
Microsof, ®

• Debugging

• Dynamic

Link

Libraries

• Dynamic

Data

Exchange

• Scores of

Source-Code

Examples

TM

Developer's Workshop

Microsof,®
TM

Developer's Workshop

Microsoff®
TM

Developer's Workshop

Richard ""ilton

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1991 by Richard Wilton

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Wilton, Richard, 1953-
Microsoft Windows 3 developer's workshop / Richard Wilton.

p. cm. -- (Microsoft programming series)
Includes index.
ISBN 1-55615-244-2 (softcover) : $27.95 ($36.95 Can.)
1. Microsoft Windows (Computer programs) I. Title. II. Series.

QA76.76.W56w5 1991
005.4'3--dc20 91-29816

CIP

Printed and bound in the United States of America.

123456789 MLML 654321

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Apple® and Macintosh® are registered trademarks of Apple Computer, Inc. Intel® is a registered trademark of
Intel Corporation. AT®, IBM®, and PS/2® are registered trademarks of International Business Machines
Corporation. Lotus® is a registered trademark of Lotus Development Corporation. CodeVieW®, Microsoft®, and
MS-DOS® are registered trademarks and Windows TN is a trademark of Microsoft Corporation. OS/2® is a
registered trademark licensed to Microsoft Corporation. Novell® is a registered trademark of Novell, Inc.
Actor® is a registered trademark of The Whitewater Group, Inc.

Acquisitions Editor: Dean Holmes
Project Editor: Ron Lamb
Technical Editor: Mary Dejong

Con.en.s

Introduction ix

Chapter 1: Windows Design 1

Chapter 2: Debugging 27

Chapter 3: Dynamic Link Libraries (DLLs) 59

Chapter 4: Custom Controls 83

Chapter 5: An Obiect-Oriented View 133

Chapter 6: Dynamic Data Exchange (DDE) 157

Chapter 7: Problems and Solutions 205

Appendix: A Windows Programming Glossary 255

Index 261

Acknowledgments

This book came to life through the encouragement and support of my family,
friends, colleagues, and students:

• Mom, Dad, and Mary Ellen, who patiently gave me the time and support I
needed to concentrate on this book.

• Mike McCoy, Stan Stead, Kirk Andrews, and Bob Syarto, my very talented
colleagues at UCLA, whose wide experience in object-oriented environ
ments, networks, and multimedia applications always stimulates my in
terest and broadens my thinking about Windows programming; and Shawn
Hall, a UCLA computer-science student and a skillful programmer who
helped keep this book focused on how the Windows environment is
designed.

• Mark Walsen, Tim Brewer, and David Weise of the Windows systems team
and Don Hasson, Kraig Brockschmidt, and Bryan Woodruff of Microsoft
product support for their thoughtful criticism and comments. I am espe
cially grateful to Sanford Staab of the Windows systems team, who
answered my many questions about DDEML programming with patience
and clarity.

.. And of course, the Microsoft Press team: Dave "Wild Man" Rygmyr, Dean
Holmes, Dan Lipke, Ron Lamb, Mary Dejong, Cynthia Riskin, Judith Bloch,
Debbie Kem, Patrick Forgette, Jennifer Harris, Ruth Pettis, Peggy Herman,
Lisa Sandburg, Kim Eggleston, Rodney Cook, Susan Sherman, Alice Copp
Smith, Katherine Erickson, and many others whose hard work helped this
book evolve into the finished product you're now reading. Any errors in
the text that have survived their careful scrutiny are certainly my own
responsibility.

vii

Introduction

This is a programmer's book about Windows programming. This book is not a
tutorial, nor is it a compendium of tricks and wizardry. Instead, it is a collection
of variations on a basic theme: The way to design Windows applications is to un
derstand the design of the Windows environment itself.

My own experience with Windows programming grew out of my previous work
with computer-video subsystems. In the mid-1980s, I spent several years devel
oping application interfaces to IBM PC and PS/2 video systems, but I began to
change my approach to application interface development when I started work
ing with the Apple Macintosh and with Microsoft Windows.

I was initially not impressed with the Windows environment. In version 1 (1985),
Windows' visual interface had a clunky, unconvincing appearance (Figure 1-1).
Worse, application development was an unpleasant experience without a robust
debugger or insightful documentation. With version 2 (1987), Windows' ap
pearance improved (Figure 1-2), as did the development and debugging tools

3.14159265)

.... ~1I@0CD(D0~
p--............... ----.....~----....u..a @ 0 (BCD G 0

.--~
- ~

-.

Figure 1·1.

-.

.-
-

®CDCDCDOm
(£)00088

The user interface of Windows version 1, Microsoft's
first graphical interfacefor IBM-compatible
microcomputers.

ix

Windows: Developer's Workshop

PIF
ABC. TXT
CALC.EXE
CALENDAR .EXE
CARDFILE .EXE
CL I PBRD. EXE
CLOCK .EXE
CONTROL. EXE
COURE .FON
CUTPAINT .EXE
DOTHIS.TXT
HHUE.FON
HIMEM.SYS
MEMSET .EXE
MODERIt.FOIt
MSDOS .EXE
ItOTEPAD. EXE
PAIltT .EXE
PIFEDIT .EXE
PRACTI CE. WR I
README.TXT
REUERSI.EXE

Figure 1·2.

(---~~-

8ffi00.80
--.... '-.... ',(8····8······0··.0· .. ·0.0

8 .. 00 i

GJ.'8r:J

The user interface of Windows version 2, which
introduced overlapping windows and support for
high-resolution video displays.

in the Windows Software Development Kit. Probably the best thing about this
version of Windows was the publication of Charles Petzold's encyclopedic Pro
gramming Windows book (Microsoft Press, 1990), which does a great job of
describing the fundamentals of programming in the Windows environment.

Windows finally began to reach its potential with version 3 (1990), which in
troduced a new and further-improved visual appearance (Figure 1-3). This ver
sion of Windows also solved some of the memory-management limitations of
previous versions by running in protected mode on Intel 80286 and 80386
microprocessors. Most important, Windows 3 seemed to capture the imagination
of application programmers. Many more commercial and public-domain applica
tions have been written for Windows version 3 than for both of the previous
versions.

As more people become involved in writing Windows programs, I think it
makes sense to take a close look at the Windows environment from a software
design point of view. My goal in this book is to give you the ideas and the details
you need to feel comfortable designing Windows applications.

x

Clock
Settings

. '., , .. >=-- '., , ,
, ,
, , . .
, ,
, ,
, ,

'. . .-'.,
'. '., ..

Figure 1·3.

I 3.14159265359 I
CD@](Back) D
~0000~
§J00CD80,
~CDCD0DG8
~CD00GJO

The user interface of Windows version 3, which uses
proportionally spaced fonts and three-dimensional
buttons and icons.

Using ~his Book

INTRODUCTION

This is ~ot a book for beginners. I assume that you know how to write a com
puter program, that you don't mind using the C programming language, and that
you are somewhat familiar with the Windows programming environment. If
you've never written a Windows application in C, you can use this book to learn
about the design and structure of Windows programs, but you will find the
source-code examples more useful if you already have some experience in
designing Windows programs.

I don't intend this book to replace Microsoft's Windows Software Development
Kit (SDK). The documentation supplied with the SDK is professionally written
and thorough. You will certainly want to refer to it as you read about Windows
and develop your own Windows applications.

It goes without saying that this book will be most useful if you have a set of
robust software:-development tools for Windows. Equally important, you need
the documentation that describes the details of the Windows programming envi
ronment. As I wrote this book, I frequently referred to the manuals in the SDK
and to my copy of Petzold's Programming Windows. You can't program in Win
dows unless you have good programming tools and thorough documentation.

xi

Windows: Developer's Workshop

You should also have a computer system that is powerful enough to let you write,
run, and debug Windows programs. A minimal Windows development system is
an 802S6-based machine with a hard disk, at least 2 MB of memory, a VGA
compatible video subsystem, and a mouse. I used such a system-an IBM PS/2
Model 60-to develop many of the source-code examples in this book. How
ever, the faster your computer, the less time you'll spend waiting for it to compile
and link your applications.

You also need a Windows-compatible C compiler and linker. Microsoft's C com
piler is still the most-used language translator for Windows applications, al
though a number of software vendors have introduced Windows-compatible
compilers for C and for other high-level languages. The source-code examples in
this book were created with Microsoft C, so you may have to work around some
source-level incompatibilities if you compile the examples with another vendor's
compiler.

In addition to a suitable computer system and a compiler, you should also have a
set of Windows software-development tools, including a debugger and a dialog
editor. In writing this book, I used the tools provided in Microsoft's SDK. By the
time you read this, however, a number of other software vendors will also have
released useful Windows development products.

How This Book Is Organized
The first chapter of this book gives you a bird's-eye view of the Windows envi
ronment. It emphasizes the important structural and functional components of
Windows and shows how an application's design is based on the need to interact
effectively with the Windows environment.

Chapter 2 is an overview of debugging in Windows. This chapter is the result of
dozens of close encounters with foul and insidious bugs. It describes a variety of
obvious and not-sa-obvious bugs that could be lurking in your progr~ms and
suggests how you can detect and correct them.

Chapters 3 and 4 explore the programming of dynamic link libraries (DLLs) in
Windows. Chapter 3 reviews the structure of DLLs in Windows. It covers some of
the details of memory management, parameter passing, and the use of resources
in DLLs. Chapter 3 lays the groundwork for Chapter 4, which focuses on a natural
application of DLLs-namely, support for custom-control classes.

Chapter 5 examines Windows' object-oriented heritage. The Windows environ
ment was designed by foresighted programmers who recognized the value of
object -oriented concepts in a graphical windowing environment. This chapter

xii

INTRODUCTION

describes some object-oriented features of the Windows environment and sug
gests how Windows programs can benefit from object-oriented design.

Chapter 6 digs into Dynamic Data Exchange (DDE), Windows' protocol for inter
process communication. This chapter starts with an introduction to the client
server transaction model used in DDE. It then describes the message-based DDE
protocol with an emphasis on the design of DDE transactions. This discussion
leads naturally into the heart of the chapter-the DDE Management Library
(DDEML). The chapter ends by considering some of the software design issues
common to DDE programming.

Chapter 7 is a collection of typical Windows programming problems and solu
tions. The chapter describes some advanced programming techniques that are
not really part of Microsoft's SDK documentation. There are no tricks or secrets
here-just reasonable approaches to some programming puzzles that many
Windows programmers will face sooner or later.

Source-Code Noles
I used Microsoft's Windows Software Development Kit, version 3.0, to build the
source-code examples in this book. All the source-code examples were com
piled with Microsoft C 6.0 (aka Microsoft C Professional Development System).
The source code was tested in real, standard, and 80386 enhanced modes on
several different computers, including an IBM PC/AT and IBM PS/2 models 60
and 70.

I have done my best to pare the source-code examples in this book to the
minimum necessary to illustrate the techniques described in each chapter. None
of the source code really represents a complete and polished Windows applica
tion. The most valuable part of a Windows application-the visual design, the
flow of interactions with the user, the menus, and help text -can only be sup
plied by you.

If you see ways to improve on the techniques I've described, if you derive new
applications from the source-code examples in this book, or if you spot bugs that
need to be fixed, I'd like to hear about them. Please contact me at this address:

Microsoft Press
Attention: Windows: Developer's Workshop editor
One Microsoft Way
Redmond, WA 98052-6399

xnl

1

Windo,.s Design

1: WINDOWS DESIGN

Although the Windows operating environment runs under MS-DOS, writing a
Windows program is not the same as writing an MS-DOS program. It is unusual
for a Windows program to call an MS-DOS function directly. Instead, Windows
applications rely on the Windows application program interface (API) to obtain
keyboard and mouse input, to produce output on a video display or printer, and
to manage disk files.

In fact, the key to writing a successful Windows application lies in taking full ad
vantage of Windows' built-in functionality. This may seem a daunting proposi
tion in a programming environment that provides over 600 built-in functions.
The way to grasp this wealth of built -in application support is to visualize how
the Windows environment is put together.

The Structure of the Windows Environment
As you design a Windows program, you can rely on the Windows environment to
provide three kinds of fundamental services. One is to perform basic input and
output functions for the keyboard, mouse, video display, printers, disk files, and
serial communications devices. Most of these functions are also supported to
some extent in MS-DOS, but Windows' basic input/output (I/O) functions are
much more comprehensive than those in MS-DOS. Windows' I/O functions are
also designed to be device-independent. Hundreds of I/O devices are supported
by Windows through a single set of API functions. Because of this power and
generality, Windows programs almost always rely exclusively on the built-in API
functions for input and output.

Another of Windows' fundamental jobs is to manage memory. Windows lets a
program dynamically allocate and free blocks of memory. Windows' memory
management API gives programs transparent access both to expanded memory
(bank-switched memory conforming to version 4.0 of the LIM EMS standard
the Lotus-Intel-Microsoft Expanded Memory Specification standard) and to ex
tended memory (memory addressable above 1 MB). Windows also provides
transparent support for virtual memory (sharing available memory by swapping
blocks of memory to disk) in 80386-based and 80486-based computers.

Windows' third important service is to support multitasking-that is, to allow
two or more programs to share the CPU, memory, and I/O hardware. The fact
that Windows allows multitasking means that Windows' I/O and memory
management functions accommodate the need for different programs to share
resources cooperatively.

3

Windows: Developer's Workshop

You can imagine the Windows environment to be structured as a set of "man
agers" that are responsible for supporting I/O, memory management, and multi
tasking. In fact, Windows programmers refer to the "I/O manager," the "memory
manager," the "task manager," and the "window manager" as if they were
discrete components of Windows. Although this is a convenient conceptual
model, these functions correspond only roughly to separate modules in the Win
dows environment.

Modules
In Windows, a module is any collection of executable code or data that can be
loaded into memory. A module might contain a user-written application, a hard
ware device driver, or a dynamic link library (DLL) of functions or data resources
that a program contained in another module can access. In Windows applica
tions, as in the Windows environment itself, support for complex operations is
often distributed across several Windows modules.

Windows itself is built from a number of interrelated modules. The Windows API
functions are implemented in a set of modules that are loaded into memory
when Windows starts up. These modules are shown in Figure 1-1. The three
main modules are GDI.EXE; USER.EXE; and KERNEL.EXE, KRNL286.EXE, or
KRNL386.EXE (depending on whether Windows is running in real, standard, or
enhanced mode). These three modules contain most of the API functions. The
remaining functions, which are used for accessing I/O hardware, are supported
in a set of device-driver modules (COMM.DRV, KEYBOARD.DRV, and so on).

To write a Windows application, however, you rarely need to worry about' the
names of the modules that make up the Windows environment. Your programs
can call any Windows API function regardless of which module contains the
function. Usually, the only modules you need to work with explicitly are the ones
that you write~that is, the modules that contain your application programs and
DLLs.

Windows has the ability to load a module dynamically at the time an executing
program needs to access the module's functions or data. Windows supports sev
eral API functions (LoadLibrary, LoadModule, and WinExec) that let a program
explicitly load a module at the time the program executes. Windows can also
load a module implicitly if another program refers to a function within the mod
ule. Such implicit dynamic binding between functions in different modules relies
on the notion of exported and imported functions.

4

1: WINDOWS DESIGN

Module

GDLEXE

USER.EXE

KERNEL.EXE (real mode)
KRNL286.EXE (standard mode)
KRNL386.EXE (enhanced mode)

COMM.DRV

KEYBOARD.DRV

MOUSE.DRV

SOUND.DRV

SYSTEM.DRV

Figure 1-1.

functions Supported

Graphics device interface: output of graphics
images, color-palette management

Window, icon, and cursor management

Memory management, task scheduling

Device driver for serial communications

Device driver for keyboard

Device driver for mouse

Device driver for sound generation

Device drivers for system timer, disk drives

Modules in the Windows environment. In addition to these main modules and
device drivers, additional device drivers for video displays, networks, and
other hardware can be installed.

Functions
Most Windows modules that contain executable code implement one or more
functions that can be called by code in other modules. Such functions are known
as exported functions. The module that contains the function's executable code
exports the function; a module that calls the function imports the function. Ex
ported functions are the only functions in a module that can be called by pro
grams in other modules.

Exported functions are used extensively both within Windows itself and in Win
dows applications: The entire Windows API consists of functions that are ex
ported from the various modules that make up the Windows environment.
Moreover, Windows expects applications to define exported functions that Win
dows itself will call. In particular, Windows calls certain functions exported
from an application to direct keyboard and mouse input to the application and to
facilitate multitasking.

Tasks and Instances
Windows supports cooperative multitasking. Windows' task manager maintains
a list of tasks and keeps track of the order in which the tasks execute. When

5

Windows: Developer's Workshop

Windows transfers control to a task, other tasks cannot run until the task in con
trol explicitly yields control to the task manager. Windows' cooperative multi
tasking scheme differs from a preemptive multitasking implementation such as
the one used in OS/2. Under preemptive multitasking, the operating system exe
cutes each task in turn for a predetermined amount of time and switches from
task to task regardless of whether the tasks themselves yield control to the
operating system.

Windows executes different applications as different tasks. Also, when you run
two or more instances of an application at once, Windows executes each in
stance of the application as a separate task. Windows loads a separate, unshared
copy of the application's default data segment into memory for each instance.
Task-specific data, including the stack and local data, are stored in the data seg
ment that corresponds to each instance of an application.

Although Windows loads a copy of the module's default data segment for each
instance of the module, there is only one copy of a module's executable code in
memory regardless of how many instances are running. For this reason, execut
able code and data are strictly segregated in a Windows application. You must
pay careful attention to this requirement if you are programming in assembly
language, but separating code and data is not a concern if you use a high-level
language translator such as the Microsoft C compiler to generate the executable
code for your applications.

Furthermore, Windows' cooperative multitasking scheme imposes other con
straints on application design. For cooperative multitasking to work, each Win
dows application must be designed with at least one window function-a
function that can be called by Windows' task manager-and a message loop that
yields control to the task manager. (See the next section for a discussion of mes
sages.) This particular requirement is important because it imposes a certain
logical structure on all Windows applications.

Figure 1-2 illustrates the flow of a Windows application that cooperates properly
with the task manager. The application's central control structure is a loop in
which the application carries out a time-limited action and then transfers control
back to Windows' task manager. The task manager allows other tasks to execute.
It then transfers control back to the application to carry out another action.

This structure is simple yet powerful. The key to its usefulness is that an applica
tion can carry out a different action each time it gains control from the task man
ager. Implicit in this design, however, is a mechanism for an application to
determine which of a set of possible actions to carry out. In Windows, messages
are the mechanism for doing this.

6

1: WINDOWS DESIGN

YES

Figure 1·2.
Flow of control in a Windows application.

Messages
In the Windows environment, a message is a stereotyped set of data that is
passed through a function call from Windows to an application's window func
tion. The function call always uses the set of parameters that is shown in Figure
1-3 on the following page. The second parameter is a value that identifies the
message. The Microsoft Windows Software Development Kit (SDK) associates
symbolic names with message identifiers. Symbolic names such as WM
_CREATE, WM_COMMAND, and WM_PAINT suggest how the messages they
identify are to be interpreted by the application that receives them. (The Win
dows SDK documentation details all of the messages and their parameters.)

Windows' use of messages might be construed as a kind of event -notification
mechanism. Different events in the Windows environment give rise to different
messages. Some events are intuitively obvious. For example, when you click a
mouse button or press a key on the keyboard, Windows uses one or more mes
sages to indicate exactly which mouse or keyboard activity has occurred. That is,
Windows calls an application's window function with message-identifier values
such as WM_LBUTTONDOWN, WM_MOUSEMOVE, or WM_KEYDOWN. The

7

Windows: Developer's Workshop

LONG PASCAL FAR
WndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG lParam)
{

/ * hWnd: Window handle
wMsg: Message identifier
wParam: Usage depends on the value of wMsg
lParam: Usage depends on the value of wMsg */

Figure 1·3.
A C-language declaration of a message-processing function in a Windows
application.

application responds to each message by processing the mouse-location or key
stroke information in the associated parameters wParam and /Param.

Windows also uses certain messages to notify an application to take specific ac
tions. For example, Windows uses the WM_PAINT message to notify an applica
tion to produce output on the video display. An application responds to this
particular message by calling the Windows API functions that draw text or
graphics on the screen. Windows uses other messages to notify an application
about changes in the state of the Windows environment and to facilitate direct
communication between different applications.

To pass a message to an application, Windows can either post the message to an
application-specific queue or send the message directly to a window function in
the application. For example, messages that notify an application of keyboard or
mouse input are always posted to the message queue. To process messages prop
erly, every application must contain a message loop that checks the queue peri
odically for the arrival of newly posted messages, as shown in Figure 1-4. The
Windows API provides a set of functions (GetMessage, PeekMessage, Wait
Message) that do this efficiently.

In contrast, Windows sends messages such as window-management messages
directly to an application, bypassing the application's message queue. The differ
ence between the two message-passing methods is one of synchronization be
tween Windows and the application. When a message is posted to an
application's message queue, the application does not actually process it until
Windows' task manager returns control to the application. When a message is
sent directly to an application, the application processes it immediately.

8

1: WINDOWS DESIGN

int PASCAL WinMain(...)

MSG msg;

Initialize ();

/* yield to the task manager; loop until done */
while(GetMessage(&msg, »
{

TranslateMessage(&msg);
DispatchMessage(&msg);

/* process the message */

return

Figure 1·4.
A typical message-processing loop in a Windows application. Compare the flow
of control in this example with the flowchart in Figure 1-2.

Windows
In the Windows environment, the entity that processes messages in an applica
tion is a window. There are two logical components to a window, a data struc
ture that describes the window's characteristics and a window function that
processes messages. The data structure is created and maintained internally by
Windows' window manager. The window function is an exported function that
can be called directly by Windows.

Intuitively, the purpose of a window is to carry out the graphical processing re
quired to maintain a visual window on the screen. However, you might better
regard a Windows window as a message-processing unit that does not necessari
ly have a visual component. An application can create a window whose purpose
is only to do a specific message-processing job without ever appearing on the
display screen. For example, an application that uses the message-based
Dynamic Data Exchange (DDE) protocol to exchange messages with other appli
cations can create one or more "invisible" windows that encapsulate DDE mes
sage processing.

Much of the power of Windows programming is based on the fact that an appli
cation can create multiple windows, each with a different function. Windows'
window manager facilitates this by maintaining a list of the windows created by
all executing applications. The window manager associates windows with the
tasks in which they are created. When a task terminates, the window manager
destroys the windows that the task created if the task itself has not already
destroyed them.

9

Windows: Developer's Workshop

Multiple windows in a task are organized in a hierarchy of owners and owned
windows-that is, each window can be owned by another window, and each
window can have one or more owned windows associated with it. These owner/
owned relationships affect both the lifetime of a window and the manner in
which a window defined with particular styles is visually displayed, as shown in
Figure 1-5. When a window has an owner, the window is destroyed implicitly if
its owner is destroyed. Also, windows without owners can be overlapped by
other windows, but owned windows are always displayed in front of their
owners, as shown in Figure 1-6.

A special owner/owned relationship exists for windows created with the
WS_CHILD style. For example, a child window can be displayed only within the
rectangular area defined by its parent (owner). Also, Windows' window manager
treats parent and child windows differently in regard to the kinds of messages
they receive. In particular, Windows sends a notification message,
WM_PAREN1NOTIFY, to a parent window whenever a child window is created
or destroyed. A child window uses a different message, WM_COMMAND, to no
tify a parent window that the child has processed user input.

Visual Style .sOwner Lifetime Visual Relationships
Specified?

WS_OVERLAPPED No Task Overlaps other windows
Always has caption and

border
CreateWindow can specify

default location and size

WS_OVERLAPPED Yes Owner Overlaps owner
Always has caption and

border
Not visible if owner is not

visible

WS_POPUP No Task Overlaps other windows

WS_POPUP Yes Owner Overlaps owner
Not visible if owner is not

visible

WS_CHILD Yes Owner (parent) Clipped within parent

Figure 1·5.
Characteristics of windows with different visual styles and owners. A window's
style and owner are specified at the time a window is created.

10

1: WINDOWS DESIGN

I II Pop-up 1494 (no owner) I~"
jl

1= I", ",1,",1

"

II : I i,.l
I

Pop-up 1450 (owner 13C8) L-
=

Child 140C (parent 13C8) I:"

]1

Figure 1·6.
An example of the visual relationships of windows with and without owners.
The overlapped window (13C8) owns both a pop-up window (1450) and a child
window (140C). The child window is clipped by the owner, and the owned pop
up window overlaps the owner, but the pop-up without an owner (1494) can be
overlapped by the other windows in the task.

In the Windows environment, the processing necessary to keep track of window
relationships is hidden from applications. Internally, the window manager main
tains a list of data structures, each of which identifies and describes a window.
From an application's point of view, however, each window is identified only by
a unique integer value assigned by the window manager. This identifying value
is the window's handle.

Handles
Windows are only one of a variety of items that are identified by handles in the
Windows environment. The following items also use handles:

II Modules
I

• Tasks)
• Instances

• Files

• Blocks of memory

• Menus

• Controls

• Fonts

11

Windows: Developer's Workshop

• Resources (icons, cursors, strings, and so on)

• GDI objects (bitmaps, brushes, metafiles, palettes, pens, regions) and de
vice contexts

Windows programs do not use physical addresses to identify blocks of memory,
files, tasks, or dynamically loaded modules. Instead, the Windows API identifies
these items by assigning handles to them and passing the handle values to an
application.

A Windows application can obtain a handle for a particular item in one of two
different ways. Many API functions, including CreateWindow, GlobalAlloc, and
OpenFile, return a handle. Also, Windows can pass a handle to an application as
a parameter in a call to an exported function in the application. As you might in
fer from the variety of items that are identified by handles, you can expect to
work with handles just about everywhere in the Windows environment. This
pervasive use of handles affects the design of every Windows program.

The value of a handle is meaningful only in that it uniquely identifies the item it
represents. In general, handle values correspond to entries in a list of items, but
only Windows itself can access the list directly. An application can usually access
the item that a handle represents only by calling a Windows API function that
specifically dereferences the handle. For example, an application can allocate a
block of memory for its own use and obtain a handle to the block by calling.the
API function GlobalAlloc:

hMem = Global~loc(...);

The handle returned by GlobalAlloc identifies a particular block of memory to
the application, but the application cannot use the handle to access the memory
block directly. Instead, the application must call another API function,
GlobalLock, which returns the physic~l address of the memory block:

lpMem = GlobalLock (hMem);

Memory Management
Windows' memory manager controls all available system memory. It dynami
cally allocates and frees blocks of memory as needed for code and data segments
from modules. The memory manager also supports a set of API functions that a
Windows program can call to allocate blocks of memory for its own use.

12

1: WINDOWS DESIGN

From the point of view of a Windows program, the memory manager organizes
available memory in two different heaps: a global heap and a local heap. The
global heap encompasses all available memory. The memory manager allocates
global memory on a segment-by-segment basis. For example, if an application
contains two executable-code segments and one default data segment, Windows
loads the three segments into three separate blocks of global memory. Similarly,
each call to the API function GlobalAlloc allocates a block of memory that an ap
plication can access by using a far pointer.

The local heap consists of memory in a module's default data segment, which is
allocated from the global heap when the module is loaded into memory. A pro
gram can call LocalAlloc to allocate blocks of memory in the local heap. These
memory blocks are addressable as near data. Because a module's local heap
shares a single memory segment with the module's stack and static data vari
ables, the amount of data that can be stored in the local heap is limited by the
size of a physical segment in memory (64 KB) and the amount of memory used
by the stack and static variables.

The essential difference between the local and global heaps is one of scale. The
local heap is best for containing small amounts of data used only in a single in
stance of an application. Use the global heap for large memory blocks and for
data shared among two or more modules.

The Structure of a Windows Application
All Windows applications bear a certain resemblance to each other. This is be
cause the structure of a Windows application is mostly determined by the need
for it to interact smoothly with the Windows environment. To build a Windows
program, you use the structural components that characterize the Windows en
vironment: modules, functions, tasks, instances, messages, windows, handles,
and dynamically allocated memory.

You can see this in the structure of the sample application in Figure 1-7 on the
following page. The actions the program carries out actually have little to do
with the program's design. If a different programmer had written this program,
you would notice differences in style, but the flow of control and the modular
structure of the application would be pretty much the same.

13

Windows: Developer's Workshop

#************** •• * •••••• ** •• *** •••• **.******.**** •• ****.**** •• ********** •• ****

NMAKE description for MODSTAT.EXE

#*****.*****.**.* •• *** ••• ****.*** ••• ** •••• * •••• *** ••• ** ••• *.*** •• ** ••• ** ••••• *

.c.obj:
cl lAM Ic IG2sw /Osw IW4 /Zlp $*.c

ALL: modstat.exe

modstat.obj: modstat.c modstat.h

modstat.res: modstat.rc modstat.h modstat.ico
rc Ir modstat.rc

modstat.exe: modstat.obj modstat.res modstat.def
link lal:16 /nod Inoe modstat, , , libw mlibcew, modstat.def
rc· modstat. res

/** •• ******** •••••••••• *** ••• *************** •• ********* •• *********** •• * ••• ** •••

* MODSTAT.C

• Exports: TopLevelWndFn
WndEnumFn

** •••••••••• ** •••• ** ••• ** •••• ** ••••••••••••••• *** ••• ** •••••••••••••••• * •••• ***/

#define
include
#include
#include

NOCOMM
<windows.h>
<strinq.h>
"modstat.h"

1* contains strrchr and strchr */

1*** FUNCTION PROTOTYPES ***/

LONG PASCAL FAR TopLevelWndFn (HWND, WORD, WORD, LONG);
BOOL PASCAL FAR WndEnumFn (HWND, DWORD);

static HWND
static void

Figure 1.7.

Init (HANDLE, HANDLE, int);
MsqConunand (HWND, WORD, LONG);

Source code for MODSTAT.EXE.

14

(continued)

Figure 1· 7. continued

static void
static void

MsgPaint(HWND);
ShowModuleInfo(HOC);

/ * * * GLOBAL VARIABLES * * * /

ch.ar
char
HANDLE
int

struct
{

szTopLevelClass[] = "ModStat:TopLevel";
szAppTitle [] = "System Modules";
hlnstance = 0;
nCharX, nCharY;

int CX;
int CY;

CharSize;

1: WINDOWS DESIGN

/.********************************* ••• *** •• **** ••• ******************** •••• ***.*

* WinMain

1_'1".1111 •• _ •••••• _ ••••••• _,_ •• _ ••• _ •••••••• _ •••• _ ••• _.*11 •••• 1.' ••••• ,., •• */

int PASCAL
WinMain(HANDLE hlnst, HANDLE hPrevlnst, LPSTR lpszCmdLine, int nCmdShow)
{

HWND
MSG

hWnd;
msg;

hWnd = Init(hlnst, hPrevlnst, nCmdShow);
if(!hWnd)

return 0;

while(GetMessage(&msg, 0, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.wParam;

(continued)

15

Windows: Developer's Workshop

Figure 1·7. continued

I··· .••....•••...•••...••...•
•
• Init

••• ** ••••••••••••••••••••••••••• /

static HWND Init (HANDLE hInst, HANDLE hPrevInst, int nCmdShow)
{

WNDCLASS WCi

HWND hWnd;
HDC hOC;
TEXTMETRIC tm:

if(hPrevInst)
{

I· copy qlobal data from previous instance ·1
GetInstanceData(hPrevInst, (NPSTR)&CharSize, sizeof CharSize);

16

else
{

1* reqister the top-level window class *1
wc.lpszClassName = szTopLevelClass;
wc.hlnstance = hlnst;
wc.lpfnWndProc = TopLevelWndFn;
wC.hCursor = LoadCursor(0, IDC_ARROW);
wc.hlcon = Loadlcon(hInst, "TopLevelIcon");
wc .lpszMenuName = "TopLevelMenu";
wc.hbrBackqround = COLOR_WINDOW+1i
wc.style = CS_BREDRAW : CS_VREDRAK;
wc.cbClsExtra = 0;
wc . cbWndExtra = 0;

if(!ReqisterClass(&wc)
return 0; 1* return 0 if unsuccessful ·1

1* save the default character dimensions ·1
hOC = CreateDC ("DISPLAY", NOLL, NOLL, NOLL);
GetTextMetrics (hOC, &tm);
DeleteDC (hOC);

CharSize.CX = tm.tmAveCharWidth;
CharSize.CY = tm.tmHeight + tm.tmExternalLeading;

I· save the current instance handle in a qlobal variable *1
hlnstance = hlnst;

(continued)

1: WINDOWS DESIGN

Figure 1·7. continued

/* create and display a top-level window */
hWnd = CreateWindow(szTopLevelClass,

szAppTitle,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,
0,
0,
hlnstance,
NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return hWnd;

/ •• *** .**********.***********~*

* TopLevelWndFn

.*.**.************************/

LONG PASCAL FAR
TopLevelWndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG lParam)
{

LONG
BOOL

lRVal = OL;
bDWP = FALSE;

switch(wMsg)
{

case WM_PAINT:
MsgPaint (hWnd);
break;

case WM_COMMAND:
MsgConunand (hWnd, wParam, lParam);
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
bDWP = TRUE;
break;

(continued)

17

Windows: Developer's Workshop

Figure 1·7. continued

iff bDWP)
lRVal = DefWindowProc (hWnd, wMsq, wParam, lParam);

return lRVal;

"~,

/**

• MsgCommand

•••••••••• ** ••• ** •••• ** ••• /

static void MsgCommand (HWND hWnd, WORD wParam, LONG lParam)
{

switch (wParam)
{

case IDM_ENUM:
InvalidateRect (hWnd, NOLL, TRUE);
break;

default:
break;

/.* •••• * •••••••••• ** ••••• * •• *.** ••••••••• * ••••••••••••••••••••••• * •••••••••••••

• MsqPaint

••• * •••• /

static void MsqPaint (HWND hWnd)
{

HDC hOC;
PAINTSTRUCT ps;

InvalidateRect(hWnd, NOLL, TRUE): /. update the entire client area */

18

hOC = BeqinPaint(hWnd, &ps);
ShowModulelnfo(hOC);
EndPaint(hWnd, &ps);

(continued)

1: WINDOWS DESIGN

Figure 1·7. continued

/ •••••••••••••••• ** ••

* ShowModuleInfo

.. /

static void ShowModuleInfo(HOC hOC)
{

FARPROC
char
HANDLE
char

pEnumFn;
szBuf[80);
hModule;
szModuleName[12];

int nRefCounti
static char szotherInst [) = "Other instances of this application" i

/* display task and instance information */
wsprintf(szBuf, "This is one of %d currently executing tasks.",

GetNumTasks());
nCharX = CharSize.CX;
nCharY = CharSize.CY;
TextOut{ hOC, nCharX, nCharY, szBuf, lstrlen(szBuf))i

wsprintf(szBuf, "Task handle: %04X Instance handle: %04X",
GetCurrentTask(), hlnstance);

nCharY += CharSize.CY;
TextOut(hOC, nCharX, nCharY, szBuf, lstrlen(szBuf));

/* display module handle, name, and reference count */
GetModuleFileName(hlnstance, szBuf, sizeof szBuf);
lstrcpy(szModuleName, strrchr(szBuf, '\\')+1);
*(strchr(szModuleName, '.' » = 0;
hModule = GetModuleHandle(szModuleName)i
nRefCount = GetModuleUsage(hModule);
wsprintf(szBuf, "Module handle: %04X Name: %s Reference count = %d",

hModule, (LPSTR)szModuleName, nRefCount);
nCharY += CharSize.CY;
TextOut(hOC, nCharX, nCharY, szBuf, lstrlen(szBuf));

if(nRefCount > 1)
{

nCharY += 2 * CharSize.CY;
TextOut(hOC, nCharX, nCharY, szOtherlnst, (sizeof szOtherlnst) - 1);

(continued)

19

Windows: Developer's Workshop

Figure 1·7. continued

/* enumerate other instances of this application ./
pEnumFn = MakeProcInstance((FARPROC)WndEnumFn, hInstance);
EnumWindows (pEnumFn, MAKELONG (hModule, hOC));
FreeProclnstance(pEnumFn);

/****.****.*****.***** •• ** •••• *** •• ****.**** •• ** ••• *** ••• *** ••• ***** •••• *** •• **

• WndEnumFn

* ••••• * •••• * ••••• * •••• * •••• ** ••• ***.* •• ** ••• *** •••• *** •• ** •••• **.*************/

BOOL PASCAL FAR WndEnumFn (HWND hWnd, DWORD dwParam)
{

20

char szBuf[64];
HANDLE hInst;
HANDLE hModule;

/* determine the module name for this window */
hInst = GetWindowWord (hWnd, GWW_BINSTANCE);
GetModuleFileName(hInst, szBuf, sizeof szBuf);
lstrcpy(szBuf, strrchr(szBuf, '\\')+1);
* (strchr (szBuf, I. I » = 0;

hModule = GetClassWord (hWnd, GCW_BMODULE);

/* display task, module, and instance handle for other instances */
if((hModule == LOWORD(dwParam» && (hInst != hlnstance))
{

wsprintf(szBuf, "Task handle: %04X Instance handle: %04X",
GetWindowTask(hWnd), hlnst);

nCharY += CharSize.CY;
TextOut(BIWORD(dwParam), nCharX, nCharY, szBuf, lstrlen(szBuf));

return TRUE;

(continued)

1: WINDOWS DESIGN

Figure 1-7. continued

/.*********************** •• ** •• ** •••• *.*************** ••• 1 •• 1.111 ••• _*_._._._.

* MODSTAT.RC resource script

•• _*11.1 •• 1 ••••••••••••••••••••• _ ••••• _ ••••• - ••••• _ ••••• _ •••••••••••••••••••• /

#include "modstat.h"

/o, icon */
Top Levell con

/* menus */
TopLevelMenu
{

MENUITEM

ICON modstat.ico

MENU

"&Enumerate"

I •••••• ***** •• *.** •• *~***** •• **** ••• *.*** •• * ••• * •••• *. 1- ... 1._ .. _ .. -.... ,

* MODSTAT.H
Header file for MODSTAT.C

••• * •••••••••••••••• _ •••••••• __ ••••••••••••••••••• _ ••••••••• _ ••••••••••••••••• /

101

;*.************************* ••••• *********************._.I _____ ._._t_._ ... __ ._

MODSTAT.DEF module-definition file

;********* •• *********.*********************** ••• ******1 •• 1 •• ___ - •••• _ ••• ------

NAME
DESCRIPTION
EXETYPE
STUB

CODE
DATA

MOD STAT
I MODSTAT . EXE version 1 .0'

WINDOWS
'WINSTUB.EXE'

LOADONCALL MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE

(continued)

21

Windows: Developer's Workshop

Figure 1·7. continued

SEGMENTS

HEAPSIZE
STACKSIZE

EXPORTS

_TEXT PRELOAD MOVEABLE DISCARDABLE

1024
5120

TopLevelWndFn
WndEnumFn

The sample application displays information about the modules loaded in
memory. The application's module name, MODSTAT, is specified in the NAME
statement in the module-definition file, MODSTAT.DEF. The corresponding exe
cutable file is MODSTAT.EXE. The module exports two functions: TopLevel
WndFn and WndEnumFn. Both of these functions are compiled as far functions
that use the Pascal convention for parameter-passing, and both are listed as ex
ports in the module-definition file. These functions are exported so that Win
dows itself can call them; the far and Pascal calling conventions are required for
all exported functions that can be called by Windows.

Windows calls TopLevelWndFn to process messages for the application's top
level window (its only window), and WndEnumFn in response to the applica
tion's call to Enum Windows. A single call to Enum Windows causes Windows to
call WndEnumFn once for each overlapped and pop-up window in the window
manager's list.

If you run multiple instances of this application, you can see in each instance's
display the relationship between modules, tasks, and instances. Each time you
invoke MODSTAT.EXE, Windows creates a new task and a new instance and
assigns handles to each. All instances of the application, however, are associated
with the same module and module handle.

Initialization
When you invoke MODSTAT.EXE, Windows loads the executable code and
default data segment into memory. It then transfers control to a short initializa
tion function (named __ astart in programs compiled with the Microsoft C com
piler) that initializes the application's stack and local heap in the default data
segment and then transfers control to WinMain.

22

1: WINDOWS DESIGN

WinMain
Just as main is the function where a standard C program begins executing, Win
Main is the function where the execution of a Windows application begins. Usu
ally, WinMain's first action is to perform the initialization required to support an
instance of the application. In the example in Figure 1-7, WinMain calls a func
tion named Init to do this initialization. Init's most important actions are em
bodied in its calls to RegisterClass and CreateWindow. The call to RegisterClass
describes the default characteristics of the top-level window in the application.
Init calls RegisterClass only for the first instance of the application. After the
class has been registered, Windows maintains the class description internally so
that subsequent instances of the application can refer to it. Windows discards the
class description only when all instances of the application have terminated.

From the point of view of program flow of control, the crucial data element in
the call to RegisterClass is the address of TopLevelWndFn, which is assigned to
wc.lpfn WndProc. After Init calls CreateWindow to create a window using the
registered class description, Windows can begin to call TopLevelWndFn to pro
cess messages. This is the key to understanding WinMain's message loop, which
follows the call to In it.

The Message Loop
The message loop starts with a call to GetMessage. GetMessage retrieves a mes
sage from the application's message queue and fills the msg data structure with
the message identifier and parameters. If the queue is empty, the call to Get
Message gives Windows' task manager a chance to transfer control to another
task. The message loop thus serves a dual purpose: The application retrieves
messages from its message queue, and Windows' task manager regularly regains
control and allows other tasks to execute. The message loop continues to exe
cute until GetMessage retrieves a WM_QUIT message from the application's
message queue. For this message, GetMessage returns 0, which causes the loop
and the application to terminate.

The message-loop functions TranslateMessage and DispatchMessage process
each message that GetMessage retrieves from the message queue. The action
of TranslateMessage is to translate the keyboard messages WM_KEYDOWN
and WM_KEYUP into WM_CHAR messages. TranslateMessage also translates
WM_SYSKEYDOWN and WM_SYSKEYUP messages (which are sent if the Alt
key is down when another key is pressed) into WM_SYSCHAR messages.
Although TranslateMessage is not strictly required for message processing, it is
an essential component of the message loop in any program that expects key
board input.

23

Windows: Developer's Workshop

DispatchMessage performs the vital function of transferring control to a window
function. DispatchMessage uses the window handle that is part of each message
to determine the address of the corresponding window function. In the
MODSTAT sample program, the window function is TopLevelWndFn. Each time
the message loop in WinMain executes DispatchMessage, Windows calls
TopLevelWndFn with the message identifier and its corresponding parameters.

GetMessage is one of the three Windows API functions that yield control to the
task manager. The other functions- PeekMessage and WaitMessage-are most
useful in a program that performs time-consuming or repetitive actions such as a
prolonged computation or an I/O operation. PeekMessage is used in such a pro
gram instead of GetMessage because PeekMessage returns control to the pro
gram even if the message queue is empty. You can therefore use PeekMessage to
design a message loop that frequently transfers control to Windows' task man
ager so that other applications can execute in the midst of a prolonged computa
tion. The only constraint is that you split the prolonged computation into a series
of time-limited steps, as the example in Figure 1-8 suggests.

bOone = FALSE;

do
{

/* yield control and check the message queue */
if(PeekMessage(&msg, ...))
{

/* process a message */
if(WM_QUIT == msg.message

bOone = TRUE;

else

TranslateMessage(&msg);
OispatchMessage(&msg);

/* no message to process, so perform next step
of computation */

else
ComputeNextPrimeNumber(...);

while (! bDone);

Figure '-8.
The main message loop in a Windows program that yields control in the midst
of a repetitive computation. Compare this with the message loop in Figure 1-4.

24

1: WINDOWS DESIGN

The Window Function
In the sample application, TopLevelWndFn is the top-level window function, the
function that processes all the messages that Windows sends to the application.
TopLevelWndFn uses a switch statement to select from among four possible ac
tions. The most complicated action occurs in response to a WM_PAINT message:
TopLevelWndFn calls the private function MsgPain t, which in turn calls
ShowModulelnfo to update the top-level window's client area with information
about the application's module, task, and instance handles.

The only other messages that TopLevelWndFn processes are WM_COMMAND
and WM_DESTROY. In each case, TopLevelWndFn takes an action that causes
another message to be sent to the application. Although at first glance this might
appear redundant, it is actually a common programming strategy in Windows
applications. Often the most efficient way to cause a particular action to be car
ried out is to send a message to a window function that initiates the action.

For example, TopLevelWndFn processes WM_COMMAND by calling the private
function MsgCommand, which checks whether the message's wParam value is
IDM_ENUM. If it is, MsgCommand calls InvalidateRect to generate a WM
_PAINT message in the application's message queue. When TopLevelWndFn
subsequently processes the WM_PAINT message, the top-level window's client
area is updated. In this way, the same function (MsgPaint) can be called in re
sponse to two different events: The window manager can send WM_PAINT
whenever it determines that the client area needs to be repainted, or the user
can generate WM_COMMAND with a wParam value of IDM_ENUM by choos
ing Enumerate from the application's main menu.

Similarly, TopLevelWndFn processes WM_DESTROY by calling the API function
PostQuitMessage, which in turn places a WM_QUIT message in the application's
message queue. When GetMessage subsequently retrieves this message, it re
turns 0 and causes the application's message processing to terminate.

Of course, TopLevelWndFn receives many other messages that it does not pro
cess explicitly. For these messages, the default action is to pass them to Windows'
default message-processing function, DefWindowProc.

What MODSTAT Does
All the useful functionality of the sample application is encapsulated in two
functions, ShowModulelnfo and WndEnumFn. ShowModulelnfo calls several
Windows API functions to obtain information about the application module's
status. It uses the API functions wsprintj to format its output and TextOut to
write to the top-level window's client area.

25

Windows: Developer's Workshop

ShowModuleln/o obtains information about other instances of the application by
calling the API function Enum Windows. Enum Windows enumerates windows
by calling WndEnumFn once for each overlapped and pop-up window in the
window manager's list. When WndEnumFn is called for the top-level window of
an instance of MODSTAT, the corresponding task and instance handles are dis
played. The result is a display of the module's name, handle, and reference
count, and a list of the task and instance handles for each instance of the applica
tion, as shown in Figure 1-9.

This is one of 4 currentiy executing tasks.
Task handle: 11 BD Instance handle: 118Ei
Module handle: OE5D Name: MODSTAT Reference count = 3

Other instances of this application
, Task handle: 0855 Instance handle: 11 DEi

Task handle: 0795 Instance handle: 100E

Figure 1-9.
Three instances o/the sample application MODSTAT. Two of the instances are
iconic; the third displays the task and instance handles of all three instances of
the application.

On to Debugging
The structure of a Windows application reflects the design of the Windows envi
ronment. Applications that interact harmoniously with the Windows environ
ment are the easiest to debug. The time you spend in careful structural design of
your source code will be amply repaid in terms of the time you save in
debugging.

26

2

Debugging

2: DEBUGGING

There is no secret way to debug a \'{'indows program. You need the same combi
nation of prevention, perseverance, and intuition to debug in Windows as you
need in any other programming environment. In the Windows environment, you
have a variety of debugging techniques and tools at your disposal. Some of these
are unique to Windows, whereas others are simply traditional programming
techniques with a Windows twist. The key to efficient debugging, however, is
not a technique at all-it is a well-designed program.

Designing for Debugging
The principle that good software design leads to easier debugging holds true in
Windows. In general, an easy-to-debug Windows program has a structure that
reflects the way the program interacts with the Windows environment. For ex
ample, you may want to isolate different window functions in different units of
source code so that the functionality of each window in a program is encapsu
lated in its own unit of source code. There are also a few specific details of
source-code design that will help make your Windows programs easier to
debug. These include simple source-code statements, modular design, and accu
rate use of functions and variables.

Use Simple Source-Code Statements
When you use one of the debuggers supplied with the Microsoft Windows SDK,
the best you can do when you find a bug is to associate it with a particular line of
source code. You can more easily pinpoint a bug if you use simple source-code
statements and limit yourself to only one statement in each line of source code.

MoclluDarize Your Source Code
Modular source code simplifies debugging. This is especially true in Windows,
where initialization code, message dispatching loops, and window functions fall
naturally into separate blocks of source code. Often the quickest way to zero in
on a bug is to recognize which block of source code is malfunctioning.

When you use one of Microsoft's Windows debuggers-CodeView, SyMDEB, or
WDEB386-you can benefit from keeping a program's source code in separate
files. If you use the medium memory model to compile your applications, the
Microsoft C mmpiler will assign each source-code file's name to the correspond
ing executable-code segment. When a debugger subsequently traps a bug, it
uses the name of the segment and an offset into the segment to locate the bug in
the executable code. You can then work backward from the segment name and
offset to a particular line of source code in the corresponding file.

29

Windows: Developer's Workshop

Use Function Prototypes
Some of the toughest bugs to fix are those that occur when the C compiler makes
invalid assumptions about the data types associated with the parameters in a
function call. You can avoid this kind of error by incorporating function proto
types throughout your source-code design. For functions used only within a
single source-code module, place your function prototypes near the beginning
of the module, before you define any of the prototyped functions. For functions
that are used globally, place function prototypes in an include file and include
the file after WINDOWS.H in any source-code module that makes global calls.

Avoid Static and Global Variables
Another tough bug to uncover in a Windows application occurs when a window
function stores data in a static or global variable. Typically, the value is some
thing that is used only within a particular window, such as a GDI handle or a
pointer to a window function.

The problem with using a static or global variable is that only one window at a
time can store data in the variable. If two windows in your application store data
in the same static or global variable, one window must lose its data. You can
avoid this bug by storing window-specific data in a window's extra bytes or
property list rather than in a static variable. (There is more information about
window extra bytes and property lists in Chapter 5.)

You should use a static or a global variable only if you are certain that only one
window at a time will ever access the variable. Nevertheless, a safer technique is
to reserve static and global variables for values that are truly global and not pri
vate to a particular window.

Using a Debugging Terminal
One way to save time when debugging a Windows application is to use a debug
ging terminal to display debugging data while the application executes. A
debugging terminal consists of a dumb terminal (keyboard and screen) con
nected to your computer's serial communications port through a null-modem
cable. You can also use a second computer and a terminal-emulation program
instead of a dumb terminal. If your computer system contains two different
video subsystems, you can emulate a debugging terminal by using one video
subsystem for Windows and the other for displaying debugging data. This
method requires you to use a special device driver that redirects serial output to
the second video subsystem. Such device. drivers are in the public domain and
can be downloaded from bulletin-board systems such as CompuServ,e.

30

2: DEBUGGING

The reason to use a debugging terminal is so that you need not rely on the Win
dows screen to view debugging data. If you try to debug entirely within the con
fines of the Windows display, you will find that your application can't get out of
its own way when it tries to display debugging information. The bug that crashes
your application might prevent the application from displaying the debugging
message that would help you identify the bug.

You can make good use of a debugging terminal with the tools provided in
the Windows SDK. The Windows API supports a function called Output
DebugString, which sends a string to the debugging terminal. Furthermore,
when the debugging version of Windows traps an error that causes a fatal exit or
when an application detects an error and calls the FatalExit API function, Win
dows displays the error number and a stack trace on the debugging terminal.
Also, all three of Microsoft's Windows debuggers support the use of a secondary
monitor, a debugging terminal, or both.

Windows Debuggers
Three debuggers are supplied with the Windows SDK: CodeView for Windows,
SYMDEB, and WDEB386. Although all three use a similar set of debugging com
mands, each gives you a different view of the Windows environment. The
debugger you use for a particular application depends on your debugging needs.

If you want to debug in protected mode, use Code View or WDEB386. To debug
in real mode, use SYMDEB. Use WDEB386 if you need access to descriptor
tables, I/O ports, and other low-level components of the Windows environment.
All three debuggers let you debug a program at the level of assembly language,
but if you want to use a debugger that can display C source-code statements, you
must use CodeView or SYMDEB.

CodeView
Of the three SDK debuggers, CodeView is probably the best suited to Windows
application debugging. Code View lets you view an application's C source code,
set breakpoints, and trace through the source code as the program executes.
Also, CodeView is the only one of the three debuggers that lets you monitor the
flow of window messages and set breakpoints on specific messages. Sometimes
the quickest way to home in on a mysterious bug is to use Code View's wwm
(Windows watch message) command on all of an application's window func
tions to determine which message causes the bug to appear.

31

Windows: Developer's Workshop

Before you use CodeView, you must compile and link your application with spe
cial command-line switches, as shown in Figure 2-1. The IOd switch disables
compiler optimization that could interfere with debugging. The IZi and ICO
switches cause line numbers and symbols (function and variable names) to be
incorporated into the application's executable file for CodeView's use. This extra
debugging information does not affect the flow of control of the application.
CodeView uses the symbols and line numbers to associate names with their cor
responding memory locations and to display source-code statements as the pro
gram executes.

Switc"

lad
IZi

ICO

Figure 2·1.

Program

Microsoft C Compiler

Microsoft C Compiler

Microsoft Linker

Comments

Disables all compile-time optimizations

Includes line-number, global-name, and
local-name information in compiled code

Includes line-number, global-name, and
local-name information in executable file

Compiler and linker switches for preparing a program for debugging with
Code View.

SYMDEB
SYMDEB (a SYMbolic DEBugger) provides a superset of the functionality sup
ported in the MS-DOS debugger, DEBUG. Like DEBUG, SYMDEB lets you in
spect data in memory. It supports breakpoints at the assembly-language level
and lets you view both assembly-language instructions and the corresponding
C-Ianguage source-code lines.

You need a debugging terminal to use SYMDEB. If your computer system con
tains two video subsystems, one of which is a monochrome display adapter,
SYMDEB can use the monochrome screen as a debugging terminal. You start
SYMDEB by running it on your primary display. To redirect output to a mono
chrome display, specify the 1m switch on the SYMDEB command line. If you're
using a debugging terminal, redirect SYMDEB's output to the debugging termi
nal with SYMDEB's =COMlor =COM2 command. You begin debugging by set
ting breakpoints and source-code display options. Then you let SYMDEB
execute your Windows application.

To prepare an application for debugging with SYMDEB, use the compiler and
linker switches listed in Figure 2-2, and use the MAPSYM utility to create a .SYM
(symbol) file from the .MAP file for the application.

32

Switch

IOd

IZd

IMAP

ILl

Figure 2-2.

Program

Microsoft C Compiler

Microsoft C Compiler

Microsoft Linker

Microsoft Linker

2: DEBUGGING

Comments

Disables all compile-time optimizations

Includes line-number and global-name
information in compiled code

Creates .MAP file

Includes line-number information in
.MAP file

Compiler and linker switches for preparing a program for debugging with
SYMDEB or WDEB386.

SYMDEB does not support a full-screen interface as CodeView does. Also,
SYMDEB runs only in real mode, not in protected mode. Despite these draw
backs, there are certain debugging situations in which you might need SYMDEB.
One is when you suspect that a bug in your application occurs as a result of Win
dows' memory manager moving a block of global memory. Because the pointers
used to access global-memory blocks can be invalidated only in real mode,
SYMDEB is the best tool for finding such a bug. Also, if you suspect that a bug is
related to an application's use of expanded (EMS) memory, you can use SYMDEB
to monitor expanded-memory activity as the application runs.

WDEB386
If you want to debug in protected mode, an alternative to using CodeView is to
run WDEB386 with a debugging terminal. Despite its name, WDEB386 runs on
both 80286 and 80386 CPUs. WDEB386 lacks the convenient features of
CodeView, such as a full-screen interface and the ability to debug source code as
well as assembly-language code. On the other hand, WDEB386 gives you access
to elements of the programming environment that are not available through
CodeView, including the contents of the global and local descriptor tables. This
feature makes WDEB386 particularly useful to device-driver developers and to
assembly-language programmers.

You can also use WDEB386 to debug Windows applications that are written in C.

Prepare an application for debugging with WDEB386 the same way you do for
SYMDEB. Use the compiler and linker switches listed in Figure 2-2, and create a
.SYM file for the application by using MAPSYM. If your source code is contained
in more than one C source file, you might also want to use the lAM switch with
the Microsoft C compiler to build the application with the medium memory

33

Windows: Developer's Workshop

model. This memory model may be easier to use when you work backward from
an assembly-language instruction in WDEB386 to a line of source code in a C
source file. You might also use the IPc switch, which produces a .COD file that
lists both source code and the corresponding compiler-generated assembly
language.

When you load WDEB386, the command-line options you use depend on the
debugging environment. Use the Ie- switch to specify which serial communica
tions port WDEB386 will use and the IS: switch to specify symbol files. With an
80286-based computer, use KRNL286.SYM and the Is (standard mode) switch:

WDEB386 /C:1 /S:krn1286.sym /S:myapp.sym win. com /s myapp

In an 80386 environment, specify KRNL386.SYM and either the Is (standard
mode) or the 13 (enhanced mode) switch:

WDEB386 /C:1 /S:krn1386.sym /S:myapp.sym win. com /3 myapp

Figure 2-3 illustrates how WDEB386 might be used to find a bug that has pro
duced an "Unrecoverable Application Error" message in an application called
MYAPP. When WDEB386 starts, it lets the Windows kernel run long enough to
establish the protected-mode environment. It then halts at a breakpoint (INT 3)
that is built into the Windows kernel. This breakpoint exists only to return con
trol to the debugger so that you can set breakpoints in your application and ad
just WDEB386 display options.

In Figure 2-3, three commands are entered at the # prompt after this breakpoint
is encountered. The y 386env command toggles the 386env flag, which causes
WDEB386 to display only the 16-bit CPU registers. The z command replaces the
INT 3 breakpoint instruction with a NOP so that it won't be encountered again.
Then the g command transfers control to the application.

When the application encounters the bug, the familiar "Unrecoverable Applica
tion Error" message box appears on the Windows screen. Selecting the Cancel
button in the message box returns control to WDEB386, which displays the
assembly-language instruction that caused the error. In Figure 2-3, the instruc
tion is MOV AI, BYTE PTR ES:[BX+SI]. Because the instruction accesses memory,
it's a good bet that the cause of the error is an attempt to access a protected
memory location. The dl es command, which displays the ES entry in the Local·
Descriptor Table, verifies that this is the case. The selector in ES (l05DH) is a
valid data-segment selector because the dl es command successfully displayed a
descriptor-table entry. However, the largest valid offset in the segment (that is,
the segment limit) is OOOFH. Because the offset [BX +SI] is 0010H, the error is that
the program has attempted to read a byte that lies outside the data segment.

34

2: DEBUGGING

Microsoft (R) Windows 3.0 Kernel Debugger Version 2.75 09.Mar.90
Copyright (C) Microsoft Corp 1990. All rights reserved.
[80286]
Map linked (KERNEL)
Map linked (USER)
Map linked (GDI)
Map linked (MYAPP)
DOSX!DATA(0000)=3ACF
DOSX!CODE(0296)=3D65
DOSXICODE(04CF)=0050
KERNELIIGROUP=02D5
KERNELI_NRESTEXT=02DD
KERNELI_MISCTEXT=02E5
SYSTEM!CODE(0001)=036D

MSDOSICODE(0001)=OF45
MSDOS !CODE (0002)=OF4D
MSDOS!CODE(0003)=OF55
MSDOS!DATA(0006)=OF75
AX=000042FO BX=0000138F CX=OOOOOOOO DX=00000006 SI=00000E08 D1=OOOOOOOO
1P=0000827E SP=00001A76 BP=00001A98 CR2=00000000 CR3=OOOOO IOPL=3 F=---
CS=02D5 SS=OF75 DS=0081 ES=ODF5 FS=OOOO GS=OOOO -- NV UP EI NG NZ NA PO NC
02D5:0000827E INT 3
#y 386env
#Z
02D5:827E INT 3 replaced with: NOP
#g
MYAPP!_TEXT=06AD
MYAPP!DGROUP=069D
MYAPP!MYAPP_TEXT=OE4D
AX=OOOO BX=OOOO CX=105D DX=105D SP=1514 BP=1524 SI=0010 DI=104E
IP=036C CS=OE4D DS=069D ES=105D SS=069D -- NV UP EI NG NZ AC PE CY
OE4D:036C MOV AL,BYTE PTR ES:[BX+SI] ES:0010=INV:0003
#dl es
105D Data
#In

Bas=04AB70 Lim=OOOF DPL=1 P RW

OE4D : 01 DO MYAPP! MYAPP _TEXT: WndFn + 1 9C

Figure 2·3.
A sample debugging session in WDEB386.

A

You can find the bug in the C source code by using the location of the assembly
language instruction that caused the error. (In Figure 2-3, the segment:offset
location of the instruction is OE4D:036C.) The In command shows that the code
segment that contains the instruction is named MYAPP _TEXT. You can then
refer to the list of line numbers in MYAPP.MAP that correspond to MYAPP _TEXT
as shown in Figure 2-4. From this list you can see that the value of the offset,

35

Windows: Developer's Workshop

036cH, lies somewhere in the executable code that corresponds to line 323 of
the source code. Finally, a look at line 323 in MYAPP.C in Figure 2-5 reveals the
bug: The array subscript n is larger than the size of the global-memory block to
which pData points.

Line numbers for myapp.obj(myapp.c) segment MYAPP_TEXT

62 0001:0000 67 0001:0000 68 0001:0020 69 0001:0024
72 0001 :0026 740001:003B 75 0001:0045 780001:004F
79 0001 :0066 89 0001:0070 900001:007A 91 0001: 0080
93 0001 :0089 95 0001:0095 96 0001: 00A1 107 0001: 00A9

112 0001 :00B6 1130001:00BE 1140001:00C4 1150001:00CE
116 0001 :0000 1170001:00EC 118 0001: 00F4 119 0001 :00F9
120 0001: OOFE 121 0001: 01 03 123 0001: 01 08 124 0001: 0112
135 0001 :011A 136 0001 :0124 137 0001: 0131 154 0001: 0139
161 0001 :0146 1760001:014C 179 0001: 0174 180 0001: 0170
181 0001: 0188 183 0001: 0193 184 0001: 01 99 187 0001: 01A2
188 0001 :01AD 190 0001: 01 B5 192 0001: 01 C5 193 0001 :01C8
203 0001 :0100 2040001:01DA 2230001:01EO 207 0001:0203
208 0001: 021 6 211 0001 :0218 212 0001:0228 2150001:022A
21 6 0001: 0232 219 0001:0234 2270001:023B 2280001:023E
238 0001 :0248 239 0001:0252 242 0001:0262 2430001:026A
246 0001 :026C 247 0001:0274 250 0001:0276 2560001:027F
266 0001 :0287 267 0001: 0291 277 0001: 0299 281 0001:02A6
282 0001 :02BB 2830001:02CO 284 0001:0208 2940001:02EO
300 0001 :02EO 3020001:02FD 303 0001:0306 3050001:030F
307 0001 :0321 3080001:032E 313 0001:0336 319 0001: 0344
320 0001 :0352 3220001:035E 323 0001:0366 3250001:037C
326 0001:0384 3280001:038C 3290001:038F

Figure 2·4.
Line numbers and offsets in a .MAP file produced by MAPSYM. If you know a
segment name and offset, you can use this table to find the corresponding
source-code line number.

Line

312 static int Bomb(HWND hWnd)
313 {
314 LPSTR pOata;
315 GLOBALHANDLE hData;
316 int i,n;

Figure 2·5. (continued)
An excerpt from source code that contains a memory-protection bug.

36

Figure 2·5. continued

317
318
319 hData = GlobalAlloc(GHND, 16L);
320 pData = GlobalLock(hData);
321
322 for(n=O; n<20; n++)
323 i += pData[n];
324
325 GlobalUnlock(hData);
326 GlobalFree(hData);
327
328 return i;
329

Useful DefbuggiinSJ Techniques

2: DEBUGGING

Along with the assortment of debugging methods provided by Windows debug
gers, there are several programming techniques that you can use to prevent and
detect errors in your Windows applications. You should choose the debugging
techniques best suited to the kind of bug you are hunting and to your personal
debugging style.

Using the Debugging VelrSiODil of Windows
The foremost rule of thumb in debugging a Windows application is this: Always
use the debugging version of Windows to test your application. The debugging
version notifies you of errors that might pass undetected in the retail Windows
version. For example, if an application calls LoealFree to free a block of memory
that has been locked (by calling LoealLoek) but not unlocked (by calling
LoeaIUnloek), the debugging version of Windows interrupts the application with
an error message and a prompt to abort (terminate the application), ignore (con
tinue execution despite the error), or break (give control to the debugger). If you
used the retail version of Windows, this error would pass unnoticed.

ScaHolding
Scaffolding is a time-honored debugging technique that consists of embedding
extra debugging source code in a program. The purpose of scaffolding is to track
the state of the program at key locations in the source code. Here are some of the
many ways to use scaffolding:

• To view the intermediate results of computations.

.. To monitor variables whose values control what is drawn on the screen.

37

Windows: Developer's Workshop

• To record a program's flow of control.

• To test sections of source code that might otherwise execute only
occasionally.

The most effective way to incorporate scaffolding into an application is to com
pile it conditionally. For example, Figure 2-6 contains code that calls Output
DebugString to display the values of the h Wnd, hData, and pData variables. The
#ifde/ and #endif preprocessor directives bracket the scaffolding code so that it
is compiled into the application only if the symbol DEBUG is defined at compile
time. (You can use either a #define directive in the source code or the /D switch
on the Microsoft C compiler's command line to define the symbol DEBUG.) This
technique lets you include or omit debugging code, without modifying the ac
tual source code, by recompiling with or without the appropriate preprocessor
symbol definitions. You can use this technique to create levels of debugging
code that provide different amounts of debugging output by nesting condi
tionally compiled code using two or more preprocessor symbols.

void TestFn (HWND hWnd, GLOBALHANDLE hData)
{

LPSTR pData;

#ifdef DEBUG
char DebuqStrinq[64];

wsprintf(DebuqStrinq, "TestFn: hWnd=%04X, hData=%04X, pData=%081X\r\n",
hWnd, hData, pData);

OutputDebuqStrinq(DebuqStrinq);
#endif

pData = GlobalLock(hData);
MessaqeBox(hWnd, pData, "Test", MB_OK);
GlobalUnlock{ hData);

Figure 2·6.
Conditionally compiled scaffolding (debugging code) in a Windows/unction.

Scaffolding techniques complement the use of a debugger to single-step through
source code and to set breakpoints or watchpoints. The Windows API function
OutputDebugString is designed to be used with a debugger as well as with a
debugging terminal. If you're using CodeView, for example, OutputDebugString
directs its output to CodeView's command window.

38

2: DEBUGGING

Tracing Messages
Because flow of control in a Windows program is governed by messages, one of
the most productive ways to debug a Windows application is to trace the flow of
messages. If a bug appears in response to a particular message, a good place to
look for the error is in the source code that processes the message.

There are at least three ways to trace messages. The easiest is to use the Spy
utility in the Windows SDK, which lets you use the mouse to select a window
and then shows you the window's messages as they are processed. However, Spy
can spy only on visible windows. You can't u~e Spy to trace a window's messages
if the window isn't visible somewhere on the screen.

A more selective approach is to use CodeView, which lets you debug your appli
cation as well as trace messages. CodeView's wwm (Windows watch message)
command lets you trace specified messages in multiple window functions as
well as in multiple instances of the same window. Figure 2-7 shows how
CodeView displays the first few messages sent to the top-level window of an
application.

HWND:1340 wParam:OOOO lParam:OC8D07C4 msg:0024 WM_GETMINMAXINFO
HWND:1340 wParam:OOOO lParam:12351524 msg:0081 WM_NCCREATE
HWND:1340 wParam:OOOO lParam:1235150A msg:0083 WM_NCCALCSIZE
HWND:1340 wParam:OOOO lParam:12351524 msg:0001 WM_CREATE
HWND:1340 wParam:0001 lParam:OOOOOOOO msg:0018 WM_SHOWWINDOW

Figure 2·7.
Sample message trace produced by using Code View's wwm command.

CodeView's message-tracing ability is particularly useful when you combine it
with the wbm (Windows break message) command, which lets you set a break
point on a particular message. One way to locate a bug in a Windows program is
to use wwm to trace messages until the bug appears. If the bug seems to be
associated with a particular message, you can use wbm to set a breakpoint on
the message and then single-step through the code that processes the message.

A third message-tracing technique is to embed message-decoding scaffolding in
an application's window functions. One way to do this is to write a function that
uses a switch statement to decode a message's wMsg, wParam, and /Param pa
rameters. The function should use OutputDebugString to display the message
contents. This technique lets you trace specific messages and parameters more
informatively than you can with Code View or Spy.

39

Windows: Developer's Workshop

Intercepting API Functions
A clean way to encapsulate debugging code is to construct a set of functions that
intercept calls to Windows API functions. Each intercept function can surround a
Windows API call with error checking and other scaffolding.

Figure 2-8 shows how you might design a set of intercept functions for the Win
dows API functions that access window extra bytes. The four functions xGww,
xSww, xGWZ, and xSWZ intercept calls to the GetWindowWord, SetWindow
Word, GetWindowLong, and SetWindowLong Windows API functions. The func
tions trap any attempts to access or set window extra bytes that are not allocated
for the specified window.

static char szMsq[BO];
static char szOOB [] = " out of bounds \r\n" ;

/**.***.* ••• ** ••• *.* •••• ** •• **************.* •• ** •••• ** •••• ** ••• *** •• **** •• ****.

• xGWW--Intercepts GetWindowWord

•• * •• * •••• ** •••••••• * ••••••••••••••••••• * •••• * •• * •• **.*.******.*.* •• * ••••••••• /

WORD PASCAL FAR xGWW (BWND hWnd, int nOffset
{

WORD' wRVal;

if(IsOK(hWnd, nOffset, sizeof(WORD)))
wRVal = GetWindowWord(hWnd, nOffset);

else

MessaqeBeep(0);
wsprintf(szMsg, "GetWindowWord(%04X, %d)", hWnd, nOffset);
lstrcat(szMsq, szOOB);
OutputDebugStrinq(szMsq);

wRVal = 0;

return wRVal;

Figure 2·8. (continued)
Intercept functions for debugging calls to GetWindowWord, SetWindowWord,
GetWindowLong, and SetWindowLong.

40

2: DEBUGGING

Figure 2· 8. continued

/************************* •• *************** ••• ******** ••• ****.*** •••• ** ••• * •• **

* xSWW--Intercepts SetWindowWord

.***************************** ••• *******************.***** •• ****.***** •• ******/

WORD PASCAL FAR xSWW(HWND hWnd, int nOffset, WORD wNew)
{

WORD wRVal;

if(IsOK(hWnd, nOffset, sizeof(WORD))
wRVal SetWindowWord(hWnd, nOffset, wNew);

else

MessageBeep(0);
wsprintf(szMsg, "SetWindowWord(%04X, %d, %u)",

hWnd, nOffset, wNew);
lstrcat(szMsg, szOOB);
OutputDebugString(szMsg);

wRVal = 0;

return wRVal;

/*********************** •• **** •• ***

* xGWL--Intercepts GetWindowLong

**/

LONG PASCAL FAR xGWL (HWND hWnd, int nOffset)
{

LONG lRVal;

if(IsOK(hWnd, nOffset, sizeof(LONG)))
lRVal = GetWindowLong(hWnd, nOffset);

else
{

MessageBeep(0);
wsprintf(szMsg, "GetWindowLong(%04X, %d)", hWnd, nOffset);
lstrcat(szMsg, szOOB);
OutputDebugString(szMsg);

lRVal = OL;

(continued)

41

Windows: Developer's Workshop

Figure 2-8. continued

return lRVal;

/**

* xSWL--Intercepts SetWindowLonq

**/

LONG PASCAL FAR xSWL (HWND hWnd, int nOffset, LONG INew)
{

LONG lRVal;

if(IsOK(hWnd, nOffset, sizeof(LONG))
lRVal = SetWindowLonq(hWnd, nOffset, INew);

else

MessageBeep(0):
wsprintf(szMsq, "SetWindowLonq(%04X, %d, %lu)",

hWnd, nOffs'et, INew);
lstrcat(szMsq, szOOB);
OutputDebugString(szMsg);

lRVal = OL;

return lRVal;

/** •• ************************************

* IsOK--Tests whether specified space is allocated

** ************************1

static BOOL IsOK(HWND hWnd, int nOffset, int nSize)
{

42

int
BOOL

nEB;

bRVal = FALSE;

if(nOffset >= 0)
{

nEB = GetClassWord (hWnd, GCW_CBWNDEXTRA);
bRVal = (nOffset + nSize) <= nEB:

return bRVal;

2: DEBUGGING

Although you can incorporate intercept functions directly into a program's
source code, a more flexible strategy is to build intercept functions into a
dynamic link library. (Chapter 3 contains more information on dynamic link li
braries.) In the library's module-definition (.DEF) file, assign each intercept func
tion an export name that matches the name of the corresponding API function,
as shown in Figure 2-9.

EXPORTS WEP @1 RESIDENTNAME

Figure 2-9.

GetWindowWord = xGWW @133
SetWindowWord = xSWW @134
GetWindowLong = xGWL @135
SetWindowLong = xSWL @136

Exporting intercept functions in the module-definition file of a dynamic link
library. The exported names are identical to the correspondingfunctions in the
Windows API.

After you compile the dynamic link library, use IMPLIB to create an import li
brary for the intercept functions. You can then debug an application by linking
the application with the DLL's import library before the standard Windows API
library (LIBW.LIB): .

Llm{ /NOD /NOE myapp, , , intercpt libw, myapp

Placing the reference to the import library (in this example, INTERCPT.LIB)
ahead of the reference to LIBW.LIB causes the application's API calls to be linked
to the intercept functions in INTERCPT.DLL instead of the default Windows API
functions. However, the intercept functions themselves will be linked to the
default API functions. When you execute the application, the intercept functions
will be called. When you finish debugging, you can simply recompile the appli
cation without reference to INTERCPT.LIB, so all the application's API calls will
be linked directly to the default Windows functions.

Common Bugs
The most commonly encountered bugs in Windows applications are related to
the nature of the Windows environment. Windows applications fun in a visually
rich, interactive system where programming errors quickly become visible on
the screen. Also, Windows' memory-management strategy, in which blocks of
memory are managed dynamically outside the control of an application, can un
mask a number of subtle programming errors.

43

Wi ndows: Developer's Workshop

Visible Bugs
It is usually easy to find bugs that affect the appearance of a window. If you
create a window with the wrong style or initialize the window's background
color with the wrong value, the visual appearance of the window will clue you in
to the problem in your source code. If your list-box controls don't list or your
scroll-bar controls don't scroll, a good place to look for a bug is in the source
code responsible for manipulating and responding to those controls.

A trickier bug to discover is one that causes a window never to appear on the
screen at all. Here are several reasons why this may happen:

• The window function is not exported.

• An invalid window class name or instance handle is specified in the
WNDCLASS data structure when RegisterClass is called.

• The window class name or parent-window handle specified in the Create
Window function is invalid.

• The window function does not pass unprocessed messages to another win
dow function such as DefWindowProc.

• The window does not have the WS_ VISIBLE style, or calls to Show Window
or UpdateWindow do not execute successfully.

• The window is overlapped by another window.

• The window has no border, and its class background color is the same as
the desktop (COLOR_BACKGROUND) or the parent's client area
(COLOR_ WINDOW).

You can avoid some of these problems by checking the return values from func
tions such as RegisterClass and CreateWindow. In other cases, the only way to
find the bug is to use a debugger or appropriate scaffolding to examine the
WNDCLASS data structure, window handle, and window style bits.

Confusing Static and Automatic Data
Another type of bug is related to the notion of static and automatic data elements
in the C programming language. Storage space for static data elements is allo
cated in a program's default data segment. Thus the space reserved for static data
remains allocated as long as your program executes. In contrast, memory for au
tomatic data elements is allocated on the stack at the time control is transferred
to the function in which the automatic variables are declared. When the function
exits, the stack memory is reclaimed, and the values of the automatic data ele
ments are lost.

44

2: DEBUGGING

This kind of bug can appear in a window function if the function stores a value
in an automatic variable in response to a message and then attempts to use that
value in response to a subsequent message. In Figure 2-10, for example, hBrush
is declared as an automatic variable. Because memory for hBrush remains allo
cated only until WndFn returns, the value stored in hBrush when the message
WM_CREATE is processed is no longer available when WM_CTLCOLOR is pro
cessed. The bug can be fixed by declaring hBrush as a static variable or by stor
ing the brush handle in the window's extra bytes or property list.

LONG PASCAL FAR
WndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG lParam)
{

HBRUSH hBrush;

switch(wMsg)
{

case WM_CREATE:

/* hBrush is an automatic variable */

hBrush = GetStockObject(GRAY_BRUSH);
break;

case WM_CTLCOLOR:
return MAKELONG(hBrush, 0); /* ERROR: hBrush isn't valid */
break;

Figure 2·10.
A bug caused by using an automatic variable (hBrush) to store a value across
multiple messages.

Fatal-Exit Errors
The debugging version of Windows is designed to catch a variety of common
bugs. When a bug occurs, the debugging version displays an error number that
indicates the nature of the error. Appendix C of the reference manual in the Win
dows SDK documentation contains a complete list of fatal-exit error codes.

Following the error number, the debugging kernel produces a stack trace that
lists the return addresses for the function calls that occurred prior to the error.
This information appears on the debugging terminal unless you're using
CodeView, which displays it in the command window.

Figure 2-11 on the following page shows a typical fatal-exit stack trace caused by
an application's attempt to use an invalid value for a global-memory handle. The
topmost return address is the most recent. This list of addresses may seem cryp
tic, but if you use one of the Windows debuggers, you can work backward
through the stack trace to the location in your source code that caused the error.

45

Windows: Developer's Workshop

gdref: invalid handle 0000:3302

FatalExit code = Ox0280
stack trace:
02D5:7BBA
02D5 :1F56
12A5:0352
12A5:0278
12A5:020E
OBB5:1005
12A5:0032
12B5:0077

Abort, Break or Ignore?

Figure 2·11.
A stack trace displayed in CodeViews command window by the Windows
debugging kernel when a fatal error is detected. The error number (Ox0280)
indicates that the error resulted from an attempt to use an invalid global
memory handle. The return addresses on the stack are in selector: offset form.

For example, you can use the v (view) command in CodeView to work back
ward from a return address in the stack trace to the source-code line where the
error occurred. In the stack trace shown in Figure 2-11, the first two addresses in
the list correspond to function calls made outside the application. (Entering
v Ox02d5:0x7bba or v Ox02d5:0x1j56 in the command window produces the
message "No source lines at this address.") The next return address, however,
does point within the application. Entering v Ox12a5:0x0352 moves the cursor
to an assembly-language instruction that corresponds to line 320 of the applica
tion's C source code, as shown in Figure 2-12. This is where the fatal error oc
curred. The bug occurs because the automatic variable hData was never
initialized, as it probably should have been in line 319.

318 :
319: Global~loc(GHND, 16L);
12A5:0344 6A42 PUSH 42
12A5:0346 6AOO PUSH 00
12A5:0348 6A10 PUSH 10
12A5:034A 9AE206D502 CALL 02D5:06E2
320: pData = GlobalLock(hData);
12A5:034F FF76FC PUSH Word Ptr [BP-04]
12A5:0352 9AA009D502 CALL 02D5:09AO
12A5:0357 8946F6
12A5:035A 8956F8

MOV
MOV

Word Ptr [BP-OA],AX
Word Ptr [BP-08],DX

Figure 2·12.
A view of the combined source/assembly listing in CodeViews source window,
showing where thefatal error in Figure 2-11 occurred.

46

2: DEBUGGING

Wild Pointers
A wild pointer is a pointer to data in the wrong part of memory. When your pro
gram uses a wild pointer to read from or write to a memory location, almost
anything can happen. If a wild pointer causes data in a program's default data
segment to be corrupted, you might be able to locate the source of the corrupted
data very quickly. On the other hand, if a wild pointer points to a block of data
owned by Windows itself, the program that crashes as a result of the corrupted
data may not be the same as the one that contains the wild pointer. In such cases,
a wild-pointer hunt may seem more like a wild-goose chase.

The reason wild pointers can be hard to isolate is that their bad effects often
become apparent in misleading ways. As the result of a wild pointer, an applica
tion might terminate suddenly with only Windows' "Unrecoverable Application
Error" message box to indicate that something went wrong. A wild pointer can
also crash a program in a confusing way, by causing a spurious fatal-exit error
such as "invalid window handle" (error code Ox0007) or "gdref: invalid handle"
(error code Ox0280). Such errors don't represent what they seem to. They occur
because your application has somehow clobbered data that actually belongs to
Windows' window manager or memory manager. If you see a fatal-exit error that
seems unrelated to what a program is supposed to be doing, you can suspect a
wild pointer.

Most wild pointers are the result of "dumb" mistakes, unrelated to errors in pro
gram design or execution logic. Wild pointers can creep into a Windows applica
tion when you forget to initialize a pointer variable, make an error in pointer
arithmetic, use a pointer to a memory block that has moved to another location,
or fail to properly associate an exported function with its default data segment.

Uninilialized pointer variables
If you dereference a pointer without first specifying its value, you are almost cer
tainly accessing the wrong part of memory. This is an easy mistake to make
when you program in C because the C language lets you use the same syntax to
dereference both pointer variables and array names. Consider the following
example:

void UninitializedPointer()
{

LPSTR Buf;

Buf[O] = 0; /* ERROR: Buf is uninitialized! */

47

Windows: Developer's Workshop

In this function, the assignment statement contains a bug because the pointer
Bufis uninitialized. The programmer's intention might have been to declare Buf
not as an LPSTR but as a character array:

char Buf[SO];

This kind of wild pointer is usually easy to trap when you debug in protected
mode. There is only a small chance that the value that happens to be stored in an
uninitialized pointer variable is actually a valid selector:offset combination, so
CPU memory protection usually traps the error. When the error occurs, you'll
see the "Unrecoverable Application Error" message box. With a debugger, you
can view the assembly-language instruction that used the wild-pointer value.

Errors in pointer arithmetic
Another kind of wild pointer results from an error in pointer arithmetic. For ex
ample, the following loop addresses elements in an array that are not allocated in
the array declaration:

int n, x[100];

for(n = 0; n < 200; n++)
x[n] = n;

Unfortunately, there is no way to check for pointer-arithmetic errors automati
cally during a program's execution. Your best bet is to debug in protected mode
and hope that CPU memory-protection traps any errors in pointer arithmetic.

Clobbered data
When they don't cause memory-protection errors, pointer-arithmetic bugs gen
erally lead to clobbered data. The way these bugs appear depends on the data
you clobber. On the stack, you might overwrite a return address, which would
cause a program to fail as soon as it tried to use the return address to return from
a function call. You might also destroy the stack-frame pointer saved on the
stack each time a function is called. This could lead to fatal-exit error Ox0303
("invalid BP chain"). In the local heap, you might overwrite one of the linked-list
pointers Windows memory manager uses to maintain the local heap. In this case,
you might see fatal-exit errors OxOlOO, OxOl03, or Ox0140, all of which occur
when memory management of the local heap is disrupted.

48

2: DEBUGGING

Another way in which you might accidentally overwrite data is in calls to the API
functions SetWindowWord and SetWindowLong, which are used to access win
dow extra bytes. You are certain to have problems if you specify the wrong byte
offset or if you use SetWindowLong when you should have used SetWindow
Word. You will also corrupt data if you do not specify a large enough value for
the cb WndExtra field of the WNDCLASS data structure when you register a
window class.

This kind of bug can cause an application to fail in a misleading way because the
data being overwritten is used by Windows' window manager. For example, you
might see fatal-exit Ox0007 ("invalid window handle") or even Ox0140 ("Local
heap is busy"), when the real problem is that you used a window's extra bytes
incorrectly. You can also crash other applications by attempting to store data in
window extra bytes beyond what you allocate in the WNDCLASS data structure.
This happens because window extra bytes are part of a data structure in a heap
maintained by Windows' window manager on behalf of all windows in all appli
cations. If a program stores data beyond the allocated number of window extra
bytes, it may corrupt the heap and disrupt all window management.

Dissociated data segments
In Windows, every instance of every application is associated with a different
default data segment. Whenever control transfers to an application instance
that is, whenever an exported far function is called-Windows loads the CPU's
DS register with the segment value (in real mode) or selector (in protected
mode) that identifies the instance's default data segment. If this doesn't happen,
all sorts of wild-pointer errors can occur because the value in DS may not point
to the default data segment associated with the instance.

To understand why this is so, consider how Windows stores the appropriate
default data-segment value in DS. In Windows programs, a short prolog of exe
cutable code precedes every exported far function in a module. Unless you pro
gram in assembly language, far-function prologs are generated by your high
level language compiler. For example, the Microsoft C compiler generates a
prolog for every far function you compile using the /Gw command-line switch.

The function prolog copies a data-segment value from register AX to DS, as
shown in Figure 2-13. The correct data-segment value must be placed in AX by
the function's caller before it transfers control to the function prolog.

49

Windows: Developer's Workshop

nop
nop
nop
inc bp
push bp
mov bp,sp
push ds
mov ds,ax

Figure 2·13.

save BP+1 on stack

save current stack pointer in BP
save current DS
copy AX to DS

Exported Jar-Junction prolog in a Windows application.

The data-segment value in AX is placed there in an instance thunk, a short piece
of executable code that is created by calling the Windows API function
MakeProclnstance. As shown in Figure 2-14, an instance thunk does nothing but
store a data-segment value in AX and jump to the far-function prolog. By using a
different instance thunk for each exported function in every application in
stance, Windows associates the correct default data segment with every far func
tion without needing multiple copies of each function's executable code.

mov ax,xxxx
jmp FAR PTR function

store the data-segment value in AX
jump to exported FAR function

Figure 2·14.
An instance thunk. This piece oj executable code is created by MakeProc
Instance. The instance thunk stores a data-segment value in register AX and
jumps to the exported-Junction prolog shown in Figure 2-13.

There are two ways in which you can disrupt this neat arrangement. One is sim
ply to forget to export a far function that should have been exported. In this case,
the should-have-been-exported function uses the calling function's default data
segment instead of its own. This oversight causes problems as soon as the called
function tries to access its static data or variables.

Suspect this bug whenever a program's static data seems to vanish. For example,
the Microsoft C compiler stores string constants in a program's default data seg
ment. Therefore, if you forget to export a function, all of the function's far point
ers to the default data segment will be invalid. When this happens, string
constants used as far-function parameters will seem to disappear. Consider the
following C statement:

MessageBox(hWnd, "Hello, world", "This is a test", MB_OK);

50

2: DEBUGGING

The MessageBox function uses far string pointers (LPSTR) as parameters. If the
function containing MessageBox should have been exported but was not, both of
the string parameters will be invalid, and MessageBox will fail to display the
proper text.

Another way that you might lose a function's data segment is if you forget to call
MakeProclnstance to create an instance thunk for a properly exported far func
tion. It is easy to forget to do this because you need not call MakeProclnstance
for every exported far function. In particular, Windows itself creates an instance
thunk when you call RegisterClass for an exported far function you use as a win
dow function. However, you must call MakeProclnstance for all other exported
far functions in an application. If you don't create an instance thunk for an ex
ported far function that needs one, the data-segment value used by the function
may not be valid. In that case, any references to data stored in the default data
segment will be invalid. Because there is no way for a debugger to tell you that
you should have created an instance thunk, consider whether you need to use
MakeProclnstance whenever you suspect a dissociated data segment in an ex
ported far function.

Invalid far pointers to moveable data
Some of the subtlest wild-pointer errors occur as a consequence of the normal
operation of Windows' memory manager. As the memory manager allocates a
new block of memory in the global heap or enlarges an existing memory block,
it can rearrange the global heap by relocating other moveable blocks of global
memory. This is normally not a problem in protected mode (standard or en
hanced modes), but it can unmask wild pointers in real-mode applications.

The reason lies in the way a block of global memory is addressed in the different
CPU modes. In standard and enhanced modes, a global-memory address is a 32-
bit value that consists of a 16-bit selector and a 16-bit offset. The selector desig
nates an entry in an 80286, 80386, or 80486 descriptor table. Part of each entry in
the descriptor table is the address of the start of the memory block, which can lie
anywhere in the CPU's address space. When Windows' memory manager moves
a block of memory, it updates the block's starting address in the corresponding
descriptor table. This means that the 32-bit selector:offset address you use in a
Windows application remains unchanged, even if the memory manager moves a
memory block to a different location in physical memory.

In real mode, however, there are no descriptor tables. A global-memory address
consists of a 16-bit segment and a 16-bit offset. The segment value corresponds
directly to a physical location in memory. If Windows' memory manager moves a

51

Windows: Developer's Workshop

block of memory. the block's global-memory address contains a different seg
ment value. Consequently, if an application stores a global-memory address in a
pointer variable, the address will be invalidated if Windows' memory manager
moves the global-memory block referenced by the pointer.

The reason this kind of bug is hard to find is that you cannot always control or
determine when the memory manager will move a particular block of memory.
The pointer may remain valid for a long time before the memory manager relo
cates the memory block to which it points. Moreover, when the memory man
ager moves a block of memory, it does not necessarily store new data at the
block's previous address. This means that a wild pointer can continue to point to
reasonable data even though it's pointing to the wrong location in memory.

The way to start looking for this kind of bug is to scrutinize your application's use
of far pointers. Suspect any far pointers to data in the application's default data
segment. Look carefully at the way the application accesses data in memory
blocks allocated dynamically by GlobalAlloc.

What you are looking for is a far pointer that is used after any function call that
might cause the global heap to be rearranged. Because it can be very hard to de
cide whether a given function call can lead to global-memory movement, the
best way to ensure that a far pointer remains valid is to ensure that the pointer
references a block with a fixed location in memory.

If the memory block is allocated by a call to GlobalAlloc that doesn't specify
GMEM_FIXED in its first parameter, be sure that far pointers to the block are
used only between a pair of calls to GlobalLock and GlobalUnlock, as shown in
Figure 2-15. The call to GlobalUnlock should be close enough to the GlobalLock
call that you can easily see them as a pair in your source code. Don't worry if you
end up including a few extra calls to GlobalLock and GlobalUnlock. Eliminating
the possibility of a wild pointer is well worth the minuscule overhead involved
in locking and unlocking the memory block.

In real mode, Windows can also move the global-memory block that contains an
application's default data segment. If you are chasing a wild pointer in a real
mode application, look for far pointers to data in the default data segment. You
can avoid this kind of problem by using near pointers instead of far pointers to
data in the default data segment and stack. Figures 2-16 and 2-17 illustrate the
wrong and right ways to point to data in the default data segment.

52

2: DEBUGGING

BYTE GetOneByte(GLOBALHANDLE hData)
{

LPSTR lpData;

/* lpData contains a valid far pointer */
IpData = GlobalLock(hData);

/* (use IpData here) */

GlobalUnlock(hData); /* lpData is no longer trustworthy */

/* if global memory is moved here, lpData might be invalid */

return *lpData;

Figure 2·15.
This function is supposed to return the first byte of data in a moveable global
memory block. However, if the block moves after the call to GlobalUnlock, the
far pointer IpData might become a wild pointer.

void Create50EditWindows(HWND hWnd, LPSTR szText)
{

int i;

for(i = 0; i < 50; i++
CreateWindow("Edit", szText, ...);

Figure 2·16.
The wrong way to point to a data item in an application s default data segment
is to place a far pointer in a variable or in a function parameter. Here, one of
the calls to CreateWindow might cause Windows' memory manager to increase
the size of the default data segment to accommodate the edit-control text. In
real mode, the default data segment could move and invalidate szText.

void Create50EditWindows(HWND hWnd, NPSTR szText)
{

int i;

for(i = 0; i < 50; i++
CreateWindow("Edit", szText, .,.);

Figure 2·17.
The right way to point to the data item is to use a near pointer. CreateWindow
requires a far pointer, so the C compiler generates code that converts szText
into a far pointer dynamically each time CreateWindow is called.

53

Windows: Developer's Workshop

The function Create50EditWindows is called with the address of a buffer,
szText, that is located in the default data segment. The only difference between
the two versions of Create50EditWindows is the way the parameter szText is
passed. In Figure 2-16, szText is a far pointer that can become invalid after
CreateWindow executes. In Figure 2-17, szText is a near pointer that is converted
to a far pointer dynamically each time CreateWindow is called.

When you suspect a wild pointer to a moveable memory block, try using fixed
global-memory blocks instead of moveable blocks. Use GMEM_FIXED instead
of GMEM_MOVEABLE as a parameter to GlobalAlloc, and use FIXED instead of
MOVEABLE in your module-definition (.DEF) file to specify fixed segments. If
the bug disappears, you're probably on the right track. In particular, if the bug
disappears only when you fix a particular block of memory, look carefully at
pointers to data in that memory block.

Trapping a wild pointer
If you think you have a wild pointer and you don't see a problem in your source
code or module-definition file, you must trap the wild pointer by analyzing its
bad effects. With luck, the wild pointer will point to the middle of a buffer whose
contents you can examine. If you can identify the data inadvertently stored in the
buffer when the wild pointer was used, you should be able to find the wild
pointer in your source code.

When you can't find the wrongly stored data, you should take a more systematic
approach. Start by running the application in protected mode (standard or en
hanced mode). In protected mode, any of the following wild-pointer errors will
lead to an "Unrecoverable Application Error" message:

• An attempt to store data in an executable-code segment.

• An attempt to use a far pointer with an invalid selector (such as might occur
with an unitialized or null pointer).

• An attempt to read or write beyond the extent of a block of memory-that
is, with a pointer whose selector is valid but whose offset points outside of
the allocated size of the block.

These errors are normally trapped by the memory-protection feature of the
80286, 80386, and 80486 processors. To locate the pointer that causes one of
these errors, run your application under CodeView in the debugging version of
Windows. CodeView will trap the error and display this message:

Trap 13 (ODH) - General Protection Fault

54

2: DEBUGGING

Then Code View will highlight the location in your application where the wild
pointer is used.

Unfortunately, Windows version 3 does not make use of CPU memory protection
to insulate an application's data segments from wild pointers in other applica
tions. This means that a wild pointer in an application can cause corrupted data
in a different application or even within Windows itself. If you suspect this kind
of problem, the next step is to try to unmask the wild pointer by causing it to
point to a protected memory location. One way to do this is to allocate some
memory on the global heap before you run the application again. For example,
you can run the Heap Walker utility, which is included in the Windows SDK, and
use the commands in the Alloc menu to allocate a chunk out of the global heap.
Then, when your application executes, its global-memory blocks will be allo
cated at different locations than they were before. With luck, the wild pointer
will refer to a block of protected memory, and CPU memory protection will help
you trap the bug.

Another technique is to run the same application in a different CPU mode. For
example, if you're debugging an application in enhanced mode, try running it
again either in standard mode or in real mode. This approach works because the
selector or segment value of a far pointer depends on the CPU mode. Although a
wild pointer might contain a valid selector value in one CPU mode, the value
might be invalid in a different CPU mode and generate a memory-protection
error.

You can trap a few wild pointers by running the debugging version of Windows
in real mode. For example, you can sometimes cause a wild pointer to manifest
itself by using the Shaker utility in the Windows SDK to shuffle the global heap.
Shaker rapidly allocates and frees random blocks of global memory. This causes
the memory manager to frequently relocate moveable global-memory blocks, so
an application that contains a wild pointer fails sooner than it would without the
Shaker utility.

Another real-mode technique is to use ValidateCodeSegments and Validate
FreeSpaces. ValidateCodeSegments causes Windows to compute a checksum on
all global-memory blocks that contain executable code. If the checksum has
changed, the debugging kernel issues fatal-exit error "Segment contents invalid"
(error code Ox0409). To use ValidateCodeSegments, you must include the follow
ing statement in the [kernel} section of WIN.INI:

EnableSegmentChecksum=1

55

Windows: Developer's Workshop

You can then insert calls to ValidateCodeSegments into strategic locations in
your source code. If ValidateCodeSegments fails during your program's execu
tion, you can track down the bug by inserting calls to ValidateCodeSegments un
til the wild pointer is isolated.

A related real-mode debugging technique is to use ValidateFreeSpaces. A call to
ValidateFreeSpaces checks all free blocks in global memory for spurious data
stored because of a wild pointer. As with ValidateCodeSegments, you should in
sert calls to ValidateFreeSpaces in your source code as frequently as you need to
check for the use of a wild pointer.

To use ValidateFreeSpaces, you must include two statements in the [kernel] sec
tion of WIN.lNI:

EnableFreeChecking=1
EnableHeapChecking=1

These statements cause Windows to store the value OCCH (hexadecimal CC) in
each byte of each unused global-memory block in the global heap. When you
call ValidateFreeSpaces, Windows verifies that the free-memory blocks are still
filled with OCCH and issues a fatal-exit error if they are not. The value OCCH is
used because it represents a debugging breakpoint instruction in the 8086
family of CPUs. If you are using SYMDEB to debug a real-mode application and
the application jumps to an invalid address in a block of memory that contains
the value OCCH, the resulting debugging break lets you examine the stack and
trace backward to the function that jumped to the invalid address. In this situa
tion, the invalid address is likely to have resulted from overwriting a return ad
dress on the stack.

Bulle.proofing
A robust, industrial-strength Windows application must run properly in a variety
of unfavorable situations. The best way to ensure that a Windows program can
resist the slings and arrows of outrageous users is to test, redesign, and debug the
application in the face of all the adverse circumstances you can anticipate.

CPU Modes
Before you distribute a Windows application to its users, be certain the applica
tion works properly in real, standard, and enhanced modes. If you developed
the application in real mode, running it in standard and enhanced modes can
catch memory-protection errors and wild pointers that might escape your atten
tion in real mode. If you developed the program in standard or enhanced modes,

56

2: DEBUGGING

testing it in real mode can unmask errors such as wild pointers caused by the
movement of global-memory blocks and failure to match calls to GlobalLock and
GlobalUnlock.

It is also a good idea to validate your application by running it in real mode with
LIM 4.0 expanded memory. This is a must if your application allocates shared
global-memory blocks for DDE communications or if you are testing a dynamic
link library that allocates global memory when called by an application. If an ap
plication works perfectly in the other CPU modes but fails in real mode with ex
panded memory, look for improper global-memory allocations, such as failing to
use GMEM_DDESHARE or GMEM_NOT _BANKED as a parameter in the alloca
tion of a shared global-memory block.

Input Overflow
A Windows application becomes susceptible to input overflow whenever a user
can type or click the mouse button faster than the application can respond. Some
Windows users are very fast typists. Others are very slow typists who uninten
tionally press keys so long that the keys autorepeat. Still others are mouse users
who do not yet have the hand-to-eye coordination necessary to position the
mouse and to click or double-click accurately. All these users can crash a Win
dows application that is not carefully designed to withstand input overflow.

For example, any Windows application that uses a push button to initiate a
prolonged operation is at risk of input overflow because a user can inadvertently
initiate the same operation several times by repeatedly clicking a mouse button
or holding down the Enter key. To avoid this problem, call EnableWindow
to disable the button when it is clicked and to reenable the button only after the
prolonged operation has completed:

case mCCOMMAND:
if(IDBUTTON == wParam)
{

EnableWindow ((HWND) LOWORD (lParam), FALSE);

/* carry out a prolonged operation */

EnableWindow ((HWND) LOWORD (lParam), TRUE);

Low-Memory Errors
Another way to bulletproof your application is to run it when global memory is
scarce. When memory is at a premium, Windows' memory manager is much
more likely to move and discard your application's moveable and discardable

57

Windows: Developer's Workshop

global-memory blocks than it is when plenty of global memory is available. This
means that bugs arising from the careless use of GlobalAlloc and GlobalReAlloc
and wild pointers related to the movement of global-memory blocks are more
likely to appear.

To verify that an application runs in a low-memory situation, run Heap Walker
along with the application. Select Allocate All Of Memory in Heap Walker's Alloc
menu. Then run the application and watch for bugs. The application will proba
bly run very slowly as Windows' memory manager frequently moves or discards
the application's code and data. If the application runs too slowly to be usable,
you can speed it up a bit by using Heap Walker to free 25 or 50 KB.

Running the Wrong Way
Before you let an unsuspecting user run a Windows application, try to anticipate
how the user might make the application fail. This may not be easy if you're the
one who designed the application because you naturally know the right way to
run it. In this case, you might want to find a friend who will look at the applica
tion with a fresh viewpoint and ask some hard questions about what will happen
when the application is run the wrong way.

For example: Does everything still work properly when the user runs multiple
instances of your application? Does the application work acceptably if the user
stores data files on a floppy disk instead of on a hard disk? What happens if the
user's hard disk runs out of space? When the user halts the application by ending
the Windows session, does the application terminate gracefully, without.1eaving
open files or GDI objects behind? Does it recover properly from hardware
failures such as communication line drops, printer errors, and floppy-disk errors?

It may require some extra programming effort to be able to give good answers to
questions like these, but bulletproofing will certainly save you trouble in the long
run. The more experience you gain in debugging and careful bulletproofing in
the Windows environment, the better your Windows applications will become.

58

3

Dynamic Link
. Libraries (DLLs)

3: DYNAMIC LINK LIBRARIES (DLls)

The dynamic link library eDLL) is Windows' basic tool for sharing executable
code and data. DLLs can be used to support shared subroutines, window classes,
and read-only resources such as fonts, strings, and bitmaps. DLLs provide a way
to extend and customize the Windows environment because the functions and
resources you implement in DLLs can be used by applications in the same way as
the ones predefined in the Windows API.

Like a stand-alone Windows application, a Windows dynamic link library is a
Windows module that consists of executable code or data that Windows can load
into memory. Functions defined in a DLL have full access to the Windows API.
They can allocate memory, load resources, process input, and generate output.
The important conceptual difference between a dynamic link library and a
stand-alone application is that, unlike an application, a DLL is not a task. DLLs do
not contain message-dispatching loops that call GetMessage or DispatchMessage.
Instead, a DLL contains functions, fonts, bitmaps, or other resources that are
called or loaded on demand by functions in other modules.

Structure of a Dynamic Link Library
The structure of a DLL resembles that of a stand-alone application. The differ
ence is that a DLL has no WinMain function. Instead, DLLs contain an initializa
tion function, LibMain, which Windows calls when it first loads the library into
memory. DLLs must also contain an exit function, WEP, which Windows calls
just before it discards the library from memory. The source code for
DLLBASE.DLL, a baseline dynamic link library, shown in Figure 3-1, contains ex
amples of both LibMain and WEP.

/*********************.** •••• ** •••• * •••• **** •• **** •• ****.*****.*****.**********

• INIT.C

**********.*****.***********.******************************.*****.**********.*/

#define NOCOMM
#include <windows.h>

/ * * * GLOBAL VARIABLES * * • /
HANDLE hDLLlnst;

Figure 3·1. (continued)

Source code for DLLBASE.DLL.

61

Windows: Developer's Workshop

Figure 3·'. continued

/* * * FUNCTION PROTOTYPES * * */
BOOL PASCAL FAR LibMain(HANDLE, WOW, WOW, LPSTR);

,•.......................................•........

* LibMain
called by LibEntry when this DLL is loaded .

••• ** ••••••••••••• /

BOOL PASCAL FAR
LibMain (HANDLE hInst, WORD wDS, WORD wHeapSize, LPSTR lpCmdTail)
{

BOOL bRVal = TRUE;

/. if LibEntry has called LocalInit, unlock the default data segment */
if (wBeapSize)

bRVal = UnlockSegment(wDS);

/* save the DLL instance handle in a global variable */
hDLLlnst = hInst;

/* (other initialization would go here) */

return bRVal;

/*** •••••••••••••• * •••••• *.*.*.**.** ••• * •• ******** •• *.** •• *** •• *.* ••••• * •••••• *

• DLLBASE.C
Simple Windows DLL.

• Exports: Easter
ShowDLLlcon

. ••• ** •••• *.* •••••••• * ••••• * ••••• ****.*.** ••• ** •••••••••••• * •• * •••• ** •• *.~ •• /

#define NOCOMM
#include <windows.h>

(continued)

62

3: DYNAMIC LINK LIBRARIES (Dlls)

Figure 3·1. continued

/ * * * GLOBAL VARIABLES * * * /
extern HANDLE hDLLInst; /* deftned in LIBMAIN.C */

/*** FUNCTION PROTOTYPES ***/
miORO PASCAL FAR Easter (int);
void PASCAL FAR ShowDLLlcon(HWND, int, int, int);

/ •• ********* •••• ****.*** •••••• *** •••••••••••• ** •• ** ••• **** •• * •••• *.** •••• *.* •••

* Easter
Returns the date of Easter for the specified year >= 1583.
The return value is formatted as MAKELONG(day, month).

Source: Duffett-Smith, "Practical Astronomy with Your Calculator," *
Copyright 1979, Cambridge University Press

**** ••• * •••• ** •• * •••••• * •••••• ** •• **** •• *** •••• **.* ••••••• *** •••••••• *** •• ** •• /

DWORO PASCAL FAR Easter (int y)
{

int a,b,c,d,e,f,g,h,i,k,l,m,n,p;

a y % 19;
b = y / 100;
c = y % 100:
d = b / 4;
e = b % 4;
f (b + 8) / 25;
g (b - f + 1) / 3;
h (19*a + b - d - g + 15) % 30;
i = c / 4;
k c % 4;
1 (32 + 2*e + 2*i - h - k) % 7;
m = (a + 11*h + 22*1) / 451;
n = (h + 1 - 7*m + 114) / 31; /* 3=March: 4=April */
p = (h + 1 - 7*m + 114) % 31: /* day of month (0-30) */

return MAKELONG(p+1, n);

(continued)

63

Windows: Developer's Workshop

Figure 3 -I. continued

/*************************.*.** •••• ** •••• ** ••• *****.** •••• ** ••• **** ••• **.******

* ShowDLLlcon
Displays the specified icon at the specified coordinates .

••• * •••• ** •••••••••••••••••••••• ** •••• **/

void PASCAL FAR ShowDLLIcon(HDC hOC, int nID, int nX, int nY)
{

aICON hlcon;

hlcon = LoadIcon (hOLLlnst, MAKEINTRESOURCE (nID));
Drawlcon(hOC, nx, nY, hlcon);
FreeResource(hlcon);

/ •• *** ••• *** •• **** ••• *** •• ********* •• **** •• *** ••• ********** •• ************* •••• *

* WEP.C
Windows exit procedure for Windows 3.x.

* Exports: WEP RESIDENTNAME

* Notes: This function must reside in a fixed code segment.

** •• ***********.*****.****************************.**********.****************/

#define NOCOMM
include <windows.h>

/.** •••• **.**.****.***.******************.******** •• *****************.*********

* WEP
Called by Windows when this DLL is unloaded .

•• *** •••• ******************* ••••• **.*****************.********************* ••• /

int PASCAL FAR WEP (int nParam)
{

int nRVal;

64

(continued)

3: DYNAMIC LINK LIBRARIES (DLLs)

a:Jguro 3·1. continued

switch(nParam)
{

case WEP_SYSTEM_EXIT:
case WEP_FREE_DLL:
default:

nRVal = 1;

return nRVal;

/ •••• ** ••

* DLLBASE.RC resource script

.. /

STRING TABLE
{

100, "Wer zuletzt lacht lacht am Besten."
101, "He who laughs last laughs best."
102, "Rira bien qui rira le dernier."

1 00
1 01
1 02

ICON
ICON
ICON

deutsch.ico
usa.ico
france.ico

; ••••••••••••••••••• ** •••

DLLBASE.DEF module-definition file

;•....•.......................•.....•..........

LIBRARY
DESCRIPTION
EXETYPE

CODE
DATA

DLLBASE
'DLLBASE version 1.0'

WINDOWS

LOADONCALL MOVEABLE OISCARDABLE
PRELOAD MOVEABLE SINGLE

(continued)

65

Windows: Developer's Workshop

Figure 3 -1. continued

HEAPSIZE 0

SEGMENTS INIT_TEXT PRELOAD DISCARDABLE
WEP_TEXT PRELOAD FIXED

EXPORTS WEP @1 RESIDENTNAME
Easter @2
ShowDLLlcon @3

Initialization Function
When Windows loads a library into memory, it transfers control to a short startup
routine called LibEntry. This startup routine is defined in an object file named
LIBENTRYOB], which Microsoft supplies as part of the Windows SDK. (You
must link LIBENTRYOB] into your DLL on the LINK command line.) LibEntry
performs two actions. If you declare a nonzero heap size in the library's module
definition file, LibEntry calls Locallnit to initialize a local heap in the DLL's
default data segment. Then LibEntry transfers control to the library's initializa
tion function, LibMain.

Because LibMain always executes at the time Windows loads the library, the
LibMain function can carry out any initialization required by other functions in
the library. You can use LibMain to initialize global variables, register window
classes, or perform any other initialization needed by the library. LibMain
returns a nonzero value to indicate that initialization is successful. If LibMain
returns 0, Windows does not load the library.

Typically, LibMain also calls UnlockData or UnlockSegment for libraries that use
a local heap. This is necessary because LibEntry calls Locallnit if the library
contains a local heap, and Locallnit leaves the DLL's default data segment
locked. For a DLL that might be used when Windows is running in real mode, it
is best to leave the default data segment unlocked so that Windows' memory
manager can move it if necessary. In the sample library, DLLBASE, LibMain de
termines whether to call UnlockSegment by testing the value of the wHeapSize
parameter.

Library Functions
If a function defined in a DLL is to be called by another Windows module, the
function must be exported so that Windows can dynamically link the caller with
the called function. Such functions in DLLs must also be defined as far functions

66

3: DYNAMIC LINK LIBRARIES (DLLs)

because the library code segment in which the function is defined might not be
the same as the segment from which the function will be called. In DLLBASE, the
application-callable functions are Easter and ShowDLLIcon, both of which are
declared with the keywords PASCAL FAR and exported in the library's module
definition file, DLLBASE.DEF.

Although DLLBASE defines only two application-callable functions, you can in
corporate as many functions as you want into a library as long as you export
each application-callable function. The only functions that do not need to be ex
ported are those that are called only by other functions in the same library. How
ever, there is no penalty for exporting such functions. In a DLL, exported
functions can be called by other functions in the same DLL as well as by func
tions in other modules.

Library Resources
DLLBASE includes a loadable STRINGTABLE resource and three ICON re
sources, defined in the resource file DLLBASE.RC. The resources are built into
the DLLBASE.DLL file, just as they would be in a Windows application. When
Windows loads DLLBASE.DLL, the resources become available to any applica
tion. To access the STRINGTABLE resource, for example, an application must
first call LoadLibrary to ensure that Windows has loaded the library and to ob
tain the library's module handle. The application then uses the handle in calling
LoadString to access the string table. A function in the same DLL accesses a DLL
resource by using the DLL's instance handle instead of calling LoadLibrary to
obtain a module handle. The function ShowDLLIcon in DLLBASE.C shows how
to do this.

The Exit Procedure
Every DLL must export a callback function named WEP (which stands for Win-.
dows Exit Procedure). Windows calls a library's WEP function while it is
unloading the library from memory. The purpose of the exit procedure is to pro
vide a way for a DLL to perform any final actions that need to be carried out
before the library is discarded. Such actions might include freeing any memory
blocks that have been allocated in the library, discarding strings and bitmaps, or
closing open files.

There are two important restrictions on what a WEP function can do: A WEP
function must not call LoadLibrary or FreeLibrary, and WEP should not call a
function in another DLL if the other DLL is being unloaded at the same time. For
example, imagine that you define a function named MyPrinif in DLL1.DLL and

67

Windows: Developer's Workshop

that you import the MyPrintf function into a second DLL using an import library
or an IMPORTS statement in the second DLL's .DEF file:

IMPORTS DLL1. MyPrintf

In this situation, it would be an error for the second DLL's WEP function to call
MyPrintf.

int PASCAL FAR WEP (int nParam)
{

/* WRONG */
MyPrintf("The second DLL is unloading");

return 1;

Windows passes a parameter to WEP that indicates the circumstance under
which the library is being unloaded. If the Windows session is terminating, the
parameter has the value WEP _SYSTEM_EXIT. If all applications that use the li
brary have terminated or have freed the library, the parameter's value is
WEP _FREE_DLL. In all cases, the WEP function should return the value 1.

'he LIbrary Reference Count
For each DLL in memory, Windows maintains a reference count that indicates the
number of tasks that are dynamically linked to the library. Windows increments
the reference count when it loads an instance of an application that calls a li
brary function and decrements the count when the instance terminates. The ref
erence count is also incremented by the LoadLibrary function and decremented
by the FreeLibrary function. A DLL can examine its own reference count by call
ing GetModuleUsage with the library'S module handle as a parameter.

Managing Segments
If you have never used a DLL, you might wonder why it is necessary to take the
trouble to build a DLL just to share functions or data. Why not build a stand-alone
Windows application that contains the executable code for the functions you
want to share? You could export each of the shared functions with an appropriate
EXPORTS statement in the application's module-definition (.DEF) file. Then, in
any application that called one of the shareable functions, you would include a
corresponding IMPORTS statement in the .DEF file.

This technique actually works, but it is very unreliable. One obvious problem is
that it is hard to guarantee that the application that contains the shared functions

68

3: DYNAMIC LINK LIBRARIES (Dlls)

will be loaded in memory at the moment another application attempts to call
them. Another problem is more subtle: When expanded memory is available,
Windows' memory manager uses bank-switched expanded memory to contain
an application's code segments. When the application is not actively processing a
Windows message, the expanded-memory banks containing the code segments
are not mapped into the CPU address space. Any shared functions in a banked
out code segment would be inaccessible to other applications.

Dynamic link libraries were designed to avoid these problems. After a DLL is
loaded into memory, it remains loaded until it is released by every application
that uses it. Also, when an application calls a DLL function, Windows' memory
manager ensures that the executable code segment that contains the function is
always accessible, even if the J;l1emory manager has discarded the segment or
swapped it into a bank of expanded memory.

In this way, Windows' memory manager takes care of the memory-management
problems involved with sharing library functions. Your job is to structure your
DLL's code and data segments so as to use memory efficiently.

Memory Models for DLLs
For a small DLL, it is simplest to use the small memory model so that the library
is loaded into memory in one code segment and one default data segment. For a
large DLL, however, you can optimize memory usage by compiling the DLL with
a medium memory model and dividing the DLL's source code into two or more
separately compiled segments.

When you use the medium memory model, each segment of executable code
should be no larger than about 4 KB. This is the size of the virtual memory block
that Windows' memory manager uses when Windows executes in enhanced
mode on an 80386 or 80486 microprocessor. When you link a medium memory
model DLL, mark its code segments as moveable with the following CODE state
ment in the module-definition file:

CODE MOVEABLE

This statement marks all code segments in the DLL as moveable. You should
override this statement by using a SEGMENTS statement for the following
segments:.

II The code segment that contains the WEP function.

II Code segments that contain interrupt handlers.

69

Windows: Developer's Workshop

• Code segments that contain the callback function specified in a call to
GlobalNotify.

These code segments should be declared as fixed rather than moveable. This is
illustrated in the module-definition file DLLBASE.DEF in Figure 3-1.

You can further tune a DLL's memory management in the module-definition file
by using the PRELOAD and DISCARDABLE attributes for INIT _TEXT, the code
segment that contains the library startup function LibEntry. The PRELOAD at
tribute makes sense because this segment contains code that executes when the
library is first loaded. The DISCARDABLE attribute is used because the segment
will not be used again as long as the library remains in memory. The same
reasoning applies to the segment that contains LibMain, so you might want to
compile LibMain along with LibEntry in the discardable INIT _ TEXT segment.
In the DLLBASE example, this is accomplished by defining LibMain in a file
named INIT.C so that the Microsoft C compiler names the corresponding seg
ment INIT_TEXT. You could achieve the same result using the compiler's /NT
(name code segment) command-line switch.

If a DLL references large amounts of static data, you might consider using a large
memory model. However, far data segments in the large memory model are fixed
segments. It is better to use a small or medium memory model and load static
data as a binary resource. Avoiding fixed data segments makes Windows' virtual
memory management more efficient.

The Default Data Segment
Unlike stand-alone applications, Windows libraries cannot have multiple in
stances-that is, a Windows library has only one default data segment. The data
in a library'S default data segment is shared by all applications that use the li
brary. Because only one copy of a library'S data segment can exist, you must use
the SINGLE attribute with the DATA statement in a library'S .DEF file.

With DLLs, you have another option. If a library uses no static data and calls no
functions that need to use the library'S local heap, you can avoid using a data
segment at all. To do this, enter this statement in your module-definition file:

DATA NONE

You can also avoid using a data segment by adding the keyword NODATA to
each EXPORTS statement. If you create a library without a data segment, be very
careful how you use data in library functions. The following C-Ianguage function

70

3: DYNAMIC LINK LIBRARIES (DLLs)

contains several examples of what you cannot do in a library without a default
data segment; the comments explain why not:

int nBytes;

char szName []

int MyFunc ()
{

"Alpha" ;

static LOCALHANDLE hX;

lstrcmp (szName, "Beta");

/* external variables are stored
in the default data segment */

/* initialized variables are stored
in the default data segment */

/* static variables are stored
in the default data segment */

/* "Beta" is implicitly stored
in the default data segment */

There is yet another memory-management optimization that involves the DLL's
default data segment. A DLL's initialization function, LibMain, should usually
contain a call to UnlockData or Un lockSegment:

UnlockSegment(wDS);

This call ensures that the library's default data segment remains unlocked while
the library remains in memory. Although this may not matter when Windows is
run in protected mode, it can improve memory management in a real-mode
Windows environment. In real mode, unlocking the data segment lets Windows'
memory manager move the segment to a different location in the global heap in
response to other modules' demands for global memory.

If you are designing a DLL for real-mode execution and you are using a far
pointer to an item in the default data segment, you might want to lock the data
segment temporarily to ensure that the far pointer remains valid while it is being
used. You can do this by surrounding the code that uses the far pointer with a
pair of calls to LockData and UnlockData or LockSegment and UnlockSegment:

static char Buffer[64];

LockSegment(wDS);
MyFunction((LPSTR)&Buffer);
UnlockSegment(wDS);

/* (stored in the DLL's
default data segment) */

/* lock the default data segment */
/* use a far pointer */
/* unlock the data segment */

71

Windows: Developer's Workshop

Calling Library Functions
Shared functions in dynamic link libraries must be exported and must be called
with far calls. In this regard, they are just like exported functions in stand-alone
Windows applications. Nevertheless, there are differences in the methods that
exported library functions use to manage the default data segment and the stack.

Far-Function Prologs
Windows associates a different default data segment with each DLL and each in
stance of a task. This is accomplished by a short prolog of executable code that
precedes every exported far function. The function prolog sets up the CPU's DS
register so that the function uses the proper default data segment when it refer
ences static data and data on the stack.

Every far function in a Windows module is preceded by a function prolog. You
need not code the prolog explicitly-it is generated by your compiler or, if you
program in assembly language, by a macro expansion. (The Microsoft C com
piler's /Gw switch instructs the compiler to generate Windows function prologs.)
The prolog generated by the compiler, which is shown in Figure 3-2, does not
change the default data-segment value in register DS. However, if a far function
is exported, Windows modifies the executable code in the function prolog at the
time it loads the function into memory so that the prolog stores the appropriate
data-segment value in DS when it executes.

push ds
pop ax
nop
inc bp
push bp
mov bp,sp
push ds
mov ds,ax

Figure 3·2.

copy OS to AX

save BP+1 on stack

save current stack pointer in BP
save current OS
copy AX to OS

Nonexportedfar-function prolog. This prolog does not change the default data
segment value in register DS.

Windows modifies exported far-function prologs differently in applications and
in DLLs. In an application, the prolog copies a default data-segment value from
register AX to register DS, as in Figure 3-3. The data-segment value, which corre
sponds to the instance of the application in which the function is executing, is

72

3: DYNAMIC LINK LIBRARIES (DLls)

nop
nop
nop
inc bp
push bp
mov bp, sp
push ds
mov ds,ax

save BP+1 on stack

save current stack pointer in BP
save current OS
copy AX to OS

Figure 3·3. .
Exported far-function prolog in a Windows application. This prolog changes
the default data segment by copying the value in register AX to register DS.

placed in AX in a fragment of executable code called an instance thunk (shown
in Figure 3-4). For each exported far function, an application must create an in
stance thunk by calling MakeProclnstance, unless the function is a window
function whose address was passed as a parameter to RegisterClass.

mov ax,xxxx store the data-segment value in AX
jmp far ptr function ; jump to exported far-function prolog

Figure 3·4.
An instance thunk. This piece of executable code is created by MakeProc
Instance. The value stored in AX is used in the exported-function prolog shown
in Figure 3-3.

A different arrangement is used for exported far functions in a DLL. There is only
one data segment associated with a dynamic link library, so there is no need for
Windows to support multiple instance thunks, and there also is no need to call
MakeProclnstance for exported library functions. In a DLL, the data-segment
value is built into the prolog of each far function, as in Figure 3-5. The structural
differences between the different far-function prologs are worth remembering
when you debug a program that contains a wild pointer caused by an im
properly exported far function. In this situation, you can verify that a far func
tion is correctly exported by examining the function's prolog.

mov ax,xxxx
inc bp
push bp
mov bp,sp
push ds
mov ds,ax

Figure 3·5.

store the data-segment value in AX
save BP+1 on stack

save current stack pointer in BP
save current OS
copy AX to OS

Exported far-function prolog in a dynamic link library. This prolog stores the
library's default data-segment value in register DS.

73

Windows: Developer's Workshop

Parameter.Passing Conventions
When you pass parameters between dynamic link libraries and other Windows
modules, keep in mind that the library's code and data segments are not the
same as those in other modules. All pointers to library data items and all calls to
library functions must use far pointers so that they explicitly specify the segment
to which they refer.

The order in which you specify parameters is not constrained by anything in
Windows as long as the caller and the function being called agree on the pa
rameter order. The Windows API generally uses the Pascal parameter-passing
convention, which is that the leftmost parameter is the first one pushed on the
stack. You can, however, use the C-language convention, which is that the
rightmost parameter is the first one pushed on the stack.

The advantage of the Pascal convention is that the executable code that manages
the stack across function calls is a few bytes shorter and a little faster than the
equivalent code required for the C method. The advantage of the C-language
convention is that it lets you design functions such as printf that support a vari
able number of parameters.

Unless you need a variable-length parameter list, you should use th~ Pascal con
vention. If you use the C convention, remember that the C compiler adds an
underscore character to the beginning of each function name, so EXPORTS
module-definition statements for such function names must include the under
score. For example, consider the following C function:

int far cdecl MyPrintf();

The corresponding EXPORTS statement in the module-definition file would con
tain an underscore:

EXPORTS _MyPrintf

'he Stack and the Default Data Segment
In all Windows programs, the stack is where function parameters are passed,
where a function's return address is saved when it calls another function, and
where storage for automatic variables is allocated. The default data segment is
used for static data, for constants, and for the local heap. In Windows applica
tions, which use the small or medium memory model, these two logically dis
tinct types of data are maintained in a single segment-that is, the stack is
located in the default data segment. In this way, stack data and static data can be
addressed by using offsets within the same segment.

74

3: DYNAMIC LINK LIBRARIES (DLLs)

This is a handy arrangement because a program can store the same value in the
CPU's DS (data segment) register and SS (stack segment) register and then use ei
ther register to address both the stack and the rest of the data in the default data
segment. This makes it easier for a compiler such as the Microsoft C compiler to
translate source code into executable code because the compiler can generate
code that uses the DS and SS registers interchangeably to address both static data
(stored in the default data segment) and automatic data (stored on the stack).

A DLL differs from a Windows application in that a DLL does not have its own
stack. Instead, each function in a DLL uses its caller's stack. This can lead to ad
dressing problems because it contradicts the compiler's assumption that the DS
and SS registers contain the same segment value. When you write DLL source
code, you must keep this potential problem in mind.

In general, the way to avoid DLL addressing problems is to use far pointers to
DLL data items instead of near pointers. If you use a near pointer, the compiler
might not be able to determine whether the pointer refers to a location in the
stack or a location in the default data segment. In this case, a compiler might ar
bitrarily assume that the reference is to the default data segment instead of the
stack. This is not a valid assumption in a DLL, where the stack segment is not the
same as the default data segment.

In contrast, when you use a far pointer, you refer explicitly to a particular seg
ment as well as to the offset of a data item within the segment. When a compiler
compiles a far pointer, it makes no assumptions about segment addressing, and
you make no assumptions about the compiler's assumptions. This is the strategy
adopted by the designers of the Windows API, in which functions almost always
expect far pointers as parameters.

The problem with using far pointers everywhere in a DLL is that DLLs are typi
cally compiled with the small or medium memory models, and small-model and
medium-model C runtime library functions expect near pointers as parameters.
You can sometimes solve this problem by using a far-pointer equivalent of a li
brary function. For example, the _fmemmove function in the Microsoft C librar
ies is a far-pointer equivalent of the memmove function.

If you do use near pointers, be sure they always refer to data items in the DLL's
data segment and not to a variable or an array on the stack. This means that near
pointers should refer only to static variables and arrays and to memory blocks
allocated in the DLL's local heap with LocalAlloc. The Microsoft C compiler can
help you to avoid inaccurate use of near pointers. When you use the lAw
command-line switch, the compiler will warn you if you use a near pointer to a
data item on the stack.

75

Windows: Developer's Workshop

Figure 3-6 is an example of how to use a far pointer to access data on the stack.
The function AuxPrintj uses OutputDebugString to send a formatted text string
to the debugging display.

void FAR cdecl AuxPrintf(LPSTR szFmt, ...)
{

char szBuf[128];
LPSTR FAR * pArg1;

/* point to the second parameter on the stack */
pArg1 = «LPSTR FAR *)&szFmt) + 1;

/* format the output string */
wvsprintf(szBuf, szFmt, (LPSTR)pArg1);

/* display the formatted string */
OutputDebugString(szBuf);

Figure 3-6.
Using a far pointer to data on the stack. The address of szFmt is cast to a far
pointer when it is assigned to the variable pArgl.

The formatting is carried out through a call to wvsprintf, which expects a pointer
to an argument list as a parameter. AuxPrintj stores the pointer as a far pointer:

pArg1 = «LPSTR FAR *)&szFmt) + 1;

The far pointer to szFmt is stored correctly as a reference to the stack segment.
Compare this to a similar statement that stores a near pointer instead of a far
pointer:

pArg1 = «LPSTR *)&szFmt) + 1; /* WRONG! */

The difference between these two statements becomes apparent in the call to
wvsprin tJ:

wvsprintf(szBuf, szFmt, (LPSTR)pArg1);

In the first example, the value of pArgl is passed to wvsprintj as a far pointer.
This works perfectly. In the second example, however, the C compiler converts
the near pointer to a far pointer by incorrectly assuming that the pointer lies in
the default data segment. The point is clear: Use far pointers to address stack
variables in Windows DLLs.

76

3: DYNAMIC LINK LIBRARIES (DLLs)

Sharing Functions and Data
It is not hard to share functions or data in a DLL. Often all you need to use are
exported far functions and far data pointers. However, Windows provides impor
tant alternatives to the use of far pointers-namely, global-memory handles and
resources. The best method for sharing a particular function or data item de
pends on whether the item lies outside the DLL or within it.

Pointers to Data Outside a DLL
If you keep in mind how a DLL uses its default data segment and stack, you can
use far data pointers to pass data to DLL functions. There are situations, however,
where relying on a far pointer can lead to problems.

One such situation occurs when Windows executes in real mode. In real mode,
a far pointer to a block of memory consists of a physical-segment address plus an
offset within the segment. The physical-segment value can become invalid if
Windows' memory manager moves the block of memory to which the pointer
refers. To avoid this problem, be sure that far pointers always refer to memory
blocks whose location in memory is fixed.

The easiest way to fix the location of a block of memory is either to use the
FIXED keyword to declare a fixed segment in a module-definition file or to use
the GME~FIXED flag in a call to GlobalAlloc. The problem with doing this is
that such segments remain at the same physical location in memory from the
time they are allocated until the time they are freed. This limits the memory
manager's ability to rearrange the global heap dynamically in response to the
memory requirements of multiple applications.

A better approach is to use the keyword MOVEABLE in the module-definition
file and the GMEM_MOVEABLE flag in GlobalAlloc. To pass a far pointer to data
in a moveable memory block, you must first call GlobalLock to lock the block's
global-memory handle:

IpDATA = GlobalLock(hData);
MyDLLFunc(IpData); /* call a DLL function named

MyDLLFunc */
GlobalUnlock(hData);

To pass a far pointer to data in an application's default data segment, call
LockSegment(-l) or LockData prior to calling the DLL function:

LockData();
MyDLLFunc((LPSTR)&Data);

UnlockData();

/* call a DLL function named
MyDLLFunc */

77

Windows: Developer's Workshop

A simpler approach to passing data from an application to a DLL is to use a
handle to a global-memory block as a parameter instead of a far pointer. With
this technique, the DLL function itself can lock the memory handle:

void PASCAL FAR MyDLLFunction (GLOBALHANDLE hData)
{

LPSTR IpData;

IpData = GlobalLock(hData);

/* use IpData */

GlobalUnlock(hData);

Dereferencing the global-memory handle involves a bit of extra programming
the DLL must call GlobalLock and GlobalUnlock each time it accesses data
passed to it from an application. However, using a global handle is a safer tech
nique than using a far data pointer because you can control how Windows'
memory manager manages the memory block that contains the data item. This is
most important in real mode, where far pointers can be invalidated by the nor
mal operation of Windows' memory manager. In particular, you can use the
GMEM_DISCARDABLE or GMEM_NOT _BANKED flags with GlobalAlloc to
specify whether the memory manager is allowed to discard a particular memory
block or store it in a bank of expanded memory.

Use GlobalAlloc with the GMEM_DDESHARE flag to ensure that a global
memory block remains accessible within a DLL when Windows is using real
mode expanded memory. Consider, for example, what might happen if a far
pointer referred to data that was owned by an application executing in bank
switched expanded memory. If the application called a DLL function that in turn
caused a different application to execute, the calling application might be
banked out of memory and the far pointer would no longer be valid. Careful use
of GMEM_NOT_BANKED will avoid this problem.

Pointers to Data Within a DLL
When you pass data from a DLL to an application, you must be certain that far
pointers to such data remain valid while the application is using them. Again,
this is most important in real mode. For example, you can pass far pointers to
shared data stored within a DLL's default data segment as long as you ensure that
Windows' memory manager will not move the data segment while the pointer is
in use.

78

3: DYNAMIC LINK LIBRARIES (DLLs)

Again, a more general approach to sharing DLL data is for a DLL to allocate
blocks of global memory to contain shared data. The DLL can then use global
handles instead of far pointers to refer to the shared data. Although this tech
nique involves the extra overhead of allocating a block of global memory and of
dereferencing a global-memory handle, it decreases the possibility of creating
wild pointers when Windows is running in real mode.

Pointers to Functions Outside a DLL
To pass the address of a function located outside a DLL to a DLL function, you
must use a far pointer to the function or to the function's instance thunk. If the
far function is also in a DLL, you need only pass the address of the function:

MyDLLFunc((FARPROC)DialogFunc);

If the far function is defined in an application, you must pass the address of an
instance thunk for the function:

pThunk = MakeProclnstance((FARPROC) DialogFunc, hlnstance);
MyDLLFunc(pThunk);
FreeProclnstance(pThunk);

Pointers to Functions Within a DLL
To pass the address of a library function to an application, use a far pointer to the
function. The application can subsequently call the function by dereferencing
the far pointer, as in Figure 3-7. Of course, a library need not contain a function
that returns pointers to other library functions-an application can call
GetProcAddress to obtain a pointer to any exported DLL function. In either case,
be sure you export any application-callable library functions with appropriate
EXPORTS statements in the library's module-definition file.

/* in the DLL */
FARPROC PASCAL FAR NthDLLFunction (int n)
{

switch(n
{

case 1 :
return Function1;
break;

Figure 3·7. (continued)
Returning a Dllfunction pointer to an application. All of the Dllfunctions
are exported in the Dll 's module-definition file.

79

Windows: Developer's Workshop

Figure 3·7. continued

case 2:
return Function2;
break;

default:
return DefaultFunction;
break;

void PASCAL FAR Function1 (.•.)
{

void PASCAL FAR Function2{ ...)
{

void PASCAL FAR DefaultFunction(.•.)
{

,* in the calling application *,
FARPROC lpDLLFni

,* get a pointer to the first DLL function *,
lpDLLFn = NthDLLFunction{ 1);

,* execute the DLL function *,
(*lpDLLFn) (...) i

Using Resources
Another way to use a DLL to share data is to define resources within the library.
An application can access a resource in a library by calling LoadLibrary fol
lowed by the appropriate load function (LoadBitmap, Loadlcon, LoadString, and
so on). For example, Figure 3-8 shows how an application would access one of
the string resources defined in the sample library DLLBASE.DLL.

80

3: DYNAMIC LINK LIBRARIES (DLLs)

HANDLE
char

hLibrary;
szBuf[64];

hLibrary = LoadLibrary("DLLBASE.DLL");
if(32 >= hLibrary)
{

Loadstring(hLibrary, 101, szBuf, sizeof szBuf);
FreeLibrary(hLibrary);

Figure 3·8.
Using a resource defined in a dynamic link library. The value 101 refers to the
identifier used in the string table resource in DLLBASE.RG. (See Figure 3 -1 on
page 61.)

You can define any resource in a library that you can define in a stand-alone ap
plication, including GDI objects, dialog boxes, menus, and user-defined binary
data. You might even want to create a library that contains only resources. The
only exported function in such a library would be its WEP function. Such
resource-only libraries provide an elegant mechanism for sharing globally used
objects in a portable, low-overhead manner.

Many libraries are designed as a combination of shared resources and useful
functions. One specific application of this kind of library is to support a window
class that describes a user-defined custom control. In fact, custom-controllibrar
ies are important enough in the Windows environment to be the subject of the
next chapter.

81

4

Custom Controls

4: CUSTOM CONTROLS

Controls are the building blocks of a Windows application's visual interface. The
predefined control classes-Static, Button, Edit, ScrollBar, ListBox, and Combo
Box-are general-purpose tools that you can use in a wide variety of program
ming situations. It is hard to imagine a Windows program that does not some
where use at least one button, scroll bar, or static text control.

It is not hard, however, to implement custom controls whose function or ap
pearance is tailored to the specific needs of an application. Like the predefined
controls, custom controls are child windows that perform specific visual input or
output functions. You can develop a custom control as part of a Windows appli
cation, but you can make a custom-control window class available to multiple
applications by implementing it in a dynamic link library and by making the
control accessible to resource editors such as the Dialog Editor (DIALOG.EXE) in
the Windows SDK.

A Custom Control in a
Windows Application

The simplest way to implement a custom control is to have an application call
RegisterClass to register the custom-control class and then call CreateWindow to
create one or more control windows. You can use the same methods to test and
debug the control that you use to test and debug any stand-alone Windows appli
cation. You can even add CONTROL statements to DIALOG resources in the ap
plication's resource script to create custom controls in dialog boxes, provided
that the application registers the control class before it loads the dialog resources
that use the custom control.

Figure 4-1 on the following page shows a single example of a custom-control
class named RYG, whose visual appearance is a familiar red-yellow-green sym
bol. A program can set or get the state of an RYG control by sending it one of
two user-defined messages, RYG_SETSTATE or RYG_GETSTATE. The source
code in Figure 4-2 on the following pages shows how the RYG class is developed
within a Windows application.

In this example, the application is nothing more than a testbed for developing
the RYG control class. Embedding the control in an application makes it easy to
test and modify the control's user interface. When the control class works prop
erly, you can use it in a different application simply by copying the relevant
source code.

85

Windows: Developer's Workshop

Bed Yellow .Green

Figure 4·1.
A typical RYG control displayed by RYGDEV.EXE.

#********* •••• * •• *** ••• **** •• ** ••• **** •• *** •••• ** ••• ** ••• **.* ••• *** ••• **.****.

NMAKE description for RYGDEV.EXE

#t •••• t •••• * ••••• ** •••• * •••• ***.** •••• * ••••• * •••• ** ••••• *.t •• * •• * •••••••• ** •••

• c.obj:
cl lAM Ic IG2sw IOsw IW4 IZlp $·.c

ALL: ryqdev.exe

ryq.obj: ryq.c ryqdev.h

ryqdev. obj : ryqdev.c ryqdev.h

ryqdev.res: ryqdev.rc ryqdev.h rygdev.ico
rc /r ryqdev.rc

ryqdev.exe: ryq.obj rygdev.obj rygdev.res rygdev.def
link lal:16 /nod Inoe rygdev ryg, , , libw mlibcew, rygdev.def
rc rygdev.res

Figure 4·2.
Source code for RYGDEV.EXE.

86

(continued)

4: CUSTOM CONTROLS

Figure 4·2. c01itinued

/** •• **** ••• * ••••• *** •• *************** •• **************************.*.**********

* RYGDEV.C
Simple application that uses the RYG control from RYG.C

* Exports: TopLevelWndFn

.****.**/

#define NOCOMM
#include <windows.h>
include "rygdev.h"

#define IDRYG 100

/*** FUNCTION PROTOTYPES ***/

LONG PASCAL FAR TopLevelWndFn(HWND, WORD, WORD, LONG);

static HWND Init (HANDLE, HANDLE, int);

/ * • * GLOBAL VARIABLES ••• /

HBRUSH
DWORD

hRYGBrush [3] ;
dwRGB[3] = { RGB(OxFF,OxOO,OxOO),

RGB(OxFF,OxFF,OxOO),
RGB(OxOO,OxFF,OxOO) };

static char
static char
static char

szTopLevelClass[] = "RYG:TopLevel";
szRYGClass [] "RYG" ;
szAppTitle [] = "RYG";

/* red * /
/* yellow */
/. green */

/**

* WinMain

* ••••• *.**** •••• **.**.*.****.*** •••• ** •• *****************.********************/

int PASCAL
WinMain (HANDLE hInst, HANDLE hPrevInst, LPSTR lpszCmdLine, int nCmdShow)
{

HWND
MSG
int

hWnd;
msg;
ni

(continued)

87

Windows: Developer's Workshop

Figure 4·2. continued

hWnd = Init(hlnst, hPrevlnst, nCmdShow);
if(!hWnd)

return 0;

I· create brushes ·1
fore n=O; n<3; n++)

hRYGBrush en] = CreateSolidBrush (dwRGB en]);

while(GetMessaqe(&msq, 0, 0, 0))
(

TranslateMessaqe(&msq);
DispatchMessaqe(&msq);

I· destroy brushes ·1
fore n=O; n<3; n++)

DeleteObjeet(hRYGBrush[n]);

return msq.wParam;

I···

• Init

•••..........••...•••..••.•..•••....•••.••••...••..•.• ························1

static HWND Init (RANDLE hlnst, RANDLE hPrevlnst, int nCmdShow)
(

88

WNDCLASS
HWND

we;
hWnd;

if(!hPrevlnst)
(

I· reqister the top-level window class *1
we.lpszClassName = szTopLevelClass;
we.hlnstanee = hInst;
we.lpfnWndProe = TopLevelWndFni
we.hCursor = LoadCursor(0, IDC_ARROW);
we.hleon = Loadleon(hlnst, "TopLevelleon")i
we .1pszMenuName = "TopLevelMenu";
we.hbrBaekqround = COLOR_WINDOW+1;
we. style = CS_HREDRAH : CS_VREDRAW;
we.cbClsExtra = 0;
we.cbWndExtra = 0;

(continued)

4: CUSTOM CONTROLS

Figure 4·2. continued

if(!RegisterClass(&wc))
return 0; ,- return 0 if unsuccessful -,

,- register the RYG window class -,
wc.lpszClassName = szRYGClass;
wc.hlnstance = hlnst;
wc.lpfnWndProc = RYGWndFn;
wC.hCursor = LoadCursor(0, IDC_ARROW);
wc.hlcon
wc.lpszMenuName
wc.hbrBackground
wc.style
wc . cbClsExtra
wc.cbWndExtra

= 0;
= NULL;

COLOR_WINDOW+1;
0;

= 0;
= sizeof (WORD) ;

if(!RegisterClass(&wc))
return 0; ,- return 0 if unsuccessful -,

,* create and display a top-level window -,
hWnd = CreateWindow(szTopLevelClass,

szAppTitle,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,
0,
0,
hlnst,
NULL) ;

,* create an RYG window *,
CreateWindow(szRYGClass,

"" ,
WS_CHILD : WS_VISIBLE,
0,0,16,16,
hWnd,
IDRYG,
hlnst,
NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return hWnd;

(continued)

89

Windows: Developer's Workshop

Figure 4.2. continued

/

• 'l'opLevelWndFn

.....................................•.....•.................................. /

LONG PASCAL FAR
TopLevelWndFn (HWND hWnd, WORD wMsq, WORD wParam, LONG lParam)
{

LONG
BOOL

lRVal = OL;
bDWP = FALSE;

switch(wMsq)
{

case WiM_COMMAND:
SendDlqItemMessaqe (hWnd, IDRYG, RYG_SETSTATE, wParam, OL);
break;

case WiM_SIZE:
MoveWindow (GetDlqItem (hWnd, IDRYG),

0, 0, LOWORD(lParam), HIWORD(lParam), TRUE);
break;

case WiM_DESTROY:
PostQuitMessaqe(0);
break;

default:
bDWP = TRUE;
break;

if(bDWP)
lRVal = DefWindowProc(hWnd,wMsq, wParam, lParam);

return lRVal;

/ •• *** •••• ** •• **** •• *** ••••••••• ** •••• ** •••••••••• ** ••• **** •• ** •••••••• *** •••••

• RYG.C
RYG custom-control implementation

• Exports: RYGWndFn

.. /

(continued)

90

4: CUSTOM CONTROLS

Figure 4·2. continued

#define NOCOMM
'include
,include

<windows.h>
"rygdev.h"

/ ••• FUNCTION PROTOTYPES ••• /

static void
static void
static void

RYGPaint (HWND);
RYGShowState(HOC, int, BooL);
RYGSetMapMode (HWND, HOC);

/ • •• GLOBAL VARIABLES ••• /

extern BBRUSH
extern miCRD

hRYGBrush [] ;
dwRGB[] ;

I· defined in RYGDEV.C ./

static int nY[3] = { 800, 250, -300 };

/

• RYGWndFn

.. /

LONG PASCAL FAR RYGWndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG IParam)
{

HOC
LONG
BOOL

hOC;
lRVal = OL;
bDWP = FALSE;

switch(wMsg)
{

case WM_PAINT:
RYGPaint(hWnd);
break;

case RYG_SETSTATE:
hOC = GetDC (hWnd);
RYGSetMapMode (hWnd, hOC);
RYGShowState(hOC, SetWindowWord(hWnd, 0, wParam), FALSE);
RYGShowState(hOC, wParam, TRUE);
ReleaseDC(hWnd, hOC);
break;

case RYG_GETSTATE:
lRVal = (DWORD) GetWindowWord (hWnd, 0);
break:

(continued)

91

Windows: Developer's Workshop

Figure 4·2. continued

case WM_CREATE:
SetWindowWord(hWnd, 0, -1):
break:

default:
bDWP = TROE;
break;

if(bDWP
lRVal = DefWindowProc(hWnd, wMsg, wParam, lParam):

return lRVal;

/ ••• **************.****************************.**** ••• ** ••• **** •• **** •••••••• *

• RYGPaint

********************* •• ***********.********* •• *** ••• * •••• ** •• *****************/

static void RYGPaint(HWND hWnd)
{

92

HOC hOC:
PAINTSTRUCT pSi
HBRUSH hBrush;
int n, nStatei

hOC = BeginPaint(hWnd, &Ps):
RYGSetMapMode(hWnd, hOC);

/* background */
hBrush = SelectObject(hOC, GetStockObject(DKGRAY_BRUSH));
RoundRect(hOC, -500, 1000, 500, -1000, 250, 250);
SelectObject(hOC, hBrush);

/* dots ./
nState = GetWindowWord(hWnd, 0);
for(n=O; n<3; n++)

RYGShowState(hOC, n, (n == nState));

EndPaint(hWnd, &ps)i

(continued)

4: CUSTOM CONTROLS

Figure 4·2. continued

/************* •••• ******* ••• **** ••• ****************.*.*************************

• RYGShowState

.****** •• ***********.********* ••• ******** •• *********** •• ** •• *** ••••••••• *** ••• /

static void RYGShowState(HOC hOC, int nState, BOOL bColor)
{

HBRUSH hBrush;

if((nState < 0) :: (nState >= 3))
return:

if(bColor
hBrush = SelectObject(hOC, hRYGBrush[nState]):

else
hBrush = SelectObject(hOC, GetStockObject(GRAY_BRUSH)):

Ellipse(hOC, -250, nY[nState], 250, nY[nState]-500):
SelectObject(hOC, hBrush);

/.**.**.***.****.* •• ************~** •• **.************** *************************

• RYGSetMapMode

******.***************************.***** ••• **********.************************/

static void RYGSetMapMode (HWND hWnd, HOC hOC)
{

RECT recti

/* set up an isotropic coordinate system centered in the client area */
GetClientRect(hWnd, &rect);
SetMapMode(hOC, MM _ISOTROPIC);
SetWindowExt(hOC, 1000, 1000);
SetViewportExt(hOC, rect.riqht/2, -rect.bottom/2):
SetViewportOrq(hOC, rect.riqht/2, rect.bottom/2);

(continued)

93

Windows: Developer's Workshop

Figure 4·2. continued

/********************* ••• ******* •• **** •• *** •••• *** •• ***** ••••••• ****.*.*.*.****

* RYGDEV.RC resource script

•• ***** •••• ** ••• *** •• *** ••••••••••••• **** ••• * ••••••••• ***** •• ***.* ••••••• * •••• /

#include
#include

<windows.h>
"rygdev.h"

/* icons */
TopLevellcon ICON rygdev.ico

/* menus */
TopLevelMenu
{

MENU I TEM
MENUITEM
MENUITEM

MENU

"&Red" RYG_RED
"&Yellow" RYG_YELLOW
II &Green" RYG_GREEN

/***.****.**** ••• **** ••

* RYGDEV.H

* •••• ** ••••••••••• ***.*.**** •• ** •• * •• **.* •• * •••• *.* ••• ******* •• ** •• *.*.*******/

#define RYG_SETSTATE
#define RYG_GETSTATE

#define RYG_RED
#define RYG_YELLOW
#define RYG_GREEN

(IDL USER+O)
(WM_USER+1)

o
1
2

/ •• * FUNCTION PROTOTYPES .*./

/* defined in RYG.C */
LONG PASCAL FAR RYGWndFn (HWND, WORD, WORD, LONG);

94

(continued)

4: CUSTOM CONTROLS

Figure 4·2. continued

;***.****

; RYGDEV.DEF module-definition file

;***.*** ••• ***** •••••• ** ••• *** •••

NAME
DESCRIPTION
EXETYPE
STUB

CODE
DATA

SEGMENTS

HEAPSIZE
STACKSIZE

EXPORTS

RYGDEV
, RYGDEV . EXE version 1. 0 '
WINDOWS
'WINSTUB.EXE'

LOADONCALL MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE

_TEXT PRELOAD MOVEABLE DISCARDABLE

1024
5120

TopLevelWndFn
RYGWndFn

A Custom Control in a Dynamic Link Library
The problem with building a custom control directly into an application is that it
is hard to use the same control in two different applications at the same· time.
You can't simply register the same control class in two different applications be
cause a class definition remains valid only until you terminate the last instance
of the application that registered the class. A second application that uses the
class will crash if the first application terminates and the control's window func
tion disappears. If you implement a custom-control class in an application and
other applications use the class, you must devise a method to ensure that the ap
plication is executing, that it has registered the custom-control class, and that it
will continue to execute until all other applications have finished using the cus
tom control.

You might accomplish this through the devious use of API functions such as
FindWindow, WinExec, and UnregisterClass, but Windows offers a more

~ straightforward alternative: the dynamic link library. It is slightly more difficult
to implement a custom control in a DLL than in a stand-alone application, but the
effort is worthwhile because custom controls in DLLs can be used in multiple ap
plications, including resource editors such as the SDK Dialog Editor.

95

Windows: Developer's Workshop

To illustrate this, compare the source code for RYG.OLL in Figure 4-3 with the
source code for the application in Figure 4-2. Much of the source code in the ap
plication was copied directly into the OLL's source code. Actions that are carried
out during initialization, such as class registration and creation of GOI objects,
appear in LibMain in the OLL. Similarly, the OLL's WEP function supports ac
tions that are performed when the control class is no longer needed. The source
code in RYG.C, which embodies the functionality of the control class, is used in
the OLL just as it is in the stand-alone application.

••• *** ••• *** ••• ************** •• *** •• *** ••• **** •• ******** •••• **.* •• *.*** •••• *.

NMAKE description for RYG.OLL

•••• *****.**** •••• ** ••••••••• *** •••• **.**** •••• **.**** •• ********** •• ** ••• ****

.c.obj:
cl IAMw Ic 10 _WINDOWS 10 _WINDLL IG2sw IOsw IW4 IZlp $*.c

ALL: ryg.dll

init.obj: init.c ryg.h

ryg.obj: ryg.c ryg.h

wep.obj: wep.c

ryg.dll: ryg.obj init.obj wep.obj ryg.def
link lal:16 Inod Inoe libentry init ryg wep, ryg.dll, , \

libw mdllcew, ryg.def
rc ryg.dll

/ •••• **** •• ********** •• *** •••• ******* ••• *** ••• ********** •••• *.**** ••• ** •••• ****

• INIT.C
Initialization code for RYG.OLL

.* ... ***** ••• * •••• *** ••• * ••• **** •• **** •• *** ••• *** •••• * ••• *** ••• **** •• ** ••• ****/

#define NOCOMM
#include <windows.h>
#include "ryg.h"

Figure 4-3. (continued)
Source code for RYG.DLL.

96

4: CUSTOM CONTROLS

Figure 4·3. continued

I· •• GLOBAL VARIABLES ••• I

HANDLE hDLLInst;
HBROSH hRYGBrush[3];
OWORD dwRGB[3] = (RGB(OxFF,OxOO,OxOO),

RGB(OxFF,OxFF,OxOO),
RGB(OxOO,OxFF,OxOO) };

static char szRYGClass [] = "RYG";

I··· FUNCTION PROTOTYPES ···1
BOOL PASCAL FAR LibMain (HANDLE, WORD, WORD, LPSTR) i

static BOOL RegisterRYGClass(void);

/. red ·1
/. yellow ·1
/. green ·1

I··· •.....•..••••..••••....••

• LibMain

.. /

BOOL PASCAL FAR
LibMain (HANDLE hInst, WORD wOS, WORD wHeapSize, LPSTR lpCmdTail)
{

BOOL bRVal;
int n;

I·- if LibEntry has called LocalInit, unlock the default data segment ·1
if(wHeapSize)

OnlockSegment(wOS);

1* save the OLL instance handle in a global variable ·1
hDLLInst = hInst;

I· register the custom-control class *1
bRVal = RegisterRYGClass();

I· create brushes ·1
if(bRVal)

for(n=O; n<3; n++
hRYGBrush [n] = CreateSolidBrush (dwRGB [n]);

return bRVal;

(continued)

97

Windows: Developer's Workshop

Figure 4·3. continued

/*** •• ***********.***.******.**********

* RegisterRYGClass

****************************.**.***.******.*** •• **** •• *************** •• *******/

static BOOL RegisterRYGClass()
{

WNDCLASS wc;

wc.lpszClassName szRYGClass;
wc.hInstance = hDLLInst;
wc.lpfnWndProc = RYGWndFn;
wC.hCursor = LoadCursor(0,
wc.hIcon = 0;
wc.lpszMenuName = NULL;
wc.hbrBackground = COLOR_WINDOW+1;
wc.style = CS_GLOBALCLASS;
wc.cbClsExtra = 0;
wc. cbWndExtra = sizeof(WORD);

return RegisterClass('wc);

IDC_ARROW) ;

1*** *************************

* RYG.C
RYG custom-control implementation

* Exports: RYGWndFn

** ••• ********** •• *********/

#define NOCOMM
#include
#include

<windows.h>
"ryg.h"

1*** FUNCTION PROTOTYPES ***1

static void
static void
.static void

98

RYGPaint(HWND)i
RYGShowState(HOC, int, BOOL);
RYGSetMapMode (HWND, HOC);

(continued)

4: CUSTOM CONTROLS

Figure 4-3. continued

1* * * GLOBAL VARIABLES * * * I

extern HBRUSH hRYGBrush[]; 1* defined in INIT.C *1
extern DWORD dwRGB[];
static int nY[3] = { 800, 250, -300 };

/*** •• *************** •• ************.***********************.*******************

* RYGWndFn

******** •• ******.*****.********~************.****.**** •• *** •• *****************/

LONG PASCAL FAR RYGWndFn(HWND hWnd, WORD wMsq, WORD wParam, LONG lParam)
{

HOC hOC;
LONG lRVal = OL;
BOOL bDWP = FALSE;

switch(wMsq)
{

case WM_PAINT:
RYGPaint(hWnd);
break;

case RYG_SETSTATE:
hOC = GetDC (hWnd);
RYGSetMapMode(hWnd, hOC):
RYGShowState(hOC, SetWindowWord(hWnd, 0, wParam), FALSE);
RYGShowState{ hOC, wParam, TRUE);
ReleaseDC(hWnd, hOC);
break;

case RYG_GETSTATE:
lRVal = (DWORD)GetWindowWord(hWnd, 0);
break;

case WM_CREATE:
SetWindowWord{ hWnd, 0, -1);
break;

default:
bDWP = TRUE;
break;

if{ bDWP
lRVal = DefWindowProc(hWnd, wMsq, wParam, lParam):

return lRVal:

(continued)

99

Windows: Developer's Workshop

Figure 4·3. continued

/•....••.................................•......

• RYGPaint
•
....................................•...........•.....•......................• /

static void RYGPaint (HWNO hWnd)
{

HDC hOC:
PAINTSTRUCT ps;
HBRUSH hBrush;
int n, nState;

hOC = BeginPaint(hWnd, &ps):
RYGSetMapMode (hWnd, hOC);

/. background ./
hBrush = SelectObject (hOC, GetStockObject (DKGRAY_BRUSH));
RoundRect(hOC, -500, 1000, 500, -1000, 250, 250);
SelectObject(hOC, hBrush);

/. dots ./
nState = GetWindowWord(hWnd, 0):
fore n=O; n<3; n++)

RYGShowState(hOC, n, (n == nState));

EndPaint(hWnd, &ps);

/ •• ** •••• **** •••••••• *** ••• ** ••• *** ••• ****.*** •••••••••••••••• ** •••• * •••• ** ••••

• RYGShowState

....................•....................................•.................•.. /

static void RYGShowState(HDC hOC, int nState, BOOL bColor)
{

100

HBRUSH hBrush;

if ((nState < 0) :: (nState >= 3))
return;

if(bColor
hBrush = SelectObject (hOC, hRYGBrush[nState]);

else
hBrush = SelectObject (hOC, GetStockObject (GRAY_BRUSH));

Ellipse(hOC, -250, nY[nState], 250, nY[nState]-500):
SelectObject(hOC, hBrush);

(continued)

4: CUSTOM CONTROLS

Figure 4·3. continued

/*** •• **,.**.1*.*, •••• *, •• ,

* RYGSetMapMode

1 •• 11"'***1 •• *_*' •• * ••••• ,., •••••••• * ••••• * ••••• * •••• * •• * •• __ 1_ •• *** ••• *_ •••• /

static void RYGSetMapMode(HWND hWnd, HOC hOC)

RECT recti

/* set up an isotropic coordinate system centered in the client area */
GetClientRect(hWnd, &rect);
SetMapMode(hOC, MM_ISOTROPIC);
SetWindowExt(hOC, 1000, 1000);
SetViewportExt(hOC, rect.right/2, -rect.bottom/2);
SetViewportOrg(hOC, rect.right/2, rect.bottom/2);

1·*1*****,**,.,*** •• ****** •• **.*.* •• *,******.**.,****,1'*1***1*1*"'*'*"**"**

* WEP.C
Windows exit procedure for RYG.DLL

* Exports: WEP RESIDENTNAME

* •• ***_11_*.-'-*---'*-"'**--*'**'*-'**'--'--'--'*--*'1*.*'1**1*'* ••• *,.".*.*/

#define NOCOMM
#include <windows.h>

/ * * * GLOBAL VARIABLES * * * /

extern HBRUSH hRYGBrush[]; /* defined in RYG.C */

1"*'*-'**-*'*'*'*******'*--"'**'*"*******'-****"·* ** •• ;.**.** •• _._******.**

* WEP

*111*1*1*-.* •• **.** •• *.**--****-* •• *._*** •• ***-******************.*****./

int PASCAL FAR WEP (int nParam)

int n;

(continued)

101

Windows: Developer's Workshop

Figure 4-3. continued

/. destroy brushes ./
fore n=O; n<3; n++)

DeleteObject(hRYGBrush[n]);

return 1;

/*********** •• *** ••• *************** ••• ***.***** ••• * ••• ***** •• ********* ••• **.***

• RYG.H
Header file for RYG.DLL

•• ** •••• ***** •• *** •• ****.*** •••• ** ••• ** •••• *** •••• * ••• ************************/

#define RYG_SETSTATE
#define RYG_GETSTATE

#define RYG_RED
#define RYG_YELLOW
#define RYG_GREEN

/ ••• FUNCTION PROTOTYPES

/. defined in RYG.C ./

(WM_USER+O)
(WM_USER+1)

o
1
2

***/

LONG PASCAL FAR RYGWndFn (HWND, WORD, WORD, LONG);

; •• * •••• * •••••••••••••

i RYG.DEF module-definition file

i····*··········*························*············•••....••....•.....•

LIBRARY
DESCRIPTION
STUB
EXETYPE

CODE
DATA

HEAPSIZE

102

RYG
I RYG version 1.0'
'WINSTUB.EXE'
WINDOWS

LOADONCALL MOVEABLE DISCARDABLE
PRELOAD MOVEABLE SINGLE

o

(continued)

Figure 4·3. continued

SEGMENTS

EXPORTS

IN I T_TEXT
WEP_TEXT

WEP
RYGWndFn

PRELOAD DISCARDABLE
PRELOAD FIXED

@1 RESIDENTNAME

4: CUSTOM CONTROLS

Although RYG.DLL is small, it contains all four of the essential elements of a
dynamic link library that supports a custom-control class:

• An initialization function (LibMain)

• A call to RegisterClass to register the control class

• A control-class window function

• An exit procedure (WEP)

Each of these components of the DLL's structure corresponds to a part of the ap
plication in which the custom-control class was originally developed.

DLL Initialization and Class Registration'
A DLL's initialization function, LibMain, is the best place to call RegisterClass for
a custom-control class. When you do this, you can be certain that RegisterClass
will be called exactly once when Windows loads the library. In a DLL, a custom
control class should be registered with the CS_GLOBALCLASS style. This style
makes the class registration available to all applications, not just the application
that first loads the DLL.

'he Control Class Window Function
It goes without saying that the window function that supports a custom-control
class is always part of a custom-control DLL. If you deVelop a custom control by
embedding it in an application, you can often transplant the window-function
source code directly into the DLL.

The Windows Exit Procedure (WIP)
You should implement and export the WEP function in a custom-control library
just as you would in any other DLL. Windows calls the WEP function when the
DLL is no longer to be used, before it discards the library from memory.

The purpose of including WEP in a library is to provide a consistent method for
library routines to clean up at the time the library is unloaded. In the case of

103

Windows: Developer's Workshop

RYG.DLL, the WEP routine deletes the GDI objects that the RYG class uses to
paint the control. You might also think that WEP would be a reasonable place to
call UnregisterClass to unregister the custom-control class, but don't do it. Win
dows implicitly unregisters all classes that have been registered in a module at
the time the last instance of the module is unloaded. Calling UnregisterClass in a
DLL's WEP function is redundant.

Using a Custom Control
As it stands, RYG .DLL supports a usable custom-control class named RYG. To
create RYG controls, an application first loads RYG .DLL. It can do this explicitly
by calling LoadLibrary in its WinMain function:

hLibrary = LoadLibrary("RYG.DLL");

An application can also load the library implicitly by importing a library func
tion. A simple way to do this is to include an appropriate IMPORTS statement in
the application's module-definition file:

IMPORTS RYG.WEP

After the library has been loaded, the application can create RYG controls di
rectly by calling CreateWindow or indirectly through CONTROL statements in
DIALOG resources in its .RC file.

The most important drawback to RYG .DLL is that a resource editor such as the
SDK Dialog Editor, DIALOG.EXE, does not recognize the RYG control class. This
makes it harder than it ought to be to design an application that uses RYG con
trols. You need to do some extra work to make a custom-control class known to
a resource editor, but the payoff is a custom-control class that can be used within
the editor just like one of the predefined Windows control classes.

Custom Controls and the Dialog Editor
The Windows SDK documentation describes the three interface functions that a
resource editor can call to determine the characteristics of a custom-control class
in a DLL. You should build these functions into a custom-control DLL to give
resource editors such as the SDK Dialog Editor the ability to manipulate the cus
tom control. (Other resource editors might use a different method to communi
cate with a custom-control DLL. See the documentation for your resource editor
for details.)

104

4: CUSTOM CONTROLS

The three resource-editor interface functions described in the Windows SDK are
listed in Figure 4-4. The Info function lets a resource editor determine which
custom-control styles are available and which style to use by default. The Style
function provides a way for a resource editor to invoke a dialog box through
which the user can specify the style of a particular custom control. The Flags
function associates a string of symbolic names with a particular control's style.

Name

Info

Style

Flags

Figure 4-4.

Export Ordinal

2

3

4

Notes

Returns descriptive data about the control
library to a resource editor in a CTLINFO
data structure.

Updates a CTLSTYLE data structure con
taining a style description for a particular
control.

Builds a string of symbolic style names for
inclusion in a CONTROL statement in a
.RC or .DLG file.

Resource-editor interface functions in a custom-control DLL.

A resource editor identifies the interface functions in a custom-control library by
reference to the export ordinal numbers you assign. Although you must use the
predefined ordinal values, you can choose any convenient names for these func
tions. It's good practice, though, to use names derived from the name of your
custom control.

Because this interface relies on ordinal numbers to identify the resource-editor
entry points in a library, you can define entry points for only one custom-control
class per DLL. If you want to use several different custom controls in a resource
editor, you may need to define each custom-control class in a separate DLL. The
alternative is to define different controls as different styles in the same control
class. The predefined static and button classes adopt this approach-the pre
defined static class includes, among others, static text, rectangle, and frame
styles; the button class includes push buttons, check boxes, radio buttons, and
group boxes.

A typical DLL interface to the Windows SDK Dialog Editor is illustrated in the
source code in Figure 4-5 on the following page, which implements a custom
control library named COLORCTL.DLL. The custom-control class supported in
COLORCTL.DLL is named ColorCtl. The purpose of the ColorCtl control is to fill
its window rectangle with color. You set the control's color by specifying an RGB

105

Windows: Developer's Workshop

value as the control's window text. The control's style determines whether the
displayed shape is a rectangle, an ellipse, or a round-cornered rectangle and
whether the control is displayed with a border. Several examples of CoforCtf

controls are shown in Figure 4-6 on page 125.

, _•............... ,
NMAkE description for COLORCTL.OLL , ,•...

. c.obj:
cl IAMw Ic 10 _WINDOWS 10 _WINDLL IG2sw 10sw IW4 IZlp $·.c

ALL: colorctl.dll

colorctl.obj: colorctl.c colorctl.h

dlgedit. obj: dlqedit.c colorctl.h

init.obj: init.c colorctl.h

wep.obj: wep.c

colorctl.res: colorctl.rc colorctl.h
rc Ir colorctl.rc

colorctl.dll: colorctl.obj dlqedit.obj init.obj wep.obj \
colorctl.res colorctl.def

link lal:16 Inod Inoe libentry init colorctl dlqedit wep, \
colorctl.dll, , libw mdllcew, colorctl.def

rc colorctl.res colorctl.dll

I··· .•••...•.....•••...•.....

• INIT.C
Initialization for COLORCTL.OLL

••••• ***~ •• **.* •• ** •••••• ** •• ** ••• *** •••••••••••• * •••• •••••••••••••••••••••••• /

#define NOCOMM
'include <windows.h>
,include "colorctl.h"

Flgure4-S. (continued)
Source code for COLORCTL.DLL.

106

4: CUSTOM CONTROLS

Figure 4·5. continued

/ • •• GLOBAL VARIABLES ••• /

HANDLE hDLLInst;

static char szColorCtlClass[] = COLORCTLCLASSNAME;

/ ••• FUNCTION PROTOTYPES ••• /

BOOL PASCAL FAR LibMain(HANDLE, WORD, WORD, LJ?STR);

static BOOL RegisterColorCtlClass(void);

, ...•......................

• LibMain

...•...........• ,
BOOL PASCAL FAR
LibMain (HANDLE hInst, WORD wDS, WORD wHeapSize, LJ?STR lpCmdTail)
{

/. if LibEntry has called Locallnit, unlock the default data segment ./
if(wHeapSize)
UnlockSegment(wDS)j

/. save the DLL instance handle in a global variable ./
hDLLlnst = hInst;

/. register the custom-control class ./
return RegisterColorCtlClass():

1··_······ .•..•....................

• RegisterColorCtlClass

•• _* •• _* •••••••••••••••••••• ,

static BOOL RegisterColorCtlClass()
(

WNDCLASS WCi

wc.lpszClassName = szColorCtlClassi
wc.hInstance hDLLlnst:
wc.lpfnWndProc = ColorCtlWndFnj
wC.hCursor = LoadCursor(0, IDC_ARROW
wc.hlcon 0:
wc.lpszMenuName = NULL;

) ;

(continued)

107

Windows: Developer's Workshop

Figure 4·5. continued

wc.hbrBackqround
wc.style
wc.cbClsExtra
wc. cbWndExtra

= 0;
= CS_DBLCLKS
= 0;
= 0;

return ReqisterClass(&wc);

f··--········**_·*·*·_···***·*··*········**·····*····* .•••. *** •• *** •• **** •••• *.

• COLORCTL.C
Implementation of the ColorCtl control

• Exports: ColorCtlWndFn

.*..*************** •• *******/

#define NOCOMM
#include <windows.h>
include <stdlib.h> f* strtoul *f
#include "colorctl.h"

f··· FUNCTION PROTOTYPES ···f

static void MsqPaint (HWND);
static BOOL MsqEraseBkqnd (HWND, HOC);

/.***** •• *** •• ********** ••• *** •• *************** •• ****.******.*** •• **** ••• ***.*.

• ColorCtlWndFn

*************.************ •• *********************.*.******** •• ****************/

LONG PASCAL FAR
ColorCtlWndFn (HWND hWnd, WORD wMsq, WORD wParam, LONG lParam)
{

108

LONG
BOOL

lRVal = OL;
bDWP = FALSE;

switch(wMsq
{

case mCPAINT:
MsqPaint(hWnd);
break;

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

case WM_NCPAINT:
case WM_NCCALCSIZE:

break;

1* don't paint the default border *1

case WM_ERASEBKGND:
lRVal = MsgEraseBkgnd(hWnd, wParam);
break;

default:
bDWP = TRUE;
break;

if(bDWP
lRVal = DefWindowProc(hWnd, wMsg, wParam, lParam);

return lRVal;

,************************.*** •• **** ••••

* MsgPaint

** ••• *********************/

static void MsgPaint(HWND hWnd)
{

DWORD dwStyle;
DWORD dwRGB;
char szRGB[12] ;
HOC hOC;
PAINTSTRUCT pSi

RECT recti
HPEN hPen;
HBRUSH hBrush;
int nCorner;

hOC = BeginPaint(hWnd, &ps);

1* get the style flags and color *1
dwStyle = GetWindowLong(hWnd, GWL_STYLE);
GetWindowText(hWnd, szRGB, sizeof szRGB);
dwRGB = HexToDWord(szRGB):

1* get the client-area rectangle *1
GetClientRect(hWnd, &rect);

(continued)

109

Windows: Developer's Workshop

Figure 4·5. continued

110

,* select pen and brush *,
hBrush = CreateSolic1Brush (dwRGB);
hBrush = SelectObject(hOC, hBrush);

if (dwStyle , WS_BORDER)
hPen = GetStockObject (BLACK_PEN);

else
{

hPen = GetStockObject (NULL_PEN) i
InflateRect('rect,

GetSystemMetrics (SM_CXBORDER),
GetSystemMetrics (SM_CYBORDER));

hPen = SelectObject(hOC, hPen);

,* the control's style determines its shape *,
switch(dwStyle , (CCS_RECT : CCS_ROUND))
{

case CCS_ROUND:
Ellipse(hOC, 0, 0, rect.right, rect.bottom);
break:

case (CCS_RECT I CCS_ROUND):
nCorner = MulDiv(mine rect.right, rect.bottom), 2, 3):
RoundRect(hOC, 0, 0, rect.right, rect.bottom, nCorner, nCorner):
break:

default:
Rectangle(hOC, rect.left, rect.top, rect.right, rect.bottom):
break;

hPen = SelectObject(hOC, hPen);
hBrush = SelectObject (hOC, hBrush):
DeleteObject(hBrush);

EndPaint(hWnd, 'ps);

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

/

• MsgEraseBkgnd

.............•.....•.....•....•.....•....••....••.........•......•..........•• ,
static BOOL MsgEraseBkgnd (HWND hWnd, HOC hDC)
{

BBROSH hBrush;
RECT recti

hBrush = (BBROSH) SendMessage (GetParent (hWnd),
WlCCTLCOLOR,
hDC,
MAKELONG (hWnd, CTLCOLOR_STATIC));

GetClientRect(hWnd, &rect);
FillRect(hDC, &rect, hBrush):

return TROE;

I·······,···························,,················ ...•...............•.....

• HexToDWord
Converts a hexadecimal ASCIIZ string to a DWORD .

................................... , .. ,/

DWORD PASCAL FAR HexToDWord(LPSTR pHex)
{

LOCALHANDLE
NPSTR
static NPSTR
DWORD

hBuf;
pBuf;
pEnd;
dwRVal;

if((NOLL != pHex) && ·pHex
{

/* allocate a temporary buffer in the DLLls local heap ./
hBuf = LocalAlloc(LHND, lstrlen(pHex) + 1);
pBuf = LocalLock(hBuf);
lstrcpy(pBuf, pHex);

1* convert the string *1
dwRVal = strtoul(pBuf, &pEnd, 16);

(continued)

111

Windows: Developer's Workshop

Figure 4·5. continued

/* if non-hexadecimal string, return a default RGB value */
if (*pEnd)

dwRVal = DEFRGB:

/. free the buffer ./
LocalUnlock(hBuf);
LocalFree(hBuf):

else
dwRVal = DEFRGB;

return dwRVal:

/** ••••• *.* •• ** •• * ••••• * •••• *** ••• * ••••• ** ••• ** •••• *** •• ***.*.***.*************

* DLGEDIT.C
Entry points for Windows dialog editor for the ColorCtl control

* Exports: ColorCtlInfo
ColorCtlStyle
ColorCtlFlags
ColorCtlDlgFn

.** •••• * ••• * •• *********** ••• ****.********* •• ***.* •••• ** ••• ** •••• ** •• *** ••••• **/

#define NOCOMM
#include <windows.h>
#include <custcntl.h>
#include
#include

<string.h>
"colorctl.h"

/ *. * GLOBAL VARIABLES * * * /

extern HANDLE hDLLlnst;

/. _fmemcpy • /

static LPFNSTRTOID
static LPFNIDTOSTR

pStrToldFn:
pldToStrFn;

static CTLINFO Ctllnfo =
{

112

Ox0100,
3,

/. defined in INIT.C ./

/ * wVersion • /
/. wCtlTypes ./

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

COLORCTLCLASSNAMB,
"" ,
"" ,

1* szClass *1
I- szTitle -I
1* szReserved *,

0, 40, 20, CCS_RECT : WS_CHlLD : WS_VISlBLE,
"ColorCtl (rect)",

0, 30, 30, CCS_ROUND : WS_CHlLD WS_VISlBLE,
"ColorCtl (round)",

0, 40, 20, CCS_ROUND : CCS_RECT WS_CHILD I WS_VISIBLE,
"ColorCtl (round rect) "

} ;

static struct /* dialoq control IDs */

WORD wIDScroll;
WORD wIDEdit;

CtlRGB[] = { lDRED, IDREDIT},
IDGREEN, IDGEDIT },
IDBLUE, lDBEDIT}};

static struct /- user-defined styles .,
{

WORD wFlaq;
char szName[16];

UserStyle [] = { CCS_RECT, flCCS_RECT"},
CCS_ROUND, "CCS_ROUND" } };

/._. FUNCTION PROTOTYPES _._,

GLOBALBANDLE PASCAL FAR ColorCtllnfo (void);
GLOBALBANDLE PASCAL FAR ColorCtlStyle (HWND, GLOBALBANDLE,

int PASCAL FAR
BOOL PASCAL FAR

static void
static void
static void
static void
static void
static void

LPFNSTRTOID, LPFNIDTOSTR) i
ColorCtlFlaqs (WORD, LPSTR, WORD);
ColorCtlDlqFn(HWND, WORD, WORD, LONG) i

MsqCommand(HWND, GLOBALHANDLE, WORD, LONG
MsqClicked(HWND, WORD) ;
MsqHScroll (HWND, WORD I LONG);
RedisplaySampleColor (HWND);
SetStylelnfo (HWND I LpCTLSTYLE) :
GetStylelnfo (HWND, LPCTLSTYLE) ;

) ;

(continued)

113

Windows: Developer's Workshop

Figure 4·5. continued

/.** •• *** •••• ** •• **** •• ****.**.** •• *** •• **** •• *** •• ** ••••• ****.*** ••• *** ••• ****

* ColorCtlInfo

••• *** ••• ***** ••••••••• * •• *** •• **** •••• ******* •• **** •• *** ••• *** ••• **** •• *****./

GLOBALHANDLE PASCAL FAR ColorCtllnfo ()
{

GLOBALHANDLE
LPCTLINFO

hCtlInfo;
. lpCtllnfo;

hCtllnfo = GlobalAlloc(GHND, (DWORD)sizeof(CTLINFO));

if(hCtllnfo)
{

lpCtllnfo = (LPCTLINFO)GlobalLock(hCtllnfo);
_fmemcpy(lpCtllnfo, &Ctllnfo, sizeof(CTLINFO));
GlobalUnlock(hCtllnfo);

return hCtllnfo;

1****··**·····*·_·····················*···*······*····* ••••••••••••••• *.* ••••••

• ColorCtlStyle

* •••• ** ••• ** ••••• * •• **.* ••••• *_.**._-*.**--* ••• --****- ··**-*··****··**_·*··***1

GLOBALHANDLE PASCAL FAR
ColorCtlStyle (H'WND hWnd, GLOBALHANDLE hCtlStyle,

114

LPFNSTRTOID lpfnStrTold, LPFNIDTOSTR lpfnldToStr

int nRVal;

I· save callback function addresses ·1
pStrToldFn = lpfnStrTold;
pldToStrFn = lpfnldToStri

/* display the style dialog box *1
nRVal = DialogBoxParam(hDLLlnst,

"ColorCtlStyleDlg",

return nRVal;

hWnd,
ColorCtlDlgFn,
MAKELONG(hCtlStyle, 0));

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

/ ••••• ***.**.****

* ColorCtlFlags

************.*********.** ••• /

int PASCAL FAR ColorCtlFlags (WORD wFlags, LPSTR pSt ring , WORD wMaxLen)

int n;

/* start with a null string */
pString[O] = 0;

/* copy flag string for each user style */
fort n=O; n<ARRN(UserStyle); n++)

if(wFlags & UserStyle[n).wFlag)
{

if (*pString)
lstrcat(pString, " : ")i

lstrcat(pString, UserStyle[n] .szName);

/* return the total string length */
return lstrlen(pString);

/* append a separator */

/**~** *************************

* ColorCtlDlgFn

*************************************.*.**************************************/

BOOL PASCAL FAR
ColorCtlDlgFn (HWND hDlg, WORD wMsg, WORD wP aram , LONG lParam)
{

static GLOBALHANDLE hCtlStylei
LPCTLSTYLE lpCtlStyle;
BOOL bRVal = TRUE;

switch(wMsg)
{

case WM_INITDIALOG:
hCtlStyle = LOWORD(lParam);
lpCtlStyle = (LPCTLSTYLE)GlobalLock(hCtlStyle);
SetStylelnfo(hDlg, lpCtlStyle);
GlobalUnlock(hCtlStyle)i

break;

(continued)

115

Windows: Developer's Workshop

Figure 4·5. continued

case WM_COMMAND:
MsgCommand(hDIg, hCtlStyIe, wParam, IParam);
break;

case WM_HSCROLL:
MsgHScroll(hDlg, wParam, lParam);
break;

default:
bRVal = FALSE;
break;

return bRVal;

/ ••••••••••••••••••••••••••••••••••••• ** •••••• * ••••••••••••••••••••••••••••••••

• MsgCommand •
• Notes!

IOREOIT = (IOREO+1000)
IOGEOIT = (IOGREEN+1000)
lOBEOIT = (IOBLUE+1000)

** •••• **** •• *** •• **** ••••••• ** •••••• ** •••• ** •• ** ••••••••• ***** ••• * ••••••• *****/

static void
MsgCommand(HWNO hDlg, GLOBALHANOLE hCtlStyle, WORD wParam, LONG lParam)
{

116

LPCTLSTYLE
OWORD

lpctlStyle:
dwRVal;
8zIO[20]:
hCtl;

char
HWNO
int ni

switch(wParam
{

case lOOK:

/. verify the control 10 ./
GetOlgltemText(hDlg, 1010, szIO, sizeof szIO);
dwRVal = (*pStrToldFn) (szIO);

/. if the control 10 is valid, end the dialog ./
if(LOWORD(dwRVal))
{

lpCtlStyle = (LPCTLSTYLE)GlobalLock(hCtlStyle);

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

lpCtlStyle->¥Id = BIWORD(dwRVal)i
GetStylelnfo(hDlq, lpCtlStyle);

GlobalUnlock(hCtlStyle);

EndDialoq (hDlq, TRUE) i

else
PostMessage (hDlq,

break;

case IDCANCEL:

WM_NEXTDLGC'l'L,
GetDlqltem(hDlq, IDID),
(LONG) TRUE);

EndDialoq (hDlq, FALSE) i
break;

case IDREDI'l':
case IDGEDI'l':
case IDBEDI'l':

if (EN_KILLFOCUS = BIWORD (lParam)
{

/* verify the new color value */
n = GetDlqltemlnt (hDlg, wParam, NULL, FALSE) i
if(n > MAXCVAL)
{

n = MAXCVAL;
SetDlqltemlnt (hDlg, wParam, MAXCVAL, FALSE);

/* update the correspondinq scroll bar */
hCtl = GetDlgltem(hDlg, wParam-1000);
SetScrollPos(hCtl, SB_C'l'L, n, 'l'RUE);

RedisplaySampleColor (hDlg);

break;

case IDBORDER:
case IDREC'l':
case IDROUND:

if (BN_CLICKED = HIWORD (lParam)
MsqClicked(hDlg, wParam);

break;

(continued)

117

Windows: Developer's Workshop

Figure 4·5. continued

default:
break;

1--·····_···············_···_·_········_···· __ ····_··· .. __ ...••....•••....•....

• MsgClicked

•••••••••••••• ********* ••••••••• *** ••• *** •••••••• ****.********* •••• * ••••• * ••• */

static void MsgClicked (HWND Wlg, WORD wParam)
{

118

HWND

DWORD
hCtl;
dwStyle, dwFlag:

1* determine which style flag to update ·1
switch(wParam)
{

case IDBORDER:
dwFlag = WS_BORDER;
break;

case IDRECT:
dwFlag = CCS_RECT;
break;

case IDROUND:
dwFlag = CCS_ROUND;
break;

I· update the control style -,
hCtl = GetDlgItem(Wlg, IDCC)i
dwStyle = GetWindowLong(hCtl, GWL_STYLE);

if (IsDlgButtonChecked (Wlg, wParam))
dwStyle := dwFlag;

else
dwStyle &= NdwFlag;

SetWindowLong(hCtl, GWL_STYLE, dwStyle)i

I· redisplay the sample ·1
InvalidateRect (hCtl, NULL, TROE);
UpdateWindow(hetl):

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

,
• MsgHScroll

..•............................. /

static void MsgHScroll (HWND hDlg, WORD wParam, LONG lParam)
{

int
BOOL

nPos;
bUpdate = TRUE;

I· compute a new scroll-bar thumb position ·1
nPos = GetScrollPos(HIWORD(lParam), SB_CTL);

switch (wParam
{

case SB_TOP:
nPos = 0;
break;

case SB_BOTTOM:
nPos = MAXCVAL;
break;

case SB_LINEUP:
if(nPos > 0)

--nPos;
break;

case SB_LINEDOWN:
if(nPos < MAXCVAL

++nPos;
break;

case SB_PAGEUP:
nPos = max(0, nPos-Ox10);
break;

case SB_PAGEDOWN:
nPos = min (MAXCVAL, nPos+Ox10);
break;

(continued)

119

Windows: Developer's Workshop

Figure 4·5. continued

case SB_THUMBPOSITION:
case SB_THUMBTRACK:

nPos = LOWORD(lParam);
break;

default:
bUpdate = FALSE:
break:

/* update the ScrollBar, Edit, and ColorCtl controls */
if(bUpdate)
{

SetScrollPos(HIWORD(lParam), SB_CTL, nPos, TRUE);
SetDlgItemInt(hDlg, 1000+GetDlgCtrlID(HIWORD(lParam)),

nPos, FALSE);
RedisplaySampleColor (hDlg);

/******** •• *** ••• **** •• *** •• **** •• ********** •• *** •• *********** •• *** •• **********

* RedisplaySampleColor

*******************************~**/

static void RedisplaySampleColor(HWND hDlg)
{

BYTE cValue[3]i
char szRGB[12];
HWND hCtl;
int n;

fore n=Oi n<3: n++)
cValue[n] = (BYTE)GetDlgltemlnt(hDlg, CtlRGB[n].wIDEdit,

NULL, FALSE);
wsprintf(szRGB, "Ox%061X", RGB (cValue [0) , cValue[1], cValue[2]));

120

hCtl = GetDlgltem(hDlg, IDCC)i
SetWindowText(hCtl, szRGB);
InvalidateRect (hCtl, NULL, FALSE);
UpdateWindow(hCtl);

(continued)

4: CUSTOM CONTROLS

Figure 4·5. continued

/** •••••••••••••• ** ••••• ** ••• **** ••• ** ••••••••••••• ** •••• ** •••• ** ••••••• *** ••••

* Set Style Info

•••••• * ••••••••••••••••• **** ••••••••• ** ••••••••••••••••••••••••••••••••••••••• /

static void SetStylelnfo (HWND hDlq, LPCTLSTYLE lpCtlStyle)
{

char
DWORD
BYTE
HWND
int

szID[20];
dwRGB;
cValue[3];
hCtl;
n;

1* display the ID value *1
(*pldToStrFn) (lpCtlStyle->wld, szID, sizeof szID);
SetDlqltemText(hDlq, IDID, szID);

1* qet the RGB color value from the window text *1
if'(lstrcmpi (lpCtlStyle->szTitle, "Text"))

dwRGB = HexToDWord(lpCtlStyle~>szTitle);
else

dwRGB = DEFRGB;

cValue[O] = GetRValue(dwRGB);
cValue[1] = GetGValue(dwRGB);
cValue[2] = GetBValue(dwRGB)i

1* set the scroll bars and edit controls *1
fore n=O; n<3; n++)
{

hCtl = GetDlqltem(hDlq, CtlRGB[n].wIDScroll);
SetScrollRanqe(hetl, SB_CTL, 0, MAXCVAL, TRUE);
SetScrollPos(hCtl, SB_CTL, cValue[n], TRUE)i

SetDlqltemInt(hDlq, CtlRGB[n] .wIDEdit, cValue[n], FALSE):

1* display the style check boxes *1
CheckDlqButton(hDlq, IDBORDER,

(WS_BORDER == (lpCtlStyle->dwStyle & WS_BORDER»);
CheckDlqButton(hDlq, IDRECT,

(CCS_RECT == ((WORD) lpCtlStyle->dwStyle & CCS_RECT»);
CheckDlqButton (hDlq, IDROUND,

(CCS_ROUND == {(WORD)lpCtlStyle->dwStyle & CCS_ROUND»):

(continued)

121

Windows: Developer's Workshop

Figure 4·5. continued

/. display the sample control ./
hCtl = GetDlgItem(hOlg, IDCC);

SetWindowLong(hCtl, GWL_STYLE, lpCtlStyle->dwStyle);
SetWindowText(hCtl, lpCtlStyle->szTitle);

/

• GetStyleIn£o

.. /
static void GetStyleln£o(HWNO hOlg, LPCTLSTYLE lpCtlStyle)
{

BYTE
DWORD
int

cValue[3];
dwRGB;
n:

/. get the color values from the edit controls ./
fore n=O: n<3; n++)

cValue[n] = ,
(BYTE)GetDlgltemlnt(hDlg, CtlRGB[n].wIDEdit, NULL, FALSE);

dwRGB = RGB(cValue[O], cValue[1), cValue[2)):

/. use the RGB value as the window text ./
wsprintf (lpCtlStyle->s2Title, "Ox%061X", dwRGB);

/. update the style flags ./
lpCtlStyle->dwStyle =

GetWindowLong (GetDlgltem (hDlg, IDCC), GWL_STYLE);

/•...

• WEP.C
• Windows exit procedure for COLORCTL.DLL

• Exports: WEP RESIDENTNAME

.. /

#define NOCOMM
#include <windows.h>

(continued)

122

4: CUSTOM CONTROLS

Figure 4·5. continued

/ •••• ** •• ******.*** •• **** ••••••••• ** ••••••••••••••• *** ••••••••• ** •• *** ••• * •••••

* WEP

•• ** •••••••••••••••••••••••••••••••• ** •• /

int PASCAL FAR WEP (int nParam)

return 1;

/ ••• ** ••••••••••••••••••••••••• ** ••••••••••••••••••••••••••••• ***** •• **** •••••

* COLORCTL.RC resource script

*.*** •••• * ••• *.*.**.* •• *.* ••• * •••• ~ •• **.* •• **.* •• *.** •••• ** •••••••••••••••••• /

#include
#include

<windows.h>
"colorctl.h"

ColorCtlStyleDlg DIALOG LOADONCALL MOVEABLE DISCARDABLE 18, 30, 242, 102
CAPTION "ColorCtl Control Style
STYLE WS_CAPTION : WS_POPUP
{

CONTROL "&ID:", 0, "Static", SS_RIGHT : WS_CHILD, 4, 6, 12, 8
CONTROL "", 1010, "Edit", ES_LEFT : ES_UPPERCASE : WS_BORDER

: WS_TABSTOP : WS_CHILD, 20, 4, 76, 12
CONTROL "", IDCC, "ColorCtl", CCS_RECT : WS_CHILD, 194, 4, 40, 18
CONTROL "Color", 0, "Button", BS_GROUPBOX : WS_CHILD, 2, 16, 182, 64
CONTROL "&Red", 0, "Static", SS_LEFT : WS_CHILD, 6, 30, 24, 8
CONTROL "", IDRED, "ScrollBar", SBS_HORZ : WS_TABSTOP : WS_CHILD,

32, 29, 128, 10
CONTROL "", IDREDIT, "Edit", ES_LEFT : WS_BORDER : WS_TABSTOP

162, 28, 18, 12
CONTROL "&Green", 0, "Static", SS_LEFT : WS_CHILD, 6, 46, 24, 8
CONTROL "", IDGREEN, ftScrollBar", SBS_HORZ : WS_TABSTOP I WS_CHILD,

32, 45, 128, 10
CONTROL '"', IDGEDIT, "Edit", ES_LEFT : WS_BORDER : WS_TABSTOP : WS_CHILD,

162, 44, 18, 12
CONTROL ft&Blue", 0, "Static", SS_LEFT I WS_CHILD, 6, 62, 24, 8
CONTROL "", IDBLUE, "ScrollBar", SBS_HORZ I WS_TABSTOP : WS_CHILD,

32, 61, 128, 10
CONTROL "", IDBEDIT, "Edit", ES_LEFT

162, 60, 18, 12

(continued)

123

Windows: Developer's Workshop

Figure 4·5. continued

CONTROL "Style", 0, "Button", BS_GROUPBOX : WS_CHILD, 187, 27, 52, 54
CONTROL "B&order", IOBORDER, "Button", BS_AUTOCHECKBOX : WS_TABSTOP

: WS_CHILO, 190, 36, 48, 12
CONTROL "R&ect", IORECT, "Button", BS_AUTOCHECKBOX : WS_TABSTOP

: WS_CHILD, 190, 48, 48, 12
CONTROL "Rou&nd", IOROUND, "Button", BS_AUTOCHECKBOX : WS_TABSTOP

l WS_CHILD, 190, 60, 48, 12
CONTROL "Ok", IDOK, "Button", BS_DEFPUSHBUTTON : WS_TABSTOP

: WS_CHILD, 86, 84, 32, 14
CONTROL "&Cancel", IOCANCEL, "Button", BS_PUSHBUTTON WS_TABSTOP

: WS_CHILO, 142, 84, 32, 14

It •••• *.*_.****-***.*-* ••• _.***._.**.*_.* .. _.*_ *. *_*f****.ffff********* __ *

* COLORCTL.H
Header file for COLORCTL.OLL

*.*f.**I ••• *****.**.* •• ** ___ **._._* ...• *_* •• *_* •• _ ••• ***_f*II**f** __ .** __ .*.*./

/* ColorCtl styles */
#define CCS_RECT
#define CCS_ROUND

/* dialog control IDs
#define 1010
#define IDCC
#define IORED
#define IDREDIT
#define IOGREEN
#define IOGEOIT
#define IOBLOE
#define IOBEDIT
#define 10 SAMP LE
#define IOBORDER
#define IDRECT
#define IOROUND

/* color values */
#define MAXCVAL
#define GRAYVAL
#define DEFRGB

124

*/

Ox0001L
Ox0002L

100
101
102
(1000+IDRED)
103
(1000+IOGREEN)
104
(1000+IDBLOE)
105
106
107
108

OxFF
Ox80
RGB (GRAYVAL, GRAYVAL, GRAYVAL)

(continued)

4: CUSTOM CONTROLS

Figure 4-5. continued

/* miscellany */
#define COLORCTLCLASSNAME "ColorCtl"
#define ARRN(a) (sizeof a / sizeof a[O])

/*** FUNCTION PROTOTYPES ***/

/* defined in COLORCTL.C */
LONG PASCAL FAR ColorCtlWndFn (HWND, WORD, WORD, LONG);
DWORD PASCAL FAR HexToDWord(LPSTR);

;.**** •••• **.*******.*********** •••• *************.**** •••••• *** ••••• * •••••••••

; COLORCTL.DEF module-definition file

; ••••••• ** •• ******* ••••• ****** •••••••••• *** ••• **.*** ••••••• *** ••••••• * ••••••••

LIBRARY
DESCRIPTION
STUB
EXETYPE

CODE
DATA

HEAPSIZE

SEGMENTS

EXPORTS

COLORCTL
'COLORCTL version 1 .0'
'WINSTUB.EXE'
WINDOWS

LOADONCALL MOVEABLE DISCARDABLE
PRELOAD MOVEABLE SINGLE

1024

INIT_TEXT
WEP_TEXT

WEP
ColorCtlInfo
ColorCtlStyle
ColorCtlFlags
ColorCtlWndFn
ColorCtlDlgFn

PRELOAD DISCARDABLE
PRELOAD FIXED

@1 RESIDENTNAME
@2
@3
@4
@5
@6

Coloretl Samples ' __ 0

Figure 4-6.
Six ColorCtl controls with different shapes and colors.

125

Windows: Developer's Workshop

The basic structural components of COLORCTL.DLL-LibMain (which initial
izes the library and registers the class), the class window function ColorCtl
WndFn, and WEP-represent only about a third of the DLL's source code. This
source code is found in INIT.C, COLORCTL.C, and WEP.C. The rest of the source
code, in DLGEDIT.C, provides the resource-editor interface.

Initialization and Class Registration
The library's initialization function, LibMain, registers the custom-control class
with the CS_GLOBALCLASS style. The control class also has the CS_DBLCLKS
style so that you will be able to double-click the control within a resource editor
to view the control's style dialog box. The initialization function also stores the li
brary's module handle in a global variable. The module handle is later used in
DLGEDIT.C to identify a dialog resource compiled as part of the library.

The Class Window Function
The window function for the ColorCtl class is named ColorCtlWndFn and is de
fined in COLORCTL.C. The window function contains no additional code in sup
port of the resource-editor interface-;there is no difference between a ColorCtl
control created by a resource editor and one created by any other application.

The DLL Exit Function
As it is in all DLLs, the exit function is named WEP and is exported with the
RESIDENTNAME attribute. Unlike the RYG.DLL example earlier in this chapter,
COLORCTL.DLL has no cleanup actions to carry out when Windows unloads the
library. Therefore WEP is a do-nothing function.

Three of the other four exported functions in COLORCTL.DLL provide the
resource-editor interface. These functions are ColarCtlInfo, ColorCtlStyle, and
ColorCtlFlags. The fourth, CalorCtlDlgFn, supports the dialog box displayed
when the resource editor calls ColorCtlStyle.

The 'nfo Function
A resource editor calls the Info function to determine the characteristics of the
custom-control class. For example, when you choose the Add Custom Control
command from the SDK Dialog Editor's File menu and then specify ColorCtl in

126

4: CUSTOM CONTROLS

the Add Control dialog box, the Dialog Editor calls ColorCtlInfo to determine the
default class name, size, and style of the control.

The Info function returns a handle to a global-memory block that contains
descriptive information for the custom-control class. This information is format
ted as a CTLINFO data structure. (This data structure is declared in
CUSTCNTL.H, a C-Ianguage include file provided in the Windows SDK.) The
SDK Dialog Editor refers to the CTLINFO data whenever the editor creates a new
custom-control window.

The Style Function
A resource editor calls the Style function to let you specify the style of a particu
lar custom control. In the SDK Dialog Editor, this happens when you choose the
Style command from the Edit menu or when you double-click on a control that
has the CS_DBLCLKS style. The Style command displays a dialog box that lets
you edit a particular control's CreateWindow parameters. A resource editor calls
the Style function with a CTLSTYLE data structure containing a set of default
style parameters. The Style function modifies these parameters according to your
input in the dialog box.

In the ColorCtl example, the style function ColorCtlStyle displays a modal dialog
box that lets you specify the control's color and border styles. The return value
from the call to DialogBoxParam indicates whether you have modified the
values in the CTLSTYLE data structure.

Although most of a control's style attributes can be modified at your discretion,
the control's ID requires special handling to ensure that its value is unique
among the controls that are used within a dialog box. Typically, a resource editor
assigns a unique default ID value to each new control. The resource editor then
lets the Style function validate the ID value by passing the addresses of two
callback functions as parameters. The Style function can call the first of the
callback functions (lpfnldToStr) to discover the ID value that the resource editor
has assigned. If you change the control's ID value, the Style function can call the
other callback function ClpfnStrToId) to inform the resource editor of the new ID
value and to allow the editor to verify that the changed ID value is unique.

The Flags Function
The Flags function builds a string of symbols that represent the style of a custom
control. A resource editor uses the string returned by the Flags function to build
a CONTROL statement in a resource-script file.

127

Windows: Developer's Workshop

The ColorCtlFlags function uses the wFlags parameter to build a text string con
taining the appropriate style names separated by vertical bars (the logical OR op
erator used in a CONTROL statement). The function returns the final length of
the text string. Although ColorCtlFlags builds the string without monitoring its
length, a Flags function that builds a long text string should verify that the string
length does not exceed the maximum buffer size specified in the wMaxLen
parameter.

The Style Dialog Function
The style dialog function supports a dialog box displayed by the Style function.
The dialog's purpose is to let you update the values in the CTLSTYLE data struc
ture for a particular custom-control window. In general, this dialog box should
contain both OK and Cancel buttons. If you choose OK, the Style function should
return updated CTLSTYLE data to the resource editor. If you choose Cancel, the
CTLSTYLE values should remain unmodified.

The ColorCtlDlgFn function supports the dialog box illustrated in Figure 4-7. If
you choose the OK button, the function first updates the CTLSTYLE values by
calling GetStylelnfo and then calls EndDialog with a nonzero return value. It
calls EndDialog with a return value of 0 if you choose Cancel or if you use the
Esc key to end the dialog.

ColorCtl Control Style ...

Color

ID: 1m -Bcd III 1m II @!J Style
-...:..-------~-......- 0 BQrder

!ireen III IS II@!J [8l R~ct
Blue III II II @!J 0 Round

Figure 4-7.
The dialog box that is displayed when the Dialog Editor calls the
ColorCtlStyleFn function.

Building the Perfect Control
When you intend to use a custom control as a general-purpose tool, you need to
give careful thought to the control's visual design and to the details of its func
tionality. Like the predefined Windows controls, custom controls should blend
into the Windows environment so that they cooperate well with their parent

128

4: CUSTOM CONTROLS

windows as well as with other controls. As you fine-tune a custom-control class,
you may want to adopt some of the techniques that Windows' predefined control
classes use for memory management, client -area painting, and communicating
with a parent window.

Managing the Input Focus
A control should provide a visual indication that it has the input focus. For ex
ample, edit controls highlight their contents; list-box controls outline the cur
rently selected item with a dotted-line rectangle; scroll-bar controls display a
blinking caret in the scroll-bar thumb; and button controls display a modified
border and a dotted-line rectangle around the button text. If your custom control
can use the same focus indication as one of the default control classes, users will
intuitively recognize when your custom control has the input focus.

Memory Allocation
There are several different ways for a custom control to allocate memory. Be
cause controls are windows, you can store limited amounts of data in window
extra bytes and window property lists. If a control needs more than a few bytes
of data, however, it should call LocalAlloc or GlobalAlloc to obtain a block of
memory. It can then store the block's memory handle in window extra bytes.

If you use LocalAlloc, be sure you know which local heap you are using. Nor
mally, calling LocalAlloc from a library function allocates memory in the li
brary'S local heap. If you use a DLL's local heap, be certain to specify a nonzero
value in a HEAPSIZE statement in the DLL's module-definition file.

If a custom control must process long lists of data elements, you might also want
to allow the control's owner to allocate memory and to pass memory handles to
the control. This is a technique that is used by edit controls, which use the class
specific EM_SETHANDLE and EM_GETHANDLE messages to manage memory
handles.

Notifying the Parent Window
You should also consider using one or more messages to let a custom control no
tify its parent when the control's status changes. The method used by the pre
defined Windows controls is to send WM_COMMAND to the parent, with the
control ID in wParam, the control's window handle in the low-order word of
IParam, and a notification code in the high-order word of IParam.

129

Windows: Developer's Workshop

A custom control that accepts keyboard input might send a WM_COMMAND
message to its parent whenever it processes a keystroke. The EN_CHANGE
notification code sent by an edit control is an example of this. A custom control
could also support an owner-draw style by sending WM_DRAWITEM messages
to its parent, as do button, list-box, and combo-box controls that have owner
draw styles.

A control can provide an additional degree of flexibility by sending WM_CTL
COLOR messages to its parent. The method for sending WM_CTLCOLOR is
shown in the function MsgEraseBkgnd in the file COLORCTL.C. The control's
window function sends WM_CTLCOLOR to the parent in response to
WM_ERASEBKGND, which is sent to the control's window function by Begin
Paint. The device-context handle associated with WM_ERASEBKGND is the
same as the one returned by BeginPaint, and the control's window function uses
this handle when it sends WM_CTLCOLOR.

The WM_CTLCOLOR message is useful for ColorCtl controls because it lets a
control's parent determine how to paint the control's background. If the parent
lets DefWindowProc process WM_CTLCOLOR, the control's background color
will be the same as the default window background. However, if the parent pro
cesses WM_CTLCOLOR by returning a handle to a brush, the control will use
that brush to paint its background. (This works even if the parent window is a
dialog box.) The parent of a ColorCtl control can also prevent the control from
erasing its background by returning the handle of a null brush in response to
WM_CTLCOLOR.

Painting Control Styles
Whenever you design a custom control, pay particular attention to the way the
control is painted, especially if the control supports more than one visual variant.
Sometimes a control's final design reflects a compromise between visual con
sistency and functionality. For example, if you design a control that displays text,
you may want the text to be displayed at the same location in each control win
dow regardless of whether the control displays a border. On the other hand, it
may be more convenient to work with a text-display control in which the posi
tion of the text can vary to minimize the amount of space necessary to display
the text. Figure 4-8 illustrates the latter design in two edit controls, only one of
which has the WS_BORDER style.

130

4: CUSTOM CONTROLS

IABCDE I ABCDE

Figure 4-8.

The edit control on the left has the WS_BORDER style; the one on the right does
not. Both controls are the same size, but the window text is aligned differently
in each.

In the case of the ColorCtl custom control, the visual design derives from the
control's purpose, which is to fill itself with a color. The control displays a rect
angle, an ellipse, or a round-cornered rectangle whose size is bounded by the
control's window rectangle, not by the client area. This design prevents gaps be
tween adjoining ColorCtl controls and allows you to align or overlap multiple
ColorCtl controls without needing to adjust the controls' size or border style.

The control's visual design depends on selective processing of the WM_NC
PAINT and WM_PAINT messages. For a window with the WS_BORDER style,
Windows' default action is to draw a rectangular black border in response to the
WM_NCPAINT message. Because this obviously will not work for ColorCtl con
trols that have non-rectangular styles, the ColorCtl window function traps
WM_NCPAINT and paints the border itself in response to WM_PAINT messages.
This is convenient because the window function calls Rectangle, Ellipse, or
RoundRect to paint the control's client area, and these GDI functions can draw a
border as well as fill the client area with color.

For this approach to work, however, the control window's client area must al
ways correspond to the entire control-window rectangle. This is a problem if the
window has the WS_BORDER style because Windows' default action is to shrink
the window's client area to leave room for the border. For this reason, the win
dow function traps WM_NCCALCSIZE, which prevents DefWindowProc from
reducing the client-area size for controls with the WS_BORDER style.

Although this technique seems straightforward, it creates an additional com
plication for ColorCtl controls that do not have the WS_BORDER style. The
problem is that the Rectangle, Ellipse, and RoundRect functions always draw a
border, even if you select a null pen for the current device context. The solution
is to increase the size of the drawing rectangle with a call to InflateRect. This

131

Windows: Developer's Workshop

causes the border to be clipped outside the control's client area, so the filled in
terior of the rectangle, ellipse, or round-cornered rectangle extends to the edge
of the control's window rectangle.

These complications could be avoided by restricting the ColorCtl control's style
to rectangles with a border. However, the control class is more powerful because
it supports variations in its border and shape styles. The price of additional func
tionality in a custom-control class is usually additional programming effort.

You may find that the goal of building a perfect custom control is an elusive one.
If you reflect on the RYG and ColorCtl examples earlier in this chapter, you will
probably think of ways to improve their appearance or their functionality.
For example, both control classes would benefit from the ability to respond to
user input. In fact, there's no end to the tinkering you might do to make these
custom controls-or any other custom control-a bit more flexible or prettier to
look at. Nonetheless, the extra effort is worthwhile. Well-designed custom con
trols make Windows applications easier to write and easier to use.

132

5

An Obiect
Oriented Vie""

5: AN OBJECT-ORIENTED VIEW

If you program in an object-oriented environment such as Smalltalk-80, you'll be
happy to learn that the Windows environment contains some familiar object
oriented design ideas, but you'll be disappointed that Windows doesn't support
object-oriented programming constructs more fully. Even if you're more com
fortable with procedural programming and unfamiliar with object-oriented con
cepts, understanding Windows' object-oriented roots can help you design better
source code for your Windows applications.

This chapter looks at Windows from an object-oriented point of view. Windows
itself is not an object-oriented programming environment, but the underlying
structure of the Windows environment is clearly influenced by object-oriented
software concepts. This chapter describes those concepts and shows how you
can use them in the design of your own Windows applications.

Obiecls and Messages
The term "object" has different meanings in different contexts. By now, you're
surely familiar with global-memory objects, local-memory objects, and GDI ob
jects. You have also encountered object libraries and object modules, in which
an object is something generated by a compiler or an assembler. In this chapter,
however, an object is none of these. Instead, an object is a particular kind of
programming construct used in a style of programming called object-oriented
programming.

Obiect Structure
A typical object-oriented programming environment consists of a variety of pre
defined objects arranged so that they can transfer control to each other in a
hierarchical fashion. Each of these objects consists of both executable code and
data. The executable code describes a set of predefined actions the object can
perform. The data is private to the object-that is, it is accessed only by the
associated executable code. In the parlance of object-oriented programming,
this localization of predefined actions and private data within an object is called
encapsulation.

From this point of view, an object is not a complicated entity. You can easily
imagine a straightforward C function that uses a switch statement to define a set
of actions that access data stored in locations known only within the function it
self. (If you think this description sounds suspiciously like a Windows window,
you're absolutely correct.)

135

Windows: Developer's Workshop

A natural characteristic of the design of an object-oriented environment is that
objects transfer control to each other using messages. A message is represented
as a set of data items that can be transferred between objects. Sending a message
is equivalent to executing a function call with parameters that represent the mes
sage data. One of the parameters in this function call is a predefined data item
that identifies the message. When an object receives a message-that is, when
the executable function that performs an object's actions is called with a mes
sage identifier and other parameters-the message identifier determines which
action the object carries out.

Using Messages
As a Windows programmer, you are already familiar with the technique of using
messages to evoke actions. The power of this technique lies in the fact that dif
ferent objects can respond to the same message with different actions. This
means that a particular message can represent a single generic event such as a
keystroke, mouse movement, or video-display update, yet any particular mes
sage can evoke quite different actions in different objects. There are many ob
vious examples of this in the Windows environment: Consider the different ways
in which windows can process the same WM_KEYDOWN, WM_MOUSEMOVE,
or WM_PAINT message.

It's harder to follow a program's flow in a message-driven environment than in a
procedural operating environment. There are at least two reasons why this is so.
One is that messages can be sent to an object either by another object or by the
operating environment itself. In Windows, for example, messages such as
WM_KEYDOWN and WM_MOUSEMOVE originate within the operating envi
ronment, whereas messages such as WM_SETFONT originate within
applications.

Another reason is that an object can process a message by sending one or more
new messages to other objects or even to itself. If you are analyzing program
flow, you may find that carrying out even a simple action involves processing a
cascade of messages. This is why debugging a Windows application often in
volves monitoring the messages the application processes.

Although the order in which an object receives messages is ~omewhat unpredict
able, the actions taken by the object to process each message are explicitly
defined. Of course, objects do not explicitly define actions for every possible
message. Instead, objects rely on an implicit default action to be carried out for
any message not explicitly processed. The usual mechanism that objects use
for default message processing is to pass messages to another object.

136

5: AN OBJECT-ORIENTED VIEW

Message-Passing Hierarchy
In an object-oriented programming system, objects are related to each other in a
hierarchical structure that reflects the flow of messages between the objects.
When an object receives a message, one of its possible actions may be to
retransmit the message to another object that lies above it in the hierarchy. A
message-passing hierarchy implies that an object can 'always respond to a mes
sage with a default action-namely, the action performed by the next object in
the hierarchy.

The topmost objects in an object hierarchy are naturally the most generic in
their actions because they provide the default actions for any messages passed to
them from objects below them in the hierarchy. In a very simplistic object
hierarchy, the topmost object is simply a "black hole" that ignores all messages it
receives. In a real-world programming environment, however, the topmost ob
ject may carry out a variety of generic default actions.

A message-passing hierarchy is a powerful programming paradigm because an
object lower in the hierarchy can make use of the functionality of objects above
it in the hierarchy simply by passing messages up the hierarchy. Such use of the
hierarchy is characteristic of object-oriented programming systems. It is also im
plicit in the message-passing mechanisms supported in Windows.

Windows as Objects
In the Windows environment, you can regard windows as objects. Each window
is associated with private data and with a window function that explicitly defines
a set of actions to be carried out in response to one or more specific messages. If
a window function does not explicitly process a message, it passes the message
to another window function in a loosely hierarchical fashion.

You can think of DefWindowProc as the topmost function in a message-passing
hierarchy. DefWindowProc carries out a variety of generic actions common to
most windows in the Windows environment, such as drawing a window's non
client area, responding to system commands to resize and move a window, and
updating a window's text caption. DefWindowProc also serves as a "black hole"
for many messages. About one third of the documented WM_ * messages are pro
cessed by DefWindowProc in Windows 3.0. DefWindowProc does nothing with
the others except return a value of O.

The messages ignored by DefWindowProc are intended for processing by other
window functions. Because DejWindowProc carries out the basic actions com
mon to most windows, most window functions perform specialized actions in

137

Windows: Developer's Workshop

response to certain messages and pass the remaining messages up the hierarchy
to DejWindowProc for default processing.

Message-Passing in Windows
In a true object-oriented programming environment such as Smalltalk-80, the
mechanisms by which objects pass messages to other objects are explicitly de
fined. In Windows, however, message-passing is implemented as a function call
that can occur anywhere within a window function. The way a message passes
from one window function to another depends on how the calling window func
tion executes the function call and on which function is called.

In principle, the path of a message through the Windows hierarchy is simple: A
message is passed-from window function to window function-until it is
trapped and processed by a window function that recognizes it. The problem is
that some messages must always be passed up the object hierarchy, whether or
not they are processed in a window function, because DejWindowProc and
other default functions (such as those associated with the predefined control
classes) carry out essential actions in response to some messages.

Unfortunately, you don't always know which messages can be safely trapped in a
window function and which must be passed through. To be on the safe side, a
window function should trap only those messages whose default processing it
needs to override. All other messages should be passed up the hierarchy either
before or after they are processed in the window function.

This means a window function can handle a message in one of four ways. The
window function can trap the message without passing it up the object
hierarchy; it can process the message and then pass it on; it can pass the message
up the hierarchy and then process it; or it can simply pass the message on.

Figure 5-1 illustrates all four kinds of message processing. The function
NumEditWndFn supports an edit-class window that recognizes only numeric in
put. The function passes most message's up the object hierarchy to the default
edit window function by calling the CallWindowProc function, but it traps
WM_CHAR messages by setting the bCWP variable to FALSE for any character
that does not represent numeric input. The NumEditWndFn function also pro
cesses the WM_SETFOCUS message after the message has been transmitted to
the default edit window function. In this way, NumEditWndFn displays a special
caret instead of the caret created by the default edit window function in re
sponse to WM_SETFOCUS.

138

5: AN OBJECT-ORIENTED VIEW

FARPROC pDefEditWndFn;

LONG PASCAL FAR

/* pointer to the default
edit window function */

NumEditWndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG lParam)
{

LONG lRVal = OL;
BOOL bCWP = FALSE;

switch (wMsg)
{

case WM_CHAR:
bCWP = iscntrl(wParam) :: isdigit(wParam) ::

(NULL ! = strchr ("+-.", wParam »;
break;

default:
bCWP = TRUE;
break;

if(bCWP)
lRVal = CallWindowProc(pDefEditWndFn,

hWnd, wMsg, wParam, lParam);

if(WM_SETFOCUS == wMsg
{

/* create a fat caret */
CreateCaret(hWnd, 0, 4, 16);
ShowCaret(hWnd);

return lRVal;

Figure 5-1.
Source code for NumEditWndFn, a window function for an edit control that
allows only numeric input.

Classes
Missing from this view of window-objects arranged in a message-passing
hierarchy is an efficient way to create a new object with specified functionality
in its proper place in the hierarchy. In Windows, this is accomplished by using
another object-oriented programming construct: the class.

139

Windows: Developer's Workshop

Class Structure
In an object-oriented environment, a class describes the characteristics of a set
of similar objects. In Windows, a class specifies such characteristics as the class
name and the address of the window function to be used by all objects (win
dows) in the class. When you call CreateWindow, you specify the class whose
characteristics apply to the window being created. This is much more efficient
than explicitly specifying all the characteristics of every window you create, as
you might if classes did not exist.

By using classes, Windows can create multiple objects-that is, multiple win
dows-using only one copy of the executable code that defines a class's func
tions. Different windows within the same class are distinguished only by private
data (parent-window handle, child-window ID, window-function address, win
dow extra bytes, and so on) that are associated with each window. Windows
assigns a unique handle to each newly created window and uses the handle to
identify the window's private data. Applications access a window's private data
through the API functions SetWindowWord, Get Window Wo rd, SetWindowLong,
and GetWindowLong.

Window classes are also associated with private data. (However, window classes
do not process messages, so don't think of them as objects.) You initialize a
class's private data in the WNDCLASS data structure that you use with
RegisterClass. Windows subsequently refers to this data when you call
CreateWindow to create a window in the class. You can use several API func
tions-including GetClasslnfo, GetClassLong, GetClassWord, SetClassLong, and
SetClass Word- to access a class's private data.

Subclasses
In Windows, window functions implement the hierarchical flow of messages. Be
cause window classes contain the addresses of window functions, you can use
classes to describe the message-passing hierarchy within a Windows application.
However, there is no class hierarchy in Windows that completely describes the
hierarchical flow of messages. Window functions such as DefWindowProc do
not correspond to any class.

Windows also lacks an intrinsic mechanism for subclassing - that is, for creating
a new class that inherits functionality from a class hierarchy. Each time you
register a new class, you must explicitly define the private data and window
function of the class. You cannot implicitly describe the default functionality of a
new class by relying on inheritance from a previously defined class.

140

5: AN OBJECT-ORIENTED VIEW

Nevertheless, subclassing is a useful programming technique in Windows. To
create a subclass, you use GetClasslnfo to copy a class's private data into a
WNDCLASS data structure. You then modify the private data and provide the
address of a new window function that passes unprocessed messages to the
original class's window function. When you call RegisterClass with a new class
name and the modified WNDCLASS data structure, you create a new subclass
with a unique set of characteristics. The subclass can inherit some or all of the
functionality of the original class, depending on how the window function of the
subclass passes messages to the window function of the original class. You can
then use the subclass to create new windows.

Figure 5-2 illustrates how you might create the NumEdit class, a subclass of the
default edit control class. The subclass, whose window function is shown in
Figure 5-1, recognizes only numeric input. The NumEdit subclass inherits all the
functionality of the default edit class because the NumEdit class window func
tion (NumEditWndFn) passes all unprocessed messages to DejEditWndFn, the
edit-class window function.

char szNumEditClass[] "NumEdit" ;
FARPROC pDefEditWndFn;

BOOL RegisterNumEditClass(HANDLE hlnstance)
{

WNDCLASS wc;

/* get default WNDCLASS values for the edit class */
GetClasslnfo (0, "Edit", &wc);

/* save the address of the default edit window function */
pDefEditWndFn = (FARPROC)wc.lpfnWndProc;

/* register the NumEdit subclass */
wc.hlnstance = hlnstance;
wc.lpszClassName = szNumEditClass;
wc.lpfnWndProc = NumEditWndFn;

return RegisterClass(&wc);

Figure 5·2.
Creating a subclass of the edit control class. The subclass is named NumEdit;
the subclass window function is named NumEditWndFn.

141

Windows: Developer's Workshop

From this object-oriented perspective, what is sometimes called subclassing in
Windows isn't really subclassing. The Windows SDK documentation uses the
term "subclassing" to describe a different technique that creates "subclasses" on
a window-by-window basis. This technique, shown in Figure 5-3, associates a
new window function with a particular window by using GetWindowLong to
steal the address of the window's original window function from the window's
private data and then calling SetWindowLong to redirect the window's messages
to a new window function that filters some of the messages. In effect, filtering
messages in this way changes a window's location in Windows' message-passing
hierarchy, but it does not actually involve the creation of a new class or subclass.

FARPROC pDefEditWndFn;

void InstallFilterFunction(HWND hEdit)
{

FARPROC pThunk;

pThunk = MakeProclnstance((FARPROC) NumEditWndFn, hlnstance);
pDefEditWndFn =

(FARPROC)SetWindowLong(hEdit, GWL_WNDPROC, (LONG)pThunk);

void UninstallFilterFunction(HWND hEdit)
{

FARPROC pThunk;

pThunk = (FARPROC)SetWindowLong(hEdit, GWL_WNDPROC,
(LONG)pDefEditWndFn);

FreeProclnstance(pThunk);

Figure 5-3.
Installing and un installing a window function that filters messages without
creating a new window subclass. In this example, the function NumEditWndFn
is installed to filter the messages sent to the edit-class window hEdit.

Classes and ihe Appearance of Obiec.s
Apart from their convenience as a programming construct, classes intuitively
describe the elements of Windows' graphical interface. By predefining a set of
useful classes, Windows makes it easy to create windows that have a great deal

142

5: AN OBJECT-ORIENTED VIEW

of built-in functionality as well as a consistent visual style. It is no coincidence
that the predefined control-class names describe the different entities that ap
pear on the screen.

In Windows, characteristics such as an object's visual appearance and default
functionality are part of a class description. This creates an intuitive connection
between window classes and the visual appearance of windows on the screen.
As a programmer, you can think of ListBox as the name that identifies a particu
lar class; as a Windows user, you can easily visualize the corresponding set of list
box controls.

Obiects and Data
Part of the design of objects in an object-oriented programming environment is
the association of private data with each object. You can regard window extra
bytes and property lists as two different mechanisms for associating private data
with windows as obj ects.

Window !Exira Bytes
When you call CreateWindow, Windows allocates a fixed-size data structure that
is private to the new window. This data structure contains the window's instance
handle, parent-window handle, window-function address, and other data that
Windows uses to manage the window. The same data structure can be made
larger than the minimum size used by Windows' window manager to store sev
eral extra bytes of private data. The extra bytes of data in the data structure are
ignored by the window manager and can be used freely by your programs.

Because window extra bytes contain data that is private to a particular window,
it makes sense to use them to keep track of data on a window-by-window basis.
The only method for manipulating this private data is through the API functions
GetWindowWord, Get Win do wLo ng, SetWindowWord, and SetWindowLong,
which access window extra bytes by using a window handle.

The number of extra bytes allocated for a window is specified by the window's
class. This means that, to use window extra bytes, you must first register a win
dow class that specifies the number of window extra bytes to be allocated for
windows in the class. When you call RegisterClass, the cb WndExtra value in the
WNDCLASS data structure specifies the number of extra bytes of data to associ
ate with windows in the class. When you subsequently create a window in the
class, CreateWindow allocates the specified number of extra bytes and associ
ates it with the window's handle.

143

Windows: Developer's Workshop

The nature and format of the data you store in window extra bytes are entirely
up to you. However, the API functions are clearly designed to store and retrieve
only small chunks of data. If you want to associate more than 6 or 8 bytes of data
with a window, you should allocate a block of memory by using GlobalAlloc or
LocalAlloc, store the data in the memory block, and store the memory handle in
the window extra bytes:

/* allocate a 1-KS block of private data */
hMem = GlobalAlloc(GHND, 1024L);

/* store the handle in the window extra bytes */
SetWindowWord(hWnd, 0, hMem);

When you do this, you must manage the handle stored in the window extra
bytes. For example, if you call GlobalReAlloc to change the size of the memory
block, you must also update the value stored in the window extra bytes. Also,
you should free the memory block when the window is destroyed:

case WM_DESTROY:
GlobalFree((GLOBALHANDLE)GetWindowWord(hWnd, 0));
break;

The problem with using window extra bytes is that you must design your appli
cation so that the layout of every window's extra bytes is known. This can be in
convenient if you use window extra bytes differently in different window
classes. To be smart about the layout of window extra bytes in windows of dif
ferent classes, your program must determine a window's class-perhaps by a
call to GetClassName-before it accesses the window's extra bytes.

Using window extra bytes is also problematic if you use subclasses. If you use
GetClasslnjo to create a subclass of a class that uses window extra bytes, the
subclass must allocate additional extra bytes so that the original class's extra
bytes are not clobbered. Later, when you create a window in the subclass and ac
cess its extra bytes, you must skip over the extra bytes used in the original class,
as shown in Figure 5-4.

Property Lists
An elegant way to avoid the problems with window extra bytes is to use prop
erty lists. Instead of identifying a window's private data items with an offset into
a data structure, the property-list API lets you assign names to a window's pri
vate data items.

144

5: AN OBJECT-ORIENTED VIEW

int nEBStart; /* a global variable */

void RegisterTheSubclass(...)
{

WNDCLASS wc;

/* save the current number of window extra bytes */
GetClasslnfo(... , &wc);
nEBStart = wc.cbWndExtra;

/* allocate additional extra bytes for the subclass */
wc.cbWndExtra += sizeof(WORD);

RegisterClass(&wc);

void AccessTheExtraBytes(...)
{

/* access the extra bytes (skip the previous allocation) */
SetWindowWord(hWnd, nEBStart, wData);

wData = GetWindowWord(hWnd, nEBStart);

Figure 5·4.
Allocating and using window extra bytes in a subclass. In this example, 2 extra
bytes (one word) are allocated for the subclass.

Although the terminology is borrowed from the Lisp language, property lists in
Windows are not really the same as property lists in Lisp. In Lisp, a language
based on list -processing concepts, properties represent only one of a variety of
ways to manipulate lists. In Windows, a property is nothing more than a data
item associated with a particular window and identified by name; a property list
is a list of a window's properties. You can regard a window's properties as pri
vate data items identified by names.

Windows provides a set of straightforward API functions for manipulating prop
erties. To associate a private data item with a window, you use the SetProp
function:

SetProp(hWnd, lpName, hData);

145

Windows: Developer's Workshop

The window handle h Wnd identifies the window; the string IpName contains
the name of the data item; and hData is a handle to a local or global block of
memory that contains the data. (Actually, you can use hData to represent not
only memory handles but any 2-byte data item.) Windows does the internal list
processing required to keep track of the names and data handles associated with
each window.

To access the data, you call GetProp using the window handle and name you
passed to SetProp:

hData = GetProp(hWnd, lpName);

To discard the property, you call RemoveProp:

hData = RemoveProp(hWnd, lpName);

Before you destroy a window, you must call RemoveProp for each property you
have associated with the window.

In general, you should use property lists when you want to name the private data
items associated with a window. Property lists are also easier to use than win
dow extra bytes in cases where you want to associate private data with
pre-existing windows without usable window extra bytes.

When you use property lists, you must carefully manage both the property data
items and the property names. The amount of data directly associated with a
property name is only 2 bytes, the size of a Windows handle. This means you
must always access a property data item indirectly unless the data item is itself
only 1 or 2 bytes long.

One feature of Windows' property-list API is that the same property name can
be associated with different windows, regardless of the window class or the ap
plication to which a particular window belongs. The catch is that you must be
careful to use unique property names when you add to a window's property list.
If you call SetProp with a pre-existing property name, the function will simply
update the data associated with the property name. If you want to ensure that a
property name is unique when you use it, call GetProp with the new property
name before you call SetProp to add the property to a window's property list; if
GetProp returns 0, the property name was not previously associated with the
window.

146

5: AN OBJECT-ORIENTED VIEW

Atoms as Property Names
In some programs, you might find it convenient to use atoms instead of strings as
property names. An atom is an unsigned integer value that uniquely identifies a
string stored by Windows in a hash table. Windows' atom manager supports both
global and local atoms. The hash table for local atoms is stored in a module's local
heap; the hash table for global atoms is stored in the global heap.

You can use either a local or a global atom as a property name. To do this, call
AddAtom or GlobalAddAtom to create an atom, and then use the atom instead
of a string pointer when you call the property-list API functions. When you call
SetProp, GetProp, and RemoveProp, the atom must be passed in the low-order
word of the IpName parameter, with the high-order word set to o. You can use
the MAKEINTATOM macro to do this conversion:

aAtom = GlobalAddAtom (lpName);
SetProp(hWnd, MAKEINTATOM(aAtom), hData);

Two Programming Examples
The following section presents two source-code examples that look at Windows
from an object-oriented point of view in that they treat windows as objects with
private data. These examples use the property-list API to implement functions
that might otherwise be considerably more awkward to develop.

Using a Property List
The first example, in Figure 5-5 on the next page, consists of two functions,
ShowWaitCursor and HideWaitCursor. These two functions use the property-list
API to associate a cursor handle with a specified window handle. This technique
lets a program call the functions with any window handle as the parameter
without the need to save and restore the cursor handle in a static variable
elsewhere in the program.

Show WaitCursor uses LoadCursor and SetCursor to change the current cursor
shape to an hourglass. ShowWaitCursor calls SetProp to add the specified win
dow's previous cursor handle to the window's property list. The string szPropID
identifies the cursor handle in the property list. The complementary function
HideWaitCursor calls RemoveProp to extract the cursor handle from the prop
erty list and to remove the szPropID property. HideWaitCursor then restores the
cursor through a call to SetCursor.

147

Windows: Developer's Workshop

I· property name • I
char szPropID [] = "hPrevCursor";

/** ••••••••••••••••••••••••••••••••••••••• ** •••••••••••••• ** •••••••••••••••• **.

• ShowWaitCursor

.* •• *** •• *** •••• ** ••• ** •••• ** ••• *** ••• ** •••• **.*.***** ~****··*****·**··*****·*I

. static void ShowWaitCursor(HWND hWnd)
{

HCURSOR hCursor;

hCursor = GetProp(hWnd, szPropID);

if(0 == hCursor).
{

1* display the wait cursor *1
ShowCur$or (TRUE);
hCursor = SetCursor(LoadCursor(0, IDC_WAIT));

/* save the previous cursor handle in the window'S property list */
SetProp(hWnd, sZPropID, hCursor);

/***.**********.*************

* HideWaitCursor

** ••• *.***.**** ••• *.* ••• *** ••• * •• *.**** ••• ** ••• *** ••• *** •• *.* •• **** ••• **** •••• /

static void HideWaitCursor(HWND hWnd)
{

HCURSOR hCursor;

1* remove the property from the window's property list *1
hCursor = RemoveProp(hWnd, sZPropID);

if(0 != hCursor)
{

/* display the previous cursor */
SetCursor(hCursor):
ShowCursor(FALSE);

Figure 5·5.
Source code for ShowWaitCursor and HideWaitCursor.

148

5: AN OBJECT-ORIENTED VIEW

Filtering Messages
The second example, shown in Figure 5-6, illustrates an alternative technique for
filtering the messages processed by a window function. This technique uses the
property-list API to store the address of a window's default window function.
The advantage to using a window's property list instead of a static variable to
store this address is that you can associate different default window functions
with different windows without modifying the window function that does the
message filtering.

#._** __ •• *** ••••• * •• *.* ••• _*._._*** .. ***.*.**** •• _* •• _*-.1111.***.**** •• ** •• _-

NMAKE description for KEYTRAP.EXE

i***··*·**·****···**··****_·_-*···_****·*-**··****··***_.*-**.*****._**_ ••• ***

.c.obj:
cl lAM Ic IG2sw IOsw IW4 IZlp $*.c

ALL: keytrap.exe

keytrap.obj: keytrap.c keytrap.h

keytrap.res: keytrap.rc keytrap.h keytrap.ico
rc Ir keytrap.rc

keytrap.exe: keytrap.obj key trap. res keytrap.def
link lal:16 Inod Inoe key trap , , , libw mlibcew, keytrap.def
rc key trap. res

1·-*'1**1*11*._ •• **** •• ****._****._,,* •• ****,.** •••• _***.**.* •• **** •• ***._.** ••

* KEYTRAP.C

• Exports: TopLevelWndFn
KeyTrapWndFn

I •• t**t.t**._ •••• *.**.** __ *_** •••• **** __ *._ .. ***1_.**1*.1*1***._ •• *._***/

#define NOCOMM
#include
#include

Figure 5·6.

<windows.h>
"keytrap.h"

Source code for KEYTRAPEXE.
(continued)

149

Windows: Developer's Workshop

Figure 5·6. continued

/*** FUNCTION PROTOTYPES ***/

typedef struct
{

FARPROC
FARPROC

FNSTRUC;

pThunk;
pDefWndFn;

typedef FNSTRUC NEAR * NPFNSTRUC;

LONG PASCAL FAR TopLevelWndFn (HWND, WORD, WORD, LONG);
LONG PASCAL FAR KeyTrapWndFn (HWND, WORD, WORD, LONG);

static HWND
static void
static void

Init (HANDLE, HANDLE, int);
InstallKeyTrap(HWND);
UninstallKeyTrap(HWND);

/ * * * GLOBAL VARIABLES * * * /

char szTopLevelClass[] = KEYTRAPCLASSNAME;
char szAppTitle [] = "Key Trap";
char szFNStruc [] = "FNStruc";

HANDLE hInstance;

/**

* WinMain

** •••••••••• ** ••• **** •• **** •• ** ••• **** ••• ** ••••• **.**************** •• *********/

int PASCAL
WinMain (HANDLE hInst, HANDLE hPrevInst, LPSTR IpszCmdLine, int nCmdShow)
{

150

-HWND

MSG
hWnd;
msg;

hWnd = Init(hInst, hPrevInst, nCmdShow);
if (!hWnd)

return 0;

while(GetMessage(&msg, 0, 0, 0))
{

TranslateMessage(&msg);

(continued)

5: AN OBJECT-ORIENTED VIEW

Figure 5·6. continued

DispatchMessage(&msg);

return msg.wParam;

/.******************.**** •• ****** •••••• * ••• **** •• ***** •••••••••••••••••••••••••

* Init

****.** ••••• **** •• *** •• ** ••••••••••••••••• **.**** ••• ** ••••••••••••••• ** ••••••• /

static HWND Init (HANDLE hlnst, HANDLE hPrevlnst, int nCmdShow)
{

WNDCLASS
HWND

wc;
hWnd;

if (!hPrevlnst)
{

/* register the top-level window class */
wc.lpszClassName = szTopLevelClass;
wc.hlnstance = hlnst;
wc.lpfnWndProc = TopLevelWndFn;
wC.hCursor = LoadCursor(0, IDC_ARROW);
wc.hlcon = Loadlcon(hlnst, "TopLevellcon"
wc .1pszMenuName NULL;
wc.hbrBackground COLOR_WINDOW+1;
wc.style CS_HREDRAW : CS_VREDRAW;
wc.cbClsExtra = 0;
wc.cbWndExtra = DLGWINDOWEXTRA;

) ;

if(!RegisterClass('wc))
return 0; /* return 0 if unsuccessful */

/* save the instance handle */
hlnstance hlnst;

/* create and display a top-level window
and several child controls */

hWnd = CreateDialog(hlnst, szTopLevelClass, 0, NULL);

ShowWindow (hWnd, nCmdShow);

return hWnd;

(continued)

151

Windows: Developer's Workshop

Figure 5-6. continued

/************** •• **** •• ********************************.*.***.*.*** •• **********

* TopLevelWndFn

************ •• ***./

LONG PASCAL FAR
TopLevelWndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG IParam)
{

152

LONG
BOOL
int

lRVal = OL;
bDWP = FALSE;
n;

switch(wMsg
{

case WM_SETFOCUS:
SetFocus(GetDlgltem(hWnd, IDKEYTRAP));
break;

case WM_COMMAND:
if(IDKEYTRAP = wParam)
{

if(IsDlgButtonChecked(hWnd, IDKEYTRAP)
fore n=IDCTLFIRST; n<=IDCTLLAST; n++)

InstallKeyTrap(GetDlgltem(hWnd, n));

else
fore n=IDCTLFIRST; n<=IDCTLLAST; n++)

UninstallKeyTrap(GetDlgltem(hWnd, n));

break;

case WM_DESTROY:
PostQuitMessage(a);
break;

default:
bDWP = TRUE;
break;

if(bDWP)
lRVal = DefWindowProc (hWnd, wMsg, wParam, IParam);

return lRVal;

(continued)

5: AN OBJECT-ORIENTED VIEW

Figure 5·6. continued

/******** •• ******.***************************************.***************t*****

* KeyTrapWndFn

ttt**._.tt •••• t ••••••• _ ••• *_ •••••• __ •••••••••••••••• _.t*I._.tt _/

LONG PASCAL FAR
KeyTrapWndFn (HWND Mind, WORD wMsg, WORD wParam, LONG lParam)
{

LOCALHANDLE hFNStruc;
NPFNSTROC pFNStruc;
FARPROC pWndFn;

/* process the F1 key */
if ((WM_KEYDOWN == wMsg) && (VK_F1 = wParam)

MessageBox(hWnd, "You pressed the F1 key", szAppTitle, MB_OK);

/* get a pointer to the default window function */
hFNStruc = GetProp (hWnd, szFNStruc);
pFNStruc = (NPFNSTROC) LocalLock (hFNStruc);
pWndFn = pFNStruc->pDefWndFn;
LocalOnlock(hFNStruc);

/. call the default window function ./
return CallWindowProc(pWndFn, hWnd, wMsg, wParam, lParam);

/************************************ •• ***************1_.*llltl*_t* ••••• _ •• * •••

* InstallKeyTrap

**** ••• * •••• ** ••• *** •• **** ••• ****.*** •• *-***.*.***.******.***.******.*********/

static void InstallKeyTrap(HWND hWnd)
{

LOCALHANDLE hFNStruc:
NPFNSTROC pFNStruc;

/f allocate storage for pointers to the window functions */
hFNStruc = LocalAlloc (LHND, sizeof (FNSTRUC));
pFNStruc = (NPFNSTROC) LocalLock (hFNStruc):

/* save the window-function pointers */
pFNStruc->pThunk = MakeProclnstance((FARPROC) KeyTrapWndFn, hlnstance);
pFNStruc->pDefWndFn =

(FARPROC) SetWindowLong (hWnd, GWL_WNDPROC, (LONG) pFNStruc->pThunk);

(continued)

153

Windows: Developer's Workshop

Figure 5·6. continued

LocalUnlock(hFNstruc);

/* save the handle to the pointer data structure ./
SetProp(hWnd, szFNStruc, hFNStruc);

/**.** ••• *** ••• *** •••• ** •••• ** ••• ** •••• ** ••• ****.**** •• *** •• **** ••• *** •••• ** •••

* UninstallKeyTrap

****.*.*** •• *.**.**.****.***.**** ••• *** •••••••• *** •• ** •••• ****.*** •• ******.***/

static void UninstallKeyTrap(HWND hWnd)
{

LOCALHANDLE hFNStruc;
NPFNSTRUC pFNStruc;

/* point to the pointer data structure */
hFNStruc RemoveProp (hWnd, szFNStruc);
pFNStruc = (NPFNSTRUC)LocalLock(hFNStruc);

/. restore the default window-function pointer */
SetWindowLong(hWnd, GWL_WNDPROC, (LONG)pFNStruc->pDefWndFn);
FreeProclnstance(pFNStruc->pThunk);

/* discard the data structure */
LocalUnlock(hFNStruc);
LocalFree (hFNStruc);

/*~******~*.**i**********i* •••• **.* •• * •••• *** ••• * •••• ** •• *.** •••• ***.*** •••••••

* KEYTRAP.RC resource script

********* •• ********* •• ***********4********** •• ********** •• ********************/

#include
#include

/. icons */

<windows.h>
"keytrap.h"

TopLevellcon ICON keytrap.ico

154

(continued)

5: AN OBJECT-ORIENTED VIEW

Figure 5·6. continued

KeyTrap DIALOG PRELOAD MOVEABLE DISCARDABLE 42, 32, 236, 54
CAPTION "Key Trap"
CLASS KEYTRAPCLASSNAME
STYLE DS_ABSALIGN : WS_OVERLAPPED : WS_CAPTION : WS_SYSMENU : WS_MINIMIZEBOX
{

CONTROL "Key Trap", IDKEYTRAP, "Button", BS_AUTOCHECKBOX : WS_TABSTOP
WS_CHILD, 4, 20, 42, 12

CONTROL "", 0, "Static", SS_BLACKRECT : WS_CHILD, 48, 0, 1, 54
CONTROL "ListBox", 0, "Static", SS_CENTER : WS_CHILD, 52, 2, 66, 8
CONTROL "", IDLISTBOX, "ListBox", LBS_SORT : WS_BORDER : WS_VSCROLL

WS_TABSTOP : WS_CHILD, 52, 12, 66, 33
CONTROL "Edit", 0, "Static", SS_CENTER : WS_CHILD, 122, 2, 66, 8
CONTROL "", IDEDIT, "Edit", ES_MULTILINE : WS_BORDER : WS_TABSTOP

WS_CHILD, 122, 12, 66, 33
CONTROL "Button", IDBUTTON, "Button", BS_PUSHBUTTON

WS_CHILD, 192, 12, 38, 33

/ ••• ***************************** ••• ******************************.************

• KEYTRAP.H

************************.****.***** •• ******.* ••••• **.****************.********/

#define KEYTRAPCLASSNAME "KeyTrap"

#define IDCTLFIRST 100
#define IDKEYTRAP (IDCTLFIRST)
#define IDLISTBOX (IDCTLFIRST+1)
#define IDEDIT (IDCTLFIRST+2)
#define IDBUTTON (IDCTLFIRST+3)
#define IDCTLLAST (IDCTLFIRST+3)

;*.*** •• **** •• *****.****.*** ••• ** ••••• *** ••••••••••••• ** ••••••••••••••• *** •••••

; KEYTRAP.DEF module-definition file

;* •• *************** ••• *********** •••• *.*.* ••• *** ••• ****.*.**********.*.*.****.*

NAME
DESCRIPTION

KEYTRAP
'KEYTRAP.EXE version 1.0'

(continued)

155

Windows: Developer's Workshop

Figure 5·6. continued

EXETIPE
STUB

CODE
DATA

SEGMENTS

HEAPSIZE
STACKSIZE

EXPORTS

WINDOWS
'WINSTUB.EXE'

LOADONCALL MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE

_TEXT PRELOAD MOVEABLE DISCARDABLE

512
5120

TopLevelWndFn
KeyTrapWndFn

The KEYTRAP application uses message filtering to trap the WM_KEYDOWN
message associated with a particular keystroke. When you call InstallKeyTrap
with the parent window's handle, KeyTrapWndFn becomes a message-filter
function for all four child-window input controls in the application. InstallKey
Trap saves the previous window-function address in the local heap and adds the
local-memory handle to the window's property list.

KeyTrap WndFn passes messages up the hierarchy by using GetProp to locate the
address of the appropriate window function and then calling CallWindowProc.
The only message that KeyTrap WndFn filters is the WM_KEYDOWN message
that represents the Fl key. In response to this message, KeyTrap WndFn displays
a message box. Filtering continues until UninstallKeyTrap executes. Uninstall
KeyTrap restores the previous window-function address and cleans up the win
dow's property list.

These examples show how having an object-oriented point of view can add use
ful generality to your Windows source code. The next step is to embody the
object-oriented aspects of the Windows environment in an object-oriented pro
gramming language in which objects and classes are easier to manipulate than
in a procedural language such as C or Pascal. You might want to explore one of
the object-oriented programming languages available for Windows program
ming, such as Smalltalk, Actor, or C++. Even in C, however, you can improve the
design of your Windows applications by taking advantage of object-oriented
design elements in Windows.

156

6

Dynamic Data
Exchange (DDE)

6: DYNAMIC DATA EXCHANGE (DDE)

Windows is a multitasking environment in which several programs can execute
concurrently. It is only natural for concurrent Windows programs to share data
with each other. Windows users realize this intuitively by using the clipboard to
transfer data among applications.

Although the clipboard is an excellent tool for user-initiated data transfers, its
design is not well suited to direct interprocess communication in which Win
dows applications share data without user intervention. This is where Dynamic
Data Exchange (DDE) plays its role. DDE allows Windows applications to com
municate directly to share both data and computational tasks.

In the original DDE specification, introduced in version 2 of Windows, DDE is
implemented through a set of Windows messages and data structures defined in
a C-Ianguage include file, DDE.H, in the Windows SDK. The printed protocol for
using DDE messages is also part of the Windows SDK. In 1991, Microsoft released
the DDE Management Library (DDEML). The DDEML supports a set of API func
tions that manage DDE communications at a higher level of abstraction than the
message-based DDE protocol.

The DDEML was actually implemented using the message-based DDE protocol,
so existing Windows applications that use DDE messages are compatibile with
DDEML-based applications. However, you should use the DDEML rather than
message-based DDE in new Windows applications. The DDEML API is superior
because it hides the details of DDE message processing and because it offers ad
ditional functionality beyond the capabilities of the message-based DDE pro
tocol. The following discussions of DDE's transaction-based communication
model and of the message-based DDE protocol should help you appreciate the.
overall design of DDE-based interprocess communication. However, you should
move on to the subsequent discussion of the DDEML when you design your DDE
applications.

Conversations and Transactions
DDE applications share data by means of conversations. A DDE conversation is a
logical connection between two different applications, in which the two applica
tions alternately transmit data to each other. A Windows application can support
multiple DDE conversations, so any Windows application can exchange data
with several other applications at the same time.

Each DDE conversation is structured as a series of transactions between a client
and a server. Each transaction consists of a request for data or services and a

159

Windows: Developer's Workshop

corresponding response. The difference between a DDE client and a DDE server
lies in the kinds of transactions that each can initiate. A DDE client can initiate
any of the following transactions:

• Enumerate DDE services and topics.

• Establish a conversation with a server.

• Request a data item from a server.

• Establish a data link with a server.

• Terminate a data link.

• Send a data item to a server.

• Request a server to execute one or more commands.

• Terminate a conversation.

Only two transactions can be initiated by a DDE server:

• Send a data item to a client.

• Terminate a conversation.

Because a DDE conversation is always initiated by a client, a DDE server must be
executing before a client attempts to initiate the conversation.

Message-Based DDE
In message-based DDE, both the client and the server in a DDE conversation are
windows. An application that supports DDE creates a window for each DDE
conversation in which it participates. Each DDE window can function either as a
client or as a server, so a single Windows application can support multiple DDE
server and client conversations. An application creates a DDE window each time
it begins a new conversation and destroys the window when the conversation
terminates. During its lifetime, the DDE window's primary responsibility is to
process DDE messages, either as a DDE client or as a DDE server.

Two windows carry out a DDE conversation by exchanging a series of pre
defined Windows messages, which are shown in Figure 6-1. The messages WM
_DDE_INITIATE, WM_DDE_ACK, and WM_DDE_ TERMINATE permit hand
shaking between client and server windows in a DDE conversation so that the
windows can exchange messages in an orderly, synchronized manner. The
WM_DDE_REQUEST, WM_DDE~DVISE, and WM_DDE_UNADVISE messages
control when data is transferred between windows, and the WM_DDE_DATA

160

6: DYNAMIC DATA EXCHANGE (DDEJ

and WM_DDE_POKE messages accompany the data itself. Finally, the WM
_DDE_EXECUTE message allows an application to execute commands or per
form some other service on behalf of another application.

Message Description Parameters

Initiating and terminating a conversation
WM_DDE_INITIATE Initiate a DDE HIWORD(lParam): aTopic

conversation LOWORD(lParam): aService

WM_DDE_ TERMINATE Terminate a DDE
conversation

Acknowledging receipt of a DDE message
WM_DDE_ACK Acknowledge a See Figure 6-2 on page 163.

DDE message

Data control
WM_DDE_REQUEST Request a one- HIWORD(lParam): altem

time data LOWORD(lParam): cjFormat
transfer

WM_DDE_ADVISE Request a data link HIWORD(lParam): altem
LOWORD(lParam): hDDEADVISE

WM_DDE_UNADVISE Terminate a HIWORD(lParam): altem
data link LOWORD(lParam): cjFormat

Data transfer
WM_DDE_DATA Transfer data from HIWORD(lParam): altem

server to client LOWORD(lParam): hDDEDATA

WM_DDE_POKE Transfer data from HIWORD(lParam): altem
client to server LOWORD(lParam): hDDEPOKE

Executing commands
WM_DDE_EXECUTE Request server HIWORD(lParam): hCommandString

Figure 6·1.

to execute a
command

Windows DDE messages. Parameters are packed into the high-order and low
order words of IParam. Parameter names starting with the letter a represent
atoms; parameter names starting with the letter h represent global memory
handles. DDEADVISE, DDEPOKE, and DDEDATA are data structures defined
in the include file DDE.H. (See also Figure 6-3 on page 166.)

161

Windows: Developer's Workshop

The message-based DDE specification requires most DDE messages to be trans
mitted by using PostMessage. sendMessage is used only for WM_DDE_INITIATE
and for WM_DDE_ACK messages sent in response to WM_DDE_INITIATE. The
wParam parameter of PostMessage and sendMessage always contains the win
dow handle of the message sender. The high-order and low-order words of the
IParam parameter contain values whose meanings are different for each DDE
message.

To put the DDE messages into perspective, consider how they are used in the
context of a DDE conversation. The following overview groups the DDE mes
sages according to the way they are used in transactions: initiating and terminat
ing a conversation, acknowledging receipt of a message, data control, data
transfer, and executing commands.

Initiating and Terminating a Conversation
The WM_DDE_INITIATE message is sent by a DDE client to all potential DDE
servers. The client broadcasts the message to all overlapped and pop-up win
dows in the Windows system by calling Send Message with a destination window
handle of FFFFH:

SendMessage(OxFFFF, WM_DDE_INITIATE, hClientWnd, lParam);

Potential servers reply to the client by calling the sendMessage function with the
WM_DDE_ACK message. The IParam parameter in the WM_DDE-ACK
message contains two global atoms that identify the server and a topic of
conversation.

The WM_DDE_ TERMINATE message can be sent by either partner in a DDE
conversation to terminate the conversation. The IParam parameter is not used in
this message.

Acknowledging Receipt of a DDE Message
The WM_DDE_ACK message is used to acknowledge a variety of DDE messages
at different times in a DDE conversation. The content of the IParam parameter
for WM_DDE~CK depends on which message is being acknowledged, as
shown in Figure 6-2.

162

6: DYNAMIC DATA EXCHANGE (DOE)

Message
Acknowledged

Parameters Notes

WM_DDE_INITIATE HIWORD(lParam): aTopic Sent by server to client.
LOWORD(lParam): aService Informs client of

server's support for
specified topic.

WM_DDE_DATA HIWORD(lParam): altem Sent by client to server.
LOWORD(lParam): wStatus Acknowledges receipt

of data. Used only
when explicitly
requested by server.
(See jAckReq bit in
DDE DATA , Figure
6-3.)

WM_DDE_POKE HIWORD(lParam): altem Sent by server to client.
LOWORD(lParam): wStatus Acknowledges receipt

of data.

WM_DDE_EXECUTE HIWORD(lParam): hCommands Sent by server to client.
LOWORD(lParam): wStatus Acknowledges execu-

tion of a command
string.

WM_DDE_REQUEST HIWORD(lParam): altem Sent by server to client.
LOWORD(lParam): wStatus Used only for negative

acknowledgment of
request for data.

WM_DDE_ADVISE HIWORD(lParam): altern Sent by server to client.
LOWORD(lParam): wStatus Acknowledges initiation

of a data link.

WM_DDE_UNADVISE HIWORD(lPararn): altem Sent by server to client.
LOWORD(lParam): wStatus Acknowledges termi-

nation of a data link.

Figure 6·2.
Use of the WM_DDE_ACK message to acknowledge DDE messages.

Data Control
The WM_DDE_REQUEST message can be posted by a client to request that a
server transmit a particular data item. The IParam parameter describes the data
item by name and specifies a data format. The server responds to a WM_DDE
_REQUEST message by posting a WM_DDE_DATA message containing the re
quested data.

163

Windows: Developer's Workshop

The WM_DDE-ADVISE message sets up a data link between server and client.
By using a DDE data link, a server can send data items to a client without re
quiring the client to request each data item explicitly. The /Param parameter of
WM_DDE-ADVISE describes the name and format of a data item; it also de
scribes the handshaking method to be used for individual data transfers within
the data link.

A client initiates a data link by posting WM_DDE-ADVISE to a server. The
server acknowledges the data link by posting a WM_DDE_ACK message to the
client. The server can then post unsolicited data to the client. The data link con
tinues until the client terminates it by posting WM_DDE_UNADVISE or until the
conversation is terminated with WM_DDE_ TERMINATE.

Data Transfer
The WM_DDE_DATA and WM_DDE_POKE messages are used to transfer data
between DDE windows. The WM_DDE_DATA message is used to transfer data
from a server to a client, either in response to an explicit WM_DDE_REQUEST
message from the client or as part of an ongoing data link. WM_DDE_POKE is
used to transfer data from a client to a server. The /Param parameter in both
messages identifies the data with a global atom and also contains a handle to a
global memory object that contains the data being transferred.

Executing Commands
A client uses the WM_DDE_EXECUTE message to transmit commands to a
server. To use WM_DDE_EXECUTE, a client formats a character string that con
tains one or more commands and passes a reference to the character string in
the WM_DDE_EXECUTE /Param parameter. The server parses the command
string, executes the commands, and posts WM_DDE-ACK to the client to
acknowledge that the commands were processed.

Service, Topic, and Item Names
The DDE specification uses a three-level hierarchy to describe the data content
of a DDE conversation. This descriptive hierarchy consists of a service name, a
topic of conversation, and the name of a particular item of data. When a DDE
conversation is initiated, the server and client must agree on both the name of
the service and the topic of conversation. After the conversation is established,
specific data values can be referenced by name and transferred between the cli
ent and the server.

164

6: DYNAMIC DATA EXCHANGE (DDE)

The following conversation is a not -quite-realistic analogy of how this descrip
tive hierarchy works. In this example, a client initiates a conversation with a
server by specifying Customer Support (service) on the Windows SDK (topic)
and by requesting a price (item of data):

Client (sends WM_DDE_INITIATE): Hello, is this Customer Support
(service name)? I'd like to initiate a conversation about the Windows
SDK (topic name).

Server (sends WM_DDE_ACK): Yes, this is Customer Support (service
name). I will be happy to converse with you about the Windows SDK
(topic name).

Client (posts WM_DDE_REQUEST): What is the price (item name) of
the Windows SDK?

Server (posts WM_DDE_DATA): The price (item name) is $19.95.

Client (posts WM_DDE_ TERMINATE): OK, goodbye.

Server (posts WM_DDE_ TERMINATE): Goodbye.

A DDE server uses the three-level naming hierarchy to describe the context in
which it provides data to DDE clients. A server application can support one or
more service names, each of which supports multiple topics. The server makes
different sets of data items available to clients in the context of each service
topic combination it supports.

A DDE client exploits this three-level descriptive scheme to discriminate among
potential data servers in order to obtain a particular item of data. A client can
'select a particular service by name, or it can enumerate multiple services that
support a particular topic and then choose among them to initiate a conversa
tion. In either case, it can then request specific data items by name and format.

The hierarchical naming strategy is powerful because a client can identify data
using only descriptive names. The DDE naming hierarchy hides the details of a
server's implementation from a client. The client needs no special knowledge
about a server's implementation, whether the server is reading disk files, trans
ferring data across a network or a remote communications link, or calculating
data on the fly.

Traditionally, a Windows application that acts as a DDE server uses its applica
tion name (module name) as a DDE service name. For example, the Windows
Program Manager application, PROGMAN.EXE, supports the DDE service name
ProgMan. However, a single Windows application can support multiple DDE ser
vice names, each of which may differ from the application name, and each of

165

Windows: Developer's Workshop

which may cover a different gamut of topics. Moreover, an application can
change the services and topics it supports in response 'to changing circum
stances. For example, a DDE application that performs remote communications
might support a particular service name only when a link to a remote computer
is active.

Working with DDE Data
In DDE, data values are exchanged by storing them in shared global memory.
DDE messages use two kinds of global data: shareable global-memory blocks
and global atoms. Shareable global-memory blocks provide the means of trans;:
ferring data between applications. Global atoms represent service, topic, and
data-item names. All DDE messages except WM_DDE_ TERMINATE use atom
handles and global-memory handles as parameters by packing them into the
low-order and high-order words of /Param.

Shareable Global Memory
Every global-memory block associated with a DDE message is formatted with
one of three predefined data structures: DDEADVISE, DDEPOKE, or DDEDATA.
These three data structures are shown in Figure 6-3. Each of the data structures
starts with a 16-bit word of flag bits followed by a 16-bit integer, cfFormat, which
contains a clipboard-format value that describes the format of the shared data. In
DDEDATA and DDEPOKE, the data structures used with WM_DDE_DATA and
WM_DDE_POKE, these two 16-bit values are followed by actual data.

/* DDEADVISE: used with WM_DDE_ADVISE */
typedef struct
{

unsigned reserved: 14,
fDeferUpd: 1,
fAckReq: 1 ;

int cfFormat;

DDEADVISE;

. / * DDEPOKE: used with WM_DDE_POKE * /
typedef struct
{

/* bits 0-13 */
/* bit 14 */
/* bit 15 */

unsigned unused: 13, /* bits 0-12 */

Figure 6·3. (continued)
Data structures used with DDE messages. These data structures are defined in
DDE.H in the Windows SDK.

166

6: DYNAMIC DATA EXCHANGE (DDE)

/* bit 13 */

Figure 6·3. continued

fRelease:
fReserved:

1 ,
2; /* bits 14-15 */

int cfFormat;
BYTE Value[1];

DDEPOKE;

/* DDEDATA: used with WM_DDE_DATA */
typedef struct
{

unsigned

int
BYTE

unused:
fResponse:
fRelease:
reserved:
fAckReq:
cfFormat;
Value [1] ;

DDEDATA;

12, /*
1, /*
1, /*
1, /*
1 ; /*

bits 0-11 */
bit 12 */
bit 13 */
bit 14 */
bit 15 */

The DDE specification requires that the global memory allocated for DDEDATA
and DDEPOKE data structures be shareable. Shareable global-memory blocks
are allocated using the GMEM_DDESHARE flag in the call to GlobalAlloc:

hMem = GlobalAlloc (GHND : GMEM_DDESHARE,
dwDataSize + sizeof(DDEDATA));

GD.Obiects
In addition to shareable global-memory blocks, you can also share GDI objects
in a DDE conversation. Do this by using handles to GDI objects as data in
DDEDATA or DDEPOKE data structures. For example, a DDE server can share a
GDI bitmap by passing the handle returned by CreateBitmap or CreateCom
patibleBitmap as data in the Value array of the DDEDATA data structure in a
WM_DDE_DATA message.

Global Atoms
In message-based DDE, global atoms generally reference plain-text strings that
represent service, topic, and item names. You might find it convenient, however,
to use integer strings instead of text strings, particularly if your application refer
ences a large number of different data items. (An integer string is an integer for
matted as an ASCII string preceded by the # character. For example, #32666 is
the integer-string representation of the integer 32666.) Also, don't forget that
atoms are case-insensitive: System and SYSTEM represent the same atom.

167

Windows: Developer's Workshop

In general, the sender of a DDE message creates the atoms associated with the
message with a call to GlobalAddAtom. The recipient uses GlobalFindAtom or
GlobalGetAtomName to identify the atoms associated with the message. The re
cipient can then delete the atom by calling Glo balDeleteA tom, or it can reuse the
same atom if it needs to post a message in reply.

There are two exceptions to this rule. If PostMessage fails to post a DDE mes
sage, the atoms associated with the message should be deleted. Also, in the case
of the atoms used in a WM_DDE_INITIATE message, the DDE client that broad
casts WM_DDE_INITIATE must be the one to delete the atoms it creates. A DDE
server that receives WM_DDE_INITIATE must not delete or reuse the atoms
associated with the message. This makes sense because more than one server
may respond to a single WM_DDE_INITIATE broadcast. If a server deleted the
atoms, another server that receives the broadcast message would find that the
associated atoms were invalid.

Flags
The message-based DDE protocol uses a number of flags to control the flow of
DDE messages, to indicate the disposition of globally shared objects, and to indi
cate the status of various transactions. These flags appear in the predefined DDE
data structures DDEADVISE, DDEPOKE, and DDEDATA. There are also flags in
the status word associated with the WM_DDE_ACK message.

Flags for message control
The flag word in the DDE data structures DDEDATA and DDEADVISE lets you
fine-tune two DDE message transactions. In the case of WM_DDE_DATA, the
fAckReq bit in the DDEDATA data structure indicates whether a client should
acknowledge a WM_DDE_DATA message by posting WM_DDE_ACK to the
server. If the fAckReq bit is 1, the client should post WM_DDE_ACK to the server;
if the fAckReq bit is 0, no acknowledgment is necessary. By settingfAckReq to 1,
a server can ensure that a client successfully processes WM_DDE_DATA mes
sages in the order they are received.

In the case of WM_DDE~DVISE, both the fAckReq and the jDeferUpd bits in
the DDEADVISE data structure affect subsequent WM_DDE_DATA messages
sent by the server through a data link. The fAckReq bit specifies whether the
fAckReq bit in subsequent WM_DDE_DATA messages should be set and thus
whether the client will be expected to acknowledge unsolicited WM_DDE
_DATA messages it receives through the data link. A DDE server that supports a

168

6: DYNAMIC DATA EXCHANGE (DDE)

data link copies the fAckReq value from the DDEADVISE data structure into
each WM_DDE_DATA message it posts through the data link to the client.

The jDeferUpd bit in the DDEADVISE data structure specifies whether the
server will include data in the WM_DDE_DATA messages it sends through a
DDE data link. If jDeferUpd is 0, the server includes the global memory handle
of a DDEDATA data structure in each WM_DDE_DATA message. If jDeferUpd is
1, the server passes a null value instead of a global memory handle with each
WM_DDE_DATA message. The null WM_DDE_DATA message serves as an
alarm that notifies the client that the server has changed a data item's value. It is
then up to the client either to request the data by posting WM_DDE_REQUEST
or to ignore the WM_DDE_DATA message.

Flags for global memory
The }Release bit in each DDEDATA and DDEPOKE data structure determines
how to manage the block of global memory that contains the data structure.
When the }Release bit is set to 1, the recipient of the WM_DDE_DATA or WM
_DDE_POKE message should free the memory block after it has finished using
the block. When the }Release bit is 0, the sender of the message remains respon
sible for freeing the memory block; in this case, the recipient should not modify
the data within the memory block because the sender might reuse the same
block of memory in a subsequent data transmission. If you use this technique, be
sure to set the fAckReq bit to 1 so that the recipient of the WM_DDE_DATA or
WM_DDE_POKE message will post a WM_DDE_ACK message that indicates
when it is safe for the sender to reuse the memory object.

There is a subtle trap in this otherwise commonsense memory-management
strategy. The problem potentially can occur whenever an application sets the
}Release bit to 1 when it posts a WM_DDE_DATA or WM_DDE_POKE message.
If the sending application terminates before the recipient of the message can ac
cess the memory handle, Windows' memory manager invalidates the handle and
frees the memory. The recipient will then be in error when it attempts to access
the already-freed handle.

The solution to this problem is simple. When the }Release bit is set to 1, the re
cipient should assume ownership of the memory block by calling GlobalReAlloc:

hMem = GlobalReAlloc (hMem, OL, GMEM_MODIFY : GMEM_DDESHARE);

Then the memory block will remain allocated even if the sending application
terminates.

169

Windows: Developer's Workshop

Status flags
The message-based DDE specification includes flags that can be used to report
the status of DDE transactions. The jResponse flag in the DDEDATA data struc
ture indicates whether a WM_DDE_DATA message was posted in response to an
explicit WM_DDE_REQUEST (jResponse=l) or as part of an active data link
(jResponse=O).

The WM_DDE-ACK message also uses status flags, but these are returned in a
single word, formatted as a DDEACK data structure, in the low-order word of the
IParam parameter of the message, as shown in Figure 6-4. The status word con
tains two I-bit flags, JAck and /Busy, as well as an 8-bit, application-specific
return value. Both the flags and the status value should be carefully managed in
any DDE program.

81t Name DescrIptIon

15 JAck 1 =Positive acknowledgment
O=Negative acknowledgment

14 /Busy l=Busy
O=Not busy

8-13 (reserved)

0-7 bAppReturnCode Application-specific return value

Figure 6-4.
The wStatus word in WM_DDE_ACK. This word is defined as a DDEACK data
structure in DDE.H in the Windows SDK.

The JAck flag indicates whether the associated WM_DDE-ACK message repre
sents a positive or a negative acknowledgment of a previous DDE message. For
example, when a server posts a WM_DDE_ACK message in response to a
WM_DDE_POKE message from a client, the server sets the JAck bit to 1 to indi
cate that it successfully accepted the data associated with the message; it sets
JAck to 0 to indicate that the data was not processed.

If the sender of a WM_DDE-ACK message sets the JAck bit to 0, it has the option
of setting the /Busy bit as well. The /Busy bit indicates that the sender was tem
porarily unable to process a previous DDE message. In effect, setting the /Busy
bit implies "Try again later." Of course, if JAck is set to 1, /Busy must be O.

Proper use of the /Busy bit is important because the DDE specification requires
that a DDE window process all DDE messages it receives in the order in which

170

6: DYNAMIC DATA EXCHANGE (DOE)

they are received. This becomes an issue when an application performs some
prolonged computational or communications activity in response to a DDE mes
sage. If the application is too busy to process subsequent DDE messages, it
should respond to subsequent DDE messages by posting WM_DDE.-ACK with
/Busy set to 1.

Data Formals
Because the message-based DDE protocol provides a consistent mechanism for
specifying the format of shared data, cooperating DDE applications can agree on
the data format for each data transfer. For example, when a DDE client requests a
data item in a WM_DDE_REQUEST message, it can specify a preferred data for
mat in the cfFormat parameter in the low-order word of IParam. If the server
cannot support the requested data format, it will refuse the request by returning
WM_DDE_ACK with the JAck bit (in the return status word) set to O. The client
can subsequently request alternative data formats until it finds one that the
server can support.

The value you specify in cfFormat must be a valid clipboard data format. If your
data does not conform to one of the predefined clipboard data formats listed in
Fig'lre 6-5, both server and client should call RegisterClipboardFormat to regis
ter a clipboard format ID that can be used in subsequent DDE messages.

Format

CF_TEXT

CF_BITMAP

CF _METAFILEPICT

CF_SYLK

CF_DIF

CF_TIFF

CF_OEMTEXT

CF_DIB

Figure 6·5.

Description

Null-terminated ASCII string

Handle to a bitmap (defined by BITMAP data structure in
WINDOWS.H)

Metafile picture (defined by METAFILEPICT data struc-
ture in WINDOWS.H)

Microsoft Symbolic Link format

Software Arts' Data Interchange Format

Tagged Image File Format

Same as CF_TEXT but using OEM character set

Device-independent bitmap (defined by BITMAPINFO
data structure in WINDOWS.H)

Clipboard data formats defined in WINDOWSH.

171

Windows: Developer's Workshop

The DDE Management Library
The traditional way to use DDE in a Windows application is to embed a set of
DDE message-handling functions in the application. This is the approach
adopted in many well-known Windows applications, including the original
Microsoft Excel and Word for Windows. When you consider the amount of detail
in the message-based DDE protocol, however, it becomes clear that the source
code required to support DDE processing is better encapsulated in a dynamic
link library.

This is exactly the purpose of the DDEML, the DDE Management Library. The
heart of the DDEML is a dynamic link library (DDEML.DLL) that relieves applica
tions of the burden of processing individual DDE messages. Unlike message
based DDE, in which applications communicate directly with one another,
DDEML-aware applications communicate with only the DDEML, as shown in

- Figure 6-6. An application calls a set of DDEML API functions to carry out DDE
transactions.

Message-based DDE:

DDEML:

DDEML
API functions

Figure 6·6.

SendMessage or PostMessage

Callback DDEML
function API functions

DDEML

Callback
function

In message-based DDE (top), a DDE client and server communicate directly,
using SendMessage and Post Message . With the DDEML (bottom), all DDE
transactions are performed through calls from applications to DDEML API
functions and through calls from the DDEML to a callback function in each
application.

172

6: DYNAMIC DATA EXCHANGE (DDE)

A program that uses the DDEML must include an exported callback function that
the DDEML can call to notify the program when DDE transactions occur. Like a
window function, a DDEML callback function is an exported far function with a
predefined set of parameters,. including a transaction-type identifer that can be
used to select transaction-specific actions, as shown in Figure 6-7.

HDDEDATA EXPENTRY
DdeCallback(WORD wType, /* transaction ID */

, WORD wFmt,
HCONV hConv,
HSZ hsz1,

/* clipboard data format */
/* conversation handle */
/* string handle 1 */

Figure 6·7.

HSZ hsz2,
HDDEDATA hDDEData,
DWORD
DWORD

dwData1,
dwData2);

/* string handle 2 */
/* global data handle */
/* 32-bit data */
/* 32-bit data */

A function prototype for an application-defined DDEML callback function.

Both DDEML API functions and application-defined callback functions use data
types and data structures that are designed to facilitate DDE transaction manage
ment, as shown in Figure 6-8. These data types and structures are defined in a
C-Ianguage include file, DDEML.H, which Microsoft distributes along with the
DDEML dynamic link library. The DDEML uses handles to identify DDE conver
sations (data type HCONV), lists of conversations (HCONVLIST), strings that
represent service, topic, or item names (HSZ), and shared blocks of global
memory (HDDEDATA).

/* EXPENTRY is used in declaring a DDEML callback function. */
#define EXPENTRY _export far pascal

typedef DWORD HSZ;
typedef DWORD HDDEDATA;
typedef DWORD HCONV;
typedef DWORD HCONVLIST;

typedef struct
{

HSZ hszSvc;
HSZ hszTopic;

HSZPAIR;

/* string handle */
/* global data handle */
/* conversation handle */
/* list of conversation

handles */

/* service name */
/* topic name */

/* pair of string ha~dles */

Figure 6·8. (continued)

Some of the data types and data structures defined in DDEML.H.

173

Windows: Developer's Workshop

Figure 6·8. continued

typedef struct
{

WORD cb;
WORD wFlags;
WORD wCountry1D;

int iCodePage;

DWORD dwLang1D;

DWORD dwSecurity;

CONVCONTEXT;

typedef struct
{

DWORD cb;
DWORD hUser;
HCONV hConvPartner;
HSZ hszSvcPartner;
HSZ hszSvcNameReq;

HSZ hszTopic;
HSZ hsz1tem;
WORD wFmt;
WORD wType;
WORD wStatus;

WORD wConvst;

WORD wLastError;
HCONVL1ST hConvList;
CONVCONTEXT ConvCtxt;

CONV1NFO;

/*
/*
/*

/*

/*

/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*

/*
/*
/*

size of this data structure */
(reserved for future use) */
country code for topic and

item strings */
code page for topic and

item strings * / '
language 1D for topic and

item strings */
private security code */

size of this data structure */
user-defined data */
hConv for partner */
service name of partner */
service requested

for connection */
topic for conversation */
transaction item name */
clipboard data format */
current transaction 1D */
ST_* conversation

status flags */
XST_* conversation

status flags */
last transaction error */
link to previous hConvList */
conversation context */

typedef CONV1NFO FAR * PCONV1NFO;

DDEML Transaction Processing
A program initiates a DDE transaction by calling one of the DDEML API func
tions. The DDEML can then process the transaction either synchronously or
asynchronously. When the DDEML processes a synchronous transaction, the
transaction completes before the API function call returns. When the DDEML

174

6: DYNAMIC DATA EXCHANGE (DOE)

processes a transaction asynchronously, the API function returns immediately,
before the transaction is processed. Later, when the transaction completes, the
DDEML notifies the program by calling its callback function.

The ability to process transactions asynchronously is important because it lets a
DDE application continue to run while it waits for a prolonged DDE transaction
to complete. For example, a DDE client can post an asynchronous request for
data to a DDE server and then carry out other actions until the server responds
to the data request. Although both synchronous transaction-handling and asyn
chronous transaction-handling methods are implicit in the original DDE message
set, implementing both kinds of transaction processing is a chore that few pro
grammers tackled prior to the appearance of the DDEML.

The DDEML API
The DDEML defines a set of 26 API functions that support both server and client
transactions, as shown in Figure 6-9. To ensure compatibility with future ver
sions of Windows, the DDEML API functions frequently use DWORD (32-bit)
data values and abstract data types such as handles to strings and global-memory
blocks. The function prototypes for all the DDEML functions are in DDEML.H.

Function Description Parameters Return Value

DDEML interface management

DdeInitialize

DdeUnin itialize

DdeGetLastError

Figure 6-9.

Registers a callback func
tion; sets a transaction
filter

Terminates all DDEML
processing for an
application

Returns current DDEML
error status

The 26 DDEML API/unctions.

Pointer to returned
instance identifier
(LPDWORD)

Pointer to callback func
tion (PFNCALLBACK)

Command and filter flags
(DWORD)

Reserved: must be 0
(DWORD)

Instance identifier
(DWORD)

Instance identifier
(DWORD)

Result code (WORD)

TRUE if no error
(BaaL)

Error code (WORD)

(continued)

175

Windows: Developer's Workshop

Figure 6·9. continued

Function Description

Conversation management

DdeNameService

DdeConnect

DdeConnectList

DdeQueryNextServer

Registers a service name

Initiates a DDE
conversation

Enumerates DDE services;
establishes multiple con
versations with DDE
servers

Returns the next conversa
tion handle in a con-
versation list

Parameters

Instance identifier
(DWORD)

Service name (HSZ)
Reserved: must be 0 (HSZ)
Command flags (WORD)

Instance identifier
(DWORD)

Service name (HSZ)
Topic name (HSZ)
Pointer to conversation

context data
(PCONVCONTEXT)

Instance identifier
(DWORD)

Service name (HSZ)
Topic name (HSZ)
Conversation-list handle

(HCONV)
Pointer to conversation

context data
(PCONVCONTEXT)

Conversation-list handle
(HCONVLIST)

Previous conversation
handle (HCONV)

DdeQueryConvlnfo Obtains current status of a Conversation handle

DdeDisconnect

DdeDisconnectList

176

DDE conversation (HCONV)

Terminates a DDE
conversation

Terminates multiple
conversations

Transaction identifier
(DWORD)

Pointer to returned status
data for the conversation
(PCONVINFO)

Conversation handle
(HCONV)

Conversation-list handle
(HCONVLIST)

Return Value

TRUE if no error
(BOOL)

Conversation handle
(HCONV)

Conversation -list
handle (HCONVLIST)

Next conversation
handle (HCONV)

Number of bytes of
status data returned
(WORD)

TRUE if no error
(BOOL)

TRUE if no error
(BOOL)

(continued)

6: DYNAMIC DATA EXCHANGE (DDE)

Figure 6·9. continued

Function Description Parameters Return Value

Transaction management
DdeClientTransaction Begins a client-initiated Pointer to shared global Shared global-memory

transaction data or shared global- handle or status flag
memory handle (HDDEDATA)
(LPBYTE)

Data length or-l if global-
memory handle speci-
fied (DWORD)

Conversation handle
(HCONV)

Item name (HSZ)
Clipboard data format

(WORD)
Transaction type (WORD)
Timeout duration

(DWORD)
Pointer to returned result:

synchronous-transaction
status flags or asynchro-
nous transaction ID
(LPDWORD)

DdeAbandon- Aborts an asynchronous Instance identifier TRUE if no error
Transaction transaction (DWORD) (BaaL)

Conversation handle
(HCONV)

Transaction identifier or 0
to abandon all trans-
actions (DWORD)

DdeEnableCallback Blocks (enables) or Instance identifier TRUE if no error
unblocks (disables) (DWORD) (BaaL)
transactions Conversation handle

(HCONV)
Enable or disable com-

mand (WORD)

DdePostAdvise Updates a data link Instance identifier TRUE if no error
(DWORD) (BaaL)

Topic name (HSZ)
Item name (HSZ)

(continued)

177

Windows: Developer's Workshop

Figure 6·9. continued

Function

DdeSetUserHandle

Description

Associates an application
defined value with a
conversation and trans
action identifier

String management

DdeCreateStringHandle Creates a handle for a
specified string

DdeQueryString Obtains string data and
length

DdeKeepStringHa n die Increments the usage
count for a string handle

DdeFreeStringHandle Decrements the usage
count for a string handle
and frees the handle if
the count equals 0

DdeCmpStringHandles Case-insensitive string
comparison

178

Parameters

Conversation handle
(HCONV)

Transaction identifier
(DWORD)

Application-defined value
(DWORD)

Instance identifier
(DWORD)

String pointer (LPSTR)
Code-page identifier (int)

Instance identifier
(DWORD)

String handle (HSZ)
Pointer to buffer to receive

string or NULL to obtain
string length only
(LPSTR)

Size of buffer (DWORD)
Code-page identifier (int)

Instance identifier
(DWORD)

String handle (HSZ)

Instance identifier
(DWORD)

String handle (HSZ)

String handle 1 (HSZ)
String handle 2 (HSZ)

Return Value

TRUE if no error
(BOOL)

String handle (HSZ)

Length of the returned
string (DWORD)

TRUE if no error
(BOOL)

TRUE if no error
(BOOL)

-1: string 1 < string 2;
0: string 1 = string 2;
1: string 1 > string 2

(continued)

6: DYNAMIC DATA EXCHANGE (DDE)

Figure 6·9. continued

'unction Description Parameters Return Value

Memory management

DdeCreateDataHandle Creates and initializes a Instance identifier Global-memory handle
block of shareable (DWORD) (HDDEDATA)
global memory Pointer to buffer contain-

ing initial data
(LPBYTE)

Size of global-memory
block (DWORD)

Offset of start of initial
data (DWORD)

Item name (HSZ)
Clipboard data format

(WORD)
Creation flags (WORD)

DdeFreeDataHandle Frees a block of shareable Global-memory handle TRUE if no error
global memory (HDDEDATA) (BaaL)

DdeAccessData Obtains a pointer to a Global-memory handle Pointer to global
block of shared, read- (HDDEDATA) memory block
only global memory Pointer to returned data (LPBYTE)

length (LPDWORD)

DdeAddData Copies data into a block of Global-memory handle New global-memory
shared global memory (HDDEDATA) handle (HDDEDATA)

Pointer to data to be
copied (LPBYTE)

Data length (DWORD)
Offset within the global-

memory block
(DWORD)

DdeGetData Copies data from a block Global-memory handle Data length (DWORD)
of shared global memory (HDDEDATA)

Pointer to buffer to receive
copied data or NULL to
obtain data length only
(LPBYTE)

Data length (DWORD)
Offset within the global-

memory block
(DWORD)

DdeUnaccessData Releases a pointer to a Global-memory handle TRUE if no error
block of shared global (HDDEDATA) (BaaL)
memory

179

Windows: Developer's Workshop

DDEML interface management
Most of the DDEML API functions control an application's DOE conversations.
However, three important DDEML functions control an application's interaction
with the DDEML itself. These are Ddelnitialize, DdeUninitialize, and
DdeGetLastError.

An application must call Ddelnitialize before it uses any other DDEML function.
Ddelnitialize serves two important purposes. First it passes the DDEML a
pointer to a program's callback function. The pointer you specify in your call to
Ddelnitialize must be that of an instance thunk (created by MakeProclnstance)
unless the callback function is defined in a dynamic link library.

Second Ddelnitialize establishes filters for callback transactions. When you call
Ddelnitialize, you must specify one or more of the flags shown in Figure 6-10.
The DDEML will prevent the transactions you specify from reaching the
callback function. In general, you should use the APPCLASS_STANDARD flag
for a server callback function. For a client callback function, use APPCLASS
_STANDARD: APPCMD_CLIENTONLY so that the callback function receives
only transactions relevant to DOE client processing.

The APPCLASS_MONITOR flag allows a DDEML application to monitor DDEML
activity. (The DOE Spy utility provided with the DDEML is one such application.)
However, DDEML monitoring is not as straightforward as it might appear. For ex
ample, a DDEML monitor application might not be aware of the DOE activity of
message-based, non-DDEML applications. Also, a DDEML monitor application
should not also function as a DDEML server or client. Such an application can get
into trouble when it attempts to monitor its own DDEML activity. If you want to
design a DDEML monitor application, you need to use additional Ddelnitialize
flags and data structures that are defined in DDEML.H and described in the
DDEML documentation.

Ddelnitialize returns an application-instance identifier, a value that the DDEML
uses to associate an instance of a Windows module (application or DLL) with its
ODE conversations. Many of the DDEML API functions use the instance identifier
as a parameter. You should therefore call Ddelnitialize before calling any other
DDEML function in an application.

The DdeUninitialize function terminates DDEML processing for an instance of
an application. Before an application terminates, it should call DdeUninitialize
to ensure that any active DOE conversations are terminated cleanly. In addition
to terminating conversations with other DDEML applications, DdeUninitialize
also posts WM_DDE_ TERMINATE to message-based, non-DDEML applications
and releases any associated data internal to the DDEML.

180

"ag

APPCLASS_MONITOR

APPCLASS_STANDARD

APPCMD_CLIENTONLY

APPCMD_FILTERINITS

CBF _FAIL_SELFCONNECTIONS

CBF _FAIL_CONNECTIONS

CBF _FAIL_ADVISES

CBF _FAIL_EXECUTES

CBF _FAIL_POKES

CBF _FAIL_REQUESTS

CBF _FAIL_ALLSVRXACTIONS

CBF _SKIP _CONNECT_CONFIRMS

CBF _SKIP _REGISTRATIONS

CBF _SKIP _UNREGISTRATIONS

CBF _SKIP _DISCONNECTS

CBF _SKIP _ALLNOTIFICATIONS

Figure 6·10.

6: DYNAMIC DATA EXCHANGE (DOE)

TransactIons Not Sent by DDEMI
to Callbaclc 'unctIon

(Used in DDEML monitoring applications)

XTYP _MONITOR

XTYP _CONNECT, XTYP _ WILDCONNECT,
XTYP _ADVSTART, XTYP _EXECUTE,
XTYP _POKE, XTYP _REQUEST

XTYP _CONNECT, XTYP _ WILDCONNECT

XTYP _CONNECT and XTYP _ WILDCON
NECT from the same instance of an
application

XTYP _CONNECT and
XTYP _ WILDCONNECT

XTYP _ADVSTART and XTYP _ADVSTOP
(returns DDE_FNOTPROCESSED to the
client)

XTYP _EXECUTE (returns
DDE_FNOTPROCESSED to the client)

XTYP _POKE (returns
DDE_FNOTPROCESSED to the client)

XTYP _REQUEST (returns
DDE_FNOTPROCESSED to the client)

XTYP _CONNECT, XTYP _ WILDCONNECT,
XTYP _ADVSTART, XTYP _EXECUTE,
XTYP _POKE, XTYP _REQUEST (returns
DDE_FNOTPROCESSED to the client)

XTYP _CONNECT_CONFIRM

XTYP _REGISTER

XTYP _UNREGISTER

XTYP _DISCONNECT

XTYP _CONNECT_CONFIRM,
XTYP _REGISTER, XTYP _UNREGISTER,
XTYP _DISCONNECT

Flags used with DdeInitialize to specify transaction filters for a DDEML
callback function.

181

Windows: Developer's Workshop

The DdeGetLastError function is a general-purpose function that a program can
call after any other DDEML function or transaction indicates that an error has oc
curred. DdeGetLastError returns a value that indicates the nature of the error.
(The DDEML.H include file defines the gamut of error values with identifiers that
begin with DMLERR_.) The DDEML retains only one error value for calls to
DdeGetLastError. A program should call DdeGetLastError immediately after it
detects that an error has occurred because the next DDEML API call will update
the error value.

Conversation management
There are seven DDEML API functions you can use to enumerate the services
and topics supported by DDE server applications, to initiate and terminate con
versations, and to determine the current state of an active conversation. These
functions explicitly provide the higher-level support for conversation manage
ment that is implicit in the DDE messages WM_DDE_INITIATE, WM_DDE
_ACK, and WM_DDE_TERMINATE.

An application uses DdeNameService to register and unregister DDE service
names. When a server application registers a service name, the DDEML keeps
track of the name so that DDE clients can subsequently initiate conversations
with it. When the server application no longer supports the service, the server
calls DdeNameService again to unregister the name. The DDEML notifies other
DDEML applications each time a name is registered or unregistered by calling
each application's callback function.

A DDE client calls DdeConnect and DdeConnectList to initiate DDE conversa
tions. Both functions require you to specify a service name and a topic name.
You can also use a wildcard specification (a null string handle) for the service
name, the topic name, or both. DdeConnect establishes a single DDE conversa
tion (even if multiple servers support the service and topic you specify) and
returns a handle that identifies the conversation. DdeConnectList establishes
conversations with all servers that support the service-topic combination you
specify and returns a handle to a list of the newly initiated conversations.

DdeConnectList uses its fourth parameter, bConvList, to avoid duplicating exist
ing DDE conversations. If you call DdeConnectList more than once, you should
specify the conversation-list handle returned from the first call to DdeConnect
List in subsequent calls to the function. DdeConnectList will refer to the list of
existing conversations and establish a new conversation only if it does not dupli
cate a conversation already in the list.

'82

6: DYNAMIC DATA EXCHANGE (DDE)

A client application can use DdeQueryNextServer and DdeQueryConvlnfo to
examine the list of conversations returned by a call to DdeConnectList. The con
versation list is a linked list of CONVINFO data structures. DdeQueryNextServer
uses the links to traverse the list and returns a handle to the next conversation.
DdeQueryConvlnfo returns a pointer to a specified conversation's CONVINFO
data. Usually, you use DdeQueryNextServer and DdeQueryConvlnfo in a loop
such as the following:

HCONVLIST hConvList;
HCONV hConVi
CONVINFO Convlnfoi

/* create or update a conversation list */
hConvList = DdeConnectList(...);

/* get a handle to the first conversation in the list * /
/* by specifying a null handle to the previous conversation */
hConv = DdeQueryNextServer(hConvList, OL);

while(hConv)
{

}

/* get conversation info for the current hConv */
DdeQueryConvlnfo(hConv, QID_SYNC, &Convlnfo);

/* examine the contents of the Convlnfo data structure */

/* get the next conversation handle in the list */
hConv = DdeQueryNextServer(hConvList, hConv);

The DdeDisconnect and DdeDisconnectList functions complement DdeConnect
and DdeConnectList. You use DdeDisconnect to terminate a single conversation
and DdeDisconnectList to terminate all conversations in a list. Both of these
functions are intuitive and easy to use, yet there is a common situation in which
you don't need them at all: If an application is about to shut down, it can im
plicitly terminate all its DDE conversations simply by calling DdeUninitialize.

Transaction management
Of the five DDEML API functions that specifically control DDE transactions,
DdeClientTransaction is the key to DDEML transaction management. Except for
initiating and terminating conversations, all DDE client transactions originate

'83

Windows: Developer's Workshop

with a call to DdeClientTransaction, including requests for data, establishing
and terminating data links, sending data to a server, and requesting a server to
execute a command. In effect, DdeClientTransaction subsumes all the func
tionality implicit in the WM_DDE_REQUEST, WM_DDE_ADVISE, WM
_DDE_UNADVISE, WM_DDE_POKE, and WM_DDE_EXECUTE messages in
the message-based DDE protocol.

The parameter list to DdeClientTransaction includes a transaction identifier
whose value (XTYP _REQUEST, XTYP -ADVSTART, XTYP _ADVSTOP, XTYP
_POKE, or XTYP _EXECUTE) specifies which transaction you want to perform.
Most of the other DdeClientTransaction parameters have intuitive uses-to
identify a particular conversation, to specify an item name, to point to data or to
a command string, to specify a clipboard data format, and to point to a variable
that contains a result -code value after the function returns.

The one remaining function parameter, a timeout value, lets you control whether
a transaction executes synchronously or asynchronously. If you want a transac
tion to execute synchronously-that is, to be complete at the time the call to
DdeClientTransaction returns-you specify a nonzero timeout value in milli
seconds. The DDEML will wait for a response from the server for the specified
duration of time. If the server fails to respond, DdeClientTransaction imposes a
timeout and indicates that an error occurred by returning a value of o. While the
DDEML waits for a server response, it enters a message-processing loop that
allows application message processing to continue.

The minimum timeout required for successful DDE transaction processing de
pends on several factors, including the amount of time needed to process data or
execute a command and the speed or configuration of the computer system on
which Windows is running. A timeout period of 1000 ms (one second) is a rea
sonable value in most applications. In an application such as a remote communi
cations server, in which response to DDE timeouts can be important, you may
want to support user-configurable timeout values. You might also consider
designing routines that trap timeout errors and empirically adjust the timeout pe
riod toward an optimum value.

The alternative to specifying a timeout period is to use a value of TIMEOUT
-ASYNC when you call DdeClientTransaction. Doing this causes the DDEML to
perform the transaction asynchronously. In this case, the call to DdeClientTrans
action returns immediately after the transaction is begun, and the DDEML saves
the transaction in an internal queue until the server responds to it. For such asyn
chronous transactions, DdeClientTransaction returns a value that uniquely iden
tifies the transaction in the DDEML's internal asynchronous-transaction queue.

184

6: DYNAMIC DATA EXCHANGE (DOE)

When the transaction is completed, the DDEML notifies the client by calling its
callback function. One of the parameters passed to the callback function con
tains the unique transaction-identifier value returned by the original call to
DdeClientTransaction.

There are two ways to abandon an asynchronous transaction before it is com
pleted. One way is for a client to call DdeAbandonTransaction. Another is for
the transaction's conversation to be terminated either by the server or by the cli
ent. In this case, the DDEML implicitly abandons all pending asynchronous
transactions for the terminated conversation.

The fact that the DDEML supports both synchronous and asynchronous trans
actions implies a mechanism for DDE servers to use the DDEML to block trans
action processing transiently. While a server's transaction processing is blocked,
the DDEML queues asynchronous transactions until the server is unblocked. A
DDE server can block transactions it receives in two ways. One is by calling
DdeEnableCallback with a command code of EC_DISABLE. If you specify a
conversation handle in the call to DdeEnableCallback, the DDEML blocks trans
actions only in the specified conversation. If you specify a null conversation
handle, all conversations are affected.

Another method of blocking transactions in a conversation is by returning a spe
cial value, CBILBLOCK, from the server's callback function. Returning
CBILBLOCK places the transaction being processed in the callback function at
the front of a queue and causes the DDEML to queue subsequent transactions
in the conversation. Regardless of which blocking method you use, the server
can unblock and begin to process queued transactions by calling
DdeEnableCallback with a command code of EC_ENABLEALL (to process all
queued transactions) or EC_ENABLEONE (to process only the first queued
transaction).

A server cannot block all types of DDEML transactions. A server callback func
tion can identify non-blockable transaction types by testing the XTYPF _NO
BLOCK flag, which is part of each transaction-type identifier. A server callback
function should not return CBILBLOCK for any transaction whose type identifier
has the XTYPF _NOBLOCK flag set.

DDE applications benefit greatly from the ability to combine asynchronous
transaction processing with selective blocking of transactions. In particular, a
server that needs time to do a prolonged computation or data transfer can tem
porarily block DDE transactions from clients until it completes the prolonged
operation. For example, a database server might use DDE transaction blocking

'85

Windows: Developer's Workshop

to serialize requests for data so that successive database searches do not overlap
or collide. A corresponding client application could issue its requests for data
asynchronously so that a user's interaction with the application could continue
while the server performed a database search.

The most important precaution in the use of asynchronous transactions and
transaction blocking is to limit the amount of time that a server blocks incoming
transactions. The size of the DDEML's asynchronous-transaction queue is large
but not infinite. Prolonged transaction blocking could overflow the queue or po
tentially overwhelm the server with unnecessarily repeated asynchronous
transactions.

The last two API functions that affect DDEML transaction management are
DdePostAdvise and DdeSetUserHandle. A server calls DdePostAdvise to transfer
updated data items to clients participating in data links. A client calls
DdeSetUserHandle to associate an application-defined DWORD value with a
specific asynchronous transaction. When the transaction is completed and the
client callback function is notified, the client can retrieve the associated DWORD
value through a call to DdeQueryConvlnfo.

String management
The DDEML supports a string-management API that resembles Windows' atom
manager API but provides more string-management options. An application calls
DdeCreateStringHandle to obtain a handle (data type HSZ) that identifies a nu11-
terminated character string. The inverse function, DdeQueryString, returns a
copy of the string data and the length of the string associated with a particular
string handle.

The DDEML associates a usage count with each string handle. DdeCreateString
Handle initializes the usage count to 1. You can use two other DDEML API func
tions, DdeKeepStringHandle and DdeFreeStringHandle, to increment and
decrement the usage count. If a string handle's usage count is decremented to 0,
the DDEML releases the memory in which the string is stored and invalidates the
string handle.

DDEML-aware programs must use string handles to identify DDE service, topic,
and item names. However, you can also choose to use string handles for other
purposes because string handles are easier to compare than the strings they rep
resent. For example, a single DDEML function, DdeCmpStringHandles, returns
an integer that indicates the result of a case-insensitive comparison of the strings
the handles represent.

186

6: DYNAMIC DATA EXCHANGE (DDE)

Memory management
The DDEML provides six important API functions that manage shared global
memory on behalf of DDE servers and clients. DdeCreateDataHandle allocates
a block of shared memory and optionally initializes it with data copied from a
buffer. DdeCreateDataHandle returns a handle (data type HDDEDATA) that is
used in the remaining DDEML memory-management functions and in many
other DDEML API functions as well.

A program can copy data from a private buffer into a shared memory block by
calling DdeAddData. The inverse function DdeGetData copies data out of a
shared memory block into a buffer. A program that needs only to read data from
a shared-memory block without copying it can obtain a pointer to the data by
calling DdeAccessData. Each call to DdeAccessData must be paired with a sub
sequent call to DdeUnaccessData, which invalidates the pointer returned by
DdeAccessData.

Although the DDEML memory-management API resembles Windows' global
memory-management API, there is an important difference in regard to freeing
allocated memory. In Windows, each call to GlobalAlloc should be paired with a
call to GlobalFree. With the DDEML, the rules are different. If you pass a data
handle to a DDEML API function, the DDEML will free the associated memory
block at the appropriate time. Similarly, you need not free data handles that the
DDEML passes in parameters to an application's callback function.

There are only three situations in which a call to DdeFreeDataHandle is neces
sary. One is when an application allocates a memory block whose handle is
never passed to a DDEML API function. Another is when a client receives a data
handle as a return value from a call to the DdeClientTransaction function; The
third is when a memory block is allocated with the HDATA_APPOWNED flag set
in the call to DdeCreateDataHandle. Such memory blocks are owned by the ap
plication that creates them, so they can be reused indefinitely or in multiple DDE
conversations. Because the DDEML does not automatically free these blocks of
memory, it is the application's responsibility to call the DdeFreeDataHandle
function for them.

The Callback Function
The callback function in a DDEML application resembles a window function.
Like a window function, a DDEML callback function is an exported PASCAL FAR
function in which the first parameter identifies the kind of action the function is
expected to carry out. In the following example, the EXPENTRY declaration
defines DdeCallback as an exported PASCAL FAR function.

187

Windows: Developer's Workshop

HDDEDATA EXPENTRY
DdeCallback (WORD wType, WORD wFmt, HCONV hConv,

HSZ hsz1, HSZ hsz2, HDDEDATA hDDEData,
DWORD dwData1, DWORD dwData2)

The values represented in the callback function parameters vary according to
the transaction type, as shown in Figure 6-11.

I'ransactlon-I'ype Received Parameter Return Value
Identifier By

XTYP _ADVDATA Client wFmt: clipboard data- Transaction
Updates a data item in a format result flag
data link hConv: conversation

handle
hszl: topic name
hsz2: item name
hDDEData: handle to

data from server

XTYP_ADVREQ Server wFmt: clipboard data- Handle to
Requests updated data format updated
item in a data link hConv: conversation data item

handle
hszl: topic name
hsz2: item name

XTYP _ADVSTART Server wFmt: clipboard data- TRUE to start
Initiates a data link format data link for
("advise") hConv: conversation the specified

handle item
hszl: topic name
hsz2: item name

XTYP _ADVSTOP Server wFmt: clipboard data- 0
Terminates a data link format
("unadvise") hConv: conversation

handle
hszl: topic nar:ne
hsz2: item name

XTYP_EXECUTE Server hConv: conversation Transaction
Requests command handle result flag
execution hszl: topic name

hDDEData: command
string

Figure 6·11. (continued)
Transaction-type identifiers and parameters/or DDEML callback/unctions.

'88

6: DYNAMIC DATA EXCHANGE (DOE)

Figure 6·11. continued

I'ransacflon-'f'ype ReceIved Paramefer Refum Value
Idenflfler By

XTYP _CONNECT Server bszl: topic name TRUE to support
Initiates conversation bsz2: service name a conversation

dwDatal: conversa- on the speci-
tion context fled topic
(PCONVCONTEXT)

XTYP _CONNECT- Server beonv: conversation 0
_CONFIRM handle
Confirms initiated bszl: topic name
conversation bsz2: server name

dwData2: TRUE if
same server and
client instance

XTYP _XACT_COMPLETE Client wFmt: clipboard data- 0
Completes asynchronous format
transaction beonv: conversation

handle
bszl: topic name
bsz2: item name
bDDEData: handle to

data from server
dwDatal: transaction

ID

XTYP_POKE Server wFmt: clipboard data Transaction
Transfers data item from format result flag
client to server beonv: conversation

handle
bszl: topic name
bsz2: item name
bDDEData: handle to

data from client

XTYP _REGISTER Server, bszl: service name 0
Indicates newly-registered Client bsz2: unique server-
service name instance name

(continued)

'89

Windows: Developer's Workshop

Figure 6·". continued

fransaction-fype
Identifier

XTYP _REQUEST
Requests a data item

XTYP _DISCONNECT
Confirms termination of
a conversation

XTYP _UNREGISTER
Indicates unregistration of
a service name

XTYP _ WILDCONNECT
Requests initiation of new
conversation(s) using wild
card specification

XTYP _MONITOR
Used only in DDEML
monitor applications; see
the DDEML documentation
for details

Received Parameter
By

Server wFmt: clipboard data

Server,
Client

Server,
Client

Server

format
hConv: conversation

handle
hszl: topic name
hsz2: item name

hConv: conversation
handle

hszl: service name
hsz2: unique service

instance name

hszl: topic name or
wildcard

hsz2: service name or
wildcard

dwDatal: conversa
tion context
(PCONVCONTEXT)

Return Value

Handle to re
quested data

o·

o

Handle to list
of matching
service-topic
names

You can design a DDEML callback function with a C-Ianguage switch statement
whose cases correspond to the possible values of the transaction-type identifier.
However, the structure of the DDEML transaction-type identifier lets you use
other flow-of-control structures besides the switch statement in a DDEML
callback function.

The transaction-type identifier is actually composed of an index value combined
with one of the flags shown in Figure 6-12. These flags classify each transaction
according to the meaning of the value that the callback function is expected to
return.

190

6: DYNAMIC DATA EXCHANGE (DDE)

Ilag

XCLASS_BOOL

XCLASS_DATA

XCLASS_FLAGS

XCLASS_NOTIFICATION

Figure 6 -12.

Callback lunction Returns

TRUE or FALSE

Data handle CHDDEDATA)

Transaction result flag CDDE_FACK,
DDE_F8USY, or DDE_NOTPROCESSED)

o

Transaction-class flags used in transaction-type identifiers for a DDEML
callback function. The function returns a value of data-type HDDEDATA
regardless of the meaning of the return value.

There is an additional flag, XTYPF _NOBLOCK, that indicates whether a callback
function can return CBR_BLOCK to block a transaction. For example, this is how
the transaction-type identifier XTYP _CONNECT is defined in DDEML.H:

#define XTYP_CONNECT (Ox0060 : XCLASS_BOOL : XTYPF_NOBLOCK)

In this definition, the value Oxoo60 is an index value that uniquely identifies the
transaction type.

You can therefore structure a DDEML callback function according to the transac
tion class:

switch(wType & XCLASS_MASK
{
case XCLASS_BOOL:

break;

case XCLASS_DATA:

break;

case XCLASS_FLAGS:

break;

case XCLASS_NOTIFlCATION:

break;

191

Windows: Developer's Workshop

You can also take advantage of the fact that the index values that are used in the
transaction-type definitions follow a numerical sequence from OxOOOO through
OxOOFO. This allows you to use a jump table instead of a switch statement to
select among transaction-processing functions. The sample callback function in
Figure 6-13 illustrates this technique.

/* The following typedefs address the arguments to a DDEML
callback function. The data structure maps the
arguments as they appear on the stack according to the
PASCAL parameter-passing convention.*/

typedef struct
{

DWORD dwData2;
DWORD dwData1;
HDDEDATA hDDEData;
HSZ hsz2;
HSZ hsz1 ;
HCONV hConv;
WORD wFmt;
WORD wType;

XACTPARAMS;

typedef XACTPARAMS * PXACTPARAMS;

typedef HDDEDATA (*PFNXACT) (PXACTPARAMS);

/* prototypes for
static HDDEDATA
static HDDEDATA
static HDDEDATA
static HDDEDATA
static HDDEDATA

/* jump table */

transaction-processing functions */
XactAdvdata(PXACTPARAMS);
XactXactComplete(PXACTPARAMS);
XactDisconnect(PXACTPARAMS);
Xactlqnore (PXACTPARAMS);
XactError(PXACTPARAMS);

static PFNXACT pfnCallback[]
{

/* 00: XTYP_ERROR */
/* 01: XTYP_ADVDATA */
/* 02: XTYP_ADVREQ */
/* 03: XTYP_ADVSTART */
/* 04: XTYP_ADVSTOP */
/* 05: XTYP_EXECUTE */
/* 06: XTYP_CONNECT */

XactError,
Xa ctAdvdat a ,
Xactlqnore,
Xactlqnore,
XactIgnore,
XactIgnore,
Xa~tIgnore,

XactIgnore, /* 07: XTYP_CONNECT_CONFIRM */

Figure 6·13. (continued)

Using a jump table in a DDEML callback/unction.

192

6: DYNAMIC DATA EXCHANGE (DOE)

Figure 6·13. continued

xactXactComplete,
XactIgnore,
XactIgnore,
XactIgnore,
XactDisconnect,
XactIgnore,
XactIgnore,
XactIgnore

} ;

/ * 08: XTYP _XACT_COMl?LETE * /
/* 09: XTYP_POKE */
/* OA: XTYP_REGISTER */
/* OB: XTYP_REQUEST */
/* OC: XTYP_DISCONNECT */
/* OD: XTYP_UNREGISTER * /
/ * OE: XTYP _WILDCONNECT * /
/* OF: XTYP_MONITOR */

/** ••• _. __ ••••• _._.

* DdeCallback

.................. _ _ _-- ,
HDDEDATA EXPENTRY
DdeCallback (WORD wType, WORD wFmt, HCONV hConv,

HSZ hsz1, HSZ hsz2, HDDEDATA hDDEData,
DWORD dwData1, DWORD dwData2)

int nlndex;

/* extract index value from transaction-type ID */
nlndex = (wType , XTYP_MASK) » XTYP_SHIFT;

/* jump through the table of function pointers */
return (*pfnCallback[nlndex]) ((PXACTPARAMS)&dwData2);

Of the 15 transaction types used in DDEML callback functions, one (XTYP
_MONITOR) is used only in DDEML monitor applications such as DDESPY. Of
the remaining 14, nine are reserved for servers only and two for clients only. The
other three (XTYP _REGISTER, XTYP _DIS,CONNECT, and XTYP _UNREGIS
TER) are used in both server and client callback functions. You can design a
callback function to process server transactions, client transactions, or both. In
any case, remember to specify the appropriate command flags (APPCLASS
_STANDARD with or without APPCMD_CLIENTONLY) when you call
Ddelnitialize to pass the callback function's address to the DDEML.

193

Windows: Developer's Workshop

XTYP_REGISTER and XTYP_UNREGISTER
The DDEML uses these two transaction types to inform an application that an
other application has registered or unregistered a DDE service name. The pur
pose of these transactions is to alert DDE applications to the appearance or
disappearance of services supported by DDE servers.

XTYP_CONNECT, XTYP_WILDCONNECT,
XTYP _CONNECT _CONFIRM, and XTYP _DISCONNECT
A DDE server application's callback function receives XTYP _CONNECT when a
client attempts to initiate a conversation on a specified service and topic. The
callback function should return TRUE (a nonzero value) if the server supports
the specified service and topic.

Similarly, a server receives XTYP _ WILDCONNECT when a client wants to initi
ate conversations using a wildcard service or a topic specification. In this case,
the server callback function must fill a block of shared global memory with an
array of string-handle pairs (data type HSZPAIR) that enumerates service-topic
combinations that match the wildcard specification. A null HSZPAIR indicates
the end of the list. The return value from the callback function is the data handle
(data type HDDEDATA) to the memory block containing the HSZPAIR list.

Each time the DDEML successfully establishes a conversation, it calls the server
callback function with a transaction type of XTYP _CONNECT_CONFIRM. With
this transaction type, the DDEML passes a conversation handle (HCONV) that
identifies the conversation in subsequent transactions, along with string handles
that indicate the service and topic names for which the conversation was estab
lished. Although a server may save these handles for future reference, it is not
strictly necessary to do so. The other callback-function transactions all provide
these handles as function parameters whenever they are needed.

The DDEML uses the XTYP _DISCONNECT transaction type to notify both
server and client applications that a conversation has terminated. This trans
action type exists only for the convenience of the DDE application. A callback
function should return a value of 0 in response to this transaction.

Although the DDEML registers service names and passes string handles to ser
vice, topic, and item names as callback-function parameters, each DDE server
and client application is responsible for maintaining its own lists of the service,
topic, and item names that it supports. Use linked data structures to keep track of
names so that you can easily associate a list of topic names with each service
name supported by a server application. You can use the same technique to
associate a list of item names and data pointers with each topic name.

194

6: DYNAMIC DATA EXCHANGE (DDE)

XTYP _REQUEST and XTYP _ADVREQ
A server's callback function receives these two transaction types whenever the
DDEML wants the server to transfer a data item to a client. A server receives
XTYP _REQUEST when a client calls DdeClientTransaction to request data. The
XTYP _ADVREQ transaction type is used when a server application calls
DdePostAdvise to transmit an updated data item to a client in a data link. In both
cases, the parameters passed to the callback function include the conversation
handle, string handles to the topic and item names, and the clipboard data format
for the requested data. The server callback function should return a data handle
(HDDEDATA) to a shared memory block that contains the requested data.

XTYP_POKE
This transaction type notifies a server that an unsolicited data item has been
transmitted from a client. The callback function parameters include a data
handle for the shared-memory block that contains the data, the conversation
handle, string handles to the topic and item names, and the clipboard data
format. The server's callback function must return a flag (DDE_FACK,
DDE_FBUSY, or DDE_NOTPROCESSED) that indicates whether the server ac
cepted the data item.

XTYP _EXECUTE
The XTYP _EXECUTE transaction type is similar to XTYP _POKE. The differ
ence is that the data handle passed to the server's callback function refers to a
memory block that contains a null-terminated command string. The flag
returned by the callback function (again, DDE_FACK, DDE_FBUSY, or
DDE_NOTPROCESSED) indicates whether the server accepted the command.

XTYP_ADVSTART and XTYP_ADVSTOP
The DDEML calls a server callback function with XTYP _ADVSTART when a cli
ent attempts to start a data link with the server. The function parameters associ
ated with XTYP _ADVSTART include a conversation handle, string handles for
the topic and item names for which the data link is requested, and a clipboard
data format. The callback function must return TRUE if the server will support
the requested data link.

The XTYP -ADVSTOP transaction type notifies a server that a data link has been
terminated by a client. The server application need not do anything in response.
The callback function must return O.

195

Windows: Developer's Workshop

XTYP _ADVDATA and XTYP _XACT _COMPLETE
These two transaction types are the only ones processed exclusively by client
application callback functions. The DDEML uses XTYP -ADVDATA to pass a
data item from a server to a client in a data link. The XTYP -ADVDATA transac
tion type is just like XTYP _POKE. The callback-function parameters specify a
conversation handle, topic and item names, a clipboard data format, and a data
handle. The client callback function must return DDE_FACK, DDE_FBUSY, or
DDE_NOTPROCES5ED to indicate whether it accepted the data.

The DDEML uses the XTYP _XACT _COMPLETE transaction type to notify a cli
ent application that an asynchronous transaction has completed. When a client
specifies TIMEOUT -ASYNC instead of a timeout period in a call to DdeClient
Transaction, the DDEML queues the transaction until the server is free to pro
cess it. The server's response is always returned to the client through
XTYP _XACT _COMPLETE, regardless of the type of transaction carried out.

The function parameters associated with XTYP -XACT _COMPLETE include the
usual conversation handle, string handles, and clipboard data type. The crucial
parameter, however, is the first DWORD parameter, which contains the unique
transaction identifier that was returned previously as a result value by
DdeClientTransaction.

The transaction identifer is important because the client can use it in a call to
DdeQueryConvlnjo, which fills a CONVINFO data structure with data that de
scribe the asynchronous transaction whose completion was signaled by
XTYP _XACT _COMPLETE. Armed with the information in the CONVINFO data
structure, the client callback function can carry out the same response to the
completed asynchronous transaction as it might have if the transaction had been
processed synchronously, as shown in Figure 6-14.

Initiating a Conversation
All of the DDEML callback-function transaction types make sense when you
consider how they are used in relation to the DDEML API functions. For ex
ample, to initiate a conversation, a DDEML client calls DdeConnect or DdeCon
nectList. For each potential conversation-that is, for each service-topic pair
requested by the client-the DDEML calls the appropriate server callback func
tion with an XTYP _CONNECT or XTYP _ WILDCONNECT transaction type.

196

6: DYNAMIC DATA EXCHANGE (DDE)

/* (called when a client receives XTYP-XACT_COMPLETE) */
HDDEDATA XactComplete(HCONV hconv, DWORD dwData1)
{

CONVINFO ci;

/* Use the transaction ID to obtain information */
ci.cb = sizeof(CONVINFO);
DdeQueryConvInfo(hConv, dwData1, &ci);

/* Respond to completion of the asynchronous transaction */
switch(ci.wType)
{

case XTYP_ADVSTART:
case XTYP_ADVSTART XTYPF_NODATA:
case XTYP_ADVSTART XTYPF_ACKREQ:
case XTYP_ADVSTART XTYPF_NODATA XTYPF_ACKREQ:

break;

case XTYP_ADVSTOP:

break;

case XTYP_EXECUTE:

break;

case XTYP_REQUEST:

break;

default:
break;

/* if an error occurred, display it */
if(ci.LastError)

DisplayErrorMessage(.,.);

return 0;

Figure 6 -14.
A client callbackfunction calls DdeQueryConvInfo in order to process
XTYP_XACT_COMPLETE. The transaction identifier is contained in thefirst
DWORD parameter passed to the callback function (dwDatal). The original
transaction type of the completed asynchronous transaction isfound in wType
in the CONVINFO data structure.

197

Windows: Developer's Workshop

For each successfully initiated conversation, the DDEML passes a conversation
handle to both client and server. The DDEML does this for the client through the
return value from DdeConnect or DdeConnectList. On the server side, the
DDEML calls the server's callback function with an XTYP _CONNECT _CON
FIRM transaction type.

Requesting Data from a Server
To request data from a server, a client application calls DdeClientTransaction
with a transaction type of XTYP _REQUEST. The DDEML calls the correspond
ing server's callback function with XTYP _REQUEST. The data handle returned
by the server gets back to the client in one of two ways. If the transaction is per
formed synchronously, the data handle appears as the return value from
DdeClientTransaction. For an asynchronous transaction, the DDEML calls the
client's callback function with XTYP _XACT _COMPLETE, with the data handle
as one of the callback-function parameters.

Establishing a Data Link
A client application establishes a data link by calling DdeClientTransaction with
the XTYP _ADVSTART transaction type. The DDEML calls the server's callback
function with the same transaction type. If the transaction is synchronous, the
server's response is reflected in DdeClientTransaction's return value. If the
transaction is asynchronous, the client receives XTYP _XACT _COMPLETE from
the DDEML. The client then checks wLastError in the CONVINFO data struc
ture to determine whether the data link was established.

Sending Data to a Server
A client sends a data item to a server by calling DdeClientTransaction and
specifying the XTYP _POKE transaction type. The server's callback function
receives the data in an XTYP _POKE transaction. The DDEML returns the
server's response to the client either through the return value from
DdeClientTransaction or through XTYP _XACT _COMPLETE and the wLastError
value in the CONVINFO data structure.

Executing a Command
To execute a command, a client application calls DdeClientTransaction with the
XTYP _EXECUTE transaction type. The server receives XTYP _EXECUTE and

198

6: DYNAMIC DATA EXCHANGE (DDE)

returns DDE_FACK, DDE_FBUSY, or DDE_NOTPROCESSED, which the client
receives either as a result value from DdeClientTransaction for a synchronous
transaction or via XTYP _XACT _COMPLETE for an asynchronous transaction.

Design Issues in DDE Applications
The specifications for message-based DDE and for the DDEML API explicitly de
scribe the low-level transaction processing required in a DDE conversation.
Nevertheless, there is more to designing a successful DDE application than sim
ply supporting a full set of DDE transactions. For example, two DDE applications
must agree on the meanings of service and topic names, on what data formats to
support, and on meaningful ways to specify and obtain results from executable
commands.

Selecting Service, Topic, and Item Names
The DDE specification provides no guidance in choosing service, topic, and item
names. Consequently, different applications use service, topic, and item names to
represent different things. For example, Microsoft Excel uses an application
name (Excel) as a service name, a spreadsheet name (Sheetl) as a topic, and a
spreadsheet cell identifier (RiCl) as an item. However, an application that uses
DDE to provide access to a relational database might use the service name to
identify a database, the topic name to identify a database table, and item names
to designate columns in the table.

Two applications can establish a DDE conversation only if they agree on the
meanings of service, topic, and item names. You should therefore accompany
any DDE application you design with clear documentation of how the applica
tion uses service, topic, and item names. You can also automate the process to
some extent by including support for the System topic in any DDE server appli
cation you design. Yet another approach is to design your DDE applications to
use the clipboard to transfer service, topic, and item names to other DDE appli
cations, using the paste link method described in the DDE specification.

In a DDE paste link, a server places a specified service, topic, and item name on
the clipboard. A DDE client copies the names from the clipboard and uses them
to initiate a conversation on the specified topic and a data link for the specified
item. The server should format the service, topic, and item names as a sequence
of three null-terminated strings, followed by an additional null byte:

Service\OTopic\OItem\O\O

199

Windows: Developer's Workshop

Both server and client applications should register the "Link" clipboard format
and use it to access the service, topic, and item names on the clipboard. The
server side of the paste link should be associated with a Copy command in an
Edit drop-down menu. A client should use a Paste Link command in an Edit menu.

Supporting the System Topic
The Windows SDK documentation recommends that all DDE servers support a
consistent set of data items under the System topic, as shown in Figure 6-15.
These data items describe the topics supported by a DDE server. They can also
provide a general indication of the server's status. All the System data items use
the CF _TEXT format, which makes it a bit easier for an application to describe a
DDE server's configuration or status to a human user.

'temName

SysItems

Topics

Status

Formats

TopicItemList

Help

Figure 6 ·15.

DescrIptIon

A list of items supported by the DDE server application under
the System topic; for example

"Sysltems\tTopics\tStatus\tFormats"

A list of topics supported by the server

Description of the current status of the server application; for
example

"Ready"

and

"Busy"

A list of clipboard data formats potentially supported by the
server; for example

"TEXT\tCSV\tLink"

A list of items used by all topics except the System topic

A string containing plain-text information that would help a
user access the server application

Data items supported under the System tOPic. All data items have the CF_TEXT
format (null-terminated strings that use tabs as separators).

200

6: DYNAMIC DATA EXCHANGE (DDE)

The Formats data item can be particularly useful to DDE client applications. A
client application can parse the list of clipboard formats in this item to determine
which clipboard format to specify in subsequent requests for data from a DDE
server. There is one complication, however. When you design a DDE client to
use the Formats item, the client must distinguish between the predefined clip
board formats, which have symbolic values defined in WINDOWS.H, and
registered clipboard formats, which have values obtained from a call to
RegisterClipboardFormat.

By convention, a server represents the predefined clipboard formats with strings
that correspond to the CF _ symbols defined in WINDOWS.H, but with the "CF_"
prefix removed. (For example, a server indicates that it supports the CF _TEXT
format by including "TEXT" in the Formats data item.) When a client parses the
Formats item, it must test whether each format name is one of the predefined
clipboard-format names. If it is, the client should use the corresponding CF_
value in WINDOWS.H; if not, the client should call RegisterClipboardFormat to
obtain a clipboard-format value.

Executing Commands
The DDE specification defines a simple syntax for command strings used in a
DDEML XTYP _EXECUTE transaction or in a WM_DDE_EXECUTE message. In
this syntax, pairs of square brackets delimit individual commands. Commands
themselves consist of alphanumeric verbs with optional comma-separated pa
rameter lists enclosed in parentheses. For example, the following DDE command
sequence requests Microsoft Excel to display a message box and then beep.

[alert("Messaqe from DDE client",2)] [beep(O)]

These two commands could be sent from a DDE client to Excel either in a single
DDE transaction or in a sequence of two separate transactions.

The DDE specification is unclear about whether a command string can be
associated with a particular topic. Traditionally, only the System topic responds
to commands, but you may find it useful to execute commands in the context of
conversations on topics other than the System. This allows applications to obtain
different results by executing the same command for different topics. For ex
ample, imagine a database application in which a topic corresponds to a table in
a relational database. A "select" command for this topic could implicitly refer to
the particular database table represented in the topic; the same command for a
different topic-that is, for a different database table-would produce a differ
ent result set.

201

Windows: Developer's Workshop

There is an additional design problem in acknowledging WM_DDE_EXECUTE
messages (with message-based DDE) or XTYP _EXECUTE transactions (with the
DDEML). The problem arises because commands may take a long time to exe
cute. For example, a command might result in a server displaying a message and
waiting for user input. In this situation, you must carefully consider how the
server and client cooperate in acknowledging the command.

If the server acknowledges receipt of the command when it receives it, the client
can infer only that the command was successfully received. The client cannot
assume that the command has actually been executed because the client might
receive the server's acknowledgement long before the server actually finishes
executing the command. On the other hand, if the server defers acknowledg
ment until after it processes the command, the client might wait needlessly for a
slow server to execute a command.

One solution to this dilemma is for the server to support a special "Command
Status" data item that contains the status of any command the server is execut
ing. Before posting any commands to the server, the client establishes a data link
with the server for the Command Status item. Then, ~hen the client posts a
comm'and to the server, the server can acknowledge receipt of the command di
rectly. When the server finishes executing the command, it can update the Com
mand Status item in the data link. The client can thus determine when a
command has been successfully received and when it has actually been
executed.

Beyond DDE
The DDE protocol, whether embodied in Windows messages or in the DDEML,
is essentially a handshaking protocol for inter-application transfers of data. DDE
makes it possible for applications to exchange multiple data items in an orderly
way. DDE's service/topic/item naming hierarchy is adaptable to a variety of
data-exchange scenarios, including network communications and database
applications.

Nevertheless, DDE is not a good tool for binding different applications together
interactively. Doing so requires you to know low-level details about the applica
tions you use, including service, topic, and item names or registered clipboard
formats. You also must know how to access DDE through the applications you
are using. For example, if you are using Microsoft Excel, you must understand
Excel's macro language as well as DDE. A higher-level approach to interprocess
communication would be better than DDE for many Windows users.

202

6: DYNAMIC DATA EXCHANGE (DDE)

Microsoft's approach to supporting high-level interprocess communication is a
protocol called Object Linking and Embedding (OLE). Unlike DDE, which is de
signed to support data transfer between applications, OLE supports functional
links between documents such as spreadsheets, charts, or word processing
documents. You can think of an OLE document as a compound document that
can contain any number of different data objects, each of which is associated
with an application that can be used to edit it. From a Windows user's point of
view, such functionality is much more intuitive than that supported in DDE.

The "linking" part of ·OLE refers to dynamic links between data objects in an
. OLE document and the applications that manipulate the data objects. For ex
ample, a Windows user can use the mouse to click on a linked data object in a
compound document and thereby execute the application with which the data
can be edited. In contrast, "embedding" refers to storing a data object in a com
pound document without maintaining a dynamic link to another application.

From a programmer's perspective, a choice between OLE and DDE depends on
what functionality an application is designed to support. For low-level data trans
fers that do not require direct intervention, DDE is an appropriate choice. For
high-level, user-controlled data links between Windows applications, you should
consider using OLE.

203

7

Problems and
Solutions

7: PROBLEMS AND SOLUTIONS

This chapter is a collection of Windows programming techniques. All are "ad
vanced" in that they make more sense when you are comfortable programming
in the Windows environment, but none are tricks or secrets. Everything is based
on an understanding of how things work in Windows.

Control Variations
The built-in control classes-particularly the list-box, edit, and combo-box
classes-provide a great deal of ready-to-use functionality. Many good Win
dows applications rely entirely on the predefined control classes.

Nevertheless, the predefined control classes don't do everything. If you want a
control that looks like one of the built-in control classes but that behaves some
what differently, you must decide whether to build a look -alike variation from
scratch as a custom control or to work with a built-in control and add the func
tionality you need ..

Controls with Thick Frames
Imagine that you want to design a list-box control with a title bar and fat borders
that let the user move and size the control. You might suppose that you could use
the WS_CAPTION, WS_SYSMENU, and WS_THICKFRAME window styles to
create such a window. For example, the list box shown in Figure 7-1 on the fol
lOWing page can be created by using the following CreateWindow call:

CreateWindow ("ListBox",
"Popup ListBox",
WS_CAPTION : WS_POPUP : ws THICKFRAME :

WS_SYSMENU : WS_VSCROLL : WS_VISIBLE,
200, 200, 200, 200,
hWnd,
0,
hlnstance,
NULL) ;

The problem with this technique is that all the predefined control classes do not
work properly with all possible window styles in all versions of Windows. The
predefined controls were not designed to be resized or to serve as pop-up win
dows. You may find that windows such as the pop-up list box shown in Figure
7-1 do not flash when they receive the focus or fail to draw their non-client areas
properly. Figure 7-1 is a case in point-the list-box class window function in
Windows 3.0 has ignored the WS_ THICKFRAME and WS_CAPTION styles and
made the client area too small, incorrectly clipping the last item in the list box.

207

Windows: Developer's Workshop

~ Popup ListBox
This is item 0 I This is item 1
This is item 2

.... ,. This is item]
This is item 4 '..
This is item 5
This is item 6 ,"'"

This is item 1 I;:.:
I

This Is item 9 Ii -rL :n

Figure 7-1.
A list-box control with the WS_ THICKFRAME and WS_ CAPTION styles.

A more reliable way to support a control with a caption bar or a thick frame is to
frame the control in a parent window that has the desired window style. The
parent can process WM_SIZE messages to size the· child-window control appro
priately within the parent's client area. All predefined control classes respond
properly to WM_SIZE messages, so the parent can call the MoveWinqow function,
which sends a WM_SIZE message, to control the size of a child-window control.

Figure 7-2 shows how to use this method. The top-level window in the applica
tion is the parent of an edit control. The top-level window function, TopLevel
WndFn, processes the WM_SIZE message by calling MoveWindow to resize the
edit control. The parent -child combination has the visual appearance of a single
edit -class window that can be moved and sized.

•••

NMAKE description for OVEDIT.EXE

•••••••••••••••••••••••• , •••••••••••••••••••••••••••• ~ •••••••••••••••••••••••

. c.obj:
cl lAM Ic IG2sw 10sw IW4 IZlp $·.c

ALL: ovedit.exe

ovedit.obj: ovedit.c

ovedit.exe: ovedit.obj ovedit.def
link lal:16 Inod Inoe ovedit, , , libw mlibce", ovedit.def
rc ovedit.exe

Figure 7-2.
Source code for OVEDIT.EXE.

208

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7-2. continued

/*********.**.**.*****.****~*****.*****.****.********* *************************

• OVEDIT.C

• Exports: TopLevelWndFn

**************************.**********.********.*******************************/

'define
'include

NOCOMM
<windows.h>

'define IDEDIT 100

/.** FUNCTION PROTOTYPES **./

LONG PASCAL FAR TopLevelWndFn (HWND, WORD, WORD, LONG);

static HWND Init (HANDLE, HANDLE, int) i

/ * •• GLOBAL VARIABLES * * • /

char szTopLevelClass[] = "OvEdit:TopLevel";

/**

* WinMain

******** •• ***************************************.****************************/

int PASCAL
WinMain(HANDLE hlnst, HANDLE hPrevlnst, LPSTR lpszCmdLine, int nCmdShow)
{

HWND

MSG
hWnd;
msg;

hWnd = Init(hlnst f hPrevlnst, nCmdShow);
if(!hWnd)

return 0;

(continued)

209

Windows: Developer's Workshop

Figure 7·2. continued

while (GetMessage ('msg, 0, 0, 0·) .)
{

TranslateMessage ('msg);
DispatchMessage('msg);

return msg.wParami

f··· .••••.••••...•••..••••...

* Init

* •••••••••••••••••••••••• * ••••••••• *.* •••••• * •••••••• ***···***··***····**·**··f

static miND Init (HANDLE hInst, HANDLE hPrevlnst, int nCmdShow)
{

WNDCLASS
miND

WOi

hWnd;

if(0 == hPrevInst)
}

f· register the top-level window olass ./
wo.lpszClassName = szTopLevelClass;
wo.hInstanoe = hlnst;
wo.lpfnWndProo
wc.hCursor
wc.hlcon
wc .1pszMenuName
wc.hbrBackground
we. style
wc.cbClsExtra
wc.cbWndExtra

= TopLevelWndFni
= LoadCursor(0, IDC_ARROW);
= Loadlcon(0, IDI_APPLlCATION);
= NOLL;
= COLOR_WINDOW+1;
= CS_HREDRAW l CS_VREDRAW;
= 0:
= 0;

if(!Register Class('wc))
return 0; I· return 0 if unsuccessful *1

210

/. create the top-level window ./
hWnd = CreateWindow(szTopLevelClass,

"OvEdit",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,
0,

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·2. continued

0,
hInst,
NULL)i

/* create the edit control */
CreateWindow ("Edit",

fin ,
WS_CHILD : WS_VSCROLL

ES_MULTILINE,
0, 0, 0, 0,
hWnd,
IDEDIT,
hInst,
NULL);

/* display the top-level window */
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd)i

return hWnd;

/********** •••••• **.*****************

* TopLevelWndFn

**/

LONG PASCAL FAR
TopLevelWndFn (HWND hWnd, WORD wMsq, WORD wParam, LONG lParam)
{

LONG
BOOL

lRVal = OL;
bDWP = FALSE;

switch(wMsq)
{

case WM_SIZE:
MoveWindow(GetDlqltem(hWnd, IDEDIT),

0, 0,

break;

LOWORD(lParam), HIWORD(lParam),
FALSE) i

(continued)

211

Windows: Developer's Workshop

Figure 7·2. continued

case ~SETFOCOS:
SetFocus(GetDlgItem(hWnd, IDEDIT)):
break:

case WN_DESTROY:
PostQuitMessage(0);
break;

default:
bDWP = TRUE:
break;

if(bDWP)
lRVal = DefWindowProc (hWnd, wMsq, wParam, lParam):

return lRVal;

i···

; OVEDIT.DEF module-definition file

.. ,

NAME
DESCRIPTION
EXETYPE

STUB

CODE
DATA

SEGMENTS

HEAPSIZE
STACKSIZE

EXPORTS

212

OVEDIT
'OVEDIT.EXE version 1.0'

WINDOWS

'WINSTUB.EXE'

MOVEABLE LOADONCALL DISCARDABLE
MOVEABLE MULTIPLE PRELOAD

_TEXT MOVEABLE PRELOAD DISCARDABLE

1024
5120

TopLevelWndFn

7: PROBLEMS AND SOLUTIONS

You need not force the size of the child-window control to equal the size of the
parent's client area. You might instead hide the child-window control whenever
the size of the parent's client area reaches a predefined threshold. You could also
keep the control's size proportional to the size of the parent. Windows' Notepad
application illustrates this technique, as shown in Figure 7-3. In Notepad, the size
of the edit control is somewhat smaller than the size of the parent's client area. In
this way, Notepad maintains a visible margin between edited text and the edge
of the parent window. As you change the size of the parent, Notepad resizes the
edit control to maintain the margin.

=', ,'"' t, "":, Notepad - HELLO,C aa
Eile Edit Search Help

• "e~~o.c

Hello Application
Windows Prellliere Edition
Copyright (c) Microsoft 1985

include "windows. h"
include "hello .h"

hal' *szAppHallle;
hal' *szAbout;
hal' *szWindowTi tle;
nt TitleLength;

tatic HAHDLE hInst;
-ARPROC IpprocAbout;

*'

ong FAR PASCAL HelloWndProc(HWND, unsigned, WORD, LONG);

~OOL FAR PASCAL About(hDlg, llIessage, wParalll, IParalll)
iWHD hDlg;
~nsigned llIessage;
~ORD wParalll;

Figure 7·3.
In Notepad, the edit control (outlined in black) is always somewhat smaller
than its parent window's client area.

Filtering Messages
Another way to create variations of the predefined control classes is to use mes
sage filtering or subclassing. The only problem with this approach is that
Microsoft does not document how specific messages are processed by each of
Windows' predefined control classes. This means that a message-filtering tech
nique that works in the current version of Windows might fail in a future version
should Microsoft change the way predefined control classes process messages.
Nevertheless, the technique is powerful and well worth investigating if your ap
plication requires only a simple variant of one of the predefined controls.

213

Windows: Developer's Workshop

For example, you can design read-only versions of the default edit, list-box, and
combo-box controls by trapping the keyboard and mouse messages that are nor
mally processed by the controls' window functions. By blocking normal key
board and mouse input, you create controls whose contents cannot be changed
interactively.

The source code for ROEDIT.DLL, in Figure 7-4, defines a read-only variation of
the default edit control class. The read-only class is named ROEdit. You can use
ROEdit controls just as you would use edit controls. The only difference is that
you must be certain to load ROEDIT.DLL with a call to LoadLibrary before you
create any ROEdit controls, as shown in Figure 7-5 on page 220.

•••••••• *** •• **********.**********.*********.* •• ***************.*****.********

NMAKE description for ROEDIT.DLL

#** •• *****.**** •• **** •• **** •••••••• *** •• **** ••••••••••••••••••••• * ••••••••• ** ••

. c.obj:
cl IAMw /c /D _WINDOWS ID _WINDLL IG2sw IOsw IW4 /Zlp $*.c

ALL: roedit.dll

init.obj: init.c roedit.h

roedit . obj : roedit.c roedit.h

wep.obj: wep.c

roedit'dll: init.obj roedit.obj wep.obj roedit.def
link lal:16 Inod Inoe libentry init roedit wep, roedit.dll, , \

libw mdllcew, roedit.def
rc roedit. dll

Figure 7·4. (continued)
Source code for ROEDIT.DLL.

214

7: PROBLEMS AND SOLUTIONS

Figure 7-4. continued

f··· ..••...•••...••....•.....

• lNlT.C

.. ,
'define NOCOMM
iinclude
• include

<windows.h>
"roedit.h"

I· •• GLOBAL VARIABLES ••• I

HANDLE
FARPROC
static char

hDLLlnst;
pDefEditWndFn;
szROEditClass [] = II ROEdit n ;

I··· FUNCTION PROTOTYPES ···1
BOOL PASCAL FAR LibMain(HANDLE, WORD, WORD, LPSTR);

static BOOL RegisterEditSubclass (HANDLE);

,•..

• LibMain

...................••..•............•... ,
BOOL PASCAL FAR
LibMain(HANDLE hlnst, WORD wDS, WORD wHeapSize, LPSTR lpCmdTail)
{

BOOL bRVal;

I· if LibEntry has called Locallnit, unlock the default data segment *f
if(wHeapSize)

UnlockSegment(wDS)i

f* save the DLL instance handle in a global variable ·1
hDLLlnst = hlnst;

(continued)

215

Windows: Developer's Workshop

Figure 7-4. continued

/* register window classes */
bRVal = RegisterEditSubclass(hlnst);

return bRVal;

/** •• ***.*.***** •• ** •••• ** •• *

* RegisterEditSubclass
Returns TRUE if the filter function is successfully registered.

***************.***************************.**********************************/

static BOOL RegisterEditSubclass(HANDLE hLiblnst)
{

216

BOOL
WNDCLASS

bRVal = FALSE;
WCi

if(hLiblnst)
{

/* get default WNDCLASS values for the edit class */
GetClasslnfo(0, "Edit", &wc);

/* save the address of the edit class window function */
pDefEditWndFn (FARPROC)wc.lpfnWndProc;

wc.hlnstance
wc.lpszClassName
wc.lpfnWndProc
wc~style

= hLiblnsti
= szROEditClass;
= ROEditWndFn;
l= CS_GLOBALCLASS:

bRVal = Register Class ('wc);

return bRVali

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7-4. continued

/** •• **************** •• ********* •• **** ••• ** •• *********--_.*_ •••••• - •••• _-_. __ .-

• ROEDIT.C

• Exports: ROEditWndFn

************.******.********************************** •• __ •• __ ._ •• _ •••••••• _ •• /

#define NOCOMM
#include
#include

<windows.h>
"roedit.h"

1*·· FUNCTION PROTOTYPES ··*1

static void MsgKeyDown (HWND, WORD);

1*·· GLOBAL VARIABLES *·*1

extern FARPROC pDefEditWndFn; 1* (defined in INIT.C) *1

1·····_·_·················_··*·_·················_· __ · -_•.... _.*-* •••••••
* ROEditWndFn

. __ ._ .. _-**._-*_ .. _ .. * •• *.**- •••••• * •• _ •• _ •• *._* ••• -* •• * ••••• _ •• *--_ •• *._* •• /

LONG PASCAL FAR
ROEditWndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG IParam)
{

LONG
BooL

IRVal = OLi
bCWP = FALSE;

switch(wMsg)
{

case mCKEYDOWN:
case WM_CHAR:
case WM_MOUSEMOVE :
case WM_LBUTTONDOWN:
case WM_RBUTTONDOWN:
case WM_RBUTTONUP:

1* trap all these messages *1

(continued)

217

Windows: Developer's Workshop

Figure 7-4. continued

case WM_MBUTTONDOWN:
case WM_MBUTTONUP:

break;

case WM_SETCURSOR: ,. trap client-area messages .,
bCWP = (LOWORD (IParam) ! = HTCLIENT);
break:

default:
bCWP = TRUE;
break:

if(bCWP)
lRVal = CallWindowProc(pDefEditWndFn, hWnd, wMsg, wParam, lParam);

retum lRVal;

/ •••••••• * •••• * ••••••••• * •••••••••• * •••••••••••••••••••••• ** •••• *** ••• * •••••••

.. WEP.C

.. Exports: WEP RESIDENTNAME

.** ••• * ••••••• * •••••••••••••••••••••••• * •••••• * •••••••••••••••••••••••••••••• ,

#define NOCOMM
#include <windows.h>

/ ••• FUNCTION PROTOTYPES ••• ,

int PASCAL FAR WEP(int);

(continued)

218

7: PROBLEMS AND SOLUTIONS

Figure 7·4. continued

/ •••• ** •••••••••• ** ••••• *** •••••••••••• *** ••••••••••••••••• - ••••••••••••••••••

* WEP

....................................• -....................•.................. ,
int PASCAL FAR WEP (int nParam)
{

return 1;

, ... __

* ROEDIT.H

.........................• __•............................. , ,* defined in ROEDIT.C *,
LONG PASCAL FAR ROEditWndFn (HWND, WORD, WORD, LONG);

;

; ROEDIT.DEF module-definition file

i···•.......

LIBRARY
DESCRIPTION
EXETYPE

CODE
DATA

HEAPSIZE

SEGMENTS

EXPORTS

ROEDIT
'ROEDIT version 1.0'

WINDOWS

LOADONCALL MOVEABLE DISCARDABLE
PRELOAD MOVEABLE SINGLE

o

INIT_TEXT
WEP_TEXT

WEP
ROEditWndFn

PRELOAD DISCARDABLE
PRELOAD FIXED

@1 RESIDEN'l'NAME
@2

219

Windows: Developer's Workshop

int PASCAL
WinMain(HANDLE hInst, HANDLE hPrevInst,

LPSTR lpCmdLine, int nCmdShow

HWND hWnd;
MSG msg;
HANDLE hDLL;

/* load the library and verify the returned handle */
hDLL = LoadLibrary("ROEDIT.DLL");
if(hDLL < 32)

return 0;

/* continue with the usual Windows processing */
hWnd = Init(hInst, hPrevInst, nCmdShow);
if(!hWnd)

return 0;

while(GetMessage(&msg, 0, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

/* free the library */
FreeLibrary(hDLL);

return msg.wParam;

Figure 7·5.
Loading and unloading the ROEDIT.DLL library in an application that uses the
ROEdit class.

ROEdit is implemented by filtering keyboard and mouse messages before they
are processed by the default edit-class window function. The function ROEdit
WndFn passes all other messages unchanged to the default edit-class window
function, whose address is stored in a global variable by the RegisterEditSubclass
function when the DLL is initialized.

The subclass window function, ROEditWndFn, looks straightforward, but ac
tually a bit of magic is involved in its construction. Microsoft does not document
how the default edit control's window function processes messages. In the case
of ROEditWndFn, the magic lies in the ad hoc assumption that the way to create

220

7: PROBLEMS AND SOLUTIONS

a read-only control is to trap all keyboard and mouse input messages. This seems
reasonable, but you must actually try it to be sure that the default edit-class win
dow function is not carrying out some invisible, yet essential, action in response
to one of the messages trapped in ROEditWndFn.

Owner-Draw Controls
Another technique for wringing new functionality out of the predefined control
classes is to use owner-draw control styles. Owner-draw controls appeared in a
somewhat different form in OS/2 Presentation Manager before they were in
troduced in Windows version 3.0. In Windows, owner-draw styles are supported
for list-box, combo-box, and button controls, as well as for menus. The principle
behind owner-draw controls is simple: Whenever Windows wants to change the
appearance of a control with an owner-draw style, it sends a WM_DRAWITEM
message to the control's owner-that is, its parent window. It is then up to the
owner to redraw the control using the appropriate data, font, graphics, or colors.

Processing .he WM_DRAWITEM Message
Owner-draw controls are valuable because they let an application determine
both the appearance and the actual data displayed for each item in a control. An
owner-draw control accomplishes this by sending a WM_DRAWITEM message
to its owner for each item to be displayed. Each WM_DRAWITEM message is
associated with a DRAWITEMSTRUCT data structure, which contains a 4-byte
value (itemData) that identifies the data item to be displayed. How you use item
Data depends on the application-itemData might contain a pointer to a string
for text data, an RGB value for a color, or a handle to a GDI object. The DRAW
ITEMSTRUCT also contains a device-context handle (hDC) and an update rect
angle (re/tem) so that the owner can update the appropriate part of the control's
client area.

A key element in each WM_DRAWITEM message is a set of flags contained in
two variables in the DRAWITEMSTRUCT structure. These flags indicate whether
a data item needs to be repainted in its entirety or whether the data item should
be repainted to reflect its selection status or a change in focus. The itemAetion
flags, shown in Figure 7-6 on the following page, inform the owner of an action
that has changed the state of a data item. The itemState flags, shown in Figure
7-7 on the following page, describe the new state of the item. The owner should
refer to the itemAetion and itemState flags to redraw the data item so that its vi
sual appearance reflects its new state.

221

Windows: Developer's Workshop

"ag

ODA_DRAWENTIRE

aDA_FOCUS

aDA_SELECT

Figure 7-6.

MeanIng

The entire data item needs to be redrawn.
The data item needs to be redrawn to indicate that the

control has gained or lost the input focus.
The data item needs to be redrawn to indicate that it has

been selected or deselected.

Flags defined in the itemActionfield in a DRAWITEMSTRUCT data structure.

"ag

ODS_CHECKED

ODS_DISABLED

ODS_FOCUS

ODS_GRAYED

ODS_SELECTED

Figure 7-7.

MeanIng

The menu item is checked
The control is disabled
The control·has the focus
The menu item is grayed
The data item is selected

Flags defined in the itemState field in a DRAWITEMSTRUCT data structure.

The owner must also determine what data to display each time it processes a
WM_DRAWITEM message. The itemID variable in the DRAWITEMSTRUCT
structure contains an index value that indicates a data item's position in an
owner-draw control or menu. For list-box and combo-box controls, the item
Data value specifies the data item to display. An item's itemData value is deter
mined at the time the item is first added to the control with a CB-ADDSTRING,
LB_ADDSTRING, CB_INSERTSTRING, or LB_INSERTSTRING message.

It is easy to build an owner-draw control with an unusual appearance because
the owner determines exactly how each data item is displayed. For example, you
could build an owner-draw button that displays two custom bitmaps, one when
the button is pressed and another when it is not. You could also design a read
only list box control by using an owner-draw list box that does not highlight the
currently selected item.

222

7: PROBLEMS AND SOLUTIONS

Managing the Data
Owner-draw controls let you build list-box and combo-box controls that let the
control's owner directly manage. the list of data items displayed in the control.
You can use this technique to design controls that display data other than null
terminated strings. You can also build controls that display more data than can
be handled by Windows' built-in list box and combo box list-management
routines.

Imagine, for example, that you want to use a list-box control to browse a data
base of 5,000 items. Without using the owner-draw style, 5;000 items probably
represents more data than the list -box control can manage because the amount
of memory the control can use to store its data is limited. (The limit is a little less
than 64 KB in Windows 3.0.) With an owner-draw style, however, the control
can avoid this memory limitation by storing 4-byte data-item identifiers instead
of storing actual string data. When Windows sends the control's owner a
WM~RAWITEM message, it uses the itemData value in the accompanying
DRAWITEMSTRUCT data structure to identify the string to display.

The source code for ODLB.EXE, in Figure 7-8, shows how this is done. Each time
the application sends an LB.-ADDSTRING message to the list box, it specifies a
4-byte numerical identifier instead of a string pointer. When the application pro
cesses WM_DRAWITEM messages, it uses the 4-byte identifiers to synthesize
data strings on the fly. In a real Windows program, however, the strings might be
obtained from an application-specific source such as a database-management
system by using the itemData value to identify unique items. The sample appli
cation emulates the default appearance of a list -box control by using PatBlt and
DrawFocusRect in response to the itemAction and itemStatus flags, but this too
could be changed to meet the specific needs of a real application.

#** •• ***********************************

NMAKE description for ODLB.EXE

#***

.c.obj:
cl lAM Ic IG2sw IOsw IW4 /Zlp $*.c

Figure 7·8. (continued)
Source code for ODLB.EXE.

223

Windows: Developer's Workshop

Figure 7·8. continued

ALL: odlb.exe

odlb.obj: odlb.c

odlb.exe: odlb.obj odlb.def
link lal:16 Inod Inoe odlb, , , libw mlibcew, odlb.def
rc odlb.exe

1*** *************************

* ODLB.C

* Exports: TopLevelWndFn

** ***********************·1

#define
#include

#define
#define

NOCOMM
<windows.h>

IDLISTBOX
IMAX

Ox1000
5000

1*** FUNCTION PROTOTYPES ***/

LONG PASCAL FAR TopLevelWndFn (HWND, WORD, WORD, LONG);

static HWND
static void
static void

Init (HANDLE, HANDLE, int);
MsgCommand (HWND, WORD, LONG);
MsgDrawItem (HWND, LPDRAWlTEMSTRUCT);

1** * GLOBAL VARIABLES * * it 1

char
char
HANDLE

224

szTopLevelClass[] = "ModStat:TopLevel";
szAppTitle[] = "OWner-Draw ListBox";
hInstance = 0;

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·8. continued

/ •• ********************** •••• ******** ••• **** ••• *** •• ** •••• ** •••• * •••••• * •••••••

* WinMain

•••• ***.*** ••• *****.* ••••• *** •••• * •••••••••• * •••••••••••••••••••••• ** ••••••••• /

int PASCAL
WinMain (HANDLE hInst, HANDLE hPrevInst, LPSTR lpszCmdLine, int nCmdShow)
{

HWND
MSG

hWnd;
msg;

hWnd = Init(hInst, hPrevInst, nCmdShow);
if (!hWnd)

return 0;

while(GetMessage(&msg, 0, 0, 0))
{

TranslateMessage(&msg);
OispatchMessage(&msg);

return msg.wParami

1*··****·*'***""*··"'*··"*·'*'*···**"*·*********· .**.* •• ****.t** ••• *.***.*

• Init

*t****t******.********.*****.*******************.* •• ** ••• **.* •• *.*' •• **"*****1

static HWND Init (HANDLE hInst, HANDLE hPrevInst, int nCmdShow)
{

WNOCLASS
HWND
int
LONG

wc;
hWnd, hListBox;
n:
lRVali

if(0 == hPrevlnst)
{

1* register the top-level window class *1

wc.lpszClassName = szTopLevelClass;
wc.hInstance = hInst;

(continued)

225

Windows: Developer's Workshop

Figure 7·8. continued

wc.lpfnWndProc
wc.hCursor
wc.hlcon
wc .1pszMenuName
wc.hbrBackground
wc.style
wc.cbClsExtra
wc . cbWndExtra

= TopLevelWndFn;
= LoadCursor(0, IDC_ARROW);
= Loadlcon(0, IDI_APPLlCATION);
= NULL;
= COLOR_WINDOW+1:
= CS_HREDRAW : CS_VREDRAW;
= 0:
= 0;

if(!RegisterClass('wc)
return 0; 1* return 0 if unsuccessful *1

226

1* save the current instance handle in a global variable *1
hlnstance = hlnst;

1* create a top-level window *1
hWnd = CreateWindow(szTopLevelClass,

szAppTitle,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, 300, 320,
0,
0,
hlnstance,
NULL);

1* create an owner-draw listbox *1
hListBox = CreateWindow("ListBox",

fI" ,
WS_CHILD : WS_VISIBLE WS_BORDER WS_VSCROLL

fore n=O; n<IMAX: n++)
{

LBS_OWNERDRAWFlXED,
16, 16, 256, 256,
hWnd,
IDLISTBOX,
hlnstance,
NULL) ;

lRVal = SendMessage(hListBox, LB_ADDSTRING, 0, (LONG)n);
if(lRVal < 0)

break;

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·8. continued

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return hWnd;

/*****.**** •••• ********* ••• ************ ••• *.**********.*** •••• * •• *.************

• TopLevelWndFn

********* •••• ** •• ***.**.*****.*.******.***************************************/

LONG PASCAL FAR
TopLevelWndFn(HWND hWnd, WORD wMsg, WORD wParam, LONG IParam
{

LONG
BOOL

lRVal = OL;
bDWP = FALSE;

switch(wMsg)
{

case WM_DRAWlTEM:
MsgDrawltem (hWnd, (LPDRAWITEMSTRUCT) IParam);
break;

case WM_SETFOCUS:
SetFocus(GetDlgltem(hWnd, IDLISTBOX));
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
bDWP = TRUE;
break;

if(bDWP)
lRVal = DefWindowProc (hWnd, wMsg, wP aram , IParam);

return lRVal;

(continued)

227

Windows: Developer's Workshop

Figure 7·8. continued

* MsgDrawltem

** •• ***********./

static void MsgDrawltem(HWND hWnd, LPDRAWlTEMSTRUCT lpDIS)
{

228

char szBuf[32]i

/* if necessary, redraw the entire item */
if (ODA_DRAWENTlRE & lpDIS->itemAction)
(

/* clear the item rectangle */
PatBlt(lpDIS->hDC,

lpDIS->rcltem.left, lpDIS->rcltem.top,
lpDIS->rcltem.right - lpDIS->rcltem.left,
lpDIS->rcltem.bottom - lpDIS->rcltem.top,
PATCOPY);

/* draw the output item */
wsprintf(szBuf, "This is item %ld", lpDIS->itemData);
TextOut(lpDIS->hDC,

lpDIS->rcltem.left, lpDIS->rcltem.top,
szBuf, lstrlen(szBuf));

/* invert the item rectangle if the item is selected */
if(ODS_SELECTED & lpDIS->itemState)

PatBlt(lpDIS->hDC,
lpDIS->rcltem.left, lpDIS->rcltem.top,
lpDIS->rcltem.right - lpDIS->rcltem.left,
lpDIS->rcltem.bottom - lpDIS->rcltem.top,
DSTINVERT);

/* draw a focus rectangle if the item has the input focus */
if(ODS_FOCUS & lpDIS->itemState)

DrawFocusRect(lpDIS->hDC, &lpDIS->rcltem);

else

/* invert the item if the selection state is changing */
if(ODA_SELECT & lpDIS->itemAction)

PatBlt(lpDIS->hDC,
lpDIS->rcltem.left, lpDIS->rcltem.top,

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·8. continued

lpDIS->rcItem.riqht - lpDIS->rcItem.left,
lpDIS->rcItem.bottom - lpDIS->rcItem.top,
DSTINVERT);

I· redraw a focus rectanqle if the focus state is chanqinq ·1
if(ODA_FOCUS & lpDIS->itemAction)

DrawFocusRect(lpDIS->hDC, &lpDIS->rcItem);

; ••••••• *** ••••••••••••••••• ** ••••••••• *** ••••••••••••••••••••••••••••••••••••

; ODLB.DEF module-definition file

; .. .

NAME
DESCRIPTION
EXET'YPE
STUB

CODE
DATA

SEGMENTS

HEAPSIZE
STACKSIZE

EXPORTS

ODLB
, ODLB. EXE version 1 .0'

WINDOWS
'WINSTUB.EXE'

MOVEABLE LOADONCALL DISCARDABLE
MOVEABLE MULTIPLE PRELOAD

_TEXT MOVEABLE PRELOAD DISCARDABLE

1024
5120

TopLevelWndFn

Using System Commands
The WM_SYSCOMMAND message is a general-purpose message that Windows
uses to change a window's size or position. Windows sends a window a
WM_SYSCOMMAND message when you select the Restore, Move, Size, Mini
mize, Maximize, or Close command from the window's system menu. Windows
also sends WM_SYSCOMMAND when you click the mouse in the window's
non-client area or when you use key combinations such as Alt-Spacebar to select
a menu or Alt -Esc t9 switch between application windows.

229

Windows: Developer's Workshop

Message Subtype Corresponding Parameters
(wParamJ System-Menu

Selection,
Keypress, or
Mouse Action

SC_SIZE Size Bits 0-3 of wParam:
0: use keyboard to size the

window
1: mouse on left border
2: mouse on right border
3: mouse on top border
4: mouse on upper left corner
5: mouse on upper right corner
6: mouse on bottom border
7: mouse on lower left corner
8: mouse on lower right corner

SC_MOVE Move Bits 0-3 of wParam:
0: use keyboard to move the

window
2: use mouse to move the window

SC_MAXIMIZE Maximize Bits 0-3 of wParam:
2: mouse double-click on title bar

SC_MINIMIZE Minimize

SC_NEXTWINDOW Alt-Esc (activate next
window)

SC_CLOSE Close

SC_VSCROLL Click on vertical scroll
bar

SC_HSCROLL Click on horizontal
scroll bar

SC_MOUSEMENU Click on control-menu Bits 0-3 of wParam:
box 3: mouse on control-menu box

SC_KEYMENU Alt -Spacebar

SC_RESTORE Restore Bits 0-3 of wParam:
2: mouse double-click on title bar

SC_ TASKLIST Ctrl-Esc (display "Task lParam:
List" window) Cursor position as

MAKELONG(x,y) or OL

Figure 7·9.
UI'M_SYSCOMMAND message types in wParam. Bits 4-15 of wParam contain
the message subtype. Bits 0-3 of wParam can contain a mouse hit-test code.

230

7: PROBLEMS AND SOLUTIONS

WM_SYSCOMMAND Subtypes
Windows 3.0 supports 13 message subtypes for WM_SYSCOMMAND. Each sub
type corresponds to a different action, as shown in Figure 7-9. The subtype
values occupy the high-order 12 bits of wParam. In most cases, the low-order 4
bits of wParam are unused. However, when a WM_SYSCOMMAND message is
generated by clicking the mouse on a window's non-client area, the low-order 4
bits contain a non-zero hit-test code that specifies where the mouse was clicked.
To determine the subtype of a WM_SYSCOMMAND message, examine only the
12 high-order bits of wParam, as follows:

if(SC_SIZE == (wParam & OxFFFO))

Filtering WM_SYSCOMMAND Messages
Most window functions pass WM_SYSCOMMAND messages to the default win
dow function, DejWindowProc, which does the necessary moving, resizing, and
closing. If you process WM_SYSCOMMAND in a window function, you can alter
the functions of a window's system menu. For example, you can create a window
that is always maximized by filtering the WM_SYSCOMMAND messages that
correspond to the Minimize, Restore, Size, and Move system menu commands, as
shown in Figure 7-10.

LONG PASCAL FAR
MaxedWndFn (HWND hWnd, WORD wMsg, WORD wParam, LONG lParam)
{

BOOL bDWP = FALSE;
LONG lRVal = OL;

switch(wMsg)
{

case WM_SYSCOMMAND:
switch(wParam & OxFFFO
{

case SC_SIZE:
case SC_MOVE:
case SC_MINIMIZE:
case SC_RESTORE:

bDWP = FALSE;
break;

Figure 7·10. (continued)
A window function that filters lVM_SYSCOMMAND messages to keep a window
maximized.

231

Windows: Developer's Workshop

Figure 7-10. continued

default:
bDWP = TRUE;
break;

break;

1* (other message processing) *1

if(bDWP)
lRVal = DefWindowProc(hWnd, wMsg, wParam, lParam);

return lRVal;

Emulating System Commands
You can emulate the functions of a window's system menu by synthesizing
WM_SYSCOMMAND messages and sending them to DefWindowProc. To do
this, send or post a WM_SYSCOMMAND message to the window, with wParam .
set to the message subtype that corresponds to the action you want Windows to
carry out. For the SC_MOVE and SC_SIZE subtypes, you should also set bits 0
through 3 of wParam to indicate whether to emulate a mouse action or a key
board action.

Imagine, for example, that you want to create a child-window control that can be
moved within its parent's client area without using a system menu, a title bar, or
a thick frame. The way to do this is to post WM_SYSCOMMAND messages with
the SC_MOVE type. If bits 0 through 3 contain 0 as they do in the following func
tion call, the default window function displays a four-arrow cursor and uses key
board input to move the window:

PostMessage(hWnd, WM_SYSCOMMAND, SC_MOVE, OL);

If bits 0 through 3 of wParam contain the value 2, the default window function
processes the message as if it had been generated by clicking on a window's title
bar so that the user can move the window by dragging it with the mouse:

PostMessage(hWnd, WM_S YS COMMAND , SC_MOVE : Ox0002, OL);

A good time to post this message is in response to a WM_SETCURSOR or
WM_LBUTTONDOWN message, as you will see in the next source-code
example.

232

7: PROBLEMS AND SOLUTIONS

Customizing the Non-Client Area
Few Windows programs contain windows that paint their own non-client areas.
For a window with a standard non-client area, the default window function Def
WindowProc processes the WM_SETCURSOR messages that correspond to
mouse activity in the window's non-client area, sends WM_SYSCOMMAND
messages as needed for sizing and moving the window, and responds to
WM_NCPAINT by repainting the window's non-client area. To customize a win
dow's non-client area, your window function must process non-client area mes
sages that would otherwise be handled by DefWindowProc.

The source code for ROUND.EXE, shown in Figure 7-11, illustrates some of the
techniques involved in working with a window's non-client area. The program
creates a set of nine round child windows that can be moved by dragging with
the mouse, as shown in Figure 7-12 on page 243. The round appearance is an il
lusion-the windows are actually rectangular windows with a rectangular non
client area large enough to contain a circular border. To support the illusion, the
window function RoundWndFn hit-tests and paints its non-client area by pro
cessing WM_NCCALCSIZE, WM_NCPAINT, and WM_SETCURSOR messages. In
a window that did not manage its own non-client area, these messages would
normally be passed through to DefWindowProc.

•• *** ••• ******* •••••••••• **** •• **** ••••••• ** •••••• *****.** •••• ** ••••• ** •• ***.

NMAKE description for ROUND.EXE
,.** ** ••• * ••••••••• ** ••••

. c.obj:
cl /AM /c /G2sw /Osw /W4 /Zlp $*.c

ALL: round. exe

round.obj: round.c round.h

wndround.obj: wndround.c round.h

round. res: round.rc round.ico round.h
rc /r round.rc

Figure 7·". (continued)

Source code for ROUND.EXE.

233

Windows: Developer's Workshop

Figure 7-11. continued

round.exe: round.obj wndround.obj round. res round.def
link /al:16 /nod /noe round wndround, , , libw mlibcew, round.def
rc round. res

/.***

* ROUND.C

* Exports: TopLevelWndFn

**/

#define NOCOMM
#include
#include

<windows.h>
"round.h"

/ •• * FUNCTION PROTOTYPES ***/

LONG PASCAL FAR TopLevelWndFn (HWND, WORD, WORD, LONG) i

static HWND Init (HANDLE, HANDLE, int);

/*** GLOBAL VARIABLES ***/

char
char

szTopLevelClass[]
szRoundWndClass[]

= "Round:TopLevel";
"Round: Child" ;

/**.*****************

.* WinMain

******.** ••• **** •• *** ••••••••• * ••• * ••• /

int PASCAL
WinMain(HANDLE hInst, HANDLE hPrevInst, LPSTR lpszCmdLine, int nCmdShow)
{

234

HWND
MSG

hWnd;
msg;

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7-11. continued

hWnd = Init(hlnst, hPrevInst, nCmdShow);
if(!hWnd)

return 0;

while(GetMessage(&msg, 0, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.wParam;

/ •• ********* •• ********************* •• *** •• ***** •• *** •• ****.*******.***.********

* Init

**** •• ***.***************************************.*************** •••• *********/

static HWND Init (HANDLE hInst, HANDLE hPrevInst, int nCmdShow)
{

WNDCLASS
HWND
int
char

WCi

hWnd, hChild;
n;
szTitle[6];

if(0 == hPrevInst)
{

1* register the top-level window class *1
wc.lpszClassName szTopLevelClass;
wc.hInstance = hInst;
wc.lpfnWndProc = TopLevelWndFn;
wc.hCursor = LoadCursor(0, IDC_ARROW);
wc.hlcon LoadIcon(hlnst, "Roundlcon");
wc.lpszMenuName NULL;
wc.hbrBackground = COLOR_WINDOW+1i
wc.style = CS_HREDRAW l CS_VREDRAW;
wC.cbClsExtra 0;
wc.cbWndExtra = 0;

if(!RegisterClass(&wc)
return 0; 1* return 0 if unsuccessful *1

(continued)

235

Windows: Developer's Workshop

Figure 7-11. continued

/* register the round window class *1
wc.lpszClassName = szRoundWndClassi
wc.hInstance = hInst:
wc.lpfnWndProc = RoundWndFn;
wc.hCursor = LoadCursor(0, IDC_ARROW);
wc.hIcon = 0:
wc.lpszMenuName = NuLL:
wc.hbrBackground = 0;
wc.style = 0:
wC.cbClsExtra = 0;
wc.cbWndExtra = 0:

if(!RegisterClass(&wc)
return 0; /* return 0 if unsuccessful *1

236

/* create the top-level window */
hWnd = CreateWindow(szTopLevelClass,

"Round Windows",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, 220, 240,
0,
0,
hInst,
NULL);

/* create nine round child windows */
fore n=O; n<9; n++)
(

hChild = CreateWindow(szRoundWndClass,
It" ,
WS_CHILD I WS_VISIBLE,
(n%3) *64+12, (n/3) *64+12, 60, 60,
hWnd,
0,
hlnst,
NULL);

wsprintf(szTitle, n%04X", hChild);
SetWindowText(hChild, szTitle);

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7-11. continued

/* display the top-level window */
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return hWnd;

/*** •• *********************.* •••• ******

* TopLevelWndFn

.********.***************** •• *.******.*.******.****.** •• ***.******** •••••• ** •• /

LONG PASCAL FAR
TopLevelWndFn (HWND hWnd, WORD wMsg, WORD wP aram. , LONG IParam.)
{

LONG
BooL

lRVal = OL;
bDWP = FALSE;

switch(wMsg)
{

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
bDWP = TRUE;
break;

if(bDWP
lRVal = DefWindowProc(hWnd, wMsg, wParam., lParam.);

return lRVal;

(continued)

237

Windows: Developer's Workshop

Figure 7-11. continued

I"··"'·'··"'··"'···"'·'·"····"···""·""'·'" •••••••••••••••••••••••••

• WNDROOND.C

• Exports: RoundWndFn

.. ·"'···"'···"····"···1
#define
#include
#include

NOCOMM
<windows.h>
"round. hI!

I··· FUNCTION PROTOTYPES '··1

static void MsgPaint (HWND);
static void MsgNCPaint (HWND);
static void OrawRoundFrame (HWND):

I'" GLOBAL VARIABLES ••• I

static OWO:RO dwBorderColor = :RGB(OxFF,OxOO,OxOO):
= RGB (OxFF, OxFF, OxFF) ;
= :RGB(OxOO,OxOO,OxFF):

static DWO:RO dwFgdColor
static DWO:RO dwBkgdColor

I' red ·1
,. white .,
I' blue ·1

I'··········"'···"'··"'····'·'···"····"··"'···"
•
• RoundWndFn

.. ,
LONG PASCAL FAR

.... R()u.lldW.Il~I1C ~hWnd,.WO:RO wMs9, WO~. wParilllll. LONC;.l:P.aJ:~J
{

238

LONG
BOOL
RECT
HWND
int

lRVal = OL;
bOWP = FALSE;
recti
hParent;
nDiff;

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·11. continued

switch(wMsg)
{

case WM_NCCALCSIZE:
nDiff = -3*GetSystemMetrics(SM_CXFRAME);
InflateRect((LPRECT)lParam, nDiff, nDiff);
break;

case WM_PAINT:
MsgPaint (hWnd);
break;

case WM_ERASEBKGND:
lRVal = TRUE;
break;

case WM_NCPAINT:
MsgNCPaint (hWnd);
break;

case WM_SETCURSOR:
if (HTCLIENT ! = LOWORD (lParam)
{

switch(HIWORD(lParam)
{

case WM_LBOTTONDOWN:
PostMessage(hWnd, WM_SYSCOMMAND, SC_MOVE Ox0002, OL);
break;

default:

else

SetCursor(LoadCursor(0, IDC_CROSS));
break;

bDWP = TRUE;

break:

case WM..MOVE:
GetWindowRect (hWnd, &rect);
hParent = GetParent (hWnd);
ScreenToClient(hParent, (LPPOINT)&rect.left);
ScreenToClient(hParent, (LPPOINT)&rect.right);
InvalidateRect (hParent, &rect I TRUE);
break;

(continued)

239

Windows: Developer's Workshop

Figure 7-11. continued

default:
bDWP = TRUE;
break;

if(bDWP)
lRVal = DefWindowProc (hWnd, wMsq, wParam, lParam);

/* display the most recently moved child window last */
if((~SYSCOMMAND == wMsq) && «SC_MOVE Ox0002) == wParam)

SetWindowPos(hWnd, 1, 0, 0, 0, 0,
SWP_NOMOVE SWP_NOSIZE SWP_NOREDRAW) i

return lRVali

1·****·*·*···*··*··***···_·**··_·······*·········**·*·*** ••• *.* •••••••• _* ••••• *

• MsqPaint

* ••• * ••••••• ** ••• ****.*** •••• *** •••• **.** •••••••••••• * ••• **.* •• *.** •• *.*.*****/

static void MsgPaint (HWND hWnd)
{

HDC hOC;
PAINTSTRUCT ps;·
RECT
char

recti
szText[6]:

hOC = Beqinpaint (hWnd, &ps);

/* show the window text */
GetWindowText(hWnd, szText, sizeof szText);
GetClientRect(hWnd,&rect);

240

SetTextColor(hOC, dwFqdColor):
SetBkColor(hOC, dwBkgdColor);
DrawText(hOC, szText, lstrlen(szText),

DT_SINGLELlNE DT_CENTER

EndPaint(hWnd, &ps)i

&rect,
DT_ VCENTER);

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·' ,. continued

/*** •• ********* •• *********.************.*** ••••••••••• *.*.** •••• ***.* ••• **** •••

* MsgNCPaint

.**** ••••••••• ************** •••••••• ** ••••• ** ••• ***** ••••••• ** •••••••••••••••• /

static void MsgNCPaint(HWND hWnd)
{

DrawRoundFrame (hWnd);
InvalidateRect(hWnd, NULL, TRUE);
UpdateWindow(hWnd);

* DrawRoundFrame

* Note: This routine also fills the client area
with the background brush .

•• *** •• **** •• ****** •• ***.**** •• ** •••••••••••••••••••••••• ********************./

static void DrawRoundFrame (HWND hWnd)
{

HOC
RECT
HBRUSH
HPEN

hOC;
recti
hBrush;
hPen;

hOC = GetWindowDC (hWnd);
GetWindowRect(hWnd, &rect);
OffsetRect(&rect, -rect.left, -rect.top);

/* draw a non-client ellipse */
hBrush = CreateSolidBrush(dwBkgdColor);
hBrush = SelectObject (hOC, hBrush);
hPen = CreatePen(PS_INSIDEFRAME,

GetSystemMetrics (SM_CXFRAME),
dwBorderColor);

hPen = SelectObject(hOC, hPen);

Ellipse(hOC, rect.left, rect.top, rect.right, rect.bottom);

(continued)

241

Windows: Developer's Workshop

Figure 7·11. continued

hPen = SelectObject(hOC, hPen);
DeleteObject(hPen);
hBrush = SelectObject (hOC, hBrush);
DeleteObject(hBrush);

ReleaseDC(hWnd, hOC);

I···••.....•...•••...
•
• ROUND.RC resource script

•••• *** ••• ** •• ** •••••••••••• ** ••••••••••••••••••• ** ••••••••••• ** •••••••• ****./

/. icons ·1
Roundlcon ICON round.ico

/ ..•...

• ROUND.S

.. ························1

I· defined in WNDROUND.C ·1
LONG PASCAL FAR RounclWndFn (HWND, WORD, WORD, LONG);

i··****··············**·····**··**·········**········· .** •••• * •••••••••••• ** ••

; ROUND.DEF module-definition file

i*······**·······**·········**························•.....

NAME
DESCRIPTION
EXETYPE

242

ROUND
I ROUND. EXE version 1 .0 I

WINDOWS

(continued)

Figure 7-11. continued

STUB

CODE
DATA

'WINSTUB.EXE'

MOVEABLE LOADONCALL DISCARDABLE
MOVEABLE MULTIPLE PRELOAD

7: PROBLEMS AND SOLUTIONS

SEGMENTS _TEXT MOVEABLE PRELOAD DISCARDABLE

HEAPSIZE
STACKSIZE

EXPORTS

Figure 7-12.

512
5120

TopLevelWndFn
RoundWndFn

Two instances of ROUND.EXE. Each child window displays its window handle.

Clienl-Area Size
Windows sends WM_NCCALCSIZE to a window function to obtain the bound
aries of the window's client area. The non-client area lies between the rectangle
that defines the outside of the window-that is, the window rectangle-and the
client area. In response to WM_NCCALCSIZE, DefWindowProc uses the win
dow's style to compute a client area that accommodates the window's border,
menus, scroll bars, and any other non-client area elements. However, in this sam
ple program, RoundWndFn processes WM_NCCALCSIZE explicitly by comput
ing a client area small enough to leave room for an ellipse with a fat border in
the non-client area.

243

Windows: Developer's Workshop

Painting
To paint the non-client area, RoundWndFn processes the WM_NCPAINT mes
sage. This action consists only of drawing an ellipse whose border lies within
the window's non-client area. RoundWndFn takes a shortcut by relying on the
Ellipse function (which is called by DrawRoundFrame) to paint the window's
client-area background at the time WM_NCPAINT is processed, so the
WM_ERASEBKGND message can be trapped and not processed. In a different
application, however, you may need to paint the client-area background by pass
ing WM_ERASEBKGND to DefWindowProc or by processing the message
explicitly.

Hit Testing
The WM_SETCURSOR case in RoundWndFn carries out hit testing for the round
child windows. When a WM_SETCURSOR message indicates that the user has
pressed the left mouse button in a child window's non-client area, RoundWndFn
sends the child window a WM_SYSCOMMAND message that causes Windows to
let the user move the window with the mouse.

In response to other WM_SETCURSOR messages in the non':'client area, Round
WndFn displays a cursor whose shape depends on its position in the child win
dow. The hit-test code in the low-order word of /Param indicates whether the
cursor lies in the window's client area. If the cursor does not lie in the window's
client area, RoundWndFn assumes it is located over the non-client area and calls
SetCursor to display a crosshair cursor. If the cursor does lie in the client area,
RoundWndFn calls DefWindowProc, which displays the class cursor, the
default arrow.

If you use the crosshair cursor to trace the outline of the non-client area of each
round child window, you will see that the non-client area is not round but rect
angular. Therefore, the hit testing in RoundWndFn isn't really accurate. To do it
right, you would need to examine the cursor coordinates each time the left
mouse button is pressed in the non-client area and determine whether the cur
sor lies not only within the window's non-client area but also within the elliptical
window border.

Overlapping and Clipping
Although the child windows in ROUND.EXE appear round, Windows overlaps
them and clips them as rectangular windows. You can demonstrate this byad
ding the WS_CLIPSIBLINGS style to the CreateWindow call that creates the

244

7: PROBLEMS AND SOLUTIONS

round child windows. When you do this, you can see how Windows clips each
child window by using the child's window rectangle. The application supports
the illusion that the child windows are round by explicitly repainting child win
dows rather than using the WS_CLIPSIBLINGS style. For this strategy to work,
however, RoundWndFn must call SetWindowPos to place the most-recently ac
cessed child window at the end of the window manager's list of child windows.
This causes the most-recently accessed child window to be painted last.

This seems straightforward, but it leads to subtle problems with hit testing and
painting overlapping windows. You can verify this by experimenting with
ROUND.EXE. You could attempt to remedy these problems by explicitly
enumerating the window manager's list of child windows and by doing your
own hit testing and painting, but it is best to avoid such problems altogether by
using only rectangular windows and letting the window manager do the work.

Handling Asynchronous Events
In any microcomputer, a variety of events occur asynchronously-that is,
without being synchronized with whatever the CPU happens to be doing at the
moment the event occurs. Events such as hardware timer ticks, key presses,
mouse movements, and receipt of data through a serial communications port
almost always occur at times when the CPU is not idle. Such events are typically
signaled through hardware or software interrupts. The CPU processes an inter
rupt by transferring control to a special-purpose function called an interrupt
handler, which carries out some specific action in response to the event.

In Windows, nearly all asynchronous events are managed by interrupt handlers
contained in device drivers installed at the time the Windows environment is ini
tialized. For example, KEYBOARD.DRV, MOUSE. DR V, and COMM.DRV contain
interrupt handlers for the interrupts generated by keyboard, mouse, and serial
communications activity. Although such device drivers take care of the vast ma
jority of asynchronous events, there are situations in which an application or a
DLL must handle asynchronous events on its own. A typical example is a DLL
that uses the NetBIOS local-area network communications interface.

NelBIOS in Windows
NetBIOS is a protocol developed by IBM for communicating on local-area net
works. NetBIOS is supported by a number of software vendors, including IBM,
Microsoft, and Novell. Programs running in MS-DOS, OS/2, and Windows can
use NetBIOS to communicate across local-area networks. The next few para-

245

Windows: Developer's Workshop

graphs describe how to access NetBIOS in a Windows program. If you aren't
already familiar with the NetBIOS protocol, you can find it described in IBM's
LAN Technical Reference manual (document #SC30-3383) as well as in a number
of books on local-area network programming.

To execute a NetBIOS command, you first initialize a data structure called a Net
work Control Block (NCB) with a predefined set of parameters, as shown in
Figure 7-13. You then pass the NCB's address to NetBIOS, which carries out the
command. In a non-Windows program running under MS-DOS, you call Net
BIOS by placing the address of an NCB in registers ES and BX and executing
software interrupt 5CH. In Windows, you call an API function, NetBIOSCall, in
stead of executing the software interrupt, as shown in Figure 7-14. The result is
the same: NetBIOS carries out the command and returns control to the calling
program.

typedef struct
{

/* NetBrOS control block */

BYTE cCommand;
BYTE cRetcode;
BYTE cLSN;
BYTE cNum;
LPSTR lpBuffer;
WORD wLength;
BYTE cCallName[16];
BYTE cName[16];
BYTE cRTO;
BYTE cSTO;
FARPROC fnPost;
BYTE cAdapterNum;
BYTE cCmdCplt;
BYTE cReserved[14];

NCB;

Figure 7·'3.

/* command code */
/* return code */
/* local session number */
/* number of name in local name table */
/* message buffer address */
/* message buffer length */
/* local or remote NetBrOS name */
/* local NetBrOS name */
/* receive timeout count */
/* send timeout count */
/* address of post routine */
/* O=1st adapter; 1=2nd adapter */
/* command status */
/* reserved area */

A C-language declaration for a NetBIOS Network Control Block (NCB).

Because network data transmissions can take several seconds to execute, Net
BIOS lets an application initiate network transactions without waiting for them to
complete. When a prolonged network transaction completes, NetBIOS notifies
the program by calling a post routine, a user-defined function whose address is
passed to NetBIOS by the program when it initiates a transaction.

246

7: PROBLEMS AND SOLUTIONS

Caller:
int PASCAL FAR _NETInt(NCB FAR * lpNCB);

EXTRN NETBIOSCALL:far

PUBLIC _NETINT
PROC far

push bp
mov bp,sp

les bx, [bp+6] ES:BX -> NCB
call NETBIOSCALL

xor ah,ah AX = return value

pop bp
ret 4

ENDP

Figure 7-14.
Using NetBIOSCall in Windows version 3.

Consider, for example, how a Windows program might use NetBIOS to receive a
packet of data from another computer on a local-area network. The program ini
tiates the process of receiving a packet of data by calling the NetBIOS
NCB.RECEIVE command. The NCB used for this call contains the address of a
post routine and the address of a buffer to be used to contain the received data.
NetBIOS processes the NCB.RECEIVE command by starting to wait for a data
packet. The call to NetBIOS returns immediately, so the program can continue
executing while NetBIOS waits for data to arrive. Later, when the data has been
received, NetBIOS calls the post routine to notify the program that the received
data is 'available.

An Asynchronous-Event Handler
The key to writing a NetBIOS post routine is to realize that the event that triggers
a call to the routine occurs asynchronously, outside of Windows' multitasking
and message-processing mechanisms. In order for the post routine to work, it
must notify a Windows program that an event has occurred without disrupting

247

Windows: Developer's Workshop

program task management or message flow. To accomplish this, the post routine
must place a message into an application's message queue with a call to
PostMessage or PostAppMessage.

The source code in Figure 7-15 contains a post routine, _NCBPost, that demon
strates how this can be done. When NetBIOS calls _NCBPost, registers ES:BX
contain a pointer to the NCB whose processing has just been completed. The
_NCBPost routine passes this pointer to PostNCBMessage, which uses the pointer
to obtain a window handle from a static table. PostNCBMessage then calls
PostMessage, which places a user-defined message into the appropriate message
queue. In this way, the asynchronously executed post routine notifies an applica
tion that NetBIOS processing for the NCB has completed.

This routine calls a C function defined as:
void PASCAL FAR PostNCBMsg(NCB FAR * lpNCB, int nCompletionCode)
{

PostMessage(...);

EXTRN POSTNCBMSG: far

PUBLIC _NCBPOST
_NCBPOST PROC far at entry: AL = completion code

AH = 0
ES:BX->NCB

pusha save all registers

push es push NCB address
push bx
push ax push completion code

call POSTNCBMSG call C routine
to call PostMessage

popa restore all registers
iret return to NetBIOS

_NCBPOST ENDP

Figure 7·15.
Source code for a NetBIOS post routine for Windows version 3.

248

7: PROBLEMS AND SOLUTIONS

The reason this design works is that PostMessage is re-entrant-that is, if Net
BIOS happens to call _NCBPost at a moment when Windows is executing
PostMessage, _NCBPost's own call to PostMessage will execute properly without
disrupting the previous call to PostMessagfJ. PostMessage and PostAppMessage
are the only functions in the Windows API that are guaranteed to be re-entrant,
so they are the only API functions that are safe to call in an asynchronously exe
cuted routine such as _NCBPost. This is the technique to use when you write
your own asynchronous-event handler.

A Quick Exit
In some settings, a Windows user may find it convenient to be able to exit
quickly from the Windows environment without switching to a shell application
such as the Program Manager. To do this, use the ExitWindows API function to
terminate all applications cleanly and exit from the Windows environment. The
sample program in Figure 7-16 shows how to use ExitWindows in this way. The
application displays an icon that you can click with the mouse or select by press
ing Alt -Spacebar to terminate a Windows session.

#****** •• ************************************ ••• *** ••••• ** •• ****.*** ••• *** •• *.
f#
NMAKE description for WlNEXIT.EXE

#***

.c.obj:
cl lAM Ie IG2sw IOsw IW4 /Zlp $*.e

ALL: winexit.exe

winexit.obj: winexit.c

winexit.res: winexit.rc winexit.ico
re /r winexit.re

winexit.exe: winexit.obj winexit.res winexit.def
link /al:16 /nod /noe winexit, , , libw mlibcew, winexit.def
rc winexit.res

Figure 7·16. (continued)
Source code for WINEXIT.EXE

249

Windows: Developer's Workshop

Figure 7-16. continued

/•.....................•.•.•......•.......................

• WINEXIT.C

* Exports: TopLevelWndFn

..•......•.... /

#define
#include

NOCOMM
<windows.h>

/ ••• FUNCTION PROTOTYPES ••• /

LONG PASCAL FAR TopLevelWndFn (HWND, WORD, WORD, LONG);

static HWND
static BOOL

Init (HANDLE, HANDLE, int);
QueryExit (HWND);

/... GLOBAL VARIABLES ••• /

char szTopLevelClass[] = "WinExit:TopLevel";

/** •• **** •• **** •• **** ••• ******** ••• ** ••• **** •• *** •• ****.***** ••• **.*.*** ••• ****

• WinMain

************ •• **** •• *** •• *** •• ***** •• *** ••• ******.* ••• **** •• ********* ••• ******/

int PASCAL
WinMain (HANDLE hInst, HANDLE hPrevInst, LPSTR lpszCmdLine, int nCmdShow)
{

250

HWND
MSG

hWnci;
msg;

hWnd = Init(hInst, hPrevInst, nCmdShow);
if(!hWnd)

return 0;

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·16. continued

while(GetMessage(&msg, 0, 0, 0))
{

TranslateMessage(&msg);
DispatcbMessage(&msg);

return msg.wParam;

/ •••• **.***** •••••• ***.*** •• ** •••• ** •••••• ** ••••••• **.***.*.*****.*.*** •• *** •••

* Init

static mmo Init (HANDLE hlnst, HANDLE hPrevlnst, int nCmdShow)
{

wc; WNDCLASS
mmo hWnd = 0;

/* allow only one instance */
if(hPrevlnst)

return 0;

/* register the top-level window */
wc.lpszClassName = szTopLevelClassi
wc.hlnstance = hlnst;
wc.lpfnWndProc = TopLevelWndFn;
wc.hCursor LoadCursor(0, IDC_ARROW);
wc.hlcon Loadlcon(hlnst, ITopLevellcon");
wc.lpszMenuName
wc.hbrBackground
wc.style
wc.cbClsExtra
wc. cbWndExtra

= NULL;
= COLOR_WINDOW+1;
= OL;

0;
0;

if(!RegisterClass(&wc)
return 0;

/* create the top-level window */
hWnd = CreateWindow(szTopLevelClass,

"Windows Exit It,
WS_OVERLAPPEDWINDOW
0, 0, 0, 0,

(continued)

251

Windows: Developer's Workshop

Figure 7·16. continued

0,
0,
hlnst,
NULL) ;

/. put window on screen ./
ShowWindow (hWnd, SW_SHOWMlNNOACTlVE);
OpdateWindow (hWnd);

return hWnd;

/ __ ... _ .. .

• TopLevelWndFn

.. /

LONG PASCAL FAR
TopLevelWndFn (HWNO hWnd, WORD wMsq, WORD wParam, LONG lParam)
{

252

LONG
BooL

lRVal = OL;
bDWP = FALSE;

switch(wMsq)
{

case WM_QOERYOPEN:
break;

case WM_DESTROY:
PostQuitMessaqe(0);
break;

case WM_NCLBOTTONDOWN:
QueryExit (hWnd);
break;

case WM_SYSCHAR:
switch (wParam
{

case VK_SPACE:
if(Ox20000000L , lParam

QueryExit(hWnd);
break;

/* Alt-Spacebar ./

(continued)

7: PROBLEMS AND SOLUTIONS

Figure 7·16. continued

case VK_RETURN:
QueryExit(hWnd);
break;

break;

default:
bOWP = TRUE;
break;

if(bOWP

. 1* Enter *1

lRVal = OefWindowProc (hWnd, wMsq I wParam, lParam);

return lRVal;

/ •• ****.***** •••••••••••••••••••••••••••••••••••• ** ••••••••••••••• ** •••• ** ••• **

* QueryExit

••••• **********.*** •••••• ****** •• ***** •• ** ••• * ••••• *** •••• * •••• **** ••• ********/

static BooL QueryExit (HWND hWnd
{

BooL bRVal = TRUE;

if(lOOK == MessageBox(hWnd,
"This will end your Windows session,",
"End Session",
MB_OKCANCEL : MB_lCONEXCLAMATlON

MB_SYSTEMMOOAL))

bRVal ExitWindows(OL, 0);

return bRVal;

(continued)

253

Windows: Developer's Workshop

Figure 7·16. continued

1··················***·**--··-*-_··_--_··_·-··****··**.-._-*--**---... _-- .. *--

* WlNEXIT.RC resource script

--** * ... *_. __ ... ** ..•. _.* •. _.** .•.. _.*.*-*.* .. _. ·_· __ ····_*·_·*-*·_·-*·1

1* icons *1
TopLevellcon ICON winexit.ico

;.*-_._._--* .. ** *** .. _** _ ... ** __ _

i WlNEXIT.DEF module-definition file

; **._ * .. _.*-_ .. _._. __ ... _-_. __ ._* __ .-._*_ _

NAME WlNEXIT
DESCRIPTION 'WlNEXIT . EXE version 1.0'
EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

CODE MOVEABLE PRELOAD DISCARDABLE
DATA MOVEABLE SINGLE PRELOAD

BEAPSIZE 512
STACKSIZE 5120

EXPORTS TopLevelWndFn

254

Appendix

A Windo""s
Programming
Glossary

386 enhanced mode. See Enhanced mode.

API. See Application program interface.

Application program interface (API). Windows' API contains more than 600
function calls that support I/O, manage memory resources, allow multitasked
applications to execute cooperatively, and provide a variety of other services.

Atom. In Windows, an atom is a data string identified by a unique integer value.
Windows provides an atom-management API for atoms stored in a program's
local heap as well as for atoms stored globally.

Automatic data segment. See Default data segment.

DOE. Dynamic Data Exchange.

Default data segment. A data segment, associated with an application or a
dynamic link library, that can contain static data, a stack, and a local heap. In
an assembly-language program, the default data segment is named _DATA
and is part of group DGROUP. In a C program, the Microsoft C compiler takes
care of naming and grouping the default data segment.

Dereference. To convert an indirect reference to a direct reference. For ex
ample, the Windows API function GlobalLock dereferences a memory handle
by returning a physical address that can be used to reference the memory
block identified by the handle.

255

Windows: Developer's Workshop

Device. A video display, printer, disk drive, or other hardware used for input or
output.

Device driver. A low-level software interface to a specific hardware device. In
Windows, device drivers are usually implemented as DLLs with the filename
extension .DRY. A typical Windows installation includes device drivers that
support the video display, mouse, keyboard, serial communications port, and
printer.

DLL. See Dynamic link library.

Dynamic link library (DLL). A windows module containing executable code
and data that can be referenced by Windows applications or by functions in
other DLLs. Functions and data in a DLL are dynamically linked to the func
tions that reference them-that is, the links are made at runtime when the li
brary is loaded or later.

Enhanced mode. A Windows operating mode in which Windows' memory
manager uses virtual memory to manage the global heap. In enhanced mode,
Windows applications run in 16-bit protected mode and non-Windows appli
cations run in virtual 8086 mode. Also, in enhanced mode, Windows applica
tions share access to hardware devices and local area networks through
virtual devices that run in 32-bit protected mode. Supported on 80386 and
80486 microprocessors.

Entry point. The logical start of an executable function. In Windows, function
entry points can be identified by ordinal number as well as by name.

Expanded memory. See LIM EMS.

Extended memory. Memory whose physical addresses lie above 1 MB. Ex
tended memory is addressable only in protected mode on 80286, 80386, or
80486 microprocessors. Windows uses extended memory in standard and en
hanced CPU modes.

Far pointer. A far pointer specifies a memory address as a 32-bit value that
designates both a particular segment in memory and an offset within that seg
ment. See also Near pointer.

GDI. See Graphics Device Interface.

Graphics Device Interface (GDI). The Graphics Device Interface is a set of
Windows API functions that support graphical output to the video display and
to a variety of printers and plotters.

256

APPENDIX: A WINDOWS PROGRAMMING GLOSSARY

Handle. An arbitrary numeric value assigned by Windows to let an application
identify a certain item. Windows uses handles to identify a variety of items, in
cluding modules, instances, windows, memory blocks, and GDI objects.

Hash table. A table of values in which data items are scattered according to a
formula that allows the table to be quickly searched for a particular value.
Windows uses hash tables to store data such as the string values associated
with local or global atoms.

Heap. An area of memory reserved for dynamic allocation of memory blocks,
organized in a tree structure that facilitates sorting and searching. Windows
manages all available memory as a global heap. Windows' memory manager
also supports a local heap in the default data segment of each module in
memory.

Instance. In Windows, one of many possible copies of an independently loaded
module. Windows can load multiple instances of an application but only one
instance of a DLL.

Instance thunk. A short piece of executable code that sets the default data seg
ment for an exported far function before the function executes.

LIM EMS. The Lotus-Intel-Microsoft Expanded Memory Specification describes
an industry-standard hardware and software interface to bank-switched (ex
panded) memory for computers running MS-DOS. Windows' memory man
ager provides applications with transparent access to expanded memory using
version 4.0 of this standard.

Linker. A utility program such as Microsoft's LINK.EXE that combines compiled
or assembled object (.OB]) files and a module-definition (.DEF) file into an
application (.EXE) file or a dynamic link library (.DLL) file.

Linking. The process of resolving a program module's external references (ref
erences to functions or data in other program modules). Dynamic linking oc
curs during or after the time a program is loaded into memory to be executed.
Static linking, which is performed by a linker such as Microsoft's LINK.EXE,
occurs prior to the time a program is loaded.

Loading. The process of copying a module's executable code and data from a
file into memory. If the module represents a Windows application, loading
allows Windows to begin executing the application. If the module represents
a dynamic link library, loading allows the library's functions and data to be
accessed by other programs.

257

Windows: Developer's Workshop

Memory model. A description of the layout of executable code and data in
memory. Windows programs generally use either a small or a medium
memory model. Both small-model and medium-model programs use one data
segment; small-model programs use one code segment and medium-model
programs can use multiple code segments. With the Microsoft C compiler, you
can select a program's memory model by using the lAS (small-model) or lAM
(medium-model) switch.

Module. A collection of executable code and data that Windows can load into
memory. A Windows module must be contained in an executable (.EXE) file
or a dynamic link library file, and the name of the file must be the same as the
name in the NAME or LIBRARY statement in the module-definition (.OEF) file
used to link the module.

Module-definition file. The statements in a module-definition (.OEF) file
specify a module's name, type (application or library), segment usage, and im
ported or exported functions. A linker such as Microsoft's LINK.EXE uses the
information in the module-definition file to build segment-loading and
dynamic-linking information into a module's loadable .EXE or .OLL file.

Near pointer. A near pointer specifies a memory address as a 16-bit value that
represents an offset within a module's default data segment. See also Far
pointer.

OEM. Original Equipment Manufacturer-that is, the manufacturer of the com
puter hardware on which Windows software is running. In particular, the
"OEM character set" is the character set used in the computer's keyboard and
video-display subsystem.

Post. In Windows, to post a message is to place it in an application's message
queue, using PostMessage or PostAppMessage, rather than directly calling an
application's window function by using SendMessage.

Private data., Oata that can be accessed only by a particular function.

Private dynamic link library. A dynamic link library designed to be used by
only one application. To designate a OLL as private, use the IP switch with the
resource compiler, RC.EXE.

Protected mode. A CPU addressing mode in which the CPU protects memory
by preventing programs from erroneously accessing blocks of memory that
belong to other programs. In 16-bit protected mode (supported on the 80286,
80386, and 80486 microprocessors), the CPU can directly address a total of

258

APPENDIX: A WINDOWS PROGRAMMING GLOSSARY

16 MB of memory, and a memory address consists of a 16-bit selector and a 16-
bit offset. In 32-bit protected mode (80386 and 80486), the CPU can directly
address a total of 4 G B of memory, and memory addresses are 32-bit values.

Real mode. A CPU addressing mode and a Windows operating mode in which a
total of 1 MB of memory is directly addressable. In real mode, a memory ad
dress consists of a 16-bit segment and a 16-bit offset. Real mode is supported
on all microprocessors in the Intel 8086 family. See also Enhanced mode,
Standard mode.

Resource. A set of one or more dynamically load able data items. In Windows,
resources are stored as part of executable program (.EXE) files or dynamic
link library files. Windows' resource compiler translates programmer-defined
resource definitions (.RC file) into a binary format (.RES file) and subsequently
adds the binary resources to a specified executable or library file.

Resource-definition file. The statements in a resource-definition (.RC) file de
scribe a module's dynamically loadable resources, including menus, dialog
boxes, and icons. A resource compiler compiles the statements in the .RC file
to a binary format (.RES file); the binary resources can then be merged into
the module's load able .EXE or library file.

Scaffolding. Source code added to a program specifically to support application
development or debugging.

SDK. Software Development Kit.

Send. In Windows, to send a message is to call a window function directly,
using SendMessage, instead of placing the message in an application's message
queue, using PostMessage or l!0stAppMessage.

Standard mode. A Windows operating mode in which Windows applications
run in 16-bit protected mode on an 80286, 80386, or 80486 microprocessor.

Task. One of several concurrently executing programs. In Windows, tasks are
executed cooperatively-that is, each task periodically transfers control to
Windows' task manager to let other tasks execute in turn.

Thunk. A short piece of executable code, compiled dynamically by Windows at
the time a program is loaded or executed, that performs some simple function
on Windows' behalf. See also Instance thunk.

Virtual 8086 mode. A CPU addressing mode in which an 80386 or 80486 mi
croprocessor emulates 8086 real-mode addressing. The microprocessor can

259

Windows: Developer's Workshop

concurrently support multiple virtual 8086 sessions. Windows uses virtual
8086 sessions when operating in enhanced mode to execute non-Windows
MS-DOS applications.

Virtual memory. A memory-management technique in which data in physical
memory can be swapped to disk. The use of virtual memory provides pro
grams with more memory storage and a larger range of memory addresses
than could be supported in physical memory alone. Windows' memory man
ager supports virtual memory when running in enhanced mode on an 80386
or 80486 microprocessor.

Windows application. An executable program designed to run in the Windows
environment.

260

Index

Special Characters
13 WDEB386 switch, 34
386 enhanced mode, 4, 5, 34, 256
80286 microprocessors, 258-59
80386 microprocessors, 256, 258-59

A
Actor language, 156
AddAtom, 147
Add Custom Control command, 126
I AM compiler switch, 33
Application program interface (API)

debugging and, 40-43
functions (see particular function)
modules and, 4,5
overview, 3, 255

applications. See also particular
application

bulletproofing, 56-58
DLLs vs., 61, 75
messages and, 7-8
multitasking and, 6, 7
sharing data between (see DDE)
structure of, 13-26

ASCII, Clipboard data format, 171
assembly language, multitasking and, 6
asynchronous events, programming

techniques involving, 245-49
atoms, 147,167-68,255
automatic data, debugging and, 44-45
automatic variables, debugging and, 45,

46
AuxPrint, 76
AX register, 49, 73

B
bitmaps, 12, 171
breakpoints. See debugging
brushes, handles for, 12
bugs. See debugging
Button control class, 85, 105

C
Clanguage, 33
C++ language, 156
callback function, 187-96
Ca!lWindowProc, 138, 156
CB_INSERTSTRING, 222
cfFormat, 171
classes, object-oriented programming,

139-43
clients, DDE, 160
Clipboard

data formats, 171,200-201
data transfer and, 159

Close command, 230
CodeView program

message tracing and, 39
overview, 31-32
scaffolding and, 38
trapping wild pointers and, 54-55

.COD files, 34
ICO linker switch, 32
color, module for, 5
COLOR_BACKGROUND, 44
ColorCtl custom control class, 105-28,

131-32
ColorCtlDlgFn, 126, 128
COLORCTL.DLL, 105-28
ColorCtlFlags, 126, 128
ColorCtllnfo, 126
ColorCtlStyle, 126, 127

261

Windows: Developer's Workshop

ColorCtlWndFn, 126
COLOR_WINDOW, 44
Combo Box control class, 85
commands. See also particular

command
in DDE, 164, 198-99, 201
system, 229-32

Command Status data items, 202
COMM.DRV module,S
communications, module for, 5
controls

custom (see custom control classes)
handles for, 11-12
ovvner-dravv, 221-29
predefined classes, 85
programming techniques involving,

207-29
conversations, DDE

described, 159-61
initiating in DDEML, 196-98
managing, 176, 182-83

CONVINFO, 198
cooperative multitasking, 6
CPU modes, bug-proofing and, 56-57
CreateBitmap, 167
CreateCompatibleBitmap, 167
Create50EditWindows, 54
CreateWindow

in custom controls and, 85, 104,207
in debugging, 44, 53-54
handles and, 12
in object-oriented programming, 140,

143
CS_DBLCLKS, 126
CS_GLOBALCLASS, 103, 126
cursor

controlling,S, 147-48
handles for, 12

custom control classes. See also
particular class

Dialog Editor and
exit function, 126
Flags function, 105, 127

262

custom control classes, Dialog Editor
and, continued

Info function, 105, 126
initialization and class registration,

126
overvievv, 104-6
sample code, 106-25
Style function, 105, 127, 128
vvindovv function, 126

in DLLs, 85, 95-104
examples, 85-95, 96-104
guidelines for building, 128-32
painting, 130-32
testing and debugging, 85
using, 104

Ie- WDEB386 svvitch, 34

D
data

clobbered, 48-49
confusing static and automatic, 44-45
corruption via vvild pointers, 55
objects and, 143-47
sharing in DLLs, 77-79
transfer (see DDE)

data formats, DDE and, 171
Data Interchange Format (DIF), 171
data segment(s)

dissociated, 49-51
DLLs and, 70-71, 74-76
register, 49, 73, 75

ID compiler svvitch, 38
DDE (Dynamic Data Exchange)

clients and servers, 160
conversations (see conversations,

DDE)
data formats, 171
design issues, 199-202
flags, 168-71
GDI objects, 167
Management Library (see DDEML)
message-based, 159, 160-64
OLE vs., 203

DDE (Dynamic Data Exchange),
continued

overview, 159
service, topic, and item names,

164-66, 199-200
shareable global memory, 166-67, 169
transactions (see transactions, DDE)
windows and, 9

DdeA bandon Transaction , 177, 185
DdeAccessData, 179, 187
DdeAddData, 179, 187
DDEADVISE, 166, 168-71
DdeClientTransaction, 177, 183-85,

196,198
DdeCmpStringHandles, 178, 186
DdeConnect, 176, 182, 196, 198
DdeConnectList, 176, 182, 196, 198
DdeCreateDataHandle, 179, 187
DdeCreateStringHandle, 178, 186
DDEDATA, 166-67, 168-71
DdeDisconnect, 176, 183
DdeDisconnectList, 176, 183
DdeEnableCaliback, 177, 185-86
DdeFreeDataHandle, 179, 187
DdeFreeStringHandle, 178, 186
DdeGetData, 179, 187
DdeGetLastError, 175,182
Ddelnitialize, 175, 180, 181, 193
DdeKeepStringHandle, 178, 186
DDEML (DDE Management Library)

API functions
conversation management, 176,

182-83
interface management, 175, 180-82
memory management, 179, 187
string management, 178, 186
transaction management, 177-78,

183-86
callback function, 187-96
establishing data link, 198
executing commands, 198-99
initiating a conversation, 196-98
overview, 159, 172-74

INDEX

DDEML (DDE Management Library),
continued

requesting data from a server, 198
sending data to server, 198
transaction processing, 174-75

DdeNameService, 176,182
DDEPOKE, 166-67, 168-71
DdePostAdvise, 177, 186
DdeQueryConvlnfo, 176, 183, 196, 197
DdeQueryNextServer, 176, 183
DdeQueryString, 178, 186
DdeSetUserHandle, 178, 186
DdeUnaccessData, 179, 187
DdeUninitialize, 175, 180, 181
debugging

bulletproofing, 56-58
confusing static and automatic data,

44-45
fatal-exit errors, 45-46
program design and, 29-30
techniques, 37-43
terminals, 30-31
tools, 31-37
visible bugs, 44
wild pointers, 47-56

DEBUG program, 32
default data segment, 70-71, 74-76, 255
#define directive, 38
DefWindowProc

in custom controls, 130
in debugging, 44
non-client areas and, 233, 243-45
in object -oriented programming, 137,

138
system commands and, 231, 232
in window function, 25

descriptor tables, 51
device drivers, modules for, 5
dialog boxes, custom control classes

and, 105
DialogBoxParam, 127
Dialog Editor program. See custom

control classes, Dialog Editor and

263

Windows: Developer's Workshop

DIF (Data Interchange Format), 171
DISCARDABLE attribute, 70
disks, hard, 5
DispatchMessage, 23-24
dissociated data segments, 49-51
dl es WDEB386 command, 34
DLGEDIT.C, 126
DLLBASE.DLL, 61-67
DLLs (dynamic link libraries)

calling functions, 72-76
custom controls in, 85, 95-104
debugging and, 43
described, 61, 256
example, 61-68
managing segments, 68-71
resources and, 80-81
sharing functions and data, 77-80

DOS, Windows programming and, 3
DrawFocusRect, 223
DrawRoundFrame, 244
DS register, 49, 73, 75
dumb terminals, 30-31
Dynamic Data Exchange. See DDE
dynamic link libraries. See DLLs

E
Easter, 67
Edit control, 85, 208-12, 214-21
Ellipse, 131
EMS (expanded memory specification),

3,33
EnableWindow, 57
encapsulization, 135
EN_CHANGE, 130
EndDialog, 128
enhanced mode, 4, 5, 34, 256
entry point, 256
En um Windows, 22, 26
errors. See debugging
events, asynchronous, 245-49
exiting Windows

ExitWindows, 249-54

264

exiting Windows, continued
Windows Exit Procedure (see WEP)

expanded memory, 3, 33, 257
exported functions, 5
extended memory, 3, 256

F
far calls, DLL functions and, 72
far function pro logs, 72-73
far pointers

bugs involving, 51-54
described, 256
DLLsand, 75-76, 77-80

FatalExit, 31
fatal-exit errors, 45-46
/Fc compiler switch, 34
files

.COD,34
handles for, 11-12
include, 30
symbol, 32, 34

FindWindow, 95
FIXED, 54, 77
flags

DDE and, 168-71, 191
Flags function, 105, 127-28

fonts, handles for, 11-12
FreeLibrary, 67, 68
functions. See also particular junction

or type
described, 5
in DLLs, 72-76, 79-80
prototypes, 30

G
GDI (graphics device interface)

DDE and, 167
described, 256
handles for, 12
module for, 5

GetClass]njo, 140, 141, 144-45

GetClassLong, 140
GetClassName, 144
GetClassWord, 140
GetAfessag~8, 23, 24
GetAfoduleUsage, 68
GetProcAddress, 79
GetProp, 146, 147, 156
GetStylelnfo, 128
GetWindowLong, 40, 140, 142, 143
GetWindowWord, 40, 140, 143
GlobalAddAtom, 147, 168
GlobalAlloc

in custom controls, 129
in debugging, 52, 58
in DDE, 167
in DLLs, 70, 77
in object-oriented programming, 144
overview, 12, 13

global atoms, 147, 167-68
GlobalDeleteAtom, 168
GlobalFindAtom, 168
GlobalGetA tomNa me, 168
global heap, 13
GlobalLock, 52, 57, 12, 77, 78
global memory

blocks, 166-67, 169
handles, 77-80

GlobalReAlloc, 58, 144, 169
GlobalUnlock, 52-53, 5~ 78
global variables, 30
GMEM_DDESHARE, 57, 78, 167
GMEM_FIXED,54
GMEM_MOVEABLE, 54
GMEM_NOT_BANKED, 57,78
graphics

DDE and, 167
handles and, 12
module for, 5
owner-draw controls, 221-29

graphics device interface. See GDI
IGw compiler switch, 49

H
handles

described, 257

INDEX

functions involving, 178-79, 186-87
global memory, 77-80
items using, 11-12
for metafiles, 12, 171

hard disks, 5
hash tables, 147, 257
hBrush variable, 45
hData variable, 46
heaps, memory, 13, 257
Heap Walker utility, 55, 58
HideWaitCursor, 147-48

I
icons

handles for, 12
module for managing, 5

import libraries, 43
include files, 30
InflateRect, 131
Info, 105, 126-27
In it, 22
input. See also keyboard(s); mouse

bulletproofing and, 57
custom control classes and, 129

Install}(eyjrrap, 156
instances

described, 5-6, 257
handles for, 11-12
Windows libraries and, 70

instance thunks, 50-51, 73, 257
intercept functions, 40-43
interface management, DDEML, 175,

180-82
interrupt handlers, 245
item names, 164-66, 199-200

J
jump tables, in DDEML callback

functions, 192-93

265

Windows: Developer's Workshop

K
KERNEL.EXE module, 5
keyboard(s)

bulletproofing and, 57
messages and, 7-8
module for, 5

KEYTRAP.EXE, 149-56
KeyTrapWndFn, 156
KRNL286.EXE module, 5
KRNL386.EXE module, 5

L
languages, programming. See

particular language
LAN Technical Reference manual, 246
LB_ADDSTRING, 222, 223
LB_I NSERTSTiu NG , 222
LibEntry, 66, 70
LibMain

in custom controls, 96, 103, 126
described, 61, 66
in memory models, 70

libraries
custom control, 105-28
DDE Management (see DDEML)
dynamic link (see DLLs)
import, 43

library reference counts, 68
ILIlinker switch, 33
LIM (Lotus-Intel-Microsoft) EMS

standard, 3
linker, 257
Lisp language, 145
list-box controls, 85, 207-8, 223-29
In command, 35
LoadBitmap, 80
LoadCursor, 147
Loadlcon, 80
LoadLibrary

in custom controls, 104
described, 4
in DLLs, 67, 68, 80
in filtering messages, 214

266

LoadModule, 4
LoadString, 67, 80
LocalAlloc, 13, 75, 129, 144
local atoms, 147
LocalFree, 37
local heap

clobbered data and, 48
described, 13
DLLs and, 66

Local/nit, 66
LocalLock, 37
LocalUnlock, 37
LockData, 71, 77
LockSegment, 71
LockSegment(-l), 77
Lotus-Intel-Microsoft Expanded

Memory Specification standard, 3
low memory, 57-58
IpfnldToStr, 127
IpfnStrTold, 127

M
MAKEINTATOM macro, 147
MakeProc!nstance, 50, 51, 73
IMAP linker switch, 33
MAPSYM utility, 32, 33, 36
Maximize command, 230
memory

custom control classes and, 129
expanded,3,33
extended, 3
global blocks, 166-67, 169
handles for, 11-12
low, 57-58
managing

DDEML functions, 179, 187
module for, 5
utility for, 51-54, 69-70
Windows and, 3, 12-13

models, 69-70, 258
virtual, 3
wild pointers and, 47-56
window extra bytes, 143-45

memory manager, 51-54,69-70
menus, handles for, 11-12
message-based DDE, 159, 160-64
MessageBox, 51
messages

DDE and, 159, 160-64
filtering, 149-56, 213-21, 231-32
object-oriented programming and,

136-37,138-39
overview, 6, 7-9
in sample Windows application,

23-24
tracing, 39

metafiles, handles for, 12, 171
Microsoft C Compiler, 32, 33-34
Microsoft C Professional Development

System, xv
Microsoft Excel, 199, 201
Microsoft Linker, 32, 33
Microsoft Object Linking and

Embedding protocol, 203
Microsoft Symbolic Link format, 171
Microsoft Windows

API (see Application program
interface)

applications (see applications)
custom control classes and, 85, 103
debuggers

CodeView (see CodeView program)
SYMDEB, 29, 32-33, 56
WDEB386, 29,33-37

exiting (see exiting Windows)
functions, 2,5,24
fundamental services, 3-4
handles, 11-12
memory and, 3
memory manager, 51-54, 69-70
message-passing in, 138-39
modules, 4, 5
Software Development Kit (see

Microsoft Windows Software
Development Kit)

task manager, 3, 5-6,7

Microsoft Windows Software
Development Kit

debugging tools, 31-37
Dialog Editor (see custom control

classes, Dialog Editor and)
messages and, 7

Minimize command, 230
modes, 4,5,34
MODSTAT.EXE, 13-26
modules, 4, 5, 11-12, 258
monitors, 30-31
mouse

messages and, 7-8
module for, 5

MOVEABLE, 54, 77
moving windows, 208, 230
MS-DOS, Windows programming

and,3
MsgCommand, 25
MsgEraseBkgnd, 130
1m SYMDEB switch, 32, 33
multitasking, 3,5-6,7
MyPrintj, 67-68

N
_NCBPost, 248-49
near pointers, DLLs and, 75-76
NetBIOSCall, 246
NetBIOS protocol, 245-49
networks, 245-49
NODATA,70
non-client areas, 233-45
Notepad application, 213
NumEditWndFn, 138, 139,141-42

o

INDEX

Object Linking and Embedding (OLE)
protocol, 203

obj ect -oriented programming
associating objects and data, 143-47
classes, 139-43

267

Windows: Developer's Workshop

object-oriented programming,
continued

described, 135-36
message passing, 136-37, 138-39
sample programs, 147-48, 149-56
windows as objects, 137-38
Windows limitations, 135

ODA_DRAWENTIRE, 222
aDA_FOCUS, 222
aDA_SELECT, 222
IOd compiler switch, 32, 33
ODLB.EXE, 223-29
ODS_CHECKED, 222
ODS_DISABLED, 222
ODS_FOCUS, 222
ODS_GRAYED, 222
ODS_SELECTED, 222
OEM character set, 171
OLE (Object Linking and Embedding)

protocol, 203
OpenFile, 12
operating environment, procedural vs.

message-driven, 136
OS/2, 6, 221
OutputDebugString, 31, 38, 76
output devices, handles for, 12
OVEDIT.EXE, 208-12
owner-draw controls, 221-29

p
palettes, handles for, 12
parameters

messages and, 7-8
passing conventions and DLLs, 74

PatBlt, 223
PeekAfessag~8, 24
pens, handles for, 12
Petzold, Charles, xii
pointer-arithmetic errors, 48
pointers

DLLs and, 75-76, 77-80
far (see far pointers)
wild, 47-56

268

popup windows, 10, 11
PostAppAfessage, 248, 249,258
PostAfessag~ 162, 168, 248,249, 258
PostlVCBAfessag~248

PostQuitAfessage, 25
preemptive multitasking, 6
PRELOAD, 70
printers, handles for, 12
procedural operating environment,

message-driven environment vs.,
136

programming, Windows
books on, xii, xiv
MS-DOS and, 3
object-oriented (see object-oriented

programming)
techniques, 207-54 (see also

particular subject)
tools, xiv
using components in, 13

Programming Windows, xii, xiv
programs. See also applications

designing, 199-202
managing segments, 68-71
source code for book's examples, xv

property lists
atoms and, 147 .
overview, 145-46
sample programs using, 147-48,

149-56
protected mode, 258

Q
quitting Windows. See exiting Windows

R
real mode, 4, 5, 259
Rectangle, 131
reference counts, library, 68
regions, handles for, 12

RegisterClass
in custom controls, 85, 103
in debugging, 44, 51
in object classes, 140, 141, 143
in Windows application structure, 23

RegisterClipboardFormat, 201
RemoveProp, 146, 147
resizing windows, 230
resource editors, custom control classes

and. See custom control classes,
Dialog Editor and

resources
defining within DLLs, 80-81
described, 259
handles for, 11-12

Restore command, 230
ROEDIT.DLL, 214-20
ROEditWindFn, 220-21
rounded windows, 233-45
ROUND.EXE, 233-43
RoundRect, 131
RoundWndFn, 233, 243-45
RYG control class, 85-95, 96-104
RYGDEY.EXE, 86-94
RYG.DLL, 96-104

5
scaffolding (debugging technique),

37-38,259
SC_ CLOSE, 230
SC_HSCROLL, 230
SC_KEYMENU, 230
SC_MAXIMIZE, 230
SC_MINIMIZE, 230
SC_MOUSEMENU, 230
SC_MOVE, 230, 232
SC_NEXTWINDOW, 230
SC_RESTORE, 230
scroll bars, controlling, 85, 230
SC_SIZE, 230, 232
SC_TASKLIST, 230
SC_VSCROLL, 230

INDEX

SDK. See Microsoft Windows Software
Development Kit

SendMessage, 162
servers, DDE, 160
service names, 164-66, 199-200
SetClassLong, 140.
SetClassWord, 140
SetCursor, 147, 244
SetProp, 145-46, 147
SetWindowLong, 40, 49, 140, 142, 143
SetWindowWord, 40, 49, 140, 143
Shaker utility, 55
ShowDLLlcon, 67
ShowModulelnjo, 25-26
ShowWaitCursor, 147-48
Sh ow Window, 44
sizing windows, 230
Smalltalk-80 language, 135, 138
Software Arts' Data Interchange

Format, 171
Software Development Kit. See

Microsoft Windows Software
Development Kit

sound, module for, 5
source code

for book's program examples, xv
debugging and, 29-30

Spy utility, 39
SS register, 75
stack, DLLs and, 74-76
stack-frame pointer, 48
stack segment register, 75
standard mode, 4,5,259
Static control class, 85, 105
static data

debugging and, 44-45,50
DLLs and, 70

static variables, 30
status flags, DDE and, 170-71
strings

DDEML management functions, 178,
186

handles for, 12

269

Windows: Developer's Workshop

STRINGTABLE resource, 67
Style, 105, 127, 128
subclasses, 140-42
Is WDEB386 switch, 34
IS: WDEB386 switch, 34
switch statements

DDEML callback function and, 190
described, 25
object structure and, 135
tracing messages and, 39

symbol files, 32, 34
Symbolic Link format, 171
SYMDEB program, 29, 32-33, 56
system commands, programming

techniques involving, 229-32
SYSTEM.DRV module, 5
system timer, module for, 5
System topic, 200-201

T
Tagged Image File Format. See TIFF
task manager, 5-6,7
terminals, debugging, 30-31, 32
TextOut, 25
thunks, instance, 50-51, 73, 257, 259
TIFF (Tagged Image File Format), 171
topic names, 164-66, 199-200
TopLe vel U7ndFn , 22, 25, 208
transactions, DDE

described, 159-60
managing, 177-78, 183-86
processing, 174-75

TranslateMessage, 23

U
uninitialized pointer variables, 47-48
UninstallKeyTrap, 156
UnlockData, 66, 71
UnlockSegn1ent, 66, 71
UnregisterClass, 95, 104

270

UpdateU7indow, 44
USER.EXE module, 5

V
ValidateCodeSegn1ents, 55-56
ValidateFreeSpaces, 55-56
variables

automatic, 45, 46
debugging and, 30
global, 30
uninitialized pointer, 47-48

video
custom control classes and, 130-32
messages and, 8
obj ects and, 143

virtual 8086 mode, 259
virtual memory, 3, 260

w
U7aitMessage function, 8, 24
WC_NCCALCSIZE, 243
WC_NCPAINT, 244
WDEB386 program, 29, 33-37
U7EP (Windows Exit Procedure)
, custom controls and, 96, 103-4, 126

overview, 61, 67-68
wHeapSize, 66
wild pointers, 47-56
window extra bytes, 143-45
Windows. See Microsoft Windows
windows

bugs affecting appearance, 44
closing, 230
extra bytes, 143-45
moving, 230
non-client areas, 233-45
as objects, 137-38
overview, 9-11
rounded, 233-45
sizing, 230

Windows Exit Procedure. See U7EP

Windows Software Development Kit.
See Microsoft Windows Software
Development Kit

WinExec, 4, 95
WINEXITEXE, 249-54
WinMain, 22, 23, 61, 104
wMaxLen, 128
WM_CHAR, 138
WM COMMAND, 129-30
WM_CREATE, 45
WM CTLCOLOR, 45, 130
WM - DDE_ACK, 160-62, 164, 168-71
WM=DDE_ADVISE, 160, 161, 163, 164
WM DDE_DATA, 160-64, 166, 168-69
WM=DDE_EXECUTE, 161, 163, 201-2
WM_DDE_INITIATE, 160-62, 163, 168
WM_DDE_POKE, 161, 163, 164, 166
WM_DDE_REQUEST, 160, 161, 163, 164
WM DDE TERMINATE, 160, 161, 166
WM - DDE - UNADVISE, 160, 161, 163, 164
WM - DRAWITEM, 130, 221-22, 223
WM - ERASEBKGND, 130, 244
WM - KEYD OWN , 136, 156
WM LBUTTONDOWN, 232
WM - MOUSEMOVE, 136

WM NCCALCSIZE, 131
WM_NCPAINT, 131, 233
WM_PAINT, 131, 136
WM SETCURSOR, 232, 233, 244
WM_SETFOCUS, 138
WM SET FONT, 130
WM - SYSCOMMAND, 229-32, 233, 244
WNDCLASS, 44, 49, 140, 143
WndEnumFn, 22, 26
WndFn, 45
WS_BORDER, 130-31
WS CAPTION, 207
WS=CLIPSIBLINGS, 244-45
WS_THICKFRAME, 207
WS_VISIBLE, 44
wvsprintJ, 76

X
XCLASS_BOOL, 191
XC LASS_DATA , 191
XCLASS_FLAGS, 191
XCLASS_NOTIFICATION, 191
xGWL,40
xGww, 40
xSWL, 40
xSww, 40

INDEX

XTYP_ADVDATA, 188, 196
XTYP_ADVREQ, 188, 195
XTYP_ADVSTART, 188, 195, 198
XTYP_ADVSTOP, 188, 195
XTYP_CONNECT, 189, 194
XTYP_CONNECT_CONFIRM, 189, 194
XTYP_DISCONNECT, 190, 194
XTYP_EXECUTE, 188, 195,198-99,201-2
XTYPF_NOBLOCK, 191
XTYP_MONITOR, 190
XTYP_POKE, 189, 195, 198
XTYP_REGISTER, 189, 194
XTYP_REQUEST, 190, 195, 198
XTYP UNREGISTER, 190, 194
XTYP=WILD_CONNECT, 190,194
XTYP_XACT_COMPLETE, 189,196,197,

198-99

y
y 386env WDEB386 command, 34

Z
/Zd compiler switch, 33
/Zi compiler switch, 32
zWDEB386 command, 34

271

Richard Wilton

Richard Wilton has been programming computers since the late 1960s. He has
written systems software and graphics applications in FORTRAN, Pascal, C,
Forth, and assembly language. His articles and reviews have appeared in several
computer publications, including BYTE and Computer Language. Currently an
assistant professor of pediatrics at the University of California, Los Angeles, he
earned an M.D. from UCLA and completed his residency in pediatrics at the
Childrens Hospital of Los Angeles. He uses Windows and DDE in a patient
tracking database system in the pediatrics clinics at UCLA. He is the author of
Programmer's Guide to PC & PS/2 Video Systems and is coauthor of The New
Peter Norton Programmer's Guide to the IBM PC & PS/2, both published by
Microsoft Press.

The manuscript for this book was prepared and submitted to Microsoft Press in
electronic form. Text files were processed and formatted using Microsoft Word.,

Principal word processors: Rodney Cook and Katherine Erickson

Principal proofreader: Cynthia Riskin

Principal typographer: Ruth Pettis

Interior text designer: Kim Eggleston

Principal illustrator: Lisa Sandburg

Cover designer: Tom Draper

Cover color separator: Color Service, Inc.

Text composition by Microsoft Press in Garamond Light with display type in
Futura Extra Bold, using the Magna composition system and the Linotronic 300
laser imagesetter.

Printed on recycled paper stock.

SPECIAL OFFER
Companion Disk for

MICROSOFT® WINDOWS™ 3
DEVELOPER'S WORKSHOP

Microsoft Press has created a timesaving Companion Disk for MICROS Off WINDOWS 3 DEVELOPER'S
WORKSHOP in both 5 lf4-inch format (one 1.2MB disk) and 3 lh-inch format (one 1.44 MB disk) that contains

• source code for all the programs in the book
• complete programs that use the source-code fragments given as examples in the book
• two programs-a server and client application-that fully demonstrate the ODE

management library
• several bonus applications (not in the book) that you can examine to hone your

Windows programming skills

The companion disk for MICROS Off WINDOWS 3 DEVELOPER'S WORKSHOP-available only from
Microsoft Press-is a valuable, ready-to-use resource for Windows programmers. Order your disk today!

Domestic Ordering Information:
To order, use the special reply card in the back of the book. Ifthe card has already been used, please send $24.95, plus sales tax
in the following states if applicable: AZ, CA, CO, CT, DC, FL, GA, HI, 10, IL, IN, lA, KS, KY, ME, MD, MA, MI, MN, MO,
NE, NV, NJ, NM, NY, NC, OH, OK, PA, RI, SC, TN, TX, VA, W A, WV, WI. Microsoft reserves the right to correct tax rates
and/or collect the sales tax assessed by additional states as required by law, without notice. Please add $2.50 per disk set for
domestic postage and handling charges. Mail your order to: Microsoft Press, Attn: Companion Disk OtTer, 21919 20th Ave
SE, Box 3011, Bothell, WA 98041-3011. Specify 5 1/4-inch or 3 lh-inch format. Payment must be in U.S. funds. You may pay
by check or money order (payable to Microsoft Press) or by American Express, VISA, or MasterCard; please include credit card
number, expiration date, and cardholder signature. Allow 2-3 weeks for delivery.

Foreign Ordering Information (except within the U.K. and Canada., see below):
Follow procedures for domestic ordering. Add $15.00 per disk set for foreign postage and handling.

U.K. Ordering Information:
Send your order in writing along with £22.95 (includes V AT) to: Microsoft Press, 27 Wrights Lane, London W8 512. You may
pay by check or money order (payable to Microsoft Press) or by American Express, VISA, MasterCard, or Diners Club; please
include credit card number, expiration date, and cardholder signature. Specify 5 1/4-inch or 3 Ih-inch format.

Canadian Ordering Information:
Send your order in writing along with $32.95 (includes GST) to: Macmillan Canada, Attn: Microsoft Press Department, 164
Commander Blvd., Agincourt, Ontario, Canada MIS 3C7. You may pay by check or money order (payable to Microsoft Press)
or by VISA or MasterCard; please include credit card number, expiration date, and cardholder signature. Specify 5 1/4-inch
or 3 Ih-inch format.

Microsoft Press Companion Disk Guarantee:
If a disk is defective, a replacement disk will be sent. Please send the defective disk along with your packing slip (or copy) to:
Microsoft Press, Consumer Sales, One Microsoft Way, Redmond, W A 98052-6399. Send your questions or comments about the
files on the disk to: Win 3 Developer's Disk, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399.

Information on Obtaining DDEML.DLL
Chapter 6 of this book contains information about Microsoft's Dynamic Data Exchange (DDE) Management Library.

To obtain a copy of the DDEML.DLL library, which you will need in order to use the examples in Chapter 6,
write to Microsoft Press, Attn: DDEML.DLL, One Microsoft Way, Redmond, WA 98052-6399.

No phone calls please.

NOTE: DDEML.DLL is a part of the Windows 3.1 beta release. If you or your company is a
Windows 3.1 beta site, you already have DDEML.DLL and do not need to write to the address above.

In-depth Windows™ 3
Programming Resources from Microsoft Press

Jbe M;~ .. oso/t

Y)~! .. (:)~BJJ;jJ~1
!J!J !:J,:1J{.:J.;)!:).rJ

"... Mluo,,"'(;lIi. ,.

DISIGNING rNIl
USSR I"r'R'ACI

101' Windows .3

THE MICROSOFT® VISUAL BASIC™ WORKSHOP
John Clark Craig

Create Windows applications quickly with Microsoft Visual Basic and THE
MICROS Off VISUAL BASIC WORKSHOP. Whether you're new to Windows
programming or are a seasoned programmer, you'll find this book-and-software
package invaluable. It includes dozens of ready-to-use Visual Basic routines and
applications that can be easily incorporated into your Windows programming projects.
The author provides helpful overviews of both Visual Basic and event-driven program
ming. Also covered are advanced programming concepts-using Dynamic Data
Exchange (DDE), using the Windows Applications Programming Interface (API),
creating Dynamic Link Libraries (DLL's), and using Windows graphics.
NOTE: Both executable and source-code files are included so you can preview Visual Basic if you don't
already own it!

420 pages, softcover with one 51/4 1.2MB disk 7 3/ 8 X 91/4 $39.95
Order Code VIBA WO

THE MICROSOFT® GUIDE TO
DESIGNING THE USER INTERFACE
For WindowlM 3 Applications
Microsoft Corporation
This is the official guide to the standards for creating a well-designed and functionally
consistent Windows 3 interface. General design principles as well as specifics on
individual graphical elements-windows, scroll bars, icons, and dialog boxes-are
explored and discussed. In addition, there is detailed infonnation on the standard
methods for providing user with the mechanisms for customizing the user interface and
adding a help system.

350 pages, softcover 7 3/ 8 X 91/4 $27.95 Order Code GUDEUS
Available December 1991

PROGRAMMING WINDOWS;M 2nd ed.
The Microso/fIDGuide to Writing Applications/or Windows™ 3
Charles Petzold

"PROGRAMMING WINDOWS by Charles Petzold is an excellent reference. This
remains the classic Windows programming guide." Programmer's Journal

This new edition of PROGRAMMING WINDOWS--completely updated and revised
to highlight version 3 capabilities-is once again packed with keen insight, tried-and
true programming technique§, scores of complete sample programs written in C, and
straightforward explanations of the Microsoft Windows programing environment. New
chapters detail Dynamic Data Exchange (DDE) and the Multiple Document Interface
(MDI) features. Other topics include: reading input, using resources, the graphics device
interface (GDI), and data exchange and links.

960 pages, softcover 7 3/8 X 91/4 $29.95 Order Code PRWI2

Microsoft Windows Programmer's Reference Library
The core documentation-including both technical data and programming tutorials-that

Microsoft provides with the Microsoft Windows Software Developer's Kit (SDK) can now be purchased
separately. These three volumes provide the most accurate and up-to-date

Windows 3 programming information available.

"If you intend to do any serious Windows programming, these books are a must. They provide virtually
everything you may want to know about how to program in C for and in the Windows environment."

Microsoft'

Windows'
Guide to Programming

Microsoft'

Windows'
Programmer's Reference

Microsoft'

Windows'
Programming Tools

MICROSOFT® WINDOWS™
GUIDE TO PROGRAMMING
Microsoft Corporation

PC Techniques

An example-packed introduction to writing applications using the Microsoft Win
dows version 3 application programming interface (API). Specifically written for the C
programmer who wants to learn how to use Windows' functions, messages, and data
structures to build efficient and reliable applications. Step-by-step instruction accompa
nied by dozens of sample applications that can be compiled and run with Windows.

560 pages, softcover 73/s x 91/4 $29.95 Order Code WIGUPR

MICROSOFT® WINDOWS™
PROGRAMMER'S REFERENCE
Microsoft Corporation

An up-to-date, comprehensive reference to each component in the Windows 3 application
programming interface (API). Indispensable to every Windows programmer, this
information is the foundation for any program that takes advantage of Windows ' special
capabilities.

1152 pages, softcover 73/s x 91/4 $39.95 Order Code WIPRRE

MICROSOFT® WINDOWS™
PROGRAMMING TOOLS
Microsoft Corporation

Detailed instruction on using the programming tools that come with the Microsoft
Windows SDK. This book examines how the Help system elements combine to produce
a system helpful to the user, and it explains in detail how to plan, write, and compile a
working Windows Help system.

400 pages, softcover 73/s x 91/4 $24.95 Order Code WIPRTO

Microsoft®Windows™ Multimedia
Programmer's Reference Library

The Multimedia extensions to Microsoft Windows offer an outstanding opportunity for developers
who want to add a high level of music, audio, animation and other multimedia elements to their programs.
These three volumes on Microsoft Windows with Multimedia extensions are the official documentation

to the Microsoft Multimedia Development Kit (MDK). They provide the most up-to-date and
accurate information available and are a great way to preview the MDK.

MICROSOFT® WINDOWS™
MULTIMEDIA PROGRAMMER'S REFERENCE
Microsoft Corporation
The essential reference for application programmers working with Microsoft Windows
with Multimedia. Includes complete coverage of the Application Programming Inter
face (API), its messages, data types, structures, and file formats.

432 pages, softcover 7 J/8 x 91/4 $27.95 Order Code MMPRRE

MICROSOFT® WINDOWS™
MULTIMEDIA PROGRAMMER'S WORKBOOK
Microsoft Corporation
This companion volume to the Programmer's Reference provides an overview of the
Microsoft Windows with Multimedia architecture and the Media Control Interface
(MCI). In addition, instruction and sample C code demonstrate how to use all the
multimedia audio, video, and hardware device functions.

352 pages, softcover 7 J/8 x 91/4 $22.95 Order Code MMPRWO

MICROSOFT® WINDOWS™
MULTIMEDIA AUTHORING AND TOOLS GUIDE
Microsoft Corporation
A very accessible look at the high-level multimedia development tools and processes
that are involved in integrating image, sound, and text data within a multimedia title. It
is a fact-filled hardware and software planning guide-ideal for anyone who wants to
create titles for a multimedia Pc. In addition, the book surveys the data preparation tools
that are included with the MDK.

320 pages, softcover 7 J/8 x 91/4 $24.95 Order code MMAUGU

Microsoft Press books are available wherever quality computer books are sold.
Or calI1-800-MSPRESS for ordering information or placing credit card orders.

Please refer to BBK when placing your order.
In Canada, contact Macmillan of Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincollrt, Ontario, Canada MIS 3C7. 416-293-8141

In the U.K., contact Microsft Press, 27 Wrights Lane, London W8 STZ.

MicI'OsoftUniversity
A New Perspective on Windows Training

Microsoft University courses take you to the heart of our microcomputer
software architecture. Lab sessions provide practical, hands-on experience
and show you how to develop and debug software more efficiently. Our
qualified instructors explain the philosophy and principles that drive our
system design.

Windows CoulSes for Support PelSonnel
Our courses train professional support engineers to help end users overcome
the operational difficulties they may encounter with Microsoft Windows~M
Students receive hands-on experience installing Microsoft Windows and
configuring the system. We also provide support courses which help to
maximize system efficiency. The MS-DOS 5 Installation and Optimization
video course consolidates all the information you need to successfully
install, optimize, customize and support MS-DOS® 5 on a group of PCs. In
the Microsoft Windows for Support Engineers course, students learn how to
manage memory usage of a Windows session, optimize PC system resources
for Windows, troubleshoot common problems encountered by end users, and
customize a Windows environment and the installation process.

Windows CoulSes for DevelopelS
We offer courses for experienced software developers who are new to
level oping applications for the Microsoft Windows graphical environment,
s well as courses for more seasoned Windows developers. For example, we
ffer the Microsoft Visual Basic Programming course which teaches the
~atures and capabilities of the Visual Basic™ programming system, as well

~..; the concepts needed to write sophisticated, event-driven graphical
programs. The Fundamentals of Microsoft Windows Programming, an

intensive, hands-on video course, prepares students for more advanced
Windows courses. Exploring Controls is a definitive video course on
Microsoft Windows controls, including buttons, static controls, edit controls,
list boxes, combo boxes, scroll bars, and custom controls.

Custom Training Options
Microsoft University will deliver any of its courses at your location, and we
can accommodate as many as 20 students per class, which significantly
lowers the cost per student. Companies may also license the Microsoft
Windows for Support Engineers course and have their own internal training
organizations deliver the course. Microsoft University will also customize
any of its Windows courses to meet your unique training needs, and we are
happy to provide an estimate for this service.

Take Microsoft UnivelSity Windows Classes
Closer to Home
We understand the pressures of the marketplace and know what a difference
timely training can make in the success of your Windows project. That's
why we offer regularly scheduled Windows classes at our regional facilities:
Seattle, Boston, San Francisco, Los Angeles, New York, Chicago, Atlanta,
Dallas, Washington, D.C., and Toronto. In addition, we have authorized
training centers across the country which now offer Windows courses for
support personnel.

To receive our current Course Schedule, which provides course
outlines and complete registration information, please call Microsoft
University at (206) 828-1507, and ask for department 611.

I'D LIKE TO KNOW MORE!

D Please send me the most current Microsoft University course
schedule.

D Please have a representative call me regarding hosting a
Microsoft University course at our facility.

Course / Topic

Please indicate your area of interest:

D Microsoft C D Microsoft SQL Server

D Microsoft Windows

D Microsoft LAN Manager

D Microsoft Visual Basic™

D Microsoft® OS/2®

D Microsoft OS/2
Presentation Manager

DMS-DOS®5

D Please send me information on custom courses.

Course / Topic

code 611

PLEASE PRINT

Name

Job Title/Position

Company

Street Address

City State Zip Code

Daytime Phone

Please clip along dotted line and mail to:

MicIDsoftUniversity
MSU
10700 Northup Way Bellevue, WA 98004-1447
Microsoft, the Microsoft logo, MS, and MS-DOS are registered trademarks, and
Windows and Visual Basic are trademarks of Microsoft Corporation. OS/2 is a registered

trademark. Presentation Manager is a trademark licensed to Microsoft Corporation.

Microsoft

Developer'. Worlc.ltop
"After you've nailed down the basics, Rick Wilton's valuable book will surely
sharpen your Windows programming skills. " Charles Petzold

An example-packed resource for every Microsoft Windows programmer.

Richard Wilton provides richly detailed discussions of some of the central-and
most complex-issues that every Windows programmer tackles. Wilton's
approach is practical, with a clear focus on problem solving. He demonstrates how
to blend good programming practices with a well-conceived design. Scores of
source-code examples illustrate and amplify the discussions. Topics include:

Debugging. Designing for debugging; using the built-in Windows
debugging tools; avoiding the most common bugs; tracking down wild
pointers; "bulletproofing" your code.

Dynamic Link Libraries (DLL). Sharing executable code and data with
DLLs; structuring DLLs to use memory effectively; calling library
functions.

Custom Controls. Implementing a custom control class in a DLL;
making custom controls available to resource editors; building the perfect
custom control.

Windows and Objects. Understanding the object-oriented roots of
Windows; using object-oriented concepts to design better source code.

Dynamic Data Exchange (DOE). Implementing direct interprocess
communication with DOE; designing a DOE application using low-level
message passing and memory management; understanding and using
the added functionality of the DOE programming interface, the DOE
Management Library (DDEML).

In addition, Wilton offers practical approaches to programming puzzles that include
wresting additional functionality from predefined control classes, customizing the
nonclient area, and handling asynchronous events.

U.S.A. $24.95
U.K. £32.95
Canada $22.95

[Recommended]
The Authorized

Editions

ISBN 1-55615-244-2

9 781556 152443

~
{5

90000 ~

