windows Management
Instrumentation (WMI)

mapped file I/O, 589-90

mapped files

flushing, 669

section objects and, 380 (see also
section objects)

shared memory and, 393-95, 393

mapped page writer, 381

file system operation and, 699

mapping

AWE and memory, 401-2,402

cache manager mapping interface, 677-78,
677,678

dynamic bad-cluster remapping, 705

interrupts to IRQLs, 100-101

system-to-device power, 550

VCN-to-LCN, 724, 734-35, 734, 735

virtual memory to physical memory, 8-9, 9,
430-31, 430 (see also address translation)

Win32 to Windows 2000 device names, 560-61

masked interrupts, 99,156

master boot record (MBR), 179-80

master file table (MFT), NTFS, 718-25, 719

memory descriptor list (MDL), 679, 680

memory management, 379-486

address space layout (see address space layout)

address translation (see address translation)

components and services (see memory manager)

crash dumps (see crash dumps)

job and process memory limit, 376

page fault handling, 443-52, 444

page frame number (PFN) database, 465-78,
466, 467, 468

real-mode vs. protected mode, 181

section objects, 478-86, 479, 480, 482

stacks (see stacks)

memory management, continued

system memory pools, 403-17,404

Index

virtual address descriptors (VADs), 452-54, 453

virtual address space and processes, 4

virtual address space in Consumer
Windows, 419

virtual memory, 7-9,8, 9,379-80

working sets, 455-65

memory manager, 380-402

accounting for physical memory use, 387-89

Address Windowing Extensions (AWE),
401-2,402

allocation granularity and, 392

cache manager and, 646-47

components, 380-82

configuring, 382-84, 382-83, 384

copy-on-write page protection, 398-99,
398,399

determining system memory size, 384

examining memory usage, 385-89

executive and, 63

file system operation and, 699, 700

heap functions, 400

initialization, 191

locking memory, 392

protecting memory, 10, 395-97, 396-97

reserving and committing pages, 390-91

services, 389-402

shared memory and mapped files, 393-95, 393

viewing system memory information, 385-87

menu, boot-selection, 181, 188, 196

Message Queuing, 813-14

metadata, 650, 684

locations, 677

NTFS files, 719

recoverability and, 689

methods, object, 14, 135-37, 135

MFT. See master file table (MFT), NTFS

microkernel-based system, Windows 2000 as, 31

Microsoft Developer Network (MSDN), 2, 24

Microsoft kernel debuggers, 21-23. See also
kernel debuggers

885

INSIDE MICROSOFT WINDOWS 2000

Microsoft Management Console (MMC), 538

Microsoft Windows 2000

cache manager (see cache manager)

Consumer Windows vs., 28-30

Customer Support Diagnostics, 21, 23

device driver enhancements, 68-69

Device Driver Kit (DDK), 22, 24-25

device name mappings, 560-61

file system formats, 684-89 (see also file systems;
NTFS format)

global flags, 168-71, 169, 170

I/O system (see I/O system)

kernel mode vs. user mode, 9-13, 11

Knowledge Base, 22

as microkernel-based system, 31

objects and handles, 14-15 (see also
handles; objects)

networking (see networking)

processes, threads, and jobs, 4-7, 6 (see also job
objects; processes; threads)

real-time processing and, 105, 347, 361

registry, 16 (see also registry)

resource kits, 21

security, 15-16 (see also security)

services, functions, and routines, 3--4 (see also
functions; services)

startup and shutdown (see startup and
shutdown)

storage management (see storage management)

Support Tools, 20-21

system architecture (see system architecture)

system crashes, 206-7 (see also system crashes)

system mechanisms (see system mechanisms)

thread scheduling, 337-41 (see also thread
scheduling)

tools (see tools)

Unicode, 17

versions (see product packaging)

virtual memory, 7-9, 8, 9 (see also memory
management)

Win32 API, 2-3

886

WMI (see Windows Management
Instrumentation (WMI))

Microsoft Windows NT

Diagnostics, 44-46

handle table, 139

multiprocessing, 34

performance and event monitoring, 265

Performance Monitor, 363-65

requirements and design goals, 27-30

security, 15

Win32 and, 3

Microsoft Windows operating system family

Consumer Windows (see Consumer Windows)

Unicode and, 17

Win32 API and, 2

Windows 2000 (see Microsoft Windows 2000)

Windows 2000 vs. Consumer Windows, 28-30

Windows NT (see Microsoft Windows NT)

miniport drivers, 535

miniports, NDIS, 783. See also NDIS drivers

listing loaded, 826-28

variations on, 828

mirrored volumes, 627-30, 628, 702

MmlsThisAnNtAsSystem function, 40, 384

MmQjterySystemSize function, 384

mode transitions, 11

modified page writer, 381,472-74, 473

file system operation and, 699

MOF (Managed Object Format) language,
269-72,270

more command, 704

mounting, volume, 639--43, 642

Mount Manager, 634-36, 635

mount points, 636-39

recursive, 638-39

MSDN (Microsoft Developer Network), 2, 24

multipartition volume management, 609, 624-34

mirrored volumes, 627-30, 628

RAID-5 volumes, 630-32, 631

spanned volumes, 625-26, 625

striped volumes, 626-27, 626, 627

multipartition volume management, continued

volume I/O operations, 632-34, 633

watching mirrored volume I/O operations,
629-30

multiple provider router (MPR), 814-17,
815, 816, 817

Multiple UNC Provider (MUP), 817-19, 818

multiprocessing. See symmetric multiprocessing
(SMP)

multitasking, 33

mutexes, 149, 163

mutual exclusion, 153-54

N
named objects, viewing base, 149

named pipes and mailslots, 785-92

implementation, 788-92, 789

listing named pipe namespace and watching
named pipe activity, 790-92

mailslot operation, 787-88, 788

named pipe operation, 785-87, 787

names. See also namespaces

device (see names, device)

drive-letter name resolution, 696, 696

function name prefixes, 72

Idle process, 360

memory manager, 384, 390

NetBIOS, 801-8, 809

network resource (see network-resource name
resolution)

NTFS file, 729-31, 729, 730, 731

object (see names, object)

registry, 216

retention, 143

services, 86

Unicode, 705

names, device

storage drivers and, 619-20, 620

viewing, 558-59

viewing mappings of, 560-61

names, object, 146-50, 148

object directories, 150

symbolic links, 150

viewing base named objects, 149

namespaces. See also names

file system, 136

listing named pipe, 790-92

object manager, 136

registry, 136,233-34

Terminal Services, 151-52

volume (see volume namespace)

Win32, 560-61

WMI,272-73

Nbstat command, 809

NDIS drivers, 783, 823-32, 823

connection-oriented, 829, 830

listing loaded miniports, 826-28

Index

using Network Monitor to capture network
packets, 830-32

variations on miniports, 828

NetBEUI, 820

NetBIOS, 801-11

implementation, 810-11, 810

names, 807-8

operation, 808-9

viewing names with Nbstat command, 809

network address translation (NAT), 840-41

networbng, 779-844

binding, 832-34, 833

layered network services, 834-43

NDIS drivers, 823-32, 823

network drive letters, 250

networbng APIs (see networking APIs)

network-resource name resolution, 814-19

OSI reference model, 780-84, 780

protocol drivers, 819-22

Windows 2000 components, 782-84, 784

networbng APIs, 782, 784-814

COM and DCOM, 813

Common Internet File System (CIFS),
803-7, 804

887

INSIDE MICROSOFT WINDOWS 2000

networking APIs, continued

Message Queuing, 813-14

named pipes and mailslots, 785-92

NetBIOS, 807-11

remote procedure call (RPC), 798-803

Telephony, 811-13, 812

Windows Sockets (Winsock), 793-98

Network Load Balancing, 837, 838

network logon service (Netlogon), 492

Network Monitor, 830-32, 831, 832

network packets, capturing, 830-32

network redirectors and servers, 68, 649

network-resource name resolution, 814-19

Domain Name System (DNS), 819

multiple provider router (MPR), 814-17, 815,
816, 817

Multiple UNC Provider (MUP), 817-19, 818

Nfi utility, 720-23

nonpaged pool, 403, 404

nonresident attributes, 732-35, 732, 733,
734, 735

nonsignaled state, 160

nonsparse data, compressing, 740-43, 741, 742

Ntddk.h file, 163, 484

Ntdll.dll file, 60

NTFS format, 689, 689

bad-cluster recovery, 705, 761-66, 762,
763,765

change logging, 708-9

compression and sparse flies, 708

creating hard links, 706

creating junctions, 707

data redundancy and fault tolerance, 702

defragmentation, 712-13, 713

design goals, 700-702

driver, 713-16, 714, 715, 716

encryption, 711-12 (see also Encrypting File
System (EFS) security)

examining streams, 704

888

NTFS format, continued

file system driver, 713-16, 714, 715, 716

general indexing facility, 705

hard links and junctions, 706-7

link tracking, 710-11

multiple data streams, 703-4

on-disk structure (see NTFS on-disk structure)

per-user volume quotas, 709-10, 710

POSIX support, 712

recoverability, 700-701

recovery (see recovery, NTFS)

security, 701

Unicode names, 705

NTFS on-disk structure, 717-46

change journal, 743-44, 744

clusters, 717-18

consolidated security, 745-46

data compression and sparse files, 737-43

filenames, 729-31, 729, 730, 731

file records, 726-29, 726, 727-28

file reference numbers, 725, 726

indexing, 735-37, 736

master file table (MFT), 718-25, 719

object IDs, 745

quota tracking, 745

reparse points, 743

resident and nonresident attributes, 732-35,
732, 733, 734, 735

viewing MFT, 720-23

volumes, 717, 717

NtGlobalFlag, 168, 170-71

Nthandle tool, 126, 138

Ntldr file, 180-89, 182-87, 189

Ntoskrnl

checking version of, 44-46

executive and, 60-63

kernel and, 63-65 (see also kernel)

multiprocessor vs. uniprocessor versions, 44

NWLink,820

o
object manager, 125-52, 128

executive and, 63

executive objects, 128-29, 129

initialization, 191

object structure, 130-52, 130

tools for exploring, 125-26

viewing namespace instancing, 152

object-oriented systems, 32

objects

APC,111

directories, 150

dispatcher, 158, 159-60, 159

DPC, 108

driver and device, 556-62, 562, 563

executive, 127, 128-29, 128, 129

executive process (see executive process objects)

file, 554-56, 554, 555

file mapping, 6, 30, 394 (see also
section objects)

handles and, 14-15

IDs, 745

interrupt, 104-7

IoCompletion, 571

kernel, 64, 127

key, 233

LPC port, 172-75, 175

protecting (see protection, object)

shared, and security, 15-16

signaled state definitions, 161-63, 161, 163

structure (see object structure)

symbolic link 150

tracking, 126

type, 132-34, 130 134

viewing base named, 149,

window station, 246-47,247

object structure, 130-52, 130

object handles and process handle table,
137-42, 139, 140

Index

object structure, continued

object headers and bodies, 130-32, 131, 132

object methods, 135-37, 135

object names, 146-50, 148

object retention, 143-44, 144

object security, 142-43

resource accounting, 145-46

Terminal Services namespace, 151-52

type objects, 132-34, 133, 134

Object viewer

exploring object manager database, 125-26

viewing base named objects, 149

viewing device name mapping, 560-61,
560,561

viewing device names, 558, 558

viewing disk devices, 620

viewing Driver directory, 250

viewing LPC port objects, 172

viewing namespace instancing, 152

viewing registered file systems, 694, 694

viewing section objects, 480

viewing type objects, 133

viewing window station objects, 246-47,247

OR tool, 480-81

open handles, viewing, 126, 138

operating system model, 30-35

kernel mode vs. user mode, 30-32

portaoility, 32-33

scalability, 35

symmetric multitasking, 33-35, 34

Windows 2000 as microkernel-based system, 31

optimizations, registry, 235-36

OS/2 subsystem, 58-60, 59

OSI (Open Systems Interconnection) reference
model, 780-84, 780

overrun detection, 415

889

INSIDE MICROSOFT WINDOWS 2000

p
packets,capturing network, 830-32

PAE (Physical Address Extension), 442-43, 443

page directories, 433-34

page directory entries (PDEs), 432, 434

page directory index, 431-32,432,433

paged pool, 403, 404

viewing hive usage, 230-31

page fault handling, 443-52, 444

collided page faults, 449

file system operation and, 700

in-paging I/O, 448-49

invalid PTEs, 445-46

page files, 450-52, 451

prototype PTEs, 446-47, 446, 448

reasons for page faults, 444

system crashes and, 207

system variables for, 656

viewing page fault behavior, 471-72

viewing page files, 450

viewing page file usage with Task Manager, 452

page files, 450-52, 451

page file backed sections, 394

viewing, 450

viewing usage with Task Manager, 452

page frame number (PFN) database, 382,
465-78, 46~ 467, 468

data structures, 474-78, 474, 475-76, 478

modified page writer, 472-74, 473

page list dynamics, 469-72, 470

viewing, 469

viewing entries, 477-78

viewing page fault behavior, 471-72

pages

copy-on-write protection, 398-99, 398, 399

page list dynamics, 469-72, 470

protecting (see protection, memory)

reserving and committing, 390-91

page table entries. See PTEs (page table entries)

page table index, 431-32,432

890

page tables, 435, 436

paging, 379

enabling, 181

policies, 455-57,456

parameters

service and driver registry, 239-41

viewing write-throttle, 681

parse method, 136, 148

partitioning, 609-17. See also multipartition
volume management

basic, 610-11

dynamic, 611-17, 612, 613

GUID partition table, 616-17

partitions, 608

preboot and, 177-80, 179

viewing LDM database using DmDiag, 614-15

pass-through filter driver, 693

PDEs (page directory entries), 432, 434

PEB (process environment block), 290, 291

examining, 292

setting up, 312, 312, 313

per-file cache data structures, 661-65, 662,
663,664

performance

monitoring disk, 624

registry and, 16,235-36

uniprocessor versions and, 44

Windows NT design goal, 28

performance counters. See also Performance tool

cache MDL activity, 680

cache physical size and page fault
information, 656

cache read activity, 676

committed memory and page file, 451

fast I/O, 674

lazy writer, 666

memory usage, 385

mode-related, 11

pinning and mapping activity, 678

process-related, 293, 294

performance counters, continued

registry and, 16,222, 222

system pool size, 404

system working set, 464

thread-related, 329, 329-30

tools and, 19-20

virtual memory use, 421, 422

Performance Data Helper, 222

Performance Monitor

watching foreground priority boosts and decays,
363-65

watching priority boosts for CPU starvation
369-71 '

watching priority boosts on GUI threads,
366-67

Performance tool, 20. See also performance
counters

accounting for physical memory use, 387-89

extension DLL, 19

kernel mode vs. user mode and, 12-13, 12

mapping system threads to device drivers
79-83 '

monitoring interrupt and DPC activity, III

viewing job objects, 376

viewing process working set sizes, 460

viewing system service activity, 125

watching mirrored volume I/O, 629-30, 630

watching thread-scheduling state changes,
339-41

Windows NT (see Performance Monitor)

per-user volume quotas, 709-10, 710

Pfmon tool, 471-72

Physical Address Extension (PAE), 442-43,443

physical memory

accounting for use of, 387-89

AWE and, 401-2, 402

cache size, 655-59, 656, 657

mapping virtual memory to, 8-9 9 430-31
430 (see also address translatio~) , ,

PIG (Programmable Interrupt Controller), 94,
95-96

pinning interface, cache manager, 677-78,
677, 678

PipeList tool, 790-92

placement policy, 456

platforms, 32-33

Platform Software Development Kit (SDK),
22,24

Plug and Play (PnP) manager, 528, 541-46

driver support, 544-46, 54~ 546

executive and, 62

initialization, 191

level of support, 543, 543

policies

driver-signing, 585-86, 585

paging, 455-57,456

power management, 549-50, 55a

viewing power management, 551-53

Poolmon utility, 406-7

Index

pools, system memory. See system memory pools

pool tagging, 406

pool tracking setting, 416

portability, 28, 32-33, 66

port drivers, 535

port objects, LPC, 172-75, 175

POSIX subsystem, 55-58

fork function, 399

In utility, 706

NTFS support for, 712

power capabilities, viewing, 551-53

power manager, 529, 546-53, 547, 548

driver control of device power, 553

driver power operation, 550-53

executive and, 62

initialization, 192

operation, 549-50, 550

viewing system power capabilities and policy,
551-53

Power Options Properties dialog box, 551-52, 52

preboot, 177-80, 179

predefined IRQLs, 101-4

891

INSIDE MICROSOFT WINDOWS 2000

preemption scenario, 356-58, 357

prefixes, function-name, 72

printer drivers, 535

priority boosts, thread, 360-73

affinity masks and, 368

choosing processor for ready thread, 372

for CPU starvation, 367-68, 369-71

for foreground threads after waits, 363

after GUI threads wake up, 365-67

ideal and last processor, 371

after I/O completion, 361-62, 361, 362

selecting thread to run on specific CPU,
372-73

on symmetric multiprocessing systems, 368

after waiting for events and semaphores, 362

watching, for CPU starvation, 367-70

watching, on GUI threads, 369-71

watching foreground decays and, 363-65

when highest-priority threads are not
running, 373

Windows 2000 cases, 359-60

priority class, job, 375

priority levels, IRQL, 97

priority levels, thread, 341-43, 341, 342

examining and specifjring, 345-46

boosts (see priority boosts, thread)

interrupt levels vs., 347-48, 347

real-time, 346-47

privileged access-control, 15

privilege levels, 10

privileges, 501

process and thread manager, 61

Process Control Manager, 376

process environment block. See PEB (process
environment block)

processes, 4-7, 6,277-303. See also threads

creation of (see CrcateProcess function)

data structures, 277-92,278,279,289-90,291

displaying EPROCESS block format, 280-88

examining and specifying priorities for, 345-46

examining PEB structure, 292

892

processes, continued

IDs, 5

job objects and, 7, 374-78, 374

kernel variables, 293, 293

page tables, 435, 436

performance counters, 293, 294

relevant functions, 294, 294-95

relevant tools, 295-303, 296

shared service, 260-63, 260-61, 262

system (see system processes)

user mode, 36

viewing EPROCESS information with kernel
debugger, 302-3

viewing job objects, 376-78

viewing memory utilization, 422-24

viewing process details with Process Viewer,
301-2

viewing process information with Task
Manager, 297-98

viewing process tree, 298-300

viewing quotas, 146

viewing security information, 517-20

viewing services running inside, 263

viewing thread activity with QuickSlice,
300-301

viewing working set sizes for, 460

working set, 455

Process Explode utility, 146, 517-20, 518

process handle table, 137-42, 139, 140. See also
handles, object

process manager initialization, 191

processor. See also CPU

access modes, 9-13,11,30-32 (see also kernel
mode; user mode)

affinity,337,338,375

ideal and last, 371, 372

Intel Itanium, 32, 380

processor control block (PRCB), 98

processor control region (PCR), 98

process/stack swapper, 381

process tree, viewing, 298-300

Process Viewer

examining and specifying process and thread
priorities, 345, 345

finding thread start address, 81

identifying system threads, 77

viewing process details with, 301-2

viewing process memory utilization, 423, 424

product packaging, 38-46, 39, 40

checked build version, 41-42

checking Ntoskrnl version, 44-46

multiprocessor-specific system files, 42-46, 42

Programming Applications for Microsoft Windows,
2,113,163

programs, 4. See also applications

protected-mode, 181

protection, memory, 395-97, 396-97

copy-on-write page protection, 398-99,
398,399

kernel mode vs. user mode and, 10

protection, object, 494-515

access checks, 494-97

access tokens, 499-503, 500, 501

impersonation, 504-6

restricted tokens, 506

security descriptors and access-control, 507-15,
508,509

security identifiers (SIDs), 497-99,499

viewing access tokens with kernel debugger,
502-3

viewing SIDs with GetSID, 498

protocol drivers, 68, 819-22

prototype page table entries (PTEs), 446-47,
446, 448

providers

network, 815

~,267,268-69,268

Pstat utility

displaying system and process memory, 386

listing loaded drivers, 70-71, 77, 81-82,
538-39

Index

PTEs (page table entries)

address translation and, 431, 433, 436-38, 437

invalid, 445-46

prototype, 446-47,446, 448

system, 426

Pviewer.exe. See Process Viewer

Pview.exe. See Process Explode utility; Process
Viewer

Q
Quality of Service (QoS), 842-43, 843

quantum, 338, 349-53

accounting, 350-51

controlling, 351-53, 351, 352, 353

determining clock interval frequency, 350

DPCs and, 110

end scenario, 358, 358

KPROCESS block and, 311

queued spinlocks, viewing, 156, 157

queues

APC,111

dispatcher ready, 353

DPC, 108-10, 109, 110

examining thread IRP, 568-70

system thread, 672

viewing wait, 165

QuickSlice tool, 300-301

quota charges, 145

quotas

page file, 450

per-user volume, 709-10, 710

resource accounting and, 145-46

viewing process, 146

quota tracking, 745

R
RAID-O volumes, 626-27,626,627

RAID-l volumes, 627-30,628,702

RAID-5 volumes, 630-32, 631, 702

893

INSIDE MICROSOFT WINDOWS 2000

ratings, security, 487-90, 488

read-ahead. See intelligent read-ahead

ReadProcessMemory function, 6

ready threads, 348

choosing processor for, 372

viewing, 337

when highest-priority aren't running, 373

real-mode, 181

real-time priorities, thread, 346-47, 361

real-time processing, Windows 2000 and, 105,
347,361

records, file, 726-29, 726, 727-28

record types. See log record types, NTFS

recoverability, NTFS, 689, 700-701

recoverable fIle system support, 650-51

recovery, NTFS, 746-61

analysis pass, 757-58, 757

bad-cluster, 761-66, 762, 763, 765

careful write fIle systems, 747-48

evolution of fIle system design, 746-49

lazy write file systems, 748

logging, 749-56

recoverable fIle systems, 748-49

redo pass, 758, 758

transaction and dirty page tables, 756-57

undo pass, 758-61, 759

Recovery Agents, 771, 772

recovery console, 201-3

recursive mount points, 638-39

redo information, 752-54, 753

redo pass of recovery, 758, 758

reentrancy,29

reference counts, 143-44, 144

Regedit and Regedt32, 216, 221

registering callbacks, 769

registry, 16,215-36

boot mode, 197-98

cell maps, 230-32, 232

configuration manager and, 61, 192, 215

data types, 216-17, 216

debugger setting, 118, 120

894

registry, continued

device drivers, 209-10

editors, 216, 221

environmental subsystems, 48,48

global flags, 168

hives, 224-29,224

hive structure, 226-29, 227, 228, 229

internals, 224-36

logical structure and root keys, 217-23, 218

memory manager, 382, 382-83; 413-14

mounted devices, 635-36, 636

namespace and operation, 233-34

Ntoskrnl version, 45

number of processors, 34

optimizations, 235-36

page fIles, 450

quantum, 351

Service Host, 262

services, 238, 238, 239-41

stable storage, 234-35

viewing hive handles, 225

viewing hive paged pool usage, 230-31

viewing registered file systems, 694

viewing SAM and SECURiTY keys, 221

viewing system page fIles, 450

watching activity of, 223

Windows 2000 version, 40-41,40

worker threads, 167

Registry Monitor utility, 223

reliability, 28

remote access, 834

remote fIle system drivers (FSDs), 692-94, 692

remote procedure call (RPC), 798-803

implementation, 802-3, 802

LPCs and 10cal-RPCs, 171, 172

operation, 798-801, 799

security, 801-2

reparse points, 636-39, 706-7, 743

replacement policy, 456-457

reserving pages, 390-91

resident attributes, 732-35, 732, 733, 734, 735

resource kits, 21

resources

accounting, 145-46

executive, 158-59

low resources simulation, 417

network name resolution (see network-resource
name resolution)

viewing process quotas, 146

restricted tokens, 506

retention, object, 143-44, 144

rings, 10

robustness, 28

rollback operations, 701

root directory, 712, 724

root keys, registry, 16,216,217-23, 218

HKEY_CLASSES_ROOT, 217, 218, 219-20

HKEY_CURRENT_CONFIG, 217, 218, 221

HKEY_CURRENT_USER, 217, 218, 218, 219

HKEY_LOCAL_MACHINE, 217, 218,
220-21

HKEY_PERFORMANCE_DATA,217,
218,222

HKEY_USERS, 217,218, 219

viewing SAM and SECURITY keys, 221

routines. See functions

RPC. See remote procedure call (RPC)

running threads, 349

run-time library functions, 63

Russinovich, Mark, 25

s
safe mode, 196-201

boot logging in, 200-201

driver loading in, 197-99

safe-mode-aware user programs, 199-200

service startup and, 252

variations, 196-97

SAM (Security Accounts Manager),221, 491

scalability, 35

scatter/gather I/O, 590

scheduling. See thread scheduling

Index

scheduling class, job, 375

section, critical, 154

section objects, 478-86, 479, 480, 482

memory mapped files as, 380

security, 397

shared memory and, 394-95

viewing, 149,480-81

viewing control areas, 484-86

sectors, 179-80,608,683

secure attention sequence (SAS), 83

security, 15-16,487-526

auditing, 515-20, 516, 517

contexts, 5

increase scheduling priority privilege, 346

Internet Protocol security (IPSec), 841-42

logon,521-26,522

NTFS, 701, 745-46 (see also Encrypting File
System (EFS) security)

object, 142-43

object protection (see protection, object)

ratings, 487-90, 488

registry keys, 220-21

RPC,801-2

section object, 397

service, 244-47

system components, 490-93,492,493

Windows 2000 vs. Consumer Windows, 29

WMI, 275, 276

Security Accounts Manager (SAM), 221, 491

security descriptors, 142, 507. See also
access-control

security identifiers. See SIDs (security identifiers)

SECURITY key, viewing, 221

security method, 136-37

security reference monitor (SRM), 62,142,172,
191,490

semaphores, 149, 362

server communication port, 175

server connection port, 175

service applications, 237-43, 238, 239-41, 243

895

INSIDE MICROSOFT WINDOWS 2000

service control manager (SCM), 247-50, 249, 250

network drive letters and, 250

safe boot and, 199

services, 260-61 (see also services)

as system process, 74, 85-87

Windows 2000 services and, 4

service control programs (SCPs), 237, 264-65

Service Host, 261-62, 262

service processes, 36

service providers, viewing Winsock, 796

services, 3-4, 236-65

accepting boot and last known good,
256-57,257

failures, 258, 258

generic object, 132

layered network (see layered network services)

listing installed, 88-87

memory manager, 389-402

object, 131-32, 132

security accounts, 244-47

service applications, 237-43, 238, 239-41, 243

service control manager (SCM), 85-87,
247-50, 249, 250

service control programs, 264-65

shared service processes, 260-63, 260-61, 262

shutdown, 259-60

SrvAny tool and running applications as, 243

startup, 251-54, 251

startup errors, 255-56, 255

viewing, running inside processes, 263

Windows 2000, 4

Session Manager (Smss)

boot process and, 194-96

Recovery Console and, 202-3

as system process, 74, 83

viewing multiple sessions, 84

sessions

NetBIOS, 808

session space, 426, 429, 429

viewing multiple, 84

working set, 455

Setup.log, 42, 46, 67

896

Setup program, 177. See also boot process

shared memory, 6, 30, 393-95, 393

shared objects and security, 15-16

shared service processes, 260-63, 260-61, 262

shutdown

service, 259-60

system, 204-6, 204

SIDs (security identifiers), 497-99, 499

viewing with GetSID, 498

signaled state, object, 160, 161-63, 161, 162

simple volumes, 608

single-layered driver, I/O request to,
590-96,591

completing, 593-96, 595, 596

servicing interrupts, 592-93, 592, 594

size

cache, 654-59

cluster, 686, 688, 689

system memory, 384, 384

small memory dumps, 211

SMP. See symmetric multiprocessing (SMP)

Smss. See Session Manager (Smss)

soft faults, 471

SoftICE debugging tool, 23

software interrupts, 107-13

asynchronous procedure call (APC), 111-13

deferred procedure call (DPC), 107-11,
109,110

monitoring interrupt and DPC activity, 111

software IRQLs. See interrupt request levels
(IRQLs)

spanned volumes, 625-26, 625

sparse data, compressing, 738-40, 738, 739, 740

sparse files, 708, 743. See also compression, NTFS

special pool setting, 414-15, 415

spinlocks

kernel synchronization and, 155-57, 155,605

viewing queued, 157

Sporder.exe, 790

stability, 53-55

stable storage, registry hive, 234-35

stacks, 5

exception handlers and stack frames, 115

initial thread, 314

IRP locations, 564-66

standby threads, 349

start address, viewing real, for Win32 threads, 117

start-of-process and start-of-thread functions,
116-18

startup and shutdown, 177--,213

boot process, 177-96, 178

POSIX,57

recovery console, 201-3

safe mode, 196-201

service, 251-56, 251, 255

shutdown, 204-6, 204

system crashes, 206-13

Start value, driver, 574-75

states

page, 466

power, 547

process, 159, 159

synchronization object, 160-63, 161, 162

thread, 348--49, 348

watching changing thread, 339--41

stop code, 207, 208-9,213

storage drivers, 617-24

basic disk management, 620-21

device naming, 619-20, 620

disk drivers, 618

disk performance monitoring, 624

dynamic disk management, 621-23, 622, 623

storage management, 607--43

evolution ofWmdows 2000 storage, 607-9

multipartition volume management, 624-34

partitioning, 609-17

storage drivers, 617-24

volume namespace, 634--43

stream control block (SCB), 716

streams

multiple data, 703--4

stream-based caching, 650

strings, Unicode, 17

striped volumes, 626-27, 626, 627

striped volumes with parity, 630-32, 631

structured exception handling, 113. See also
exception dispatching

subkeys, registry, 216. See also registry

subsystem DLLs, 37,47-50,60

subsystems. See environment subsystems

Support Tools, in Windows 2000, 20-21

swapper, 381, 462-63

symbolic links, 149, 150,226

Index

symbols for kernel debugging, 23-24

symmetric multiprocessing (SMP), 33-35, 34

kernel mode and, 54-55

synchronization and, 154

system files, 42--44, 42

thread scheduling and, 368

Windows 2000 vs. Consumer Windows, 29

synchronization, 153-65, 153

executive, 158-65

I/O processing and, 604-5,604

kernel, 154-57, 155

scalability and, 35

viewing queued spinlocks, 157

viewing wait queues, 165

synchronous I/O, 587-88, 588

Sysinternals.com tools, 25

system address space layout, 424-29, 425, 427,
428, 429

system architecture, 27-87

device drivers, 67-71

environment subsystems and subsystem DLLs,
47-60, 48

examining undocumented interfaces, 71-74, 72

executive, 60-63

hardware abstraction layer (HAL), 66-67, 66

kernel, 63-65

key system components, 46-87,47

Ntdll.dll, 60

operating system model, 30-35

overview, 35-37, 36,38

system processes (see system processes)

897

INSIDE MICROSOFT WINDOWS 2000

system architecture, continued

Windows 2000 as microkernel-based system, 31

Windows 2000 product packaging, 38-46,
39,40

Windows 2000 vs. Consumer Wmdows, 28-30

Windows NT requirements and design
goals, 27-30

system crashes, 206-13

blue screen mode, 207-10,208

crash dump files, 118,206,210-13,210

forcing, and retrieving stop code, 213

reasons for Windows 2000, 206-7

system files

core, 38

multiprocessor-specific, 42-44, 42

Wmdows 2000 versions and, 40

SYSTEM hive, 230, 235

system mechanisms, 89-176

local procedure calls (LPCs), 171-75, 175

object manager (see object manager)

synchronization (see synchronization)

system worker threads, 165-68, 167

trap dispatching (see trap dispatching)

Windows 2000 global flags, 168-71, 169, 170

system memory

determining size of, 384

values determining size of, 384

viewing information about, 385-87

system memory pools, 403-17

determining maximum sizes, 405

Driver Verifier and, 413-17,413,415

look-aside lists, 411-12

monitoring usage, 406-11

types of, 403,404

viewing look-aside lists, 412

system page tables, 435, 436

system power capabilities, viewing, 551-53

System process

identifying system threads in, 77-78

mapping system threads to device drivers,
79-83

system threads and, 74, 75-83

898

system processes, 36, 74-87

identifying system threads in System
process, 77-78

Idle process, 75, 75

listing installed services, 86-87

local security authentication server (Lsass), 85

logon (Winlogon), 83-85

mapping system threads to device
drivers, 79-83

service control manager (SCM), 85-87

Session Manager (Smss), 84

System process (see System process)

viewing multiple sessions, 84

System properties, 43, 43,210, 210, 353, 366

system service dispatching, 121-25, 122,123, 124

system service dispatch table, 122, 122, 123

system services, 3, 30, 125

system support processes, 36

system threads

identifying, in System process, 77-78

mapping, to device drivers, 79-83

System process and, 75-83

system worker (see system worker threads)

System utility, 450

systemwide cache data structures, 660-61, 660

system worker threads, 165-68, 167

cache manager and, 671-72

listing, 78, 168

system working set, 426, 455, 463-65,464,
465,656

T
targeted DPC, 108

Task Manager

examining and specifying process and thread
priorities, 345-46, 346

kernel mode vs. user mode and, 12

viewing page file usage, 452

viewing process ID, 299-300

viewing process information with, 297-98

viewing process memory utilization,
422-23,423

Task Manager, continued

viewing system cache, 657

viewing system memory information, 385, 385

TCP/IP, 820

extensions, 840-43

Internet Protocol security (IPSec), 841-42

network address translation (NAT), 840-41

Quality of Service (QoS), 842-43, 843

TDI. See Transport Driver Interface (TDI)

TDIMon utility, 822,822

TEB (thread environment block), 327, 328]
328-29

Telephony API (TAPI), 811-13, 812

Terminal Services

namespace, 151-52

registry and, 41

Task Manager and, 520

viewing namespace instancing, 152

terminated threads, 349

termination scenario, 359

text strings, Unicode, 17

thread environment block (TEB), 327, 328]
328-29

thread local storage (TLS), 5

threads, 4--7, 6] 317-33. See also processes

cache manager and system worker, 671-72

creation of, with Create Thread function,
333-35,336

creating initial, with stack and context, 314

data structures, 317-29, 318] 319] 31(}-1l]
327, 328

displaying ETHREAD and KTHREAD,
321-27

dumping data structure information with kernel
debugger, 332

examining IRP queue, 568-70

examining TEB, 328-29

fibers vs., 318

GUI,365-67

idle, 359-60

IDs, 5

kernel variables, 329, 329

memory manager, 381

threads, continued

performance counters, 329, 329-30

relevant functions, 330, 33(}-31

relevant tools, 331-33, 331

scheduling (see thread scheduling)

starting execution of initial, 316

system (see system threads)

Index

system worker (see system worker threads)

viewing activity of, with QuickSlice, 300-301

viewing information about, 333

viewing real start address for Win32, 117

viewing security information, 517-20

thread scheduling, 337-73

context switching, 359

data structures, 353-54, 354] 355

determining clock interval frequency, 350

examining and specifying process and thread
priorities, 345-46

idle thread and, 359-60

interrupt levels vs. priority levels, 347-48, 347

mode transitions and, 11

preemption scenario, 356-58, 357

priority boosts (see priority boosts, thread)

priority levels, 341-43, 341] 342

quantum, 349-53

quantum end scenario, 358, 358

real-time priorities, 346-47

relevant tools, 344-46, 344

scenarios, 355-59

termination scenario, 359

thread states, 348-49, 348

viewing ready threads, 337

viewing state changes, 339--41

voluntary switch scenario, 355-56,356

watching foreground priority boosts and decays,
363-65

watching priority boosts for CPU starvation,
369-71

watching priority boosts on qUI threads,
366-67

Win32 APIs, 343, 343-44

Windows 2000 and, 337-41

89.9

INSIDE MICROSOFT WINDOWS 2000

TLB (translation look-aside buffer), 439--42, 439

Tlist command

displaying process tree, 74

mapping service processes, 86

viewing process tree, 298-99

viewing real start address for threads, 117

viewing services running inside processes, 263

viewing thread information, 333

watching POSIX subsystem start, 57

TLS (thread local storage), 5

tokens. See access tokens

tools, 17-25, 18-19

Administrative Tools, 86-87

cipher, 766, 769

companion CD, 19-20

Computer Management, 70, 210, 538

CPU Stress, 363-65, 369-71

Dependency Walker, 49, 73

Device Driver Kit (DDK), 24-25

Device Manager, 67, 220

Disk Defragmenter, 713

Disk Probe, 229,229

DmDiag, 614-15

Drivers utility, 70, 538

Driver Verifier, 10,413-17, 413, 415

Dr. Watson, 120-21

Dumpbin,82

Dumpchk, 212, 213

EFSDump, 778

Event Viewer, 44--45

Exetype, 48, 49

for exploring object manager, 125-26

Filemon, 638-39, 639,792, 792

GetSID,498

Gflags, 168-69, 169, 170-71, 170

HandleEx, 126,225,481

Junction, 707

kernel debugging, 21-24

Kernel Memory Space Analyzer, 212

Kernel Profiler, 102-3

kernel variable performance counter extension
DLL,19-20

900

tools, continued

Linkd,707

LiveKd, 19-20, 23,405

Microsoft kernel debuggers, 21-23 (see also
kernel debuggers)

Nbstat command, 809

Network Monitor, 830-32, 831, 832

Nfl,720-23

Nthandle, 126, 138

Object viewer (see Object viewer)

OH,480-81

Performance Data Helper, 222

Performance tool, 20 (see also
Performance tool)

Pfmon, 471-72

PipeList, 790-92

Platform Software Development Kit (SDK), 24

Poolmon, 406-7

Process Control Manager, 376

Process Explode, 146, 517-20, 518

process-related, 295-303, 296

Process Viewer (see Process Viewer)

Pstat, 70-71

Regedit and Regedt32, 216, 221

Registry Monitor, 223

resource kits, 21

Setup.log, 42, 46, 67

SoftICE,23

Sporder, 790

SrvAny, 243

Support Tools, 20-21

symbols for kernel debugging, 23-24

System properties, 43

systems internals, 25

System utility, 450

Task Manager (see Task Manager)

TDIMon, 822,822

thread-related, 331-33, 331

thread scheduling-related, 344--46, 344

Tlist command (see Tlist command)

Windows NT Diagnostics, 44--45

Working Set Tuner, 455

tracing, enabling image loader, 170-71

transactions, atomic, 700-701

transaction table, 756-57

transition threads, 349

translation, address. See address translation

translation look-aside buffer (TLB), 439-42, 439

Transport Driver Interface (TDI)

clients, 782

protocols, 820-21

transports, 783

watching activity of, 822

trap, 89

trap dispatching, 89-125, 90

exception dispatching (see exception
dispatching)

interrupt dispatching (see interrupt dispatching)

system service dispatching, 121-25, 122,
123,124

trap handlers and, 89-91, 90

trap frames, 90-91

type objects, 130, 132-34, 133, 134

types, object, 14, 129

U
UDP format, 685

undocumented interfaces, 71-74, 72

undo information, 752-54, 753

undo pass of recovery, 758-61, 759

unhandled exceptions, 120-21

Unicode, 17, 705

uniprocessor-specific system files, 42-44, 42

UNIX, POSIX and, 55-56

unnamed communication port, 175

update records, 752-54, 753

user accounts, 245, 246

user address space layout, 420-24,420,421,422

user applications, 36

running, as services, 243

safe-mode-aware, 199-200

USER functions, 37, 51, 53-55

Userinit, 199, 526

Index

user logon steps, 523-26. See also logon process
(Wmlogon)

user mode

APCs, 112

components, 36, 36

job CPU time limits, 374-75

kernel mode vs., 9-13,11,30-32

thread scheduling and, 357

user profiles, 218-29

v
variables, kernel

address space, 421

cache flush operations, 668

cache MDL activity, 680

cache physical size and page fault, 656

cache read activity, 676

cache virtual size and address, 655

examining, 19, 170-71

fast I/O, 674

lazy writer, 666

memory manager, 383-84

physical memory, 478

pinning and mapping activity, 678

process-related, 293, 293

system pool size, 404

system space regions, 427

thread-related, 329, 329

thread-scheduling, 355

working set-related, 459, 465

VerifyVersionlnfo function, 41

versions, Wmdows 2000. See product packaging

views

cache, 651-54, 652, 653

section, 394

virtual address control blocks (VACBs), 660-65,
660, 663, 664

virtual address descriptors (VADs), 6,
452-54, 453

viewing, 454

virtual address read-ahead, 670

901

INSIDE MICROSOFT WINDOWS 2000

virtual address space. See address space

virtual address translation, 431-33, 431, 432. See
also address translation

virtual block caching, 649

virtual cluster numbers (VCNs), 718

virtual device drivers (VDDs), 535

virtual files, 530

virtual memory, 7-9, 8, 9, 379-80. See also
address space; memory management

cache size, 654, 655

job and process limit, 376

virtual private network (VPN) remote access, 834

volume manager, 625

volume namespace, 634-43

examining VPBs, 640-41

~ount~anagerand,634-36, 635

mount points, 636-39

recursive mount points, 638-39

volume mounting, 639-43, 642

volume parameter blocks (VPBs), 639-41

volumes

I/O operations, 632-34, 633

multipartition (see multipartition volume
management)

namespace (see volume namespace)

NTFS, 717, 717

per-user quotas, 709-10, 710

simple and multipartition, 608-9

voluntary switch scenario, 355-56, 356

W
wait blocks, 163-64, 164

wait hint, 259

waiting threads, 349

wait operations

APCs and, 112-13

dispatcher objects and, 159-60, 159

priority boosts after, 362-65

viewing wait queues, 112-13, 165

voluntary switch scenario and, 355-56, 356

well-known SIDs, 499

902

Win32 API

functions, 3 (see also functions)

thread scheduling functions, 343, 343-44

Wmdows family and, 2-3, 29

Win32 subsystem (Csrss), 51-55

boot process and, 194-96

device name mappings, 560-61

notitying, about new process, 314-16

security, 16

services, 236 (see also services)

stability, 53-55

as system process, 74

viewing real start address for threads, 117

Win32 API and, 2-3

Win64 API, 380

Windbg.exe, 19,21. See also kernel debuggers

windowing and graphics system, 37

Windows. See ~crosoft Windows operating
system family

Windows Driver ~odel (WD~), 28, 68-69,
529,534

Windows ~anagement Instrumentation (W~I),
265-75, 276, 529

architecture, 266-67, 266

class association, 273-74, 274

Common Information ~odel (CI~) and
~anaged Object Format (~OF) language,
269-72,270

implementation, 275

manager, executive and, 62

namespace, 272-73

providers, 268-69, 268

security, 275, 276

Windows Sockets (Wmsock), 793-98

extending, 795-96

extensions, 794-95

implementation, 797-98, 797

operation, 793-94, 794

viewing service providers, 796

Windows Sockets Configuration utility, 796

window stations, 246-47, 247

Winlogon. See logon process (Winlogon)

Winobj.exe. See Object viewer

WMI. See Windows Management
Instrumentation (WMI)

worker threads. See system worker threads

working set manager, 381

working sets, 379,455-65

accounting for, 388

balance set manager and swapper, 462-63

examining cache, 658-59

job minimum and maximum, 375

management, 457-62, 457, 459

paging policies, 455-57, 456

system, 463-65,464,465

viewing process working set sizes, 460

viewing working set list, 461-62

Working Set Tuner tool, 455

work items, 166

write-back caching and lazy writing, 665-69, 666

calculating dirty page threshold, 666-67,
667, 668

disabling lazy writing for file, 668

file system operation .and, 699

flushing mapped files, 669

forcing write through to disk, 668, 668

WriteProcessMemory function, 6

write throttling, 680-81

viewing parameters, 681

write-through algorithm, 747

x
x86 system space, 428

z
zero-initialized pages, 390-91

zero page thread, 381,470

Index

903

David Solomon

David Solomon, president of David Solomon Expert Seminars (www.solsem.com),
has been teaching seminars on Microsoft Windows NT and Microsoft Windows
2000 internals and systems programming since 1992.His clients include all the
major software and hardware companies, including Microsoft.

Formerly a consulting software engineer at Digital Equipment Corporation,
David worked for over nine years as a project leader and developer in the VMS
operating system development group. He left DEC to focus on evangelizing
Windows NT to the VMS customer base. His first book, Windows NT for
Open VMS Professionals (Digital Press/Butterworth Heinemann, 1996), was
based on his initial classes that explained Windows NT to VMS-knowledgeable
programmers and system managers.

In addition to organizing and teaching seminars, David is a regular
speaker at industry events such as Microsoft TechEd, Microsoft PDCs,
WinDev, and Software Development. He has also served as technical chair for
several Windows NT conferences. When he's not researching Windows 2000,
David enjoys sailing, reading, and Star Trek.

Mark Russinovich

Mark Russinovich is chief software architect and cofounder of Winternals
Software (www.winternals.com). a company that specializes in advanced sys
tems software for Microsoft Windows NT, Microsoft Windows 2000, and
Microsoft Consumer Windows. He is a contributing editor for Dr. DobbJs Journal
(www.ddj.com) and Windows 2000 MagazineJ and he writes the monthly
"Internals" column for Windows 2000 Magazine (www.win2000mag.com). He
is also a frequent speaker at major industry conferences such as WinDev, Software
Development, and WinSummit, where he speaks on Windows 2000 internals
and device driver and file system driver development.

Mark has a B.S. from Carnegie Mellon University and an M.S. from
Rennselear Polytechnic Institute, both in computer engineering. In 1994, he
earned a Ph.D. from Carnegie Mellon University, also in computer engineer
ing. After working briefly at NuMega Technologies (now Compuware NuMega
Laboratories), Mark worked for two and a half years at IBM's Thomas J. Watson
Research Center in New York, where he participated in the research and devel
opment of kernel-mode Web server-accelerator technologies.

Founder of the highly trafficked Sysinternals Web site (www.sysinternals
.com), Mark has authored or coauthored dozens of popular freeware tools for
Windows 2000 and Consumer Windows, including Fiiemon, Regmon,
NTFSDOS (an NTFS file system driver for MS-DOS), and HandleEx. When
Mark isn't writing tools or researching Windows 2000 internals, he enjoys hik
ing; biking; watching movies with his wife, Susan; and driving fast cars.

T he manuscript for this book was prepared

and submitted to Microsoft Press in electronic

forin. Text files were prepared using Microsoft

Word 2000. Pages were composed by Microsoft Press

using Adobe PageMaker 6.52 for Windows, with text

in Galliard and display type in Helvetica bold. Com

posed pages were delivered to the printer as electronic

prepress files.

Cover Graphic Designer

Girvin I Strategic Branding & Design

Cover Illustrator

Glenn Mitsui

Interior Graphic Artist

Jim Kramer

Principal Compositor

Gina Cassill

Principal Proofreader/Copy Editor

Holly M. Viola

Technical Copy Editor

Shawn Peck

Indexer

Shane-Armstrong Information Systems

If you liked the book,
you'll love the semina

" I attended David Solomon's Win
dows NT Internal Architecture class
yesterday. It was well worth the
time and money spent. It made me
ask how I had been able to get
along without this information for so
long. I recommend we consider
having all of the developers from
our team attend this. I cannot think
of a developer on our team who
would not greatly benefit from it.
Besides the obvious benefits that
come from thoroughly understand-'
ing what the as is doing under the:
covers, David covered quite a bit of
material useful for trouble shooting
application problems and answer
ing questions like: when the
machine is obviously crawling bur
task manager does not show any
process using significant CPU time, :
how do you determine what is really,
happening and what process!
caused it to happen. A stronger:
knowledge of how NT works would 1

have benefited us in a number of
ways during the ... development:
cycle and this will obviously contin-'
ue to be true for our future develop-;
ment."

- Development Lead,.
Microsoft Corporation., ,

Thousands of developers and administrators have taken
course at on· site deliveries at all the major software
hardware companies, including Microsoft.

Contact us to schedule a class at your location.

Windows 2000 Internal Arc"'itectur~
3 days with hands-on labs or 2 days lecture-only

This class describes the Windows 2000 kernel architecture, inclu
processes, thread scheduling, memory management internals, Cl

manager, etc.

Why take this class? Understanding the internals can help programr
to better take advantage of the Windows 2000 platform, as we
provide advanced debugging techniques. System managers/sy~
administrators will be able to troubleshoot more effectively by lear
how Windows 2000 works inside, as well as the internal details be
many of the Windows 2000 performance counters. And becausE
course authors have access to the Windows 2000 source code,
know you're getting the real story.

For detailed course description see our web site at:

DAVID
SOLOMON

www.solsem.com

5 Partridge Trail, Sherman, CT 0
tel: 800-492-4898 (+1 860-355-9
fax: 860-355-9050
email: seminars@solsem.com

"Tools no serious Systems Administrator
should be withoutl" - Mark Manasl

Contributing Editor
Windows 2000 Mapzlne

Mark Russinovich, PhD Bryce Cogswell, PhD

Winternals Software develops advanced utilities for Microsoft Windows NT/2000' systems,
including repair and recovery products that minimize downtime and data loss. These products are
unique in that they do not have to be installed at the time of a system crash. Instead, our software
can recover downed workstations and servers after a problem occurs. Misconfigured systems, lost
passwords, corrupt files, and lock-ups can be quickly and easily repaired with Winternals Software.

The Administrator's Pak

nore information
900408-8415

sit our website at
/ /www.wlnterna/s.com

fERD Commander Professional Edition allows recovery of dead
and misconfigured Windows NT" installations with our innovative
boot-floppy approach.

Remote Recover allows access and facilitates repair to dead,
unbootable systems over your network via a TCP/IP connection.

NTFSDOS Professional Edition provides read/write capability
to NTFS file systems from MS-DOS, aimed at disaster recovery.

NTRecover accesses and recovers non-booting
Windows NT" machines by using an adjacent

computer connected via a serial cable.

Locksmith circumvents the Windows
NT" security system to allow replace

ment of lost administrative passwords.

MonitorIng Tools monitor file and registry
activity on machines throughout your network.

TCPView Professional Edition monitors TCP /IP
activity related to individual processes over a network.

~JinfifiialS
Adva nced System sTools

I Winternals Software. All rights reserved. W(nternals is a trademark of W1nternals Software LP.
rft, Windows, Windows NT, Windows 2000. and MS DOS are registered trademarks of Microsoft Corporation In the United States and/or other countries.

Learn to write drivers
the easy way

'ith help from a Windows
Driver Model authority.

U.K.
Canada

£32.99 [V.A.T. included]
$74.99

ISBN 0-7356-0588-2

Press® products are available worldwide wherever quality
books are sold. For more information, contact your book or
retailer, software reseller, or local Microsoft Sales Office, or visit
.ite at mspress.microsoft.com. To locate your nearest source for
Press products, or to order directly, call1-800-MSPRESS in the
mada, call 1-800-268-2222).

j availability dates are subject to change.

The new driver model for Microsoft

Windows 98 and Windows 2000 supports

Plug and Play, provides power management

capabilities, and expands on the driver/

minidriver approach. PROGRAMMING THE

MICROSOF~ WINDOWS® DRIVER MODEL is the

official guide to the Windows Driver Model.

Written by device-driver programming expert

Walter Oney in close cooperation with the

Microsoft Windows DDK team, it provides

extensive practical examples, illustrations,

advice, and line-by-line analysis of

codesamples to clarify real-world

programming issues.

mspress.microsoft.com

MICROSOFT LICENSE AGREEMENT
Book Companion CD

'ORTANT-READ CAREFULLY: This Microsoft End-User License Agreement ("EULA") is a legal agreement between you
her an individual or an entity) and Microsoft Corporation for the Microsoft product ident~ied above, which includes computer
tware and may include associated media, printed materials, and "online" or electronic documentation ("SOFTWARE PROD
:1'l Any component included within the SOFTWARE PRODUCT that is accompanied by a separate End-User License
reement shall be governed by such agreement and not the terms set forth below. By installing, copying, or otherwise using the
IFTWARE PRODUCT, you agree to be bound by the terms of this EULA.lf you do not agree to the terms of this EULA, you are
authorized to install, copy, or otherwise use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PROD

:T, along with all printed materials and other items that form a part of the Microsoft product that includes the SOFTWARE
ODUCT, to the place you obtained them for a full refund.

IFTWARE PRODUCT LICENSE

: SOFTWARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intel
ual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

[;RANT OF LICENSE. This EULA grants you the following rights:

I. Software Product. You may install and use one copy of the SOFTWARE PRODUCT on a single computer. The primary user
of the computer on which the SOFTWARE PRODUCT is installed may make a second copy for his or her exclusive use on a
portable computer.

J. StoragelNetwork Use. You may also store or install a copy of the SOFTWARE PRODUCT on a storage device, such as a
network server, used only to install or run the SOFTWARE PRODUCT on your other computers over an internal network;
however, you must acquire and dedicate a license for each separate computer on which the SOFTWARE PRODUCT is
installed or run from the storage device. A license for the SOFTWARE PRODUCT may not be shared or used concurrently on
different computers.

:. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may make the number of additional copies of
the computer software portion of the SOFTWARE PRODUCT authorized on the printed copy of this EULA, and you may use
each copy in the manner specified above. You are also entitled to make a corresponding number of secondary copies for
portable computer use as specified above.

I. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT that are identified within the SOFT
WARE PRODUCT as sample code (the "SAMPLE CODE"):

i. Use and Modification. Microsoft grants you the right to use and modify the source code version of the SAMPLE CODE,
provided you comply with subsection (d)(iii) below. You may not distribute the SAMPLE CODE, or any modified version
of the SAMPLE CODE, in source code form.

ii. Redistributable Files. Provided you comply with subsection (d)(iii) below, Microsoft grants you a nonexclusive, royalty
free right to reproduce and distribute the object code. version of the SAMPLE CODE and of any modified SAMPLE
CODE, other than SAMPLE CODE, or any modified version thereof, designated as not redistributable in the Readme file
that forms a part of the SOFTW ARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other
than the Non-Redistributable Sample Code is collectively referred to as the "REDISTRIBUTABLES."

iii. Redistribution Requirements. If you redistribute the REDISTRIBUTABLES, you agree to: (i) distribute the
REDISTRIBUT ABLES in object code form only in conjunction with and as a part of your software application product;
(ii) not use Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid
copyright notice on your software application product; (iv) indemnify, hold harmless, and defend Microsoft from and
against any claims or lawsuits, including attorney's fees, that arise or result from the use or distribution of your software
application product; and (v) not permit further distribution of the REDISTRffiUTABLES by your end user. Contact
Microsoft for the applicable royalties due and other licensing terms for all other uses andlordistribution of the
REDISTRIBUTABLES.

)ESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or
disassemble the SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable
law notwithstanding this limitation.

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be
separated for use on more than one computer.

Rental. You may not rent, lease, or lend the SOFTWARE PRODUCT.

Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFTWARE
PRODUCT ("Support Services"). Use of Support Services is governed by the Microsoft policies and programs described in the

user manual, in "online" documentation, and/or in other Microsoft-provided materials. Any supplemental software code
provided to you as part of the Support Services shall be considered part of the SOFTWARE PRODUCT and subject to the
terms lind conditions of this EULA. With respect to technical information you provide to Microsoft as part of the Support
Services, Microsoft may use such information for its business purposes, including for product support and development.
Microsoft will not utilize such technical information in a form that personally identifies you.

• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no copies, YOl

transfer all of the SOFTWARE PRODUCT (including all component parts, the media and printed materials, any upgrades
this EULA, and, if applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this EULA.

• Termination. Without prejudice to mly other rights, Microsoft may terminate this EULA if you fail to comply with the
terms and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and .all of i
component parts.

3. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images,
photographs, animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUTABLES, and "applets" incorporated iI
the SOFTWARE PRODUCT) and any copies of the SOFTWARE PRODUCT are owned by Microsoft or its suppliers. The
SOFTWARE PRODUCT is protected by copyright laws and international treaty provisions. Therefore, you must treat the
SOFTWARE PRODUCT like any other copyrighted material except that you may install the SOFTWARE PRODUCT on a
single computer provided you keep the original solely for backup or archival purposes. You may not copy the printed mated
accompanying the SOFTWARE PRODUCT.

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subpara
graph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs
(c)(I) and (2) of the Commercial Computer Software-Restricted Rights at 48 CPR 52.227-19, as applicable. Manufacturer
Microsoft Corporation/One Microsoft WaylRedmond, WA 98052-6399.

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereo
or any process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing collectively referred to as t
"Restricted Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifically agJ
not to export or re-export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted
the export of goods or services, which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North
Korea, Sudan, and Syria, or to any national of any such country, wherever located, who intends to transmit or transport the
Restricted Components back to such country; (ii) to any end user who you know or have reason to know will utilize the
Restricted Components in the design, development, or production of nuclear, chemical, or biological weapons; or (iii) to any
end user who has been prohibited from participating in U.S. export transactions by any federal agency of the U.S. governmel
You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended, revoked, or denied your
export privileges.

DISCLAIMER OF WARRANTY

NO WARRANTIES OR. CONDITIONS. MICROSOFT EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDmON FOI<
THE SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED ",
IS" WITHOUT WARRANTY OR CONDmON OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT
REMAINS WITH YOU.

LIMITATION OF LIABll..ITY. TO THE MAXIMUM EXTENT PERMITTED BY APPUCABLE LAW, IN NO EVENT SHAI
MICROSOFT OR ITS SUPPUERS BE UABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT UMlTATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT'
THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE
SUPPORT SERVICES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSmILITY OF SUCH DAMAGES. IN ANY
CASE, MICROSOFT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE LIMITED TO THE
GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED,
HOWEVER, IF YOU HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES AGREEMENT, MICROSOFT'S ENTIR
UABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT.
BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF UABILITY,
THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

MISCELLANEOUS

This EULA is governed by the laws of the State of Washington USA, except and only to the extent that applicable law mand!
governing law of a different jurisdiction.

Should you have any questions concerning this EULA, or if you desire to contact Microsoft for any reason, please contact
Microsoft subsidiary serving your country, or write: Microsoft Sales Information Center/One Microsoft WaylRedmond, ,
98052-6399.

PN 097-000229

Proof of Purchase

WHERE DID YOU

CUSTOMER NAME

mspress.microsoft.com

G-7356-1021-!

a promotion or
be used in conjunction

offer details.

Microsoft Press, PO Box 97017, Redmond, WA 98073-9830

·--1-------------------------------
OWNER REGISTRAnON CARD Register Today! 0·7356·1021-5

Return the bottom portion of this card to register today.

Inside Microsoft® Windows® 2000, Third Edition

FIRST NAME MIDDLE INITIAL LAST NAME

INSTITUTION OR COMPANY NAME

ADDRESS

CITY STATE ZIP

()
E-MAIL ADDRESS PHONE NUMBER

For information about Microsoft Press®
products, visit our Web site at

mspress.microsoft.com

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 108 REDMOND WA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT PRESS
PO BOX 97017
REDMOND, WA 98073-9830

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Inside
~ndOWS2000

Third Edition
The comprehensive developer's guide
to the Microsoft Windows 2000 kernel
Master the inner workings of Microsoft's premier operating system
with this newly updated gu ide to the Microsoft Windows 2000 core
architecture and internals. Written in partnership with the product
development team and with full access to the Windows 2000 source
code, this book provides a detailed look beneath the surface of
Windows 2000. It's packed with the latest concepts and terms, kernel
and source code specifics, undocumented interfaces, component
and tool descriptions, and architectural perspectives that reveal the
inner workings of Windows 2000. In short, it delivers all the minute
details that developers need to debug code and to make better design
decisions. Administrators also will find this book invaluable for
understanding system performance and troubleshooting problems.

Taking you deep Inside Windows 2000, this book gives you:

• Valuable details on topics such as multiprocessor support, thread
scheduling, interrupt handling, memory management, security, I/O
processing, file system drivers, and file cach ing.

• New Information about subjects such as the boot and shutdown
processes, blue screen crashes, registry internals, Microsoft Win32·
service internals, Windows Management Instrumentation (WMI),
Address Windowing Extensions (AWE), Plug and Play, power
management, the Windows Driver Model (WDM), storage
architecture, NTFS enhancements, and networking.

• Hands-on experiments that demonstrate how to use the latest
util ities to see the internal behavior of Windows 2000.

• Abundant Insights that you can quickly apply for better design,
debugging, performance, and troubleshooting

U.S.A.
U.K.
Canada

$49.99
£32.99 [VAT. included]

$72.99
[Recommended]

Programming/Microsoft Windows 2000

I SBN 0-7356- 1021- 5

7 901 7 9 102 17 lIIIicrosott~

