
PROGRAMMING

The Microsoft Guide to writing applications for Windows 3

SECOND EDITION

®

The Authorized Edition

CHARLES PETZOLD

•
• •

PRO G RAM MIN G

p R o G R A M M I N G

Microsoft
I) RES S

®

Charles Petzold

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1990 by Charles Petzold

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Petzold, Charles, 1953-
Programming Windows : the Microsoft guide to writing applications

for Windows 3 / Charles Petzold. - - 2nd ed.
p. cm.

ISBN 1-55615-264-7
1. IBM Personal computer--Programming. 2. Microsoft Windows

(Computer programs) I. Title.
QA 76.8.I2594P474 1990
005.4'3--dc20 90-35467

Printed and bound in the United States of America.

8 9 MLML 6 5 4 3 2 1

Distributed to the book trade in Canada by Macmillan of Canada,
a division of Canada Publishing Corporation

CIP

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available

Apple® and LaserWriter® are registered trademarks of Apple Computer, Inc. IBM® is a registered
trademark of International Business Machines Corporation. Microsoft~ MS-DOS~ and MultiPlan®
are registered trademarks and Windows™ is a trademark of Microsoft Corporation.

Project Editor: Jack Litewka
Technical. Editor: Wm. Jeff Carey
Acquisitions Editor: Dean Holmes

Contents

Preface

ix

SECTION I

GETTING STARTED
1

Chapter 1

Hello, Windows

3

Chapter 2

Painting with Text

45

SECTION II

READING INPUT
85

Chapter 3

The Keyboard

87

Chapter 4

The Mouse

133

ChapterS

The Timer

173

Chapter 6

Child Window Controls

205

vi

SECTION III

USING RESOURCES
261

Chapter 7

Memory Management

263

ChapterS

Icons, Cursors, Bitmaps, and Strings

303

Chapter 9

Menus and Accelerators

335

Chapter 10

Dialog Boxes

403

SECTION IV

THE GRAPHICS DEVICE INTERFACE
491

Chapter 11

An Introduction to GDI

493

Chapter 12

Drawing Graphics

541

Chapter 13

Bits, Bits, and Metafiles

605

Chapter 14

Text and Fonts

651

Chapter 15

Using the Printer

715

SECTION V

DATA EXCHANGE AND LINI(S
775

Chapter 16

The Clipboard

777

Chapter 17

Dynamic Data Exchange (DDE)

809

Chapter 18

The Multiple Document Interface (MDI)

853

Chapter 19

Dynamic Link Libraries

877

Index

917

vii

Preface
When I began writing the first edition of PROGRAMMING WINDOWS in the early spring
of 1987, Microsoft Windows 1.0 had been released for about a year and a half, a beta-test
version of Windows 2.0 was just becoming available, and Windows 3.0 could only be
regarded as a far-fetched dream. At that time, the eventual success of Windows in the
personal computer marketplace was more a matter of faith than a certain-to-come reality.

With the release of Windows 3, more people than ever are interested in this operat
ing environment. Windows 3 runs Windows programs in Intel 80286-compatible pro
tected mode, giving Windows and Windows programs access to 16 megabytes of memory.
This exciting enhancement to Windows-coupled with the many Windows applications
released over the past few years-has made Windows 3 an important piece of systems
software released for IBM-compatible personal computers. Windows is the graphical inter
face that many computer users will first encounter.

Since the publication of the first edition of PROGRAMMING WINDOWS in early
1988, many programmers have told me that the book has been useful in helping them learn
how to write applications for Windows. Nothing could make me happier.

It was my intention with the first edition of PROGRAMMING WINDOWS to show the
basics of writing programs for Windows using the C programming language. A book like
this cannot delve into the complexities of a full-fledged application program, of course,
but it can show how to handle all the various components of a Windows program. It is up to
the application programmer to merge these components into a coherent whole.

In this second edition of PROGRAMMING WINDOWS, I have updated the text where
necessary, updated the code listings for a more modern style of C programming, tightened
the early chapters (where I felt I had been more theoretical than practical), and added two
new chapters-one on Dynamic Data Exchange (DDE) and one on the Multiple Document
Interface (MDI). Interestingly enough, the Windows application program interface has
been fairly stable over the years and very few changes had to be made to the sample
programs.

Windows has a reputation for being easy for users but tough for programmers. Often,
aspiring Windows programmers face a steep learning curve, and they want to see lots of
programming examples. To satisfy that desire, this book contains more than 50 complete
programs. Many of them are short and stripped down to clearly illustrate various Windows
programming techniques. Others are a bit longer to show how everything fits together.
Several of the programs are useful utilities. Others are tools for exploring Windows.

What I don't do in this book is teach you how to use Windows. If you have no ex
perience using the environment, now is the time to install it and play with it for awhile.
Windows is very easy to learn.

ix

PROGRAMMING WINDOWS

Nor will I teach you how to program in C. Before you even think about programming
for Windows, you should have a good working knowledge of programming in C for a more
conventional environment such as MS-DOS. If your C is a little rusty, you may want to
spend some time becoming better acquainted with the topics of structures and pointers.

A good familiarity with the segmented architecture of the Intel 8086 family of micro
processors will also help. If you know how 80286 addressing works (in both real mode and
protected mode) and the difference between near and far pointers and functions, you're in
good shape. If you don't, I've included some explanations along the way.

To compile the programs in this book and to write your own programs for Windows,
you need the following software packages:

• Microsoft Windows 3

• Microsoft Windows Software Development Kit 3

• Microsoft C Professional Development System (aka Microsoft C 6)

If you haven't yet installed Microsoft C 6, you should know that the programs in the
book require only the small-model MS-DOS libraries using the math emulator. You may be
able to use a C compiler other than Microsoft's if the compiler is suitable for compiling
Windows programs. Most other C compilers can't be used for this purpose.

To run Windows and the Windows Software Development Kit, you need the follow
ing hardware:

• An IBM personal computer (or compatible) based on the Intel 80286 or
80386 microprocessor with a hard disk and 640 KB of memory running
MS-DOS 3.1 or later. An 80386-based machine with a couple megabytes of
extended memory is ideal.

• A graphics display and video board,' preferably compatible with the IBM
VGA (Video Graphics Array) or better.

• A mouse. Although a mouse is generally optional for most Windows
programs, some of the programs in this book require one.

Sometimes readers of computer books are curious about the author's own system.
When I was writing the first edition of PROGRAMMING WINDOWS, I used an IBM PC/AT
Model 339 (8 MHz) with two 30-megabyte (MB) hard disks, 512 KB of memory on the sys
tem board, and a 1.5 MB Intel Above Board PS/AT. The system included a Microsoft mouse,
an IBM 256-KB Enhanced Graphics Adapter (EGA), and a NEC MultiSync monitor. I wrote
the book using WordStar 3.3 and printed everything on an IBM 5152 Graphics Printer.

For the second edition, I used a 20-MHz IBM PS/2 Model 70 with a 120-MB hard disk,
6 MB of memory, an IBM 8514/A graphics board (although I generally ran Windows in VGA
mode), a NEC MultiSync 4D monitor, and a Microsoft mouse. I used Microsoft Word for
revising the book chapters, printing on a NEC SilentWriter LC-890 PostScript printer. (Word
for Windows was not available until I was well into the revision.)

x

Preface

A book such as this could not have come about without help and encouragement
from some very special people. I offer my heartfelt thanks with a handshake or hug (as
appropriate) to the following people:

• To everyone at Microsoft involved in Windows 3, for creating a system
with fascinating depth and seemingly endless things to learn.

• To all the Windows 3 developers who reviewed my chapters and offered
comments and suggestions: Clark Cyr, David D'Souza, and particularly
David Weise.

• To the MS Online System Support people in the Windows SDK group who
reviewed galleys of the entire book: Much gratitude to Todd Cole, who
volunteered his group and coordinated the effort; special thanks to
John Hagerson, Mike Thurlkill, Dennis Crain, David Long, Ed Mills,
Steve Molstad, Richard Herrmann, Dan Boone, and Kyle]. Sparks; thanks
also to Jeff Stone, Dan Quigley, Steve Thompson, Larry Israel, Teresa
Posakony, Neil Sandlin, Curt Palmer, David Flenniken, Charles E. Kindel
Jr., and Doug Laundry.

• To everyone at Microsoft Press who has been involved in the first and
second editions of PROGRAMMING WINDOWS, for behind-the-scenes
work that makes all the difference in the world.

• To my friends and editors at PC Magazine and Microsoft Systems Journal
for their help and encouragement over the years.

• To the readers of the first edition of PROGRAMMING WINDOWS who
wanted to see a second edition. It's here and it's yours!

• To my family, who thought I was crazy when I quit my job to write full
time: to my Mom, my brother Steve and his wife Bernie and Christopher
and Michelle, my sister Sue and her husband Rich and Erika and another
one on the way. You're right. I was crazy.

• To my friend Karen. Words cannot express

• To my friends at the "DH" (and especially Devon and Leslie) for enjoyable
company and interesting conversation that has nothing whatsoever to
do with computers. Completing this book gets me closer to writing that
novel!

• And most of all, as always, to Jan, who was as happy as I was when I called
her and said, "I finally finished the chapter on DDE."

Charles Petzold
July 29, 1990

xi

Special Offer

Companion Disks for
PROGRAMMING WINDOWS, 2nd ed.

Microsoft Press has created a set of timesaving Companion Disks for PROGRAMMING
WINDOWS that include the more than 50 complete Windows programs provided in this book.
Available in either 5 1/4-inch format (1.2-MB disk) or 3 1/2-inch format (720-KB two-disk set), the
Companion Disks contain both the source code and executable (EXE) files for all the book's pro
grams. These include many useful utilities that let you explore and understand Windows' use of the
keyboard, mouse, memory, graphics, color, and fonts. These Companion Disks are a valuable ready
to-use resource for Windows programmers. Order your set today!

Domestic Ordering Information:
To order, use the special reply card bound in the back of the book. If the card has already been used,
please send $29.95, plus sales tax in the following states if applicable: AZ, CA, CO, CT, DC, FL,
GA, ID, IL, IN, KY, ME, MD, MA, MI, MN, MO, NE, NV, NJ, NY, NC, OH, SC, TN, TX, VA,
and W A. Microsoft reserves the right to correct tax rates and/or collect the sales tax assessed by
additional states as required by law, withQut notice. Please add $5.50 per disk set for domestic
postage and handling charges. Mail your order to: Microsoft Press, Attn: Companion Disk Offer,
21919 20th Ave SE, Box 3011, Bothell, WA 98041-3011. Specify 5 1/4-inch or 3 1/2-inch format.
Payment must be in U.S. funds. You may pay by check or money order (payable to Microsoft Press)
or by American Express, VISA, or MasterCard; please include both your credit card number and the
expiration date. Allow 2 - 3 weeks for delivery.

Foreign Ordering Information (except within the U.K.: see belowl:
Follow procedures for domestic ordering and add $6.00 per disk set for foreign postage and
handling. '

U.K. Ordering Information:
Send your order in writing along with £27.95 (includes VAT) to: Microsoft Press, 27 Wrights Lane,
London W8 5TZ. You may pay by check or money order (payable to Microsoft Press) or by
American Express, VISA, MasterCard, or Diners Club; please include both your credit card number
and the expiration date. Specify 5 1/4-inch or 3 liz-inch format.

Microsoft Press Companion Disk Guarantee
If a disk is defective, a replacement disk will be sent. Please send the defective disk along with your
packing slip (or copy) to: Microsoft Press, Consumer Sales, One Microsoft Way, Redmond, WA
98052-6399.

If you have questions or comments about the files on the disk,
you can contact the author through MCI mail (CPETZOLD or 143-6815).

The Companion Disks for PROGRAMMING WINDOWS, 2nd ed.,
are available only from Microsoft Press.

SECTION I

GETTING
srlJ\RTED

Chapter 1

Hello,
Windows

Since its introduction in November 1985, Microsoft Windows has emerged as the most
popular graphical user interface environment for MS-DOS. Several million copies of Win
dows have been shipped, and hundreds of Windows applications are currently available.

For the user, Windows provides a multitasking graphical-based windowing environ
ment that runs programs especially designed for Windows. Such programs include
Microsoft Excel (spreadsheet and business graphics), Microsoft Word for Windows (word
processing), Aldus's PageMaker (desktop publishing), Samna's Ami (word processing),
Micrografx's Designer (drawing), IBM's Current (a personal information manager),
Asymetrix's ToolBook (a software construction kit), and many others. Programs written for
Windows have a consistent appearance and command structure, and are thus often easier
to learn and use than conventional MS-DOS programs. Users can easily switch among dif
ferent Windows programs and exchange data between them. Windows also provides an
easy-to-use icon-based Program Manager for running programs as well as a File Manager
and Print Manager for file maintenance and printer-queue management.

Although Windows exists primarily to run applications especially written for the en
vironment, Windows can also run many programs written for MS-DOS. Of course, these
programs cannot take advantage of many Windows features, but in some cases they can be
windowed and multitasked alongside Windows programs.

For the program developer, Windows provides a wealth of built-in routines that allow
the use of menus, dialog boxes, scroll bars, and other components of a friendly user inter
face. Windows also contains an extensive graphics programming language that includes

3

SECTION I: GETTING STARTED

the use of formatted text in a variety of fonts. Programmers can treat the keyboard, mouse,
video display, printer, system timer, and RS-232 communication ports in a device
independent manner. Windows programs run the same on a variety of hardware
configurations.

The "look and feel" of Windows also shows up in the OS/2 Presentation Manager.
OS/2 is the protected mode operating system developed by International Business
Machines Corporation (IBM) and Microsoft Corporation as a successor to MS-DOS; the
graphical user interface under OS/2 is called the Presentation Manager. While the applica
tion program interfaces of Windows and the OS/2 Presentation Manager are not the same,
they have many similarities and common structural elements.

A BRIEF HISTORY OF WINDOWS
Windows was announced by Microsoft Corporation in November 1983 and released two
years later in November 1985. Over the next two years, Windows 1.01 (the first released
version) was followed by several updates to support the international market and to pro
vide drivers for additional video displays and printers.

Windows 2.0 was ~eleased in November 1987. This version incorporated several
changes to the user interface to make it consistent with the forthcoming OS/2 Presentation
Manager (released in October 1988). The most significant of these changes involved the
use of overlapping windows rather than the "tiled" windows found in the earlier versions
of Windows. Windows 2.0 also included enhancements to the keyboard and mouse inter
face, particularly for menus and dialog boxes.

Windows/386 (released shortly after Windows 2.0) used the Virtual-86 mode of the
386 microprocessor to window and multitask many DOS programs that directly access
hardware. For symmetry, Windows 2.1 was renamed Windows/286.

Windows 3-the subject of this book-was introduced in a spectacular product an
nouncement on May 22,1990. The earlier Windows/286 and Windows/386 versi9ns have
been merged into one product with this release. The big change in Windows 3 is the sup
port of the protected mode operation of Intel's 80286 and 80386 microprocessors. This
gives Windows and Windows applications access to up to 16 megabytes of memory. The
Windows "shell" programs (the Program Manager, Task Manager, and File Manager) have
been completely revamped.

THE USER'S PERSPECTIVE
Windows provides considerable advantages to both users ansi programmers over the con
ventional MS-DOS environment. The benefits to users and the benefits to program devel
opers are really quite similar, because the job of a program developer is to give users what
they need and want. Windows makes this possible.

4

Chapter 1: Hello, Windows

The Graphical User Interface (GUI)

Windows is a graphical user interface (GUO, sometimes also called a "visual interface" or
"graphical windowing environment." The concepts behind this type of user interface date
from the mid-1970s, with the pioneering work done at the Xerox Palo Alto Research Center
(PARC) for machines such as the Alto and the Star and for environments such as Smalltalk.

The work done at Xerox PARC was brought into the mainstream and popularized by
Apple Computer, Inc., first in the ill-fated Lisa and then a year later in the much more suc
cessful Macintosh, introduced in January 1984. The Apple Macintosh remains a significant
challenger to IBM's dominance in the personal-computer business market. It is not so
much the hardware of the Macintosh but its operating system that makes the machine
so appealing to users. The Mac is simply easier to use and learn than an IBM PC running
MS-DOS.

Since the introduction of the Macintosh, graphical user interfaces have bloomed like
wildflowers throughout the personal-computer industry and the not-so-personal com
puter industry as well. For IBM-compatibles running MS-DOS, there is Windows. For IBM
compatibles running OS/2, there is the Presentation Manager. For the Commodore Amiga,
there is Intuition. For the Atari, there is GEM. For machines running UNIX, there is the
X-Window system. For Sun Microsystems workstations, there is NeWS. For the NeXT, there
is NextStep.

It is obvious that the graphical user interface is now Gn the words of Microsoft's
Charles Simonyi) the single most important "grand consensus" of the personal-computer
industry. Although the various graphical environments differ in details, they have similar
characteristics.

GUI Concepts and Rationale

All graphical user interfaces make use of graphics on a bitmapped video display. Graphics
provides better utilization of screen real estate, a visually rich environment for conveying
information, and the possibility of a WYSIWYG (what you see is what you get) video dis
play of graphics and formatted text prepared for a printed document.

In earlier days, the video display was used solely to echo text that the user typed
using the keyboard. In a graphical user interface, the video display itself becomes a source
of user input. The video display shows various graphical objects in the form of icons and
input devices such as buttons and scroll bars. Using the keyboard (or, more directly, a
pointing device such as a mouse), the user can directly manipulate these objects on the
screen. Graphics objects can be dragged, buttons can be pushed, and scroll bars can be
scrolled.

The interaction between the user and a program thus becomes more intimate. Rather
than the one-way cycle of information from the keyboard to the program to the video dis
play, the user directly interacts with the objects on the display.

5

SECTION I: GETTING STARTED

The Consistent User Interface

Users no longer expect to spend long periods of time learning how to use the computer or
mastering a new program. Windows helps because all Windows programs have the same
fundamental look and feel. The program occupies a window-a rectangular area on the
screen. It is identified by a caption bar. Most program functions are initiated through the
program's menu. Figure 1-1 shows a typical Windows program (in this case Write, the word
processor included in Windows) with the various window components labeled.

Some menu items invoke dialog boxes, in which the user enters additional informa
tion. One dialog box found in almost every large Windows program opens a file. (See
Figure 1-2.) This dialog box looks the same (or very similar) in many different Windows
programs, and it is almost always invoked from the same menu option.

Once you know how to use one Windows program, you're in a good position to
easily learn another. The menus and dialog boxes allow a user to experiment with a new
program and explore its features. Most Windows programs have both a keyboard interface
and a mouse interface. Although most functions of Windows programs can be controlled
through the keyboard, using the mouse is often easier for many chores.

6

System menu box Caption bar (or title bar) Menu bar Minimize box

Call me Ishmael. Some years ago .. never mind how long precisely··
having little or no money in my purse, and nothing particular to interest me
on shore, I thought I would sail about a little and see the watery part of the
world. It is a way I have of driving off the spleen, and regulating the
circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find myself
involuntarily pausing before coffin warehouses, and bringing up the rear of
every funeral I meet; and especially whenever my hypos get such an upper
hand of me, that it requires a strong moral principle to prevent me from
deliberately stepping into the street, and methodically knocking people's hats
off •• then, I account it high time to get to sea as soon as I can. This is my
substitute for pistol and ball. With a philosophical flourish Cato throws
himself upon his sword; I quietly take to the ship. There is nothing
surprising in this. If they but knew it, almost all men in their degree, some
time or other, cherish very nearly the same feelings towards the ocean with
me~
II

Figure 1·1. WRITE, a typical Windows program.

Maximize box

Sizing
border

Program's
client area

Scroll bars

Chapter 1: Hello, Windows

Write ~ ISHMAEL.WRI
Eile Edit Search !;.haracter Earagraph .!2ocument Help

Call me Ishmael. Some years ago -- never mind how long precisely --
having icular to interest me

~:~f;,r Filename: 1Eli]] I !r""":'~:'DK'''"; :e;~~t~: of the
circulat Director},: c:\winbook2\chapOl II ""Caiiii t the mouth;

files: I!irectories:
whenev ishmael_wri 1 __) henever I find myself
involun I-a-) inging up the rear of
every I-c-) os get such an upper
hand of revent me from
deliber knocking people's hats
off -- th I can. This is my
substitu ish Cato throws
himself, e is nothing
surprising in this. If they but knew it, almost all men in their degree, some
time or other, cherish very nearly the same feelings towards the ocean with

Figure 1-2. A dialog box to open a file.

From the programmer's perspective, the consistent user interface results from using
the routines built into Windows for constructing menus and dialog boxes. All menus have
the same keyboard and mouse interface be_cause Windows, rather than the application
program, handles this job.

The Multitasking Advantage

Although some people continue to question whether multitasking is really necessary on a
single-user computer, users definitely are ready for multitasking and can benefit from it.
The popularity of MS-DOS RAM-resident programs such as Sidekick proves it. Although
popups are not, strictly speaking, multitasking programs, they do allow fast context
switching. This involves many of the same concepts as multitasking.

Under Windows, every program in effect becomes a RAM-resident popup. Several
Windows programs can be displayed and running at the same time. Each program oc
cupies a rectangular window on the screen, as shown in Figure 1-3 on the following page.
The user can move the windows around on the screen, change their size, switch between
different programs, and transfer data from one program to another. Because this display
looks something like a desktop On the days before the desk became dominated by the
computer itself, of course), Windows is sometimes said to use a "desktop metaphor" for
the display of multiple programs.

7

SECTION I: GETTING STARTED

~ Write - ISHMAEL.WRI aa
Eile Edit S.earch tharacter fa

Call me Ishmael. Some years ago -- never mind how long precisely _.
having little or no money in my purse, and nothing particular to interest me
on shore, I thought I would sail about a little and see the watery part of the
world It is a way I have of driving off the. splee!l' and regulating the I

~ ei
Mouse Desktop

Figure 1·3. Several programs running under Windows.

Memory Management

An operating system cannot implement multitasking without doing something about
memory management. As new programs are started up and old ones terminate, memory
can become fragmented. The system must be able to consolidate free memory space. This
requires the system to move blocks of code and data in memory.

Even Windows 1, running on an 8088 microprocessor, was able to perform this type
of memory management. Under real mode, this can only be regarded as an astonishing feat
of software engineering. Programs running under Windows can overcommit memory; a
program can contain more code than can fit into memory at anyone time. Windows can
discard code from memory and later reload the c;ode from the program's .EXE file. A user
can run several copies (called "instances") of a program; all these instances share the same
code in memory. Programs running in Windows can share routines located in other .EXE
files called "dynamic link libraries." Windows includes a mechanism to link the program
with the routines in the dynamic link libraries at run time. Windows itself is a set of
dynamic link libraries.

Thus, even in Windows 1, the 640-KB memory limit of the PC's architecture was ef
fectively stretched without requiring any additional memory. But Microsoft didn't stop
there: Windows 2 gave the Windows applications access to expanded memory (EMS), and
Windows 3 runs in protected mode to give Windows applications access to up to 16
megabytes (MB) of extended memory.

8

· Chapter 1: Hello, Windows

The Device-Independent Graphics Interface

Windows is a graphical interface, and Windows programs can make full use of graphics
and formatted text on both the video display and the printer. A graphical interface is not
only more attractive in appearance, but it can also impart a high level of information to the
user, as you can see in Figure 1-4.

Programs written for Windows do not directly access the hardware of graphics dis
play devices such as the screen and printer. Instead, Windows includes a graphics pro
gramming language (called the Graphics Device Interface, or GDI) that allows the easy
display of graphics and formatted text. Windows virtualizes display hardware. A program
written for Windows will run with any video board or any printer for which a Windows de
vice driver is available. The program does not need to determine what type of device is
attached to the system.

Putting a device-independent graphics interface on the IBM PC was not an easy job
for the developers of Windows. The PC design was based on the principle of open archi
tecture. Third-party hardware manufacturers were encouraged to develop peripherals for
the PC and have done so in great number. Although several standards have emerged, con
ventional MS-DOS programs for the PC must individually support many different hardware
configurations. For example, it is fairly common for an MS-DOS word-processing program
to be sold with one or two disks of small files, each one supporting a particular printer.

Eile .Edit nata Qptions Macro Window Help
F6

ABC 0 E F G •

.. +

IFour Month salesl

':::lI6lWJ i:~ :::::;:
o . Jan I Feb I Mar I Apr I 0 Chicago

Figure 1·4. Microsoft Excel running under Windows.

9

SECTION I: GETTING STARTED

Windows programs do not require these drivers because the support is part of Win
dows. This benefits users because most Windows programs require very little in the way
of installation. Everything a program needs can be included in the program's single .EXE
file. The user can often copy the .EXE file to the fixed disk, load Windows, and go.

MS·DOS Applications

Although Windows primarily exists to run new programs specifically designed for the en
vironment, Windows can also run many non-Windows MS-DOS programs. The Windows
User's Guide refers to these as "standard applications," but many Windows programmers
call them "old applications" or "old apps."

These MS-DOS programs can be divided into two broad categories: Well-behaved
applications (or "good old apps") are those that use the MS-DOS and PC ROM BIOS (basic
input/output system) software interrupts to read the keyboard and write to the video dis
play. These programs can generally run in a window.

"Bad apps" are those that write directly to the video display, use graphics, or take
control of the hardware keyboard interrupt. The term "bad" here refers not to the quality of
the program - many of the best programs written for the PC are bad apps when it comes to
Windows-but to the way in which the program uses the hardware of the Pc. When run
ning on a 286-based machine, there is simply no way Windows can allow such a program
to be windowed or multi tasked. However, Windows can use the "virtual 86" mod~ of the
386 microprocessor to window and multi task even bad applications.

,THE PROGRAMMER'S PERSPECTIVE
Windows has the reputation of being easy for users but difficult for programmers. If you
have no prior experience with programming for a graphical user interface, you should be
warned right now that you will encounter some very strange concepts. Almost every
programmer who begins writing code for Windows must go through some mental reorien
tation to assimilate these concepts.

If at first you find Windows programming to be difficult, awkward, bizarrely con
voluted, and filled with alien concepts, rest assured that this is a normal reaction. You are
not alone.

Windows and MS·DOS

You start up Windows as if it were a normal application program running under MS-DOS.
But as Windows loads, it becomes almost a full-fledged operating system. It's not quite an
operating system because it runs on top of MS-DOS. While Windows is running, it shares
responsibility with MS-DOS for managing the hardware resources of the computer.
Basically, MS-DOS continues to manage the file system, while Windows does everything

10

Chapter 1: Hello, Windows

else. Windows commands the video display, keyboard, mouse, printer, and serial ports and
is responsible for memory management, program execution, and scheduling.

Windows is strong where MS-DOS is weak, and weak where MS-DOS is adequate.
Windows includes almost no support of file I/O, which is one of the most essential chores
of a minimal operating system such as MS-DOS. This leads to some amusing-or not so
amusing-consequences. It is easier in a Windows program to create a disk-based
metafile containing a complex series of graphics drawing commands than to create a
simple ASCII text file. The former is a Windows job; the latter requires that the program use
MS-DOS.

The Windows Commitment

Programming for Windows is an all-or-nothing proposition. For example, you cannot write
an MS-DOS application-even a well-behaved one-and use Windows only for some
graphics. If you want to use any part of Windows, you must make the commitment to write
a full-fledged Windows program.

The reason for this will become more obvious as you learn about the structure of a
Windows program. Everything in Windows is interconnected. If you want to draw some
graphics on the video display, you need something called a "handle to a device context." To
get that, you need a "handle to a window." To get that, you must create a window and be
prepared to receive "messages" to the window. To receive and process messages, you need
a "window procedure." And at that point you're writing a Windows program. You can't fly
unless you leave the ground.

The Function Calls

Windows 3 supports over 550 function calls that applications can use. It is highly unlikely
that you will ever memorize the syntax to all these calls. Most Windows programmers keep
the Windows Programmer's Reference manual within easy reach.

Each of the Windows functions has a descriptive name written in mixed uppercase
and lowercase letters, such as CreateWindow. This function (as you might guess) creates a
window for your program. Another example: the function IsClipboardFormatAvailable
determines whether the clipboard is holding data of a particular format.

All the Windows functions are declared in a header file named WINDOWS.H,
included in the Windows Software Development Kit. WINDOWS.H is an important part of
the Windows documentation. You might want to print a copy or use a file browser for
quick reference.

You use these Windows functions in your Windows program the same way you use C
library functions such as strlen. However, there are some differences between the Win
dows functions and the standard C library functions.

Windows functions are always declared as far pascal functions. These are two key
words that Microsoft has added to its version of C. The far keyword indicates that the

11

SECTION I: GETTING STARTED

Windows function is in a different code segment than the program's code. (You'll see
the reason for this shortly.)

The pascal keyword indicates that the function's calling sequence is different than
the normal C calling sequence. Normally, the C compiler generates code· that pushes pa
rameters on the stack from right to left beginning with the last parameter. The code calling
the function is responsible for adjusting the stack pointer after the function returns. With
the pascal calling sequence, the parameters are pushed on the stack from left to right and
the called function cleans up the stack. The pascal calling sequence is used in Windows
because it is more efficient.

With one oddball exception, any pointer passed to a Windows function must be
a far pointer. This is something you normally don't have to worry about because the
compiler will extend short pointers to long pointers based on the function template
in WINDOWS.H.

Dynamic Linking

If you've been working with MS-DOS programming for awhile, you might guess that a
Windows program interfaces with Windows through a software interrupt such as the
MS-DOS Interrupt Ox21. You might guess that the linker adds bindings to your Windows
programs that convert the Windows function calls-into this software interrupt. But you
would be wrong. A Windows program interfaces to Windows through a process called
"dynamic linking."

Like MS-DOS programs, Windows executables have the filename extension .EXE.
However, this is not the same .EXE format that is used in MS-DOS. Instead, Windows pro
grams use a .EXE format called the New Executable file format, similar to that used in
OS/2. Whenever a Windows program calls a Windows. function, the C compiler generates
assembly-language code for a far call. A table in the .EXE file identifies the function being
called using a dynamic link library name and either a name or a number (called the ordinal
number) of the function in that library.

Windows itself consists largely of three dynamic link libraries, called KERNEL (re
sponsible' for memory management, loading and executing programs, and scheduling),
USER (the user interface and windowing), and GDI (the graphics). These libraries contain
the code and data for the Windows functions. You can find these three dynamic link librar
ies in the SYSTEM subdirectory of your Windows directory.

When a Windows program is loaded into memory, the far calls in the program are
resolved to point to the entry of the function in the dynamic link library, which is also
loaded into memory. This is why all Windows functions must be defined as far: The code
in the dynamic link libraries is not in the same segment as the program's code. Also, point
ers passed in Windows functions must also be defined as far to avoid confusion with the
dynamic link library'S own code and data segments.

12

Chapter 1: Hello, Windows

Generally, you don't have to worry about the use of far calls and far pointers because
the functions are declared as far functions with far pointers in WINDOWS.H: The C com
piler will perform the necessary address translations for you.

When you link a Windows program to produce an executable, you must link with a
special "import library" provided with the Windows Software Development Kit. This im
port library contains the dynamic link library names and ordinal numbers of all the Win
dows functions. LINK uses this information to construct the table in the .EXE file that
Windows uses to resolve calls to Windows functions when loading the program.

Object-Oriented Programming

When programming for Windows, you're really engaged in a type of object-oriented pro
gramming. This is most evident in the object you'll be working with most in Windows
the object that gives Windows its name, the object that will soon seem to take on anthro
pomorphic characteristics, the object that may even show up in your dreams, the object
known as the "window."

Windows are rectangular objects on the screen. A window receives user input from
the keyboard or mouse and displays graphical output on its surface.

An application window usually contains the program's title bar, menu, sizing border,
and perhaps some scroll bars. Dialog boxes are additional windows. Moreover, the surface
of a dialog box always contains several additional windows called "child windows." These
child windows take the form of push buttons, radio buttons, check boxes, text entry fields,
list boxes, and scroll bars.

The user sees these windows as objects on the screen and interacts directly with
these objects by pushing a button or scrolling a scroll bar. Interestingly enough, the pro
grammer's perspective is analogous to the user's perspective. The window receives this
user input in the form of "messages" to the window. A window also uses messages to
communicate with other windows.

Understanding these messages is one of the hurdles you'll have to jump in becoming
a Windows programmer.

Message-Driven Architecture

The first time I saw a graphical user interface in action, I was puzzled. The demonstration
included a rudimentary word processor running in a window. The word processor would
reformat its text when the program's window was resized.

It was obvious to me that the operating system was handling the details of the
window-resizing logic, and that the program was capable of responding to this system
function. How did the program know when its window was resized? What was the mecha
nism the operating system used to convey this information to the window? My previous
programming experience was useless in understanding how this worked.

13

SECTION I: GETTING STARTED

It turns out that the answer to this question is central to understanding the architec
ture used in graphical user interfaces. In Windows, when a user resizes a window, Win
dows sends a message to the program indicating the new window size. The program can
then adjust the contents of its window to reflect the new size.

"Windows sends a message to the program." I hope you didn't read that statement
without blinking. What on earth could it mean? We're talking about program code here, not
an electronic mail system. How can an operating system send a message to a program?

When I say that "Windows sends a message to a program," I mean that Windows calls
a function within the program. The parameters to this function describe the particular
message. This function located in your Windows program is known as the "window
procedure. "

The Window Procedure

You are undoubtedly accustomed to the idea of a program making calls to the operating
system. This is how a program opens a disk file, for example. What you may not be ac
customed to is the idea of an operating system making calls to a program. Yet this is funda
mental to Windows' object-oriented architecture.

Every window that a program creates has an associated window procedure. This
window procedure is a function that could be either in the program itself or in a dynamic
link library. Windows sends a message to a window by calling the window procedure. The
window procedure does some processing based on the message and then returns control
to Windows.

More precisely, a window is always created based on a "window class." The window
class identifies the window procedure that processes messages to the window. The use of a
window class allows multiple windows to be based on the same window class and hence
use the same window procedure. For example, all buttons in all Windows programs are
based on the same window class. This window class is associated with a window pro
cedure (located in the Windows USER.EXE dynamic link library) that processes messages
to all the button windows.

In object-oriented programming, an "object" is a combination of code and data. A
window is an object. The code is the window procedure. The data is information retained
by the window procedure and information retained by Windows for each window and
window class that exists in the system.

A window procedure processes messages to the window. Very often these messages
inform a window of user input from the keyboard or mouse. This is how a push-button
window knows that it's being "pressed," for example. Other messages tell a window when
it is being resized, or when the surface of the window needs to be repainted.

When a Windows program begins execution, Windows creates a "message queue"
for the program. This message queue stores messages to all the various windows a program

14

Chapter 1: Hello, Windows

may create. The program includes a short chunk of code called the "message loop" to
retrieve these messages from the queue and dispatch them to the appropriate window pro
cedure. Other messages are sent directly to the window procedure without being placed in
the message queue. .

If your eyes are beginning to glaze over with this excessively abstract description of
Windows architecture, maybe it will help to see how the window, the window class, the
window procedure, the message queue, the message loop, and the window messages all fit
together in the context of a real program.

YOUR FIRST WINDOWS PROGRAM
In their classic book The C Programming Language (2d ed., Prentice Hall, 1988), Brian
Kernighan and Dennis Ritchie begin discussing C with the now-famous "Hello, world"
program:

#include (stdio.h>

rnai n ()
{

printf ("Hello, world\n") ;
}

In the remainder of this chapter, I will show you the analogous program written for
Microsoft Windows. The program is called HELLOWIN, and it creates a window that dis
plays the text string "Hello, Windows!"

Lest you collapse from shock when you first look at the HELLOWIN code, I'll warn
you now that there are three files involved, and that the HELLOWIN.C source code file is
over 80 lines long. Most of these 80 lines are overhead. You'll have similar overhead in
almost every Windows program you write.

Rather than ask why the "Hello, Windows" program is so long and complex, let's ask
why the traditional "Hello, world" program is so short and simple.

What's Wrong with this Program?

The output model for the "Hello, world" program and other traditional C programs is an
antique piece of hardware known as the teletype. The teletype resembles a typewriter with
a continuous roll of paper. In the not too distant past, programmers would sit at a teletype
and type in commands that were echoed to the paper. The computer responded by print
ing its output on the paper.

The teletype metaphor was extended to the video display in the early days of com
puters. The video display became a "glass teletype" that simply scrolled when text reached
the bottom of the screen.

15

SECTION I: GETTING STARTED

How can the traditional "Hello, world" program display text without telling the.
operating system the particular output device on which the text is to appear? Because there
is only one output deyice-the video display used as if it were a teletype. If the user wishes
the output to go elsewhere, it must be redirected from the command line.

How can the program display text without telling the system where on the output de
vice the text is to appear? Because the text always appears where the cursor happens to be,
probably on the next line after you execute the program. Suppose you want to display
"Hello, world" in the center of the screen. You'd have to use some device-dependent con
trol codes to first position the cursor at the desired location.

Let's say you want to run several "Hello, world" programs at one time and see their
output on the screen. What a mess! The copies of the program would interfere with each
other. There is nothing in the teletype metaphor to separate output from several programs
running concurrently.

. It's also interesting that you see the "Hello, world" output even after the program ter
minates. Rather than properly cleaning up after itself, the program is leaving remnants of
its existence on the video display.

The "Hello, world" program is so simple because it is designed for a simpler age and
simpler computers and s.impler output devices. It's not in the same ballpark as what we
think of today as modern software, and it's not even playing the same game.

The HELLOWIN Files

The three files necessary to create the "Hello, Windows" program are shown in Figure 1-5:

• HELLOWIN.MAK is a "make" file.

• HELLOWIN.C is the C source code file.

• HELLOWIN .DEF is a module definition file.

Figure 1·5. The HELLOWINprogram.

16

Chapter 1: Hello, Windows

(continued)

17

SECTION I: GETTING STARTED

(continued)

18

Chapter 1: Hello, Windows

These are standard files that you'll create for every Windows program you write. Generally
when you begin a new Windows program, you'll copy the standard files from an existing
program and then make appropriate changes to them.

Most Windows programmers do all their program development and compiling out
side of Windows under MS-DOS, and then load Windows to test the program. You can also
create and compile a Windows program in the Microsoft C 6 Programmer's WorkBench. I'll
be discussing the source code files as if you create them in a text editor of your choice and
then compile the program from the MS-DOS command line outside of Windows.

If you have Windows, the Windows Software Development Kit, and the Microsoft C
Professional Development System (the C 6 compiler) properly installed, you can create
HELLOWIN.EXE from the three files shown in Figure 1-5 by executing:

NMAKE HELLOWIN.MAK

on the MS-DOS command line. You can then run Windows and the HELLOWIN.EXE
program by executing:

WIN HELLOWIN

The program creates a normal application window as shown in Figure 1-6 on the fol
lowing page. The window displays "Hello, Windows!" in the center of its client area.

When you think about it, this window has an amazing amount of functionality in its
mere 80 lines of code. You can grab the title bar with the mouse pointer and move the win
dow around the screen. You can grab the sizing borders and resize the window. When the
window changes size, the program will automatically reposition the "Hello, Windows!"
text string in the new center of the client area. You can press the maximize button and
zoom HELLOWIN to fill the screen. You can press the minimize button and compress the
program into an icon. You can invoke all these options from the system menu and, in addi
tion, close the window to terminate the program.

While you may be pleased to see that HELLOWIN has all the functionality of a nor
mal Windows program, you may not look so pleasant-faced when you see the source code
required to create this program. But let's be brave while I proceed to dissect this program
piece by piece and analyze it to death.

19

SECTION I: GETTING STARTED

1m The Hello Program aa

Hello. Windows!

Figure 1·6. HELLOWIN running under Windows.

The Make File

To ease compilation of Windows programs, you can use the NMAKE utility included in the
Microsoft C Professional Development System. Whenever you change something in one of
the HELLOWIN source files, all you need do is run:

NMAKE HELLOWIN.MAK

to create the updated HELLOWIN.EXE executable.
A make file cpnsists of one or more sections, each of which begins with a left

justified line that lists a target file, followed by a colon, followed by one or more dependent
files. This line is followed by one or more indented command lines. These commands
create the target file from the dependent files. If the last modification date and time of any
of the dependent files is later than the last modification date and time of the target file, then
NMAKE executes the indented command lines.

Normally, NMAKE willupdate only the target file in the first section of the make file.
However, if one of the dependent files is itself a target file in another section of the make
file, then NMAKE will update that target first.

20

Chapter 1: Hello, Windows

The HELLOWIN.MAK make file contains two sections. The first runs the LINK.EXE
linker if HELLOWIN.OBJ or HELLOWIN.DEF has been altered more recently than
HELLOWIN.EXE:

.hellowin.exe : hellowin.obj hellowin.def
link hellowin, lalign:16, NUL, Inod slibcew libw, hellowin
rc hellowin.exe

The second section runs the CL.EXE C compiler if HELLOWIN.C has been changed
more recently than HELLOWIN.OBJ:

hellowin.obj : hellowin.c
cl -c -Gsw -Ow -W2 -Zp hellowin.c

Because HELLOWIN.OBJis a dependent file in the first section of the make file and a
target file in the second section, NMAKE will check whether HELLOWIN.OBJ needs up
dating before re-creating HELLOWIN.EXE. Thus, the make file should be analyzed from
the bottom up.

Running the CL.EXE C compiler creates the HELLOWIN.OBJ object module from the
HELLOWIN.C source code file:

cl -c -Gsw -Ow -W2 -Zp hellowin.c

Several compiler switches are required (or recommended) for compiling Windows
programs:

• The -c switch indicates that the program should be compiled only and not
yet linked. The link is a separate step.

• The -Gsw switch is actually two switches: -Gs and -Gw. The -Gs switch
disables checks for stack overflow. Because stack overflow messages are
written to standard error output (and are hence ignored by Windows), it's
best simply to be sure that you are using a sufficient stack. (Four kilobytes
is recommended.)

• The -Gw switch is a special Windows switch that inserts special prolog
and epilog code in all far functions in the program. This code (which I'll
discuss in Chapter 7) aids Windows in moving code and data segments in
memory.

• The -Ow switch concerns optimization. With this switch the compiler
will avoid some optimizations that may cause problems specifically with
Windows programs.

• The -W2 switch enables warning level 2 for displaying warning messages.
You should make an effort to write programs that show no warning
messages when you compile with this switch. Windows will not tolerate
sloppy programming, which can lead to nasty bugs.

21

SECTION I: GETTING STARTED

• The -Zp switch packs structure fields on byte boundaries. This is
required for some of. the structures defined in WINDOWS.H that
programs use to communicate with Windows. Windows assumes that all
structures are packed.

The first section of the make file runs two commands if HELLOWIN.OBJ or
HELLOWIN.DEF has been altered more recently than HELLOWIN.EXE. The first indented
command runs LINK:

link hellowin. lalign:16. NUL. Inod slibcew libw. hellowin

The first field indicates the HELLOWIN.OBJ object file. The .OBJ extension is
assumed. The second field would normally list the name of the executable file, but I'm let
ting it default to HELLOWIN.EXE. The lalign:16 switch tells LINK to align code and data
segments on 16-byte boundaries in the HELLOWIN.EXE file for better space efficiency.
(The default is 512-byte boundaries.)

The third field is the name of an optional map file. This is set to NUL to create no map
file. The fourth field lists the libraries followed by the Inod (no default libraries) switch.
SLIBCEW.LIB is the small model Windows C run time library created during installation of
the Windows Software Development Kit.

LIBW.LIB is an import library that contains information LINK uses to set up a table in
the .EXE file so that Windows can dynamically link the program's calls to Windows func
tions with the Windows dynamic link libraries that contain those functions.

The fifth field indicates the name of the program's module definition file,
HELLOWIN.DEF. The .DEF extension is assumed. 0'11 discuss this file later in this chapter.)
It contains information that LINK uses to construct HELLOWIN.EXE.

The second indented command runs the Windows resource compiler, RC.EXE:

rc hellowin.exe

The resource compiler sets a couple flags in the HELLOWIN .EXE file to indicate that
this is a Windows 3-compatible application. Primarily, this avoids a Windows 3 message
that warns the user that the program may crash because it has not been modified for
protected-mode operation. Later on, we'll use the resource compiler to add menus and dia
log boxes to our Windows programs.

The C Source Code File

The second file in Figure 1-5 is HELLOWIN.C, the C source code file. It may take awhile
before you recognize that this program is indeed written in C!

Let's first take a global look at HELLOWIN.C before getting into details. The file con
tains only two functions: WinMain and WndProc. WinMain is the entry point to the pro
gram. It is the equivalent of the standard C main function. Every Windows program has a
WinMain function.

22

Chapter 1: Hello, Windows

WndProc is the window procedure for HELLOWIN's window. This function pro
cesses messages to the window. No code in HELLOWIN.C calls WndProc directly:
WndProc is called only from Windows. However, there is a reference to WndProc in Win
Main, which is why the function is declared near the top of the program before WinMain.

The Windows Function Calls

HELLOWIN makes calls to no less than 16 Windows functions. In the order they occur in
HELLOWIN, these functions (with a brief description) are:

• Loadlcon-Loads an icon for use by a program

• LoadCursor-Loads a cursor for use by a program

• GetStockObject-Obtains a graphics object (in this case a brush used for
painting the window's background)

• RegisterClass-Registers a window class for the program's window

• CreateWindow-Creates a window based on a window class

• ShowWindow-Displays the window on the screen

• UpdateWindow- Directs the window to paint itself

• GetMessage-Obtains a message from the message queue

• TranslateMessage-Translates some keyboard messages

• DispatchMessage-Sends a message to a window procedure

• BeginPain t- Initiates the beginning of window painting

• GetClientRect-Obtains the dimensions of the window's client area

• DrawText-Displays a text string

• EndPain t-Ends window painting

• PostQuitMessage-Inserts a "quit" message into the message queue

• De!WindowProc-Performs default processing of messages

These functions are documented in the Windows Programmer's Reference and
declared in WINDOWS.H. I'll discuss each of them as we encounter them while dissecting
the program.

23

SECTION I: GETTING STARTED

Uppercase Identifiers

You'll notice the use of quite a few uppercase identifiers in HELLOWIN.C. These iden
tifiers are defined in WINDOWS.H.

Several of these identifiers contain a two-letter or three-letter prefix followed by an
underscore:

CS_HREDRAW

IDLAPPLICATION

WS_OVERLAPPEDWINDOW

WM_PAINT

DT _SINGLELINE

CS_VREDRAW

IDC_ARROW

CW_USEDEFAULT

WM_DESTROY

DT_CENTER

DT_VCENTER

These are simply numeric constants. The prefix indicates a general category to which
the constant belongs, as indicated in this table:

Prefix Category

CS class style

IDI ID for an icon

IDC ID for a cursor

WS window style

CW create window

WM window message

DT draw text

You almost never need to remember numeric constants when programming for Win
dows. Virtually every numeric constant used in Windows has an identifier defined in
WINDOWS.H.

New Data Types

Other identifiers used in HELLOWIN.C are new data types, also defined in WINDOWS.H.
The ones used in the program are:

24

Data Type

FAR

PASCAL

WORD

DWORD

LONG

LPSTR

Meaning

same asfar

same as pascal

unsigned integer (16 bits)

unsigned long integer (32 bits)

signed long integer (32 bits)

far (or long) pointer to a character string

Chapter 1: Hello, Windows

These are fairly self-.explanat~ry. The people who originally developed Windows
thought that it would someday be ported to other microprocessors. These new data types
were defined to ease the porting of Windows applications to other architectures. Rather
than use machine-specific data sizes (such as the size of C integer), the new data types
were devised to keep programs consistent regardless of the processor on which they run.

Of course, Windows will probably never be ported to other architectures, but the
Windows functions are still defined using these new data types, and Windows program
mers continue to use them.

HELLOWIN also uses four data structures (which I'll discuss later in this chapter)
defined in WINDOWS.H:

Structure Meaning

MSG The message structure

WNDCLASS The window class structure

PAINTSTRUCT The paint structure

RECT The rectangle structure

The first two data structures are used in WinMain to define two structures named
msg and wndclass. The second two are used in WndProe to define two structures
named ps and reet.

Getting a Handle on Handles

Finally, there are three uppercase identifiers for various types of "handles":

Identifier

HANDLE

HWND

HDC

Meaning

Generic handle

Handle to a window

Handle to a device context

Handles are used quite frequently in Windows. Before the chapter is over, you also
encounter HICON (a handle to an icon), HCURSOR (a handle to a mouse cursor), and
HBRUSH (a handle to a graphics brush).

A handle is simply a 16-bit number that refers to an object. The handles in Windows
are similar to file handles used in conventional C or MS-DOS programming. A program
almost always obtains a handle by calling a Windows function. The program uses the
handle in other Windows functions to refer to the object. The actual value of the handle is
unimportant to your program, but the Windows module that gives your program the
handle knows how to use it to reference the object.

25

SECTION I: GETTING STARTED

Hungarian Notation

You may also notice that some of the variables in HELLOWIN.C have peculiar-looking
names. One example is lpszCmdParam, passed as a parameter to WinMain.

Many Windows programmers use a variable-naming convention known as Hun
garian notation, in honor of the legendary Microsoft programmer Charles Simonyi. Very
simply, the variable name begins with a lowercase letter or letters that denote the data type
of the variable. For example, the lpsz prefix in lpszCmdParam stands for "long pointer to a
string terminated by zero."

The b prefix in blnstanee and bPrevlnstanee stands for "handle"; the n prefix in
nCmdSbow stands for "number," and usually specifies an integer. Two of the parameters
to WndProe also use Hungarian notation: wParam is a WORD and lParam is a LONG.

When naming structure variables, you can use the structure name (or an abbrevia
tion of the structure name) in lowercase as either a prefix to the variable name or as the
entire variable name. For example, in the WinMain function in HELLOWIN.C, the msg
variable is a structure of the MSG type; wndclass is a structure of the WNDCLASS type. In
the WndProe function, ps is a PAINTSTRUCT structure and reet is a RECT structure.

Hungarian notation helps you avoid errors in your code before they turn into bugs.
Because the name of a variable describes both the use of a variable and its data type, you
are much less inclined to make coding errors involving mismatched data types.

26

The variable name prefixes I'll be u~ing in this book are shown in the following table:

Prefix

c

by

n

x,y

cX,cy

b

w

dw

fn

s

S2

Data Type

char

BYTE (unsigned char)

short or int

int

short (used as x-coordinate or y-coordinate)

short (used as x or y length; the c stands for "count")

BaaL (int)

WORD (unsigned int)

LONG Clong)

DWORD (unsigned long)

function

string

string terminated by 0 byte

Chapter 1: Hello, Windows

The Program Entry Point

With this global look at HELLOWIN.C out of the way, we can now begin the line-by-line
dissection of the program. The code begins with an #include statement to include the
WINDOWS.H header file:

#include <windows.h>

WINDOWS.H contains declarations of the Windows functions, the Windows structures,
the new data types, and numeric constants.

This is followed by a forward declaration of the WndProc function:

long FAR PASCAL WndProc (HWND. WORD. WORD. LONG) ;

The declaration is required because WndProc is referenced by some code in the WinMain

function.
In a C program written for a conventional environment, the entry point is a function

called main. This is where the program begins execution. (Actually, the main function is
the entry point to the part of the program written by the programmer. Usually the C com
piler will insert some start-up code in the executable file. The start-up code then calls
main.) The entry point of a Windows program is a function called WinMain. (As is the
case with main, WinMain is actually called from some start-up code inserted into the exe
cutable file.) WinMain is always defined like this:

int PASCAL WinMain (HANDLE hlnstance. HANDLE hPrevlnstance.
LPSTR lpszCmdParam. int nCmdShow)

This function uses the PASCAL calling sequence and returns an integer to the start-up
code. The function must be named WinMain. It has four parameters.

The hlnstance parameter is called the "instance handle." This is a number that
uniquely identifies the program when it is running under Windows. It could be that the
user is running multiple copies of the same program under Windows. (For example, most
Windows users at one time or another have loaded multiple versions of the CLOCK pro
gram to see what happens.) Each copy is called an "instance," and each has a different
hlnstancevalue. The instance handle is comparable to a "task ID" or "process ID" number
common in mulitasking operating systems.

The hPrevlnstance ("previous instance") parameter is the instance handle of the
most recent previous instance of the same program that is still active. If no other copies of
the program are currently loaded, then hPrevlnstance will be 0 or NULL.

The IpszCmdParam parameter is a long (or far) pointer to a O-terminated string that
contains any command-line parameters passed to the program. It is possible to run a
Windows program with a command-line parameter by typing the program name and the
parameter into the Run dialog ·box invoked from either the Program Manager or the File
Manager.

27

SECTION I: GETTING STARTED

The nCmdShow parameter is a number indicating how the window is to be initially
displayed in Windows. This number is assigned by whatever program executes the pro
gram to run under Windows. Programs do not often need to examine this number, but they
can if they want. In most cases the number is either a 1 or a 7. But it's best not to think of the
value as a 1 or a 7. Rather, think of the value as SW _SHOWNORMAL (defined in WIN
DOWS.H as 1) or SW _SHOWMINNOACTIVE (defined as 7). The SW prefix in these iden
tifiers stands for "show window." This indicates whether the user launched the program to
be displayed as a normal window or to be initially minimized.

Registering the Window Class

A window is always created based on a window class. The window class identifies the win
dow procedure that processes messages to the window. This is important, so I'll repeat it:
A window is always created based on a window class. The window class identifies the
window procedure that processes messages to the window.

More than one window can be created based on a single window class. For example,
all button windows in Windows are created based on the same window class. The window
class defines the window procedure and some other characteristics of the windows that
are created based on that class. When you create a window you define additional charac
teristics of the window that are unique to that window.

Before you create a window for your program, you must register a window class by
calling RegisterClass. The RegisterClass function requires a single parameter: a pointer to
a structure of type WNDCLASS. The WNDCLASS structure is defined in WINDOWS.H
like this:

typedef struct tagWNDCLASS
{

WORD styl e :
LONG (FAR PASCAL *lpfnWndProc) ()
int cbClsExtra:
int cbWndExtra:
HANDLE hInstance
HICON hlcon:
HCURSOR hCursor :
HBRUSH hbrBackground
LPSTR lpszMenuName:
LPSTR lpszClassName
}
WNDCLASS :

In WinMain, you must define a structure of type WNDCLASS, generally like this:

WNDCLASS wndclass :

You then define the 10 fields of the structure and call Reg iste rClass:

RegisterClass (&wndclass) :

28

Chapter 1: Hello, Windows

Only the first instance of a program needs to register the window class. The window
class then becomes available to all subsequent instances of the program. For this reason,
HELLOWIN initializes the fields of the WNDCLASS structure and calls Reg iste rClass only if
hPrevlnstance equals NULL.

The WNDCLASS structure has 10 fields. The two most important fields are the last
and the second. The last field is the name of the window class (which is generally the same
as the name of the program). The second field (lpfn WndProc) is the address of the win
dow procedure used for all windows created based on this class (which is the function
WndProc in HELLOWIN.C). All the other fields describe characteristics of all windows
based on this window class.

The statement:

wndclass.style = CS_HREDRAW : CS_VREDRAW ;

combines two "class style" identifiers with a C bitwise OR operator. In WINDOWS.H, the
various identifiers beginning with the CS prefix are defined as l6-bit constants with one bit
set. For example, CS_VREDRAW is defined as OxOOOl, and CS_HREDRAW is defined as
Ox0002. Identifiers defined in this way are sometimes called "bit flags." You combine the
bit-flag identifiers with the C OR operator.

These two class-style identifiers indicate that all windows created based on this class
are to be completely repainted whenever the horizontal window size (CS_HREDRAW) or
the vertical window size (CS_VREDRAW) changes. If you resize HELLOWIN's window,
you'll see that the text string is redrawn to be in the new center of the window. These two
identifiers ensure that this happens.

The second field of the WNDCLASS structure is initialized by the statement:

wndclass.lpfnWndProc = WndProc ;

This sets the window procedure for this window class to WndProc, which is the second
function in HELLOWIN.C. This window procedure will process all messages to all win
dows created based on this window class. The lpfn prefix in the field name is Hungarian
notation for "long pointer to a function."

The next two statements:

wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;

reserve some extra space in the class structure and the window structure that Windows
maintains internally. A program can use this extra space for its own purpose. HELLOWIN
does not use this feature, so zero is specified. The cb prefix in the field names stands for a
"count of bytes."

The next field is simply the instance handle of the program (which is one of the
parameters to WinMain):

wndclass.hInstance = hInstance

29

SECTION I: GETTING STARTED

The statement:

wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

sets an icon for all windows created based on this window class. The icon is a small bitmap
picture that appears when the program is minimized. Later in this book you'll learn how to
create customized icons for your Windows programs. Right now, we'll take an easy ap
proach and use a predefined icon.

To obtain a handle to a predefined icon, you call LoadJcon with a first parameter set
to NULL. (When loading your own customized icon, this parameter would be set to the in
stance handle of the program.) The second parameter is an identifier beginning with the
IDI ("ID for an icon") defined in WINDOWS.H. The IDI_APPLICATION icon is simply a
white square with a black outline. The LoadJcon function returns a handle to this icon. We
don't really care about the value of this handle. It's simply used to set the value of the hlcon
field. The hlcon field is defined in the WNDCLASS structure to be of type HICON, which
stands for "handle to an icon."

The statement:

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

is very similar to the previous statement. The LoadCursor function loads a predefined
mouse cursor known as IDC_ARROW and returns a handle to the cursor. This handle is
assigned to the hCursorfield of the WNDCLASS structure. When the mouse cursor appears
over the client area of a window that is created based on this class, the cursor becomes a
small arrow.

The next field specifies the background color of the client area of windows created
based on this class. The hbrprefix of the hbrBackgroundfield name stands for "handle 'to
a brush." A brush is a graphics term that refers to a colored pattern of pixels used to fill an
area. Windows has several standard, or "stock," brushes. The GetObject call shown here
returns a handle to a white brush:

wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;

This means the background of the client area of the window will be solid white, which is a
common choice.
. The next field specifies the window class menu. HELLOWIN has no application
menu, so the field is set to NULL:

wndclass.lpszMenuName = NULL

Finally the class must be given a name. This is the same as the name of the program,
which is the "Hello Win" string stored in the szAppName variable:

wndclass.lpszClassName = szAppName ;

30

Chapter 1: Hello, Windows

When all 10 fields of the structure have been initialized, HELLOWIN registers the
window class by calling Reg iste rClass. The only parameter to the function is a pointer to
the WNDCLASS structure:

RegisterClass (&wndclass)

Creating the Window

The window class defines general characteristics of a window, thus allowing the same win
dow class to be used for creating many different windows. When you actually create a
window by calling CreateWindow, you specify more detailed information about the win
dow. Rather than using a data structure as RegisterClass does, the CreateWindow call
requires all the information to be passed as parameters to the function. Here's the
CreateWindow call in HELLOWIN.C:

hwnd = CreateWindow (szAppName,
"The Hell 0 Program",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULl) ;

II window class name
II window caption
II window style
II initial x position
II initial y position
II initial x size
II initial y size
II parent window handle
II window menu handle
II program instance handle
II creation parameters

The Microsoft C compiler recognizes the / / symbol for single-line comments. The com
ments describe the parameters to the CreateWindow function.

Although you need to register a window class only for the first instance of a program,
you must create a window separately for each instance. Each instance has its own window,
and all the windows are based on the same window class.

The parameter marked "window class name" is szAppName, which contains the
string "HelloWin"-the name of the window class we just registered. This is how the win
dow is associated with the window class.

The window created by this program is a normal overlapped window with a caption
bar, a system menu box to the left of the caption bar, minimize and maximize icons to the
right of the caption bar, and a thick window-sizing border. That's a standard style of win
dows, and it has the WINDOWS.H name WS_OVERLAPPEDWINDOW, which appears as
the "window style" parameter. The "window caption" is the text that will appear in the
caption bar.

The parameters marked "initial x position" and "initial y position" specify the initial
position of the upper left corner of the window relative to the upper left corner of the
screen. By using the identifier CW _USEDEFAULT for these parameters, we're indicating we
want Windows to use the default position for an overlapped window. (CW_USEDEFAULT

31

SECTION I: GETTING STARTED

is defined as Ox8000.) By default, Windows positions successive overlapped windows at
stepped horizontal and vertical offsets from the upper left corner of the display.

Similarly, the "initial x size" and "initial y size" parameters specify the width and
height of the window. The CW _USEDEFAULT identifier again indicates that we want Win
dows to use a default size for the window. The default size extends to the right side of the
display and above the icon area at the bottom of the screen.

The parameter marked "parent window handle" i~ set to NULL because this window
has no parent window. (When a parent-child relationship exists between two windows,
the child window always appears on the surface of its parent.) The "window menu handle"
is also set to NULL because the window has no menu. The "program instance handle" is set
to the instance handle passed to the program as a parameter of WinMain. Finally, a
"creation parameters" pointer is set to NULL. You could use this pointer to access some
data that you might later want to reference in the program.

The CreateWindow call returns a handle to the created window. This handle is saved
in the variable hwnd, which is defined to be of type HWND (handle to a window). Every
window in Windows has a handle. Your program uses the handle to refer to the window.
Many Windows functions require hwnd as a parameter so that Windows knows to which
window the function applies. If a program creates many windows, each has a different
handle. The handle to a window is one of the most important handles a Windows program
(pardon the expression) handles.

Displaying the Window

After the CreateWindow call returns, the window has been created internally in Windows.
However, the window does not yet appear on the video display. Two more calls are
needed. The first is:

ShowWindow (hwnd. nCmdShow) ;

The first parameter is the handle to the window just created by CreateWindow. The second
parameter is the nCmdShow value passed as a parameter to WinMain. This determines
how the window is to be initially displayed on the screen. If nCmdShow is SW _SHOW
NORMAL (equal to 1), the window is displayed normally. If nCmdShow is SW _SHOWMIN
NOACTIVE (equal to 7), then the window is initially displayed as an icon.

The Show Window function puts the window (or icon) on the display. If the second
parameter to Show Window is SW _SHOWNORMAL, the client area of the window is erased
with the background brush specified in the window class. The function call:

UpdateWindow (hwnd) ;

then causes the client area to be painted. It accomplishes this by sending the window pro
cedure (the WndProc function in HELLOWIN.C) a WM_PAINT message. We'll examine
shortly how WndProc deals with this message.

32

Chapter 1: Hello, Windows

The Message Loop

After the UpdateWindow call, the window is fully visible on the video display. The pro
gram must now make itself ready to read keyboard and mouse input from the user. Win
dows maintains a "message queue" for each Windows program currently running under
Windows. When an input event occurs, Windows translates the event into a "message" that
it places in the program's message queue.

A program retrieves these messages from the message queue by executing a block of
code known as the "message loop":

while (GetMessage (&msg, NULL, 0, 0»
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;

The msg variable is a structure of type MSG, which is defined in WINDOWS.H as
follows:

typedef struct tagMSG
{
HWND hwnd;
WORD message ;
WORD wParam
LONG 1 Param
DWORD time
POINT pt
}
MSG ;

The POINT data type is yet another structure, defined like this:

typedef struct tagPOINT
{

int x
int y
}

POINT

The GetMessage call that begins the message loop retrieves a message from the mes
sage queue:

GetMessage (&msg, NULL, 0, 0) ;

This call passes to Windows a far pointer to the MSG structure called msg. The second,
third, and fourth parameters are set to NULL or 0 to indicate that the program wants all
messages for all windows created by the program. Windows fills in the fields of the
message structure with the next message from the message queue. The fields of this
structure are:

33

SECTION I: GETTING STARTED

• bwnd-the handle to the window to which the message is directed. In
the HELLOWIN program, this is the same as the hwnd value returned
from CreateWindow, because that's the only window this program has.

• message- the message identifier. This is a number that identifies the
message. For each message, there is a corresponding identifier defined in
WINDOWS.H that begins with the prefix WM ("window message"). For
example, if you position the mouse pointer over HELLOWIN's client area
and press the left mouse button, Windows will put a message in the
message queue with a message field equal to WM_LBUTTONDOWN,
which is the value Ox0201.

• wParam-a 16-bit "message parameter," the meaning and value of which
depend on the particular message.

• /Param-a 32-bit message parameter dependent on the message.

• time-the time the message was placed in the message queue.

• pt- the mouse coordinates at the time the message was placed in the
message queue.

If the message field of the message retrieved from the message queue is anything
except WM_QUIT (which equals Ox0012), then GetMessage returns a nonzero value. A
WM_QUIT message causes the program to fall out of the message loop. The program then
termin~tes, returning the wParam member of the msg structure.

The statement:

TranslateMessage (&msg) ;

passes the MSG structure back to Windows for some keyboard translation. (I'll discuss this
more in Chapter 3.) The statement:

DispatchMessage (&msg) ;

again passes the MSG structure back to Windows. Windows then sends the message to the
appropriate window procedure for processing. That window procedure is the WndProc
function in HELLOWIN. After WndProc processes the message, it then returns to Win
dows, which is still servicing the DispatchMessage call. When Windows returns to
HELLOWIN following the DispatchMessage call, the message loop continues with the next
GetMessage call.

The Window Procedure

All that I've described so far is really just overhead. The window class has been registered,
the window has been created, the window has been displayed on the screen, and the pro
gram has entered a message loop to retrieve messages from the message queue.

34

Chapter 1: Hello, Windows

The real action occurs in the window procedure, which Windows programmers
commonly call a "window proc" (pronouriced "prock"). The window procedure deter
mines what the window displays in its client area and how the window responds to
user input.

In HELLOWIN, the window procedure is the function called WndProc. A window
procedure can have any name. A Windows program can contain more than one window
procedure. A window procedure is always associated wi,th a particular window class that
you register by calling RegisterClass. The CreateWindow function creates a window based
on a particular window class. More than one window can be created based on the same
window class.

A window procedure is always defined like this:

long FAR PASCAL WndProc (HWND hwnd, WORD message, WORD wParam, LONG lParam)

Note that the four parameters to the window procedure are identical to the first four fields
of the MSG structure.

The first parameter is hwnd, the handle to the window receiving the message. This
is the same handle returned from the CreateWindow function. For a program like
HELLOWIN, which creates only one window, this is the only window handle the program
knows about. If a program creates multiple windows based on the same window class (and
hence the same window procedure), then hwnd identifies the particular window receiving
the message.

The second parameter is a number (specifically, a 16-bit unsigned integer or WORD)
that identifies the message. The last two parameters (a WORD called wParam and a 32-bit
signed long integer or LONG called IParam) provide more information about the message.
These are called "message parameters." What these parameters contain is specificJo each
type of message.

Processing the Messages

Each message that a window procedure receives is identified by a number, which is the
message parameter to the window procedure. The WINDOWS.H header file defines iden
tifiers beginning with the prefix WM ("window message") for each message parameter.

Generally, Windows programmers use a switch and case construction to determine
what message the window procedure is receiving and how to process it accordingly. When
a window procedure processes a message, it should return 0 from the window procedure.
All messages that a window procedure chooses not to process must be passed to a Win
dows function named DejWindowProc. The value returned from DejWindowProc must
be returned from the window procedure.

35

SECTION I: GETTING STARTED

In HELLOWIN, WndProc chooses to process only two messages: WM_PAINT and
WM_DESTROY. The window procedure is structured like this:

switch (message)
{
case WM_PAINT
[process WM_PAINT message J

return 0 ;

case WM DESTROY
[proc~ss WM_DESTROY message J

return 0 ;

return DefWindowProc (hwnd, message, wParam, lParam) ;

It is essential to call De!WindowProc for all messages that your window procedure does
not process.

The WM_PAINT Message

The first message that WndProc processes is WM_PAINT. This message is extremely im
portant in Windows programming. It informs a program when part or all of the window's
client area is "invalid" and must be repainted.

How does a client area become invalid? When the window,is first created, the entire
client area is invalid because the program has not yet drawn anything on the window. The
first WM_PAINT message (which normally occurs when the program calls UpdateWindow
in WinMain) directs the window procedure to draw something on the client area.

When you resize HELLOWIN's window, the client area also becomes invalid. You'll
recall that the style parameter of HELLOWIN's wndclass structure was set to the flags
CS_HREDRAWand CS_VREDRAW. This directs Windows to invalidate the whole window
when the size changes. The window procedure receives a WM_PAINT message.

When you minimize HELLOWIN to be displayed as an icon and then restore the win
dow again to its previous size, Windows does not save the contents of the client area.
Under a graphical environment, this would be too much data. Instead, Windows invali
dates the window. The window procedure receives a WM_PAINT message and itself
restores the contents of its window.

When you move windows around so they overlap, Windows does not save the area of
a window covered by another window. When that area of the window is later uncovered, it
is flagged as invalid. The window procedure receives a WM_PAINT message to repaint the
contents of the window.

Before sending the window procedure a WM_PAINT message, Windows erases the
background of the invalid area using the brush specified in the hbrBackground field of the

36

Chapter 1: Hello, Windows

WNDCLASS structure used to register the window class. In the case of HELLOWIN, this is
a stock white brush, which means that Windows erases the background of the window by
coloring it white.

WM_PAINT processing almost always begins with a call to BeginPaint:

hdc - BeginPaint (hwnd, &ps)

and ends with a call to EndPaint:

EndPaint (hwnd, &ps) ;

In both cases, the first parameter is a handle to the program's window and the second
parameter is a pointer to a structure of type PAINTSTRUCT. PAINTSTRUCT contains some
information that a window procedure can use for painting the client area. (I'll discuss the
fields of this structure in the next chapter.)

BeginPaintreturns a "handle to a device context." A device context refers to a physi
cal output device (such as a video display) and its device driver. You need the device con
text handle to display text and graphics in the client area of a window. Using the device
context handle returned from BeginPaint, you cannot draw outside the client area, even if
you try. EndPaint releases the device context handle so that it is no longer valid. EndPaint
also validates the entire client area.

If a window procedure does not process WM_PAINT messages (which is very rare),
they must be passed on to DefWindowProe. DefWindowProe simply calls BeginPaint and
EndPaint in succession so that the client area is validated.

After WndProe calls BeginPaint, it calls GetClientReet:

GetClientRect (hwnd, &rect) ;

The first parameter is the handle to the program's window. The second parameter is a
pointer to a variable named reet defined as type RECT in WndProe ..

RECT is a "rectangle" structure defined in WINDOWS.H. It has four int fields named
left, top, right, and bottom. GetClientReet sets these four fields to the dimensions of the cli
ent area of the window. The left and top fields a~e always set to O. The right and bottom
fields are set to the width and height of the client area in pixels.

WndProe doesn't do anything with this RECT structure except pass a pointer to it as
the fourth parameter of DrawText:

DrawText (hdc, "Hello, Windows!", -I, &rect,
DT_SINGLELINE : DT_CENTER : DT_VCENTER)

DrawText (as the name implies) draws text. Because this function draws something, the
first parameter is a handle to the device context returned from BeginPaint. The second
parameter is the text to draw, and the third parameter is set to -1 to indicate that the text
string is terminated with a 0 byte.

37

SECTION I: GETTING STARTED

The last parameter is a series of bit flags defined in WINDOWS.H. The flags indicate
that the text should be displayed as a single line centered horizontally and vertically within
the rectangle specified by the fourth parameter. This function call thus causes the string
"Hello, Windows!" to be displayed centered in the client area.

Whenever the client area becomes invalid (as it does when you change the size of the
window), Windows erases the background of the window and WndProc receives a new
WM_PAINT message. WndProc obtains the updated window size by calling GetCiientRect
and again displays the text in the new center of the window.

The WM_DESTROY Message

The WM_DESTROY message is another important message. This message indicates that
Windows is in the process of destroying a window based on a command from the user. The
message is a result of the user selecting Close from the program's system menu or pressing
Alt-F4.

HELLOWIN responds to this message in a standard way by calling:

PostOu;tMessage (0) ;

This function inserts a WM_QUIT message in the program's message queue. I mentioned
earlier that GetMessage returns nonzero for any message other than WM_QUIT that it
retrieves from the message queue. When GetMessage retrieves a WM_QUIT message, Get
Message returns O. This causes WinMain to drop out of the message loop and exit, ter
minating the program.

The Module Definition File

In addition to the C source code, another file is required for Windows programs. It is called
a "module definition file" and has the extension .DEF. The module definition file aids the
LINK linker in creating the .EXE file by telling it the characteristics of the program's code
and data segments, the size of the program's local data heap (from which the program can
allocate memory), and the size of the program's stack. This information becomes part of
the header section of the New Executable file format. The HELLOWIN.DEF file is shown in
Figure 1-5 on page 16.

The NAME line defines HELLOWIN as a program (rather than a dynamic link li
brary) and gives it a module name, which is usually the name of the program's .EXE file.
The DESCRIPTION line simply inserts some text into the .EXE file. This is an excellent
place for a copyright notice or version information. The EXETYPE line identifies the pro
gram as a Windows program. (OS/2 programs also use module definition files and the
New Executable file format.)

The STUB is a program that is inserted into the .EXE file to be executed when
anyone attempts to run HELLOWIN.EXE from the MS-DOS command line. The

38

Chapter 1: Hello, Windows

WINSTUB.EXE program included with the Windows Software Development Kit simply
displays the message "This program requires Microsoft Windows" and terminates.

The CODE statement indicates that the program's code segment is flagged as
PRELOAD (which means that Windows will load the segment into memory immediately)
and MOVEABLE (which means that Windows can move the code segment to another loca
tion in memory if it needs to consolidate blocks of free memory). The DISCARDABLE op
tion makes the code "discardable" (which means that Windows can discard the code
segment from memory and later reload it from the .EXE file). These are the normal options
for Windows programs. If you follow proper Windows programming practice, you will not
(in theory) encounter any problems when Windows moves your code.

The DATA statement indicates that we want the data segment to be PRELOAD,
MOVEABLE, and MULTIPLE. Again, we are giving Windows permission to move the data
segment in memory if necessary. The MULTIPLE keyword requests that each instance of
the program gets its own separate data segment. This is necessary because the data seg
ment contains the program's stack and other data items that must be separate for each in
stance. The code segment, on the other hand, is shared by all instances of the program.

The HEAPSIZE line specifies the amount of extra local memory (memory in the pro
gram's own data segment) that will be available for allocation. The value depends on what
the program needs. HELLOWIN doesn't need to allocate any local memory, but we'll throw
in a small value nonetheless. Windows can expand a program's local heap if necessary.

The STACKSIZE line specifies the ~ize of the stack. The value 8192 bytes is a
minimum recommended value. You'll want a bigger stack size if your program has recur
sive functions or large non-static variables.

Finally, the EXPORTS line lists the window procedure WndProc. For reasons I'll
discuss in Chapter 7, all window procedures that a program contains must be listed in the
EXPORTS section of the module definition file.

THE WINDOWS PROGRAMMING HURDLES
Even with my explanation of HELLOWIN, the structure and workings of the program are
probably still somewhat mysterious. In a short C program written for a conventional envi
ronment, the entire program may be contained in the main function. In HELLOWIN, Win
Main contains only program overhead necessary to register the window class, create the
window, and retrieve and dispatch messages from the message queue.

All the real action of the program occurs in the window procedure. In HELLOWIN,
this action is not much-it simply displays a text string in its window. But in later chapters
you'll find that almost everything a Windows program does it does in response to a mes
sage to a window procedure. This is one of the major conceptual hurdles that you must
leap to begin writing Windows programs.

39

SECTION I: GETTING STARTED

Don't Call Me, I'll Call You

As I mentioned earlier, programmers are familiar with the idea of calling on the operating
system to do something. For instance, C programmers use the open or jopen function to
open a file. The library functions provided with the compiler have code that eventually
calls the operating system to open the file. No problem.

But Windows is different. Although Windows has more than 550 functions that your
program can call, Windows also makes calls to your program, specifically to the window
procedure we have called WndProc. The window procedure is associated with a window
class that the program registers by calling RegisterClass. A window that is created based on
this class uses this window procedure for processing all messages to the window. Windows
sends a message to the window by calling the window procedure.

Windows calls WndProc when a window is first being created. Windows calls
WndProc when the window is later destroyed. Windows calls WndProc when the window
has been resized or moved or made into an icon. Windows calls WndProc when an item
has been selected from a menu. Windows calls WndProc when a scroll bar is being moved
or clicked with the mouse. Windows calls WndProc to tell it when it must repaint its
client area.

All these calls are in the form of messages. In most Windows programs, the bulk of
the program is dedicated to handling these messages. The 130 or so different messages that
Windows can send to a window procedure are all identified with names that begin with the
letters WM and defined in WINDOWS.H.

Actually, the idea of a routine within a program that is called from outside the
program is not unheard of in normal programming. The signal function in C can trap a
Ctrl-Break. You may have experience with intercepting hardware interrupts in assembly
language or using one of the.ON constructions in Microsoft BASIC. The Microsoft Mouse
driver has a method that non -Windows programs can use to be notified of mouse activity.

In Windows, this concept is extended to cover everything. Everything that happens
to a window is relayed to the window procedure in the form of a message. The window
procedure then responds to this message in some way or passes the message to DejWin
dowProc for default processing.

The wParam and IParam parameters to the window procedure are not used in
HELLOWIN except as parameters to DejWindowProc. These parameters give the window
additional information about the message. The meaning of the parameters is message
dependent.

Let's look at an example. Whenever the client area of a window changes in size, Win
dows calls that window's window procedure. The hwnd parameter to the window pro
cedure is the handle of the window changing in size. The message parameter is WM_SIZE.
The wParam parameter for a WM_SIZE message is the value SIZENORMAL, SIZEICONIC,
SIZEFULLSCREEN, SIZEZOOMSHOW, or SIZEZOOMHIDE (defined in WINDOWS.H as
the numbers 0 through 4). The wParam parameter indicates whether the window is being

40

Chapter 1: Hello, Windows

minimized, maximized, or hidden (as a result of another window being maximized). The
IParam parameter contains the new size of the window. The new width (a 16-bit value)
and the new height (a 16-bit value) have been stuck together in the 32-byte IParam.
WINDOWS.H includes macros to help you extract these two values from IParam. We'll
do this in the next chapter.

Sometimes messages generate other messages as a result of DefWindowProc pro
cessing. For example, suppose you run HELLOWIN and select Close from the system
menu using either the keyboard or the mouse. DefWindowProc processes this keyboard
and mouse input. When it detects that you have selected the Close option, it sends a
WM_SYSCOMMAND message to the window procedure. WndProc passes this message to
DefWindowProc. DefWindowProc responds by sending a WM_CLOSE message to the
window procedure. WndProc again passes this message to DefWindowProc. DefWindow
Proc responds to the WM_CLOSE message by calling Destroy Window. DestroyWindow
causes Windows to send a WM_DESTROY message to the window procedure. WndProc
finally responds to this message by calling PostQuitMessageto put a WM_QUIT message in
the message queue. This message causes the message loop in WinMain to terminate and
the program to end.

Queued and Nonqueued Messages

I've talked about Windows sending messages to a window, which means that Windows
calls the window procedure. But a Windows program also has a message loop that
retrieves messages from a message queue by calling GetMessage and dispatches them to
the window procedure by calling DispatchMessage.

So, does a Windows program poll for messages (exactly as a normal program polls
for keyboard data) and then route these messages to some location? Or does it receive mes
sages directly from outside the program? Well, both.

Messages can be either "queued" or "nonqueued." The queued messages are those
that are placed in a program's message queue by Windows and retrieved and dispatched in
the message loop. The nonqueued messages are sent to the window directly when Win
dows calls the window procedure. The result is that the window procedure gets all the
messages-both queued and nonqueued-for the window. Structurally, Windows pro
grams are very clean, because' they have one central point of message processing. It is said
that queued messages are posted to a message queue while nonqueued messages are sent
to the window procedure.

The queued messages are primarily those that result from user input in the form of
keystrokes (such as WM_KEYDOWN and WM_KEYUP), characters that result from
keystrokes (WM_CHAR), mouse movement (WM_MOUSEMOVE), and mouse button
clicks (WM_LBUTTONDOWN). Queued messages also include the timer message
(WM_ TIMER), the repaint message (WM_PAINT), and the quit message (WM_QUIT).
The nonqueued messages are everything else. In many cases the nonqueued messages

41

SECTION I: GETTING STARTED

result from queued messages. When you pass a nonqueued message to DejWindowProc
within the window procedure, Windows often processes the message by sending the
window procedure other messages.

This process is obviously complex, but fortunately most of the complexity is Win
dows' problem rather than our program's. From the perspective of the window procedure,
these messages come through in an orderly, synchronized manner. The window procedure
can do something with these messages or ignore them. For this reason, the wind.ow pro
cedure has been called the "ultimate hook." Messages notify the window procedure of
almost everything that affects the window.

The nonqueued messages often result from calling certain Windows function calls or
by explicitly sending a message by calling Send Message. (Messages can also be placed in a
message queue by calling PostMessage.)

For example, when WinMain calls CreateWindow, Windows creates the window and
in the process sends the window procedure a WM_CREATE message. When WinMain
calls Show Window, Windows sends the window procedure WM_SIZE and WM_SHOW
WINDOW messages. When WinMain calls UpdateWindow, Windows sends the window
procedure a WM_PAINT message.

Messages are not like hardware interrupts. While processing one message in a win
dow procedure the program will not be interrupted by another message. Only when the
window procedure calls a function that generates a new message will the message pro
cedure process the message before the function returns.

The message loop and the window procedure do not run concurrently .. When the
window procedure is processing a queued message, it is the result of a call to Dis
patchMessage in WinMain. DispatchMessage does not return until the window procedure
has processed the message.

But notice that the window procedure must be reentrant. That is, Windows often
calls WndProc with a new message as a result of WndProc calling DejWindowProc with a
previous message. This is one reason that a Windows program requires a 8-KB stack, as in
dicated in the module definition (.DEF) file. In most cases the reentrancy of the window
procedure presents no problem, but you should be aware of it.

In many cases, the window procedure must retain information it obtains in one mes
sage and use it while processing another message. This information must be saved in vari
ables defined as static in the window procedure or in global variables.

Of course, you'll get a much better feel for all this in later chapters as the window
procedures are expanded to process more messages.

Nonpreemptive Multitasking

The GetMessage call within the message loop is important for another reason. Except for
some device drivers that must process hardware interrupts (such as the timer, keyboard,
mouse, and serial port), Windows usually treats HELLOWIN as if it were the only program

42

Chapter 1: Hello, Windows

running under the system. Windows will not arbitrarily switch away from HELLOWIN and
run some other program. The exception is during the GetMessage call. If HELLOWIN's
message queue has no waiting messages and another program has some messages in its
message queue, then Windows switches from HELLOWIN to the other program. That
makes sense, does it not?

You can think of it this way: In most cases, when your program calls a function in
Windows, you can expect that the function will be processed and return control to your
program within a reasonable period of time. When you call GetMessage, however, it may
be some time before Windows returns with a message if the program's message queue
does not contain any messages and another program's message queue does. Windows can
take advantage of the delay caused by an empty message queue during a GetMessage call to
switch to another program that has messages waiting. As a result, Windows has a "jumpy"
type of multitasking. Sometimes a program has a long job to do, and all other programs
running under Windows seem to stop running during this time.

Rather than "jumpy multitasking," this characteristic is usually called "nonpreemp
tive multitasking." Windows is multitasking between programs by switching between
them. But Windows is not doing this as it is done within a traditional multitasking system,
based on the tick of a hardware clock and allocating each program a tiny time-slice to do
its stuff. It's multitasking at the point where programs check the message queue for
messages.

The process is actually a little more complex than that: Windows also switches be
tween programs during PeekMessage and WaitMessage calls, but these are less common
than GetMessage. Furthermore, the WM_PAINT and WM_ TIMER messages are treated as
low-priority messages, so Windows can switch from a program if only WM_PAINT and
WM_ TIMER messages are present in the queue.

The Learning Curve

Yes, as you've undoubtedly determined from this chapter, Windows programming is cer
tainly different from programming for a conventional environment like MS-DOS. Nobody
will claim that Windows programming is easy.

When I first started learning Windows programming, I decided to do what I had
always done when learning a new operating system or a new language-to write a simple
"hex dump" program to display the contents of a file. In the conventional MS-DOS
environ·ment, such a program involves command-line processing, rudimentary file I/O,
and screen output formatting. However, my Windows hex-du~p program turned into a
monster. It required that I learn about menus, dialog boxes, scroll bars, and the like. As
a first Windows program, it was definitely a mistake, demanding that I absorb too much
all at once.

Yet when this program was finished, it was quite unlike any hex-dump program. I had
written. Rather than obtain the filename from a command line, WINDUMP (as I called it)

43

SECTION I: GETTING STARTED

presented a list box showing all the files in the current directory. Rather than write its out
put to the screen ina simple teletype fashion, WINDUMP had scroll bars so I could move to
any part of the file. As an extra bonus, I could even run two copies of WINDUMP to com
pare two files side by side. In short, WINDUMP was the first hex-dump program I wrote
that I was actually proud of.

What you have to ask yourself is this: Do I want my programs to use a more modern
and productive user interface, one that includes menus, dialog boxes, scroll bars, and
graphics? If you answer yes, then the question becomes: Do I want to write all this menu,
dialog box, scroll bar, and graphics code myself? Or would I rather take advantage of all the
code already inside Windows for this? In other words, ·is it easier to learn how to use 550
function calls or to write them yourself? Is it easier to orient your programming mind to the
message-driven architecture of Windows or struggle with using several different sources of
user input in a traditional model?

If you're going to write your own user interface logic, you had better close this book
and get to work right away. Meanwhile, the rest of us are going to learn how to display and
scroll text in a window.

44

Chapter 2

Painting
with Text

In the previous chapter you saw a simple Windows program that displayed a single line of
text in the center of its client area. The client area occupies all the space of the window
that is not taken up by the caption bar, the window-sizing border, the menu bar (if any), and
scroll bars (if any). The client area is the part of the window on which a program is free to
draw. You can do almost anything you want with that client area-anything, that is, except
assume that it will be a particular size or that the size will remain constant while your pro
gram is running. If you are accustomed to writing programs for the IBM PC, this exception
may come as a bit of a shock. You can no longer think in terms of 25 lines and 80 columns
of text. Your program shares the video display with ot~er Windows programs. The user
controls how the programs are arranged on the screen. Your program must accept the size
it's given and do something reasonable with it. (A program could create a window of a
specific fixed size, but it isn't very common.)

This works both ways. Just as your program may find itself with a client area barely
large enough in which to say "Hello," it may also someday be run on a big-screen high
resolution video system and discover a client area big enough for two entire pages of text
and plenty of closet space besides. Dealing intelligently with both these eventualities is an
important part of Windows programming.

Although Windows has extensive Graphics Device Interface (GDI) functions for dis
playing graphics, in this chapter I'll stick to displaying simple lines of text. I'll also ignore
the various fonts (typefaces) and font sizes that Windows makes available and use only
Windows' default "system font." This may seem limiting, but it really isn't. The problems

45

SECTION I: GETTING STARTED

we encounter-and solve-in this chapter apply to all Windows programming. When you
display a combination of text and graphics (as, for instance, the Windows CALENDAR,
CARDFILE, and CALCULATOR programs do), the character dimensions of Windows'
default system font often determine the dimensions of the graphics.

This chapter is ostensibly about learning how to paint, but it's really about learning
the basics of device-independent programming. Windows programs can assume little
about their environment. Instead, they must use the facilities that Windows provides to
obtain information about the environment.

PAINTING AND REPAINTING
Under MS-DOS, a program using the display in a full-screen mode can write to any part of
the display. What the program puts on the display will stay; there and will not mysteriously
disappear. The program can then discard information needed to re-create the screen dis
play. If another program (such as a RAM-resident popup) overlays p~rt of the display, then
the popup is responsible for restoring the display when it leaves.

In Windows, you can display only to the client area of your window, and you cannot
be assured that what you display to the client area will remain there until your program
specifically writes over it. For instance, the dialog box from another application may
overlay part of your client area. Although Windows will attempt to save and restore the
area of the display underneath the dialog box, it sometimes cannot do so. When the dialog
box is removed from the screen, Windows will request that your program repaint this
portion of your client area. .

Windows is a message-driven system. Windows informs applications of various
events by posting messages in the application's message queue or sending messages to the
appropriate window procedure. Windows informs a window procedure that part of the
window's client area needs updating by posting a WM_PAINT message.

The WM_PAINT Message

Most Windows programs call the function UpdateWindow during initialization in Win

Main shortly before entering the message loop. Windows takes this opportunity to send
the window procedure its first WM_PAINT message. That message informs your window
procedure that the client area is ready to be painted. Thereafter, that window procedure
should be ready at any time to process additional WM_PAINT messages and even repaint
the entire client area of the window if necessary. A window procedure receives a
WM_PAINT message whenever one of the following occurs:

46

• A previously hidden area of the window is brought into view when a user
moves a window or uncovers a window.

• The user resizes the window (if the window class style has the CS
_HREDRAW and CS_VREDRAW bits set).

Chapter 2: Painting with Text

• The program uses the ScrollWindow function to scroll part of its
client area.

• The program uses the InvalidateRect or InvalidateRgn function to
explicitly generate a WM_PAINT message.

In some cases in which part of the client area is temporarily written over, Windows
attempts to save an area of the display and restore it later. This is not always successful.
Windows may sometimes post a WM_PAINT message when:

• Windows removes a dialog box or message box that was overlaying part of
the window.

• A menu is pulled down and then released.

In a few cases, Windows always saves the area of the display it overwrites and then
restores it. This is the case whenever:

• The cursor is moved across the client area.

• An icon is dragged across the client area.

Dealing with WM_PAINT messages requires that you alter your thinking about how
you write to the display. Your program should be structured so that it accumulates all the
information necessary to paint the client area but paints only "on demand"-when Win
dows sends the window procedure a WM_PAINT message. If your program needs to
update its client area, it can force Windows to generate this WM_PAINT message. This
may seem a roundabout method of displaying something on the screen, but the structure
of your programs will benefit from it.

Valid and Invalid Rectangles

Although a window procedure should be prepared to update the entire client area when
ever it receives a WM_PAINT message, it often needs to update only a smaller rectangular
area. This is most obvious when part of the client area is overlaid by a dialog box. Repaint
ing is required only for the rectangular area uncovered when the dialog box is removed.

That rectangular area is known as an "invalid rectangle." The presence of an invalid
rectangle in a client area is what prompts Windows to place a WM_PAINT message in the
application's message queue. Your window procedure receives a WM_PAINT message
only if part of your client area is invalid.

Windows internally maintains a "paint information structure" for each window. This
structure contains (among other information) the coordinates of the invalid rectangle. If
another rectangular area of the client area becomes invalid before the window procedure
processes the WM_PAINT message, Windows calculates a new invalid rectangle that en
compasses both areas and stores this updated information in the paint information struc
ture. Windows does not place multiple WM_PAINT messages in the message queue.

47

SECTION I: GETTING STARTED

A window procedure can invalidate a rectangle in its own client area by calling
InvalidateReci. If the message queue already contains a WM_PAINT message, Windows
calculates a new invalid rectangle. Otherwise, it places a WM_PAINT message in the mes
sage queue. A window procedure can obtain the coordinates of the invalid rectangle when
it receives a WM_PAINT message (as we'll see shortly). It can also obtain these coordinates
at any other time by calling GetUpdateRect.

After the window procedure calls EndPaintduring the WM_PAINT message, the en
tire client area is validated. A program can also validate any rectangular region in the client
area by calling the ValidateRect function. If this call has the effect of validating the entire
invalid area, then any WM_PAINT message currently in the queue is deleted.

AN INTRODUCTION TO GDI
To paint the client area of your window, you use Windows' Graphics Device Interface
(GDI) functions. (A full discussion of GDI is in Chapters 11-15.) Windows provides five GDI
functions for writing text strings to the client area of the window. We've already encoun
tered the DrawText function in Chapter 1, but the most popular text output function by far
is TextOut. This function has the following format:

TextOut (hdc. x. Y. lpsString. nLength) ;

TextOut writes a character string to the display. The IpsString parameter is a long (or far)
pointer to the character string, and nLength is the length of the string. The x and y param
eters define the starting position, in "logical coordinates," of the character string in
the client area. The hdc parameter is a "handle to a device context," and it is an important
part of GDI. Virtually every GDI function requires this handle as the first parameter to
the function.

The Device Context

A handle, you'll recall, is simply a number that Windows uses for internal reference to an
object. You obtain the handle from Windows and then use the handle in other functions.
The device context handle is your window's passport to the GDI functions. With that
device context handle you are free to paint your client area and make it as beautiful or as
ugly as you like.

The device context (also called the "DC") is really a data structure maintained by
GDI. A device context is associated with a particular display device, such as a printer, plot
ter, or video display. For a video display, a device context is usually associated with a
particular window on the display.

W,indows uses the values in the device context structure (also called "attributes" of
The device context) in conjunction with the GDI functions. With TextOut, for instance, the

48

Chapter 2: Painting with Text

attributes of the device context determine the color of the text, the color of the text back
ground, how the x-coordinate and y-coordinate are mapped to the client area of the
window, and what font Windows uses when displaying the text.

When a program needs to paint, it must first obtain a handle to a device context. After
it has finished painting, the program should release the handle. When a program releases
the handle, the handle is no longer valid and must not be used. The program should obtain
the handle and release the handle during processing of a single message. Except for a de
vice context created with a call to CreateDC, you should not keep a device context handle
around from one message to another.

Windows applications generally use two methods for getting the handle to the device
context in preparation for painting the screen.

Getting a Device Context Handle: Method One

You use this method when you process WM_PAINT messages. Two functions are involved:
BeginPaint and EndPaint. These two functions require the handle to the window (passed
to the window procedure as a parameter) and the address of a structure variable of type
PAINTSTRUCT. Windows programmers usually name this structure variable ps and define
it within the window procedure, like so:

PAINTSTRUCT ps ;

While processing a WM_PAINT message, a Windows function first calls BeginPaint
to fill in the fields of the ps structure. The value returned from BeginPaint is the device
context handle. This is commonly saved in a variable named hdc. You define this variable
in your window procedure 'like this:

HDC hdc ;

The HDC data type is defined in WINDOWS,H as a HANDLE. The program may then use
GDI functions such as TextOut. A call to EndPaint releases the device context handle and
validates the window.

Typically, processing of the WM_PAINT message looks like this:

case WM_PAINT :
hdc = BeginPaint (hwnd,&ps)
[use GDlfunctionsl

EndPaint (hwnd, &ps) ;
return 0 ;

The window procedure must call BeginPaint and EndPaint as a pair while processing the
WM_PAINT message. If a window procedure does not process WM_PAINT messages,
then it must pass the WM_PAINT message to DefWindowProc (the default window pro
cedure) located in Windows.

49

'. SECTION I: GETTING STARTED

De!WindowProc processes WM_PAINT messages with the following code:

case WM_PAINT :
BeginPaint (hwnd. &ps)
EndPaint (hwnd. &ps) ;
return 0 ; .

This sequence of BeginPaint and EndPaint with nothing in between simply validates the
previously invalid rectangle. But don't do this:

case WM_PAINT :
return 0; II WRONG III

Windows places a WM_PAINT message in the message queue because part of the client
area is invalid. Unless you call BeginPaint and EndPaint (or ValidateRect), Windows will
not validate that area. Instead, Windows will send you another WM_PAINT message. And
another, and another, and another ...

The Paint Information Structure

Earlier I mentioned a "paint information structure" that Windows maintains for each win
dow. That's what PAINTSTRUCT is. The structure is defined in WINDOWS.H as follows:

typedef struet tagPAINTSTRUCT
(

HDC hde ;
BOOl fErase ;
RECT rePaint;
BOOl fRestore :
BOOl fIneUpdate ;
BYTE rgbReserved[16]
PAINTSTRUCT ;

Windows fills in the fields of this structure when your program calls BeginPaint.
Your program may use only the first three fields. The others are used internally by
Windows.

The hdc field is the handle to the device context. In a redundancy typical of Win
dows, the value returned from BeginPaint is also this.device context handle.

In most cases, jErase will be flagged TRUE (nonzero), meaning that Windows has
erased the background of the invalid rectangle. Windows erases the background using the
brush specified in the hbrBackground field of the WNDCLASS structure that you use
when registering the window class during WinMain initialization. Many Windows' pro
grams use a white brush:

wndel ass. hbrBaekg round ... GetStoekObj eet (WHITE_BRUSH) :

However, if your program invalidates a rectangle of the client area by calling the
Windows function InvalidateRect, one of the parameters to this function specifies whether

50

SECTION I: GETTING STARTED

before calling BeginPaint. This invalidates the entire client area and erases the back
ground. A FALSE value in the last parameter will not erase the background, however.
Whatever was there will stay.

In the HELLOWIN program in Chapter 1, we didn't care about invalid rectangles or
clipping rectangles when processing the WM_PAINT message. If the area where the text
was displayed happened to be within the invalid rectangle, then DrawText restored it. If
not, then at some point during processing of the DrawText call, Windows determined it
didn't have to write anything to the display. But this determination takes time. A program
mer concerned about performance and speed will want to use the invalid-rectangle
dimensions during processing ofWM_PAINT to avoid unnecessary GDI calls.

Getting a Device Context Handle: Method Two

You can also obtain a handle to a device context if you want to paint the client area when
processing messages other then WM_PAINT or if you need the device context handle for
other purposes, such as obtaining information about the device context. Call GetDC to ob
tain the handle to the device context, and ReleaseDC after you're done with it:

hdc = GetDC (hwnd) ;
{use CD/functions]

ReleaseDC (hwnd. hdc) ;

Like BeginPaint and EndPaint, the GetDC and ReleaseDC functions should be called in
pairs. When you call GetDC while processing a message, you should call ReleaseDC before
you exit the window procedure. Do not call GetDC in response to one message and
ReleaseDC in response to another.

Unlike the device context handle obtained from the PAINTSTRUCT structure, the de
vice context handle returned from GetDC has a clipping rectangle equal to the entire client
area. You can paint on any part of the client area, not merely on the invalid rectangle (if
indeed there is an invalid rectangle). Unlike EndPaint, ReleaseDC does not validate any
invalid rectangles.

TextOut: The Details

When you obtain the handle to the device context, Windows fills the device context struc
ture with default values. As you'll see in later chapters, you can change these defaults with
GDI functions. The GDI function we're interested in right now is TextOut:

TextOut (hdc. x. y. lpsString. nLength) ;

Let's examine this function in more detail.
The first parameter is the handle to the device context-either the hdc value

returned from GetDC or the hdc value returned from BeginPaint during processing of a
WM_PAINT message.

52

Chapter 2: Painting with Text

you want the background erased. If this parameter is FALSE (or 0), then Windows will not
erase the background, and the ./Erase field will also be FALSE.

The rePaint field of the PAINTSTRUCT structure is a structure of type RECT. As you
learned in Chapter 1, the RECT structure defines a rectangle. The four fields are left, top,
right, and bottom. The rePaint field in the PAINTSTRUCT structure defines the bound
aries of the invalid rectangle, as shown in Figure 2-1. The values are in units of pilCels rela
tive to the upper left corner of the client area. The invalid rectangle is the area that you
should repaint. Although a Windows program can simply repaint the entire client area of
the window whenever it receives a WM_PAINT message, repainting only the area of the
window defined by that rectangle saves time.

o

top

bottom

o left ri ht

= Caption Bar aa

Invalid
rectangle

Client area

Figure 2·1. The boundaries a/the invalid rectangle.

The rePaint rectangle in PAINTSTRUCT is not only the invalid rectangle; it is also a
"clipping" rectangle. This means that Windows restricts painting to within the clipping
rectangle. When you use the device context handle from the PAINTSTRUCT structure,
Windows will not paint outside the rePaint rectangle.

To paint outside this rePaint rectangle while processing WM_PAINT messages, you
can make this call:

InvalidateRect (hWnd. NULL. TRUE)

51

Chapter 2: Painting with Text

The attributes of the device context control the characteristics of this displayed text.
For instance, one attribute of the device context specifies the text color. The default color is
black. The default device context also defines a background color of white. When a pro
gram writes text to the display, Windows uses this background color to fill in the space
surrounding the characters.

This text background color is not the same background you set when defining the
window class. The background in the window class is a brush-which is a pattern that
mayor may not be a pure color-that Windows uses to erase the client area. It is not part
of the device context structure. When defining the window class structure, most Windows
applications use WHITE_BRUSH so that the background color in the default device con
text is the same color as the brush Windows uses to erase the background of the client area.

The IpsString parameter is a long pointer to a character string, and nLength is the
length of the string. The string should not contain any ASCII control characters such as car
riage returns, linefeeds, tabs, or backspaces. Windows displays these control characters as
solid blocks. TextOut does not recognize a 0 as denoting the end of the string and requires
the nLength parameter for the length.

The x and y values in TextOut define the starting point of the character string within
the client area. The x value is the horizontal position; the y value is the vertical position.
The upper left corner of the first character in the string is positioned at x and y. In the
default device context, the origin (the point where x and y both equal 0) is the upper left
corner of the client area. If you use 0 values for x and yin TextOut, the character string
starts flush against the upper left corner of the client area.

GDI coordinates are "logical coordinates." Windows has a variety of "mapping
modes" that govern how the logical coordinates specified in GDI functions are translated
to the physical pixel coordinates of the display. The mapping mode is defined in the device
context. The default mapping mode is called MM_ TEXT (using the WINDOWS.H iden
tifier). Under the MM_ TEXT mapping mode, logical units are the same as physical units,
which are pixels. Values of x increase as you move to the right in the client area and values
of y increase as you move down in the client area. (See Figure 2-2 on the following page.)
The MM_ TEXT coordinate system is identical to the coordinate system that Windows uses
to define the invalid rectangle in the PAINTSTRUCT structure. Very convenient. (This is
not the case with other mapping modes, however.)

The device context also. defines a clipping region. As you've seen, the default clip
ping region is the entire client area for a device context handle obtained from GetDC and
the invalid rectangle for the device context handle obtained from BeginPaint. Windows
will not display any part of the character string that lies outside the clipping rectangle. If a
character is partly within the clipping rectangle, Windows displays only the portion of the
character inside the rectangle. Writing outside the client area of your window isn't easy to
do, so don't worry about doing it inadvertently.

53

SECTION I: GETTING STARTED

== Caption Bar aa
o----------------------~.

Values of x

Values of y

Client area

Figure 2·2. The x-coordinate and y-coordinate in the MM _TEXT mapping mode.

The System Font

The device context also defines the font that Windows uses when writing text to the client
area. The default is a font called the "system font" or (using the WINDOWS.H identifier),
SYSTEM_FONT. The system font is the font that Windows uses for text in caption bars,
menus, and dialog boxes.

Under Windows 3, the system font is a variable-width font, which means that differ
ent characters have different widths. A "W" is wider than an "i." In earlier versions of
Windows, the system font was a fixed-pitch font in which all the characters had the same
width.

The system font is a "raster font," 'which means t~at the characters are defined as
blocks of pixels. The floppy disks for the Windows installation include several system
fonts in various sizes for use with different video display adapters.

When manufacturers of a new video board develop a new Windows display driver,
they are also responsible for developing a new system font appropriate for the resolution of
the display. Alternatively, the manufacturer might specify that one of the system font files
supplied with the retail version of Windows be used. The system font must be designed so
that at least 25 lines of SO-character text can fit on the display. That is the only guarantee
you have about the relationship between screen size and font size in Windows.

54

Chapter 2: Painting with Text

The Size of a·Character

To display multiple lines of text using the TextOut function, you need to determine the
dimensions of font characters. You can space successive lines of text based on the height of
a character, and you can space columns of text across the client area based on the width
of a character.

You can obtain character dimensions with the GetTextMetrics call. GetTextMetrics
requires a handle to the device context because it returns information about the font cur
rently selected in the device context. Windows copies the various values of text metrics
into a structure of type TEXTMETRIC. The values are in units that depend on the mapping
mode selected in the device context. In the default device context, this mapping mode is
MM_ TEXT, so the dimensions are in units of pixels.

To use the GetTextMetrics function, you first need to define a structure variable
(commonly called tm):

TEXTMETRIC tm ;

Next, get a handle to the device context and call GetTextMetrics:

hdc = GetDC (hwnd) ;
GetTextMetrics (hdc. &tm) ;

After you examine the values in the text metric structure (and probably save a few of them
for future use), you release the device context:

ReleaseDC (hwnd. hdc) ;

Text Metrics: The Details

The TEXTMETRIC structure provides a wealth of information about the current font
selected in the device context. However, the vertical size of a font is defined by only five
values, as shown in Figure 2-3 on the following page.

These are fairly self-explanatory. The tmlnternalLeading value is the amount of
space allowed for an accent mark above a character. If the value is set to 0, accented capital
letters are made a little shorter so that the accent fits within the ascent of the character. The
tmExternalLeading value is the amount of space that the designer of the font is suggesting
be added between character rows. You can accept or reject the font designer's suggestion
for including external leading when spacing lines of text.

The TEXTMETRIC structure has two fields that describe character width:
tmAveCharWidth (a weighted average width of lowercase characters) and tmMaxChar
Width (the width of the widest character in the font). For a fixed-pitch font, these two
values are the same.

The sample programs in this chapter will require another character width-the
average width of uppercase letters. This can be calculated as 150% of tmAveCharWidth.

55

SECTION I: GETTING STARTED

tmAscent

Baseline

tmDescent

} tmExlemalLeading

} ImlntemalLeading

tmHeight

Figure 2·3. The five values defining vertical character size in a font.

It's important to realize that the dimensions of the system font are dependent on the
resolution of the. video display on which Windows runs. Windows provides a device
independent graphics interface, but you have to help. Don't write your Windows program
so that it guesses at character dimensions. Don't hard code any values. Use the GetText
Metrics function to obtain this information.

Formatting Text

Because the dimensions of the system font do not change during a Windows session, you
need to call GetTextMetrics only once when your program executes. A good place to make
this call is while processing the WM_CREATE message in the window procedure. The
WM_CREATE message is the first message the window procedure receives. Windows calls
your window procedure with a WM_CREATE message when you call CreateWindow in
WinMain.

56

Chapter 2: Painting with Text

Suppose you're writing a Windows program that displays several lines of text run
ning down the client area. You'll want to obtain values for the character width and height.
Within the window procedure you can define two variables to save the average character
width (cxChar) and the total height (cyChar):

static short cxChar, cyChar :

The prefix c added to the variable names stands for "count," and in combination with x or
y refers to a width or a height. These variables are defined as static because they must be
valid when the window procedure processes other messages (such as WM_PAINT). If the
variables are defined outside any functions, they need not be defined as static.

Here's the WM_CREATE code:

case WM_CREATE :
hdc = GetDC (hwnd) ;

GetTextMetrics (hdc, &tm) :
cxChar = tm.tmAveCharWidth ;
cyChar = tm.tmHeight + tm.tmExternalLeading

ReleaseDC (hwnd, hdc) :
return 0 ;

If you do not want to include external leading to space lines of text, you can use:

cyChar = tm.tmHeight :

How you use this character size to calculate display coordinates is up to you. A simple
method is to leave a cyChar margin at the top of the client area and a cxChar margin at
the left. To display several lines of left-justified text, use the following x-coordinate values
when calling the TextOut function:

cxChar

. The y-coordinate values in TextOut are:

cyChar * (1 + i)

where i is the line number starting at O.
You'll often find it necessary to display formatted numbers as well as simple charac

ter strings. If you were programming in MS-DOS using standard C library functions, you
would probably use printj for this formatting. You cannot use printj in Windows, because
printj writes to the standard output device, and that concept makes no sense under
Windows.

Instead, you can use sprintj. The sprintj function works just like printj except that
it puts the formatted string into a character array. You can then use TextOut to write the
string to the display. Very conveniently, the value returned from sprintj is the length of

57

SECTION I: GETTING STARTED

the string-you can pass this value to TextOut as the nLength parameter. This code shows
a typical sprintj and TextOut combination:

short nLength ;
char szBuffer [40] ;

{other program lines]

nLength = sprintf (szBuffer, "The sum of %d and %d is %d",
nA, nB, nA + nB) ;

TextOut (hdc, x, y, szBuffer, nLength) ;

For something as simple as this you could dispense with the nLength definition and
combine the two statements into one:

TextOut (hdc, x, y, szBuffer,
~printf (szBuffer, "The sum of %d and %d is %d",

nA, nB, nA + nB» ;

It's not pretty, but it works ..
If you don't need to display floating-point numbers, you can use wsprintj rather than

sprintj. The wsprintjfunction has the same syntax as sprint/, but it's included in Windows,
so using it won't increase the size of your .EXE file.

Putting It All Together

Now we seem to have everything we need to write a simple program that displays multiple
lines of text on the screen. We know how to get a handle to a device context, how to use the
TextOut function, and how to space text based on the size of a single character. The only
thing left to do is to display something interesting.

The information available in the Windows GetSystemMetrics call looks interesting
enough. This function returns information about the size of various graphical items in
Windows, such as icons, cursors, caption bars, and scroll bars. These sizes vary with the
display adapter and driver. GetSystemMetrics requires a single parameter called an "in
dex." This index is 1 of 37 integer identifiers defined in WINDOWS.H. GetSystemMetrics
returns an integer, usually the size of the item specified in the parameter.

Let's write a program that displays all the information available from the GetSystem
Metrics call in a simple one-line-per-item format. Working with this information is easier if
we create a header file that defines an array of structures containing both the WIN
DOWS.H identifiers for the GetSystemMetrics index and the text we want to display for
each value returned from the call. This header file is called SYSMETS.H and is shown

. in Figure 2-4.

58

Chapter 2: Painting with Text

SYSMETS.H

1*- - - - - - - - - - - - - - - - - - -- - - - - - - - - -. - •• - - - ••• - - - - -- --
SYSMETS.H -- System metrics display structure
------------.----------.----------------~---.--*/

'define NUMlINES (sizeof sysmetrics/ sizeof sysmetrics [OJ)

struct
{
int nIndex;
char *szLabel
char *szDesc :
}
sysmetrics [] =
{
SM_CXSCREEN, "SM_CXSCREEW'~
SM_CYSCREEN. "SM~CYSCREEN~~
SM_CXVSCROLL, "SM_CXVSCROlL".
SM_CYHSCROLL, "SM_CYHSCROLL";
SM_CYCAPTION, "SM_CYCAPTION'~.

SM_CXBORDER. "SM..:.CXBORDER~'~
SM_CYBORDER, "SM_CYBORDER".
SM~CXDlGFRAME, ~SM_CXDLGFRAM~\
SM~CYDlGFRAME: "SM_CYOLGFRAME".
SM~CYVTHUMB. "SM_CYVTHUMB~.
SM_CXHTHUMB, "SM_CXHTHUMB~.
SM_CX ICON. "SM_CXICON",
SM-,CYI CON .'~SM_CY ICON" •
SM~CXCURSOR~ "SM_CXCURSOR~~
SM_CYCURSOR. "SM~CYCURSOR".
SM_CYMENU. "SM_CYMENU~'.
SM_CXFULlSCREEN. "SM __ CXFULLSCREEN!',
SM~CYFULlSCREEN, "SM_CYFULLSCREEW',
SM_CYKANJIWINDOW, "SM_CYKANJIWINDOW",
SM_MOUSEPRESENT .~'SM~MOUSEPRESENr'.
SMiCYVSCROLL. "SM~CYVSCROLL'·.
SM_CXHSCROlL, "SM.,.;CXHSCROLL".
SM_DEBUG. "SM_DEBUG"~
SM_SWAPBUTTON, "SM_SWAPBUTTON".
SM~RESERVEOI. "S~ __ RESERVEDl~.
SM_RESERVED2. "SM..:.RESERVED2'~.
SM_RESERVE03, "SM_RESERVED3"~
SM_RESERVE04, "SMiRESERVE04~;
SM_CXMI N, "SM~CXMIN'~,
SM_CYMIN. ~SMiCYMIN~:
SM_CXSIZE. "SM_CXSIZE"
SM_CYSIZE. "SM_CYSIZE~"

"Reserved'.'.;
"Rese rved!';
"Reserved",
"Reserved";
"Miriimum;~jridowj~fdth~~
~'M.i nimu~wfn~pw .. heignt'~,
':Mip;m;zeIM~~imize. icon width:;.
"Mi ni mi ze/Maximi ze .icon heigh~;~~

Figure 2·4. SYSMETS.H. (continued)

59

SECTION I: GETTING STARTED

The program that displays this information is called SYSMETSI. The files required to
create SYSMETS1.EXE (make file, C source code, and module definition file) are shown in
Figure 2-5. Most of the code should look familiar by now. With the exception of the pro
gram name, the make file, resource script, and DEF file are identical to those for
HELLOWIN. In SYSMETS1.C, WinMain is virtually identical to HELLOWIN.

Figure 2·5. The SYSMETSl program. (continued)

60

Chapter 2: Painting with Text

{ .
static char szAppName[] - "SysMetsl"
HWNO hwnd :
MSG msg :
WNDCLASS wndclass

if (!hPrevInstance)
{
wndclass.style = CS_HREDRAW CS_VREORAW
wndclass~lpfnWndProc - WndProc ;
wndclass.cbClsExtra - 0 ;
wndclass.cbWndExtra = 0 :
wndclass.hlnstance = hInstance :
wndc1ass.hlcon - Loadlcon (NULL,
wndclass;hCursor = LoadCursor (NULL, IDC_ARROW)
wndclass.hbrBackground - GetStockObject
wndcl ass.1 pszMenuName = NULL;
wndclass.lpszClassName= szAppName

RegisterClass (&wndclass) ;
}

hwnd = CreateWi ndow(szAppName/ "Get System Metr; cs
WS_OVERLAPPEDWINDOW.
CW,:...USEOEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT.
NULL~ NULL, hlnstance. NULL) :

ShowWindow (hwnd. nCmdShow) ;
UpdateWindow (hwndt :

(continued)

61

SECTION I: GETTING STARTED

62

Chapter 2: Painting with Text

Figure 2-6 shows SYSMETSI running on a VGA. As you can see from the program's win
dow, the screen width is 640 pixels and the screen height is 480 pixels. These two values,
as well as many of the other values shown by the program, will be different for different
types of video displays.

= Get System Metrics No.1 aa
SM CXSCREEN
SM-CYSCREEN
SM-C><VSCROLL
SM-CYHSCROLL
SM - CYCAPTION
SM-CXBORDER
SM-CYBORDER
SM - CXDLGFRAME
SM - CYDLGFRAME
SM-CYVTHUMB
SM - CXHTHUMB
SM-CXICON
SM-CYICON
SM -CXCURSOR
SM-CYCURSOR
SM-CYMENU
SM - CXFULLSCREEN
SM-CYFULLSCREEN
SM - CYKANJIWINDOW
SM - MOUSEPRESENT
SM - CYVSCROLL
SM - CXHSCROLL

Screen width in pixels
Screen height in pixels
Vertical scroll arrow width
Horizontal scroll arrow height
Caption bar height
Border width
Border height
Dialog window frame width
Dialog window frame height
Vertical scroll thumb height
Horizontal scroll thumb width
Icon width
Icon height
Cursor width
Cursor height
Menu bar height
Full screen client window width
Full screen client window height
Kanji window height
Mouse present flag
Vertical scroll arrow height
Horizontal scroll arrow width

Figure 2·6. The SYSMETSI display.

640
480
17
17
20

1
1
4
4

17
17
32
32
32
32
18

640
460

o
1

17
17

63

SECTION I: GETTING STARTED

The SYSMETS1.C Window Procedure

The WndProc window procedure in the SYSMETS1.C program processes three messages:
WM_CREATE, WM_PAINT, and WM_DESTROY. The WM_DESTROY message is pro
cessed in the same way as the HELLOWIN program in Chapter 1.

The WM_CREATE message is the first message the window procedure receives. It is
generated by Windows when the CreateWindow function creates the window. During the
WM_CREATE message, SYSMETS1 obtains a device context for the window by calling
GetDC, and gets the text metrics for the default system font by calling GetTextMetrics.
SYSMETS1 saves the average character width in cxChar and the total height of the charac
ters including external leading in cyChar.

SYSMETS1 also saves an average width of uppercase letters in the static variable cx
Caps. For a fixed-pitch font, cxCaps would equal cxChar. For a variable-width font, cxCaps
is about 150% of cxChar. The low bit of the tmPitchAndFamily field of the TEXTMETRIC
structure is 1 for a variable-width font and 0 for a fixed-pitch font. SYSMETS1 uses this bit
value to calculate cxCaps from cxChar:

cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;

SYSMETS1 does all window painting during the WM_PAINT message. As normal, the
window procedure first obtains a handle to the device context by calling BeginPaint. A
Jorstatement loops through all the lines of the sysmetrics structure defined in SYSMETS.H.
The three columns of text are displayed with three TextOut functions. In each case, the
third parameter to TextOut is set to:

cyChar * (1 + i)

This parameter indicates the pixel position of the top of the character string relative
to the top of the client area. Thus, the program leaves a margin at the top equal to cyChar.
The first line of text (when i equals 0) begins cyChar pixels below the top of the client
area.

The first TextOut statement displays the uppercase identifiers in the first of the three
columns. The second parameter to TextOut is cxChar. This leaves a one-character margin
between the left edge of the client area and the text string. The text is obtained from the
szLabel field of the sysmetrics structure. I use the Windows function lstrlen (which is simi
lar to strlen) to obtain the length of the string, which is required as the last parameter
to TextOut.

The second TextOitt statement displays the description of the system metrics value.
These descriptions are stored in the szDesc field of the sysmetrics structure. In this case,
the second parameter to TextOut is set to:

cxChar + 18 * cxCaps

64

Chapter 2: Painting with Text

The longest uppercase identifier displayed in the first column is 16 characters, so the
second column must begin at least 16 x cxCaps to the right of the beginning of the first
column of text.

The third TextOut statement displays the numeric values obtained from the Get
SystemMetrics function. The variable-width font makes formatting a column of right
justified numbers a little tricky. All the digits from 0 through 9 have the same width, but
this width is greater than the width of a space. Numbers can be one or more digits wide, so
different numbers can begin at different horizontal positions.

Wouldn't it be easier if we could display a column of right-justified numbers by
specifying the pixel position where the number ends rather than where it begins? This is
what the SetTextAlign function lets us do. After SYSMETS1 calls

SetTextAlign (hdc, TA_RIGHT : TA_TOP) ;

then the coordinates passed to subsequent TextOut functions will specify the top-right
corner of the text string rather than the top-left corner.

The TextOut function to display the column of numbers has a second parameter
set to:

cxChar + 18 * cxCaps + 40 * cxChar

The 40 x cxChar value accommodates the width of the second column and the width of
the third column. Following the TextOut function, another call to SetTextAlign sets things
back to normal for the next time through the loop.

Not Enough Room!

One little nasty problem exists with the SYSMETS1 program: Unless you have a big-screen
high-resolution video adapter, you can't see the last few lines of the system metrics list. If
you make the window narrower, you can't see even the values.

SYSMETS1 doesn't know how large its client area is. It begins the text at the top of the
window and relies on Windows to clip everything that drifts beyond the edges of the client
area. Our first job is to determine how much of the program's output can actually fit within
the client area.

The Size of the Client Area

If you experiment with existing Windows applications, you'll find that window sizes can
vary widely. At the most (assuming the window does not have a menu or scroll bars), the
window can be maximized, and the client area will occupy the entire screen except for the
caption bar. The minimum size of the window can be quite small, sometimes almost non
existent, eliminating the client area.

65

SECTION I: GETTING STARTED

One common method for determining the size of a window's client area is to process
the WM_SIZE message within your window procedure. Windows sends a WM_SIZE mes
sage to a window procedure whenever the size of the window changes. The /Param vari
able passed to the window procedure contains the width of the client area in the low word
and the height in the high word. The code to process this message looks like this:

static short cxClient. cyClient
[other program lines}

case WM_SIZE :
cxClient = LOWORD (lParam)
cyClient = HIWORD (lParam)
break :

The LOWORD and HIWORD macros are defined in WINDOWS.H. Like cxChar and
cyChar, the cxClient and cyClient variables are defined as static inside the window pro
cedure because they are used later when processing other messages.

The WM_SIZE message will eventually be followed by a WM_PAINT message. Why?
Because when we define the window class, we specify that the class style is:

This class style tells Windows to force a repaint if either the horizontal or vertical size
changes.

You can calculate the number of full lines of text displayable within the client area
with the formula:

cyClient / cyChar

This may be 0 if the height of the client area is too small to display a full character. Simi
larly, the approximate number of lowercase characters you can display horizontally within
the client area is equal to:

cxClient / cxChar

If you determine cxChar and cyChar during a WM_CREATE message, don't worry about
dividing by 0 in these calculations. Your window procedure receives a WM_CREATE mes
sage when WinMain calls CreateWindow. The first WM_SIZE message comes a little later
when WinMain calls ShowWindow, at which point cxCharand cyCharhave already been
assigned positive values.

Knowing the size of the window's client area is the first step in providing a way for
the user to move the text within the client area if the client area is not large enough to hold
everything. If you're familiar with other Windows applications that have similar require
ments, you probably know what we need: This is a job for scroll bars.

66

Chapter 2: Painting with Text

SCROLL BARS
Scroll bars are one of the best features of a graphics and mouse interface. They are easy to
use and provide good visual feedback. You can use scroll bars whenever you need to dis
play anything-text, graphics, a spreadsheet, database records, pictures-that requires
more space than the available client area of the window.

Scroll bars are positioned either vertically (for up and down movement) or horizon
tally (for left and right movement). You can click with the mouse on the arrows at each end
of a scroll bar or on the area between the arrows. A "scroll box," or "thumb," travels the
length of the scroll bar to indicate the approximate location of the material shown on the
display in relation to the entire document. You can also drag the thumb with the mouse to
move to a particular location. Figure 2-7 shows the recommended use of a vertical scroll
bar for text.

Programmers sometimes have problems with scrolling terminology because their
perspective is different from the user's: A user who scrolls down wants to bring a lower
part of the document into view. However, the program actually moves the document up in
relation to the display window. The Windows documentation and the WINDOWS.H iden
tifiers are based on the user's perspective: Scrolling up means moving toward the begin
ning of the document; scrolling down means moving toward the end.

... ...

•

D • I C

Figure 2·7. The vertical scroll bar.

Click here to scroll
one line up (contents
of window go down)

Click here to scroll
one page or one
screenful up

Drag thumb to go to
approximate location

Click here to scroll
one page or one
screenful down

Click here to scroll
one line down (contents
of window go up)

67

SECTION I: GETTING STARTED

It is very easy to include a horizontal or vertical scroll bar in your application window. All
you need to do is include the identifier WS_ VSCROLL (vertical scroll) or WS_HSCROLL
(horizontal scroll) or both to the window style in the CreateWindow statement. These
scroll bars are always placed against the right side or bottom of the window and extend for
the full length or width of the client area. The client area does not include the space oc
cupied by the scroll bar. The width of a vertical window scroll bar and the height of a hori
zontal window scroll bar are constant for a particular display driver. If you need these
values, you can obtain them (as you may have observed) from the GetSystemMetrics call.

Windows takes care of all mouse logic for the scroll bars. However, window scroll
bars dO,not have an automatic keyboard interface. If you want the cursor keys to duplicate
some of the window scroll bars' functions, you must explicitly provide logic for that (as
we'll do in the next chapter).

Scroll Bar Range and Position

Scroll bars have a "range" and a current "position." The range is defined by minimum and
maximum integer values. When the thumb is at the top (or left) of the scroll bar, the posi
tion of the thumb is the minimum value of the range. At the bottom (or right) of the scroll
bar, the thumb position is the maximum value of the range.

The position of the thumb is always a discrete integral value. For instance, a scroll bar
with a range from 0 through 4 has five thumb positions, as shown in Figure 2-8. By default,
the range of a scroll bar is 0 (top or left) through 100 (bottom or right), but it's easy to
change the range to something that is more convenient for the program:

SetScrollRange (hwnd. nBar. nMin. nMax. bRedraw) ;,

The nEar parameter is either SB_ VERT or SB_HORZ, nMin and nMax are the minimum
and maximum positions of the range, and bRedraw is set to TRUE if you want Windows to
redraw the scroll bar based on the new range.

You can use SetScroliPos to set a new thumb position within the range:

SetScrollPos (hwnd. nBar. nPos. nRedraw) ;

The nPos parameter is the new position and must be within the range of nMin through
nMax. Windows provides similar functions (GetScroliRange and GetScrollPos) to obtain
the current range and position of a scroll bar.

When you use scroll bars within your program, you share responsibility with Win
dows for maintaining the scroll bars and updating the position of the scroll bar thumb.
These are Windows' responsibilities for scroll bars:

• Handle all scroll bar mouse logic

• Provide a "reverse video" flash when the user clicks on the scroll bar

68

Chapter 2: Painting with Text

• Display a "ghost" box when the user drags the thumb within the scroll bar

• Send scroll bar messages to the window procedure for the window con
taining the scroll bar

These are your program's responsibilities:

• Initialize the range of the scroll bar

• Process the scroll bar messages

• Update the position of the scroll bar thumb

Position 0 Position 1 Position 2 Position 3 Position 4

Figure 2·8. Scroll bars with five thumb positions.

Scroll Bar Messages

Position 0

Position 1

Position 2

Position 3

Position 4

Windows sends the window procedure WM_ VSCROLL and WM_HSCROLL messages
when the scroll bar is clicked with the mouse or the thumb is dragged. Each mouse action
on the scroll bar generates at least two messages, one when the mouse button is pressed
and another when it is released.

69

SECTION I: GETTING STARTED

The value of wParam that accompanies the WM_ VSCROLL and WM_HSCROLL mes
sages describes what the mouse is doing to the scroll bar. These values of wParam have
WINDOWS.H identifiers that begin with SB, which stands for "scroll bar." Although some
of these identifiers use the words "UP" and "DOWN," they apply to horizontal as well as
vertical scroll bars, as you see in Figure 2-9. Your window procedure can receive multiple
SB_LINEUP, SB_PAGEUP, SB_LINEDOWN, or SB_PAGEDOWN messages if the mouse
button is held down while positioned on the scroll bar. The SB_ENDSCROLL message sig
nals that the mouse button has been released. You can generally ignore SB_ENDSCROLL
messages.

When wParam is SB_THUMBTRACK or SB--,THUMBPOSITION, the low word of
lParam is the current position of the dragged scroll bar. This pOSition is within the
minimum and maximum values of the scroll bar range. For other values of wParam, the
low word of lParam should be ignored. You can also ignore the high word of lParam.

The Windows documentation indicates that the wParam value can also be SB_TOP
and SB_BOTTOM, indicating that the scroll bar has been moved to its minimum or maxi

. mum position. However, you will never receive these values for a scroll bar created as part
of your application window.

Handling the SB_THUMBTRACK and SB_THUMBPOSITION m~ssages is problem
atic. If you set a large scroll bar range and the user quickly drags the thumb inside the scroll
bar, Windows sends your window function a barrage of SB _ THUMBTRACK messages.

70

Pressed: SB_LlNEUP
Released: SB_ENDSCROLL

Pressed: SB_PAGEUP
Released: SB_ENDSCROLL

I =,

Pressed and dragged: ·SB_ THUMBTRACK
Released: SB_ THUMBPOSITION

Pressed: SB_PAGEDOWN
Released: SB_ENDSCROLL

Figure 2·9. WINDOWS. H identifiers for the wParam values of scroll bar messages.

Chapter 2: Painting with Text

Your program may have problems keeping up with these messages. For this reason, most
Windows applications ignore these messages and take action only on receipt of
SB_ THUMBPOSITION, which means that the thumb is again at rest.

However, if you can update your display quickly, you may want to include
SB_ THUMBTRACK processing in your program. But be aware that users who discover that
your program scrolls as they move the scroll bar thumb will undoubtedly try to move it as
quickly as possible to see if your program can keep up. They will get an inordinate amount
of satisfaction if it cannot.

Scrolling SYSMETS

Enough explanation. It's time to put this stuff into practice. But let's start simply. We'll
begin with vertical scrolling because that's what we desperately need. The horizontal
scrolling can wait. SYSMETS2 is shown in Figure 2-10.

The new CreateWindow call adds a vertical scroll bar to the window; the scroll bar
has this window style:

WS_OVERLAPPEDWINDOW WS_VSCROLL

sysmets2;obj ·:sysmets2~csysmets. h
el~e ·G,sw~Ow ~W2~Zpsysmets2~c

#includ~~~iridows:h>
nelude. ~sysmets~h~

FAR •..• PASCALWridProc(HWNO,i WORD.WO RO.\ LONG)

Figure 2·10. The SYSMETS2 program. (continued)

71

SECTION I: GETTING STARTED

••••••••••••••• • ••

••••••••

. i

.

II •
. ~ R

•.... ~ ... Lc ad .; .. nH II' ri
i .•• ~ •..• if :::.~ Ii>

...

.....

(continued)

72

Chapter 2: Painting with Text

(continued)

73

SECTION I: GETTING STARTED

74

SYSMET2.DEF

... ,
;SYSMETS2.DEF module definition file
...... __ .. __ __
NAME

DESCRI PTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

SYSMETS2

'System Metrics Display No.2
WINDOWS
'WINSTUB~EXE'
PRELOAD MOVEABLE OISCAROABLE
PRELOAD,MOVEABLEMULTIPLE
1024
8192
WndProc ,

Chapter 2: Painting with Text

The WndProc window procedure has two additional lines to set the range and posi
tion of the vertical scroll bar during processing of the WM_CREATE message:

SetScrollRange (hwnd. SB~VERT. O. NUMLINES. FALSE) ;
SetScrollPos (hwnd. SB_VERT. nVscrollPos. TRUE) ;

The sysmetrics structure has NUMLINES lines of text, so the scroll bar range is set from °
through NUMLINES. Each position of the scroll bar corresponds to a line of text displayed
at the top of the client area. If the scroll bar thumb is at position 0, a blank line is left at the
top of the screen for a margin. As you increase the position of the scroll bar by scrolling
down, the text should move up. When the scroll bar position is at the bottom, the last line of
the structure is at the top.

To help with processing of the WM_ VSCROLL messages, a static variable called
n VscrollPos is defined within the WndProc window procedure. This variable is the cur
rent position of the scroll bar thumb. For SB_LINEUP and SB_LINEDOWN, all we need to
do is adjust the scroll position by 1. For SB_PAGEUP and SB_PAGEDOWN, we want to
move the text by the contents of one screen, or cyClient divided by cyChar. For
SB_THUMBPOSITION, the new thumb position is the low word of' IParam.
SB_ENDSCROLL and SB_ THUMBTRACK messages are ignored.

The n VscrollPos is then adjusted using the min and max macros (defined in WIN
DOWS.H) to ensll:re that it is between the minimum and maximum range values. If the
scroll position-has changed, then it is updated using SetScrollPos, and the entire window is
invalidated by an InvalidateRect call.

. The InvalidateRect call generates a WM_PAINT message. When the original
SYSMETS1 processed WM_PAINT messages, the y-coordinate of each line was calcu
lated as:

cyChar*(1+i)

75

SECTION I: GETTING STARTED

In SYSMETS2, the formula is:

cyChar * (1 - nVscrollPos + i)

The loop still displays NUMLINES lines of text, but for values of n VscrollPos of 2 and
above, the loop begins displaying lines above the client area. Windows merely ignores
these lines.

I told you we'd start simply. This is rather wasteful and inefficient code. We'll fix it
shortly, but first consider how we update the client area after a WM_ VSCROLL message.

Structuring Your Program for Painting

The window procedure in SYSMETS2 does not repaint the client area after processing a
scroll bar message. Instead, it calls InvalidateRect to invalidate the client area. This causes
Windows to place a WM_PAINT message in the message queue.

It is best to structure your Windows programs so that you do all client-area painting
in response to a WM_PAINT message. Because your program should be able to repaintthe
entire client area of the window at any time on receipt of a WM_PAINT message, you will
probably duplicate code if you also paint in other parts of the program.

At first, you may rebel at this dictum because it is so' different from normal PC pro
gramming. I won't deny that, on occasion, painting in response to messages other than
WM_PAINT is much more convenient. (The KEYLOOK program in the next chapter is an
example of such a program.) But in many cases it's simply unnecessary, and after you mas
ter the discipline of accumulating all the information you need to paint in response to a
WM_PAINT message, you'll be pleased with the results. However, your program will often
determine that it must repaint a particular area of the display when processing a message
other than WM_PAINT. This is where InvalidateRect comes in handy. You can use it to
invalidate specific rectangles of the client area or the entire client area.

Simply marking areas of the window as invalid to generate WM_PAINT messages
may not be entirely satisfactory in some applications. After you make an InvalidateRect
call, Windows places a WM_PAINT message in the message queue, and the window pro
cedure eventually processes it. However, Windows treats WM_PAINT messages as low pri
ority. If your message queue contains only a WM_PAINT message and another application
has other messages waiting, Windows switches to the other application when you make a
GetMessage call.

If you prefer to update the invalid area immediately, you can call UpdateWindow
after you call In valida teRect:

. UpdateWindow (hwnd) ;

UpdateWindow causes the window procedure to be called immediately with a WM
_PAINT message if any part of the client area is invalid. (It will not call the window pro
cedure if the entire client area is valid.) This WM_PAINT message bypasses the message

76

Chapter 2: Painting with Text

queue. The window procedure is called directly from Windows. When the window pro
cedure has finished repainting, it exits and Windows returns control to the program at the
statement following the Update Window call.

You'll note that UpdateWindow is the same function used in WinMain to generate
the first WM_PAINT message. When a window is first created, the entire client area is in
valid. UpdateWindow directs the window procedure to paint it.

Building a Better Scroll

Because SYSMETS2 is too inefficient a model to be imitated in other programs, let's clean it
up. SYSMETS3-our final version of the SYSMETS program in this chapter-is shown in
Figure 2-11. This version adds a horizontal scroll bar for left and right scrolling and repaints
the client area more efficiently.

fl-~.~~ ~~ .. ~ -7---;'t- ... ~ ~ ::::-

fJ> .. SYSME~?3~MAKmake file
ih; .. *;--

iJiJl.~l~d~ · .•. <w.i.·~d.ows.h>
iii Tl(;.l.ude." sysmets·. h'~

int

Figure 2·11. The SYSMETS3 program. (continued)

77

SECTION I: GETTING STARTED

(continued)

78

Chapter 2: Painting with Text

{
caseWM __ CREATE

hdc - GetOC (hwnd)

GetTextMetrics (hdc. &tm) :
cxChar- tm.tmAveCharWi dth :
cxCaps- (tm.tmPitchAndFamily& 1 1-3 : 2) * cxChar
cyCha~-tm.tmHeight+tm.~mExternalLeading

(continued)

79

SECTION I: GETTING STARTED

(continued)

80

Chapter 2: Painting with Text

if (nHscrol1Inc = max (-nHscrollPos,
min (nHscrol1Inc, nHscrol1Max ~ nHscrollPos»)

{
nHscrollPos += nHscrollInc :
ScrollWindow (hwnd, ~cxChar * nHscrollInc. D. NULL~ NULL)
SetScrollPos (hwnd. SB_HORZ. nHscrollPos. TRUE)
}

return 0 :

(hwnd. &ps) :

81

SECTION I: GETTING STARTED

\ .. ,

i·/,'··.·

......

•• H H··· TBHHlii .• i i 'iiii·'.·'
ii ... ,."..............i

••

•.•.•.••....... ' ,

.
••••..•••••..••. ',... (i ••••••• r) .

These are the improvements in SYSMETS3 and how they are implemented in the program:

82

• You can no longer scroll the display so that the last line appears at the top
of the client area. You can scroll only far enough to see the last line at the
bottom of the client area. This requires that the program calculate a new
scroll bar range (and possibly a new thumb position) when it processes a
WM_SIZE message. The WM_SIZE logic calculates the scroll bar range
based on the number of lines of text, the width of the text, and the size of
the client area. This approach results in a smaller range-only that
necessary to bring into view the text that falls outside the client area.

This offers an interesting dividend. Suppose that the client area of
the window is large enough to display the entire text with top and bottom
margins. In this case, both the minimum position and maximum position
of the scroll bar range will equal zero. What will Windows do with this
information? It will remove the scroll bar from the window! It's no longer
needed. Similarly, if the client area is wide enough to show the full 60-
column width of the text, no horizontal scroll bar is displayed in the
window .

• The WM_VSCROLL and WM_HSCROLL messages are processed by first
calculating an increment of the scroll bar position for each value of
wParam. This value is then used to scroll the existing contents of the
window using the Windows Scroll Window call. This function has the
following format:

ScrollWindow (hwnd, xlnc, ylnc, lpRect, lpClipRect) ~

Chapter 2: Painting with Text

The xInc and yInc values specify an amount to scroll in pixels. In
SYSMETS3, the lpRect and lpClipRect values are set to NULL to specify
that the entire client area should be scrolled. Windows invalidates the
rectangle in the client area "uncovered" by the scrolling operation. This
generates a WM_PAINT message. InvalidateRect is no longer needed.
(Note that Scroll Window is not a GDI procedure because it does not re
quire a handle to a device context. It is one of the few non-GDI Windows
functions that changes the appearance of the client area of a window.)

• The WM_PAINT processing now determines which lines are within the
invali~ rectangle and rewrites only those lines. It does this by analyzing
the top and bottom coordinates of the invalid rectangle stored in the
PAINTSTRiJCT structure. The program paints only those text lines within
the invalid rectangle. The code is more complex, but it is much faster.

• Because WM_PAINT was speeded up, I decided to let SYSMETS3 process
SBJHUMBTRACK operations for WM_VSCROLL messages. Previously,
the program would ignore SBJHUMBTRACK messages (which occur
as the user drags the scroll bar thumb) and would act only on SB
JHUMBPOSITION messages, which occur when the user stops dragging
the thumb. The WM_VSCROLL code also calls UpdateWindow to update
the client area immediately. When you move the thumb on the vertical
scroll bar, SYSMETS3 will continually scroll and update the client area. I'll
let you decide whether SYSMETS3 (and Windows) is fast enough to justify
this change.

But I Don't Like to Use the Mouse

If you don't have a mouse on your PC, you can't scroll SYSMETS3 at all Scroll bars created
as part of your application window do not have an automatic keyboard Interface. Because
Windows can be installed without a mouse, it is highly recommended that you write pro
grams that do not require the mouse.

In the next chapter you'll learn how to use the keyboard and how to add a keyboard
interface to SYSMETS. You'll notice that SYSMETS3 seems to process WM_YSCROLL
messages where wParam equals SBJOP and SB_BOTTOM. I mentioned earlier that a
window procedure doesn't receive these messages for scroll bars, so right now this is
superfluous cC?de. When we come back to this program in the next chapter, you'll see the
reason for including this code.

83

SECTION II

READING
INPUT

, .i

i

Chapter 3

The
Keyboard

Like most interactive programs that run on personal computers, Windows applications rely
heavily on the keyboard for user input. Although Windows also supports a mouse as an in
put device, you can't depend on a mouse being present in an installed version of Windows.
For this reason, program developers should attempt to allow complete program func
tionality from the keyboard. (Of course, in some cases, such as drawing programs or desk
top publishing programs, this is simply not practical and a mouse will be required.)

The keyboard cannot be treated solely as an input device in isolation from other pro
gram functions. For example, a program almost always echoes the keyboard input by dis
playing typed characters in the client area of a window. Handling keyboard input and
displaying text must be treated together. Sometimes the keystrokes result in a document
being created that is eventually saved in a disk file. Sometimes a program requires that the
user enter an MS-DOS filename. These apparently straightforward chores raise issues re
lated to the support of the ASCII extended character set (codes of 128 and above) and of
international characters. For this reason, topics such as the character sets supported by
Windows and multi byte character codes are also covered in this chapter.

KEYBOARD BASICS
As the user presses and releases keys, the keyboard driver passes the keystrokes to Win
dows. Windows saves the keystrokes in the system message queue and then transfers them
to the message queue of the program with the "input focus." These messages are processed

87

SECTION II: READING INPUT

in the program's window procedure. In most cases, the keyboard information encoded in
these messages is probably more than your program needs. Part of the job of handling the
keyboard is knowing which messages are important and which are not.

The Keyboard Driver

Windows is shipped with several keyboard drivers for the support of various keyboard
hardware and dynamic link libraries that support international keyboard configurations.
Keyboards for European languages must include additional characters (such as letters with
diacritics) and symbols (such as the British pound sign). When you install Windows, the
SETUP program copies the keyboard driver for the keyboard and country you request into
the SYSTEM subdirectory of your Windows directory.

KEYBOARD.DRV is a relatively small and simple driv~r. When Windows starts up, it
enables the keyboard driver, which responds by saving the original interrupt vector
addresses for Interrupt 09H (the hardware keyboard interrupt) and setting this interrupt
vector to routines within the driver.

Pressing or releasing a key generates an Interrupt 09H. This is sometimes called an
"asynchronous" interrupt because it can occur at any time. The interrupt suspends the
program currently running and passes control to the Interrupt 09H keyboard handler.
When the keyboard handler is finished, it passes control back to the interrupted program.
The Interrupt 09H keyboard handler within KEYBOARD.DRV decod~s the key and calls a
routine within the Windows USER module, which stores them as queued messages. The
Windows program then obtains the keyboard messages when the program calls
GetMessage.

Because a Windows program effectively polls for keyboard input by calling Get
Message, Windows programs are not very different from PC programs that obtain key
strokes by polling through the software Interrupts 16H and 21H. However, the quantity of
information that Windows encodes in the keyboard messages is much greater than that
available from Interrupts 16H and 21H.

Some application programs written for the IBM PC intercept Interrupt 09H and do
their own hardware keyboard processing. This allows the program to use all possible com
binations of keystrokes, not only those defined by the PC BIOS. Windows programs are not
very different from these programs either, because the window procedure is a message
handler that receives messages about all keyboard events. The only real difference be
tween message handling and interrupt handling is that the Windows messages are not
asynchronous. A Windows program is never interrupted to be notified of a keystroke; the
program receives a new keyboard message only from the message queue. In short, Win
dows provides programs with all the benefits of intercepting the hardware Interrupt 09H
but with none of the hassles.

When a user types on the keyboard faster than a program can process the keys, Win
dows stores the extra keystrokes in a system message queue rather than in an individual

88

Chapter 3: The Keyboard

program's message queue. One of these extra keystrokes (Alt-Tab, for instance) may have
the effect of switching to another program. The keys following Alt-Tab should then go to
the other program. Windows correctly synchronizes such keyboard messages.

Windows sends eight different messages to programs to indicate various keyboard
events. That may seem like a lot, but your program can safely ignore many of them.

Ignoring the Keyboard

Although the keyboard is the primary source of user input to Windows programs, your
program does not need to act on every keyboard message it receives. Windows handles
many keyboard functions itself. For instance, you can ignore keystrokes that pertain to
system functions. These keystrokes generally involve the Alt key.

A program need not monitor these keystrokes itself because Windows notifies a pro
gram of the effect of the keystrokes. (A program can monitor the keystrokes if it wants to,
however.) For instance, if the Windows user selects a menu item with the keyboard, Win
dows sends the program a message that the menu item has been selected, regardless of
whether it was selected by using the mouse or by using the keyboard. (Menus are covered
in Chapter 9.)

Some Windows programs use "keyboard accelerators" to invoke common menu
items. The accelerators generally involve the function keys, special noncharacter keys
such as Insert or Delete, or a letter in combination with the Ctr! key. These keyboard ac
celerators are defined in a program's resource script. (Chapter 9 shows how Windows
translates the accelerators into menu command messages. You don't have to do the trans
lation yourself.)

Dialog boxes (covered in Chapter 10) also have a keyboard interface, but programs
usually do not need to monitor the keyboard when a dialog box is active. The keyboard
interface is handled by Windows, and Windows sends messages to your program about the
effects of the keystrokes. Dialog boxes can contain "edit" controls for text input. These are
generally small boxes in which the user types a character string. Windows handles all the
edit control logic and gives your program the final contents of the edit control when
the user is done.

Even within your main window you can define child windows that function as edit
controls. An extreme example of this is the Windows NOTEPAD program, which is little
more than a large multiline edit control. NOTEPAD does little keyboard processing on
its own and relies on Windows to handle all the dirty work. (Chapter 6 discusses how
this works.)

Focus, Focus, Who's Got the Focus?

The keyboard must be shared by all applications running under Windows. Some applica
tions may have more than one window, and the keyboard must be shared by these win
dows within the same application. When a key on the keyboard is pressed, only one

89

SECTION II: READING INPUT

window procedure can receive a message that the key has been pressed. The window that
receives this keyboard message is the window with the "input focus."

The concept of input focus is closely related to the concept of "active window." The
window with the input focus is either the active window or a child window of the active
window. The active window is usually easy to identify. If the active window has a caption
ba~, Windows highlights the caption bar. If the active window has a dialog frame (a form
most commonly seen in dialog boxes) instead of a caption bar, Windows highlights the
frame. If the active window is an icon, Windows highlights the window's caption bar text
below the icon.

The most common child windows are controls such as push buttons, radio buttons,
check boxes, scroll bars, edit boxes, and list boxes that usually appear in a dialog box.
Child windows are Qever themselves active windows. If a child window has the input
focus, then the active window is its parent. Child window controls indicate that they have
the input focus generally by using a flashing cursor or caret.

If the active window is an icon, then no window has the input focus. Windows con
tinues to send keyboard messages to the icon, but these messages are in a different form
from keyboard messages sent to active windows that are not icons.

A window procedure can determine when it has the input focus by trapping
WM_SETFOCUS and WM_KILLFOCUS messages. WM_SETFOCUS indicates that the win
dow is receiving the input focus, and WM_KILLFOCUS signals that the window is losing
the input focus.

Keystrokes and Characters

The messages that an application receives from Windows about keyboard events distin
guish between "keystrokes" and "characters." This is in accordance with the two ways you
can view the keyboard. First, you can think of the keyboard as a collection of keys. The
keyboard has only one A key. Pressing that key is a keystroke. Releasing that key is a key
stroke. But the keyboard is also an input device that generates displayable characters. The
A key can generate several characters depending on the status of the Ctrl, Shift, and Caps
Lock keys. Normally, the character is a lowercase a. If the Shift key is down or Caps Lock is
toggled on, the character is an uppercase A. If Ctrl is down, the character is a Ctrl-A. On a
foreign-language keyboard, the A keystroke may be preceded by a "dead-character key" or
by Shift, Ctrl, or Alt in various combinations. The combinations could generate a lowercase
a or an uppercase A with an accent mark

For keystroke combinations that result in displayable characters, Windows sends a
program both keystroke messages and character messages. Some keys do not generate
characters. These include the shift keys, the function keys, the cursor movement keys, and
special keys such as Insert and Delete. For these keys, Windows generates only keystroke
messages.

90

Chapter 3: The Keyboard

KEYSTROKE MESSAGES
When you press a key, Windows places either a WM_KEYDOWN or WM_SYSKEYDOWN
message in the message queue of the window with the input focus. When you release a key,
Windows places either a WM_KEYUP or WM_SYSKEYUP message in the message queue.

Nonsystem Keystroke:

System Keystroke:

Key Pressed

WM_KEYDOWN

WM_SYSKEYDOWN

Key Released

WM_KEYUP

WM_SYSKEYUP

Usually the "down" and "up" messages occur in pairs. However, if you hold down
a key so that the typematic (autorepeat) action takes over, Windows sends the window
procedure a series of WM_KEYDOWN (or WM_SYSKEYDOWN) messages and a single
WM_KEYUP (or WM_SYSKEYUP) message when the key is finally released. Like all mes
sages, keystroke messages are time-stamped. You can obtain the relative time a key was
pressed or released by calling GetMessageTime.

System and Nonsystem Keystrokes

The "SYS" in WM_SYSKEYDOWN and WM_SYSKEYUP stands for "system" and refers to
keystrokes that are more important to Windows than to the Windows application. The
WM_SYSKEYDOWN and WM_SYSKEYUP messages are usually generated for keys typed
in combination with the Alt key. These keystrokes invoke options on the program's menu
or system menu, or they are used for system functions such as switching the active window
(Alt-Tab or Alt-Esc) or for system menu accelerators (Alt in combination with a function
key). Programs usually ignore the WM_SYSKEYUP and WM_SYSKEYDOWN messages
and pass them to DejWindowProc. Because Windows takes care of all the Alt-key logic,
you really have no need to trap these messages. Your window procedure will eventually
receive other messages concerning the result of these keystrokes (such as a menu selec
tion). If you want to include code in your window procedure to trap the system keystroke
messages (as we will do in the KEY LOOK program later in this chapter), pass the messages
to DejWindowProc after you process them so that Windows can still use them for their
normal purposes.

But think about this for a moment. Almost everything that affects your program's
window passes through your window procedure first. Windows does something with the
message only if you pass the message to DejWindowProc. For instance, if you add the lines:

case WM_SYSKEYDOWN
case WM_SYSKEYUP :
case WM_SYSCHAR

return 0 ;

91

SECTION II: READING INPUT

to a window procedure, then you effectively disable all Alt-key operations (menu com
mands, Alt-Tab, Alt-Esc, and so on) when your program has the input focus. Although I
doubt you would want to do this, I trust you're beginning to sense the power in your
window procedure.

The WM_KEYDOWN and WM_KEYUP messages are usually generated for keys that
are pressed and released without the Alt key. Your program may use or discard these key
stroke messages. Windows itself doesn't care about them.

The IParam Variable

For all four keystroke messages, the 32-bit /Param variable passed to the window
procedure is divided into six fields: Repeat Count, OEM Scan Code, Extended Key Flag,
Context Code, Previous Key State, and Transition State. (See Figure 3-1.)

Transition State

16-bit
Scan Code Repeat Count

Figure 3·1. The six keystroke-message fields of the IParam variable.

Repeat Count
The Repeat Count is the number of keystrokes represented by the message. In most cases
the Repeat Count is set to 1. However, if a key is held down and your window procedure
is not fast enough to process key-down messages at the typematic rate (approximately
a 10-character-per-second default), Windows combines several WM_KEYDOWN or
WM_SYSKEYDOWN messages into a single message and increases Repeat Count accord
ingly. The Repeat Count is always 1 for a WM_KEYUP or WM_SYSKEYUP message.

Because a Repeat Count greater than 1 indicates that typematic keystrokes are occur
ring faster than your program can process them, you may want to ignore the Repeat Count
when processing the keyboard messages. Almost everyone has had the experience of
"overscrolling" a word-processing document or spreadsheet· because extra keystrokes
have stacked up in the keyboard buffer. Ignoring the Repeat Count in your program will

\ significantly reduce the possibilities for overscrolling. However, in other cases you will
want to use the Repeat Count. You should probably try your programs both ways and see
which approach feels the most natural.

OEM Scan Code
The OEM Scan Code is the keyboard scan code generated by the hardware of the com
puter. For the IBM PC, this scan code is the same as the value passed back to a program in
register AH during a BIOS Interrupt 16H call. Windows applications generally ignore the
OEM Scan Code because there are better ways to decode keyboard information ..

92

Chapter 3: The Keyboard

Extended Key Flag
The Extended Key Flag is 1 if the keystroke results from one of the additional keys on the
IBM Enhanced Keyboard. (The IBM Enhanced Keyboard has function keys across the top
and a separate [combined] keypad for cursor keys and number keys.) This flag is set to 1 for
the Alt and Ctrl keys at the right of the keyboard, the cursor movement keys (including
Insert and Delete) that are not part of the numeric keypad, the Slash (/) and Enter keys on
the numeric keypad, and the Num Lock key. Windows programs generally ignore the
Extended Key Flag.

Context Code
The Context Code is 1 if the Alt key is pressed. This bit will always be 1 for the
WM_SYSKEYUP and WM_SYSKEYDOWN messages and 0 for the WM_KEYUP and
WM_KEYDOWN messages with two exceptions:

• If the active window is an icon, it does not have the input focus. All
keystrokes generate WM_SYSKEYUP and WM_SYSKEYDOWN mes
sages. If the Alt key is not pressed, the Context Code field is set to O.
(Windows uses SYS keyboard messages so that the active window that is
an icon doesn't process these keystrokes.)

• On some foreign-language keyboards, certain characters are generated
by combining Shift, Ctrl, or Alt with another key. In these cases the
iParam variable that accompanies WM_KEYUP and WM_KEYDOWN
messages has a 1 in the Context Code field, but the messages are not
system keystroke messages.

Previous Key State
The Previous Key State is 0 if the key was previously up and 1 if the key was previously
down. It is always set to 1 for a WM_KEYUP or WM_SYSKEYUP message, but it can be 0 or
1 for a WM_KEYDOWN or WM_SYSKEYDOWN message. A 1 indicates second and subse
quent messages for keys that are the result of typematic action.

Transition State
The Transition State is 0 if the key is being pressed and 1 if the key is being released. The
field is set to 0 for a WM_KEYDOWN or WM_SYSKEYDOWN message and to 1 for a
WM_KEYUP or WM_SYSKEYUP.

Virtual Key Codes

Although some information in iParam might be useful for processing WM_KEYUP,
WM_KEYDOWN, WM_SYSKEYUP, and WM_SYSKEYDOWN messages, the wParam pa
rameter is much more important. This parameter contains the "virtual key code" that iden
tifies the key that was pressed or released. The developers of Windows have attempted to

93

SECTION II: READING INPUT

VIRTUAL KEY CODES

WlNDOWS.H
Decimal Hex Identifier Required IBM Keyboard

1 01 VK_LBUTTON

2 02 VK_RBUTTON

3 03 VK_CANCEL Ctrl-Break

4 04 VK_MBUTTON

8 08 VK_BACK Backspace

9 09 VK_TAB Tab

12 OC VK_CLEAR Numeric keypad 5 with Num Lock OFF

13 OD VK~RETURN Enter

16 10 VK_SHIFT Shift

17 11 VK_CONTROL Ctrl

18 12 VK_MENU Alt

19 13 VK_PAUSE Pause

20 14 VK_CAPITAL Caps Lock

27 IB VK_ESCAPE Esc

32 20 VK_SPACE Spacebar

33 21 VK_PRIOR Page Up

34 22 VK_NEXT Page Down

35 23 VK_END End

36 24 VK_HOME Home

37 25 VK_LEFT Left Arrow

38 26 VK_UP UpArrow

39 27 VK_RIGHT Right Arrow

40 28 VK_DOWN Down Arrow

41 29 VK_SELECT

42 2A VK_PRINT

43 2B VK_EXECUTE

44 2C VK_SNAPSHOT Print Screen

45 2D VK_INSERT Insert

46 2E VK_DELETE Delete

47 2F VK_HELP

48-57 30-39 o through 9 on main keyboard

65-90 41-5A A through Z

96 60 VK_NUMPADO Numeric keypad 0 with Num Lock ON

(continued)

94

Chapter 3: The Keyboard

VIRTUAL KEY CODES continued

WINDOWS.H
Decimal Hex Identifier Required IBM Keyboard

97 61 VK_NUMPAD1 Numeric keypad 1 with Num Lock ON

98 62 VK_NUMPAD2 Numeric keypad 2 with Num Lock ON

99 63 VK_NUMPAD3 Numeric keypad 3 with Num Lock ON

100 64 VK_NUMPAD4 Numeric keypad 4 with Num Lock ON

101 65 VK_NUMPAD5 Numeric keypad 5 with Num Lock ON

102 66 VK_NUMPAD6 Numeric keypad 6 with Num Lock ON

103 67 VK_NUMPAD7 Numeric keypad 7 with Num Lock ON

104 68 VK_NUMPAD8 Numeric keypad 8 with Num Lock ON

105 69 VK_NUMPAD9 Numeric keypad 9 with Num Lock ON

106 6A VK_MULTIPY Numeric keypad. (enhanced
keyboard)

107 6B VK_ADD Numeric keypad + (enhanced
keyboard)

108 6c VK_SEPARATOR

109 6D VK_SUBTRACT Numeric keypad - (enhanced
keyboard)

110 6E VK_DECIMAL Numeric keypad

111 6F VK_DIVIDE Numeric keypad j(enhanced
keyboard)

112 70 VK_F1 Function key F1

113 71 VK_F2 Function key F2

114 72 VK_F3 Function key F3

115 73 VK_F4 Function key F4

116 74 VK_F5 Function key F5

117 75 VK_F6 Function key F6

118 76 VK_F7 Function key F7

'119 77 VK_F8 . Function key F8

120 78 VK_F9 Function key F9

121 79 VK_FI0 Function key FlO

122 7A VK_F11 Function key F11 (enhanced
keyboard)

123 7B VK_FI2 Function Key F12 (enhanced
keyboard)

124 7C VK_F13

(continued)

95

SECTION II: READING INPUT

VIRTUAL KEY CODES continued

WINDOWS.H
Decimal Hex Identifier Required IBM Keyboard

125 7D VK_F14

126 7E VK_F15

127 7F VK_F16

144 90 VK_NUMLOCK NumLock

define virtual keys in a device-independent manner. For this reason, some virtual key
codes cannot be generated on the IBM PC and strict compatibles but may be found on
other manufacturer's keyboards.

The virtual key codes you use most often have names defined in WINDOWS.H. The
table above shows these names along with the numeric key codes and the, IBM PC key that
corresponds to the virtual key. Although all keys cause keystroke messages, the table does
not include any symbol keys (such as the key with the / and? symbols). These keys have
virtual key codes of 128 and above, and they are often defined differently for international
keyboards. You can determine the values of these virtual key codes using the KEYLOOK
program that is shown later in this chapter, but normally you should not process keystroke
messages for these keys.

An ,asterisk (*) in the column labeled "Required" indicates that the key is mandatory
for any Windows implementation. Windows also requires that a keyboard and keyboard
driver allow the Shift, Ctrl, and Shift and Ctrl keys together to be combined with all letter
keys, all required cursor keys, and all required function keys. The VK_LBUTTON,
VK_MBUTTON, and VK_RBUTTON virtual key codes refer to the left, middle, and right
buttons of a mouse. However, you will never receive keystroke messages with wParam set
to these values. The mouse generates its own messages.

Shift States

The wParam and IParam parameters that accompany WM_KEYDOWN, WM_KEYUP,
WM_SYSKEYDOWN, and WM_SYSKEYUP messages do not tell your program about the
state of the shift keys. You can obtain the current state of any virtual key using the GetKey
State function. This function· generally is used to obtain the state of shift keys (Shift, Ctrl,
and Alt) and toggle keys (Caps Lock and Num Lock). For instance:

GetKeyState (VK_SHIFT) ;

returns a negative value (that is, the high bit is set) if the Shift key is down. The value
returned from:

GetKeyState (VK_CAPITAl);

96

Chapter 3: The Keyboard

has the low bit set if the Caps Lock key is toggled on. You can also obtain the state of
the mouse buttons using the virtual key codes VK_LBUTTON, VK_RBUTTON, and
VK_MBUTTON. However, most Windows programs that need to monitor a combination of
mouse buttons and keystrokes usually do it the other way around-by checking key
strokes when they receive a mouse message. In fact, shift-state information is included in
the mouse messages (as yOlJ'll see in the next chapter).

Be careful with GetKeyState. It is not a real-time keyboard status check. Rather, it is a
check of the keyboard status up to and including the current message being processed.
GetKeyState does not let you retrieve keyboard information independent of normal
keyboard messages. For instance, you may want to hold up processing in your window
procedure until the user presses the Fl function key:

whi 1 e (GetKeyState (VK_Fl))= 0); II WRONG !!!

This statement will execute for a very long time-until you reset your machine with Ctrl
Alt-Delete. Your program must retrieve the keyboard message from the queue before
GetKeyState can retrieve the state of the key. This synchronization actually works to your
advantage, because if you need to know the shift state for a particular keystroke message,
GetKeyState is guaranteed to be accurate, even if you are processing the message after the
shift key has been released. If you really need the current state of the key, you can use
GetAsyncKeyState.

Using Keystroke Messages

The idea of a program getting information about every keystroke is certainly nice, but most
Windows programs ignore all but a few keystroke messages. The WM_SYSKEYDOWN and
WM_SYSKEYUP messages are for Windows system functions, and you don't need to look
at them. If you process WM_KEYDOWN messages, you can also ignore WM_KEYUP
messages.

Windows programs generally use WM_KEYDOWN messages for keystrokes that do
not generate characters. Although you may think that it's possible to use keystroke mes
sages in combination with shift -state information to translate keystroke messages into
character messages, don't do it. You'll have problems with international keyboard differ
ences. For instance, if you get a WM_KEYDOWN message with wParam equal to 33H, you
know the user pressed the 3 key. So far, so good. If you use GetKeyState and find out that
the Shift key is down, you might assume that the user is typing a pound sign (#). Not neces
sarily so. A British user is typing a £. So the WM_KEYDOWN messages are most useful for
the cursor movement keys, the function keys, and special keys such as Insert and Delete.
However, Insert, Delete, and the function keys often appear as menu accelerators. Because
Windows translates menu accelerators into menu command messages, you don't have to
process the keystrokes themselves. Some non-Windows programs for the PC use function
keys extensively in combination with the Shift, Ctrl, and Alt keys. You can do something
similar in your Windows programs, but it's not recommended. If you want to use the

97

SECTION II: READING INPUT

function keys, they should duplicate menu commands. One objective in Windows is to pro
vide a user interface that doesn't require memorizing or using complex command charts.

We've managed to eliminate everything except one final case: Most of the time, you
will process WM _KEYDOWN messages only for cursor movement keys. When you use the
cursor keys, you can check the Shift-key and Ctrl-key states through GetKeyState. Windows
functions often use the Shift key in combination with the cursor keys to extend a selection
in (for instance) a word-processing document. The Ctrl key is often used to alter the mean
ing of the cursor key. (For example, Ctrl in combination with the Right Arrow key might
mean to move the cursor one word to the right.)

The Common User Access: Advanced Interface Design Guide contains a list of rec
ommended keyboard definitions. (The guide, hereinafter referred to as the CUA Advanced
Interface Design Guide, is included in the Windows Software Development Kit and is part
of the IBM Systems Application Architecture Library.) You can also examine how the key
board is used in existing Windows programs. If you don't like those definitions, you are
free to do something different. But keep in mind that doing so may be detrimental to a
user's ability to quickly learn your program.

ENHANCING SYSMETS:
ADDING A KEYBOARD INTERFACE
When we wrote the three versions of the SYSMETS program in Chapter 2, we didn't know
anything about the keyboard. We were able to scroll the text only by using the mouse on
the scroll bars. Now that we know how to process keystroke messages, let's add a keyboard
interface to SYSMETS. This is obviously a job for cursor movement keys. We'll use most of
the cursor movement keys (Home, End, Page Up, Page Down, Up Arrow, and Down Arrow)
for vertical scrolling. The Left Arrow key and the Right Arrow key can take care of the less
important horizontal scrolling.

Adding WM_KEYDOWN Logic

One obvious way to create a keyboard interface is to add some WM_KEYDOWN logic to
the window procedure that parallels the WM_ VSCROLL and WM_HSCROLL logic:

98

case WM_KEYDOWN :
nVscrollInc = nHscrollInc = 0

switch (wPa ram)
{
case VK_HOME

n V s c roll I rfc =

break ;

II same as WM_VSCROLL, SB_TOP
-nVscrollPos

case VK_END : II same as WM_VSCROLL, SB_BOTTOM
nVscrollInc - nVscrollMax - nVscrollPos ;
break ;

Chapter 3: The Keyboard

case VK_UP : II same as WM_VSCROLL. SB_LINEUP
nVscrollInc - -1 ;
break ;

case VK_DOWN : II same as WM_VSCROLL. SB_LINEDOWN
nVscrollInc - 1
break ;

case VK_PRIOR II same as WM_VSCROLL. SB_PAGEUP
nVscrollInc - min (-1. -cyClient I cyChar) ;
break ;

case VK_NEXT : II same as WM_VSCROLL. SB_PAGEDOWN
nVscrollInc - max (1. cyClient I cyChar) ;
break ;

case VK_LEFT : II same as WM_HSCROLL. SB_PAGEUP
nHscrollInc - -8 ;
break ;

case VK_RIGHT II same as WM_HSCROLL. SB_PAGEDOWN
nHscrollInc ... 8
break

default:
break

if (nVscrollInc ... max (-nVscrollPos.
min (nVscrollInc. nVscrollMax - nVscrollPos»)

nVscrollPos +- nVscrollInc ;
ScrollWindow (hwnd. O. -cyChar * nVscrollInc. NULL. NULL)
SetScrollPos (hwnd. SB_VERT. nVscrollPos. TRUE) ;
UpdateWindow (hwnd) ;
}

if (nHscrollInc - max (-nHscrollPos.
min (nHscrollInc. nHscrollMax - nHscrollPos»)

{

nHscrollPos += nHscrollInc ;
ScrollWindow (hwnd. -cxChar * nHscrollInc. O. NULL. NULL)
SetScrollPos (hwnd. SB_HORZ. nHscrollPos. TRUE) ;
}

return 0

Do you dislike this code as much as I do? Simply duplicating all the scroll bar code is
unwise, because if we ever wanted to change the scroll bar logic, we'd have to make paral
lel changes in WM_KEYDOWN. There has to be a better way. And there is.

99

SECTION II: READING INPUT

Sending Messages

Wouldn't it be better to simply translate each of these WM_KEYDOWN messages into an
equivalent WM_ VSCROLL and WM_HSCROLL message and then perhaps fool WndProc
into thinking that it's getting a WM_ VSCROLL or WM_HSCROLL message, perhaps by
sending a phony scroll bar message to the window procedure? Windows lets you do this.
The function is called Send Message, and it takes the same parameters as those passed to the
window procedure:

SendMessage (hwnd. message. wParam. lParam) ;

When you call Send Message, Windows calls the window procedure whose window
handle is hwnd, passing to it these four parameters. When the window procedure has com
pleted processing the message, Windows returns control to the next statement following

, the Send Message call. The window procedure to which you send the message could be the
same window procedure, another window procedure in the same program, or a window
procedure in another application.

Here's how we might use SendMessage for processing WM_KEYDOWN codes in the
SYSMETS program:

case WM_KEYDOWN :
switch (wParam)

{
case VK_HOME

SendMessage (hwnd. WM_VSCROLL. SB_TOP. OL)
break ;

case VK_END :
SendMessage (hwnd. WM_VSCROLL. SB_BOTTOM. OL)
break ;

case VK_PRIOR
SendMessage (hwnd. WM_VSCROLL. SB_PAGEUP. OL)
break ;

[other program lines]

OK, you get the general idea. Our goal was to add a keyboard interface to the scroll bars,
and that's exactly what we've done. We've made the cursor movement keys duplicate scroll
bar logic by actually sending the window procedure a scroll- bar message. Now you see
why I included SB_ TOP and SB_BOTTOM processing for WM_ VSCROLL messages in the
SYSMETS3 program. It wasn't used then, but it's used now for processing the Home and
End keys. The final SYSMETS program, shown in Figure 3-2, incorporates these changes.
You'll also need the SYSMETS.H file from Chapter 2 (Figure 2-4) to compile this program.

Remember: To send a message to a window procedure, use the Send Message func
tion. Do not try to call the window procedure directly like this:

WndProc (hwnd. WM_VSCROLL. SB_PAGEUP. OL) ; II WRONG III

100

Chapter 3: The Keyboard

This statement will cause "unpredictable results" (if you call a system crash "unpredict
able"). You may define and call other subroutines within a Windows program, but you
must not call a window procedure directly. You'll find out why in Chapter 7.

SYSMETS.MAK

It --- - ;. -- - ;.: -- ~ ~ ... ;.:
SYSMETS.MAK-make file
#.~.~.~.~~~.~-.. ~~-.~~--

sysmets~exe:sysmets.obj sysmets.def
li nksysmets,la lign: 16,· NUL, lnod sli bcewl i bw,
rc.s'ysmets.exe

SYSMETS~C

flinc) ude(w; ndows ;h>
Iliriclude'~ sy srnets ;h~'

long<FAR<PASCAL WridProc(HWND,

lTIsg;
wndel ass

if UhPrevlnstance)
(
wndcTass.style
wndtlass.]pfn\4ridPtoc
wridcl~s~~cbClsExtra
wndclass~cbWndExtra
wndc lass·;hlnstance
wndclass;hlcon
wndclass:hClirsor

Figure 3·2. The SYSMETS program. (continued)

101

SECTION II: READING INPUT

102
(continued)

Chapter 3: The Keyboard

nVscrollMax - max (0, NUMLINES + 2 - cyClient I cyChar)
nVscrollPos - min (nVscrollPos. nVscrollMax) :

SetScroll Range (hwnd. S8_VERT, 0, nVscroll Max, FALSE) ;
SetScrollPos (hwnd. S8_VERT. nVscrollPos. TRUE) :

nHscrollMax - max (0, 2 + (nMaxWidth - cxClient)/ cxChar)
nHscrollPos - min (nHscrollPos. nHscrol1Max) :

SetScrollRange (hwnd. S8_HORZ, 0, nHscrollMax. FALSE)
SetScrollPos (hwnd. S8_HORZ. nHscrollPos. TRUE) :
return 0 :

case WM_VSCROLL :
swi tch (wParam)

{
case SB.; . .TOP :

nVscrol1Inc - -nVscrollPos
break :

case SB_LINEUP :
nVscrollInc - -1
break :

case SB_LINEOOWN
nVscrolllnc'" 1
break ;

case SBLPAGEUP
nVscrolllnc= min
break ;

(continued)

103

SECTION II: READING INPUT

(continued)

104

Chapter 3: The Keyboard

case VK_END :
SendMessage (hwnd. WM_VSCROLL. SB_BOTTOM. Ol)
break :

case VK_PRIOR
SendMessage (hwnd. WM_VSCROLL, SB_PAGEUP. OL) ';
break ;

case VK_NEXT :
SendMessage (hwnd, WM_VSCROLL. SB_PAGEOOWN,OL)
break ;

(hwnd. WM_VSCROLL, SB_LINEDOWN. OL)

-1)

(continued)

105

SECTION II: READING INPUT

CHARACTER MESSAGES
Earlier I discussed the idea of translating keystroke messages into character messages by
taking into account shift-state information, and I warned that shift-state information is not
enough: You also need to know about country-dependent keyboard configurations. For
this reason, you should not attempt to translate keystroke messages into character codes
yourself.

106

Chapter 3: The Keyboard

Windows does it for you. You've seen this code before:

while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

This is a typical message loop that appears in WinMain. The GetMessage function fills in
the msg structure fields with the next message from the queue. DispatchMessage calls the
appropriate window procedure with this message.

Between these two functions is TranslateMessage, which translates keystroke mes
sages into character messages. If the message is WM _KEYDOWN or WM_SYSKEYDOWN "
and if the keystroke in combination with the shift states produces a character, then
TranslateMessage places a character message in the message queue. This character mes
sage will be the next message that Get Message retrieves from the queue after the keystroke
message.

There are four character messages:

Nonsystem Characters:

System Characters:

Characters

WM_CHAR

WM_SYSCHAR

Dead Characters

WM_DEADCHAR

WM_SYSDEADCHAR

The WM_CHAR and WM_DEADCHAR messages are derived from WM_KEYDOWN
messages. The WM_SYSCHAR and WM_SYSDEADCHAR messages are derived from
WM_SYSKEYDOWN messages. In most cases, your Windows program can ignore every
thing except WM_CHAR messages. The IParam parameter passed to the window pro
cedure with the character code message is the same as the IParam parameter for the
keystroke message that generated the character code message. The wParam parameter is
the ASCII code for the character (yes, good old familiar ASCII).

The character messages are delivered to your window procedure sandwiched be
tween keystroke messages. For instance, if Caps Lock is not toggled on and you press and
release the A key, the window procedure receives the following three messages:

Message

WM_KEYDOWN

WM_CHAR

WM_KEYUP

Key or Code

Virtual key A

ASCII code a

Virtual key A

107

SECTION II: READING INPUT

If you type an uppercase A by pressing the Shift key, pressing the A key, releasing the
A key, and then releasing the Shift key, the window procedure receives five messages:

Message

WM_KEYDOWN

WM_KEYDOWN

WM_CHAR

WM_KEYUP

WM_KEYUP

Key or Code

Virtual key VK_SHIFT

Virtual key A

ASCII code A

Virtual key A

Virtual key VK_SHIFT

The Shift key by itself does not generate a character message.
If you hold down the A key so that the typematic action generates keystrokes, you'll

get a character message for each WM_KEYDOWN message:

Message Key or Code

WM_KEYDOWN Virtual key A

WM_CHAR ASCII code a

WM_KEYDOWN Virtual key A

WM_CHAR ASCII code a

WM_KEYDOWN Virtual key A

WM_CHAR ASCII code a

WM_KEYDOWN Virtual key A

WM_CHAR ASCII code a

WM_KEYUP Virtual key A

If some of the WM_KEYDOWN messages have a Repeat Count greater than 1, the corre
sponding WM_CHAR messages will have the same Repeat Count.

The etrl key in combination with a letter key generates ASCII control codes from 01H
(Ctrl-A) through lAH (Ctrl-Z). You can also use other keys to generate these control codes.
The following table shows the value of wParam in a WM_CHAR message for keys that
generate control codes:

Key ASCII Code Duplicated by

Backspace 08H Ctrl-H

Tab 09H Ctrl-I

Ctrl-Enter OAh Ctrl-J

Enter ODh Ctrl-M

Esc IBH Ctrl-[

108

Chapter 3: The Keyboard

Windows programs sometimes use the Ctrl key in combination with letter keys for menu
accelerators, in which case the letter keys are not translated into character messages.

WM_CHAR Messages

When your Windows program needs to process characters from the keyboard (for in
stance, in a word-processing or communications program), it will process WM_CHAR
messages. You'll probably want some special processing for the Backspace, Tab, and Enter
keys (and perhaps the Linefeed key), but you'll treat all other characters the same:

case WM_CHAR :

switch (wPa ram)
{

case '\b' : II backspace

[other program lines]

break :

case '\t': II tab
[other program lines]

break :

case '\n': II linefeed
[other program lines]

break :

case '\r': II carriage return
[other program lines]

break

default: II character code

[other program lines]

break

return 0

This program fragment is virtually identical to keyboard character processing in regular
MS-DOS programs.

Dead·Character Messages

Windows programs can usually ignore WM_DEADCHAR and WM_SYSDEADCHAR mes
sages. On some non-U.S. keyboards, certain keys are defined to add a diacritic to a letter.
These are called "dead keys" because they don't create characters by themselves. For in
stance, when the German keyboard is installed, the key that is in the same position as the
+/= key on a U.S. keyboard is a dead key for the acute accent C) when unshifted and the
grave accent C) when shifted.

109

SECTION II: READING INPUT

When a user presses this dead key, your window procedure receives a
WM_DEADCHAR message with wParam equal to the ASCII code for the diacritic by itself.
When the user then presses a letter key (for instance, the A key), the window procedure
receives a WM_CHAR message where wParam is the ASCII code for the letter a with the
diacritic. Thus, your program does not have to process the WM_DEADCHAR message, be
cause the WM_CHAR message gives the program all the information it needs. The Win
dows logic even has built-in error handling: If the dead key is followed by a letter that can't
take a diacritic (such as the letter s), then the window procedure receives two WM_CHAR
messages in a row - the first with wParam equal to the ASCII code for the diacritic by itself
(the same wParam value delivered with the WM_DEADCHAR message) and the second
with wParam equal to the ASCII code for the letter s.

LOOKING AT KEYBOARD MESSAGES
If you'd like to see how Windows sends keyboard messages to a program, KEYLOOK,
shown in Figure 3-3, will help. This program displays in its client area all the information
that Windows sends the window procedure for the eight different keyboard messages.

Figure 3·3. The KEYLOOK program. (continued)

110

Chapter 3: The Keyboard

RECT rect:
short cxChar. cyChar:

int PASCAL WinMain (HANDLE hlnstance. HANDLE hPrevlnstance.
LPSTRlpszCmd~ine. int nCmdShow)

{
static~harszAppName[] - "KeyLook"
HWND hwnd :
MSG msg ;
WNDCLASS wndclass

(continued)

111

SECTION II: READING INPUT

(continued)

112

Chapter 3: The Keyboard

case WM_PAINT :
InvalidateRect (hwnd, NULL, TRUE)
hdc - BeginPaint (hwnd, &ps) :

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT»

SetBkMode (hdc, TRANSPARENT) :
TextOut (hdc. cxChar, cyChar I 2. szTop. (s;zeof szTop) ~ 1)
TextOut (hdc, cxChar, cyChar I 2, szUnd, (sizeof szUnd) - 1)
EndPaint (hwnd, &ps) :
return 0 ;

case WM_KEYDOWN :
ShowKey (hwnd, 0, "WM_KEYDOWN", wParam, lParam)
return 0 :

case WM_KEYUP :
ShowKey (hwnd, 0, "WM_KEYUP", wParam, lParam)
return 0 :

case WM;....CHAR :
ShowKey (hwnd, I, "WM_CHAR". wParam, lParam)
return 0 :

case WM_DEADCHAR
ShowKey (hwnd, I, "WM_DEADCHAR", wParam, lParam)
return 0 :

case WM_SYSKEYDOWN
ShowKey (hwnd. 0, "WM_SYSKEYDOWN", wParam.1Param)
break; II i.e., call DefWindowProc

case WM_SYSKEYUP
ShowKey (hwnd, 0,
break: I I

case WM_SYSCHAR
ShowKey(hwnd, I, "WM_SYSCHAR". wParam, lParam)
break: II i.e., call DefWindowProc

case WM_SYSDEADCHAR :
ShowKey (hwnd, I, "WM_SYSDEADCHAR", wPa ram,
break: II i.e., call OefWindowProc

case WM_DESTROY
PostOuitMessage (0) :
return 0;

}
return DefWindowProc (hwnd, message.
} .

113

SECTION II: READING INPUT

;.iE~~OO~~E~.)}•.•.... i ••• •••• •••••••••
···.ii

..............
....

i ()
> ~:.. 77~~: • ~i/i

ii>~]. i.... ii \. iii. ·.·ii) \ :

····;t * * *~* ~~.'ih4:~itt~j.: ~ *7;;*';':717 •)
i

.•••.•.••.. :}K~yLoo~~nEE\riiodul~~ef}ri ti on". fi 1 .. ~ ..
i ;{::It ·.~~f~~~ t(~;~~Jj;~·· .. ~E+··· .•.. '
.·}~i~~) .iii .. KEyCbd~}(i

••••••••••• ~Tfi .> .•.•.•• • ...•.. : ..•.••
.•. pESCRleTIO~i;~~~eYLOok.vPto9t.~m.(c) Chaf1.J~s ~.~tzold • 1990'

i EXETy~E)\i WINDO~U~~m.t •.•.. :> >
< STU~((·WINSTUB.EXE:~;\i:i\ < j iCon ri) ••••... • •• ··...ieRE LOAD MOY EAB J~BIstARdlaLE L •••••.• ,/

"cDATA~i~~ i ~crEi~~~ MOVEA8lEi~i~~mlE i' ••••••••••••• i\ •••.•••• HEAPSIZE •••••••••• ·.·,1024 it) •••••••••• i .. t

!) STACKSltt'~~, ,8192 ",§i:)' i1', '2~! •.....
(\p P9~l§ ..~n~pro~ :: .. ·.··X • i·.· .. ·.·· >:....)......... • •..•..... /.:)} ••.... i .

KEYLOOK uses the display like an old-fashioned teletype output device. When KEYLOOK
receives a keystroke message, it calls ScrollWindow to scroll the contents of the entire cli
ent area of the window so that the contents move up the height of one character. TextOut
is used to display the line of new information beginning one character height from the
bottom. This is about as simple as a teletype output can get. Figure 3-4 shows what the
KEYLOOK display looks like when you type the word "Windows." The first column shows
the keyboard message, the second shows the virtual key code for keystroke messages, the

IIIIIIIIIIIIIII~~~IIIIIIIII~II = Keyboard Message Looker aa I

Message ~ Char Repeat Scan Ext ALT Preu Tran

WM KEYDOWN 16 1 54 No No Up Down
WM-KEYDOWN 87 1 17 No No Up Down
WM-CHAR 87 W 1 17 No No Up Down
WM-KEYUP 87 1 17 No No Down Up
WM-KEYUP 16 1 54 No No Down Up
WM-KEYDOWN 73 1 23 No No Up Down
WM-CHAR 105 i 1 23 No No Up Down
WM-KEYUP 73 1 23 No No Down Up
WM-KEYDOWN 78 1 49 No No Up Down
WM-CHAR 110 n 1 49 No No Up Down
WM-KEYUP 78 1 49 No No Down Up
WM-KEYDOWN 68 1 32 No No Up Down
WM-CHAR 100 d 1 32 No No Up Down
WM-KEYUP 68 1 32 No No Down Up
WM-KEYDOWN 79 1 24 No No Up Down
WM-CHAR 111 0 1 24 No No Up Down
WM-KEYUP 79 1 24 No No Down Up
WM-KEYDOWN 87 1 17 No No Up Down
I-1M-CHAR 119 w 1 17 No No Up Down
WM-KEYUP 87 1 17 No No Down Up
WM-KEYDOWN 83 1 31 No No Up Down
WM-CHAR 115 s 1 31 No No Up Down
WM-KEYUP 83 1 31 No No Down U

Figure 3·4. The KEYLOOK display.

114

Chapter 3: The Keyboard

third shows the character code (and the character itself) for character messages, and the
other six columns show the states of the six fields in"the IParam message parameter.

Most of KEYLOOK.C uses features of Windows that have already been covered in the
various SYSMETS programs, but a few new functions are used here.

The column formatting of KEYLOOK would be difficult with the default proportional
font. The code to display each line wo.uld need to be broken into nine sections to get every
thing lined up. For something like this, a much easier approach is to simply switch to a
fixed-pitch font. This requires two functions in a single statement:

SelectObject (hdc. GetStockObject (SYSTEM_FIXED_FONT» ;

KEYLOOK calls these two functions whenever it obtains a device context. This oc
curs in three places: the ShowKeyfunction, while processing the WM_CREATE message in
WndProc, and while processing the WM_PAINT message. The GetStockObject function
obtains a handle to a "stock" graphics object, which is a predefined graphics object that
Windows makes available to programs. In this case, GetStockObject obtains a handle to a
font known as SYSTEM_FIXED_FONT, which is the fixed-pitch font that was used in ver
sions of Windows prior to Windows 3. The SelectObject call places that object into the de
vice context. Following this call, all text that is displayed will use the fixed-pitch font. It is
possible to switch back to the default proportional font by calling:

SelectObject (hdc. GetStockObject (SYSTEM_FONT» ;

I'll discuss these functions in more depth in Chapter 12.
The ShowKey function calls ScroliWindow to scroll the previous lines of keystrokes

up before displaying a new line. Normally this would cause part of the window to become
invalid and hence generate a WM_PAINT message. The ShowKey function concludes with
a call to ValidateRect to prevent this.

Notice the use of the Windows wsprintJfunction in the ShowKey function. The char
acter strings must be explicitly cast to far pointers using the LPSTR data type (defined in
WINDOWS.H as a far pointer to a character string). The wsprintJ function is one of the
very few functions in Windows that explicitly requires casting of its parameters.

KEYLOOK does not save the keystrokes it receives, so on receipt of a WM_PAINT
message it cannot re-create the window. For this reason, KEYLOOK simply displays the
header at the top of the client area during the WM_PAINT message. Before calling Begin
Paint during the WM_PAINT message, KEYLOOK invalidates the entire window. This
allows the whole window to be erased rather than just the invalid rectangle.

(That KEYLOOK does not save the keystrokes and hence cannot redraw the window
during a WM_PAINT message is certainly a flaw. The TYPE program shown later in this
chapter corrects this flaw.)

KEYLOOK draws a header at the top of the client area identifying the nine columns.
Although it's possible to create an underlined font, I took a slightly different approach
here. I defined two character string variables named szTop(which has the text) and szUnd

115

SECTION II: READING INPUT

(which has the underlining) and displayed both of them at the same position at the top of
the window during the WM_PAINT message. Normally, Windows displays text in an
"opaque" mode, meaning that Windows erases the character background area while dis
playing a character. This would cause the second character string (szUnd) to erase the first
(szTop). To prevent this, switch the device context into the "transparent" mode:

SetBkMode (hdc. TRANSPARENT) ;

THE CARET (NOT THE CURSOR)
When you type text into a program, generally a little underline or box shows you where
the next character yO\) type will appear on the screen. You may know this as a "cursor," but
you'll have to get out of that habit when programming for Windows. In Windows, it's called
the "caret." The word "cursor" is used for the bitmap image that represents the mouse
position.

The Caret Functions

There are five essential caret functions:

• CreateCaret creates a caret associated with a window.

• SetCaretPos sets the position of the caret on the window.

• ShowCaret shows the caret.

• HideCaret hides the caret.

• DestroyCaret destroys the caret.

There are also functions to get the caret position (GetCaretPos) and to get and set the
caret blink time (GetCaretBlinkTime and SetCaretBlinkTime).

The caret is customarily a horizontal line, or a box that is the size of a character, or a
vertical line. The vertical line is recommended when you use a proportional font such as
the Windows default system font. Because the characters in a proportional font are not a
fixed size, the horizontal line and box can't be set to the size of a character.

You cannot simply create a caret during the WM_CREATE message and destroy it
during the WM_DESTROY message. The caret is what is known as a "systemwide
resource." What this means is that there is only one caret in the system. In effect, a pro
gram "borrows" the caret from the system when it needs to display a caret in its window.

Does this sound bizarrely restrictive? It's really not. Think about it: The display of a
caret in a window makes sense only when the window has the input focus. This indicates
to the .user that he or she may enter text in the program. Only one window has the input
focus at any time so only one caret is needed in the whole system.

116

Chapter 3: The Keyboard

A program can determine if it has the input focus by processing the WM_SETFOCUS
and WM_KILLFOCUS messages. A window procedure receives a WM_SETFOCUS mes
sage when it receives the input focus, and a WM_KILLFOCUS message when it loses the
input focus. These messages occur in pairs: A window procedure will always receive a
WM_SETFOCUS message before it receives a WM_KILLFOCUS message, and it always
receives an equal number of WM_SETFOCUS and WM_KILLFOCUS messages over the
course of the window's lifetime.

The main rule for using the caret is simple: A window procedure calls CreateCaret
during the WM_SETFOCUS message and DestroyCaret during the WM_KILLFOCUS
message.

There are a few other rules: The caret is created hidden. After calling Crea teCa ret,
the window procedure must call ShowCaret for the caret to be visible. In addition, the win
dow procedure must hide the caret by calling HideCaret whenever it draws something on
its window during a message other than WM_PAINT. After it finishes drawing on the win
dow, it calls ShowCaret to display the caret again. The effect of HideCaret is additive: If
you call HideCaret several times without calling ShowCaret, you must call ShowCaret the
same number of times before the caret becomes visible again.

The TYPE Program

The TYPE program shown in Figure 3-5 (beginning on the following page) brings together
much of what we've learned in this chapter. You can think of TYPE as an extremely rudi
mentary text editor. You can type in the window, move the cursor (I mean caret) around
with the cursor movement (or are they caret movement?) keys, and erase the contents of
the window by pressing Escape. The contents of the window are also erased when you re
size the window. There's no scrolling, no search and replace, no way to save files, and no
spell checker, but it's a start.

To make things easy for myself, TYPE uses SYSTEM_FIXED_FONT. Writing a text
editor for a proportional font is, as yo'u might imagine, much more difficult. The program
obtains a device context in several places: during the WM_CREATE message, the
WM_KEYDOWN message, the WM_CHAR message, and the WM_PAINT message. Each
time, calls to GetStoekObjeet and SeleetObjeet select the fixed-pitch font.

During the WM_SIZE message, TYPE calculates the character width and height of
the window and saves these values in the variables eXBuffer and eyBuffer. It then uses
maUoe to allocate a buffer to hold all the characters that can be typed in the window. The
xCaret and yCaret variables store the character position of the caret.

During the WM_SETFOCUS message, TYPE calls CreateCaret to create a caret that is
the width and height of a character, SetCaretPos to set the caret position, and ShowCaret to
make the caret visible. During the WM_KILLFOCUS message, TYPE calls HideCaret and
DestroyCaret.

117

SECTION II: READING INPUT

Figure 3·5. The TYPE program. (continued)

118

wndclass.lpszMenuName - NULL:
wndclass.lpszClassName - szAppName

RegisterClass (&wndclass) ;
}

Chapter 3: The Keyboard

(continued)

119

SECTION II: READING INPUT

(continued)

120

case WM_KEYDOWN :
switch (wParam)

{
case VK_HOME

xCaret ... 0
break ;

- 1

Chapter 3: The Keyboard

(continued)

121

SECTION II: READING INPUT

(continued)

122

Chapter 3: The Keyboard

InvalidateRect (hwnd, NULL. FALSE) :
break :

default: II character codes
BUFFER (xCaret. yCaret) = (char) wParam

HideCaret (hwnd) :
hdc = GetDC (hwnd)

SelectObject (hdc.
GetStockObject (SYSTEM_FiXED_FONT)

TextOut (hdc .• xCaret *cxChar, yCaret * cyChar.
& BUFFER (xCaret.yCaret), 1>;

ShowCaret (hwnd) :
ReleaseOC (hwnd. hdc);

if (++xCaret== cxBuffer)
{
xCaret= 0 :

if

}
break ;

case WM_PAINT:
hdc= Begi nPa i nf (hwnd. &ps) :
Sel ectObject(hdc. GetStockObject(SYSTEM_F I XED_FONT»

for (y. = 0 : y (cyBuffer ;y++)
TextOut(hdc. O.J * cyCha r,

EndPa1nt(hwnd,&ps)
return 0 :

case·WM_DESTROY
PostQuitMessage(O)
returnO;

}
return DefWindowProc
}

123

SECTION II: READING INPUT

The processing of the WM_KEYDOWN and WM_CHAR messages is more extensive.
The WM_KEYDOWN processing mostly involves the cursor movement keys. Home and
End send the caret to the beginning and end of a line respectively, and Page Up and Page
Down send the caret to the top and bottom of the window. The arrow keys work as you
would expect. For the Delete key, TYPE must move everything left in the buffer from the
next caret position to the end of the line and then display a blank at the' end of the line.

The WM_CHAR processing handles the Backspace, Tab, Linefeed (Ctrl-Enter), Enter,
Escape, and character keys. Notice I've used Repeat Count in IParam when processing the
WM_CHAR message (under the assumption that every character the user types is impor
tant) but not during the WM_KEYDOWN message (to prevent inadvertent overscrolling).
The Backspace and Tab processing is simplified somewhat by the use of the Send Message
function. Backspace is emulated by the Delete logic, and Tab is emulated by.a series of
spaces.

As I mentioned earlier, you should hide the cursor when drawing on the window
during messages other then WM_PAINT. The program does this when processing the
WM_KEYDOWN message for the Delete key and the WM_CHAR message for character
keys. In both these cases, TYPE alters the contents of the buffer and then draws the new
character or characters on the window.

I use TYPE when working on speeches, as shown in Figure 3-6.

124

Chapter 3: The Keyboard

== Typing Program aa
Fourscore and seuen years ago our fathers brought forth on this continent a
new nation conceiued in liberty and dedicated to the proposition that all
men are created equal. How we are engaged in a great ciuil war testing
whether that nation, or any nation so conceiued and so dedicated, can long
endure. We are met on a great battlefield of that war. We haue come to
dedicate a portion of that field as a final resting-place for those who here
gaue their liues that that nation might liue. It is altogether fitting and
proper that we should do this.' But, in a larger sense, we cannot dedicate,
we cannot consecrate, we cannot hallow this ground. The braue men, liuing
and dead, who struggled here haue consecrated it far aboue our poor power to
add or detract. The world will little note nor long remember what we say
here, but it can neuer forget what they did here. It is for us the liuing
rather to be dedicated here to the unfiniShed work which they who fought
here haue thus far so nobly aduanced. It is rather for us to be here
dedicated to the great task remaining before us--that from these honored
dead we take increased deuotion to that cause for which they gaue their last
full measure of deuotion--that we here highly resolue that these dead shall
not haue died in uain, that this nation under God shall haue a new birth of
freedom, and that gouernment of the people, by the people, for the people
shall not perish from the earth. I

Figure 3·6. The TYPE display.

THE WINDOWS CHARACTER SETS
I mentioned earlier that letter keys preceded by dead-character keys generate WM_CHAR
messages where wParam is the ASCII code for a character with a diacritic. This may be a
little puzzling because the ASCII character set doesn't include any codes for characters
with diacritics. What exactly is the value of wParam in this case? The answer to this ques
tion requires that we tackle the subject of character sets, a topic that may at first seem more

I
appropriate for a later discussion about character fonts. However, it is also of vital impor-
tance in keyboard handling.

The standard 7-bit ASCII character set defines codes from 0 through 31 (lFH) and 127
(7FH) as control characters, and it defines codes from 32 (20H) through 126 (7EH) as dis
playable characters. None of these characters have diacritics. Because personal computers
use 8-bit bytes, computer manufacturers often define character sets that use 256 codes
rather than the 128 ASCII codes. The additional codes may be assigned characters with
diacritics. The resultant "extended character set" then includes the ASCII character set and
up to 128 other characters.

If Windows supported such an extended character set, displaying characters with
diacritics would be easy. But Windows doesn't support a simple extended character set.
Windows supports two extended character sets. Unfortunately, the presence of these two
character sets doesn't make things twice as easy.

125

SECTION II: READING INPUT

The OEM Character Set

First, let's go back to the hardware that Windows runs on - the IBM PC and compatibles. In
the early 1980s the developers of the IBM PC decided to extend the ASCII character set as
shown in Figure 3-7. The codes from 20H through 7EH are displayable characters from the
ASCII character set. The rest are nonstandard-or at least were at the time.

This character set cannot be ignored. It is encoded in millions of ROM chips in IBM
video adapters, printers, and system board BIOS's. It has been duplicated in the hardware
of numerous manufacturers of IBM-compatible computers and peripherals. This character
set is part of what is meant by the phrase "the IBM standard." Many programs written for
the IBM PC require this extended character set because they use the block-drawing and
line-drawing characters (codes BOH through DFH) in their screen output.

0 2 3 4 5 6 7 8 9 A 8 C 0 E F

00: @l9 ..- • §r't' • C c [;] (1 !l JlfJ 0

10: ... ~ l .. qJ§ I t l ~ +- L " -
20: ! .. B $ X & I () * + / I'

30: o 1 2 3 4 5 6 ? 8 9 . . < = > ? . ,
40: @ A B C D E F G H I J](L r1 N 0
50: p Q R S I U U W H Y Z [,] A

60:
.. b d f h i j k 1 a c e 9 ITt n 0

70: p q :r s t u u w x y z { } nr
0.

80: C li
, A a I A e i .A.

A H e a a ~ e e l. l.

90: .;: IE A ;) A
Y 0 iJ e £ V Rtf Ie 0 0 u U

AO:
, , , ,

ii N 2 !!. i ~'4 i a l. 0 U r , « »
80: ~

* rum I i ~ 11 n =t ~I II 11 :!..I JJ ::I ,
co: L .1. ~ + ~ II l! rr Jl H Jl .L

T n n
DO: 11

"
U I: F n it .L .I r I I I • T T •

EO: ex p r 11 E u J.l ~ ~ 0 n 6 ro ~ E n
FO: ± 2 ! r J 0

""
n 2 I

Figure 3·7. The IBM extended character set arranged by character code.

126

Chapter 3: The Keyboard

The only problem is this: The IBM extended character set is inappropriate for Win
dows. First, the block-drawing and line-drawing characters commonly used by PC pro
grams in text-mode applications are not needed in Windows because Windows does real
graphics. If you want to draw a horizontal line in Windows, it's easier to draw a line than to
display a string of C4H characters. Second, the Greek alphabet and mathematical symbols
are less important in Windows than are the accented letters used in most European lan
guages. A program that needs to display mathematical symbols can best draw them using
graphics functions.

In short, Windows supports the IBM character set, but it is relegated to secondary im
portance, mostly for old applications that run in a window. Windows applications do not
normally use the IBM character set. In Windows documentation, the IBM character set is
referred to as the "OEM character set." The OEM character set is more precisely defined as
the character set that is native to the machine currently running Windows.

International Support under DOS
. There are a number of variants on the IBM PC character set, called "code pages." The
variant used in the Vnited States and in most European countries is called Code Page 437.
Systems sold in Norway, Denmark, Portugal, and a few other European countries use dif
ferent, special, code pages, which contain more of the special characters required by the
languages of those countries. Recently, a number of these countries began to use Code Page
850, which contains fewer graphics symbols and more accented letters and other special
characters.

Windows 3.0 supports code pages by installing OEM fonts (used for running DOS ap
plications in windows and in the clipboard viewer), which correspond to the system's code
page, and by installing appropriate translation tables for the AnsiToOem and OemToAnsi
functions (discussed later). If the system is running DOS version 3.3 or later, the Windows
Setup program will use the current DOS code page. For earlier versions of DOS, Setup will
select a code page based on the localized (national) version of Windows.

The ANSI Character Set

The extended character set that Windows and Windows programs use for most purposes is
called the "ANSI character set." When your program receives a WM_CHAR message, the
wParam parameter is the ANSI character code. The ANSI character set is shown in Figure
3-8. As you can see, the codes from 20H through 7EH represent the same characters that
appear in the OEM character set and the ASCII character set. The characters displayed as
solid blocks are undefined characters. They may appear differently on other output de
vices (such as a printer).

127

SECTION II: READING INPUT

0 1 2 3 4 5 6 7 8 9 A B C D E F

00: • • • • • • • • • • • • • • • •
10: • • • • • • • • • • • • • • • •
20: ! II I $ % &: I () * + I ,
30: 0 1 2 3 4 5 6 7 8 9 . . < = > ? . ,
40: @ A B C D E F G H I J K l M H 0
50: p Q R S T U U W X y 2 [\]

A

...
b d f h i j k 1 60: a c e g III n 0

70: p q r 5 t u u w x y z { I } - •
80: • • • • • • • • • • • • • • • •
90: • , , • • • • • • • • • • • • •
AO: ¢ £ iI:I! ¥ §

..
© ~ @ i « .., -

0 2:]:
, , 1 !! %%% BO: ± J.l · » b ~

co: A A it A A ~ d: C E E E E i i i I
DO: D Ii 0 0 0 fi 0 x IJ 0 0 0 U Y Il n

... , A - a Go ... , A e ... , A :.: EO: a a a a a ce C e e e 1 1 1

(j - ... , A - i:i · ... , A i.i
,

11 Y FO: n 0 0 0 0 · 8 U U U Y
Figure 3·8. The ANSI character set arranged by character code.

OEM, ANSI, and Fonts

Windows has different fonts for displaying the ANSI and OEM character sets. When you
first obtain a handle to a device context, one of the attributes in the device context is a font.

By default this is the SYSTEM_FONT or "system font," which uses the ANSI charac-
ter set. If you want to display characters from the OEM character set, you can select the
OEM_FIXED_FONT (also called the "terminal font") in the device context by using the
following code:

SelectObject (hdc, GetStockObject (OEM_FIXED_FONT» ;

This is the only font in Windows guaranteed to support the OEM character set.

128

Chapter 3: The Keyboard

INTERNATIONALIZATION CONCERNS
Here's why we have to talk about fonts in the middle of the keyboard chapter. We've estab
lished that when a Windows user on a non-U.S. keyboard types a character with a diacritic,
the wParam parameter of the WM_CHAR message is the code for that character in the
ANSI character set.

So, if you need to echo that character to the display, you had better be using a font
with the ANSI character set (such as the SYSTEM_FONT or SYSTEM_FIXED _FONT). If
you instead use the OEM_FIXED_FONT, the character you write to the display will be
incorrect and will surprise the user. A few other simple rules will allow the keyboard logic
in your Windows programs to survive intact when you convert your programs for a Euro
pean market.

Working with the Character Set

When you get a WM_CHAR message, keep in mind that wParam may legitimately have
values above 128. Don't assume that anything above 127 is an invalid character.

You may want to convert a character to uppercase. Don't use your own algorithm:

if (ch)= 'a' && ch (= 'z')
ch -= 32 ; II WRONG III

That's a poor practice even when writing non-Windows C. But don't use the standard C
function either:

ch = toupper (ch) ; II WRONG III

Both these functions work only for the lower half of the ANSI character set. They will not
convert a COH to an EOH.

Instead, you should use the Windows functions AnsiUpper and AnsiLower. If str is a
zero-terminated character string, you can convert it to uppercase using AnsiUpper:

AnsiUpper (pString) ;

or using the AnsiUpperBu.!ffunction for character strings that are not zero-terminated:

AnsiUpperBuff (pString. nLength) ;

You can also use AnsiUpper to convert a single character, but some casting is required be
cause the high-order word of the parameter must be zero:

ch = AnsiUpper ((LPSTR) (LONG) (BYTE) ch) ;

If ch is defined as an unsigned character, the initial BYTE cast is not required. Windows
also includes AnsiLower and AnsiLowerBu.!ffunctions for converting to lowercase.

If you are really serious about writing Windows programs that can be easily con
verted to foreign languages, you should alSo investigate the AnsiNext and AnsiPrev func
tions. These functions facilitate handling of multibyte character sets. The Japanese

129

SECTION II: READING INPUT

character set requires more than 256 characters, some of which use 2 bytes. If you use nor
mal C pointer arithmetic to scan a string (perhaps searching for a backslash character in a
directory path string), you may think you've found the character when you've really found
the second byte of a 2-byte character code. AnsiNext and AnsiPrev take a far pointer to a
character string and return a far pointer that has been correctly incremented or decre
mented past 2-byte character codes.

Talking with MS·DOS

If Windows were the only operating environment running on a machine, then you could
forget about the OEM character set and use only the ANSI character set. However, users
can create files in the MS-DOS environment and use them in Windows; they can also
create files in Windows and use them when back in MS-DOS. Unfortunately, MS-DOS uses
the OEM character set.

Here's an example of the communications problems that can occur. Suppose that a
Gennan-speaking PC user creates a file named UBUNGEN.TXT ("practice exercises") in
an MS-DOS program such as EDLIN. On the IBM PC, the U is part of the IBM (that is, OEM)
character set and has a code of 154 or 9AH. (When using MS-DOS with a U.S. keyboard on
an IBM PC, you can also create this letter by typing Alt-154 using the numeric keypad.) MS
DOS uses that character code in the directory entry of the file.

If a Windows program uses MS-DOS function calls to obtain a directory of files and
then writes them directly to the display using an ANSI character set font, the first letter of
UBUNGEN will show up as a solid block, because the code 154 is one of the undefined
characters in the ANSI character set. The Windows program needs to convert the IBM ex
tended character set code of 154 (9AH) to an ANSI character set code of 220 (or DCH),
which is the letter U in the ANSI character set. That's what the Windows function
OemToAnsi does for you. It requires two far pointers to strings. The OEM characters in the
first string are converted to ANSI characters and stored in the second string:

OemToAnsi (lpszOemStr. lpszAnsiStr) :

Now let's take the opposite example. The German-speaking user wants your Win
dows program to create a file named UBUNGEN.TXT. The filename entered by the user
has a 220 (DCH) as the first character. If you use an MS~DOS function call to open the file,
MS-DOS uses that character in the filename. When the user later looks anhe file under MS
DOS, the first character shows up as a block. Beforeyou use the MS-DOS function calls,
you must convert the filename to the OEM character set:

AnsiToOem (lpszAnsiStr. lpszOemStr) :

This converts a 220 (DCH) to a 154 (9AH). Windows also includes two functions named
AnsiToOemBuffand Oem ToAnsiBuff that do not require a zero-terminated string.

Windows has an OpenFile call that will convert this for you. If you use OpenFile, don't
do your own AnsiToOem conversion. If you use MS-DOS function calls to obtain lists of

130

Chapter 3: The Keyboard

filenames (as the Windows File Manager program does), then these filenames should be
passed through OemToAnsi before being displayed.

Converting the contents of files is another problem that arises when files are used in
both Windows and MS-DOS. If your Windows program uses files that you are certain have
been created in an MS-DOS program, then you may need to pass the text contents of the
file through the OemToAnsi function. (For instance, Windows WRITE does this when con
verting Microsoft Word files to WRITE format.) Similarly, if your Windows program is pre
paring a file for use in an MS-DOS program, you may want to use AnsiToOem to convert
the text.

The OemToAnsi and AnsiToOem functions are located in the keyboard driver. They
incorporate very simple lookup tables. The OemToAnsi routine converts an OEM code
from BOH through FFH to a character code in the ANSI set that most closely resembles the
OEM character. In some cases, this conversion is only grossly approximate. For instance,
most of the line-drawing characters in the IBM character set are translated as plus signs,
dashes, and vertical lines. Most of the OEM codes from OOH through IFH are not translated
to ANSI codes.

The AnsiToOem routine converts ANSI codes from AOH through FFH into codes in
the OEM set. The accented characters in the ANSI character set that do not appear in the
OEM character set are translated into regular ASCII codes for the characters without the
diacritics.

Using the Numeric Keypad

As you probably know, the IBM PC keyboard and BIOS let you enter codes for the IBM ex
tended character set by pressing and holding down the Alt key, typing on the numeric
keypad the three-digit decimal code representing the OEM character, and releasing the Alt
key. This facility is duplicated in Windows in two ways:

First, when you type Alt-[OEM code] on the numeric keypad, Windows gives to you
the ANSI character code in the wParam parameter of the WM_CHAR message that most
closely approximates the OEM character represented by the OEM code. That is, Windows
passes the code through the OemToAnsi function before generating the WM_CHAR mes
sage. This facility is for the user's convenience: If you do not have a foreign-language
keyboard and you are accustomed to typing a D by typing Alt-154, you can do the same
thing in a Windows program. You don't need to relearn the ANSI character codes.

Second, if you want to generate ANSI extended character codes from the U.S. key
board, type Alt-O[OEM code] on the numeric keypad. The wParam parameter of the
WM_CHAR message is that OEM code. Thus, Alt-0220 is also a D. You can try this out in
the·TYPE program.

131

Chapter 4

The Mouse

The mouse is a pointing device with one or more buttons. Although a mouse is considered
an important part of Windows' user interface, it is an optional accessory. You can install
Windows without a mouse, and you can control most Windows programs entirely from the
keyboard. Often, the most difficult aspect of using the mouse in your program is adding a
keyboard interface to duplicate the mouse functions.

MOUSE BASICS
Windows can support a one-button, two-button, or three-button mouse or use a joystick or
light pen to mimic a one-button mouse. The support of a second and third mouse button is
rarely exploited, however. Unless you know your Windows program will run only on ma
chines equipped with a two-button or three-button mouse, you must write programs for
the lowest common denominator and use only a single button.

You can determine if a mouse is present by using the GetSystemMetrics function:

fMouse = GetSystemMetrics (SM_MOUSEPRESENT) ;

The value of /Mouse will be TRUE (nonzero) If a mouse is installed. No method is docu
mented for determining the number of buttons on the installed mouse.

Some Quick Definitions

When the Windows user moves the mouse, Windows moves a small bit-mapped picture on
the display called the "mouse cursor." The mouse cursor has a single-pixel "hot spot" that
points to a precise location on the display.

133

SECTION II: READING INPUT

The display driver contains several predefined mouse cursors that programs may
use. The most common is the slanted arrow called IDC_ARROW in WINDOWS.H. The hot
spot is the tip of the arrow. The IDC_CROSS cursor (used in the BLOWUP1 program shown
in this chapter) has a hot spot in the center of a cross-hair pattern. The IDC_ WAIT cursor is
an hourglass generally used by programs to indicate they are busy. Programmers can also
design their own cursors (as we'll do in Chapter 8). The default cursor for a particular win
dow is specified when defining the window class structure, for instance:

wndclass.hCursor - LoadCursor (NULL, IDC_ARROW) ;

The following terms describe the actions you take with mouse buttons:

• Clicking-Pressing and releasing a mouse button

• Double-clicking-Pressing and releasing a mouse button twice in quick
succession

• Dragging-Moving the mouse while holding down a button

On a three-button mouse, the buttons are called the left button, middle button, and
right button. Mouse-related identifiers defined in WINDOWS.H use the abbreviations
LBUTTON, MBUTTON, and RBUTTON. A two-button mouse has only a left button and a
right button. The single button on a one-button ~ouse is a left button.

CLIENT-AREA MOUSE MESSAGES
In the previous chapter you saw how Windows sends keyboard messages only to the win
dow with the input focus. Mouse messages are different: A window procedure receives
mouse messages whenever the mouse passes over the window or is clicked within the win
dow, even if the window is not active or does not have the input focus.

Windows defines 21 messages for the mouse. However, 11 of these messages do not
relate to the client area (hereinafter, "nonclient-area" messages), and Windows programs
usually ignore them. Of the 10 "client-area" mouse messages, 6 pertain to the right and
middle buttons. Windows programs usually ignore these messages also.

When the mouse is moved over the client area of a window, the window procedure
receives the message WM_MOUSEMOVE. When a mouse button is pressed or released
within the client area of a window, the window procedure receives these messages:

Button

Left

Middle

Right

134

Pressed

WM_LBUTTONDOWN

WM_MBUTTONDOWN

WM_RBUTTONDOWN

Released

WM_LBUTTONUP

WM_MBUTTONUP

WM_RBUTTONUP

Pressed (2d Click)

WM_LBUTTONDBLCLK

WM_MBUTTONDBLCLK

WM_RBUTTONDBLCLK

Chapter 4: The Mouse

Your window procedure receives "MBUTTON" messages only for a three-button
mouse and "RBUTTON" messages only for a two-button or three-button mouse. The win
dow procedure receives "DBLCLK" (double-click) messages only if the window class has
been defined to receive them (as described below).

For all these messages, the value of /Param contains the position of the mouse. The
low word is the x-coordinate, and the high word is the y-coordinate relative to the upper
left corner of the client area of the window. You can extract the x-coordinate and y-coordi
nate from /Param using the LOWORD and HIWORD macros defined in WINDOWS.H.
The value of wParam indicates the state of the mouse buttons and the Shift and Ctrl keys.
You can test wParam using the bit masks defined in WINDOWS.H. The MK prefix stands
for "mouse key."

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

MK_CONTROL

Left button is down

Middle button is down

Right button is down

Shift key is down

Ctrl key is down

As you move the mouse over the client area of a window, Windows does not gener
ate a WM_MOUSEMOVE message for every possible pixel position of the mouse. The num
ber of WM_MOUSEMOVE messages your program receives depends on the mouse
hardware and on the speed at which your window procedure can process the mouse
movement messages. You'll get a good idea of the rate of WM_MOUSEMOVE messages
when you experiment with the CONNECT program described below.

If you click the left mouse button in the client area of an inactive window, Windows
changes the active window to the window that is being clicked and then passes the
WM_LBUTTONDOWN message to the window procedure. When your window procedure
gets a WM_LBUTTONDOWN message, your program can safely assume the window is ac
tive. However, your window procedure can receive a WM_LBUTTONUP message without
first receiving a WM_LBUTTONDOWN messag~. This can happen if the mouse button is
pressed in one window, moved to your window, and released. Similarly, the window pro
cedure can receive a WM_LBUTTONDOWN without a corresponding WM_LBUTTONUP
message if the mouse button is released while positioned over another window.

There are two exceptions to these rules:

• A window procedure can "capture the mouse" and continue to receive
mouse messages even when the mouse is outside the window's client
area. You'll learn how to capture the mouse later in this chapter .

• If a system-modal message box or a system-modal dialog box is on the
display, no other program can receive mouse messages. System-modal
message boxes and dialog boxes prohibit switching to another window or

135

SECTION II: READING INPUT

program while the box is active. (An example of a system-modal message
box is the one that says "This will end your Windows session" when you
close the Program Manager.)

Simple Mouse Processing: An Example.

The CONNECT program, shown in Figure 4-1, does some simple mouse processing to let
you get a good feel for how Windows sends your program mouse messages.

bONNECTZIvIAIt;>.> .·······ii/ \ ... / '
..............
{) .i

......... } .
;-.j -;i;:: ;.-";;:;;'.yi)/ V/

•• }»>.i .••••.••• > •••••.
~>}i ?}(• .• <
111 ~f * f+~;"";;;;;;+~r~~j'ITr ~ ~i ? \

/ft .. CONNECTJ~AK~.?~eftl~ •.•.••.•. ..•. i}i/ \
/ '.> / .

•••••• i' ~#\ii~1.~i .. :",.O'2.2"~ ',0' -+. " O~t~ "~L Nii i~~\.' ',,' " i

1li2J%i if.~~~JJ;¥\~~'Li#.'J'i;lil0~ 'iii ' '~'ii" ,iii' /

••••••

>\ connect.exe : conneetlofij conn.;ct.d~tij/\Jli) .'. (~;> 1 i nk connect • {a}i 9Q; l~} .• ~UL; lryg~ sl.~ bsew/l~~~rco~n~ct .< >
..•.... •...•••••.•..••••• ••••••••• r¢con n~ct~~~E\>\ ·.><i>.> ...•.•••..•) '2 i

......iC>L»> > > <
! !eon'ne~tl;'oillli!1'~~~n~ct\';n~k'ii' 'i\' l "" 'iii i

........ .\ ••••)7~' ••.•. rrc:l.T~· • 2•. .•.•..•. . .••....•.. i:<·i . . > \.i·i .'. \>\
....).~ l~q~~s \'1\ ••. ~ o~r:.~ ?'.~Z p con nee ~~; •• ••• ••• ()ii ··..r i)\ii ".• • •.•••.•.

\
........... »i

Figure 4·1. The CONNECT program. . (continued)

136

if (!hPrevlnstance)
{
wndclass~style = CS_HREDRAW CS_VREORAW
wndclass.lpfnWndProc ... WndProc ;
wndclass.cbClsExtra = 0 :
wndclass.cbWndExtra = 0 :
wndclass.hlnstance - hlnstance :

Chapter 4: The Mouse

wndclass.hlcorl = Loadlcon (NULL. IOI...:.APPLICATION)
wndc1ass.hCursor = LoadCursor (NULL. IOC_ARROW)
wndclass.hbrBackground= GetStockObject (WHITE_BRUSH)
wndcl ass.1 pszMenuName'" NULL;
wndclass.lpszClassName ~ szAppName

(continued)

137

SECTION II: READING INPUT

138

Chapter 4: The Mouse

CONNECT processes three mouse messages:

• WM_LBUTTONDOWN-CONNECT clears the client area.

• WM_MOUSEMOVE-Ifthe left button is down, CONNECT draws a black
dot on the client area at the mouse position.

• WM_LBUTTONUP-CONNECT connects every dot drawn in the client
area to every other dot. Sometimes this results in a pretty design;
sometimes in a dense blob. (See Figure 4-2.)

To use CONNECT, bring the mouse cursor into the client area, press the left button,
move the mouse around a little, and release the left button. CONNECT works best for a
curved pattern of a few dots, which you can draw by moving the mouse quickly while the
left button is depressed. CONNECT uses several simple Graphics Device Interface (GDI)
functions. Set Pixel draws a one-pixel dot of a particular color, in this case black. (On high
resolution displays, the pixel may be nearly invisible.) Drawing the lines requires two
functions: MoveTo marks the x-coordinate and y-coordinate of the beginning of the line,
and LineTo draws the line.

If you move the mouse cursor out of the client area before releasing the button, CON
NECT does not connect the dots, because it doesn't receive the WM_LBUTTONUP mes
sage. If you move the mouse back into the client area and press the left button again,
CONNECT clears the client area. (If you want to continue a design after releasing the

== Connect-the-Points Mouse Demo aa

Figure 4·2. The CONNECT display.

139

SECTION II: READING INPUT

button outside the client area, press the left button again while the mouse is outside the cli
ent area and then move the mouse back inside.)

CONNECT stores a maximum of 1000 points. The number of lines it draws is equal to:

(P) x (P- I)

2

where P is the number of points. With 1000 points, this involves almost 500,000 lines,
which can take several minutes to draw. For anything but a demonstration program, this is
too long for a Windows program to hog system resources.

If CONNECT is busy drawing lines, you can press the mouse button, move the mouse
around, and release the mouse button, but nothing will happen. CONNECT does not
receive these messages because it is busy and not making any GetMessage calls. After
CONNECT finishes drawing the lines, it does not receive these messages because the
mouse button has been released already. In this respect, the mouse is not like the key
board. Windows treats every keystroke as if it were important. However, if a mouse button
is pressed and released in the client area while a program is busy, the mouse clicks are
discarded.

Now try this: While CONNECT is engaged in a lengthy drawing routine, hold down
the mouse button and move the mouse around. After CONNECT is finished drawing, it will
retrieve the WM_LBUTTONDOWN message from the queue (and clear the client area)
because the button is currently down. However, it receives only the WM_MOUSEMOVE
messages that occur after it receives the WM_LBUTTONDOWN message.

Sometimes the word "tracking" is used to refer to the way that programs process
mouse movement. Tracking does not mean, however, that your program sits in a loop in its
window procedure attempting to followthe mouse's mbvements on the display. The win
dow procedure instead processes each mouse message as it comes and then quickly exits.

POINT, RECT, and IParam

CONNECT uses an array of POINT structures for saving points. The POINT structure is
defined in WINDOWS.H and has two fields named x and y:

typedef struct tagPOINT
{

int x
i nt y
POINT

Some Windows functions require a POINT structure (or a pointer to a POINT structure) as
a parameter. You can define a POINT structure variable (named point, for instance) in your
program with this definition:

POINT point;

140

Chapter 4: The Mouse

If you need to convert an IParam value-the x and y mouse coordinates-to a
POINT structure, you can use the MAKEPOINT macro:

point = MAKEPOINT (lParam) ;

In WINDOWS.H, MAKEPOINT is defined like this:

f/define MAKEPOINT(l) (*«POINT *)&1»

Despite the apparent complexity of this macro, it compiles very efficiently because all it
does is store IParam at the address of point. WINDOWS.H defines the type PPOINT as a
pointer to a POINT structure, so perhaps this statement (without using the macro) makes
the conversion a little clearer:

point = * (PPOINT) &lParam

(Remember that standard C order-of-evaluation rules cause address, indirection, and type
cast operators to be evaluated from right to left.)

The RECT structure defines a rectangle. Here's the WINDOWS.H definition:

typedef struct tagRECT
{

int left ;
int top;
int right;
int bottom;
RECT ;

This structure really contains two points side by side: left and right are x-coordinates, and
top and bottom are y-coordinates. You can define a structure variable (named rect, for
instance) with the statement:

RECT rect ;

Transferring coordinates from a RECT structure to a POINT structure is also straight
forward. This statement sets point to the upper left corner of the rectangle:

point = * (PPOINT) &rect.left ;

This does the same for the lower right corner:

point = * (PPOINT) &rect.right ;

You can also define an array of two points:

POINT points [2] ;

and transfer these two points into a RECT structure:

rect = * (PRECT) points;

PRECT is defined in WINDOWS.H as a pointer to a RECT structure. You don't need the &

(address) operator before points because points is an array. In C, an array name is the ad
dress of the first element of the array.

141

.!

SECTION II: READING INPUT

Processing Shift Keys

When CONNECT receives a WM_MOUSEMOVE message, it performs a bitwise AND
operation on the value of wParam and MK_LBUTTON to determine if the left button is
depressed. You can also use wParam to determine the state of the Shift keys. For instance,
if processing must be dependent on the status of the Shift and Ctrl keys, you might use
logic that looks like this:

if CMK_SHIFT & wParam)
if (MK_CONTROL & wParam)

{

else

[Shift and etrl keys are down]
}

[Shift key is down]
}

else if (MK_CONTROL & wParam)
{

else

[etrl key is down]
}

[neither Shift nor etrl key is down]
}

The Windows function GetKeyState (described in Chapter 3) can also return the
state of the mouse buttons or shift keys using the virtual-key codes VK _LBUTTON,
VK_RBUTTON, VK_MBUTTON, VK_SHIFT, and VK_CONTROL. The button or key is
down if the value returned from GetKeyState is negative. Because GetKeyState returns
mouse or key states as of the message currently being processed, the status information is
properly synchronized with the messages. But just as you cannot use GetKeyState for a key
that has yet to be pressed, so you cannot use it for a mouse button that has yet to be pressed.
Don't do this:

whil e CGetKeyState (VK_LBUTTON))= 0); II WRONG !!!

The GetKeyState function will report that the left button is depressed only if the button is
already depressed when you process the message during which you call GetKeyState.

Mouse Double-Clicks

A mouse double-click is two clicks in quick succession. To qualify as a double-click; the
two clicks must occur within a specific interval called the "double-click time." If you want
your window procedure to receive double-click mouse messages, you must include the

142

Chapter 4: The Mouse

identifier CS_DBLCLKS when initializing the window style in the window class structure
before calling RegisterClass:

wndclass.style - CS_HREDRAW : CS_VREDRAW : CS_DBLCLKS ;

If you do not include CS_DBLCLKS in the window style and the user clicks the left
mouse button twice in quick succession, your window procedure receives these messages:
WM_LBUTTONDOWN, WM_LBUTTONUP, WM_LBUTTONDOWN, and WM_LBUT
TON UP. (The window procedure might also receive other messages between these button
messages.) If you want to implement your own double-click logic, you can use the Win
dows function GetMessageTime to obtain the relative times of the WM_LBUTTONDO~
messages. This function is discussed in more detail in Chapter 5.

If you include CS_DBLCLKS in your window class, the window procedure receives
these messages for a double-click: WM_LBUTTONDOWN, WM_LBUTTONUP, WM
_LBUTTONDBLCLK, and WM_LBUTTONUP. The WM_LBUTTONDBLCLK message sim
ply replaces the second WM_LBUTTONDOWN message.

Doubie-click messages are much easier to process if the first click of a double-click
performs the same action as a single click. The second click (the WM_LBUTTONDBLCLK
message) then does something in addition to the first click. For example, look at how the
mouse works with the file list in the File Manager program. A single click selects the file.
The File Manager highlights the file with a reverse-video bar. A double-click performs two
actions: The first click selects the file, just as a Single click does; the second click (which is
a WM_LBUTTONDBLCLK message) directs the File Manager to run the file. That's fairly
easy logic.

Mouse-handling logic could get more complex if the first click of a double-click does
not perform the same action as a single click.

NONCLIENT·AREA MOUSE MESSAGES
The 10 mouse messages discussed so far occur when the mouse is moved or clicked within
the client area of a window. If the mouse is outside a window's client area but still within
the window, Windows sends the window procedure a "nonclient-area" mouse message.
The nonclient area includes the caption bar, the menu, and window scroll bars.

You do not usually need to process nonclient-area mouse messages. Instead, you
simply pass them on to DefWindowProc so Windows can perform system functions. In this
respect, the nonclient-area mouse messages are similar to the system keyboard messages
WM_SYSKEYDOWN, WM_SYSKEYUP, and WM_SYSCHAR.

The nonclient -area mouse messages parallel almost exactly the client -area mouse
messages. The messages include the letters "NC" to indicate "nonclient." If the mouse is
moved within a nonclient area of a window, then the window procedure receives the mes
sage WM_NCMOUSEMOVE. The mouse buttons generate these messages:

143

SECTION II: READING INPUT

BuUon Pressed Released Pressed (2d Click)

Left WM_NCLBUTTONDOWN WM_NCLBUTTONUP WM_NCLBUTTONDBLCLK

Middle WM_NCMBUTTONDOWN WM_NCMBUTTONUP WM_NCMBUTTONDBLCLK

Right WM_NCRBUTTONDOWN WM_NCRBUTTONUP WM_NCRBUTTONDBLCLK

However, the wParam and /Param parameters for nonclient -area mouse messages
are different from those for client -area mouse messages. The wParam parameter indicates
the nonclient area where the mouse was moved or clicked. It is set to one of the identifi
ers beginning with HT that are defined in WINDOWS.H (such as HTCAPTION and
HTSYSMENU).

The /Param variable contains an x-coordinate in the low word and a y-coordinate in
the high word. However, these are screen coordinates, not client -area coordinates as they
are for client-area mouse messages. For screen coordinates, the upper left corner of the dis
play area has x and y values of O. Values of x increase as you move to the right, and values
of y increase as you move down. (See Figure 4-3.)

/ Screen coordinates

o ' x

~------------------Ca-p-ti-on-B-a-r-----------------II--~

o x

~ Client-area coordinates

y y

Figure 4·3. Screen coordinates and client-area coordinates.

144

Chapter 4: The Mouse

You can convert screen coordinates to client-area coordinates and vice versa with
two Windows functions:

ScreenToClient (hwnd, lpPoint) ;
ClientToScreen (hwnd, lpPoint) ;

The IpPoint parameter is a far (or long) pointer to a structure of type POINT. These two
functions convert the values stored in the structure without preserving the old values. Note
that if a screen-coordinate point is above the window's client area, then the converted
client-area y-coordinate will be negative. Similarly, a screen coordinate to the left of a cli
ent area is a negative x value when expressed as a client-area coordinate.

The Hit-Test Message

If you've been keeping count, you know that we've covered 20 of the 21 mouse messages.
The last message is WM_NCHITTEST, which stands for "nonclient hit test." This message
precedes all other client -area and nonclient -area mouse messages. The IParam parameter
contains the x and y screen coordinates of the mouse position. The wParam parameter is
not used.

Windows applications usually pass this message to DejWindowProc. Windows then
uses the WM_NCHITTEST message to generate all other mouse messages based on the
position of the mouse. For nonclient-area mouse messages, the value returned from Def
WindowProc when processing WM_NCHITTEST becomes the wParam parameter in
the mouse message. This value can be any of the wParam values that accompany the
nonclient-area mouse messages plus the following:

HTCLIENT

HTNOWHERE

HTTRANSPARENT

HTERROR

Client area

Not on any window

A window covered by another window

Causes DefWindowProc to produce a beep

If DejWindowProc returns HTCLIENT after it processes a WM_NCHITTEST message,
then Windows converts the screen coordinates to client -area coordinates and generates a
client-area mouse message.

If you remember how we disabled all system keyboard functions by trapping the
WM_SYSKEYDOWN message, you may wonder if you can do something similar by trap
ping mouse messages. Sure. If you include the lines:

case WM_NCHITTEST :
return (long) HTNOWHERE ;

in your window procedure, you will effectively disable all client-area and nonclient-area
mouse messages to your window. The mouse buttons will simply not work while the
mouse is anywhere within your window, including the system menu box and size box.

145

SECTION II: READING INPUT

Messages Beget Messages

Windows uses the WM_NCHITTEST message to generate all other mouse messages. The
idea of messages giving birth to other messages is common in Windows. Let's take an ex
ample. As you know, if you double-click the system menu box of a Windows program, the
program will be terminated. The double-click generates a series of WM_NCHITTEST
messages. Because the mouse is positioned over the system menu box, DejWindowProc
returns a value of HTSYSMENU and Windows puts a WM_NCLBUTTONDBLCLK message
in the message queue with wParam equal to HTSYSMENU.

The window procedure usually passes that mouse message to DejWindowProc.
When DejWindowProc receives the WM_NCLBUTTONDBLCLK message with wParam
equal to HTSYSMENU, it puts a WM_SYSCOMMAND message with wParam equal to
SC_CLOSE in the message queue. (This WM_SYSCOMMAND message is also generated
when a user selects Close from the system menu box.) Again, the window procedure
usually passes that message to DejWindowProc. DejWindowProc processes the message
by sending a WM_CLOSE message to the window procedure.

If a program wants to require confirmation from a user before terminating, the win
dow procedure can trap WM_CLOSE. Otherwise, DejWindowProc processes WM_CLOSE
by calling the DestroyWindow function. Among other actions, DestroyWindow sends a
WM_DESTROY message to the window procedure. Normally, a window procedure pro
cesses WM_DESTROY with the code:

case WM_DESTROY :
PostQu;tMessage (0) ;
return 0 ;.

The PostQuitMessage causes Windows to place· a WM_QUIT message in the message
queue. This message never reaches the window procedure because it causes Get Message
to return 0, which terminates the message loop and the program.

HIT·TESTING IN YOUR PROGRAMS
Earlier I discussed how the File Manager responded to mouse clicks and double-clicks.
Obviously, the program must determine which file the user is pointing at with the mouse.
This is called "hit-testing." Just as DejWindowProc must do some hit-testing when pro
cessing WM_NCHITTEST messages, very often a window procedure must do some
hit-testing within the client area. In general, hit-testing involves calculations using the x
and y-coordinates passed to your window procedure in the /Param parameter of the
mouse message.

A Hypothetical Example

Here's an example. Your program displays several columns of alphabetically sorted files
similar to the File Manager file windows. The file list starts at the top of the client area,

146

Chapter 4: The Mouse

which is cxClient pixels wide and cyClient pixels high; each character is cyChar pixels
high. The filenames are stored in a sorted array of pointers to character strings called
szFileNames.

Let's assume that the columns are cxColWidth pixels wide. The number of files you
can fit in each column is:

nNumlnCol - cyClient I cyChar :

You receive a mouse click message with the coordinates cxMouse and cyMouse
derived from lParam. You can determine which column of filenames the user is pointing
to by using the formula:

nColumn - cxMouse I cxColWidth :

The position of the filename in relation to the top of the column is:

nFromTop - cyMouse I cyChar: .

Now you can calculate an index to the szFileNames array:

nIndex = nColumn * nNumInCol + nFromTop :

Obviously, if nlndex exceeds the number of files in the array, the user is clicking on a blank
area of the display.

In many cases, hit-testing is more complex than this example suggests. For instance,
it can become very messy in a word processing program that uses variable font sizes (such
as WRITE). When you display something to the client area, you must determine the coor
dinates for each item you display. In hit-testing calculations, you must go backward from
the coordinates to the object. However, if the objects you display are strings, then going
backward involves finding the character position within the string.

A Sample Program

The CHECKERl program, shown in Figure 4-4, demonstrates some simple hit-testing. The
program divides the client area into a 5-by-5 array of 25 rectangles. If you click the mouse
on one of the rectangles, the rectangle is filled with an X. If you click there again, the X is
removed.

checkerl;~xe:~heckerl.obj<:heckerl.def
Jink~he~~etl.Jalign:16, NUL. Inod slibcewlibw, checker!
rc.····checker!.exe

Figure 4·4. The CHECKERl program. (continued)

147

SECTION II: READING INPUT

(continued)

148

Chapter 4: The Mouse

(continued)

149

SECTION II: READING INPUT

Figure 4-5 shows the CHECKERl display. All 25 rectangles have the same width and
height. These width and height values are stored in cxBlock and cyBlock and are recalcu
lated when the size of the client area changes. The WM_LBUTTONDOWN logic uses the
mouse coordinates to determine which rectangle has been clicked. It flags the current
state of the rectangle in the array j5tate and invalidates the rectangle to generate a WM
_PAINT message. If the width or height of the client area is not evenly divisible by five, a
small strip of client area at the left or bottom will not be covered by a rectangle. For error
processing, CHECKERl responds to a mouse click in this area by calling MessageBeep.

When CHECKERl receives a WM_PAINT message, it repaints the entire client area
by drawing rectangles USing. the GDI Rectangle function. If the j5tate value is set,

150

Chapter 4: The Mouse

Figure 4·5. The CHECKERl display.

CHECKER1 draws two lines using the MoveTo and LineTo functions. During WM_PAINT
processing, CHECKER1 does not check the validity of each rectangular section before re
painting it, but it could. One method for checking validity involves building a RECT struc
ture for each rectangular block within the loop (using the same formulas as in the
WM_LBUTTONDOWN logic) and checking whether it intersects the invalid rectangle
(ps. rePaint) by using the function InterseetReet. Another method is to use PtlnReet to de
termine if any of the four corners of the rectangular block are within the invalid rectangle.

Emulating the Mouse with the Keyboard

CHECKER1 works only if you have a mouse. We'll be adding a keyboard interface to the
program shortly, as we did for the SYSMETS program in Chapter 3. However, adding a key
board interface to a program that uses the mouse cursor for pointing purposes requires that
we also must worry about displaying and moving the mouse cursor.

Even if a mouse device is not installed, Windows can still display a mouse cursor.
Windows maintains a "display count" for this cursor. If a mouse is installed, the display
count is initially 0; if not, the display count is initially -1. The mouse cursor is displayed
only if the display count is 0 or positive. You can increment the display count by calling:

ShowCursor (TRUE) ;

151

SECTION II: READING INPUT

and decrement it by calling:

ShowCursor (FALSE) ;

You do not need to determine if a mouse is installed before using ShowCursor. If you
want to display the mouse cursor regardless of the presence of the mouse, simply incre
ment the display count. After you increment the display count once, decrementing it will
hide the cursor if no mouse is installed but leave it displayed if a mouse is present. The
display count applies to all of Windows, so you should ensure that you increment and
decrement the display count an equal number of times.

You may want to use the following simple logic in your window procedure:

WM_SETFOCUS :
ShowCursor (TRUE) :
return 0 ;

WM_KILLFOCUS :
ShowCursor (FALSE) ~
return 0 ;

A window procedure receives the WM_SETFOCUS message when the window obtains the
keyboard input focus and WM_KILLFOCUS when it loses the input focus. These are ideal
times to display and hide the mouse cursor. First, the WM_SETFOCUS and WM_KILL
FOCUS calls are balanced-that is, the window procedure will increment and decrement
the mouse cursor display count an equal number of times. Second, for versions of Windows
installed without a mouse, using the WM_SETFOCUS and WM_KILLFOCUS messages
causes the cursor to be visible only when the window has the input focus. That is also the
only time the user can move the cursor using the keyboard interface that you'll design.

Windows maintains a current mouse cursor position even if a mouse is not installed.
If a mouse is not installed, and you display the mouse cursor, it may appear in any part of
the display, and will remain in that position until you explicitly move it. You can obtain the
cursor position by using:

GetCursorPos (lpPoint)

where IpPoint is a far pointer to a POINT structure. The function fills in the POINT fields
with the x- and y-coordinates of the mouse. You can set the cursor position by using:

SetCursorPos (x, Y) ;

In both cases, the x and y values are screen coordinates, not client-area coordinates. (This
should be evident because the functions do not require a hwnd parameter.) As noted
earlier, you can convert screen coordinates to client-area coordinates and vice versa by
using ScreenToClient and .ClientToScreen.

If you call GetCursorPos while processing a mouse message and convert to client
area coordinates, the coordinates may still be slightly different from those in IParam of the

152

Chapter 4: The Mouse

mouse message. The coordinates returned from GetCursorPos indicate the current posi
tion of the mouse. The coordinates in /Param of a mouse message are the coordinates of
the mouse when the message was generated.

You'll probably want to write keyboard logic to move the mouse cursor with the key
board arrow keys and simulate the mouse button with the Spacebar or Enter key. What you
don't want to do is move the mouse cursor one pixel per keystroke. That forces a user to
hold down an arrow key for more than a minute to move the mouse cursor from one side of
the display to the other.

If you need to implement a keyboard interface to the mouse cursor but still maintain
the ability to position the cursor at precise pixel locations, take a look at Windows' PAINT
BRUSH program. When you hold down an arrow key, the mouse cursor starts moving
slowly but then speeds up. You'll recall that the /Param parameter in WM_KEYDOWN
messages indicates if the keystroke messages are the result of typematic action. This is an
excellent application of that information.

Adding a Keyboard Interface to CHECKER

The CHECKER2 program, shown in Figure 4-6, is the same as CHECKERI except that it in
cludes a keyboard interface. You can use the Left, Right, Up, and Down arrow keys to move
the cursor among the 25 rectangles. The Home key sends the cursor to the upper left rect
angle; the End key drops it down to the lower right rectangle. Both the Spacebar and Enter
keys toggle the X mark.

ff·~~6h;';':.+~7~~~ ~*~.; * ~*~ *~.

#jCHECKER2~MAKj~ak~jfil~
fJf ... -.i ~f :7 ... ~i~~·~. ~ --~-_~>~
checker2~exe:checker2 .obj checker2 ~·def

linICcheC:ker2.Jalign: 16.
rc<checker2~exe

chec:ket219bj1~:checker2:c
cl;;c~Gsw"Ow·W2 ~ZpC:hecker2.

Figure 4·6. The CHECKER2 program. (continued)

153

SECTION II: READING INPUT

...

154

.....

•. .•.•••. • •••••••.. <

••• ••• ··i.i
i> •.•..

: ...

• ••••••••• ? •••••••••

·......i
if

..

(continued)

Chapter 4: The Mouse

static short cxBlock~ cyBlock
HOC hdc :
PAINTSTRUCT ps ;
POINT point
REeT rect ;
short

(continued)

155

SECTION II: READING INPUT

(continued)

156

}

lineTo (hdc. (x+l) * cxBlock.
MoveTo (hdc. X * cxBlock:
lineTo (hdc. (x+l) * cxBlock.
)

EndPaint (hwnd. &ps) :
return 0

case WM_DESTROY:
PostQuitMessage (0)
return 0 :

Chapter 4: The Mouse

The WM_KEYDOWN logic in CHECKER2 determines the position of the cursor (Get

CursorPos), converts the screen coordinates to client-area coordinates (ScreenToClient),

and divides the coordinates by the width and height of the rectangular block. This pro
duces x and y values that indicate the position of the rectangle in the 5-by-5 array. The
mouse cursor mayor may not be in the client area when a key is pressed, so x and y must
be passed through the WINDOWS.H min and max macros to ensure that they range from
o through 4.

For arrow -keys, CHECKER2 increments or decrements x and y appropriately. If
the key is the Enter key (VK_RETURN) or Spacebar (VK_SPACE), CHECKER2 uses
Send Message to send a WM_LBUTTONDOWN message to itself. This technique is similar
to the method used in the SYSMETS program in Chapter 3 to add a keyboard interface to

157

SECTION II: READING INPUT

the window scroll bar. The WM_KEYDOWN logic finishes by calculating client-area coor
dinates that point to the center of the rectangle, converting to screen coordinates (Client
ToScreen), and setting the cursor position (SetCursorPos),

Using Child Windows for Hit-Testing

Some programs, like the Windows PAINTBRUSH program, divide the client area into sev
eral smaller logical areas. The PAINTBRUSH program, shown in Figure 4-7, has an area at
the left for its icon-based menu and an area at the bottom for the color menu. PAINT
BRUSH, when hit-testing on these two menus, must take into account the location of the
menu within the client area before determining the menu item being selected by the user.

Or maybe not. In reality, PAINTBRUSH simplifies the menu drawing and hit-testing
through the use of "child windows." The child windows divide the entire client area into
several smaller rectangular regions. Each child window has its own window handle, win
dow procedure, and client area. Each window procedure receives mouse messages that
apply only to its child window. The iParam parameter in the mouse message contains
coordinates relative to the upper left corner of the client area of the child window, not of
the parent window.

Child windows used in this way can help you structure and modularize your pro
grams. Jf the child windows use different window classes, each child window can have its

Figure 4·7. The Windows PAINTBRUSHprogram.

158

Chapter 4: The Mouse

own window procedure. The different window classes can also define different back
ground colors and different default cursors. In Chapter 6, we'll look at "child window
controls" -predefined child windows that take the form of scroll bars, buttons, and edit
boxes. Right now, let's see how we can use child windows in the CHECKER program.

Child Windows in CHECKER

Figure 4-8 shows CHECKER3. This version of the program creates 25 child windows to
process mouse clicks. It does not have a keyboard interface, but one could be easily added.

CHECKER3 has two window procedures called WndProc and ChildWndProc.
WndProc is still the window procedure for the main (or parent) window. ChildWndProc
is the window procedure for the 25 child windows. The names of both wihdow procedures
must appear as EXPORTS in the CHECKER3.DEF file because both procedures are called
from Windows.

Because the window procedure is defined by the window class structure that you
register with Windows using the RegisterClass call, the two window procedures in
CHECKER3.C require two window classes. The first window class is for the main win
dow and has the name '.'Checker3". The second window class is given the name
"Checker3 _ Child".

Most of the fields of the wndclass structure variable are simply reused when
"Checker3_Child" is registered in WinMain. The IpszClassName field is set to
"Checker3_Child"-the name of the class. The IpfnWndProc field is set to Child
WndProc, the window procedure for this window class, and the hlcon field is set to NULL,
because icons are not used with child windows. For the "Checker3_Child" window class,
the cb WndExtra field in the wndclass structure variable is set to 2 bytes, or more precisely,
sizeof(WORD). This field tells Windows to reserve 2 bytes of extra space in a structure that
Windows maintains for each window based on this window class. You can use this space to
store information that may be different for each window.

II·~ ;: .•. :" .• :-;:.;:;: .~ •. ~ ~ ~ ~ .~ ;- •• ~ .~ .:. - ;.;.~.~.~ .;.
IfCHECKER3.MAKmake file
fF;.~;.;.~:'

checker3;exe;:~checker3;obj ch~tker3~def
li nkchetker3; lalign:J6~
rcchecker3;exe

checker3.9bj :checker3~
cl ~c:Gsw:Ow:'W2-Zpchecker3.t

Figure 4·8. The CHECKER3 program.

159

SECTION II: READING INPUT

(continued)

160

CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL. hlnstance. NULL) :

ShowWindow (hwnd, nCmdShow) :
UpdateWindow(hwnd) :

while (GetMessage (&msg,NULL, 0, 0»
{
TranslateMessage (&msg) ;
Dispatch~e$sage ,(&msg)
}

Chapter 4: The Mouse

(continued)

161

SECTION II: READING INPUT

(continued)

162

Chapter 4: The Mouse

The CreateWindow call in WinMain creates the main window based on the "Check
er3" class. This is normal. However, when WndProc receives a WM_CREATE message, it
calls CreateWindow 25 times to create 25 child windows based on the "Checker3_Child"
window class. Here's a comparison of the parameters to the CreateWindow call in Win

Main that creates the main window and the CreateWindow call in WndProc that creates
the 25 child windows:

Parameter

window class

window caption

window style

horizontal position

vertical position

width

height

parent window handle

menu handle / child ID

instance handle

extra parameters

Main Window Child Window

"Checker3" "Checker3_Child"

"Checker3 ... " NULL

WS_OVERLAPPEDWINDOW WS_CHILDWINDOW: WS_VISIBLE

CW_USEDEFAULT a
CW _USE DEFAULT a
CW _USEDEFAULT a
CW_USEDEFAULT a
NULL hwnd

NULL y«8: x

hlnstance GetWindowWord (hwnd,
GWW _HINSTANCE)

NULL NULL

Normally, the position, width, and height parameters are required for child windows,
but in CHECKER3 the child windows are positioned and resized later in WndProc. The
parent window handle is NULL for the main window because it is the parent. The parent
window handle is required when using the CreateWindow call to create a child window.

The main window doesn't have a menu, so that parameter is NULL. For child win
dows, the same parameter position is called a "child ID." This is a number that uniquely
identifies the child window. The child ID becomes much more important when working
with child window controls because messages to the parent window are identified by this

163

SECTION II: READING INPUT

child ID. For CHECKER3, I've used the child ID to identify the position in the 5-by-5 array
that each child window occupies within the main window.

The instance handle is hlnstance in both cases. When the child window is created,
the hlnstance value is extracted using the function GetWindowWord from the structure
that Windows maintains for the window. (Rather than use GetWindowWord, I could have
saved the value of hlnstance in a global variable and used it directly.)

Each child window has a different window handle that is stored in the hwndChild ar
ray. When WndProc receives a WM_SIZE message, it calls MoveWindow for each of the 25
child windows. The parameters indicate the upper left corner of the child window relative
to the parent window client-area coordinates, the width and height of the child window,
and whether the child window needs repainting.

Now let's take a look at ChildWndProc. This window procedure processes messages
for all 25 child windows. The hwnd parameter to ChildWndProc is the handle to the child
window receiving the message. When ChildWndProc processes a WM_CREATE message
(which will happen 25 times because there are 25 child windows), it uses SetWindowWord
to store a 0 in the extra area reserved within the window structure. (Recall that we
reserved this space by using the cb WndExtra field when defining the window class struc
ture.) ChildWndProc uses this value to store the current state (X or no X) of the rectangle.
When the child window is clicked, the WM_LBUTTONDOWN logic simply flips the value
of this word (from 0 to t or from t to 0) and invalidates the entire child window client area.
This area is the single rectangle being clicked. The WM_PAINT processing is trivial, be
cause the ~ize of the rectangle it draws is the same size as the client window.

Because the C source code file and the .EXE file of CHECKER3 are larger than those
for CHECKERt (to say nothing of my explanation of the programs), I will not try to con
vince.you that CHECKER3 is "simpler" than CHECKERt. But note that we no longer have to
do any mouse hit-testing! If a child window in CHECKER3 gets a WM_LBUTTONDOWN
message, the window has been hit, and that's all it needs to know. .

If you want to add a keyboard interface to CHECKER3, be aware that the main win
dow still gets keyboard messages because it has the input focus. We'll explore child
windows more in Chapter 6.

CAPTURING THE MOUSE
A window procedure normally receives mouse messages only when the mouse cursor is
positioned over the client or nonclient area of the window. A program that needs to
receive mouse messages when the mouse is outside the window can "capture" the mouse.

Capturing the mouse is easier than baiting a mousetrap. You need only call:

SetCapture,(hwnd) ;

After this function call, Windows sends all mouse messages to the window procedure for
the window whose handle is hwnd. The mouse messages are always client-area messages,

164

Chapter 4: The Mouse

even when the mouse is in a nonclient area of the window. The IParam parameter still
indicates the position of the mouse in client-area coordinates. These x- and y-coordinates,
however, can be negative if the mouse is to the left of or above the client area.

During the time the mouse is captured, system keyboard functions are also disabled.
When you want to release the mouse, call:

ReleaseCapture () ;

This returns processing to normal.

The BLOWUP1 Program

The BLOWUP1 program, shown in Figure 4-9, uses SetCapture and ReleaseCapture and a
few other interesting techniques. The program lets you use the mouse to block out any
rectangular area of the screen. BLOWUP1 then copies the contents of that rectangular area
into its own client area, stretching or compressing the image as appropriate. (See Figure
4-10 on page 169.)

Figure 4·9. The BLOWUPl program. (continued)

165

SECTION II: READING INPUT

(continued)

166

Chapter 4: The Mouse

long FAR PASCAL WndProc (HWND hwnd, WORD message, WORD wParam, lONG lParam)
{
static BOOl fCapturing, fBlocking
static POINT ptBeg. ptEnd ;
HOC hdc :
RECT rect

(continued)

167

SECTION II: READING INPUT

The job of stretching and compressing bitmapped images may seem complex, but it's
simplified for us by a Windows GDI function called StretchBlt. (The abbreviation Bit is
pronounced "blit." The function is related to the Windows BitBlt function, which stands
for "bit-block transfer." These functions are discussed in more detail in Chapter 13.)

168

Here's how to use BLOWUP1:

1. Click the mouse in BLOWUP1's client area. The mouse cursor changes to
a cross hair.

2. Position the mouse cursor over the upper left corner of the area of the
screen you want to transfer.

3. Press the mouse button, drag the mouse to the lower right corner, and
release the mouse button. The mouse cursor changes to an hourglass.

4. In a few seconds (or perhaps a little longer), the area that you blocked
out is copied to BLOWUP1's client area, compressed or expanded
appropriately.

Chapter 4: The Mouse

If you block out a rectangle by moving from the upper right corner to the lower left
corner, BLOWUPI displays a mirror image. If you move from the lower left to the upper
right, BLOWUP 1 displays an upside-down image. And if you move from lower right to
upper left, the program combines the two effects.

BLOWUPI does not retain the captured image, and doesn't process the WM_PAINT
message. If you change the size of the window, the window will be erased.

== Blow-Up Mouse Demo aa

Program Manager

Figure 4·10. The BLOWUPl client area.

Changing the Mouse Cursor Shape

BLOWUP 1 uses the SetCursor calls to change the cursor shape from an arrow to a cross
hair, then to an hourglass, and back to an arrow. All these are stock cursors available in
Windows. You obtain the handle to the cursor using the LoadCursor function. In Chapter 8
we'll use LoadCursor to display customized mouse cursors.

Many applications display an hourglass cursor (defined in WINDOWS.H as IDC
_WAIT) while doing processing that may take some time to complete. This is fairly simple
to implement. You can save the handle to the original cursor by storing the return value
from SetCursor and using it to reset the cursor later. First, you'll need a variable of type
HCURSOR (defined in WINDOWS,H as a HANDLE, or 16-bit WORD) to store that value:

HCURSOR hCursor ;

Right before you start the lengthy processing, use the following two lines:

hCursor = SetCursor (LoadCursor (NULL, IDC_WAIT» ;
ShowCursor (TRUE) ;

169

SECTION II: READING INPUT

After you're done with the work, call:

ShowCursor (FALSE) ;
SetCursor (hCursor) ;

The two ShowCursor calls display and then hide the hourglass cursor if a mouse is not
actually present.

Normally, Windows changes the mouse cursor to the cursor included in the window
class structure whenever the window procedure receives a WM_MOUSEMOVE message.
If you use SetCursor to change the mouse cursor and then exit the window procedure, the
mouse cursor will be restored to the cursor in the window class structure the next time the
mouse is moved. This does not happen in BLOWUP1, because the mouse is captured dur
ing the time the cross-hair cursor (IDC_CROSS) is displayed. Windows will not change the
cursor to the window class cursor when the mouse is captured. Also, if you need to display
an hourglass cursor when doing some lengthy work (as BLOWUP1 does when it calls
StretchBlt), you don't have to worry about the problem, because you're not receiving any
other messages during that time.

But if you want to use different mouse cursors for other purposes, you should define a
NULL cursor handle in your window class:

wndclass.hCursor = NULL;

In your window function, you then call SetCursor for each WM_MOUSEMOVE message.
The SetCursor call is fast if the mouse cursor is not being changed.

The SfrefchBlf Call

BLOWUP1 calls the StretchBlt function during processing of the WM_LBUTTONUP
message to transfer the blocked-out image to BLOWUP1's client area:

StretchBlt (hdc, 0, 0, rect.right, rect.bottom,
hdc, ptBeg.x, ptBeg.y,
ptEnd.x - ptBeg.x, ptEnd.y - ptBeg.y,
SRCCOPY) ;

This function is discussed in more detail in Chapter 13
1
but let's take a quick look at it here.

StretchBlt transfers a bitmapped image from a source to a destination. The first five
parameters are for the destination of the image, defining the device context handle, the
x- and y-coordinates of the upper left corner, and the width and height. The next five pa
rameters give the same information for the source of the image. The last parameter is the
operation, which in this case is a simple copy from source to destination.

The source of the image involves two POINT structures named ptBeg (beginning of
the block) and ptEnd (end of the block). These two points have negative coordinate values
if you block out an image to the left of or above the client area. StretchBlt can read a bit
mapped image that falls outside the client area, but like all GDI functions it cannot write
outside the client area.

170

Chapter 4: The Mouse

Drawing the Capture Block

But wait. When you use BLOWUPl to block out an image outside its client area, the pro
gram briefly displays the image in reverse video and then restores it to normal. BLOWUPl
is apparently writing outside its client area. Can that be so?

It certainly can. This little trick is carried off in BLOWUPl's InvertBlock function.
Rather than obtain a device context handle from GetDC, InvertBlock uses CreateDC:

hdc = CreateDC ("DISPLAY". NULL. NULL. NULL) :

This returns a device context handle for the entire display. Using this device context
handle, you can write outside your client area.

InvertBlock uses the GDI PatBlt function (a "pattern bit-block transfer") to invert
the blocked-out image.' BLOWUPl calls InvertBlock twice in succession. When called the
second time, the block is restored to normal. This means that you can see the block briefly
only when you move the mouse cursor.

Why do it like this? BLOWUPl doesn't leave the block in an inverted state because
other Windows programs can receive messages between BLOWUPl's WM_MOUSEMOVE
messages. (For instance, the Windows CLOCK gets WM_ TIMER messages every second.) If
BLOWUPl left the block inverted when it exited its window function, then the program
with the altered client area could write over the inverted block. When BLOWUPl then
reinverted the block-that is, returned it to normal-the result would start looking like
a mess. Keep considerations like this in mind when you start working with powerful
functions like CreateDC. Windows gives you the power to do almost anything, but your
programs must share resources such as the display with other programs. Try to exercise
a little restraint.

171

ChapterS

The Timer

The Windows timer is an input device that periodically notifies an application when a
specified interval of time has elapsed. Your program tells Windows the interval, in effect

. saying, for example, "Give me a nudge every 10 seconds." Windows then sends your pro
gram recurrent WM_ TIMER messages to signal the intervals.

At first, the Windows timer may seem a less important input device than the keyboard
or mouse, and certainly it is for many applications. But the timer is more useful than you
may think, and not only for programs (like the Windows CLOCK) that keep time. The
CALENDAR, CONTROL, REVERSI, SPOOLER, TERMINAL, and WRITE programs supplied
with Windows also use the timer. Here are some uses for the Windows timer, some obvious
and some perhaps not so obvious:

• Keeping time-Both the CLOCK and CONTROL programs that come
with Windows display the current time. The timer tells the programs
when to update the clock. The DIGCLOCK program, described later in
this chapter, uses th~ timer to display a digital clock.

• Maintaining an updated status report-The FREEMEM program, shown
in this chapter, uses the timer to display available memory in Windows.
The display is updated every second.

• Waking up-The Windows CALENDAR program uses the timer to trigger
a preset alarm.

• Multitasking-Windows is a nonpreemptive multitasking environment,
and it is important that programs return control to Windows as quickly as
possible. If a program must do a large amount of processing, it can divide
the job into smaller pieces and process each piece on receipt of a
WM_ TIMER message.

173

SECTION II: READING INPUT

• Implementing an "autosave" feature-The timer can prompt a Windows
program to save a user's work to disk whenever a specified amount of
time has elapsed.

• Pacing movement-Graphical objects in a game or successive displays in
a computer-assisted instruction program may need to proceed at a set
rate. Using the timer eliminates the inconsistencies that might result from
variations in microprocessor speed.

• Terminating demonstration versions of programs-Some demonstration
versions of programs are designed to terminate, say, 30 minutes after they
begin. The timer can signal such applications when the time is up.

• Using serial or parallel communications-Unlike most other input
devices in Windows, serial or parallel communications ports do not
generate messages. Rather, these programs must poll for input, and the
timer can tell them when to do so. (An alternative to using the timer for
polling involves a message loop built around the PeekMessage call. This
technique is discussed in Chapter 15.)

This chapter also explores topics that extend beyond the timer to other areas of Win
dows programming. Foremost among these topics is that of "call-back" functions. To the
uninitiated, these important functions might seem to work in mysterious ways, and the
timer is not the only place you will encounter them. This chapter also discusses what to do
when a program cannot gain access to a timer-a problem that occurs because Windows
maintains only a limited number of timers. Solving this problem is fundamental to working
with the Windows timer, but the method presented here can also be applied to error
handling in other programs. Finally, the sample programs shown here deal with such de
cidedly nontimer issues as Windows' use of color, using a type of window known as a
"popup," forcing an application to be loaded as an icon, obtaining the amount of free
memory available in Windows, using floating-point mathematics in your Windows pro
grams, and accessing the WIN.INI file to obtain information about international time and
date formats.

TIMER BASICS
You can allocate a timer for your Windows program by calling the SetTimer function. Set
Timer includes a paramet~r specifying an interval that can range (in theory) from 1 msec
(millisecond) to 65,535 msec, or about 65.5 seconds. The value indicates the rate at which
Windows sends your program WM_ TIMER messages. For instance, an interval of 1000
msec causes Windows to send your program a WM_ TIMER message every second.

174

Chapter 5: The Timer

When your program is done using the timer, it calls the KillTimer function to stop
the timer messages. You can program a "one-shot" timer by calling KillTimer during the
processing of the WM_ TIMER message. The KillTimer call purges the message queue of
any pending WM_ TIMER messages. Your program will never receive a stray WM_ TIMER
message following a KillTimercall.

As you've undoubtedly learned from experimenting with loading multiple instances
of CLOCK, Windows allows only 16 timers to be active at one time. If all 16 timers are
already allocated, SetTimer returns NULL. Windows programs that use a timer must in
clude some way to deal with this problem.

SYSTEM.DRY and the Windows Timer

The Windows timer is a relatively simple extension of the timer logic built into the IBM PC's
hardware and ROM BIOS. The PC's ROM BIOS initializes an IntelS259 timer chip to gener
ate the hardware Interrupt OSH. This interrupt is sometimes called the "clock tick" or
"timer tick" interrupt. An Interrupt OSH occurs every 54.925 msec, or about lS.2 times per
second. Among other purposes, the BIOS uses Interrupt OSH to update a "time-of-day"
value stored in the BIOS data area. MS-DOS uses this value to calculate the current time.

The SYSTEM.DRV driver located in the SYSTEM subdirectory of your Windows
directories handles hardware timer interrupts. SYSTEM.DRV sets a new Interrupt OSH vec
tor address during initialization and restores the original vector address before Windows
terminates. The Interrupt OSH routine within SYSTEM.DRV calls the original Interrupt OSH
handler before doing its own processing so that underlying system functions that require
this interrupt will continue to work normally.

When SYSTEM.DRV receives an Interrupt OSH, it calls a routine within the USER
module of Windows that decrements counters for each timer set by Windows applications.
When a counter reaches 0, USER places a WM_ TIMER message in that application's mes
sage queue and resets the counter to the original value.

Because a Windows application retrieves WM_ TIMER messages from the normal
message queue, you never have to worry about your program being "interrupted" by a sud
den WM_ TIMER message while doing other processing. In this way, the timer is similar to
the keyboard and mouse: The driver handles the asynchronous hardware interrupt events,
and Windows translates these events into orderly, structured, serialized messages.

SYSTEM.DRV does not attempt to reprogram the S259 timer chip in the IBM Pc. The
Windows timer has the same 54.925-msec resolution as the underlying PC timer. This fact
has two important implications:

• A Windows application cannot receive WM_ TIMER messages at a rate
faster than about lS.2 times per second when using a single timer.

• The time interval you specify in the SetTimer call is always rounded
down to an integral multiple of clock ticks. For instance, a 1000-msec

175

SECTION II: READING INPUT

interval divided by 54.925 msec is 18.207 clock ticks, which is rounded
down to 18 clock ticks, which is really a 989-msec interval. For inter
vals less than 55 msec, each clock tick generates a single WM_TIMER
message.

Do not attempt to intercept the ROM BIOS timer interrupt in your Windows pro
grams. Use the Windows timer instead.

Timer Messages Are Not Asynchronous

Non-Windows programs written for the IBM PC and compatibles can use the timer tick in
terrupt by intercepting Interrupt 08H or Interrupt lCH (a software interrupt called by the
BIOS Interrupt 08H handler). When the hardware interrupt occurs, the program currently
running is suspended, and control passes to the interrupt handler. When the interrupt han
dler is done, it passes control back to the interrupted program.

Like the hardware keyboard and mouse interrupts, the hardware timer tick interrupt
is sometimes called an asynchronous interrupt because it occurs randomly with respect to
the program that it interrupts. (Actually, the term isochronous is more accurate than asyn
chronous for a timer interrupt because the interrupts occur at equal intervals. But the inter
rupts are still asynchronous with respect to other processing.)

Although the SYSTEM.DRV driver also handles asynchronous Interrupt 08H clock
ticks, the WM_ TIMER messages that Windows sends to applications are not asynchronous.
The WM_ TIMER messages are placed in the normal message queue and ordered with all
the other messages. Therefore, if you specify 1000 msec in the SetTimercall, your program
is not guaranteed to receive a WM_ TIMER message every second or even (as I mentioned
above) every 989 msec. If another application is busy for more than a second, your pro
gram will not get any WM_ TIMER messages during that time. Only when the other appli
cation yields control to Windows (by calling GetMessage, PeekMessage, or WaitMessage)
will your program retrieve its next WM_ TIMER message from the queue.

You can easily demonstrate this to yourself with the CLOCK program included with
Windows or with the sample programs shown in this chapter. If another program has a
long paint job and does not immediately relinquish control, CLOCK will stop. When
CLOCK regains control, it will jump ahead to the correct time. In fact, Windows handles
WM_TIMER messages much like WM_PAINT messages. Both these messages are low pri
ority. If a program's message queue contains only WM_PAINT or WM_ TIMER messages,
and another program's message queue contains messages other than WM_PAINT or
WM_ TIMER, Windows will pass control to the other application.

The WM_ TIMER messages are similar to WM_PAINT messages in another respect:
Windows does not keep loading up the message queue with multiple WM_ TIMER mes
sages. Instead, Windows combines several WM_ TIMER messages in the message queue
into a single message. Therefore, the application won't get a bunch of them all at once,

176

Chapter 5: The Timer

although it may get two WM_ TIMER messages in quick succession. An application cannot
determine the number of "missing" WM_ TIMER messages that result from this process.

When CLOCK regains control and jumps ahead to the correct time, it is not because it
gets several WM_ TIMER messages in a row. CLOCK must determine the actual time and
then set itself. The WM_ TIMER messages only inform CLOCK when it should be updated.
A program can't keep time itself solely by counting WM_ TIMER messages. (Later in this
chapter we will write a clock application that updates every second, and we'll see pre
cisely how this is accomplished.)

For convenience, I'll be talking about the timer in terms such as "getting a
WM_ TIMER message every second." But keep in mind that these messages are not precise
clock tick interrupts.

USING THE TIMER: THREE METHODS
If you need a timer for the entire duration of your program, you'll probably call SetTimer
from the WinMain function or while processing the WM_CREATE message, and KillTimer
in response to a WM_DESTROY message. Setting the timer in WinMain provides the
easiest error handling if a timer is unavailable. You can use a timer in one of three ways,
depending on the parameters to the SetTimer call.

Method One

This method, the easiest, causes Windows to send WM_TIMER messages to the normal
window procedure of the application. The SetTimercalllooks like this:

SetTimer (hwnd, I, wMsecInterval, NULL) :

The first parameter is a handle to the window whose window procedure will receive the
WM_ TIMER messages. The second parameter is the timer ID, which should be a nonzero
number. I have arbitrarily set it to 1 in this example. The third parameter is a WORD (16-bit
unsigned integer) that specifies an interval in milliseconds. The largest value (65535) will
deliver a WM_ TIMER message about once a minute.

You can stop the WM_ TIMER messages at any time (even while processing a
WM_ TIMER message) by calling:

KillTimer (hwnd, 1) :

The second parameter is the same timer ID used in the SetTimer call. You should kill any
active timers in response to a WM_DESTROY message before your program terminates.

When your window procedure receives a WM_ TIMER message, wParam is equal to
the timer ID (which in the above case is simply 1), and /Param is O. If you need to set
more than one timer, use a different timer ID for each timer. The value of wParam will

177

SECTION II: READING INPUT

differentiate the WM_TIMER messages passed to your window procedure. To make your
program more readable, you may want to use #define statements for the different timer
IDs:

#define TIMER_SEC 1
#define TIMER_MIN 2

You can then set the two timers with two SetTimer calls:

SetTimer (hwnd, TIMER_SEC, 1000, NULL) ;
SetTimer (hwnd, TIMER_MIN, 60000, NULL) ;

The WM_ TIMER logic might look something like this:

case WM_TIMER :
switch (wParam)

{
case TIMER_SEC

[once-per-second processing]
break; .

case TIMER_MIN :

return 0

[once-per-minute processing]

break

If you want to set an existing timer to a different elapsed time, kill the timer and call
SetTimer again. This code assumes that the timer ID is 1:

KillTimer (hwnd, 1) ;
SetTimer (hwnd, 1, wMsecInterval, NULL) ;

The wMseclnterval parameter is the new elapsed time in milliseconds. The Windows
CLOCK application uses this method to change the timer from 1000 msec to 60,000 msec
when it becomes an icon. As an icon, CLOCK needs to update the clock every minute
rather than every second. When it is expanded from an icon to a window, CLOCK changes .
the timer back to 1000 msec.

What to do if no timer is available
Windows allows only 16 timers to be active at any time. If no timer is available, SetTimer
returns NULL. Your program might be able to function reasonably well without the timer,
but if you need the timer (as CLOCK certainly does), the application has no choice but to
terminate if it can't get one. If you call SetTimer in WinMain, you can terminate the pro
gram simply by returning FALSE from WinMain.

Let's assume you want a 1000-msec timer. Following the CreateWindow call but
before the message loop, you might have a statement like this:

if (!SetTimer (hwnd, 1, 1000, NULL»
return FALSE ;

178

Chapter 5: The Timer

This is the unfriendly way to terminate. The user is left wondering why the application will
not load. (Surely the 16 clocks sitting down in the icon area have nothing to do with it!) It's
much friendlier-and fairly easy-to use a Windows message box for displaying a mes
sage. A complete discussion of message boxes awaits you in Chapter 10, but this will get
you started.

A message box is a popup window that always appears in the center of the display.
Message boxes have a caption bar but no size box. The caption bar usually contains the
name of the application. The message box encloses a message and one, two, or three but
tons (some combination of OK, Retry, Cancel, Yes, No, and others). The message box can
also contain a predefined icon: a lowercase "i" (which stands for "information"), an ex
clamation point, a question mark, or a stop sign. You have probably seen plenty of message
boxes when working with Windows.

This code creates an informatory message box that you can use when SetTt'mer fails
to allocate a timer:

if (!SetTimer (hwnd, 1, 1000, NULL»
{
MessageBox (hwnd,

"Too many clocks or timers!",
"Program Name",
MB_ICONEXCLAMATION l MB_OK) ;

return FALSE ;
}

The message box is shown in Figure 5-1. When the user presses Enter or clicks the OK
button, Wt'nMat'n terminates by returning FALSE.

Program Name

(]) Too many clocks or timersl

Figure 5·1. A message box/or 'friendly termination."

By default, message boxes are "application modal" windows. This means that a user must .
respond to the message box before the application will continue. However, the user can
switch to other applications by pressing Alt-Tab or Alt-Esc or by clicking the mouse in the
window of another program.

Why not give the user the opportunity to close one of those 16 minimized clocks
at the bottom of the display and successfully load your application? That's what this
code does:

179

SECTION II: READING INPUT

while (!SetTimer (hwnd, I, 1000, NULL»

if (IDCANCEL == MessageBox (hwnd,
"Too many clocks or timers!",
"Program Name",
MB_ICONEXCLAMATION l MB_RETRYCANCEL»

return FALSE ;

This message box, shown in Figure 5-2, has two buttons, labeled Retry and Cancel. If-the
user selects Cancel, the MessageBox function returns a value equal to IDCANCEL, and
the program terminates. If the user selects Retry, SetTimer is called again.

Program Name

C[) Too many clocks or timers!

Figure 5·2. A message box that offers a choice.

A sample program
Figure 5-3 shows a sample program that uses the timer. This program, called BEEPERI, sets
a timer for I-second intervals. When it receives a WM_ TIMER message, it alternates color
ing the client area blue and red, and it beeps by calling the function MessageBeep.
(Although MessageBeep is documented as a companion to MessageBox, it's really an all
purpose beep function. The WORD parameter to MessageBeep can be any value.) BEEPERI
sets the timer in the WinMain function and processes the WM_ TIMER messages in the
WndProc window procedure. During the WM_ TIMER message, BEEPERI calls Mes
sageBeep, inverts the value of bFlipFlop and invalidates the window to generate a WM
_PAINT message. During the WM_PAINT message, BEEPERI obtains a RECT structure for
the size of the window by calling GetClientRect and colors the window by calling FillRect.

Figure 5·3. The BEEPERl program.

180

BEEPER1.C

1*"""""·················""""""·············
BEEPERl.C .. Timer Demo Program No. 1

(c) Charles Petzold. 1990
.... ~ """--""--.--- -----*/

#include <windows.h>
!!defi neID_TIMER 1

long FAR PASCAL WndProc (HWND. WORD. WORD. LONG)

int PASCALWinMa1n (HANDLE hlnstance.HANDLE hPrevInstance.
LPSTR.lpszCmdLine~ intnCmdShow)

Chapter 5: The Timer

(continued)

181

SECTION II: READING INPUT

182

BEEPER1.DEF

.-*----""*~**~~ -.-***-**----.
; BEEPERl.DEF module definition file
.--~----- ... --.- .. -.--------------.--.
NAME

OEseRI PTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

BEEPER1

Chapter 5: The Timer

Because BEEPER1 audibly indicates every WM_ TIMER message it receives, you can
get a good idea of the erratic nature of WM_ TIMER messages by loading BEEPER1 and
performing some other actions within Windows. For instance, try moving or resizing a win
dow. This stops all messages, and BEEPER1 stops beeping. When you complete the move
or resize, you'll note that BEEPER1 doesn't get all the WM_TIMER messages it has missed,
although the first two messages may be less than a second apart.

This is our first encounter with a Windows program that uses color, so a brief look at
how Windows handles color is worthwhile here~

Windows' use of color
Windows uses an unsigned long (32-bit) integer value to represent a color. The lowest three
bytes specify red, green, and blue values that range from 0 through 255, as illustrated by
Figure 5-4. This results in a potential 224 (or about 16 million) colors.

o Blue Green Red

Figure 5·4. The 32-bit color value.

This unsigned long is often referred to as an "RG B color." The WINDOWS.H header
file provides several macros for working ~ith RGB color values. The RGB macro in WIN
DOWS.H takes three arguments representing red, green, and blue values and combines
them into an unsigned long:

#define RGB(r.g.b) ((DWORD)(((BYTE)(r) : \
((WORO)(g) « 8» : \
(((DWORD)(BYTE)(b» « 16»)

183

SECTION II: READING INPUT

Thus, the value:

RGB (255. O. 255)

is really OxOOFFOOFF, an RGB color value for magenta. When all three arguments are set to
0, the color is black; when the arguments are set to 255, the color is white. The GetRValue,
GetGValue, and GetBValue macros extract the unsigned character primary-color values
from an unsigned long RGB color value. These macros are sometimes handy when you're
using Windows functions that return RG B color values to your program.

The most common video display adapters used for Windows are the Enhanced
Graphics Adapter (EGA) and Video Graphics Array (VGA). In the display resolutions that
Windows uses, both these adapters can display 16 different colors. (Some "Super VGA"
boards can display 256 different colors under Windows.) Windows can display additional
colors by "dithering," which is creating a pixel pattern that combines pixels of different
pure colors.

Not all unique combinations of red, green, and blue bytes produce different dith
ering patterns. For instance, on a color EGA or VGA, a red, green, or blue value must gener
ally be incremented by 4 to produce a different dithering pattern. So for these adapters, you
have 218 (or 262,144) dithered colors.

BEEPER1 uses the FillRect function to color its client area. The first parameter to
FillRect is the device context handle, the second is a pointer to the RECT structure, and the
third is a handle to a "brush." A brush is a graphics object that Windows uses to fill an area.
Brushes can be solid colors or composed of various hatchmarks or patterns.

BEEPER1 creates a brush of a solid color by calling CreateSolidBrush. The only pa
rameter is an RGB color value. Depending on the value of jFlipFlop, BEEPER sets this
parameter to RGB(255,0,0), which is red, or RGB(0,0,255), which is blue.

A brush is a graphics object. If you create a brush, you must also delete it when you're
finished. After calling FillRect, BEEPER1 deletes the brush by calling DeleteObject.

Method Two

The first method for setting the timer causes WM_ TIMER messages to be sent to the normal
window procedure. With this second method, you can direct Windows to send the timer
messages to another function within your program.

The function that will receive these timer messages is termed a "call-back" function.
This is a function within your program that is called by Windows. You tell Windows the ad
dress of this function (well, not really the address of the function, but we'll get to that), and
Windows later calls the function. This should sound familiar because a program's window
procedure is really a type of call-back function. You tell Windows the address of the func
tion when registering the window class, and Windows calls the function when sending
messages to the program. However, call-back functions that are not window procedures
must be handled a little differently.

184

Chapter 5: The Timer

SetTimer is not the only Windows function that uses a call-back function. The
CreateDialog and DialogBoxfunctions (discussed in Chapter 10) use call-back functions to
process messages in a dialog box; several Windows functions (EnumChildWindows,
EnumFonts, EnumObjects, EnumProps, and EnumWindows) pass enumerated information
to call-back functions; and several less commonly used functions (GrayString, LineDDA,
SetResourceHandler, and SetWindowsHook) also require call-back functions. Call-back
functions are often a major hang-up for beginning Windows programmers. Some strange
things are involved. I'm first going to tell you how to use call-back functions, and then I'll
tell you the reasons for what you're doing.

Like a window procedure, a call-back function must be defined as FAR PASCAL be
cause it is called by Windows from outside the code segment of the program. The parame
ters to the call-back function and the value returned from the call-back function depend
on the purpose of the call-back function. In the case of the call-back function associated
with the timer, the input parameters are the same as the input parameters to a window pro
cedure. The timer call-back function returns a WORD value to Windows.

Let's name the call-back function TimerProc. (You can name it anything you like.) It
will process only WM_ TIMER messages.

WORD FAR PASCAL TimerProc (HWND hwnd, WORD message, WORD wParam, LONG lParam)
{

[process WM_ TIMER messages]
return 0 :
}

The hwnd input parameter is the handle to the window specified when you call SetTimer.
Windows will send only WM_ TIMER messages to TimerProc, so a message will always
equal WM_TIMER. The wParam value is the timer ID, and the /Param value can be ig
nored. (It is set to the address of the function.) ,

Just as you must include your regular window procedure in the EXPORTS section of
the module definition (.DEF) file, you must also include the names of any call-back func
tions within your program. When using a call-back function named TimerProc, your
module definition file contains the following lines:

EXPORTS WndProc
TimerProc

As I noted earlier, the first method for setting a timer requires a SetTimer call that
looks like this:

SetTimer (hwnd, 1, wMsecInterval ,NULL) :

When you use a call-back function to process WM_ TIMER messages, the fourth parameter
to SetTimer is instead the far address of the call-back function.

But not really.

185

SECTION II: READING INPUT

Now listen carefully: The far address that you must pass to Windows as the fourth
parameter of the SetTimer call is not the address of the function within the program. It is
instead a far address obtained from the Windows function MakeProclnstance. To use
MakeProclnstance, first define a variable that is a far pointer to a function. You can use the
WINDOWS.H identifier FARPROC for this definition:

FARPROC lpfnTimerProc ;

In WinMain (or any other section of your program that is executed only once for
each instance), call MakeProclnstance. The parameters to MakeProclnstance are the ad
dress of TimerProc and the value of hlnstance. MakeProclnstance returns a far pointer that
you save in lpfnTimerProc:

lpfnTimerProc - MakeProclnstance (TimerProc. hlnstance) :

You can now use this lpfnTimerProc value when you call SetTimer:

SetTimer (hwnd. 1. wMseclnterval. lpfnTimerProc)

You're done. Now that's not too bad, is it?
Well, you may say, "This is so weird that I'll never use this method for setting a timer.

I'll use the first method, where I don't have to bother with call-back functions." That's fine.
But you're going to be forced to deal with call-back functions, EXPORTS, and Make
Proclnstance when we start discussing dialog boxes. You can't do a dialog box without
them. So you can pay your dues now, or you can pay them later.

A sample program
Let's look at some sample code so you can see how this stuff fits together. Then we'll ex
plore MakeProclnstance some more. The BEEPER2 program, shown in Figure 5-5, is func
tionally the same as BEEPER! except that Windows sends the timer messages to TimerProc
rather than WndProc. To tell the C compiler that TimerProc is a function so that we can use
the name of the function when calling MakeProclnstance, we declare TimerProc at the top
of the program along with WndProc. Notice that the program calls MakeProclnstance for
each instance.

I mentioned above that the lParam value passed to TimerProc is the address of the
TimerProc function. Not exactly. It is actually the value of lpfnTimerProc returned from
MakeProclnstance, if you ever need to use it.

:·}::::::':::::::::::i::::::

:'.

..· ...•... · .. r
:).

p
:::.,:

.i<

Figure 5·5. The BEEPER2 program. (continued)

186

beeper2.exe : beeper2.obj beeper2.def
link beeper2. /align:l~. NUL. inod slibcew libw.
rc beeper2.exe

beeper2.obj : beeper2.c
cl -c -Gsw -OW -W2 -Zp beeper2.c

BEEPER2.C

Chapter 5: The Timer

(continued)

187

SECTION II: READING INPUT

(continued)

188

Chapter 5: The Timer

hdc = GetDC (hwnd) :
hBrush = CreateSolidBrush (fFlipFlop ? RGB(255.0.0) RGB(O.0.255»

FillRect (hdc, &rc, hBrush)
ReleaseDC (hwnd. hdc) :
DeleteObject (hBrush) ;

return 0
}

BEEPER2.DEF

.............. _._----*-_
; BEEPER2.DEF module definition file
.. --------.--- ... --~ ------------.
NAME

OESCRI PTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

BEEPER2

'Timer. Demo
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE DISCAROABLE
PRELOAD MOVEABLE MULTIPLE
1024
8192
WndProc
Ti merProc

Proper handling of call-back functions
Let's summarize the three requirements for call-back functions. Any function within your
program that is called by Windows must be handled as follows:

1. The function must be defined as FAR PASCAL.

2. The function must be included in the EXPORTS section of the module
definition (.DEF) file.

3. The address of the function that you give to Windows must be the return
value from a MakeProclnstance call. (This third rule does not apply to
window procedures that are passed to Windows as part of a window's
class structure in a RegisterClass call. Windows itself handles the
MakeProclnstance requirement in this case.)

As you'll discover in Chapter 7, "Memory Manageme-nt," these three requirements are
closely related to each other. They are part of the overhead necessary for Windows to run
several instances of the same program using the same code segment, where each instance

189

SECTION II: READING INPUT

must hav:e its own data segment. Windows also requires this overhead to move the code
segment and the data segments around in memory; Here are the practical results of the
three requirements:

1. When you define a function as FAR and you compile with the -Gw
(Windows) flag, the compiler inserts special prolog and epilog code in
the function. In assembly language, the prolog code sets the value of the
AX register equal to the DS (data segment) register by using the PUSH DS
and POP AX instructions. It then saves the value of DS (with PUSH DS)
and sets DS equal to AX by using a MOV DS, AX instruction. The epilog
code at the end of the function pops the original value of DS off the stack.

2. If the FAR function is also exported (that is, if the function is listed in the
EXPORTS section of the module definition file), Windows replaces the
PUSH DS and POP AX instructions at the top of the function prolog with
Nap (no operation) instructions when the code segment is loaded into
memory. With this change the function sets DS from the value of AX. But
what is the value of AX on entry to the function? Well, if you didn't do
anything else, the value of AX would be indeterminate. So would the
operation of your program.

3. MakeProclnstance creates a small piece of code elsewhere in Windows
called a "thunk." The far address returned from MakeProclnstance is the
address of this thunk. The thunk loads the segment address of the data
segment in AX and branches to the function. The function prolog then
loads DS from AX. Perfect.

Note that MakeProclnstance requires hlnstance as a parameter. You must use
MakeProclnstance to create a different thunk for each instance because each instance has
its own data segment. For a particular call-back function, the thunks for each instance all
branch to the same function address (because all instances use the same code segment),
but each thunk sets AX to a different data segment-the data segment for that instance.
When Windows moves a data segment in memory, it must change the thunk for that in
stance so that the thunk sets AX to the new data segment address. The thunk itself is
always in an unmoveable area of memory.

(To further complicate this matter, any reference in your program to a FAR func
tion-such as the address passed to the MakeProclnstance call and the address that the
thunk branches to-is not even the address of the function within your program. Another
small routine sits between the thunk and the actual function. This routine loads the code
segment into memory if it has not yet been loaded or if it has been discarded from memory.
But let's forget about this for now and come back to it in Chapter 7. The last thing I want to
do here is make this subject sound as complex as it actually is.)

190

Chapter 5: The Timer

These requirements imply that you should never call exported far functions directly
from within your program. For instance, you might want to simulate a timer message with.
the following statement:

TimerProc (hwnd, WM_TIMER, I, OL); II WRONG III

It looks OK, but don't do it! The prolog of TimerProc will set DS equal to AX, but the value
of AX could be anything, and it very likely is not the segment address of the program's data
segment. If you need to directly call an exported function from within your program, use
the far pointer returned from MakeProclnstance:

(*lpfnTimerProc) (hwnd, WM_TIMER, I, OL); II RIGHT

This code calls the thunk, and the thunk sets AX equal to the correct data segment before
branching to the function.

Method Three

The third method of setting the timer is similar to the second method. It requires a far
pointer created from MakeProclnstance to a function that processes the WM_ TIMER
messages. However, the hwnd parameter to SetTimer is set to NULL, and the second
parameter (normally the timer ID) is ignored. Instead, the f~nction returns a timer ID:

nTimerID ~ SetTimer (NULL, 0, wMsecInterval, lpfnTimerProc) ;

The nTimerID returned from SetTimer will be NULL if no timer is available.
The first parameter to KillTimer (usually the window handle) must also be NULL.

The timer ID must be the value returned from SetTimer:

KillTimer (NULL, nTimerID) ;

The htpnd parameter passed to the TimerProc timer function will also be NULL. The
wParam parameter is the timer ID, and IParam is IpjnTimerProc, the same as in the sec
ond method.

This method for setting a timer is rarely used. It might come in handy if you do a lot of
SetTimer calls at different times in your program and don't want to keep track of which
timer IDs you've already used.

Now that you know how to use the Windows timer, you're ready for a couple of useful
timer programs.

USING THE TIMER FOR A STATUS REPORT
One use of a Windows timer is to periodically update a status report displayed on the
screen. The program can relinquish control until the next WM_ TIMER message and thus
not hog precious processing time. The FREEMEM program, shown in Figure 5-6 on the fol
lowing pages, displays the amount of free memory available in Windows in megabytes. The

191

SECTION II: READING INPUT

free memory value is updated every second and is consistent with the figure shown in the
Program Manager's and File Manager's About box. FREEMEM can let you know how close
Windows is to running out of memory. While testing a new Windows program, you may
want to keep an eye on FREEMEM for a rough indication of how your program is allocating
and freeing memory.

. ·i"".
'/'

',./"'."'.

' ... ' ' .•........... ' ..
• •••••••••••••••••••••••••••••••

• •••••••••••••••••••••••••• ' •. i.""'"."""".,.".i"'"

•. '

. , .•.•.

i •

.' •......

"".,

Figure 5·6. The FREEMEM program. (continued)

192

if (hPrevlnstance)
return FALSE:

wndclass .styl e' = CS_HREDRAW CS_VREDRAW
wndcl ass.1 pfnWndProc ... W.ndProc :
wndclass.cbClsExtra ... 0 ;
wndclass.cbWndExtra - 0 ;
wndclass~hInstance - hlnstance
wndclass.hlcon = NULL;
wndclass.hCursor ... LoadCur~or (NULL, IDC_ARROW)
wndclass.hbrBackground ... GetStockObject (WHITE_BRUSH)
wndclass.lpszMenuName -NULL:
wndclass.lpszClassNam~ -szAppName

Chapter 5: The Timer

(continued)

193

SECTION II: READING INPUT

194

Chapter 5: The Timer

FREEMEM.DEF

.~************** •••• -----********----· : FREEMEM.DEF module definition file · ... _ ·
NAME FREEMEM

(e) Charles Petzold. 1990'

Because FREEMEM doesn't need much display space, I've written it to appear as an icon at
the bottom of the Windows screen. (See Figure 5-7.) This is about as unobtrusive a window
as you can create in Windows.

Figure 5·7. The FREEMEM icon.

Although FREEMEM's use of the timer is simple enough, the program illustrates
some interesting tricks that admittedly have nothing to do with the timer.

Creative Use of Icons

Unlike most Windows programs, FREEMEM starts out life as an icon, displays everything it
needs to display within the icon, and cannot be opened into a regular window. Most Win
dows applications have static pictorial icons that you specify in the windows class struc
ture. These icons are usually created with the ICONEDIT utility supplied with the
Windows Software Development Kit (as you'll see in Chapter 8). So far, we've been using
predefined Windows icons in our programs. Alternatively, you can specify a NULL icon in
the window class structure with the statement:

wndelass.hIcon = NULL:

A NULL icon means that the application is responsible for drawing the icon. Windows
sends the application WM_PAINT messages when the icon needs to be painted. Thus, a

195

SECTION II: READING INPUT

program can change the appearance of the icon while the program is running. The CLOCK
application included with Windows uses this technique to display the clock even when the
window is an icon. A NULL icon is really just a tiny window that you can draw on in the
same way that you draw on the client area of a normal window. If you need to know when
your application is becoming an icon, you can get the information from the wParam pa
rameter of a WM_SIZE message. For instance, when CLOCK becomes an icon, it eliminates
the second hand from the clock and changes the timer from a I-second interval to a
I-minute interval.

FREEMEM displays two lines of text within its icon. This will work fine on the most
common displays used for Windows, but it may not work for some high-resolution boards
that may use a larger system font. Because FREEMEM cannot display correctly on these
video boards, it checks the size of the system font against the icon size and uses a message
box to inform the user if the icon size is too small.

Forcing the Icon .

Shortly before entering the message loop in WinMain, most Windows applications execute
the function:

. ShowWindow (hwnd. nCmdShow) :

The nCmdShow variable is passed to the program as a parameter to WinMain.
If you run a program from the File Manager (by selecting Run from the File menu,

pressing Enter when the cursor is on the program name, or double-clicking the program),
nCmdShow is' set equal to SW _SHOWNORMAL. If you load an application as an icon (by
selecting Load from the File menu or pressing Shift-Enter with the cursor on the program
name), nCmdShow is set equal to SW _SHOWMINNOACTIVE. Your application usually
doesn't have to figure this out but simply passes this parameter to ShowWindow.

However, you aren't required 'to use the nCmdShow variable with Show Window.
Instead, FREEMEM uses the line:

ShowWindow (hwnd. SW_SHOWMINNOACTIVE)

This forces the window to appear as an icon regardless of the value of nCmdShow. The
active program remains active.

You can perform other tricks with this technique. If you always want a particular
application to appear first as a maximized full-screen display, you can use:

ShowWindow (hwnd. SW_SHOWMAXIMIZED) :

You can even force FREEMEM to occupy a particular icon position at the bottom of the dis
play. If you replace the existing Show Window call in FREEMEM with:

ShowWindow (hwnd. (int) OxFF8F) :

196

Chapter 5: The Timer

the icon will be positioned in icon slot 15. This syntax is a little obscure but is documented
in the Programmer's Reference.

Keeping the Icon an Icon

FREEMEM does not allow itself to be opened into a regular window. Would you believe
this trick requires merely two simple lines in the WndProc function? Here they are:

case WM_QUERYOPEN :
return 0 ;

These two lines don't seem to be doing very much, but let's take a closer look.
Windows sends a WM_QUERYOPEN message to a program when it wants to open an

icon into a window. Normally, WM_QUERYOPEN is passed on to the DefWindowProc
function, which returns a nonzero value; Windows then opens the icon. With the two lines
shown above, however, WndProc returns a value of 0 for a WM_QUERYOPEN message. So
when Windows asks, "Do you want to be opened?" WndProc answers "Zero," which in this
case means "No thanks."

Calculating Free Memory

When Windows sends FREEMEM a WM_ TIMER message, FREEMEM must determine the
amount of free memory. Like the About box in the Program Manager and File Manager,
FREEMEM gets a free memory value by calling GetFreeSpace with a parameter of O. The
GetFreeSpace function is new in Windows 3. Prior to Windows 3, Windows programs used
GlobalCompact with a parameter of 0 to obtain the largest block of contiguous free
memory in the system, which is not nearly as useful as the total amount of free memory.
(Windows memory management is covered in detail in Chapter 7.)

If the free memory value has changed since the 'last GetFreeSpace call, FREEMEM
invalidates the client area to generate a WM_PAINT message. FREEMEM processes WM
_PAINT messages by calling DrawText, a convenient function for simple word-wrapped
text. FREEMEM converts the free memory in bytes to a floating-point value in megabytes,
and sprintj stores it formatted to two decimal places.

Using Floating.Point Math

When a Windows program uses floating-point math (as FREEMEM does) and you link
with the floating-point emulator library (SLIBCEW.LIB for small model), you must also in
clude the WIN87LIB.LIB import library in the library field of the LINK command.

Alternatively, you can compile with the -FPa switch and link with the "alternate math
library" (SLIBCAW.LIB for small library). This library does not use the math coprocessor
chip, even if one is present.

197

SECTION II: READING INPUT

USING THE TIMER FOR A CLOCK
A clock is the most obvious application for the timer. Although digital clocks were once in
fashion, the pendulum has swung back (so to speak) to analog clocks. But you already have
an analog clock with Windows. Although the CLOCK program has a digital-clock setting,
I'm going to write a good old digital-clock program-because it provides an interesting
example of the use of the timer. The DIGCLOCK program, shown in Figure 5-8, creates
a popup window that positions itself in the lower right corner of the display in the icon
area. The program displays the day of the week, the time, and the date. (See Figure 5-9 on
page 202.)

Figure 5·8. The DIGCLOCK program. (continued)

198

long FAR PASCAL WndProc (HWND, WORD, WORD. LONG);
void SizeTheWindow (short *. short*. short *. short *)

char sDate [2], sTime [2]. sAMPM [2][5] ;
int iDate. iTime : '

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR'lpszCmdLine. int nCmdShow)

{
static char szAppName[l- "Of gel ocklt ;
HWND hwnd;
MSG
short
WNDCLASS

Chapter 5: The Timer

(continued)

199

SECTION II: READING INPUT

(continued)

200

Chapter 5: The Timer

nLength = wsprintf (cBuffer. " %5 %d%s%02d%s%02d \r\n".
(LPSTR) szWday +4 * WDAY.
iDate -= 1 ? MOAY iDate -= 2 ? YEAR : MONTH. (LPSTR) sOate.
iOate =~ 1 ? MONTH iOate == 2 ? MONTH: MDAY. (LPSTR) sOate.
iOate =- 1 ? YEAR iOate -- 2 ? MDAY : YEAR) :

if (Hime == 1)
nLength + ... wsprintf (cBuffer + nLength." %02d%s%02d%s%02d ".

else
HOUR. (LPSTR) sTime. MIN. (LPSTR} sTime. SEC)

nLength+- wspr; ntf(cBuffer + nLength. n %d%s%02d%s%02d %s It

(HOUR % 12)7 (HOUR % 12) : 12.
(LPSTR) sTime.MIN.(LPSTR) sTime.
(LPSTR) sAMPM (HdUR(12J) ;

201

SECTION II: READING INPUT

Figure 5·9. The DIGCLOCK window.

All the programs shown so far have used the window style WS_OVERLAPPEDWINDOW
as the third parameter to the CreateWindow function. DIGCLOCK uses the window style:

WS_POPUP : WS_DLGFRAME : WS_SYSMENU

This creates a style of window known as "popup," with a dialog box frame and a system
menu. The popup style is most commonly used for dialog boxes and message boxes, and
only rarely for applications. DIGCLOCK also uses yet another variation of the Show
Window call:

ShowWindow (hwnd. SW_SHOWNOACTIVATE) ;

Normally, a program becomes the active window when you run it. SW _SHOWNOACTI
VATE tells Windows that the program that loaded DIGCLOCK should remain the active
window. You can make DIGCLOCK active, however, by clicking on its window with the
mouse or by pressing'Alt-Tab or Alt-Esc. Although DIGCLOCK has no system menu box,
you can still access the system menu when DIGCLOCK is active by pressing Alt-Spacebar.
If you select Move, you can move the window with the keyboard.

202

Chapter 5: The Timer

Positioning and Sizing the Popup

The DIGCLOCK popup window is positioned at the lower right corner of the display. The
window must be large enough to accommodate two lines of text of 16 characters each. The
SizeTheWindow procedure in DIGCLOCK.C determines the correct parameters to use in
the CreateWindowcall. Normally, a program cannot obtain a text size without first creating
a window, because it needs the window handle to obtain a device context handle.
DIGCLOCK gets around this problem by obtaining an information device context handle
for the screen using CreateIC This function is similar to CreateDC (used in the BLOWUP
program in Chapter 4) but is used to obtain information from the device context. The text
size in combination with information available from GetSystemMetries is enough to derive
an initial starting position and window size.

Getting the Date and Time

In its WndPaint function, DIGCLOCK uses the time and loealtime C functions available in
the Microsoft C Compiler library to determine the current date and time. The loealtime
function puts all the information we need into a structure; several macro definitions near
the top of the program help make the wsprin tj calls more readable. (You should avoid
making MS-DOS or ROM BIOS function calls in your Windows programs; use Windows
functions or the C run time library instead.)

Going International

Windows includes international support. The WIN.lNI file created during installation of
Windows contains a section headed fintlJ. This lists information concerning formats of
dates, time, currency, and numbers. You can display dates in one of three different formats:
month-day-year, year-month-day, or day-month-year. The separator between these three
numbers can be a slash, a dash, a period, or, in fact, any character you like. You can display
the time in either 12-hour or 24-hour format; a semicolon or a period is commonly used to
separate hours, minutes, and seconds.

The SetInternational function in DIGCLOCK retrieves this formatting information
from the WIN.lNI file by using the Windows GetProjilelnt (for integers) and
GetProjileString (for strings). These calls must include default values if Windows cannot
find the values in WIN.lNI. Setlnternational stores the values in global variables that have
the same names as the text strings that identify them in WIN.lNI. The WndPaint function
uses the values obtained from WIN.lNI to format the date and time displays and then calls
DrawText to center the two lines of text within the window.

As you would expect, whenever DIGCLOCK's window procedure receives a
WM_ TIMER message, it invalidates the window to generate a WM_PAINT message. But
WndProe also invalidates the window when it receives a WM_ WININICHANGE message.

203

SECTION II: READING INPUT

Any application that changes WIN.lNI sends the WM_ WININICHANGE message to all ac
tive Windows applications. If the !inti] section of WIN.lNI is changed, DIGCLOCK will
know and will obtain the new international information. To see how this works, load
DIGCLOCK, load the CONTROL PANEL program included with Windows, select Country
Settings from the Preferences menu, and change either the date format, the date separator,
the time format, or the time separator. Now press Enter. The Control Panel updates the
WIN.lNI file, and DIGCLOCK's display reflects that change-Windows' message magic
at work.

When the window procedure receives a WM_ WININICHANGE message, it invali
dates the window using:

InvalidateRect (hwnd, NULL, TRUE) ;

When DIGCLOCK receives a WM_ TIMER message, it invalidates the window using:

InvalidateRect (hwnd, NULL, FALSE) ;

A value of TRUE in the last parameter tells Windows to erase the background before draw
ing the window. A value of FALSE tells Windows simply to draw over the existing back
ground. We use FALSE when processing WM_TIMER messages because this approach
reduces flickering of the display. You may be wondering why we need to use the TRUE
value at all.

A TRUE value is necessary when processing WM_ WININICHANGE messages be
cause the length of the displayed strings can change by several characters if you switch the
time format from 12 hours to 24 hours. However, the largest change that occurs as a result of
a WM_TIMER message is two characters-for instance, when the date advances from
12/31/87 to 111188-and the formatted string that WndPaint uses for the display has a cou
ple of blanks on each end to account for this change in length and the proportional font.

We could also have DIGCLOCK process WM_ TIMECHANGE messages, which notify
applications of changes to the system date or time. Because DIGCLOCK is updated every
second by WM_TIMER messages this is unnecessary. Processing WM_TIMECHANGE
messages would make more sense for a clock that was updated every minute.

WINDOWS STANDARD TIME
If you've been scouting around the Programmer's Reference of the Windows Software De
velopment Kit, you may be wondering why the Windows GetCurrentTime function is not
used in DIGCLOCK. The answer is that GetCurrentTime tells you about "Windows time"
rather than real time. This is the time (in milliseconds) since the beginning of the current
Windows session. GetCurrentTime is used mostly for calculating a difference from the
time returned from GetMessageTime. You can use these two calls while processing a mes
sage to determine how long the message was in the message queue before you retrieved it
for processing.

204

Chapter 6

Child Window
Controls

Chapter 4 showed programs in the CHECKER series that display a grid of rectangles. When
you click the mouse in a rectangle, the program draws an X. When you click again, the X
disappears. As you played with the program, you may have thought that the rectangle with
the X inside looked vaguely familiar. If the rectangle were reduced in size, it would resem
ble a "check box" that Windows programs use in dialog boxes to allow the selection of
options.

Although the CHECKERl and CHECKER2 versions of this program use only one main
window, the CHECKER3 version uses a child window for each rectangle. The rectangles
are maintained by a separate window procedure called ChildWndProc. If we wanted to,
we could add a facility to ChildWndProc to send a message to its parent window procedure
(WndProc) whenever a rectangle is checked or unchecked.

Here's how: The child window procedure can determine the window handle of its
parent by calling GetParent:

hwndParent = GetParent (hwnd) ;

where hwnd is the window handle of the child window. It can then send a message to the
parent. window procedure:

SendMessage (hwndParent, message, wParam, lParam) ;

Perhaps for this message the child window could set wParam to its child window ID. The
/Param could be set to a 1 if the child window were being checked and a 0 if it were being
unchecked.

205

SECTION II: READING INPUT

This in effect creates a "child window control." The child window processes mouse
and keyboard messages and notifies the parent window when the child window's state has
changed. In this way, the child window becomes an input device for the parent window.

Although you can create your own child window controls, you can also take advan
tage of several predefined window classes (and window procedures) that your program
can use to create child window controls. These controls take the form of buttons, check
boxes, edit boxes, list boxes, combo boxes, text strings, and scroll bars. For instance, if you
want to put a button labeled "Recalculate" in a corner of your spreadsheet program, you
can create it with a single CreateWindow call. You don't have to worry about the mouse
logic or button painting logic or about making the button "flash" when it's clicked. That's
all done in Windows. All you have to do is trap WM_COMMAND messages-that's how
the button informs your window procedure when it has been triggered.

Is it really that simple? Well, almost.
Child window controls are used most often in dialog boxes. As you'll see in Chapter

10, the position and size of the child window controls are defined in a dialog box template
contained in the program's resource script. However, you can also use predefined child
window controls on the surface of a normal overlapped window's client area. You create
each child window with a CreateWindow call and adjust the position and size of the child
windows with calls to MoveWindow. The parent window procedure sends messages to the
child window controls, and the child window controls send messages back to the parent
window procedure.

When you bring up your normal window, you first define a window class and register
it with Windows using RegisterClass. You then create the window based on that class using
CreateWindow. When you use one of the predefined controls, however, you do not register
a window class for the child window. The class already exists within Windows and has one
of these names: "button," "static," "scrollbar," "edit," "listbox," or "combobox." You simply
use the name as the window class parameter in CreateWindow. The window style parame
ter to CreateWindow defines more precisely the appearance and functionality of the child
window control. Windows contains the window procedures that process messages to the
child windows based on these classes.

Using child window controls directly on the surface of your window involves tasks of
a lower level than are required for using child window controls in dialog boxes, where the
dialog box manager adds a layer of insulation between your program and the controls
themselves. In particular, you'll discover that the child window controls you create on the
surface of your window have no built -in facility to move the input focus from one control to
another using the Tab or cursor movement keys. A child window control can obtain the in
put focus, but once it does, it won't relinquish the input focus back to the parent window.
This is a problem we'll struggle with throughout this chapter.

206

Chapter 6: Child Window Controls

THE BUTTON CLASS
We'll begin our exploration of the button window class with a program called BTNLOOK
("button look"), which is shown in Figure 6-1. BTNLOOK creates 11 child window button
controls, one for each of the 11 styles of buttons.

BTNLOOK.MAK

#-------------~~~------~
BTNLOOK.MAKmakefile
fl-;." ;.-.,. -,.,. ~ ;.;..~.~.~~-: -;"-~-

Figure 6·1. The BTNLOOK program. (continued)

207

SECTION II: READING INPUT

(continued)

208

Chapter 6: Child Window Controls

long FAR PASCAL WndProc (HWND hwnd, WORD message. WORD wParam. LONG lParam)
{
static char szPrm [] - "wParam

szTop [] = "Control 10
LOWORO(lParam) HIWORD(lParam)".
Window Handle Notification".

static HWNO
static REeT
static int
HOC
PAINTSTRUCT
int
TEXTMETRIC

szUnd [] OIl " ___ _

szFormat [] - " %5u
szBuffer [50] :
hwndButton [NUM]
reet :
cxChar.
hdc ;
ps ;
i :
tm ;

cyCha r :

switch (message)
{
caseWM..;.CREATE

hdc OIl GetOC (hwnd) :

%4X

SeleetObjeet(hde. GetStoekObject
GetTextMetri~s (hde. &tm) :
exChar=tm.tmAveCharW;dth :
eyChar =tm.tmHeight+ tm~tmExternalLeading
ReleaseDC (hwnd. hdc) :

(i =0 ; i < NUM ; i++)

%5u",

hwndButton [i] ;.. CreateW; ndow ("button". button[i]. text,

return 0 ;

case WM_SIZE :

WS_CHILO :WS_VISIBLE>: button[i].style.
cxChar. eyChar * (1 +~2* i).
20 * exChar. 7 * cyChar/ 4.
hwnd.i,
« LPCREATESTRUCT) 1 Pa ram) -> hlnstance.

reet.left - 24* exChar ;
reet.top =3 * eyChar ;
reet.right ... LOWORD (lParam)
reet.bottom~ HIWORD (lParam)
return 0;

(hwnd. &rect. TRUE):

hde = BeginPaint (hwnd. Ips) :
Se 1 eetObj ect (hdc, GetStoekObj ect (SYSTEM_FI XED_FONT))
SetBkMode{hde. TRANSPARENT) ;

(continued)

209

SECTION II: READING INPUT

210

Chapter 6: Child Window Controls

As you click on each button, it sends a WM_COMMAND message to the parent
window procedure, which is the familiar WndProc. BTNLOOK's WndProc displays the
wParam and lParam parameters of this message on the right half of the client area,
as shown in Figure 6-2. \

= Dutton Look aa
Ir:""'""PUSHB'i.;iiTO'jif' '"'' I
11'::DEFPOSH~UrtON' I

wParan
Control]D

8
o
1
2
3
4
5
6
8
8
8
8
9
9

10
10
10
10

Figure 6·2. The BTNLOOK display.

Creating the Child Windows

LOWORD(IParan) HIWORD(IParan)
Window Handle Hotification

3F4C 1
3DOC 0
3D54 0
3D9C 0
3DE4 0
3E2C 0
3E74 0
3EBC 0
3F4C 2
3F4C 3
3F4C 0
3F4C 1
3F94 0
3F94 0
3FDC 0
3FDC 0
3FDC 0
3FDC 0

BTNLOOK defines a structure called button that contains button window styles and
descriptive text strings for each of the 11 types of buttons. The button window styles all
begin with the letters BS, which stand for "button style."

The 11 button child windows are created in aforloop during WM_CREATE message
processing in WndProc. The CreateWindow call uses,the following parameters:

Class name

Window text

Window style

x position

yposition

Width

Height

Parent window

"button"

button[i].text

WS_CHILD : WS_ VISIBLE : button[i],style

cxChar

cyChar ... (1 + 2 ... i)

20 ... xChar

7 ... yChar /4

hwnd

211

SECTION II: READING INPUT

Child window ID

Instance handle

Extra parameters

((LPCREATESTRUCT) IParam) -> hInstance

NULL

The class name parameter is the predefined name. The window style uses WS
CHILD, WS VISIBLE, and one of the eleven button styles (BS_PUSHBUTTON, BS
_DEFPUSHBUTTON, and so forth) in the button structure. The window text parameter
(which for a normal window is the text that appears in the caption bar) is text that will be
displayed with each button. I've simply used text that identifies the button style.

The x position and y position parameters indicate the placement of the upper left cor
ner of the child window relative to the upper left corner of the parent window's client area.
The width and height parameters specify the width and height of each child window.

The child window ID parameter should be unique for each child window. This ID
helps your window procedure identify the child window when processing WM_COM
MAND messages from it.

The instance handle parameter of the CreateWindow call looks a little strange, but
we're taking advantage of the fact that during a WM_ CREATE message IParam is actually a
pointer to a structure of type CREATESTRUCT ("creation structure") that has a member
hInstance. So we cast .IParam into a long (or far) pointer to a CREATESTRUCT structure
and get hInstance out. .

(Some Window programs use a global variable named hInst to give window pro
cedures access to the instance handle available in . WinMain. In WinMain, you need simply
set:

hlnst = hlnstance ;

before creating the main window. In Chapter 4 we used GetWindowWord to obtain the
instance handle:

GetWindowWord (hwnd. GWW_HINSTANCE)

Any of these methods is fine.)
After the CreateWindow call, we don't have to do anything more with these child

windows. The button window procedure within Windows maintains them for us and
handles all repainting jobs. (The exception is the button with the BS_ USERBUTTON style;
as I'll discuss shortly, this button style requires the program to draw the button.) At the pro
gram's termination, Windows destroys these child windows when the parent window is
destroyed.

The Child Talks to Its Parent

When you run BTNLOOK, you see the different button types displayed on the left side of the
client area. (The BS_USERBUTTON button is not visible.) As I mentioned earlier, when

212

Chapter 6: Child Window Controls

you click a button with the mouse, the child window control sends a WM_COMMAND
message to its parent window. BTNLOOK traps the WM_COMMAND message 'and dis
plays the values of wParam and lParam. Here's what they mean:

wParam Child window ID

LOWORD (lParam) Child window handle

HIWORD (lParam) Notification code

The child window ID is the value passed to CreateWindowwhen the child window is
created. In BTNLOOK these IDs are 0 through 10 for the 11 buttons displayed in the client
area. The child window handle is the value that Windows returns from the CreateWindow
call.

The notification code is a submessage code that· the child window uses to tell the
parent window in more detail what the message means. The possible values of button
notification codes are defined in WINDOWS.H:

Button Notification
Code Identifier Value

BN_CLICKED 0

BN_PAINT 1

BN_HILITE 2

BN _UNHILITE 3
BN_DISABLE 4

BN _DOUBLECLICKED 5

For all button styles except BS_USERBUTTON, this notification code is always
BN _CLICKED, which simply tells the parent window that the button has been clicked. The
other notification codes are used for the BS_ USERBUTTON style.

You'll notice that when you click a button with the mouse, a dashed line surrounds
the text of the button. This indicates that the button h2.s the input focus. All keyboard input
now goes to the child window button control rather than to the main window. However,
when the button control has the input focus, it ignores all keystrokes except the Spacebar,
which now has the same effect as a mouse click.

The Parent Talks to Its Child

Although BTN~OOK does not demonstrate this fact, a window procedure can also send
messages to the child window control. Five button-specific messages are defined in WIN
DOWS.H; each begins with the letters "BM," which stand for "button message." These
messages are defined in WINDOWS.H in terms of the WM_USER identifier:

213

SECTION II: READING INPUT

#define BM_GETCHECK (WM_USER+O)
#define BM_SETCHECK (WM_USER+l)
#define BM_GETSTATE (WM_USER+2)
#define BM_SETSTATE (WM_USER+3)
#define BM_SETSTYLE (WM_USER+4)

The WM_USER identifier is available for programs to define their own messages beyond
the predefined messages. Each window class can have its own separate set of messages
unique to that class. The other classes of predefined child window controls also can have
their own messages defined in terms ofWM_USER.

The BM_GETCHECK and BM_SETCHECK messages are sent by a parent window to
a child window control to get and set the check mark of check boxes and radio buttons.
The BM_GETSTATE and BM_SETSTATE messages refer to the normal or "pushed" state of
a window when you click it with the mouse or press it with the Spacebar. We'll see how
these messages work when we look at each type of button. The BM_SETSTYLE message
lets you change the button style after the button is created.

Push Buttons

The first two buttons shown in BTNLOOK are "push" buttons. A push button is a rectangle
enclosing text specified in the window text parameter of the CreateWindowcall. The rect
angle takes up the full height and width of the dimensions given in the Create Window or
MoveWindowcall. The text is centered within the rectangle.

Push-button controls are used mostly to trigger an immediate action without retain
ing any type of on/off indication. The two types of push-button controls have window
styles called BS_PUSHBUTTON and BS_DEFPUSHBUTTON. The "DEF" in BS_DEFPUSH
BUTTON stands for "default." When used to design dialog boxes, BS_PUSHBUTTON con
trols and BS_DEFPUSHBUTTON controls function differently from one another. When
used as child window controls, however, the two types of push buttons function the same
way, although BS_DEFPUSHBUTTON has a heavier outline.

A push button looks best when its height is V4 times the height of a SYSTEM_FONT
character, which is what BTNLOOK uses. The push button's width must accommodate at
least the width of the text plus two additional characters.

When the mouse cursor is inside the push button, pressing the mouse button causes
the button to repaint itself using 3D-style shading to appear as if it's been depressed.
Releasing the mouse button restores the original appearance and sends a WM_COM
MAND message to the parent window with notification code BN_CLICKED. As with the
other button types, when a push button has the input focus, a dashed line surrounds the
text, and pressing and releasing the Spacebar has the same effect as pressing and releasing
the mouse button.

214

Chapter 6: Child Window Controls

You can simulate a push-button flash by sending the window a BM_SETSTATE mes
sage. This causes the button to be depressed:

SendMessage (hwndButton. BM_SETSTATE. 1. Ol) ;

This call causes the button to return to normal:

SendMessage (hwndButton. BM_SETSTATE. O. Ol) :

The hwndButton window handle is the value returned from the CreateWindow call.
You can also send a BM_GETSTATE message to a push button. The child window

control returns the current state of the button - TRUE if the button is depressed and FALSE
(or 0) if normal. Most applications do not require this information, however. And because
push buttons do not retain anyon/off information, the BM_SETCHECK and BM_GET
CHECK messages are not used.

Buttons created with the BS_PUSHBOX style are displayed only when the button has
the input focus. This style of button is rarely used by Windows applications.

Check Boxes

A check box is a square box with text; the text usually appears to the right of the check
box. (If you include the BS_LEFTTEXT style when creating the button, the text appears to
the left.) Check boxes are usually incorporated in an application to allow a user to select
options. The check box commonly functions as a toggle switch: Clicking the box once
causes an X to appear; clicking again toggles the X off.

The two most common styles for a check box are BS_CHECKBOX and BS_AUTO
CHECKBOX. When you use the BS_CHECKBOX style, you must set the X mark yourself by
sending the control a BM_SETCHECK message. The wParam parameter is set to 1 to create
an X and to 0 to remove it. You can obtain the cu~rent check state of the box by sending the
control a BM_GETCHECK message. You might use code like this to toggle the X mark
when processing a WM_COMMAND message from the control:

SendMessage (lOWORD (lParam). BM_SETCHECK. (WORD)
!SendMessage (lOWORD (lParam). BM_GETCHECK. O. Ol). Ol) ;

Note the! operator in front of the second Send Message call. The low word of /Param is the
child window handle passed to your window procedure in the WM_COMMAND message.
When you later need to know the state of the button, send it another BM_GETCHECK
message. Or you can retain the current check state in a static variable in your window pro
cedure. You can also initialize a BS_CHECKBOX check box with an X by sending it a
BM_SETCHECK message:

SendMessage (hwndButton. BM_SETCHECK. 1. Ol) ;

215

SECTION II: READING INPUT

For the BS _AUTOCHECKBOX style, the button control itself toggles the X on and off.
Your window procedure can ignore WM_COMMAND messages. When you need the
current state of the button, send the control a BM_GETCHECK message:

nCheck = (WORD) SendMessage (hwndButton, BM_GETCHECK, 0, OL) ;

The value of nCheck is TRUE or nonzero if the button is checked, FALSE or zero if not.
The other two check box styles are BS_3STATE and BS_AUT03STATE. As their

names indicate, these styles can display a third state as well-a gray color within the check
box-which occurs when you send the control a WM_SETCHECK message with wParam
equal to 2. The gray color indicates to the user that the box cannot be checked- that is, that
it's disabled. However, the check box control continues to send messages to the parent
when the box is clicked. Better methods for disabling a check box are described later.

The check box is aligned with the rectangle's left edge and is centered within the top
and bottom dimensions of the rectangle that were specified during the CreateWindowcall.
Clicking anywhere within the rectangle causes a WM_COMMAND message to be sent to
the parent. The minimum height for a check box is one character height. The minimum

I width is the number of characters in the text plus two.

Radio Buttons

A radio button looks very much like a check box except that it is shaped like a circle rather
than a box. A heavy dot within the circle indicates that the radio button has been checked.
The radio button has the window style BS_RADIOBUTTON or BS_AUTORADIOBUT
TON, but the latter is used only in dialog boxes.

In dialog boxes, groups of radio buttons are conventionally used to indicate mutually
exclusive options. (For instance, look at the dialog box in the Windows Terminal program
that appears when you select Communications from the Settings menu.) Unlike check
boxes, radio buttons do not work as toggles-that is, when you click a radio button a .
second time, its state remains unchanged.

When you receive a WM_COMMAND message from a radio button, you should dis
play its check by sending it a BM_SETCHECK message with wParam equal to 1:

SendMessage (hwndButton, BM_SETCHECK, I, OL) ;

For all other radio buttons in the same group, you can turn off the checks by sending them
BM_SETCHECK messages with wParam equal to 0:

SendMessage (hwndButton, BM_SETCHECK, 0, OL) ;

Group Boxes

The group box, style BS_GROUPBOX, is an oddity in the button class. It neither processes
mouse or keyboard input nor sends WM_COMMAND messages to its parent. The group

216

Chapter 6: Child Window Controls

box is a rectangular outline with its window text at the top. Group boxes are often used to
enclose other button controls.

User-Defined Buttons

The user-defined button, which has the style BS_USERBUTTON, is the only button that
sends WM_COMMAND messages to its parent with these notification codes:

BN_PAINT

BN_HILITE

BN_UNHILITE

BN_DISABLE

Button is normal

Button is being clicked

Clicking is finished

Button is disabled

These notification codes indicate that the window must be painted. The parent window is
responsible for this painting. It can use the low word of /Param to obtain the window
handle of the button, GetClientRect to determine the button's dimensions, and GetDC to get
the button's device context in preparation for painting. BTNLOOK doesn't process these
notification codes, so only a dotted outline appears when the button has the input focus.

Changing the Button Text

You can change the text in a button (or in any other window) by calling SetWindowText:

SetWindowText (hwnd. lpszString) ;

where hwnd is a handle to the window whose text is being changed and IpszString is a
long (or far) pointer to a null-terminated string. For a normal window, this text is the text of
the caption bar. For a button control, it's the text displayed with the button.

You can also obtain the current text of a window:

nLength = GetWindowText (hwnd. lpszBuffer. nMaxLength) ;

The nMaxLength parameter specifies the maximum number of characters to copy into the
buffer pointed to by IpszBujJer. The function returns the string length copied. You can
prepare your program for a particular text length by first calling:

nLength = GetWindowTextLength (hwnd)

Visible and Enabled Buttons

To receive mouse and keyboard input, a child window must be both visible (displayed) and
enabled. When a child window is visible but not enabled, Windows displays it in gray
rather than black.

If you do not include WS_VISIBLE in the window class when creating the child win
dow, the child window will not be displayed until you make a call to ShowWindow:

ShowWindow (hwndChild. SW_SHOWNORMAL) ;

217

SECTION II: READING INPUT

If you include WS_VISIBLE in the window class, you do not need to call ShowWindow.
However, you can hide the child window by a call to ShowWindow:

ShowWindow (hwndChild. SW_HIDE) ;

You can determine if a child window is visible by a call to:

IsWindowVisible (hwndChild) ;

You can also enable and disable a child window. By default, a window is enabled.
You can disable it by calling:

EnableWindow (hwndChild. FALSE) ;

For button controls, this has the effect of graying the button text string. The button no
longer responds to mouse or keyboard input. This is the best method for indicating that a
button option is currently unavailable.

You can reenable a child window by calling:

EnableWindow (hwndChild. TRUE) ;

You can determine whether a child window is enabled by calling:

IsWindowEnabled (hwndChild)

Buttons and Input Focus

As I noted earlier in this chapter, push buttons, check boxes, radio buttons, and user
defined buttons receive the input focus when they are clicked with the mouse. The control
indicates it has the input focus by a dashed line surrounding the text. When the child win
dow control gets the input focus, the parent window loses it; all keyboard input then goes
to the control rather than to the parent window. However, the child window control re
sponds only to the Spacebar, which now functions like the mouse. This situation presents
an obvious problem: Your program has lost control of keyboard processing. Let's see what
we can do about it.

When Windows switches the input focus from one window (such as a parent) to an
other (such as a child window contro!), it first sends a WM_KILLFOCUS message to the
window losing the input focus. The wParam parameter is the handle of the window that is
to receive the input focus. Windows then sends a WM_SETFOCUS message to the window
receiving the input focus, with wParam the handle of the window losing the input focus.
(In both cases, wParam may be NULL, which indicates that no window has or is receiving
the input focus.)

A parent window can prevent a child window control from getting the input focus by
processing WM_KILLFOCUS messages. Assume that the array hwndChild contains the
window handles of all child windows. (These were saved in the array during the
CreateWindow calls that created the windows.) NUM is the number of child windows:

218

case WM_KILLFOCUS :
for (i - 0 ; i < NUM ; i++)

if (hwndChild [i] == wParam)
{

return 0

Set Focus (hwnd) ;
break
}

Chapter 6: Child Window Controls

In this code, when the parent window detects that it's losing the input focus to one of its
child window controls, it calls SetFocus to restore the input focus to itself.

Here's a simpler (but less obvious) way of doing it:

case WM_KILLFOCUS :
if (hwnd == GetParent (wParam»

Set Focus (hwnd) ;
return 0 ;

Both these methods have a shortcoming, however: They prevent the button from re
sponding to the Spacebar, because the button never gets the input focus. A better approach
would be to let the button get the input focus but also to include the facility for the user to
move from button to button using the Tab key. At first this sounds impossible, but I'll show
you how to accomplish it with a technique called "window subclassing" in the COLORSI
program shown later in this chapter.

CONTROLS AND COLORS
I deliberately put a little "gotcha" into BTNLOOK. There is something wrong with the pro
gram. It may not be immediately apparent, but here's how to see it: Run BTNLOOK and
bring up the Control Panel program included with Windows. Select the Colors icon; this
brings up a dialog box that lets you change system colors. Select Color Palette and change
the colors of Window Background and Window Text, and save the new settings by clicking
the OK button: The background and text of the buttons (with the exception of the push
buttons) in BTNLOOK changes to reflect the new colors, but the background color and text
color of the rest of BTNLOOK's client area remain the same-black text on a white back
ground. It looks dreadful.

What happened? Simple-the button colors change because they are based on the
system colors you set in Control Panel, but BTNLOOK's client-area background remains
white because white is specified in the window class:

wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;

When BTNLOOK writes text to the display, it uses the text color and background color
defined in the default device context. These are always black and white, regardless of the
system colors set with Control Panel.

219

SECTION II: READING INPUT

Let's fix this problem. I discussed Windows' use of color in Chapter 5, but this prob
lem involves Windows "system colors."

System Colors

Windows maintains 19 system colors for painting various parts of the display. You can
obtain and set these colors using GetSysColor and SetSysColor. Identifiers defined in
WINDOWS.H specify the system color. Setting a system color with SetSysColor changes it
only for the current Windows session.

You can set system colors for future Windows sessions using the Windows Control
Panel program. You can also modify the {colors} section in the WIN.lNI file. The {colors}
section uses keywords for the 19 system colors (different from the GetSysColor and Set
SysColoridentifiers) followed by red, green, and blue values that can range from 0 to 255.
The following table shows how the 19 system colors are identified using the WINDOWS.H
identifiers for GetSysColorand SetSysColor, the WIN.lNI keywords, and the Control Panel
terms:

GetSysColor & SetSysColor WIN.INI Control Panel

COLOR_SCROLLBAR Scrollbar Scroll Bars

COLOR_BACKGROUND Background Desktop Background

COLOR_ACTIVECAPTION ActiveTitle Active Title Bar

COLOR_INACTIVECAPTION InactiveTitle Inactive Title Bar

COLOR_MENU Menu Menu Bar

COLOR_WINDOW Window Window Background

COLOR_WINDOWFRAME WindowFrame Window Frame

COLOR_MENUTEXT MenuText Menu Text

COLOR_WINDOWTEXT WindowText Window Text

COLOR_CAPTIONTEXT TitleText Title Bar Text

COLOR_ACTIVEBORDER ActiveBorder Active Border

COLOR_INACTIVEBORDER InactiveBorder Inactive Border

COLOR_APPWORKSPACE AppWorkspace Application Workspace

COLOR_HIGHLIGHT Highlight

COLOR_HIGHLIGHTTEXT Highligh tText

COLOR_BTNFACE ButtonFace

COLOR_BTNSHADOW ButtonShadow

tOLOR_GRAYTEXT GrayText

COLOR_BTNTEXT ButtonText

220

Chapter 6: Child Window Controls

Most of these are self-explanatory. COLOR_BACKGROUND is the color of the desk
top area behind all the windows. The COLOR_WINDOWFRAME color is the color used for
lines drawn between many of the sections of the display, such as between a menu and a
client area. The last six system colors cannot be changed from the Control Panel: The two
"Highlight" colors involve selected options in menus and list boxes. The last four system
colors determine the colors used in push buttons.

Default values for these 19 colors are provided by the display driver. Windows uses
these default values unless they are overriden by the feolors} section of WIN.lNI.

The Button Colors

COLOR_WINDOW and COLOR_WINDOWTEXT are used by many windows to color
themselves. The button controls (with the exception of push buttons) use COLOR_WIN
DOW to color the background behind the button. (For a group box, COLOR _WINDOW is
used only for the background behind the text.) The button controls use COLOR _WIN
DOWTEXT for text, for the box in a check box control, and for the round button in a
radio-button control. The outline of push buttons and group boxes is defined by using
COLOR_WINDOWFRAME.

You can use one of two methods to make your main window and the child window
control consistent in their use of colors. The first method is to use system colors for your
main window. To begin, you use COLOR_WINDOW for the background of your client area
when defining the window class:

wndclass.hbrBackground = COLOR_WINDOW + 1 ;

(Windows requires that you add 1 when you use these identifiers in your wndclass struc
ture, but doing so has no profound purpose other than to prevent the value from being 0.)
But that causes another problem. When you display text using TextOut, Windows uses
values defined in the device context for the text background color (which erases the back
ground behind the text) and the text color. The default values are white (background) and

. black (text) regardless of both the system colors and the hbrBackground field of the win
dow class structure. So you need to use SetTextColor and SetBkColor to change your text
and text background colors to the system colors. You do this after you obtain the handle to
a device context:

SetBkColor (hdc, GetSysColor (COLOR_WINDOW» ;
SetTextColor (hdc, GetSysColor (COLOR_WINDOWTEXT»

Now the client-area background, text background, and text color are all consistent with
button colors. That's the first method.

The second method is to force the child window controls to use the colors you want
to use. This method is a little more involved; it requires processing WM_CTLCOLOR
messages.

221

SECTION II: READING INPUT

The WM_CTLCOLOR Messages

WM_CTLCOLOR is a message that a predefined child window control sends to its parent
window procedure when the child window is about to paint its client area. The parent
window can use this opportunity to alter the colors that the child window procedure will
use for painting.

When the parent window procedure. receives a WM_CTLCOLOR message, the
wParam and IParam parameters have the following meaning:

wParam

LOWORD (/Param)

HIWORD (/Param)

Handle to child window's device context

Handle to child window

Type of window

The high word of IParam can be one of the following:

HIWORD (IParam) Type of Window

CTLCOLOR_MSGBOX Message box

CTLCOLOR_EDIT Edit control

CTLCOLOR_LISTBOX List box control

CTLCOLOR_BTN Button control

CTLCOLOR_DLG Dialog box

CTLCOLOR_SCROLLBAR Scroll bar control

CTLCOLOR_STATIC Static control

Right now, we're interested in CTLCOLOR_BTN, the WM_CTLCOLOR message from a but
ton control. When the parent window procedure gets this message, the child window con
trol has already obtained _ its device context. The handle to this device context is in
wParam. Any GDI (Graphics Device Interface) calls you make using this device context
will affect the painting that the child window does when you pass control back to the
child window.

You must perform three actions when processing a WM_CTLCOLOR message:

• Set a text color using SetTextColor.

• Set a background color using SetBkColor.

• Return a handle to a brush to the child window.

A "brush" is a GDI object that defines a bitmapped pattern of pixels. Windows uses
brushes to fill areas with color. You can get a handle to a brush using GetStoekOb
jeet, CreateSolidBrush, CreateHatehBrush, or Crea tePa tternBrush. For processing the
WM_CTLCOLOR message, you'll probably use CreateSolidBrush. Before your program ter
minates, you must explicitly delete any brushes you create. A good time to do this is while
processing the WM_DESTROY message.

222

Chapter 6: Child Window Controls

For most child window controls, the color you set in SetBkColorshould be the same as
the color of the brush you return from the WM_CTLCOLOR message. For instance, button
controls use the brush to color the background of the entire child window client area. The
text background color is used only for the background behind the text. These two colors
should be the same. To see how this works, let's take an example of processing a WM
_CTLCOLOR message for button controls where the window procedure simply sets the
normal default colors. During initialization (probably when processing a WM_CREATE
message), you can create a brush:

hBrush = CreateSolidBrush (GetSysColor (COLOR_WINDOW» ;

The hBrush brush handle should be stored in a static variable. Here's what the WM
_CTLCOLOR processing looks like:

case WM_CTLCOLOR :
if (HIWORD (lParam) == CTLCOLOR_BTN)

{

SetBkColor (wParam. GetSysColor (COLOR_WINDOW» ;
SetTextColor (wParam. GetSysColor (COLOR_WINDOWTEXT»

UnrealizeObject (hBrush) ;
point.x = point.y = 0 ;
ClientToScreen (hwnd. &point)
SetBrushOrg (wParam. point.x. point.y)

return «DWORD) hBrush) ;
}

break ;

Note that wParam is the device context handle of the button control. The four statements
that culminate in the SetBrushOrg call require some further explanation.

As noted earlier, a brush defines a bitmapped pattern of pixels. When Windows uses
this brush to fill an area with color, the pattern of the brush is repeated horizontally and
vertically until the area is filled. The origin of this brush-the place where Windows
assumes the repeating pattern begins-is the upper left corner of the client area associ
ated with the device context.

But if you color both the client area of a parent window and the client area of a child
window with this same brush, the pattern won't merge correctly at the edge of the child
window because Windows is using two different origins for the same brush. To avoid this
problem, you call UnrealizeObject. This function causes Windows to reset the origin of the
brush the next time it is selected into a device context (which will follow the return from
the WM_CTLCOLOR processing). The origin Windows will use is the one you set with
SetBrushOrg; in this example, the function sets the brush origin to the screen origin of the
parent windo~. (Don't use Un realize Object for a stock brush handle that you obtain from
GetStockObject, and don't worry if this sounds a bit obscure right now. We'll cover the
issues in more depth in Chapter 12.)

223

SECTION II: READING INPUT

The ~rush we created in our example is based on the system color COLOR_WIN
. DOW. If this color changes while the program is running, the window procedure receives

a WM_SYSCOLORCHANGE message. The program deletes the brush and creates a new
one:

case WM_SYSCOLORCHANGE :
DeleteObject (hBrush) :
hBrush ... CreateSol i dBrush. (GetSysCol or (COLOR_WINDOW» :
return 0 :

Finally, when the program is about to terminate, the brush should be deleted:

case WM_DESTROY :
DeleteObject (hBrush)
PostQuitMessage (0) :
return 0 :

I've shown here how you can reproduce the default processing of WM_CTLCOLOR
messages for button controls. Using your own colors is much the same. You would not need
to trap WM_SYSCOLORCHANGE messages unless you wanted to base the brush on a sys
tem color. We'll come back to WM_CTLCOLOR messages later in this chapter, when we use
the COLORSI program. For now, let's explore another class of child window controls.

THE STATIC CLASS
You create a static child window control using "static" as the window class in the
CreateWindow function. These are fairly benign child windows. They do not accept mouse
or keyboard input, and they do not" send WM_COMMAND m~ssages back to the parent
window. (When you move or click the mouse over a static child window, the child window
traps the WM_NCHITTEST message and returns a value of HTTRANSPARENT to Win
dows. This causes Windows to send the same WM_NCHITTEST message to the underlying
window, which is usually the parent. The parent usually passes the message to De!Win
dowProc, where it is converted into a client-area mouse message.)

The first six static window styles simply draw a rectangle or a frame in the client area
of the child window. The three "RECT" static styles Cleft column below) are filled-in rect
angles; the three "FRAME" styles (right column) are rectangular outlines that are not
filled in:

SS_BLACKRECT

SS_GRAYRECT

SS_WHITERECT

SS_BLACKFRAME

SS_GRAYFRAME

SS_WHITEFRAME

"BLACK," "GRAY," and "WHITE" do not mean the colors are black, gray, and white.
Rather, the colors are based on system colors as shown here:

224

Static Control

BLACK

GRAY

WHITE

System Color

COLOR _WINDOWFRAME

COLOR_BACKGROUND

COLOR _WINDOW

Chapter 6: Child Window Controls

Most display drivers define default settings of black for COLOR _WINDOWFRAME
and white for COLOR_WINDOW. (Of course, a user can change any of these colors using
the Control Panel program in Windows.) The colors used in the "RECT" and "FRAME"
static styles cannot be changed by trapping WM_CTLCOLOR messages. The window text
field of the CreateWindow call is ignored for these styles. The upper left corner of the rect
angle begins at the x position and y position coordinates relative to the parent window.

The static class also includes three text styles: SS_LEFT, SS_RIGHT, and SS_CEN
TER. These create left-justified, right-justified, and centered text. The text is given in the
window text parameter of the CreateWindow call, and it can be changed later using Set
WindowText. When the window procedure for static controls displays this text, it uses the
DrawTextfunction with DT_WORDBREAK, DT_NOCLIP, and DT_EXPANDTABS parame
ters. The text is wordwrapped within the rectangle of the child window. The background
of these three text-style child windows is normally COLOR_WINDOW, and the text itself is
COLOR_WINDOWTEXT. When you intercept WM_CTLCOLOR messages, you can change
the text color by calling SetTextColor and the background color by calling SetBkColor and
by returning the handle to the background brush.

Finally, the static class also includes the window styles SS_ICON and SS_USERITEM.
However, these have no meaning when used as child window controls. We'll look at them
again when discussing dialog boxes.

THE SCROLLBAR CLASS
When the subject of scroll bars first came up in Chapter 2 while I was designing the
SYSMETS series of programs, I discussed some of the differences between "window scroll
bars" and "scroll bar controls." SYSMETS uses window scroll bars, which appear at the
right and bottom of the window. You add window scroll bars to a window by including the
identifier WS_VSCROLL or WS_HSCROLL or both in the window style when creating the
window. Now we're ready to make some scroll bar controls, which are child windows that
can appear anywhere in the client area of the parent window. You create child window
scroll bar controls by using the predefined window class "scrollbar" and one of the two
scroll bar styles SBS_VERT and SBS_HORZ.

Unlike the button controls (and the edit and list box controls to be discussed later),
scroll bar controls do not send WM_COMMAND messages to the parent window. Instead,
they send WM_VSCROLL and WM_HSCROLL messages, just like window scroll bars. When

225

SECTION II: READING INPUT

processing the scroll bar messages, you can differentiate between window scroll bars and
scroll bar controls by the high word of the /Param parameter:

Scroll Bar Type

Window scroll bar

Scroll bar control

HIWORD (lParam)

o
Window handle of control

The wParam para~eter and the low word of /Param have the same meaning for window
scroll bars and scroll bar controls.

Although window scroll bars have a fixed width, Windows uses the full rectangle
dimensions given in the CreateWindowcall (or later in the MoveWindowcalD to size scroll
bar controls. You can make long, thin scroll bar controls or short, pudgy scroll bar controls.
If you want to create scroll bar controls that have the same dimensions as window scroll
bars, you can use· GetSystemMetrics to obtain the height of a horizontal scroll bar:

GetSystemMetrics (SM_CYHSCROll)

or the width of a vertical scroll bar:

GetSystemMetrics (SM_CXVSCROll)

(The scroll bar window style identifiers SBS_LEFTALIGN, SBS_RIGHTALIGN, SBS_TOP
ALIGN, and SBS_BOTTOMALIGN are documented to give standard dimensions to scroll
bars. However, these styles work only for scroll bars in dialog boxes.)

You can set the range and posi~ion of a scroll bar control with the same calls used for
window scroll bars:

SetScrollRange (hwndScroll, SB_CTl, nMin, nMax, bRedraw) :
SetScrollPos (hwndScroll, SB_CTl, nPos, bRedraw) :

The difference is that window scroll bars use a handle to the parent window as the first
parameter and SB_VERT or SB_HORZ as the second parameter.

The interior bar of the scroll bar is COLOR _SCROLLBAR. The thumb and arrow
colors are based on the push button colors. If you trap WM_CTLCOLOR messages, you can
return a brush from the message to override this color. Let's do it.

. The COLORS1 Program

To see some uses of scroll bars and static child windows-and also to explore color in
more depth-we'll use the COLORSI program, shown in Figure 6-3. COLORSI displays
three scroll bars in the left half of the client area labeled "Red," "Green," and "Blue." As
you scroll the scroll bars, the right half of the client area changes to the composite color in
dicated by the mix of the three primary colors. The numeric values of the three primary
colors are displayed under the three scroll bars.

226

Chapter 6: Child Window Controls

COLORS1.MAK

... -------- .. ~.-.---- ..
#COLORSl.MAKmake file
.. ~ ••• -~ ..••• -----~---.

colors1.exe : colors1.obj colorsl.def
link colorsl./align:16. NUL, Inod slibcew libw. colorsl
rc colorsl.exe .

Figure 6·3. The COLORSl program. (continued)

227

SECTION II: READING INPUT

(continued)

228

Chapter 6: Child Window Controls

SetScroll Range (hwndScrol(n], SB_CTL. 0, 255. FALSE)
SetScrollPos (hwndScrol(n]. SB_CTL. O. FALSE)
}

ShowWindow (hwnd. nCmdShow):
UpdateWindow (hwnd);

(continued)

229

SECTION II: READING INPUT

(continued)

230

i

;

Chapter 6: Child Window Controls

DeleteObject (GetClassWord (hwnd. GCW_HBRBACKGROUND» ;
SetClassWord (hwnd. GCW_HBRBACKGROUNO.

CreateSolidBrush (RGS (color[O]. color[l], color[2]»)

InvalidateRect (hwnd. NULL. TRUE) ;
return 0 ;

caseWM_CTLCOLOR :
if (HIWORD (lParam) == CTLCOLOR_SCROLLBAR)

(
SetBkColor (wParam.GetSysCo lor (COLOR_CAPTIONTEXl) ;
SetTextColor (wParam, GetSysCo lor (COLOR.;..WINDOWFRAME»

nFocus n;
break:

}
ret~fnCallWiridriwProc
}

231

SECTION II: READING INPUT

COLORS1 puts its children to work. The program uses 10 child window controls: 3
scroll bars, 6 windows of static text, and 1 static rectangle. COLORS1 traps WM_CTLCOLOR
messages to color the interior sections of the three scroll bars red, green, and blue. You can
scroll the scroll bars using either the mouse or the keyboard. You can use COLORS1 as a de
velopment tool in experimenting with color and choosing attractive (or, if you prefer, ugly)
colors for your own Windows programs. A monochrome version of the COLORS1 display is
shown in Figure 6-4; obviously, to take advantage of the program's manipulation of color,
you'll need to use a color monitor.

COLORS1 doesn't process WM_PAINT messages, and the program obtains a device
context handle only for determining the height of a character. Most of the work in
COLORS1 is done by the child windows.

The color shown on the right half of the client area is actually the background color
of the parent window. A static child window with style SS_WHITERECT blocks out the left
half of the client area. The three scroll bars are child window controls with the style
SBS_VERT placed on top of the SS_WHITERECT child. Six more static child windows of
style SS_CENTER (centered text) provide the labels and the color values. COLORS1 creates
its normal overlapped window and the ten child windows within the WinMain function
using CreateWindow. The SS_WHITERECT and SS_CENTER static windows use the win
dow class "static," and the three scroll bars use the window class "scrollbar."

232

Chapter 6: Child Window Controls

Red Green Blue

o 129 255

Proallm Mmoger

Figure 6·4. A monochrome version o/the COLORSl display.

The x position, y position, width, and height parameters of the CreateWindow call
are initially set to ° because the position and sizing depend on the size of the client area,
which is not yet known. COLORSl's window procedure resizes all ten child windows using
MoveWindowwhen it receives a WM_SIZE message. So whenever you resize the COLORS1
window, the size of the scroll bars changes proportionally.

When the WndProc window procedure receives a WM_VSCROLL message, the high
word of the iParam parameter is the handle to the child window. We can use GetWindow
Word to get the window ID number:

n = GetWindowWord (HIWORD (lParam). GWW_ID) ;

For the three scroll bars, we have conveniently set the ID numbers to 0, 1, and 2, so
WndProc can tell which scroll bar is generating the message.

Because the handles to t~e child windows were saved in arrays when the windows
were created, WndProc can process the scroll bar message and set the new value of the
appropriate scroll bar using the SetScroliPos call:

SetScrollPos (hwndScrol[n]. SB_eTl. color[n]. TRUE) ;

WndProc also changes the text of the child window at the bottom of the scroll bar:

SetWindowText (hwndValue[n]. itoa (color[n]. szbuffer. 10» ;

233

SECTION II: READING INPUT

The Automatic Keyboard Interface

Scroll bar controls can also process keystrokes, but only if they have the input focus. The
following table shows how keyboard cursor keys translate into scroll bar messages:

Cursor Key

Home

End
Page Up

Page Down

Left or Up

Right or Down

Scroll Bar Message wParam Value

SB_TOP

SB_BOTTOM

SB_PAGEUP

SB_PAGEDOWN

SB_LINEUP

SB _LINEDOWN

In fact, the SB_TOP and SB_BOTTOM scroll bar messages can be generated only by using
the keyboard. If you want a scroll bar control to obtain the input focus when the scroll bar
is clicked with the mouse, you must include the WS_TABSTOP identifier in the window
class parameter of the CreateWindow call. When a scroll bar has the input focus, a blinking
gray block is displayed on the scroll bar thumb.

To provide a full keyboard interface to the scroll bars, however, some more work is
necessary. First, the WndProc window procedure must specifically give a scroll bar the
input focus. It does this by processing the WM_SETFOCUS message, which the parent
window receives when it obtains the input focus. WndProc simply sets the input focus to
one of the scroll bars:

SetFocus(hwndScrol[nFocus])

But you also need some way to get from one scroll bar to another by using the key
board, preferably by using the Tab key. This is more difficult, because once a scroll bar has
the input focus, it processes all keystrokes. But the scroll bar cares only about the cursor
keys; it ignores the Tab key. The way out of this dilemma lies in a technique called
"window subclassing." We'll use it to add a facility to COLORS! to jump from one scroll bar
to another using the Tab key.

Windo'w Subclassing

The window procedure for the scroll bar controls is somewhere inside Windows. However,
you can obtain the address of this window procedure by a call to Get WindowLong using
the GWL_WNDPROC "identifier as a parameter. Moreover, you can set a new window pro
cedure for the scroll bars by calling SetWindowLong. This technique, called "window
subclassing," is very powerful. It lets you hook into existing window procedures, process
some messages within your own program, and pass all other messages to the old window
procedure.

234

Chapter 6: Child Window Controls

The window procedure that does preliminary scroll bar message processing in
COLORSl is called Sc roll Pro c; it is toward the end of the COLORSl.C listing. Because
ScrollProc is a function within COLORSl that is called by Windows, it must be defined as
FAR PASCAL and must be listed under EXPORTS in the COLORSl.DEF module definition
file.

First, to ensure that ScrollProc accesses the proper data segment, COLORSl must
obtain a far address for the function using MakeProclnstance:

lpfnScrollProc = MakeProcInstance ((FARPROC) ScrollProc, hInstance);

For each of the three scroll bars, COLORSl uses GetWindowLong to obtain and save the
address of the existing scroll bar window procedure:

lpfnOldScr[n] = (FARPROC) GetWindowLong (hwndScrol[n], GWL_WNDPROC) ;

Next, the program sets the new scroll bar window procedure:

SetWindowLong (hwndScrol[n], GWL_WNDPROC, (LONG) lpfnScrollProc)

Now the function ScrollProc gets all messages that Windows sends to the scroll bar
window procedure for the three scroll bars in COLORSl (but not, of course, for scroll bars
in other programs). The ScrollProc window procedure simply changes the input focus to
the next (or previous) scroll bar when it receives a Tab or Shift-Tab keystroke. It calls the
old scroll bar window procedure using CallWindowProc.

Coloring the Background

When COLORSl defines its window class, it gives the background of its client area a solid
black brush:

wndclass.hbrBackground = CreateSolidBrush (OL) ;

When you change the settings of COLORSl's scroll bars, the program must create a new
brush and put the new brush handle in the window class structure. Just as we were able to
get and set the scroll bar window procedure using GetWindowLong and SetWindowLong,
we can get and set the handle to this brush using GetClassWord and SetClassWord.

First you must delete the existing brush:

DeleteObject (GetClassWord (hwnd, GCW_HBRBACKGROUND» ;

Then you can create the new brush and insert the handle in the window class structure:

SetClassWord (hwnd, GCW_HBRBACKGROUND,
CreateSolidBrush (RGB (color[O], color[l], color[2]») ;

The next time Windows recolors the background of the window, Windows will use this
new brush. To force Windows to erase the background, we invalidate the entire client area:

InvalidateRect (hwnd, NULL, TRUE) ;

235

SECTION II: READING INPUT

The TRUE (nonzero) value as the third parameter indicates that we want the background
erased before repainting.

InvalidateRect causes Windows to put a WM_PAINT message in the message queue
of the window procedure. Because WM_PAINT messages are low priority, this message
will not be processed immediately if you are still moving the scroll bar with the mouse or
the cursor keys. Alternatively, if you want the window to be updated immediately after the
color is changed, you can add the statement:

UpdateWindow (hwnd) ;

after the InvalidateRect call. But this slows down keyboard and mouse processing.
COLORSl's ,WndProc function doesn't process the WM_PAINT message but passes it

to DefWindo wProc. Window's default processing ofWM_PAINT messages simply involves
calling BeginPaint and EndPaint to validate the window. Because we specified in the In
validateRect call that the background should be erased, the BeginPaint call causes Win
dows to generate a WM_ERASEBKGND (erase background) message. WndProc ignores
this message also. Windows processes it by erasing the background of the client area using
the brush specified in the window class.

Normally, Windows would erase the entire client area using the window class brush.
Doing so would erase the 10 child windows, however, and Windows would then have to
send WM_PAINT messages to all the child windows so they could repaint themselves
very annoying. We avoid the problem by using the WS_CLIPCHILDREN style value when
first creating the parent window using CreateWindow; this style prevents the parent win
dow from painting over its children. Take the WS_CLIPCHILDREN style out of CreateWin
dow, and you'll see a big difference in how COLORS1 works.

Like all GDI objects, the brushes created by a program using CreateSolidBrush are
not automatically deleted by Windows when the program terminates. We've been good
about deleting each brush before creating a new one, but when the program is about to ter
minate, one last brush in the window class still should be discarded. Thus, during process
ing of the WM_DESTROY message, DeleteObject is called once more:

DeleteObject (GetClassWord (hwnd, GCW_HBRBACKGROUND» ;

Coloring the Scroll Bars

On a color display, the interiors of the three scroll bars in COLORS1 are red, green, and
blue. This coloring is accomplished by processing WM_CTLCOLOR messages.

In WndProc we define a static array of three handles to brushes:

static HBRUSH hBrush [3] ;

During processing of WM_CREATE, we create the three brushes:

hBrush[O] = CreateSolidBrush (RGB (255, 0, 0»
hBrush[l] = CreateSolidBrush (RGB (0, 255, 0»
hBrush[2] = CreateSolidBrush (RGB (0, 0, 255»

236

Chapter 6: Child Window Controls

During the WM_CTLCOLOR processing, the text and text background colors are set to the
normal values for scroll bars. The brush that's returned from this message is one of the
three brushes created earlier:

case WM_CTLCOLOR :
if (HIWORD (lParam) == CTLCOLOR_SCROLLBAR)

{

SetBkColor (wParam, GetSysColor (COLOR_CAPTIONTEXT» ;
SetTextColor (wParam, GetSysColor (COLOR_WINDOWFRAME»

n = GetWindowWord (LOWORD (lParam), GWW_ID) ;
point.x = point.y = 0 ;
ClientToScreen (hwnd, &point)
UnrealizeObject (hBrush[n]) ;
SetBrushOrg (wParam, point.x, point.y)

return «DWORD) hBrush[n]) ;
}

break ;

These brushes must be destroyed during processing of the WM_DESTROY message:

for (n = 0 ; n < 3 ; DeleteObject (hBrush [n++]» ;

Dealing with Multiple Instances

Normally, Windows programs reuse the same window class when you load multiple in
stances of the program. The window class is registered only if the previous instance
is NULL:

if (!hPrevInstance)
{
wndclass.style = CS_HREDRAW CS_VREDRAW
[more program lines]

But COLORS! can't do this, because the background color is specified in the window class.
If all instances of COLORS! used the same window class, then "each instance would use
(and change) the same background color. We can avoid this problem entirely by allowing
only one instance of COLORS! to run:

if (hPrevInstance)
return FALSE ;

COLORS1 as an Icon

When you make COLORS! into an icon, the entire surface of the icon -rather than only the
right half-is the color of the parent window's background. Yet COLORS! doesn't seem to
have any separate icon logic.

237

SECTION II: READING INPUT

You'll note that COLORS1 specifies a NULL icon in the window class:

wndclass.hIcon = NULL ';

This indicates that COLORS1 is responsible for painting its icon. The entire icon appears as
the background color because Windows hides child windows when a program becomes an
icon, and thus the colored background is completely uncovered.

THE EDIT CLASS
The edit class is in some ways the simplest predefined window class and in other ways the
most complex. When you create a child window using the class name "edit," you define a
rectangle based on the x position, y position, width, and height parameters of the
CreateWindow call. This rectangle contains editable text. When the child window control
has the input focus, you can type text, move the cursor around, select portions of text using
either the mouse or the Shift key and a cursor key, delete selected text to the clipboard by
pressing Shift-Del, or insert text from the clipboard by pressing Shift-Ins.

One of the simplest uses of edit controls is for single-line entry fields. For instance,
the Windows PIF Editor program uses edit controls in this way on its main window. But
edit controls are not limited to single lines. For example, the Windows Notepad program
uses a multiline edit control. The file size of the Notepad program is surprisingly small
less than 32 KB. Most of the editing logic is not in Notepad at all; it's in the edit control logic
within Windows.

To give you an idea of the power of edit controls, we'll write a "Notepad clone" pro
gram called POPPAD1. We'll begin the program in this chapter and continue it in Chapters
9 (when we'll add a menu) and 10 (when we'll use dialog boxes to load and save files).
POPPAD1 is shown in Figure 6-5.

POPPAD1.MAK

IF>"~" ~.;~ ~. ~ .. ~~~ .~. ~ .. / ~~.;
IfPOPPADl.MAKrnakeffle
Ih~~~""~~+ -----------

poppadliexe : <poppacil ~obj poppadl.def
li hkpoppadl./a15gn: 16.
r¢poppadl;exe

p6ppadL obj(poppadL c
c1 .. c .••• ··.~Gswi+Ow·····.·W2

Figure 6·5. The POPPADl program.

238

Chapter 6: Child Window Controls

POPPAD1.C

/*----- ..•.. --- -----------~------ ------~------
POPPAD1~C -- Popup Editor Using Child Window Edit Box

(c) Charles Petzold. 1990
~---.~ -------~----~-.-~---...... --~----.- .. -.. ---.-*/

(continued)

239

SECTION II: READING INPUT

240

Chapter 6: Child Window Controls

POPPAD1.DEF

..... __ ... -- ----.
:POPPAD1.DEF module definition file
....................................... _----_ -
NAME

OESCRI PTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

POPPAD1

'Popup Editor Version 1 (c) Charles Petzold. 1990'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE DISCAROABLE
PRELOAD MOVEABLE MULTIPLE
1024
8192
WndProc

POPPAD1 is a multiline editor (without any file I/O just yet) in less than 100 lines of
C. As you can see, POPPADI itself doesn't do very much. The predefined edit control is
doing quite a lot. In this form, the program lets you explore what edit controls can do with
out any help from a program.

The Edit Class Styles

As noted earlier, you create an edit control using "edit" as the window class in the
CreateWindowcali. The window style is WS_CHILD plus several options. As in static child
window controls, the text in edit controls can be either left-justified, right-justified, or
centered. You specify this formatting with the window styles ES_LEFT, ES_RIGHT, and
ES_CENTER.

By default, an edit control has a single line. You can create a multiline edit control
with the window style ES_MULTILINE. For a single-line edit control, you can normally en
ter text only to the end of the edit control rectangle. To create an edit control that automati
cally scrolls horizontally, you use the style ES_AUTOHSCROLL. For a multiline edit control,
text wordwraps unless you use the ES_AUTOHSCROLL style, in which case you must press
the Enter key to start a new line. You can also include vertical scrolling in a multiline edit
control by using the style ES _AUTOVSCROLL.

When you include these scrolling styles in multiline edit controls, you might also
want to add scroll bars to the edit control. You do so by using the same window style iden
tifiers as for nonchild windows: WS_HSCROLL and WS_ VSCROLL.

By default, an edit control has no border. You can add one by using the style
WS_BORDER.

When you select text in an edit control, Windows displays it in reverse video. When
the edit control loses the input focus, however, the selected text is no longer highlighted. If

241

SECTION II: READING INPUT

you want the selection to be highlighted even when the edit control does not have the
input focus, you can use the style ES _NOHIDESEL.

When POPPADI creates its edit control, the style is given in the CreateWindow
call as:

WS_CHILD : WS_VISIBLE : WS_HSCROLL : WS_VSCROLL
WS_BORDER : ES_LEFT : ES_MULTILINE :
ES_AUTOHSCROLL : ES_AUTOVSCROLL

In POPPADI the dimensions of the edit control are later defined by a call to MoveWindow
when WndProc receives a WM_SIZE message. The size of the edit control is simply set to
the size of the main window:

MoveWindow (hwndEdit. 0, 0, LOWORD (lParam),
HIWORD (lParam), TRUE)

For a single-line edit control, the height of the control must accommodate the height of a
character. If the edit control has a border (as most do), use IYz times the height of a char
acter (including external leading).

Edit Control Notification

Edit controls send WM_COMMAND messages to the parent window procedure. The
meanings of the wParam and IParam variables are the same as for button controls:

Parameter

wParam

LOWORD (/Param)

HIWORD (/Param)

Description

Child window ID

Child window handle

Notification code

The notification codes are shown below:

EN _SET FOCUS

EN _KILLFOCUS

EN_CHANGE

EN_UPDATE

EN _ERRSPACE

EN_MAXTEXT

EN_HSCROLL

EN_VSCROLL

Edit control has gained the input focus

Edit control has lost the input focus

Edit control's contents will change

Edit control's contents have changed

Edit control has run out of space

Edit control has run out of space on insertion

Edit control's horizontal scroll bar has been clicked

Edit control's vertical scroll bar has been clicked

POPPADI traps only EN _ERRSPACE notification codes and displays a message box.

242

Chapter 6: Child Window Controls

The edit control stores text in the local heap of its parent window's program. The
contents of an edit control are limited to about 32 KB. You'll note that POPPADI reserves
only 1 KB of space for its local heap in the module definition file. As we'll see in Chapter 7,
this is not a problem. Windows will expand the program's local heap if an edit control
needs more space.

Using the Edit Controls

If you use several single-line edit controls on the surface of your main window (as PIFEDIT
does), you'll need to use window subclassing to move the input focus from one control to
another. You can accomplish this much as COLORSI does, by intercepting Tab and Shift
Tab keystrokes. (Another example of window subclassing is shown later in this chapter in
the HEAD program.) How you handle the Enter key is up to you. You can use it the same
way as the Tab key or as a signal to your program that all the edit fields are ready.

If you want to insert text into an edit field, you can do so using Set Win do w Text. Get
ting text out of an edit control involves GetWindowTextLength and GetWindowText. We'll
see examples of these facilities in our later revisions to the POPPADI program.

Messages to an Edit Control

We won't cover all the messages you can send to an edit control using Send Message,
because there are quite a few of them, and several will be used in the later POPPADI revi
sions. Here's a broad overview.

These messages let you cut, copy, or clear the current selection. A user selects the
text to be acted upon by using the mouse or the Shift key and a cursor key, thus highlight
ing the selected text in the edit control.

SendMessage (hwndEdit, WM_CUT, 0, Ol) ;
SendMessage (hwndEdit, WM_COPY, 0, Ol) ;
SendMessage (hwndEdit, WM_ClEAR, 0, Ol) ;

WM_CUT removes the current selection from the edit control and sends it to the clipboard.
WM_COPY copies the selection to the clipboard but leaves it intact in the edit control.
WM_CLEAR deletes the selection from the edit control without passing it to the clipboard.

You can also insert clipboard text into the edit control at the cursor position:

SendMessage (hwndEdit, WM_PASTE, 0, Ol) ;

You can obtain the starting and ending positions of the current selection:

lSelect = SendMessage (hwndEdit, EM_GETSEl, 0, Ol) ;

The low word of ISelect has the starting position. The high word has the end pOSition plus 1.

243

SECTION II: READING INPUT

You can select text:

SendMessage (hwndEdit, EM_SETSEl, 0, MAKE lONG (wBegin, wEnd))
~

You can also replace a current selection with other text:

SendMessage (hwndEdit, EM_REPlACESEl, 0, (lONG) lpszString)

For multiline edit controls, you can obtain the number of lines:

nCount = SendMessage (hwndEdit, EM_GETlINECOUNT, 0, Ol) ;

For any particular line, you can obtain an offset from the beginning of the edit buffer text:

nOffset = SendMessage (hwndEdit, EM_lINEINDEX, wline, Ol) ;

Lines are numbered starting at O. A wLine value of -1 returns the offset of the line con
taining the cursor. You obtain the length of the line from:

nOffset = SendMessage (hwndEdit, EM_lINElENGTH, wline, Ol) ;

and copy the line itself into a buffer using:

nlength = SendMessage (hwndEdit, EM_GETlINE, wline, lpszBuffer)

THE LISTBOX CLASS
The final predefined child window control I'll discuss in this chapter is the list box. (The
combo box is a combination of a list box and an edit field.) A list box is a collection of text
strings displayed as a scrollable columnar list within a rectangle. A program can add or re
move strings in the list by sending messages to the list box window procedure. The list box
control sends WM_COMMAND messages to its parent window when an item in the list is
selected. The parent window can then determine which item has been selected.

List boxes are most commonly used in dialog boxes called up by selecting Open from
the File menu. The list box displays files in the current directory and can also display other
subdirectories and disk drives. List boxes are also used in the CONTROL program for
changing colors and in WRITE for selecting fonts. A list box can be either single selection
or multiple selection. The latter allows the user to select more than one item from the list
box. When a list box has the input focus, it displays a dashed line surrounding an item in
the list box. This cursor does not indicate the selected item in the list box. The selected
item is indicated by highlighting, which displays the item in reverse video.

In a single-selection list box, the user can select the item that the cursor is positioned
on by pressing the Spacebar. The arrow keys move both the cursor and the current selec
tion and can scroll contents of the list box. The Page Up and Page Down keys also scroll the
list box by moving the cursor but not the selection. Pressing a letter key moves the cursor

244

Chapter 6: Child Window Controls

and the selection to the first (or next) item that begins with that letter. An item can also be
selected by clicking or double-clicking the mouse on the item.

In a multiple-selection list box, the Spacebar toggles the selection state of the item
where the cursor is positioned. (If the item is already selected, it is deselected.) The arrow
keys deselect all previously selected items and move the cursor and selection just as in
single-selection list boxes. However, the Ctr! key and the arrow keys can move the cursor
without moving the selection. The Shift key and arrow keys can extend a selection.

Clicking or double-clicking an item in a multiple-selection list box deselects all pre
viously selected items and selects the clicked item. However, clicking an item while press
ing the Shift key toggles the selection state of the item without changing the selection state
of any other item.

List Box Styles

You create a list box child window control with CreateWindow using "listbox" as the win
dow class and WS_CHILD as the window style. However, this default list box style does not
send WM ... :COMMAND messages to its parent, meaning that a program would have to in
terrogate the list box (via messages to the list box controls) regarding the selection of items
within the list box. Therefore, list box controls almost always include the list box style
identifier LBS_NOTIFY, which allows the parent window to receive WM_COMMAND
messages from the list box. If you want the list box control to sort the items in the list box,
you can also use LBS_SORT, another common style.

By default, list boxes are single selection. Multiple-selection list boxes are relatively
rare. If you want to create one, you use the style LBS_MULTIPLESEL.

Normally, a list box updates itself when a new item is added to the scroll box list. You
can prevent this by including the style LBS_NOREDRAW. You will probably not want to
use this style, however. Instead, you can temporarily prevent repainting of a list box con
trol by using the WM_SETREDRAW message that I'll describe a little later.

By default, the list box window procedure displays only the list of items without any
border around it. You can add a border with the window style identifier WS_BORDER. And
to add a vertical scroll bar for scrolling through the list with the mouse, you use the window
style identifier WS_ VSCROLL.

WINDOWS.H defines a list box style called LBS_STANDARD that includes the most
commonly used styles. It is defined as:

(LBS_NOTIFY : LBS_SORT : WS_VSCROLL : WS_BORDER)

You can also use the WS_SIZEBOX and WS_CAPTION identifiers, but these will allow the
user to resize the list box and to move it around its parent's client area.

The width of a list box should accommodate the width of the longest string plus the
width of the scroll bar. You can get the width of the vertical scroll bar using:

GetSystemMetrics (SM_CXVSCROLL) ;

245

SECTION II: READING INPUT

You can calculate the height of the list box by multiplying the height of a character by the
number of items you want to appear in view. A list box does not use tmExternalLeading
when spacing lines of text.

Putting Strings in the List Box

After you've created the list box, the next step is to put text strings in it. You do this by
sending messages to the list box window procedure using the Send Message call. The text
strings are generally referenced by an index number that starts at 0 for the topmost item. In
the examples that follow, hwndList is the handle to the child window list box control, and
wlndex is the index value.

In cases where you pass a text string in the Send Message call, the IParam parameter is
a far pointer to a null-terminated string. To avoid error messages during compilation, cast
this pointer to a LONG. Note that when you cast a near pointer to a LONG, the C compiler
will first cast the near pointer to a far pointer.

In most of these examples, the Send Message call returns LB_ERRSPACE (defined as
-2) if the window procedure runs out of available memory space to store the contents of
the list box. Send Message returns LB_ERR (-1) if an error occurs for other reasons and
LB_OKAY (0) if the operation is successful. You can test Send Message for a nonzero value
to detect either of the two errors. The list box allocates global memory (outside your pro
gram's data segment) for the list box contents.

If you use the LBS_SORT style (or if you are placing strings in the list box in the order
that you want them to appear), then the easiest way to fill up a list box is with the LB
~DDSTRING message:

SendMessage (hwndList, LB_ADDSTRING, 0, (LONG) szString) ;

If you do not use LBS _SORT, you can insert strings into your list box by specifying an index
value with LB_INSERTSTRING:

SendMessage (hwndList, LB_INSERTSTRING, wlndex, (LONG) szString) ;

For instance, if wlndex is equal to 4, szString becomes the new string with an index value
of 4-the fifth string from the top because counting starts at O. Any strings below this point
are pushed down. A wlndexvalue of -1 adds the string to the bottom. You can use LB_IN
SERTSTRING with list boxes that have the LBS_SORT style, but the list box contents will
not be re-sorted. (You can also insert stri'ngs into a list box using the LB _DIR message,
which is discussed in detail toward the end of this chapter.)

You can delete a string from the list box by specifying the index value with the
LB_DELETESTRING message:

SendMessage (hwndList, LB_DELETESTRING, wlndex, OL)

You can clear out the list box using LB_RESETCONTENT:

SendMessage (hwndList, LB_RESETCONTENT, 0, OL) ;

246

Chapter 6: Child Window Controls

The list box window procedure updates the display when an item is added to or de
leted from the list box. If you have a number of strings to add or delete, you may want to
temporarily inhibit this action by turning off the control's redraw flag:

SendMessage (hwndList, WM_SETREDRAW, FALSE, OL) ;

After you've finished, you can turn the redraw flag back on:

SendMessage (hwndList, WM_SETREDRAW, TRUE, OL) ;

A list box created with the LBS_NOREDRAW style begins with the redraw flag turned off.

Selecting and Extracting Entries

The SendMessage calls that carry out the tasks shown below usually return a value. If an
error occurs, this value is set to LB_ERR (defined as -1). Note that the return value from
SendMessage is normally· a signed long (LONG), but the values are unsigne<:I integers
(WORD), so some casting is necessary.

After you've put some items into a list box, you can find out how many items are in
the list box:

nCount = (WORD) SendMessage (hwndList, LB_GETCOUNT, 0, OL) ;

Some of the other calls are different for single-selection and multiple-selection list
boxes. Let's first look at single-selection list boxes.

Normally, you'll let a user select from a list box. But if you want to highlight a default
selection, you can use:

SendMessage (hwndList, LB_SETCURSEL, nIndex, OL) ;

Setting /Param to -1 in this call deselects all items. Il
You can also select an item based on its initial characters:

nIndex = (WORD) SendMessage (hwndList, LB_SELECTSTRING, wIndex,
(LONG) szSearchString) ;

The wlndex given as the wParam parameter to the Send Message call is the index following
which the search begins for an item with initial characters that match szSearchString. A
wlndex value of -1 starts the search from the top. Send Message returns the index of the
selected item, or LB_ERR if no initial characters match szSearchString.

When you get a WM_COMMAND message from the list box (or at any other time),
you can determine the index of the current selection using LB_SJETCURSEL:

nIndex = (WORD) SendMessage (hwndList, LB_GETCURSEL, 0, OL) ;

The nlndexvalue returned from the call is LB_ERR if no item is selected.
You can determine the length of any string in the list box:

nLength = (WORD) SendMessage (hwndList, LB_GETTEXTLEN, nIndex, OL)

247

SECTION II: READING INPUT

and copy the item into the text buffer:

nLength = (WORD) SendMessage (hwndList. LB_GETTEXT. nIndex.
(LONG) szBuffer) ;

In both cases, the nLength value returned from the call is the length of the string. The
szBujJer array must be large enough for the length of the string and a terminating NULL.
You may want to use LB_GETTEXTLEN to first allocate some local memory to hold the
string (which you'll learn how to do in Chapter 8).

For a multiple-selection list box, you cannot use LB_SETCURSEL, LB_GETCURSEL,
or LB_SELECTSTRING. Instead, you use LB_SETSEL to set the selection state of a particu
lar item without affecting other items that may also be selected:

SendMessage (hwndList, LB_SETSEL, wParam, (LONG) wIndex) ;

The wParam parameter is nonzero to select and highlight the item and 0 to deselect it. If
the IParam parameter is -1, all items are either selected or deselected. You can also deter
mine the selection state of a particular item using:

wSelect = (WORD) SendMessage (hwndList, LB_GETSEL, wIndex, OL) ;

where wSelect is set to nonzero if the item indexed by wlndex is selected and 0 if it is not.

Receiving Messages from List Boxes

When a user clicks on a list box with the mouse, the list box receives the input focus. A
parent window can give the input focus to a list box control by using:

SetFocus (hwndList) ;

When a list box has the input focus, the cursor movement keys, letter keys, and Spacebar
can also be used to select items from the list box.

A list box control sends WM_COMMAND messages to its parent. The meanings of
the wParam and IParam variables are the same as for the button and edit controls:

wParam

LOWORD (/Param)

HIWORD (/Param)

Child window ID

Child window handle

Notification code

The notification codes and their values are as follows:

LBN _ERRSPACE -2

LBN _SELCHANGE 1

LBN_DBLCLK 2

LBN _SELCANCEL 3
LBN _SETFOCUS 4

LBN _KILLFOCUS 5

248

Chapter 6: Child Window Controls

The list box control sends the parent window LBN _SELCHANGE and LBN _DBLCLK codes
only if the list box window style includes LBS_NOTIFY.

The LBN _ERRSPACE code indicates that the list box control has run out of space. The
LBN _SELCHANGE code indicates that the current selection has changed; these messages
occur as the user moves the highlight through the list box, toggles the selection state with
the Spacebar, or clicks an item with the mouse. The LBN _DBLCLK code indicates that a list
box item has been double-clicked with the mouse. (The notification code values for
LBN _SELCHANGE and LBN _DBLCLK refer to the number of mouse clicks.)

Depending on your application, you may want to use either LBN _SELCHANGE or
LBN _DBLCLK messages or both. Your program will get many LBN _SELCHANGE mes
sages, but LBN _DBLCLK messages occur only when the user double-clicks with the mouse.
If your program uses double-clicks, you'll need t~ provide a keyboard interface that dupli
cates LBN _DBLCLK.

A Simple List Box Application

Now that you know how to create a list box, fill it with text items, receive messages from
the list box, and extract strings, it's time to program an application. The ENVIRON pro
gram, shown in Figure 6-6, uses a list box in its client area to display the name of your cur
rent MS-DOS environment variables (such as PATH, COMSPEC, and PROMPT). As you
select a variable, the name and the environment string are displayed across the top of the
client area.

ENVIRON.MAK

......•...••..... _ ... _-
ENVIRON.MAKmake file
#-----------------------

environ.exe : environ.obj environ.def
link environ. ialign:16. NUL. Inod slibcew libw. environ
rc environ,exe

env;ron.obj : environ.c
cl -c -Gsw -Ow -W2 • Zp envi ron. C

ENVIRON.C

I*·~~-··-~···-----·-······~--··~--------·-
ENVIRON.C-~Environment List Box

(c) Charles Petzold. 1990
•• - ~ -.• --:-- -•.• --....... -. --~ ... ~ -:- * I

Figure 6·6. The ENVIRON program. (continued)

249

SECTION II: READING INPUT

(continued)

250

Chapter 6: Child Window Controls

long FAR PASCAL WndProc (HWNDhwnd, WORD message. WORDwParam, LONG lParam)
{
static char szBuffer [MAXENV + 1]
static HWND hwndList. hwndText
HDC hdc :
TEXTMETRIC tm:
WORD n :

switch (message)
{
case WM_CREATE

hdc = GetDC (hwnd) ;
GetTextMetrics (hdc;&tm)
ReleaseDC (hwnd. hdc);

(continued)

251

SECTION II: READING INPUT

ENVIRON creates two child windows: a list box with the style LBS_STANDARD
and a static window with the style SS_LEFT Cleft-justified text). ENVIRON uses the envi
ron variable (declared external in STDLIB.H) to obtain the list of environment strings, and
it uses the message LB_ADDSTRING to direct the list box window procedure to place each
string in the list box. .

252

Chapter 6: Child Window Controls

When you run ENVIRON, you can select an environment variable using the mouse or
the keyboard. Each time you change the selection, the list box sends a WM_COMMAND
message to the parent window, which is WndProc. When WndProc receives a WM_COM
MAND message, it checks to see if wParam is 1 (the child ID of the list box) and if the high
word of /Param (the notification code) is equal to LBN _SELCHANGE. If so, it obtains the
index of the selection using the LB_GETCURSEL message and the text itself-the environ
ment variable name-using LB_GETTEXT. ENVIRON uses the C function getenvto obtain
the environment string corresponding to that variable and SetWindowText to pass this
string to the static child window control, which displays the text.

Note that ENVIRON cannot use the index returned from LB_GETCURSEL to index
the environ variable and obtain the environment string. Because the list box has an
LBS_SORT style (included in LBS_STANDARD), the indices no longer match.

Listing Files

I've been saving the best for last: LB_DIR, the most powerful list box message. This fills the
list box with a file directory list, optionally including subdirectories and valid disk drives:

SendMessage (hwndList. LB_DIR. wAttr. (LONG) lpszFileSpec) :

Using file attribute codes
The wAttr parameter is a file attribl!te code. The least significant byte is the normal file
attribute code when making MS-DOS function calls:

wAttr Attribute

OxOOOO Normal file

OxOOOl Read-only file

OxOOO2 Hidden file

OxOOO4 System file

OxOOlO Subdirectory

OxOO20 File with archive bit set

The high byte provides some additional control over the items desired:

wAttr

Ox4000

Ox8000

Option

Include drive letters

Exclusive search only

When the wAttr value of the LB_DIR message is OxOOOO, the list box lists normal
files, read-only files, and files with the archive bit set. This is consistent with the logic used
by MS-DOS function calls to find files. When the value is OxOOlO, the list includes child

253

SECTION II: READING INPUT

subdirectories in addition to these files; this list is the equivalent of that displayed by the
Directory command or by Windows' File Manager. A value of Ox4010 expands the OxOOlO
list to include all valid drives; for many Windows programs, this is the list in the dialog box
called up by selecting Open from the program's File menu. To list all files, child subdirec
tories, and drives, you set the wAttrvalue to Ox4037.

Setting the topmost bit of wAttr lists the files with the indicated flag while excluding
normal files. For a Windows file backup program, for instance, you might want to list only
files that have been modified since the last backup. Such files have their archive bits set, so
you would use Ox8020. A value of Ox8010 lists only subdirectories; OxCOOO, only valid disk
drives; and OxCOlO, subdirectories and valid disk drives but no files.

Ordering file lists
The IParam parameter is a far pointer to a file specification string such as "*.*". This file
specification does not affect the subdirectories that the list box includes.

You'll want to use the LBS_SORT message for list boxes with file lists. The list box
will first lis't files satisfying the file specification and then (optionally) list valid disk drives
in the form:

[-A-]

and (also optionally) subdirectory names. The first subdirectory listing will take the form:

[..]
This "double-dot" subdirectory entry lets the user back up one level toward the root direc
tory. (The entry will not appear if you're listing files in the root directory.) Finally, the
specific subdirectory names are listed in the form:

[SUBDIR]

If you do not use LBS_SORT, the filenames and subdirectory names are intermixed and the
drive letters appear at the bottom of the list box.

A head for Windows

A well-known UNIX utility called head displays the beginning lines of a file. Let's use a list
box to write a similar program for Windows. HEAD, shown in Figure 6-7, lists all files and
child subdirectories in the list box. You can choose a file to display by double-clicking on
the filename with the mouse or by pressing the Enter key when the filename is selected.
You can also change the subdirectory using either of these me~hods. The program displays
up to 2 KB of the beginning of the file in the right side of the client area of HEAD's window.

254

Chapter 6: Child Window Controls

HEAD.MAK

#~-----~-----~-.---.-
HEAO.MAK make file
... ~- ... --- .. -----~-

head.exe :head.obj head.def
link head. lalign:16~ NUL, fnod slibcew libw. head
rc head.exe

#intlude'<window~:h>
IJinclude <io.h>
#include;<str1n~;h>
#include!{direct:h>

Cl hPrevlnstance)
(
wndclass.style

-Zp head.c

wndc lass; 1 pfnWndP roc

Figure 6·7. The HEAD program. (continued)

255

SECTION II: READING INPUT

(continued)

256

Chapter 6: Child Window Controls

hwndlist - CreateWindow ("listbox", NULL,
WS_CHILOWINOOW :WS_VISIBlE : LBS_STANDARD.
tm.tmAveCharWidth, tm.tmHeight * 3,
tm.tmAveCharWidth * 13 +

GetSystemMetrics (SM_CXVSCROLL).
tm.tmHeight * 10,
hwnd. I,
GetWindowWord (hwnd. GWW_HINSTANCE), NULL)

c~.getcwd (szBuffer. MAXPATH),
WS_VISIBlE ISS_LEFT.

tm. tmHei ght,
*:MAXPATH •. tm.tmHeight.

(continued)

257

SECTION II: READING INPUT

(continued)

258

Chapter 6: Child Window Controls

return DefWindowProc (hwnd, message. wParam. lParam) ;
}

long FAR PASCAL ListProc (HWND hwnd. WORD message. WORD wParam. LONG 1Param)
{
if (message =- WM_KEYDOWN && wParam - VK_RETURN)

SendMessage (GetParent (hwnd). WM_COMMAND. 1.
MAKELONG (hwnd. LBN_DBLCLK» :

return Cal1WindowProc (lpfnOldList. hwnd, message. wParam. lParam)
}

'File Head Program (e) Charles Petzold, 1990'
WINDOWS
'WINSTUB~EXE'
PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE
1024
8192
WndProc
Li stProc

In ENVIRON, when we selected an environment variable-either with a mouse click
or with the keyboard-the program displayed an environment string. If we used this
select-display approach in HEAD, however, the program would be too slow because it
would continually need to open and close files as you moved the selection through the list
box. Instead, HEAD requires that the file or subdirectory be double-clicked. This presents
a bit of a problem because list box controls have no automatic keyboard interface that cor
responds to a mouse double-click. As we know, we shouldn't write Windows programs that
require a mouse.

The solution? Window subclassing, of course. The list box subclass function in HEAD
is called ListProc. It simply looks for a WM_KEYDOWN message with wParam equal to
VK_RETURN and sends a WM_COMMAND message with an LBN_DBLCLK notification
code back to the parent. The WM_COMMAND processing in WndProcuses the Windows
function OpenFile to check for the selection from the list. If OpenFile returns an error, the

259

SECTION II: READING INPUT

selection is not a file, 'so it's probably a subdirectory. HEAD then uses chdirto change the
subdirect<?ry. It sends a LB_RESETCONTENT message to the list box to clear out the con
tents and a LB_DIR message to fill the list box with files from the new subdirectory.

The WM_PAINT message processing in WndProc opens the file using the Windows
OpenFilefunction. This returns an MS-DOS handle to the file that can be passed to the nor
mal C functions read and close. The contents of the file are displayed using DrawText.

2 KB of Wasted Space

HEAD includes a 2-KB array called sReadBuffer that is needed only briefly, when the con
tents of the file are read and passed to DrawText. But this array remains in the program's
data segment during the entire time this program is running. Wouldn't it make more sense
to allocate that memory before the read call and free it up after DrawText?

Yes, it would. For that reason we can no longer avoid the subject of Windows memory
management. It's not an easy subject, but let's begin.

260

Vi

~ 1

Chapter 7

Memory
Management

Multitasking without memory management is like having a party in a closet: You may be
able to accommodate some of the earlier arrivals, but once everybody starts mingling,
some toes are going to get smashed.

Memory management has always been one of the most remarkable aspects of Win
dows. Even Windows 1 included a sophisticated memory management scheme that imple
mented in software some of the memory management features you might expect to find in
a protected-mode operating system. Here are some examples ?f Windows 1 memory
management:

• When Windows runs multiple instances of the same program, it uses the
same code segments and the same resources for each instance.
(Resources include icons, cursors, menu templates, and dialog box
templates, all of which are covered in the next three chapters.) Inmost
cases, Windows requires only that data segments be unique for each
instance of a program.

• Much of the memory allocated within Windows is moveable, including
(in most cases) the memory allocated for a program's code segments, data
segments, and resources.

• Code segments and resources are often "demand-loaded"; Windows does
not load them into memory until a program specifically needs them.

263

SECTION III: USING RESOURCES

• Code segments and resources are often discardable: When Windows
needs to free some memory, it discards the segments from memory and
later reloads them from the program's .EXE file as the program requires.

These memory management features allowed Windows 1 to run several large pro
grams in a memory space that might not be large enough for even one of the programs
under a less ambitious memory management scheme. The problem is that this memory
management scheme requires that Windows often reload code segments and resources
from the hard disk, hurting program performance. For this reason, support of the Ex
panded Memory Specification (EMS) 4.0 was added to Windows 2, and protected-mode
support was added to Windows 3.

264

Windows 3 can run in three distinct modes:

• On a machine based around the Intel 8086 processor (or an 80286 or
80386 processor with less than 1 MB of memory), Windows 3 'runs in "real
mode." This is essentially compatible with the memo~y configuration of
Windows 2.1. Windows and its applications occupy an upper area of the·
640 KB of conventional memory above MS-DOS and any device drivers
and RAM-resident programs that may be loaded.

In this mode, Windows can take advantage of any expanded
memory under the Lotus-Intel-Microsoft Expanded Memory Specification
4.0 (LIM EMS 4.0). This configuration requires an EMS memory board and
an EMS 4 device driver.

• On a machine based around the Intel 80286 processor with at least 1 MB
of memory (or an 80386 processor with less than 2 MB of memory),
Windows 3 runs in "standard mode." This is 286-compatible protected
mode. Windows can use up to 16 MB of conventional memory and
extended memory.

• On a machine based around the Intel 80386 processor with at least 2 MB
of memory, Windows 3 runs in "386 enhanced mode." This is essentially
standard tp.ode with two additional features: Windows uses the paging
registers of the 386 processor to implement virtual memory. The 386
pages are 4 KB in length. Windows can swap pages to disk and reload
them when necessary. (This is the only form of virtual memory supported
for Windows applications.) The page swapping is something you
normally don't have to think about. when coding for Windows. The
second feature of 386 enhanced mode uses the Virtual-86 mode of the
386 processor to support multiple virtual DOS machines. This does not
impact Windows programming.

Chapter 7: Memory Management

You can override the default configuration by running Windows from the command
line with a /R (real mode), /2 (standard mode), or /3 (386 enhanced mode) parameter. A
Windows program can obtain information about the mode in which it is running by calling
GetWinFlags.

Much of this chapter discusses the real mode memory configuration because this is
the least common denominator of all the modes in which Windows can run. (Another
reason for this is that the techniques Windows uses to manage memory in real mode are
quite interesting!) If you initially feel a little queasy when thinking about Windows moving
your program around in memory in real mode, that's good. It means that you're already
aware that this is not an easy feat. You must keep this fact in mind in order to write pro
grams that run without problems. You must cooperate with Windows' memory manage
ment. That's what we'll look at in this chapter.

SEGMENTED MEMORY, INTEL STYLE
Windows organizes memory in "segments" -so before we proceed, let's quickly review
the segmented memory architecture of the Intel 8086 family of microprocessors. This
family includes the 8088 found in the PC and PC/XT, the 8086 and the 186 found in some
compatibles, the 286 found in the PC/AT, and the 386 and 486.

When these processors run in real mode, a memory address consists of two parts, a
16-bit segment address and a 16-bit offset address. The 16-bit segment address is shifted 4
bits to the left and added to the offset address. The resultant 20-bit physical address can ac
cess 1 MB of data:

16-bit offset address
16-bit segment address

20-bit physical address

xxxxxxxxxxxxxxx
+ xxxxxxxxxxxxxxxOOOO

xxxxxxxxxxxxxxx

Four internal registers of the microprocessor hold segment addresses. These segment
registers are called CS (code segment), DS (data segment), SS (stack segment), and ES
(extra segment). The 386 and 486 have two additional segment registers: FS and GS.

Software for the 8086 family runs most efficiently when the segment addresses are
held constant and all addressing is done by varying the offset addresses. The offset ad
dresses generated by the microprocessor include the instruction pointer (IP), which ac
cesses code in combination with the CS register; the stack pointer (SP) and base pointer
(BP), which access the stack in combination with the SS register; and the BX (base), SI
(source index), and DI (destination index) registers, which access data, most often in com
bination with the DS or ES register. An address that uses only the offset address with an
implied segment address (the current segment address) is called a "near pointer" or
sometimes a "short pointer." An address that uses both the segment and offset addresses is
called a "far pointer" or a "long pointer."

265

SECTION III: USING RESOURCES

For any particular segment address, the offset address can vary within a 64-KB range,
from OOOOH through FFFFH. A block of memory that is based on a particular segment ad
dress is called (appropriately enough) a "segment." People used to think of segments as
64-KB blocks of memory, but this definition is becoming less common. Now we say that
segments can be any size up to 64 'KB. Sometimes the size of a segment (or the size of an
area of memory larger than 64 KB) is given in terms of "paragraphs." A paragraph is 16
bytes. Memory allocated for a segment is often a multiple of 16 bytes, because a segment
must begin on a 16-byte boundary of physical memory. (When the segment register is
shifted left 4 bits, the bottom 4 bits are 0.)

When the 286, 386, and 486 processors run in 286-compatible protected mode, the
segment does not refer to a physical memory address. Instead, the segment is an offset into
a "descriptor table" that provides a 24-bit base address in physical memory. The offset ad
dress is then added to this base address to generate a 24-bit physical address that can access
up to ,16 megabytes of memory. I'

The use of segments is central to Windows' memory organization. The entire
memory space controlled by Windows is divided into segments of various lengths. Some of
these segments contain code, and others contain data.

MEMORY ORGANIZATION IN WINDOWS
The entire memory area that Windows controls is called "global memory" or the "global
heap." This area begins at the location where MS-DOS first loads Windows into memory
and ends at the top of available memory, which most often is the top of physical1)1emory.
(In C programming, the word global usually refers to variables or functions in one source
code file that can be referenced from functions in another source code file of the same pro
gram. That is not the meaning of global here. In this discussion of Windows' memory orga
nization, the word global instead means "everything.") Every block of memory allocated
from the global heap is a segment. Global memory not currently allocated is called "free
memory."

A Windows program can have one or more code segments and one or more data seg
ments. (The example programs shown in this book have only one of each.) When Win
dows loads a program into memory, it allocates at least one segment from the global heap
for code and one segment for data. When the program begins to execute, the microproces
sor's CS register is set to the segment address of the code segment that contains the entry
point of the program. The DS and SS registers are .set to the segment address of the pro
gram's automatic, or default, data segment, which is the data segment that contains the
stack. (The combination of the data and the stack into one segment referenced by both DS
and SS is normal for C compilers. DS is used to reference data declared as static; SS is used
to reference data on the stack, which includes local nonstatic data and arguments passed to
functions. This approach allows near pointers to be used for function parameters. The

266

Chapter 7: Memory Management

function doesn't have to know whether it's dealing with static data or stack data. Problems
related to unequal DS and SS segment registers are discussed in Chapter 19, "Dynamic Link
Libraries. ")

When loading a program, Windows also allocates two other segments from the
global heap for program overhead. One of these segments contains the header portion of
the program's .EXE file. This segment is used for all instances of a program, so it is allo
cated only for the first instance. The other segment contains information unique to each in
stance, such as the program's command-line string and the program's current
subdirectory. When a program loads resources (such as icons, cursors, or menu templates)
into memory, each resource gets its own segment in the global heap. A program may itself
also allocate some memory from the global heap.

If a program has only one code segment, then any calls it makes to functions within
the program are compiled as near calls. The CS code segment register remains the same.
However, when a program calls a Windows function, the Windows function is in a differ
ent code segment. This situation requires that the program generate a far call, which is the
reason that all Windows functions (and all functions within your program that are called
by Windows) must be declared as far.

A Windows program that has one data segment can use near pointers to access
memory within that data segment. However, when a Windows program passes a pointer to
a Windows function, the pointer must be a far (or long) pointer; otherwise, the code that
contains the Windows function will use its own data segment. The far pointer is required
for the Windows function to access the data within your program's data segment.

Fixed and Moveable Segments

Every segment in Windows' total memory space is marked with certain attributes that tell
Windows how to manage the segment. First and foremost, segments are marked as either
"fixed" or "moveable." Windows can move moveable segments in memory if necessary to
make room for other memory allocations. When Windows moves a segment in memory, all
existing near pointers to that segment continue to be valid, because near pointers refer
ence an offset from the beginning of a segment. However, far pointers become invalid
when the segment they reference is moved. A fixed segment cannot be moved in memory.
Segments must be marked as fixed if Windows is incapable of modifying an existing far
pointer to the segment.

In protected mode, all program segments are moveable because Windows can move
the segment without changing the segment address. Windows need only change the physi
cal base address in the descriptor table.

Most segments-including the segments allocated for your program's code and
data-are moveable, but some exceptions exist. Whenever Windows gives your program
a far pointer, the pOi.nter references a fixed data segment. For instance, when your Win
dows program begins executing, Windows passes a parameter to WinMain that we call

267

SECTION III: USING RESOURCES

IpszCmdLine. This is a far pointer to an area of memory that contains a command-line.
argument for the program. I mentioned above that this command-line string is stored in a
program overhead segment that Windows creates for each instance of a program. This
program overhead segment must be fixed. If Windows moves it, the command-line pointer
passed to your program becomes invalid.

Here's one way Windows deals with moveable segments: You've seen how Windows
and your programs use numbers called "handles." In many cases, the handles are really
near pointers. Windows maintains a segment called BURGERMASTER (named after a·
favorite restaurant of the early Windows developers) that contains a master handle-to
memory table. The handle points to a small area of memory within BURGERMASTER that
contains the segment address of the item that the handle references. When Windows
moves the segment that contains the item, it can adjust the address in BURGERMASTER
without invalidating the handle. BURGERMASTER is itself a moveable segment.

All non-Windows MS-DOS programs are assigned fixed segments when they run
under Windows. Windows cannot determine how these programs reference memory, so
Windows has no choice but to make them fixed. However, you should try very hard to en
sure that the code and data segments of your Windows programs (as well as any additional
segments your programs allocate) are moveable segments. Fixed segments stand like brick
walls in memory space and clog up Windows' memory management. Users quickly learn
which programs seem to use little memory (because they use moveable segments) and
which seem to use a lot of memory (because they use fixed segments). Users have a name
for programs that use a lot of memory. They say, "This program is a real pig." Your goal
should be to write programs that are not pigs.

Discardable Memory

Moveable segments can also be marked as discardable. This means that when Windows
needs additional memory space, it can free up the area occupied by the segment. Windows
uses a "least recently used" (LRU) algorithm to determine which segments to discard when
attempting to free up memory.

Discardable segments are almost always those that do not change after they are
loaded. Code segments of Windows programs are discardable because (in most cases) pro
grams do not modify their code segments. Indeed, code segments cannot be modified in
protected mode. When Windows discards a code segment, it can later reload the code seg
ment by accessing the .EXE file. Most of Windows' own code in the USER and GDI modules
and various driver libraries is also discardable. (The KERNEL module is fixed. This is the
module responsible for Windows' memory management.) Resources-such as dialog box
templates, cursors, and icons-also are often marked as discardable. Again, Windows can
simply reload the resource into memory by accessing the .EXE file that contains the
resource.

268

Chapter 7: Memory Management

Sometimes you'll see that a disk is being accessed when you move the mouse from
the client area of one program to the client area of another. Why is this? Windows has to
send mouse movement messages to the second application. If the program's code to pro
cess this message is not currently in memory, Windows must reload it from the disk file. If
you have several large Windows programs loaded simultaneously, you may witness some
"thrashing" (an inordinate amount of disk activity) as you move from program to program.
Windows is reloading previously discarded segments.

Discardable segments must also be moveable segments, because discardable seg
ments can be reloaded in a different area of memory than the area they occupied earlier.
However, moveable segments are not always discardable segments. This is usually the case
with data segments. Windows cannot discard a program's automatic data segment, be
cause the segment always contains read-write data and the stack.

Many people are under the impression that Windows also swaps memory-that is,
that when Windows needs additional memory, it saves some portion of memory on the disk
and reloads it at a later time. For Windows programs, this is true only when Windows is
runnin~ in 386 enhanced mode. Windows swaps memory to disk only when running non
Windows programs (otherwise known as "old applications"). When Windows loads these
old applications from disk back into memory, it must load them at the same memory ad
dress they occupied previously.

The Global Memory Layout

As I noted before, global memory ranges from the spot where MS-DOS first loads Windows
to the top of available memory. At the bottom of global memory (the area with the lowest
memory address), Windows allocates fixed segments. Fixed segments are allocated from
the bottom up. At the top of global memory, Windows allocates discardable code segments.
(Remember that discardable segments are also moveable segments.) Discardable segments
are allocated from the top down. '

Between fixed segments and discardable segments, Windows allocates moveable
segments and nondiscardable data segments. The largest block of free memory is usually
located below the discardable segments. The memory layout looks something like that
shown in Figure 7-1 on the following page, with arrows indicating the direction in which
the areas expand. When Windows needs to allocate a fixed segment, it starts searching
from the bottom up for a sufficiently large free block below the area of moveable segments.
If it can't find one, it starts moving moveable segments up in memory to make room. If that
doesn't work, Windows begins discarding discardable segments, based on an LRU (least re
cently used) algorithm, again moving moveable segments. To allocate moveable but non
discard able segments, Windows searches the free memory area below the discardable
segments. If it doesn't find enough room, Windows moves other moveable segments down
in memory and eventually starts discarding discardable segments.

269

SECTION III: USING RESOURCES

Top of memory Discardable code segments ,
Most of free memory

t
Moveable segments and discardable data segments

t
Bottom of memory Fixed segments

Figure 7·1. The organization of global memory.

Within the area of discardable memory, Windows maintains a space large enough to
accommodate the largest code segment of every currently running program. Windows
never runs out of memory space when reloading code segments. However, Windows can
run out of memory space when a program attempts to allocate global memory or load a
resource. Sometimes it can be a little tricky to deal with this problem-you may need a
text string or icon not currently in memory to display an error message. If your program
needs to report that it is low on memory, you can use a message box. Windows keeps in
memory all the code necessary to create a message box. You'll want to use the
MB_SYSTEMMODAL flag to prevent the user from switching to another application.
MB_ICONHAND (which is supposed to accompany messages about severe problems) is
also always in memory. The text message in the message box should either be in your
default data segment or be a string resource that has previously been copied into your data
segment.

Local Memory

Every Windows program has at least one data segment called the default, or automatic,
data segment. A program's DS and SS segment registers both point to this segment. In con
trast to the "global memory" that Windows manages, this automatic data segment is called
your program's "local memory." Within Windows' global memory organization, your pro
gram's automatic data segment is most often a moveable but nondiscardable segment. The
segment is called DGROUP.

In both regular MS-DOS C programs and Windows programs, the memory within
DGROUP is organized into four areas, as shown in Figure 7-2. These four areas are de
scribed below:

270

• Initialized static data-This area contains initialized variables defined
outside of functions, initialized static variables within functions, and
explicit strings and floating-point numbers .

• Uninitialized static data-This area has un initialized variables that are
defined outside of functions and uninitialized variables defined as static

Chapter 7: Memory Management

within functions. In accordance with C standards, all uninitialized static
variables are initialized to 0 when the data segment is created in memory .

• Stack-This area is used for "automatic" data items defined within
functions (variables not defined as static), for data passed to functions,
and for return addresses during function calls.

• Local heap-This is free memory available for dynamic allocation by the
program.

Top of DGROUP Local heap

Stack

Uninitialized static data

Bottom of DGROUP Initialized static data

Figure 7·2. The organization of memory in DGROUP

The module definition (.DEF) file specifies your program's stack and local heap size:

HEAPSIZE 1024
STACKSIZE 8192

In a regular C program, you can allocate memory from the local heap using the maUoc and
caUoc functions. In Windows programs, you can also allocate memory from the local heap,
but you'll want to use the Windows memory allocation functions rather than the C func
tions. When you use Windows functions to allocate local memory, Windows organizes the
local heap just like global memory, as shown in Figure 7-3. Although the stack is fixed in
size, Windows can dynamically expand the local heap if you attempt to allocate more local
memory than is specified in your module definition file. Windows can even move your
data segment if that is necessary to expand the local heap:

Top of local heap Discardable blocks

+
Most of free memory

t
Moveable blocks

t
Bottom of local heap Fixed blocks

Figure 7·3. The organization of the local heap.

271

SECTION III: USING RESOURCES

CODE AND DATA SEGMENTS
All the Windows programs shown so far have one code segment and one data segment.
Windows programs can also have multiple code and data segments. For larger programs,
using multiple code segments is highly recommended because it helps relieve memory
congestion in Windows. Using multiple data segments, on the other hand, is a real prob
lem. Let's take a look at this interesting subject.

Memory Models: Small, Medium, Compact, Large, and Huge

When we speak about a program having one code or data segment or multiple code or data
segments, we're referring to "memory models." Microsoft C 6 supports five memory
models that you can use for Windows programs:

Model Code Segments Data Segments

Small ,1 1

Medium Multiple 1

Compact 1 Multiple

Large Multiple Multiple

Huge Multiple Multiple

Command-line switches of the compiler determine the memory model you use. The
small memory model is the default, but programs that have more than 64 KB of code must
contain two or more code segments, and programs that have more than 64 KB of data must
contain two or more data segments. In medium-model and large-model programs, all func
tions (unless explicitly declared as near) are far, and the compiler generates far calls for
them. In compact-model and large-model programs, all data references use far pointers.

The small, compact, medium, and large models all have their own C libraries. The
medium-model and large-model libraries contain functions that assume they have been
called from another segment. The functions in the compact-model and large-modellibrar
ies always assume they have been passed long pointers to data. The huge model is essen-:
tially the same as the large model, except that individual data items may be greater than
64 KB. The huge model has limited library support.

Most small Windows programs are compiled as small-model programs, with one
code segment and one data segment. Strictly speaking, however, Windows programs are
really "mixed-model" programs, because they extensively use the near and far keywords.
Windows programs make far calls to Windows functions, and Windows makes far calls to
functions within a program, such as window procedures or call-back functions. All data
pointers passed between a program and Windows (with one oddball exception-the
GetlnstanceData function) are far pointers.

272

Chapter 7: Memory Management

Windows programs can also be compiled as medium-model programs. You ca~ try
this out on any of the programs shown so far. You need to make two changes to the make
file:

• Add the -AM switch to the compiie step. This compiles for the medium
model.

• Change SLIBCEW to MLIBCEW in the link step. This is the library that
contains the Windows-specific C run time library functions.

Delete the .OB] file and run NMAKE. You'll find that the .EXE file is somewhat larger than
before because all the functions within your program - not only the window procedure
and call-back functions-now require far calls.

Multiple Code Segments

The medium model doesn't make sense for a small program, and it comes into play only
when you have more than one source code module. But then it starts making a lot of sense.
In the medium model, each source code module becomes a different code segment. Each
of these code segments can be moveable and discardable. The amount of space required to
fit your code into memory is the size of the largest code segment.

For instance, the approximately 160 KB of code in Windows WRITE is distributed
among 78 separate moveable and discardable code segments. The largest code segment in
WRITE is about 8 KB. Thus, when memory is limited, WRITE can continue to run with
only an 8-KB code space. As program logic within WRITE moves from segment to seg
ment, the code segment currently in memory can be discarded and a new one can be
loaded in.

If you like, you can think of the medium model as a simplified overlay manager: You
split your program into multiple source code modules and compile for the medium model.
Windows does the rest. In order to work efficiently, the medium-model approach requires
some planning. The functions in each of your source modules should be organized in func
tional groups.· When your program is dealing with such routine matters as processing
mouse messages, for example, it should not have to load several code segments to get from
the top of the window procedure to the bottom.

While using the medium model is certainly the easiest approach to take with a large
program, it is not the most efficient. As you'll see shortly, when you run the Microsoft C
Compiler with the -Gw switch (the Windows switch), the compiler adds some extra prolog
code to all far functions. Only those functions actually called by Windows (such as window
procedures or call-back functions) need this prolog code, however. When all the functions
in your program are far functions (as they are in the medium model), this extra code can
add up to a significant waste of space.

273

SECTION III: USING RESOURCES

There are several solutions to this problem. The first is fairly simple. When compiling
a module that does not include any functions that are called from Windows (such as win
dow procedures, dialog procedures, or call-back functions), compile with the -GW switch
rather than the -Gw switch. This reduces the prolog code on far functions.

Another approach to reduce wasted space in a medium-model program is to define
all functions used only within a module as near functions. Another solution is to use a
mixed model with a small model as a base. Let's assume you have five source code
modules:

• Module 1 contains WinMain, the message loop, your window procedure,
and most message processing.

• Module 2 contains one function that has all initialization code. This
function is called by WinMain from Module 1 before entering the
message loop.

• Module 3 contains one function called from your window procedure and
several other functions called only within this module.

• Module 4 also contains a function called from your window procedure
and several other functions called only within this module. This module
also calls a function in Module 5.

• Module 5 contains a function called from Module 4 and several other
functions called only within this module.

You can organize this program into four segments, with Modules 4 and 5 in a single seg
ment. Within each module, you explicitly define as far any function called from outside the
segment. This involves one function each in Modules 2, 3, and 4. In the modules that call
these functions, the functions must be declared as far using the function name prefaced by
FAR near the top of the program.

You compile each module for the small model, except that you assign one code seg
mentname to Module 2, another to Module 3, and yet another to Modules 4 and 5. These
names are assigned by including the -NT ("name the text segment") switch when compil
ing. Each module with the same code segment name is in the same segment. Now you have
far functions only where you need them - for functions that are called from another
segment.

As you can see, this mixed-model approach is more of a headache than the medium
model approach. It requires that you figure out which functions must be declared far and
which can be near. It also has an additional problem: You can call normal C library routines
from only one segment-the segment that gets the default segment name _TEXT when
you compile without the -NT switch.

274

Chapter 7: Memory Management

What About the Compact and Large Models?

Windows programmers who require more than 64 KB of data in their programs might be
feeling a little nervous at this point. They have a right to be, because the compact and large
models are not recommended for Windows programs. This doesn't mean they can't be
used, however. The Windows Software Development Kit allows you to install compact
model and large-model Windows libraries, so obviously these models are legal. However,
compact-model and large-model programs are subject to a very strict penalty: The data
segments must be fixed in memory. They cannot be flagged as moveable.

Why this restriction? There are various reasons; here's an easy example that illus
trates one of them. Suppose that somewhere within your program you define a static
pointer that looks like this:

char *pointer ;

Because you're compiling for a compact model or large model, this is a far pointer.
During your progra~'s execution, you assign a value to that pointer. If the pointer refer
ences a moveable data segment, then the value of the pointer must be adjusted when Win
dows moves the data segment it references. But the compiler and linker will not even
generate a relocation address for that pointer because it's not initialized.

Program developers who cry "but I need the large model" should consider the alter
natives made evident by existing Windows applications. Take a look at some large Win
dows programs such as Microsoft Excel and Aldus PageMaker. These programs use many
code segments but only one data segment. And if these programs don't need the large
model, then you probably don't either. If your program needs more than 64 KB of data, you
have alternatives to using the compact model or large model. Here they are:

• If your program uses large blocks of un initialized data, do not define
these data as variables within the program. Instead, use the Windows
GlobalAlloc function (discussed later in this chapter) to allocate a block of
moveable memory outside your program.

• If your program uses large blocks of initialized read-only data (the most
obvious example is "help" text), make the data a discardable "user
defined resource" (discussed in Chapter 8) to be loaded from the disk
only when necessary. This keeps the data out of memory when not
needed.

• If your program uses large blocks of initialized read-write data, put the
initialized data in a discardable "user-defined resource" and transfer the
data to a global memory block allocated with GlobalAlloc.

275

SECTION III: USING RESOURCES

Avoiding Movement Problems

We have been creating small Windows programs for several chapters now and have not
run into problems when Windows has moved the code and data segments in, memory.
Here are some general rules for continuing to avoid problems:

• Use the small model or medium model.

• Don't declare any variables as far. For instance, don't do something like
this:

int far array [10][1000] ; II Bad!!!!!

This code creates a second data segment in your program. Unless you
mark this segment as fixed, Windows does not properly handle
references to this array.

• Don't store any far pointers to data except those that Windows gives you.
The lpszCmdLine parameter passed to WinMain is OK. The f~r addresses
returned from GlobalLock. (disc~ssed later in this chapter) and
LockResource (discussed in Chapter 8) point to fixed data until you
specifically unlock the data, so these are legitimate also. Some window
messages (WM_CREATE, for instance) have lParam values that are far
pointers. Use these pointers only for the duration of the message.

• When you call Windows functions, you must often pass far pointers to
data that are within your data segment. But don't declare far pointers and
assign them far addresses to local data items and then later use the far
pointers when calling Windows functions. Instead, cast the near pointers
into far pointers when you call the functions, or let th~ compiler do this
casting for you.

• Don't store or use any far pointers to code, except for pointers to functions
that are specifically declared as far or far pointers returned from
MakeProclnstance. (Pointers to functions in medium-model programs
are also OK.)

• When you need to give Windows a far pointer to a function for a call-back
function (as discussed in Chapter 5), a window subclassing function (as
discussed in Chapter 6), or a dialog box function (as discussed in Chapter
10), obtain the pointer from MakeProclnstance. The function must be
declared as FAR PASCAL and included in the EXPORTS section of your
module definition file.

Although these rules are numerous and important, don't let them drive you to
paranoia. Keep in mind that Windows is nonpreemptive. Windows will not pull the rug out

276

Chapter 7: Memory Management

from under you by interrupting your code. Windows will move or discard your code seg
ments only when you make a Windows call. Windows will not move your data segment ex
cept when you make a few select Windows calls. If you have a long stretch of code
between two Windows calls, you can be as carefree as you like in that code without worry
ing about sudden movements.

Program Segment Attrib~tes

I have been talking about program segments that are fixed, moveable, and discardable.
These characteristics are called "segment attributes." To tell Windows the attributes you
want in your program segments, you use the CODE, DATA, and SEGMENTS statements in
the module definition file. During linking, LINK encodes the attributes for each program
segment into a 16-bit flag and stores this flag in the segment table of the .EXE file. Windows
has access to these segment attributes when loading your code and data segments. The
sample programs presented so far contain these two lines in their module definition files:

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE

We have not yet encountered the SEGMENTS statement.
The CODE statement applies to all code segments within your program that are not

explicitly listed in the SEGMENTS statement. Similarly, the DATA statement applies to all
data segments except those listed in the SEGMENTS statement.

There are four standard attributes: "load," "memory," "discardable," and "instance."
The "load" . attribute can be either PRELOAD or LOADONCALL. This attribute tells

Windows when to load the segment. The default is PRELOAD, which means that the code
segment (or segments) should be loaded at the time the program begins execution. A
LOADONCALL segment will be loaded into memory the first time it is needed. For a pro
gram with a single code module, it really doesn't matter which attribute you use. For pro
grams with multiple code modules, you should use PRELOAD for segments that are
required when the program first starts up (for instance, those that do initialization from
WinMain) and LOADONCALL for the other code segments. To specify different attributes
for multiple code segments, you must use the SEGMENTS statement, discussed later.

The "memory" attribute can be either FIXED or MOVEABLE. The default is FIXED.
If you're writing normal Windows programs, you should have no problem specifying
MOVEABLE. (Device drivers that must process hardware interrupts are another matter.
These usually require one fixed code segment.)

The "discardable" attribute is indicated by the DISCARDABLE keyword. This indi
cates that Windows can discard the segment from memory and reload it from the .EXE file
when necessary. Code segments in normal Windows programs should be flagged as DIS
CARDABLE. The default data segment cannot be flagged as DISCARDABLE.

The "instanc~" attribute is relevant only for data segments. It should be set to MUL
TIPLE for Windows programs, indicating that each instance gets its own data segments.

277

SECTION III: USING RESOURCES

The NONE and INSTANCE options are for Windows dynamic link libraries (discussed in
Chapter 19), because Windows libraries can have only one instance. If the Windows library
has a data segment, INSTANCE (or SINGLE) is used. If not, NONE is used.

The SEGMENTS statement lets you assign different segment attributes to other code
and data segments within your program. The general form of the SEGMENTS statement is:

SEGMENTS segment-name [CLASS 'class-name'] [allocate] [attributes]

You'll probably use this statement most often if you create a medium-model program or a
small-model program with multiple code segments. For a medium-model program, the C
library functions and start -up code are in a code segment named _TEXT. Each source
code module is assigned a different code segment name that by default is the filename of
the source code file followed by _TEXT. For instance, if you have three source code mod
ules called PROGRAM.C, MODULE1.C, and MODULE2.C, the PROGRAM.EXE file has four
code segments: _TEXT, PROGRAM_TEXT, MODULE1_ TEXT, and MODULE2_ TEXT.

If you do not include a SEGMENTS statement, all four code modules take on the at
tributes from the CODE statements. If you do include a SEGMENTS statement, however,
your results might look something like this:

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
SEGMENTS MODULEl_TEXT LOADONCALL MOVEABLE DISCARDABLE

MODULE2_TEXT LOADONCALL MOVEABLE DISCARDABLE

Now the _TEXT and PROGRAM_TEXT segments are PRELOAD and are loaded when the
program first begins execution. MODULE1_ TEXT and MODULE2_ TEXT are LOADON
CALL. Windows loads them only when they are needed.

If you use the SEGMENTS statement for data segments, you must include:

CLASS 'DATA'

By default, the class is CODE. You can also add a minimum allocation size to increase
the size of the data segment when it's loaded into memory.

HOW WINDOWS MOVES AND
RELOADS PROGRAM SEGMENTS
In this section, I want to give you some insights into how Windows is able to move your
program's code and data segments and (in, the case of code segments) discard and later
reload the segments in real mode. If you'd rather not know (or if the assembly language in
the pages ahead looks like Greek to you), that's fine. But you're likely to see some of this
code when debugging Windows programs, so it's better that you see it here first and un
derstand what's going on.

278

Chapter 7: Memory Management

I'll be discussing the most general recommended case-a program that contains
multiple moveable and discardable code segments and a single moveable data segment.
Everything works a little differently (and more simply) when the segments are fixed and
nondiscardable.

When a program has a single data segment, neither the code nor the data have to
contain any explicit references to the segment address of the data. When a Windows pro
gram begins running, Windows has already set the DS and SS registers to the data segment.
All pointers are near pointers. When the program needs the data segment address (for in
stance, for casting near pointers into far pointers when calling Windows functions), it sim
ply uses the value of DS. (In contrast to this, when you run a regular .EXE program outside
Windows, MS-DOS does not set DS to the program's data segment on entry to the program.
The program must begin by executing code like this:

MOV AX. OGROUP
MOV OS. AX

You'll never see code like this in a compiled Windows program.) If you cast a near data
pointer into a far pointer and store the far pointer in a variable, you're storing the current
value of the 'data segment address. If Windows moves the data segment, that far pointer will
no longer be valid. That's why it is recommended that you not do this.

Windows moves a program's data segment only during certain Windows calls. Most
often, movement of a data segment occurs during a GetMessage or PeekMessage call. Win
dows always returns the new values of DS and SS to the program when it returns from one
of these calls.

Windows programs use the same segment for data and the stack. However, Windows
libraries (including the USER, KERNEL, and GDI modules, as well as the drivers) have their
own data segments but not their own stacks. They use the stack of the program calling the
Windows function. Thus, the stack segment address is always that of the currently running
program, even if the program is calling a Windows function. When switching from one
program to another, Windows must also switch the stack.

When Windows calls a function in your program (such as a window procedure, a
wi!ldow subclassing function, a call-back function, or a dialog box function), the stack seg
ment address is set to your program's stack segment, but the data segment address is still
the one used by the Windows library calling your function. For this reason, Windows must
also include a facility so that programs retrieve their own data segments during one of
these calls.

All these aspects of Windows' memory management-supporting multiple in
stances, moving code and data segments, and discarding and reloading code segments
are tied together.

279

SECTION III: USING RESOURCES

Special Treatment of Far Functions

When you compile a C program, the compiler inserts prolog and epilog code in each func
tion. This code sets up a "stack frame" for the function. The function uses the stack frame
to retrieve parameters passed to the function on the stack and to temporarily store the
function's own local variables. For a normal MS-DOS program, the prolog and epilog can
be as simple as this:

PUSH BP
MOV BP. SP
SUB SP. x
[other program lines]

MOV SP. BP
POP BP
RET y

I'm assuming here that stack overflow checking has been disabled. The value of x that the
prolog subtracts from SP is the total size of the function's local nonstatic data (increased to
the next even number).

After the three prolog instructions have been executed, the stack is organized as
shown in Figure 7-4 (from higher addresses to lower). The function uses the BP register to
reference both data 'passed to the function on the stack (which have positive offsets to BP)
and local data declared within the function (which have negative offsets to BP). If the func
tion uses the SI and DI registers, these registers will also be saved on the stack because
they can be used by the caller for register variables. The DS register must also be preserved
during a function call.

Parameters passed to function

Return address

BP points here __ 1-_v_a_lu_e_o_f_B_p_r_e9_i_st_e_r o_n_e_n_try_---i

Area for local variables SP points here __ '--__________ ---'

Figure 7·4. The stack after execution of the three prolog instructions.

For a function declared as near, the return address is only one word-the offset address.
For a far function, the return address is two words. A function declared as near or far nor
mally has the same prolog and epilog, but the compiled function must take into account the
size of the return address-one word or two-when accessing the parameters passed to
the function.

At the end of the function, the value of SP is set equal to BP, and BP is popped off the
stack to restore it to its original value. The function is now ready to return to the caller. This

280

Chapter 7: Memory Management

involves a near RET or a far RET, depending on whether the function is near or far. If the
function is also dec lared as pascal, the y value in the code above is the total size of parame
ters passed to the function. Otherwise, y is not used, and the caller adjusts the stack
pointer when the function returns.

That's a normal compilation. When you compile a Windows program with the -Gw
switch (the Windows switch), every far function gets special prolog and epilog code that
looks like this:

PUSH OS
POP AX
NOP
INC BP
PUSH BP
MOV BP, SP
PUSH OS
MOV OS, AX
SUB SP, x

set AX to OS

save incremented BP on stack

save OS on stack
set OS to AX

[other program lines]

OEC BP
OEC BP
MOV SP, BP
POP OS
POP BP
OEC BP
RET y

reset SP to point to OS on stack
get back OS
get back incremented BP
restore BP to normal

Functions that are declared as near get the normal prolog and epilog even with the -Gw
switch. Notice two points here: First, the prolog sets the value of AX equal to DS, saves the
DS register on the stack, and then sets DS from AX. On exiting, DS is retrieved from the
stack. That code is not doing anything (or anything harmful) except taking up unnecessary
space. Second, the previous value of the BP register is incremented before being saved on
the stack and decremented after it is retrieved from the stack. This certainly looks mystify
ing right now. Figure 7-5 shows what the stack frame looks like for far functions compiled
with the -Gw compiler switch after the prolog code is executed.

Parameters passed to function

Return address

Incremented value
BP points here of BP register on entry

Value of OS register on entry

SP points here '-....... Area for local variables

Figure 7-5. The stack after execution of the special Windows prolog.

281

· SECTION III: USING RESOURCES

When LINK creates the program's .EXE file, it treats every far function in a moveable code
segment as a "moveable entry point." In the .EXE header, LINK builds an entry table that
contain~ 6 bytes of information for every moveable entry point in the program. This infor
mation includes the segment ordinal number of the function-simply a sequential num
bering of the program's segments-and the offset of the function within that segment. The
entry table also includes the 2 bytes CDH and 3FH for every moveable entry point. These 2
bytes are actually the instruction INT 3FH. This same software interrupt shows up in non
Windows programs, where it is used for overlay management. In Windows, the interrupt
performs a similar function in that it loads a program's code segment from disk into
memory.

A flag in the entry table indicates whether the far function was listed in the EXPORTS
section of the module definition (.DEF) file. As I've discussed, the EXPORTS section of the
.DEF file must list all far functions in your program that are called by Windows. These in
clude window procedures (such as the function I've been calling WndProc) , call-back
functions, window subclassing functions, and dialog box functions.

When your program's code contains references to the addresses of far functions,
LINK has to leave the instruction incomplete. For example, if you call a far function, the
compiler generates a far CALL instruction, but the address is not yet known because LINK
doesn't know where the segment containing the function will be loaded in memory. LINK
builds a relocation table in the .EXE file at the end of each code segment. This table lists all
the references to far functions within your program as well as all references to Windows
functions.

Now that the compiler and LINK have done all these strange things to your program,
it's time for Windows to run the program and do its magic.

When Windows Runs the Program

When Windows runs the first instance of a program, it loads the data segment and also
loads one or more code segments. Windows also builds two fixed segments for program
overhead. One segment contains information unique to each instance of the program, such
as the command-line argument passed to the program and the program's current subdirec
tory. The other overhead segment, which is used for all instances of the program, contains
a large chunk of the program's .EXE file header, including the entry table. The entry table
already has 6 bytes of data for every far function in your program. Windows expands each
entry into 8 bytes. These entries, called "reload thunks," are small pieces of code that
handle segment loading. '

If the segment containing the far function has not yet been loaded into memory, the
reload thunk for that far function looks like this:

282

SAR BY CS:[xxxx],
INT 3F 01 yyyy

Chapter 7: Memory Management

The first statement is part of Windows' mechanism to determine whether a segment is a
candidate for discarding. The second statement calls Interrupt 3FH, the software interrupt
that loads into memory the appropriate segment containing the function.

If the segment containing the far function is present in memory, the reload thunk
looks like this:

SAR BY CS:[xxxx], 1
JMP 5555:0000

The second instruction is a far jump inst~uction. The ssss:oooo segment and offset address
points to the beginning of the far function in the loaded code segment.

The references in your program's code to far functions are listed in the segment's
relocation table. Windows must insert the addresses of the far functions into your code.
The addresses that Windows uses for this are not the actual addresses of the far functions
but rather the addresses of the reload thunks for the far functions. Because the reload
thunk is in fixed memory, Windows doesn't need to make other changes to the code when
moving the code segment that contains the far call or moving the code segment that the far
call references. Windows needs to change only the ssss:oooo address in the reload thunk.

When the program calls a far function, it's actually calling the reload thunk. If the
segment containing the far function is not currently in memory, the reload thunk executes
the Interrupt 3FH loader that loads the segment into memory. Windows then alters the
reload thunk to contain a]MP instruction to the function. Windows jumps back to the
reload thunk, which then jumps to the actual function. When Windows discards a segment
from memory, it changes the reload thunk from the]MP instruction back to the INT 3FH
instruction. The next time a function in that segment is needed, the segment is reloaded.

The calls in your program to Windows functions are translated into far CALL instruc
tions and are also listed in the segment's relocation tables. When Windows loads your code
segment into memory, it also resolves the calls to Windows functions. For Windows func
tions in fixed code segments, Windows simply inserts the address of the Windows function
into your code. Windows functions in moveable segments have their own reload thunks,
and Windows inserts the addresses of these thunks into your code.

Windows also does something special with functions that have been listed in the EX
PORTS section of the program's module definition file. Windows modifies the function
prolog. of these functions when loading the segment into memory. It replaces the first 2
bytes of every exported far function with NOP (no operation) instructions. The prolog
now looks like this in memory:

NOP
NOP
NOP
INC BP
PUSH BP
MOV BP, SP
PUSH OS
MOV OS, AX
SUB SP, x

save incremented BP on stack

save OS on stack
set OS to AX

283

SECTION III: USING RESOURCES

Those two NOPs make a big difference. Now the prolog saves the original value of DS and
sets DS to AX. When this function is called, AX must already be set to the data segment that
the function must use. This change makes the exported function unusable for normal calls
to the function. This is why you cannot call your window procedure (or any other exported
function) directly from within your program.

What MakeProclnsfance Does

You've just seen that far function,s listed in the EXPORTS section of your .DEF file become
unsuitable for normal use when Windows loads them into memory. These functions re
quire that the value of AX on entry be the program's data segment. This data segment is
different for every instance of your program. You can do only one of two things with an ex
ported far function:

• If the function is a window procedure, you can give Windows the address
of the function in the window class structure when registering the
window class with RegisterClass:

wndcla55.1pfnWndProc = WndProc ;

• If the function is a call-back function, a window subclassing function, or a
dialog box function, you must give Windows an address returned from
MakeProclnstance.For instance, if CallBackProc is the name of a call
back function, you must first make a call like this:

lpfnCallBack = MakeProcln5tance (CallBackProc, hln5tance)

Because CallBackProc is a far function, the address you pass to MakeProclnstance
is actually the address of the reload thunk. The IpfnCallBack address you get back from
MakeProclnstance can now be used as a parameter to a Windows function such as
SetTimer.

MakeProclnstance and RegisterClass both deal with the exported far function in the
same way. They create an "instance thunk" for the function. The address that Make
Proclnstance returns is the address of the instance thunk. Instance thunks are in a fixed
area of memory, and they look like this:

MOV AX, xxxx
JMP 5555:0000

The xxxxvalue is the data segment address for this instance of your program. The instance
thunks are different for each instance because each instance uses a different data segment.
The ssss:oooo address in the instance thunk is the segment and offset address of the reload
thunk that reloads (or jumps to) the function. The same reload thunks are used for all in
stances of a program because they jump to the same shareable code.

284

Chapter 7: Memory Management

When Windows needs to call a function in your program (such as a window pro
cedure)' it actually calls the instance thunk. The instance thunk sets AX equal to the data
segment address for that instance and jumps to the reload thunk. The reload thunk loads
the segment if it is not currently present in memory and branches to the function. The
function then saves the previous value of DS and sets DS from the value of AX-the data
segment address for the instance. When the function ends, it retrieves the original value of
DS from the stack and returns control to Windows. When Windows moves the data seg
ment for a particular instance, Windows must also change the xxxx values in all the in
stance thunks for that instance.

The Difference for Dynamic Libraries

You've seen that the far function prolog inserted by the compiler is modified by Windows if
the function is exported. When far functions are in memory, they can have one of three
possible prologs. If the prolog starts off like this:

MOV AX. OS
Nap

then the far function is called only from within the same program and is not called by Win
dows. If the prolog starts off like this:

Nap
Nap
Nap

then the far function has been exported. It is not called from within the program but in
stead is called only by Windows. A program's window procedure starts off in this way.

What's the purpose of the extra NOP that shows up in both prologs? The extra NOP
disappears in the third form of the prolog:

MOV AX. xxxx

You'll find this form at the beginning of many Windows functions in the Windows library
modules (USER, KERNEL, and GDI) and drivers (MOUSE, KEYBOARD, SYSTEM, and so
forth). Unlike Windows programs, Windows libraries cannot have multiple instances, so
they do not need instance thunks. The far function itself can contain code that sets AX
equal to the segment address of the library's data segment (the value xxxx). The rest of the
prolog then saves DS and sets DS equal to AX.

When Windows moves a library's data segment in memory, it must change the
prologs of the library functions that use that data segment. And when your program calls a
Windows function, the address it calls is either the address of the function's reload thunk (if
the function is in a moveable segment) or the function itself (if the function is in a fixed
segment).

Note that Windows library, functions use their own data segments but continue to use
the stack of the caller. If the library function were to use its own stack, it would need to

285

SECTION III: USING RESOURCES

copy function parameters from the caller's stack. Windows switches the stack only when
switching between tasks; calling a library function does not constitute a task switch.

Walking the Stack

One little mystery remains. You'll recall that the far function prolog includes the
statements:

INC BP
PUSH BP

The epilog then returns BP to normal:

POP BP
DEC BP

What is this for?
Think about this problem: Free memory is very low. A function in one of your pro

gram's code segments calls a far function in another of your program's code segments. This
function then calls a Windows function. The code segment containing this Windows func
tion is not currently present in memory. To load it into memory, Windows has to move your
data segment and discard both your code segments. This sounds like a serious problem,
because when the Windows function returns to your program, your program will be gone.

When Windows must discard code segments, it first goes through a little exercise
called "walking the stack." Within any function, the value of SS:[BP] is the value ofBP from
the previous function. If this previous value of BP is even, the previous function is a near
function; if it's odd, the previous function is a far function. By using successive values of BP
stored on the stack, Windows can trace through the stack until it reaches the top, which is
the stack pointer address originally given to your program when the program began exe
cuting. Windows can determine the segment addresses and the saved DS register values of
all the functions involved in making the current Windows function call.

If Windows has to move your program's data segment (which also requires moving
the stack), it can adjust the DS register on the stack to the new segment address. If Win
dows has to move a code segment containing functions that have been involved in the cur
rent Windows function call, it changes the returr~ address on the stack. If Windows has to
discard a code segment, it replaces the return address with an address that points to code,
which reloads the segment and which then branches to the appropriate return address.

As I mentioned at the onset of this discussion, you may prefer not to think about all
this activity going on in the innards of Windows.

Expanded Memory

So far, I've been discussing how Windows manages memory in simple 640-KB systems.
Windows also supports bank-switched memory that follows the Lotus-Intel-Microsoft Ex
panded Memory Specification 4.0 (LIM EMS 4.0).

286

Chapter 7: Memory Management

In a bank-switched memory scheme such as EMS, special memory boards provide
multiple banks of memory that can occupy a single same address space. Only one of these
multiple banks occupies the address space at any time. By manipulating registers on the
memory board, the EMS device driver can switch out one bank of memory and switch in
another bank.

Expanded memory under EMS 4.0 is supported in Windows 3 in two configurations:
In the first configuration (called "small frame"), the bank-switched memory resides

in an unused area above the 640-KB level of conventional memory and below the I-MB
level addressable by the 8086 family running in real mode. This 384-KB area contains the
ROM BIOS, some BIOS device drivers, and video adapter buffers, but at least 64 KB are usu
ally available for expanded memory.

In the second configuration (called "large frame"), the bank-switched memory also
occupies an area of the 640-KB address space containing conventional memory. The bank
switched memory can usually occupy as much as 384 KB of conventional memory, from the
2S6-KB level to the 640-KB level. The level above which memory is bank-switched is called
the "bankline."

The GetWinFlags function includes the flags WF _SMALLFRAME and WF _LARGE
FRAME if you need to determine the configuration under which your program is running.

Windows 3 uses bank-switched memory on a per process basis. When switching be
tween Windows programs (which normally occurs during calls to the Get Message, Peek
Message, and WaitMessage functions), Windows 3 will switch out the banks of memory
associated with the first process and switch in the banks of memory associated with the
second process.

The chapter entitled "More Memory Management" in the Windows Guide to Pro
gramming discusses which memory objects are stored below the bankline and above the'
bankline in the small-frame and large-frame configurations. Generally, this is transparent
to the Windows application. The only problem arises when two Windows programs share
memory using a technique other than the clipboard, dynamic data exchange, or dynamic
link libraries. Such sharing is not recommended because it may not work in future versions
of Windows.

Protected Mode

When running on a 286 or 386 processor with at least 1 MB of memory, Windows runs in
286-compatible protected mode. In this mode, Windows can use the 640 KB of conven
tional memory and memory allocated from extended memory using the XMS (Extended
Memory) driver included in the retail release of Windows 3.

In this mode, segment addresses do not correspond to physical memory. Instead, the
segment addresses are called "selectors," which reference physical memory through a de
scriptor table. Protected mode is called "protected" because the hardware of the 286 and
386 microprocessors ensures that programs do not load invalid segment addresses or

287

SECTION III: USING RESOURCES

attempt to access a segment beyond the segment's size. The processor generates a protec
tion exception that the operating system (or in this case, Windows) traps. Windows re
sponds by terminating the offending application.

For this reason, several rules are associated with protected mode:

• Do not perform segment arithmetic.

• Do not load far pointers with invalid addresses.

• Do not attempt to address a segment beyond its allocated length.

• Do not store data in code segments.

If you follow the memory allocation guidelines I discuss below, you should have no
problem running your program in protected mode. You should do your development work
in protected mode to more easily catch bugs; if you can't, you should definitely test your
code in protected mode, because it can reveal bugs in your code that are not so evident
when running in real mode.

ALLOCATING MEMORY WITHIN A PROGRAM
Programs often need to dynamically allocate blocks of memory for internal use. Windows
programs can allocate memory either from the program's private local heap or from Win
dows' global heap. Windows includes two sets of memory allocation functions, one set for
using the local heap and one for the global heap.

There are certain trade-offs between local and global memory allocations. Local
memory allocations are generally faster and require less overhead, but the memory in the
local heap is limited to 64 KB less the combined size of the program's initialized static vari
ables, the program's un initialized static variables, and the stack. Global memory alloca
tions are not limited to 64 KB, either in the size of single blocks or in the total memory you
can allocate. However, pointers to global memory blocks are far pointers, which can be
awkward to work with in your program. (You cannot pass a far pointer to small-model and
medium-model C library functions, for instance.)

This chart summarizes the differences between memory allocations from the local
heap and the global heap:

Size of block:

Total memory:

Pointer:

Local Heap

Less than 64 KB

Less than 64 KB

Near

Global Heap

Any size

Free global memory

Far

You'll probably find local heap allocations convenient for small, short-lived blocks of
memory and global heap allocations for large, long-lived blocks.

288

Chapter 7: Memory Management

The memory blocks you allocate can be fixed, moveable, or discardable. You specify
the attributes you want when you allocate the memory block. When you write polite, well
mannered Windows programs, you'll probably want to use moveable blocks when allocat
ing global memory, but you can use either fixed or moveable blocks for local memory. How
do you deal with a moveable memory block in your program? Very carefully.

Lock Your Blocks

At first, it seems impossible for Windows to support moveable memory blocks in real
mode. When a program allocates some local or global memory, Windows has to give the
program a pointer so that the program can access the memory. If Windows later moves the
memory block, then that pointer will be invalid. It will no longer point to the right place.

How does Windows do it? The catch here is that the memory allocation functions do
not directly return pointers that the program may use. Instead, these functions return-as
you can probably guess by now-handles. WINDOWS.H defines two data types called
LOCALHANDLE and GLOBALHANDLE. These are defined as type HANDLE (which is a
WORD, or unsigned 16-bit short integer). Before your program can use the allocated
memory block, it must pass that handle back to Windows in another function that locks the
memory block and returns a pointer. When a memory block is locked, Windows will not
move it. The pointer will continue to be valid until you call another function to unlock the
block. After that, Windows is free to move the memory again.

More precisely, the functions that lock a block of memory increment a "lock count"
for the memory block. The unlocking functions decrement the lock count. When you first
allocate moveable memory, the lock count is 0, meaning that Windows can move it if nec
essary. When the lock count is positive, Windows cannot move the block. (A lock count is
preferable to a simple flag that denotes whether a block is locked, because different parts
of your program can independently lock a block, use it, and unlock it. If Windows used a
flag instead of a lock count, the memory block could become unlocked when anoth'er sec
tion of the program still needed it.)

When you use moveable memory in your Windows program, you should keep it
locked only when your program has control. You should unlock it before you leave your
window procedure. When you are entirely done with the memory block, you can then free
the block.

A Quick Example

Before going into details, let's look at a quick example to get the feel of this process. Let's
say that your program needs a 48-KB chunk of global memory during the entire time the
program is running. During initialization (for instance,when processing the WM_CREATE
message), the program uses GlobalAlloc to allocate a 48-KB segment of moveable memory:

hGlobalMemory - GlobalAlloc (GMEM_MOVEABLE, OxCOOOL) ;

289

SECTION III: USING RESOURCES

The value returned from GlobalAlloc is a handle to a 48-KB global memory segment. Store
the handle in a static variable (here called hGlobalMemory).

While processing other messages, you might need to read from or write to this
memory segment. At that time you lock the block of memory using GlobalLock and save the
far pointer returned from that function:

lpGlobalMemory = GlobalLock (hG16balMemory) ;

You can now use the IpGlobalMemory pointer as a normal far pointer. When you are fin
ished using the memory or processing the message, unlock the segment so that Windows
can move it around in memory again:

GlobalUnlock (hGlobalMemory) ;

When your program cleans up in preparing to terminate. (probably when processing the
WM_DESTROY message), it can free up the memory segment by using:

GlobalFree (hGlobalMemory) ;

This procedure shows how a polite, well-behaved Windows program uses global
memory. (I've ignored some details for now but will cover them shortly.) Good Windows
programmers keep in mind that their programs share resources with other Windows pro
grams. Good Windows programmers structure their programs to allow Windows to move
the global segments around in memory if necessary. Good Windows programmers lock
their segments only when they need to use the memory and unlock the segments when
they are done.

An impolite, bad Windows program uses initialization code like this:

lpGlobalMemory = GlobalLock (GlobalAlloc (GMEM_FIXED,OxCOOOL)) :

The GMEM_FIXED flag in GlobalAlloc specifies that the segment is fixed in memory.
Windows can't move it; therefore, the IpGlobalMemory value returned from GlobalLock
will be valid until the segment is freed up. More convenient, yes. But don't do it.

Global Memory Functions

Now for the details. This is the general syntax of the GlobalAlloc call:

hGlobalMemory = GlobalAlloc (wFlags. dwBytes) ;

The dwBytes parameter is a double word (unsigned long). This value can be greater than
65,536, but there are special considerations in using global memory blocks larger than 64
KB. (These will be discussed later.)

The wFlags parameter can be a combination of several identifiers that are combined
with the C bitwise OR operator. You first have a choice of three identifiers to define the at
tribute of the allocated memory block:

• GMEM_FIXED-Memory is fixed. (This is the default if wFlags is 0.)

290

Chapter 7: Memory Management

• GMEM_MOVEABLE-Memory is moveable.

• GMEM_DISCARDABLE-Memory is discardable. This opt!on should be
used only with GMEM_MOVEABLE. I'll discuss later how you can
manage discardable global memory in your programs.

With any of the above three flags, you can use the GMEM_ZEROINIT flag for convenience;
this flag tells Windows to initialize memory contents to O.

You can use two more flags to tell Windows what to do if not enough free memory ex
ists in the global heap .. When Windows attempts to allocate the block requested by
GlobalAlloc, it first searches to see if a large enough free block exists already. If not, Win
dows begins moving blocks of memory that are moveable and not currently locked. If that
still doesn't generate enough space, Windows begins discarding blocks that are marked as
discardable and not currently locked, again moving moveable unlocked segments. You can
inhibit this action by using one of two flags:

• GMEM_NOCOMPACT - Windows will neither compact memory nor
discard memory when attempting to allocate the block.

• GMEM_NODISCARD-Windows will not discard discardable global
memory when attempting to allocate the block. Windows may still
compact memory by moving moveable blocks.

If your program implements Dynamic Data Exchange (DDE), you'll need to use the
GMEM_DDESHARE flag to allocate blocks of memory that are shareable among multiple
programs. I'll discuss this in Chapter 17.

WINDOWS.H includes two shorthand flags for the most common global memory al
locations. The flag GHND (which stands for "global handle") is defined as:

GMEM_MOVEABLE : GMEM_ZEROINIT

The flag GPTR ("globaf pointer") is defined as:

GMEM_FIXED : GMEM_ZEROINIT

The name of this flag seems odd. Why is a fixed global block referred to as a "global
pointer"? The answer is given later in this chapter, in the section entitled "Memory Alloca
tion Shortcuts."

The hGlobalMemory value returned from GlobalAlloc is a handle to the global
memory block. It is NULL if GlobalAlloc could not allocate the requested memory. You
should definitely che,ck the return value from GlobalAlloc when allocating global memory.

The function GlobalLock locks the segment in memory by incrementing the lock
count and returns a far pointer to type char. You should have a variable declared for this
pointer:

LPSTR lpGlobalMemory ;
fother program lines]

lpGlobalMemory = GlobalLock (hGlobalMemory)

291

SECTION III: USING RESOURCES

If hGlobalMemory is valid, GlobalLock can return NULL only if you flagged the memory
block with GMEM_DISCARDABLE. The NULL return value indicates that the block has
been discarded.

Because GlobalLock is declared as returning a far pointer to type char, you should
use casting if you need something different:

DWORD FAR *lpdwGlobalMemory ;
[other program lines]

lpdwGlobalMemory = (DWORD FAR *) GlobalLock (hGlobalMemory)

The far pointer returned' from GlobalLock points to the beginning of a segment. The
offset address is 0. If you need to save pointers to areas within a moveable block, do not
save them as far pointers. These far pointers may be invalid the next time you lock the seg
ment. Instead, store an offset froni the beginning of the block. For a global block less than
64 KB, for instance, you need save only the offset address (the lower 16 bits) of the pointer.

The GlobalUnlock function decrements the lock count for the hGlobalMemory
handle:

GlobalUnlock (hGlobalMemory) ;

Calling GlobalUnlock invalidates the IpGlobalMemory pointer returned from GlobalLock.
When the lock count is 0, Windows can move the block in memory.

GlobalLock and GlobalUnlock are fairly fast, so you don't suffer a real performance
penalty if you use the two functions liberally. You should definitely not keep a block
locked from one message to another. Remember that Windows performs best when
memory is moveable. When you make a call to a Windows function, Windows may need to
load code into memory. If you have a locked memory block sitting around, Windows may
have to discard other segments to make room.

When you are entirely finished with the memory block, you can call:

GlobalFree (hGlobalMemory) ;

Following this call, the hGlobalMemory handle is no longer valid, and the block is freed.

More Global Memory Functions

Although the four global memory functions shown above are the ones you'll use most
often, Windows also provides several others. Before using GlobalAlloc, you may want to
determine the amount of global memory currently available:

dwAvailable = GlobalCompact (dwRequested) ;

GlobalCompact causes Windows to move moveable blocks and to calculate the area of free
memory that could be obtained by also discarding discardable blocks. If the function can
not generate dwRequested bytes, it returns the largest block of free memory available.
Discarding doesn't take place until you call GlobalAlloc using the size returned from
GlobalCompact.

292

Chapter 7: Memory Management

After you allocate a memory block, you can determine its size using:

dwBytes = GlobalSize (hGlobalMemory) ;

You can also change the size of the memory block or change its attributes using
GlobalReAlloc. This function is a little tricky, because it can be used in one of three ways.
Here's the general syntax:

hGlobalMemory = GlobalReAlloc '(hGlobalMemory, dwBytes, wFlags) ;

First, you can change the size of a global memory block (either increasing or decreas
ing it) using:

GlobalReAlloc (hGlobalMemory, dwNewBytes, wFlags) ;

The data already stored in the block are preserved. The function returns NULL if it cannot
increase the block to the requested size.

The wFlags parameter is used in the same way as the wFlags parameter for
GlobalAlloc: GMEM_NODISCARD and GMEM_NOCOMPACT place restrictions on what
Windows will do to satisfy the allocation request. GMEM_ZEROINIT zeroes out additional
bytes if you are expanding the block. When calling GlobalReAlloc, you don't have to in
clude the GMEM_FIXED, GMEM_MOVEABLE, or GMEM_DISCARDABLE flags. Windows
preserves the attribute specified when the block was allocated. However, you may want to
use the GMEM_MOVEABLE flag for reallocating a fixed block. Doing so gives Windows
permission to move the block in memory to satisfy the allocation request. In this case,
GlobalReAlloc returns a new global memory handle to the fixed block:.

hGlobalMemoryNew = GlobalReAlloc (hGlobalMemoryOld, dwNewBytes,
GMEM_MOVEABlE) ;

If GlobalReAlloc returns NULL, the request for memory was refused, and the original
hGlobalMemoryOld value passed to GlobalReAlloc is still valid for the fixed block.

The second way to use GlobalReAlloc is to change the discardable attribute of
moveable blocks. The dwNewBytes value is ignored. You can change a moveable block
to a discardable one:

GlobalReAlloc (hGlobalMemory, Ol, GMEM_MODIFY : GMEM_DISCARDABlE)

or change a discardable block to a moveable (but nondiscardable) one:

GlobalReAlloc (hGlobalMemory, Ol, GMEM_MODIFY : GMEM_MOVEABlE) ;

The third use of GlobalReAlloc is to discard a discardable memory block. This re
quires dwNewBytes to be 0 and the wFlags parameter to be GMEM_MOVEABLE:

GlobalReAlloc (hGlobalMemory, Ol, GMEM_MOVEABlE) ;

You can do the same thing using:

GlobalDiscard (hGlobalMemory)

In fact, GlobalDiscard is a macro defined in terms of GlobalReAlloc.

293

SECTION III: USING RESOURCES

Using Discardable Global Memory

Discardable memory segments are generally used for data that can be easily regenerated.
For example, suppose you decide to use a separate file for "help" text that your program
displays when the user requests it. You could allocate a moveable block, lock it, read some
data from the file, display it on the screen, unlock the block, and free it. However, this ap
proach requires that your program allocate a new block of memory and access this file ev
ery time help information is requested.

Alternatively, you could keep a moveable block for this file buffer in memory all the
time. When the user requests some help information, you check to see that the information
is already in the buffer, and then you use that information rather than access the disk again.
The performance of your program improves, but it does so at the cost of having a block of
global memory allocated for the duration of your program.

How about using a discardable block instead? This keeps the buffer in memory but
also gives Windows permission to discard it if necessary. When you lock the block:

lpGlobalMemory = GlobalLock (hGlobalMemory) ;

the IpGlobalMemory return value will be NULL if the block has been discarded. In that
case, you use GlobalReAlloc to reallocate the segment. Windows never discards a discard
able block when the lock count is nonzero.

If you have obtained a valid far pointer from GlobalLock, that pointer is valid until you
call GlobalUnlock. Even after the block is discarded, the handle is still valid. (This avoids
problems when you pass the handle to GlobaILock.)

You can also determine that a block is discardable or has been discarded by using the
GlobalFlags function:

wFlags = GlobalFlags (hGlobalMemory) ;

WINDOWS.H has identifiers you can use in corribinationwith wFlags. This value is
nonzero if the block is discardable:

(GMEM_DISCARDABLE & wFlags)

This value is nonzero if the block has been discarded:

(GMEM_DISCARDED & wFlags)

Another approach is to include the GLOBAL_NOTIFY flag when allocating a discardable
segment. In this case, Windows will call a call-back function in your program that has
been registered with the GlobalNotify function when it is about to discard a discardable
segment.

Huge Global Memory Blocks

The dwSize parameter in GlobalAlloc is a 32-bit DWORD (double word), large enough in
theory to allocat~ a 4-gigabyte block of memory. Although you obviously won't be able to

294

Chapter 7: Memory Management

get a block quite that large, it appears that you can still allocate a block of memory larger
than 64 KB. Yes, you can, but you have to be careful. Beginning with version 4 of the
Microsoft C Compiler, the huge keyword was implemented for defining variables that are
larger than 64 KB. A huge pointer is 32 bits, just like a far pointer. However, the Microsoft C
Compiler assumes that a far pointer addresses only a 64-KB range and will never run past
the end of the segment. With a huge pointer, the compiler generates code that checks for
segment overrun and does appropriate segment arithmetic on the pointer.

The phrase "segment arithmetic" should have triggered a bell in your head! I men
tioned earlier that you should not perform segment arithmetic in your Windows programs
because it violates rules of protected mode. Fortunately, the Microsoft C 6 compiler and
Windows work together to perform different segment arithmetic depending on whether
the program is running in real mode or protected mode. In real mode, jumping from the
end of one 64-KB segment to the beginning of another segment requires adding Ox1000. In
protected mode, the selectors are allocated so that 8 is added for the segment jump. (Note:
Don't rely on this number; it may change under future versions.)

When you use GlobalAlloc to allocate memory greater than 64 KB, you must cast the
pointer returned from GlobalLock into a huge pointer and save it as a huge pointer. For in
stance, this code allocates a 128-KB memory block and locks it:

GLOBALHANDLE hGlobalMemory ;
char huge *lpGlobalMemory;

[other program lines]

hGlobalMemory = GlobalAlloc (GMEM_MOVEABLE. Ox20000L) ;
[other program lines]

lpGlobalMemory - (char huge *) G7oba7Lock (hGlobalMemory)

Every function that manipulates this huge pointer must be aware that the pointer is
huge. If a function that is passed a huge pointer believes that the pointer is a simple far
pointer, the Microsoft C Compiler will not generate any segment arithmetic when you ma
nipulate the pointer. For this reason, you should not pass a huge pointer to most of the stan
dard C library functions (the C 6 manuals list functions that support huge arrays) or to any
of the Windows functions unless you know that the function will not be referencing the
pointer past the end of a segment.

That's one problem with huge pointers. Another problem is the possibility that a
single data item referenced by the pointer may straddle two segments. With a huge pointer
to character data, this is never a problem, because each character is a byte. The offset ad
dress that GlobalLock returns is always 0, so the huge pointer can also safely reference ar
rays of all the standard data types (char, int, short, long, float, and double).

If you use a huge pointer to an array of structures, you will have no problems if the
'size of the structure is a power of 2 (such as 2, 4, 8, 16, and so forth). That guarantees that
no single structure will straddle two segments. If the size of the structure is not a power of
2, then you are bound by two restrictions:

• The data block allocated with GlobalAlloc cannot be larger than 128 KB.

295

SECTION III: USING RESOURCES

• The offset address returned from GlobalLock must be adjusted so that a
structure does not straddle two segments.

The first rule is actually implied by the second rule. If the iriitial offset address is adjusted
so that an element of the structure does not straddle the first and second segments, it will
straddle the second and third segments.

This explanation requires an ,example. Let's say you want a huge memory block to
hold an array of 15,000 structures, where each structure requires 6 bytes. You can use
typedeJ statements for this structure and a far pointer to the structure:

1Itypedef struct
{
i nt e 1 ementl
long element2
}
MYSTRUCT ;

1Itypedef MYSTRUCT huge *LPMYSTRUCT

In your program you can define a variable for the far pointer to the structure:

GLOBALHANDLE
LPMYSTRUCT

hGlobalMemory
lpMyStruct ;

[other program lines}

hGlobalMemory - GlobalAlloc (GHND, 15001 * sizeof (MYSTRUCT))

lpMyStruct = (LPMYSTRUCT) «65536L % sizeof (MYSTRUCT)) +
GlobalLock (hMem)) ;

The pointer returned from GlobalLock will have an offset address of O. You must increase
that so that a single structure does not straddle the two segments. The adjustment value is
the remainder of 65,536 divided by the size of the structure. (In this case, the adjustment
value is 4.) Because you have a little waste here, GlobalAlloc allocates one more structure
than is really needed.

Allocating Local Memory

I've been stressing the importance of using moveable (and, if possible, discardable) global
memory blocks. With local memory you have the same options, but the guidelines are more
relaxed. Whether you use fixed or moveable memory blocks within your local heap is up to
you. Because your entire data segment is moveable (as it will be if you use the small or
medium model), what you do inside your data segment doesn't affect other applications.

In fact, Windows makes it easier to use local memory if the blocks are fixed. The
question to ask is: Can my local heap be smaller if I use moveable blocks instead of fixed
blocks? If you use local memory a lot, and the life spans of the memory blocks over lap each
other, then the answer to that question may be yes. If you use local memory allocations
solely for short-lived memory, there's no reason to. make the blocks moveable.

296

Chapter 7: Memory Management

The local memory functions are similar to the global memory functions. Instead of
GlobalAlloe, GlobalLoek, Glo balUn lock, and GlobalFree, you use LoealAlloe, LoealLoek,
LoealUnloek, and LoealFree. Instead of identifiers that begin with GMEM, you use iden
tifiers that begin with LMEM. The only real differences are these: The memory size passed
to LoealAlloe is a WORD (unsigned integer) rather than a DWORD, and the pointer
returned from LoealLoek is a near pointer rather than a far pointer.

This is the syntax of LoealAlloe:

hLocalMemory = LocalAlloc (wFlags, wSize) :

The wSize parameter is large enough to accommodate a requested size of 65,536 bytes, but
you won't get a local block that large, because the data segment also includes your pro
gram's stack and static variables.

The wFlags parameter can first specify the attributes of the block:

• LMEM_FIXED-Memory is fixed. (This is the default if wFlags is 0.)

• LMEM_MOVEABLE-Memory is moveable.

• LMEM_DISCARDABLE-Memory is discardable. This option should be
used only with LMEM_MOVEABLE.

The LMEM_ZEROINIT flag zeroes out the memory block.
These two flags are equivalent to the similar flags for GlobalAlloe:

• LMEM_NOCOMPACT - Windows will neither compact nor discard
memory in the local heap when attempting to allocate the block.

• LMEM_NODISCARD-Windows will not discard discardable memory in
the local heap when attempting to allocate the block. Windows may still
compact memory by moving moveable blocks.

WINDOWS.H also includes two shorthand flags for local memory allocations. The
flag LHND (which stands for "local handle") is defined as:

LMEM_MOVEABLE : LMEM_ZEROINIT

The flag LPTR ("local pointer") is defined as:

LMEM_FIXED : LMEM_ZEROINIT

If Windows cannot find enough memory in the local heap to allocate the block, it will
attempt to expand the local heap by enlarging the size of the entire data segment. (Remem
ber that the local heap is always at the top of the automatic data segment.) Windows may
even move the data segment to another location in memory if that will provide the space it
needs to expand the local heap. When LoealAlloe returns, your data segment may have
been moved. (If this makes you nervous, check the section below entitled "Locking Your
Own Data Segment.") The HEAPSIZE specification in the module definition (.DEF) file is
really a minimum value for the heap.

297

SECTION III: USING RESOURCES

If, after all this, Windows still cannot find enough memory in the local heap to allo
cate the memory block, the handle returned from LoealAlloe will be NULL. If you use local
memory allocation only for small, short-lived memory blocks, you probably don't need to
check the handle for a NULL value. (Alternatively, you might want to check the value dur
ing program development but not in the final version of the program.) If you do a lot of ran
dom local memory allocation with blocks of various sizes and different life spans, then
you'll have to implement some kind of error processing.

LoealLoek turns the local memory handle into a near pointer and then locks the
block. LoealUnloek unlocks the block and invalidates the pointer. LoealFree frees the
memory block and invalidates the handle.

Here's an example of using local memory to define the window class structure during
program initialization:

LOCALHANDLE
NPWNDCLASS

hLocalMemory
npwndclass

father program lines]

if (!hPrevInstance)
{
hLocalMemory = LocalAlloc (LHND, sizeof (WNDCLASS))
npwndclass = (NPWNDCLASS) LocalLock (hLocalMemory) ;

npwndclass-)style = CS_HREDRAW CS_VREDRAW
npwndclass-)lpfnWndProc = WndProc
npwndclass-)cbClsExtra = 0 ;
npwndclass-)cbWndExtra = 0 ;
npwndclass-)hInstance = hInstance
npwndclass-)hIcon = LoadIcon (NULL, IDI_APPLICATION)
npwndclass-)hCursor = LoadCursor (NULL, IDC_ARROW)
npwndclass-)hbrBackground = GetStockObject (WHITE_BRUSH) ;
npwndclass-)lpszMenuName = NULL;
npwndclass-)lpszClassName = szAppName

RegisterClass (npwndclass)

LocalUnlock (hLocalMemory)
LocalFree (hLocalMemory) ;
}

The size of the memory block passed to LoealAlloe is the size of the WNDCLASS
structure. LoealLoek always returns a near pointer regardless of the memory model, be
cause it allocates memory from the local heap in the program's automatic data segment. In
this example, the pointer to type char that LoealLoek returns is cast into a pointer to a
WNDCLASS structure. The -> notation is used to reference the elements of a structure
based on a pointer to the structure. In the RegisterClass call, we don't use the address (&)

operator because npwndclass is already a pointer. Note also that the use of LHND initial
izes the block of memory to O. All variables in the structure that take a 0 or NULL value
need not be explicitly assigned.

298

Chapter 7: Memory Management

Other Local Memory Functions

Some other local memory functions parallel those for global memory allocations, except
that sizes are in terms of wBytes rather than dWBytes. You can get the current size of a local
memory block by calling:

wBytes = LocalSize (hLocalMemory)

The function LocalReAlloc can change the size of an allocated memory block, change
a moveable block to discardable, change a discardable block to nondiscardable, and
discard a discardable block, just like GlobalReAlloe. During a LoealReAlloe call, Windows
may expand the size of the local heap by expanding the size of the entire data segment,
possibly moving it to another location in memory. LoealCompaet can determine the
amount of free local memory available in the heap, LoealDiseard discards a discardable
memory block, and LoealFlags provides the current status of discardable blocks.

Two other local memory functions do not have counterparts in the global memory
functions. You can prevent your local heap from being compacted by calling:

LocalFreeze (0) :

When you later want to allow compacting, you can call:

LocalMelt (0) :

Locking Your Own Data Segment

Now that you are thoroughly paranoid about .locking and unlocking memory blocks, you
may start to wonder about the automatic data segment of the program itself. When the pro
gram begins executing, your automatic data segment has a lock count of 1, and the data
segment cannot be moved in memory. Windows decrements that lock count when the pro
gram makes one of the following calls: GetMessage, PeekMessage, WaitMessage, LoealAlloe,
or LoealReAlloe.

The GetMessage, PeekMessage, a'nd WaitMessage calls can cause a switch from your
program to another program. When your program gets control again, your data segment
may have been moved. A LoealAlloe or LoealReAlloe call can cause Windows to expand the
size of your local heap, in the process moving the data segment to another location in
memory. Windows increments the lock count when it returns from these calls to your pro
gram. So in most cases, your program's data segment is locked when your program has
control. This means that you can construct (through casting) far pointers to data in your
data segment, and they will remain valid until you make one of these five calls or exit the
window procedure.

If you want to prevent the movement of your data segment during a LocalAlloc or
LoealReAlloe call, you can increase the lock count by 1 before calling the function:

LockData (0) :

299

SECTION III: USING RESOURCES

Following the LockData call, the lock count of your data segment will be 2. When Windows
decrements the count during a LocalAlloc or LocalReAlloc call, it will still be positive and
your data segment will still be locked. You can decrement the lock count by calling:

UnlockData (0) ;

If you're brave, you might also want to take the opposite approach. You might be
willing to keep your data segment unlocked while making Windows calls. You would do
this by calling UnlockData to decrement the lock count to 0 and then LockData to incre
ment it to 1 again before exiting the window procedure. When your data segment is
unlocked, Windows has more flexibility in moving segments in memory because Windows
can move your data segment as well. However, when your data segment is unlocked, you
should not make any Windows calls that require a far pointer to your data segment.
Depending on what happens during that call, the pointer may become invalid by the time
Windows needs to use it.

Memory Allocation Shortcuts

We have been treating handles as abstract numbers. But sometimes handles are actually
pointers. If you use LMEM_FIXED in LocalAlloc, the handle returned from the call is a
near pointer that you can use directly. You do not need to call LocalLock. (If you do, it sim
ply returns the same value you pass as a parameter-the handle that is actually a valid near
pointer.) In fact, WINDOWS.H defines a special flag for calling LocalAlloc with an LMEM
_FIXED parameter. The flag is LPTR ("local pointer") and is defined as:

LMEM_FIXED : LMEM_ZEROINIT

When you use this flag, you need only cast the return value from LocalAlloc. into a near
point~r of the type you want:

npString = (char NEAR *) LocalAlloc (LPTR. wSize) ;

You free it up by casting t~e near pointer back to a handle and calling LocalFree:

LocalFree ((LOCALHANDLE) npString) ;

This technique is handy for allocating small chunks of local memory. For instance,
here's the example shown above for allocating memory for the window class structure. It
now uses a fixed block of local memory:

300

NPWNDCLASS 'npwndclass
[other program lines]

if (!hPrevInstance)
{
npwndclass = (NPWNDCLASS) LocalAlloc (LPTR. sizeof (WNDCLASS»

npwndclass-)style = CS HREDRAW CS_VREDRAW
npwndclass-)lpfnWndProc = WndProc
npwndclass-)cbClsExtra = 0 ;

Chapter 7: Memory Management

npwndclass-)cbWndExtra = 0 ;
npwndclass-)hInstance = hInstance ;
npwndclass-)hIcon = LoadIcon (NULL, IDI_APPLICATION)
npwndclass-)hCursor = LoadCursor (NULL, IDC_ARROW) ,
npwndclass-)hbrBackground = GetStockObject (WHITE_BRUSH) ;
npwndclass-)lpszMenuName = NULL;
npwndclass-)lpszClassName = szAppName

RegisterClass (npwndclass) ;

LocalFree ((LOCALHANDLE) npwndclass)
}

We've eliminated two lines of code (LocalLock and LocalUnlock) and one variable (the
local memory handle). Note the casting in the LocalAlloc and LocalFree calls.

The same technique is even applicable for GlobalAlloc when the GMEM_FIXED (or
GPTR) flag is used. The "handle" returned from GlobalAlloc is the segment address of the
segment. It's a little more clumsy to convert that into a far pointer, but here's how to do it:

lpString = (LPSTR) MAKELONG (0, GlobalAlloc (GPTR, dwSize» ;

The MAKELONG macro combines the segment address returned from GlobalAlloc and an
offset address of 0 to make a long integer, which is then cast into a long pointer to type
char. To free this block, you have to extract the segment address from the pointer and pass
it to GlobalFree:

GlobalFree ((GLOBALHANDLE) LOWORD ((LONG) lpString») ;

Idon't like the memory allocation shortcuts, and I don't think they should be used. I've in
cluded them only because many sample Windows programs use them, particularly when
allocating local memory.

Using C Memory Allocation Functions

The start-up code that LINK attaches to C programs running under Windows contains
functions for many of the memory allocation functions in Microsoft C 6, such as calloc,
malloc, realloc, andfree. The routines in the start-up code convert the normal C memory
allocation functions into equivalent Windows memory allocation functions. For instance,
the function:

malloc (wSize)

is translated into:

LocalAlloc (LMEM_FIXED : LMEM_NOCOMPACT, min (I, wSize» :

These functions are included in the Windows start-up code not for your benefit, but
because several other C functions from the standard library make calls to these C memory
allocation functions. These other C functions cannot work properly without using the

301

SECTION III: USING RESOURCES

Windows memory allocation calls. Although it's not intended that you use these functions,
you can use them. Be aware, however,-that in compact-memory and large-memory models
(which you shouldn't be using for Windows programs anyway), the Windows malloe
returns a far pointer to your program's automatic data segment-as opposed to the non
Windows malloe, which returns a far pointer to a block of memory outside the automatic
data segment. Also be aware that _fmalloe and halloe are translated into GlobalAlIoe calls
with a flag that is equal to (GMEM_FIXED : GMEM_NODISCARD), and as you know, you
should not use fixed global memory blocks. Moreover, the pointer returned from the Win
dows halloe is not properly aligned for an array of elements that are not multiples of 2, and
the memory is not initialized to O. The point is clear: Unless you feel deprived doing C pro
gramming without malloe, use the Windows functions for all memory allocations.

If You Know You're Running in Protected Mode

In this chapter, I have tried to present guidelines for memory management that are valid in
all modes in which Windows 3 can run. However, if your program is so large that it can
(realistically) run only in protected mode, then you can simplify your memory ~anage
ment. Such a program should use GetWinFlags and terminate if it's running in real mode.

When allocating moveable global memory, you can lock the memory block immedi
ately to obtain the pointer. Even though the block is locked, Windows can still move it in
memory-and the pointer will remain valid. You don't even have to save the global
memory handle. To free the block, you can use GlobalHandle to obtain the handle from
the pointer. Then unlock the block and free it as normal.

You can compile with the -G2 flag to generate 286 code.

302

ChapterS

Icons, Cursors,
Bitmaps, and

Strings

Most Windows programs include a customized icon that Windows displays when the pro
gram is minimized. Some programs (such as the Windows PAINTBRUSH program) also
use customized cursors to represent different operations of the program. Most Windows
programs also use menus and dialog boxes.

Icons, cursors, menus, and dialog boxes are all examples of "resources." Resources
are data and are included in a program's .EXE file, but they do not reside in a program's
normal data segment. When Windows loads a program into memory for execution, it usu
ally leaves the resources on disk. Only when Windows needs a particular resource does it
load the resource into memory. (You've probably noticed dynamic loading of resources
when working with Windows programs. When you invoke a program's dialog box for the
first time, Windows usually accesses the disk to copy the dialog box resource from the pro-
gram's .EXE file into memory.) .

Most resources are read-only data and are marked as discardable. When Windows
needs more memory, segments occupied by discardable resources can be freed up. If the
resource is required again later, Windows reloads it from the .EXE file. Just as multiple

303

SECTION III: USING RESOURCES

instances of the same program share the same code, multiple instances also usually share
resources. I'll be discussing these resources:

• Icons

• Cursors

• Bitmaps

• Character strings

• User-defined resources

• Menus

• Keyboard accelerators

• Dialog boxes

• Fonts

The first five resources in the list are discussed in this chapter. Menus and keyboard ac
celerators are covered in Chapter 9, dialog boxes in Chapter 10, and fonts in Chapter 14.

COMPILING RESOURCES
During program development, resources are defined in a "resource script," which is an
ASCII text file with the extension .Re. The resource script can contain ASCII representa
tions of resources and can also reference other files (either ASCII or binary files) that con
tain resources. The resource compiler (Re.EXE) compiles the resource script into a binary
form, adds the resources to the end of the .EXE file that LINK generates, and creates a
"resource table" in the .EXE header.

You can use the resource compiler included in the Windows Software Development
Kit in one of three ways:

304

• You can compile resources and add them to the linked .EXE file in one
step by executing the command:

RC filename

where jilename.RC is the name of the resource script (the .RC extension
is assumed) and jilename.EXE is the name of the linked .EXE file. You
can also use:

RC resource-name exe-name

if the name of your .RC resource script and the name of your .EXE execut
able are different. (This is usually not the case.)

Chapter 8: Icons, Cursors, Bitmaps, and Strings

• You can compile a .RC resource script into a binary compiled form with
the extension .RES by executing:

RC -r fil ename

This uses the ASCII filename.RC file to create a binary file called
filename.RES. You can then add the resources to the linked file by
executing:

RC filename.RES

The .RES extension is required here to differentiate this command
from the command shown earlier that both compiles the resource script
and adds the resources to the .EXE file.

• If your program has no resources, you should run rC.exe on the linked file:

RC fil ename. EXE

This flags the program as being "Windows 3 aware."

This second method is the one most commonly used when the resource script con
tains resources. Although it requires that the RC.EXE resource compiler be run twice
once to compile the resource script and again to add the resources to the .EXE file-it
actually results in a faster edit-make-run cycle when developing Windows programs. The
reason is that compiling the resources generally takes much longer than adding them to the
.EXE file. During program development, you will probably modify your C source code
much more frequently than the resource script, so you have no need to recompile the
resources each time.

The procedure of compiling resources is reflected in a different make file. Up until
now we have been using a make file that looks something like this:

progname.exe : progname.obj progname.def
link progname, lalign:16, NUL, Inod slibcew libw, progname
rc progname.exe

progname.obj : progname.c
cl -c -Gsw -Ow -W2 -Zp progname.c

When we start using resources, we'll use an expanded make file that looks like this:

progname.exe : progname.obj progname.def progname.res
link progname, lalign:16, NUL, Inod slibcew libw, progname
rc progname.res

progname.obj : progname.c [progname.h]
cl -c -Gsw -Ow -W2 -Zp progname.c

progname.res : progname.rc [progname.h] [and other files]
rc -r progname.rc

305

SECTION III: USING RESOURCES

In the second and third sections I've indicated that a .H header file can be used in both the
C source code and the resource script. This header file usually defines identifiers used by
the program to reference resources. I've also indicated in the third section' that the depen
dent file list possibly includes "other files." These are files referenced from within the
resource script. Generally they are binary files that contain icons, cursors, or bitmaps.

The RC.EXE resource compiler uses a preprocessor called RCPP.EXE. This pre
processor folds added or subtracted constants, recognizes 1* and */as comment delimiters,
and recognizes the C preprocessor directives #define, #undej, #ifdej, #ifndej, #include,
#if, #elif, #else, and #endif. The # include directive works a little differently than iii. normal
C programs. We'll examine this in greater detail in Chapter 10.

In the first section of the make file, the .OB] anp .RES files are dependent files for the
.EXE target. NMAKE checks the rest of the make file to determine if these dependent files
must be updated. The second section compiles the C source code as usual. The third
section compiles the .RC resource script into a binary .RES file.

The first section is then executed if either the .OB], .DEF, or .RES file has changed
since the last .EXE file was created. This section links the program as usual and runs .RC
again to add the resources to the .EXE file. If you change only the .RC resource script file,
you still need to relink to produce a new .EXE file without the previous resources. The
resource compiler cannot remove old resources from a .EXE file when adding new ones.

ICONS AND CURSORS
Let's beg'in by looking at a sample program that uses two resources-an icon and a cursor.
RESOURC1, shown in Figure 8-1, displays a customized icon when the program is
minimized and uses a customized cursor when the mouse is in RESOURCl's client area.
RESOURC1 also draws its icon in several rows and columns within the client area.

Figure 8·1. The RESOURCl program, including an icon arid a cursor.

306

Chapter 8: Icons, Cursors, Bitmaps, and Strings

(continued)

307

SECTION III: USING RESOURCES

.....

308

RESOURC1.RC

/*-- •. - .. ~---~-- ..•• ----------.
RESOURC1.RC resource script

------_ _-------_._-------*/

resourcl ICON resourcl.ico
resourcl CURSOR resourcl.cur

RESOURC1.ICO

RESOURC1.CUR

Chapter 8: Icons. Cursors. Bitmaps. and Strings

(continued)

309

SECTION III: USING RESOURCES

Both the icon and the cursor were created using the SDKPAINT program supplied with the
Windows Software Development Kit. They are shown in FiguJ."e 8-1 against a light gray
background. SDKPAINT is a Windows application, and it requires a mouse. Icons are saved
from SDKPAINT with a .ICO extension; cursors have a .CUR extension. These files are
referred to in the RESOURC1.RC resource script.

The SDKPAINT Tool

SDKPAINT is one of the most important development tools in the Windows Software
Development Kit. The program allows you to create bitmaps, icons, and cursors for use in
your Windows programs. Icons and cursors are both variations of bitmaps, so it will be
helpful to examine bitmaps first.

A bitmap is an array of bits where one or more bits corresponds to each display pixel.
In a monochrome bitmap, one bit corresponds to one pixel. (In the simplest case, a 1 bit
represents white and a 0 bit represents black. However, bitmaps are often used in logical
operations rather than merely to create simple drawings.) In a color bitmap, multiple
bits correspond to each pixel to represent color. SDKPAINT supports the creation of
monochrome bitmaps and 16-color bitmaps. In a 16-color bitmap, 4 bits are required
for each pixel.

A bitmap may have any number of rows and columns. (However, the bitmaps you
create in SDKPAINT are limited to 72 rows and 72 columns. You can create larger bitmaps
in PAINTBRUSH.) Bitmaps are stored in files with a .BMP extension. (I'll discuss the format
of the bitmap file in Chapter 13.)

You can also create icons and cursors in SDKPAINT. Icons and cursors are very simi
lar, and they are both variations of bitmaps.

Windows displays icons and cursors on the screen in a pixel size that depends on the
resolution of the video display. This ensures that the icons and cursors are neither too
large nor too small. A program can obtain these pixel dimensions using the GetSystem
Metrics function with parameters of SM_CXICON, SM_CYICON, SM_CXCURSOR, and
SM_CYCURSOR. On most video displays, the dimensions of icons and cursors are identi
cal. To keep it simple in the following discussion, I'll refer only to icons, but keep in mind
that everything I say applies to cursors also.

On an IBM Color Graphics Adapter (CGA), the width of an icon is 32 pixels and the
height is 16 pixels. On an Enhanced Graphics Adapter (EGA), Video Graphics Array (VGA),

310

Chapter 8: Icons, Cursors, Bitmaps, and Strings

and the IBM 8514/A video adapter, the icons are 32 pixels wide and 32 pixels high. For
higher-resolution adapters, icons could be displayed as 64 pixels by 64 pixels .

. Each .leo file can contain multiple icon images, each one designed for particular
resolutions and color capabilities of the various video adapters on which your Windows
program can run. SDKPAINT supports four different image formats. When you create a
new icon file (by selecting New from SDKPAINT's File menu), you select one of these four
formats. After creating an icon in this format, you can then select another of the four for
mats from the New option on the Image menu. These four formats are:

• 32 pixels by 16 pixels with 2 colors (monochrome)

• 32 pixels by 32 pixels with 2 colors (monochrome)

• 32 pixels by 32 pixels with 8 colors

• 32 pixels by 32 pixels with 16 colors

The first format is for the eGA, and the second is for other video adapters (EGA, VGA,
and 8514/A) running in a monochrome mode. The third and fourth are for non-eGA
adapters running in color modes. The 8-color format is of limited use: SDKPAINT actually
uses a 16-color format internally and when saving the image to the file, but allows you to
color it with only 8 colors. The EGA, VGA, and 8514/A are all capable of 16 colors.

You don't need to create icon images in all four formats. When a program contains an
icon resource, Windows will choose the format that most closely approximates the size and
color capabilities appropriate to the video adapter. For example, if you create only 32-
by-32-pixel icons and your program is run on a eGA, Windows will display the icon using
every other row of pixels, effectively compressing the height of the icon.

If you create only a 32-by-32 icon with 16 colors, use color sparingly because the
colors can be approximated only with gniy shades (or converted to black or white) when
running with a monochrome display. All the icons and cursors in the programs in this
chapter were created in the 32-by-32 monochrome format.

,When you create an icon image in one of the four formats, SDKPAINT actually stores
it as two bitmaps-a monochrome bitmap "mask" and a monochrome or color bitmap im
age. Icons are always rectangular, but this mask allows the icon to appear to be nonrec
tangular. That is, part of the icon allows the background against which the icon is displayed
to be visible. The icon can also contain areas that invert the background color.

These two options are indicated in SDKPAINT by radio buttons labeled "Screen" and
"Inverse." After selecting "Screen," anything you draw in the icon will be transparent, and
after selecting "Inverse," anything you draw in the icon will invert the background. You
can select different background colors to see how this looks. The icons and cursor in Figure
8-1 are shown against a light gray background. The light gray areas were colored using the
"Screen" option, and the dark gray areas were colored using the "Inverse" option.

311

SECTION III: USING RESOURCES

For a monochrome icon, the following table shows how SDKPAINT constructs the
two bitmaps that describe the icon:

Color:

Mask Bitmap:

Image Bitmap:

Black

o
o

White

o
1

Screen

1

o

Inverse Screen

1

1

When displaying the icon, Windows first uses a bitwise AND operation of the display and
the first bitmap. The display pixels corresponding to 0 bits from the first bitmap all become
O's, which are black. The display pixels corresponding to 1 bit remain the same. This is
shown in the following logic table.

Mask Bit

o
1

Display Pixel
o 1

o
o

o
1

Next, Windows performs a bitwise exclusive OR operation of the image bitmap and
the display. A 0 in the seco~d bitmap leaves the display pixel the same; a 1 in the second
bitmap inverts the display pixel. Here's the logic table:

Image Bit

o
1

Display Pixel
o 1

o
1

1

a

Using C notation for the operations, the display is altered by the following formula:

Display = (Display & Mask) 1\ Image

For a 16-color icon, the mask bitmap is still monochrome and constructed as shown above.
The image bitmap contains 4 bits per pixel to represent 16 colors. All four bits are set to 1
for areas of the icon that invert the background.

Earlier I said that when talking about bitmaps, 0 does not necessarily mean black, and
1 does not necessarily mean white. As you can see here, it depends on how Windows uses
the bitmaps. (I'll discuss this more in Chapter 13.)

In RESOURCl, I've defined the window class to make the background of the client
area be COLOR_WINDOW. You may want to bring up the Windows Control Panel program
and change the window color to see how the icon and cursor invert colors.

312

Chapter 8: Icons, Cursors, Bitmaps, and Strings

Getting a Handle on Icons

A resource script references the icon file with a statement that looks like this:

myicon ICON iconfile.ico

where ICONFILE.ICO is the name of the icon file. This statement assigns the name
"myicon" to the icon. In your C program, you use the LoadIcon function to obtain a handle
to the icon. LoadIcon requires two parameters. The first is the instance handle of your pro
gram, generally called hlnstance in WinMain. Windows needs this handle to determine
which .EXE file contains the icon resource. The second parameter is the icon name from
the resource script, in the form of a pointer to a null-terminated string. LoadIcon returns a
value of type HICON, which is defined in WINDOWS.H.

This diagram shows the relationship between the icon name in the resource script
and the Loadlcon statement in your C program:

Resource script: myicon ICON ieonlile. ieo

Program source: hleon = Loadleon (hlnstanee, "myicon '') ,.

Don't worry about uppercase and lowercase here. The resource compiler converts the
name in the resource script file to uppercase and inserts the name in the resource table of
the program's .EXE file header. The first time you call Loadlcon, Windows converts the
string from the second parameter to uppercase and searches the resource table of the .EXE
file for a matching name.

You can speed up this search by using a number (an unsigned integer) instead of a
name. This number is called an ID number for the icon. Here's how it's done:

Resource script: 125 ICON ieonlile.ieC?

Program source: hIcon = LoadIcon (hlnstanee, MAKEINTRESQURCE(125)J,.

MAKEINTRESOURCE ("make an integer into a resource string") is a macro defined in
WINDOWS.H that converts a number into a far pointer. The offset address is set to the
number, and the segment address is set to O. Here's how MAKINTRESOURCE is defined
in WINDOWS.H:

#define MAKEINTRESOURCE(i) (LPSTR)«DWORD)«WORD)(i»)

Windows knows that the second parameter is a number rather than a pointer to a character
string because the segment address is O.

Sample programs presented earlier in this book use predefined icons:

Loadlcon (NULL, IDCAPPLICATION): .

Windows knows that this is a predefined icon because the hlnstance parameter is set
to NULL. IDI_APPLICATION happens also to be defined in WINDOWS.H in terms of
MAKEINTRESOURCE:

#define IDI_APPLICATION MAKEINTRESOURCE(32512)

313

SECTION III: USING RESOURCES

The predefined icons and cursors are part of the display driver file.
You can also reference the icon name using a third method that combines the string

method and the number method:

Resource script: 125 ICON iconfile.ico

Program source: hIcon = LoadIcon (hInstance, "#125'');

Windows recognizes the initial # character as prefacing a number in ASCII form.
How about a fourth method? This one uses a macro definition in a header file that is

included (using the #include directive) in both the resource script and your program:

Header file:"

Resource script:

Program source:

#define myicon 125

myicon ICON iconfile.ico

hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (myicon)) ;

Be careful when you use this method! Although case does not matter when the icon name
is a character string, case does make a difference for identifiers that are generated from
#define statements.

Using ID numbers rather than names for icons reduces the .EXE file size and speeds
up the LoadIcon call. Moreover, if your program uses many icons, you'll find it easier to
store the ID numbers in an array.

Using Icons in Your Program

Icons have only a couple of" purposes. Most Windows programs use an icon only for
displaying the program in the icon area. This is accomplished when defining the
window class:

wndclass.hIcon = LoadIcon (hInstance, "myicon") ;

If you later want to change the program's icon, you can do so using SetClassWord.

Let's assume" you had a second icon in your resource script:

anothericon ICON iconfi12.ico

You can substitute this icon for "myicon" with the statement:

SetClassWord (hwnd, GCW_HICON, LoadIcon (hlnstance,"anothericon"»

If you save the icon handle from a LoadIcon call, you can also draw the icon on the
client area of your window:

DrawIcon (hdc, x, y, hIcon)

Windows itself uses the DrawIcon function when displaying your program's icon in the
icon area. Windows obtains the handle to the icon from the window class structure. You
can obtain the handle in the same way:

DrawIcon (hdc, x, y, GetClassWord (hwnd, GGW_HICON»

314

Chapter 8: Icons, Cursors, Bitmaps, and Strings

The RESOURCI sample program uses the same icon for the window class and for dis
playing in its client area. In the resource script the icon is given the same name as the
program:

resourcl ICON resourcl.ico

Because the character string "Resourc1" is stored in the array szAppName and is already
used in the program for the window class name, the Load/con call is simply:

LoadIcon (hInstance, szAppName)";

You'll notice that Load/con is called twice in RESOURCI for the same icon, once when
defining the window class in WinMain and again when obtaining a handle to the icon
while processing the WM_CREATE message in WndProc. Calling Load/con twice present~
no problem: Both calls return the same handle. Windows actually loads the icon only once
from the .EXE file and then uses it for all instances of the RESOURCI program.

Using Alternate Cursors

The statements that you use to specify a cursor in your resource script and to obtain a
handle to a cursor in your program are very similar to the icon statements shown above:

Resource script: mycursor CURSOR cursfile.cur

Program source: hCursor = LoadCursor (hlnstance, "mycursor'');

The other methods shown for icons (using ID numbers and MAKEINTRESOURCE) work
with cursors also. WINDOWS.H includes a typedeJ definition for HCURSOR that you can
use for storing the cursor handle. (Both HICON and HCURSOR are defined as HANDLE.)

You can use the cursor handle obtained from LoadCursorwhen setting the hCursor
member of the window class structure:

wndclass.hCursor = LoadCursor (hInstance, "mycursor") ;

This causes the mouse cursor to be displayed as your customized cursor when the mouse is
within the client area of your window.

If you use child windows, you may want the cursor to appear differently, depending
on the child window below the cursor. If your program defines the window class for these
child windows, you can use different cursors for each class by appropriately setting the
hCursorfield in each window class. And if you use predefined child window controls, you
can alter the hCursor field of the window class using:

SetClassWord (hwndChild, GCW_HCURSOR,
. LoadCursor (hInstance, "childcursor")

If you separate your client area into smaller logical areas without using child win
dows, you can use SetCursor to change the mouse cursor:

SetCursor (hCursor) ;

315

SECTION III: USING RESOURCES

You should call SetCursor during processing of the WM_MOUSEMOVE message. Other
wise, Windows uses the cursor specified in the window class to redraw the cursor when
it is moved.

RESOURCI uses the name of the program for the name of the cursor:

resourcl CURSOR resourcl.cur

When RESOURCl.C defines the window class, this szAppName variable is used for
LoadCursor:

wndclass.hCursor = LoadCursor (hInstance, szAppName)

RESOURCES AND 'MEMORY
The LoadIcon and LoadCursor functions certainly sound as if they load the icon or cursor
from the .EXE file into memory. They do not. Windows doesn't load the icon or cursor until
it needs the object for drawing. During loading, Windows may alter the object to fit the
dimensions and color capabilities of the display.

Icons and cursors (as well as all other resources except bitmaps) are "owned" by the
program. Multiple instances of the same program share the same cursors and icons loaded
into memory. When the last instance terminates, Windows'frees up the memory occupied
by the resource. And for most resources, Windows can discard the resource from memory
to generate free space and then load it back into memory when needed.

You can override some of these characteristics, however. For all resources except the
keyboard accelerators (covered in Chapter 9), you can specify "load" and "memory" op
tions in the resource script file. These options are similar to the module definition file
options for code and data segments discussed in Chapter 7. In the resource script, the load
and memory options follow the resource type. This is the generalized form of the ICON
statement in a resource script file:

iconID ICON [load-option] [memory-option] iconfile.ico

The load option can be either PRELOAD' or LOADONCALL. A resource defined as
PRELOAD will be loaded into memory when the program is loaded. LOADONCALL means
that the resource will not be loaded until Windows needs it. LOADONCALL is the default
for all resources. You will probably want to use PRELOAD only when you know that your
program will need the resource immediately after beginning to execute.

The memory options are FIXED, MOVEABLE, and DISCARDABLE. DISCARDABLE
resources must also be MOVEABLE. For the resources discussed in this chapter, the icon,
cursor, and character string resources have default memory options of MOVEABLE and
DISCARDABLE. The bitmap and user-defined resources are MOVEABLE only. Why the
difference? Icon, cursor, and character string resources are read-only, so Windows can
safely discard them from memory. Windows allows bitmaps and user-defined resources
to be modified from within a program -and modified resources cannot be discarded.

316

Bitmaps: Pictures in Pixels

Chapter 8: Icons, Cursors, Bitmaps, and Strings
I

We've already talked about the use of bitmaps in icons and cursors. Windows also includes
a resource type called BITMAP.

Bitmaps are used for two major purposes. The first is to draw pictures on the display.
For instance, the Windows display driver files contain lots of tiny bitmaps used for drawing
the arrows in scroll bars, the check mark in pull-down menus, the system menu box, the
size box, check boxes, and radio buttons. Programs such as PAINTBRUSH use bitmaps to
display a graphics menu.

The second major use of bitmaps is to create brushes. Brushes, you'll recall, are pat
terns of pixels that Windows uses to fill an area of the display. (Chapter 9 discusses a third
and less common use of bitmaps, as selection items in menus.)

Using Bitmaps and Brushes

The RESOURC2 program, shown in Figure 8-2, is an upgraded version of RESOURCI that
includes a monochrome bitmap resource used to create a brush for the background of the
client area. The bitmap was created in SDKPAINT with dimensions of 8 by 8, which is the
minimum size for a brush.

Figure 8·2. The RESOURC2 program, including an icon, a cursor, and a bitmap. (continued)

317

· SECTION III: USING RESOURCES

(continued)

318

while (GetMessage (&msg, NULL,
{
TranslateMessage C&msg) ;
DispatchMessage (&msg)
}

Chapter 8: Icons, Cursors, Bitmaps, and Strings

319

SECTION III: USING RESOURCES

RESOURC2.ICO

RESOURC2.CUR

RESOURC2.BMP

320

Chapter 8: Icons, Cursors, Bitmaps, and Strings

: RESOURC2; OEF module defi n Hi onfil e

NAME

DESCRIPTION
EXETYP£
STUB
CODE
DATA

··HEAPSIZE
STACKSIZE
EXPORTS

'Icon >andCursor ·.DemoProgram·· .. No.
WINDOWS
'W I NSTUB~ EX E' ..> .

PRELOAO.MOVEABLE)UISCAROABLE
PRELOAD MOVEABLE MULTIPLE
1024
8192
WndPrOc

The bitmap resource is included in the resource script in the same format as the icon
and cursor:

resourc2 BITMAP resourc2.bmp

The LoadBitmap function used in WinMain is similar to the LoadIcon and Load
Cursorcalls. It returns a handle to a bitmap:

hBitmap - LoadBitmap (hlnstance. szAppName)

This handle is then used to create a pattern brush. The brush is based on the bitmap:

hBrush = CreatePatternBrush (hBitmap) ;

When Windows fills an area of the display with this brush, the bitmap is repeated horizon
tally and vertically every eight pixels. We want to use this brush to color the background of
the client area, which we accomplish when defining the window class:

wndclass.hbrBackground = hBrush ;

The major difference between bitmaps and other resources is of practical signifi
cance and can be simply stated: Bitmaps are GDI objects. They are not shared among in
stances of your program, and they are not automatically deleted from memory when your
program terminates. Because bitmaps and brushes are GDI objects, they must be deleted
before the program terminates. In RESOURC2 this is done at the end of WinMain:

OeleteObject (hBrush) ;
OeleteObject (hBitmap) ;

321

SECTION III: USING RESOURCES

CHARACTER STRINGS
Having a resource for character strings may seem odd at first. Certainly we haven't had any
problem using regular old character strings defined as variables right in our source code.

Character string resources are primarily for easing the translation of your program to
other languages. As you'll discover in the next two chapters, menus and dialog boxes are
also part of the resource script. If you use character string resources rather than put strings
directly into your source code, then all text that your program uses will be in one file-the
resource script. If the text in this resource script is translated, all you need do to create a
foreign-language version of your program is relink the program and add the translated
resources to the .EXE file. This method is much safer than messing around with your source
code. (Of course, you could also choose to define all your character strings as macros and
store them in a header file. This ~ethod also avoids altering source code during language
translations.)

A second reason for using character string resources is to reduce memory space. This
reason is less obvious-in fact, if you use character string resources inefficiently, you
might not reduce memory space at all. We'll examine this problem after we get through
the basics.

Using Character String Resources

The character string resources are defined in your resource script using the keyword
STRINGTABLE:

STRINGTABLE [load option] [memory option]
{

nIDI. "character string 1"
nID2. "character string 2"
[other string definitions}

The resource script can contain only one string table. LOADONCALL is the default
load option; MOVEABLE and DISCARDABLE are the default memory options. Each string
can be only one line long with a maximum of 255 characters. The strings cannot contain
any C-style control characters except for \ t (tab). However, the strings can contain octal
constants:

Tab \011

Linefeed \012

Carriage return \015

These control characters are recognized by the DrawText and MessageBox functions.

322

Chapter B: Icons, Cursors, Bitmaps, and Strings

Your program can use the LoadStringcall to copy a string resource into a buffer in the
program's data segment:

LoadString (hInstance, nID, lpszBuffer, nMaxLength) :

The nIDparameter refers to the ID number that precedes each string in the resource script;
IpszBuffer is a far (or long) pointer to a character array that receives the character string;
and nMaxLength is the maximum number of characters to transfer into the IpszBuffer. The
string ID numbers that precede each string are generally macro identifiers defined in a
header file. Many Windows programmers use the prefix IDS_ to denote an ID number for a
string. Sometimes a filename or other information must be embedded in the string when
the string is displayed. In this case you put C formatting characters in the string and use it
as a formatting string in sprintj or wsprintj.

Using Strings with MessageBox

Let's look at an example of a program that uses three character strings to display three error
messages in a message box. A header file that we'll call PROGRAM.H defines three iden
tifiers for these messages:

#define IDS_FILENOTFOUND 1
#define IDS_FILETOOBIG 2
#define IDS_FILEREADONLY 3

The resource script looks like this:

#include "program.h"
[other resource script}

STRINGTABLE
{

IDS_FILENOTFOUND,
IDS_FILETOOBIG,
IDS_FILEREADONLY,

"File %5 not found."
"File %5 too large to edit."
"File %5 is read-only."

The C source code file also includes this header file and defines a function to display
a message box. (I'm assuming that szAppName is a global variable that contains the
program name.)

#include "program.h"
[other program lines}

OkMessage (HWND hwnd, WORD wErrorNumber. char *szFileName)
{

char szFormat [40]
char szBuffer [60]

323

SECTION III: USING RESOURCES

LoadString (hInst, wErrorNumber, szFormat, 40)

sprintf (szBuffer, szFormat, szFilename) ;

return MessageBox (hwnd, szBuffer, szAppName,
MB_OK : MB_ICONEXCLAMATION)

To display a message box containing the "file not found" message, the program calls:

OkMessage (hwnd, IDS_FILENOTFOUND, szFileName)

Character Strings and Memory Space

Character string resources usually save memory space, but the amount of space saved
depends on how efficiently they're used. When the RC.EXE resource compiler adds strings
to the .EXE file, the strings are grouped into different segments depending on the ID num
bers of the strings. Each segment contains a maximum of 16 strings. Strings with ID num
bers from 0 to 15 are stored in one segment, from 16 to 31 are in another, and so forth.
Because of this grouping into segments, your .EXE file will be shorter if you use consecu
tive numbers for your string IDs.

When you use LoadString to copy a string resource into memory, however, Windows
loads the entire segment (containing up to 16 strings) into 'memory as a resource. Windows
then also copies the content of the string specified in the LoadString call to a buffer in your
program's data segment. So when string resources are loaded into memory, they init'ially
occupy less memory if you do not use consecutive numbers for the string IDs. Probably the
worst way to use string resources is to load all the strings into separate global static arrays
during program initialization in WinMain. If you do that, you don't use any less space than
if you had included the strings in your C source code. In fact, you'll use more space, be
cause you'll set the size of these arrays somewhat larger than the actual string lengths. Here
are some general rules for using string resources:

324

• Assign string ID numbers according to logical groupings. For instance, if
five strings are involved in one section of your program and six strings are
involved in another section, you might use ID numbers 0 to 4 for the first
group of strings and 16 to 21 for the second group.

• Whenever possible, load the strings into automatic local variables within
functions, thus freeing up the space when the function is exited. (The
OkMessage function shown above uses this approach.)

• Alternatively, reuse a single static array for loading strings.

Chapter 8: Icons, Cursors, Bitmaps, and Strings

Here's an example of the last approach. Let's assume that your program never re
quires more than one string at a time. You can define a function that loads the string and
returns a pointer to a static variable containing the string:

char *String (WORD wID)
{
static szBuffer [256]

LoadString (hInst, wID, szBuffer, 255)
return szBuffer ;
}

If you want to use DrawText to display the string with ID number 45, you use this
statement:

DrawText (hdc, String (45), -1, &rect, DT_LEFT) ;

Each call to String destroys the contents of the static buffer. If you require access to (for
example) three strings at one time, you can modify String as follows:

char *String (WORD wID, short n)
{
static szBuffer [3][256] ;

LoadString (hInst, wID, szBuffer En], 255)
return szBuffer En] :
}

When you call String now, you pass an ID number and a second parameter that is either
0,1, or 2.

USER-DEFINED RESOURCES
The "user-defined resource" is convenient for attaching miscellaneous data to your .EXE
file and obtaining access to that data within the program. The data can be in any format
you want. The Windows functions used to access user-defined resources return a far
pointer to the data when Windows loads the data into memory. You can do whatever you
want with that data. For instance, suppose you have a file called PROGHELP.TXT that con
tains "help" text for your program. This file needn't be a pure ASCII file: It can also contain
binary data, such as pointers that would aid your program in referencing various sections
of this file. Reference this file with a statement in your resource script that looks like this:

helptext TEXT proghelp.txt

For helptext (the name of the resource) and TEXT (the type of the resource), you can use
any names you want. I've capitalized TEXT simply to make it look like the ICON, CURSOR,
and BITMAP statements. What we're doing here is making up our own type of resource,
called TEXT.

325

SECTION III: USING RESOURCES

During program initialization (for example, during processing of the WM_CREATE
message), you can obtain a handle to this resource:

hResource - LoadResource (hInstance,
FindResource (hInstance, "TEXT", "helptext"» ;

The variable hResource is defined with type HANDLE. Despite its name, LoadResource
does not actually load the resource into memory just yet. The LoadResource and
FindResource functions used together like this are essentially equivalent to the Load/con
and LoadCursor functions. In fact, Load/con and LoadCursor use the LoadResource and
FindResource functions.

You can use numbers rather than names for the resource name and resource type.
The numbers can be converted to far, pointers in the FindResource call using Make/nt
Resource. The numbers used for the resource type must be greater than 255. (Windows
uses numbers between 1 and 9 when calling FindResource for existing resource types.)

When you need access to the text, call LockResource:

lpHelpText ~ LockResource (hResource) ;

LockResource loads the resource into memory (if it has not already been loaded), locks it
using the GlobalLock function, and returns a far pointer to it. When you are finished
accessing the memory, unlock the segment:

UnlockResource (hResource) ;

This allows Windows to move the segment in memory. When you're finished with the
resource, you can free it from memory:

FreeResource (hResource) ;

The resource will be freed when your program terminates, even if you don't call
FreeResource.

Normally, user-defined resources are not discardable unless you include the DIS
CARDABLE keyword before the filename in the resource script. But if you use the pointer
returned from LockResource to alter as well as read the data, don't make the resource
DISCARDABLE. Note also that the same resource is shared among all instances of the pro
gram. If each instance needs its own copy of the resource, you ,should make the resource
discardable, use LockResource to obtain a pointer to the resource, use GlobalAlloc to obtain
a global memory block of the same size, use GlobalLock to lock that block, and then copy
the contents of the resource into the global memory block.

Let's look at a sample program that uses three resources-an icon, a string table, and
a user-defined resource. The POEPOEM program, shown in Figure 8-3, displays the text of
Edgar Allan Poe's "Annabel Lee" in its client area. The user-defined resource is the file
POEPOEM.ASC, which contains the text of the poem. The text file is terminated with a
backslash (\).

326

Chapter 8: Icons, Cursors, Bitmaps, and Strings

Figure 8·3. The POEPOEM program, including an icon and a
user-defined resource.

(continued)

327

SECTION III: USING RESOURCES

(continued)

328

Chapter 8: Icons, Cursors, Bitmaps, and Strings

switch (message)
{
case WM_CREATE

hdc = GetDC (hwnd) :
GetTextMetrics (hdc. &tm) :
cxChar - tm.tmAveCharWidth :
cyChar = tm.tmHeight + tm.tmExternalLeading
ReleaseDC (hwnd. hdc) ;

xScroll == GetSystemMetrics (SM_CXVSCROLL) :

hScroll = CreateWindow ("scroll bar" • NULL,
WS_CHILD :WS_VISIBLE SBS_VERT,
O. 0, 0, O.
hwnd. 1, hrnst, NULL) ;

LoadStri ng (hlnst. I DS_POEMRES, szPoemRes.
hResource ~ LoadResource (hInst,

FindResource (hlnst. szPoemRes. "TEXT"» ;

lpText == LockResource

while (*1 pText1= '\ \. && *1 pText 1-
{
if (*lpText -'\n')

nNumLi nes ++ :
lpText = AnsiNext (lpText)
}

*1 pText"" '\0' ;

G1obalUnlock(hResource)

SetScrollRange (hScroll. SB_CTL. D. nNumLines. FALSE)
SetScrollPos (hScroll. SB~CTL. D. FALSE) ;
return 0 ;

case WM_SIZE:
MoveWi ndow (hScroll, LOWORD (1 Param) - xScro11.

xScroll. cyClient-HIWORD(1Param). TRUE)
Set Focus (hwnd)
return 0 :

(continued)

329

SECTION III: USING RESOURCES

.:

...... IJ/\ .. \) i}

II '; \". >
1 \ 'i It

•••

II

••••••••••••• ?' :: i •••••••

~llllll
. " .

II, ?

H

•••••••••••••••••••••••••••••••

.. <

i
;y

•••••••••••••••••••

~i
.. "

.,. L
i) /. ~.

?I
> ;,

tor . I) nes>

)(h Sci 0 \it i
.'.:

;" <; ;F r: .,.;,.

l II

:r
'.'<

>

\' <.

Ii <
.. ,."

0;; •
T J ~t. ".' .. '

r1,; cr It. h
;' I(

~ ~ ~j &. '.'.? E <
< '.,.

0 I(
•• .., >

\.I &, } ..
i. . .. ,.

i
)

.'
ii

(continued)

330

case WM_DESTROY :

}

FreeResource (hResource)
PostOuitMessage(O) :
return 0 :

Chapter 8: Icons, Cursors, Bitmaps, and Strings

retur~ DefWindowProc (hwnd. message. wParam, lParam)
}

POEPOEM.ICO

331

SECTION III: USING RESOURCES

..•..• j2J .• ;<i.
I(e~··.· .. · ··(i . ·.··.·.i ... })

• ••••••••••••••
......•..

~i . - :L . i .. r
\

)i .. i) ii>
(

......... i :. J
~ .

•• i J a ' ~ ... •.....
. 1

!~ t Iv

.{., W u

: 1.1 IJ ~I ~.~ \ ;i· >

(•. \1 ,r I'
.-•... :

i [0 ql
'.,..',

.~ i ' .. ~. (

~

....... i

Idt
. ..

1
L 2~

.......

(

••••••

.,~ in
~~\ i~ /

(I ..• , i)
i 1.'1\,L.)1 ,
........(....• h

~ .. =.[: m 'r nl

~ .. ~ ······,}i~

... •...•.• J.)

".'" \ > i•.•. i
~. f) it II •....

i< r:
11 il

't< d e rea {
•.....•..•..... :n

~ -;i':"" < l(fIrll~ ~ '~IlN:{~~ ~J\ I' ;;i' ~ I, l~' •.... ...: •.....

i""., (i \ ••.•....•••..•...•.••• 'r) ;;;Si i~: .'. "./
> ."

(continued)

332

Chapter 8: Icons, Cursors, Bitmaps, and Strings

But our love it~as stronger~y far than the love
Of those who were older than we ~.
Of many far wiser than we ••

And neither the angels in Heaven above
Nor the demons down under 'the sea

Can ever di ssever my soul from the soul
Of the beautiful Annabel Lee:

Forthemoon.never beamsicwithQut brjngingme dreams
Ofth~be.aut1f~lAnnab~1 L~e:

An.d. : th ... e ... : .. star ... ~ •.. n .. e ... v. ~r rl.' se .••... b u :t .. ·.· •. I.· •.•..•.. :f .. : .. e ..•. :.·.· ... e: .. : .••..... l ...••... : .•.••. · •..•. t .. : ...•...• : .• h ...••.....••.•. e ..••........ ·• : ... :.b ... : .•.... r.: ..• :· •. l .•. :.: .• :.g .. :.:.h ... :.t: .. e .. · ... Y: .•.. es. Of the beautiful Annabel Lee:
And.s9.~11th~~i ghttti de:.(Iliedow~9Y yhe sjde
Of my d~ rTi ng 77 mydarJi ng.~~my<l i feandJllY bride.

Inhe.~sepu, ~~reth.~re bythes~a
In} nertomb bythesoundingsea.~.

In the POEPOEM.RC resource script, the user-defined resource is given the type TEXT and

the name AnnabelLee:

Annabel Lee TEXT poepoem,asc

During WM_CREATE processing in WndProc, a handle to the resource is obtained
using FindResource and LoadResource. The resource is locked using LockResource, and a·
small routine replaces the backslash (\) at the end of the file with a O. (This is for the
benefit of the DrawText function used later.) In most cases it's not a good idea to write on a

333

SECTION III: USING RESOURCES

user-defined resource directly, because the same resource is shared among all instances of
the program. However, later instances of POEPOEM will not encounter problems with the
change we've made. The resource is then unlocked using GlobalUnlock.

The resource is also locked and unlocked during processing of WM_PAINT to write
the text to the display using DrawText. Note the use of a child window scroll bar control
rather than a window scroll bar. The child window scroll bar control has an automatic key
board interface, so no WM_KEYDOWN processing is required in POEPOEM.

POEPOEM also uses three character strings, the IDs of which are defined in the
POEPOEM.H header file. For the first instance of the program, the IDS_APPNAME and
IDS_CAPTION strings are loaded into global static variables using LoadString:

LoadString (hInstance. IDS_APPNAME. szAppName. sizeof szAppName) ;
LoadString (hInstance. IDS_CAPTION. szCaption. sizeof szCaption) ;

However, for subsequent instances of POEPOEM, the strings are copied from the previous
instance:

GetInstanceData (hPrevInstance. szAppName. sizeof szAppName) ;
GetInstanceData (hPrevInstance. szCaption. sizeof szCaption) ;

GetInstanceData is faster than LoadString if the string resource has been discarded from
memory. The pointers (szAppName and szCaption) are near pointers to static global vari
ables. Windows uses these pointers in combination with the data segment address of the
previous instance and the data segment address of the current instance to copy the con
tents of the variables.

Now that we've defined all the character strings used in POEPOEM as resources,
we've made it easier for translators to convert t~e program into a foreign-language version.
Of course, they'd also have to translate the text of "Annabel Lee"-which would, I
suspect, be a somewhat more difficult task.

334

Chapter 9

Menus and
Accelerators

Menus are an important part of the consistent user interface that Windows programs offer.
Adding a menu to your program is a relatively easy part of Windows programming: You
simply define the structure of the menu in your resource script and assign a unique ID
number to each menu item. You specify the name of the menu in the window class
structure. When the. user chooses a menu item, Windows sends your program a
WM_COMMAND message containing that ID. But we won't stop with that simple example.
One of the more interesting things you can do with menus is display bitmaps in the menu
rather than character strings, so we'll take a detailed look at how that is done.

This chapter also covers "keyboard accelerators." These are key combinations that
are used primarily to duplicate menu functions.

MENUS
A window's menu bar is displayed immediately below the caption bar. This menu bar is
sometimes called a program's "main menu" or the "top-level menu." Items listed in the
top-level menu almost always invoke a drop-down menu, which is called either a "popup
menu" or a "submenu." Beginning with Windows 3, you can define multiple nestings of
popups: that is, an item on a popup menu can invoke another popup menu. Sometimes
items in popup menus invoke a dialog box for more information. (Dialog boxes are covered
in Chapter 10.) Most parent windows have, to the far left of the caption bar, a box containing
a single line. This box invokes the system menu, which is really another popup menu.

335

SECTION III: USING RESOURCES

Menu items in popups can be "checked," which means that Windows draws a small
check mark to the left of the menu text. The use of check marks lets the user choose differ
ent program options from the menu. These options can be mutually exclusive, but they
don't have to be. Top-level menu items cannot be checked.

Menu items in the top-level menu or in popup menus can be "enabled," "disabled,"
or· "grayed." The words "active" and "inactive" are sometimes used synonymously with
"enabled" and "disabled." Menu items flagged as enabled or disabled look the same to the
user, but a grayed menu item is displayed in gray text.

From the perspective of the user, enabled, disabled, and grayed menu items can all
be "selected" (highlighted). That is, the user can click the mouse on a disabled menu item,
or move the reverse-video cursor bar to a disabled meriu item, or trigger the menu item
using the' item's key letter. However, from the perspective of your program, enabled,
disabled, and grayed menu items function differently. Windows sends your program a
WM_COMMAND message only for enabled menu items. You use disabled and grayed
menu items for options that are not currently valid. If you want to let the user know the
option is not valid, make it grayed.

Menu Structure

When you create or change menus in a program, it's useful to think of the top-level menu
and each popup menu as being separate menus. The top-level menu has a menu handle,
each popup menu within a top-level menu has its own menu handle, and the system menu
(which is also a popup) has a menu handle.

Each item in a menu is defined by three characteristics: The first characteristic is
what appears in the menu. This is either a text string or a bitmap. The second characteristic
is either an ID number that Windows sends to. your program in a WM_COMMAND mes
sage or a popup menu that Windows displays when the user chooses that menu item. The
third characteristic describes the attribute of the menu item, including whether the item is
disabled, grayed, or checked.

The Menu Template

You can create a menu in three different ways. The most common (and the easiest) is to
define the menu in your resource script in the form of a menu template. This example
shows all the different options you can use in this template.

336

Chapter 9: Menus and Accelerators

MyMenu MENU [load option] [memory option]
{
MENU ITEM "&One",
POPUP "&Two"

{
MENU ITEM "&Ten",
MENU ITEM "&Eleven",
MENU ITEM SEPARATOR
MENUITEM "T&welve",
MENU ITEM "T&hi rteen",
MENU ITEM "&Fourteen",
MENU ITEM "F&ifteen",
MENU ITEM "&Sixteen",
POPUP "Se&venteen",

{

10, CHECKED
11

12, INACTIVE
13
14, MENUBREAK
15,
16, MENUBARBREAK
17,

MENUITEM "&Twenty", 20
MENU ITEM "T&wenty-One", 21
MENUITEM "Tw&enty-Two", 22
}

MENUITEM "Ei&ghteen", 18, GRAYED
}

MENU ITEM "Th&ree", 3
MENU ITEM "&Four", 4, INACTIVE
MENU ITEM "Fi &ve", 5
MENU ITEM "Si &x" , 6, MENUBREAK
MENU ITEM "&Seven", 7,
MENUITEM "&Eight", 8, GRAYED
MENUITEM "\a&Help", 9, HELP
}

This particular menu template defines a top-level menu that displays the labels
"One" through "Eight" and "Help," as shown in Figure 9-1 on the following page. Only the
second item invokes a popup menu. The popup menu displays the labels "Ten" through
"Eighteen," as shown in Figure 9-2 on the following page. The little arrow to the right ofthe
"Seventeen" option indicates that it invokes yet another popup menu.

MyMenu is the name of the menu. This name performs the same function as the
names of icon, cursor, and bitmap resources discussed in Chapter 8. As with other
resources, the load option on the MENU statement can be either PRELOAD (in which case
Windows loads the resource into memory when the program is executed) or LOADON
CALL (in which case Windows loads the resource into memory only when it is needed).
The default is LOADONCALL. The memory options are FIXED, MOVEABLE, and DIS
CARDABLE. The default is MOVEABLE and DISCARDABLE. Discardable menus must also
be moveable. Although we'll change menus in some of the programs shown later, don't
worry that the menu resource is discardable. Windows makes a copy of the menu for your
program to use and change.

337

SECTION III: USING RESOURCES

Figure 9·1. A top-level menu.

Figure 9·2. A popup menu.

338

Chapter 9: Menus and Accelerators

The top-level menu is enclosed in left and right brackets. (You can use BEGIN and
END statements instead if you wish.) The two types of statements allowed within these
brackets are:

MENU ITEM "text", wID, options

and:

POPUP "text", options

The text displayed for each menu must be enclosed in double quotation marks. An amper
sand (&) causes the character that follows it to be underlined when Windows displays the
menu. This is also the character Windows searches for when you select a menu item using
the Alt key. If you don't include an ampersand in the text, no underline will appear, and
Windows will use instead the first letter of the text for Alt-key searches.

The options on the MENUITEM and POPUP statements that appear in the top-level
menu list are as follows:

• GRAYED-The menu item is inactive, and it does not generate a
WM_COMMAND message. The text is grayed.

• INACTIVE-The menu item is inactive, and it does not generate a
WM_COMMAND message. The text is displayed normally.

• MENUBREAK --:-This item and following items appear on a new line of
the menu.

• HELP - When used in combination with \ a before the text, this item is
right-justified.

Options can be combined using the C bitwise OR symbol (:), but GRAYED and INACTIVE
cannot be used together. MENUBREAK is uncommon in a top-level menu, because Win
dows automatically separates a top-level menu· into multiple lines if the window is too
narrow to fit the entire menu.

Following a POPUP statement in the main menu, the left and right brackets (or the
BEGIN and END keywords) block off a list of items in the popup. The following statements
are allowed in a popup definition:

MENU ITEM "text", wID, options

and:

MENU ITEM SEPARATOR

and:'

POPUP "text", options

MENUITEM SEPARATOR draws a horizontal line in the popup menu. This line is often
used to separate groups of related options.

339

SECTION III: USING RESOURCES

For items in popup menus, you can use the columnar tab character \ t in the text
string. Text following the \ t is placed in a new column spaced far enough to the right to
accommodate the longest text string in the first column of the popup. We'll see how this
works when discussing keyboard accelerators toward the end of this chapter. A \ a right
justifies the text that follows it. The options for MENUITEM in a popup are as follows:

• CHECKED-A check mark appears to the left of the text.

• GRAYED-The menu item is inactive and does not generate a
WM_COMMAND message. The text is grayed.

• INACTIVE-The menu item is inactive and does not generate a
WM_COMMAND message. The text is displayed normally.

• MENUBREAK - This item and the following items appear in a new
column of the menu.

• MENUBARBREAK-This item and the following items appear in a new
column of the menu. A vertical line separates the columns.

GRAYED and INACTIVE cannot be used together. MENUBREAK and MENUBARBREAK
cannot be used together. You should use either MENUBREAK or MENUBARBREAK when
the number of items in a popup is too long to be displayed in a single column.

The wID values in the MENUITEM statements are the numbers that Windows sends
to the window procedure in menu messages. The wID values should be unique within a
menu. Instead of using numbers, you'll probably want to use identifiers defined in a header
file. By convention, these identifiers begin with the letters IDM ("ID for a menu").

Referencing the Menu in Your Program

Most Windows applications have only one menu in the resource script. The program
makes reference to this menu in the definition of the window class: .

wndclass.lpszMenuName - "MyMenu" ;

Programmers often use the name of the program as the name of the menu so that the same
text string can also be used for the window class, the name of the program's icon, and the
name of the menu. However, you can also use a number (or a macro identifier) for the
menu rather than a name. The resource script would look like this:

340

45 MENU
{

{menu definition}
}

Chapter 9: Menus and Accelerators

In this case, the assignment statement for the IpszMenuName field of the window class
structure can be either:

wndclass.lpszMenuName - MAKEINTRESOURCE (45)

or:

wndclass.lpszMenuName'" "/145" ;

Although specifying the menu in the window class is the most common way to refer
ence a menu resource, you have alternatives. A Windows application can load a menu
resource into memory with the LoadMenu function, which is similar to the Load/con and
LoadCursor functions described in Chapter 8. If you use a name for the menu in the
resource script, LoadMenu returns a handle to the menu:

hMenu = LoadMenu (hInstance, "MyMenu") ;

If you use a number, the LoadMenu call takes either this form:

hMenu = LoadMenu (hlnstance, MAKEINTRESOURCE (45)) ;

or this form:

hMenu = LoadMenu (hInstance, "//45") ;

You can then specify this menu handle as the ninth parameter to Create Window:

hwnd = CreateWindow ("MyClass", "Window Caption",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,CW_USEDEFAULT,
CW_USEDEFAULT,CW_USEDEFAULT,
NULL,
hMenu,
hInstance,
NULl) ;

In this case, the menu specified in the CreateWindow call overrides any menu specified in
the window class. You can think of the menu in the window class as being a default menu
for the windows based on the window class if the ninth parameter to CreateWindow is
NULL. Therefore, you can use different menus for several windows based on the same win
dow class.

You can also have a NULL menu in the window class and a NULL menu in the
CreateWindow call and assign a menu to a window after the window has been created:

SetMenu (hwnd, hMenu) ;

This form lets you dynamically change a window's menu. We'll see an example of this in
the NOPOPUPS program shown later in this chapter.

341

SECTION III: USING RESOURCES

Menus and Messages

Windows usually sends a window procedure several different messages when the user
selects a menu item. In most cases your program can ignore many of these messages and
simply pass them to DefWindowProc. Let's take a look at them anyway.

The first message your program receives when the user selects a menu item with the
keyboard or mouse is a WM_SYSCOMMAND message. The values of wParam and IParam .
are shown below:

Mouse:

Keyboard:

wParam

F09x

FlOx

lParam

o
o

The WINDOWS.H identifier SC_MOUSEMENU is equal to F090H; SC_KEYMENU is
FIOOH, but the last digit in wParam (indicated by an x in the table above) can be anything.
Use:

(wParam & OxFFFO)

if you need to check this value. Most programs pass these messages to DefWindowProc.
The second message your program receives is a WM_INITMENU message with the

following parameters:

wParam LOWORD (lParam) HIWORD (lParam)

Handle to main menu o o

The value of wParam is the handle to your main menu even if the user is selecting an item
from the system menu. Windows programs generally ignore the WM_INITMENU mes
sage. Although the message exists to give you the opportunity to change the menu before
an item is chosen, I suspect any changes to the top-level menu at this time would be very
disconcerting to the user.

The next message your program receives is WM_MENUSELECT. A program can
receive many WM_MENUSELECT messages as the user moves the cursor or mouse among
the menu items. The parameters that accompany WM_SELECT are as follows:

wParam

Selected item: Menu ID or
popup menu handle

LOWORD (lParam)

Selection flags

HIWORD (lParam)

Handle to menu containing
selected item

WM_MENUSELECT is a menu-tracking message. The value of wParam tells you what item
of the menu is currently selected (highlighted). The "selection flags" in the low word

342

Chapter 9: Menus and Accelerators

of /Param can be a combination of the following: MF _GRAYED, MF _DISABLED,
MF _CHECKED, MF _BITMAP, MF _POPUP, MF _HELP, MF _SYSMENU, and MF _MOUSE
SELECT. You may want to use WM_MENUSELECT if you need to change something in
the client area of your window based on the movement of the highlight among the menu
items. Most programs pass this message to DejWindowProc.

When Windows is ready to display a popup menu, it sends the window procedure a
WM_INITMENUPOPUP message with the following parameters:

wParam LOWORD (lParam) HIWORD (lParam)

Popup menu handle' Popup index 1 for system menu, 0 otherwise

This message is important if you need to enable or disable items in a popup menu before it
is displayed. For instance, suppose your program can copy text from the clipboard using
the Paste command on a popup menu. When you receive a WM_INITMENUPOPUP mes
sage for that popup, you should determine if the clipboard has text in it. If it doesn't, you
should gray the Paste menu item. We'll see an example of this in the revised POPPAD pro
gram shown toward the end of this chapter.

The most important menu message is WM_COMMAND. This message indicates that
the user has chosen an enabled menu item from your window's menu. You'll recall from
Chapter 6 that WM_COMMAND messages also result from child window controls. If you
happen to use the same ID codes for menus and child window controls, you can differenti
ate between them by the low word of /Param, which will be 0 for a menu item:

Menu:

Control:

wParam

Menu ID

ControlID

LOWORD (lParam) HIWORD (lParam)

o o
Child window handle Notification code

The WM_SYSCOMMAND message is similar to the WM_COMMAND message ex
cept that WM_SYSCOMMAND signals that the user has chosen an enabled menu item from
the system menu:

wParam LOWORD (lParam) HIWORD (lParam)

System menu: Menu ID o o

The menu ID indicates which item on the system menu has been chosen. For the pre
defined system menu items, the bottom four bits should be masked out. The resultant value
will be one of the following: SC_SIZE, SC_MOVE, SC_MINIMIZE, SC_MAXIMIZE,
SC_NEXTWINDOW, SC_PREVWINDOW, SC_CLOSE, SC_ VSCROLL, SC_HSCROLL, SC
_ARRANGE, SC_RESTORE, and SC_ TASKLIST. In addition, wParam can be SC_MOUSE
MENU or SC_KEYMENU, as indicated earlier.

343

SECTION III: USING RESOURCES

If you add menu items to the system menu, wParam will be the menu ID that you
define. To avoid conflicts with the predefined menu IDs, use values below FOOOH. It is im
portant that you pass normal WM_SYSCOMMAND messages to DejWindowProc. If you do
not, you'll effectively disable the normal system menu commands.

The final message we'll discuss is WM_MENUCHAR, which isn't really a menu mes
sage at all. Windows sends this message to your window procedure in one of two circum
stances: if the user presses Alt and a character key that does not correspond to a menu item,
or, when a popup is displayed, if the user presses a character key that does not correspond
to an item in the popup. The parameters that accompany the WM_MENUCHAR message
are as follows:

wParam LOWORD (lParam) HIWORD (lParam)

ASCII code Selection code Handle to menu

The selection code is:

• 0-No popup is displayed.

• MF _POPUP-Popup is displayed.

• MF_SYSMENU-System menu popup is displayed.

Windows programs usually pass this message to DejWindowProc, which normally returns
a 0 to Windows, which causes Windows to beep. We'll see a use for the WM_MENUCHAR
message in the GRAFMENU program shown later in this chapter.

A Sample Program

Let's look at a simple example. The MENUDEMO program, shown in Figure 9-3, has five
items in the main menu-File, Edit, Background, Timer, and Help. Each of these items has
a popup. MENUDEMO does the simplest and most common type of menu processing,
which involves trapping WM_COMMAND messages and checking the value of wParam.

Figure 9·3. The MENUDEMO program. (continued)

344

Chapter 9: Menus and Accelerators

menudemo.obj :menudemo.cmenudemo.h
cl~c -Gsw .;Ow -W2 ;;Zpmenudemo.c

menudemo.res.: menudemo.rc menudemo.h
rc ;;rmenudemo~rc

{
HWNO hwnd
MSG msg;
WNDClASS;~ndcla~~

(!hPrevlnstanc~)
{
wndclass~stYJe
wndc fa S5 OpfnWrid P r.oc
wndclass~cbCl~Extr~ ~·o;~

~ridclassicbWndE~tra -.0 ~
wndcl~ss~hlnstance ·;hlnstance :
wndtlass.hrc:on ~·.· ..• Loadlcon(NULL.
~~d~l a~A:hC~rS9t .. <..~Lb~dCllrsOr(NULL./ IDCiARROW)
wndclass~~brBackground;~GetStockObject
wndclassi.)psiMenuNalIle>~szAppName
wnd¢lass;l ps~ClassN}lme.f)szAPpName

Reg; sterCJass .. (&wndclass)<;
}

h\'Jnd=;=CreateW.fhdow.{sz.App~~me>'~MenuOemonstrattori'~ ~
WSiOVERLAPPEDWINDOW;
CW2-USEDE FAU LT, CW';"US ED E FAULT,
GWi.USE~EFAULT;iCW:USEDEFAULT;
NULL.NULL~hlnstance •.•.. NULL);

(continued)

345

SECTION III: USING RESOURCES

(continued)

346

Chapter 9: Menus and Accelerators

CheckMenultem (hMenu, wSelection, MF_UNCHECKED)
wSelection =wParam:
CheckMenuItem (hMenu, wSelection. MF_CHECKED) ;

SetClassWord (hwnd. GCW_HBRBACKGROUNO.
GetStockObject (wColorlD [wParam - 10M_WHITE]»

InvalidateRect (hwnd, NULL. TRUE) :
return 0 ;

347

SECTION III: USING RESOURCES

348

MENUDEMO.H

I*~~~~~~····~···········~~
MENUDEMO.H header file
········~····~~~~~--~·-·*I

f/defi ne 1DM_NEW
#define 10M_OPEN
#def;ne 10M~SAVE
l/def1 ne IDM_SAVEAS
#define 10M_EXIT

Chapter 9: Menus and Accelerators

349

SECTION III: USING RESOURCES

Identifiers for all menu IDs are defined in MENUDEMO.H. This file must be specified
(using a #include statement) in both the resource script file and the C source code file. The
identifiers begin with IDM. (The ID numbers defined for the menu items need not be con
secutive. However, if you process these IDs in your program using switch and case state
ments, keep in mind that the C compiler can best optimize this code using jump tables if
you use consecutive menu ID numbers.)

The MENUDEMO program simply beeps when it receives a WM_COMMAND mes
sage for most items in the File and Edit popups. The Background popup lists five stock
brushes that MENUDEMO can use to color the background. In the MENUDEMO.RC
resource script the White menu item (with a menu ID of IDM_ WHITE) is flagged as
CHECKED, which places a check mark next to the item. In MENUDEMO.C, the value of
wSelection is initially set to IDM_ WHITE.

The five brushes on the Background popup are mutually exclusive. When
MENUDEMO.C receives a WM_COMMAND message where wParam is one of these five
items on the Background popup, it must remove the check mark from the previously
chosen background color and add a check mark to the new background color. To do this, it
first gets a handle to its menu:

hMenu = GetMenu (hwnd) ;

The CheckMenultem function is used to uncheck the currently checked item:

CheckMenultem (hMenu. wSelection. MF_UNCHECKED) ;

The wSelection value is set to the value of wParam, and the new background color is
checked:

wSelection = wParam ;
CheckMenultem (hMenu. wSelection. MF_CHECKED) ;

The background color in the window class is then replaced with the new. background
color, and the window client area is invalidated. Windows erases the window using the
new background color.

The Timer popup lists two options-Start and Stop. Initially, the Stop option is
grayed (as indicated in the menu definition for the resour~e script). When you choose the
Start option, MENUDEMO tries to start a timer and, if successful, grays the Start option and
makes the Stop option active:

EnableMenultem (hMenu. IDM_START. MF_GRAYED) ;
EnableMenultem (hMenu. IDM_STOP. MF_ENABLED) ;

On receipt of a WM_COMMAND message with wParam equal to IDM_STOP,
MENUDEMO kills the timer, activates the Start option, and grays the Stop option:

350

EnableMenuItem (hMenu.IDM_START. MF_ENABLED) ;
EnableMenultem (hMenu. IDM_STOP. MF_GRAYED) ;

Chapter 9: Menus and Accelerators

Notice that it's impossible for MENUDEMO to receive a WM_COMMAND message
with wParam equal to IDM_START when the timer is going. Similarly, it's impossible to
receive a WM_COMMAND with wParam equal to IDM_STOP when the timer is not going.

When MENUDEMO receives a WM_COMMAND message with the wParam parame
ter equal to IDM_ABOUT or IDM_HELP, it displays a message box. (In Chapter 10 we'll
change this to a dialog box.)

When MENUDEMO receives a WM_COMMAND message with wParam equal to
IDM_EXIT, it sends itself a WM_CLOSE message. This is the same message that DejWin

dowProc sends the window procedure when it receives a WM_SYSCOMMAND message
with wParam equal to SC_CLOSE. We'll examine this more in the POPPAD2 program
shown toward the end of this chapter.

Menu Etiquette

The format of the File and Edit popups in MENUDEMO follows the recommendations of
the CUA Advanced Interface Design Guide. Many Windows programs have File and Edit
popups. One of the objectives of Windows is to provide a user with a recognizable inter
face that does not require relearning basic concepts for each program. It certainly helps if
the File and Edit menus look the same in every Windows program and use the same letters
for selection with the Alt key.

Beyond the File and Edit popups, the menus of most Windows programs will be dif
ferent. When designing a menu you should look at existing Windows programs and aim for
some consistency. Of course, if you think these other programs are wrong and you know
the rightway to do it, nobody's going to stop you. Also keep in mind that revising a menu
usually requires revising only the resource script and not your program code. You can
move menu items around at a later time without many problems.

At the beginning of this chapter, I showed you a menu with nine top-level items but
with only one popup that is invoked from the top-level menu. This menu is certainly atypi
cal. Most often, each top-level item has a popup, even if the popup has only one option.
Top-level items without popups can be too easily chosen by mistake.

Defining a Menu the Hard Way

Defining a menu in a program's resource script is usually the easiest way to add a menu in
your window, but it's not the only way. You can dispense with the resource script and
create a menu entirely within your program using two functions called CreateMenu and
AppendMenu. After you finish defining the menu, you can pass the menu handle to
Create Window or use SetMenu to set the window's menu.

Here's how it's done. CreateMenu simply returns a handle to a new menu:

hMenu = CreateMenu () ;

351

SECTION III: USING RESOURCES

The menu is initially empty. AppendMenu inserts items into the menu. You must obtain a
different menu handle for the top-level menu item and for each popup. The popups are
constructed separately; the popup menu handles are then inserted into the top-level menu.
The code shown in Figure 9-4 creates a menu in this fashion; in fact, it is the same menu as
in the MENUDEMO program.

Figure 9·4. C code that creates the same menu used in the MENUDEMO program
but without requiring a resource script file.

352

(continued)

Chapter 9: Menus and Accelerators

AppendMenu ChMenu. MF_POPUP, hMenuPopup. "&Timer")

AppendMenu(hMenuPopup. MF ~STRING, 10M_HELP. "&He 1 pI!) :
AppendMenu(hMenuPopup.MF~STRING, IDM __ ABOUT. "&About MenuDemo •.• ")

I think you'll agree that the resource script menu template is easier and clearer. I'm not rec
ommending that you define a menu in this way, only showing that it can be done. Certainly
you can cut down on the code size substantially by using some arrays of structures contain
ing all the menu item character strings, IDs, and flags. But if you do that, you might as well
take advantage of the third method Windows provides for defining a menu.

A Third Approach to Defining Menus

The LoadMenuIndirect function accepts a pointer to a structure of type MENUITEM
TEMPLATE and returns a handle to a menu. This function is used within Windows to con
struct a menu after loading the normal menu template from a resource script. If you're
brave, you can try using it yourself.

Be forewarned, however: The MENUITEMTEMPLATE structure has a field defined
as LPSTR that is set to a far pointer to a character string, a handle to a popup, or a handle to
a bitmap. But you can't simply define a MENUITEMTEMPLATE structure in your program
and initialize the field to a character string. During compilation, the pointer to the charac
ter string is converted to a far pointer. This violates one of the most important rules dis
cussed in Chapter 7: Don't store far pointers to your data segment. Instead, immediately
before calling LoadMenuIndirect, you use a series of assignment statements to set this field
to the character string pointers. Between these assignment statements and the LoadMenu
Indirect call, you can't make any Windows calls that can result in your data segment being
moved (such as GetMessage).

Floating Popup Menus

Beginning with Windows 3, you can make use of menus without having a top-level menu
bar. You can instead cause a popup menu to appear on top of any part of the screen. One
approach is to invoke this popup menu in response to a click of the right mouse button.
However, menu items must still be selected with the left mouse button. The POPMENU
program in Figure 9-5 (beginning on the following page) shows how this is done.

353

SECTION III: USING RESOURCES

Figure 9·5. The POPMENU program. (continued)

354

Chapter 9: Menus and Accelerators

wndclass.hbrBackground - GetStockObject (WHITE_BRUSH)
wndclass.lpszMenuName - NULL:
wndclass.lpszClassName - 5zAppName

RegisterClass (&wndclass)
}

(continued)

355

SECTION III: USING RESOURCES

356

Chapter 9: Menus and Accelerators

357

SECTION III: USING RESOURCES

358

Chapter 9: Menus and Accelerators

The POPMENU.RC resource script defines a menu very similar to the one in MENU
DEMO.RC. The difference is that the top-level menu contains only one item-a popup that
invokes the File, Edit, Background, and Help options.

During the WM_CREATE message in WndProc, POPMENU obtains a handle to this
popup menu:

hMenu - LoadMenu (hInst, szAppName) :
hMenu - GetSubMenu (hMenu, 0) :

During the WM_RBUTTONDOWN message, POPMENU obtains the position of the
mouse point, coverts the position to screen coordinates, and passes the coordinates to
TrackPopupMenu:

point - MAKEPDINT (lParam) :
ClientToScreen (hwnd, &point)

TrackPopupMenu (hMenu, 0, pOint.x, point.y; 0, hwnd, NULL) :

Windows then displays the popup menu with the items File, Edit, Background, and
Help. Selecting any of these options causes the nested popup menus to appear to the right.
The menu functions the same as a normal menu.

Using the System Menu

Parent windows created with a style that includes WS_SYSMENU have a system menu box
at the left of the caption bar. If you like, you can modify this menu. For instance, you can
add your own menu commands to the system menu. While this is not recommended,
modifying the system menu is often a quick-and-dirty way to add a menu to a short pro
gram without defining it in the resource script. The only restriction is this: The ID numbers
you use to add commands to the system menu must be lower than FOOOH. Otherwise, they
will conflict with the IDs that Windows uses for the normal system menu commands. And
remember: When you process WM_SYSCOMMAND messages in your window procedure
for these new menu items, you must pass the other WM_SYSCOMMAND messages
to DejWindowProc. If you don't, you'll effectively disable all normal options on the
system menu.

The program POORMENU ("poor person's'menu"), shown in Figure 9-6 beginning
on the following page, adds a separator bar and three commands to the system menu. The
last of these commands removes the additions.

359

SECTION III: USING RESOURCES

Figure 9·6. The POORMENU program. (continued)

360

Chapter 9: Menus and Accelerators

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW)
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH)
wndclass.lpszMenuName = NULL ~
wndclass.lpszClassName = szAppName

RegisterClass (&wndclass) :
}

hwnd - CreateWindow (szAppName. "The Poor Person's Menu".
WS_OVERLAPPEDWINDOW.
CW_USEDEFAULT. CW_USEDEFAULT,
CW_USEDEFAULT. CW_USEDEFAULT,
NULL. NULL. hlnstance. NULL) :

hMenu= GetSystemMenu (hwnd. FALSE) ;

AppendMenu (hMenu. MF _SEPARATOR. O. NULl) ;
AppendMenu (hMenu. MF.:..STRING, IOM.:..ABOUT. "About. .. OJ)
AppendMenu(hMenu. MF _STRING, 10M_HELP • "Help ... ") :
AppendMenu (hMenu, MF_STRING. 1DM_REMOVE, "Remove Additions")

ShowWindow (hwnd,~CmdShow) ;
UpdateWindow (hwnd)';

while (GetMessage (&msg. NULl. O. 0»
{

TranslateMessage (&msg) :
DispatchMessage <&msg);
}

return msg. wPa ram :
}

long FAR PASCAL WndProc (HWND hwnd. WORD message. WORD wParam. LONG 1 Param)
{
switch (message)

{
case WM_SYSCOMMAND

switch (wParam)
{
case 10M_ABOUT

MessageBox (hwnd. "The Poor Person' s Menu Program.".
szAppName. MB_OKI MB.;..ICONEXCLAMATION) ;

return 0 :

10M_HELP:
Me'ssageBox (hwnd. "Helpnotyetimplemented.",

szAppNallle. MB_OK I MB_ICONEXCLAMATION)
return 0 :

(continued)

361

SECTION III: USING RESOURCES

The three menu IDs are defined near the top of POORMENU.C:

#define 10M_ABOUT 1
#define 10M_HELP 2
#define 10M_REMOVE 3

After the program's window has been created, POORMENU obtains a handle to the system
menu:

hMenu = GetSystemMenu (hwnd. FALSE) ;

When you first call GetSystemMenu, you should set the second parameter to FALSE in
preparation for modifying the menu.

362

Chapter 9: Menus and Accelerators

The menu is altered with four AppendMenu calls:

AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ,
AppendMenu (hMenu, MF_STRING, IDM_ABOUT, "About ... ")
AppendMenu (hMenu, MF_STRING, 10M_HELP, "Help ... "):
AppendMenu (hMenu, MF_STRING, IDM_REMOVE, "Remove Additions")

The first AppendMenu call adds the separator bar. Choosing the Remove Additions menu
item causes POORMENU to remove these additions, which it accomplishes simply by call
ing GetSystemMenu again with the second param~ter set to TRUE:

GetSystemMenu (hwnd, TRUE) :

The standard system menu has the options Restore, Move, Size, Minimize, Maximize,
Close, and Switch To. These generate WM_SYSCOMMAND messages with wParam equal
to SC_RESTORE, SC_MOVE, SC_SIZE, SC_MINIMUM, SC_MAXIMUM, SC_CLOSE, and
SC_ TASKLIST. Although Windows programs do not normally do so, you can process these
messages yourself rather than pass them on to DejWindowProc. You can also disable or
remove some of these standard options from the system menu using methods described
below. The Windows documentation also includes some standard additions to the system
menu. These use the identifiers SC_NEXTWINDOW, SC_PREVWINDOW, SC_ VSCROLL,
SC_HSCROLL, and SC_ARRANGE. You might find it appropriate to add these commands
to the system menu in some applications.

Changing the Menu

We've already seen how the AppendMenu function can be used to define a menu entirely
within a program and to add menu items to the system menu. Prior to Windows 3, you
would have been forced to use the ChangeMenu function for this job. ChangeMenu was so
versatile that it was one of the most complex functions in all of Windows. In Windows 3,
ChangeMenu is still available, but its functionality has been divided among five new
functions:

• AppendMenu adds a new item to the end of a menu.

• DeleteMenu deletes an existing item from a menu and destroys the item.

• InsertMenu inserts a new item into a menu.

• ModifyMenu changes an existing menu item.

• RemoveMenu removes an existing item from a menu.

The difference between DeleteMenu and RemoveMenu is important if the item is a
popup menu. DeleteMenu destroys the popup menu-but RemoveMenu does not.

363

SECTION III: USING RESOURCES

Other Menu Commands

Here are some more functions useful for working with menus:
When you change a top-level menu item, the change is not shown until Windows

redraws the menu bar. You can force this redrawing by calling:

DrawMenuBar (hwnd) :

Note that the parameter to DrawMenuBaris a handle to the window rather than a handle to
the menu.

You can obtain the handle of a popup menu using:

hMenuPopup = GetSubMenu (hMenu. nPos) :

where nPos is the index (starting at 0) of the popup within the top-level menu indicated by
hMenu. You can then use the popup menu handle with other functions (such' as
AppendMenu).

You can obtain the current number of items in a top-level or popup menu using:

nCount = GetMenuItemCount (hMenu) :

You can obtain the menu ID for an item in a popup menu from: .'

wID = GetMenuItemID (hMenuPopup. nPosition) ,:

where nPosition is the position (starting at 0) of the item within the popup.
In MENUDEMO you saw how to check or uncheck an item in a popup menu using:

CheckMenuItem (hMenu. wID. wCheck) :

In MENUDEMO, hMenu was the handle to the top-level menu, wID was the menu ID, and
the value ofwCheck was either MF _CHECKED or MF _UNCHECKED. If hMenu is a handle
to a popup menu, then the wID parameter can be a positional index rather than a menu ID.
If an index is more convenient, you include MF _BYPOSITION in the third parameter.
For instance:

CheckMenuItem (hMenu. nPosition. MF_CHECKED : MF_BYPOSITION) :

The EnableMenuItem function works similarly to CheckMenuItem except the third
parameter is MF _ENABLED, MF _DISABLED, or MF _GRAYED. If you use EnableMenu
Item on a top-level menu item that has a popup, you must also use the MF _BYPOSITION
identifier in the third parameter because the menu item has no menu ID. We'll see an ex
ample of EnableMenuItem in the POPPAD program shown later in this chapter. Hilite
MenuItem is similar to CheckMenuItem and EnableMenuItem but uses MF _HILITE and
MF _UNHILITE. This highlighting is the reverse video that Windows uses when you move
among menu items. You do not normally need to use HiliteMenuItem.

364

Chapter 9: Menus and Accelerators

What else do you need to do with your menu? Have you forgotten what character
string you used in a menu? You can refresh your memory by calling:

nByteCount - GetMenuString (hMenu. wID. lpString. nMaxCount. wFlag) ;

The wFlag is either MF _BYCOMMAND (where wID is a menu ID) or MF _BYPOSITION
(wID is a positional index). The function copies up to nMaxCount bytes of the text string
into IpString and returns the number of bytes copied.

Or perhaps you'd like to know what the current flags of a menu item are:

wFlags = GetMenuState (hMenu. wID. wFlag) ;

Again, wFlag is either MF _BYCOMMAND or MF _BYPOSITION. The wFlags parameter is a
combination of all the current flags. You can determine them by testing against the
MF _DISABLED, MF _GRAYED, MF _CHECKED, MF _MENUBREAK, MF _MENUBAR
BREAK, and MF _SEPARATOR identifiers.

Or maybe by this time you're a little fed up with menus. In that case you'll be pleased
to know that if you no longer need a menu in your program, you can destroy it:

DestroyMenu (hMenu) ;

This invalidates the menu handle.

An Unorthodox Approach to Menus

Now let's step a little off the beaten path. Instead of having drop-down menus in your pro
gram, how about c~eating multiple top-level menus without any popups and switching be
tween the top-level menus using the SetMenu call? The NOPOPUPS program, shown in
Figure 9-7, demonstrates how to do it. This program includes similar File and Edit items
that MENUDEMO uses but displays them as alternate top-level menus.

Figure 9·7. The NOPOPUPS program.

365

SECTION III: USING RESOURCES

(continued)

366

DispatchMessage (&msg)
}

return msg.wParam :
}

Chapter 9: Menus and Accelerators

long FAR PASCAL WndProc (HWND hwnd, WORD message. WORD wParam.
{
static HMENU hMenuMain. hMenuEdit~
HANDLE hlnstance

(continued)

367

SECTION III: USING RESOURCES

368

NOPOPUPS.H

I*----·--------~······----
NOPOPUPS.H header file

---- ~ .. -~--------~-*/

#define 10M_NEW 1
#define 10M_OPEN 2
#define 10M_SAVE 3
#define IOM_SAVEAS 4

#define 10M_UNDO 5
#define 10M_CUT 6
#define 10M_COPY 7
#define 10M_PASTE 8
#defi ne IDM.c..ClEAR 9

#define 10M MAIN
#defi ne! OM=EDIT
f/define 10M_FILE

DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

Chapter 9: Menus and Accelerators

The resource script has three menus rather than one. When the window procedure pro
cesses the WM_CREATE message, Windows loads each of the menu resources into
memory:

hMenuMain = loadMenu (hlnstance. "MenuMain")
hMenuFile = loadMenu (hlnstance. "MenuFile")
hMenuEdit = loadMenu (hlnstance. "MenuEdit")

369

SECTION III: USING RESOURCES

Initially, the program displays the main menu:

SetMenu (hwnd. hMenuMain) ;

The main menu lists the three options using the character strings "MAIN:", "File ... ",
and "Edit. .. " However, "MAIN:" is disabled, so it doesn't cause WM_COMMAND messages
to be sent to the window procedure. The File and Edit menus begin "FILE:" and "EDIT:" to
identify these as submenus. The last item in each menu is the character string "(Main)"; this
option indicates a return to the main menu. Switching among these three menus is simple:

case WM_COMMANO :

swi tch (wPa ram)
{
case 10M_MAIN

SetMenu (hwnd. hMenuMain)
return 0

case 10M_FILE
SetMenu (hwnd. hMenuFile)
return 0

case 10M_EDIT
SetMenu (hwnd. hMenuEdit)
return 0 :

[other program lines}

}
break ;

USING BITMAPS IN MENUS
Character strings are not the only way to display a menu item. You can also use a bitmap. If
you immediately recoiled at the thought of pictures of file folders, paste jars, and trash cans
in a menu, don't think of pictures. Think instead of how useful menu bitmaps might be for
a drawing program. Think of using different fonts and font sizes, line widths, hatch pat
terns, and colors in your menus.

The program we're going to examine is called GRAFMENU ("graphics menu"). The
top-level menu is shown in Figure 9-8. The enlarged block letters are obtained from 40-
by-16-pixel monochrome bitmap files created in SDKPAINT and saved as .BMP files; they
could be pictures instead. Choosing FONT from the menu invokes a popup containing
three options-Courier, Helvetica, and Times Roman-each displayed in its respective
font (Figure 9-9). These bitmaps were created in the program using a technique involving a
"memory device context."

370

Chapter 9: Menus and Accelerators

== Oitmap Menu Demonstration \ aa
FILE EDIT FONT

Figure 9·8. The GRAFMENU program's top-level menu.

Helvetica
Times Roman

Figure 9·9. The GRAFMENU program's popup FONT menu.

371

SECTION III: USING RESOURCES

Finally, when you pull down the system menu, you see that you have access to some "help"
information, with the word "Help" perhaps mirroring the desperation of a new user
(Figure 9-10). This 64-by-64-pixel monochrome bitmap was created in SDKPAINT.

Figure 9.10. The GRAFMENU program's system menu.

The GRAFMENU program, including the four bitmaps created in SDKPAINT, is shown in
Figure 9-11.

.)

III ••••••••

... ~

II ••.............. ;
t Ine

.... rc .·:r tI. 111t!HI.I
.... .}

•••••••••••••••

Figure 9·11. The GRAFMENU program.

372

GRAFMENU.C

I*~~---~--------·····----------~-··---·········-
GRAFMENU.C -- Demonstrates Bitmap Menu Items

(c) Charles Petzold. 1990
.----- .. ~ .. ~---~-:----.------.~ --~-----~--*'

#include <windows.h>
#include (string.h>
#include "grafmenu.h"

Chapter 9: Menus and Accelerators

(continued)

373

SECTION III: USING RESOURCES

374
(continued)

Chapter 9: Menus and Accelerators

(continued)

375

SECTION III: USING RESOURCES

••.• < E;:'lU~4' I~ :~t./rl{ Ji •.••••.•• 'Sys"t~ll;~ N i/
}> .' i~r~1I t\} . .: :~~'v ~(~

••••••••••

) 1l~~tlJll 1...\ 1\ •• ~ri If) Hi UIII) : [} ~.

.••••••• .' ..••... '. ~..../ < •.. ···.i. i./ .··.· ...•. ·rCCZi '/
...•.))

iJ ?i i 1t « < ••..••••) {
i< .·.·.··1 ~L ~\ i9 .. · .. >.t·{; (••..•. i
.....•••.••. •••..• ~.... itj3. • ...i)

>Lil·~. UI\.I u :<1111 'Ty~iV f f] It
» •••••••• Y, fL" i:.

·.)I S tSPJ f~ '~"" ~:--.. "0 e I ~t
..... it <)Yi \t!ii~.\ .sii
i+....... J1 ~ i~ rldf~~)v ~.o.lj LAY; Uiil I ••• ~>

>ih~~l 01 ~ •• ,?Cr~~ ~ ...•. \ ": {i. 'hl1_.

.<i ••• ~. n,"~i o5J~;~j <~~;~~rQn ;l ri~ I ~:
) ,... ···J··5YI.i "' •...•.
>~~.) :uc •• I.iE "txt :r.;(Idtl P!Illi !t
iii «/iiiiii P IF ell\ it· »/«i> ii /...... ..' ~. ~... :;

'.~ <\ ., '., /frJ.!ii§~tb<' •...•......• li~ • •••••• ••••••••••• <iih Ii :mall=Cr ~~);eB tp ri li:ir•
'. .•.•.. xC i ;..\ •.• -, I;'~' •.. ~ ..
i~~~gC:tuq~t~~ .·.· .• ';}ii< l~t

i '3 l]~~,,,lil' y~ ',i j, {, < i "it •.. .. //ii .. i ~> ..•. . ..•••.••

< ij,'Gr~r;::{~dC !em. o. ;j S i .
Xi:" ,",tit;),' ':'~!'nL. '.'

> (>// '.' })~i \(i •. '~< .ii. .. ,.
?/i··· i .. De1 etE['~je7::(A~·I.elj~..... ' it i......>Oel etp;';:· L i i(: ... (

>......... ~ >; .. , ••••. \

i(...... \ D~JeteDv n Ie);)
•..• • .•...•. » .•. y i.······ ·.i

i..) .. (i{ < iJ.;t i] ••••.•..•.
i • ••••••••

> i........................ returnp..i
••...•••. i (} ...i.i«> · ·ii

•••••••••

...... ;i;··.· ... ·· ·<i\

D j
y<, orlg FARrA-seAL nft d h 0 •..... (:i :!F'>{/\ ·
~' ~id;{ ,. U;%" L' '.; , ..

.•.•..• i) HMENU •• ~~~II.U j iii ••.••..

• •••••••••••••••••••••••••

) >tt' h trio
.•.....

\? S a,l~:L·?r \'1~1J Pl. •. ' i< <..(.. > >i. · ·r < ..•••..•.•.......
i ······i sWi e2~i(~.~~.T~.g~ .. ~. ..·.t.\i}

· ·....Ci I T r..; .i</i i.......... ·.i d~S~WM]CREATE;i/.i •••••..
i H>< ' ..•••••.••••• >!f) GheCkMenuIt~p. (G~ Mer r

i..........i.) return 0 :>i

i«\<>
\

< .. ,i/ <>ca~~ WM_SYSCOMMANO (:i ii

. '. i }
..........

•••••••••••••••••••••••••••••••

> .•.•........ • .•.• ..t>. j~'i~ih i
i.ii/ii SWl tch(wP r it

ii>..>.> >({).i. <.. • •• ·..i {

..••.•• <">/fi ca s~ OM HI ~ •••••. <
...... ' ·i •.••••.•..••...•••••••. "i •· •••• (••• · ••••••••••••••••••• ·7 .'> (4; ;~< .• ~.

I 'I '< d
ri.).i)if i i "7 I \I ..\i }/ .. ······i •></.;.i ~ E U :\ .:.~.

••• i<i) ..' ••••• i····· t.i.\ i
..... •••/) •••••• . •••.• ·ifgU.UJ i *(> i ;(

••••••

ii ;<i
..•••• · .•••••..•. ·· .. >· •• ··.))·i · ••• ·.··.i .~r~a~;/~ •••.• · .. · •••••••••..•..•••.. (.••.•• ·.c•.•.

;:})

(continued)

376

case WM_COMMANO :
switch (wPa ram)

{
case 10M_NEW
case 10M_OPEN :
case 10M_SAVE :
case 10M_SAVEAS
case 10M_UNDO :
case 10M_CUT :
case 10M_COPY :
case 10M_PASTE:
case 10M_CLEAR :

MessageBeep
return 0

B itma p Edi tB ITMAPeditl abr. bmp
BitmapFtTeBITMAPfilelabl.bmp
BitinapFontBITMAP.fontlabll bmp
Bi tmapHe lp BlTMAPibi gh~lp.bmp

Chapter 9: Menus and Accelerators

(continued)

377

SECTION III: USING RESOURCES

?
)

••••

....) ?

••••

i

\? .

•••••••

. .

)' ~~A i\ >(i· i·e f)·

'. I
'\)

•••••••••••••••••••••••••••••• ··.············.~i '.
i •• ••· •• · ·.\<iii

........ i .) ;.;;
l~ ./ ... t

.))
< n ~I Ilil

............

Yi><
.. '(.i

?} •• ~' ~ ..• ~ ..)()' f(
y}(...... i, {'

•••••••••••••••••••••••••

) f,'.
~I~;

..(

•••

........

: :: "Co /

11\\ il\~

~,~i\'il \ \ ;i >
··.·.i '. .< >);

U II !t i
i! i~ Ii

••.•••••••••••••••• ~ ••••••••.••••••••••.•••• ilf(~.~, i v if .~ 'r •••... p
-c

/ ~~ ,t IE [,.....
........ f

'Z' '1;: .t i
> .

" 1.I:.OE i

\ WE fiE.>
..

U)i
.• .•••• •••• .. >ii •.... .i:~~'\ \

•••••••••
ti \j~; !.~) •.•.••...•.. ~ ~ ~<... ,....1

i
'(i

EDITLABL.BMP

IEDIT I
378

FILELABL.BMP

IFILE I

FONTLABL.BMP

IFONT I

BIGHELP.BMP

NAME

DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

Chapter 9: Menus and Accelerators

379

SECTION III: USING RESOURCES

To examine the subject of bitmaps and menus in the detail it deserves, we'll need to
cross the border into GDI territory-a full exploration of which awaits us in the next sec
tion of this book. The discussion here will serve as a preview of topics that we'll return to
again in Chapter 11.

Two Methods of Creating Bitmaps for M~nus

To insert a bitmap into a menu, you use AppendMenu or InsertJltfenu. Where does this bit
map come from? It can come from one of two places. First, you can create a bitmap'using
SDKPAINT and include the bitmap file in your resource script. Within the program, you
can use LoadBitmap to load the bitmap resource into memory and use AppendMenu or
InsertMenu to attach it to the menu. There's a problem with this approach, however. The

. bitmap will not be suitable for all types of video resolutions and aspect ratios; you have to
stretch the loaded bitmap to account for this. Alternatively, you can create the bitmap right
in the program and attach it to the menu.

Both of these methods sound a lot more difficult than they actually are. We don't have
to mess around with the actual bits themselves. Windows provides functions that let us
manipulate bitmaps cleanly using something called the "memory device context."

The Memory Device Context

When you use GDI calls (such as TextOut) to write on the client area of your window,
you're actually writing to a block of memory (the video display memory) that is organized
much like a giant bitmap. The width and height of this bitmap are equal to the resolution of
the video adapter. The manner in which multiple bits define color is also defined by the
video adapter. Windows should also be able to pretend that a block of regular memory is
video display memory. It should be able to write on this memory the same way it writes on
the screen. We should then be able to use this block of memory as a bitmap.

That's exactly what a memory device context is. It helps us fill up and manipulate bit
maps in a Windows program. Here are the steps involved:

380

1. Create a memory device context using the CreateCompatibleDC call.
Initially, the display surface of this memory device context contains one
monochrome pixel. You can think of this device context as being 1 pixel
high and 1 pixel wide, with two colors (black and white).

2. Create an uninitialized bitmap using CreateBitmap, CreateBitmapln
direct, orCreateCompatibleBitmap. When you create the bitmap, you
specify the height and width and the color organization. However, the
pixels of the bitmap need not actually represent anything yet. Save the
handle to the bitmap.

Chapter 9: Menus and Accelerators

3. Select the bitmap into the memory device context using SelectObject. Now
the memory device context has a display surface that is the size of the
bitmap with the same number of colors as defined by the bitmap.

4. Use GDI functions to draw on the memory device context the same way
you use GDI functions to draw on a normal device context. Anything you
draw within the display surface of the memory device context is actually
drawn on the bitmap selected into the device context.

5. Delete the memory device context. You are left with a handle to a bitmap
that contains a pixel representation of what you drew on the memory
device context.

Creating a Bitmap with Text

The GetBitmapFont function in GRAFMENU takes a parameter of 0, 1, or 2 and returns a
handle to a bitmap. This bitmap contains the string "Courier," "Helvetica;" or "Times Ro
man" in the appropriate font and about twice the size of the normal system font. Let's see
how GetBitmapFont does it. (The code that follows is not the same as that in the
GRAFMENU.C file. For purposes of clarity, I've replaced references to the lfSet structure
with the values appropriate for Times Roman.)

The first step is to get a handle to the system font and use GetObject to copy charac
teristics of that font into the structure If that has type LOGFONT ("logical font"):

hFont = GetStockObject (SYSTEM_FONT) :
GetObject (hFont, sizeof (LOGFONT), (LPSTR) &If) :

Certain fields of this logical font structure must be modified to make it describe a larger
Times Roman font:

If.lfHeight *= 2 :
If.lfWidth *= 2 :
1f.1fPitchAndFami1y = VARIABLE_PITCH: FF_ROMAN :
strcpy (1 f.1 fFaceName, "Tms Rmn") :

The next step is to get a device context for the screen and create a memory device
context compatible with the screen:

hdc = CreateIC ("DISPLAY", NULL, NULL, NULL) :
hdcMem = CreateCompatib1eDC (hdc) :

The handle to the memory device context is hdcMem. Next, we create a font based on the
modified If structure and select that font into the memory device context:

SelectObject (hdcMem, CreateFontIndirect (&If)) :

Now when we write some text to the memory device context, Windows will use the Times
Roman font selected into the device context.

381

SECTION III: USING RESOURCES

But this memory device context still has a one-pixel monochrome device surface. We
have to create a bitmap large enough for the text we want to display on it. You can obtain
the dimensions of the text through GetTextExtent and create a bitmap based on these
dimensions with CreateBitmap:

dwSize = GetTextExtent (hdcMem, "Times Roman", 11) ;
hBitmap = CreateBitmap (LOWORD (dwSize), HIWORD (dwSize), 1, 1, NULL) ;
SelectObject (hdcMem, hBitmap) ;

This device context now has a monochrome display surface exactly the size of the text.
Now all we have to do is write the text to it. You've seen this function before:

TextOut (hdcMem, 0, 0, "Times Roman", 11) ;

We're finished except for cleaning up. To do so, we select the system font (with
handle hFont) back into the device context using SelectObject, and we delete the previous
font handle that SelectObject returns, which is the handle to the Times Roman font:

DeleteObject (SelectObject (hdcMem, hFont»

Now we can also delete the two device contexts:

DeleteDC (hdcMem) ;
DeleteDC (hdc) ;

We're left with a bitmap that has the text "Times Roman" in a Times Roman font.

Scaling Bitmaps

The memory device context also comes to the rescue when we need to scale fonts to a dif
ferent display resolution or aspect ratio. I created the four bitmaps used in GRAFMENU to
be the correct size for a display that has a system font height of 8 pixels and width of 4 pix
els. For other system font dimensions, the bitmap has to be stretched. This is done in
GRAFMENU's StretchBitmap function.

The first step is to get the device context for the screen, obtain the text metrics for the
system font, and create two memory device contexts:

hdc = CreateIC ("DISPLAY", NULL, NULL, NULl) ;
GetTextMetrics (hdc, &tm) ;
hdcMem1 = CreateCompatibleDC (hdc)
hdcMem2 = CreateCompatibleDC (hdc)
DeleteDC (hdc) ;

The bitmap handle passed to the function is hBitmapl. The program can obtain the dimen
sions of this bitmap using GetObject:

GetObject (hBitmap1, sizeof (BITMAP), (LPSTR) &bm1) ;

382

Chapter 9: Menus and Accelerators

This copies the dimensions into a structure bml of type BITMAP. The structure bm2 is set
equal to bml, and then certain fields are modified based on the system font dimensions:

bm2 - bm1 ;
bm2.bmWidth - (tm.tmAveCharWidth * bm2.bmWidth) / 4
bm2.bmHeight - (tm.tmHeight * bm2.bmHeight) / 8
bm2.bmWidthBytes - ((bm2.bmWidth + 15) / 16) * 2 ;

Then a new bitmap with handle hBitmap2 can be created based on the altered
dimensions:

hBitmap2 - CreateBitmaplndirect (&bm2) ;

You can then select these two bitmaps into the two memory display contexts:

SelectObject (hdcMem1. hBitmap1) ;
SelectObject (hdcMem2. hBitmap2) ;

We want to copy the first bitmap to the second bitmap and stretch it in the process.
This involves the StretchBlt call:

StretchBlt (hdcMem2. O. O. bm2.bmWidth. bm2.bmHeight.
hdcMem1. O. O. bm1.bmWidth. bm1.bmHeight. SRCCOPY) ;

Now the second bitmap has the properly scaled bitmap. We'll use that one in the menu.
Cleanup is simple:

DeleteDC (hdcMem1) ;
DeleteDC (hdcMem2) ;
DeleteObject (hBitmap1)

Putting the Menu Together

GRAFMENU's WinMain function uses the StretchBitmap and GetBitmapFont functions
when constructing the menu. GRAFMENU has two menus already defined in the resource
script. These will become popups for the File and Edit options.

GRAFMENU begins by obtaining a handle to an empty menu:

hMenu - CreateMenu () ;

The popup menu for File (containing the four options New, Open, Save, and Save As) is
loaded from the resource script:

hMenuPopup - LoadMenu (hlnstance. "MenuFile") ;

The bitmap containing the word "FILE" is also loaded from the resource script and
stretched using StretchBitmap:

hBitmapFile - StretchBitmap (LoadBitmap (hlnstance. "BitmapFile")) ;

The bitmap handle and popup menu handle become parameters in the ChangeMenu call:

AppendMenu (hMenu. MF_BITMAP : MF_POPUP. hMenuPopup. (LPSTR) (LONG) hBitmapFile) ;

383

SECTION III: USING RESOURCES

The same procedure is followed for the Edit menu:

hMenuPopup = LoadMenu (hlnstance, "MenuEdit") ;
hBitmapEdit = StretchBitmap (LoadBitmap (hlnstance, "BitmapEdit"» ;
AppendMenu (hMenu, MF_BITMAP : MF_POPUP, hMenuPopup, (LPSTR) (LONG) hBitmapEdit)

The popup menu for the three fonts is constructed from calls to the GetBitmapFont
function:

hMenuPopup = CreateMenu () ;
for (i = a ; i < 3 ; i++)

{

hBitmapPopFont [i] = GetBitmapFont (i) ;
AppendMenu (hMenuPopup, MF_BITMAP,IDM_COUR + i,

(LPSTR) (LONG) hMenuPopupFont [i]) ;

The popup is then added to the menu:

hBitmapFont = StretchBitmap (LoadBitmap (hlnstance, "BitmapFont"»
AppendMenu (hMenu, MF_BITMAP : MF_POPUP, hBitmapFont,

(LONG) (LPSTR) hBitmapFont) ;

The window menu is complete. Now you can include hMenu in the CreateWindow call:

hwnd = CreateWindow (szAppName, "Bitmap Menu Demonstration",
WS_OVERLAPPED,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL, hMenu, hlnstance, NULL)

After hwnd is available, GRAFMENU can alter the system menu. GRAFMENU first
obtains a handle to it:

hMenu = GetSystemMenu (hwnd, FALSE) ;

This loads the "Help" bitmap and stretches it to an appropriate size:

hBitmapHelp = StretchBitmap (LoadBitmap (hlnstance, "BitmapHelp"»

This adds a separator bar and the stretched bitmap to the system menu:

AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
AppendMenu (hMenu, MF_BITMAP, 10M_HELP, (LPSTR) (LONG) hBitmapHelp)

Remember that bitmaps are GDI objects and must be explicitly deleted before your
program terminates. You accomplish this after GRAFMENU exits from its message loop:

384

DeleteObject (hBitmapHelp)
DeleteObject (hBitmapEdit)
DeleteObject (hBitmapFile)
DeleteObject (hBitmapFont)

for (i = a ; i < 3 ;1++)
DeleteObject (hBitmapPopFont [i])

Chapter 9: Menus and Accelerators

I'll conclude this section with a couple of miscellaneous notes:

• In a top-level menu, Windows adjusts the menu bar height to accommo
date the tallest bitmap. Other bitmaps (or character strings) are aligned at
the top of the menu bar. The size of the menu bar obtained from:

GetSystemMetrics (SM_CYMENU)

is no longer valid aft,er you put bitmaps in a top-level window.

• As you can see from playing with GRAFMENU, you can use check marks
with bitmapped menu items in popups, but the check mark is of normal
size. If that bothers you, you can create a customized check mark and use
SetMenultemBitmaps.

• Another approach to using non-text (or text in a font other than the sys
tem font) on a menu is the "owner-draw" item. The Windows Guide to
Programming discusses this approach.

Adding a Keyboard Interface

Now we have another problem. When the menu contains text, Windows automatically
adds a keyboard interface. You can select a menu item using the Alt key in combination
with a letter of the character string. But once you put a bitmap in a menu, you've elimi
nated that keyboard interface. Even if the bitmap says something, Windows doesn't know
about it.

This is where the WM_MENUCHAR message comes in handy. Windows sends a
WM_MENUCHAR message to your window procedure when you press Alt with a charac
ter key that does not correspond to a menu item. We need to intercept WM_MENUCHAR
messages and check the value of wParam (the ASCII character of the pressed key). If this
corresponds to a menu item, we have to return a long integer back to Windows where the
high word is set to 2 and the low word is set to the index of the menu item we want associ
ated with that key. Windows does the rest.

KEYBOARD ACCELERATORS
Described as simply as possible, keyboard accelerators are key combinations that generate
WM_COMMAND (or in some cases WM_SYSCOMMAND) messages. Most often, pro
grams use keyboard accelerators to duplicate the action of common menu options. (How
ever, keyboard accelerators can also perform nonmenu functions') For instance, many
Windows programs have an Edit menu that includes a Cut option; these programs conven
tionally assign the Del key as a keyboard accelerator for this option. The user can choose
the Cut option from the menu by pressing an Alt-key combination or can use the keyboard
accelerator by simply pressing the Del key. When the window procedure gets a

385

SECTION III: USING RESOURCES

WM_COMMAND message, it does not have to determine whether the menu or the key
board accelerator was used.

Why You Should Use Keyboard Accelerators

You may ask: Why should I use keyboard accelerators? Why can't I simply trap WM
_KEYDOWN or WM_CHAR messages and duplicate the menu functions myself? What's
the advantage? For a single-window application, you can certainly trap keyboard messages,
but you get certain advantages from using keyboard accelerators: You don't need to dupli
cate the menu and keyboard accelerator logic. If the keyboard accelerator duplicates a
menu function, Windows flashes the top-level item on the menu when a keyboard ac
celerator is used, thus providing some visual feedback to the user.

For applications with multiple windows and multiple window procedures, keyboard
accelerators become very important. As we've seen, Windows sends keyboard messages to
the window procedure for the window that currently has the input focus. For keyboard ac
celerators, however, Windows sends the WM_COMMAND message to the window pro
cedure whose handle is specified in the Windows function TranslateAccelerator.
Generally, this will be your main window, the same window that has the menu, which
means that the logic for acting upon keyboard accelerators does not have to be duplicated
in every window procedure.

This advantage becomes particularly important if you use modeless dialog boxes
(discussed in Chapter 10) or child windows on your main window's client area. If a particu
lar keyboard accelerator is defined to move among windows, then only one window pro
cedure has to include this logic. The child windows do not receive WM_COMMAND
messages from the keyboard accelerators.

Some Rules on Assigning Accelerators

In theory, you can define a keyboard accelerator for any virtual key or any character key in
combination with the Shift key, the Ctrl key, or both. However, the CVA Advanced Interface
Design Guide offers several recommendations that are intended to achieve some consis
tency among applications and to avoid interfering with Windows' use of the keyboard.
For programs that have an Edit menu, the CVA Advanced Interface Design Guide highly
recommends use of the following accelerators:

386

Key(s)

Alt+ Backspace
Del

Ctrl+Ins

Shift+Ins

Shift+Del

Function

Undo
Clear

Copy

Paste

Cut

Chapter 9: Menus and Accelerators

You should avoid using Tab, Enter, Esc, and the Spacebar in keyboard accelerators, because
these are often used for system functions.

Although some older Windows programs use alphabetic keys in combination with
the Ctrl key for keyboard accelerators, more recent Windows programs use function keys,
sometimes in combination with the Shift key, the Ctrl key, or both. These function-key
assignments are common in some applications:

Key(s) Function

FI Help

F3 Save

F6 Next window

Shift+F6 Previous window

Ctrl+F6 Next section

Shift+C trl + F6 Previous section

The Accelerator Table

Keyboard accelerator tables are defined in your .RC resource script. The general form is
shown here:

MyAccelerators ACCELERATORS
{

[accelerator definitions}
}

This accelerator table name is MyAccelerators. The ACCELERATORS table does not include
load and memory options. You can have multiple ACCELERATORS tables in your resource
script.

Each keyboard accelerator you define requires a different line in the table. There are
four types of accelerator definitions:

"char", wID

"I\char", wID

[,NOINVERT] [,SHIFT] [,CONTROL]

[,NOINVERT] [,SHIFT] [,CONTROL]

nCode, wID, ASCII [,NOINVERT] [,SHIFT] [,CONTROL]

nCode, wID, VIRTKEY [,NOINVERT] [,SHIFT] [,CONTROL]

In these examples, "char" means a single character enclosed in double quotation marks,
and ""char" is the character" arid a single character in double quotation marks. The wID
number performs a function similar to the menu ID in a menu definition. It is the value that
Windows sends to your window procedure in the WM_COMMAND message to identify
the accelerator. These are usually identifiers defined in a header file. When the keyboard

387

SECTION III: USING RESOURCES

accelerator duplicates a menu command, use the same ID for both the menu and the ac
celerator. When the keyboard accelerator does not duplicate a menu command, use a
unique ID.

Keyboard accelerators almost always select options in popup menus. Windows auto
matically flashes a top-level menu item when you press an accelerator key that duplicates
an option in a popup. (For example, the Edit text flashes if you press the Del key.) If you
don't want the menu to flash, include the option NOINVERT.

In the first type of accelerator definition, the keyboard accelerator is a case-sensitive
match of the character in double quotes:

"char", wID [,NOINVERT] [,SHIFT] [,CONTROL]

If you want to define a keyboard accelerator for that key in combination with the Shift or
Ctrl key or both, simply add SHIFT or CONTROL or both.

In the second type of definition, the keyboard accelerator is the character in combi
nation with the etrl key:

""'char", wID [,NOINVERT] [,SHIFT] [,CONTROL]

This type is the same as the first type when the CONTROL keyword is used with the char
acter alone.

The third and fourth types use a number (nCode) rather than a character in quotes:

nCode, wID, ASCII [,NOINVERT] [,SHIFT] [,CONTROL]
nCode,· wID, VIRTKEY [,NOINVERT] [,SHIFT] [,CONTROL]

This number is interpreted as either case-sensitive ASCII code or a virtual key code,
depending on the ASCII or VIRTKEY keyword.

The most common keyboard accelerators are the second and fourth types. You use
the second type for character keys in combination with Ctrl. For example, this defines an
accelerator for Ctrl-A:

""'A", wID

Use the fourth type for virtual key codes such as function keys. This defines an accelerator
for the Ctrl-F9 combination:

VK_F9, wID, VIRTKEY, CONTROL

The identifier VK_F9 is defined in WINDOWS.H as the virtual key code for the F9 key, so
you have to include the statement:

#include <windows.h>

near the top of the resource script. The resource compiler defines an identifier named
RC_INVOKED that causes much of WINDOWS.H to be ignored.

The first and third types of definition shown above are rarely used. If you want to use
them, watch out for case-sensitivity. Windows does a case-sensitive match on the "char"

388

Chapter 9: Menus and Accelerators

or nCode based on the character you press. When you add the SHIFT keyword, Windows.
checks to see if the Shift key is depressed. This situation sometimes causes results you may
not anticipate. For instance, if "char" is '~II, the keyboard accelerator is invoked when you

. press the A key with the Shift key down or Caps Lock on, but not both. If you use '~"with
SHIFT, the A key must be pressed with Shift down, but the accelerator can't be invoked at
all when Caps Lock is on. Similarly, "a" by itself is a keyboard accelerator for the unshifted
A key or for the A key with both Shift down and Caps Lock on. But "a" with SHIFT invokes
the accelerator only when Shift is down and Caps Lock is on.

When you define keyboard accelerators for a menu item, you should include the key
combination in the menu item text. The tab (\t) character separates the text from the ac
celerator so that the accelerators align in a second column. To notate accelerator keys in a
menu, the CUA Advanced Interface Design Guide recommends the text Ctrl or Shift fol-·
lowed by a plus sign and the key-for instance:

• F6

• Shift+F6

• Ctrl+F6

Loading the Accelerator Table

Within your program, you use the LoadAccelerators function to load the accelerator table
into memory and obtain a handle to it. The LoadAccelerators statement is very similar to
the LoadIcon, LoadCursor, LoadBitmap, and LoadMenu statements.

First, define a handle to an accelerator table as type HANDLE:

HANDLE hAccel :

Then load the accelerator table:

hAccel = LoadAccelerators (hlnstance, "MyAccelerators") :

As with icons, cursors, bitmaps, and menus, you can use a number for the accelerator table
name and then use that number in the LoadAccelerators statement with the MAKE
I+'J'TRESOURCE macro or in quotations preceded by a # character.

Translating the Keystrokes

We will now tamper with three lines of code that are common to all the Windows pro
grams that we've created so far in this book. The code is the standard message loop:

while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg) :
DispatchMessage (&msg) :
}

389

SECTION III: USING RESOURCES

Here's how we change it to use the keyboard accelerator table:

while (GetMessage (&msg, NULL, 0, 0»
{
if (!TranslateAccelerator (hwnd, hAccel, &msg»

{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

The TranslateAccelerator function determines if the message stored in the msg mes
sage structure is a keyboard message. If it is, the function searches for a ma~~h in the ac
celerator table whose handle is hAccel. If it finds a match, it calls the windo:w procedure for
the window whose handle is hwnd. If the keyboard accelerator ID corresponds to a menu
item in the system menu, then the message is WM_SYSCOMMAND. Otherwise, the mes
sage is WM_COMMAND.

When TranslateAccelerator returns, the return value is nonzero if the message has
been translated (and already sent to the window procedure) and 0 if not. If Translate
Accelerator returns a nonzero value, you should not call TranslateMessage and Dispatch
Message but rather loop back to the GetMessage call.

The hwnd parameter in TranslateMessage looks a little out of place because it's not
required in the other three functions in the message loop. Moreover, the message structure
itself (the structure variable msg) has a member named hwnd, which is also a handle to a
window.

The fields of the msg structure are filled in by the Get Message call. When the second
parameter of GetMessage is NULL, the function retrieves messages for all windows belong
ing to the application. When GetMessage returns, the hwnd member of the msg structure is
the window handle of the window that will get the message. However, when TranslateAc
celeratortranslates a keyboard message into a WM_COMMAND or WM_SYSCOMMAND
message, it replaces the msg.hwnd window handle with the window handle hwnd speci
fied as the first parameter to the function. That is how Windows sends all keyboard ac
celerator messages to the same window procedure even if another window in the
application currently has the input focus. TranslateAcceleratordoes not translate keyboard
messages when a modal dialog box or message box has the input focus, because messages
for these windows do not come through the program's message loop.

In some cases in which another window in your program (such as a modeless dialog
box) has the input focus, you may not want keyboard accelerators to be translated. You'll
see how to handle this in Chapter 10.

Receiving the Accelerator Messages

When a keyboard accelerator corresponds to a menu item in the system menu, Translate
Acceleratorsends the window procedure a WM_SYSCOMMAND message. If you need to,

390

Chapter 9: Menus and Accelerators

you can differentiate between a direct system menu selection and a keyboard accelerator
for that system menu item by the high word of IParam:

Accelerator:

Menu:

wParam

Accelerator ID

Menu ID

LOWORD (lParam)

o
o

HIWORD (lParam)

1

o

If the accelerator ID corresponds to a menu item (or does not correspond to any item on the
menu or system menu), Tran~lateAccelerator sends the window procedure a WM_COM
MAND message. The following table shows the types of WM_COMMAND messages you
can receive for keyboard accelerators, menu commands, and child window controls:

wParam LOWORD (lParam) HIWORD (lParam)

Accelerator: Accelerator ID 0 1

Menu: Menu ID 0 0

Control: ControlID Child window handle Notification code

If the keyboard accelerator corresponds to a menu item, the window procedure also
receives WM_INITMENU, WM_INITMENUPOPUP, and WM_MENUSELECT messages,
just as if the menu option had been chosen. Programs usually enable and disable items in a
popup menu when processing WM_INITMENUPOPUP, so you still have that facility when
using keyboard accelerators. If the keyboard accelerator corresponds to a disabled or
grayed menu item, however, TranslateAccelerator does not send the window procedure a
WM_COMMAND or WM_SYSCOMMAND message.

If the active window is minimized, TranslateAccelerator sends the window pro
cedure WM_SYSCOMMAND messages-but not WM_COMMAND messages-for key
board accelerators that correspond to enabled system menu items. TranslateAccelerator
also sends that window procedure WM_COMMAND messages for accelerators that do not
correspond to any menu items.

POPPAD with a Menu and Accelerators

In Chapter 6 we created a program called POPPADI that uses a child window edit control
to mimic some of the workings of Windows' Note Pad program. In this chapter we'll add a
File and Edit menu and call it POPPAD2. The Edit items will all be functional; we'llfinish
the File functions in Chapter 10 and the Print function in Chapter 15. POPPAD2 is shown in
Figure 9-12 beginning on the following page.

391

SECTION III: USING RESOURCES

•••••••••••••••••••••••••••

" ..
/ ..

"".
~1 'r 11,

.········'y'»'i
i.'·.·i irir •• ,·.·'.'· . .. ,.' .••••••••••• '.

J) ..•.•.••••••••• '

Figure 9·12. The POPPAD2 program. (continued)

392

Chapter 9: Menus and Accelerators

wndclass.hlnstance = hlnstance :
wndclass.hlcon = loadIcon (hlnstance. szAppName)
wndclass.hCursor - loadCursor (NULL. IOC_ARROW) :
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) :
wndclass.lpszMenuName =szAppName
wndclass.lpszClassName - szAppName

RegisterClass (&wndclass) ;
}

hwnd = CreateWindow{szAppName. szAppName.
WS_OVERLAPPEOWINDOW.
GetSystemMetri cs (SM_CXSCREEN) 14.
GetSystemMetri cs (SM_CYSCREEN) 14,
GetSystemMetrics(SM_CXSCREEN) 12.
GetSystemMetri cs (SM_CYSCREEN)/ 2.
NULL, NULL. hlnstance, NULl) ;

ShowWindow(hwnd. nCmdShow) :
UpdateWindow (hwnd) ;

AskConfirmation (HWND hwnd)
{

return MessageBox

long FAR PASCAL WndProc (HWNO hwnd.
{

staticHWNOhwndEdit ;
LONG lSelect :
WORD wEnable :

(continued)

393

SECTION III: USING RESOURCES

(continued)

394

Chapter 9: Menus and Accelerators

case WM_COMMANO :
if (lOWORO (lParam»

{
if {wParam== 1 && HIWORO (1 Param) == EN_ERRSPACE)

MessageBox (hwnd. "Edit control out of space.".
szAppName.MB_OK l MB_ICONSTOP);

return 0;
}

else switch (wParam)
{
case roM_NEW :
case 10M_OPEN:
caseIOM_SAVE:
case.IDM.;:.SAVEAS:
case 10M_PRINT!

MessageBeep(O)
return 0;

case 10M_ABOUT:
MessageBox (hwnd.

"POPPA02(c) Charles Petzold. 1990".
szAppName~ MB_OK I MB_ICONINFORMATION)

return 0

case 10M_UNDO :
SendMessage(hwndEdit. WM_UNOO.
return 0;

case 10M_CUT :
SendMessage (hwndEdit. WM_CUT. O. Ol)
returnO;

case 10M_COPY:
SendMessage (hwndEdit, WM_COPY. O. OU
returnO:

. (continued)

395

SECTION III: USING RESOURCES

~lt' >~'~~~J£ ··'usi IDIi1'~hAl~~j~~%6t . . "'" e7#/ x
..•...

{tIl t'8}t[~;,,;,h;e; ,.,g sen~M.!lsrgei (pwndIa'l!~:}~~1l'SE'fsErr~it9\ l. e :; "1

••••••••••••

i········ •• · .• · ·····>i·i >r ········<){i) .. i. ·...i MAKE LONG (O '.~ 32767» ~ J••.••...•
\ \} ·.«t\.<i\ }ii

••

•••••••••••
iiiU? .fetU~~O{ :i\r/ii i { .i

<iii ,.> ••••••.•..••••••• / {F Xi} ,ii>?(.((i} •••••••••

</< «<;.y br.~9k £ •••••.• •.•.••. ". . .•..• /
\

}
/>)/ • ...)\<i) . .

.•.....)) i <.
<\}

<
}<.Case.~MiClOSE\: .>\ .yll ?/

ii(/\.< i i f(IOYES~.AskConf1 rinaiiOn (hwnd» i \ .

i <

;·i.i<i iii OestroY~.t~g?~ .. fhwrid) : i

•. \) •..... > ···returnO.;.< ·ii 'i (i
) ...

i\

ii··). i •.. ·...'Zr .•.... ... r (.

{\ •••......• . .••••••• cijseWMl.QUERYENOSESSION: .'. ",{ / ~); ...•.. i \.

•••••••••••••••••

\<Y< >
;L< i SiIjii(lOY E ~};~ As kCon fi rma ti on. (hwnd)') i ..•.....•. f i<

..... \./ ..•..• i/./return<l L: }<i •... ,i .. · .. ·
/ }> ,-Y . eTse i

•••••••
.....}</

.\>
> i........\\in.eturn 0 , i

. 'i(?i:j.i.J0<.>i >ii ..) i >? .•.••••
\ \« case WM2DESTRoyii.~': i

.....

••••••• ci i;i,i Ii; llll~?stQUi,i~~r.sadK\.O)iW
••••••

ii\

(i i i
•...... \)i.\\ r.@t~nnHj..i '}? .•.••. ?

.........>i<) }'i .\\ A2~J.2[:.<[f2< i< >. > ;

it :Tfj;t~niig~t~Ari\lQW~t9C (hwp d. 7,\!e~~,~ge; lw~a,r a.'Ml ile~.r.~~~;1 ~r\1 i
••••••

••••••••
i ii it

i· •• · il)··ii...}? 'iii'" / \(....... ' .. i...... (.
............... :

0.~1+;1' '#tetrt8.:;.ti~~\l·i ii i ii ' .. "\ ...
< i/ .. · .. ··· ··.·.i:i :~O~.PAq~l;~ii \ ...•.) <} '.'

•..... .·.·.·.ii...C i ' .. '.> \).

............ • ... i
i .< ei/~~2,~J~a;%'~~~~t;t; .1" : .]], i } i i> \ > ' \

.'"
.J~pP.~.A.P? Rqresou~ce scrj.pt, (i \

\ < (.......) \ \/i- -~. ~. ~".~ -~~ .. ~ .. ~" -~. '~'. ~~t~+ _ .. J~~;;Ld-* I•...
•••••••

. ,. J .
·.·····1 i '.<

?
i ? ii i>/

... <Iii ncl ude <wi ndows . h>/.i \ .. ') '. < ·.·· i i \ .{
(i'

i !1.1.n~~9ge .•• rpoppa~~;r·~ i ((
.........

.> i. il ...\\ ·· .. i ii<'.>· >\ ·• ••• ·.i\ ,
... pWPa d2 t} c q ~ ~p~~~~~. j C~;' it

• ••••••• t./:: ·...rr<! i •••..•
.•. f (

PopPad2<~ENU i» i\•
••••••••

••••••••

(
. ... , i.;! {.> . .•.•..... ..•. ..•••• •..... .t»<\•...

...... C:
'.> :22;.><:.}> ... i .• •.•..

••..•.•.• •··••••••• •• ·i POPUP U&File1t \>\ ••.•..• y E
•••••••

.....• <
.'. i· .. · ·. ·····i1 { i\ i .•••..••••••.• i > (C'"/

/
10M NEW'

i
i.··.·.·

.......

........ii)· ME NU IT EM •. :~&N ew.l~.\ i< i i
•••

i.· ... ····.··· IOM=OPEN i x •............. .·...iME NU IT EM'i&openr.;>~'i i ••••••••
\ .•..

·.······)i){/· ...•••••••••••••• \tMENU1TEM>'l.&Save~:i•. 10M_SAVE• > \ \

ii\\ •. (i.MENUITEM "Sifve&A$! .:;.. IDM_SAVEAS ...•

)

• ' i •. ..••• ..».. .••• • ••••••••••••........ MEN U I T E M.tS E PA RA TO R .i? cr:100':;j;'> i .. ·......F > \ fii..'·" .I/>iii) ·T i i i(\

(continued)

396

10M_PRINT

10M_EXIT
10M_ABOUT

Chapter 9: Menus and Accelerators

397

SECTION III: USING RESOURCES,

POPPAD2.ICO

--

The POPPAD2.RC resource script file contains the menu and accelerator table. You'll notice
that the accelerators are all indicated within the text strings of the Edit popup menu follow
ing the tab (\ t) character.

Enabling Menu Items

The major job in the window procedure now involves enabling and graying the options in
, the Edit menu, which is done when processing the WM_INITMENUPOPUP. First, the pro

gram checks to see if the Edit popup is about to be displayed. Because the position index
of Edit in the menu (starting with File at 0) is 1, /Param equals 1 if the Edit popup is about to
be displayed.

To determine if the Undo option can be enabled, POPPAD2 sends an EM_CAN
UNDO message to the edit control. The Send Message call returns nonzero if the edit con
trol can perform an Undo action, in which case the option is enabled; otherwise, it is
grayed:

398

Chapter 9: Menus and Accelerators

EnableMenuItem (wParam, 10M_UNDO,
SendMessage (hwndEdit, EM_CANUNOO, 0, Ol) ?

MF_ENABlEO : MF_GRAYEO) ;

The Paste option should be enabled only if the clipboard currently contains text. We
can determine this through the IsClipboardFormatAvailable call with the CF _TEXT
identifier:
\

EnableMenuItem (wParam, 10M_PASTE,
IsClipboardFormatAvailable (CF_TEXT) ?

MF_ENABlEO : MF_GRAYEO) ;

The Cut, Copy, and Clear options should be enabled only if text in the edit control has
been selected. Sending the edit control an EM_GETSEL message returns a long integer
containing this information:

lSelect = SendMessage (hwndEdit, EM_GETSEl, 0, Ol) ;

The low word of ISelect is the position of the first selected character; the high word of
ISelect is the position of the character following the selection. If these two words are equal,
no text has been selected:

if (HIWORO (lSelect) ~= lOWORO (lSelect))
wEnable - MF_GRAYEO ;

else
wEnable - MF_ENABlEO ;

The value of wEnable is then used for the Cut, Copy, and Clear options:

EnableMenuItem (wParam, 10M_CUT, wEnable)
EnableMenuItem (wParam, 10M_COPY, wEnable)
EnableMenultem (wParam, 10M_CLEAR, wEnable)

Processing the Menu Options

Of course, if we were not using a child window edit control for POPPAD2, we would now
be faced with the problems involved with actually implementing the Undo, Cut, Copy,
Paste, Clear, and Select All options from the Edit menu. But the edit control makes this pro
cess easy, because we merely send the edit control a message for each of these options:

case 10M_UNDO :
. SendMessage (hwndEdit, WM_UNOO, 0, Ol) :

return 0 ;

case 10M_CUT :
SendMessage (hwndEdit, WM_CUT, 0, Ol)
return 0 ;

case 10M_COPY :
SendMessage (hwndEdit, WM_COPY, 0, Ol)
return 0 ;

399

SECTION III: USING RESOURCES

case 10M_PASTE :
SendMessage (hwndEdit, WM_PASTE, 0, OL)
return 0 ;

case 10M_CLEAR :
SendMessage (hwndEdit; WM_CLEAR, 0, OL)
return 0 ;

case 10M SELALL -
SendMessage (hwndEdit, EM_SETSEL, 0,

MAKE LONG (0, 32767»
return 0 ;

Notice that we could have simplified this even further by making the values of
IDM_UNDO, IDM_CUT, and so forth equal to the values of the corresponding window
messages WM_UNDO, WM_CUT, and so forth.

The About option for the File popup invokes a simple message box:

case 10M_ABOUT :
MessageBox (hwnd,

"POPPA02 (c) Charles Petzold, 1990",
szAppName, MB_OK : MB_ICONINFORMATION)

break ;

In Chapter 10 we'll make this a dialog box.
The Exit option sends the window procedure a WM_CLOSE message:

case 10M_EXIT :
SendMessage (hwnd, WM_CLOSE, 0, OL) ;
return 0 ;

That is precisely what DejWindowProc does when it receives a WM_SYSCOMMAND mes
sage with wParam equal to SC_CLOSE.

In previous programs we have not processed the WM_CLOSE messages in our win
dow procedure but have simply passed them to DejWindowProc. DejWindowProc does
something very simple with WM_CLOSE: It calls the DestroyWindowfunction. Rather than
send WM_CLOSE messages to DejWindowProc, however, POPPAD2 processes them. This
fact is not so important now, but it will become very important in Chapter 10 when
POPPAD can actually edit files:

case WM_CLOSE :
if (IOYES == AskConfirmation (hwnd»

OestroyWindow (hwnd) ;
return 0 ;

AskConfirmation is a function in POPPAD2 that displays a message box asking for confir
mation to close the program:

400

Chapter 9: Menus and Accelerators

AskConfirmation (HWND hwnd)
{

return MessageBox (hwnd. "Really want to close POPPAD2?".
szAppName. MB_YESNO : MB_ICONQUESTION) ;

The message box (as well as the AskConjinnation function) returns IDYES if the Yes but
ton is selected. Only then does POPPAD2 call DestroyWindow. Otherwise, the program is
not terminated.

If you want confirmation before terminating a program, you must also process WM
_QUERYENDSESSION messages. Windows begins sending every window procedure a
WM_QUERYENDSESSION message when the user chooses Close from the MS-DOS Ex
ecutive system menu. If any window procedure returns 0 from this message, the Windows
session is not terminated. Here's how we handle WM_QUERYENDSESSION:

case WM_QUERYENDSESSION :
if (IDYES == AskConfirmation (hwnd»

return 1L ;
else

return 0 ;

The WM_CLOSE and WM_QUERYENDSESSION messages are the only two mes
sages you have to process if you want to ask for user confirmation before ending a pro
gram. That's why we made the Exit menu option in POPPAD2 send the window procedure
a WM_CLOSE message-by doing so, we avoided having to ask for confirmation at yet a
third point.

If you process WM_QUERYENDSESSION messages, you may also be interested in
the WM_ENDSESSION message. Windows sends this message to every window procedure
that has previously received a WM_QUERYENDSESSION message. The wParam param
eter is 0 if the session fails to terminate because another program has returned 0 from
WM_QUERYENDSESSION. The WM_ENDSESSION message essentially answers the
question: I told Windows it was OK to terminate me, but did I really get terminated?

Although I've included the normal New, Open, Save, and Save As options in POP
PAD2's File menu, they are currently nonfunctional. To process these commands, we need
to use dialog boxes. You're now ready to learn about them.

401

C,hapter10

Dialog Boxes

Dialog boxes are most often used for obtaining additional input from the user beyond what
can be easily managed through a menu. The programmer indicates that a menu item in
vokes a dialog box by adding an ellipsis (...) to the menu item.

A dialog box generally takes the form of a popup window containing various child
window controls. The size and placement of these controls are specified in a "dialog box
template" in the program's resource script file. Windows is responsible for creating the
dialog box popup window and the child window controls and for providing a window
procedure to process dialog box messages (including all keyboard and mouse input). The
code within Windows that does all this is sometimes referred to as the "dialog box
manager."

Many of the messages that are processed by the dialog box window procedure within
Windows are also passed to a function within your own program, called a "dialog box pro
cedure" or "dialog procedure." This function is similar to a normal window procedure, but
with some important differences. Generally, you will not be doing very much within the
dialog procedure except initialiZing the child window controls when the dialog box is
created, processing messages from the child window controls, and ending the dialog box.

The subject of dialog boxes would normally be a big one, because it involves the use
of child window controls. However, we have already explored child window controls in
Chapter 6. When you use child window controls in dialog boxes, the Windows dialog box
manager picks up many of the responsibilities that we assumed in Chapter 6. In particular,
the problems we encountered with passing t!:Ie input focus between the scroll bars in the
COLORSl program do not occur with dialog boxes. Windows handles all the logic neces
sary to shift input focus between controls in a dialog box.

However, adding a dialog box to a program is not a trivial undertaking. It involves
changes to several files-the dialog box template goes in the resource script file, the dialog

403

SECTION III: USING RESOURCES

box procedure goes in the source code file, the name of the dialog box procedure goes in
the module definition file, and identifiers used in the dialog box often go in the program's
header file. We'll begin with a simple dialog box so that you get a feel for the interconnec
tions between these various pieces.

MODAL DIALOG BOXES
Dialog boxes are either "modal" or "modeless." The modal dialog box is the most common.
When your program displays a modal dialog box, the user cannot switch between the dia
log box and another window in your program. The user must explicitly end the dialog box,
usually by clicking a push button marked either OK or Cancel. The user can, however, gen
erally switch to another program while the dialog box is still displayed. Some dialog boxes
(called "system modal") do not allow even this. System modal dialog boxes must be ended
before the user does anything else in Windows.

,Creating an "About" Dialog Box

Even if a Windows program requires no user input, it will often have a dialog box that is in
voked by an About option on the menu. This dialog box displays the name and icon of the
program, a copyright notice, a push button labeled OK, and perhaps other information.
The first program we'll look at does nothing except display' an About dialog box. The
ABOUT1 program is shown in Figure 10-1.

Figure 10-1. The ABOUTl program.

404

ABOUT1.C

/*~~"""" ..••••.•••..•••••••••••••••.••••.•••
ABOUTl.C .. About Box Demo Program No.1

(c) Charles Petzold. 1990
··························--·····~~···-·~·*I

#include <windows.h>
#include "aboutl.h"

long FAR PASCAL WndProc (HWNO. WORD. WORD. LONG) :

int PASCAL WinMain (HANDLEhlnstance~ HANDLE hPrevlnstance.
LPSTR lpszCmdLine. int nCmdShow)

{
static charszAppName [] "Aboutl"
MSG
HWND
WNDCLASS

Chapter 10: Dialog Boxes

(continued)

405

SECTION III: USING RESOURCES

,u

.•.... > .
......

...
(.... :)

IJ i
" L
) .

········i .. i

... { .

.•.••... \/ •. >•.. <
) i·.i

(continued)

406

Chapter 10: Dialog Boxes

407

SECTION III: USING RESOURCES

ABOUT1.ICO

The Dialog Box Template

The first job involved in adding a dialog box to a program is designing the dialog box
template. This template can go directly in the resource script file, or it can be in a separate
file that by convention uses the extension .DLG (for "dialog"). If you put the template in a
separate file, you include the line:

rcinclude filename.dlg

in the resource script file.
You can create the dialog box template by hand in a text editor, or you can use the

DIALOG program included with the Windows Software Development Kit. Because the
output from DIALOG is virtually unreadable, I'll be showing dialog box templates that look
as if they were created by hand. A discussion of DIALOG concludes this chapter.

408

The dialog box template for ABOUTllooks like this:

AboutBox DIALOG 20. 20. 160. 80
STYLE WS_POPUP WS_DLGFRAME
{

CTEXT "About!" -1.
ICON "Aboutl" -1.
CTExr "About Box Demo Prog ram" -1.
CTEXT "(c) Charles Petzold. 1990" -1.
DEFPUSHBUTTON "OK" lOOK.
}

O. 12.
8. 8.
O. 36.
O. 48.

64. 60.

Chapter 10: Dialog Boxes

160. 8
O. 0

160. 8
160. 8
32. 14. WS_GROUP

The first line gives the dialog box a name (in this case, AboutBox). As is the case for other
resources, you can use a number instead. The name is followed by the keyword DIALOG
and four numbers. The first two numbers are the x- and y-coordinates of the upper left cor
ner of the dialog box, relative to the client area of its parent when the dialog box is invoked
by the program. The second two numbers are the width and height of the dialog box.

These coordinates and sizes are not in units of pixels. They are instead based on a
special coordinate system used only for dialog box templates. The numbers are based on
the size of a system font character: x-coordinates and width are expressed in units of Y4 of
an average character width; y-coordinates and height are expressed in units of VB of a char
acter height. Thus for this particular dialog box, the upper left corner of the dialog box is 5
characters from the left of the main window's client area and 2Yz characters from the top. It
is 40 characters wide and 10 characters high.

This coordinate system allows you to use coordinates and sizes that will retain the
general dimensions and look of the dialog box regardless of the resolution of the video dis
play. Because system font characters are often approximately twice as high as they are
wide, the units on both the x- and y-axes are about the same.

The DIALOG statement can also include load options (PRELOAD and LOADON
CALL) and memory options (FIXED, MOVEABLE, and DISCARDABLE) immediately
following the word DIALOG. The defaults are LOADONCALL and MOVEABLE. The STYLE
statement in the template is similar to the style field of a CreateWindow cail. Using
WS_POPUP and WS_DLGFRAME is normal for modal dialog boxes, but we'll explore
some alternatives later on.

Within the left and right brackets, you define the child window controls that will
appear in the dialog box. This dialog box uses three types of child window controls:
CTEXT (centered text), ICON (an icon), and DEFPUSHBUTTON (a default push button).
The format of these statements is:

control-type "text"·nID. xPos. yPos. xWidth. yHeight. dwStyle

The dwStyle value at the end is optional; it specifies additional window styles using iden
tifiers defined in WINDOWS.H.

409

SECTION III: USING RESOURCES

These CTEXT, ICON, and DEFPUSHBUTTON identifiers are used only in dialog
boxes. They are shorthand for a particular window class and window style. For example,
CTEXT indicates that the class of the child window control is "static" and that the style is:

WS_CHILD I SS_CENTER I WS_VISIBLE I WS_GROUP

Although this is the first time we've encountered the WS_GROUP identifier, we used
the WS_CHILD, SS_CENTER, and WS_ VISIBLE window styles when creating static child
window text controls in the COLORSI program in Chapter 6.

For the icon, the text field is the name of the program's icon resource, which is also
defined in the ABOUTI resource script. For the push button, the text field is the text that
appears inside the push button. This text is equivalent to the text specified as the second
parameter to a CreateWindow call when you create a child window control in a program.

The nID field is a value that the child window uses to identify itself when sending
messages (usually WM_COMMMAND messages) to its parent. The parent window of these
child window controls is the dialog box window itself, which sends these messages to a
window procedure in Windows. However, this window procedure also sends these mes
sages to the dialog box procedure that you'll include in your program. The nID values are
equivalent to the child window IDs used in the CreateWindow function when we created
child windows in Chapter 6. Because the text and icon controls do not send messages back
to the parent window, these values are set to -1. The nIDvalue for the push button is IDOK,
which is defined in WINDOWS.H as 1.

The next four numbers set the position of the child window control (relative to the
upper left corner of the dialog box's client area) and the size. The position and size are ex
pressed in units of Y4 the average width and Ys the height of a system font character. The
width and height values are ignored for the ICON statement.

The DEFPUSHBUTTON statement in the dialog box template includes the window
style WS~GROUP in addition to the window style implied by the DEFPUS~BUTTON key
word. I'll have more to say about WS_GROUP (and the related WS_TABSTOP style) when
discussing the second version of this program, ABOUT2, a bit later.

The Dialog Box Procedure

The dialog box procedure within your program handles messages to the dialog box.
Although it looks very much like a window procedure, it is not a true window procedure.
The window procedure for the dialog box is within Windows. That window procedure
calls your dialog box procedure with many of the messages that it receives. Here's the
dialog box procedure for ABOUTl:

410

Chapter 10: Dialog Boxes

Baal FAR PASCAL AboutDlgProc (HWND hDlg, WORD message,
WORD wParam, lONG lParam)

{
switch (message)

{
case WM_INITDIAlOG

return TRUE

case WM_COMMAND
swi tch (wPa ram)

{
case lOOK :
case IDCANCEl

}

break

return FALSE ;
}

EndDialog (hDlg, 0)
return TRUE ;

The parameters to this function are the same as those for a normal window procedure.
(Although I've used hDlg for the handle to the dialog box window, you can use hwnd
instead if you like.) Let's note first the differences between this function and a window
procedure:

• A window procedure returns a long; a dialog box procedure returns a
BOOL (which is defined in WINDOWS.H as an int).

• A window procedure calls DefWindowProc if it does not process a
particular message; a dialog box procedure returns TRUE (nonzero) if it
processes a message and FALSE (0) if it does not.

• A dialog box procedure does not need to process WM_PAINT or
WM_DESTROY messages. A dialog box procedure will not receive a
WM_CREATE message; instead, the dialog box procedure performs
initialization during the special WM_INITDIALOG message.

The WM_INITDIALOG message is the first message the dialog box procedure re
ceives. This message is sent only to dialog box procedures. If the dialog box procedure
returns TRUE, then Windows sets the input focus to the first child window control in the
dialog box that has a WS_ TABSTOP style (which I'll explain in the discussion of ABOUT2).
In this dialog box, the first child window control that has a WS_ TABSTOP style is the push
button. Alternatively, during processing of WM_INITDIALOG the dialog box procedure
can use SetFocus to set the focus to one of the child window controls in the dialog box and
then return FALSE.

The only other message this dialog box processes is WM_COMMAND. This is the
message the push-button control sends to its parent window either when the button is

411

SECTION III: USING RESOURCES

clicked with the mouse or when the Spacebar is pressed while the button has the input
focus. The ID of the control (which we set to IDOK "in the dialog box template) is in
wParam. For this message, the dialog box procedure calls EndDialog, which tells Windows
to destroy the dialog box. For all other messages, the dialog box procedure returns FALSE
to tell the dialog box window procedure within Windows that our dialog box procedure
did not process the message.

The messages for a modal dialog box don't go through your program's message
queue, so you needn't worry about the effect of keyboard accelerators within the dialog box.

Exporting the Dialog Box Procedure

Because this dialog box procedure is called from outside the program, it must be included
in the EXPORTS section of the module definition file:

EXPORTS WndProc
AboutDlgProc

This is the easiest part of the job but also the easiest to forget. I forget to export the dialog
box procedure about one time in four. Often the function will seem to work (more or less),
but because it's not using the program's data segment, it could be altering data inside Win
dows' data segment. Our simple dialog box procedure doesn't reference anything in
ABOUTl's data segment, so strictly speaking, exporting the function is not required. But
get into the habit of exporting the function; I hope you achieve a better track record than
mine.

Invoking the Dialog Box

During processing ofWM_CREATE, the program's instance handle is obtained (and stored
in a static variable) and MakeProcInstance is called to create an instance thunk for the
dialog procedure. The pointer to the instance thunk is ~lso stored in a static variable:

hInstance = ((LPCREATESTRUCT) lParam)-)hInstance ;
lpfnAboutDlgProc = MakeProcInstance (AboutDlgProc. hInstance) ;

The MakeProcInstance function assures that AboutDlgProc obtains the correct data seg
ment address for this instance of ABOUTl.

The program checks for WM_COMMAND messages where wParam is equal to
IDM_ABOUT. When it gets one, the program calls DialogBox:

DialogBox (hInstance. "AboutBox". hwnd. lpfnAboutDlgProc) ;

This function requires the instance handle (saved during WM_CREATE), the name of the
dialog box (as defined in the resource script), the parent of the dialog box (which is the
program's main window), and the address of the instance thunk return from MakeProc
Instance. If you use a number rather than a name for the dialog box template, you can
convert it to a string using the MAKEINTRESOURCE macro.

412

Chapter 10: Dialog Boxes

Selecting "About About! ... " from the menu displays the dialog box, as shown in
Figure 10-2. You can end this dialog box by clicking the OK button with the mouse, by
pressing the Spacebar, or by pressing Enter. For any dialog box that contains a default push
button, Windows sends a WM_COMMAND message to the dialog box, with wParam equal
to the ID of the default push button when Enter or the Spacebar is pressed.

H Aboutl

About Box Demo Program

[el Charles Petzold. 1990

IrloKrl

Figure 10-2. The ABOUTI program's dialog box.

The DialogBox function you call to display the dialog box will not return control to
WndProc until the dialog box is ended. The value returned from DialogBox is the second
parameter to the EndDialog function called within the dialog box procedure. (This value
is not used in ABOUT1 but is used in ABOUT2.) WndProc can then return control to
Windows.

Even when the dialog box is displayed, WndProc can continue to receive messages.
In fact, you can send messages to WndProc from within the dialog box procedure.
ABOUT1's main window is the parent of the dialog box popup window, so the Send
Message call in AboutDlgProc would start off like this:

SendMessage (GetParent (hDlg). . ..):

If you have a lot of dialog boxes within your program, you may not want to create and
save instance thunks for all of them. You can instead create instance thunks as needed and
free them after DialogBox returns:

lpfnDlgProc = MakeProclnstance (AboutDlgProc. hInstance)
DialogBox (hInstance. "AboutBox". hwnd. lpfnDlgProc) :
FreeProcInstance (lpfnDlgProc) :

More on the Dialog Box Style

The window style of the dialog box is specified in the STYLE line of the dialog box tem
plate. For ABOUT1, we used a style that is most common for modal dialog boxes:

STYLE WS_POPUP : WS_DLGFRAME

However, you can also experiment with other styles. For example, you can try:

413

SECTION III: USING RESOURCES

This creates a dialog box with a caption bar and a normal window border. The caption bar
allows the user to move the dialog box around the display by using the mouse. When you
use WS_CAPTION, the x- and y-coordinates specified in the DIALOG statement are the
coordinates of the dialog box's client area, relative to the upper left corner of the parent
window's client area~ The caption bar will be shown above the y-coordinate.

If you have a caption bar, you can put text in it using the CAPTION statement in the
dialog box template:

CAPTION "Dialog Box Caption"

following the STYLE statement. Or while processing the WM_INITDIALOG message in
the dialog procedure, you can use:

SetWindowText (hDlg. "Dialog Box Caption") ;

If you use the WS_CAPTION style, you can also add a system menu box with the
WS_SYSMENU style:

STYLE WS_POPUP : WS_CAPTION : WS_SYSMENU

This style allows the user to select Move or Close from the system menu.
Adding WS_THICKFRAME to the style allows the user to resize the dialog box,

although resizing is unusual for a dialog box. If you don't mind being a little unusual, you
can also try adding WS_MAXIMIZEBOX to the STYLE statement.

.The STYLE statement is not required. If you do not include a STYLE or CAPTION
statement in the template, the default style is:

But this is rather dull looking. WS_DLGFRAME produces much more attractive results.
If you include a CAPTION statement with a STYLE statement, the default style is:

WS_POPUP : WS_CAPTION : WS_SYSMENU

You can also add a menu to a dialog box by specifying:

MENU menu-name

in the dialog box template. The argument is either the name or number of a menu in the
resource script. Menus are highly uncommon for modal dialog boxes. If you use one, be
sure that all the ID numbers in the menu and the dialog box controls are unique.

Although the dialog box window procedure is normally within Windows, you can
use one of your own window procedures to process dialog box messages. To do so, you
specify a window class name in the dialog box template:

CLASS "class-name"

This approach is rare, but we'll use it in the HEXCALC program shown later in this chapter.

414

Chapter 10: Dialog Boxes

When you call DialogBox specifying the name of a dialog box template, Windows
has almost everything it needs to create a popup window by calling the normal CreateWin
dow function. Windows obtains the coordinates and size of the window, the window style,
the caption, and the menu from the dialog box template. Windows gets the instance handle
and the parent window handle from the parameters to DialogBox. The only other piece of
information it needs is a window class (assuming the dialog box template does not specify
one). Windows registers a special window class for dialog boxes. The window procedure
for this window class has access to the pointer to your dialog box procedure (which you
provide in the DialogBox cal!), so it can keep your program informed of messages that this
popup window receives. Of course, you can create and maintain your own dialog box by
creating the popup window yourself. Using DialogBox is simply an easier approach.

More on Defining Controls

In the dialog box template in ABOUT1.RC, we used the shorthand notation CTEXT, ICON,
and DEFPUSHBUTTON to define the 3 types of child window controls we wanted in the
dialog box. There are 10 others you can use. Each type implies a particular predefined win
dow class and a window style. The following table shows the equivalent window class and
window style for each of the 13 control types:

Control Type Window Class Window Style

PUSHBUTTON button BS_PUSHBUTTON: WS_TABSTOP

DEFPUSHBUTTON button BS_DEFPUSHBUTTON: WS_TABSTOP

CHECKBOX button BS_CHECKBOX: WS_TABSTOP

RADIOBUTTON button BS_RADIOBUTTON : WS_ TABSTOP

GROUPBOX button BS_GROUPBOX : WS_ TABSTOP

LTEXT static SS_LEFT : WS_GROUP

CTEXT static SS_CENTER : WS_GROUP

RTEXT static SS_RIGHT : WS_GROUP

ICON static SS_ICON

EDITTEXT edit ES_LEFT : WS_BORDER : WS_ TABSTOP

SCROLLBAR scrollbar SBS_HORZ

LISTBOX listbox LBS_NOTIFY: WS_BORDER :
WS_VSCROLL

COMBOBOX combobox CBS_SIMPLE : WS_ TABSTOP

415

SECTION III: USING RESOURCES

The RC resource compiler is the only program that understands this shorthand notation.
In addition to the window styles shown above, each of these controls has the style:

WS_CHILD : WS_VISIBLE

For all these control types except EDITTEXT, SCROLLBAR, LISTBOX, and COMBO
BOX, the format of the control statement is:

control-type "text". nID. xPos. yPos. xWidth. yHeight. dwStyle

For EDITTEXT, SCROLLBAR, LISTBOX, and COMBOBOX, the format is:

control-type nID. xPos. yPos. xWidth. yHeight. dwStyle

which excludes the text field. In both statements, the dwStyle parameter is optional.
In Chapter 6, I discussed rules for determining the width and height of predefined

child window controls. You might want to refer back to that chapter for these rules,
keeping in mind that sizes specified in dialog box templates are always in terms of ~ the
average character width and Ys the character h'eight.

The "style" field of the control statements is optional. It allows you to include other
window style identifiers. For instance, if you wanted to create a check box consisting of
text to the left of a square box, you could use:

CHECKBOX "text". nID. xPos. yPos. xWidth. yHeight. BS_LEFTTEXT

While the shorthand notation for child window controls is convenient, it is also in
complete. You can't ,create a child window edit control without a border, for example. For
this reason, the RC resource compiler also recognizes a generalized control statement that
looks like this:

CONTROL "text". nID. "class". dwStyl~. xPos. yPos. xWidth. yHeight

This statement allows you to create any type of child window control by specifying the
window class and the complete window style. For example, instead of using:

PUSHBUTTON "OK". IDOK. 10. 20. 32. 14

you can use:

CONTROL "OK". lOOK. "button". WS_CHILD : WS_VISIBLE :
BS_PUSHBUTTON : WS_TABSTOP. 10. 20. 32. 14

When the resource script is compiled, these two statements are encoded identically in the
.RES file and the .EXE file.

When you use CONTROL statements in a dialog box template, you don't need to in
clude the W~_CHILD and WS_ VISIBLE styles. Windows includes these in the window
style when creating the child windows. The format of the CONTROL statement also
clarifies what the Windows dialog manager does when it creates a dialog box. First, as I de
scribed earlier, it creates a popup window whose parent is the window handle that was

416

Chapter 10: Dialog Boxes

provided in the DialogBox function. Then for each control in the dialog template, the dia
log box manager creates a child window. The parent of each of these controls is the popup
dialog box. The CONTROL statement shown above is translated into a CreateWindow call
that looks like this:

CreateWindow ("button", "OK",
WS_CHILD : WS_VISIBLE : WS_TABSTOP BS_PUSHBUTTON,
10 * cxChar I 4, 20 * cyChar I 8,
32 * cxChar I 4, 14 * cyChar I 8,
hDlg, nID, hInstance, NULL) ;

where cxChar and cyChar are the width and height of a system font character in pixels.
The hDlg parameter is returned from the CreateWindow call that creates the dialog box
window. The hlnstance parameter is obtained from the original DialogBox call.

A More Complex Dialog Box

The simple dialog box in ABOUT1 demonstrates the basics of getting a dialog box up and
running; now let's try something a little more complex. The ABOUT2 program, shown in
Figure 10-3, demonstrates how to manage controls (in this case,· radio buttons) within a
dialog box procedure and also how to paint on the client area of the dialog box.

Figure 10·3. The ABOUT2 program. (continued)

417

SECTION III: USING RESOURCES

.......
)(

• ••••••••••••••••••••••

. i

"
(\ .

i(
--;

> I i
•••••••••

.....

<
.i >

i •

~kr •...... 1'\ ,i
(

(
••

104
>

Lnt pJ< I)

:.;l <- }
.....

.....
. ..

:'c ...

•••••••
;: >

)

:. '.
[J

.j:l (. 'i.
11

•. ~ i I• ..,

,1
c·)

....

......... ..
.-

'1'

'I:

N i

.....•..)

. ..
i /

:1

...... >

(continued)

418

hdc/~GetOC(hwnd);
GetCli entRect(hwnd~. &reet) :
hBrush~CreateSol.i dB rush (dwColor (nCo lor
hBrush ... SelectObJect(hdc,.hBrush} •. ;

tf(nFigure ·.··IOD.;;.RECT)
Rectangl e(hdc, reef-left.

else
E1Jipse (hdc·~·· .• · rect~ left.

D~1~!~Obj~cti(Se~e~t9~ject(hdc:
Rel easeDC)(hwnd;hdc);
}

voi d p .. a l.· n .•.... t ... T ... h•. e .•............. B '•. o c k .•........•......•.. (H W•.. N •....•.....•. ~ •.•.......... h ... ctr ..•. l .. , {
InvalidateRect (hCtrliNULL;TRUE)
Upda~eWindow(hCtrl);
PaintWindow(hGtrl/.nColor,nFi gure)
}

BOO L .FA R•• ·.· ..•.••..••.. p ...••... A••....•. s •... c••... A •... · L .••..••. ·· ..•.... · ..••• ·· .•.... A•..•... b .•.•......• O .•.......••.... u t ...•...•... D ' 9 .•••...
p

...•.. r O c •..........• · •...•..•.. (... HWND h 019, WORD {
Hat] ~~wNo~c~r1 B1 ~~k •. ;
stati cshort nColonnFi gure
swi tch·(lIlessage}

~/i(/i(./ .
case.WM.:.JNITOIALOG :

~CoJor/==: rc~rrer~Colqr:
nfigure .. nCurrentFigure>:

Chapter 10: Dialog Boxes

(continued)

419

SECTION III: USING RESOURCES

(continued)

420

switch (message)
{
caseWM_CREATE

Chapter 10: Dialog Boxes

hlnstance~- «LPCREATESTRUCT) lParam)->hlnstance ;

lpfnAboutDlgProc - MakeProclnstance (AboutDlgProc. hlnstance)

About2MENU
{

return 0 :

POPUP "&Hel

(continued)

421

SECTION III: USING RESOURCES

....

....

....

' ... ;
, .. {

'if

••••••••••••••••••••••••••••••••••••••

hi
·i.;

n
.. "

."i ik
kf

1\ .'.,

"
• i

~:
lJn

. ,./

••• U .>.,

n

I
::

"',,. ·,i tt u

••••••••• i ."". 'iJ
I

i\ ' .••.
/ ., ,.,.,

DI

"'.' ... ,".
..... ',"','

•••• ,i>'.i,.·.i

" •. '>" """,,' '/

.' ... '.' •.....•.••. i> •• \
/

', .. ' > ., .,.'.,. ... i > i i •••••••• ii ", ' .. '. \/ i i

.'•. ... '.'.',
..... '. .' .. ,.;, ' .. '

••••••• n~ i"

i "'.
i i

"'\'.'
... H 1E ..

i ... "

•••••••

}

if J,~ 11
: ·'<i

ii {,

(]I~ ~~i l[1 > "'• ', .. , •.• '.,.
i '.< .• ,.

,~., .',. (I >. \
..• ",'.' ~: >. II

R 'I ... :: ne!H) :/i t·, (dp~i ne IO! I.r
1·' >)i

i defi n~ ••••.• 101 :" .. ',' . '/
}",. '., .. ,." .) r,d~hne lor liE [;1 I' r) './ ff .•.... ' ... ,

••••••••••• ' ~.d~ff~~ lot ' ... ': .. :. i.... // ,:.'

WH 1
,/ i ,

.. : ... ,'." i ~d,eft~~, .. ~P[I if .i·

'·'i. ...··':·}>i· •• >. .,., •.•• > :':'

(continued)

422

Chapter 10: Dialog Boxes

#define IDD_REeT 20
#define IDD~ELL 21

#define IOD_PAINT 30

ABOUT2.ICO

The About box in ABOUT2 has two groups of radio buttons. One group is used to
select a color, and the other group is used to select either a rectangle or an ellipse. The
rectangle or ellipse is shown in the dialog box with the interior colored with the current
color selection. If you press the OK button, the dialog box is ended, and the program's win
dow procedure draws the selected figure on its own client area. If you press Cancel, the
client area of the main window remains the same. The dialog box is shown in Figure 10-4
on the following page. Although theABOUT2 dialog box uses the predefined identifiers
IDOK and IDCANCEL for the two push buttons, each of the radio buttons has its own iden
tifier beginning with the letters IDD ("ID for dialog box control"). These identifiers are
defined in ABOUT2.H.

423

SECTION III: USING RESOURCES

~ About2

About Box Demo Program

~olor-

o Black

o Blue

o .Green

@Cyall

OBed
o Magenta

o Yellow

o White

o
figure ------,

o ReC!angle

@ [~:iI~p.:~:~l

Figure 10·4. The ABOUT2 program '5 dialog box.

Working with Dialog Box Controls

In Chapter 6, you discovered that most child window controls send WM_COMMAND mes
sages to the parent window. (The exception is scroll bar controls.) You also saw that the
parent window can alter child window controls (for instance, checking or unchecking
radio buttons or check boxes) by sending messages to the controls. You can similarly alter
controls in a dialog box procedure. If you have a series of radio buttons, for example, you
can check and uncheck the buttons by sending them messages. However, Windows also
provides several shortcuts when working with controls in dialog boxes. Let's look at the.
way in which the dialog box procedure and the child window controls communicate.

The dialog box template for ABOUT2 is shown in the ABOUT2.RC resource script in
Figure 10-3. The GROUPBOX control is simply a frame with a title (either Color or Figure)
that surrounds each of the two groups of radio buttons. The eight radio buttons in the first
group are mutually exclusive, as are the two radio buttons in the second group.

When one of the radio buttons is clicked with the mouse (or when the Spacebar is
pressed while the radio button has the input focus), the child window sends its parent a
WM_COMMAND message with wParam set to the ID of the control. The low word of
/Param is the window handle of the control, and the high word of /Param is a notification
code. For a radio button, this notification code is BN_CLICKED, or O. The dialog box win
dow procedure in Windows then passes this WM_COMMAND message to the dialog box
procedure within ABOUT2.C. When the dialog box procedure receives a WM_COM
MAND message for one of the radio buttons, it turns on the check mark for that button and
turns off the check marks for all the other buttons in the group.

424

Chapter 10: Dialog Boxes

You may recall from Chapter 6 that checking and unchecking a button requires that
you send the child window control a BM_CHECK message. To turn on a button check, you
use:

SendMessage (hwndCtrl, BM_SETCHECK, 1, OL) :

To turn off the check, you use:

SendMessage (hwndCtrl, BM_SETCHECK, 0, OL) :

The hwndCtrl parameter is the window handle of the child window button control.
But this method presents a little problem in the dialog box procedure, because you

don't know the window handles of all radio buttons. You know only the one you're getting
the message from. Fortunately, Windows provides you with a function to obtain the win
dow handle of a dialog box control using the dialog box window handle and the control ID:

hwndCtrl = GetDlgItem (hDlg, nID) :

(You can also obtain the ID value of a control from the window handle by using this
function:

nID = GetWindowWord (hwndCtrl, GWW_ID) :

but this is rarely necessary.)
You'll notice in the ABOUT2.H header file shown in Figure 10-3 that the ID values for

the eight colors are sequential from IDD_BLACK to IDD_ WHITE. This arrangement helps
in processing the WM_COMMAND messages from the radio buttons. For a first attempt at
checking and unchecking the radio buttons, you might try something like the following in
the dialog box procedure:

static short nColor :
[other program lines}

case WM_COMMAND :
switch (wParam)

{

[other program lines}

case IDD_BLACK
case IDD_RED :
case IDD_GREEN
case IDD_YELLOW :
case IDD_BLUE :
case IDD_MAGENTA
case IDD_CYAN :
case IDD_WHITE :

nColor = wParam

425

SECTION III: USING RESOURCES

for (n - IDD_BlACK, n <= IDD_WHITE, n++)
SendMessage (GetDlgltem (hDlg, n),

BM_SETCHECK, n == wParam, Ol) ;
return TRUE ;

[other program lines]

This approach works satisfactorily. You've saved the new color value in nColor, and
you've also set up a loop that cycles through all the ID values for the eight colors. You ob
tain the window handle of each of these eight radio button controls and use Send Message
to send each handle a BM_SETCHECK message. The wParam value of this message is set
to 1 only for the button that s.ent the WM_COMMAND message to the dialog box window
procedure.

The first shortcut is the special dialog box procedure SendDlgltemMessage:

SendDlgltemMessage (hDlg, nCtrlID, message, wParam, lParam) ;

It is equivalent to:

SendMessage (GetDlgltem (hDlg, nCtrlID), message, wParam, lParam)

Now the loop would look like this:

for (n = IDD_BlACK, n <- IDD_WHITE, n++)
SendDlgltemMessage (hDlg, n, BM_SETCHECK, n == wParam, Ol) ;

That's a little better. But the real breakthrough comes when you discover the
CheckRadioButton function:

CheckRadioButton (hDlg, nIDFirst, nIDlast, nIDCheck) ;

This function turns off the checks on all radio button controls with IDs from nIDFirst to
nIDLast except for the radio button with an ID of nIDCheck, which is checked. The IDs
must be sequential. So we can get rid of the loop entirely and use:

CheckRadioButton (hDlg, IDD_BLACK, IDD_WHITE, wParam) ;

That's how it's done in the dialog box procedure in ABOUT2.
A similar shortcut function is provided for working with check boxes. If you create a

CHECKBOX dialog window control, you can turn the check mark on and off using the
function:

CheckDlgButton (hDlg, nIDCheckbox, wCheck) ;

If wCheck is set to 1, the button is checked; if it's set to 0, the button is unchecked. You can
obtain the status of a check box in a dialog box using:

wCheck = IsDlgButtonChecked (hDlg, nIDCheckbox)

You can either retain the current status of the check mark as a static variable within the
dialog box procedure, or you can do something like this to toggle the button on a WM
_COMMAND message:

426

CheckDlgButton (hDlg, nIDCheckbox,
!IsDlgButtonChecked (hDlg, nIDCheckbox))

Chapter 10: Dialog Boxes

If you define a BS_AUTOCHECKBOX control, then you don't need to process the
WM_COMMAND message at all. You can simply obtain the current status of the button
using !sDlgButtonChecked before terminating the dialog box.

The OK and.Cancel Buttons

ABOUT2 has two push buttons, labeled OK and Cancel. In the dialog box template in
ABOUT2.RC, the OK button has an ID of IDOK (defined in WINDOWS.H as 1) and the
Cancel button an ID of IDCANCEL (defined in WINDOWS.H as 2). The OK button is the
default:

DEFPUSHBUTTON "OK" IDOK, 20, 168, 40, 14, WS_GROUP
PUSHBUTTON "Cancel" IDCANCEl, 80, 168, 40, 14, WS_GROUP

This arrangement is normal for OK and Cancel buttons in dialog boxes; having the
OK button as the default helps out with the keyboard interface. Here's how: Normally, you
would end the dialog box by clicking one of these buttons with the mouse or pressing the
Spacebar when the desired button has the input focus. However, the dialog box window
procedure also generates a WM_COMMAND message when the user presses Enter,
regardless of which control has the input focus. The value of wParam is set to the ID value
of the default push button in the dialog box unless another push button has the input focus.
In that case, wParam is set to the ID of the push button with the input focus. If no push but
ton in the dialog box is a default push button, then Windows sends the dialog box pro
cedure a WM_COMMAND message with wParam equal to IDOK. If the user presses the
Esc key or Ctrl-Break, Windows sends the dialog box procedure a WM_COMMAND mes
sage with wParam equal to IDCANCEL. So you don't have to add separate keyboard logic to
the dialog box procedure, because the keystrokes that normally terminate a dialog box are
translated by Windows into WM_COMMAND messages for these two push buttons.

The AboutDlgProc function handles these two WM_COMMAND messages by calling
EndDialog:

switch (wParam)
{
case IDOK :

nCurrentColor = nColor ;
nCurrentFigure = nFigure
EndDialog (hDlg, TRUE) ;
return TRUE

case IDCANCEl :
EndDialog (hDlg, FALSE)
return TRUE ;

427

SECTION III: USING RESOURCES

ABOUT2's window procedure uses the global variables nCurrentColor and nCur
rentFigure when drawing the rectangle or ellipse in the program's client area.
AboutDlgProc uses the static local variables nColor and nFigure when dra,wing tl;1e figure
'within the dialog box.

Notice the. different values in the second parameter of EndDialog. This is the value
that is passed back as the return value from the original DialogBox function in WndProc:

case IDM_ABOUT :
if (DialogBox (hlnstance, "AboutBox", hwnd, lpfnAboutDlgProt))

InvalidateRect (hwnd, NULL, TRUE) ;
return 0 ;

If DialogBox returns TRUE (nonzero), meaning that the OK button was pressed, then the
WndProc client area needs to be updated with the new figure and color. These were saved
in the global variables nCurrentColor and nCurrentFigure by AboutDlgProc when it
received a WM_COMMAND message with wParam equal to IDOK. If DialogBox returns
FALSE, the main window continues to use the original settings of nCurrentColor and
nCurrentFigure.

TRUE and FALSE are commonly used in EndDialog calls to signal to the main win
dow procedure whether the user ended the dialog box with OK or Cancel. However, the
parameter to EndDialog is actually an int, and DialogBox returns an int, so it's possible to
return more information in this way than simply TRUE or FALSE.

Tab Stops and ~roups

In Chapter 6, we used window subclassing to add a facility to COLORS1 that let us move
from one scroll bar to another by pressing the Tab key. In a dialog box, window subclassing
is unnecessary: Windows does all the logic for moving the input focus from one control ~o
another. However, you have to help out by using the WS_TABSTOP and WS_GROUP win
dow styles in the dialog box template. For all controls that you want to access using the Tab
key, specify WS_TABSTOP in the window style. If you refer back to the table on page 415,
you'll notice that many of the controls include WS_TABSTOP as a default, while others do
not. Generally the controls that do not include WS_TABSTOP style (particularly the static
controls) should not get the input focus because they can't do anything with it. Unless you
set the input focus to a specific control in a dialog box during processing of the WM_INIT
DIALOG message and return FALSE from the'message, Windows sets the input focus to the
first control in the dialog box that has the WSJABSTOP style.

The second keyboard interface that Windows adds to a dialog box involves the cursor
movement keys. This interface is of particular importance with radio buttons. After you use
the Tab key to move to the currently checked radio button within a group, you need to use
the cursor movement keys to change the input focus from that radio button to other radio
buttons within the group. You accomplish this by using the WS_GROUP window style.
For a particular series of controls in the dialog box template, Windows will use the cursor

428

Chapter 10: Dialog Boxes

movement keys to shift the input focus from the first control that has the WS_GROUP style
up to (but not including) the next control that has the WS_GROUP style. Windows will
cycle from the last control in a dialog box to the first control if necessary to find the end of
the group.

By default, the controls LTEXT, CTEXT, RTEXT, and ICON include the WS_GROUP
style, which conveniently marks the end of a group. You often have to add WS_GROUP
styles to other types of controls.

Let's look at the dialog box template in ABOUT2.RC:

AboutBox DIALOG 20. 20. 140. 188
STYLE WS_POPUP : WS_DLGFRAME
{

CTEXT "About2" -1. O. 12. 140. B
ICON "About2" -1. 8. 8. o . 0
CTEXT "About Box Demo Program" -1. 4. 36. 130. B
CnXT IDD_PAINT. 68. 54. 60. 60
GROUPBOX "&Color" -1. 4. 50. 54. 112
RADIOBUTTON "&Black" IDD_BLACK. 8. 60. 40. 12. TABGRP
RADIOBUTTON "B&lue" IDD_BLUE, 8, 72, 40, 12
RADIOBUTTON "&Green" IDD_GREEN, 8, 84, 40, 12
RADIOBUTTON "Cya&n" IDD_CYAN, 8, 96, 40, 12
R.ADIOBUTTON "&Red" IDD_RED, 8. 108. 40, 12
RADIOBUTTON "&Magenta" IDD_MAGENTA. 8, 120. 40. 12
RADIOBUTTON "&Yellow" I DD_YELLOW, 8, 132. 40, 12
RADIOBUTTON "&White" I DD_WHITE, 8. 144. 40, 12
GROUPBOX "&Figure" -1. 68, 120, 60, 40. WS_GROUP
RADIOBUTTON "Rec&tangle" IDD_RECT, 72, 134, 50. 12, TABGRP
RADIOBUTTON "&Ell ipse" IDD_ELL, 72, 146. 50, 12
DEFPUSHBUTTON "OK" lOOK. 20. 168, 40, 14, WS_GROUP
PUSHBUTTON "Cancel" IDCANCEL, 80. 168. 40, 14, WS_GROUP
}

To simplify the appearance of the template, an identifier is defined in ABOUT2.RC that
combines WS_TABSTOP and WS_GROUP:

#define TABGRP (WS_TABSTOP : WS_GROUP)

The four controls that have the WS_ TABSTOP style are the first radio buttons of each
group (explicitly included) and the two push buttons (by default). When you first invoke
the dialog box, these are the four controls you can move among using the Tab key.

Within each group of radio buttons, you use the cursor movement keys to change the
input focus and the check mark. For example, the first radio button of the Color group
(Black) and the group box labeled Figure have the WS_GROUP style. This means that you
can use the cursor movement keys to move the focus from the Black radio button up to (but
not including) the Figure group box. Similarly, the first radio button of the Figure group
(Rectangle) and DEFPUSHBUTTON have the WS_GROUP style, so you can use the cursor
movement keys to move between the two radio buttons in this group: Rectangle and

429

SECTION III: USING RESOURCES

Ellipse. Both push buttons get a WS_GROUP style to prevent the cursor movement keys
fr?m doing anything when the push buttons have the input focus.

You'll notice when using ABOUT2 that the dialog box manager in Windows performs
some magic in the two groups of radio buttons. As expected, the cursor movement keys
within a group of radio buttons shift the input focus and send a WM_COMMAND message
to the dialog box procedure. But when you change the checked radio button within the
group, Windows also assigns the newly checked radio button the WS_ TABSTOP style. The
next time you tab to that group, Windows will set the input focus to the checked radio
button.

An ampersand (&) causes the letter that follows to be underlined and adds another
keyboard interface. You can move the input focus to any of the radio buttons by pressing
the underlined letter. By pressing C (for the Color group box) or F (for the Figure group
box), you can move the input focus to the currently checked radio button in that group.

Although programmers normally let the dialog box manager take care of all this,
Windows includes two functions that let you search for the next or previous tab stop or
group item. These functions are:

hwndCtrl = GetNextDlgTabItem (hDlg. hwndCtrl. bPrevious) ;

and:

hwndCtrl = GetNextDlgGroupItem (hDlg. hwndCtrl. bPrevious) ;

If bPrevious is TRUE, the functions return the previous tab stop or group item; if FALSE,
they return the next tab stop or group item.

Painting on the Dialog Box

ABOUT2 also does something relatively unusual: It paints on the dialog box. Let's see how
this works. Within the dialog box template in ABOUT2.RC, a blank text control is defined
wjth a position andsize for the area we want to paint:

CTEXT "" I DD_PAI NT. 68. 54. 60. 60

This area is 15 characters wide and 7Yz characters high. Because this control has no text, all
that the window procedure for the "static" class does is erase the background when the
child window control has to be repainted.

When the current color or figure selection changes or when the dialog box itself gets
a WM_PAINT message, the dialog box procedure calls PaintTheBlock, which is a function
in ABOUT2.C:

PaintTheBlock (hCtrlBlock. nColor. nFigure) ;

The window han'dle hetrlBlock had been set during processing of the WM_INITDIALOG
message:

hCtrlBlock = GetDlgItem (hDlg. IDD_PAINT) ;

430

Chapter 10: Dialog Boxes

Here's the PaintTheBlock function:

void PaintTheBlock (HWND hCtrl. short nColor. short nFigure)
{

InvalidateRect (hCtrl. NULL. TRUE) ;
UpdateWindow (hCtrl) ;
PaintWindow (hCtrl. nColor. nFigure)
}

This invalidates the child window control, updates it, and then calls another function in
ABOUT2 called PaintWindow.

The PaintWindow function obtains a device context handle for hCtrl and draws the
selected figure, filling it with a colored brush based on the selected color. The size of the
child window control is obtained from GetClientRect. Although the dialog box template
defines the size of the control in terms of characters, GetClientRectobtains the dimensions
in pixels. You can also use the function MapDialogRect to convert the character coordi
nates in the dialog box to pixel coordinates in the client area.

We're not really painting the dialog box's client area-we're actually painting the
client area of the child window control. Whenever the dialog box gets a WM_PAINT mes
sage, the child window control is invalidated and then updated to make it believe that its
client area is now valid. We then paint on top of it.

Using Other Functions with Dialog Boxes

Most functions that you can use with child windows you can also use with controls in a
dialog box. For instance, if you're feeling devious, you can use MoveWindow to move the
controls around the dialog box and have the user chase them around with the mouse.

Sometimes you need to dynamically enable or disable certain controls in a dialog
box, depending on the settings of other controls. This call:

EnableWindow (hwndCtrl. bEnable) ;

enables the control where bEnable is TRUE (nonzero) and disables it where bEnable is
FALSE (0). When a control is disabled, it receives no keyboard or mouse input. Don't dis
able a control that has the input focus.'

Defining Your Own Controls

Although Windows assumes much of the responsibility for maintaining the dialog box and
child window controls, various methods let you slip some of your own code into this pro
cess. We've already seen a method that allows you to paint on the surface of a dialog box.
You can also use window subclassing (discussed in Chapter 6) to alter the operation of
child window controls.

You can also define your own child window controls and use them in a dialog box.
For example, suppose you don't particularly care for the normal rectangular push buttons
and would prefer to create elliptical push buttons. You can do this by registering a window

431

SECTION III: USING RESOURCES

class and using your own window procedure to process messages for your customized
child window. You then specify this window class in a CONTROL statement in the dialog
box template. The ABOUT3 program, shown in Figure 10-5, does exactly that.

Figure 10·5. The ABOUT3 program. (continued)

432

Chapter 10: Dialog Boxes

wndclass.cbWndExtra = 0 ;
wndclass.hlnstance = hInstance :
wndclass.hIcon ~ load Icon (hlnstance, szAppName)
wndclass.hCursor = loadCursor (NUll, IDC_ARROW) ;
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
wndclass.lpszMenuName = szAppName
wndclass.lpszClassName = szAppName

RegisterClass (&wndclass) ;

= CS_HREORAW : CS~VREDRAW
= EllipPushWndProc

(continued)

433

SECTION III: USING RESOURCES

(continued)

434

Chapter 10: Dialog Boxes

switch (message)
{
case WM_PAINT :

GetClientRect (hwnd; &rect) :
GetWindowText (hwnd.szText.

hBrush- CreateSolidBrush(GetS~sColor
hBrush - SelectObject (hdc.hBrush):
SetBkColor (hdc, .• GetSysColqr .• (COLOR_WINDOW)} •• ;
SetTextCo lor .••• (hdc;GetSysCol or {COLOR_WINDOWTEXT »

~ ~!! ~ ;~t(~~~r t ;~i ~~t rt:ln~~~~p,· reC~;,ri 9 ~~trect ;bo t,toni)
DT.lSINGLELINEr DT CENTER t DT~VCENTER)

DeleteObject(Sel ectObject (hd~. hBrush)};

&ps)·· ;

C a seWMT~.E y p~ .••.. ~
if .. ·.(wPara!1l.·. !"'*. VK2.,SPACE)

break···. :
ILrall thrOugh

case .·.WM::;.LB~TTONUP· ••• ··:
Send~essag~> (qetPa reryt< h~nd);)WM2~qMMAND.

GetWi ndowWord(hwnd.GWW_ID),. (LONG)·.·hwnd)
return 0 •• ·;

#include<windows.h>
#include·"about3·h~

about3-ICONabout3:i

(continued)

435

SECTION III: USING RESOURCES

ABOUT3.ICO

436

Chapter 10: Dialog Boxes

:-----------~ .. ------ -------
: ABOUT3.DEf module definition file
............ __ .. _ ---_
NAME

DEseRI PIlON
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSlZE
EXPORTS

ABOUT3

3 (e) Charles Petzold, 1990'

The window class we'll be registering is called "EllipPush" ("elliptical push button").
Rather than use a DEFPUSHBUTTON statement in the dialog box template, we use a
CONTROL statement that specifies this window class:

CONTROL "OK" lOOK, "EllipPush", TABGRP, 64, 60, 32, 14

The dialog box manager uses this window class in a CreateWindow call when creating the
child window control in the dialog box.

The ABOUT3.C program registers the "EllipPush" window class in WinMain:

wndclass.style = CS_HREDRAW : CS_VREDRAW
wndclass.lpfnWndProc = EllipPushWndProc
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance
wndclass.hIcon = NULL:
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW)
wndclass.hbrBackground = COLOR_WINDOW + 1
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = "EllipPush"

RegisterClass (&wndclass) ;

The window class specifies that the window procedure is EllipPush WndProc, whic~ is
also in ABOUT3.C.

The EllipPush WndProc window procedure processes only three messages:
WM_PAINT, WM_KEYUP, and WM_LBUTTONUP. During the WM_PAINT message, it
obtains the size of its window from GetClientRect and obtains the text that appears in the
push button from Get Windo w Text. It uses the Windows functions Ellipse and DrawText

. to draw the ellipse and the text.

437

SECTION III: USING RESOURCES

The processing of the WM_KEYUP and WM_LBUTTONUP messages is very simple:

case WM_KEYUP :
if (wParam 1- VK_SPACE)

break

case WM_LBUTTONUP
II fall through

SendMessage (GetParent (hwnd), WM_COMMAND,
GetWindowWord (hwnd, GWW_ID), (LONG) hwnd)

return a :
The window procedure obtains the handle of its parent window (the dialog box) using
GetParentand sends a WM_COMMAND message with wParam equal to the control's ID.
The ID is obtained using GetWindowWord. The dialog box window procedure then passes
this message on to the dialog box procedure within ABOUT3. The r~sult is a customized
push button, as shown in Figure 10-6. You can use this same method to create other cus
tomized controls for dialog boxes.

~ About3

About Box Demo Program

(el Charles Petzold. 1990

G)

Figure 10·6. A customized push button created by ABOUT3.

Is that all there is to it? Well, not really. EllipPush WndProc is a bare-bones version of the
logic generally involved in maintaining a child window control. For instance, the button
doesn't flash like normal push buttons. To invert the colors on the interior of the push but
ton, the window procedure would have to process WM_KEYDOWN (from the Spacebar)
and WM_LBUTTONDOWN messages. The window procedure should also capture the
mouse on a WM_LBUTTONDOWN message and release the mouse capture (and return
the button's interior color to normal) if the mouse is moved outside the child window's cli
ent area while the buttop is still depressed. Only if the button is released while the mouse
is captured should the child window send a WM_COMMAND message back to its parent.

EllipPushWndProc also does not process WM_ENABLE messages. As mentioned
above, a dialog box procedure can disable a window using the EnableWindow function:
The child window would then display gray rather than black text to indicate that it has
been disabled and cannot receive messages.

If the window procedure for a child window control needs to store data that are dif
ferent for each created window, then it can do so by using a positive value of cbWndExtra
in the window class structure. This reserves space in the internal window structure that

438

Chapter 10: Dialog Boxes

can be accessed by using SetWindowWord, Set WindowLo ng, GetWindowWord, and
Get WindowLong.

THE MESSAGE BOX
Let's take a breather here. We've been looking at ways to customize dialog boxes. Now let's
look at an alternative to dialog boxes, which is the message box. We began using message
boxes way back in Chapter 5, but we haven't yet examined them in detail.

The message box is an appropriate and easy-to-use alternative to a dialog box when
you need a simple response from the user. The general syntax is:

nltem a MessageBox (hwndParent, lpszText, lpszCaption, nType) ;

The message box has a caption (the character string lpszCaption), one or more lines of text
ClpszText), one or more buttons, and (optionally) a predefined icon. One of the buttons is a
default. The nltem value returned from MessageBox indicates the button that was pressed.

The hwndParent parameter is generally the handle to the window that creates the
message box. The input focus will be set to this window when the message box is
destroyed. If you don't have a window handle available or you don't want the input focus to
go to one of your windows, you can use NULL for the handle. If you use a message box
within a dialog box, use the dialog box window handle (which we've been calling hDlg) for
this parameter.

The lpszText parameter is a long pointer to NULL-terminated text that appears in the
body of the message box. Windows breaks this text into several lines if necessary. You can
also include tab characters in the text, and you can define your own line breaks using
carriage returns or linefeeds or both. The lpszCaption string is generally the name of
the application.

The nTypeparameter is a collection of flags joined by the C bitwise OR operator. The
first group of flags specifies the push buttons to appear at the bottom of the message box:
MB_OK (the default), MB_OKCANCEL, MB_ YESNO, MB_ YESNOCANCEL, MB_RETRY-.
CANCEL, and MB_ABORTRETRYIGNORE. As you can see, these flags allow for a maxi
mum of three buttons. The second group of flags specifies which of the buttons is the
default: MB_DEFBUTTONl (the default), MB_DEFBUTTON2, and MB_DEFBUTTON3.

The third group of flags specifies an icon to appear in the message box:
MB_ICONINFORMATION, MB_ICONEXCLAMATION, MB_ICONSTOP, and MB_ICON
QUESTION. There is no default. If you omit one of these flags, the message box has no
icon. You should use the information icon for a status message, the exclamation point for a
reminder, the question mark for a warning of the consequences of an action, and the stop
icon for a signal of serious problems.

The fourth set of flags governs whether the message box is application modal, in
which case the user can switch to another application without ending the message box, or

439

SECTION III: USING RESOURCES

system modal, which requires the user to end the message box before doing anything else.
The flags are MB_APPLMODAL (the default) and MB_SYSTEMMODAL. Finally, you can
use a fifth flag, MB_NOFOCUS, which displays the message box but does not give it the
input focus.

Depending on which button is pressed, the message box returns one of the following
identifiers: IDOK, IDCANCEL, IDYES, IDNO, IDRETRY, and IDABORT.

The Assertion Message Box

Although message boxes are customarily used to convey messages and ask questions in fin
ished programs, they are also helpful in debugging. For instance, you may be familiar with
the assert macro included in the ASSERT.H header file with the Microsoft C Compiler. rhis
macro is used for testing various conditions during a program's execution. If the condition
does not hold, the macro displays the current source code filename and line number and
terminates the program. You can create a similar macro for Windows:

Iii fndef NDEBUG

#define WinAssert(exp)\
{\ .

lie 1 se

if (!(exp»\
{\
char szBuffer [40] ;\
sprintf (szBuffer, "File %s, Line %d",\

FILE, _LINE_) ;\
MessageBox (NULL, szBuffer,\

"Assertion Error",\
MB_OK : MB_ICONSTOP) ;\

}\

#define WinAssert(exp)

Ilendif

You can then make various assertions in your code. For instance, to be sure that the
value of hwnd in a certain section of your program is never NULL, you can do this:

WinAssert (hwnd != NULL) ;

If hwnd is NULL when this statement is executed, the message box will be displayed to
alert you to the problem. A macro is used rather than a function, because the predefined
identifiers _FILE_ and _LINE_ must equal the source code filename and line number
where the assertion failed. If you used a function, these identifiers would always be set to
the filename and line number where the function was located.

440

Chapter 10: Dialog Boxes

Unlike assert, the WinAssert macro shown above doesn't terminate the program if
the assertion fails. If you use ,a debugging terminal, you can use a different version of this
macro shown below. When you select the Abort button, the FatalExit function is called to
display a stack trace on the debugging terminal.

if (IDABORT == MessageBox (NULL, szBuffer,

FatalExit (-1) ;

"Assertion Error",
MB_ABORTRETRYIGNORE : MB_ICONSTOP»

Once you've finished debugging the program, you can compile with the identifier
NDEBUG, defined by using the compiler switch -D NDEBUG. The WinAssert macro will
then be defined as nothing;

Popup Information

Another handy use of a message box during program development is to provide informa
tion to you while the program is executing. It would be ideal if you could use a message
box much as you use printjin C programs for MS-DOS, with a formatting string and a vari
able number of arguments. And in fact, you can create a function that lets you do this:

void OkMsgBox (char *szCaption, char *szFormat, ...)
{
char szBuffer [256]
char *pArguments ;

pArguments = (char *) &szFormat + sizeof szFormat
vsprintf (szBuffer, szFormat, pArguments) ;
MessageBox (NULL, szBuffer, sZCaption, MB_OK) :
}

The vsprintj function is similar to sprintj except that it uses a pointer to a series of argu
ments CpArguments) rather than the arguments themselves. OkMsgBox sets pArguments
to the arguments on the stack when OkMsgBox is called. The first parameter to OkMsgBox
is the message box caption, the second parameter is a format string, and the third and
subsequent parameters are values to be displayed. Let's say you want a message box to
appear every time the window procedure gets a WM_SIZE message. Your code might look
like this:

case WM_SIZE :
OkMsgBox ("WM_SIZE Message",

"wParam = %04X, lParam = %04X-%04X",
wParam, HIWORD (lParam), LOWORD (lParam»
father program lines)

return 0 ;

This displays the values of wParam and IParam within the message box.

441

SECTION III: USING RESOURCES

WORKING WITH FILES: POPPAD REVISITED
When we added a menu to POPPAD in Chapter 9, several menu options were left unimple
mented. We are now almost ready to add logic to POPPAD to open files, read them in, and
save the edited files to disk.

Working with files in Windows is no great joy. Although the standard dialog box tem
plate to open a file is fairly simple, the dialog box procedure itself is one of the most
difficult you'll encounter. Before tackling that function, let's investigate methods of file I/O
in Windows programs.

The OpenFile Function Call

Windows includes a function to open a file and return an MS-DOS file handle:

hFile = OpenFile (lpszFileName. &of. wFunction) ;

The OpenFile funtion call returns a -1 if an error is encountered. For most uses of OpenFile,
a return value other than -1 will be an MS-DOS file handle that you can use to read from
and write to the file. '

The IpszFileName parameter is a long (or far) pointer to the filename. A disk drive
and subdirectory are optional. The wFunction parameter tells Windows what to do with
this file (open it, create it, delete it, andso forth). I'll describe this parameter in more detail
shortly.

The &0/ parameter is a far pointer to a structure of type OFSTRUCT ("open file
structure"). You don't need to set any of the fields of this structure before calling OpenFile:
They are filled in by the first OpenFile function call you make and are then used in
subsequent OpenFile calls for the same file. The OFSTRUCT fields are shown below:

Field Data Type Description

cBytes BYTE Length of structure in bytes

jFixedDisk BYTE Nonzero for fixed-disk file

nErrCode WORD MS-DOS error code

reserved[4] BYTE File date and time

szPathName[128] BYTE Fully qualified path name and filename

If the OpenFile call is successful, the sZPathName field is filled with the fully qualified
filename, including the current disk drive and subdirectory path. Under current versions of
MS-DOS, the 128 characters allowed for this name are about 40 more than needed. A fully
qualified filename has 2 bytes for the drive letter and colon, up to 64 bytes for the directory
path starting with the initial backslash, another byte for the backslash following the path,
up to 12 bytes for the filename (8-character name, period, and 3-character extension),
and a terminating O.

442

Chapter 10: Dialog Boxes

The OpenFile function has three advantages over opening a file by other means:

• The lpszFileName parameter is assumed to contain characters from the
ANSI character set. OpenFile does an AnsiToOem conversion on the name
before trying to open the file. You would have to convert the filename
yourself if you opened the file by other means.

• If the file is not found in the current directory, OpenFile searches for the
file on all directories listed in the MS-DOS environment PATH string.

• Windows determines the fully qualified filename and inserts it in the
sZPathName field of the structure.

This last item is the most important feature of OpenFile. Generally, the lpszFileName pa
rameter you pass to OpenFilewhen first opening or creating a file is only a filename. When
you use OpenFile subsequently. to open the same file, Windows uses the fully qualified
szPathName field of the OFSTRUCT structure.

Here's why that's important: Although each program instance in Windows has a cur
rent disk drive and subdirectory associated with it, the DlgDirList function (which we'll
use later in this chapter) can change the current drive and subdirectory associated with a
program instance. Let's say you use some means other than OpenFileto obtain a filename
(without a drive or directory path) located in the current directory and that you suc
cessfully open and close the file. The user then uses the dialog box to get a new file. In the
process, the dialog box calls DlgDirList to change the current drive or subdirectory. The
user then cancels the dialog box, and your program tries to open the original file again. It's
gone! Well, it's not gone, but the current drive or subdirectory is different, so your program
can't find the file. You avoid this problem by using OpenFile.

The wFunction parameter of the OpenFile call comprises one or more flags joined py
the C bitwise OR operator. First, you use one of the following four flags to open an existing
file or create a new file:

OF_READ

OF_WRITE

OF _ READWRITE

OF_CREATE

Opens an existing file for reading only
Opens an existing file for writing only·

Opens an existing file for reading and writing

Creates a new file, or opens an existing file and truncates the
size of the file to 0

Following the OpenFile call, the file is open and ready for reading and writing. The value
returned from OpenFile is the MS-DOS file handle (unless this value is -1, in which case the
file could not be opened or created).

If you prefer that the file be closed following the OpenFile call, you can add the flag
OF_EXIST. This flag is generally used with OF_READ, OF _WRITE, or OF _READWRITE to
see if the specified file exists. You can also use this flag with OF_CREATE to create the file
and immediately close it. The file can be reopened later. When you use OF_EXIST, the

443

SECTION III: USING RESOURCES

value returned from OpenFileis -1 if the file does not exist or (with OF_CREATE) if the file
could not be created. Any file handle returned from OpenFile with an OF_EXIST flag
should be ignored, because the file has been closed.

With OF_READ, OF_WRITE, or OF_READWRITE, you can also use the flag
OF_PROMPT. If Windows can't find the file in the current directory or in one of the direc
tories in the MS-DOS environment PATH string, this flag causes Windows to display the
infamous "Insert [filename] disk in drive A:" message box. Windows users appreciate this
message box about as much as MS-DOS users like the "Abort, Retry, Ignore" message, so
use this flag with discretion. Also keep in mind that the OF_PROMPT message box has
only an OK button, which means that fixed-disk users must scrounge up a disk to put in
drive A before proceeding. If you must use the OF_PROMPT flag, also use the OF
_CANCEL flag, which adds a Cancel button to the message box. If the user selects Cancel,
the OpenFile function returns -1.

That's it for the flags to open a file for the first time. The file is open when the Open
File function returns, unless you've included the OF _EXIST flag (in which case the file has
been closed) or OpenFile returns -1 (in which case an error occurred). You can now read
from or write to this file and then close it. How you perform these actions is discussed in
the next section.

When you want to reopen the file, you use the OF _READ, OF _WRITE, OF _READ
WRITE, or OF _CREATE flag in combination with the OF _REOPEN flag. The OF _REOPEN
flag causes Windows to use the sZPathName field in the OFSTRUCT structure to obtain the
original disk drive, subdirectory, and filename of the file. Even if the current drive or subdi
rectory has changed since the file was first opened, this flag ensures that Windows will use
the same drive and subdirectory as in the first OpenFile call. If you use OF _REOPEN with
OF _CREATE, the size of the file will be truncated to O.

When you use the OF _READ flag to open a file for reading only, you can also use the
OF _VERIFY flag. This flag causes Windows to use the reserved field in the OFSTRUCT
structure to verify that the date and time of the file being reopened are the same as those
stored during the original OpenFile call. This works only for files opened with OF _READ,
because the value for the file date and time is updated when a write-only or read-write file
is closed.

Also available are two OpenFile flags that do not open files. The OF _DELETE flag
deletes a file. If the file cannot be found in the current subdirectory, OpenFileuses the MS
DOS environment PATH string to search for a file to delete. Perhaps you're feeling cruel, in
which case you can use the OF _PROMPT flag with OF _DELETE so that Windows also gets
the chance to delete the file on the disk in drive A. OpenFile returns -1 if no file was de
leted. If the file has previously been opened with OpenFile and then closed, you can use
OF _DELETE in combination with OF _REOPEN.

The OF _PARSE flag does not open a file or even check for a file's existence. This flag
is used by itself to parse the filename and fill in the sZPathName field of the OFSTRUCT
structure. OpenFile returns -1 if the filename is invalid-say, if it uses illegal characters.

444

Chapter 10: Dialog Boxes

Two Methods of File 1/0

The main rule of file I/O in Windows is this: Do not keep files open for long periods of
time. More specifically, that means you should not keep a file open between messages. You
should open or create a file, read it or write to it in several large gulps, and then close it
all in the course of processing a single message.

You have two options for using files that have been opened with the OpenFile call:

• Use normal C functions for file I/O. The file handle returned from
OpenFilecan be used directly with the "low-level" file I/O functions. The
most important of these functions are open, read, lseek, close, create,
write, and tell. We used the read and close functions in the HEAD
program in Chapter 5.

The problem with these functions is that you can't use far pointers
with them unless your program is compact model or large model. As you
know, compact model and large model are not recommended for
Windows programs because their data segments must be fixed in
memory. If you want to read part of a file into a global memory segment,
you must first read the file into a local memory block and then transfer it
to the global memory block.

You can also use the normal C buffered file I/O functions such as
fopen, fread, fwrite, and fclose. The MS-DOS file handle returned from
OpenFile can be converted to a structure of type FILE using Jdopen. The
buffered file I/O functions are of less value in Windows than in other
environments, because you need to read and write in large chunks, and
buffering doesn't help unless you're reading small parts of a file.

• Use file I/O functions inciuded in Windows. These go by the names of
_lopen, _lclose, _lcreat, _llseek, _lread, and _lwrite. The "1" prefix
indicates that these functions accept far pointers for read and write
buffers, thus allowing you to use them with global memory blocks. (These
functions existed in Windows since version 1 but have only been
documented beginning in Windows 3.)

This third method turns out to be the easiest when the file must be read into or written
from buffer areas accessible only with far pointers. (The normal C low-level file I/O calls
are preferable when you can use near pointers.) Do not write your own assembly-language
routines for interfacing with the MS-DOS file I/O functions.

You'll probably use OpenFile to open and create files, but you can also use _lopen
and _lcreat. The syntax is:

hFile = _lopen (lpszPathName. iReadWrite)

445

SECTION III: USING RESOURCES

The lpszPathName parameter is a filename with an optional drive and subdirectory path.
The iReadWrite parameter should be set to one of the identifiers OF _READ, OF _WRITE,
or OF _READWRITE. The hFilevalue returned from _lopen is an MS-DOS file handle if the
file is opened or -1 if the file cannot be opened.

The _lcreat function looks similar to the _lopen call:

hFile = _lcreat (lpszPathName, iAttribute) ;

However, the second parameter is an MS-DOS file attribute. Use 0 for a normal (nonhid
den, nonsystem, read-write) file. If the file already exists, the size is truncated to 0 and
opened; if it doesn't exist, it is created and opened. Like the _lopen call, _lcreatreturns an
MS-DOS file handle if the function is successful or -1 if an error occurs.

After an _lopen or _lcreat call, the file pointer is set initially to the beginning of the
file. Normally, all reading and writing is sequential. The file pointer is updated after each
read or write. However, you can use _llseek (MS-DOS Function 42H) to change the file
pointer:

lPosition = _llseek (hFile, lPosition, iMethod) ;

The iMethod parameter should be set to one of the following values:

Value

o
1

2

Purpose

Move the file pointer [Position bytes from the beginning of the file

Move the file pointer [Position bytes from the current position in the file

Move the file pointer [Position bytes from the end of the file

The value of lPosition returned from _llseek is the new position of the file pointer if the
function is successful or -IL if an error occurs.

If you want to open an existing file and add data to it, you call:

_llseek (hFile, OL, 2) ;

This moves the file pointer to the end of the file. You can also use _llseekto determine the
size of a file. You might want to define a function called File Length to do this:

long Filelength (int hFile)
{

long lCurrentPos = _llseek (hFile, Ol, 1)
long lFilelength = _llseek (hFile, Ol, 2)

_llseek (hFile, lCurrentPos, 0) ;

return lFileLength ;
}

FileLength saves the current position of the file pointer, moves the file pointer to the end
of the file, and then restores the file pointer to its original position.

446

Chapter 10: Dialog Boxes

To write to a file, use:

wBytesWritten - _lwrite (hFi1e. 1pBuffer. wBytes) ;

The lpBu.f!erparameter is a far pointer to the data you want to write to the file, and wBytes
is the number of bytes to write. The file buffer cannot extend past the end of a segment.
The wBytesWritten value returned from the function is the number of bytes that are ac
tually written. This can be less than wBytes if not enough disk space is available to write the
entire buffer. Normally, MS-DOS function calls allow you to write up to 65,535 bytes to a
file, but _lwrite returns -1 to signal an error, so you'll want to restrict yourself to 65,534
bytes or less.

The function to read from a file is similar:

wBytesRead - _1 read (hFi1e. 1pBuffer. wBytes)

The IpBu.f!erparameter is a far pointer to an area that receives the data read from the file,
and wBytesis the number of bytes to read. The wBytesReadvalue returned can be less than
wBytes if the end of the file is encountered before wBytes are read. A return value of -1

signals an error.
Finally, to close a file, use:

_lc1ose (hFi1e) ;

When working with files and global memory blocks, you may also need to make use
of string functions that work with far pointers. Windows includes functions called lstrlen,
lstrcpy, lstrcat, and lstrcmp that are equivalent to the normal C string functions strlen,
strcpy, strcat, and strcmp, except that they use far pointers. These functions are useful for
moving data between two global memory blocks or between a global memory block and a
local memory block. They are coded in assembly language and are thus much faster than
equivalent C code. The lstrcmpfunction is a "Windows version" of the strcmpfunction: It is
case sensitive for both the normal ASCII character codes and the ANSI character codes,
and it can accommodate strings with multibyte character codes.

Dialog Boxes for Open and Save

With these preliminaries out of the way, we are now ready to create dialog box templates
and dialog box procedures to assist our Windows programs in opening and saving files.
The FILEDLG.C source code file, FILEDLG.H header file, and FILEDLG.DLG dialog box
template file, shown in Figure 10-7 on the following pages, will be used in the POPPAD3
program in this chapter. You can use these routines (or similar ones) in your own
programs.

447

SECTION III: USING RESOURCES

Figure 10·7. The FILEDLG files for the file I/O dialog boxes. (continued)

448

Chapter 10: Dialog Boxes

(continued)

449

SECTION III: USING RESOURCES

(continued)

450

cas~WM2COMMAND:
switch (wParam)

{
case<IDD~FNAME .:

if(~}WORD(1 ~~tam)";'" EN_C~ANGE)
E!1ableWtn~o\'lJG~~DJgl~em.)(hDl 9 •. I DOK)~

{BOOLlSendMessage(LOWORO(lParamY.

Chapter 10: Dialog Boxes

WM-,-GETJEXTLENGTH~

return TRUE .• :
casifJDOK:

GetDl gIterriText(hDl g.

(continued)

451

SECTION III: USING RESOURCES

(continued)

452

Chapter 10: Dialog Boxes

LPSTRlstrrchr (LPSTRstr. char ch)
{
LPSTR strl - str+ lstrlen (str)

(continued)

453

SECTION III: USING RESOURCES

/tF e ;t 1 A ll{, ~. // '''':}'
"": "'" .t ':"') til

:,:':
{

.'" .:::.: ? ii
'.< ~:

.:::

•••
(i:':

,i

: i .!J (. ~
.. ' ... :.: SHI

'1 \i /
J,:,I

'./":
:··'i • >.>
...... :

FILEDLG .DLG contains two dialog box templates named "FileOpen" and "FileSave." When
displayed, these look very much like the dialog boxes used in the programs that come with
Windows, so the operation of the two dialog boxes will be familiar to Windows users.
FileOpen contains Open and Cancel push buttons, and FileSave contains OK and Cancel
push buttons. The static text field with an ID of IDD _FPATH is used to display the current
disk drive and directory path. The edit field with the ID of IDD _FNAME allows a user to
type in a filename. The FileOpen dialog box also contains a list box that displays all the
files matching a particular file specification (we'll use "·.TXT" with POPPAD3), all valid
disk drive letters, and all child subdirectories of the current drive and directory.

The FILEDLG.C file contains two functions named DoFileOpenDlg and DoFile
SaveDlg that a program can call to invoke the dialog boxes. These functions are respon
sible for copying input parameters to variables within FILEDLG.C, calling DialogBox, and
returning information obtained from the dialog box procedure to the program that called
the FILEDLG;C functions. The parameters to the DoFileOpenDlg and DoFileSaveDlg func
tions include a default file specification (szFileSpecln) , a default filename extension
(szDejExtln), and a pointer to a structure of type OFSTRUCT CpojIn). The DoFileOpen
DlgProc also requires a file attribute (wFileAttrln) to be used when listing files in the
list box.

The DoFileOpenDlg and DoFileSaveDlg functions return a 1 if the user ends the
dialog box with Open or OK, and a 0 if the user ends with Cancel. If the user ends with
Open or OK, the OFSTRUCT structure passed to the functions will contain the fully
qualified filename of the selected file in the sZPathName field. The filename only (without
a drive or directory) is copied to the szFileNameOut ch~i-acter array. For DoFileSaveDlg,
the pwStatusOut parameter points to a word that is set to 1 if the file does exist and to 0 if it
does not.

The actual dialog box procedures are FileOpenDlgProc and FileSaveDlgProc. These
are relatively complex because they must deal with the interaction between the list box
and the edit control and with the checking that must be performed on filenames and sub
directories entered by the user. To help with these areas, the dialog box procedures exten
sively use the Windows functions DlgDirListand DlgDirSelect.

454

Chapter 10: Dialog Boxes

The DlgDirList and DlgDirSelect Functions

You'll recall from working with list boxes in Chapter 6 that you can fill a list box with a list
of files, subdirectories, and disk drives by sending the list box a message:

SendMessage (hwndList. LB_DIR. wAttr. (LONG) lpszFileSpec) :

The wAttrparameter is an MS-DOS file attribute (with some additional bits to indicate the
listing of subdirectories and disk drives), and IpszFileSpec is a far pointer to a filename
specification such as " •.• ".

Although this list box message is quite convenient, within a dialog box you can use an
even more sophisticated function:

iStatus - DlgDirList (hDlg. lpszFileSpec. nIDList. nIDStatic. wAttr) :

The nIDList parameter is the ID of the list box, and nIDStatic is the ID of a static text field.
DlgDirListparses the string pointed to by IpszFileSpecto extract any disk drive or subdirec
tory information from it. It then changes the current disk drive or subdirectory using
MS-DOS function calls.

DlgDirListsends an LB_DIR message to the list box indicated by nIDListto fill it with
filenames meeting the file specification and the file attribute word. The current disk drive
and subdirectory path are then displayed in the static text field whose ID is nIDStatic.
When DlgDirListreturns, the string pointed to by IpszFileSpeccontains only the file speci
fication without any drive or subdirectory. The function returns nonzero if it.is successful
and 0 otherwise. A 0 value usually indicates that the string pointed to by IpszFileSpec does
not contain a valid drive or subdirectory.

For example, suppose that drive C has a directory named WINDOWS and that your
dialog box procedure contains this code:

char szFileSpec [] - "C:\\WINDOWS*.TXT" :
[other program lines}

DlgnirList (hDlg. szFileSpec. IDD_FLIST. IDD_FPATH. Ox4010) :

When DlgDirList returns, the current disk drive and subdirectory for the instance of the
program will have been changed to C: \ WINDOWS. The list box whose ID is IDD _FLIST
will list files with the extension .TXT, all subdirectories of the directory WINDOWS, and
all valid disk drives.· The static text field whose ID is IDD _FPATH will display the text
C: \ WINDOWS. The szFileSpec string array will contain "*.TXT". If either the nIDList or
nIDStatic parameter is 0, however, DlgDirList will assume that the list box or static text
field does not exist.

Both FileOpenDlgProc and FileSaveDlgProc use DlgDirList while processing the
WM_INITDIALOG message. (In FileSaveDlgProc, DlgDirList is called with the nIDList
parameter set to 0 because the dialog box does not contain a list box.)

455

SECTION III: USING RESOURCES

SetDlgltemText is used to set the text of the edit control to the text file specification:

SetDlgltemText (hDlg. IDD_FNAME. szFileSpec) ;

This function does the same thing as the SetWindowText function or the WM_SETTEXT
message. You can use the companion function GetDlgltemText to obtain the contents of
the edit control.

FileOpenDlgProc also uses DlgDirSelect extensively. This function returns the cur
rently selected string from a list box:

bDirectory = DlgDirSelect (hDlg. lpszString. nIDList) ;

The nIDList parameter is the ID of the list box. The currently selected string is copied to
the character array pointed to by IpszString. If the return value is TRUE (nonzero), mean
ing that the string is either a disk drive or subdirectory name, DlgDirSelect removes the
hyphens and brackets that appear when disk-drive letters and the subdirectory names are
displayed in a list box. The function appends a colon to disk -drive letters and a backslash
to subdirectory names when copying them to the IpszString array.

If DlgDirSelectreturns a disk drive or directory, you can then append the default file
specification (" •. TXT", for instance) to the string and use that as the IpszFileSpecparameter
to DlgDirList. DlgDirListwill then change the drive or directory and update the static text
field. The file specification pointed to by IpszFileSpec on return from DlgDirList can then
be transferred to the edit control. If DlgDirSelect r,eturns FALSE (0), meaning that
IpszString contains a filename from the list box, then this filename can be transferred to
the edit field directly.

Getting Valid Filenames

The dialog box to open a file would be much simpler if it did not contain an edit control. .
The edit control forces the dialog box procedure into doing some filename parsing. Much
of this logic occurs when FileOpenDlgProc processes the WM_COMMAND message with
wParam equal to IDOK. (When the user double-clicks a list box filename, the dialog pro
cedure transfers the name to the edit box and then generates a WM_COMMAND message
with wParam equal to IDOK. This avoids repeating the parsing logic for a list box double
click message.)

The dialog box procedure uses GetDlgltemText to obtain the string in the edit con
trol. The parsing logic begins with a check to determine if the last character inthis string is
a backslash or colon. If it is, the user is requesting that the drive or directory be changed, so
the current file specification must be appended to the string the user entered. If the resul
tant filename string contains a global character (* or ?), the dialog box procedure calls
DlgDirList with the new specification, and the dialog box procedure exits to wait for the
next message.

If the character string entered by the user neither terminates with a backslash or
colon nor contains a global character, it could be either a directory name or a filename.

456

Chapter 10: Dialog Boxes

FileOpenDlgProc appends a backslash and the current file specification to it. If DlgDirList
doesn't report an error, processing of the message is over. Otherwise, the entered text
string is probably a filename, in which case FileOpenDlgProc strips off the previously ap
pended file specification and calls OpenFile. If OpenFile does not find the file, then the
default extension is added, and OpenFile tries again. If either one of these OpenFile calls is
successful in opening the file for reading, then the sZPathName field of the OFSTRUCT
structure is used to obtain the filename without any drive or subdirectory, and the dialog
box is terminated. Otherwise, the dialog procedure beeps to indicate an error in the
filename.

The FILEDLG.C file contains alternate strchr and strrchr functions that search for
characters when parsing filename strings. These alternate functions use AnsiNext and
AnsiPrev to allow multibyte characters in the filename strings.

The New Version of POPPAD

The new version of POPPAD that uses these two dialog boxes (called POPPAD3) is shown
in Figure 10-8.

poppadf.obj poppadpO;obj\
filedlg.obj poppad3.defpoppad.res

link poppad poppadfpoppadpO filedlg. poppad3.exe/align:16.
NUL.Jnodslibcewlibw. poppad3

rcpoppad ;r~s>poppad3. exe

poppad; obj: poppad.e poppad.h
cl -c-Gsw-Ow-W2 -Zppoppad.c

poppad.res: poppad.rc poppad. h poppad.i co filedl 9 .dlg fi 1 edl g. h
rc~r poppad.rc

Figure 10·8. The POPPAD program.

457

SECTION III: USING RESOURCES

(continued)

458

Chapter 10: Dialog Boxes

GetSystemMetrics (SM_CYSCREEN) / 4,
GetSystemMetrics (SM.:,.CXSCREEN) / 2.
GetSystemMetrics (SM_CYSCREEN) / 2,
NULL, NULL, hlnstance, lpszCmdLine)

ShowWindow (hwnd, nCmdShow)

UpdateWindow (hwnd) :

hAc~~l- LoadAccelerators (hlnstance, szAppName)

t~seWM_COMMAND:
switch (wPa ram)

{
case lOOK :

hAccel, &msg»

EndOialog (hOlg; 0)
return TRUE:

void'OoCaptipn ,{HWNO hwnd, char *szFileName)
(
charszCaptton [401 :

wspriritf(szCaption~ "Is ~ %s", (LPSTR) szAppName,
(LPSTR) (szFileName [0] ? szFileName : szUntitled»

SetWi ndowText (hwnd~ szCapt ion):
}

(continued)

459

SECTION III: USING RESOURCES

(continued)

460

Chapter 10: Dialog Boxes

if.(ReadFile (hlnst. hwnd. hwndEdit,&of.
5zFileName. FALSE»

lstrcpy(szRealFileName. szFileName)

return 0.:

return 0;

(continued)

461

SECTION III: USING RESOURCES

(continued)

462

Chapter 10: Dialog Boxes

(
lstrcpy (szRealFileName, szFileName)
DoCaption (hwnd. szFileName)
bNeedSave = FALSE
return 1 :
}

return 0 :

case 10M_PRINT :
PrintFile (hlnst, hwnd. hwndEdit.

szRealFileName [0] ? szRealFileName:
szUntitled) :

return 0 :

case IDM_EXIT :
SendMessage (hwnd. WM_CLOSE. O. OL)
return 0;

case

(continued)

463

SECTION III: USING RESOURCES

(continued)

464

Chapter 10: Dialog Boxes

void OkMessageBox(HWND hwnd. char *szString, char *szFileName)
{
char szBuffer [40] ;

wsprintf (szBuffer, szString. (LPSTR) szFileName) ;

MessageBox (hwnd, szBuffer. szAppName, MB_OK : MB_ICONEXCLAMATION)
}

BOOLReadFil e (HANDLE hInstance, HWND hwnd. HWND hwndEdi t, POFSTRUCT pof,
char *szFileName. BOOL bAskName)

{
DWORD dwLength :
HANDLE hFile. hTextBuffer
LPSTR lpTextBuffer

if (bAskName)
{
; f(! OoFi 1 eOpenDl 9

return FALSE :

if « dwLength- Fi 1 eLength (hFil e» >= 32000)
{
~lclos~ (hFile) :
OkMessageBox (hwnd. "File %s too large". szFileName)
return FALSE ;
}

if (NULL = (hTextBuffer = GlobalAl1oc (GHND.
{
_lclose (hFile) ;
OkMes~ageBox (hwnd.
return FALSE:
}

(continued)

465

SECTION III: USING RESOURCES

."" .

. <

... , ..•.. '

...

ii .. '.
i •..•....

•• ..(.i

..

466

Chapter 10: Dialog Boxes

(continued)

467

SECTION III: USING RESOURCES

MENU ITEM "Save &As ••• "r <1b~l?AVEA$>i •• \ ••••••••••..••••• ' •• ·I:'·'· ..•••• > ••••.•••••••••••••••••••.•••••. t : .. .
MENU ITEM SEPARATORi'/'F/flt _i •.•... :.<•.•..•...•..•••.•..•.•.•.•.. > •••.• ! ...•....•...................••.••••••

MENUITEM "&Print ••• It. ·······i InMP~~T \ < ii I..
MENU ITEM SEPARATOR .:......(i;\.\i;>iy
MENUITEM "E&xit t • '.>ii 10M. :E) Itti •••.•.• ...· · ... iii ·>

}ii(\? ii
P " & Ed i t ..(>i •• ·.·...riii ii/ .. i /............../....,
{.•• « ..•••••• ••· •• · .• ··.·.·....i '\'{(.... .
MENUITEM "&undo\tAi;~I(·r • ••••• ·.)(iii(,1 ni.i .·.· ... ·• .. · L.· •.•••••.•. · .••••..••••.••••••••• ·•.••••••• i ••••••• • •••••• · •••.••.•••.•• ••· ••••• •••• ••• • ••. ·· •• • •• ·r»······ :
• MENUITEM SEPARATOR;ii ••.•... r ...••••.•••) i~v ••••••• •.•••••• ••.••••• <\ .i

MENU ITEM "Cu&t\tShi "~TL.') '1£ r ><

MENUITEM "&Copy\tCt '1~ n;~·.'.J ;12. J T

ME NU IT EM II &Pa ste \~Sh i~ 't+ l'n s ", u: \]:-:~~;]T~~ll"r"I~~\1\1~~,~····,· .. ···ll~,11tlrll1!I"lilI MENU ITEM "C& 1 earX~peii;>.)'r Ii '':AR
MENU ITEM SEPARAT6~lLJii) J
MENU ITEM n&Sel eC~.A')i }< SI A

} . ".{ ..•••••••••.••••••••••••••••••••..•.••• ..··· ••• · •••••• · •••••• • •••••• ·I···· i ••••••.•.•.••••..•.•.•.•.•.••..•.•.•••••..•.•.•.•.•.••.• ·•· •••. ·•·•·•·•·•·•·•···•·••••• ··i.i.· ..) .. .
.........

MENUITEM n&About P10n ~ :'::5 !

} -::F · ·.·....../ .i:....· ·.·.·.· ·.··.········ ··.·.·.
i ii (.............)

. ...

.•

(............... i'.

CE lE RATORS it • • .·.····r.·........>·
>ij ···;:18~.(iii

ELETE, IDMi,CUT.) ••.••.• VI5!~H' ~.
NSERT. IDM COPY. ..VI K KH f.i,l,"t'n{lr\,i /\ .»))

'.

NS E RT. 10M PASTE. V ~1I,t t i .=' •...•••

ELETE. IDM CLEt~rr Kr'~' i iii)
"ii .' /..

DIALOG 20. 20;) 161 I(i i· •••• ·••• •..• · •· •• ii·.· f)

..

E WS POPUP :.~ '.oc.,t•..

...... >ii ...•. i •••••• ..i
T "PopPadu •..•.

'·PopPad .. ••·•·•·· ••••• • ••• ••·••••...• ...• (..
T "Popup Edi t ;, I.A rrn'<:nT1r.·.· •• Wl\ ;)

T "Copyri ght (;0 ~ .. "
USHBUTTON \jOK'~. \••..•

<'</i L()

................ ?i»i
;.;: i;,~'·.

ox 0 I ALOG ~.O\~H' u v
E ws POpuPit.··.:,:,~ .• ~;4q~RT~.'9~j
ION II ~gRra ~'i •••.•••. i

.~.

........................
T "Send n:;.>
T Ilk};

"J>.
T "to i.e •... S O(fIE

USHBU ~. ~;'C"i
-{;"i• ><

.

UI .
r, m

>' •. i')' C >:i }i\ •...••• • .•.•

~1.1 .. ~.q.J h(I \...} .. < >iii

• ••••••••••••••••••••••••••••••••••••••

468

Chapter 10: Dialog Boxes

POPPAD.ICO

--

(continued)

469

SECTION III: USING RESOURCES

i.i, ;;:' '~\t..(iil ~trOA ~M(] ~ b

dA ~, I, ~i,~¥A '1
LE T~ri ,r\

>
.< ~ •.••••• IU L1tl

\. ~EAPS ,[• Ii·.'·'.·. OJ i< i ?
i :i~>(L }\ i i}::; I Ii /\>i
iiI- X pelF ~. ~...........i>i\ J/""/
L~" ./ > ~." JV~. J(i

i. ,h +Tq r.. i
> ·····.J........T;;~. ~ P t'\ ...•.•...••..•
t"~:; '"::, ::.;'i:t rrp, PIg ")C. t
{><)i •..... '\1 1 e ~a' Lt

>i•••. .\ ii.·. ;L.~n. \. ~Li<./ i F\ £"'s S ·':pW 'il iR~fy:T': ";
>.i\ .. \....../:;-r(Ftr 15 ·ii.\ ?u '. ..•.)i " ·..(i

As you'll recall, the POPPAD series of programs uses a multiline edit control to do all the
editing. The POPPADF.~ file serves as an intermediary between the main POPPAD.C pro
gram and the functions in FILEDLG.C. The ReadFile function in POPPADF.C calls DoFile
OpenDlgProc and reads the file into a global memory block. ReadFile is responsible for
reporting if the file is too large or if memory can't be allocated for the file. When the file is
read into a global memory block, it's transferred to the edit window using SetWindowText.

Writ'eFile calls DoFileSaveDlgProc to obtain the name of the file. This function is
responsible for asking the user if it's acceptable to replace an existing file by that name.
WriteFile obtains the handle to the edit control's buffer, locks it, and writes the file to the
disk directly from that buffer.

This doesn't leave the POPPAD.C module much to do in the way of file I/O. But note
these facts:

470

• In WinMain, the lpszCmdLine address is used as the last field of the
CreateWindow call. This string might contain a filename that was entered

. as a parameter to POPPAD3 when the program was executed. During
processing of the WM_CREATE message in WndProc, this filename is
passed to ReadFile with the bAskName parameter set to FALSE so that
ReadFile won't call DoFileOpenDlgProc.

• Much of the new logic in WndProc involves keeping track of changes to
the text in the edit control. Whenever this text changes, the control sends
an EN_UPDATE notification message to WndProc, which then sets
bNeedSave to TRUE. When the user wants to open a new file or end the
program, WndProc must check the bNeedSavevariable. If it is TRUE, then
the program calls AskAboutSave, which displays a message box that asks
whether the user wants to save the current changes. When a file is saved,
bNeedSave is set to FALSE.

• POPPAD3's caption displays the name of the currently loaded file. If no
filename is available (for instance, when the program is first executed),
then the DoCaption function in POPPAD3 causes the character string
"(untitled)" to be displayed.

Chapter 10: Dialog Boxes

We are not yet finished with the POPPAD programs. In Chapter 15 some of these files
(POPPAD.C, POPPADF.C, POPPAD.RC, POPPAD.H, and POPPAD.lCO) will be used in the
final POPPAD program. At that time a new file (POPPADP.C) will be substituted for
POPPADPO.C to add logic to print files.

MODELESS DIALOG BOXES
At the beginning of this chapter, I explained that dialog boxes can be either "modal" or
"modeless." So far we've been looking at modal dialog boxes, the more common of the two
types. Modal dialog boxes (except for system modal dialog boxes) allow the user to switch
between the dialog box and other programs. However, the user cannot switch to another
window in the program until the modal dialog box is destroyed. Modeless dialog boxes
allow the user to switch between the dialog box and the window that created it as well as
between the dialog box and other programs. The modeless dialog box is thus more akin to
the regular popup windows that your program might create.

Modeless dialog boxes are preferred when the user would find it convenient to keep
the dialog box displayed for a while. For instance, the Windows WRITE program uses
modeless dialog boxes for the Find and Change dialogs. If the Find dialog box were modal,
the user would have to choose Find from the menu, enter the string to be found, end the
dialog box to return to the document, and then repeat the entire process to search for an
other occurrence of the same string. Allowing the user to switch between the document
and the dialog box is much more convenient.

As you've seen, modal dialog boxes are created using DialogBox. The function
returns only after the dialog box is destroyed. It returns the value specified in the second
parameter of the EndDialog call that was used within the dialog box procedure to termi
nate the dialog box. Modeless dialog boxes are created using CreateDialog. This function
takes the same parameters as DialogBox:

hDlgModeless = CreateDialog (hlnstance. lpszTemplate. hwndParent.
lpfnDialogProc) :

The difference is that the CreateDialog function returns immediately with the window
handle of the dialog box. Normally, you store this window handle in a global variable.

Although the use of the names DialogBoxwith modal dialog boxes and CreateDialog
with modeless dialog boxes may seem arbitrary, you can remember which is which by
keeping in mind that modeless dialog boxes are similar to normal windows. CreateDialog
should remind you of the CreateWindow function, which creates normal windows.

Differences Between Modal and Modeless Dialog Boxes

Working with modeless dialog boxes is similar to working with modal dialog boxes, but
there are several important differences:

471

SECTION III: USING RESOURCES

472

• Modeless dialog boxes usually include a caption bar and a system menu
box. The STYLE statement in the dialog box template for a modeless
dialog box will look something like this:

STYLE WS_POPUP : WS_CAPTION : WS_SYSMENU : WS_VISIBLE

The caption bar and system menu allow the user to move the modeless
dialog box to another area of the display using either the mouse or the
keyboard. You don't normally provide a caption bar and system menu
with a modal dialog box, because the user can't do anything in the under
lying window anyway.

• Note that the WS _VISIBLE style is included in our sample STYLE
statement. If you omit WS_ VISIBLE, you must call ShowWindow after the

. CreateDialog call:

hDlgModeless = CreateDialog () ;
ShowWindow (hDlgModeless. SW_SHOW) ;

If you neither include WS_ VISIBLE nor call Show Window, the modeless
dialog box will not be displayed. In overlooking this fact, programmers
who have mastered modal dialog boxes often experience difficulties
when they first try to create a modeless dialog box.

• Unlike messages to modal dialog boxes and message boxes, messages to
modeless dialog boxes come through your program's message queue. The
message queue must be altered to pass these messages to the dialog box
window procedure. Here's how you do it: When you use CreateDialog to
create a modeless dialog box, you should save the dialog box handle
returned from the call in a global variable (for instance, hDlgModeless).
Change your message loop to look like this:

while (GetMessage (&msg. NULL. O. 0»
{
if (hDlgModeless == 0 :: !IsDialogMessage (hDlgModeless, &msg»

{
TranslateMessage (&msg)
DispatchMessage (&msg) •
}

If the message is intended for the modeless dialog box, then
IsDialogMessage sends it to the dialog box window procedure and returns
TRUE (nonzero); otherwise, it returns FALSE (0). The TranslateMessage
and DispatchMessage functions should be called only if hDlgModeless is 0
or if the message is not for the dialog box.

Chapter 10: Dialog Boxes

If you use keyboard accelerators for your progra~'s window, then the
message loop looks like this:

while (GetMessage (&msg. NULL. O. 0»
{
if (hDlgModeless == 0 :: !IsDialogMessage (hDlgModeless. &msg»

{
if (!TranslateAccelerator (hwnd. hAccel. &msg»

{
TranslateMessage (&msg)
DispatchMessage (&msg)
}

Because global variables are initialized to 0, hDlgModeless will be 0 until
the dialog box is created, thus ensuring that IsDialogMessage is not called
with an invalid window handle. You must take the same precaution when
you destroy the modeless dialog box as explained below.

The hDlgModeless variable can also be used by other parts of the
program as a test of the existence of the modeless dialog box. Other
windows in the program can send messages to the dialog box while hDlg
Modeless is not equal to O.

• Use Destroy Window rather than EndDialog to end a modeless dialog box.
When you call DestroyWindow, set the hDlgModeless global variable to O.

The user customarily terminates a modeless dialog box by choosing Close from the
system menu. Although the Close option is enabled, the dialog box window procedure
within Windows does not process the WM_CLOSE message. You must do this yourself in
the dialog box procedure:

case WM_CLOSE :
DestroyWindow (hDlg)
hDlgModeless = 0 :
break :

Note the difference between these two window handles: The hDlg parameter to Destroy
Window is the parameter passed to the dialog box procedure; hDlgModeless is the global
variable returned from CreateDialog that you test within the message loop.

You can also allow a user to close a modeless dialog box using push buttons. Use the
same logic as for the WM_CLOSE message. Any information that the dialog box must
"return" to the window that created it can be stored in global variables.

The New COLORS Program

The COLORSl program described in Chapter 6 created nine child windows to display three
scroll bars and six text items. At that time, the program was one of the more complex we

473

SECTION III: USING RESOURCES

had developed. Converting COLORS1 to use a modeless dialog box makes the program
and particularly its WndProc function -almost ridiculously simple. The revised COLORS2
program is shown in Figure 10-9 .

2 iC }
,III)i

..)
....

i . i/ i. i i 'i
.....

II .. ~.;;.. ;/ ~'" i
it i \ .;, -: i

• ••••••

...
1~ ~'"

• « ·'.i

C

Ii ./
) I .. ,

> ~ ...
~l

i]

~.~ < i

i(J
0' \ ..

....
i [}, . <}' ~l

f~ ~ D'
.... i J.~

/i ~f
i i. i .; Ir

f'
..... ,

<iii····... .. i •) •• ·)i \ .•...•. .. \ ..

II
l~il·······

I 'III .·...i{ i
.......•. \ i·.·.··

....

~ .~ ;~

0 I}
:iii r

•.....•. .) ~j

~". ;.
..}

C ./
> .(

i /
~ ... Ide ,,~

i (i

It r ~I 'I ~. ~. E \,,'\ v (r" 1.1

(((• t Ill'lfl)
• .. ,

i PI ~c " I t1, 0 k r
·•· •.• i· Ie: 'Fe Id iiI

<
i.·.·.·

......) :.
f, •.••.•.• i •.

..: :~} i. ..~ .. ~ II Ch .-
\

•••

..)

'" • •. ·•• •• ·i l(
...... .~~~

> .. '" .. .>
\ i Nr) ng)

....
i

• ••••••••

i
i if h A n~ n i r •• · ••.• it ••.••• . •... , '~ n '" i<••... \ >.." ' =>1 • ... : .> ..

ii)" ·.:·i;..

...... :

i.
'D.L 1 ~ .. V :1:1 i....~n q:; asss~y

} .~ ;." .~;: It" ··· .. ·yi •• : ••••.•••••••••••••••.•••• <~nd a .•. :SIVL I~ J} I~.

.............. /:: if.······.
)\.. ·.i

'i/
i •• ' ••••••••••• : .••• i· : " i • ••••

Figure 10·9. The COLORS2 program. (continued)

474

wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra - 0 :
wndclass.hlnstance = hlnstance
wndclass.hlcon - NULL:
wndclass.hCursor - LoadCursor (NULL.
wndclass.hbrBackground -CreateSol;dBrush
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName - szAppName

Chapter 10: Dialog Boxes

(continued)

475

SECTION III: USING RESOURCES

(,"'""',, (,., •... , ...
y I ."", \ Ii

"~ ;:

',,'"'' .W ,~: :~ a J ,)

~~t (": er \
,.,,' i' ? .. w)

'" .. ' ", .. , '.

Jr .. i ...

!
\

'" ,"' .. '"
i

"\

....... '
.......> ..

• ••••••

.,.
.... (I] J ~h

,> .. iJ
>

}

<,
Y'"') i

i
i,'

. ,,"

i ijO ;;:. .;:t .. 5)

11
i~;r .)

·c···'. }. ? i ... > .',., i
)

<u ., .. ~ ,i 'i, '",.'

.gpt I(It \

'.
<' 'f;il '\ } .. i

. ..•. , •. t L.
D ~ ,<

.}
? (i

,K
.','.',

(,

~'ii '," :",
t

.""

'11 : .
r/ i() (I '" II /i

.... >) ., .. "', /I

."",.

(
tiL
."",
.. tl

\ "- .. ",

(I II
.•. ,~ t

fl 11 'I.U 00 ir '" "A SF

r .'",., i "".,< t?
'" '" ',,.")

rl)i! i
;1 19 Ig n .,

'. """. 9l~
nil

""
i< (» ••...... ..,....

B :.C J. .. \;0
< 1 ,. ii,

,i
", / ,.

.'~ IU '.,.,' RU) i til 1 I~' ~, h'Ji 'I')
"

.',."'.',< ' •...• ' ' ...
, , ..•. ... (.... ii i

'."'" ' ,i)
"'. h

. .. i ,-
""

••••••••
" " ' "- i / ?

0 ~,f r G
i

i(... ' ,
>

}

> lV
~ ''ll

-.' .. ,'.' i! •• • •• '.
",,"

.
"'" :'" i,

tlC~ .. " ... "
',I ',,,",}" 'i (r', , i'.,.i, }~:i ."/ ,;-,) ',,"" ,'< i "\i » '",

'.'. """ "i/

(continued)

476

Chapter 10: Dialog Boxes

}
return DefWindowProc (hwnd. message, wParam. lParam)
}

477

SECTION III: USING RESOURCES

Although the original COLORS1 program displayed scroll bars that were based on the
size of the window, the· new version keeps them at a constant size within the modeless
dialog box, ~s shown in Figu~e 10-10.

Figure 10·10. The COLORS2 display.

The dialog box template in COLORS2.RC uses CONTROL statements for all nine child win
dows in the dialog box. The modeless dialog box is created in COLORS2's WinMain func
tion following the ShowWindowcall for the program's main window. Note that the window
style for the main window includes WS _ CLIPCHILDREN, which allows the program to
repaint the main window without erasing the dialog box.

The dialog box window handle returned from CreateDialog is stored in the global
variable hDlgModeless and tested during the message loop, as described above. In this pro
gram, however, it isn't necessary to store the handle in a global variable or to test the value
before calling IsDialogMessage. The message loop could have been written like this:

478

while (GetMessage (&msg, NULL, 0, 0))
{
if (!IsDialogMessage (hDlgModeless, &msg))

{
TranslateMessage (&msg)
DispatchMessage (&msg)
}

Chapter 10: Dialog Boxes

Because the dialog box is created before the program enters the message loop and the
dialog box is not destroyed until the program terminates, the value of hDlgModeless will
always be valid. I included the logic in case you want to add some code to the dialog box
window procedure to destroy the dialog box:

case WM_CLOSE :
DestroyWindow (hDlg)
hDlgModeless ~ 0 :
break :

In the original COLORS 1 program, Set WindowText set the values of the three numeric
labels after converting the integers to text with itoa. The code looked like this:

SetWindowText (hwndValue[n], itoa (color[n], szBuffer, 10» :

The value of n was the ID number of the current scroll bar being processed, and hCh Value
was an array containing the window handles of the three static text child windows for the
numeric values of the colors.

The new version uses SetDlgltemlnt to set each text field of each child window to a
number:

SetDlgItemInt (hDlg, nCtrlID + 3, color [nCtrlID], FALSE) :

(Although SetDlgItemlnt and its companion, GetDlgItemlnt, are most often used with edit
controls, they can also be used to set the text field of other controls, such as static text con
trols.) The nCtrlIDvariable is the ID number of the scroll bar; adding 3 to the number con
verts it to the ID for the corresponding numeric label. The third parameter is the color
value. Normally, the fourth parameter would be set to TRUE to indicate that numbers
greater than 32,767 should be displayed as negatives. For this program, however, the values
range from 0 to 255, so the fourth parameter has no effect.

In the process of converting COLORSI to COLORS2, we passed more and more of the
work to Windows. The earli~r version called CreateWindow 10 times; the new version calls
CreateWindow once and CreateDialog once. But if you think that we've reduced our
CreateWindow calls to a minimum, get a load of this next program.

HEXCALC: Window or Dialog Box?

Perhaps the epitome of lazy programming is the HEXCALC program, shown in Figure 10-11
beginning on the following page. This program doesn't call CreateWindowat all, never
processes WM_PAINT messages, never obtains a device context, and never processes

. mouse messages. Yet it manages to incorporate a 10-function hexadecimal calculator with a
full keyboard and mouse interface in fewer than 150 lines of source code. The calculator is
shown in Figure 10-12 on page 485.

479

SECTION III: USING RESOURCES

• . .ii
(:

, ··."i··iii'
Frt I

il In

'r,
i ~F

[l >
.<

1.\ if tr II
})

i .

..
~i

••

. lr

i'i.i

i'. 'cc.'.'c:·.'.
vi:.
T lri

.;;;.;\ ·h1 ':':>: hill Dl1ft
i··:: i .. "\ i?

Figure 10·11. The HEXCALC program. (continued)

480

Chapter 10: Dialog Boxes

....

,::,::,

,void "Sho~N4mR~r,,~HltlNO. h~~"d. DWORQdwNumber)
{ ',. ',' .. ', "',' , , "

, ch4"rsz~uffer., [20],.': , •• «< , ,'.i

,: ..

','.

',1 ong EARrp~SCAL ,WndRnoc(tlW~O' hwnd. WORD mes~':~g~~>WORD wParam.
{ " "":/', , :<, "

m',:'":,,, """":<"i",/"<:<,,,:,,static BOob bNe~mumberi .. TRUEt
.'.':'."", "","'" """"",,',i,,"'static' DWORD dwNUirib~f~;dwFi rStNY!Jl :

(continued)

481

SECTION III: USING RESOURCES

482

••••••••••••••• i··)

..•...•.) .•..•.•

.\ .

••••••••

...... i

)

(continued)

Chapter 10: Dialog Boxes

(continued)

483

SECTION III: USING RESOURCES

••••••••

\•.....

"'i i ••• · •• ' ••• iI ., ••••••••••• i ::'1 U.I .. JUfi ~~6;;i. ~~ l: .1 ... "

/
;)1 I.!JI

"""',

> "'11 :>I,-,UI,U '. i,i 4

,·, .. i (jU,, \

~, u
r ..

l • .1 ;.
• .• '

'. 0
10

1:.. lSI Ii 0
~"'.

;(Ii 0., ,

'.".

p ~ .1,1 (, .. l' II
p,~ III ~.' L
PJIC~ n

'.

iF. ~,~. ,.".".1,1
>

~"" ,
~71~l' IIIN :: ' .

i '.')<i•

'"
<. .'.y • } . ',.,., .,

HEXCALC.ICO

"""
......

. " .. ,

~,~

ri ~[It T
'~. I

.... ' . ";';';",'"

•••••••• •
/i

".
t

~ '0
".""""""'"

L. 1
•

."

ii'·"' •• "

::) J kr ~.~ 1'1 .. ~ r.

.OJ u
'J '.' JA· ". 'i .'.',' pR IU

t 'I
(I E I~ ;) ••• '......< ~I ~ ••.• , •••.•••• , •. ' .•.

. .. '

\) ••. ~ ,~, t-."""" .".,31' ~L .• "',
""t.,· i

• ••••

t~~ !R~t~Ii<i ~ n d Prof '.< •.••
) ' .···,.i

?i """" .,'. ?
"Li) <it(> i :

484

Chapter 10: Dialog Boxes

= Hex Calculator a

Figure 10·12. The HEXCALC display.

HEXCALC is a normal infix notation calculator that uses C notation for the operations. It
works with unsigned 32-bit integers and does addition, subtraction, multiplication, divi
sion, and remainders; bitwise AND, OR, and exclusive OR operation~; and left and right bit
shifts. Division by 0 causes the result to be set to FFFFFFFF.

You can use either the mouse or keyboard with HEXCALC. You begin by "clicking in"
or typing the first number (up to eight hexadecimal digits), then the operation, and then
the second number. You can then show the result by clicking the Equals button or by press
ing either the Equals key or Enter key. To correct your entries, you use the Back button or
the Backspace or Left Arrow key. Click the "display" box or press the Esc key to clear the
current entry.

What's so strange about HEXCALC is that the window displayed on the screen seems
to be a hybrid of a normal overlapped window and a mode less dialog box. On the one
hand, all the messages to HEXCALC are processed in a function called WndProc that ap
pears to be a normal window procedure. The function returns a long, it processes the
WM_DESTROY message, and it calls DefWindowProc just like a normal window pro
cedure. On the other hand, the window is created in WinMain with a call to CreateDialog
using a dialog box template from HEXCALC.RC. So is HEXCALC a normal overlapped win
dow or a modeless dialog box?

The simple answer is that a dialog box is a window. Normally, Windows uses its own
internal window procedure to process messages to a dialog box popup window. Windows
then passes these messages to a dialog box procedure within the program that creates the

485

SECTION III: USING RESOURCES

dialog box. In HEXCALC we are forcing Windows to use the dialog box template to create a
popup window, but we're processing messages to that window ourselves.

A closer look at HEXCALC.RC will reveal how this is done. The top of the dialog box
template looks like this:

HexCalc DIALOG 32768. O. 102. 122
STYLE WS_OVERLAPPED I WS_CAPTION WS_SYSMENU WS_MINIMIZEBOX
CLASS "HexCalc"
CAPTION "Hex Calculator"

Notice the identifiers such as WS_OVERLAPPED and WS_MINIMIZEBOX, which we
might use to create a normal window using a CreateWindow call. The CLASS statement is
the crucial difference between this dialog box and the others we've created so far. When
we omitted this statement in previous dialog box templates, Windows registered a window
class for the dialog box and used its own window procedure to process the dialog box mes
sages. The inclusion of a CLASS statement here tells Windows to send the messages else
where-specifically, to the window procedure specified in the "HexCalc" window class.

The "HexCalc" window class is registered in the WinMain function of HEXCALC,
just like a window class for a normal window. However, note this very important differ
ence: The cb WndExtra field of the WNDCLASS structure is set to DLGWINDOWEXTRA.
This is essential for dialog procedures that you register yourself.

After registering the window class, WinMain calls CreateDialog:

hwnd - CreateDialog (hInstance, szAppName, 0, NULL) ;

The second parameter (the string "HexCalc") is the name of the dialog box template. The
third parameter, which is normally the window handle of the parent window, is set to 0 be
cause the window has no parent. The last parameter, which is normally the address of the
dialog procedure, isn't required because Windows won't be processing the messages and
hence can't send them to a dialog procedure.

This CreateDialog call in conjunction with the dialog box template is effectively
translated by Windows into a CreateWindow call that does the equivalent of this:

hwnd - CreateWindow ("HexCalc", "Hex Calculator",
WS_OVERLAPPED I WS_CAPTION I WS_SYSMENU WS_MINIMIZEBOX
CW_USEDEFAULT, CW_USEDEFAULT.
102 * 4 / cxChar, 122 * 8 / cyChar,
NULL, NULL, hInstance, NULL) ;

The xCharand,yCharvariables are the width and height of a system font character.
We reap an enormous benefit from letting Windows make this CreateWindow call:

Windows will not stop at creating the 1 popup window but will also call CreateWindow for
all 29 child window push-button controls defined in the dialog box template. All these con
trols send WM_COMMAND messages to the window procedure of the parent window,
which is none other than WndProc. This is an excellent technique for creating a window
that must contain a collection of child windows.

486

Chapter 10: Dialog Boxes

Creatively Using Control IDs

HEXCALC contains no header file with identifiers for all the ID numbers of the child
window controls in the dialog box template. We can dispense with this file because the
ID number for each of the push-button controls is set to the ASCII code of the text that
appears in the control. This means that WndProc can treat WM_COMMAND messages
and WM_CHAR messages in much the same way. In each case, wParam is the ASCII code
of the button.

Of course, a little massaging of the keyboard messages is necessary. WndProc traps
WM_KEYDOWN messages to translate the Left Arrow key to a Backspace key. During pro
cessing of WM_CHAR messages, WndProc converts the character code to uppercase and,
the Enter key to the ASCII code for the Equals key.

The validity of a WM_CHAR message is checked by calling GetDlgltem. If the
GetDlgltem function returns 0, then the keyboard character is not one of the ID numbers
defined in the dialog box template. If the character is one of the IDs, however, the appro
priate button is flashed by sending it a couple of BM_SETSTATE messages:

if (hButton = GetDlgltem (hwnd, wParam»
{
SendMessage (hButton, BM_SETSTATE, 1, OL)
SendMessage (hButton, BM_SETSTATE, 0, OL)
}

This adds a nice touch to HEXCALC's keyboard interface, and with a minimum of effort.
When WndProc processes WM_COMMAND messages, it always ,sets the input focus

to the parent window:

case WM_COMMAND :
SetFocus (hwnd)

Otherwise, the input focus would be shifted to one of the buttons whenever it was clicked
with the mouse.

USING THE DIALOG UTILITY
When you sit down to create a dialog box template, you'll discover that it's not quite as easy
as it looks. Dialog boxes are an important part of your program, and the controls should be
clearly and logically organized. But the process of placing and sizing these controls is
mostly a matter of trial and error. You'll save yourself a lot of time and frustration by using
the DIALOG program included with the Windows Software Development Kit. This pro
gram allows you to use the mouse to place controls within a dialog box frame, to move and
resize them, and to give them various attributes.

Before you start haphazardly designing your dialog box in DIALOG, you should
spend a little time in preparation. Although you can create a header file containing iden
tifiers for the dialog box IDs, it's easier to create and edit the header file in a normal text

487

SECTION III: USING RESOURCES

editor. You should also have a general idea of how the controls will be arranged in the
dialog box.

DIALOG can read .RES files (the binary compiled resource file, not the ASCII .RC
resource script) and header files. DIALOG will prompt for the name of both a .RES file and
a .R file when you choose Open from the File menu. Alternatively, you can rea~ in a header
file by using Open from the Include menu.

The names of all the dialog boxes currently stored in the .RES file are displayed when
you choose View Dialog from the File menu. You can then pick one to edit. Thus, even if
you begin by attempting to manually create a dialog box template in a .RC file and then
give up in frustration, you can switch to DIALOG to get all the coordinates and sizes cor
rect. Remember to compile the resource script before running DIALOG, however; as noted
above, DIALOG cannot read .RC files, only compiled .RES files. Alternatively, you can
begin a new dialog box by choosing New Dialog from the Edit menu.

You can fill up the dialog. box with controls by choosing from the Control menu,
which lists 13 basic types of controls such as Check Box, Radio Button, and Push Button.
You then click the mouse where you want the control to be placed. If the control uses text,
it will initially show only the string "Text." You can select the control for editing merely by
clicking on it. You can stretch or size it by hooking the little boxes on the sides or corners,
and you can move it around by hooking the center.

The process of placing and sizing controls becomes a little easier if you first choose
Grid from the Options menu and change both numbers to 2, thus forcing all dialog box
coordinates and sizes to be in even numbers of units. Otherwise, you'll .continually
be wondering whether a particular control in a group is really one pixel or two pixels off
or whether you've merely been looking at the screen too long. Also, try to create the
controls in the order that you'll want them to appear in the dialog box template, because
this in turn governs the order of tab stops and groups. Don't worry inordinately about
getting it precisely right the first time through; as you'll see below, you can always
change the order later.

One by one, select each control in the dialog box, choose Styles from the Edit menu,
and enter the text of the control and the ID number in the Styles dialog box. If you've read
in a header file, you can use the defined names rather than numbers for the IDs. You can
also use the Styles dialog box to change the window style of the control. For instance, if you
created a push-button control by choosing Push Button from the Control menu, you can
make it a default push button by checking the Def Push Button box.

The dialog box you're creating is initially shown with a simple frame. To add a cap
tion bar and a system menu box, select the dialog box itself with the mouse, and then
choose Styles from the Edit menu. As you've seen, controls in a Windows dialog box are
organized by "groups" and "tab stops." You use the Tab key to move between controls
marked as tab stops, and the arrow keys to move between controls within a group.

You can reorder the controls and select groups and tab stops through the Groups op
tion of the Dialog menu, which displays a list of all the controls you've created. You can

488

Chapter 10: Dialog Boxes

move a control by selecting it with the mouse and placing the horizontal black bar cursor in
a new location. To define a group, you mark the first and last control of the group. You
would also usually flag the first control of the group as a tab stop, but you can pick another
control as the tab stop if you would like the cursor to jump to the middle of a group.

The best part of DIALOG is that you can tryout these tab stops and groups to see if
they work right. Simply choose Test from the Dialog menu. You can use both the keyboard
and mouse to test how the input focus shifts between controls. (Don't expect radio buttons
to work, however; they require some cooperation from a dialog box procedure.)

After you're done, you can save the file. DIALOG will actually save two files: a new
.RES binary file containing the new dialog boxes and any changes to existing dialog boxes,
and an ASCII file with the extension .DLG. The .DLG file contains the human-readable
(well, almost readable) dialog box templates. All the controls will be expressed as CON
TROL statements that include window style identifiers from WINDOWS.H. If you used
names from a header file for the IDs, these names will be used in the .DLG file.

If you've changed the header file, you'll want to save that also. But beware: DIALOG
will strip comments from it. For that reason, it's better to maintain the header file outside
DIALOG and read it into DIALOG, rather than to save it from DIALOG.

DIALOG can't read or alter the ASCII .RC resource script file; it can't read .DLG files,
either. DIALOG can read only the binary .RES file, which it saves in both the .RES and .DLG
formats. If you create a dialog box in DIALOG and save it as MYPROG .RES and
MYPROG.DLG (for instance), you should later edit the MYPROG.RC resource script and in
clude the line:

rcinclude myprog.dlg

This allows the Re.EXE resource compiler to add the contents of the MYPROG .DLG file to
the other resources included in MYPROG .RC. Do not use #include for the ~DLG file. The
Re.EXE resource compiler interprets only #define statements in any file included with
#include. And if you started out by creating a dialog box in the MYPROG .RC resource
script file and then edited it in DIALOG, you must also delete the original dialog box tem
plate from MYPROG .Re. Otherwise, you'll have two definitions for the same dialog box.

I have a confession to make. Although none of the dialog box templates in this chap
ter appear to be output from DIALOG, I originally created all of them in DIALOG. I later
edited the .DLG files' (and in many cases merged them into the .RC files) for the sole
purpose of making them readable and presentable. DIALOG is almost essential when
creating dialog boxes. Don't waste your time doing it any other way.

489

SECTION IV

THE GRAPHICS
DEVICE

,INTERFA6E ..
!, / '\,,'. ':;"
i f \ ! ,.,' .
! 1 \ .' I
! i \".! ! I \ ' ,.'; k" ..'
I 1 \ j L.,,·· ,.
r \ \", I',', :'"

'\ \ ' '

\

, '\
\ .

\ \ .
)\., ,

Chapter 11

An
Introduction

to GDI

We have been using Graphics Device Interface (GDI) functions since Chapter 1, when we
first started writing to the client area of our windows. Now it's time for a more formal
coverage of the subject. This chapter discusses the preliminaries of GDI but stops short of
drawing graphics, which is the subject of Chapter 12. Chapter 13 covers bitmaps and
metafiles, which are means-of storing graphical information; Chapter 14 discusses text and
fonts; and Chapter 15 deals with printing.

THE GDI PHILOSOPHY
Graphics in Windows are handled primarily by functions exported from the GDI.EXE
module (although some drawing functions actually have entry points in the USEREXE
file). The GDI.EXE module calls routines in the various driver files-a .DRV for the video
display screen and possibly one or more other .DRV driver files that control printers or plot
ters. The video driver accesses the hardware of the video display. Different video display
adapters and printers require different driver files.

493

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The GDI system is constructed so that Windows can determine from the driver what
the driver can handle itself and what it needs assistance with. For instance, if the video
hardware includes a graphics coprocessor that can draw ellipses, then GDI can take advan
tage of that; otherwise, the GDI module must itself calculate the points of the ellipse and
pass the points to the driver.

Because a large number of different display devices can be attached to the IBM PC
and compatibles, one of the primary goals of GDI is to support device-independent
graphics on output devices such as video displays, printers, and plotters. Windows pro
grams should be able to run without problems on any graphics output device that Windows
supports. GDI accomplishes this goal by providing facilities to insulate your programs from
the particular characteristics of different output devices. In this way it is like other device
independent graphics programming languages. But where Windows GDI is different is in
its strong support of pixel-level manipulation.

The world of graphics output devices is divided into two broad groups: raster devices·
and vector devices. Most PC output devices are raster de';ices, which means that they
represent images as a pattern of dots. This category includes video display adapters, dot
matrix printers, and laser printers. Vector devices, which draw images using lines, are
generally limited to plotters.

Although most video display adapters and printers are raster devices, most graphics
interface languages are based solely on vectors. This. means that a program using one of
these graphics languages is a level of abstraction away from the hardware. The output de
vice is using pixels for a graphics representation, but the program is not talking to the inter
face in terms of pixels. While you can certainly use Windows GDI as a high-level vector
drawing system, you can also use it for relatively low-level pixel manipulation.

In this respect, Windows GDI is to other graphics interface languages what C is to
other programming languages. C is well known for its high degree of portability among
different operating systems and environments. Yet C is also well known for allowing a pro
grammer to perform low-level system functions that are often impossible in other high
level languages. Just as C is sometimes thought of as a "high-level assembly language," you
can think of GDI as a high-level interface to the hardware of the graphics device.

As you've seen, by default Windows uses a coordinate system based on pixels. Most
other graphics languages use a "virtual" coordinate system with horizontal and vertical
axes that range (for instance) from 0 to 32,767. Although some graphics languages don't let
you use pixel coordinates, Windows GDI lets you use either system (as well as additional
coordinate systems based on physical measurements). You can use a virtual coordinate
system and keep your program distanced from the hardware, or you can use the device
coordinate system and snuggle right up to the hardware.

Some programmers think that after you start working in terms of pixels, you've aban
doned device independence. We've already seen that this is not necessarily true. The trick

494

Chapter 11: An Introduction to GDI

is to use the pixels in a device-independent fashion. This requires that the graphics inter
face language provide facilities for a program to determine the hardware characteristics of
the device and make appropriate adjustments. For instance, we've frequently used the
pixel size of a standard system font character to space text on the screen. This approach
allows our programs to adjust to different display adapters with different resolutions,
text sizes,. and aspect ratios. You'll see other methods in this chapter for determining
display sizes.'

Windows can run on either a monochrome display or a color display. If you choose,
you can write a program without worrying very much about color. If you use color in your
program and the program later runs on a monochrome display adapter, Windows will use
a shade of gray to represent the color. However, you can also determine from your program
how many colors are available on the particular display device and take best advantage of
the hardware.

Of course, just as you can write C programs that have subtle portability problems
when they run on other computers, you can also inadvertently let device dependencies
creep into your Windows programs. That's part of the price of not being fully insulated
from the hardware. We'll examine many of the device-dependent traps in the next few
chapters ..

You should also be aware of the limitations of Windows GDI. GDI is not (at this time)
capable of doing everything you may want a graphics interface to do. Although you can
move graphics objects around the display, GDI is generally a static display system with no
real animation support. GDI provides no direct support for three-dimensional representa
tions or for rotations of objects. For instance, when you draw an ellipse, the ellipse axes
must be parallel to the horizontal and vertical coordinates. Although some graphics lan
guages use floating-point numbers for virtual coordinates, Windows-for performance
reasons-always uses 16-bit signed integers.

THE DEVICE CONTEXT
When you want to draw on a graphics output device (such as the screen or a printer), you
must first obtain a handle to a device context (or DC). In giving your program this handle,
Windows is giving you permission to use the device. You then include the handle as a
parameter in the GDI functions to identify to Windows the device you want to draw on.

The device context contains many current "attributes" that determine how the GDI
functions work on the device. These attributes allow the parameters to the GDI functions
to include only starting coordinates or sizes and not everything else that Windows needs to
display the object on the device. For example, when you call TextOut, you need specify in
the function only the device context handle, the starting coordinates, the text, and the
length of the text. You don't need to specify the font, the color of the text, the color of the
background behind the text, and the intercharacter spacing, because these attributes are

495

SECTION IV: THE GRAPHICS DEVICE INTERFACE

part of the device context. When you want to change one of these attributes, you call a
function that changes the attribute in the device context. Subsequent TextOut calls use the
changed attribute.

Getting the Handle to the Device Context

Windows provides several methods for obtaining a device context handle. If you obtain a
device context handle while processing a message, you should release it (or delete it)
before exiting the window function. After you release the handle, it is no longer valid.

The most common method for obtaining and then releasing a device context handle
involves using the BeginPaint and EndPaint calls when processing the WM_PAINT
message:

hdc = BeginPaint (hwnd, &ps)
[other program lines}

EndPaint (hwnd, &ps) ;

The variable ps is a structure of type PAINTSTRUCT. The hde field of this structure is the
handle to the device context that BeginPaint returns. The PAINTSTRUCT structure also
contains a RECT (rectangle) structure named rePaint that contains a clipping rectangle
indicating the invalid region of the window's client area. With the device context handle
obtained from BeginPaint, you can draw only within this rectangle. The EndPaint call
validates this region. '

Windows programs can also obtain a handle to a device context during processing of
messages other than WM_PAINT:

hdc = GetDC (hwnd) ;
[other program lines}

ReleaseDC (hwnd, hdc) ;

This device context applies to the client area of the window whose handle is hwnd. The
primary difference between the use of these calls and of the BeginPaint and EndPaint
combination is that you can draw on your entire client area with the handle returned from
GetDG. However, ReleaseDC doesn't validate any possibly invalid regions of the client area.

A Windows program can also obtain a handle to a device c~ntext that applies to the
entire window and not only to the window's client area:

hdc = GetWindowDC (hwnd)
[other program lines}

ReleaseDC (hwnd, hdc) ;

This device context includes the window caption bar, menu, scroll bars, and frame in addi
tion to the client area. The GetWindowDC function is rarely used. If you want to experi
ment with it, you should trap WM_NCPAINT ("nonclient paint") messages, which prevent
Windows from drawing on the nonclient area of the window.

496

Chapter 11: An Introduction to GDI

The BeginPaint, GetDG, and GetWindowDC calls obtain a device context associated
with a particular window. You can also obtain a device context for the entire display by
calling CreateDC:

hdc - CreateDC (lpszDriver, lpszDevice, lpszOutput, lpData)
[other program lines}

DeleteDC (hdc) ;

In the BLOWUPI program in Chapter 4 we used this function to obtain a device context
handle that allowed us to write outside our window's client area:

hdc = CreateDC ("DISPLAY", NULL, NULL, NULl) ;

Writing outside your windows is generally impolite, but it's convenient for some unusual
applications. (Although this fact is undocumented, you can also retrieve a device context
for the entire screen by calling GetDC with a NULL parameter.)

In Chapter 15 we'll use the CreateDC function to obtain a handle to a printer
device context:

hdcPrinter = CreateDC ("IBMGRX", "IBM Graphics", "LPn:", NULL) ;

Of course, we won't include the names of specific printers in our programs. Programs can
instead obtain this information from WIN .IN!.

Sometimes you need only to obtain some information about a device context and not
to do any drawing. In these cases, you can obtain a handle to an "information context"
using CreateIC. The parameters are the same as for the CreateDC function:

hdcInfo = CreateIC (lpszDriver, lpszDevice, lpszOutput, lpData) ;
[other program lines}

DeleteDC (hdcInfo) ;

You can't write to the device using this information context handle. We'll use this function
in the DEVCAPSI program shown later in this chapter to obtain an information context for
the display and the printer.

In the GRAFMENU program in Chapter 9, we obtained a memory device context to
manipulate some bitmaps. A memory device context is always created to be compatible
with an existing device context:

hdcMem = CreateCompatibleDC (hdc)
[other program lines}

DeleteDC (hdcMem) ;

When you first obtain a memory device context, the display surface that it represents con
tains exactly 1 pixel. We'll work more with memory device contexts in Chapter 13.

497

SECTION IV: THE GRAPHICS DEVICE INTERFACE

In Chapter 13 we'll also work with "metafiles." A metafile is a collection of GDI calls
encoded in binary form. You can create a metafile by obtaining a metafile device context:

hdcMeta - CreateMetaFile (lpszFilename)
[other program lines]

hmf - CloseMetaFile (hdcMeta) :

During the time that the metafile device context is valid, any GDI calls you make using
hdcMeta become part of the metafile. When you call C!oseMetaFile, the device context
handle becomes invalid. The function returns a handle to the metafile (hmf).

Getting Device Context Information

A device context usually refers to a physical display device such as a video display or a
printer. Often, you need to obtain information about this device, including the size of the
display (in terms of both pixels and physical dimensions) and its color capabilities. You can
get this information by calling the GetDeviceCaps ("get device capabilities") function:

nValue - GetDeviceCaps (hdc. nIndex) :

The nlndex parameter is 1 of 28 identifiers defined in WINDOWS.H. For instance, the
nlndex HORZRES causes GetDeviceCaps to return the width of the device in pixels; a
VERTRES parameter returns the height of the device in pixels. If hdc is a handle to a screen
device context, that's the same information you can get from GetSystemMetrics. If hdc is a
handle to a printer device context, then GetDeviceCaps returns the height and width of the
printer display area in pixels.

You can also use GetDeviceCaps to determine the device's capabilities of processing
various types of graphics. This is unimportant for the video display, but it becomes very im
portant when working with printers. For instance, most plotters can't draw bitmapped
images-and GetDeviceCaps can tell you that.

. The DEVCAPS1 Program

The DEVCAPSI program, shown in Figure 11-1, displays all the information available
from the GetDeviceCaps function for either the video display or the selected printer. (A
second version of this program, called DEVCAPS2, will be presented in Chapter 15.) If you
change the current printer using the Windows Control Panel program, DEVCAPSI updates
the printer information.

498

Chapter 11: An Introduction to aDI

Figure 11·1. The DEVCAPSI program. (continued)

499

SECTION IV: THE GRAPHICS DEVICE INTERFACE

. (continued)

500

Chapter 11: An Introduction to GDI

long FAR PASCALWndProc(HWNO hwnd, WORD message, WORD wParam, LONG lParam)
{
static short cxChar, tYChar. nCurrentDevice- 10M_SCREEN,

nCurrentlnfo - rOM_BASIC

(continued)

501

SECTION IV: THE GRAPHICS DEVICE INTERFACE

502

Chapter 11: An Introduction to GDI

DEVCAPS.C

1*" " " " " ~ ~. ~ ••••••••••• " •• " " " " " " ~ ~ .~. ~ ~ •••••••.••• ~" " " " " " " " ~ ~ ~ ~ ~
DEVGAPS.C·· Display routines for DEVCAPSI andDEVCAPS2

(c) Charles Petzold. 1990
.. ~'. " " " " " " " ." ~ ~~ ~ ~ ~ ..•.. ".' ...•. " " " •••. ~ ~ ~ ~ ~ ~ ~ .•.... ' * I

void DoBasiCInfo (HDChdc. HDChdcInfo.
{
stati cstrtict

(
short.IlIridex ;
char*szDesc
}
info[)=
{
HORZSIZE,
VERTSIZE j

HORZRES,
VERTRES,
BITSPIXEL,
PLANES,
NUMBRUSHES;
NUMPENS,
NUMMARKERS,
NUMFONTS.
NUMCOLORS,
PDEVICESIZE,
ASPECTX.
ASPECTY.
ASPECTXY.
LOGPIXELSX.
LOGPIXELSY,
SIZEPALETTE.
NUMRESERVED,
COLORRES,
F:

"HORZSIZE
"VERTSIZE
"HORZRES
"VERTRES
"BITSPIXEL
"PLANES
"NUMBRUSHES
"NUMPENS
"NUMMARKERS
"NUMFONTS
"NUMCOLORS
"PDEVICESIZE
"ASPECTX
"ASPECTY
"ASPECTXY
"LOGPIXELSX
"LOGPIXELSY
"SlZEPALETTE
"NUMRESERVED
"COLORRES

Width in millimeters:",
He; ght· i nmillimeters:" •
WidthJn pixels:".
Height in raster 1 ines:".
Color bits per pixel:".
Number of color planes:",
Number of device brushes:".
Number of device pens:",
Number of dey; ce markers :",
Number of device fonts:".
Number:of'device ~olors:".
Size of device structure:",
Relative~idth6fpixel:",
Relative height ofpix~l:",
Rel at; vediagonal .. of pixel:".
Horizontal, dotsperj nch: ".
Vertical dots perinch:l',
Number of palett~·entr1es:"~
Reserved palette entries:",
Actual color resolution:"

(continued)

503

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

504

Chapter 11: An Introduction to GDI

TextOut (hdc. cxChar. 4 * cyChar. szBuffer.
sprintf (szBuffer. "CLIPCAPS (Clippingcapab111ties)"»

for (i = a ; i < sizeof clip / sizeof clip [0] : i++)
TextOut (hdc, 9 * cxChar. (1 + 6) * cyChar. szBuffer,

sprintf (szBuffer, "%-165%-285 %35",
clip[i].s~Mask. clip[i).szDesc,
GetDeviceCaps (hdcInfo. CLIPCAPS)&clip[i].nMask?

"Yes" : "No"» ;

TextOut(hdc. cxChar. 8*cyChar. szBuffer,
sprintf(szBuffer, "RASTERCAPS(Raster capabilities)"»

(continued)

505

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

506

Chapter 11: An Introduction to GDI

TEXTCAPS, "TEXTCAPS (Text capabilities)",
(BITS (*)[]) text. sizeof text / sizeof text [0]

} ;

static char szBuffer [80] :
BITS (*pbits) [] = bitinfo [nType].pbits :
short nDevCaps - GetDeviceCaps (hdclnfo, bitinfo [nType].nlndex)
short i

TextOut (hdc, cxChar. cyChar, bitinfo [nType].szTitle.
strlen (bitinfo [nType].szTitle» ;

for (i ... 0 : i < bitinfo [nType].nSize : ;++)
TextOut (hdc. cxChar, (1+ 3) * cyChar, szBuffer,

spriptf (szBuffer. "%-165 %s %-32s %3s",
(*pbits)[i].szMask, "Can do". (*pbits)[i].szDesc.
nOevCaps & (*pbits)[1J.nMask ? "Yes" : "No"» ;

DEVCAPS1.RC

/*----------~-----------~------
DEVCAPS1.RC resource script
--------------~--------------*/

#include "devcapsl.h"

OevCaps MENU
{
POPUP "&Oevice"

{
MENUITEM "&Screen u

, 10M_SCREEN, CHECKED
MENU ITEM "&Printer", 10M_PRINTER
}

POPUP U&Capabilities"
{

MENU ITEM U&Basic Information", 10M_BASIC, CHECKED
MENUITEM "&Other Information", 10M_OTHER
MENU ITEM "&Curve Capabil iti es", IDM_CURVE
MENU ITEM &Line Capabi 1 iti es" , I OM_LINE
MENUITEM &Polygonal Capabilities",IOM_POLY
f1ENUITEM &Text Capabil iti es". I OM_TEXT
}

507

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The DEVCAPSI Device menu lets you select either the screen or the printer. Because DEV
CAPSI needs only to obtain information about this device, it gets a handle to an informa
tion context (using the CreateIC function) rather than to a device context. Getting an
information context handle for the video device is easy:

HIC = CreateIC ('\DISPLAY", NULL, NULL, NULl) ;

508

Chapter 11: An Introduction to GDI

However, an information context handle for the printer requires more complex code:

HOC GetPrinterIC ()
(
char szPrinter [64] :
char *szOevice, *szOriver, *szOutput :

Getprofil eStri ng ("wi ndows", "devi ce", "", sZPri nter, 64)

if «szOevice - strtok (szPrinter, ","» &&
(szOriver - strtok (NULL, ", "» &&
(szOutput = strtok (NULL, " ,"»)

return CreateIC (szOriver, szOevice, szOutput, NULL)

return NULL :
}

The selected printer is listed in the [windows} section of the WIN.lNI file in the
following format:

device-device name,driver filename,port

For an IBM Graphics printer connected to the LPTI printer port, the WIN .INI line is:

device-IBM Graphics,IBMGRX,LPTl:

IBM Graphics is the name of the printer, and IBMGRX.DRV is the name of the driver file.
To get an information context (or device context) for the current printer, you must

first obtain the character string following device= in WIN.lNI by using the GetProfileString
function. You must then parse this string into the three components: the device name, the
driver filename, and the port. You can.do this in various ways. I happened to use the C
strtok function, which is designed for parsing character strings separated by delimiters
such as commas and spaces. Note that the device name itself can have embedded blanks.

If you'd like to use DEVCAPSI to examine the device capabilities of other printers,
you can add printer driver files to your Windows subdirectory using the Control Panel pro
gram and then select each of these printers, one by one, as the current printer. Specify that
the port the printer is connected to is "NONE." An advantage of CreateIC over CreateDC
is that CreateDC returns a device context handle only if the printer is attached to a port,
whereas CreateIC doesn't care whether the printer is attached. To get an idea of the range
of devices you'll be dealing with, you might want to obtain the GetDeviceCaps information
for a few different types of printers, such as a simple nongraphics printer (the "Generic/
Text Only" printer), a sophisticated laser printer (the Apple LaserWriter Plus), and a plotter
(the Hewlett-Packard ColorPro). DEVCAPSI intercepts the WM_DEVMODECHANGE
message that Control Panel sends to all applications to signal that the current printer has
been changed.

509

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The Capabilities menu in DEVCAPsi lets you display one of six screens that show the
GetDeviceCaps information. Much of the DEVCAPSI code is dedicated to formatting this
information. When you choose the Basic Information option from the Capabilities menu,
the most important information is displayed, including the size of the display, the number
of pure colors it can display, and the organization of display memory into color planes and
color bits per pixel. Figure 11-2 shows this basic information for a VGA; Figure 11-3 shows
the information for an Apple LaserWriter Plus.

When you choose the Other Information option from the Capabilities menu, the pro
gram displays the type of device (usually "Raster device," "Raster printer," or "Vector plot
ter") and gives some information that is crucial for using printers, as you'll discover when
you come to Chapter 15. Figure 11-4 shows this display for an Apple LaserWriter Plus. The
RC_BITBLT identifier indicates that this printer can accept bitmaps; text-only printers and
plotters cannot, however, which means that some GDI functions won't work on them. The
RC_BANDING identifier indicates that this IBM printer, like many printers, requires
"banding" support, which means that the GDI module must print to the printer in seg
ments, each occupying a small section of the page. Again, we'll explore these issues
further in Chapter 16.

510

rzI Device Capabilities aa
.!levice ~apabilities

HORZSIZE
UERTSIZE
HORZRES
UERTRES
BITSPIXEL
PLAHES
HUMBRUSHES
HUMPEHS
HUMMARKERS
HUMFOHTS
HUMCOLORS
PDEUICESIZE
ASPECTX
ASPECTY
ASPECTXY
LOGPIXELSX
LOGPIXELSY
SIZEPALETTE
HUMRESERUED
COLORRES

Width in millimeters:
Height in millimeters:
width in pixels:
Height in raster lines:
Color bits per pixel:
Humber of color planes:
Humber of deuice brushes:
Humber of deuice pens:
Humber of deuice markers:
Humber of deuice fonts:
Humber of deuice colors:
Size of deuice structure:
Relatiue width of pixel:
Relatiue height of pixel:
Relatiue diagonal of pixel:
Horizontal dots per inch:
Uertical dots per inch:
Humber of palette entries:
Reserued palette entries:
Actual color resolution:

208
156
640
480

1
4

-1
80
o
o

16
35
36
36
51
96
96
o
o
o

Figure 11·2. The DEVCAPSI display invoked by choosing Basic Information
from the Capabilities menu when the specified device is an IBM VGA.

Chapter 11: An Introduction to GDI

== Device Capabilities aa
Ilcvlcc ~8pabllltics

HORZSIZE
UERTSIZE
HORZRES
UERTRES
BITSPIXEL
PLAHES
HUMBRUSHES
HUMPEHS
HUMMARKERS
HUMFOHTS
HUMCOLORS
PDEUICESIZE
ASPECTX
ASPECTY
ASPECTXY
LOGPIXELSX
LOGPIXELSY
SIZEPALETTE
HUMRESERUED
COLORRES

Width in nillineters:
Height in Aillineters:
Width in pixels:
Height in raster lines:
Color bits per pixel:
Hunber of color planes:
Hunber of deuice brushes:
Hunber of deuice pens:
Hunber of deuice Aarkers:
Hunber of deuice fonts:
Hunber of deuice colors:
Size of deuice structure:
Relatiue width of pixel:
Relatiue height of pixel:
Relatiue diagonal of pixel:
Horizontal dots per inch:
Uertical dots per inch:
Hunber of palette entries:
Reserued palette entries:
Actual color resolution:

203
274

2394
3231

1
1

17
8
o
4
2

712
300
300
424
300
300

o
o
o

Figure 11·3. The DEVCAPSl display invoked by choosing Basic Information
from the Capabilities menu when the specified device is an Apple LaserWriter Plus.

== Device Capabilities aa
Device Capabilities

DRIUERUERSIOH: 0300H
TECHHOLOGY: DT_RASPRIHTER (Raster printer)

CLIPCAPS (Clipping capabilities)

CP_RECTAHGLE Can Clip To Rectangle:

RASTERCAPS (Raster capabilities)

1II:

RC BITBLT
RC-BAHDIHG
RC-SCALlHG
RC-BITMAP64
RC-GDI20 OUTPUT
RC-DI BITMAP
RC-PALETTE
RC-DIBTODEU
RC-BIGFOHT
RC-STRETCHBLT
R()LOODFILL

Capable of siAple BitBlt:
Requires banding support:
Requires scaling support:
Supports bitnaps)64K:
Has 2.0 output calls:
Supports DIB to Aenory:
Supports a palette:
Supports bitnap conuersion:
Supports fonts)64K:
Supports StretchBlt:
Supports FloodFill:

Yes

Yes
Ho
Ho

Yes
Yes

Ho
Ho

Yes
Ho

Yes
Ho

Figure 11·4. The DEVCAPSl display invoked by choosing Other Information
from the Capabilities menu when the specified device is an Apple LaserWriter Plus.

511

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The other menu options in DEVCAPS display curve, line, polygon, and text capabili
ties. The information displayed indicates the type of graphics and text manipulation that
the device driver can handle. However, this information is much more important to Win
dows itself than to application programs-if the driver lacks one of these capabilities and
a program demands it, then the GDI module must assume the task. For instance, you don't
have to check to see if your printer is capable of drawing ellipses before you draw an
ellipse.

Th~ information that you can obtain from GetDeviceCaps using the CURVECAPS,
LINECAPS, POLYGONALCAPS, and TEXTCAPS parameters is encoded in bits in the return
value. Although the Programmer's Reference doesn't indicate it, WINDOWS.H includes
identifiers beginning with the letters CC, LC, PC, and TC to help you mask out the bits
you want.

The Size of the Device

The most important information that your Windows program can obtain about the video
device from GetDeviceCaps is the size of the display (in both millimeters and pixels) and
the display's pixel aspect ratio. These dimensions can help in scaling images to be dis
played. To give you some idea of what these numbers look like, the table below presents
information from GetDeviceCaps for four common IBM video adapters: the Color/Graphics
Adapter (CGA), Enhanced Graphics Adapter (EGA), the Video Graphics Array (VGA), and
the 8514/A:

GetDeviceCaps Index CGA EGA VGA 8514/A

HORZSIZE (width in mm) 240 240 208 280

VERTSIZE (height in mm) 180 175 156 210

HORZRES (pixel width) 640 640 640 1024

VERTRES (pixel height) 200 350 480 760

ASPECTX (horizontal) 5 38 36 10

ASPECTY (vertical) 12 48 36 14

ASPECTXY (diagonal) 13 61 51 14

LOGPIXELSX (x pixels/inch) 96 96 96 120

LOGPIXELSY (y pixels/inch) 48 72 96 120

The HORZSIZE and VERTSIZE values are the width and height of the display area in
millimeters. Of course, the Windows driver doesn't really know the size of the display you
have attached to your video adapter. These dimensions are based on standard display sizes
for the adapters.

The HORZRES and VERTRES values are the width and height of the display area in
pixels. For a device context for a video display, these are the same values as those returned
from GetSystemMetrics.

512

Chapter 11: An Introduction to GDI

The ASPECT X, ASPECTY, and ASPECTXY values are the relative width, height, and
diagonal size of each pixel. ASPECTXY equals the square root of the sum of ASPECTX
squared and ASPECTY squared.

The LOGPIXELSX and LOGPIXELSY values are the number of pixels per a horizontal
and a vertical "logical inch." A logical inch is not a real inch (25.4 mm), as you can easily
determine by performing a few calculations using the HORZSIZE, VERTSIZE, HORZRES,
and VERTRES values. These LOGPIXELSX and LOGPIXELSY values require a little ex
planation. You may have noticed that the WRITE program and some other Windows pro
grams display a ruler that isn't quite right: If you measure the ruler as displayed on an VGA,
you'll find that what it declares as 1 inch is really more like 1Yz inches. These programs are
using the LOGPIXELSX and LOGPIXELSYvalues for the ruler. If WRITE used actual physi
cal dimensions, normal10-point or 12-point text would be so small as to be nearly illegible.
These logical dimensions in effect blow up the display to allow an adequate size for dis
playing text. When we start working with text and fonts in Chapter 14, we'll wrestle again
with this problem. It affects only video displays; for printers, all the dimensions returned
from GetDeviceCaps are consistent.

Finding Out About Color

During the discussion of bitmaps in Chapter 8, I noted the two ways in which memory in a
video display adapter can be organized for color. In some video adapters, memory is
organized into a number of color planes. Within a plane, each bit corresponds to a single
pixel and represents a particular primary color (such as red, green, or blue). Other video
adapters have a single color plane, in which a number of adjacent bits represent the color of
each pixel.

GetDeviceCaps lets you determine the organization of memory in the video adapter
and the number of colors it can represent. This call returns the number of color planes:

nPlanes - GetDeviceCaps (hdc. PLANES) ;

This call returns the number of color bits per pixel:

nBitsPixel - GetDeviceCaps (hdc. BITSPIXEL) ;

Most graphics display devices that are capable of color use either multiple color planes or
multiple color bits per pixel, but not both; in other words, one of these calls will return a
value of 1. The number of colors that can be rendered on the video adapter can be calcu
lated by the formula:

nColors - 1« (nPlanes * nBitsPixel) ;

This value mayor may not be the same as the number of colors obtainable with the
NUMCOLORS parameter:

nColors - GetDeviceCaps (hdc. NUMCOLORS) ;

513

SECTION IV: THE GRAPHICS DEVICE INTERFACE

These two numbers will be different for most plotters. For a plotter, both the PLANES and
BITSPIXEL values will equal 1, but the NUMCOLORS value will reflect the number of col
ored pens that the plotter has. For monochrome devices, GetDeviceCaps returns a 2 for the
NUMCOLORS parameter.

The two values can also be different for video adapters that support load able color
palettes under Windows 3 (such as the IBM 8514/A adapter). The 8514/A has 1 plane and 8
bits per pixel, which means that 256 colors are possible. GetDeviceCaps with the NUM
COLORS parameter returns the number of colors reserved by Windows (20 in the case of
the 8514/A). The remaining 236 colors can be set by a Windows program.

The number of colors returned from GetDeviceCaps is the number of pure colors that
the device can display. Windows can use dithering (which involves a pixel pattern
that combines pixels of different colors) to represent colors in addition to the pure colors.

A color is usually represented by an unsigned long integer with 3 bytes, one each for
the intensity of red, green, and blue. (Chapters 5 and 6 discussed this subject in greater
detail.) You can determine the closest pure color of a particular color value by calling
GetNearestColor:

rgbPureColor = GetNearestColor (hdc. rgbColor)

The Device Context Attributes

As I noted above, Windows uses the device context to store "attributes" that govern how
the GDI functions operate on the display. For instance, when you display some text using
the TextOut function, you don't have to specify the color of the text or the font. Windows
uses the device context to obtain this information.

When a program obtains a handle to a device context, Windows creates a device con
text with default values for all the attributes. The device context attributes are shown in the
following table. A program can change or obtain any of the attributes.

Device Context
Attribute Default

Mapping mode MM_ TEXT

Window origin (0, 0)

Viewport origin (0, 0)

Window extents (1, 1)

514

Function(s) to Change

SetMapMode

SetWindowOrg

Set ViewportOrg

SetWindowExt

Function(s) to Get

GetMapMode

GetWindowOrg
Offset WindowOrg

Get ViewportOrg
Offset ViewportOrg

GetWindowExt
SetMapMode

(continued)

Chapter 11: An Introduction to GDI

continued

Device Context
AUribute Default Function(s) to Change Function(s) to Get

Viewport 0,1) Set ViewportExt Get ViewportExt
extents SetMapMode

Pen BLACK_PEP SelectObject SelectObject

Brush WHITE_BRUSH SelectObject SelectObject

Font SYSTEM_FONT SelectObject SelectObject

Bitmap None SelectObject SelectObject

Current pen (0,0) MoveTo GetCurrentPosition
position LineTo

Background OPAQUE SetBkMode GetBkMode
mode

Background White SetBkColor GetBkColor
color

Text color Black SetTextColor GetTextColor

Drawing mode R2_COPYPEN SetROP2 GetROP2

Stretching mode BLACK- SetPolyFilIMode GetPolyFilIMode
ONWHITE

Polygon filling ALTERNATE SetPo/yFilIMode GetPolyFilIMode
mode

Intercharacter ° SetTextCharacterExtra GetTextCharacterExtra
spacing

Brush origin (0, 0) in screen SetBrushOrg GetBrushOrg
coordinates

Clipping region None SelectObject SelectObject

SelectClipRgn GetClipBox
IntersectClipRect
O!fsetClipRgn
Exc!udeClipRect

Saving Device Contexts

Throughout Section IV, you'll encounter various functions to change the device context at
tributes. Normally, Windows creates a new device context with default values when you
call GetDC or BeginPaint. All changes you make to the attributes are lost when the device
context is released with the ReleaseDC or the EndPaint call. If your program needs to use
nondefault device context attributes, you'll have to initialize the device context every time
you obtain a device context handle:

515

SECTION IV: THE GRAPHICS DEVICE INTERFACE

WM_PAINT :
hdc = BeginPaint (hwnd, &ps) :
!initialize device context attributes]

[paint client area of wfndow]

EndPaint (hwnd, &ps) :
return 0 :

Although this approach is generally satisfactory, you might prefer that changes you
make to the device context attributes be saved when you release the device context, so
they will be in effect the next time you call GetDC or BeginPaint. You can accomplish this
by including the CS _ OWNDC flag as part of the window class when you register the
window class:

wndclass.style = CS_HREDRAW : CS_VREDRAW : CS_OWNDC :

Now each window that you create based on this window class will have its own private
device context that exists until the window is destroyed. When you use the CS _ OWNDC
style, you need to initialize the device context attributes only once, perhaps during pro
cessing of the WM_CREATE message:

WM_CREATE :
hdc = Get DC (hwnd) :
!initialize device context attributes]
ReleaseDC (hwnd, hdc) :

The attributes continue to be valid until you change them.
The CS_OWNDC style affects only the device contexts retrieved from GetDC and

BeginPaint and not device contexts obtained from the· other functions (such as Get
WindowDC). The CS_OWNDC style is not without its cost: Windows requires about 800
bytes to store the device context for each window created with this style. Even if you use
CS_OWNDC, you must still release the device context before exiting the window function.

You can also use the CS_CLASSDC style:

wndclass.style = CS_HREDRAW : CS_VREDRAW CS_CLASSDC

This causes each window class to have its own device c~ntext that is shared by all windows
created based on that class-even by windows created in other instances of the same pro
gram. Now you can initialize the device context attributes once in WinMain following
creation of the first window based on that window class:

516

if (!hPrevlnstance)
{
hdc = GetDC (hwnd)
!initialize device context]

ReleaseDC (hwnd, hdc) :
}

Chapter 11: An Introduction to GDI

In general, the CS _ CLASSDC type of device context is more difficult to use than the
CS_OWNDC type, because any changes you make to the device context attributes affect all
windows in all instances based on the same window class. This could have some strange
effects, particularly if you use a customized mapping mode (a subject coming up shortly)
based on the size of the window.

In some cases you might want to change certain device context attributes, do some
painting using the changed attributes, and then revert to the original device context. To
simplify this proces~, you save the state of a device context by calling:

nSavedID = SaveDC (hdc) ;

Now you change some attributes. When you want to return to the device context as it
existed before the SaveDC call, you use:

RestoreDC (hdc. nSavedID) ;

You can call SaveDC any number of times before calling RestoreDG. If you want to revert to
the device context as it existed before the last SaveDC call, you call:

RestoreDC (hdc. -1) ;

THE MAPPING MODE
One device context attribute that affects virtually all the drawing you do on the client area
is the "mapping mode." Four other device context attributes-the window origin, the
viewport origin, the window extents, and the viewport extents-are closely related to
the mapping mode attribute.

Most of the GDI drawing functions require coordinate values or sizes. For instance,
this is the TextOut function:

TextOut (hdc. x. y. szBuffer. nLength) ;

The xandyparameters indicate the starting position of the text. The x parameter is the po
sition on the horizontal axis, and the y parameter is the position on the vertical axis. Often
the notation (x, y) is used to indicate this point.

In TextOut, as in virtually all GDI functions, these coordinate values are in terms of
"logical units." Windows must translate the logical units into "device units," or pixels. This
translation is governed by the mappIng mode, the window and viewport origins, and the
window and viewport extents. The mapping mode also implies an origin and orientation
of the x-axis and the y-axis; that is, it determines whether values of x increase as you move
toward the left or right side of the display and whether values of y increase as you move up
or down the display.

Windows defines eight mapping modes. These are listed in the table on the following
page using the WINDOW.H identifiers.

517

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Increasing Values
Mapping Mode Logical Unit x-axis y-axis

MM_TEXT Pixel Right Down

MM_LOMETRIC O.lmm Right Up

MM_HIMETRIC 0.01 mm Right Up

MM_LOENGLISH 0.01 in. Right Up

MM_HIENGLISH 0.001 in. Right Up
MM_TWIPS· Vt440 in. Right Up

MM_ISOTROPIC Arbitrary ex = y) Selectable Selectable

MM_ANISOTROPIC Arbitrary ex!= y) Selectable Selectable

* Twip is a fabricated word meaning "twentieth of a point." A point, which is a unit of measurement for type, is ap
proximately Y-!2 inch but often assumed in graphics systems such as GDI to be exactly Y-!2 inch. A twip is Y20 point
and hence Y1440 inch.

You can set the mapping mode by:

SetMapMode (hdc, nMapMode) ;

where nMapMode is one of the eight mapping mode identifiers. You can obtain the current
mapping mode by calling:

nMapMode - GetMapMode (hdc) ;

The default mapping mode is MM_ TEXT. In this mapping mode, logical units are the
same as physical units, which allows us (or, depending on your perspective, forces us) to
work directly in terms of pixels. In a TextOut call that looks like this:

TextOut (hdc, 8, 16, 5zBuffer, nLength) ;

the text begins 8 pixels from the left of the client area and 16 pixels from the top.
If the mapping mode is set to MM_LOENGLISH, then logical units are in terms of

hundredths of an inch:

SetMapMode (hdc, MM_LOENGLISH)

Now the TextOut function call might look like this:

TextOut (hdc, 50, -100, 5zBuffer, nLength) ;

The text begins 0.5 inch from the left and 1 inch from the top of the client area. (The reason
for the negative sign in front of the y-coordinate will become clear later when I discuss the
mapping modes in more detail.) Other mapping modes allow programs to specify coordi
nates in terms of millimeters, a printer's point size, or an arbitrarily scaled axis.

If you feel comfortable working in terms of pixels, you don't need to use any mapping
modes except the default MM_ TEXT mode. If you need to display an image in actual inch

518

Chapter 11: An Introduction to GDI

or millimeter dimensions, you can obtain the information you need from GetDeviceCaps
and do your own scaling. The other mapping modes are simply a convenient way to avoid
doing your own scaling.

Regardless of the mapping mode, all coordinates you specify in Windows functions
must be signed short integers in the range 32,767 through -32,768. Some Windows func
tions that use coordinates for the starting point and ending point of a rectangle also require
that the width and height of the rectangle be 32,767 or less.

Device Coordinates and Logical Coordinates

You may ask: If I use the MM_LOENGLISH mapping mode, will I start getting WM_SIZE
messages in terms of hundredths of an inch? Absolutely not. Windows continues to use
device coordinates for all messages (such as WM_MOVE, WM_SIZE, and WM
_MOUSEMOVE), for all non-GDI functions, and even for some GDI functions. Think of it
this way: The mapping mode is an attribute of the device context, so the only time the
mapping mode comes into play is when you use GDI functions that require a handle to the
device context as one of the parameters. GetSystemMetrics is not a GDI function, so it will
continue to return sizes in terms of device units, which are pixels. And although Get
DeviceCaps is a GDI function that requires a handle to a device context, Windows con
tinues to return device units for the HORZRES and VERTRES indexes, because one of the
purposes of this function is to provide a program with the size of the device in pixels.

However, the values in the TEXTMETRIC structure that you obtain from the GetText
Metrics call are in terms of logical units. If the mapping mode is MM_LOENGLISH at the
time the call is made, GetTextMetrics provides character widths and heights in terms of
hundredths of an inch. When you call GetTextMetrics for information about the height and
width of characters, the mapping mode should be set to the same mapping mode that you'll
be using when you draw text based on these sizes. As I cover the various GDI functions in
this and subsequent chapters, I'll note whether they use device coordinates or logical
coordinates.

The Device Coordinate Systems

Windows maps logical coordinates specified in GDI functions to device coordinates.
Before we discuss the logical coordinate systems used with the various mapping modes,
let's examine the different device coordinate systems that Windows defines for the video
display area. Although we have been working mostly within the client area of our window,
Windows uses two other device coordinate areas at various times. In all device coordinate
systems, units are in terms of pixels. Values on the horizontal, or x, axis increase from left
to right, and valu!=s on the vertical, or y, axis increase from top to bottom.

When we use the entire screen, we are working in terms of "screen coordinates."
The upper left corner of the screen is the point (0, 0). Screen coordinates are used in the

519

SECTION IV: THE GRAPHICS DEVICE INTERFACE

WM_MOVE message (for nonchild windows) and in the following Windows functions:
CreateWindow and MoveWindow (both for nonchild windows), GetMessagePos, GetCur
sorPos, SetCursorPos, GetWindowRect, WindowFromPoint, and SetBrushOrg. These are
generally either functions that don't have a window associated with them (such as the two
cursor.functions) or functions that must move (or find) a window based on a screen point.
If you use CreateDC with a "DISPLAY" parameter to obtain a device context for the entire
screen, then logical coordinates specified in GDI calls will be mapped to screen
coordinates.

"Whole-window coordinates" refer to a program's entire window, including the cap
tion bar, menu, scroll bars, and window frame. For a normal window, the point (0, 0) is the
upper left corner of the sizing border. Whole-window coordinates are rare in Windows, but
if you obtain a device context from GetWindowDG, logical coordinates in GDI functions
will be mapped to whole-window coordinates.

The third device coordinate system-the one we've been working with the most
uses "client-area coordinates." The point (0,0) is the upper left corner of the client area.
When you obtain a device context using GetDCor BeginPaint, logical coordinates in GDI
functions are translated to client-area coordinates.

You can convert client-area coordinates to screen coordinates and vice versa using
the functions ClientToScreen and Screen ToClient. You can also obtain the position and
size of the whole window in terms of screen coordinates using the GetWindowRect func
tion. These three functions provide enough information to translate from anyone device
coordinate system to any other.

The Viewport and the Window

The mapping mode defines how Windows maps logical coordinates that are specified in
GDI functions to device coordinates, where the particular device coordinate system de
pends on the function you us~ to obtain the device context. To continue our discussion of
the mapping mode, we need some additional terminology: The mapping mode is said
to define the mapping of the "window" (logical coordinates) to the "viewport" (device
coordinates).

The use of the words window and viewport is unfortunate. In other graphics inter
face languages, viewport often implies a clipping region. We've been using the word win
dow to talk about the area that a program occupies on the screen. We'll have to put aside
our preconceptions about these words during this discussion.

The "viewport" is in terms of device coordinates (pixels). Most often, the viewport is
the same as the client area, but it can also refer to whole-window coordinates or screen
coordinates if you've obtained a device context from GetWindowDC or CreateDG. The
point (0, 0) is the upper left corner of the client area (or the whole window or the screen).
Values of x increase to the right, and values of y increase going down.

520

Chapter 11: An Introduction to GDI

The "window" is in terms of logical coordinates, which may be pixels, millimeters,
inches, or any other unit you want. You specify logical window coordinates in the GDI
functions.

For all mapping modes, Windows translates window (logical) coordinates to
viewport (device) coordinates by the use of two formulas:

. xViewExt
xVzewport = (xWindow - xWinOrg) * xWinExt + xViewOrg

yViewExt
yViewport = (yWindow - yWinOrg) * yWinExt + yViewOrg

where (xWindow, yWindow) is a logical point to be translated, and (xViewport, yViewport)
is the translated point in device coordinates. If the device coordinates are client-area coor
dinates or whole-window coordinates, then Windows must also translate these device
coordinates to screen coordinates before drawing an obj ect.

These formulas use two points that specify an "origin" of the window and the
viewport: (x Win Org, yWinOrg) is the window origin in logical coordinates; (xViewOrg,
y ViewOrg) is the viewport origin in device coordinates. In the default device context, these
two points are set to (0, 0), but they can be changed. The formulas imply that the logical
point (xWinOrg, yWinOrg) is always mapped to the device point (xViewOrg, yViewOrg).

The formulas also use two points that specify "extents": (xWinExt, yWinExt) is the
window extent in logical coordinates; (xViewExt, yViewExt) is the viewport extent in de
vice coordinates. In most mapping modes, the extents are implied by the mapping mode
and cannot be changed. Each extent means nothing by itself, but the ratio of the viewport
extent to the window extent is a scaling factor for converting logical units to device units.
The extents can be negative: This implies that values on the logical x-axis don't necessarily
have to increase to the right and that values on the logical y-axis don't necessarily have to
increase going down.

Windows can also translate from viewport (device) coordinates to window (logical)
coordinates:

xWinExt
xWindow = (xViewport - xViewOrg) * xViewExt + xWinOrg

. . . yWinExt .
yWzndow = (yVtewport - yVzewOrg) * yViewExt + yWznOrg

Windows provides two functions that let you convert device points to logical points
and vice versa within a program. The following function converts device points to logical
points:

DPtoLP (hdc. lpPoints. nNumber)

521

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The variable IpPoints is a long pointer to an array of POINT structures, and nNumber is
the number of points to be converted. You'll find this function useful for converting the
size of the client area obtained from GetClientRect (which is always in terms of device
units) to logical coordinates:

GetClientRect (hwnd. &rect) ;
DPtoLP (hdc. (LPPOINT) &rect. 2) ;

This function converts logical points to device points:

LPtoDP (hdc. lpPoints. nNumber)

Working with MM_ TEXT

For the MM_ TEXT mapping mode, the default origins and extents are shown below:

Window origin: (0,0) Can be changed

Viewport origin: (0,0) Can' be changed

Window extent: (1,1) Cannot be changed

Viewport extent: 0,1) Cannot be changed

The ratio of the viewport extent to the window extent is 1, so no scaling is performed be
tween logical coordinates and device coordinates. The formulas shown on the preceding
page reduce to these:

xViewport = xWindow - xWinOrg + xViewOrg

yViewport = yWindow - yWinOrg + yViewOrg

This mapping mode is called a "text" mapping mode not because it's most suitable
for text but because of the orientation of the axes. We read text from left to right and top to
bottom, and Ml\1_TEXT defines values on the axes to increase the same way:

~.+X
~+y

Windows provides the functions SetViewportOrg and SetWindowOrg for changing the
viewport and window origins. These functions have the effect of shifting the. axis so that

522

Chapter 11: An Introduction to GDI

the logical point (0,0) no longer refers to the upper left corner. Generally, you'll use either
Set ViewportOrg or Set WindowOrg but not both.

Here's how these functions work: If you change the viewport origin to (xViewOrg,
yViewOrg), then the logical point (0,0) will be mapped to the device point (xViewOrg,

yViewOrg). If you change the window origin to (xWinOrg, yWinOrg), then the logical
point (xWinOrg, yWinOrg) will be mapped to the device point (0, 0), which is the upper
left corner. Regardless of any changes you make to the window and viewport origins, the
device point (0, 0) is always the upper left corner of the client area.

For instance, suppose your client area is cxClient pixels wide and cyClient pixels
high. If you want to define the logical point (0,0) to be the center of the client area, you can
do so by calling:

SetViewportOrg (hdc. cxClient / 2. cyClient / 2) ;

The arguments to SetViewportOrg are always in terms of device units. The logical point
(0,0) will now be mapped to the device point (cxClient/2, cyClient/2). Now you use your
client area as if it had the following coordinate system:

~

-y

-x +x

The logical x-axis ranges from -cxClient /2 to +cxClient /2, and the logical y-axis ranges
from -cyClient /2 to +cyClient /2. The lower right corner of the client area is the logical
point (cxClient/2, cyClient/2). If you want to display text starting at the upper left corner
of the client area, which is the device point (0, 0), you need to use negative coordinates:

TextOut (hdc. -cxClient / 2. -cyClient / 2. "Hello". 5) ;

You can achieve the same result with SetWindowOrg as you did with SetViewportOrg:

SetWindowOrg (hdc. -cxClient / 2. -cyClient / 2) ;

The arguments to SetWindowOrg are always in terms of logical units. After this call, the
logical point (-cxClient /2, -cyClient /2) is mapped to the device point (0, 0), the upper
left corner of the client area.

523

SECTION IV: THE GRAPHICS DEVICE INTERFACE

What you probably don't want to do (unless you know what's going to happen) is to
use both functions together:

SetViewportOrg (hdc. cxClient / 2. cyClient / 2) :
SetWindowOrg (hdc. -cxClient / 2. -cyClient / 2) :

This means that the logical point (-cxClient /2, -cyClient /2) is mapped to the device
point (cxClient /2, cyClient /2), giving you a coordinate system that looks like this:

-y t
~

You can obtain the current viewport and window origins from these functions:

dwViewOrigin = GetViewportOrg (hdc)

dwWindowOrigin = GetWindowOrg (hdc)

Both functions return DWORDs (unsigned longs). The x-origin is in the low word and the
y-origin is in the high word. You can use the LOWORD and HIWORD macros to extract
these two values from the DWORD. The values returned from GetViewportOrg are in de
vice coordinates; the values returned from GetWindowOrg are in logical coordinates.

You might want to change the viewport or window origin to shift display output
within the client area of your window-for instance, in response to scroll bar input from
the user. Changing the viewport or window origin doesn't shift the display output immedi
ately, of course. You change the origin and then repaint the display. For instance, in the
SYSMETS2 program in Chapter 2, we used the n VscrollPos value (the current position of
the vertical scroll bar) to adjust the y-coordinates of the display output:

524

case WM_PAINT:
BeginPaint (hwnd. &ps) :

for (i = 0 : i < NUMLINES : i++)
{

y = cyChar * (1 - nVscrollPos + i)
[display text]

}

EndPaint (hwnd. &ps)
return 0

Chapter 11: An Introduction to GDI

We can achieve the same result using SetWindowOrg:

case WM_PAINT:
BeginPaint (hwnd, &ps) ;

SetWindowOrg (ps.hdc, 0, cyChar * nVscrollPos)

for (i = 0 ; i < NUMLINES i++)
{
y = cyChar * (1 + i)
[display text}

}

EndPaint (hwnd, &ps) ;
return 0

Now the calculation of the y-coordinate for the TextOut functions doesn't require the
n VscrollPos value. This means you can put the text output functions in a subroutine and
not have to pass the n VscrollPos value to the subroutine, because we adjust the display of
the text by changing the window origin.

If you have some experience working with rectangular (or Cartesian) coordinate sys
tems, moving th~ logical point (0,0) to the center of the client area as we did earlier may
have seemed a reasonable action. However, there's a slight problem with the MM_ TEXT
mapping mode: A Cartesian coordinate system defines values on the y-axis to increase as
you move up the axis, whereas MM_TEXT defines the values to increase as you move
down. In this sense, MM_ TEXT is an oddity, and these next five mapping modes do it
correctly.

The "Metric" Mapping Modes

Windows includes five mapping modes that express logical coordinates in physical mea
surements. Because logical coordinates on the x-axis and y-axis are mapped to identical
physical units, these mapping modes help you to draw round circles and square squares.

The five "metric" mapping modes are arranged below in order of lowest precision to
highest precision. The two columns at the right show the size of the logical units in terms
of inches (in.) and millimeters (mm) for comparison:

Mapping Mode Logical Unit Inch Millimeter

MM_LOENGLISH 0.01 in. 0.01 0.254

MM_LOMETRIC O.lmm 0.00394 0.1

MM_HIENGLISH 0.001 in. 0.001 0.0254

MM_TWIPS· Y1440 in. 0.000694 0.0176

MM_HIMETRIC 0.01 mm 0.000394 0.01

*A twip equals Yzo of a point, which itself equals Y72 inch.

525

SECTION IV: THE GRAPHICS DEVICE INTERFACE

To give you an idea of how the MM_ TEXT mode fits in with these resolutions, on a
standard EGA display each pixel is 0.375 mm wide and 0.5 mm tall, so EGA device coordi
nates are coarser than the logical coordinates for any of the metric mapping modes.

On a 300-dots-per-inch laser printer, each pixel is 0.0033 inch-a higher resolution
than MM_LOENGLISH and MM_LOMETRIC but not as high as MM_HIENGLISH,
MM_ TWIPS, or MM_HIMETRIC.

The default origins and extents are shown below:

Window origin: (0,0) Can be changed

Viewport origin: (0,0) Can be changed

Window extent: (?, ?) Cannot be changed

Viewport extent: (?, ?) Cannot be changed

The window and viewport extents depend on the mapping mode and the aspect ratio of
the device. As I mentioned earlier,. the extents aren't important by themselves but take on
meaning only when expressed as ratios. Here are the translation formulas again: .

xViewExt
xViewport = (xWindow - xWinOrg)" lV;:' E t + xViewOrg

Xwln x

yViewExt
yViewport = (yWindow - yWinOrg)" lV;:' E t + yViewOrg ywm x

For MM_LOENGLISH, for instance, Windows calculates the extents to be the following:

xViewExt
xWinExt = number of horizontal pixels in 0.01 in.

yViewExt _
yWinExt - number of vertIcal pIxels m 0.01 m.

For many display devices (such as the EGA), this ratio will be less than 1. Because Windows
works entirely with integers, the use of a ratio rather than an absolute scaling factor is
necessary to reduce loss of precision when converting logical and device coordinates.

Notice the negative sign in front of the ratio of extents for the vertical axis. This nega
tive sign changes the orientation of the y-axis. For these five mapping modes, y values in
crease as you move up the device. The default window and viewport origins are (0, 0). This
fact has an interesting implication. When you first change to one of these five mapping
modes, the coordinate system looks like this:

526

Chapter 11: An Introduction to GDI

~
~-y

The only way you can display anything in the client area is to use negative values of y.
For instance, this code:

SetMapMode (hdc. MM_LOENGLISH) ;
TextOut (hdc. 100. -100. "Hello". 5) ;

displays Hello 1 inch from the top and left edges of the client area.
To preserve your sanity, you'll probably want to avoid this. One solution is to set the

logical (0, 0) point to be the lower left corner of the client area. Assuming that cyClient is
the height of the client area in pixels, you can do this by calling SetViewportOrg:

SetViewportOrg (hdc. O. cyClient) ;

Now the coordinate system looks like this:

Ly·

+x

Alternatively, you can set the logical (0, 0) point to the center of the client area:

SetViewportOrg (hdc. cxClient / 2. cyClient / 2) ;

527

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The coordinate system looks like this:

,
+y

~ -x +x ,

-y
'If

Now we have a real four-quadrant Cartesian coordinate system with equal logical units on
the x-axis and y-axis in terms of inches, millimeters, or twips.

You can also use the SetWindowOrg function to change the logical (0, 0) point, but
the task is a little more difficult because the parameters to SetWindowOrg have to be in
logical coordinates. You would first need to convert cyClient to a logical coordinate using
the DPtoLP function. Assuming that the variable pt is a structure of type POINT, this code
changes the logical (0, 0) point to the center of the client area:

pt.x = cxClient ;
pt.y = cyClient ;
DPtoLP (hdc. &pt. 1) ;
SetWindowOrg (hdc. -pLx. -pLy) ;

The "Roll Your Own" Mapping Modes

The two remaining mapping modes are called MM_ISOTROPIC and MM_ANISOTROPIC.
These are the only two mapping modes for which Windows lets you change the viewport
and window extents, which means that you can change the scaling factor that Windows
uses to translate logical and device coordinates. The word isotropic means "equal in all
directi'ons"; anisotropic is the opposite-"not equal." Like the metric mapping modes
shown ~arlier, MM_ISOTROPIC uses equally scaled axes. Logical units on the x-axis have
the same physical dimensions as logical units on the y-axis. This helps when you need to
create images that retain the correct aspect ratio regardless of the aspect ratio of the
display device.

The difference between MM_ISOTROPIC and the metric mapping modes is that with
MM_ISOTROPIC you can control the physical. size of the logical unit. If you want, you can
adjust the physical size of the logical unit based on the size of the client area so that the im
ages you draw are always contained within the client area, shrinking and expanding ap
propriately. For instance, the CLOCK and REVERSI programs included with Windows are
examples of isotropic images. The clock is always round, and the Reversi playing board is

528

Chapter 11: An Introduction to GDI

always square. As you size the window, the image is resized appropriately. A Windows
program can handle the resizing of an image entirely through adjusting the window and
viewport extents. The program can then use the same logical units in the drawing func
tions regardless of the size of the window.

Sometimes the MM_ TEXT and the "metric" mapping modes are called "fully con
strained" mapping modes. This means that you cannot change the window and viewport
extents and the way that Windows scales logical coordinates to device coordinates.
MM_ISOTROPIC is a "partly constrained" mapping mode. Windows allows you to change
the window and viewport extents, but it adjusts them so that x and y logical units represent
the same physical dimensions. The MM_ANISOTROPIC . mapping mode is "un
constrained." You can change the window and viewport extents, and Windows doesn't
adjust the values.

The MM_ISOTROPIC mapping mode
The MM_ISOTROPIC mapping mode is ideal for using arbitrary axes while preserving
equal logical units on the two axes. Rectangles with equal logical widths and heights are
displayed as squares. Ellipses with equal logical widths and heights are displayed as
circles.

When you first set the mapping mode to MM_ISOTROPIC, Windows uses the same
window and viewport extents that it uses with MM_LOMETRIC. (Don't rely on this fact,
however.) The difference is that you can now change the extents to suit your preferences
by calling SetWindowExtand SetViewportExt. Windows will then adjust the extents so that
the logical units on both axes represent equal physical distances.

Generally, you'll use parameters to SetWindowExt with the desired logical size of the
logical window, and parameters to SetViewportExtwith the actual height and width of the
client area. When Windows adjusts these extents, it has to fit the logical window within the
physical viewport, which can result in a section of the client area falling outside the logical
window. You should call SetWindowExt before you call SetViewportExt to make the most
efficient use of space in the client area.

For instance, suppose you want a "traditional" one-quadrant virtual coordinate sys
tem where (0, 0) is at the lower left corner of the client area and the width ranges from 0 to
32,767 and the height from 0 to 32,767. You want the x and y units to have the same physical
dimensions. Here's what you need to do:

SetMapMode (hdc. MM_ISOTROPIC) ;
SetWindowExt (hdc. 32767. 32767) ;
SetViewportExt (hdc. cxClient. -cyClient)
SetViewportOrg (hdc. O. cyClient) ;

If you then obtain the window and viewport extents using GetWindowExt and GetView
portExt, you'll find that they are not the values you specified. Windows adjusts the extents
based on the aspect ratio of the display device so that logical units on the two axes repre
sent the same physical dimensions.

529

SECTION IV: THE GRAPHICS DEVICE INTERFACE

If the client area is wider than it is high (in physical dimensions), Windows adjusts
the x extents so that the logical window is narrower than the client-area viewport. The
logical window will be positioned at the left of the client area:

~, 32,767

+y

+x 32,767

You can't display anything starting on the right side of the client area beyond the range of
the x-axis, because that requires a logical x-coordinate greater than 32,767.

If the client area is higher than it is wide (in physical dimensions), Windows adjusts
the yextents. The logical window will be positioned at the bottom of the client area:

~~32,767

+y

+x 32,767 ..

Now you can't display anything at the top of the client area, because you need a logical
y-coordinate greater than 32,767.

If you prefer that the logical window always be positioned at the left and top of the
client area, you can change the code on the preceding page to the following:

530

SetMapMode (hdc. MM_ISOTROPIC) :
SetWindowExt (hdc. 32767. 32767) ;
SetViewportExt (hdc. cxClient. -cyClient)
SetWindowOrg (hdc. 0, 32767) :

Chapter 11: An Introduction to GDI

In the SetWindowOrg call we're saying that we want the logical point (0, 32,767) to be
mapped to the device point (0, 0). Now if the client area is higher than it is wide, the coor
dinates are arranged like this:

~32,767

+y

+x 32,767

For a CLOCK-like image, you might want to use a four-quadrant Cartesian coordinate sys
tem with arbitrarily scaled axes in four directions where the logical point (0, 0) is in the
center of the client area. If you want each axis to range from ° to 1000 (for instance), you
use this code:

SetMapMode (hdc, MM_ISOTROPIC) ;
SetWindowExt (hdc, 1000, 1000) ;
SetViewportExt (hdc, cxClient / 2, -cyClient / 2) ;
SetViewportOrg (hdc, cxClient / 2, cyClient / 2) ;

The logical coordinates look like this if the client area is wider than it is high:

-x +x

531

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The logical coordinates are also centered if the client area is higher than it is wide:

-x

I'
+y

-y

+x

Keep in mind that no clipping is implied in window or viewport extents. When calling GDI
functions, you are still free to use logical x and y values less than -1000 and greater than
+ 1000. Depending on the shape of the client area, these points mayor may not be visible.

With the MM_ISOTROPIC mapping mode, you can make logical units larger than
pixels. For instance, suppose you want a mapping mode with the point (0,0) at the upper
left corner of the display and values of y increasing as you move down (like MM_ TEXT)
but with logical coordinates in sixteenths of an inch. This mapping mode would let you
draw a ruler starting at the top and left side of the client area with divisions of sixteenths
of an inch:

SetMapMode (hdc, MM_ISOTROPIC) ;

SetWindowExt (hdc,
(short) (160L * GetDeviceCaps (hdc, HORZSIZE) / 254),
(short) (160L * GetDeviceCaps (hdc, VERTSIZE) / 254»

SetViewportExt (hdc, GetDeviceCaps (hdc, HORZRES) ,
GetDeviceCaps (hdc, VERTRES»

In this code, the viewport extents are set to the pixel dimensions of the entire screen. The
window extents must be set to the dimensions of the entire screen in units of sixteenths of
an inch. The HORZSIZE and VERTSIZE indexes to GetDeviceCaps return the dimensions
of the device in millimeters. If we were working with floating-point numbers, we would
convert the millimeters to inches by dividing by 25.4 and then convert inches to sixteenths
of an inch by multiplying by 16 .. However, because we're working with integers, we must
multiply by 160 and divide by 254. The calculation is done in long integers to prevent
overflow.

532

Chapter 11: An Introduction to GDI

For most output devices, this code makes the logical unit much larger than the physi
cal unit. Everything you draw on the device will have coordinate values that map to an
increment of Y16 inch. You cannot draw two horizontal lines that are Y32 inch apart, how
ever, because that would require a fractional logical coordinate.

MM_ANISOTROPIC: Stretching the image to fit
When you set the viewport and window extents in the MM_ISOTROPIC mapping mode,
Windows adjusts the values so that logical units on the two axes have the same physical
dimensions. In the MM_ANISOTROPIC mapping mode, Windows makes no adjustments
to, the values you set. This means that MM_ANISOTROPIC does not necessarily maintain
the correct aspect ratio.

One way you ca~ use MM_ANISOTROPIC is to have arbitrary coordinates for the
client area, as we did with MM_ISOTROP~C. This code sets the point (0,0) at the lower left
corner of the client area with both the x- ~nd y-axes ranging from 0 to 32,767:

SetMapMode (hdc, MM_ANISOTROPIC) ;
SetWindowExt (hdc, 32767, 32767) ;
SetViewportExt (hdc, cxClient, -cyClient)
SetViewportOrg (hdc, 0, cyClient) ;

With MM_ISOTROPIC, similar code caused part of the client area to be beyond the range
of the axes. With MM_ANISOTROPIC, the upper right corner of the client area is always
the point (32767, 32767) regardless of its dimensions. If the client area is not square, then
logical x and y units will be different physical dimensions.

In the previous section on the MM_ISOTROPIC mapping mode, I discussed drawing
a CLOCK-like image in the client area where both the x- and y-axes ranged from -1000 to
1000. You can do something similar with MM_ANISOTROPIC:

SetMapMode (hdc, MM_ANISOTROPIC) ;
SetWindowExt (hdc, 1000, 1000) ;
SetViewportExt (hdc, cxClient / 2, -cyClient / 2) ;
SetViewportOrg (hdc, cxClient / 2, cyClient / 2) ;

The difference with MM_ANISOTROPIC is that in general the clock would be drawn as an
ellipse rather than a circle.

Another way to use MM_ANISOTROPIC is to set x and y units to fixed but unequal
values. For instance, if you have a program that displays only text, you may want to set
coarse coordinates based on the height and width of a single character:

SetMapMode (hdc, MM_ANISOTROPIC) ;
SetWindowExt (hdc, 1, I) ;
SetViewportExt (hdc, cxChar, cyChar)

(This assumes that cxCharand cyCharare the width and height of a character in pixels, for
a fixed-pitch font.) Now you can specify character row and column coordinates in the

533

SECTION IV: THE GRAPHICS DEVICE INTERFACE

TextOut call rather than pixel coordinates. For instance, the following statement displays
the text Hello three character spaces from the left and two character rows from the top:

TextOut (hdc, 3, 2, "Hello", 5) :

This is almost like working in text mode in the non-Windows MS-DOS environment!
When you first set the MM_ANISOTROPIC mapping mode, it always inherits the ex

tents of the previously set mapping mode, which can be very convenient. One way of
thinking about MM_ANISOTROPIC is that it "unlocks" the extents; that is, it allows you to
change the extents of an otherwise fully constrained mapping mode. For instance, sup
pose you want to use the MM_LOENGLISH mapping mode because you want logical units
to be 0.01 inch. But you don't want the values along the y-axis to increase as you move up
the screen-you prefer the MM_ TEXT orientation, where y values increase moving down.
Here's the code:

DWORD dwExtent :
[other program lines}

SetMapMode (hdc, MM_LOENGLISH) ;
SetMapMode (hdc, MM_ANISOTROPIC)

dwExtent = GetViewportExt (hdc) :

SetViewportExt (hdc, LOWORD (dwExtent), -HIWORD (dwExtent)) :

We first set the mapping mode to MM_LOENGLISH. Then we liberate the extents by set
ting the mapping mode to MM_ANISOTROPIC. The GetViewportExt obtains the viewport
extents encoded in a DWORD variable. Then we call SetViewportExt with the extents ex
tracted from the DWORD using the LOWORD and HIWORD macros, except that we make
the y extent negative.

The WHATSIZE Program

We'll use various mapping modes as we explore the GDI functions in the next four chap
ters. Right now, let's simply look at the size of a client area in terms of inches and milli
meters. The WHATSIZE program, shown in Figure 11-5, displays the size of the client area
in terms of units associated with the six fully constrained mapping modes: MM_ TEXT,
MM_LOMETRIC, MM_HIMETRIC, MM_LOENGLISH, MM_HIENGLISH, and MM_ TWIPS.

534

Chapter 11: An Introduction to GDI

WHATSIZE.MAK

f/~ ~ ~""""" "" " " "." " - --------
n WHATSIZE.MAK make file
II" ------.•••.. -" ---------

whatsize.exe:whatslze.obJ whatsize.def
link whatsize. lalign:16. NUL, Inodsl1bcew libw. whatsize
rewhatsize.exe

whats i ze. obj:whats i ze. e
cl-c ~Gsw~Ow -W2 -Zpwhatsize.e

WHATSIZE.C

if (!hPrevlnstance)
{
wndclass;style
wndclass.lpf~WndProc
wndclass.cbClsEktra =0 ':
wndclass:cbWndExtra -0;
wndclass.hlnstance ~hlriitance :
wndcl ass. hIeon LoadIcon(NULL. IOEAPPLICATION)
wndcl ass .hCursor .=' LoadCursor (NUL~; .' I DC ARROW)
wndcl ass'~ hbrBackground"'GetStockObject(WHlTE~BRUSH)
wndel ass.l pszMenuName· ... NULL:
wndel ass.' pszCl assName = szAppName

Figure 11·5. The WHATSIZE program. (continued)

535

SECTION IV: THE GRAPHICS DEVICE INTERFACE

·llllUi,,!if ll,
,"

II

1
······1··1···'··.··.·.··

....

,::'?,: '

III
.' ... ' ..•.•.•..••••..•.••.••••...•.•.••.•..•••..••.••..•..

, '

(continued)

536

Chapter 11: An Introduction to GDI

PAINTSTRUCT ps :
TEXTMETRIC tm:

537

SECTION IV: THE GRAPHICS DEVICE INTERFACE

For ease in displaying the information using the TextOut function, WHATSIZE uses the
MM_ANISOTROPIC mapping mode with logical units set to character dimensions:

SetMapMode (hdc, MM_ANISOTROPIC) ;
SetWindowExt (hdc, I, 1) :
SetViewportExt (hdc, cxChar, cyChar)

The program can then specify logical coordinates to TextOut in character row and charac
ter column coordinates for a fixed-pitch font.

When WHATSIZE needs to obtain the size of the client area for one of the six map
ping modes, it saves the current device context, sets a new mapping mode, obtains the
client-area coordinates, converts them to logical coordinates, and then restores the original
mapping mode before displaying the information. This code is in WHATSIZE's Show
function:

SaveDC (hdc) :

SetMapMode (hdc, nMapMode) ;
GetClientRect (hwnd, &rect) :
DPtoLP (hdc, (LPPOINT) &rect, 2)

RestoreDC (hdc, -1) :

Figure 11-6 shows a typical display from WHATSIZE.

538

Chapter 11: An Introduction to GDI

== What Size is the Window? aa
Happing Hade Left Right Top Bottolll

TEU (pixels) 0 572 0 338
LOHETRIC (.1 111111) 0 1859 0 -1099
HIHETRIC (.01 111111) 0 18590 0 -10985
LOEHGLISH (.01 in) 0 732 0 -432
HIEHGLISH (.001 in) 0 7319 0 -4325
TWIPS (1/1440 in) 0 10539 0 -6228

Figure 11·6. A typical WHATSIZE display.

Now that we have the preliminaries down, we're ready to start drawing.

539

Chapter 12

Drawing
Graphics

Some theoretical discussions of computer graphics assume that you are supplied with only
two graphics primitives-a "write pixel" routine and a "read pixel" routine. In theory, you
can do anything you want with these two functions. Drawing a line, for instance, simply
requires that you call the "write pixel" routine numerous times, adjusting the x- and y
coordinates appropriately.

In reality, you can indeed do anything you want with only "write pixel" and "read
pixel" routines-if you don't mind waiting for the results. It is much more efficient for a
graphics system to do line drawing and other complex graphics operations at the level of
the device driver, which can have its own optimized code to perform the operations.
Moreover, as video display technology becomes more sophisticated, the adapter boards
will contain graphics coprocessors that allow the video hardware itself to draw the figures.

But of course, no graphics language would be complete without routines to draw one
pixel at a time, and that's where we'll begin. From there we'll proceed to drawing lines, and
then we'll tackle bounded areas.

DRAWING POINTS
You can draw a pixel of a particular color with the GDI SetPixel function:

rgbActualColor = SetPixel (hdc, x, y, rgbColor) ;

541

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The rgbColorparameter is an unsigned long integer (32 bits) where the lowest 3 bytes rep
resent the density of red, green, and blue. You can construct this color value using the
RGBmacro:

rgbColor = RGB (byRed, byGreen, byBlue) ;

(Chapters 5 and 6 contain a more extensive discussion of Windows' use of color.)
Although x and yare logical coordinates, Set Pixel colors only a single physical pixel

regardless of the mapping mode. Because Set Pixel draws only a single pixel, the use of
a dithered color (a color that combines pixels of various pure colors) is meaningless. For
this reason, Windows translates the rgbColor parameter to a pure nondithered color and
returns that color.

SetPixel is almost never used in Windows programs, but that didn't prevent us from
using it in the CONNECT program in Chapter 4. You can obtain the color of a particular
pixel this way:

rgbColor = GetPixel (hdc, x, y) ;

DRAWING LINES
After drawing points, the next step up is drawing lines. Windows can draw straight lines
and elliptical lines. An elliptical line is a curved line on the circumference of an ellipse.
The three functions that draw lines are LineTo (straight lines), PolyLine (series of con
nected lines), and Arc (elliptical lines). Five attributes of the device context affect the
appearance of lines that you draw using these functions: current pen position (for LineTo
only), pen, background mode (for nonsolid pens), background color (for the OPAQUE
background mode), and drawing mode.

The LineTo function is one of the few GDI functions that does not include the full
dimensions of the object to be drawn. Instead, LineTo draws a line from the current pen
position defined in the device context up to (but not including) the logical point specified
in the LineTo function. In the default device context, the current pen position is initially set
at the logical point (0, 0). If you call LineTo without first setting the current pen position
(or the viewport or window origin), it draws a line starting at the upper left corner of the
client area.

To draw a line from the logical point (xStart, yStart) to the logical point (xEnd,
yEnd), you first must use MoveToto set the current pen position to the point (xStart, yStart):

MoveTo (hdc, xStart, yStart) ;

MoveTo doesn't draw anything. It simply changes the current pen position. You can then
use LineTo to draw the line:

LineTo (hdc, xEnd, yEnd) ;

542

Chapter 12: Drawing Graphics

This draws the line up to (but not including) the point (xEnd, yEnd). Following the LineTo
call, the current pen position is set to (xEnd, yEnd).

LineTo is the only Windows function that uses the current pen position. MoveTo and
LineTo are the only functions that change it. You can obtain the current pen position
by calling:

dwPoint ~ GetCurrentPosition (hdc) :

The dwPoint return value is an unsigned long (or doubleword) that contains the x
coordinate in the low word and the y-coordinate in the high word. You can use the
LOWORD and HIWORD macros to extract the two coordinates, or you can convert the
value of dwPoint to a POINT structure using the MAKEPOINT macro:

point - MAKEPOINT (dwPoint) :

The following code draws a grid in the client area of a window, spacing the lines 1
inch apart starting from the upper left corner. The variable hwnd is assumed to be a handle
to the window, hde is a handle to the device context, reet is a structure of type RECT, and x
and yare short integers:

SetMapMode (hdc,.MM_LOENGLISH) :
GetClientRect (hwnd, &rect) :
DPtoLP (hdc, (LPPOINT) &rect, 2)

for (x = 0 : x < rect.right : x += 100)
{

MoveTo (hdc, x, 0) :
LineTo (hdc, x, rect.bottom)
}

for (y = 0 : Y > rect.bottom : y -= 100)
{
MoveTo (hdc, 0, y) :
LineTo (hdc, rect.right, y) :
}

The dimensions of the client area are saved in the RECT structure called reet and con
verted to logical points with DPtoLP. After the DPtoLP conversion, reet.right is the width
of the client area in units of 0.01 inch, and reet.bottom is the negative height of the client
area. Notice that y is decremented rather than incremented in the second/or loop because
the MM_LOENGLISH mapping mode uses decreasing values of y as you move down the
display. .

Although it may seem like a nuisance to be forced to use two functions to draw a
single line, the current pen position attribute comes in handy when you want to draw
a series of connected lines. For instance, you might want .to define an array of 5 points
00 values) that draw the outline of a rectangle:

POINT pt [5] = { 100, 100, 200, 100, 200, 200,
100, 200, 100, 100 } :

543

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Notice that the last point is the same as the first. Now you need only use MoveTo for the first
point and LineTo for the successive points:

MoveTo (hdc. pt[O].x. pt[O].y) :

for (i - 1 : i < 5 : i++)
LineTo (hdc. pt[i].x. pt[i].y)

Because LineTo draws from the current point up to (but not including) the point in the
LineTo function, no coordinate gets written twice by this code. While overwriting points is
not a problem with a display, it might not look good on a plotter or with some drawing
modes (to be covered shortly).

When you have an array of points that you want connected with lines, you can draw
the lines more easily using the PolyLine function. This statement draws the same rectangle
as in the code shown above:

Polyline (hdc. &pt. 5) :

The last parameter is the number of points. We could also have represented this value by
(sizeojpt / sizeoj(POINT)). PolyLine has the same effect as an initial MoveTo function fol
lowed by multiple LineTo functions. However, PolyLine doesn't use or change the current
pen position.

The Arc function IS a little more complex. Here's the general syntax:

Arc (hdc. xLeft. yTop. xRight~ yBottom.
xStart. yStart. xEnd. yEnd) :

The Arc function draws a line on the circumference of an ellipse that is bounded by a rect
angle with the' upper left corner at (xLejt, yTop) and the lower right corner at (xRight,
yBottom). The arc starts at the intersection of the ellipse and the line connecting (xStart,
yStart) with the center of the ellipse. The arc is drawn counterclockwise around the cir
cumference of the ellipse and ends at the intersection of the ellipse and the line connect
ing point (xEnd, yEnd) with the center of the ellipse. If you're having trouble visualizing
this, don't worry about it: I'll discuss the Arc function in much more detail after we've
covered rectangles and ellipses.

Using Stock Pens

When you call LineTo, PolyLine, or Arc, Windows uses the "pen" currently selected in the
device context to draw the line. The pen determines the line's color, its width, and its style,

_ which can be solid, dotted, or dashed. The pen in the default device context is called
BLACK_PEN. This pen draws a solid black line with a width of one pixel regardless of the
mapping mode. BLACK_PEN is one of three "stock pens" that Windows provides. The
other two are WHITE_PEN and NULL_PEN. NULL_PEN is a pen that doesn't draw. You
can also create your own customized pens.

544

Chapter 12: Drawing Graphics

In your Windows programs, you refer to pens with a handle. WINDOWS.H includes a
type definition named HPEN, a handle to a pen. You can define a variable (for instance,
hPen) using this type definition:

HPEN hPen ;

You obtain the handle to one of the stock pens by a call to GetStockObject. For instance,
suppose you want to use the stock pen called WHITE_PEN. You get the pen handle
like this:

hPen - GetStockObject (WHITE_PEN) ;

Now 'you must make that pen the currently selected pen in the device context, which
requires a call to SelectObject:

SelectObject (hdc. hPen) ;

After this call, the lines you draw using lineTo, Polyline, or Arc will use WHITE_PEN un
til you select another pen into the device context or release the device context.

Rather than explicitly defining an hPen variable, you can instead combine the
GetStockObject and SelectObject calls in one statement:

SelectObject (hdc. GetStockObject (WHITE_PEN» ;

If you then want to return to using BLACK_PEN, you can get the handle to that stock object
and select it into the device context in one statement:

SelectObject (hdc. GetStockObject (BLACK_PEN» ;

SelectObject returns the handle to the pen that had been previously selected into the
device cOI~text. If you start off with a fresh device context and call:

hPen - SelectObject (hdc. GetStockObject (WHITE_PEN» :

then the current pen in the device context will be WHITE_PEN, and the variable hPen will
be the handle to BLACK_PEN. You can then select BLACK_PEN into the device context
by calling:

SelectObject thdc. hPen) ;

Creating, Selecting, and Deleting Pens

Although the pens defined as stock objects are certainly convenient, you are limited to
only a solid black pen, a solid white pen, or no pen at all. If you want to get fancier than
that, you must create your own pens. Here's the general proced4re: You create a "logical
pen," which is merely the description of a pen, using the function CreatePen or CreatePen
Indirect. These functions return a handle to the logical pen. You select the pen into the
device context by calling SelectObject. You can then draw lines with this new pen. Only

545

SECTION IV: THE GRAPHICS DEVICE INTERFACE

one pen can be selected into the device context at anyone time. After you release the de
vice context (or after you select another pen into the device context), you can delete the
logical pen you've created by calling DeleteObject. When you do so, the handle to the pen
is no longer valid.

A logical pen is a "GDI object." You create and use the pen, but the pen doesn't
belong to your program. The pen really belongs to the GDI module. A pen is one of six GDI
objects that you can create. The other five are brushes, bitmaps, regions, fonts, and
palettes.

This brings me to a very important point: Normally, Windows cleans up thoroughly
when a program terminates. The one big exception is for GDI objects. When a program
terminates, Windows doesn't automatically delete GDI objects that the program has cre
ated. The program itself is responsible for deleting GDI objects.

Three rules govern the use of GDI objects such as pens:

•. Delete all GDI objects that you create.

• Don't delete GDI objects while they are selected in a valid device context.

• Don't delete stock objects.

These are not unreasonable rules, but they can be a little tricky sometimes. We'll run
through some examples to get the hang of how the rules work.

The general syntax for the CreatePen function looks like this:

hPen = CreatePen (nPenStyle. nWidth. rgbColor) ;

The nPenStyle parameter determines whether the pen draws a solid line or a line made up
of dots or dashes. The parameter can be one of the following identifiers defined in WIN
DOWS.H: PS_SOLID, PS_DASH, PS_DOT, PS_DASHDOT, PS_DASHDOTDOT, PS_NULL,
and PS_INSIDEFRAME. Figure 12-1 shows the kind of line that each style produces.

PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL
PS_INSIDEFRAME

Figure 12·1. The seven pen styles.

For the PS_SOLID, PS_NULL, and PS_INSIDEFRAME styles, the nWidth parameter is the
width of the pen in logical units. For instance, if the mapping mode is MM_LOENGLISH,
a pen with an nWidth of 10 will be 0.1 inch wide. When you draw a line with a PS_SOLID
or PS_NULL pen, the width of the pen will extend 0.05 inch on either side of the line. (The
PS_INSIDEFRAME style is a little ~ifferent.) For the MM_ANISOTROPIC mapping mode,
Windows uses logical units on the x-axis to determine the physical width of the pen. An

546

Chapter 12: Drawing Graphics

n Width value of 0 directs Windows to use one physical unit (1 pixel) for the pen width. The
stock pens are 1 pixel wide. If you specify a dotted or dashed pen style with a physical
width greater than 1, Windows will use a solid pen instead.

The rgbColor parameter to CreatePen is an unsigned long integer specifying the
color of the pen. For all the pen styles except PS_INSIDEFRAME, when you select the pen
into the device context, Windows converts this parameter to the nearest pure color that
the device can represent. The PS_INSIDEFRAME style is the only pen style that can use a
dithered color, and then only when the width is greater than 1. (The PS_INSIDEFRAME
style has another peculiarity, which I'll discuss later in this chapter in the section on the
"bounding box.")

You can also create a pen by setting up a structure of type LOGPEN ("logical pen")
and calling CreatePenlndirect. If your program uses a lot of different pens that you can ini
tialize in your source code, this method. is more efficient. First you define a structure vari
able of type LOGPEN-for instance, logpen:

LOGPEN logpen ;

This structure has three members: lopnStyle(WORD) is the pen style, lopnWidth (POINT)
is the pen width in logical units, and lopnColor(DWORD) is the pen color. The lopnWidth
member is a structure of type POINT, but Windows uses only the lopnWidth.x value for
the pen width and ignores lopnWidth.y. Then you create the pen by passing the address of
the structure to CreatePenlndirect:

hPen = CreatePenIndirect (&logpen) ;

You can also obtain the logical pen information for an existing pen. If you already
have a handle to a pen, you can copy the data that defines the logical pen into a structure of
type LOGPEN by using the GetObject call:

GetObject (hPen. sizeof (LOGPEN). (LPSTR) &logpen) ;

Note that the CreatePen and CreatePenlndirect functions do not require a handle
to a device context. These functions create logical pens that have no connection with a
device context until you call SelectObject. For instance, you can use the same logical pen .
for several different devices, such as the screen and a printer. Logical pens with a non
zero nWidth have a logical width; they have a physical width only when you select the
pen into a device context, and then the physical width depends on the device context's
mapping mode.

Here's one method for creating, selecting, and deleting pens. Suppose your program
uses three pens-a black pen of width 1, a red pen of width 3, and a black dotted pen. You
can first define variables for storing the handles to these pens:

static HPEN hPenl. hPen2. hPen3 ;

547

SECTION IV: THE GRAPHICS DEVICE INTERFACE

During processing ofWM_CREATE, you can create the three pens:

hPenI = CreatePen (PS_SOLID. 1. OL) :
hPen2 = CreatePen (PS_SOLID. 3. RGB (255. O. 0» :
hPen3 =CreatePen (PS_DOT. O. OL) :

During processing of WM_PAINT (or any other time you have a valid handle to a device
context), you can select one of these pens into the device context and draw with it:

SelectObject (hdc. hPen2) :
[LineTo, p,0lyline, or Arc calls}

SelectObject (hdc. hPenI) :
{other lineTo, Polyline, or Arc calls}

During processing ofWM_DESTROY, you can delete the three pens you created:

DeleteObject (hPenI) :
DeleteObject (hPen2) :
DeleteObject (hPen3) :

This. is the most straightforward method for creating, selecting, and deleting pens, but it re
quires that the logical pens take up memory space during the entire time your program is
running. You might instead want to create the pens during each WM_PAINT message and
delete them after you call EndPaint. (You can delete them before calling EndPaint, but you
have to be careful not to delete the pen currently selected in the device context.)

You might also want to create pens on the fly and combine the CreatePen and the
SelectObject calls in the same statement:

SelectObject (hdc. CreatePen (PS_DASH. O. RGB (255. O. 0») :

Now when you draw lines, you'll be using "a red dashed pen. When you're finished draw
ing the red dashed lines, you can delete the pen. Whoops! How can you delete this pen
when you haven't saved the pen handle? Recall that SelectObject returns the handle to the
pen previously selected in the device context. So you can delete the pen by selecting
the stock' BLACK_PEN into the device context and deleting the value returned from
SelectObject:

DeleteObject (SelectObject (hdc. GetStockObject (BLACK_PEN») :

Here's another method. When you select a newly created pen into the device con
text, save the handle to the pen that SelectObject returns:

hPen = SelectObject (hdc, CreatePen (PS_DASH, 0. RGB (255. O. 0») ;

What is hPen? If this is the first SelectObject call you've made since obtaining the device
context, hPen is a handle to the BLACK_PEN stock object. You can now select that pen into
the device context and delete the pen you created (the handle returned from this second
SelectObject call) in one statement:

548

Chapter 12: Drawing Graphics

DeleteObject (SelectObject (hdc, hPen)) :

If you delete a GDI object while it is-selected in a device context and then try to draw
lines, Windows will respond with a fatal error because the device context doesn't contain a
valid pen. This is a fairly obvious bug to track down. Failing to delete GDI objects that you
create can be a more difficult bug to discover, because the program will appear to work
fine. If your program creates the same logical pen for every WM_PAINT message, you
might want to cause the client area to be repainted over and over and check to see if free
memory starts to drop. The FREEMEM program shown in Chapter 5 can identify problems
related to dropping memory. If HEAPWALK shows a lot of small GDI segments after your
program has terminated, some of them may be GDI objects you have failed to delete
properly.

Avoiding Device Dependencies

Pen widths will vary according to the resolution of the display. The stock pens (and any
pen created with a width of 0) are 1 pixel wide, which on a high-resolution display can
result in very thin lines.

If you're working in MM_ TEXT, you might want to obtain the width of the single
line window border by calling GetSystemMetrics with the SM_CXBORDER and
SM_CYBORDER indexes. These values are appropriate for pen widths. You can also use
one of the metric mapping modes and set specific physical widths for the pens your pro
gram needs to create.

Pen colors are also susceptible to device dependencies. If you develop a program on
a color display and then run the program on a monochrome display, you can be in for some
unpleasant surprises. Except for the PS_INSIDEFRAME style, Windows always uses pure
colors for pens, and on a monochrome system, pens are either black or white. For instance,
on your color EGA, you might be fond of magenta pens on a white background:

hPen = CreatePen (PS_SOLID, 1, RGB (255, 0, 255)) :

But on a monochrome system, the pure color that is closest to magenta is white, so the pen
will be invisible. If you want to use colored pens, be sure the sum of 2 times the red, 5 times
the green, and 1 times the blue values is less than 1920 (half the maximum sum of the three
primaries) for any pen that should default to black and greater than 1920 for any pen that
should default to white.

Filling In the Gaps

The use of dotted pens and dashed peps raises an interesting question: What happens to
the gaps between the dots and the dashes? The coloring of the gaps depends on both the
background mode and the background color attributes defined in the device context. The
default background mode is OPAQUE, which means that Windows fills in the gaps with the

549

SECTION IV: THE GRAPHICS DEVICE INTERFACE

background color, which by default is white. This is consistent with the WHITE_BRUSH
that many programs use in the window class for erasing the background of the window.

You can change the background color that Windows uses to fill in the gaps by calling:

SetBkColor (hdc, rgbColor) ;

As with the rgbColor value used for the pen color, Windo~s converts this background
color to a pure color. You can obtain the current background color defined in the device
context by calling GetBkColor.

You can also prevent Windows from filling in the gaps by changing the background
mode to TRANSPARENT:

SetBkMode (hdc, TRANSPARENT) ;

Windows will ignore the background color and will not fill in the gaps. You can obtaip. the
current background mode (either TRANSPARENT or OPAQUE) by calling GetBkMode.

Drawing Modes

The appearance of lines drawn on the display is also affected by the drawing mode de
fined in the device context. Imagine drawing a line that has a color based not only on the
color of the pen but also on the original color of the display area where the line is drawn.
Imagine a way in which you could use the same pen to draw a black line on a white surface
and a white line on a black surface without knowing what color the surface is. Could such a
facility be useful to you? It's made possible by the drawing mode.

When Windows uses a pen to draw a line, it actualiy performs a bitwise Boolean
operation between the pixels of the pen and the pixels of the destination display surface.
Performing a bitwise Boolean operation with pixels is called a "raster operatiori," or
"ROP." Because drawing a line involves only two pixel patterns (the pen and the destina
tion), the Boolean operation is called a "binary raster operation," or "ROP2." Windows'
defines 16 ROP2 codes that indicate how Windows combines the pen pixels and the desti
nation pixels. In the default device context, the drawing mode is defined as R2_COPYPEN,
which means that Windows simply copies the pixels of the pen to the destination, which is
how we normally think about pens. There are 15 other ROP2 codes.

Where do these 16 different ROP2 codes come from? For illustration purposes, let's
assume a monochrome system. The destination color (the color of the window's client
area) can be either black (which we'll represent by a 0) or white 0). The pen also can be
either black or white. There are four combinations of using a black or white pen to draw on
a black or white destination: a white pen on a white destination, a white pen on a black
destination, a black pen on a white destination, and a black pen on a black destination.

What happens to the destination after you draw with the pen? One possibility is that
the line is always drawn as black regardless of the pen or destination color: This drawing
mode is indicated by the ROP2 code R2 _BLACK. A'nother possibility is that the line is
drawn as black except when both the pen and destination are black, in which case the line

550

Chapter 12: Drawing Graphics

is drawn as white. Although this might be a little strange, Windows has a name for it: The
drawing mode is called R2_NOTMERGEPEN. Windows performs a bitwise OR operation
on the destination pixels and the pen pixels and then inverts that result.

The table below shows all 16 ROP2 drawing modes. The table indicates how the origi
nal pen CP) and destination CD) colors are combined for the resultant destination color.

The column labeled "Boolean Operation" uses C notation to show how the destina
tion pixels and pen pixels are combined.

Pen (P): 1 1 0 0 Boolean
Destination (D): 1 0 1 0 Operation Drawing Mode

Results: 0 0 0 0 0 R2_BLACK

0 0 0 1 -(P l D) R2_NOTMERGEPEN

0 0 1 0 -P&D R2_MASKNOTPEN

0 0 1 1 -P R2_NOTCOPYPEN

0 1 0 0 P&-D R2_MASKPENNOT

0 1 0 1 -D R2_NOT

0 1 1 0 PAD R2_XORPEN

0 1 1 1 -(P & D) R2_NOTMASKPEN

1 0 0 0 P&D R2_MASKPEN

1 0 0 1 -(p A D) R2_NOTXORPEN

1 0 1 0 D R2_NOP

1 0 1 1 -P l D R2_MERGENOTPEN

1 1 0 0 P R2_COPYPEN (default)

1 1 0 1 Pl-D R2_MERGEPENNOT

1 1 1 0 PlD R2_MERGEPEN

1 1 1 1 1 R2_WHITE

You can set a new drawing mode in the device context by:

SetROP2 (hdc. nDrawMode) :

The nDrawMode parameter is one of the values listed in the "Drawing Mode" column of
the table. You can obtain the current drawing mode using the function:

nDrawMode - GetROP2 (hdc) :

The device context default is R2_COPYPEN, which simply transfers the pen color to
the destination. The R2_NOTCOPYPEN mode draws white if the pen color is black and
black if the pen color is white. The R2_BLACK mode always draws black, regardless of the
color of the pen or the background. Likewise, the R2_ WHITE mode always draws white.
The R2_NOP mode is a "no operation": It leaves the destination unchanged.

551

SECTION IV: THE GRAPHICS DEVICE INTERFACE

We started out using an example of a pure monochrome system. In reality, on a
monochrome display Windows can simulate various shades of gray by dithering black and
white pixels. When drawing a pen on a dithered background, Windows simply performs
the bitwise operation on a pixel-by-pixel basis. The R2_NO':(mode always inverts the des
tination, again regardless of the color of the pen. This mode is useful when you don't know
the color of the background, because it guarantees that the pen will be visible. (Well,
almost guarantees-if the background is a 50 percent gray, then the pen will be virtually
invisible.)

The ROP2LOOK Program

The ROP2LOOK program, shown in Figure 12-2, letsyou experiment with these 16 ROP2
codes.

Figure 12·2. The ROP2LOOKprogram. (continued)

552

{
stati~ char szAppName(] ~ "Rop2look"
HWNO hwnd ;
MSG
WNDCLASS

Chapter 12: Drawing Graphics

(continued)

553

SECTION IV: THE GRAPHICS DEVICE INTERFACE

I.· •••••••••••••••..•••••••••.•••••.•••••••• ~ ••••••••••••••••••••••••.••••••••• !

... ,

.••.•.•.•...••..... ~.. .. .

it~i~~)~i .i

••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••• •

~ql .. ~ . In
ID

••
....

•••••••••••

.......I

• •••••••••••••••••••••••••••

554

Chapter 12: Drawing Graphics

555

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The program draws a background divided into five sections colored with the white,
light gray, gray, dark gray, and black stock brushes (a subject that we'll get to soon). It then
draws two very thick pens: a white pen on the top and a black pen on the bottom. You can
select one of the 16 ROP2 codes from the menu. Figure 12-3 shows the white pen on the top·
and the black pen on the bottom with the drawing mode set to R2_NOTMERGEPEN: The
white pen always displays as black, and the black pen inverts the destination.

ROP2LOOK uses initialized logical pen structures for the white and black pens.
You'll note that both these pens have a logical width of 1. Why do they appear so thick? The
program uses the MM_ANISOTROPIC mapping mode and sets the width of the client area
to 10 logical units and the height to 4 logical units. The pens are therefore one-tenth the
width of the client area ..

Figure 12·3.· The ROP2LOOK display with the drawing mode set to R2_NOTMERGEPEN.

ROP2 and Color

The drawing mode gets more interesting-and much more complex-when color is in
troduced. Let's assume a display capable of eight pure colors (such as the EGA and VGA in
versions 'of Windows prior to version 3). The pen can be any of these eight pure colors, and
for simplicity's sake, let's restrict the background to these colors also. The eight colors are
combinations of the bits in the red, green, and blue color planes, as shown in the following
table-a 1 means the color is illuminated, and a 0 means the color is off.

556

Chapter 12: Drawing Graphics

Red Green Blue Pure Color Red Green Blue Pure Color

0 0 0 Black 1 0 0 Red

0 0 1 Blue 1 0 1 Magenta

0 1 0 Green 1 1 0 Yellow

0 1 1 Cyan 1 1 1 White

Each of the three color planes is affected separately by the raster operation. For ex
ample, say you have a cyan background color and a magenta pen color, and your drawing
mode is R2_NOTMERGEPEN. What color will the pen actually draw? For red, the pen is 1
(has red), and the destination is 0 (no red). Looking at the ROP2 table on page 551, you see
that the result is 0 (no red). For green, the pen is 0 (no green), and the destination is 1 (has
green), so the result is 0 (no green). For blue, the pen is 1 (has blue), and the destination is 1
(has blue), so the result is 0 (no blue). Thus the line has no red, no green, and no blue. The
color will be black.

Let's take the R2_XORPEN drawing mode, which performs a bitwise exclusive OR
operation on eac~ of the possible combinations in the three color planes. The following
table shows the ·resultant color for all combinations of the eight destination colors and the
eight pen colors.

PEN COLOR
Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Blue Green Cyan Red Magenta Yellow White

Blue Blue Black Cyan Green Magenta Red 'White Yellow

Green Gr.een Cyan Black Blue Yellow White· ,.Red Magenta
.,

Cyan Cyan. Green Blue Black White Yellow. Magenta Red

Red Red' ,- Magenta Yellow White Black Blue Green Cyan

Magenta Magenta Red White Yellow Blue Black ,Cyan Green

Yellow Yellow White Red Magenta Green Cyan Black Blue

White White Yellow Magenta Red Cyan Green Blue Black

On certain devices (particularly on 256-color video boards), the bits that define each pixel
may not correspond to color in a consistent manner, and the results of using some drawing
modes are not well defined.

At the beginning of Chapter 11 I mentioned that Windows GDI is strong in the area of
raster operations. The drawing mode is one example of that. And if you think that you'll
probably never ever use some of these ROP2 codes, just wait until you see the regular raster
operation codes in Chapter 13-there are more than 200 raster operations that you'll
probably never use. But it's nice to know that they're available.

557

SECTION IV: THE GRAPHICS DEVICE INTERFACE

DRAWING FILLED AREAS
Now let's take the next step up, from drawing lines to drawing figures. Windows' six func
tions for drawing filled figures with borders are listed in the chart below:

"Function

Rectangle

Ellipse

RoundRect

Chord

Pie

Polygon

PolyPolygon

Figure

Rectangle with square corners

Ellipse

Rectangle with rounded corners

Arc on the circumference of an ellipse with endpoints connected
by a chord

Pie wedge on the circumference of an ellipse

Multisided figure

Multiple multisided figures

Windows draws the outline of the figure with the current pen selected in the device
context. The current background mode, background color, and drawing mode are all used
for this outline, just as if Windows were drawing a line. Everything we learned about lines
also applies to the border around these figures.

The figure is filled with the current brush selected in the device context. By default,
this is the stock object called WHITE_BRUSH, which means that the interior will be drawn
as white. Windows defines six stock brushes: WHITE_BRUSH, LTGRAY_BRUSH, GRAY
_BRUSH, DKGRAY _BRUSH, BLACK_BRUSH, and NULL_BRUSH (or HOLLOW_BRUSH).
The first five of these brushes were used to color the client area of ROP2LOOK.

You can select one of the stock brushes into your device context the same way you
select a stock pen. Windows defines HBRUSH to be a handle to a brush, so you can first
define a variable for the brush handle:

HBRUSH hBrush ;

You can get the handle to GRAY _BRUSH by calling GetStockObject:

hBrush = GetStockObject (GRAY_BRUSH) ;

You can select it into the device context by calling SelectObject:

SelectObject (hdc. hBrush) ;

Now when you draw one of these figures, the interior will be gray.
If you want to draw a figure without a border, select the NULL_PEN into the device

context:

SelectObject (hdc, GetStockObject (NULL_PEN» ;

558

Chapter 12: Drawing Graphics

Or you can use the R2_NOP drawing mode:

SetROP2 (hdc. R2_NOP) :

If you want to draw the outline of the figure but not fill in the interior, select the
NULL_BRUSH into the device context:

SelectObject (hdc. GetStockObject (NULL_BRUSH» :

You can also create customized brushes just as you can create customized pens. We'll
cover that topic shortly.

The Bounding Box

The Rectangle, Ellipse, RoundRect, Chord, and Pie functions (as well as the Arc line
drawing function) are all similar in that they are built up from a rectangular "bounding
box." You define the coordinates of a box that encloses the object-a bounding box-and
Windows draws the object within this box.

The simplest filled object is the rectangle:

Rectangle (hdc. xLeft. yTop. xRight. yBottom)

The point (xLejt, yTop) is the upper left corner of the rectangle, and (xRight, yBottom) is the
lower right corner; both points are expressed in logical units. A figure drawn using the
Rectangle function is shown in Figure 12-4. In the MM_ TEXT mapping mode, xRight must
be greater than xLejt, and yBottom must be greater than yTop. However, in all the other
mapping modes (except possibly MM_ISOTROPIC and MM_ANISOTROPIC), the value of
yBottom is less than that of yTop because the coordinates on the y-axis increase as you
move up.

Programmers who have worked with graphics before are accustomed to the problem
of being off by 1 pixel. Some graphics systems draw a figure to encompass the right and
bottom coordinates, and some draw figures up to (but not including) the right and bottom
coordinates. Windows uses the latter approach, but there's an easier way to think about it.

xLeft xRight

~I ________________ ~I._yThP

..... ------------.... -- yBottom

Figure 12·4. Afigure drawn using the Rectangle function.

559

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Consider the function call:

Rectangle (hdc, 1, 1, 5, 4)

I mentioned above that Windows draws the figure within a "bounding box." You can think
of the display as a grid where each pixel is within a grid cell. The imaginary bounding box
is drawn on the grid, and the rectangle is then drawn within this bounding box. 'Here's how
the figure would be drawn in the MM_ TEXT mapping mode:

o 1 2 3 456

o -.f---+-+-4--+--+--+--

2

3

4

5 -t-t--t--t--t--t--t--

The area separating the rectangle from the top and left of the client area is 1 pixel wide.
Windows uses the current brush to color the 2 pixels on the inside of the rectangle.

For all pen styles except PS_INSIDEFRAME, if the pen used to draw the outline is
greater than 1 pixel wide, then the pen is centered on the border so that part of the line may
be outside the bounding box. For the PS _INSIDEFRAME pen style, the entire line is drawn
inside the bounding box.

Once you know how to draw a rectangle, then you also know how to draw an ellipse,
because it uses the same parameters:

Ellipse (hdc, xLeft, yTop, xRight, yBottom) ;

A figure drawn using the Ellipse function is shown (with the imaginary bounding box) in
Figure 12-5.

xL eft xRight

I I
~------------....::--.,-_-_--=.;--------------:- yTop

• - - - - - - - - - - - -::-':--~-___ ~--=-=- - - - - - - - - - - - _1_ yBottom

Figure 12·5. Afigure drawn using the Ellipse function.

560

Chapter 12: Drawing Graphics

Windows does not include "square" or "circle" functions. In all mapping modes except
MM_ TEXT and MM_ANISOTROPIC, you can easily draw squares and circles using the
Rectangle and Ellipse functions by making the difference between xLeft and xRight the
same as the difference between yTop and yBottom. In MM_ TEXT, squares and circles are a
little more difficult. You have to call GetDeviceCaps with the ASPECT X and ASPECTY
indexes and scale the dimensions based on the aspect ratio of the pixels. In
MM_ANISOTROPIC, you also have to take into account the ratio of the window and
viewport extents.

The function to draw rectangles with rounded corners uses the same bounding box
as the Rectangle and Ellipse functions but includes two more parameters:

RoundRect (hdc. xLeft. yTop. xRight. yBottom.
xCornerEllipse. yCornerEllipse) ;

A figure drawn using this function is shown in Figure 12-6.
Windows uses a small ellipse to draw the rounded corners. The width of this ellipse

is xCornerEllipse, and the height is yCornerEllipse, with both points expressed in logical
units. Imagine Windows splitting this small ellipse into four quadrants and using one
quadrant for each of the four corners. The rounding of the corners is more pronounced for
larger values of xCornerEllipse and yCornerEllipse. If xCornerEllipse is equal to the differ
ence between xLeftand xRightand yCornerEllipse is equal to the difference between yTop
and yBottom, then the RoundRect function will draw an ellipse.

The rounded rectangle shown in Figure 12-6 was drawn using the MM_ TEXT map
ping mode with the corner ellipse dimensions calculated with these formulas:

xCornerEllipse = (xRight - xLeft) / 4 ;
yCornerEllipse = (yBottom - yTop) / 4 ;

This is an easy approach, but the results admittedly don't look quite right, because the
rounding of the corners is more pronounced along the larger rectangle dimension. To

xL eft xRight

I I
yTop - :-.;,o-_~-------~--.:--.

"
)

.. _ ... _ ~J .. - ... -,. ...

... ""","_-"_'.__' _______ (..... '._' "_" ".o!-!,,:"~.,,] I yCornerEllipse

yBottom - :--.

I" ~I
xCornerEllipse

Figure 12·6. A figure drawn using the RoundRect function.

561

SECTION IV: THE GRAPHICS DEVICE INTERFACE

correct this problem, you'll probably want to make xCornerEllipse equal to yCornerEllipse
in real dimensions.

The Arc, Chord, and Pie functions all take identical parameters:

Arc (hdc. xLeft. yTop. xRight. yBottom.
xStart. yStart. xEnd. yEnd) ;

Chord (hdc. xLeft. yTop. xRight. yBottom.
xStart. yStart. xEnd. yEnd) ;

Pie (hdc. xLeft. yTop. xRight. yBottom.
xStart; yStart. xEnd. yEnd) ;

A line drawn using the Arc function is shown in Figure 12-7; figures drawn using the Chord
and Pie functions are shown in Figures 12-8 and 12-9.

562

xStart

xLeft yStart I xRight

L------------- - --",,:::.-.~.--.- .. .I- yTop

'\ :
, '
" .' .'
~

xEnd ~_-~ I

I ' ---------- .f:
YEnd - ~ - - ~ - i .: - .: :

• , J I

: " "" :, : "

i --------~:::~-----.-----------.:=~: :'-"--: ~~ ----- j - yBottom

Figure 12·7. A line drawn using tbe Arc/unction.

xStart

xLeft Sf rt I xRight I y a - I
~- - - -- - -- - - - -- - - -." = ~ :::--.-: - - -- - --i - yTop

"\ ~
\:
1

xEnd ~_-~ I

I --- .f:
" yEnd- ~--~-1: '.'" ,: :

"" 1, : "

i -------~:::~-----'------ -----.,:= ~::'----- -------j - yBottom

Figure 12·8. A/igure drawn using tbeChard/unction.

Chapter 12: Drawing Graphics

xStart

Y
Start _,I xRight

i I
xLeft

I ,.-------------- --.. ,::::---::-----,- yTop

.0
,0

\:

xEnd 1
I 00

I ,I:

YEnd-~'-~'l:o '."")':
, , , , ~

: '

i -------.~::::.---.--... -- --. --,,:= ::: :. __ : _______ J - yBottom

Figure 12·9. A figure drawn using the Pie function.

Windows uses an imaginary line to connect (xStart, yStart) with the center of the ellipse.
At the point at which that line intersects the ellipse, Windows begins drawing an arc in a
counterclockwise direction around the circumference of the ellipse. Windows also uses an
imaginary line to connect (xEnd, yEnd) with the center of the ellipse. At the point at which
that line intersects the ellipse, Windows stops drawing the arc.

For the Arc function, Windows is now finished, because the arc is an elliptical line
rather than a filled area. For the Chord function, Windows connects the endpoints of the
arc. For the Pie function, Windows connects each endpoint of the arc with the center of the
ellipse. The interiors of the chord and pie-wedge figures are filled with the current brush.

The ARCS Program

You may wonder about this use of starting and ending positions in the Arc, Chord, and Pie
functions. Why not simply specify starting and ending points on the circumference of the
ellipse? Well, you can, but you would have to figure out what those points are. Windows'
method gets the job done without requiring such precision.

You can experiment with arcs, chords, and pie wedges using the ARCS program,
shown in Figure 12-10 on the following page. The program draws the bounding box and
the ellipse using a dotted pen. Your menu choice determines whether the program draws
an arc, a chord, or a pie wedge. The line or figure is drawn with a pen that is 3 pixels wide.
The starting and ending points are connected to the center of the ellipse with a normal
black pen.

563

SECTION IV: THE GRAPHICS DEVICE INTERFACE

)(.••..•• ~j.1oI i.~ .•• ·.~ ••••• ~.~ •• ,.~ .•.. d: ..•.• ~ ..•.•.•.•.•.•••••••••• i) ••• • ••••••••••••••• ·•· ••••••••••••••• ••• •....••••••••••••••••••••••••••••••. (ii /ll_-i\ (>

......J(....ii(.....
...... ·• \ ... i ... \• ·· .. · ".
. j ,;;.~ iY~

...................... iAlI\L~), ~.... :..L
'if.

... f j

.••..... II ~.....
•••••••••. ~.. j L .C'. "Ji
(i··.· •••••

?~ •• ~~·~····~r~l£]~~···~Un~~.~UJij
•••••••••• • •••••••• d

•••••••••••••••• . . ' .••. ~.~ CtC;nalr\s·
till

........
IS

••. ~I lui

........

......... >.. t
it {ii.· ... ·.· .. ·.··· \ii i i ••.•••• ~IQ(J]<::,.., ")

> :i

..

, ~} L

.

•••••••••••••
() IllJ {i' .. ·/···i.} /)···.i\ r{/).\().'. /···r··.. Ii· ·.i ii./ .. ?)iI.

Figure 12·10. The ARCS program.

564

...........

••

••••••••••••

•••••••••••••••••••••••••••••••••••••

••.••••.•••••••••••••••••••••••••••• i ... ,·lll

. '

• ••••••••••••••••••••••••••••••

•••••••••••••••••••••••

111ft
(continued)

Chapter 12: Drawing Graphics

(continued)

565

SECTION IV: THE GRAPHICS DEVICE INTERFACE

:i:, i i j) ,> ~ \H . ..:;. ~:'.< M :::",:,

•••••••••••••

.i 'K ... r:·
\i fjd~ 7; ~E~(. '.' ••• :

< '"
,

i),;
<

.. ':':. I" i
i'

i ..

{
::,,: '.:

ii

/

i i

1

{'

I.

J
;;

,)

Ip

\ii

iII
r;

:, .. ~

t:
! : '•. ' •.

,I "l

~~i' ::i""". ::':'::::':

Illil I

e ...•.. : ..••......... : :• , ••

rij~:~~
... ' i~~~)

...... ' j;
::.

~PIP(n

(continued)

566

Chapter 12: Drawing Graphics

567

SECTION IV: THE GRAPHICS DEVICE INTERFACE

!
i

••••••••

f) ,C
i ilJ'

i +

/ 1\ i
\ i

::",}:::"'::

i~1\
. :\'~

i ARI1 /1 11

>,li :i
>1

/
;;

(i ':" , ... {}.
""::

i ',:,: . ;~I.~~~
When you click on the client area using the left mouse button, ARCS uses that point as the
starting point, which is the point ex3, y3) in the program. Clicking on the client area with
the right mouse button sets the ending point, the point (x4, y4). Users with a one-button
mouse can hold down the Shift key and click the mouse to set the ending point.

ARCS also shows some typical pen-handle manipulation. After the program gets the
device context by calling BeginPaint, it creates a dotted pen and selects it into the device
context:

hPen = SelectObject (hdc, CreatePen (PS_DOT, I, OL» ;

The hPen handle returned from SelectObject is a handle to the stock BLACK_PEN.
When ARCS needs to draw the arc, chord, or pie wedge, it creates a 3-pixel-wide pen

and selects that into the device context:

DeleteObject (SelectObject (hdc, CreatePen (PS_SOLID, 3, OL») ;

The pen handle returned from SelectObject, which is the handle to the dotted pen, is then
deleted using Delete Object.

When ARCS needs to draw the lines connecting the starting and ending points with
the center of the ellipse, it selects hPen-the handle to the stock BLACK_PEN-into the
device context and deletes the 3-pixel-wide pen returned from SelectObject:

DeleteObject (SelectObject (hdc, hPen» ;

Now the two pens that were created have been deleted. The pen currently selected in the
device context is a stock pen, and the device context can be released.

568

Chapter 12: Drawing Graphics

The Trigonometry of Pie Charts

If you use the Pie function to create pie charts, the size of each pie wedge will be based on
the relative sizes of data items. This involves calculating starting and ending points of the
pie figures that are derived from the internal angle of the pie wedge.

It's time for a trigonometry refresher. In a Cartesian coordinate system (with x in
creasing to the right and y increasing as it moves up), we can draw a triangle like this:

(x, y)

y

The relationship between each of the three sides of the triangle and the angle ex is given by
the formulas:

sin (a.) = y/r

cos (a.) = xlr

tan (a.) = y/x

If you know the angle ex (which in a pie chart will be a fraction of a circle) and r (which
will be the radius of the circle), you can determine that the point (x, y) is equal to:

(r " cos (a.), r " sin (a.))

In the C library functions sin and cos, angles are specified in terms of radians. There are
2 * PI radians in 360 degrees.

Let's try drawing a pie chart that uses five numbers. For convenience, we'll set this
condition with a #define statement:

fldefi ne NUM 5

In a real program, that would be a variable.
You'll also find it convenient to define an identifier called TWO _PI that is the number

of radians in a circle:

#define TWO_PI (2.0 * 3.14159)

Next you define some variables:

static short nValues [NUM] = { 3, 5, 2, 7, 4 };
short i, nSum [NUM + 1] ;

569

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The initialized values in n Values are the data we'll be graphing. In a real program, these
values would be variables. The nSum array is set to the accumulated sum of the data values
where the first element of the array is set to 0:

nSum [0] ... 0 :
for (i = 0 : i < NUM : i++)

nSum [i + 1] = nSum [i] + nValues [i] :

The array element nSum [NUM} is the sum of the five values.
Now we are ready to start drawing the pie chart. Set the mapping mode to

MM_ISOTROPIC, which is the mode in which you can most easily draw a circle:

SetMapMode (hdc, MM_ISOTROPIC) :
SetWindowExt (hdc, 400, 400) :
SetViewportExt (hdc, xClient, -yClient) ;
SetViewportOrg (hdc, xClient / 2, yClient / 2) :

The logical point (0, 0) is the center of the client area, and the x- and y-coordinates define
a normal Cartesian coordinate system.

Our pie has a radius of 100 logical units. Here's the code to paint the five. pie
segments: .

for (i = 0 : i < NUM ; i++)
Pie (hdc, -100, 100, 100, -100,

(short) (100.0 * cos (TWO_PI * nSum [i] / nSum [NUM]»,
(short) (100.0 * sin (TWO_PI * nSum [i] / nSum [NUM]»,
(short) (100.0 * cos (TWO_PI * nSum [i + 1] / nSum [NUM]»,
(short) (100.0 * sin (TWO~PI * nSum [i + 1] / nSum [NUM]»)

The pie chart produced from this code is shown in Figure 12-11. The first pie wedge is at the
right of the pie chart, just above the x-axis. The other pie wedges are drawn in a coun
terclockwise direction.

Figure 12·11. A pie chart drawn using the Pie function.

570

Chapter 12: Drawing Graphics

The values:

TWO_PI * nSum [i] / nSum [NUM]

and:

TWO_PI * nSum [i + 1] / nSum [NUM]

are ratios of the accumulated sum of the items to the total sum of the items converted to
angles that are measured counterclockwise from the horizontal. The second formula in
cludes the item that the particular pie wedge represents; the first does not. By taking the
cosine and sine of these angles and mUltiplying by 100, we're calculating the starting and
ending points on the circle.

T~e Polygon Function and the Polygon Filling Mode

Polygon is the sixth function for drawing a bordered and filled figure. The fl:lnction call is
similar to the PolyLine function:

Polygon (hdc, lpPoints, nCount) ;

The IpPoints parameter is a far pointer to an array of POINT structures (in logical coordi
nates), and nCount is the number of points. If the last point in ~his array is different from
the first point, Windows adds another line that connects the last point with the first point.
(This does not happe~ with the Polyline function.)

Windows fills this bounded area with the current brush in one of two ways, depend
ing on the current polygon filling mode defined in the device context. By default, the
polygon filling mode is ALTERNATE, which means that Windows fills in only those in
teriors accessible from the outside of the polygon by crossing an odd number of lines (1, 3,
5, and so forth). The other interiors are not filled. You can also set the polygon filling mode
to WINDING, in which case Windows fills in all the interior areas. The two polygon filling
modes are most simply demonstrated with a five-pointed star. In Figure 12-12 on the fol
lowing page, the star on the left was drawn with the ALTERNATE mode, and the star on the
right was drawn with the WINDING mode. Both figures were drawn with an array of
points defined like this:

static POINT pt [] =
{ -59, -81, 0, 100, 59, -81, -95, 31, 95, 31 } ;

The five points of the star were manually calculated from trigonometric tables. The
WM_PAINT logic looks like this:

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;

hPen = CreatePen (PS_SOlID, 3, Ol) :
SelectObject (hdc, hPen) :
SelectObject (hdc, GetStockObject (lTGRAY_BRUSH»

571

SECTION IV: THE GRAPHICS DEVICE INTERFACE

SetMapMode (hdc, MM_ISOTROPIC) ;
SetWindowExt (hdc, 440, -220) ;
SetViewportExt (hdc, xClient, yClient)
SetWindowOrg (hdc, -110, 110) ;

SetPolyFillMode (hdc, ALTERNATE) ;
Polygon (hdc, pt, sizeof (pt) / sizeof (POINT))

SetWindowOrg (hdc, -330, 110) ;

SetPolyFillMode (hdc, WINDING) ;
Polygon (hdc, pt, sizeof (pt) / sizeof (POINT))

EndPaint (hwnd, &ps) ;
DeleteObject (hPen) ;
break ;

The PolyPolygon function draws multiple polygons.

Figure 12·12. Figures drawn with the two polygon filling modes: ALTERNATE (left)
and WINDING (right).

Brushing the Interior

The interiors of the Rectangle, RoundRect, Ellipse, Chord, Pie, Polygon, and PolyPolygon
figures are filled in with the current brush (also sometimes called a "pattern") selected in
the device context. A brush is an 8-by-8 bitmap that is repeated horizontally and vertically
to fill the area.

When Windows uses dithering to display more colors than are normally available on
a display, it actually uses a brush for the color. On a monochrome system, Windows can use
dithering of black and white pixels to create 64 different shades of gray. More precisely,
Windows can create 64 different monochrome brushes. For pure black, all bits in the
8-by-8 bitmap are O. One bit out of the 64 is made 1 (that is, white) for the first gray shade,
two bits are white for the second gray shade, and so on, until all bits in the 8-by-8 bitmap
are 1 for pure white. On a color video system, dithered colors are also bitmaps, and a much
wider range of color is available.

572

Chapter 12: Drawing Graphics

We've already used stock brushes. Windows also has four functions that let you
create logical brushes. You select the brush into the device context with SelectObject. Like
logical pens, logical brushes are GDI objects. Any brush that you create must be deleted,
but it must not be deleted while it is selected in the device context.

Here's the first function to create a logical brush:

hBrush = CreateSolidBrush (rgbColor) ;

The word Solid in this function doesn't really mean that the brush is a pure color. When
you select the brush into the device context, Windows creates an 8-by-8 bitmap for a dith
ered color and uses that bitmap for the brush. We used CreateSolidBrush in the COLORS1
program in Chapter 6. The brush was used as the background color defined in the window
class structure.

You can also create a brush with "hatch marks" made up of horizontal, vertical, or
diagonal lines. Brushes of this style are most commonly used for coloring the interiors of
bar graphs and when drawing to plotters. The function for creating a hatch brush is:

hBrush - CreateHatchBruih (nHatchStyle. rgbColor) ;

The nHatchStyle parameter describes the appearance of the hatch marks. The parameter
can be one of the following styles: HS_HORIZONTAL, HS_ VERTICAL, HS_FDIAGONAL,
HS_BDIAGONAL, HS_CROSS, and HS_DIAGCROSS. Figure 12-13 shows the kind of hatch
marks that each of these styles produces.

HS_HORIZONTAL

HS_ VERTICAL

HS,...FDIAGONAL

IIII

~

HS_BDlAGONAL

HS_CROSS

HS_DlAGCROSS

Figure 12·13. The six hatch brush styles.

The rgbColor parameter of CreateHatchBrush is the color of the hatch lines. When you
select the. brush into a device context, Windows converts this color to the nearest pure
color. The area between the hatch lines is colored based on the background mode and
background color defined in the device context. If the background mode is OPAQUE,
the background color (which is also converted to a pure color) is used to fill in the spaces
between the lines. In this case, neither the hatch lines nor the fill color can be a dithered
color. If the background mode is TRANSPARENT, Windows draws the hatch lines without
filling in the area between them.

Earlier I discussed the problems that you can encounter with pen colors when you
develop a program on a color display and later run the program on a monochrome display.
You should beware of the same problems when you choose colors for hatch marks and the
brush background. Colored hatch marks that look fine on a color display may disappear
into the background when displayed in monochrome.

573

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Because brushes are always 8-by-8 bitmaps, the appearance of hatch brushes will
also vary according to the resolution of the device on which they are displayed. Each of the
hatch marks shown in Figure 12-13 was drawn in a 32-by-16-pixel rectangle, which means
that the 8-by-8 bitmap was repeated 4 times horizontally and 2 times vertically. On a 300-
dots-per-inch laser printer, the same 32-by-16-pixel rectangle would occupy an area about
Y9 inch wide and Yt9 inch high.

You can also create your own brushes based on bitmaps using CreatePatternBrush:

hBrush = CreatePatternBrush (hBitmap) ;

This function was discussed in Chapter 9. The hBitmap parameter is a handle to an 8-by-8
bitmap. How you get this bitmap handle is covered in the next section of this chapter.

Windows also includes a function that encompasses the three other functions for
creating brushes (CreateSolidBrush, CreateHatchBrush, and CreatePatternBrush):

hBrush = CreateBrushlndirect (&logbrush) ;

The variable logbrush is a structure of type LOG BRUSH ("logical brush"). The three fields
of this structure are shown below. The value of the IbStyle field determines how Windows
interprets the other two fields:

lbStyle (WORD) (bColor (DWORD) lbHatch (short)

BS_SOLID Color of brush Ignored

BS_HOLLOW Ignored Ignored

BS_HATCHED Color of hatches Hatch brush style

BS_PATTERN Ignored Handle to bitmap

Earlier we used SelectObjectto select a logical pen into a device context, DeleteObject
to delete a logical pen, and GetObject to get information about a logical pen. You can use
these same three functions with brushes. Once you have a handle to a brush, you can select
the brush into a device context using SelectObject:

SelectObject (hdc. hBrush) ;

You can later delete a created brush with the DeleteObject function:

DeleteObject (hBrush) ;

Do not delete a brush that is currently selected into a device context, however. If you need
to obtain information about a brush, you can call GetObject:

GetObject (hBrush. sizeof (LOGBRUSH). (LPSTR) &logbrush) ;

where logbrush is a structure of type LOGBRUSH.

574

Chapter 12: Drawing Graphics

Brushes and Bitmaps

When you use the CreatePatternBrush or CreateBrushlndirect function with the IbStyle
field set to BS_PATTERN, you first need a handle to a bitmap. The bitmap must be least 8
pixels wide and 8 pixels high. If it's larger, Windows uses only the upper left corner of the
bitmap for the brush.

Because brushes and bitmaps are GDI objects, you must delete any that you create in
your program before the program terminates. When you create a brush based on a bitmap,
Windows makes a copy of the bitmap bits for use when drawing with the brush. You can
delete the bitmap immediately after calling CreatePatternBrush (or CreateBrushlndirect)
without affecting the brush. Similarly, you can delete the brush without affecting the
bitmap.

One method of getting a handle to a bitmap was discussed in Chapter 8. You can use
SDKPAINT to create a bitmap file (with the extension .BMP), include that filename in a
BITMAP statement in the resource script, and then load the bitmap into your program. The
LoadBitmap function returns a handle of type HBITMAP:

hBitmap = LoadBitmap (hInstance. lpszBitmap) ;

The variable IpszBitmap is the name of the bitmap in the resource script file.
The second method of getting a handle to a bitmap is to use this function:

hBitmap = CreateBitmap (nWidth. nHeight. nPlanes. nBitsPixel. lpBits) ;

To create a bitmap to use for a brush, n Width and nHeight should both be set to 8. If you
want a monochrome bitmap, nPlanes and nBitsPixel should both be set to 1. The variable
IpBits is a long pointer to an array of bytes containing the pixel pattern of the bitmap. You
can set this parameter to NULL if you want to create an un initialized bitmap, in which case
the bitmap will contain random data.

The third method of getting a handle to a bitmap is this:

hBitmap = CreateCompatibleBitmap (hdc. nWidth. nHeight)

This creates a bitmap with the same number of color planes and the same number of color
bits per pixel as the device context indicated by hdc. (The only reason this function re
quires hdc is to get this color information.) The bitmap initially contains random data.

The final method for getting a handle to a bitmap requires a pointer to a structure
(here named bitmap) of type BITMAP:

hBitmap - CreateBitmapIndirect (&bitmap) ;

Watch out for the difference between the types HBITMAP and BITMAP. HBITMAP is a
handle to a bitmap. BITMAP is a structure that describes the bitmap. The BITMAP struc
ture has seven fields, as described in the following list. Five of them are similar to the
parameters of the CreateBitmap function.

575

SECTION IV: THE GRAPHICS DEVICE INTERFACE

bmType

bmWidth

bmHeight

bm WidthBytes

bmPlanes

bmBitsPixel

bmBits

Set to 0

Width of bitmap in pixels

Height of bitmap in pixels

Number of bytes in each raster line

Number of color planes

Number of adjacent color bits per pixel

Far pointer to an array of bytes containing the bitmap pattern

Whep you have a handle to a bitmap, you can use GetObject to obtain information
about the bitmap:

GetObject (hBitmap. sizeof (BITMAP). (LPSTR) &bitmap) :

where bitmap is a structure of type BITMAP. However, GetObject does not copy a valid far
pointer into the bmBits field. To get the actual bits that make up the bitmap, you can call:

GetBitmapBits (hBitmap. dwCount. lpBits) :

GetBitmapBits copies dwCount number of bytes into an array whose address is IpBits. You
can also set the bits of a bitmap using the SetBitmapBits function:

SetBitmapBits (hBitmap. dwCount. lpBits) :

The bmBits field of the BITMAP structure and the IpBits parameter of the CreateBit
map, SetBitmapBits, and GetBitmapBits functions are far pointers to an array of bytes that
define the bitmap pattern. The array of bytes begins with the top scan line. Color bitmaps
may be organized with multiple bits per pixel or multiple color planes per scan line. (I'll
discuss this more in the next chapter.) If you wish to use a bitmap as a brush and be assured
that it will work on all devices, use a monochrome bitmap.

The total size of this array of bytes is equal to (using the fields of the logical bitmap
structure):

bmPlanes * bmHeight * bmWidthBytes

The bmWidthBytesfield is the width of each scan line in bytes. This value must be the even
number equal to or the next even number greater than:

bmWidth * bmBitsPixel/ 8

In other words, each scan line is padded with bytes if necessary to get an integral number
of words. The scan line is padded at the right because the bytes are arranged from left to
right. The most significant bit of the first byte is the leftmost pixel.

576

Chapter 12: Drawing Graphics

Creating and Using Bitmap Brushes

We've covered the background information you need to create and use brushes based on
bitmaps. Now let's put that information to work. Let's say that you want to draw a rectangle
filled in with a brush that looks like little bricks, as shown in Figure 12-14.

Figure 12·14. Afigurefilled in with a customized brush.

The bitmap you need has a pixel pattern that looks like this:

This is a monochrome bitmap with a height and width of 8. Here are three methods you
can use to create a brush based on this bitmap.

Method one
Create an 8-by-8 monochrome bitmap in SDKPAINT that resembles the diagram shown
above and save it under the name BRICK.BMP. In your resource script file, include a state
ment identifying this file as a bitmap and naming it "Brick":

Brick BITMAP brick.bmp

577

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Within your program, define variables of type HBITMAP (handle to a bitmap) and
HBRUSH (handle to a brush):

HBITMAP hBitmap ;
HBRUSH hBrush;

These two handles are set by the following statements:

hBitmap = LoadBitmap (hInstance, "Brick") ;
hBrush - CreatePatternBrush (hB~tmap) ;

When you have a valid device context, select the brush into the device context and display
the rectangle:

SelectObject (hdc, hBrush) ;
Rectangle (hdc, xLeft, yTop, xRight, yBottom) ;

When you release the device context, delete the brush and bitmap:

DeleteObject (hBrush) ;
DeleteObject (hBitmap) ;

You don't have to wait until you release the device context to delete the bitr,nap-you can
do so anytime after you create the brush based on the bitmap.

Method two

This method defines the bitmap pixels within the program as an array of eight unsigned
integers. Each integer corresponds to a scan line in the bitmap pattern. A 1 bit is used for
white and a 0 bit for black:

HBITMAP hBitmap ;
HBRUSH hBrush;
static WORD wBrickBits [] =

{ OxFF, OxOC, OxOC, OxOC, OxFF, OxCO, OxCO, OxCO } ;

The bitmap is created using CreateBitmap by referencing this array of integers:

hBitmap = CreateBitmap (8, 8, 1, 1, (LPSTR) wBrickBits) ;
hBrush = CreatePatternBrush (hBitmap) ;

SelectObject (hdc, hBrush) ;
Rectangle (hdc, xLeft, yTop, xRight, yBottom)

After you're finished with the brush and the bitmap (and the brush is no longer selected in
a valid device context), you delete the bitmap and the brush:

578

DeleteObject (hBrush) ;
DeleteObject (hBitmap) ;

Chapter 12: Drawing Graphics

Rather than using an array of integers for the bitmap's bits, you can use instead an
array of unsigned characters. Because each scan line must contain an even number of
bytes, however, you have to insert a 0 after each byte:

static unsigned char cBrickBits [] -

Method three

{ OxFF, 0, OxOC, 0, OxOC, 0, OxOC, 0,
OxFF, 0, OxCO, 0, OxCO, 0, OxCO, 0 }

This method is similar to the second method except that you use the logical bitmap and
logical brush structures to create the bitmap and the brush. Begin by defining these
variables:

HBITMAP hBitmap :
HBRUSH hBrush;
static BITMAP bitmap - { 0, 8, 8, 2, I, 1
static LOGBRUSH logbrush - { BS_PATTERN, OL }
static WORD wBrickBits [] =

{ OxFF, OxOC, OxOC, OxOC, OxFF, OxCO, OxCO, OxCO } :

The last field of the logical bitmap structure remains uninitialized. This field must
contain a far pointer to the array of bytes that define the bitmap pattern. Do not initialize
the structure with this pointer, however. Instead use an assignment statement:

bitmap.bmBits = (LPSTR) wBrickBits :

Watch out when you assign a far address of a local data item to the field of a structure. If the
program's data segment is moved in memory (as it can be following a Get Message,
LocalAlloc, or LocalReAlloc call), that far address can become invalid. A good rule is to
make this assignment immediately before using the structure. After the assignment, you
use this structure to create the bitmap:

hBitmap - CreateBitmapIndirect (&bitmap) ;

Now that you have the handle to a bitmap, you can use the CreateBrushlndirect function
to create the brush:

logbrush.lbHatch - hBitmap ;
hBrush - CreateBrushIndirect (&logbrush) ;

SelectObject (hdc, hBrush) ;
Rectangle (hdc, xLeft, yTop, xRight, yBottom)

Later on, delete both the brush and the bitmap:

DeleteObject (hBrush) ;
DeleteObject (hBitmap) ;

579

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Brush Alignment

When Windows fills in an area with a brush, it repeats the 8-by-8 bitmap both horizontally
and vertically. This brush's appearance can vary slightly, depending on how Windows
aligns the upper left corner of the bitmap with the display surface. The attribute in the de
vice context that determines this alignment is called the "brush origin." This attribute is al
ways expressed in terms of screen coordinates. If you obtain a device context using
BeginPaint or GetDC, the brush origin is initially set to the upper left corner of your win
dow's client area. If the client area begins 30 pixels from the left of the screen and 20 pixels
from the top of the screen, the brush origin is set to the point (30, 20).

Whenever Windows uses a brush within the client area, the upper left corner of the
brush's bitmap coincides with those client-area device points where both xand yare mul
tiples of 8. Let's take an example involving a hatch brush with style HS_FDIAGONAL,
which looks like this:

In MM_TEXT mode, when you draw a rectangle that is filled in with the HS_FDIAGONAL
brush, the downward hatch line will intersect the upper left corner of the rectangle if this
corner is at the logical point (8, 8). However, the hatch line will be aligned 4 pixels from the
top of the corner if the rectangle begins at the logical point (8, 4).

In most cases, adjusting the brush origin is an unnecessary refinement to your draw
ing, but sometimes you'll want to do it. The process involves three steps:

580

1. Call Un realize Object for the brush. (Do not call UnrealizeObject for stock
brushes.)

2. Set the brush origin with SetBrushOrg, remembering to use screen
coordinates.

Chapter 12: Drawing Graphics

3. Select the brush into the device context using SelectObject.

One situation in which you'll need to change the brush origin is when you want the
background of a child window to blend in with the background of its parent window.
When you obtain a handle to the device context for the child window, the brush origin will
be the upper left corner of the child window. You need to change the brush origin to be the
upper left corner of the parent window. (We did this when coloring child window controls
in Chapter 6.) In this case, you're changing the brush origin in one device context so that it
coincides with the brush origin in another device context.

You'll also need to change brush origins when you draw several figures sharing the
same device context but you don't want the brushes to coincide. For instance, suppose you
want to use brushes to color the bars of a bar chart. If you didn't care about brush align
ment, you might draw each of the bars using a function that looks like this:

void OrawBarl
HOC
short
HBRUSH
{
HBRUSH

(hdc. xLeft. yTop. xRight. yBottom. hBrush)
hdc ;
xLeft. yTop. xRight. yBottom ;
hBrush ;

hBrushOriginal

hBrushOriginal - SelectObject (hdc. hBrush) ;
Rectangle (hdc. xLeft. yTop. xRight. yBottom)
SelectObject (hdc. hBrushOriginal) ;
} .

This function simply selects the brush handle passed as a function parameter (saving the
handle to the brush originally selected), draws a rectangle, and then selects the original
brush back into the device context. If a program used this routine to draw several adjacent
bars that it filled in with the HS_FDIAGONAL brush, the result would look like Figure 12-15.
Notice that the hatch lines for all three bars align, which has the unfortunate effect of draw
ing the eye downward from left to right.

Figure 12·15. Three bars that have the same device context and brush origin.

581

SECTION IV: THE GRAPHICS DEVICE INTERFACE

To avoid this effect, you need to align the brush with each bar individually, which you
can accomplish with the following function:

void DrawBar2
HWND
HDC
short
HBRUSH
{
HBRUSH
POINT

(hwnd. hdc. xLeft. yTop. xRight. yBottom. hBrush)
hwnd ;
hdc ;
xLeft. yTop. xRight. yBottom
hBrush ;

hBrushOriginal
pt ;

UnrealizeObject (hBrush)

pt.x - xLeft ;
pt.y .. yTop ;
LPtoDP (hdc. &pt. 1) ;
ClientToScreen (hwnd. &pt)

SetBrushOrg (hdc. pt.x. pt.y)

hBrushOriginal .. SelectObject (hdc. hBrush) ;
Rectangle (hdc. xLeft. yTop. xRight. yBottom)
SelectObject (hdc. hBrushOriginal) ;
}

You "unrealize" the brush by calling UnrealizeObject and then set the brush origin to the
upper left corner of the bar that's being drawn. This requires translating the upper left cor
ner of the bar to client-area coordinates using LPtoDPand then to screen coordinates using
ClientToScreen. The result is shown in Figure 12-16. Now the hatch lines begin in the upper
left corner of each bar and do not align from one bar to the next.

Figure 12·16. Three bars that have the same device context but a different brush origin.

582

Chapter 12: Drawing Graphics

RECTANGLES, REGIONS, AND CLIPPING
Windows includes several additional drawing functions that work with RECT (rectangle)
structures and "regions." A region is an area of the screen that is a combination of rect
angles, other polygons, and ellipses.

Working with Rectangles

These three drawing functions require a pointer to a rectangle structure:

FillRect (hdc. &rect. hBrush) ;
FrameRect (hdc. &rect. hBrush) ;
InvertRect (hdc. &rect) ;

In these functions, the rect parameter is a structure of type RECT with four fields: left, top,
right, and bottom. The coordinates in this structure are treated as logical coordinates.

FiliRect fills the rectangle (up to but not including the right and bottom coordinate)
with the specified brush. This function doesn't require that you first select the brush into
the device context. We used the FiliRect function in the ROP2LOOK program earlier in this
chapter to color the background with five stock brushes.

FrameRect uses the brush to draw a rectangular frame, but it does not fill in the
rectangle. Using a brush to draw a frame may seem a little strange, because with the func
tions that you've seen slo far (such as Rectangle), the border is drawn with the current pen.
FrameRect allows you to draw a rectangular frame that isn't necessarily a pure color. This
frame is one logical unit wide. If logical units are larger than device units, then the frame
will be 2 or more pixels wide.

InvertRect inverts all the pixels in the rectangle, turning ones to zeros and zeros to
ones. This function turns a white area to black, a black area to white, and a green area
to magenta.

Windows also includes nine functions that allow you to manipulate RECT structures
easily and cleanly. For instance, to set the four fields of a RECT structure to particular
values, you would conventionally use code that looks like this:

rect.left = xLeft ;
rect.top = xTop ;
rect.right = xRight ;
rect.bottom = xBottom ;

By calling the SetRect function, however, you can achieve the same result with a single line:

SetRect (&rect. xLeft. yTop. xRight. yBottom) ;

The other eight functions can also come in handy when you want to do one of the
following:

• Move a rectangle a number of units along the x and yaxes:

OffsetRect (&rect. x. y) ;

583

SECTION IV: THE GRAPHICS DEVICE INTERFACE

• Increase or decrease the size of a rectangle:

InflateRect (&rect. x. y) ;

• Set the fields of a rectangle equal to 0:

SetRectEmpty (&rect) ;

• Copy one rectangle to another:

CopyRect (&DestRect. &SrcRect)

• Obtain the intersection of two rectangles:

IntersectRect (&DestRect. &SrcRectl. &SrcRect2)

• Obtain the union of two rectangles:

UnionRect (&DestRect. &SrcRectl. &SrcRect2)

• Determine if a rectangle is empty:

bEmpty - IsRectEmpty (&rect)

• Determine if a point is in a rectangle:

blnRect - PtlnRect (&rect. point)

In most cases, the equivalent code for these functions is simple. Sometimes, you'll
find that using one of these functions actually increases the size of your .EXE file. In some
instances, in fact, equivalent code even takes up less space in your source code file. For ex
ample, you can duplicate the CopyRect function call with:

DestRect = SrcRect ;

Creating and Painting Regions

A region is a descripti~n of an area of the display that is a combination of rectangles, other
polygons, and ellipses. You can use regions for drawing or for clipping. You use a region
for clipping by selecting the region into the device context.

Like pens, brushes, and bitmaps, regions are GDI objects. (The fifth and final type of
GDI object is the logical font, which we'll look at in Chapter 15.) You must treat regions the
same way you treat the other GDI objects: Delete any regions that you create, but don't
delete a region while it is selected in the device context.

When you create a region, Windows returns a handle to the region of type HRGN.
The simplest type of region describes a rectangle. You can create a rectangular region in
one of two ways:

hRgn - CreateRectRgn (xLeft. yTop. xRight. yBottom) ;

or:

hRgn = CreateRectRgnlndirect (&rect)

584

Chapter 12: Drawing Graphics

Regions are always expressed in terms of device coordinates.
You can also create elliptical regions using:

hRgn - CreateEllipticRgn (xLeft, yTop, xRight, yBottom)

or:

hRgn - CreateEllipticRgnIndirect (&rect) ;

The CreatRoundRectRgn creates a rectangular region with rounded corners.
Creating a polygonal region is similar to using the Polygon function:

hRgn - CreatePolygonRgn (&point, nCount, nPolyFillMode) ;

The point parameter is an array of structures of type POINT, nCount is the number of
points, and nPolyFillMode is either ALTERNATE or WINDING. You can also create mul
tiple polygonal regions using CreatePolyPolygonRgn.

So what, you say? What makes these regions so special? Here's the function that
unleashes the power of regions:

nRgnType - Combi~eRgn (hDestRgn, hSrcRgnl, hSrcRgn2, nCombine) ;

This combines two source regions (hSrcRgnl and hSrcRgn2) and causes the destination
region handle (hDestRgn) to refer to that combined region. All three region handles must
be valid, but the region previously described by hDestRgn is destroyed. (When you use this
function, you might want to make hDestRgn refer initially to a small rectangular region.)

The nCombine parameter describes how the hSrcRgnl and hSrcRgn2 regions are to
be coinbined:

nCombine Value Ne~ Region

RGN_AND' Overlapping area of the two source regions

RGN_OR All the two source regions

RGN_.xOR All the two source regions excluding the overlapping area

RGN_DIFF All of hSrcRgnl not in hSrcRgn2

RGN_COPY The hSrcRgnl made the same as hSrcRgn2

The nRgnType value returned from CombineRgn is one of the following: NULLREGION,
indicating an empty region; SIMPLEREGION, indicating a simple rectangle, ellipse, or
polygon; COMPLEXREGION, indicating a combination of rectangles, ellipses, or polygons;
and ERROR, meaning that an error has occurred.

Once you have a handle to a region, you can use it with four drawing functions:

FillRgn (hdc, hRgn, hBrush) ;
FrameRgn (hdc, hRgn, hBrush, xFrame, yFrame) ;
InvertRgn (hdc, hRgn) ;
PaintRgn (hdc, hRgn) ;

585

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The FillRgn, FrameRgn, and InvertRgn functions are similar to the FillRect, FrameRect, and
InvertRect functions. The xFrame and yFrame parameters to FrameRgn are the width and
height of the frame to be painted around the region. Although regions always use device
coordinates, these two parameters are specified in terms of logical units. The PaintRgn
function fills in the region with the brush currently selected in the device context.

When you are finished with a region, you can delete it using the same function that
deletes other GDI objects:

DeleteObject (hRgn) ;

Clipping with Rectangles and Regions

Regions can also playa role in clipping. (I discussed clipping in Chapter 2 when discussing
the various SYSMETS programs.) The InvalidateRect function invalidates a rectangular
area of the display and generates a WM_PAINT message. Often we use the InvalidateRect
function to erase the client area and generate a WM_PAINT message:

InvalidateRect (hwnd, NULL, TRUE) ;

You can obtain the coordinates of the invalid rectangle by calling GetUpdateRect, and you
can validate a rectangle of the client area using the ValidateRect function. When you
receive a WM_PAINT message, the coordinates of the invalid rectangle are available from
the PAINTSTRUCT structure that is filled in by the BeginPaintfunction. This invalid rect
angle also defines a "clipping region." You cannot paint outside the clipping region.

Windows has two functions similar to InvalidateRectand ValidateRectthat work with
regions rather than rectangles:

InvalidateRgn (hwnd, hRgn, bErase)

and:

ValidateRgn (hwnd, hRgn) ;

However, when you receive a WM_PAINT message as a result of an invalid region, the
clipping region will still be a rectangle that encompasses the invalid region.

If you want a nonrectangular clipping region, you can select a region into the device
context using either:

SelectObject (hdc, hRgn) ;

or:

SelectClipRgn (hdc, hRgn)

586

Chapter 12: Drawing Graphics

SelectObject returns a handle to the previous clipping region selected in the device con
text, whereas SelectClipRgn returns an nRgnType value like CombineRgn. Windows also
includes several functions to manipulate this clipping region, such as Exc!udeClipRect to
exclude a rectangle from the clipping region, IntersectClipRect to create a new clipping
region that is the intersection of the previous clipping region and a rectangle, and Off
setClipRgn to move a clipping region to another part of the client area.

The CLOVER Program

The CLOVER program forms a region out of four ellipses, selects ~his region into the device
context, and then draws a series of lines emanating from the center of the window's client
area. The lines appear only in the area defined by the region. The resulting display is
shown in Figure 12-17.

To draw this graphic by conventional methods, you would have to calculate the end
point of each line based on formulas involving the circumference of an ellipse. By using a
complex clipping region, you can draw the lines and let Windows determine the end
points. The CLOVER program is shown in Figure 12-18, beginning on the following page.

Figure 12·17. The CLOVER display, drawn using a complex clipping region.

587

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.....

•••••••••••••••••••••••••••••••••••

Figure 12·18. The CLOVERprogram. (continued)

588

Chapter 12: Drawing Graphics

(continued)

589

SECTION IV: THE GRAPHICS DEVICE INTERFACE

: .: •••••.••••••. nt n
',:.:

•••••••••••••••••••••••••••

590

Chapter 12: Drawing Graphics

Because regions always use device coordinates, the CLOVER program has to re-create the
region every time it receives a WM_SIZE message. This takes several seconds. CLOVER
begins by creating four elliptical regions that are stored as the first four elements of the
hRgn Temp array. Then the program creates three "dummy" regions:

hRgnTemp [4] - CreateRectRgn (0, 0, I, 1) ;
hRgnTemp [5] - CreateRectRgn (0, 0, I, 1) ;
hRgnClip - CreateRectRgn (0, 0, I, 1) ;

The two elliptical regions at the left and right of the client area are combined:

CombineRgn (hRgnTemp [4], hRgnTemp [0], hRgnTemp [1], RGN_OR) ;

Similarly, the two elliptical regions at the top and bottom of the client area are combined:

CombineRgn (hRgnTemp [5], hRgnTemp [2], hRgnTemp [3], RGN_OR) ;

Finally, these two combined regions are in turn combined into hRgnClip:

CombineRgn (hRgnClip, hRgnTemp [4], hRgnTemp [5], RGN_XOR) ;

The RGN _XOR identifier is used to exclude overlapping areas from the resultant region.
Finally, the six temporary regions are deleted:

for (i - 0 ; i < 6 ; i++)
DeleteObject (hRgnTemp [i]) ;

The WM_PAINT processing is simple, considering the results. The viewport origin is
set to the center of the client area (to make the line drawing easier), and the region created
during the WM_SIZE message is selected as the device context's clipping region:

SetViewportOrg (hdc, xClient / 2, yClient / 2) ;
SelectClipRgn (hdc, hRgnClip) ;

591

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Now all that's left is drawing the line:s-360 of them, spaced 1 degree apart. The
length of each line is the variable ./Radius, which is the distance from the center to the cor
ner of the client area:

fRadius = hypot (xClient I 2.0. yClient I 2.0) ;

for (fAngle = 0.0 ; fAngle < TWO_PI fAngle += TWO_PI I 360)
{
MoveTo (hdc. O. 0) ;
LineTo (hdc. (short) (fRadius * cos (fAngle) + 0.5);

(short) (-fRadius * sin (fAngle) + 0.5»

During processing of WM_DESTROY, the region is deleted:

DeleteObject (hRgnClip) ;

SOME MISCELLANEOUS GDI FUNCTIONS
A few additional drawing functions don't fit into any convenient categories. These include
FloodFill, Draw/con, Scroll Window, ScrollDC, LineDDA, and LineProc.

FloodFill fills in an area with the current brush. The syntax is:

FloodFill (hdc. xStart. yStart. rgbColor) ;

This is the function that. the Windows PAINTBRUSH program calls when you use the
"paint roller" icon. Starting at the logical point (xStart, yStart), the function fills in an area
until it encounters a boundary of rgbColor.

FloodFill doesn't work if the point (xStart, yStart) is rgbColor itself or if the point is
outside the clipping region. If you use FloodFill during normal repainting of your client
area, you might want to invalidate the entire client area before calling BeginPaint to be
sure that (xStart, yStart) is in the clipping region.

The ExtFloodFill function has the following syntax: .

ExtFloodFill (hdc. xStart. yStart. rgbColor. wFill)

ExtFloodFill is an extended version of FloodFill that (depending on the last parameter)
can fill to a boundary orover a surface the color of rgbColor.

Draw/con draws an icon on the display:

DrawIcon (hdc. xStart. yStart. hIcon) ;

This function works only in the MM_ TEXT mapping mode. (The Draw/con function ap
pears in Chapter 9.)

Both Scroll Window and ScrollDC scroll part of the window's client area. We used
ScrollWindow in the SYSMETS3 program in Chapter 2. It's not a GDI function, so it always
uses device units. The general syntax is:

ScrollWindow (hwnd. xScroll. yScroll. &rectScroll. &rectClip) ;

592

Chapter 12: Drawing Graphics

Note that the first parameter is a handle to a window rather than to a device context. The
section of the client area indicated by the rectScroll rectangle structure is shifted right
xScroll pixels and down yScroll pixels. These two parameters can be negative if you use
the function to scroll to the left or up.

Only the area within the rectClip rectangle is affected by this scrolling, so it makes
sense to set rectClip only to be the same rectangle as rectScroll, a larger rectangle, or
NULL. If you want the area within rectScrollto be scrolled without affecting anything out
side the rectangle, set rectClip to equal rectScroll. If it is acceptable for the area within
rectScroll to be shifted outside the rectangle, set rectClip to NULL. The area uncovered by
the scrolling is invalidated and generates a WM_PAINT message. Because ScrollWindow is
not a GDI function, it can't perform clipping and will also scroll dialog boxes or child win
dows that may be covering the surface of the client area.

ScrollDCis a GDI function and works differently. The syntax is:

ScrollDC (hdc. xScroll. yScroll. &rectScroll. &rectClip.
hRgnUpdate. &rectUpdate) ;

When not set to NULL, the last two parameters return information to the program. If you
pass a region handle to Windows in the sixth parameter, Windows sets the region to the in
valid region uncovered by the scroll. If you pass a pointer to a RECT structure in the last pa
rameter, Windows sets the structure to indicate the invalid rectangle uncovered by the
scroll.

The LineDDA function calculates all the points on a straight line that connects two
given points. (DDA stands for "digital differential analyzer.") The syntax is:

LineDDA (xStart. yStart. xEnd. yEnd. lpfnLineProc. lpData) ;

LineDDA requires a call-back function of the form:

void FAR PASCAL LineProc (x. y. lpData)
short x. y ;
LPSTR lpData;
{

{other program lines}
}

LineProc must be included in the EXPORTS section of your module definition (.DEF) file.
The lpfnLineProc parameter you pass to LineDDA must be the result of a MakeProc
Instance call:

lpfnLineProc = MakeProclnstance (LineProc. hlnstance) ;

When you call LineDDA, Windows calls LineProc once for each point on the line connect
ing (xStart, yStart) and (xEnd, yEnd). The point is indicated by the x and y parameters to
LineProc. LineProc also receives the far pointer to programmer-defined data that you suP-.
ply in the LineDDA call.

593

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Note that LineDDA does not require a handle to a device context. The function is sim
ply a line calculation algorithm that gives your program each point it calculates. What you
do with these points is up to you. In the LINEDDA program, shown in Figure 12-19, I chose
to draw a rectangle and connect the corners of the rectangle with the corners of the client
area. Not satisfied with the mundane dotted and dashed line styles that Windows allows
one to use with more ease, I chose to draw the lines as a series of tiny ellipses. The result is
shown in Figure 12-20 on page 597.

ilL

'/'1

i

r'.

.....
.

1 L.
~ ... '"

«t ~
.

··W ·.i \
"c-'

i

Figure 12·19. The LINEDDAprogram.

. {
.... ' .

/ ..

..... >
;.:

!t J\

•••••••

....
}

i '. i
i.

i> >

•••••••••

".\.

If " ..

1 .HE
.....

......
i

....

1 > ?
?

.,
:

,f

, ~

{ .. >
I hr < i/< ..

) i. i·····
ii

....<
it(i

.....
,,~

...... i r :;:~I)
III ."····i ..•.•.

····· .. · •.... ·......i} i) i\ •..•••••••••
. .••••. ? 'i{ ~Ilac ss

.: ·..........i · ···>i(< i< ..
.......

(continued)

594

Chapter 12: Drawing Graphics

595

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

596

Chapter 12: Drawing Graphics

NAME LINEDDA

'LineDDA Demonstration (c) Charles Petzold, 1990'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE
1024
8192
WndProc
LineProc

. I I· I· ,

Figure 12·20. The LINEDDA display.

The LineDDA function is called eight times during processing of the WM_PAINT message,
once for each of the eight lines. The IpData parameter is the address of the handle to the
device context.

597

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The LineProc function is short:

void FAR PASCAL LineProc (x. y. lpData)
short x. y ;
LPSTR lpData
{
static short nCounter = 0

if (nCounter == 2)
Ellipse (* (HDC far *) lpData. x - 2. Y - 2. x + 3. y + 3) ;

nCounter = (nCounter + 1) % 4 ;
}

Note that the nCounter variable is defined as static so that its value is preserved between
LineProc calls. It cycles through the values 0, 1, 2, and 3. When the value is 2, LineProc
draws an ellipse centered on the point.

PROGRAMS THAT DRAW FOREVER
A fun program in any graphics system is one that runs "forever," simply drawing a hypnotic
series of rectangles with random sizes and colors. You can create such a program in Win
dows, but it's not quite as easy as it first seems. By now you should know that this is defi
nitely not the way to do it:

598

II Very. very bad code I!!

hdc = BeginPaint (hwnd. &ps) ;

while (TRUE)
{
xLeft = rand () % xClient
xRight = rand () % xClient
yTop = rand () % yClient
yBottom= rand () % yClient
nRed = rand () & 255
nGreen - rand () & 255
nBlue = rand () & 255

hdc = GetDC (hwnd) ;
hBrush = CreateSolidBrush (RGB (nRed. nGreen. nBlue» ;
SelectObject (hdc. hBrush) ;

Rectangle (hdc. min (xLeft. xRight). min (yTop. yBottom).
max (xLeft. xRight). max (yTop. yBottom»

}
EndPaint (hwnd. &ps) ;
return 0

Chapter 12: Drawing Graphics

Sure, this will work, but nothing else will. Because Windows is a nonpreemptive multitask
ing environment, a program can't enter into an infinite loop like this. This loop will stop all
other processing in the system.

One acceptable alternative is setting a Windows timer to send WM_ TIMER messages
to your window function. For each WM_ TIMER message, you obtain a device context with
GetDG, draw a random rectangle, and then release the device context with ReleaseDC. But
that takes some of the fun out of the program, because the program can't draw the random
rectangles as quickly as possible. It must wait for each WM_ TIMER message.

There must be plenty of "dead time" in Windows, time during which all the message
queues are empty and Windows is just sitting in a little loop waiting for keyboard or mouse
input. Couldn't we somehow get control during that dead time and draw the rectangles,
relinquishing control only when a message is added to a program's message queue? That's
one of the purposes of the PeekMessage function. Here's one example of a PeekMessage
call:

PeekMessage (&msg, NULL, D, D, PM_REMOVE) ;

The first four parameters (a pointer to a MSG structure, a window handle, and two values
indicating a message range) are identical to those of GetMessage. Setting the second, third,
and fourth parameters to NULL or 0 indicates that we want PeekMessage to return all mes
sages for all windows in the program. Like Get Message, PeekMessage effectively yields con
trol to other programs if messages are waiting in the other programs' message queues. Like
GetMessage, PeekMessage returns messages only for window functions in the program that
makes the function call.

The last parameter to PeekMessage is set to PM_REMOVE if the message is to be re
moved from the message queue. You can set it to PM_NOREMOVE if the message isn't to be
removed. This is why PeekMessage is a "peek" rather than a "get" - it allows a program to
check the next message in the program's queue without actually removing it. Get Message
doesn't return control to a program unless it retrieves a message from the program's mes
sage queue. But PeekMessagewill return under two conditions:

• When there's a message in the program's message queue, in which case
the return value of PeekMessage is TRUE (nonzero).

• When there are no messages in the message queue of any program
running under Windows, in which case the return value of PeekMessage is
FALSE (0).

A message loop that uses PeekMessagerather than GetMessageessentially says to Win
dows, "Let other programs run for a little while, but once they've emptied their message
queues, return control to me-I'm not finished with my work." If two or more programs
are running that use a PeekMessage loop to retrieve messages, Windows uses a round-robin
approach, returning control sequentially to each program waiting with a PeekMessage call.

599

SECTION IV: THE GRAPHICS DEVICE INTERFACE

This allows us to replace the normal message loop, which looks like this:

while (GetMessage (&msg. NULL. o. 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;
)

with an alternative message loop like this:

while (TRUE)
{
if (PeekMessage (&msg. NULL. o. O. PM_REMOVE))

{

else

if (msg.message == WM_QUIT)
break ;

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

[other program lines to do some work!
}

return msg.wParam

Notice that the WM_QUIT message is explicitly checked. You don't have to do this in a
normal message loop, because the return value of GetMessage is 0 when it retrieves a
WM_QUIT message. But PeekMessageuses its return value to indicate whether a message
was retrieved, so the check ofWM_QUIT is required.

If the return value of PeekMessage is TRUE, the message is processed normally. If the
value is FALSE, the program can do some work (such as displaying yet another random
rectangle) before returning control to Windows.

(Although the Windows documentation notes that you can't use PeekMessage to re
move WM_PAINT messages from the message queue, this isn't really a problem. After all,
GetMessage doesn't remove WM_PAINT messages from the queue either. The only way to
remove a WM_PAINT message from the queue is to validate the invalid regions of the win
dow's client area, which you can do with ValidateRect, ValidateRgn, or a BeginPaint and
EndPaint pair. If you process a WM_PAINT message normally after retrieving it from the
queue with PeekMessage, you'll have no problems. What you can't do is use code like this to
empty your message queue of all messages:

while (PeekMessage (&msg. NULL. o. O. PM_REMOVE)) ;

600

Chapter 12: Drawing Graphics

This statement removes and discards all messages from your message queue except
WM_PAINT. If a WM_PAINT message is in the queue, you'll be stuck inside the while
loop forever.)

The Windows TERMINAL program uses a PeekMessage loop when it receives input
from a communications line. This allows TERMINAL to check "continuously" for incom
ing data. The PRINT MANAGER program uses this technique to print on a printer or plotter
and-as you'll see in Chapter 15-a Windows program that prints also includes a function
with a PeekMessage loop. Armed with the PeekMessage function, we can now write a
program that relentlessly displays random rectangles. The program, called RANDRECT,
is shown in Figure 12-21.

Figure 12·21. The RANDRECT program. (continued)

601

SECTION IV: THE GRAPHICS DEVICE INTERFACE

,".

i·"'··"

.,<,
I 111

.··.·, ,.'.·.i· "" ... '. ".. G }.

',.,'.. "' .. / .•. '.
"". ".)i '.,. , .. "

> ••• '.' •••• ,'.. . •••••• \J i;i
................i.... '::,v

11 III

v

·,i

,\"",

'n :1f!"

, ..

••••••••) ••.•••• Ji
i.... .•••••• ,i '1\ { i.
....... ..\.... ".:., i .. ,.' ...

> ii

:'..... /

602

} =

;')

i i' ".h·"' .. '",' •.••.• ,,·,.'':'

. iiI

L

\ .

ill rllii
h0'~' lei,. ~"1!~

. . •••.••••••••••.•••.•• ~ ...•.•..........•..

•.••.••••••••.•• ~ ••••••••••••••••••.•
., .•... ' :

,

".,,' '

•••••••••••••••••••••••••••••••••••••••

"
:"". '.'

(continued)

long FAR PASCAL WndProc (HWNO hwnd, WORD message,
{
switch (message)

{
case WM_SIZE

cxClient = LOWORD(lParam)
cyClient - HIWORD (lParam)
return 0 ;

Chapter 12: Drawing Graphics

603

SECTION IV: THE GRAPHICS DEVICE INTERFACE

~

•

'r"
.:; ::> 1:'1 iii

,r 1iK ,

r
i· ·.
/

,l~

}(r; .. ~.

>//./. .. »

604

Chapter 13

Bits, Bits,
and Metafiles

Bitmaps and metafiles represent two very different ways of storing pictorial information.
A bitmap is a complete digital representation of a picture. Each pixel in the image corre
sponds to one or more bits in the bitmap. Monochrome bitmaps require only one bit per
pixel; color bitmaps require additional bits to indicate the color of each pixel.

A metafile, on the other hand, stores pictorial information as a series of records that
correspond directly to GDI calls, such as MoveTo, Rectangle, TextOut, and others that you
encountered in Chapter 12. A metafile is thus a description of a picture rather than a digital
representation of it.

Both bitmaps and metafiles have their place in computer graphics. Bitmaps are very
often used for very complex images originating from the real world, such as digitized
photographs. Metafiles are more suitable for human- or machine-generated images, such as
architectural drawings. Both bitmaps and metafiles can exist in memory or be stored on a
disk as files, and both can be transferred among Windows applications using the clipboard.

You can construct a bitmap "manually" using the SDKPAINT program included with
the Windows Software Development Kit. You can then include the bitmap as a resource in
a resource script file and load it into a program using the LoadBitmap function. This was
demonstrated in Chapter 8. In Chapter 9 we saw how bitmaps can substitute for text in a
menu. In Chapter 12 we constructed small 8-by-8-pixel bitmaps to use for brushes.

Metafiles are more closely associated with Windows drawing programs (such as
Micrografx's Designer) and other CAD (computer-aided design) programs. The user of
these programs draws an image with lines, rectangles, ellipses, text, and other graphics

605

SECTION IV: THE GRAPHICS DEVICE INTERFACE

primitives. Although these programs generally use a private format for storing the picture
in a file, they can usually transfer the picture to the clipboard in the form of a metafile.

Windows 3 supports two different bitmap formats. The first format (sometimes called
the "device-dependent" format) originated with Windows 1. (I'll be calling this the "old
bitmap.") The second format is called the "device-independent bitmap" (DIB) and is new
in Windows 3. The DIB is an extension of the bitmap format supported in the OS/21.1 Pre
sentation Manager, and the WINDOWS.H header file contains some structures for working
with OS/2 bitmaps.

Bitmaps have two major drawbacks. First, they are highly susceptible to problems in
volving device dependence. Even the device-independent bitmap is not entirely immune
to these problems. The most obvious device dependency is color. Displaying a color bit
map on a monochrome device is often unsatisfactory. Another problem is that a bitmap
implies a particular resolution and aspect ratio of an image. Although bitmaps can be
stretched or compressed, this proce'ss generally involves duplicating or dropping rows or
columns of pixels and can lead to distortion in the scaled image. A metafile can be scaled to
any size without distortion.

The second major drawback of bitmaps is that they require a large amount of storage
space. For instance, a bitmap representation of an entire 640-by-480, 16-color VGA screen
requires over 150 KB. Metafiles usually require much less storage space than bitmaps. The
storage space for a bitmap is governed by the size of the image and number of colors it con
tains, whereas the storage space for a metafile is governed by the complexity of the image
and the number of individual GDI instructions it contains.

One advantage of bitmaps over metafiles, however, is speed. Copying a bitmap on a
video display is usually much faster than rendering a metafile.

In the introduction to GDI in Chapter 11, I talked about two types of device contexts
that don't refer to real devices: the memory device context and the metafile device context.
We'll see how these work as we examine bitmaps and metafiles and explore the ways we
can create, use, and manipulate them. The subject of bitmaps and metafiles will come up
again in Chapter 16, "The Clipboard." Text, bitmaps, and metafiles are the three primary
forms of data that can be shared by applications through the clipboard.

THE OLD BITMAP FORMAT
The old bitmap format that originated in Windows 1 is very limited and highly dependent
on the output device for which the bitmap is created. You should use the DIB format rather
than the old bitmap format for storing bitmap files on disk. However, when you need a bit
map solely for use within a program, working with the old bitmap format is much easier.

606

Chapter 13: Bits, Bits, and Metaflles

Creating Bitmaps in a Program

Windows includes four functions that let you create an old-style bitmap in your program.
They are:

hBitmap - CreateBitmap (cxWidth. cyHeight. nPlanes. nBitsPixel. lpBits) :
hBitmap - CreateBitmaplndirect (&bitmap) :
hBitmap - CreateCompatibleBitmap (hdc. cxWidth. cyHeight) :
hBitmap - CreateDiscardableBitmap (hdc. cxWidth. cyHeight) :

The cxWidth and cyHeight parameters are the width and the height of the bitmap in
pixels. In CreateBitmap, the nPlanes and nBitsPixel parameters are the number of color
planes and the number of color bits per pixel in the bitmap. At least one of these parame
ters should be set to 1. Ifboth parameters are 1, the function creates a monochrome bitmap.
(I'll discuss how the color planes and color bits represent color shortly.)

In the CreateBitmap function, lpBits can be set to NULL if you are creating an
uninitialized bitmap. The resultant bitmap contains random data. In the CreateCom
patibleBitmap and CreateDiscardableBitmap functions, Windows uses the device context
referenced by hdc to obtain the number of color planes and number of color bits per pixel.
The bitmap created by these functions is uninitialized.

CreateBitmaplndirect is similar to CreateB,itmap except that it uses the bitmap
structure of type BITMAP to define the bitmap. The following table shows the fields of
this structure:

Field

bmType

bmWidth

bmHeight

bmWidthBytes

bmPlanes

bmBitsPixel

bmBits

Type

short

short

short

short

BYTE

BYTE

LPSTR

Description

Set to 0

Width of bitmap in pixels

Height of bitmap in scan lines

Width of bitmap in bytes (must be even)

Number of color planes

Number of color bits per pixel

Far pointer to array of bits

The bmWidthBytesfield must be an even number-the lowest even number of bytes
required to store one scan line. The array of the bits referenced by bmBits must be
organized based on the bm WidtbBytes field. If bm is a structure variable of type BITMAP,
you ~an calculate the bm WidthBytes field by the following statement:

bm.bmWidthBytes = (bm.bmWidth * bm.bmBitsPixel + 15) / 16 * 2 :

If Windows cannot create the bitmap (generally because not enough memory is available),
it will return a NULL. You should check the return value from the bitmap creation func
tions, particularly if you're creating large bitmaps.

607

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The handle to the bitmap is not a handle to a global memory block, so don't try to use
the GlobalLockfunction on it. The handle is instead a local handle to the GDI module's data
segment. This handle references a smallloc'al memory block in GDI that contains a second
handle to a global memory block containing the information in the BITMAP structure and
the actual bits.

Once you create a bitmap, you cannot change the size, the number of color planes, or
the number of color bits per pixel. You would have to create a new bitmap and transfer the
bits from the original bitmap to this new bitmap. If you have a handle to a bitmap, you can
get the size and color organization using:

GetObject (hBitmap, sizeof (BITMAP), (LPSTR) &bitmap) ;

This copies the information about the bitmap into a structure (called bitmap here) of type
BITMAP. This function doesn't fill in the bmBits field. To get access to the actual bits of the
bitmap, you must call:

GetBitmapBits (hBitmap, dwCount, lpBits) ;

This copies dwCount bits into a character array referenced by the far pointer lpBits. To en
sure that all the bits of the bitmap are copied into this array, you can calculate the dwCount
parameter based on the fields of the bitmap structure:

dwCount = (DWORD) bitmap.bmWidthBytes * bitmap.bmHeight *
bitmap.bmPlanes ;

You can also direct Windows to copy a character array containing the bitmap bits back into
an existing bitmap using the function:

SetBitmapBits (hBitmap, dwCount, lpBits) ;

Because bitmaps are GDI objects, you should delete any bitmap you create:

DeleteObject (hBitmap) ;

The Monochrome Bitmap Format

For a monochrome bitmap, the format of the bits is relatively simple and can almost be
derived directly from the image you want to create. For instance, suppose you want to
create a bitmap that looks like this:

608

Chapter 13: Bits, Bits, and Metaflles

You can write down a series of bits (0 for black and 1 for white) that directly corresponds to
this grid. Reading these bits from left to right, you can then assign each group of 8 bits a
hexadecimal. byte. If the width of the bitmap is not a multiple of 16, pad the bytes to the
right with zeros to get an even number of bytes:

o 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 - 51 77 10 00
o 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 - 57 77 50 00
o 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 - 11 77 50 00
o 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 - 57 77 50 00
o 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 - 51 11 10 00

The width in pixels is 20, the height in scan lines is 5, and the width in bytes is 4.
You can set up a BITMAP structure for this bitmap with the following statement:

static BITMAP bitmap - { 0, 20, 5, 4, 1, 1 } ;

and you can store the bits in a BYTE array:

static BYTE byBits [] - { Ox51, Ox77, Ox10, OxOO,
Ox57, Ox77, Ox50, OxOO,
Ox11, Ox77, Ox50, OxOO,
Ox57, Ox77, Ox50, OxOO,
Ox51, Ox11, Ox10, OxOO }

Creating the bitmap with CreateBitmaplndirect requires two statements:

bitmap.bmBits - (LPSTR) byBits

hBitmap - CreateBitmapIndirect (&bitmap)

Be careful when working with the pointer to byBits. It's OK to call CreateBitmaplndirect
right after you assign the far address to the bmBits field, but this field can become invalid
if Windows moves your local data segment.

You may prefer the following statements, which avoid this problem:

hBitmap - CreateBitmapIndirect (&bitmap) ;

SetBitmapBits (hBitmap, (DWORD) sizeof byBits, byBits) ;

You can also avoid using the bitmap structure entirely and create the bitmap in one
statement:

hBitmap - CreateBitmap (20, 5, 1, 1, byBits) ;

The Color Bitmap Format

An old-style color bitmap is a little more complex and extremely device dependent. A color
bitmap is organized to facilitate the transfer of the bits to a particular output device.
Whether the bitmap is organized as a series of color planes or as multiple color bits per
pixel depends on the device for which the bitmap is suitable.

609

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Let's look first at a bitmap that has a bmBitsPixel field of 1 (which means that it has 1
color bit per pixel) but a bmPlanes value greater than 1. A color bitmap for the EGA or VGA
is a good example. Windows uses the 4 color planes of the EGA or VGA to display 16 colors,
so bmPlanes is 4. The array of bits begins with the top scan line. The color planes for each
scan line are stored sequentially-the red plane first, the green plane, the blue plane, and
the intensity plane. The bitmap then continues with the second scan line.

A bitmap can also represent color asa multiple number of bits per pixel. Suppose a
device (such as the IBM 8514/A) can represent 256 colors using 8 color bits (1 byte) per
pixel. For each scan line, the first byte represents the color for the leftmost pixel, the sec
ond byte represents the color for the next pixel, and so forth. The bm WidthBytes value in
the BITMAP structure reflects the increased byte width of each scan line, but the bm
Width value is still the number of pixels per scan line.

Here's the catch: Nothing in the bitmap specifies how these multiple color planes or
multiple color bits correspond to actual display colors. A particular color bitmap is suitable
only for an output device with display memory organized like the bitmap. For instance,
suppose you have a device that stores color information using 8 bits per pixel, but the 256
values are interpreted by the device differently than on the 8514/A. This is perfectly legiti
mate, but a bitmap created for the 8514/A would have incorrect colors on this other device.

The device-independent bitmap solves this problem, as we'll see shortly.

The Dimensions of a Bitmap

Two other functions connected with bitmaps are the source of some confusion. These are:

SetBitmapDimension (hBitmap, xDimension, yDimension) ;

and:

dwDimension = GetBitmapDimension (hBitmap) ;

The xDimension and yDimension values (encoded as the low and high words in the
dwDimension value returned from GetBitmapDimension) are the width and height of the
bitmap in units of 0.1 mm, which correspond to logical units in the MM_LOMETRIC map
ping mode. GDI itself doesn't use these dimensions. They are part of neither the BITMAP
structure nor the bitmap file format. However, two cooperating applications could use
these dimensions to aid in the scaling of bitmaps that are exchanged through the clipboard
or other means.

THE DEVICE-INDEPENDENT BITMAP (DIB)
The device-independent bitmap (DIB) format is an extension of the bitmap format in
troduced in the OS/2 1.1 Presentation Manager. It solves some of the device dependencies
of the old bitmap format by including a color table that defines an RGB value for each color
in the bitmap.

610

Chapter 13: Bits, Bits, and Metaflles

The device-independent bitmap has several other differences from the old bitmap
format: First, color is always represented by multiple color bits per pixel and never as mul
tiple color planes, despite how buffer memory is organized on the output device. The num
ber of color bits per pixel may be 1 (for monochrome bitmaps), 4 (16-color bitmaps), 8 (256
colors), or 24 (16 million colors). Second, the array of bits begins with the bottom row of pixels
rather than the top. Third, additional information is included in the bitmap to indicate a
resolution of the image. (This may help programs in scaling a bitmap to a proper size.)
Fourth, the bitmap data may be compressed using a run-length-encoded (RLE) algorithm.

The DIB File

You can create a device-independent bitmap and save it to a disk file (with the extension
.BMP) in either the SDKPAINT program included in the Windows Software Development
Kit or the PAINTBRUSH program included in the retail Windows product. The file begins
with a file header section defined by the BITMAPFILEHEADER structure. This structure
has five fields:

Field Size Description

bfFype WORD The bytes "BM" (for bitmap)

bjSize DWORD Total size of the file

bjReservedJ WORD Set to 0

bjReserved2 WORD Set to 0

bfOffBits DWORD Offset to the bitmap bits from the beginning of the file

This is followed by another header defined by the BITMAPINFOHEADER structure.
This structure has 11 fields:

Field

biSize

biWidth

biHeight

biPlanes

Size

DWORD

DWORD

DWORD

WORD

biBitCount WORD

biCompression DWORD

biSizelmage DWORD

biXPelsPerMeter DWORD

biYPelsPerMeter DWORD

biClrUsed DWORD

biClrlmportant DWORD

Description

Size of the BITMAPINFOHEADER structure in bytes

Width of the bitmap in pixels

Height of the bitmap in pixels

Set to 1

Color bits per pixel 0, 4, 8, or 24)

Compression scheme (0 for none)

Size of bitmap bits in bytes (only required if compression is used)

Horizontal resolution in pixels per meter

Vertical resolution in pixels per meter

Number of colors used in image

Number of important colors in image

611

SECTION IV: THE GRAPHICS DEVICE INTERFACE

All fields following the biBitCount field may be set to ° for default values.
If biClrUsed is set to ° and the number of color bits per pixel is 1, 4, or 8, the BIT

MAPINFOHEADER structure is followed by a color table, which consists of two or more
RGBQUAD structures. The RGBQUAD structure defines an RGB color value:

Field Size Description

rgbBlue BYTE Blue intensity

rgbGreen BYTE Green intensity

rgbRed BYTE Red intensity

rgbReserved BYTE Set to 0

The numberofRGBQUAD structures is usually determined by the biBitCountfield: 2
RGBQUAD structures are required for 1 color bit, 16 for 4 color bits, and 256 for 8 color bits.
However, if the biClrUsed field is nonzero, then the biClrUsed field contains the number of
RGBQUAD structures in the color table.

The color table is followed by the array of bits that define the bitmap image. This
array begins with the bottom row of pixels. Each row begins with the leftmost pixels.
Each pixel corresponds to 1, 4, 8, or 24 bits.

For a monochrome bitmap with 1 color bit per pixel, the first pixel in each row is
represented by the most significant bit of the first byte in each row. If this bit is 0, the
color of the pixel can be obtained from the first RGBQUAD structure in the color table.
If the bit is 1, the color is given by the second RGBQUAD structure in the color table.

For a 16-color bitmap with 4 color bits per pixel, the first pixel in each row is repre
sented by the most significant four bits of the first byte in each row. The color of each pixel
is obtained by using the 4-bit value as an index into the 16 entries in the color table.

For a 256-color bitmap, each byte corresponds to one pixel. The color of the pixel is
obtained by indexing the 256 entries in the color table by the byte.

If the bitmap image contains 24 color bits per pixel, each set of three bytes is an RGB
value of the pixel. There is no color table (unless the biClrUsed field in the BITMAP
INFOHEADER structure is nonzero).

In each case, each row of the bitmap data contains a multiple of four bytes. The row
is padded on the right to ensure this.

The bitmap format supported in OS/2 1.1 and above is very similar. It begins with a
BITMAPFILEHEADER structure but is followed by a BITMAPCOREHEADER structure.
(You can determine if a bitmap file uses this format or the Windows 3 format by examining
the first field of this structure.) The color table consists of RGBTRIPLE structures rather
than RG BQUAD structures.

612

Chapter 13: Bits, Bits, and Metaflles

Creating a DIB

The CreateD/Bitmap function creates a device-independent bitmap. You can use this
function in two different ways. The function call:

hBitmap - CreateDIBitmap (hdc. &bmih. OL. NULL. NULL. 0) ;

creates an uninitialized bitmap. The second parameter is a pointer to an initialized BIT
MAPINFOHEADER structure. The function call:

hBitmap - CreateDIBitmap (hdc. &bmih. CBM_INIT.
lpBits. &bmi. wUsage)

creates an initialized bitmap. The lpBits parameter is a pointer to the array of bits. The fifth
parameter is a pointer to an initialized BITMAPINFO structure.

The BITMAPINFO structure is defined as follows:

typedef structure tagBITMAPINFO
{

BITMAPINFOHEADERbmiHeader ;
RGBQUAD bmiColors[l]
}
BITMAP INFO ;

The first field is an initialized BITMAPINFOHEADER structure, and the second field
is an array of initialized RGBQUAD structures that define the color table. Windows needs
this color table when the bitmap is initialized to properly interpret the bitmap image data
and to perform any color conversions required by the device.

Note that the RGBQUAD array contains only one element. To use this structure you
must allocate a memory block equal in size to the BITMAPINFOHEADER structure plus
enough RGBQUAD structures for the whole color table.

The wUsage parameter to CreateD/Bitmap can be either DIB_RGB_COLORS (which
means that the color table contains RGB color values) or DIB_PAL_COLORS (indicating
that the color table is an array of 2-byte values that index a palette).

Two functions are available to set and obtain the bits of the bitmap. The first function
sets the bits:

SetDIBits (hdc. hBitmap. nStart. nNum.
lpBits. &bmi. wUsage) ;

The last three parameters are the same as in the CreateD/Bitmap function. The
nStart parameter indicates the beginning scan line addressed by lpBits. This can range
from 0 (for the bottom scan lin~) to the height of the bitmap in pixels minus 1 (for the top
scan line). The nNum parameter indicates the number of scan lines to set into the bitmap.

The GetD/Bits function has identical parameters:

GetDIBits (hdc. hBitmap. nStart. nNum.
lpBits. &bmi. wUsage) ;

613

SECTION IV: THE 'GRAPHICS DEVICE INTERFACE

But in this case lpBits points to a buffer to receive the bitmap bits. The function sets
the fields of the BITMAPINFO structure to indicate the dimensions of the bitmap and the
color table.

Like the old-style bitmap, a DIB can be deleted using DeleteObject.

THE MEMORY DEVICE CONTEXT
Two functions-SfitDIBitsToDevice and StretchDIBits-allow you to render an array of
bits on an output device. However, if you have a handle to a bitmap, there is no function to
draw the bitmap on the display surface of a device context. You'll search in vain for a func
tion that looks like this:

DrawBitmap (hdc. hBitmap. xStart. yStart) : II No such function!!!

This function would copy a bitmap to the device context represented by hdc beginning at .
the logical point (xStart, yStart). We'll write our own DrawBitmap function later in this
chapter. First, however, you need to become familiar with several concepts, starting with
the memory device context.

A memory device context is a device context that has a "display surface" that exists
only in memory. You can' create a memory device context using the function:

hdcMem - CreateCompatibleDC (hdc) :

The hdc handle is a handle to an existing valid device context. The function returns a
handle to the memory device context. Upon creation of the memory device context, all the
attributes are set to the normal default values. You can do almost anything you want with
this memory device context. You can set the attributes to nondefault values, obtain the cur
rent settings of the attributes, and select pens, brushes, regions into it. And yes, you can
even draw on it. But it doesn't make much sense to do so just yet. Here's why.

When you first create a memory device context, it has a "display surface" that con
tains exactly 1 monochrome pixel. That is a very small display surface. (Don't rely on Get
DeviceCaps to tell you this. The HORZSIZE, VERTSIZE, HORZRES, VERTRES, BITSPIXEL,
and PLANES values for hdcMem will all be set to the values associated with the original
hdc. If GetDeviceCaps really returned the correct values associated with the memory de
vice context when it is first created, then the HORZRES, VERTRES, BITSPIXEL, and
PLANES indexes ' would all return 1.) What you need to do is make the display surface of
the memory device context larger. You do this by selecting a bitmap into the device
context:

SelectObject (hdcMem. hBitmap)

614

Chapter 13: Bits, Bits, and Metaflles

Now the display surface of hdcMem has the same width, height, and color organization as
the bitmap referenced by hBitmap. With the default window and viewport origins, the
logical point (0, 0) of the memory device context corresponds to the upper left corner of
the bitmap.

If the bitmap had some kind of picture on it, then that picture is now part of the
memory device context's display surface. Any changes you make to that bitmap (for in
stance, by using SetBitmapBitsto set a different array of bits to the bitmap) are reflected in
this display surface. Anything you draw on the memory device context is actually drawn
on the bitmap. In short, the bitmap is the display surface of the memory device context.

Earlier I discussed the various functions to create bitmaps. One of them is:

hBitmap - CreateCompatibleBitmap (hdc. xWidth. yHeight) ;

If hdc is the handle to the normal device context for a screen or a printer, then the number
of color planes and number of bits per pixel of this bitmap are the same as for the device.
However, if hdc is the handle to a memory device context (and no bitmap has yet been
selected into the memory device context), then CreateCompatibleBitmap returns a mono
chrome bitmap that is xWidth pixels wide and yHeight pixels high.

A bitmap is one of six GDI objects. You saw in Chapter 12 how to use SelectObjectto
select a pen, brush, or region into a device context, and in Chapter 14 you'll learn how to
use this function to select a font into a device context. You can use SelectObject to select
these four GDI objects into a memory device context also. However, you cannot select a
bitmap into a normal device context, only into a memory device context.

When you're finished with the memory device context, you must delete it:

DeleteDC (hdcMem) ;

Well, you may say, this is all very nice, but we haven't yet solved the problem of get
ting the bitmap on the display. All we've done is select it into a memory device context.
Now what? Now we have to learn how to "bit" (pronounced "blit") the bits from one device
context to another.

THE MIGHTY BLT
Graphics involves writing pixels to a display device. In Chapter 12 we looked at the more
refined ways of doing this, but for power-pixel manipulation, nothing in Windows comes
close to BitBlt and its two cousins, PatBlt and StretchBlt. BitBlt (pronounced "bit blit")
stands for "bit-block transfer." BitBlt is a pixel-mover, or (more vividly) a raster-blaster.
The simple word "transfer" doesn't really do justice to BitBlt. It does more than a trans
fer-it really does a logical combination of three sets of pixels using 1 of 256 ·different
types of raster operations.

615

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The PatSlt Function

PatBlt("pattern block transfer") is the simplest of the three "bit" functions. It's really quite
different from BitBlt and StretchBlt in that it uses only one device context. But PatBlt is
nonetheless a reasonable place to begin.

In Chapter 12 you encountered the device context attribute called the drawing mode ..
This attribute can be set to 1 of 16 binary raster operation (ROP2) codes. When you draw a
line, the drawing mode determines the type of logical operation that Windows performs
on the pixels of the pen and the pixels of the device context destination. PatBlt is similar to
the drawing mode except that it alters a rectangular area of the device context destination
rather than merely a line. It performs a logical operation involving the pixels in this reCt
angle and a "pattern." This "pattern" is nothing new-pattern is simply another name for
a brush. For this pattern, PatBlt uses the brush currently selected in the device context

The syntax of PatBlt is:

PatBlt (hdc, xDest, yDest, xWidth, yHeight, dwROP) ;

The xDest, yDest, x Width , and yHeight parameters are in logical units. The logical point
(xDest, yDest) specifies the upper left corner of a rectangle. The rectangle is xlVidth units
wide and yHeightunits high. (See the section entitled "Bit Coordinates," later in this chap
ter, for a more precise definition of these values.) This is the rectangular area that PatBlt
alters. The logical operation that PatBlt performs on the brush and the destination device
context is determined by the dwROP parameter, which is a doubleword (32-bit integer)
ROP code-not one of the ROP2 codes used for the drawing mode.

Windows has 256 ROP codes. These define all possible logical combinations of a
source display area, a destination display area, and a pattern (or brush). The device driver
for the video display supports all 256 raster operations through the use of a "compiler" of
sorts. This compiler uses the 32-bit ROP code to create a set of machine-language instruc
tions on the stack that can carry out this logical operation on the pixels of the display; it
then executes these instructions. The high word of the 32-bit ROP code is a number be
tween 0 and 255. The low word is a number that assists the device driver "compiler" in
constructing the machine code for the logical operation. Fifteen of the 256 RO P codes have
names. If you want to use any of the others, you'll have to look up the number in the table in
the Programmer's Reference included with the Windows Software Development Kit.

Because the PatBlt function uses only a destination device context and a pattern (and
not a source device context), it can accept only a subset of these 256 ROP codes-that is,
the 16 ROP codes that use only the destination device context and a pattern. The 16 raster
operations supported by PatBltare shown in the table below. You'll note that this is similar
to the table showing ROP2 codes on page 551 of Chapter 12.

616

Chapter 13: Bits, Bits, and Metaflles

Pattern (P): 1 1 0
Destination (D): 1 0 1

Result: 0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

0 Boolean
0 Operation

0 0

1 -CP: D)

0 -P&D

1 -P

0 P&-D

1 -D

0 PAD

1 -CP & D)

0 P&D

1 -CP A D)

0 D

1 -P:D

0 P

1 P:-D

0 P:D

1 1 .

ROP
Code

000042

0500A9

OA0329

OFOOOl

500325

550009

5A0049

5FOOE9

AOOOC9

A50065

AA0029

AF0229

FOO021

F50225

FA0089

FF0062

Name

BLACKNESS

DSTINVERT

PATINVERT

PATCOPY

WHITENESS

For a monochrome device context, a 1 bit corresponds to a white pixel and a 0 bit to a
black pixel. Destinations and patterns that are either pure black or pure white are the
easiest to consider when you start thinking about PatBlt. For instance, if you call:

PatBlt (hdc, xDest, yDest, xWidth, yHeight, Ox5FOOE9L) ;

then the rectangular area that begins at the logical point (xDest, yDest) and that is xWidth
pixels wide and yHeight pixels high will be colored black only if the destination was
originally white and you had WHITE_BRUSH selected in the device context. Otherwise,
the destination will be colored white. Of course, even in a monochrome device context,
destinations and brushes can be dithered combinations of black and white pixels. In this
case, Windows performs the logical combination on a pixel-by-pixel basis, which can lead
to some odd results. For instance, if your destination has already been colored with GRAY
_BRUSH, and GRAY_BRUSH is also the current brush selected in the device context, then:

PatBlt (hdc, xDest, yDest, xWidth, yHeight, PATINVERT) ;

will set the destination to either pure white or pure black, depending on how the dithered
pixels of the destination coincide with the dithered pixels of the brush.

Color introduces more complexities. Windows performs the logical operation for
each color plane separately or each set of color bits separately, depending on how the
memory of the device is organized.

617

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Some of the more common uses of PatBlt are shown below. If you want to draw a
black rectangle, you call:

PatBlt (hdc. xDest. yDest. xWidth. yHeight. BLACKNESS) :

To draw a white rectangle, use:

PatBlt (hdc. ~Dest. yDest. xWidth. yHeight. WHITENESS)

The function:

PatBlt (hdc. xDest. yDest. xWidth. yHeight. DSTINVERT) :

always inverts the colors of the rectangle. If WHITE_BRUSH is currently selected in the
device context, then the function:

PatBlt (hdc. xDest. yDest. xWidth. yHeight. PATINVERT) :

also inverts the rectangle.
You'll recall that the FillRect function fills in a rectangular area with a brush:

FillRect (hdc. &rect. hBrush) :

The FillRect function is equivalent to the following code:

hBrush - SelectObject (hdc. hBrush) :
PatBlt (hdc. rect.left. rect.top.

rect.right - rect.left.
rect.bot~om - rect.top. PATCOPY) :

SelectObject (hdc. hBrush) :

In fact, this code On more optimized assembly language) is what Windows uses to execute
the FillRect function. When you call:

InvertRect (hdc. &rect) :

Windows translates it into the function:

PatBlt (hdc. rect.left. rect.top.
rect.right - rect.left.
rect.bottom - rect.top. DSTINVERT)

BIt Coordinates

When I introduced the syntax of the PatBlt function, I said that the point (xDest, yDest)
specifies the upper left corner of a rectangle and that this rectangle is xWidth units wide
and yHeight units high. Actually, although that's also what the Windows documentation
says, the statement is not entirely accurate. Before we proceed any further, I need to clear
up some confusion concerning the bit functions and coordinates.

Bit BIt, PatBlt, and StretchBlt are the only GDI drawing functions that specify logical
rectangular coordinates in terms of a logical width and height measured from a single cor
ner. All the other GDI drawing functions that use rectangular bounding boxes require that

618

Chapter 13: Bits, Bits, and Metaflles

coordinates be specified in terms of an upper left corner and a lower right corner. For the
MM_ TEXT mapping mode, the above description of the PatBlt parameters is accurate. For
the metric mapping modes, however, it's not. If you use positive values of xWidth and
yHeight, then the point (xDest, yDest) will be the lower left corner of the rectangle. If you
want (xDest, yDest) to be the upper left corner of the rectangle, the yHeight parameter must
be set to the negative height of the rectangle.

To be more precise, the rectangle that PatBlt colors has a logical width given by the
absolute value of xWidth and a logical height given by the absolute value of yHeight. These
two parameters can be negative. The rectangle is defined by two corners given by the logi
cal points (xDest, yDest) and (xDest+ xWidth, yDest+ yHeight). The upper left corner of the
rectangle is always included in the area that PatBltmodifies. The lower right corner is out
side the rectangle. Depending on the mapping mode and the signs of the xWidth and
yHeight parameters, the upper left corner of this rectangle could be the point:

(xDest, yDest)

or:

(xDest, yDest + yHeight)

or:

(xDest + xWidth, yDest)

or:

(xDest + xWidth, yDest + yHeight)

If you've set the mapping mode to MM_LOENGLISH and you want to use PatBlt on
the square inch at the upper left corner of the client area, you can use:

PatBlt (hdc, 0, 0, lOa, -lOa, dwROP) ;

or:

PatBlt (hdc, 0, -lOa, lOa, lOa, dwROP)

or:

PatBlt (hdc, lOa, 0, -lOa, -lOa, dwROP)

or:

PatBlt (hdc, lOa, -lOa, -lOa, lOa, dwROP) ;

The easiest way to set the correct parameters to PatBlt is to set xDest and yDest to the
upper left corner of the rectangle. If your mapping mode defines y-coordinates as increas- .
ing as you move up the display, use a negative value for the yHeight parameter. If your map
ping mode defines x-coordinates as increasing to the left (which is almost unheard 00, use
a negative value for the xWidth parameter.

619

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Transferring Bits with SitSlt

In one sense, BitBlt is a superset of PatBlt. It does everything PatBlt does but also intro-
. duces a second device context into the logical operation. Here's the general syntax:

BitBlt (hdcDest. xDest. yDest. xWidth. yHeight.
hdcSrc. xSrc. ySrc. dwROP) ;

The BitBlt call modifies the destination device context (whose handle is hdcDest) within
the rectangle defined by the logical point (xDest, yDest) and the xWidth and yHeight
parameters, both of which are in logical units. These parameters define a rectangle as
described in the previous section. BitBlt also uses a rectangle in a source device context
(whose handle is SrcDC). This rectangle begins at the logical point (xSrc, ySrc) and is also
xWidth logical units wide and yHeight logical units high.

BitBlt performs a logical combination of three elements: the brush selected in the
destination device context, the pixels in the source device context rectangle, and the pix-,
els in the destination device context rectangle. The result is written to the destination de-
vice context rectangle. You can use any of the 256 Rap codes for the dwROP parameter to
BitBlt. The 15 Rap codes that have names are shown in the table below. If you need to use
any of the others, you can look them up in the Programmer's Reference:

Pattern (P): 1 1 1 1 0 0 0 0
Source (S): 1 1 0 0 1 1 0 0 Boolean ROP
Destination (D): 1 0 1 0 1 0 1 0 Operation Code Name

Result: 0 0 0 0 0 0 0 0 0 000042 BLACKNESS

0 0 0 1 0 0 0 1 - (S: D) 1100A6 NOTSRCERASE

0 0 1 1 0 0 1 1 -S 330008 NOTSRCCOPY

0 1 0 0 0 1 0 0 S&-D 440328 SRCERASE

0 1 0 1 0 1 0 1 -D 550009 DSTINVERT

0 1 0 1 1 0 1 0 PAD 5A0049 PATINVERT

0 1 1 0 0 1 1 0 SAD 660046 SRCINVERT

1 0 0 0 1 0 0 0 S&D 8800c6 SRCAND

1 0 1 1 1 0 1 1 -S:D BB0226 MERGEPAINT

1 1 0 0 0 0 0 0 P&S COOOCA MERGECOPY

1 1 0 0 1 1 0 0 S CC0020 SRCCOPY

1 1 1 0 1 1 1 0 S:D EE0086 SRCPAINT

1 1 1 1 0 0 0 0 P FOO021 PATCOPY

1 1 1 1 1 0 1 1 P:-S:D FBOA09 PATPAINT

1 1 1 1 1 1 1 1 1 FF0062 WHITENESS

Look at the eight O's and l's that show the result of the logical combination. The two-
digit hexadecimal number that corresponds to these bits is the high word of the Rap code.

620

Chapter 13: Bits, Bits, and Metafiles

If we can create a table of the result we want from the pattern, source, and destination, we
can easily determine the ROP code from the table ofROP codes in the Programmer's Refer
ence. We'll be doing this a little later. If you use 1 of the 16 ROP codes shown in the table on
page 617, then you can use PatBltinstead of BitBlt, because you're not referencing a source
device context.

You can set hdcSrc and hdcDest to the same device context handle, in which case
BitBlt will perform a logical combination of the destination rectangle, the source rect
angle, and the current brush selected in the device context. However, it's a little risky to do
this in your client -area device context. If part of the source rectangle is covered by another
window, then Windows will use the pixels of this other window as the source. Windows
doesn't know what's underneath that other window in your client area.

However, examples of the BitBlt function using the same device context for the
source and destination are the easiest to grasp. The function:

BitBlt (hdc. 100. O. 50. 100. hdc. O. O. SRCCOPY) ;

copies the rectangle beginning at logical point (0, 0) that is 50 logical units wide and 100
logical units high to the rectangular area beginning at the logical point (loa, 0).

The DrawBitmap Function

BitBlt becomes most valuable in working with bitmaps that have been selected into a
memory device context. When you perform a "bit-block transfer" from the memory device
context to a device context for your client area', the bitmap selected in the memory
device context is transferred to your client area.

Earlier I mentioned a hypothetical DrawBitmap function that would draw a bitmap
on a display surface. Such a function would have the syntax:

DrawBitmap (hdc. hBitmap. xStart. yStart) ;

I promised we'd write a DrawBitmap function; here it is:

void DrawBitmap (HDC hdc. HBITMAP hBitmap.

{
BITMAP
HDC
DWORD
POINT

short xStart. short yStart)

bm ;
hdcMem
dwSize ;
ptSize. ptOrg

hdcMem = CreateCompatibleDC (hdc) ;
SelectObject (hdcMem. hBitmap) ;
SetMapMode (hdcMem. GetMapMode (hdc»

GetObject (hBitmap. sizeof (BITMAP). (LPSTR) &bm)

621

SECTION IV: THE GRAPHICS DEVICE INTERFACE

ptSize.x = bm.bmWidth :
ptSize.y = bm.bmHeight :
DPtoLP (hdc. &ptSize. 1)

ptOrg.x = 0 :
ptOrg.y = 0 :
DPtoLP (hdcMem. &ptOrg. 1) :

BitBlt (hdc. xStart. yStart. ptSize.x. ptSize.y.
hdcMem. ptOrg.x. ptOrg.y. SRCCOPY) :

DeleteDC (hdcMem) :
}

I'm assuming here that you don't want the height or width of the bitmap stretched or
compressed in any way. That is, if your bitmap is 100 pixels wide, you want it to cover a
lOa-pixel-wide rectangle of your client area regardless of the mapping mode.

DrawBitmap first creates a memory device context using CreateCompatibleDC and
then selects the bitmap into it with SelectObject. The mapping mode of the memory device
context is set to the same mapping mode as the video device context. Because BitBltworks
with logical coordinates and logical sizes and you don't want the bitmap stretched or com
pressed, the xWidth and yHeightparameters to BitBltmust be logical units that correspond
to the physical pixel size of the bitmap. For this reason, DrawBitmap gets the dimensions
of the bitmap using GetObject and makes a POINT structure out of the width and height.
It then converts this point to logical coordinates. This is done similarly for the origin of
the bitmap-the point (0, 0) in device coordinates.

Note that it doesn't matter what brush is currently selected in the destination device
context (hdc), because SRCCOPY doesn't use the brush.

Using Different ROP Codes

SRCCOPY is definitely the most popular dwROPparameter to Bit BIt, and you may be hard
pressed to find uses for the other 255 ROP codes. So I'll give you a couple of examples in
which other ROP codes show their stuff.

In the first example, you have a monochrome bitmap that you want to transfer to the
screen. However, you want to display the bitmap so that the black (0) bits don't affect
anything currently on the client area. Moreover, you want all the white (1) bits to color the
client area with. a brush, perhaps a colored brush created from CreateSolidBrush. How do
you do it? I'll assume that you're working in the MM_ TEXT mapping mode and that you
want to write the bitmap starting at the point (xStart, yStart) in your client area. You
already have a handle to the monochrome bitmap (hBitmap) and a handle to the colored
brush (hBrush). You know the width and height of the bitmap and have them stored in a,
BITMAP structure named bm. Here's the code:

622

Chapter 13: Bits, Bits, and Metaflles

hdcMem - CreateCompatibleDC (hdc) :
SelectObject (hdcMem. hBitmap) :
hBrush - SelectObject (hdc. hBrush)

BitBlt (hdc. xStart. yStart. bm.bmWidth. bm.bmHeight.
hdcMem. O. O. OxE20746L)

SelectObject (hdc. hBrush) :
DeleteDC (hdcMem) :

BitBlt performs a logical combination of a destination device context (hdc), a source
device context (hdcMem), and the brush currently selected in the destination device con
text. So you create a memory device context, select the bitmap into it, select the colored .
brush into your client-area display context, and call BitBlt. Then you select the original
brush into your display device context and delete the memory device context.

The only puzzling part of this code is the ROP code OxE20746. This ROP code causes
Windows to perform the logical operation:

((Destination 1\ Pattern) '& Source) 1\ Destination

Still not obvious? Try this approach: Copy this part of the table on page 620:

PaUern: 1 1 1 1 0 0 0 0
Source: 1 1 0 0 1 1 0 0
Destination: 1 0 1 0 1 0 1 0
ResuU: ? ? ? ? ? ? ? ?

For every black bit in the bitmap (which will be selected into the source memory device
context), you want the destination device context to be unchanged. This means that
everywhere the Source is a 0, you want the Result to be the same bit as the Destination:

PaUern: 1 1 1 1 0 0 0 0
Source: 1 1 0 0 1 1 0 0
Destination: 1 0 1 0 1 0 1 0
Result: ? 1 0 ? 1 0

We're halfway there. For every white bit in the bitmap, you want the destination device
context to be colored with the pattern. The brush you select in the destination device con-
text is this pattern. So everywhere the Source is 1, you want the Result to be the Pattern:

PaUern: 1 1 1 1 0 0 0 0
Source: 1 1 0 0 1 1 0 0
Destination: 1 0 1 0 1 0 1 0
ResuU: 1 1 1 0 0 0 1 0

This means that the high word of the ROP code is OxE2. You can look that up in the ROP
table in Chapter 11 of the Programmer's. Reference and find that the full ROP code is
OxE20746.

623

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Perhaps at this point you discover that you mixed up the white and black bits when
you created the bitmap in SDKPAINT. That's easy to fix. It's merely a different logical
operation:

Pattern: 1 1 1 1 0 0 0 0
Source: 1 1 0 0 1 1 0 0
Destination: 1 0 1 0 1 0 1 0
Result: 1 0 1 1 1 0 0 0

Now the high word of the ROP code is OxB8, and the entire ROP code is OxB8074A, which
performs the logical operation:

((Destination A Pattern) & Source) A Pattern

Here's the second example: Back in Chapter 8, I discussed the two bitmaps that make
up icons and cursors. The use of two bitmaps allows these figures to be "transparent" in
spots or to invert the display surface underneath. For a monochrome icon or cursor, the
two bitmaps are coded as follows:

Bitmap 1:
Bitmap 2:
Result:

o
o
Black

o
1
White

1
o
Screen

1
1
Inverse Screen

Windows selects Bitmap 1 into a memory device context and uses BitBltwith a ROP code
called SRCAND to transfer the bitmap to the display. This ROP code performs the logical
operation:

Destination & Source

In Bitmap 1, the destination is left unchanged for 1 bits and set to 0 for 0 bits. Windows then
selects Bitmap 2 into the device context and uses BitBtt with SRCINVERT. The logical
operation is:

Destination A Source

In Bitmap 2, this leaves the destination unchanged for all 0 bits and inverts the destination
for alII bits.

Look at the first and second columns of the table: Bitmap 1 with SRCAND blacks out
the bits, and Bitmap 2 with SRCINVERT turns selected bits to white by inverting the black
bits. These operations set the black and white bits that make up the icon or cursor. Now
look at the third and fourth columns of the table: Bitmap 1 with SRCAND leaves the display
unchanged, and Bitmap 2 with SRCINVERT inverts the colors of selected bits. These
operations let the icon or cursor be transparent or invert the underlying colors.

Another example of the creative use of ROP codes accompanies the description of
the GrayString function in Chapter 14.

624

Chapter 13: Bits, Bits, and Metafiles

More Fun with Memory Device Contexts

We've been using memory device contexts to transfer an existing bitmap to the display.
You can also use memory device contexts to draw on the surface of a bitmap. We did this in
the GRAFMENU program in Chapter 9, when we used the GetBitmapFont function to
make menu items using bitmaps. First, you create a memory device context:

hdcMem - CreateCompatibleDC (hdc) ;

Next, you create a bitmap of the desired size. If you want to create a monochrome bitmap,
you can make it compatible with hdcMem:

hBitmap = CreateCompatibleBitmap (hdcMem, xWidth, yHeight) ;

Or to make the bitmap have the same color organization as the video display, you can make
the bitmap compatible with hdc:

hBitmap = CreateCompatibleBitmap (hdc, xWidth, yHeight) ;

You can now select the bitmap into the memory device context:

SelectObject (hdcMem, hBitmap) ;

Now you can draw on this memory device context (and by extension, the bitmap)
using all the GDI functions we discussed in Chapters 11 and 12 and more that you'll encoun
ter in Chapter 14. When you first create the bitmap, it contains random bits, so you may
want to begin by using the PatBlt function with a ROP code of WHITENESS or BLACK
NESS to erase the background of the memory device context.

When you're finished drawing on the memory device context, simply delete it:

DeleteDC (hdcMem) ;

Now you're left with a bitmap containing everything you drew on it while it was selected in
the memory device context. (We'll go through this process again in the BOUNCE program,
shown later in this chapter.)

The SCRAMBLE program, shown in Figure 13-1, uses a memory device context as a
temporary holding space for BitBlt operations that swap the contents of two rectangles of
the display.

.\. }~ {} ·.L······· i / ... ·.(. · } j.i/·. ·····i>}i .. ·«//iii
.. ~ tl ...\)/i(i/ ..<> \/"<i. •

:>/ 'i' ~'ic y {.f:{,;~,JJ{J·~;{n·?,'i~f;Y/·
} ../) ii. ·.···i t.< . ..•..(.. iii

~)
.;:; < (. /{·..{t.. ../<ii <» .. /}

:~ ~ll / iii i) .. »•.•
T }~

····.........)iiii ii(i>.·\ ···.·.·····...i.i(................. ..i."
....... t . i.J/....i..\..)i/>

:.' ~. i; ~ .. ~. "ti ·······}i »i/
let I

'~ <" T tb" i}j~:i~}' !i., ".ii·, ;>, 0: 11:. '~IS~~ ;.1,. ~G0~1 .1 ~/ i/·
J.~~I

........................... i·· •••...• ·.·.(i/ ·.·..i.. <••.• .>// i ;: iI.......i> ii . .<ii><i ..ii. (.....)

Figure 13·1. The SCRAMBLE program. (continued)

625

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(i·

•••••••• ••••••••••••••••••••••
• ••••••••••••••

; ~ ..••••..•••••.•••.....•........•••••• .t E Y. .. / iii.> ::<: •. :.:: •

: •••••.

• •••••••••••••••••

• •••

. / \i

/'>,
....•••••.•...• : •.•••.......•.. : ··il ;;

/:)).

) .;,;:;:>:>.

• .•• ; ••••.•••.• ; .•. ; . ·>i:::::'·:>

'} ;; ..
(;:.:::.

ii

if

i:
i '\: ") 0

p 'f; >:'" ::.:.;".;,
..

i
. i \\ :,>, i

,t ...
'.'.~

;. r/

... ~.~

,\ .;"",;:».\>

'II ~.
:':':" Y. /\ ;:'::

;.}}(:"

.. "':': :I

• ••••••

;"",

."(

il ;., l, ~ .•..• ,.
I;,', : ..

1 [;i~

'" lJ
:,:;

:;.,C

Xl 1\ J .)
':;'" .

}; j

ii i.

".:;:'; .. i

(continued)

626

Chapter 13: Bits, Bits, and Metaflles

BitBlt (hdcMem, ··O·~·. 0, cxSiie; cySiZe, hdc~< .. ····xl~Yl.SRCCOPY)
BitSl t (hdc • xl, yl. cx$i ze; cySi ze, hdc/~2rY2~SRCCOPY)
SHSlt (hdc.x2. y2. cxSize. cYSjie. hdcMem.O. O.SRCCOPy)
}

FALSE:

SCRAMBLE doesn't have a window function. In WinMain, it obtains a device context for
the entire screen:

hdc = CreateDC ("DISPLAY", NULL, NULL, NULL)

and also a memory device context:

hdcMem = CreateCompatibleDC (hdc)

Then it determines the dimensions of the full screen and divides them by 10:

xSize = GetSystemMetrics (SM_CXSCREEN) / 10 ;
ySize = GetSystemMetrics (SM_CYSCREEN) / 10 ;

The program uses these dimensions to create a bitmap:

hBitmap = CreateCompatibleBitmap (hdc, xSize, ySize)

and selects it into the memory device context:

SelectObject (hdcMem, hBitmap) :

Using the normal C rand ("random number generator") function, SCRAMBLE finds
four random values that are multiples of the xSize and ySize values:

xl = xSize * (rand () % 10)
y1 = ySize * (rand () % 10)
x2 = xSize * (rand () % 10)
y2 = ySize * (rand () % 10)

627

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The program swaps two rectangular blocks of the display through the use of three BitBlt
functions. The first copies the rectangle beginning at point (xl, yl) into the memory device
context:

BitBlt (hdcMem. O. O. xSize. ySize. hdc. xl. yl. SRCCOPY) :

The second copies the rectangle beginning at point (x2, y2) into the location beginning at
(xl, yl):

BitBlt (hdc. xl. yl. xSize. ySize. hdc. x2. y2. SRCCOPY) :

The third copies the rectangle in the memory device context to the area beginning at point
(x2,y2):

BitBlt (hdc. x2. y2. xSize. ySize. hdcMem. O. O. SRCCOPY) ;

This process effectively swaps the contents of the two rectangles on the display.
SCRAMBLE does this 200 times, after which the screen should be thoroughly scrambled.
But do not fear, because SCRAMBLE keeps track of this mess and then unscrambles the
screen, returning it to normal before exiting.

,You can also use memory device contexts to copy the contents of one bitmap to an
other. For instance, suppose you want to create a bitmap that contains only the upper left
quadrant of another bitmap. If the original bitmap has the handle hBitmap, you can copy
the dimensions into a structure of type BITMAP:

GetObject (hBitmap. sizeof (BITMAP). (LPSTR) &bm) ;

and create a new uninitialized bitmap of one-quarter the size:

hBitmap2 = CreateBitmap (bm.bmWidth I 2. bm.bmHeight I 2.
bm.bmPlanes. bm.bmBitsPixel. NULL) ;

Now create two memory device contexts and select the original bitmap and the new bit
map into them:

hdcMeml = CreateCompatibleDC (hdc)
hdcMem2 = CreateCompatibleDC (hdc)

SelectObject (hdcMeml. hBitmap) ;
SelectObject (hdcMem2. hBitmap2) ;

Finally, copy the upper left quadrant of the first bitmap to the second:

BitBlt (hdcMem2. O. O. bm.bmWidth I 2. bm.bmHeight I 2.
hdcMeml. O. O. SRCCOPY)

You're done except for cleaning up:

628

DeleteDC (hdcMeml) ;
DeleteDC (hdcMem2) ;

Chapter 13: Bits, Bits, and Metafiles

Color Conversions

If the destination and source device contexts in the BitBlt call have different color charac
teristics, Windows must convert the bitmap from one color format to another. The best
color conversion occurs when the source bitmap is monochrome. Windows uses the text
color and background color attributes in the destination device context for this conversion:

Monochrome DC
(Source)

o (Black)

1 (White)

Color DC
(Destination)

Text color (default is black)

Background color (default is white)

The background color attribute, which you encountered in Chapter 12, is the color
Windows uses to fill in the gaps in dotted and dashed lines and between the hatches in
hatched brushes. You can change the background color with SetBkColor. The text color,
which you'll encounter in Chapter 14, determines the color of text. You can change this
with SetTextColor. With default settings, the monochrome bitmap simply turns into a
black-and-white bitmap on the color device context.

Translating a bitmap in a color source device context to a monochrome destination
device context is less satisfactory:

Color DC
(Source)

Pixel != Background color

Pixel == Background color

Monochrome DC
(Destination)

o (Black)

1 (White)

In this case Windows uses the background color of the source device context to determine
what color is translated to white. Every other color is translated to black.

Here's another color-related problem: Windows needs to equate a particular combi
nation of color bits in the bitmap (either in different planes or in the same plane) to the 24-
bit color value of the background color. This means that the color device context must refer
to a real device or be a memory device context based on a real device. For instance, sup
pose you have a monochrome device driver. You create a memory device context based on
the screen device context and select a color bitmap into that memory device context. You
now try to transfer that bitmap to a monochrome device context. It won't work, because
Windows doesn't know how the multiple planes or multiple bits per pixel in the memory
device context bitmap relate to real colors.

629

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Mapping Mode Conversions

The BitBtt call requires different starting coordinates for the source and destination device
contexts, but it needs only one width and one height:

BitBlt (hdcDest. xDest. yDest. xWidth. yHeight.
hdcSrc. xSrc. ySrc. dwROP) ;

The xWidth and yHeightvalues are in logical units, and they apply to both the rectangle in
the source device context and the rectangle in the destination device context. BitBlt must
convert all coordinates and sizes to device coordinates before calling on the driver file to
perform the actual operation. Because the xWidth and yHeightvalues are used for both the
source and destination device contexts, the values must be converted to device units
(pixels) separately for each device context.

When the source and destination device contexts are the same, or when both device
contexts use the MM_ TEXT mapping mode, then the size of this rectangle in device units
will be the same in both device contexts. Windows can then do a simple pixel-to-pixel
transfer. However, when the size of the rectangle in device units is different in the two
device contexts, Windows turns the job over to the more versatile StretchBlt function.

Stretching Bitmaps with SfrefchBlf

StretchBlt adds two parameters to the BitBlt call:

StretchBlt (hdcDest. xDest. yDest. xDestWidth. yDestHeight.
hdcSrc. xSrc. ySrc. xSrcWidth. ySrcHeight. dwROP)

Because StretchBltaccepts different width and height parameters for the source and desti
nation rectangles, it allows you to stretch or compress a bitmap in the source device con
text to fit a larger or smaller area in the destination device context.

. Just as BitBlt provides a superset of PatBlt's functionality, StretchBlt expands on
BitBtt by allowing you to specify the sizes of the source and destination rectangles sepa
rately. As with PatBltand BitBtt, all coordinates and values in StretchBltare in logical units.
(We've already used StretchBlt in two programs: The BLOWUPI program in Chapter 4
used the function to copy an area of the display into BLOWUPl's client area; the
GRAFMENU program in Chapter 9 used StretchBltto expand the size of a bitmap for use in
a menu.)

StretchBlt also allows you to flip an image vertically or horizontally. If the signs of
xSrcWidth and xDestWidth (when converted to device units) are different, then StretchBlt
creates a mirror image: Left bec~mes right, and right becomes left. If ySrcHeight and
yDestHeightare different, then StretchBltturns the image upside down. You can verify this
with the BLOWUP 1 program by capturing the image starting at the upper right corner
(a negative width), the lower left corner (a negative height), or the lower right corner
(a negative height and width).

630

Chapter 13: Bits. Bits. and Metaflles

If you've experimented with BLOWUP1, you've probably discovered that StretchBlt
can be slow, particularly when it works with a large bitmap. StretchBltalso has some prob
lems related to the inherent difficulties of scaling bitmaps. When expanding a bitmap,
StretchBlt must duplicate rows or columns of pixels. If the expansion is not an integral
multiple, then the process can result in some distortion of the image.

When shrinking a bitmap, StretchBlt must combine two or more rows or columns of
pixels into a single row or column. It does this in one of three ways, depending on the
stretching mode attribute in the device context. You can use the SetStretchBltMode func
tion to change this attribute:

SetStretchBltMode (hdc. nMode) :

The value of nMode can be one 9f the following:

• BLACKONWHITE (default)-Iftwo or more pixels have to be combined
into one pixel, StretchBlt performs a logical AND operation on the pixels.
The resulting pixel is white only if all the original pixels are white, which
in practice means that black pixels predominate over white pixels.

• WHITEONBLACK - If two or more pixels have to be combined into one
pixel, StretchBlt performs a logical OR operation. The resulting pixel is
black only if all the original pixels are black, which means that white
pixels predominate.

• COLORONCOLOR-StretchBlt simply eliminates rows or columns of
pixels without doing any logical combination. This is often the best
approach for color bitmaps, because the other two modes can cause color
distortions.

Animation

I mentioned at the beginning of Chapter 11 that GDI supports only static pictures. Although
it's true that Windows has no traditional animation support (such as the ability to flip video
pages, check for vertical retrace of the video signal, or construct rotatable sprites), that
doesn't mean that we can't move images around on the display. Yes, it's time for the bounc
ing ball program. The BOUNCE program, shown in Figure 13-2 beginning on the following
page, constructs a ball that bounces around in the window's client area. The program uses
the timer to pace the ball; it draws the ball with a simple "bit-block transfer" from a
memory device context.

631

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Figure 13·2. The BOUNCE program. (continued)

632

Chapter 13: Bits, Bits, and Metafiles

(continued)

633

SECTION IV: THE GRAPHICS DEVICE INTERFACE

v::,((ex i? /i
:·'i.",'·

i I i~)
,(i·

,,) ".,0{
.............~m .

),,",: /::i

••••.••••••..••••••••••..•••.•••••••••••. ' :"'""':} '",',: i
""" :':

>, »<{/': .

)
,

a !,~ 'X d
: ii

'.' •••• >
n 1: ,i :T ~ (.......... '.' /

a

\ '.' \> ih ,i
~: ;{ " ~,

~
,.~ .. ~:;:\.

.c It: K <
,.: ... : ii

I ;) ..

"'. / ,v",
~

",' .. e l.
[I

"

i i

!
,."':

,:,:'

tH (<
".1

<

"n "" :'\ J
.", i
a ~~

/.

':
(

i

\. v ~~ .i . >
i

ii
I' 2)

': '.'i." /,

.. ,.". i
>

;t :~i
•. :.' .. } I~r

\
) ,':

,'"
.,:

< U J

,,: > > } »\
... X alY: g; /

\ } i
,,:

'.·.' •• ' i
..... :' .. iriii <

i :>" ... ii,"
/""

i
, .. ,

(continued)

634

Chapter 13: Bits, Bits, and Metaflles

if «yCenter + cyRadius)= cyClient) ::
(yCenter- cyRadius <..; 0»

cyMove = -cyMove
return 0 ;

case WM_DESTROY :
i f(hBi tmap)

NAME

DESCRIPTION
EXElYPE
STUB
CODE
DATA
HEAPSlZE
STACKSIZE
EXpORTS

DeleteObject (hBitmap)

BOUNCE

'Bolinei ngBall
WINDOWS
!WINSTUB~EXE'
PRELOAD MOVEABLE:DISCARDABLE
PRELOAD MOVEABLE MULTI PtE
1024
8192
Wl1dProc<

BOUNCE reconstructs the ball whenever the program gets a WM_SIZE message, the
diameter of the ball being one-sixteenth of either the height or the width of the client area,
whichever is shorter. However, the program constructs a bitmap that is larger than the
ball-on each of its four sides, the bitmap extends beyond the ball's dimensions by one
quarter of the ball's radius.

After the bitmap is selected into a memory device context, it is colored white:

Rectangle (hdcMem. -1. -1. xTotal + 1. yTotal + 1) ;

A diagonally hatched brush is selected into the memory device context, and the ball is
drawn in the center of the bitmap:

Ellipse (hdcMem. xMove. yMove. xTotal - xMove. yTotal - yMove) ;

635

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The margins around the edges of the ball effectively erase the previous image of the ball
when the ball is moved. Redrawing the ball at another position requires only a simple
BitBlt call using the ROP code of SRCCOPY:

BitBlt (hdc. xCenter - xTotal / 2.
yCenter - yTotal / 2. xTotal. yTotal.
hdcMem. O. O. SRCCOPY) ;

BOUNCE dez:nonstrates the simplest way to move an image around the display, but
this approach isn't satisfactory for general purposes. If you're interested in animation,
you'll want to explore some of the other ROP codes (such as SRCINVERT) that perform an
exclusive OR operation on the source and destination.

METAFILES
A metafile is a collection of GDI functions that are encoded in a binary form. You create a
metafile by first creating a metafile device context. You can then use most of the GDI draw
ing functions to draw on this metafile device context. These GDI calls don't really draw on
anything, however. Instead, they are stored within'the metafile. When you close the
metafile device context, you get back a handle to the metafile. You can then "play" this
metafile on a real device context and execute the GDI functions in the metafile.

Metafiles are used most often for sharing pictures between programs through the
clipboard. Because metafiles describe a picture as a collection of GDI calls, they take up
much less space and are more device independent than bitmaps. I'll begin the discussion
of metafiles with some simple examples, and then I'll take up the more theoretical
considerations.

Simple Use of Memory Metafiles

Suppose your company's logo consists of a rectangle with lines drawn between the oppos
ing corners and a blue circle in the center. You need to draw this logo often on the client
area of your programs' windows and on the printer. Let's make that logo a metafile.

We'll begin by defining a few necessary variables:

static HANDLE hmf;
HANDLE harush ;
HDC hdcMeta :

During processing of the WM_CREATE message, you can create the metafile. You call
CreateMetaFile to obtain a handle to a metafile device context:

hMetaDC = CreateMetaFile (NULL) ;

The NULL parameter indicates that this will be a "memory" metafile; that is, the metafile
will be stored in memory rather than as a disk file.

636

Chapter 13: Bits, Bits, and Metaflles

You can now draw your logo on this metafile device context. You decide you want it
to be 100 units high and 100 units wide:

Rectangle (hdcMeta, 0, 0, 100, 100) ;
MoveTo (hdcMeta, 0, 0) ;
LineTo (hdcMeta, 100, 100)
MoveTo (hdcMeta, 0, 100) ;
LineTo (hdcMeta, 100, 0) ;

hBrush - CreateSolidBrush (RGB (0, 0, 255»
SelectObject (hdcMeta, hBrush) ;
Ellipse (hdcMeta, 20, 20, 80, 80) ;

When you're finished drawing, you close the metafile device context by calling Close
MetaFile, which returns a handle to the metafile:

hmf = CloseMetaFile (hdcMeta) ;

Now you can delete the brush you created:

DeleteObject (hBrush) ;

You're done creating the metafile. The hnifvariable is defined as static, so it will remain in
existence during other messages.

You drew the logo with a height and width of 100. Are these logical units or device
units? At this point, they are neither: They are simply units. They will take on meaning only
when you play the metafile. Let's do so. During processing of your WM_PAINT message,
you may want to fill up the client area with 100 logos, and you don't care whether they get
stretched out somewhat. We'll assume that you've obtained values of cxClientand cyClient,
representing the width and height of the client area, and that you've defined some of the
other variables used in this code.

You obtain a handle to the client-area device context and set a mapping mode of
MM_ANISOTROPIC with 1000 logical units horizontally and vertically:

hdc = BeginPaint (hwnd, &ps) ;

SetMapMode (hdc, MM_ANISOTROPIC)
SetWindowExt (hdc, 1000, 1000) ;
SetViewportExt (hdc, cxClient, cyClient)

Now you can "play the metafile" 100 times by calling Play MetaFile, each time changing the
window origin to move the metafile to a new position:

for (x = 0 ; x < 10 ; x++)
for (y = 0 ; Y < 10 ; y++)

{
SetWindowOrg (hdc, -100 * x, -100 * y)
PlayMetaFile (hdc, hmf)
}

637

SECTION IV: THE GRAPHICS DEVICE INTERFACE

In calling Play MetaFile, you're in effect repeating all the calls that you made between
Create MetaFile and Close MetaFile when you originally created the metafile during the
WM_CREATE message. The results are shown in Figure 13-3.

When you're finished processing the WM_PAINT message, you can end it normally:

EndPaint (hwnd, &ps) ;

One task remains. When you create a metafile, the handle is really the property of the GDI
module, and you must explicitly delete it with DeleteMetaFile before you terminate the
program. You can do this during processing of the WM_DESTROY message:

case WM_DESTROY :
DeleteMetaFile (hmf) ;
PostQuitMessage (0) ;
return 0 ;

Figure 13·3. Multiple figures drawn using the PlayMetaFile function.

Storing Metafiles on Disk

In the above example, the NULL parameter to CreateMetaFile meant that we wanted to
create a metafile stored in memory. We can also create a metafile stored on the disk as a
normal file. This method is preferred for large metafiles because it uses less memory space.
Windows has to maintain a relatively small area in memory to store the name of the file
containing the metafile. On the other hand, a metafile stored on disk requires a disk access
every time you play it.

638

Chapter 13: Bits, Bits, and Metafiles

Let's use the example of the company logo again. In addition to the variables shown
above, you'll need a variable to store the filename of the metafile:

static char szFileName [80] :

In this example, we'll use a temporary file. During processing of the WM_CREATE mes
sage, you can create a filename for a temporary file using the Windows GetT(jmpFileName
function:

GetTempFileName (0. MF, 0, szFileName) :

Windows first checks the TEMP variable in the MS-DOS environment to select a disk and
subdirectory for this file. If there is no TEMP variable in the MS-DOS environment, Win
dows uses the root directory of the first fixed disk. The filename begins with a tilde (-) fol
lowed by the characters we've specified in the GetTempFileName function (MF) and a
unique number; the extension is .TMP. On return from the call, the filename is stored in the
szFileName array.

We create the metafile device context using this filename:

hMetaDC = CreateMetaFile (szFileName) :

We can write to this device context just as we did in the original example and then close the
metafile device context to get the metafile handle:

hmf = CloseMetaFile (hdcMeta) :

The processing of the WM_PAINT message is the same as in the original example.
However, during processing of the WM_DESTROY message, you'll have to add something.
The statement:

DeleteMetaFile (hmf) :

deletes the area of memory that references the metafile handle to the disk file, but the disk
file still exists. You should also delete that file using the normal C function:

unlink (szFileName) :

Here's another way to use disk-based metafiles. This method doesn't require that you
maintain hmJ as a static variable. First, you get a temporary filename and create the
metafile device context as before:

GetTempFileName (0, MF, O. szFileName) :
hdcMeta = CreateMetaFile (szFileName) :

Now you draw on the metafile device context. When you're finished, you can close the
device context and get a handle to the metafile:

hmf = CloseMetaFile (hdcMeta) :

639

SECTION IV: THE GRAPHICS DEVICE INTERFACE

But now you also delete the metafile:

DeleteMetaFile (hmf) ;

Do we really want to do this? We might. Deleting a disk-based metafile invalidates
the metafile handle, freeing the memory required for the metafile but leaving the disk file
intact. During processing of the WM_PAINT message, you can get a metafile handle to this
disk file by calling GetMetaFile:

hmf - GetMetaFile (szFileName) ;

Now you can play this metafile just as before. When processing of the WM_PAINT message
is over, you can delete the metafile handle:

DeleteMetaFile (hmf) ;

When it comes time to process the WM_DESTROY message, you don't have to delete
the metafile, because it was deleted at the end of the WM_CREATE message and at the end
of each WM_PAINT message. But you still should delete the disk file:

unlink (szFileName) ;

Using Preexisting Metafiles

What we've done in the last example above seems to imply that we can create a disk-based
metafile in one program and then use it in another program by calling Get MetaFile. We
can. The MFCREATE ("metafile create") program, shown in Figure 13-4, is the shortest
Windows program in this book. All it does is create a disk -based metafile with the name
MYLOGO.WMF. The .WMF extension stands for "Windows metafile" and is the customary
extension for a metafile stored as a disk file.

. ; •••••••••••••••• ~.···· •• ·I
) .•••••••••• ~ ..

Figure 13·4. The MFCREATE program.

640

••••••••••••••••••••••

'111~i,
•.••••••••••••. jj, ••••.

. .•... ,,'18 ... · ... 1 •...•
. ~

Chapter 13: Bits, Bits, and Metafiles

641

SECTION IV: THE GRAPHICS DEVICE INTERFACE

In the WinMain function, MFCREATE creates a metafile device context using the filename
MYLOGO.WMF:

hMetaDC - CreateMetaFile ("MYLOGO.WMF") ;

It then draws on this device context. When it's finished, it closes the metafile device con
text and deletes the metafile handle in one statement:

DeleteMetaFile (CloseMetaFile (hdcMeta» ;

The program beeps to indicate that it's finished and then exits WinMain.
Now you can use this metafile in another program. Here's the entire WM_PAINT

logic. All you need to obtain the handle to the disk-based metafile is GetMetaFile. When
you're done with the metafile, you call DeleteMetaFile:

hdc - BeginPaint (hwnd. &ps) ;

SetMapMode (hdc, MM_ANISOTROPIC)
SetWindowExt (hdc, 1000, 1000) ;
SetViewportExt (hdc. xClient, yClient)

hmf - GetMetaFile ("MYLOGO.WMF")

for (x - 0 ; x < 10 ; x++)
for (y = 0 ; Y < 10 ; y++)

{
SetWindowOrg (hdc, -100 * x, -100 * y)
PlayMetaFile (hdc, hmf)
}

DeleteMetaFile (hmf) ;
EndPaint (hwnd, &ps) ;

Alternatively, you can define hmfas a static variable and call GetMetaFileonce during pro
cessing ofWM_CREATE and call DeleteMetaFileduring processing ofWM_DESTROY. Of
course, this approach has some problems. The code assumes that MYLOGO.WMF is in the
current directory or a directory listed in the PATH environment variable. If the file isn't in
the 'current directory when you call Get MetaFile, Windows will display a message box ask
ing the user to insert the MYLOGO.WMF disk in drive A. (The usual response of a user
to a message box of this sort is "Huh?") You should search for the file before you call
GetMetaFile.

Now let's try another approach.

Using Metafiles as Resources

In Chapter 8 you encountered a "user-defined resource," which in that case was a block of
text. Now let's transform a metafile into a user-defined resource. MYLOGO.WMF will then
become part of the .EXE file for the program that needs it. The program MFRESORC

642

Chapter 13: Bits, Bits, and Metaliles

("metafile resource"), shown in Figure 13-5, accomplishes this using the MYLOGO.WMF
metafile created by MFCREATE.

Figure 13·5. The MFRESORC program. (continued)

643

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

644

Chapter 13: Bits, Bits, and Metafiles

The resource script is only one line. METAFILE may look like a normal resource
script keyword such as MENU or DIALOG, but it isn't. We're defining this resource type.
The name we give to this particular resource of the METAFILE type is "MyLogo."

645

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.. ~ ~

·· .. ···~11
• ••••••••••••••••••••••••••••• ·+J~"i

I •

•••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••

)

... >

During processing of the WM_CREATE message, MFRESORC must first call Find
Resource and LoadResource to obtain a handle to the resource:

hResource = LoadResource (hInstance,
FindResource (hInstance, "MyLogo", "METAFILE"))

Then the resource is locked:

LockResource (hResource)

Normally, you would lock a resource to obtain a pointer to the memory block. However,
LockResource also performs the chore of actually loading the resource into memory. That's
all we need to do. Now we can convert this global memory block to a metafile using
SetMetaFileBits, and the resource can be unlocked:

hmf - SetMetaFileBits (hResource)

GlobalUnlock (hResource) ;

SetMetaFileBits has a companion function, GetMetaFileBits, that converts a metafile handle
to a global memory handle. GetMetaFileBits can be used only with a memory metafile.

The metafile that we loaded as a resource is a memory metafile. If you'd prefer to use
a disk -bas~d metafile, you can copy it. This is the code you would use following the
GlobalUnlock statement:

646

GetTempFileName (0, MF, O. szFileName) ;
hmf2 = CopyMetaFile (hmf. szFileName) ;
DeleteMetaFile (hmf) ;
hmf ... hmf2 ;

Chapter 13: Bits, Bits, and Metaflles

The hmf2 handle need not be defined as a static variable. The MFRESORC program shows
the deletion of the metafile handle during processing of WM_DESTROY:

DeleteMetaFile (hmf) :

You should also delete the temporary file:

unlink (szFileName) :

The CopyMetaFile function can also be used to copy an existing metafile to a memory
metafile:

hmf2 - CopyMetaFile (hmf. NULL) :

Looking at Metafiles

You can get a good idea of what a metafile is and is not by dumping out the contents of
MYLOGO.WMF. The metafile begins with an I8-byte header record. This is followed by a
series of metafile records, each of which contains three or more 2-byte words. The first
word is the number of words in the record, including the first; the second word is 0; the
third word is a code that indicates the GDI call that the record represents.

These codes are documented in Chapter 9 of the Programmer's Reference and in
WINDOWS.H with identifiers that begin with the word META. The low byte of this word
identifies the particular GDI call; the high byte is generally the number of words that are
parameters to the call. The words that follow this code are the actual parameters to the call
in reverse order, excluding the hdc parameter. For instance, the GDI call:

Rectangle (hdcMeta. O. O. 100. 100) :

shows up in the metafile as a seven-word record. In hexadecimal, these words are:

0007 0000 041B 0064 0064 0000 0000

The 04IB word means that the call is Rectangle with four parameters, excluding the initial
hdc. The parameters follow.

The only real exception to this rule is the SelectObject call. Windows must save the
object that the function is selecting into the metafile device context. For instance, the call:

hBrush ~ CreateSolidBrush (RGB (0. O. 255» :

doesn't affect the metafile device context at all. You can even make this call before you
create the metafile device context with Create MetaFile. When you select that brush into
the metafile device context, however, two records must be generated. The first is a record
for CreateBrushlndirect:

0007 0000 FC02 0000 0000 OOFF 0000

The four words following the identifying code FC02 are the elements of the LOG BRUSH
structure in the same order as the structure (lbStyle first).

647

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The call:

SelectDbject (hdcMeta. hBrush)

is coded in this record:

00040000 012D 0000

The single parameter 0000 indicates that it's a handle to the first object created in the
metafile. Any following SelectObject calls with other GDI objects will have sequentially
increasing parameters.

For a memory-based metafile, these records are stored in a global memory block.
(You can obtain the records using the EnumMetaFile function.) For a disk-based metafile,
the records are stored in a disk file. The handle to a disk-based metafile references a small
global memory block that contains the drive, the directory, and the name of the file.

Metafile Dos and Don'ts

When you play the metafile, Windows breaks down the metafile into records and executes
the appropriate functions using the parameters in each record. From the format of the
metafile records, some facts should be fairly obvious (and some not so obvious).

The metafile device context is not a true device context. It doesn't correspond to an
actual device or even to a block of memory like the memory device context. It's simply a
repository for GDI calls you make using the hdcMeta device context handle.

The metafile device context doesn't have any default device context attributes. It uses
whatever device context attributes are in effect when you play the metafile.

All parameters enter the metafile device context as numbers. For instance, if the
width and height of your client area are stored in xClient and yClient, and you call:

Rectangle (hdcMeta. D. D. xClient / 2. yClient / 2) ;

then the actual calculated values of xClient /2 and yClient /2 will enter the metafile. If
you later play back that metafile, it will draw a rectangle based on these calculated values
regardless of the current size of the client area.

If you change the mapping mode of your screen device context before you play the
metafile, the coordinates in the metafile will be interpreted based on the newly chosen
mapping mode (unless the metafile itself changes the mapping mode).

The only calls that go into the metafile are those that take a handle to a device context
as the first parameter. Many GDI calls are not allowed in a metafile. It's easier to say what
functions cannot be used with a metafile device context, because they fall into several
categories:

648

• Any function that begins with the word Get, including Get De v iceCaps and
Get TextMetrics. The metafile can do nothing with the information that
these functions return.

Chapter 13: Bits, Bits, and Metaflles

• Any other function designed to return information to the program:
RectVisible, PtVisible, EnumFonts, EnumObjects, DPtoLP, and LPtoDP.
The Escape function (which you'll encounter in Chapter 16) is supported
only for calls that don't return data.

• Any function that treats the metafile device context as if it were an actual
device context: ReleaseDG, DeleteDC, CreateCompatibleDC, CreateCom
patibleBitmap, CreateDiscardableBitmap, and Play MetaFile.

• Some of the more complex GDI functions: GrayString, Drawlcon, and
SetBrushOrg.

• Two functions that require handles to brushes: FillRect and FrameRect.

As I indicated above, SelectObject works a little differently for metafile device con
texts. First, it doesn't return the handle of the object previously selected in the device
context. When you use SelectObject with a metafile device context, the function returns a
nonzero if it is successful and 0 otherwise. You can't use the construction:

DeleteObject (SelectObject (hdcMeta, ... »; II WRONG III

For SelectObject, the metafile also stores a description of the logical object that you
are selecting into the device context. When you play the metafile, Windows starts with the
pen, brush, font, and region currently selected in the device context. For SelectObject calls,
it creates the indicated object and selects it into the device context but saves the original
object. When it is done playing the metafile, Windows restores the original objects and
deletes all the objects it created to play the metafile.

When you playa metafile, it uses the device context attributes currently in effect. The
metafile can change any of these attributes, including the mapping mode, the text color,
the drawing mode, and so forth. These changes remain in effect for the device context af
ter the metafile has finished playing. If you want to retain your original device context
attributes after the metafile has finished playing, call:

SaveDC (hdc) ;

before you play the metafile and:

RestoreDC (hdc, -1) ;

after the Play MetaFile call. The metafile itself can also save and restore the device context
while it is playing. Each SaveDC call must be balanced by a RestoreDC call with a -1

parameter.
One of the purposes of metafiles is to provide a format for device-independent pic

tures that can be shared by applications. There are some other considerations involved
with using metafiles with the clipboard that will be discussed in Chapter 16.

649

Chapter 14

Text
and Fonts

Writing text to the display was one of the first jobs we tackled in programming for Win
dows. Now it's time to explore the use of different font sizes and learn how to justify text.
This chapter is largely restricted to writing text on the video display. The subject becomes
more complex when you need to write text using the printer. The printer may be capable of
using a greater variety of fonts than the video display, and the characteristics of these fonts
can be quite different from the characteristics of the video fonts. Therefore, the subject of
text and fonts is continued in the next chapter, "Using the Printer."

SIMPLE TEXT OUTPUT
Let's begin by looking at the different functions Windows provides for text output, the
device context attributes that affect text, and the use of "stock" fonts.

The Text Drawing Functions

The most common text output function is one we've used in almost all sample programs:

TextOut (hdc. xStart. yStart. lpString. nCount) ;

The xStart and yStart parameters are the starting position of the string in logical coordi
nates. Normally, this is the point at which Windows begins drawing the upper left corner of
the first character. TextOut requires a far pointer to the character string and the length
of the string. The function knows nothing about NULL-terminated character strings.

651

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The meaning of the xStart and yStart parameters to TextOut can be altered by the
SetTextAlign function. The TA_LEFT, TA_RIGHT, and TA_CENTER flags affect the hori
zontal positioning of the character string. For example, if you call SetTextAlign with the
TA_ CENTER flag, subsequent TextOut calls position the center of the string at xStart. Sim
ilarly, the TA_TOP, TA_BOTTOM, and TA_BASELINE flags affect the vertical positioning.
If you call SetTextAlign with the TA_UPDATECP flag, then Windows ignores the xStart
and yStart parameters to TextOut and instead uses the current position previously set by
MoveTo or LineTo. The TA_UPDATECP flag also causes the TextOut function to update the
current position to the end of the string (for TA_LEFT) or the beginning of the string
(for TA_RIGHT). When the horizontal positioning is TA_CENTER, the current position
remains the same after a TextOut call.

You'll recall that displaying columnar-aligned text in the series of SYSMETS pro
grams in Chapter 2 required that one TextOut call be used for each column. An alternative
is the TabbedTextOut function. If the text string contains embedded tab characters ('\ t' or
Ox09) , TabbedTextOut will expand the tabs into spaces based on an array of integers you
pass to the function.

The ExtTextOut function gives you much more control over the spacing of individual
characters in the text string. The function also lets you specify a clipping rectangle.

A higher-level function for writing text is DrawText, which we first encountered in
the HELLOWIN program in Chapter 1. Rather than specifying a coordinate starting posi
tion, you provide a structure of type RECT that defines a rectangle in which you want the
text to appear:

DrawText (hdc. lpString. nCount. &rect. wFormat) ;

DrawText also requires a far pointer to the character string and the length of the string.
If you use DrawText with NULL-terminated strings, however, you can set nCount to -1,
and Windows will calculate the length of the string.

When wFormat is set to 0, Windows interprets the text as a series of lines that are
separated by carriage-return characters (ASCII number 13) or linefeed characters (ASCII
number 10). The text begins at the upper left corner of the rectangle. A carriage return or
linefeed is interpreted as a "newline" character; Windows breaks the current line and
starts a new one. The new line begins at the left side of the rectangle, spaced one character
height (without external leading) below the previous line. Any text (including parts of let
ters) that would be displayed to the right or below the bottom of the rectangle is clipped.

You can change the default operation of DrawText by including a wFormat parame
ter, which consists of one or mor~ flags defined in WINDOWS.H and separated by the C
bitwise OR operator. The DT _LEFT flag (the default) specifies a left-justified line,
DT_RIGHT specifies a right-justified. line, and DT_CENTER specifies a line centered
between the left and right sides of the rectangle. Because the value of DT _LEFT is 0, you
needn't include the identifier if you want text to be left-justified only.

652

Chapter 14: Text and Fonts

If you don't want carriage returns or linefeeds to be interpreted as newline charac
ters, you can include the identifier DT _SINGLELINE. Windows then interprets those ASCII
numbers as displayable characters rather than as control characters. When using
DT _SINGLELINE, you can also specify whether the line is to be placed at the top of the
rectangle (DT _TOP, the default), at the bottom of the rectangle (DT _BOTTOM), or halfway
between the top and bottom (DT _ VCENTER). DT _TOP, like DT _LEFT, has a value of 0,
so you don't need to explicitly include the flag.

When displaying multiple lines of text, Windows normally breaks the lines only at
carriage returns or linefeeds. If the lines are too long to fit in the rectangle, however, you
can use the DT _ WORDBREAK flag, which causes Windows to make breaks at the ends of
words within lines. For both single-line and multiple-line displays, Windows truncates
any part of the text that falls outside the rectangle. You can override this by including
the flag DT _NOCLIP, which also speeds up the operation of the function. When Win
dows spaces multiple lines of text, it uses the character height without external leading.
If you prefer that external leading be included in the line spacing, use the flag
DT _EXTERNALLEADING.

If your text contains tab characters (ASCII number 9), you need to include the flag
DT _EXPANDTABS. By default, the tab stops are set at every eighth character position. You
can specify a different tab setting by using the flag DT _TABSTOP, in which case the upper
byte of wFormat contains the character-position number of the new tab stops. I recom
mend that you avoid using DT_TABSTOP, however, because the upper byte of wFormat
is also used for some other flags. I

Device Context Attributes for Text

Several device context attributes affect text. In the default device context, the text color is
black, but you can change that:

SetTextColor (hdc, rgbColor)

As with pen colors and hatch brush colors, Windows converts the value of rgbColor to a
pure color. You can obtain the current text color by calling GetTextColor.

The spaces between the character strokes are colored in, based on the setting of the
background mode and the background color. You can change the background mode using:

SetBkMode (hdc, nMode) ;

where nMode is either OPAQUE or TRANSPARENT. The default background mode is
OPAQUE, which means that Windows uses the background color to fill in the area be
tween the character strokes. You can change the background color by using:

SetBkColor (hdc, rgbColor) ;.

The value of rgbColor is converted to that of a pure color. The default background color is
white. If the background mode is set to TRANSPARENT, Windows ignores the background

653

SECTION IV: THE GRAPHICS DEVICE INTERFACE

color and doesn't color the area between the character strokes. Windows also uses the
background mode and background color to color the spaces between dotted and dashed
lines and the area between the hatches of hatched brushes, as you saw in Chapter 12.

Many Windows programs specify WHITE_BRUSH as the brush that Windows uses to
erase the background of a window. The brush is specified in the window class structure.
However, you may want to make the background of your program's window consistent
with the "system colors" that a user can set in the CONTROL program. In that case, you
would specify the background color this way:

wndclass.hbrBackground = COLOR_WINDOW + 1 ;

When you want to write text to the client area, you can set the text color and background
color using the current system colors:

SetTextColor (hdc, GetSysColor (COLOR_WINDOWTEXT))
SetBkColor (hdc, GetSysColor (COLOR_WINDOW)) ;

If you do this, then you'll want your program to be alerted if the system colors change:

case WM_SYSCOLORCHANGE:
InvalidateRect (hwnd,NULL, TRUE) ;
break ;

Another device context attribute that affects text is the intercharacter spacing. By
default it's set to 0, which means that Windows doesn't add any space between characters.
You can insert space by using the function:

SetTextCharacterExtra (hdc, nExtra) :

The nExtra parameter is in logical units. Windows converts it to the nearest pixel, which
can be 0. If you use a negative value for nExtra (perhaps in an attempt to squeeze charac
ters closer together), Windows takes the absolute value of the number: You can't make the
value less than 0. You can obtain the current intercharacter spacing by calling GetText
CharacterExtra. Windows converts the pixel spacing to . logical units before returning
the value.

Using Stock Fonts

When you call TextOut, TabbedTextOut, ExtTextOut, or DrawText to write text, Windows
uses the font currently selected in the device context. The font defines a particular type
face and size. The easiest way to write text in a choice of fonts is to use the six stock fonts
that Windows provides. You can first obtain a handle to a stock font by calling:

hFont = GetStockObject (nFont) ;

where nFont is one of the six identifiers discussed below. You can then select that font into
the device context:

Sel~ctObject (hdc, hFont)

654

Chapter 14: Text and Fonts

Or you can do it in one step:

SelectObject (hdc. GetStockObject (nFont» :

GetStockObject is the same function that we used in Chapter 12 to obtain stock pens and
brushes; SelectObject we used in Chapters 12 and 13 to select pens, brushes, bitmaps, and
regions into the device context.

The font selected in the default device context is called the system font and is iden
tified by the GetStockObject parameter SYSTEM_FONT. This is the proportional ANSI
character set font that Windows uses for text in menus, dialog boxes, message boxes, and
window caption bars. Specifying SYSTEM_FIXED_FONT in GetStockObject gives you a
handle to a fixed-pitch ANSI font compatible with the system font used in versions of
Windows prior to version 3. We've frequently encountered this font in sample programs in
this book when using a fixed-pitch font seemed to be easier than using a proportional font.
The OEM_FIXED _FONT identifier gives you a handle to a font that is often called the
terminal font. This is the font that Windows uses for windowed DOS character-mode pro
grams. On most devices, the terminal font is similar to the fixed-pitch system font but uses
the OEM rather than the ANSI character set. (The ANSI and OEM character sets are dis
cussed in Chapter 4.)

The identifier ANSI_FIXED_FONT gives you a handle to a Courier font that is usu
ally smaller than the system or terminal font. You can obtain a handle to a font with variable
character widths by using the identifier ANSI_ VAR_FONT. This returns a handle to a
Helvetica or Times Roman font, either of which is usually smaller than the system font.

Finally, the identifier DEVICE_DEFAULT_FONT is designed to return a handle to a
font that is built into the output device and that is most suitable for the device. For most
graphics-based video displays, no font meets this condition, so the identifier returns a
handle to the system font. For a dot-matrix printer, however, this identifier returns a handle
to a font that is specific to the printer and that in some cases does not require Windows to
operate the printer in a graphics mode.

When you select a new font into a device context, you must calculate the font's
character height and average character width using GetTextMetrics. If you've selected
a proportional font, be aware that the average character width is really an average and that
a given character can have a smaller or larger width. Later in this chapter you'll learn how
to use GetTextExtent to calculate the full width of a string made up of variable-width
characters.

Although GetStockObject certainly offers the easiest access to different fonts, you
don't have much control over what font Windows gives you. You'll see shortly how you can
be very specific about the typeface and type size that you want.

655

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Graying Character Strings

Although TextOut and DrawText are the functions used most ofteri to write character
strings, Windows has another text output function called GrayString that exists for the ex
press purpose of displaying grayed text. Windows uses grayed text most often to show
disabled items in menus and dialog boxes. However, you might also want to use some
grayed text within your client area. GrayString is complex and has some limitations. I'll
begin by explaining how GrayString generally works and then show you an easier way to
use it. Here's the general syntax:

GrayString (hdc. hBrush. lpfnOutputFunction. dwData.
nCount. xStart. yStart. xWidth. yHeight) ;

GrayString uses a call-back function of the form:

BOOl FAR PASCAL OutputFunction (hdc. dwData. nCount)
HDC hdc ;
DWORD dwData
short nCount
{

father program lines]

return 1 ;
}

The name of this function must be included in the EXPORTS section of your mod
ule definition (.DEF) file. You must obtain a far pointer to the function by calling
MakeProclnstance:

lpfnOutputFunction = MakeProcInstance (hInstance. OutputFunction) ;

This far pointer is the third parameter to GrayString. The dwData and nCount parameters
to GrayString are passed as parameters to this call-back function. Most often, dwData is a
far pointer (converted ,to a doubleword) to the text you want to gray, and nCount is set to
the number of characters.

Here's what happens when you call GrayString. Windows creates a memory device
context and a monochrome bitmap using the xWidth and yHeight parameters to Gray

String. It selects the bitmap into the memory device context and passes to the call-back
function the memory device context handle and the dwData and nCount parameters.

Within the call-back function, you draw on this memory device context. The text
color has been set to black and the background color to white. The drawing you do is rela
tive to the upper left corner of this memory device context rather than the upper left corner
of your original device context. The output function returns a 1 if all goes well. Windows
then uses the PatBlt function to perform a bitwise OR operation on this memory device
context and the 50-percent gray brush. (The ROP code is OxFA0089.) As a result, the white
pixels in the memory device context are unchanged, and half the black pixels become
white pixels.

656

Chapter 14: Text and Fonts

Windows then performs a BitBlt operation on this memory device context and the
device context you specified in the GrayString call (probably your client-area device con
text), starting at the point (xStart, yStart). The ROP code is OxB8074A, which corresponds
to a Boolean operation of:

((Destination 1\ Pattern) & Source) 1\ Pattern

You may recall this particular ROP code from Chapter 13. The pixels in your original device
context (the destination) that correspond to white pixels in the memory device context
(the source) are unchanged. The pixels in your original device context that correspond to
black pixels in the memory device context are colored with the brush specified in the
GrayString call. In other words, every other pixel that you color black in the memory
device context is colored with the brush in your original device context.

The GrayString function has certain limitations. Here are the most important ones.
GrayString requires the MM_TEXT mapping mode. This is because the xWidth and
yHeight parameters to GrayString are treated as device units when Windows creates the
bitmap, but they are treated as logical units when PatBlt and BitBlt are called.

The memory device context has default device context attributes when Windows
calls the output function. Therefore, if you've selected a non-default font into your device
context before calling GrayString, this font will not be selected in the memory device con
text. You can, however, select the same font into the memory device context within the
output function.

Normally, the dwData parameter points to a character string, and nCount is the
number of characters, but dwData and nCount can really be anything you want. Be aware
of the following:

• If nCount is 0, then Windows assumes that dwData is a zero-terminated
character string and calculates the number of characters. That calculated
value is passed to the call-back function.

• If you specify an xWidth or yHeight value of 0, then Windows computes
the height and width of the string pointed to by dwData. It uses the
memory device context for this calculation, so th~se heights and widths
are based on the height and width of the system font, regardless of the
font you eventually use in the call-back function.

• If the output function returns 0, then Windows assumes that an error has
occurred and doesn't draw anything on your original device context.
However, if you set the nCount parameter to -1 and the output function
returns 0, then Windows simply transfers the memory device context
intact to your original device context without first graying it. In this case,
you have to determine the number of characters in the character string
yourself, within the call-back function.

657

SECTION IV: THE GRAPHICS DEVICE INTERFACE

If you have a good feel for bitmaps, memory device contexts, and the raster operations, you
might want to sidestep these limitations by writing your own text-graying function. Or you
might prefer to use the easy GrayString syntax presented below.

The Easy Use of GraySfring

In the general syntax to GrayString, the parameter called lpjnOutputFunction is a long
pointer to a call-back function. If you set that parameter to NULL, Windows uses the Text
Out function. You can also set the n Width and nHeight parameters to 0. Here's the syntax
you'll want to use for writing grayed text to the display:

GrayString (hdc. GetStockObject (BLACK_BRUSH). NULL.
(DWORD) lpString. nCount. xStart. yStart. O. 0) :

If lpString is a pointer to a NULL-terminated text string, then nCount can also be set to 0,
and Windows will calculate the length. GrayString uses the system font regardless of the
font currently selected in the device context. The function ignores the device context set
tings for the text color, background mode, and background color, and it requires the
MM_TEXT mapping mode.

On color displays, you can also pass to GrayString a brush handle from CreateSolid
Brush, if you've created a brush of a pure color. On monochrome displays, however, this
brush would become a black-and-white dithered brush, and you would encounter the
same problems as with a gray brush.

Gray Strings Without GraySfring

In versions of Windows prior to 3, the display drivers for the EGA and VGA supported only
eight pure colors (black, red, green, blue, yellow, magenta, cyan, and white) on color dis
plays. Grays had to be simulated using a dithered pattern of black and white pixels.

Beginning in Windows 3, the EGA and VGA display drivers support 16 colors, includ
ing two shades of gray. This means that you can display gray text without using the
GrayString function.

To do this, first call GetSysColor with a parameter of COLOR_GRAYTEXT:

rgbGrayText = GetSysColor (COLOR_GRAYTEXT) :

If rgbGrayText is equal to OL, then your program should use the GrayString function
to draw a grayed string. Otherwise, you can simply set the text color to rgbGrayText:

SetTextColor (hdc. rgbGrayText) :

658

Chapter 14: Text and Fonts

BACKGROUND ON FONTS
Much of the remainder of this chapter concerns working with different fonts. Before you
get involved with specific code, however, you'll benefit from having a firm grasp of the
subj ect 's basics.

The Types of Fonts

Windows supports two broad categories of fonts, called "GDI fonts" and "device fonts."
The GDI-based fonts are stored in files with the extension .FON. These files are

sometimes called "font resource files," and they are stored in the SYSTEM subdirectory of
your Windows directory. Each file contains one or more complete fonts. These files are in
New Executable format, which you can verify by running EXEHDR on them. They are
library modules, although somewhat unusual ones in that they contain no code or data. All
they contain are two types of resources: a font directory and the fonts themselves.

Device fonts are internal to the graphics output device. For video display adapters,
device fonts are currently rare. Windows uses the video adapter in graphics mode, so it
must use the GDI fonts and write the pixels to the video display.

For printers, however, device-based fonts are common. For instance, Windows can
write text to a dot -matrix printer using either the printer's normal text mode or the printer's
graphics mode. With the text mode, Windows uses a device font and needs to send only the
ASCII numbers of the characters out to the printer. With the graphics mode, Windows uses
a GDI font and must send the pixel patterns to the printer. For laser printers, device fonts
can be stored in ROM within the printer or in ROM cartridges. If the printer requires a
downloadable font that originates from a disk file, this font is also classified as a device
font, because it is specific to the particular device.

GDI fonts come in two flavors-"raster," or bitmap, fonts (the more common
variety) and "stroke" fonts. In a raster font file, each character is stored as a bitmap pixel
pattern. Figure 14-1 shows a character from a GDI raster font, blown up so that you can see
the pixel formation.

Figure 14·1. A CD/-based raster font character.

659

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Each raster font is designed for a specific aspect ratio and character size. Windows
can create larger character sizes from GDI raster fonts by simply duplicating rows or col
umns of pixels. However, this can be done only in integral multiples and within certain
limits. Right away, you can probably perceive one major difference between drawing
graphics on the display and writing text to the display using the GDI raster fonts. Although
you can draw a rectangle of virtually any size, GDI raster fonts are available only in
discrete sizes. You can't write text using a font smaller than the smallest font. If you want a
GDI raster font of a specific size, that size may not be available.

The GDI stroke fonts partly solve this problem. The stroke fonts are defined as a
series of line segments in a "connect-the-dots" format. Stroke fonts are continuously scal
able, which means that the same font can be used for all aspect ratios and can be increased
or decreased to any size. In general, GDI raster fonts look better than stroke fonts at small
sizes because raster font designs were based on small sizes. At very large sizes, however,
the raster fonts look grainy-as you can see in Figure 14-1-because Windows has to start
doubling rows or columns of pixels. Thus, the stroke fonts are usually preferable for large
sizes, although the characters look somewhat weak because their strokes are single lines.
Figure 14-2 shows a character from a blown-up GDI stroke font.

Figure 14·2. A CD/-based stroke font character.

For both GDI raster fonts and stroke fonts, Windows can "synthesize" boldface, italics, un
derlining, and strikethrough without storing separate fonts for each attribute. For italics, for
instance, Windows simply shifts the upper part of the character to the right. Because de
vice fonts are stored and used in a device-specific manner, it is impossible to discuss them
in the same detail as GDI fonts. Sometimes the device can italicize or boldface a device
font, and sometimes it can't. You can obtain such information from the GetDeviceCaps
function using the TEXTCAPS index. I(you want to obtain this information for particular
printers, you can use the GetDeviceCaps function as illustrated in the DEVCAPS1 program
in Chapter 11.

660

Chapter 14: Text and Fonts

Type Talk I: Families and Faces

I've been using the word font rather loosely until now. The more rigorous definition of font
that is preferred by typographers is this: A font is a complete collection of characters of a
particular typeface and a particular size. I

To a typographer, the term typeface denotes not only the style of type (such as
Courier or Helvetica) but also whether the characters are italic or boldface, for example.
When working with Windows, we'll use the word typeface to denote simply the style of the
type. Common typefaces, in addition to Courier and Helvetica, are Times Roman, Gothic,
and Palatino.

Windows groups typefaces into five "families," based on the general appearance of
the type. These families are called Modern, Swiss, Roman, SCript, and Decorative. The
most common typefaces are categorized as Modern, Swiss, or Roman, depending on two
characteristics. The first characteristic involves "stroke width" - the width of the lines that
make up the characters-which can be constant or variable. Typefaces in the Modern
family have constant stroke widths. Typefaces in the Swiss and Roman families have vari
able stroke widths. (Typefaces with variable stroke widths are generally of "variable
pitch," which means that the characters have variable widths. However, it is the stroke
width rather than the use of fixed or variable pitch that determines the family of a particu
lar typeface.) The second characteristic involves "serifs," which are small lines that finish
off the character strokes. The Swiss family comprises "sans serif" typefaces (typefaces with
no serifs); the Roman family comprises serif typefaces.

The Script family comprises typefaces that resemble script handwriting. The Decora
tive family includes typefaces that comprise "symbols" (sometimes also called "orna
ments" or "dingbats") and can also contain typefaces of elaborate design such as Old
English.

The table below summarizes the grouping of typefaces into families and shows the
identifiers (defined in WINDOWS.H) that programs can use to specify the font family:

FontFamily Stroke

FF_MODERN Fixed

FF_SWISS Variable

FF_ROMAN Variable

FF_SCRIPT

FF _DECORATIVE

UsualPitcb Serifs

Fixed

Variable No

Variable Yes

Typical Typefaces

Courier, Elite, Pica

Helvetica, Avant Garde

Times Roman, Palatino,
New Century Schoolbook

Cursive, Zapf Chancery

Old Symbol, English, Zapf
Dingbats

WINDOWS.H also includes a sixth font-family identifier, FF _DONTCARE, which a pro
gram can use when it wants to create a font but doesn't care what family it comes from.

661

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The typeface names shown in this table are the common names by which these type
faces are known, but when a Windows program specifies a typeface, in most cases it uses
an abbreviation (such as "Helv" for Helvetica and "Tms Rmn" for Times Roman) rather than
the full name. (The reason for this is that the names Times Roman and Helvetica are
cbpyrighted and cannot be us~d to identify fonts not licensed from the copyright holder.)
As you'll see, Windows provides functions for programs to determine the names of the
typefaces available on a particular device. These functions becomeparticulariy important
when the device is a printer, because printers can include many device fonts with names
that can be determined only when the program interrogates the device. Typefaces avail
able for the video display are shown in Figure 14-3.

Courier
Modern
Helv
Tms Rmn
Roman
h~

Figure 14·3. Windows typefaces for the video display.

Courier, Helv, and Tms Rmn are the raster fonts; the stroke fonts (Modern, Roman, and
Script) have typeface names that are the same as the names of three font families. The
reason that the stroke fonts are not assigned true typeface names is that they are not really
fonts in any traditional typographical sense.

The Font Resource Files

The SYSTEM subdirectory of the Windows directory contains several files with the exten
sion .FON. Some of the filenames begin with the letters COUR (Courier), HELV (Helvetica),
TMSR (Times Roman) and SYMBOL (Symbol) followed by another letter: A, B, C, D, E, or F;
these are the font resource files containing the GDI raster fonts. Each font resource file con
tains one or more sizes of a particular typeface. The terminating letter indicates the resolu
tion and aspect ratio for which the font was designed. The GDI stroke fonts are stored in
the MODERN.FON, ROMAN.FON, and SCRIPT. FaN files. Because the GDI stroke fonts are
continuously scalable, they aren't based on a particular aspect ratio or device resolution.

The system and terminal fonts are stored in files that begin with the name of the de
vice for which they have been designed (such as CGA, EGA, VGA, and 8514/A) and ending
with the words SYS (proportional system fonO, FIX (fixed-pitch system fonO, and OEM
(terminal font).

The following table lists the GDI font resource files, the font-family identifiers, the
typefaces, and the character sets:

662

Chapter 14: Text and Fonts

Filename Type Family Typeface Character Set

_SYS.FON Raster FF_SWISS System ANSI

_FIX.FON Raster FF _DONTCARE System ANSI

_OEM.FON Raster FF_MODERN Terminal OEM

COURx.FON Raster FF_MODERN Courier ANSI

HELVx.FON Raster FF_SWISS Helv ANSI

TMSRx.FON Raster FF_ROMAN TmsRmn ANSI

SYMBOLx.FON Raster FF _DECORATIVE Symbol N/A

MODERN.FON Stroke FF_MODERN Modern OEM

ROMAN.FON Stroke FF_ROMAN Roman OEM

SCRIPT.FON Stroke FF_SCRIPT Script OEM

The GDI stroke font files are sometimes referred to as "Set #1." There are six other
sets corresponding to the terminating letter of the COURx.FON, HELVx.FON, TMSRx.FON,
and SYMBOLx.FONT filenames:

Pixels per Log"ical Inch
Set LeUer Aspect Ratio X (Horz) Y(Vert) Device

#2 A 200 96 48 CGA

#3 B 133 96 72 EGA

#4 C 83 60 72 Okidata printers

#5 D 167 120 72 IBM, Epson printers

#6 E 100 96 96 VGA

#7 F 100 120 120 8514/A

Depending on what printers you've installed and whether you've used the Windows
Setup program to change the video display driver, some of these files mayor may not be
present on your hard disk. Also, some users may have other Windows font files present.

The aspect ratio in the above table is calculated as:

100 * horizontal pixels per logical inch
vertical pixels per logical inch

You might recall encountering this peculiar "logical inch" measurement in Chapter 11,
when we explored the information available from GetDeviceCaps with the LOGPIXELSX

and LOGPIXELSY parameters.··We quickly established that a logical inch is different from a
real inch.

For an EGA, GetDeviceCaps reports that the device has 96 pixels horizontally per

logical inch and 72 pixels vertically per logical inch. This means that the raster fonts stored
in the COURB.FON, HELVB.FON, TMSRB.FON, and SYMBOLB.FON files are appropriate

663

SECTION IV: THE GRAPHICS DEVICE INTERFACE

for display on an EGA. The fonts in the Set #2 files are too short for the EGA because they
are based on a lower vertical resolution, and the fonts in Set #4 are too wide because
they are based on a lower horizontal resolution.

Type Talk II: Getting the Point

Type size is expressed in units called "points." A point is very close to Y72 inch, so close that
it's often defined as exactly Y-12 inch. The point size indicates the height of the characters.
For instance, when we speak of 12-point type, we're referring to characters that are 1¥12 (~)

inch high from the top of the ascenders to the bottom of the descenders.
In Windows, another convenient measurement is the "twip"; this fabricated word

stands for "twentieth of a point," which equals Y1440 inch. Note that the pixels-per-Iogical
inch measurements associated with each of the five sets of GDI raster fonts are such that
the size of each pixel is an integral number of twips. Or rather, each pixel is an integral
number of a measurement we can call "logical twips":

Pixels per Logical Inch

48
60
72

96
120

Logical Twips per Pixel

30
24

20

15
12

If you run the EXEHDR utility on the COURx.FON, HELVx.FON, TMSRx.FON, and
SYMBOL.FON font resource files, you'll see in the module description that the files contain
fonts of particular point sizes. The COURx.FON files comprise 8-point, 10-point, and 12-
point fonts. The HELVx.FON and TMSRx.FON files include those sizes and add !4-point,
18-point, and 24-point fonts. But here's the catch: These point sizes are dependent on the
resolution given by the number of pixels per logical inch. For instance, the 24-point Times
Roman font in the TMSRB.FON file has characters that are 24 pixels high. Only on a display
that has 72 pixels per vertical inch will the 24 pixels correspond to a 24-point font.

Why Logical Inches?

The fact remains that the EGA actually displays 68 pixels per horizontal inch and 51 pixels
per vertical inch. The logical inch is some 40 percent larger than the real inch. Why not
simply base the fonts on the real dimensions of the EGA display and forget about this
logical-inch business?

On paper, 8-point type with about 14 characters per horizontal inch is perfectly read
able. If you were programming a word-processing or page-composition application for .
Windows, you would want to be able to show legible 8-point type on the display. But if you

664

Chapter 14: Text and Fonts

used the actual dimensions of the video display, each character would be about 6 pixels
high and 5 pixels wide. Such characters would not be legible. Even if the display had suffi
cient resolution, you might still have problems reading actual 8-point type on a screen.
When people read print on paper, the distance between the eyes and the paper is gener
ally about a foot, but a video display is commonly viewed from a distance of 2 feet. The
logical inch in effect provides a magnification of the screen, allowing the display of legible
fonts in a size as small as 8-point. You can see this magnification effect in Windows WRITE
when you display the ruler at the top of the client area.

Note also that having 96 pixels per logical inch horizontally makes the 640-pixel
wide display of the CGA and EGA equal to about 6.5 logical inches. This is precisely the
width of text that you'll print on 8.5-inch-wide paper when you use margins of an inch on
each side. So the logical inch also takes advantage of the width of the screen to allow text to
be displayed as large as possible.

This whole subject of logical inches is relevant only for the video display. For printers,
a logical inch is the same as a real inch.

Type Talk III: Leading and Spacing

When we wrote text to the display in Chapter 2, we obtained information from GetText
Metrics that allowed us to space the text properly. The five values from the TEXTMETRIC
structure that describe the size of a character were shown in a diagram (Figure 2-3). Those
five character-height values are shown again in Figure 14-4 on the following page.

The word leading (pronounced "ledding") is derived from the lead that typesetters
insert between blocks of metal type to add white space between lines of text. The
tmlnternalLeading value is the space for diacritics. (For the terminal font, tmlnternalLead
ing is 0, and characters with diacritics are simply reduced in size to make room for the
diacritics.) The tmExternalLeading "suggests" an additional space to leave between lines
of characters. Programmers can use or ignore the external leading value. The Courier,
Helvetica, and Times Roman fonts usually have tmExternalLeading values of 0 and have
positive tmlnternalLeading values (except in the very smallest sizes) to more closely
approximate how fonts are used in printed material.

When we refer to a font as being 8-point or 12-point, we're actually talking about the
height of the font less the internal leading. The diacritics on certain capitals are considered
to occupy the space that normally separates lines of type. The tmHeigbt value refers to the
line spacing. In the case of the 24-point Times Roman font for the EGA (which conveniently
has 72 pixels per logical inch vertically, or 1 pixel per logical point), the tmHeight value is
26 and the tmlnternalLeading is 2. The line spacing is 28 points. The size of the font is 26
minus 2, or 24 points. We speak of this as a 24-point font on a 26-point line spacing, which
is often abbreviated as 24/26 (and pronounced "twenty-four on twenty-six"). The 10-point
Courier, Helvetica, and Times Roman fonts designed for the EGA all have a tmHeight value

665

SECTION IV: THE GRAPHICS DEVICE INTERFACE

of 12 and a tmlnternalLeading value of 2. The line spacing is 12 points, or Y6 logical inch,
which is the normal line spacing of a printer or typewriter.

tmAscent

Baseline

tmDescent

Figure 14·4. Thefive values defining character height.

The "Logical Twips" Mapping Mode

} tmExternalLeading

} tmlnternalLeading

tmHeight

When I discussed mapping modes in Chapter 11, you might have thought the MM_ TWIPS
mapping mode would be used by programs that make heavy use of formatted text. In this
mapping mode, logical units are in terms of Yzo point. However, you probably won't want to
use MM_ TWIPS for the video display, because the mapping mode is based on real inches
rather than logical inches. As a result, your program won't be able to equate the correct
point sizes (8, 10, 12, 14, 18, and 24) of the available screen fonts to their heights in
MM_ TWIPS units.

666

Chapter 14: Text and Fonts

You'll be better off if you define your mapping mode based on the logical-pixels-per
inch dimensions available from GetDeviceCaps. I call this the "Logical Twips" mapping
mode; here's all you need to set it:

SetMapMode (hdc. MM_ANISOTROPIC) ;
SetWindowExt (hdc. 1440. 1440) ;
SetViewportExt (hdc. GetDeviceCaps (hdc. LOGPIXELSX).

GetDeviceCaps (hdc. LOGPIXELSY»

Because the pixels-per-Iogical-inch values are always divisors of 1440, the scaling factor for
this mapping mode is an integer. With this mapping mode set, if you want to request a font
with 12-point line spacing (as we'll do shortly), you can specify the height of the font as 240
(12 times 20) logical units.

If you select a font into your device context and call GetTextMetrics to obtain the
dimensions of the font, you can calculate the type size in points by using the formula:

(tm.tmHeight - tm.tmlnternaILeading) 1 20

The line spacing in points is equal to:

tm.tmHeight 1 20

For some smaller fonts on low-resolution devices, the size and spacing of the type might
actually involve a fraction of a point-for example, 8-point type with 8.5-point line spac
ing. To round to the nearest integer point size, you might instead want to use the formulas:

(tm.tmHeight - tm.tmlnternalLeading + 10) 1 20

and:

(tm.tmHeight + 10)-1 20

We'll use the "Logical Twips" mapping mode in the JUSTIFY program toward the end of
this chapter.

Once again, remember that the discrepancy between logical inches and real inches
occurs only for the display. If you use the "Logical Twips" mapping mode with a printer,
you'll simply duplicate the MM_ TWIPS mapping mode.

CREATING, SELECTING,
AND DELETING LOGICAL FONTS
Now that we've nailed down the concept of logical inches, it's time to talk about logical
fonts. The logical font is the sixth and final type of GDI object.

A logical font is the description of a font. Like the logical pen and logical brush, it is an
abstract item that becomes real only when it is selected into a device context. For logical
pens (for instance), you can specify any colCJr you want for the pen, but Windows converts

667

SECTION IV: THE GRAPHICS DEVICE INTERFACE

that to a pure color when you select the pen into the device context. Only then does
Windows know about the color capabilities of the device.

With fonts, this distinction between the logical font that you request and the real font
that you get is much more important, because the logical font and the real font can be very
different. For example, suppose you request a 32-point Zapf Chancery font. Windows
returns to your program a handle to a logical font. Now you select that font into a device
context. What happens? It depends. If the device context is a printer device context for an
Apple LaserWriter Plus, you will indeed be able to write text to the printer using a 32-point
Zapf Chancery font. But if you select this logical font into your screen device context,
you'll get something that only approximates this font.

This is the process for creating, selecting, and deleting logical fonts:

1. Create a logical font by calling CreateFont or CreateFontlndirect. These
functions return a handle to a font of type HFONT.

2. Select the logical font into the device context using SelectObject. Windows
chooses a real font that matches most closely the logical font.

3. Determine the size and characteristics of the real font with Get
TextMetrics. (You can also get the name of the font with GetTextFace.)
The information lets you properly space the text that you write when this
font is selected into the device context.

4. Delete the logical font by calling DeleteObject. Don't delete the font while
it is selected in a valid device context, however, and never delete stock
fonts.

Windows has two functions for creating logical fonts. The first is:

hFont = CreateFont (nHeight lpszFaceName) ;

The CreateFont function has more parameters than any other Windows function-14 of
them. The 14 parameters to CreateFont correspond directly to the 14 fields of the LOG
FONT structure. You can also create a logical font using the LOGFONT structure and the
CreateFontlndirect function:

LOGFONT logfont ;
[other program lines]

hFont = CreateFontlndirect (&logfont) ;

In most cases, using CreateFontIndirect and the logical font structure is neater and more
efficient than specifying the"14 parameters to CreateFont.

After you create a logical font, you select it into your device context with SelectObject:

hFontOld = SelectObject (hdc, hFont) ;

668

Chapter 14: Text and Fonts

Windows then matches the logical font with a real font. You can determine the name of
the typeface by using the function:

GetTextFace (hdc. sizeof szFaceName. szFaceName) ;

, where szFaceName is a character array to receive the name. You can have Windows copy
the various sizes of the font into a structure of type TEXTMETRIC using the familiar:

GetTextMetrics (hdc. &tm) ;

The GetObject function, which you can use to obtain information about a logical pen,
brush, or bitmap, can also be used for logical fonts:

GetObject (hFont. sizeof (LOGFONT). &logfont) ;

But this function returns only the information that you put into logfont to create the font
in the first place.

You can delete a logical font (but not while it is selected in a device context) with
DeleteObject:

DeleteObject (hFont) ;

The PICKFONT Program

With the PICKFONT program, shown in Figure 14-5, you can create a logical font and see
the characteristics of the real font after the logical font is selected into the screen device
context.

Figure 14·5. The PICKFONT program.

669

SECTION IV: THE GRAPHICS DEVICE INTERFACE

i
(

...... ;;

.. ,
•••••• .. (....• /

L
ri .)

\i .i

:1 :.~J T
~jlI

ii

•••••••••••••••••••••••••••••••
.. ~.

i
ii}

(>\ ...•

ii ~li i ,;.
..

.

(i

t i.·.··.·· ... ·······.

.»••.•

» ..•...•.
........

ri i
i.

~I
.

;i
i';

ui·i . «
)1 ,\~.a) ·· .. ···i

.....................

~1:i;

ql ~) ..~

I \ ... 1' 2: ~f '.t: Ut

W] ,F RDI
.> .> W •• ~

ii,.

ttl

L. .•
). ..

.... i . D I;A ~I
1'.

'b, :1'

;w ,r-

iO" It I S
(. i

dLG.: •••••••••

.'>
/ . .I .•.•...

....... ~.\ ~ri;
......

II hjo\tt
....

(continued)

670

Chapter 14: Text and Fonts

(continued)

671

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.. ".,. ,. ":' . ,\,< i':'::"":
? ;) .":'. '.'

~%wllil
'\ ::: : l

...... ,

~.
::':':'1

.: .. :..... i ::: \

" H)

•• :< i

< 11 :. al';E

i':
~.) :. c; :}

f ;e JJ ~'. II t-l '.A

\r
T .,

"'i ,'., f. t, Ii. \. :~.

) • •••••• rl II II I

< ':' ~;: J i - ,~

ll':.'g" i ..
...

? . ill :

.1 WD ':"':

... \ ':":i

ii /.
.iii

i 'i:"";;""
i

..••••.....•.•...••...•.•. : •••

L

·iAII }<

•••••••••••••••••

,(! : .• , •... >.: 1\\11)<

f. :d.~ rh~J It
~

>
A~ •••• : •• ~I

r J: I~ :,:;:;,<

ri
ii

~A P) II

:>::

•••••••••• 1P .• : .•.......•......•.....

r····
.'i .. : ..•. U

. ... ::.
:> ~~)1 ~ i

Ii,: " i ~l
'" ~. a

;;:

) :
,.. ~l IJ

~\

t, 0
......

i

IJ

.... > It: il u. >

(continued)

672

H.HOutPrecision = OUT_DEFAULT_PRECIS ;
1f .Hel ipPrec1 s1 on ... CLIP.:,.DEFAUl T_PRECIS :

/* fall through */

Chapter 14: Text and Fonts

(continued)

673

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.,g~t~ '1!!M;JI)~iillmlitit .. lt.I'.J'V':-:i.'.i'." : '

••••••••••••••••••••••••••••••••••

~'llilm
,.

··1 •• 1· ••• ··.·.·;·· ••]·.·.~ ••• •• ••• •

•......••••.•.•...•••.•...•••••.....•....•• '.' •..

• '•..

•••

. ! •••••••..•••••••••••••••••••••••••••

h
o·

674

••••••••••••••••••••••••••••. if .' ./
.• • •.... '.............................. . ••••••••••••••••••••••••.

• •••

......... ' ... ' ..••.•...•.

n
fl

'lit,.".. ;;
lii~

o

(continued)

Chapter 14: Text and Fonts

(continued)

675

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Hi !~llr' ~~ibiil fI
.i;~~~ ' . .. >i _~(i tr; '" . i'.",. ,

~ >
,.'./

» ... , !'I.I~II .• i LJ~=:.r it [i(~lfbg <

' •. '.". 'ot 1I ii t:t1 i \\' y:\lJ tsl 1.1 '.'" In5; >. " ..
... U ~'1g !Sfl l~ '7·': ,:,:< C

."", ·'·i. lAD ts .. ," .• 1
"1 ,j.·5·t (

,,",,~ ::: \~~ hi)
? > •. 1) 1 ;,)9 '~il 1l H

i' ••••• -"C ..
i "" L~ l :;<) ~ f! .1 W J. ":',~)

..... tl) ~~ 4
...... ·.t

il 1 C J
:~ ' ~,.'

it ;~ ...
~." /

> •.•• ' •• .. C"";"
'1- T a .11 r-.,

2 •. ' .. ' .•.
,",Ir'

",., .. Irl I- 1\
,:':,:

~J 1 T 4'
;' 1 U

".'
if

."

l.J)ri
~" J

~I :

'" ..
'J J .1 ~. I:

:it J
.···•·.·.· .. ·· ... ·.·.·I· \)

'r T i'I , , ..

R

••••••••••••••••••

II J
I(

3"
[I ,{ JI

•••••••••••••••••••••••••

..
:1

.' .. ' ' ...•....

I III ,~
[

",,~
It

i
i": 1, i

t)

II" i
:...

'· · ·.· ... · ... · ... ·t
/ ' .. '" a

.:

?i.

. , :.'" > . n
'"

i
l:J I

-,"L!3 :-"
.t<

...... " .. '.','.
It '

t.
t

I cC :,
I ~'"

J , v
.'.'.'.'"

(continued)

676

Chapter 14: Text and Fonts

(continued)

677

SECTION IV: THE GRAPHICS DEVICE INTERFACE

,ii,
,Ul P.··.·. \ .• ~ 6 •..... (....... iii" i< u' '1 >. (\ I.\···.· i /\

l(}t L.
.\ .i/ <

IFI ~.

. i ~~ ~ ~.
('.y

~~ ~.
' " Ii .}. i)

~.O .•.•.. i i i}
1\.' :;

~d i/
••••••••

.. i(

.~
~,

I~(i

. ~
IE !&; u < .••••.. i 1.2 [.u
l.~

'"
••••••

ii

;t '.' It ~~
) ••••••••••• ~ ..

:t)I
ii. ... };
.>i

.f/~ e'
y)

ii I 1. i .•....•..........•...•.•.
/\

i.f~~~·< 1".;;
........... ... > t

... \\ (i
••••

. } i

d~ ·i
...•

.... i) .. \ ... } {)C(
~i; 1oI'.~t.1 ;.:i<i ... {'

••••••••••••••

.......... r i

•.•••• ·;f·· i

.i tir)·C~t ~ .. e i /
. ~

j< (......• '.: (
~'. ...

,"; i) f i \
···r

',::

1
41'1 ~.,

'I" ...
;., <)

···.· ... ·.·.·· .. \i.·.) J r
~, \ i

... / Rf ",(,
i'l~j A 'i<

•••••••

"
...•.• 3 .

... , :;.

.',i }))

(\ ~I'U .1
.l ..•..

i
• •••••••••••••••••••••••••••••••

\ .. \\. ?i</ i './

Figure 14-6 shows a typical PICKFONT screen. The left side of the PICKFONT display is a
modeless dialog box that allows you to select most of the fields of the logical font structure.
The right side shows the results of GetTextMetrics after the font is selected into the device
context. A sample line of text using this font appears at the bottom of the screen.

The modeless dialog box also contains some options that are not part of the logical
I

font structure. These are the mapping mode (including my "Logical Twips" mapping
mode) and the "Match Aspect" option, wh1ch changes the way Windows matches a logical
font to a real font.

678

Chapter 14: Text and Fonts

Much of the PICKFONT program contains the logic necessary to maintain the dialog box,
so I won't go into detail on the workings of the program. Instead, I'll explain what you're
doing when you create and select a logical font.

==. Font Picker '. aa
Hcight ~

Mapping Modc

@Tcxt o Lo English
Width C=:J o Lo Metric o HI English

Weigh! C=:J o HI Mctrlc o Twlps

[8l Match Aspect o 'Logical Twips'

o Italic s;.har Sct family

o !!ndcrllne @ANSI o Don't Care

o litrike-Out OOEM @Roman

Eitch o Swiss

@ Default o Modern

o Fixed o Script

o Variable o Decorative

Text Metrlcs-------,

Height
Ascent:
Descent:
Int Lead:
Ext Lead:
Ave Width:
Max Width:
Wclght:
Pitch:
Family:
Char Set:

35
27

8

3
o

16
33

400
VARIABLE

Roman
ANSI

Overhang: 0
X Aspect: 96
YAspect: 96

Ilr""',:Qk, ; ":"1 Face Namc: Tms Rmn

aBbCcDdEeFfGgHhIiJj KkLIMmNnO oPqQq

Figure 14·6. A typical PICKFONT display.

The Logical Font Structure

As I mentioned, the best way to create a logical font is to first define a structure of type
LOGFONT:

LOG FONT logfont ;

When you call CreateFontIndirect, you give Windows a pointer to this structure:

hFont = CreateFontlndirect (&logfont) ;

The 14 fields of this structure are the same as the 14 parameters to CreateFont.
You don't need to set each and every field of the LOGFONT structure. If your logical

font structure is defined as a static variable, it will be initialized to O. The 0 values are
defaults. You can use that structure directly without any changes, and CreateFontlndirect
will return a handle to a font. When you select that font into the device context, you'll get a
reasonable default font. You can be as specific or as vague as you want in the LOGFONT
structure, and Windows will attempt to match your requests with a real font.

The first two fields of the LOGFONT structure are in logical units, so they depend on
the current setting of the mapping mode: .

679

SECTION IV: THE GRAPHICS DEVICE INTERFACE

• /fHeight (short integer)-This is the desired height of the characters
(including internal leading but not external leading) in logical units.
Because the point size of the font itself is the height of the font less
internal leading, you're really specifying a line spacing here. You can set
it to 0 for a default size. If you set /fHeight to a negative number, Windows
treats the absolute value of that number as a desired ascent size rather
than as a full height.

• /fWidth (short integer)-This is the desired width of the characters in
logical units. In most cases you'll want to set this to 0 and let Windows
choose a font based on the height. If you use a nonzero value, Windows
might be forced to use a font designed for an aspect ratio different from
that of the device context into which you later select the font.

The next two fields specify the "escapement" and "orientation" of the text. In theory,
/fEscapement allows character strings to be written at an angle, and /fOrientation allows
characters to be tilted. These two fields are not included in the PICKFONT program, how
ever, because they currently don't work well on the screen. Before you try to use these on a
device, you should use the TEXTCAPS index to GetDeviceCaps to check the device's ability
to do character rotation.

680

• /fEscapement (short integer)-This is an angle in tenths of a degree,
measured from the horizontal in a counterclockwise direction. It

specifies the placement of the string when you write text with TextOut.
Here are some examples:

Value

o
900

1800

2700

Placement of Characters

Run from left to right (default)

Go up

Run from right to left

Godown

• /fOrientation (short integer)-This is an angle in tenths of a degree,
measured from the horizontal in a counterclockwise direction. It

specifies the appearance of each character. Here are some examples:

Value

o
900

1800

2700

Character Appearance

Normal (default)

Tipped 90 degrees to the left

Upside down

Tipped 90 degrees to the right

Chapter 14: Text and Fonts

The remaining 10 fields follow:

• ljWeight (short integer)-This field allows you to specify boldface.
Currently, there are only two recommended values:

Value

400

700

Result

Normal

Boldface

In actuality, any value from 0 to 550 is normal, and any value greater
than 550 is boldface. If you like to plan for the future, WINOOWS.H has a
collection of font weight identifiers:

Value Identifier

0 FW_DONTCARE

100 FW_THIN

200 FW_EXTRALIGHT or FW _ULTRALIGHT

300 FW_LIGHT

400 FW_NORMALor FW_REGULAR

500 FW_MEDIUM

600 FW_SEMIBOLD or FW _DEMIBOLD

700 FW_BOLD

800 FW_EXTRABOLD or FW_ULTRABOLD

900 FW_HEAVYorFW_BLACK

• ljltalic (BYTE)-When nonzero, this specifies italics. Windows can
synthesize italics on GOI fonts. To determine what a particular device can
do with a device font, check the TC_IA_ABLE bit of the TEXTCAPS value
returned from GetDeviceCaps.

• ljUnderline (BYTE)-When nonzero, this specifies underlining, which
is synthesized on GOI fonts. For device fonts, check the TC_UA_ABLE bit
from GetDeviceCaps.

• ljStrikeOut (BYTE)-When nonzero, this specifies that the font should
have a line drawn through the characters. This also is synthesized on GOI
fonts. For device fonts, check the TC_SO_ABLE bit.

• ljCharSet (BYTE)-This is the character set of the font. WINOOWS.H
currently contains three identifiers for the character set:

681

SECTION IV: THE GRAPHICS DEVICE INTERFACE

682

Value

o
2

128

255

Identifier

ANSLCHARSET

SYMBOL_CHARSET

SHIFTJIS_CHARSET (Japanese KanjO

OEM_CHARSET

Note: The Kanji character sets are not, of course, included with American
or Western European releases of Windows.

• ljOutPrecision (BYTE)-This specifies how Windows should attempt to
match the desired font sizes and characteristics with actual fonts. This
field is not yet implemented and is not included in the PICKFONT
program. WINDOWS.H contains four identifiers for the field:

Value

o
1

2

3

Identifier

OUT _DEFAULT_PRECIS

OUT_STRING _PRECIS

OUT _CHARACTER_PRECIS

OUT _STROKE_PRECIS

• ljClipPrecision (BYTE)-This specifies how to clip characters that are
partly outside the clipping region. The field is not included in the
PICKFONTS program. WINDOWS.H contains three identifiers:

Value

o
1

2

Identifier

CLIP _DEFAULT_PRECIS

CLIP _CHARACTER_PRECIS

CLIP _STROKE_PRECIS

• ljQuality (BYTE)-This is actually an instruction to Windows regarding
the matching of a desired font with a real font. You can use three
identifiers:

Value

o
1

2

Identifier

DEFAULT_QUALITY

DRAFT_QUALITY

PROOF_QUALITY

Chapter 14: Text and Fonts

If you specify PROOF_QUALITY, you're telling Windows that you don't
want a font to be increased to a larger size to match the character height or
width that you request. The PROOF _QUALITY fonts are the most attrac
tive, but they may be smaller than what you request.

• ljPitchAndFamily (BYTE)-This byte is composed of two parts. You can
use the C OR operator to combine two identifiers for this field. The lowest
two bits specify the pitch of the font:

Value

o
1

2

Identifier

DEFAULT_PITCH

FIXED _PITCH

VARIABLE_PITCH

If you specify FIXED _PITCH, Windows will pick a font that has a fixed
pitch, because you're essentially telling Windows that your program can't
deal with variable-pitch fonts.

The upper half of this byte specifies the font family:

Value Identifier

OxOO FF_DONTCARE

OxlO FF_ROMAN

Ox20 FF_SWISS

Ox30 FF_MODERN

Ox40 FF_SCRIPT

Ox50 FF_DECORATIVE

• ljFaceName (BYTE array)-This is the name of a typeface (such as
Courier, Helv, or Tms Rmn). WINDOWS.H includes a LF_FACESIZE
identifier that equals 32, which is the maximum number of characters
allowed for the typeface name.

The Font.Mapping. Algorithm

After you set up the logical font structure, you call CreateFontlndirect to get a handle to the
logical font. When you use SelectObject to select that logical font into a device context, Win
dows finds the real font that most closely matches the request. In doing so, it uses a "font
mapping algorithm." Certain fieids of the structure are more important than other fields.

683

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The best way to get a feel for font mapping is to spend an hour or so expe'rimenting
with PICKFONT. Here are some general guidelines:

• The ljCharSet (character set) field is very important. For the display, if you
specify OEM_CHARSET, you'll get either one of the stroke fonts or the
terminal font, because these are the only fonts that do not use the ANSI
character set. You have to use OEM_CHARSET if you want a GDI stroke
font. A value of ANSI_CHARSET always gives you a raster font.

• A pitch value of FIXED _PITCH (in the ljPitchAndFamily field) is
important, because you are in effect telling Windows that you don't want
to deal with a variable-pitch font.

• The ljFaceName field is important, because you're being specific about
the typeface of the font that you want. If you leave ljFaceName set to
NULL and set the ljFamily field to a value other than FF _DONTCARE,
then the latter field becomes important, because you're being specific
about the font family.

II Windows will attempt to match the ljHeight value even if it needs to
increase the size of a smaller font. The height of the actual font will
always be less than or equal to that of the requested font unless there is no
font small enough to satisfy your request.

• You can prevent Windows from scaling a font by setting ljQuality to
PROOF_QUALITY. By doing so, you're telling Windows that the
requested height of the font is less important than the appearance of
the font.

• If you specify ljHeight and ljWidth values that are out of line for the
particular aspect ratio of the display, Windows can map to a font that is
designed for a display or other device of a different aspect ratio. You can
use this trick to get a particularly thin or fat font. In general, however,
you'll probably want to avoid this situation, which you do in PICKFONT
by clicking the check box marked Match Aspect. PICKFONT makes a call
to SetMapperFlags with a flag set to 1:

SetMapperFlags (hdc, lL) ;

This specifies that Windows should only match fonts that have the same
aspect ratio as the display. You can get fonts of other aspect ratios by set
ting the mapper flag back to the default value:

SetMapperFlags (hdc, OL) ;

If you don't like the way that Windows weights these various characteristics of the logical
font to match a real font, you can change them all using the SetFontMapperFlags function.

. 684

Chapter 14: Text and Fonts

Finding Out About the Font

At the right side of its client area, PICKFONT shows you the type of information you can
obtain after you select the logical font into the device coptext. GetTextMetrics tells you the
real characteristics of the font, and GetTextFace tells you the typeface name.

To obtain the typeface name, you first define a character array to receive the name:

char szFaceName [LF_FACESIZE] ;

The LF_FACESIZE identifier is the maximum number of characters in the typeface name.
You then tell Windows to copy the typeface name into this array:

GetTextFace (hdc. sizeof szFaceName. szFaceName) ;

The GetTextMetrics function retrieves information on the size and other characteris
tics of the font currently selected in the device context:

TEXTMETRIC tm ;
fother program lines}

GetTextMetrics (hdc. &tm)

All the size values that Windows copies into the TEXTMETRIC structure are in logical
units except for the digitized aspect ratios. The fields of the TEXTMETRIC structure are
as follows:

• tmHeight (short integer)-The height of the character in logical units.
This is the value that should approximate the ljHeight field specified in
the LOGFONT structure. It is the sum of the tmAscent and tmDescent
fields. Like the ljHeight field in the LOGFONT structure, it actually
represents the line spacing of the font rather than the size, because it
includes internal leading.

• tmAscent (short integer)-The height of the character above the baseline
,in logical units. This should approximate the absolute value of the
ljHeight field in the LOGFONT structure if ljHeight is set to a negative
value.

• tmDescent (short integer)-The height of the character below the
baseline in logical units.

• tmlnternalLeading (short integer)-The area used for diacritics on some
capital letters. As noted above, the actual internal leading is included in
the tmHeight value. You can calculate the point size of the font by
subtracting the tmlnternalLeading value from the tmHeight value.

• tmExternalLeading (short integer)-An additional amount of line
spacing (beyond tmHeight) recommended by the designer of the font.

685

SECTION IV: THE GRAPHICS DEVICE INTERFACE

686

• tmAveCharWidth (short integer)-The average width of the characters
in logical units.

• tmMaxCharWidth (short integer)-The width of the widest character in
logical units. This value is the same as tmAveCharWidth for a fixed-pitch
font.

• tm Weight (short integer)-The weight of the font, ranging from 0 to 999.
Currently, it will be set to either 400 (normal) or 700 (boldface).

• tmItalic (BYTE)-Nonzero for an italic font.

• tmUnderlined (BYTE)-Nonzero for an underlined font.

• tmStruckOut (BYTE)-Nonzero for a strikethrough font.

• tmPitchAndFamily (BYTE)-A value comprising the pitch in the lower
two bits and the family in the higher four bits. This field is coded in the
same way as the ljPitchAndFamily field in the LOGFONT structure, and
you can use the same identifiers to extract the information.

• tmCharSet (BYTE)-The character set. Under most circumstances, it will
be either 0 (ANSI_CHARSET) or 255 (OEM_CHARSET).

• tmOverhang (short integer)-The amount of extra width (in logical
units) that Windows adds to a character when synthesizing italic or
boldface. When a font is italicized, the' tmAveCharWidth value remains
unchanged, because a string of italicized characters has the same overall
width as the same string of normal characters. For boldfacing, Windows
must slightly expand the width of each character. For a boldfaced font,
the tmAveCharWidth value less the tmOverhang value equals the tm
AveCharWidth value for the same font without boldfacing.

• tmDigitizedAspectX and tmDigitizedAspectY (short integers)-The as
pect ratio for which the font is appropriate: If you specify Proof (under
Quality) and check Match Aspect in PICKFONT, then for most devices
these values will be equivalent to the pixels-per-Iogical-inch values re
turned from GetDe v iceCaps . Note, however, that these two TEXT
METRIC fields are switched around in relation to the corresponding
GetDeviceCaps parameters: tmDigitizedAspectX is equivalent to the
GetDeviceCaps value for the LOGPIXELSY parameter, and tmDigitized
AspectY is equivalent to the value for LOGPIXELSX. If the font is scaled to
a larger size, then the tmDigitizedAspectX and tmDigitizedAspectYvalues
increase accordingly.

Chapter 14: Text and Fonts

Because of space restrictions, the following four fields were not included in the
display screen of the PICKFONTS program:

• tmFirstChar (BYTE)-The character code of the first character in the
font. For ANSI_CHARSET fonts, this is normally 32, the space character.

• tmiastChar (BYTE)-The character code of the last character in the font.
For ANSI_CHARSET fonts, this is normally 255.

• tmDefaultChar (BYTE)-The character that Windows uses to display
characters that are not in the font. For ANSI_CHARSET fonts, this is
normally 128.

• tmBreakChar (BYTE)-The character that Windows (and your pro
grams) should use to determine word breaks when justifying text. For
ANSI_CHARSET fonts, this is normally 32, the space character.

ENUMERATING THE FONTS
Earlier in the chapter, I covered the particular typefaces and sizes that are available when
you're writing a program to display text on the screen. If you want to send this text to a
printer, however, how do you know which fonts the printer has? The Windows WRITE pro
gram knows. When you change the current printer, Write often comes up with a different
list of typeface names and sizes that you can choose from. The function that lets WRITE do
this is EnumFonts. EnumFonts uses a call-back function that Windows calls once for each
typeface or font that is available on the device.

You use EnumFonts in one of two ways. The first requires that the second parameter
be NULL:

EnumFonts (hdc, NULL, lpfnEnumFunction, lpData) ;

The lpfnEnumFunction parameter is a pointer to the call-back function. EnumFonts calls
this call-back function once for each typeface name available on the device indicated by
the hdc parameter. Normally, you use EnumFonts this way first to get a list of all typefaces
supported by the device.

After you have the list of typeface names, you can call EnumFonts once for each
typeface:

EnumFonts (hdc, szTypeFace, lpfnEnumFunction, lpData) ;

For each call you make to EnumFonts in this format, Windows calls EnumFunction once
for each available size of the particular typeface.

687

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The call-back function has the format:

short FAR PASCAL EnumFunction (lplf, lptm. nFontType. lpData)
LOG FONT far *If ;
TEXTMETRIC far *lptm ;
short nFontType
LPSTR lpData ;
{

[other program lines]

return 1 ;
}

The function must be listed in the EXPORTS section of the module definition (.DEF) file,
and you must obtain a pointer to the function with MakeProclnstance:

FARPRoC lpfnEnumFunction;
[other program lines]

lpfnEnumFunction = MakeProcInstance (EnumFunction. hInstance) ;

The call-back function receives a far pointer to the particular LOGFONT structure
that you can use to create this particular font, a far pointer to the TEXTMETRIC structure
that will be obtained when you select this font into the device context, a short integer that
indicates the type (raster or stroke) of ~he font, and a pointer to programmer-supplied data
specified in the EnumFonts call. (This last parameter simply provides a clean way of pass
ing information to the call-back function without using global data.)

The lower two bits of the nFontType parameter to the EnumFunction call-back func
tion indicate the type of the font:

Raster font if 1
Stroke font if 0

"-___ Device-based font if 1
GDI-based font if 0

You can use the identifiers RASTER_FONTTYPE (which equals 1) to determine if the font
is raster or stroke and DEVICE_FONTTYPE (which equals 2) to determine if the font is de
vice or GDI. Windows will continue calling the call-back function until all the fonts are
enumerated or until the function returns a O.

688

Chapter 14: Text and Fonts

The FONTLIST program, shown in Figure 14-7, uses EnumFonts to obtain the fonts
available on either the display or the current printer. If no printer is available, then Enum

Fonts displays nothing when the Printer option is selected from the menu.

Figure 14·7. The FONTLISTprogram. (continued)

689

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.i... I~ ..

•.. :1

'.iii~
... L"H6'

lr

••••

690

;! 1.\

::
• •••••••••••• ...••.. ..

(I

...... ~ ... ~ ... ~..............iI .

i(

Ittl' , iWtW,¥W'.···

II ii

•••

X
N A

••••••

.

....•

••••••• •••• ...

.

.......

• •••••• i
•........

i> </
?.. •... ••••.• .\i

ii.·.·· .. ··.(

(continued)

Chapter 14: Text and Fonts

(continued)

,691

SECTION IV: THE GRAPHICS DEVICE INTERFACE

>). . (~ ..
........ / .<

...
/

il L ~.
il V

11'1;

)

'C:

~". ';,
.~ ... I

'1
iI

T ,;

•
....

~J
i

I~

1e'l~

i

L b ~ ...
i~

... .•......

tf ~

,~ /l til

r":li ,
III J

P P.·

~. \' !< II lJ

~; IJ A

<
i

~.' ." ()

i " (iOH it > i <
i····

\ i.

.... .·i
.....> ,

•.... i
ii·· i \

i it i . •...•.

+ > i ~t(3~i !S n (;.j
/ !}

••••••••••••••

..[It
,Si~ it ~., ..

i \ I.\)

li :i
•••••• >

:t 2~ .': fi
.

.

•••.•.).>.
/'

<\i(n rl;",,..;. •..•••..•..•• >
......

• •••••••••••••••••

....

••

i; i :
............... : ')' .• 7 : : i.·.· .. ····)) {< ••.. .·....r· ;. r

.......•

(continued)

692

Chapter 14: Text and Fonts

(continued)

693

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(i :ii '"
"'"

{;., ;~,S \/ «(

,ij""""? I,u" .~. '(.~

P J I" >/' \i
, ." ' ... ,. i? i

' .••••..
ilml

.""" t) ii / }

••••••••••• ?
'/

" .. ,'. if "",.
'"., ..

;, O·
..... '.

\
[} <\ ""., i

.) i" i.
i i\ ~

' .. ".
i\

\I ". ; 3~ ")

··\<i
,.",. d ii

?

> •••••• < II >~ ;(~} ,~.

.... ' .. ')

It (
"

~,r (

ii > ... ,.'. ,,'
:.~ i

.)
i' i

',.'

>Ii ~c ~ d "!I

"", ;c p iE 01 ~ ••
,

51
i E· il i'.

'> . ~JI 1.\
.", ~ III

;: ;:

... "." ' •..

i) h it '., .. '.

ii t: J/\/ ''-

', ... ,., \ (
"';'.'

.. "" if } .. ," .. ", ii l)

... '.' •. ' '" "" .'.' ,<

!\ I'

i)
>

.~. if
>

... ' ... L
,:'.

F<
i

.. ' 5 I.e
:,' .::

P J

'~ :1 to I(Jtr I"

or JI~ ~", t :1 ;a 'El

............. ' ..•.

i
~'.'., .. ,

i~1. ~' i ii r .. ' n I) .; ,

,\
~,.,~ }i>·"·,,·

(continued)

694

Chapter 14: Text and Fonts

(continued)

695

SECTION IV: THE GRAPHICS DEVICE INTERFACE

\\
.. ':

ci~ :.f :,:.:'.

?i ii
.. '

i
/,

.l. ,l

(i } ":. i:

····.'.··.·.i ,.,:,.,:,,'.'::.":}':::".:::".':::,::':. \)
It! ,,,f> V

'/ /i >1-
:.":' "}:"

"'\
\i

/)

•..•.. '

.;i
.•.•. : • ••••• :<.:

:6
.. :..< «

\. ,<

.'.
.... ' ... ' ... :: :,:'.:i),

::,: .. ' ... ::,.' ' .

i
"". l.1 ~'

,to

• }i

\ •• ' .••••..

.' •. , ...

)

::, i ? }," <
i. i}. i.> < .:,.:.

" 'i}

} 10' It ~,

' .. " ,:"": '."}}?'

En [P~; ' .. ,,:.
':
...

'::

, .:

(continued)

696

Chapter 14: Text and Fonts

(continued)

697

SECTION IV: THE GRAPHICS DEVICE INTERFACE

r...i>i\<;p:;;~1 .. \... /i> ··>i· •.' ···iY '.' . . .
..............).i .. i return 0 ~iii. .ii .i/: ·i /
/i·>}/.\\>ii?/·i~iij [i (/ ••.•••••••.• ·.····ii(.•. '
\ii' . ·•·.· .. ·..\MEMO RY ERROR .ii· ······(i> ·· ... ·.·i>' .>
·i •......••. i) \" ;;'l:"! - '1\; . '" . '.' .'
i;< ·······/i MesSageBox.d .. (~~~d ~"" "~~Tmota\rocatem~mory . [must end~il •. ·

> 'i()"iii t>'(i~;~p~N~me. MB!OK.JMB_ICO~.HANQ·I~~r~X~.~pM~OQAL); ; ••
(

> •... \ {)]i:~DL .. { \
·.(r >ii<tL > • .•.• ·<i .y.. il/ fa 11 throUgh ••••••••••••••••••
i i •• • •• ·.(c~§~ WM£CLOSEi?ir .•••••• . ..
.....; •.......• .?' ,;i

h"~~ ,'i' ""' Des t royWl !,dpt.(h~~,d >;f ;0

, ii {·re t u r n.O;(/>; •••.••• i ;~ .
>

{>i .j('(>< i{
)\).. c~~eI4M DESTROY{;/ i(i •..••• >2 •

••.••... .\...} ·:k 0 s t Qui t M~~~~~~S~) i ;< •,
\

\) ...•• >iIG~~rn 0 tl.) .. \\ } .i
}{ Li/.~;.~B)2iJ.. ~;).\::J
.. . ". ret urn OefWi nd owRr(}fcGt~i!x~G~ps ~a ge. Ilea ra'l!tGl"em~,~ h~}i \i./\\t \\

•.. i··· •• i·· ..•...•.... .ii..\ \ i. ·.·...iit.i \/\) '.\. ? ..

698

Chapter 14: Text and Fonts

FONTLIST uses two separate call-back functions to enumerate the fonts. The first,
called En umAllFaces , accumulates the typeface names. The second, En umAliFonts , ac
cumulates all the sizes for each typeface name. The program uses global memory blocks to
store this information. If FONT LIST runs out of memory space, the program aborts after
displaying a message box.

After FONT LIST is finished getting the fonts, it displays both the logical font structure
and the text metrics structure for each font, one font per screen, with a sample line of text
at the bottom of the screen. You can move through the fonts using the vertical scroll bar or
the cursor keys. A large part of the program (the Display function) is devoted to formatting
the information for display. Figure 14-8 on the following page shows a typical FONTLIST
screen.

FONTLIST will list all the fonts in any COURx.FON, HELVx.FON, TMSRx.FON, and
SYMBOLx.FON files in the SYSTEM subdirectory of your Windows directory. You'll note
from the "Digitized X" and "Digitized Y" fields that some of these fonts may not match the
aspect ratio of the video display and may look a little funny. When using the EnumFonts
function in a real application to obtain screen fonts, you should first obtain the resolution of
the device in logical pixels per inch by using the GetDeviceCaps function with the
LOGPIXELSX and LOGPIXELSY parameters. You should then reject any font in which the
tmDigitizedAspectX and tmDigitizedAspectYval~es of the TEXTMETRICS structure does
not match these values. (The JUSTIFY program shown towards the end of this chapter
does this.)

699

SECTION IV: THE GRAPHICS DEVICE INTERFACE

TEXTMETRIC

Height: 35 Height: 35 First Char:
Width: 16 Ascent: 27 Last Char:
Escapelllent: 0 Descent: 8 Default Char:
Orientation: 0 Int. Leading: 3 Break Char:
Weight: 400 Ext. Leading: 0 Pitch: uariable
Italic: No Aue. Width: 16 Falllily:
Underline: No Max. Width: 33 Char Set:
Strike-Out: No weight: 400 Ouerhang:
Char Set: ANSI Italic: No Digitized X:
Out Prec: String Underline: No Digitized Y:
Clip Prec: Stroke Strike-Out: No
Quality: Default
Pitch: Uariable Font Type: Raster CDI
Falllily: ROlllan
Face Nallle: Tills Rllln

AaBbCcDdEeFfGgHhIiJjKkLIMmNnOoPpQ

Figure 14·8. A typical FONTLIST display.

FONTLIST intercepts the WM_DEVMODECHANGE message (which indicates a
change of the printer) and the WM_FONTCHANGEmessage (which indicates a change in
the font resources). You can use FONT LIST to examine the fonts available on different
printers by changing the current printer using the Control Panel. If you choose to list the
fonts for the current printer, you may wonder how FONTLIST is able to display a device
printer font at the bottom of the client area. Although FONT LIST shows the logical font and
text metrics structures for device printer fonts, the sample text is a normal GDI font that
Windows picks based on the logical font structure for the printer font. It's the closest ap
proximation of the printer font that Windows can display on the screen.

FORMATTING TEXT
Now that you know how to determine the fonts available on a particular device, how to
create a font and select it into the device context, and how to determine the sizes and char
acteristics of the fonts, it's time to try your hand at text formatting. The process involves
placing each line of text within margins in one of four ways: aligned on the left margin,
aligned on the right margin, centered between the margins, or justified-that is, running
from one margin to the other, with equal spaces between the words. For the first three jobs,
you can use the DrawText function with the DT _ WORDBREAK parameter, but this ap
proach has limitations. For instance, you can't determine what part of the text DrawText

700

Chapter 14: Text and Fonts

was able to fit within the rectangle. DrawText is convenient for some simple jobs, but for
more complex formatting tasks, you'll probably want to employ TextOut.

One of the most useful functions for working with text is GetTextExtent. This func
tion tells you the width and height of a character string based on the current font selected
in the device context:

dwExtent = GetTextExtent (hdc. lpString. nCount) :

The width of the text in logical units is in the low word of dwExtent, and the height of the
text in logical units is in the high word. Although you can also obtain the text height from
the tmHeight field of the TEXTMETRIC structure, the TEXTMETRIC width is inadequate
when you're working with variable-pitch fonts or with italic or boldface text.

Breaking text into lines involves searching for break characters. In theory, you should
determine the font's break character from the tmBreakChar field of the TEXTMETRIC
structure, but you can also simply assume that it's the space character (ASCII number 32).
In theory, you should also use the AnsiNext and AnsiPrev functions to step through the
string, but you'll get better performance if you use normal C pointer arithmetic. (Of course,
if you hope eventually to convert your programs to languages that use other character sets,
which might have 2 or more bytes per character, then you had best follow these "in theory"
rules right from the start.)

One-Line Text Alignment

I'll begin with an example using one line of text. Let's say that you have selected a font into
your device context and now want to write the text:

char *szText [] = "Hell o. how are you?" :

You want the text to start at the vertical coordinate yStart, within margins set by the coor
dinates xLeft and xRight. Your job is to calculate the xStart value for the horizontal coordi
nate where the text begins. This job would be considerably easier if the text were
displayed using a fixed-pitch font, but you can't assume a fixed-pitch font in general.

First, you get the text extents of the string:

dwExtent = GetTextExtent (hdc. szText. strlen (szText)) :

If the low word of dwExtent is larger than (xRight - xLeft), then the line is too long to fit
within the margins. Let's assume it can fit.

To align the text on the left margin, you simply set xStart equal to xLeft and then
write the text:

TextOut (hdc. xStart. yStart. szText. strlen (szText)) :

This is easy. You can now add the high word of dwExtent to yStart, and you're ready to
write the next line of text.

701

SECTION IV: THE GRAPHICS DEVICE INTERFACE

To align the text on the right margin, you use this formula for xStart:

xStart = xRight - LOWORD (dwExtent) ;

To center the text between the left and right margins, use this formula:

xStart = (xLeft + xRight - LOWORD (dwExtent» / 2' ;
Now here's the tough job-to justify the text within the left and right margins. The

distance between the margins is (xRight - xLeft). Without justification, the text is
LOWORD (dwExtent) wide. The difference between these two values, which is:

xRight - xLeft - LOWORD (dwExtent)

must be equally distributed among the three space characters in the character string. It
sounds like aterrible job, but it's not too bad. To do it, you call:

SetTextJustification (hdc. xRight - xLeft - LOWORD (dwExtent). 3) ;

The second parameter is the amount of space that must be distributed among the space
characters in the character string. The third parameter is the number of space characters
in this case, 3.

Now set xStart equal to xLeft and write the text with TextOut:

TextOut (hdc. xStart. yStart. szText. strlen (szText» ;

The text will be justified between the xLeft and xRight margins.
Whenever you call SetTextjustification, it accumulates an error term if the amount of

space doesn't distribute evenly among the space characters. This error term will affect sub
sequent GetTextExtent calls. Each time you start a new line, you should clear out the error
term by calling:

SetTextJustification (hdc. O. 0) ;

Working with Paragr~phs

If you're working with a whole paragraph, you have to start at the beginning and scan
through the string looking for blanks. Every time you encounter a blank, you call GetText
Extent to determine if the text still fits between the left and right margins. When the text
exceeds the space allowed for it, then you backtrack to the previous blank. Now you have
determined the character string for the line. If you want to justify the line, call SetText
Justification and TextOut, clear out the error term, and proceed to the next line.

The JUSTIFY program, shown in Figure 14-9, does this job for the first paragraph of
Herman Melville's Moby Dick. You choose a screen font, and the Alignment menu lets you
align the text on the left or right, center it, or justify it. Figure 14-10 on page 713 shows a
typical JUSTIFY screen.

702

Chapter 14: Text and Fonts

JUSTIFY.MAK

#~~~~~-----~-----~------
JUSTIFY.MAK make file
#---- •• ----~~-----------

j ustHy.exe : justify. objjustHy.def justify. res
link justify, /align:16. NUL. Inod slibcew libw. justify
rc justify.res

Figure 14·9. ThejUSTIFYprogram. (continued)

703

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.... ' ..

>.'.

704

i'·

\/

.'
.. , ..

. '.

. ,•. , .. '., ... , ... , .. .

•••••••
•.. ' .•...

(continued)

Chapter 14: Text and Fonts

(continued)

705

SECTION IV: THE GRAPHICS DEVICE INTERFACE

i
j.

i.····
~) [

i.
••....•)I~~
It·\ ;:

h (>..

) .j •.•.•.•

n ... nn.·· ... ' p
....

• •••••••

706

..•..

tr

••••••••
}\

.

.........
.....•.

(continued)

nBreakCount++ ;
SetTextJustification (hdc. D. 0) :
dwExtent ... GetTextExtent (Me •. , pBegi n •
}

while (LOWORD (dwExtent)

Chapter 14: Text and Fonts

(continued)

707

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

708

Chapter 14: Text and Fonts

"Ishmael", "TEXT"))

(continued)

709

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

710

Chapter 14: Text and Fonts

711

SECTION IV: THE GRAPHICS DEVICE INTERFACE

, \'
•••••••••••••••••••••••••••••••••

.;;~ ••••.••••••••••••••••••••••••••• ~ •••••••

,

'}}i, ",<.

'.' .. ,.

'",.

,,' ,'.,.'

iL ~."2':. i . /i . i>\<i .• " >,':':<
ill •• p

"" ,,:,

l%i' 'ji" :l:'it·LI
T.' ,I' ''B i.

i/ tL •.••••••• , j~(l,<i> .< "·.i/.i?
i ~'.'7; ~ .• ~", :-~ ,:~ ,.;:

.. ,',';).
"'··'··,D~j~t ''It .. E=(!-if J, It "' ' ••••• "y., i/ .. ! II i.i\

.""" .: C,[,} ""'." i:;, .CL)'.ii ')\< / Li .••..... '•.................•• / ~Ali v.I
i .•• '....... .? i .. ,',.. ".'..\ ~~;;: \i\,f>

,'<.' ;; < ><.
C,("

\ JI:> JI J. .. " :tc10
,i, ~P 1; . •\ .. " ..• "' ••• '...

:} ..

. ".

} . i.

i: J..< •• ".,.i W ,~: J,~.t:;x, t
'I ·.1 ~A il Jlri< ".' ••. ", •.)1 n 1:,

••••• '.01\ I\i> ·".·'.'r ... '.' ..)RI ;- . n M)\

•••••••••••••••
',HI p:[~f~;! .~. !jl~. 1" i' ~" .• , 'i, 7' i
.,';;:;. 11 ,.".,'i c .i ii

.}{ "",."

J ST AC :1 <i tt I,4/'I
,., .. " '.".' •.

ii .,.' > .'.....!~,~ORTS< .. i ~l :P;Ar; < .. \ i fi i ... ' .. ' .. ' t lIi~:A~~ ';:'" .'., .•• < i /{ ., ... /
)?t.i »< i.': «

. "... ". ,"<> ,., ,i>, \ .":',., , .. , .. , ""/

712

Chapter 14: Text and Fonts

= Justified Type aa
EaceName EointSlze Attributes Alignment

I. I, I.!, I. I ,I. I .I. I, I, I, I , I ,I, 1,1, I ,!. 1.1. 1.1" ,I", I" ' I , I ,!. 1.1. I ,I" , I , I ,!. 1.1. I ,I, I, I,

Call me Ishmael. Some years ago -- never mind how long precisely -
having little or no money in my purse, and nothing particular to interest
me on shore, I thought I would sail about a little and see the watery part
of the world, It is a way I have of driving off the spleen, and regulating
the circulation, Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up
the rear of every funeral I meet; and especially whenever my hypos get
such an upper hand of me, that it requires a strong moral principle to
prevent me from deliberately stepping into the street, and methodically
knocking people's hats off -- then, I account it high time to get to sea as
soon as I can. This is my substitute for pistol and ball. With a
philosophical flourish Cato throws himself upon his sword; I quietly
take to the shiP: The~e is nothing surp!ising in this. If th.ey but knew it,

Figure 14·10. A typicaljUSTIFY display.

Like the FONTLIST program, JUSTIFY uses the EnumFonts function to obtain the fonts
available for the screen. The two call-back functions are called EnumAllFaces and
EnumAllSizes. The program can store up to 16 typeface names and up to 16 font sizes for a
particular typeface. During the WM_CREATE message, JUSTIFY calls EnumFonts with
a NULL second parameter alid puts the typeface names into the FaceName menu.

When you select a typeface from the FaceName menu, JUSTIFY calls EnumFonts

again to get the available sizes of that typeface. JUSTIFY must then reconstruct the Point
Size menu, which displays the font sizes in this format:

24/28

which means a 24-point font on a 28-point line spacing. The Attributes menu offers the
options Bold, Italic, StrikeOut, and Underline, and the aforementioned Alignment menu
has the options Left, Right, Centered, and Justified.

JUSTIFY uses the "Logical Twips" mapping mode to facilitate the translation into
point sizes of the information available from the TEXTMETRIC structure. To avoid setting
this mapping mode every time it obtains a device context, JUSTIFY uses the CS_OWNDC
class style.

JUSTIFY displays a ruler (in logical inches, of course) across the top and down the left
side of the client area. The DrawRuler function draws the ruler. The window origin is ad
justed to begin Yz inch from the left and top of the client area. JUSTIFY also leaves a Y4-inch
margin at the right of the client area.

713

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The text is a user-defined resource. It is in a one-line-per-paragraph format and is
NULL-terminated. The bulk of the work involved with formatting this text is in the Justify
function. JUSTIFY starts searching for blanks at the beginning of the text and uses
GetTextExtent to measure each line. When the length of the line exceeds the width of the
display area, JUSTIFY returns to the previous space and uses the line up to that point.
Depending on the Alignment choice, the line is left aligned, right aligned, centered, or
justified.

JUSTIFY isn't perfect. In particular, the justification logic falls apart when there is
only one word in each line. Even if we solve this problem (which isn't a difficult one), the
program still won't work properly when a single word is too long to fit within the left and
right margins. Of course, matters can become even more complex when you start working
with programs that can use multiple fonts on the same line (as Windows WRITE can). But
nobody ever claimed this stuff was easy. It's just easier than if you were doing all the work
yourself.

714

Chapter 15

Using the
Printer

The concept of device independence may have seemed all well and good in the past four
chapters, when we were using the video display for text and graphics, but how well does
the concept hold up for printers and plotters? In general, the news is good. Under Windows,
printers and plotters have a device-independent graphics interface. You can forget about
printer control sequences and communications protocols when programming for the
printer. Retail Windows programs conspicuously lack the disks of specialized printer
drivers that have characterized recent word-processing software and graphics programs
for MS-DOS. When a retail Windows program includes printer drivers, they are usually
enhanced versions of existing printer drivers.

From a Windows program, you can print text and graphics on paper using the same
GDI functions that we've been using for the video display. Many of the issues of device in
dependence that we've explored in the past four chapters-mostly related to the size and
resolution of the display surface and its color capabilities-can be approached and
resolved in the same way. Yet a printer or plotter is not simply a display that uses paper
rather than a cathode-ray tube. There are some very significant differences. For example,
we have never had to consider the problem of a video display not being connected to the
display adapter or of the display "running out of screen," but it is common for a printer to
be off line or to run out of paper.

Nor have we worried about the video display adapter being incapable of performing
certain graphics operations. Either the display adapter can handle graphics or it can't. And
if it can't, then it can't be used with Windows at all. But some printers can't print graphics

715

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(although they can still be used with Windows), and plotters can do vector graphics but
have a real problem with bit-block transfers.

Here are some other issues to consider:

• Printers are slower than video displays. Although we have on occasion
tried to tune our PFograms for best performance, we haven't worried
about the time required for the video display to be refreshed. But nobody
wants to wait for a printer to finish printing before getting back to work.

• Programs reuse the surface of the video display as they overwrite
. previous display output with new output. This can't be done on a printer.
Instead, a printer must eject a completed page and go on to the next page.

• On the video display, different applications are windowed. On a printer,
output from different applications must be separated into distinct docu
ments or print jobs.

To add printer support to the rest of GDI, Windows includes only one new function,
called Escape. Well, it's actually more than one. Escape has many subfunctions that are
indicated by one of the Escape parameters. For example, the three most common Escape
subfunctions are STARTDOC and ENDDOC (which begin and end a printing job) and
NEWFRAME (which ends one page and goes on to the next).

PRINTING, SPOOLING, AND ESCAPE
When you use a printer in Windows, you're actually initiating a complex interaction
involving the GDI library module, the printer device driver library module (which has a
.DRV extension), and the Windows Print Manager program (PRINTMAN.EXE), as well as
some other modules that get into the act. Before we start programming for the printer,
let's examine how this process works.

When an application program wants to begin using a printer, it first obtains a handle
to the printer device context using CreateDC This causes the printer device driver library
module to be loaded into memory (if it's not present already) and to initialize itself. The
program then calls the Escape subfunction named STARTDOC, which signals the begin
ning of a new document. The Escape function is handled by the GDI module. The GDI
module calls the Control function (which is equivalent to Escape) in the printer device
driver. The device driver performs some initialization and calls Openjob, which is in the
GDI module. The GDI module then loads the Windows Print Manager program into
memory.

Following the STARTDOC Escape call, the program can make the appropriate GDI
calls for the first page of the document. For example, if the program wants to draw an
ellipse on the page, it calls Ellipse, just as it does when drawing an ellipse on the screen.

716

Chapter 15: Using the Printer

The GDI module generally stores all these GDI calls in a disk-based metafile, which is
located in the subdirectory indicated by the TEMP variable in the MS-DOS environment. (If
no TEMP variable exists, Windows uses the root directory of the first fixed disk on the
system.) The file begins with the characters -MF and has a .TMP extension.

When the application program is finished with the GDI calls that define the first
page, the program calls the NEWFRAME subfunction of Escape. Now the real work begins.
The printer driver must translate the various drawing commands stored in the metafile into
output for the printer. The printer output required to define a page of graphics can be very
large, particularly if the printer has no high-level page-composition language. For example,
a 300-dots-per-inch laser printer using 8Y2-by-ll-inch paper might require more than a
megabyte of data to define one page of graphics.

For this reason, printer drivers often implement a technique called "banding," which
divides the page into rectangles called bands. (We'll examine banding later in this chapter.)
The GDI module obtains the dimensions of each band from the printer driver. It then sets a
clipping region equal to this band and calls the printer device driver Output function for
each of the drawing functions contained in the metafile. This process is called "playing the
metafile into the device driver." The GDI module must play the entire metafile into the de
vice driver for each band that the device driver defines on the page. After the process is
completed, the metafile can be deleted.

For each band, the device driver translates these drawing functions into the output
necessary to realize them on the printer. The format of this output will be specific to the
printer. For dot-matrix printers, it will be a collection of control sequences, including
graphics sequences. (For some assistance with constructing this output, the printer driver
can call various "helper" routines also located in the GDI module.) For laser printers with a
high-level page-composition language (such as PostScript), the printer output will be in
this language.

The printer driver uses the Writespool function to pass the printer output for each
band to the GDI module, which then stores this printer output in a temporary file also lo
cated in the TEMP subdirectory. This file begins with the characters -SPL and has a .TMP
extension. When the entire page is finished, the GDI module uses the Send Message func
tion to send a message to the Print Manager indicating that a new print job is ready. The
application program then goes on to the next page. When the application is finished with
all the pages it must print, it makes the ENDDOC Escape call to signal that the print job is
completed. Figure 15-1 on the following page shows the interaction of the program, the
GDI module, and the printer driver.

The Windows Print Manager program is a print spooler that relieves application pro
grams of some of the work involved with printing. The GDI module loads the Print Man
ager Of it is not already loaded) automatically when a program begins printing. The GDI
module then creates the files that contain printer output. The Print Manager's job is to send
these files out to the printer. It is notified of a new print job by a message from the GDI

717

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Program

Escape calls
GDI calls (Line To, Rectangle, and so forth)

GDI module

Control calls (equivalent to Escape)
Drawing instructions (Output, BitBlit, and so forth)

r--------L.----------, "Helper" r------------,

Printe~ driver
routines

OpenJob / CloseJob / DeleteJob
StartSpoolPage / WriteSpool/

EndSpoolPage

GDI module

SendMessage call
to Print Manager to
notify of new print job

GDI module

Figure 15·1. The interaction of the application program, the CD! module,
and the printer driver.

module. It then begins reading the file and transferring ~t directly to the printer. To transfer
the files, the Print Manager uses various communications functions (OpenComm, Write

Comm, and so forth included in the USER module) for the parallel or serial port that the
printer is connected to. During the time that the Print Manager is writing the printer output
to the output port, other Windows programs can function normally. When the Print Man
ager is done sending a file to a printe'r, it can delete the temporary file holding the output.
This process is shown in Figure 15-2.

Most of this process is transparent to the application program. From the perspective
of the program, "printing" occurs only during the time required for the GDI module to save
all the printer output in disk files. After that, the program is freed up to do other things. The
actual printing of the document becomes the Print Manager's responsibility rather than the
program's. A user can direct the Print Manager to pause print jobs, to change their priority,
or to cancel print jobs. This arrangement allows programs to "print" faster than would be
possible if they were printing in real time and had to wait for the printer to finish one page
before proceeding to the next.

718

Chapter 15: Using the Printer

Message from
GOI module

GOI module

GetSpoolJob

Print Manager

Communications calls
(OpenComm, WriteComm, and so forth)

USER module Printer

Figure 15·2. The operation of the Print Manager program.

Although I've described how printing works in general, there are some variations on
this theme. One is that the Print Manager doesn't have to be present in order for Windows
programs to use the printer. Normally, the [windows} section of WIN .INI contains this line:

Spooler=yes

But a user can change that to:

Spooler=no .
If this line is present, the Print Manager doesn't allow itself to be executed.

Why would a user not want the Print Manager to be loaded? Well, perhaps the user
has a hardware or software print spooler that works faster than the Print Manager. Or
perhaps the printer is on a network that has its own spooler. The general rule is that one
spooler is faster than two. Removing the Windows Print Manager would speed up printing,
because the printer output doesn't have to be stored on disk. It can go right out to the
printer and be intercepted by the external hardware or software print spooler.

If the Print Manager can't be loaded, the GDI module doesn't store the printer output
from the device driver in a file. Instead, GDI itself sends the output directly to the parallel
or serial printer port. Unlike the printing done by the Print Manager, the printing done by
GDI has the potential of holding up the operation of application programs (particularly the
program doing the printing) until the printing is completed.

Here's another variation on the general theme. Normally, the GDI module stores all
the functions necessary to define a page in a metafile and then plays this metafile into the
printer driver once for each band defined by the driver. If the printer driver doesn't require
banding, however, the metafile isn't created; GDI simply passes the drawing functions di
rectly to the driver. In a further variation, it is also possible for an application to assume

719

SECTION IV: THE GRAPHICS DEVICE INTERFACE

responsibility for dividing printer output into bands. This makes the printing code in the
application program more complex, but it· relieves the GDI module of creating the
metafile. Once again, GDI simply passes the functions for each band to the printer driver.

Now perhaps you're starting to see how printing from a Windows program might in
volve a bit more overhead than that required for using the video display. Several problems
can occur-particularly if the GDI module runs out of disk space while creating the
metafile or the printer output files. You can either get very involved in reporting these
problems to the user and attempting to do something about them, or you can remain
relatively aloof.

We'll examine several different approaches to printing in the pages that follow. But
first things first-let's begin by obtaining a printer device context.

THE PRINTER DEVICE CONTEXT
Just as you must obtain a handle to a device context before you paint on the video display,
you must obtain a printer device context handle before printing. Once you have this handle
(and have made the Escape calls necessary to announce your intention of creating a new
document), you can use this printer device context handle the same way you use the video
display device context handle-as the first parameter to the various GDI calls we've
covered in the last four chapters.

In Chapter 11, you learned that you can get a handle to a device context for the entire
video display by calling:

hdc = CreateDC ("DISPLAY", NULL, NULL, NULl) :

You obtain a printer device context handle using this same function. However, for a printer
device context, the first three parameters are not fixed. The general syntax of CreateDCis:

hdc = CreateDC (lpszDriverName, lpszDeviceName, lpszOutputPort,
,1pInitializationData) :

Although lplnitializationData is generally set to NULL, the first three parameters must be
far pointers to character strings that tell Windows the name of the printer driver, the name
of the printer device, and the output port to which the device is connected. Before you can
set these three parameters, you must do a little fishing in the WIN.lNI file.

Getting the CreafeDC Parameters

Printers are listed in two different sections of the WIN.lNI file, reflecting the possibility
that a system can have more than one printer attached to it. A single printer is listed in the
[Windows} section with the keyword device. The string that follows contains the device
name, driver name, and output port required in the CreateDC call:

720

Chapter 15: Using the Printer

[windows]
[other lines}

device-IBM Graphics,IBMGRX,LPTl:

In this case, the device name is IBM Graphics, the driver name is IBMGRX, and the output
port is LPTl. The printer listed in this section of WIN .INI is the most recent printer that the
user has selected using the Windows Control Panel. This printer is chosen from the dialog
box invoked by the Printer option. It can be considered the "current printer" or the
"default printer." Most small Windows programs use this printer for printing.

Here is one way to write a function to obtain this string from WIN.INI, parse it into
the three components, and call CreateDCto obtain a printer device context handle:

HDC GetPrinterDC ()
{
char szPrinter [80] ;
char *szDevice, *szDriver, *szOutput ;

GetProfil eStri ng ("wi ndows", "devi ce", " .. , II ,

if «szDevice - strtok (szPrinter, "," » &&
(szDriver - strtok (NULL, ", "» &&
(szOutput "" strtok (NULL, ", "»)

szPrinter, 80)

return CreateDC (szDriver, szDevice, szOutput, NULL)

return 0
}

GetProjileString looks in the [windows} section for the keyword device and copies up to
80 characters following the equal sign into szPrinter. (The third parameter to GetProjile
String is a default string if Windows can't find the [windows) section or the device keyword
in WIN.INI.) The string is parsed using the normal C strtokfunction, which breaks a string
into tokens. Note that I use only a comma to find the end of the szDevice string, because
the device name can include embedded blanks. Both a comma and space are used to sepa
rate the driver name and output port so that leading or trailing blanks are stripped from
these strings. (Using strtok is not an entirely satisfactory method of parsing this string, be
cause strtok doesn't take into account the multi byte character codes that can be used in
versions of Windows for countries in the Far East. If this is of concern, you can write your
own version of strtok that uses AnsiNext to advance through the string.)

The CreateDC function returns 0 if the printer device context could not be created.
This can occur if the string in WIN.INI is malformed, if Windows can't find the printer
driver, or if the output port name is "none" (which means the printer is not connected to an
output port). You can, however, obtain an information context for a printer connected to
"none" by using CreateIC rather than CreateDC

The [windows} section of WIN .IN I lists only one printer. But multiple printers can be
listed in the [devices} section of WIN.INI. A printer is listed in this section when a user

721

SECTION IV: THE GRAPHICS DEVICE INTERFACE

chooses the Add New Printer option from the Installation menu of CONTROL.EXE. The
[devices} section looks something like this:

[devices]
IBM Graphics-IBMGRX,LPTl:
Generic / Text Only=TTY,output.prn
HP Plotter-HPPLOT,COMl:
Postscript Printer~PSCRIPT,COM2:

To the left of each equal sign is the device name; to the right is first the driver name and
then the output port. Getting a device context handle using the printer specified in the
[windows} section of WIN .INI is essentially the same as getting a device context handle
using one of the printers from the [devices} section, except that the latter is more difficult
because you have more than one choice.

Some larger Windows programs include a File menu option called Change Printer,
which invokes a dialog box that lists all the printers from the [devices} section with the port
each printer is connected to. This option allows the user to select a printer other than the
one listed in the [windows} section of WIN.lNI. A program that includes this option must
first call GetProjileString with a NULL second parameter:

static char szAllDevices [4096] ;
[other program lines}

Getprofil eStri ng ("devi ces ", NULL. 1111, szA 11 Devi ces,
sizeof szAllDevices)

On return, szAllDevices contains a list of the keywords (the device names) in the [devices}
section. Each keyword is terminated by a NULL except for the final keyword, which is ter
minated by two NULLs. For the example list shown above, szAllDevices would contain
(using C notation):

IBM Graphics\OGeneric / Text Only\OHP Plotter\OPostscript Printer\O\O

You can then present these names to the user. (We'll do this shortly in the DEVCAPS2
program.)

Let's assume that a user selects one of these devices and that you've set the pointer
szDevice to the beginning of that device name in szAllDevices. YoU' can then obtain the rest
of the string (the driver name and output port) by calling GetProjileString again:

GetProfileString ("devices", szDevice, 1111, szPrinter, 64) ;

You need to parse the szPrinterstring to extract the driver name and the output port name:

szDriver = strtok (izPrinter, ", ") ;
szOutput - strtok (NULL , ", ") ;

Now you have the szDevice, szDriver, and szOutput pointers necessary to call CreateDC
or CreateIG.

722

Chapter 15: Using the Printer

The valid output ports on a particular system are listed in the [ports} section of
WIN.lNI. You don't need to access this section of WIN.lNI to use the printer. You can
assume that the user has identified a particular port for the printer using the Printer option
in the Control Panel, and you can further assume that the user has properly defined the
communications parameters for serial (COM) ports using the Ports option.

The [ports} section often looks something like this:

[ports]
LPTl :""
LPT2:=
LPT3:-
COMl:=9600.n.B.l
COM2:-1200.n.B.l
output.prn=-

The OUTPUT.PRN file (or any file with a .PRN extension) can be listed here to direct
printer output to a file. This filename can appear as the output port for a printer in the
[windows} section or [devices} section of WIN.lNI.

The Revised DEVCAPS Program

The original DEVCAPSI program in Chapter 11 displays all the information available from
the GetDeviceCaps function for the video display and the current printer. The new version,
shown in Figure 15-3, displays a menu of all the printers from the [devices} section of
WIN.lNI and lets you choose one. In addition to the DEVCAPS2 files shown here, you'll
also need the DEVCAPS.C file from Chapter 11 (Figure 11-1).

Figure 15·3. The DEVCAPS2 program.

723

SECTION IV: THE GRAPHICS DEVICE INTERFACE

\2..).) '>::'}"i
i L i/ :i

'.'
. ,,

>, i'"
:.~

II-' IE I,J , ... VI

:, ~)~ ::::

: •...• '• '• :.'•..

•••••••••••••••••••••••••• 'f :1

II·"""
.. : : ...•.•. .{ .

It ' r 2
,. {Ii II

,« 0 v :'iil'il~ •
...........•. '•......•.•••••.••.•.•••.•••••.•••..•.•....••.•...••. ::.,' V r,: I)

: <::\::.

.. I
i

i:·):·:«{,':'

p, i ,~ C' !>
i·(•••••••••••••••••

':':.

J,
p N juT

,:,',{:,:,: i~ ;;
,i ~.:

})

:"1 :}"i":':

•••••••••••••••••••••••••••••

:/

i i:: .••••• " •••• : •••••••••••••••••••

: ,~,

i a }<{.:::<"
.. :.:.)

lilll •••••••••••••••••••••••••• :l,:. S". t :i I

>i it!
.',,: •. :.' ' ..••....•....••.. L

:: ~.
i?

n l()r 'I I i ""', h In U

.\ })!

••••••••••••••••••••••••••••••••••••

>) z I ,:

••••••••••••••••••••••••••••••

·.··· .. · ... ii

:' ~; il i ~f L

•.• , .••.•• ::: ·f
~'-i uF

::.
HI .:>

(>
i~"" » \ \ :,:·:,i·

(continued)

724

Chapter 15: Using the Print~r

(continued)

725

SECTION IV: THE GRAPHICS DEVICE INTERFACE

"""
"~c. L ;,,: i'. ;<~t -, P-I?

i"'",,,

••••••••••

....... i'
t 'I l- t:'! 11"'·

.'" ~,.
~< ,iil=. ';;' r'\l <liO

ie"~ .;:\ f,) •. " .• ,./ ,/
p·L!. lJ I.". , ... ' .. '

'"

, ...• '".,i t, '.',.". i
i')'

,< < ·h "

"< ?<·i}
U'

"'~(;('. ? },'
','"" , ... ",.

,- ~ .. \!\, :c {
} i <; rI(,It' ?

~.,)i ~I \
.,'

\
"\

" (i

.i
?i

\
\ t

,i '.""
Y i r

i .
) . i',

~j,tP.lS '.'" '; "'.,3 ? H. ~i IT 11 .
>

t .,~:;
'.,,~

~. I

~J 51\ \ I;
~ ~.

',',"""""?? .l "/ i<
/i •.. If.l ~,c

. ~,.~., >, ~., ;t \ r\ e~'.· \

if /).i :i
' •• " i» ' \' it u'" ~'. ... ,\(i ~i

.. "'.'
...... ,. .•.. ",. ". \i f> , .. "". :i.:'l. ,.~,~ :.J. ;I

•• > ';; I tit f "',,' i /)
"'- i·"" ecce"~,') Xi

..) i .,.,',
,)", f)1

M
i

:r. i)

it
)

.,

i
~. ~,~,~

i'
\ !l

,,: t ~'"

,
"",

' F <:I

~,e g

it

?
•••••

i .' ;.

I) P

""ii"

I

';;~:: .i
i

U).
i{

"'"
.,',

,c'
;).' It

.. ,' .. I
: ?i.

," ,"',",
"\ i i"· J

\iii e(',' "i '"
i

" ':eCc' .>i <, .. ' .•..•..

?/.i > \ i\ '.'.'.'.. • .'.
t()' "{ "c

(continued)

726

Chapter 15: Using the Printer

(continued)

727

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued)

728

Chapter 15: Using the Printer

729

SECTION IV: THE GRAPHICS DEVICE INTERFACE

·ii

••••••••••

i

\ ,,::

i·
} '" ,·i:

J.

,,>
~,;. . . ;; ;

;;~
,i ;

~(.. , .

>\ ' ... , · ... ' .. ···.i . ',',',' ./ t: :; <'",
~.e .'.' .. , r-.

'") :< 11.t/1 'l " h),(::
it. i~: ; O11~ "

?

rF.~e c·'·'
::

i\i i
' ... ':' i

(rfUe 1UM ::' i
':i) ."",« ' •• ' i(.'"

"(\

(i.
./<

""

.'., .. , ;;
\ {i i

i)

Charles Petzdl d. 1990;

••••••••••

)

.\\ .. iii

i
.i)

\I i? .< ,i. .. ' ... ,' .•• ' .•.•
ii

".". .), .~ .•..

.I

Because DEVCAPS2 obtains only an information context for the printer, you can select
printers from DEVCAPS2's menu, even though they may have an output port of "none." If
you want to compare the capabilities of different printers, you can first use the Control
Panel to add various printer drivers to WIN.lNI.

DEVCAPS2 has an additional option on the Capabilities menu called Escape Support,
which lets you see which of the more common Escape subfunctions are supported by. the
device driver. This information will become more meaningful a little later in this chapter,
when we discuss the Escape function and its subfunctions.

730

Chapter 15: Using the Printer

The DeviceMode Call

The Device menu of the DEVCAPS2 program includes an option called Device Mode. To
use it, first select a printer from the Device menu, and then select Device Mode: Up pops a
dialog box. Where did the dialog box come from? It is invoked by the printer driver, and
at the very least-it requests that you make a choice of paper size. Most printer drivers also
give you a choice of "portrait" or "landscape" mode. In portrait mode (often the default),
the short side of the paper is the top; in landscape mode, the long side is the top. If you
change this mode, the change is reflected in the information the DEVCAPS2 program ob
tains from the GetDeviceCaps function: The horizontal size and resolution are switched
with the vertical size and resolution. Device Mode dialog boxes for color plotters can be
quite extensive, requesting the colors of the pens installed in the plotter and the type of
paper (or transparencies) being used.

All printer drivers contain an exported function called DeviceMode that invokes this
dialog box and saves the information that the user enters. Some printer drivers store this in
formation in their own section of the WIN .INI file, and some don't. Those that store the
information have access to it during the next Windows session.

Windows programs that allow the user a choice of printers generally call the Device
Mode function of the printer driver so that the user can make changes in preparation for
printing. Calling this function from a program requires a technique that we'll learn more
about in Chapter 19. Here's how DEVCAPS2 does it.

The program first obtains the name of the printer currently selected in the Device
menu and saves it in a character array named szDevice:

GetMenuString (hMenu, nCurrentDevice, szDevice,
sizeof szDevice, MF_BYCOMMAND)

Then it obtains the driver name and output port of this device using GetProjileString. This
information is stored in szDriver:

GetProfileString ("devices", szDevice, "",
szDriver, sizeof szDriver)

The output port is separated from the szDriverstring using strtok, and the pointer is saved
in szOutput:

szOutput = strtok (szDriver, ", ") ;

The szDriverstring contains the name of the driver, which is the driver's filename without
the .DRV extension. This statement creates the full name of the driver file and saves it in
szDriverFile:

strcat (strcpy (szDriverFile, szDriver), ".DRV")

731

SECTION IV: THE GRAPHICS DEVICE INTERFACE

This driver file is a dynamic link library module. (Library modules are the subject of Chap
ter 19.) We can obtain a handle to this module (which is actually the instance handle of the
module) by calling LoadLibrary. If LoadLibrary returns a value greater than or equal to 32,
the function was successful. Otherwise, the return value indicates an MS-DOS error code.

The library can be freed· by a call to FreeLibrary. If no other program is using
this library, then it can be deleted from memory. DEVCAPS2 holds the library handle
(or whatever was returned from LoadLibrary) in a static variable, so before trying to load a
new library, it first frees the old one if the handle was valid:

if (hLibrary)= 32)
FreeLibrary (hLibrary) ;

hLibrary - LoadLibrary (szDriverFile) •.

Before proceeding, the program checks to see if this new handle is valid:

if (hLibrary)- 32)

It then calls GetProcAddress to obtain the address of the DeviceMode function:

lpfnDM = GetProcAddress (hLibrary. "DEVICEMODE") ;

The DeviceMode function can be called indirectly by prefacing it with an asterisk. The
function is passed the window handle, library module handle, device name, and output
port:

(*lpfnDM) (hwnd. hLibrary. (LPSTR) szDevice.
(LPSTR) 5z0utPUt)

This invokes the dialog box. Note that you must explicitly cast the strings into far pointers,
because this function has no template in WINDOWS.H or anywhere else.

The currently loaded driver file is freed when the program terminates:

case WM_DESTROY :
if (hLibrary)= 32)

FreeLibrary (hLibrary)

The LoadLibrary call increments the library module's "reference count" (a number Win
dows maintains to indicate the number of programs using a module), and the FreeLibrary
call decrements it. The library can be freed from memory wh~n the reference count is O.
Calls to CreateDC and CreateIC for a printer driver also increment the reference count,
and DeleteDC decrements it.

732

Chapter 15: Using the Printer

Checking for SitS.t Capability

You can use the GetDevic,eCaps function to obtain the size and resolution of the printable
area of the page. (In most cases, this area won't be the same as the entire size of the paper.)
You can also obtain the relative pixel width and height, if you want to do your own scaling.

You can obtain another important printer characteristic from the RC_BITBLT bit of
the value returned from GetDeviceCaps with a parameter of RASTERCAPS ("raster capa
bilities"). This bit indicates whether the device is capable of bit-block transfers. Most dot
matrix and laser printers are capable of bit-block transfers, but most plotters are not.
Devices that can't handle bit-block transfers do not support the following GDI functions:
CreateCompatibleDG, CreateCompatibleBitmap, PatBlt, BitBlt, StretchBlt, GrayString,
Drawlcon, Set Pixel, GetPixel, FloodFill, ExtFloodFill, FillRgn, FrameRgn, In vertRgn,
PaintRgn, FillRect, FrameRect, and InvertRect. This is the single most important distinction
between using GDI calls on a video display and using them on a printer.

PRINTING FUNDAMENTALS
We're now ready to print, and we're going to start as simply as possible. In fact, our first two
printing programs will be so simple that they won't work unless the Print Manager program
gets loaded when printing begins. (The Print Manager doesn't get loaded if a user specifies
Spooler=no in the WIN.INI file or if Windows can't find the PRINTMAN.EXE file.)

The Escape Function

The Windows GDI module includes only one function-Escape-to support the addi
tional requirements of printers. The name of this function implies that it is ignored by the
GDI module and that it goes straight to the printer driver. In some cases, this is true, but
often GDI also does some work during Escape calls.

The general syntax of Escape is:

nResult = Escape (hdcPrinter, nEscapeCode, nCount,
lpsDataln, lpsDataOut) ;

The nEscapeCode parameter is a subfunction code that is specified using an identifier
defined in WINDOWS.H. The last three parameters depend on the subfunction. Although
the last two parameters are declared as far pointers to character strings, they are sometimes
far pointers to structures. To cast the pointers into far pointers to strings, use (LPSTR).

Not all Escape subfunctions are implemented in all device drivers. In fact, Escape has
been designed to be open-ended so that manufacturers of display devices can define their
own Escape subfunctions to access certain unique facilities of the devices. The following
Escape subfunctions are the ones I discuss in this chapter. They are implemented in all
printer drivers:

733

SECTION IV: THE GRAPHICS DEVICE INTERFACE

nEscapeCode Description nEscapeCode Description

STARTDOC Starts a document ABORTDOC Aborts printing of

ENDDOC Ends a document a document

SETABORTPROC Sets a pointer to the GETPHYSPAGESIZE Gets the physical size

"abort procedure" of the paper

NEWFRAME Ends the current page QUERYESCSUPPORT Finds out if the driver

NEXTBAND Gets rectangle coordi-
supports an Escape

nates for the next band
code

DEVCAPS2 used the QUERYESCSUPPORT subfunction to list supported Escape functions.
The GETPHYSPAGESIZE subfunction returns the size of the paper, which will generally be
larger than the printable area obtained from GetDeviceCaps. We'll use other subfunctions
in programs later in this chapter. Escape always returns 0 if the subfunction is not imple
mented and a negative value if an error occurs. A positive value indicates success.

The FORMFEED Program

Our first printing program does nothing but cause a printer formfeed to eject the page.
The FORMFEED program, shown in Figure 15-4, demonstrates the absolute minimum
requirements for printing.

....... FORMF'EEDZMAK}<\ ·
/\m]j~']Ei8C:70j~' •..••• \\ '

i

11 ~~;;; ;;;;;;;;;;;;3~ ~H •. - - - ~t· - - ./3 .. -(
)ffFO&~E.EER±.~A .. Kma k e tfl· ei

slibcew libw, form~eeq
.......

.......

FORMF:EED)C//iii
>ii

•...•.

~jf ... T;. ... [i7TG?Ti~r . ii
.·ii .« (/
I$: J ~·':'5- -i~ - - ;;; ... ,.. - - - ... - - ••• t - - .t. -~r- -- • - - - - -;;; .~., - -

••• ·.·.·.J~B~~~.~g~17\Adva nces (gh inter to.P ex~pa 9 e .i >
<ifc);Charl~.BP~ftzol 0:)1990

-7; ... -:-+·· -:7 ·"7+.",,~;2~DL+;. ;;;;'ff;'SS~·~~ -,"" - ":;;;:'/~~ I .\>? \
... :

i ..

Figure 15·4. The FORMFEED program. (continued)

734

Chapter 15: Using the Printer

(continued)

735

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(? ?> i, JCi·\)i
.. ".,":> """,

(iE YPI .': \. / \\\ \i \\

1] ... "'.~ •• ::'." .. i .Xi('\
?

:.~: Ut 1-:
\ "".'.)t Ii

;'" 'r i\H \ }

J p :t

••••••••

:.(\i
;/ , >' i"

' ..•...• \\ \ i ,;' '."""
'I' ': /)

/

hi ':> /

FORMFEED includes the GetPrin terDC function shown earlier. Other than obtaining the
printer device context (and later deleting it), the program makes only three Escape calls.
The first uses the STARTDOC subfunction to start a new document. It tests the return value
from Escape and proceeds only if the value is positive:

if (Escape (hdcPrint. STARTDOC. sizeofszMsg - 1. szMsg. NULL) > 0)

The fourth parameter is a far pointer to the string that the Print Manager will display in its
client area to identify the document being printed. Generally, this string includes the name
of the application doing the printing and the file being printed. In this case, it's simply the
name "FormFeed." The third parameter is the length of this string.

If STARTDOC is successful (indicated by a positive return value), then FORMFEED
calls the NEWFRAME Escape subfunction, which advances the printer to a new page.
Once again, the return value is tested: '

if (Escape (hdcPrint. NEWFRAME. O. NULL. NULL) > 0)

The third, fourth, and fifth parameters are not used in this Escape call.
Finally, if everything has proceeded without error to this point, the document is

ended:

Escape (hdcPrint. ENDDOC. O. NULL. NULL) ;

Again, the last three parameters are not used. Note that the ENDDOC Escape function is
called only if no printing errors have been reported. If one of the other Escape functions
.returns an error code, then GDI has already aborted the document. If the printer is not cur
rently printing, such an error code often results in the printer being reset.

Simply testing the return values from the Escape calls is the easiest way to check for
errors. However, WINDOWS,H includes identifiers for the error codes, which you can use
if you want to report the particular error to the user. For example, the NEWFRAME Escape
call ~ould return the SP _OUTOFDISK error (-4), indicating insufficient disk space for GDI
to store the printer output necessary to trigger the printer to do a formfeed. For most print
ers, this occurrence is extremely unlikely. For your own amusement, however, you might
try specifying the PostScript printer driver as your current printer, with the output port
OUTPUT.PRN. Run FORMFEED and check the size of the file. (It will be nearly 8 KB!)

If you've ever written a simple formfeed program for MS-DOS, you know that ASCII
number 12 activates a formfeed for most printers. Why not simply open the printer port
using the C library function open and then output an ASCII number 12 using write?

736

Chapter 15: Using the Printer

Well, nothing prevents you from doing this. You first have to determine the parallel port or
the serial port the printer is attached to-that's available from WIN,lNI. You then have to
determine if another program (the Print Manager, for instance) is currently using the
printer. You don't want the formfeed to be output in th~ middle of a document, do you?
Finally, you have to determine if ASCII number 12 is a formfeed character for the connected
printer. It's not universal, you know. In fact, the formfeed command in PostScript isn't a 12;
it's the word showpage.

In short, don't even think about going around Windows; stick with the Windows
functions for printing.

PRINTING GRAPHICS AND TEXT
Printing from a Windows program usually inyolves more overhead than shown in the
FORMFEED program, as well as some GDI calls to actually print something. Let's write a
program that prints one page of text and graphics. We'll start with the method shown in the
FORMFEED program and then add some enhancements. We'll be looking at four versions
of this program called PRINTl, PRINT2, PRINT3, and PRINT4. To avoid a lot of duplicated
source code, each of these programs will use functions contained in the PRINT.C file,
which is shown in Figure 15-5.

Figure 15·5. The PRINTCfile of the PRINT1, PRINT2, PRINT3, and
PRINT4 programs.

(continued)

737

· SECTION IV: THE GRAPHICS DEVICE INTERFACE

(continued) .

738

Chapter 15: Using the Printer

(continued)

739

SECTION IV: THE GRAPHICS DEVICE INTERFACE

PRINT.C contains the functions WinMain, WndProc, and GetPrinterDC and a function
called PageGDICalls, which expects to receive a handle to the printer device context and
two variables containing the width and height of the printer page. PageGDICalls draws a
rectangle that encompasses the entire page, two lines between opposite corners of the
page, a circle in the middle of the page (its diameter half the lesser of the printer height and
width), and the text "Hello, Printer!" in the center of this ellipse.

During processing of the WM_CREATE message, WndProcadds a Print option to the
system menu. Selecting this option causes a call to PrintMyPage, a function that we'll
enhance over the course of the four versions of the program. PrintMyPage returns TRUE
(nonzero) if it encounters an error during printing and returns FALSE otherwise. If
PrintMyPage returns TRUE, WndProc displays a message box to inform you of the error.

Bare-Bones Printing

PRINT1, the first version of the printing program, is shown in Figure 15-6. After compiling
PRINT1, you can execute it and then select Print from the system menu. If your WIN.lNI
file has the line Spooler=yesand if Windows can find PRINTMAN.EXE, you should see the
Print Manager icon appear at the bottom of the screen. If the TEMP variable in your MS
DOS environment indicates a fixed disk (or if you have no TEMP variable), then you should
see some disk activity as the GDI module saves the printer output to a temporary file. You
won't be able to do anything in Windows during this time. After PRINT1 has finished, the
Print Manager should display the text "Print1: Printing" in its client area and begin sending
the disk file out to the printer. You'll be able to work normally in Windows again.

~et's look at the code, in PRINT1.C. If PrintMyPage can't obtain a device context
handle for the printer, it returns TRUE, and WndProc displays the message box indicating
an error. If the function succeeds in obtaining the device context handle, it then deter
mines the horizontal and vertical size of the page in pixels by calling GetDe v iceCaps:

xPage = GetDeviceCaps (hdcPrn, HORZRES) ;
yPage = GetDeviceCaps (hdcPrn, VERTRES) ;

This is not the full size of the paper but rather its printable area. After that call, the code in
PRINT1's PrintMyPage function is structurally the same as the code in FORMFEED, except

740

Chapter 15: Using the Printer

that PRINT! calls PageGDICalls between the STARTDOC and NEWFRAME Escape calls.
Only if both the STARTDOC and NEWFRAME calls are successful does PRINT! call END
DOC Escape.

PRINT1.MAK

Figure 15·6. The PRINTl program. .(continued)

741

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Setting an Abort Procedure

The enhancement that we'll add in the PRINT2 version of our program prevents problems
related to disk space. If you try to run PRINT! when the drive containing the TEMP subdi
rectory lacks sufficient space to store the full page of graphics output, the NEWFRAME
Escape call will return an SP _OUTOFDISK error. This error could result from the presence
in the TEMP subdirectory of other temporary print files created by GDI for printing. If the
Print Manager were given enough time to send these files to the printer, then the program .

742

Chapter 15: Using the Printer

currently printing could continue. It wouldn't be necessary for Windows to return an
SP _OUTOFDISK error to the program. However, the Print Manager cannot transfer these
files to the printer because-like all other Windows programs-it isn't receiving messages
during the time your program is printing.

This problem is solved with something called an "abort procedure". The abort pro
cedure is a small exported function in your program. You give Windows the address of this
function using the Escape SETABORTPROC subfunction. If GDI runs out of disk space
while creating temporary print files, and if enough space could eventually become avail
able by having the Print Manager send existing print files to the printer, then the GDI mod
ule calls the program's abort procedure. The abort procedure then effectively yields
control to allow the Print Manager to print.

Let's look first at what's required to add an abort procedure to the printing logic and
then examine some of the ramifications. The abort procedure is commonly called
AbortProc, and it takes the following form:

BOOL FAR PASCAL AbortProc (HDC hdcPrn, short nCode)
{

[other program lines]

}

The function must be listed in the EXPORTS section of your module definition file. Before
printing, you must obtain a pointer to this function from MakeProcJnstance:

FARPROC lpfnAbortProc;
[other program lines]

lpfnAbortProc = MakeProcInstance (AbortProc, hInstance) ;

You then set the abort procedure using the Escape SETABORTPROC subfunction. The
lpsDataln parameter is the pointer returned from MakeProclnstance:

Escape (hdcPrn, SETABORTPROC, 0, (LPSTR) lpfnAbortProc, NULL) ;

You make this call before the STARTDOC Escape call. You don't need to "unset" the abort
procedure after you finish printing.

While processing the NEWFRAME Escape call (that is, while playing the metafile into
the device driver and creating the temporary printer output files), GDI frequently calls the
abort procedure. The hdcPrn parameter is the printer device context handle. The nCode
parameter is 0 if all is going well or is SP _OUTOFDISK if the GDI module has run out of
disk space because of the temporary printer output files.

AbortProc must return TRUE (nonzero) if the print job is to be continued and returns
FALSE (0) if the print job is to be aborted. If AbortProc receives an nCode parameter of
SP_OUTOFDISK and returns FALSE, then the NEWFRAME Escape call currently in prog
ress returns an SP _APPABORT error code (equal to -2), and the print job is aborted.

743

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The abort procedure can be as simple as this:

BOOl FAR PASCAL AbortProc (HDC hdcPrn, short nCode)
{
MSG msg;

while (PeekMessage (&msg, NUll, 0, 0, PM_REMOVE»
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return TRUE ;
}

This function may seem a little peculiar. In fact, it looks suspiciously like a message loop.
What's a message loop doing here of all places? Well, it isa message loop. You'll note, how
ever, that this message loop calls PeekMessage rather than GetMessage. I discussed Peek
Message in connection with the RANDRECT program at the end of Chapter 12. You'll recall
that PeekMessage returns control to a program with a message from the program's message
queue (just like GetMessage) but also returns control if there are no messages waiting in
any program's message queue.

The message loop in the AbortProc function repeatedly calls PeekMessage while
PeekMessage returns TRUE. This TRUE value means that PeekMessage has retrieved a mes
sage that can be sent to one of the program's window procedures using TranslateMessage
and DispatchMessage. When there are no more messages in the program's message queue,
Windows allows other programs to process messages from their queues. When there are
no more messages in any program's message queue, Windows returns control to the pro
gram calling PeekMessage (that is, to the AbortProc function). The return value of Peek
Message is then FALSE, so AbortProc returns control to Windows.

The PRINT1 version of our program doesn't yield control during the entire time it is
printing. Windows is essentially frozen during that time because no other program can
process messages. As you've probably discovered by now, the PrintMyPage function in
PRINT! can take a while. Only when the function is finished can the Print Manager actually
start to print. An abort procedure gives the Print Manager-and other programs running
under Windows-a chance to run while a program is printing. I

How Windows Uses AborfProc

When a program is printing, the bulk of the work takes place during the NEWFRAME
Escape call. Before that call, the GDI module simply adds another record to the disk-based
metafile every time the program calls a GDI drawing function. When GDI gets the
NEWFRAME Escape call, it plays this metafile into the device driver once for each band the
device driver defines on a page. GDI then stores the printer output created by the printer
driver in a file. If the Print Manager isn't loaded, the GDI module itself must write this
printer output to the printer.

744

Chapter 15: Using the Printer

During the NEWFRAME Escape call, the GDI module calls the abort procedure
you've set. Normally, the nCode parameter is 0, but if GDI has run out of disk space be
cause of the presence of other temporary files that haven't been printed yet, then the
nCode parameter is SP _OUTOFDISK. (You wouldn't normally check this value, but you can
if you want.) The abort procedure then goes into its PeekMessage loop. The loop first
retrieves messages from the program's own message queue and then yields control so that
other programs can retrieve and process their own messages. When no messages remain
in any program's queue, control passes to another program currently waiting for its own
PeekMessage call to return.

One of those programs is PRINTMAN.EXE, which also uses a PeekMessage call to
retrieve messages. When the Print Manager returns from the PeekMessage call in its own
message loop, it can transfer part of a disk file to the printer. The Print Manager then calls
PeekMessage again in its own message loop. If there are still no messages in any program's
message queue, control returns to AbortProc, and PeekMessage returns FALSE. The abort
procedure then drops out of its message loop and returns a TRUE value to the GDI module
to indicate that printing should continue. The GDI module then continues to process the
NEWFRAME Escape call.

While the main purpose of the abort procedure is to allow the Print Manager the op
portunity to transfer existing files to the printer to free up disk space, it also allows all other
programs to run during the time a program is printing. This effect of the abort procedure is
particularly important if the Print Manager isn't installed.

Implementing an Abort Procedure

Let's quickly review the mechanics of the abort procedure. You define an abort procedure
that looks like this:

BOOl FAR PASCAL AbortProc (HDC hdcPrn, short nCode)
{
MSG msg ;

while (PeekMessage (&msg, NUll, 0, 0, PM_REMOVE))
{
TranslateMessage (&msg) ;
OispatchMessage (&msg) ;
}

return TRUE ;
}

You list AbortProc in the EXPORTS section of your module definition file. You obtain a
pointer to the function using MakeProclnstance:

lpfnAbortProc = MakeProclnstance (AbortProc, hlnstance) ;

745

SECTION IV: THE GRAPHICS DEVICE INTERFACE

When you want to print something, you give Windows this pointer with an Escape call:

Escape (hdcPrn, SETABORTPROC, 0, (LPSTR) lpfnAbortProc, NULL) ;

You make this Escape call before the Escape call for STARTDOC. And that's it.
Well, not quite. We've overlooked a· problem with that PeekMessage loop in

AbortProc-a big problem. AbortProc is called only while your program is in the midst of
printing. Some very ugly things can happen if you retrieve a message in AbortProc and dis
patch it to your own window procedure. A user could select Print from the menu again. But
the program is already in the middle of the printing routine. A user could load a new file
into the program while the program is trying to print the previous file. A user could even
quit your program! If that happens, all your program's windows will be destroyed. You'll
eventually return from the printing routine, but you'll have nowhere to go except to a
window procedure that's no longer valid.

This stuff boggles the mind. Your program isn't prepared for it. For this reason, when
you set an abort procedure, you should first disable your program's window so that it can't
receive keyboard and mouse input. You do this with:

EnableWindow (hwnd, FALSE) ;

This prevents keyboard and mouse input from getting into the message queue. The user
therefore can't do anything with your program during the time it's printing. When printing
is finished, you reenable the window for input:

EnableWindow (hwnd, TRUE) ;

So why, you ask, do we even bother with the TranslateMessage and DispatchMessage
calls in AbortProc when no keyboard or mouse messages will get into the message queue
in the first place? It's true that the TranslateMessage call isn't strictly needed (although it's
almost always included). But we must use DispatchMessage in case a WM_PAINT message
gets in the message queue. If WM_PAINT isn't processed properly with a BeginPaint and
EndPaint pair in the window procedure, the message will remain in the queue and clog up
the works, because PeekMessage will never return a FALSE.

When you disable your window during the time you're printing, your program
remains inert on the display. But a user can switch to another program and do some work
there, and Print Manager can continue sending output files to the printer.

The PRINT2 program, shown in Figure 15-7, adds an abort procedure (and the neces
sary support) to the logic in PRINT1. More specifically, PRINT2 adds the abort procedure
(including a listing in the EXPORTS section of PRINT2.DEF), a call to MakeProclnstance
and Escape using the SETABORTPROC subfunction, a FreeProclnstance call at the end,
and two calls to EnableWindow, the first to disable the window and the second to re
enable it.

746

Chapter 15: Using the Printer

PRINT2.MAK

#~---~~------- ~ ... ~
#PRINT2.MAK make file
#-- •• ~-~-~~~~~------~--

print2.exe : print.obj print2.objprint2.def
link print2 print. /align:16. NUL, Inod slibcew libw~ print2
r(pri nt2 ~ exe

HANDLE hlnsf;
char szAppName
char szCaption

Figure 15·7. The PRINT2 program. (continued)

747

SECTION IV: THE GRAPHICS DEVICE INTERFACE

II i
»

i 7~< }:,:

')
i:. }" i:,. > (

:

1."
i

..

.' }.} : •. < 'iii '.'... . .. ,' .,'. ...:: ~ ... "'.'. , .• ,.,,>< .".'.
.. ",,:,:. -."" • I ..

} ,.,.:".:.,

;H_iL- .,

•. : ;>PRINT ~;II

748

:,::::,,::,.::

i

I
"/i··'·'I

(.
i

·'i}}:}::::.·::,:

•••••••••••••••••••••••••

.. ::".

.0:')

:>

".'.'

(continued)

Chapter 15: Using the Printer

OESCR! PTION
EXETYPE
STUB

~ Pri nti ngProg ram No~2(c)Charl es PetZo ld~

CODE
DATA
HEAPSIZE
STACKSlZE
EXPORTS

WINDOWS
• WINSTUB.EXE'
PRELOAD MOVEABLE'OISCAROABlE
PRELOAD MOVEABLE' MULTIPLE
1024
8192
WhdProc
AbortProc

Adding a Printing Dialog Box

PRINT2 is not entirely satisfactory. First, the program doesn't directly indicate when it is
printing and when it is finished with printing. Only when you poke at the program with
the mouse and find that it doesn't respond can you determine that it must still be process
ing the PrintMyPage routine. Nor does PRINT2 give the user the opportunity to cancel the
print job before it shows up in the Print Manager's client area.

You're probably aware that most Windows programs give users a chance to cancel a
printing operation currently in progress. A small dialog box comes up on the screen; it
contains some text and a push button labeled Cancel. The program displays this dialog box
during the entire time that GDI is saving the printer output in a disk file or (if the Print
Manager isn't loaded) while the printer is printing. This is a modeless dialog box, and
you must supply the dialog procedure. As for all dialog boxes, you include the name of
the dialog procedure in the EXPORTS section of the module definition file and use
MakeProclnstance to obtain a pointer to the function.

This dialog box is often called the "abort dialog box," and the dialog procedure is
often called the "abort dialog procedure." To distinguish it more clearly from the "abort
procedure," I'll call this dialog procedure the "printing dialog procedure." The abort pro
cedure (with the name AbortProc) and the printing dialog procedure (which I'll name
PrintDlgProc) are two separate exported functions. If you want to print in a professional
Windows-like manner, you must have both of these.

These two functions interact as follows. The PeekMessage loop in AbortProc must be
modified to send messages for the modeless dialog box to the dialog box window pro
cedure. PrintDlgProc must process WM~COMMAND messages to check the status of the
Cancel button. If the Cancel button is pressed, it sets a variable called bUserAbort to TRUE.
The value returned from AbortProc is the inverse of bUserAbort. You'll recall that
AbortProc returns TRUE to continue printing and FALSE to abort printing. In PRINT2 we
always returned TRUE. Now we'll return FALSE if the user clicks the Cancel button in the
printing dialog box. This logic is implemented in the PRINT3 program, shown in Figure
15-8, beginning on the following page.

749

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Figure 15·8. The PRINT3 command. (continued)

750

case WM_COMMAND :
bUserAbort - lRUE :
EnableWindow (GetParent (hDlg). TRUE)
OestroyWindow (hDlg)
hOlgPrint ... 0
return TRUE

Chapter 15: Using the Printer

(continued)

751

SECTION IV: THE GRAPHICS DEVICE INTERFACE

.}

. /"."

''''
'''' > ••••••••••• ' ••••• , .'

·.·' .. ",i?
/

752

Chapter 15: Using the Printer

PRINT3.DEF

.-~------------- -.-------------.
: PRINT3~DEF module definition file

Two global variables are added to PRINT3: a BaaL called bUserAbort and a handle to the
dialog box window called hDlgPrint. The PrintMyPage function initializes bUserAbort to
FALSE, and as in PRINT2, the program's main window is disabled. PrintMyPage then calls
MakeProclnstance for both AbortProc and PrintDlgProc. The pointer to AbortProc is used
in the SETABORTPROC Escape call, and the pointer to PrintDlgProc is used in a Create
Dialog call. The window handle returned from CreateDialog is saved in hDlgPrin t.

The message loop in AbortProc now looks like this:

while (!bUserAbort && PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
{

if (!hDlgPrint :: !IsDialogMessage (hDlgPrint, &msg))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return !bUserAbort ;

It calls PeekMessage only if bUserAbort is FALSE, that is, if the user hasn't yet aborted
the printing operation. The IsDialogMessage function is required to send the message to
the modeless dialog box. As is normal with modeless dialog boxes, the handle to the dialog
box window is checked before this call is made. AbortProc returns the inverse of
bUserAbort. Initially, bUserAbort is FALSE, so AbortProc returns TRUE, indicating that
printing is to continue. But bUserAbort could be set to TRUE in the printing dialog
procedure. •

753

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The PrintDlgProc function is fairly simple. While processing WM_INITDIALOG,
the function sets the window caption to the name of the program and disables the Close
option on the system'menu. If the user clicks the Cancel button, PrintDlgProc receives
a WM_COMMAND message:

case WM_COMMAND :
bUserAbort - TRUE ;
EnableWindow (GetParent (hDlg). TRUE)
DestroyWindow (hDlg)
hDlgPrint ... 0 ;
return TRUE ;

Setting bUserAbort to TRUE indicates tha~ the user has decided to cancel the printing
operation. The main window is enabled, and the dialog box is destroyed. (It is important
that you perform these two actions in this order. Otherwise, some other program running
under Windows will become the active program, and your program might disappear into
the background.) As is normal, hDlgPrint is set to 0 to prevent IsDialogMessage from being
called in the message loop.

The only time this dialog box receives messages is when AbortProc retrieves mes
sages with PeekMessage and sends them to the dialog box window procedure with
IsDialogMessage. The only time AbortProc is called is when the GDI module is processing'
the NEWFRAME Escape function. If GDI sees that the return value from AbortProc is
FALSE, it returns control from the Escape call back to PrintMyPage. It doesn't return an
error code. At that point, PrintMyPage thinks that the page is complete and calls the
ENDDOC Escape function. Nothing is printed, however, because the GDI module didn't
finish processing the NEWFRAME Escape call.

Some cleanup remains. If the user didn't cancel the print job from the dialog box,
then the dialog box is still displayed. PrintMyPage reenables its main window and destroys
the dialog box:

if (!bUserAbort)
{
EnableWindow (hwnd. TRUE)
DestroyWindow (hDlgPrint)
}

Two variables tell you what happened: bUserAbort tells you if the user aborted the
print job, and bErrortells you if an error occurred. You·can do what you want with these
variables. PrintMyPage simply performs a logical OR operation to return to WndProc:

return bError I I bUserAbort ;

•

754

Chapter 15: Using the' Printer

Adding Printing to POPPAD

Now we're ready to add a printing facility to the POPPAD series of programs and declare
POPPAD finished. You'll need th~ various POPPAD files from Chapter 10, plus the three
new files in Figure 15-9.

Figure 15·9. New POPPAD files to add printing capability. (continued)

755

SECTION IV: THE GRAPHICS DEVICE INTERFACE

(iii »i • > ' \:i i"i:
""",,,, "',,,

:' i\
11 i? 11< :~Ul) I., > ((

".,."
.. ' ' ..

., iiIr;;ii\i ;ni ".,:.:,)\ ii \ .. \ ",.,) ii",::,:,
i"");' '.{ \\ 'i ",:",:.:,

. ... ,.,/ \)((\\i i / . "" : ..••.• :,::,:,:. ".,': .i:·' ;1 . ,. ii
t h p, ir:'

(...
i'··., .. Ci.i "",

....• :. t\)
. ,','{{> ,

i
".,., .

i

~ It -J li (i ::::,,. .i ~r) .".".,
i i , ;;:

r

> >

i)) ~;y~
i

>
1(:. i i

.Li..

[~!~~I

;;
i '.~.

. { .,', .

,w Inl lJ m~

•••••••••••••••••••••••••

>

••••••••••••••••••••••

\

•.......)

,

ii .

•••••••••••••••••••••••••••••••••

~1. ~ I

In

.• " ...•............. ' .•

;i
;:I· ••••• •· •• • •••••• ·,· ••• •••• •• • •••••• •••

~j
::,1

•••••••••••

>, i
":"",~ ..

""'" ",,"',,','}i""'"

••••••••••••••••••••••••••••••

756
(continued)

Chapter 15: Using the Printer

(continued) \

757

SECTION IV: THE GRAPHICS DEVICE INTERFACE

i

:'::'
i (.

> <:

.. ':':': i::

/
'.:"': : ..

.:: it
> iii

•••••

(continued)

758

Chapter 15: Using the Printer

POPPADP.C is structurally similar to PRINT3.C except that it is able to print multiple pages.
The PrintFile routine performs some calculations to determine the number of characters it
can fit on a line and the number of lines it can fit on a page. This process involves calls to
GetDeviceCaps to determine the resolution of the page and to GetTextMetrics for the
dimensions of a character.

The program obtains the total number of lines in the document (the variable
nTotalLines) by sending an EM_GETLINECOUNT message to the edit control. A buffer for
holding the contents of each line is allocated from local memory. For each line, the first
word of this buffer is set. to the number of characters in the line. Sending the edit control an
EM_GETLINE message copies a line into the buffer; the line is then sent to the printer
device context using TextOut.

The program breaks from the for loop incrementing the page number if the
NEWFRAME Escape call returns an error or if bUserAbort is TRUE. Although the
NEWFRAME call will return before GDI finishes the call if the return value of the abort
procedure is FALSE, it doesn't return an error. For this reason, bUserAbort is tested ex
plicitly before the next page is started. If no error is reported, the ENDDOC Escape call
is made:

if (!bError)
Escape (hdcPrn, ENDDOC, 0, NULL, NULL) ~

You might want to experiment with POPPAD by printing a multipage file. The file
being printed first shows up in the Print Manager's client area after GDI has finished pro
cessing the first NEWFRAME Escape call. At that time, the Print Manager starts sending the
file to the printer. If you then cancel the print job from POPPAD, the Print Manager aborts
the printing also-that's a result of returning FALSE from the abort procedure. Once the
file appears in the Print Manager's client area, you can also cancel the printing by selecting
Terminate from the Queue menu. In that case, the NEWFRAME Escape call in progress in
POPPAD returns an SP _USERABORT error (equal to -3).

759

SECTION IV: THE GRAPHICS DEVICE INTERFACE

Programmers new to Windows often become inordinately obsessed with the
ABORTDOC Escape function. This function is rarely used in printing that also us~s the
NEWFRAME Escape function. As you can see in POPPAD, a user can cancel a print job at
almost any time, either through POPPAD's printing dialog box or through the Print Man
ager .. Neither requires that the program use the ABORTDOC Escape function. The only
time that ABORTDOC would be allowed in POPPAD is between the STARTDOC Escape
call and the first NEWFRAME Escape call, but that code goes so quickly that ABORTDOC
isn't necessary.

Figure 15-10 shows the correct sequence of Escape calls for printing a multi page
document. The best place to check for a bUserAbort value of TRUE is after each
NEWFRAME Escape call. The ENDDOC Escape function is used only when the previous
Escape calls have proceeded without error. In fact, once you get an error from any Escape
call, the show is over, and you can go home.

Handling Error Codes

We have been handling the return value from the Escape function in a relatively simple
manner: If Escape returns a negative value, then an error has occurred, and the printing
operation is aborted. You can report more precise errors to the user by checking the
Escape return value against five identifiers defined in WINDOWS.H. WINDOWS.H also
includes an identifier called SP _NOTREPORTED, which is equal to Ox4000. If a bitwise
AND of the return value from Escape with SP _NOTREPORTED is 0, then the error has
already been reported to the user. A bitwise OR of the return value of Escape with
SP _NOTREPORTED can be used to compare with the five error-code identifiers whether,
the error has been reported or not.

The following function shows one method of obtaining a text string identifying the
error. The function returns NULL if no error has occurred or if the error has already been
reported to the user:

760

char *GetErrorText (short nEscapeReturn)
{
static char *szErrorText [] = { "General Error",

if (nEscapeReturn)= 0)
return NULL ;

"Canceled from Program",
"Canceled from Print Manager",
"Out of disk space",
"Out of memory space" } ;

if «nEscapeReturn & SP_NOTREPORTED) == 0)
return NULL ;

return szErrorText [-nEscapeReturn]
}

Chapter 15: Using the Printer

Escape
SETABORTPROC

Escape
STARTDOC

Error?

No

t
GDI calls for page

Escape
NEWFRAME Yes

'" ,.

Error?

No

User aborted printing?
Yes

I---

No

No
Document completed?

Yes

, ~
Escape

ENDDOC

~ ,

Figure 15·10. The sequence a/Escape calls/or multipage printing.

761

SECTION IV: THE GRAPHICS DEVICE INTERFACE

The five error codes (with some likely causes) are as follows:

• SP _ERROR (OxFFFF, or -1)-Defined as indicating a "general error," this
is the only error code that can be returned from STARTDOC. It can occur
if the GDI module or the printer device driver can't begin a document. If
the Print Manager isn't loaded, you can also get this error from
STARTDOC if another program is currently printing or if the printer is off
line or has no paper.

• SP _APPABORT (OxFFFE, or -2)-This code is documented as indicating
that the program's abort procedure has returned a FALSE value. However,
this is the case only if the Print Manager isn't loaded. If the Print Manager
is loaded and if the abort procedure is passed an nCode parameter of 0
and then returns a FALSE, the NEWFRAME Escape call will return a
positive value, not an SP _APPABORT error.

• SP _USERABORT (OxFFFD, or -3)-This code indicates that the user
canceled the prInting job from the Print Manager.

I! SP _OUTOFDISK (OxFFFC, or -4)-This code indicates that no more disk .
space is available. You'll encounter this error code if the disk drive
containing the TEMP subdirectory can't accommodate any temporary
metafiles or spooler files. If the TEMP subdirectory has some existing
temporary spooler files, then the abort procedure is called during a
NEWFRAME or NEXTBAND Escape call with an nCode parameter of
SP _OUTOFDISK. If the abort procedure then returns FALSE, the Escape
call returns SP _OUTOFDISK.

• SP _OUTOFMEMORY (OxFFFB, or -5)-This code indicates that insuffi
cient memory is available for printing.

THE TECHNIQUE OF BANDING
Banding is the technique of defining a page of graphics as a series of separately con
structed rectangles called bands. This approach relieves a printer driver of the necessity of
constructing an entire bitmapped page image in memory. Banding is most important for
raster printers that have no high-level page-composition control, such as dot-matrix print
ers and some laser printers.

Banding is one of the most misunderstood aspects of programming for the printer in
Windows. Part of the problem lies in the documentation for the GetDeviceCaps function.
The RC_BANDING bit of the value returned from GetDeviceCaps with the RASTERCAPS
index is documented as "requires banding support." Programmers looking at this docu
mentation assume that their applications must use banding with such printers. But this isn't

762

Chapter 15: Using the Printer

so. Most of the information available from GetDevieeCaps is intended solely for the GDI
module. This information allows GDI to determine what the device can do by itself and
what it needs help with. The banding requirement falls into this category.

In general, an application program doesn't need to include its own banding logic. As
you've seen, when you make GDI calls that define a page of graphics, the GDI module
stores these calls in a metafile and then uses banding to set a clipping region before playing
this metafile into the printer device driver. This is transparent to the application program.
Under certain conditions, however, an application might want to take over the respon
sibility for doing banding. When an application uses banding, the GDI module doesn't
create the intermediary metafile. Instead, the drawing commands for each band are
passed to the printer device driver. There are two advantages to this approach:

• It can increase printing speed. The application needs to call only those
GDI functions that draw something in each particular band, which is
faster than having the GDI module play the entire metafile into the device
driver for each band. Even if the program simply draws the entire page for
each band, the process can still be faster than having the GDI module
create and read the disk-based metafile, because the program doesn't
have to access a disk.

• It can reduce the disk space normally required for printing. If the
application is printing bitmaps but is not doing its own banding, then
these bitmaps must be stored in the metafile that GDI creates. This
situation can result in a metafile as large as the printer output file that the
GDI module eventually creates.

• Banding is particularly important for printing bitmaps, because they
occupy a large amount of space in the metafile. (Printing a bitmap
requires selecting the bitmap into a memory device context and using
BitBlt or StretehBlt to write it to the printer device context.)

But banding also further complicates the printing process, as you'll see when we create
PRINT4, the final version of our printing program.

Strike Up the Bands

To have your program do its own banding, you first define a variable of type RECT:

RECT rect ;

You'll recall that the RECT structure has four fields named left, top, right, and bottom. For
each page, you start by making an Escape call for the subfunction NEXTBAND, passing to
it a pointer to reet. On return, reet contains the coordinates of the first band. The coordi
nates are always device coordinates (pixels) regardless of the current mapping mode of the

763

SECTION IV: THE GRAPHICS DEVICE INTERFACE

printer device context. You make GDI calls to print in that band. You then call the NEXT
BAND Escape function again to obtain the coordinates of the next band, and you print in
that band. When the RECT structure passed to Escape is returned empty (all fields set to 0),
the page is done.

Here's what the code looks like to print a single page. For simplicity's sake, this code
doesn't take into account errors that can be returned from the Escape functions or checks
of the bUserAbort value:

Escape (hdcPrn, NEXTBAND, D, NULL, (LPSTR) &rect) ;

while (!IsRectEmpty (&rect»
{

!call CD/functions to print in band}

Escape (hdcPrn, NEXTBAND, D, NULL~ (LPSTR) &rect) ;
}

Each NEXTBAND Escape call except the first performs a function similar to the
NEWFRAME Escape call: It signals to the GDI module and to the printer device driver that
the entire band has been defined and that it can now be saved in a disk file (or written to
the printer if the Print Manager is not loaded). You don't want to call the NEWFRAME
Escape function after this loop has run its course. If you do so, you'll get a blank page be
tween each printed page. Nor can you terminate the loop before receiving an empty rect
angle and-tnerf make a NEWFRAME Escape call to skip the rest of the page. In short, you
use either NEWFRAME to print a page without banding or multiple NEXTBAND calls to
print a page with banding. Don't mix NEWFRAME and NEXTBAND Escape functions for
the same page.

It's easiest to visualize banding for a dot-matrix printer. Before illustrating the pro
cess, we need to make a distinction between the "top of the paper" (which is always the
section of the paper printed first) and the "top of the page" (which depends on whether
the printer driver is in portrait or landscape mode).

In portrait mode, the top of the page is the same as the top of the paper. The bands go
down the page. The rect.left value in the RECT structure set by the NEXTBAND Escape
call is always 0, and rect.right is always equal to the width of the printing area in pixels
(the value obtained from GetDeviceCaps with a HORZRES parameter). For the first band,
rect.topequals 0. For each successive band, rect.top equals the rect.bottom value of the pre
vious band. For the last band, rect.bottom equals the height of the printing area in pixels.
(See Figure 15-11.)

Thus in each band, you can print from the rect.left and rect.top coordinates up to
(but not including) the rect.rightand rect.bottom coordinates. If you call the function:

Rectangle (hdcPrn, rect.left, rect.top, rect.right, rect.bottom) ;

764

Chapter 15: Using the Printer

rect./eft = 0 rect.right = HORZRES

I I 0

First band

rect.top

rect.bottom

Last band
VERTRES

Figure 15·11. Bandingfor a dot-matrix printer in portrait mode.

the rectangle will be printed on the outermost edges of the band. (Recall that the right and
bottom sides of the rectangle drawn by Rectangle are actually one pixel short of the points
indicated by the last two parameters.)

In landscape mode, the dot-matrix printer must print the document sideways, start
ing from the left side of the page. The bands are in exactly the same area on the paper, but
the rectangle coordinates are different, because the left side of the page is now the top
of the paper. In landscape mode, reet.top is always 0, and reet.bottom is a constant equal
to the height of the printing area in pixels (the value obtained from GetDevieeCaps using
the VERTRES parameter). For the first band, reet.left equals o. For the last band, reet.right
is the width of the printing area in pixels. (See Figure 15-12 on the following page.)

A laser printer or a plotter might handle banding differently than a dot-matrix printer,
because the printer output might not need to be sent to the printer sequentially from the
top of the page to the bottom. Although Figures 15-11 and 15-12 represent the normal case,
your program shouldn't assume that the banding rectangles will follow these patterns.

Separating your printer output into bands might seem like a major headache. But
even if you use banding, you don't need to include a lot of banding logic. The band is a clip
ping region. You can make GDI calls that print outside the band, and Windows will ignore
everything except what falls inside the band. This means that for each band, you can make
all the GDI calls for the entire page.

765

SECTION IV: THE GRAPHICS DEVICE INTERFACE

reet.bottom = VERTRES reet.top= 0

I I 0

First band

reet./eft

reet.right

Last band

HORZRES

Figure 15·12. Bandingfor a dot-matrix printer in landscape mode.

You can determine whether a particular driver requires banding support by checking
the RC_BANDING bit of the value returned from GefDeviceCaps using the RASTERCAPS
parameter. As I mentioned before, this information is of concern only to GDI. Whether a
driver requires banding support or not, the GDI module always supports the NEXTBAND
Escape call. If the driver doesn't require banding support, the first NEXTBAND Escape call
for a page returns a rectangle equal to the size of the printing area. The second NEXT
BAND call for a page returns an empty rectangle.

A Different Use of the Abort Procedure

When a program assumes responsibility for banding, the GDI module uses the abort pro
cedure somewhat differently than it does otherwise. If the Print Manager isn't loaded, the
GDI module frequently calls the abort procedure with an nCode parameter of 0 while pro
cessing the NEXTBAND Escape call, just as it does when processing NEWFRAME. How
ever, if the Print Manageris loaded (the more normal case), the GDI module calls the abort
procedure only if it runs out of disk space. The nCode parameter is SP _OUTOFDISK.

This arrangement presents a problem. Unless the GDI module runs out of disk space,
the user can't switch to another program until the application currently printing is finished.
Moreover, although the printing dialog box is displayed, the user can't cancel the print job,
because the dialog box can't get messages until the abort procedure is called. The solution
to this problem is fairly simple. Your printing routine can call the abort procedure itself
between the GDI drawing functions that make up the page. Although the operation of
Windows isn't as smooth as when the GDI module calls the abort procedure, this approach
at least allows the user to cancel the print job or move on to another task.

766

Chapter 15: Using the Printer

Don't call the abort procedure directly. Instead, use the pointer returned from
MakeProclnstance. For instance, if your abort procedure is called AbortProc and the
pointer returned from MakeProclnstance is called lpjnAbortProc, you can call AbortProc
using:

(*lpfnAbortProc) (hdcPrn, 0) ;

The PRINT4 program, shown in Figure 15-13, adds banding to the printing logic in
PRINT3. PRINT4 also requires the PRINT.RC file in Figure 15-8 and-like all our PRINT
programs-the PRINT.C file in Figure 15-5.

Figure 15·13. The PRINT4 program. (continued)

767

SECTION IV: THE GRAPHICS DEVICE INTERFACE

""'" ,,}
if Ir'

. i
-;;.1 <:; / \

~.)' J)

/
..•••.••.... ~ •••.•.

>' L~ ;
}

';:;
<"

d
ii

~;
i 'i',

,; ~:

?
i it

i

""
'i

(),

?

>'
I)

'.·'·"i , ,/ :: .1

" 1 ii'

i

"". ,,/"

i

"}

:'

c. ~.,
.. ~

.c L.li ~, } ;,1,'" }

".','
iUL) 'i' ... ,

"" .
.•••••. (C :\t

\ '.>T'"

(continued)

768

Chapter 15: Using the Printer

(continued)

769

SECTION IV: THE GRAPHICS DEVICE INTERFACE

770

Chapter 15: Using the Printer

.~*--------- ~~ .. ~~~~~-----------,

PRINT4 differs from PRINT3 in only a few particulars. In order for AbortProc to be called
while the program is printing, the GDI drawing routines have been moved into
PrintMyPage. You'll notice that the Rectangle function prints the rectangle for each band
rather than a rectangle on the border of the entire page. This allows you to see where the
bands are for a particular printer. The structure of the printing operation looks like this:

if (Escape (hdcPrn, STARTDOC, sizeof szSpMsg - I, szSpMsg, NULL) > 0 &&
Escape (hdcPrn, NEXTBAND, 0, NULL, (LPSTR) &rect) > 0)

else

{
while (IIsRectEmpty (&rect) && lbUserAbort)

{

{make GDI calls and call abort procedure}

if (Escape (hdcPrn, NEXTBAND, 0, NULL, (LPSTR) &rect) < 0)
{
bError - TRUE
break
}

bError os TRUE

The while loop for the band proceeds only if the rectangle isn't empty and if the user
hasn't canceled the print job from the dialog box. PRINT4 has to check the return value
from each NEXTBAND Escape call and set bErrorif Escape returns a negative value. If no
Escape call returns an error, then the print job must either be ended with the ENDDOC
Escape call or be aborted with the ABORTDOC Escape call. If the user cancels printing

771

SECTION IV: THE GRAPHICS DEVICE INTERFACE

during the NEXTBAND loop, then the print job must be aborted using the ABORTDOC
call. The code to do this is as follows:

if (!bError)
{
if (bUserAbort)

Escape (hdcPrn. ABORTDOC. D. NULL. NULL)
else

Escape (hdcPrn. ENDDOC. D. NULL. NULL) ;

THE PRINTER AND FONTS
Chapter 14 culminated in a program called JUSTIFY that uses GDI-based raster fonts to
display formatted text. Programs that work with formatted text on the screen usually also
need to print this text. In fact, word-processing and desktop publishing programs gener
ally use the display solely to provide a preview of the printed output. ~

This is a difficult task: What you show on the display can only approximate what the
printer will print. Even if the printer uses only GDI-based fonts (those fonts stored in .FON
font resource files), it generally has a different resolution than the screen, meaning that the
printed characters will be a slightly different size than on the display. And if the printer
uses device-based fonts (fonts that are internal to the printer), the problem becomes even
more complex. For example, in the case of a printer that offers a IS-point Zapf Chancery
font, you'll be approximating that font on the display with a 14-point font of another type
face. Even if the user wants to print text in 14-point Times Roman, the various character
widths of the printer's device-based font can differ from those of the display's GDI-based
font. In short, if you're writing a program that must display formatted text destined for a
printer, you can count on some work ahead. Here are some guidelines to get you started.

You'll want to let the user choose from a list of typeface names and sizes that are sup
ported by the currently selected printer. That is, you need to enumerate the printer fonts
(as we did in the FONTLIST program in Chapter 14), which requires using EnumFontswith
a call-back function. This call-back function receives a pointer to a logical font (LOG
FONT) structure and a text metrics (TEXT METRICS) structure describing each font. The
call-back function also receives a short integer that indicates whether the font is a GDI
based or a device.-based font. Another bit indicates whether the font is a raster font, in
which case it is scalable (within limits) by integer multiples, or a vector font, in which case
it is continuously scalable.

For. device-based vector fonts, the call-back function will receive only one typeface
size. You can check the value returned from GetDez:iceCaps using the TEXTCAPS parame
ter to determine how the device can scale these vector fonts. If they can be scaled by any
multiple, you might want to allow the user to specify a point size.

772

Chapter 15: Using the Printer

When you display formatted text on the screen, you want to space the text based on
how it will be eventually printed. You can use GetDeviceCaps and the GETPHYSPAGESIZE
Escape call to determine the size of the paper and the size of the printable area. For in
stance, if the paper is 8Yz inches wide and the user selects left and right margins of 1 inch,
then you want to display text on the screen using a width of 6Yz inches. The "logical twips"
mapping mode discussed in Chapter 14 is appropriate for this display. There's a catch, how
ever. If the user selects a 15-point font that the printer supports, you'll have to approximate
that font on the display with a 14-point font-but you can't use this 14-point display font to
determine the amount of 15-point text that can fit in one printed line. You must determine
this instead based on the printer font. Likewise, you must use the printer font to deter
mine how many lines fit on a page.

To format the display text, you'll need both a handle to the screen device context (to
display the text on the screen) and a handle to a printer information context. You don't
need a printer device context handle until you actually want to print. Follow these steps:

1. Put together a logical font structure with the typeface name, the type size,
and the attributes selected by the user, and select that logical font into the
printer information context.

2. Call GetTextMetrics for the printer information context to determine the
real size and characteristics of the selected printer font. Call GetTextFace
to obtain the typeface name.

3. Use the information obtained in Step 2 to create another logical font
structure based on the size and characteristics of the printer font, and
select this logical font into the scre~n device context. The font now se
lected into the screen device context closely approximates the font
selected into the printer information context.

4. When you write the text to the display, follow the general procedure used
in the justify function of the JUSTIFY program. However, go through the
GetTextExtentand SetTextjustification logic using the printer information
context, but stop short of TextOut. This approach allows you to determine
the amount of text that fits on each line and the number of lines that fit on
a page.

5. When you have established each line of text as appropriate for the printer,
you can call GetTextExtent and (possibly) SetTextjustification using the
screen display context. You then call TextOutto display the line.

To print the text, you'll probably use code structured like that in the POPPADP.C file
combined with the logic in the justify function of JUSTIFYC. You obtain a printer device
context and go through the GetTextExtent and SetTextjustification logic again, this time
using TextOut to print each line.

773

SECTION V

DATA
EXC GE

~ .LINI{S
\, , ' i,'

~\

\
\
\
\
~
\
\

\
\

, >

Chapter 16

The
Clipboard

The Windows clipboard allows data to be transferred from one program to another. It is a
relatively simple mechanism that doesn't require much overhead in either the program that
places data in the clipboard or the program that later gets access to it.

Let's clear up one possible point of confusion right away: The CLIPBOARD program
that comes with Windows is not the clipboard. It is instead a "clipboard viewer" that dis
plays the current contents of the clipboard. (We'll write our own simple clipboard viewer
later in this chapter.) The clipboard is simply a series of functions in Windows' USER mod
ule that facilitate the exchange of memory blocks between programs.

Many programs that deal with documents or other data include an Edit menu with
the options Cut, Copy, and Paste. When a user selects Cut or Copy, the program transfers
data from the program to the clipboard. This data is in a particular format, such as text, a
bitmap,.or a metafile. When a user selects Paste from the menu, the program determines if
the clipboard contains data in a format that the program can use and, if so, transfers data
from the clipboard to the program.

Programs should not transfer data into or out of the clipboard without an explicit
instruction from the user. For example, a user who performs a Cut or a Copy operation in
one program should be able to assume that the data will remain in the clipboard until the
next Cut or Copy operation or until the user employs a program-such as the BLOWUP2
presented in this chapter-specifically designed to manipulate the clipboard.

777

SECTION V: DATA EXCHANGE AND LINKS

SIMPLE USE OF THE CLIPBOARD
We'll begin by looking at the code involved for transferring data to the clipboard (Cut and
Copy) and-getting access to clipboard data (Paste).

The Standard Clipboard Data Formats

Windows supports various standard clipboard formats that have WINDOWS.H identifiers.
These are:

778

• CF_TEXT -a NULL-terminated ANSI character-set character string
containing a carriage return and a linefeed character at the end of each
line. This is the simplest form of clipboard data. The data to be
transferred to the clipboard is stored in a global memory block and is
transferred using the handle to the block. The memory block becomes the
property of the clipboard, and the program that creates the block should
not continue to use it.

• CF_BITMAP-a Windows 2-compatible bitmap. The bitmap is trans
ferred to the clipboard using the bitmap handle. Again, a program should
not continue to use this bitmap after giving it to the clipboard.

• CF_METAFILEPICT -a "metafile picture." This isn't exactly the same as a
metafile (described in Chapter 13). Rather, it's a metafile with some
additional information in the, form of a small structure of type
METAFILEPICT. A program transfers a metafile picture to the clipboard
using the handle to a global memory block containing this structure. The
four fields of the METAFILEPICT structure are mm (int), the mapping
mode for the metafile; xExt (int) and yExt (int), in simple terms, the width
and height of the metafile image; and hMF (HANDLE), the handle to the
metafile. (I'll discuss the xExt and yExt fields in detail later in this
chapt.er.) After a program transfers a metafile picture to the clipboard, it
should not continue to use either the global memory block containing the
METAFILEPICT structure or the metafile handle, because both will be
under the control of the USER module.

• CF_SYLK-a global memory block containing data in the Microsoft
"Symbolic Link" format. This format is used for exchanging data between
Microsoft Corporation's Multiplan, Chart, and Excel programs. It is an
ASCII format with each line terminated with a carriage return and
linefeed.

• CF_DIF-a global memory block containing data in the Data Interchange
Format (DIF). This is a format devised by Software Arts for use with
transferring data to the VisiCalc spreadsheet program. The format is now

Chapter 16: The Clipboard

under the control of Lotus Corporation. This is also an ASCII format with
lines terminated with carriage returns and linefeeds.

The CF_SYLK and CF_DIF formats are conceptually similar to the CF_TEXT format. How
ever, character strings containing SYLK or DIF data are not necessarily NULL-terminated,
because the formats define the end of the data. (For descriptions of these two formats, see
Jeff Walden, File Formatsfor Popular PC Software, John Wiley & Sons, 1986.)

• CF_TIFF-a global memory block containing data in the Tag Image File
Format (TIFF). This is a format devised by Microsoft, Aldus Corporation,
and Hewlett-Packard Company in conjunction with some hardware
manufacturers. The format (which describes bitmapped data) is available
from Hewlett-Packard.

• CF_OEMTEXT -a global memory block containing text data (simple to
CF_TEXT) but using the OEM character set.

• CF_DIB-a global memory block defining a device-independent bitmap.
The global memory block begins with a BITMAPINFO structure followed
by the bitmap bits.

• CF_PALETTE-a handle to a color palette. This is generally used in
conjunction with CF_DIB for defining a color palette used by the bitmap.

Transferring Text to the Clipboard

Let's assume that you want to transfer a character string to the clipboard and that you have a
pointer (called pStrinrj) to this string. This can be a near pointer if the text is stored in your
program's local data segment or a far pointer if the text is stored in a global data segment.
You want to transfer wLength bytes of this string.

First, allocate a moveable global memory block of wLength size. Include room for a
terminating NULL:

hGlobalMemory - GlobalAlloc (GHND. (DWDRD) wLength + 1) ;

The value of hGlobalMemory will be NULL if the block could not be allocated. If the allo
cation is successful, lock the block to get a far pointer to it:

lpGlobalMemory = GlobalLock (hGlobalMemory) ;

Copy the character string into the global memory block:

for (n = 0 ; n < wLength ; n++)
*lpGlobalMemory++ = *pString++ ;

You don't need to add the terminating NULL, because the GHND flag for GlobalAlloc
zeroes out the entire memory block during allocation. Unlock the block:

GlobalUnlock (hGlobalMemory) ;

779

SECTION V: DATA EXCHANGE AND LINKS

Now you have a global memory handle that references a memory block containing
the NULL-terminated text. To get this into the clipboard, open the clipboard and empty it:

OpenClipboard (hwnd) :
EmptyClipboard () :

Give the clipboard the global memory handle using the CF_TEXT identifier, and close the
clipboard:

SetClipboardData (CF_TEXT. hGlobalMemory) :
CloseClipboard () :

You're done.
Here are some rules concerning this process:

• Call OpenClipboard and CloseClipboard while processing a single mes
sage. Don't leave the clipboard open when you exit the window proce
dure. Don't let control transfer to another program (perhaps by calling
Send Message or PeekMessage) while the clipboard is open.

• Don't give the clipboard a locked memory handle.

• After you call SetClipboardData, don't continue to use the global memory
block. It no longer belongs to your program, and you should treat the
handle as invalid. If you need to continue to access the data, make another
copy of it or read it from the clipboard (as described in the next section).
You can also continue to reference the block between the SetClip
boardData call and the CloseClipboard call, but you must use the glo
bal handle that is returned from SetClipboardData. Unlock this handle
before you call CloseClipboard.

Getting Text from the Clipboard

Getting text from the clipboard is only a little more complex than transferring text to the
clipboard. You must first determine whether the clipboard does in fact contain data in the
CF _TEXT format. One of the easiest methods is to use the call:

bAvailable = IsClipboardFormatAvailable (CF_TEXT) :

This function returns TRUE (nonzero) if the clipboard contains CF_TEXT data. We used
this function in the POPPAD2 program in Chapter 9 to determine whether the Paste item
on the Edit menu should be enabled or grayed. IsClipboardFormatAvailable is one of the
few clipboard functions that you can use without first opening the clipboard. However,
if you later open the clipboard to get this text, you should also check again (using the
same function or one of the other methods) to determine if the CF_TEXT data is still in
the clipboard.

780

Chapter 16: The Clipboard

To transfer the text out, first open the clipboard:

OpenClipboard (hwnd) ;

Obtain the handle to the global memory block referencing the text:

hClipMemory - GetClipboardData (CF_TEXT) ;

This handle will be NULL if the clipboard doesn't contain data in the CF_TEXT format.
This is another way to determine if the clipboard contains text. If GetClipboardData
returns NULL, close the clipboard without doing anything else.

The handle you receive from GetClipboardData doesn't belong to your program-it
belongs to the clipboard. The handle is valid only between the GetClipboardData and
CloseClipboard calls. You can't free that handle or alter the data it references. If you need to
have continued access to the data, you should make a copy of the memory block.

Here's one rpethod for copying the data into a global memory segment that belongs to
your program. First, allocate a global memory block of the same size as that referenced
by hClipMemory: .

hMyMemory - GlobalAlloc (GHND. GlobalSize (hClipMemory» ;

Check for a NULL value from GlobalAlloc to determine if the block was really allocated. If
it was allocated, lock both handles and get pointers to the beginning of the blocks:

lpClipMemory ~ GlobalLock (hClipMemory) ;
lpMyMemory ~ GlobalLock (hMyMemory) ;

Because the character string is NULL-terminated, you can transfer the data using Windows'
lstrcpy function:

lstrcpy (lpMyMemory. lpClipMemory)

Or you can use some simple C code:

while (*lpMyMemory++ ~ *lpClipMemory++)

Unlock both blocks:

GlobalUnlock (hClipMemory)
GlobalUnlock (hMyMemory)

Finally, close the clipboard:

CloseClipboard () :

Now you have a global handle called hMyMemorythat you can later lock to access this data.

What the Clipboard Does

The clipboard works primarily by altering the memory allocation flags of global memory
blocks. When a program allocates a global memory block using the GHND flag (a combi
nation of the GMEM_MOVEABLE and GMEM_ZEROINIT flags), the memory block is

781

SECTION V: DATA EXCHANGE AND LINKS

marked as belonging to the program (more precisely, the particular instance of the pro
gram). Normally, Windows deletes this memory block when the instance terminates.
When a program uses SetClipboardData to give the global handle to the clipboard, Win
dows must transfer ownership of the memory block from the program to itself. This action
requires that Windows modify the memory allocation flags of the global memory block by
calling:

GlobalReAlloc (hMem. OL. GMEM_MODIFY : GMEM_DDESHARE) ;

The USER module establishes ownership ~f the memory block. After the SetClip
boardData call, the global memory handle no longer belongs to the program that allocated
it, and the block won't be freed when the program terminates. The program that created
the memory block can't continue to use it except when the clipboard gives the program
access to the block. Now the USER module must explicitly free the memory block, which it
does when a program calls EmptyClipboard.

When a program calls GetClipboardData, Windows gives the program making the
call the handle to the global memory block and allows the program temporary access to the
memory block. The program can then copy this data into another global memory block or
a local memory block. Thus, the clipboard is really just a manager of shared memory seg
ments. One program gives the clipboard a block of global memory. Other programs can
get access to the block. The clipboard retains o~nership of it.

Opening and Closing the Clipboard

Only one program can have the clipboard open at any time. The purpose of the OpenClip
board call is to prevent the clipboard contents from changing while a program is using the
clipboard. OpenClipboard returns a BOOL value indicating whether the clipboard was
successfully opened. It will not be opened if another application failed to close it. During
the early stages of programming for the clipboard, you should probably check this value,
but the check isn't crucial in a nonpreemptive multitasking environment. If every program
politely opens and then closes the clipboard during a single message without giving con
trol to other programs, then you'll never run into the problem of being unable to open the
clipboard.

I've already mentioned avoiding the use of Send Message or PeekMessage while the
clipboard is open, but watch out for a more subtle problem involving message boxes: If you
can't allocate a global memory segment to copy the contents of the clipboard, then you
might want to display a message box. If this message box isn't system modal, however,
the user can switch to another application while the message box is displayed. You should
either make the message box system modal or close the clipboard before you display the
message box.

You can also run into problems if you leave the clipboard open while you display a
dialog box. Edit fields in a dialog box use the clipboard for cutting and pasting text.

782

Chapter 16: The Clipboard

Using the Clipboard with Bitmaps

In using the CF_BITMAP format, you give the clipboard a handle to a bitmap when calling
SetClipboardData. The GetClipboardData function returns a handle to a bitmap.

You may recall the BLOWUP1 program from Chapter 4, which allowed you to block
out any part of the display and copy it to BLOWUPl's client area. BLOWUP1 used StretchBlt
to expand or compress the size of the blocked-out area so that it exactly fit the client area.
The program had a problem, however: If part of BLOWUP1's client area was destroyed
(perhaps by an overlapping window from another program), BLOWUP1 couldn't recreate
it. We could have solved that problem by creating a bitmap based on the size of the area
BLOWUP1 was copying. When BLOWUP1 needed to redisplay the bitmap in its client area,
it could have selected the bitmap into a memory device context and used StretchBltto copy
it to the client area.

Let's go one step further and write a revised version of this program that uses the
clipboard to hold onto this bitmap. This approach provides two advantages:

• Any part of the display can now be copied in bitmap format and stored in
the clipboard.

• Any bitmap that is stored in the clipboard can be copied into and scaled to
the size of the program's client area. You can then block out all or part of
this display and copy that to the clipboard. This provides an easy manual
approach to scaling or cropping bitmaps.

The Revised BLOWUP Program

The BLOWUP2 program is shown in Figure 16-1. You use it the same way as the BLOWUP1
program. First, click the mouse in BLOWUP1's client area. The cursor changes to a cross
hair. Now place the cursor on one corner of the rectangle you want to capture, press the
mouse button, drag the mouse to the opposite corner, and release the button.

Figure 16·1. The BLOWUP2program.

783

SECTION V: DATA EXCHANGE AND LINKS

(continued)

784

Chapter 16: The Clipboard

(continued)

785

SECTION V: DATA EXCHANGE AND LINKS

[iii ·•· •• · •••••• i ••••••••••••••••• • .•.••••.•• ·i •••• • ••••••••••• ·•• •••••••••• ••• ••••• i ••••••••••••••.......• ··,i··.·· •........

• '•.. '..... '. ·(i •. ·'I~i~ •..
• • •••••••••••••••••••••••• IIl i

. ',II
.. i. /

.'ti;I"~
. '
.'<.' .

•••••••••••••••••••••

i ill '<:nr.

786

......
. i.·(.' Ii ..

II."'$'~·· ... Ii
·• •• i •• ·••• •••••• i.i •• ·i ••.••• i ••••••••••• i ·• .. .

)
'ii .

. .

• •••••••••••••••

1< •••••••••••••••••••• >.

II

..

"

..

....
i.·· .

.............•..

•••••

• ••••••••
..

•••••

. . ::

(continued)

Chapter 16: The Clipboard

In the earlier BLOWUPl program, the blocked-out section of the display was copied to
BLOWUPl's client area. In the new version, the area of the display is copied to a bitmap in
a memory device context, and the bitmap is transferred to the clipboard.

When you're blocking out an area of the display with the mouse, BLOWUP2 retains
two structures of type POINT with the initial corner (org, for "origin") and the width and
height of the rectangle (len, for "length"). If the org point isn't the upper left corner of the

787

SECTION V: DATA EXCHANGE AND LINKS

rectangle, then one or both of the values in len will be negative. When the mouse button is
released (signaling to the program that the user has finished blocking out the rectangle),
BLOWUP2 creates a memory device context and a bitmap using the absolute values of the
lengths in the len point structure:

hdc = GetDC (hwnd) ;
hdcMem = CreateCompatibleDC (hdc) ;
hBitmap = CreateCompatibleBitmap (hdc,

abs (len.x), abs (len.y))

If BLOWUP2 succeeds in creating this bitmap, the program selects the bitmap into
the memory device context and uses StretcbBltto copy the blocked-out area of the display:

if (hBitmap)
{
SelectObject (hdcMem, hBitmap) ;
StretchBlt (hdcMem, 0, 0, abs (len.x), abs (len.y),

hdc, org.x, org.y, len.x, len.y, SRCCOPY) ;

Although we're using StretcbBlt here, the image is not being stretched or compressed.
However, if you block out the rectangle from right to left, then StretcbBlt is needed to flip
the image around a vertical axis. Similarly, if you block it out from bottom to top, then
StretcbBlt turns it upside down.

The program then opens and empties the clipboard, transfers the bitmap to the clip-
board, and closes the clipboard:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (CF_BITMAP, hBitmap) ;
CloseClipboard () ;

The bitmap is now the responsibility of the clipboard. Do not delete it! The clipboard will
delete the bitmap itself the next time it gets an EmptyClipboard call.

Because the clipboard contains a new bitmap, BLOWUP2 invalidates its own client
area, as follows:

InvalidateRect (hwnd, NULL, TRUE) ;
}

If BLOWUP2 wasn't successful in creating a bitmap, it beeps:

else
MessageBeep (0) ;

Finally, the memory device context is deleted, and the window's device context is released:

788

DeleteDC (hdcMem) ;
ReleaseDC (hwnd, hdc) ;

Chapter 16: The Clipboard

When BLOWUP2 gets a WM_PAINT message, it opens the clipboard and checks to
see if a bitmap is available:

OpenClipboard (hwnd) ;

if (hBitmap - GetClipboardData (CF_BITMAP»
{

If the clipboard contains a bitmap, BLOWUP2 creates a memory device context and selects
the bitmap from the clipboard into the device context:

hdcMem - CreateCompatibleDC (hdc) ;
SelectObject (hdcMem, hBitmap) ;

To copy the dimensions of this bitmap into a BITMAP structure, BLOWUP2 uses
GetObject:

GetObject (hBitmap, sizeof (BITMAP), (LPSTR) &bm) ;

It can then copy the bitmap to the client area, stretching it to the larger or smaller
dimensions:

SetStretchBltMode (hdc, COLORONCOLOR) ;
StretchBlt (hdc, 0, 0, xClient, yClient,

hdcMem, 0, 0, bm.bmWidth, bm.bmHeight,
SRCCOPY) ;

The only cleanup involved is deleting the memory device context:

DeleteDC (hdcMem)
}

and closing the clipboard:

CloseClipboard () ;

The bitmap isn't deleted, because it belongs to the clipboard.
If we wanted to make an exact copy of the bitmap, we could use GetObject to obtain

the dimensions:

GetObject (hBitmap, sizeof (BITMAP), (LPSTR) &bm) :

and create a new bitmap and another memory device context:

hBitmap2 = CreateBitmaplndirect (&bm)
hdcMem2 = CreateCompatibleDC (hdc)
SelectObject (hdcMem2, hBitmap2)

A simple BitBlt copies the bitmap:

BitBlt (hdcMem2, 0, 0, bm.bmWidth, bm.bmHeight,
hdcMem, 0, 0, SRCCOPY) :

You would then delete the two memory device contexts.

789

SECTION V: DATA EXCHANGE AND LINKS

Although BLOWUP2 will display in its client area any bitmap that is currently in the
clipboard, it checks the contents of the clipboard only when it gets a WM_PAINT message.
For instance, if you draw something in the Windows PAINTBRUSH program, block it out,
and copy it to the clipboard, BLOWUP2's client area won't show this new bitmap until
BLOWUP2 gets a WM_PAINT message. For this reason, BLOWUP2 isn't a true clipboard
viewer. We'll examine clipboard viewers later in this chapter.

The Metafile and the Metafile Picture

Using the clipboard to transfer metafiles from one program to another involves complexi
ties not present when dealing with text and bitmaps. You can determine the length of a
NULL-terminated string by simply searching for the NULL terminator. You can determine
the dimensions of a bitmap using GetObject. But if you have a handle to a metafile, how can
you determine how large the image will be when you play the metafile? Unless you start
digging into the internals· of ~he metafile itself, you can't.

Moreover, when a program obtains a metafile from the clipboard, it has the most
flexibility in working with it if the metafile has been designed to be played in an
MM_ISOTROPIC or MM_ANISOTROPIC mapping mode. The program that receives the
metafile can then scale the image by simply setting viewport extents before playing the
metafile. But if the mapping mode is set to MM_ISOTROPIC or MM_ANISOTROPIC within
the metafile, then the program that receives the metafile is stuck. The program can make
GDI calls only before or after the metafile is played. It can't make a GDI call in the middle
of a metafile.

To solve these problems, metafile handles are not directly put into the clipboard and
retrieved by other programs. Instead, the metafile handle is part of a "metafile picture,"
which is a structure of type METAFILEPICT. This structure allows the program that ob
tains the metafile picture from the clipboard to set the mapping mode and viewport ex
tents itself before playing the metafile.

The METAFILEPICT structure is 8 bytes long and has four fields: mm (int), the map
ping mode; xExt (int) and yExt (int), the width and height of the metafile image; and hMF
(WORD), the handle to the metafile. For all the mapping modes except MM_ISOTROPIC
and MM_ANISOTROPIC, the xExt and yExtvalues are the size of the image in units of the
mapping mode given by mm. With this information, the program that copies the metafile
picture structure from the clipboard can determine how much display space the metafile
will encompass when it is played. The program that creates the metafile can set these
values to the largest x- and y-coordinates it uses in the GDI drawing functions that enter the
metafile.

For the MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, the xExt and
yExt fields function differently. You will recall from Chapter 11 that a program uses the
MM_ISOTROPIC or MM_ANISOTROPIC mapping mode when it wants to use arbitrary
logical units in GDI functions independent of the measurable size of the image. A program

790

Chapter 16: The Clipboard

uses MM_ISOTROPIC when it wants to maintain an aspect ratio regardless of the size of
the viewing surface and MM_ANISOTROPIC when it doesn't care about the aspect ratio.
You will also recall from Chapter 11 that after a program sets the mapping mode to
MM_ISOTROPIC or MM_ANISOTROPIC, it generally makes calls to SetWindowExt and
SetViewportExt. The SetWindowExtcall uses logical units to specify the units the program
wants to use when drawing. The SetViewportExtcall uses device units based on the size of
the viewing surface (for instance, the size of the window's client area).

If a program creates an MM_ISOTROPIC or MM_ANISOTROPIC metafile for the
clipboard, then the metafile should not itself contain a call to SetViewportExt, because the
device units in that call would be based on the display surface of the program creating
the metafile and not on the display surface of the program that reads the metafile from the
clipboard and plays it. Instead, the xExt and yExt values should assist the program that
obtains the metafile from the clipboard in setting appropriate viewport extents for play
ing the metafile. But the metafile itself contains a call to set the window extent when the
mapping mode is MM_ISOTROPIC or MM_ANISOTROPIC. The coordinates of the GDI
drawing functions within the metafile are based on these window extents.

The program- that creates the metafile and metafile picture follows these rules:

• The mm field of the METAFILEPICT structure is set to specify the
mapping mode.

• For mapping modes other than MM_ISOTROPIC and MM_ANISO
TROPIC, the xExt and yExt fields are set to the width and height of
the image in units corresponding to the mm field. For metafiles to be
played in an MM_ISOTROPIC or MM_ANISOTROPIC environment, mat
ters get a little more complex. For MM_ANISOTROPIC, 0 values of xExt
and yExt are used when the program is suggesting neither a size nor an
aspect ratio for the image. For MM_ISOTROPIC or MM_ANISO
TROPIC, positive values of xExt and yExt indicate a suggested width
and height of the image in units of 0.01 mm (MM_HIMETRIC
units). For MM_ISQTROPIC, negative values of xExt and yExt indicate
a suggested aspect ratio of the image but not a suggested size.

• For the MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, the
metafile itself contains calls to SetWindowExt and (possibly) Set
WindowOrg. That is, the program that creates the metafile calls these
functions in the metafile device context. Generally, the metafile will not
contain calls to SetMapMode, SetViewportExt, or SetViewportOrg.

• The metafile should be a memory-based metafile, not a disk-based
metafile.

791

SECTION V: DATA EXCHANGE AND LINKS

Here's some sample code for a program creating a metafile and copying it to the clip
board. If the metafile uses the MM_ISOTROPIC or MM_ANISOTROPIC mapping mode,
the first calls in the metafile should be to set the window extent. (The window extent is
fixed in the other mapping modes.) Regardless of the mapping mode, the window origin
can also be set:

hdcMeta '= CreateMeta Fi 1 e (NULL)
SetWindowExt (hdcMeta •...) ;
SetWindowOrg (hdcMeta •...) ;

The coordinates in the drawing functions of the metafile are based on these window ex
tents and the window origin. After the program uses GDI calls to draw on the metafile de
vice context, the metafile is closed to get a handle to the metafile:

hmf = CloseMetaFile (hdcMeta) ;

The program also needs to define a far pointer to a structure of type METAFILEPICT
and allocate a block of global memory for this structure:

GLOBALHANDLE hGMem;
LPMETAFILEPICT lpMFP ;

[other program lines}

hGMem = GlobalAlloc (GHND. (DWORD) sizeof (METAFILEPICT»

lpMFP = (LPMETAFILEPICT) GlobalLock (hGMem) ;

Next, the program sets the four fields of this structure.

lpMFP->mm = MM_ ...
lpMFP->xExt = •••

lpMFP->yExt = ...
lpMFP->hMF = hmf

GlobalUnlock (hGMem)

The program then transfers the global memory block containing the metafile picture struc
ture to the clipboard:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (CF_METAFILEPICT. hGMem) ;
CloseClipboard () ;

Following these calls, the hGMem handle (the memory block containing the metafile pic
ture structure) and the hnifhandle (the metafile itself) become invalid for the program
that created them.

792

Chapter 16: The Clipboard

Now for the hard part. When a program obtains a metafile from the clipboard and
plays this metafile, it must do the following:

1. The program uses the mm field of the metafile picture structure to set the
mapping mode.

2. For mapping modes other than MM_ISOTROPIC or MM_ANISOTROPIC,
the program uses the xExt and yExt values to set a clipping rectangle or
simply to determine the size of the image. For the MM_ISOTROPIC and
MM_ANISOTROPIC mapping modes, the program uses xExt and yExt
to set the viewport extents.

3. The program then plays the metafile.

Here's the code. You first open the clipboard, get the handle to the metafile picture
structure, and lock it:

OpenClipboard (hwnd) ;
hGMem = GetClipboardData (CF_METAFILEPICT) ;
lpMFP - (LPMETAFILEPICT) GlobalLock (hGMem) :

You can then save the attributes of your current device context and set the mapping mode
to the mm value of the structure:

SaveDC (hdc) ;
SetMappingMode (lpMFP-)mm) ;

If the mapping mode isn't MM_ISOTROPIC or MM_ANISOTROPIC, you can set a
clipping rectangle to the values of xExt and yExt. Because these values are in logical units,
you have to use LPtoDP to convert the coordinates to device units for the clipping rect
angle. Or you can simply save the values so you know how large the image is.

For the MM_ISOTROPIC or MM_ANISOTROPIC mapping mode, you use xExt and
yExtto set the viewport extent. One possible function to perform this task is shown below.
This function assumes that cxClient and cyClient represent the pixel height. and width of
the area in which you want the metafile to appear if no suggested size is implied by xExt
andyExt.

void PrepareMetaFile (HDC hdc. LPMETAFILEPICT lpmfp.
SHORT cxClient. SHORT cyClient)

{
long xlScale. ylScale. lScale

SetMapMode (hdc. lpmfp-)mm) ;

if (lpmfp-)mm == MM_ISOTROPIC :: lpmfp-)mm == MM_ANISOTROPIC)
{
if (lpmfp-)xExt == 0)

SetViewportExt (hdc. cxClient. cyClient)

793

SECTION V: DATA EXCHANGE AND LINKS

else if (lpmfp->xExt > 0)
SetViewportExt (hdc,

(short) «long) lpmfp->xExt *
GetDeviceCaps (hdc, HORZRES) /
GetDeviceCaps (hdc, HORZSIZE) / 100),

(short) «long) lpmfp->yExt *
GetDeviceCaps (hdc, VERTRES) /
GetDeviceCaps (hdc, VERTSIZE) / 100»

else if (lpmfp->xExt < 0)
{
xlScale - 100L* (long) cxClient *

GetDeviceCaps (hdc, HORZSIZE) /
GetDeviceCaps (hdc, HORZRES) /

-lpmfp->xExt :
ylScale - IDOL * (long) cyClient *

GetDeviceCaps (hdc, VERTSIZE) /
GetDeviceCaps (hdc, VERTRES) /

-lpmfp->yExt
lScale - min (xlScale, ylScale) :

SetViewportExt (hdc,
(short) «long) -lpmfp->xExt * lScale *

GetDeviceCaps (hdc, HORZRES) /
GetDeviceCaps (hdc, HORZSIZE) / 100),

(short) «long) -lpmfp->yExt * lScale *
GetDeviceCaps (hdc, VERTRES) /
GetDeviceCaps (hdc, VERTSIZE) / 100»

This code assumes that both xExtandyExtare 0, greater than 0, or less than 0, (which
should be the case). If the extents are O,no size or aspect ratio is suggested. The viewport
extents are set to the area in which you want to display the metafile. Positive values of xExt
and yExt are a suggested image size in units of 0.01 mm. The GetDeviceCaps function as
sists in determining the number of pixels per 0.01 mm, and this value is multiplied by the
extent values in the metafile picture structure. Negative values of xExt and yExt indicate a
suggested aspect ratio but not a suggested size. The value IScale is first calculated based on
the aspect ratio of the size in millimeters corresponding to cxClient and cyClient. This
scaling factor is then used to set a viewport extent in pixels.

With this job out of the way, you can set a viewport origin if you want, play the
metafile, and return the device context to normal:

794

PlayMetaFile (lpMFP->hMF)
RestoreDC (hdc, -1) :

Then you unlock the memory block and close the clipboard:

GlobalUnlock (hGMem)
CloseClipboard () :

BEYOND SIMPLE CLIPBOARD USE

Chapter 16: The Clipboard

In using text and bitmaps, you've seen that transferring data to the clipboard requires four
calls after the data has been prepared:

OpenClipboard (hwnd) :
EmptyClipboard () ;
SetClipboardData (wFormat, hHandle) ;
CloseClipboard () ;

Getting access to this data requires three calls:

OpenClipboard (hwnd) ;
hHandle = GetClipboardData (wFormat) :

[other program lines}

CloseClipboard () :

You can make a copy of the clipboard data or use it in some other manner between the
GetClipboardData and CloseClipboard calls. That approach may be all you'll need for
most purposes, but you can also use the clipboard in more sophisticated ways.

Using Multiple Data Items

When you open the clipboard to put data into it, you must call EmptyClipboard to signal
Windows to free or delete the contents of the clipboard. You can't add something to the
existing contents of the clipboard. So in this sense, the clipboard holds only one item at
a time.

However, between the EmptyClipboard and the CloseClipboard calls, you can call
SetClipboardData several times, each time using a different clipboard format. For instance,
if you want to store a short string of text in the clipboard, you can create a metafile device
context and write that text to the metafile. You can also create a bitmap large enough to
hold the character string, select the bitmap into a memory device context, and write the
string to the bitmap. In this way, you make that character string available not only to pro
grams that can read text from the clipboard but also to programs that read bitmaps and
metafiles from the clipboard. Moreover, if you select a different font into the metafile de
vice context or memory device·context before writing the text, programs that read bitmaps
or metafiles will use the string with this different font. (Of course, these programs won't be
able to recognize the metafile or bitmap as actually containing a character string.)

795

SECTION V: DATA EXCHANGE AND LINKS

If you want to write several handles to the clipboard, you call SetClipboardData for
each of them:

OpenClipboard (hwnd) :
EmptyClipboard () :
SetClipboardData (CF_TEXT, hGMemText) ;
SetClipboardData (CF_BITMAP, hBitmap) ;
SetClipboardData (CF_METAFILEPICT, hGMemMFP)
CloseClipboard () ;

While these three formats of data are in the clipboard, an IsClipboa rdFormatA va ila ble call
with the CF _TEXT, CF _BITMAP, or CF _METAFILEPICT argument will return TRUE. A
program can get access to these handles by calling:

hGMemText = GetClipboardData (CF_TEXT) :

or:

hBitmap = GetClipboardData (CF_BITMAP)

or:

hGMemMFP = GetClipboardData (CF_METAFILEPICT) ;

The next time a program calls EmptyClipboard, Windows will free or delete all three of the
handles retained by the clipboard as well as the metafile that is part of the METAFILEPICT
structure.

A program can determine all the formats stored by the clipboard by first opening
the clipboard and then calling EnumClipboardFormats. Start off by setting a variable
wFormat to 0:

wFormat .,. 0 :
OpenClipboard (hwnd) ;

Now make successive EnumClipboardFormats calls starting with the ° value. The func
tion will return a positive wFormatvalue for each format currently in the clipboard. When
the function returns 0, you're done:

while (wFormat .,. EnumClipboardFormats (wFormat»
{

[logic for each wFormat value]

}
CloseClipboard () ;

You can obtain the number of different formats currently in the clipboard by calling:

nCount = CountClipboardFormats () ;

796

Chapter 16: The Clipboard

Delayed Rendering

When you put data into the clipboard, you generally make a copy of the data and give the
clipboard a handle to a global memory block that contains the copy. For very large data
items, this approach can waste memory. If the user never pastes that data into another pro
gram, it will continue to occupy memory space until it is replaced by something else.

You can avoid this problem by using a technique called "delayed rendering," in
which your program doesn't actually supply the data until another program needs it.
Rather than give Windows a handle to the data, you simply use a NULL in the SetClip
boardData call:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (wFormat. NULL) ;
CloseClipboard () ;

You can have multiple SetClipboardData calls using different values of wFormat. You can
use NULL parameters with some of them and real handles with others.

That's simple enough, but now the proc-ess gets a little more complex. When another
program calls GetClipboardData, Windows will check to see if the handle for that format is
NULL. If it is, Windows will send a message to the "clipboard owner" (your program) ask

-ing for a real handle to the data. Your program must then supply this handle.
More specifically, the "clipboard owner" is the last window that put data into the

clipboard. Windows can identify the clipboard owner, because the OPen Clipboa rd call re
quires a window handle. (Because programs can also call OpenClipboard when reading
data from the clipboard or enumerating clipboard formats, it's really the EmptyClipboard
call that establishes this window handle as the clipboard owner.)

A program that uses delayed rendering has to process three messages in its window
procedure: WM_RENDERFORMAT, WM_RENDERALLFORMATS, and WM_DESTROY
CLIPBOARD. Windows sends your window procedure a WM_RENDERFORMAT message
when another program calls GetClipboardData. The value of wParam is the format re
quested. When you process the WM_RENDERFORMAT message, don't open and empty
the clipboard. Simply create a global memory block for the format given by wParam, trans
fer the data to it, and call SetClipboardData with the correct format and the global handle.
Obviously, you'll need to retain information in your program in order to construct this data
properly when processing WM_RENDERFORMAT. When another program calls Empty
Clipboard, Windows sends your program a WM_DESTROYCLIPBOARD message. This
tells you that the information to construct the clipboard data is no longer needed. You are
no longer the clipboard owner.

If your program terminates while it is still the clipboard owner, and the clipboard
still contains NULL data handles that your program set with SetClipboardData, you'll
receive a WM_RENDERALLFORMATS message. You should open the clipboard, empty it,

797

SECTION V: DATA EXCHANGE AND LINKS

put the data in global memory blocks, and call SetClipboardData for each format. Then
close the clipboard. The WM_RENDERALLFORMATS message is one of the last messages
your window procedure receives. It is followed by a WM_DESTROYCLIPBOARD message
(because you've rendered all the data) and then the normal WM_DESTROY.

If your program can transfer only one format of data to the clipboard (text, for in
stance), you can combine the WM_RENDERALLFORMATS and WM_RENDERFORMAT
processing. The code will look something like this:

case WM_RENDERALLFORMATS :
OpenClipboard (hwnd)
EmptyClipboard ()

II fall through
case WM_RENDERFORMAT :

[put text into global memory block}

SetClipboardData (CF_TEXT. hMem)

if (iMessage == WM_RENDERALLFORMATS)
CloseClipboard () ;

return 0 ;

If your program uses several clipboard formats, then you will want to process the
WM_RENDERFORMAT message only for the format requested by wParam. You don't need
to process the WM_DESTROYCLIPBOARD message unless it is burdensome for your pro
gram to retain the information necessary to construct the data.

Private Data Formats

So far we've dealt with only the standard clipboard formats defined by Windows. However, .
you may want to use the clipboard to store a. "private data format." The Windows WRITE
program uses this technique to store text that contains font and formatting information.

At first, this concept may seem nonsensical. If the purpose of the clipboard is to
transfer data between applications, why should the clipboard contain data that only one
application understands? The answer is simple: The clipboard also exists to allow the
transfer of data between different instances of the same program, and these instances
obviously understand the same private formats.

There are several ways to use private data formats. The easiest involves data that is
ostensibly in one of the standard clipboard formats (text, bitmap, ormetafile) but that has
meaning only to your program. In this case, you use one of the following wFormatvalues
in your SetClipboardData and GetClipboardData calls: CF _DSPTEXT, CF _DSPBITMAP,
or CF _DSPMETAFILEPICT. DSP stands for "display" -these formats allow CLIPBOARD to
display the data as· text, a bitmap, or a metafile. However, another program that calls
GetClipboardData using the normal CF _TEXT, CF _BITMAP, or CF _METAFILEPICT for
mat won't obtain this data.

798

Chapter 16: The Clipboard

If you use one of these formats to put data in the clipboard, you must also use the
same format to get the data out. But how do you know if the data is from another instance
of your program or from another program using one of these formats? Here's one way: You
can first obtain the clipboard owner by calling:

hwndClipOwner ~ GetClipboardOwner () ;

You can then get the name of the window class of this window handle:

char szClassName [16] ;

[other program lines}

GetClassName (hwndClipOwner. &szClassName. 16) ;

If the class name is the same as your program's, then the data was put into the clipboard by
another instance of your program.

The second way to use private formats involves the CF _OWNERDISPLAY flag. The
global memory handle to SetClipboardData is NULL:

SetClipboardData (CF_OWNERDISPLAY. NULL) ;

This is the method that WRITE uses to show formatted text in the client area of the CLIP
BOARD clipboard viewer. Obviously, CLIPBRD.EXE doesn't know how to display this for
matted text. When WRITE specifies the CF _OWNERDISPLAY format, WRITE is taking
responsibility for painting CLIPBOARD's client area.

Because the global memory handle is NULL, a program that calls SetClipboardData
with the CF _OWNERDISPLAY format (the clipboard owner) must process the delayed
rendering messages sent to the clipboard owner by Windows as well as five additional
messages. These five messages are sent by the clipboard viewer to the clipboard owner:

• WM_ASKCBFORMATNAME-The clippoard viewer sends this message
to the clipboard owner to get a name for the format of the data. The
lParam parameter is a pointer to a buffer, and wParam is the maximum
number of characters for this buffer. The clipboard owner must copy the
name of the clipboard format into this buffer.

• WM_SIZECLIPBOARD-This message tells the clipboard owner that the
size of the clipboard viewer's client area has changed. The wParam
parameter is a handle to the clipboard viewer, and lParam is a pointer to a
RECT structure containing the new size. If the RECT structure contains all
zeros, the clipboard viewer is being destroyed or made an icon. Although'
CLIPBRD.EXE allows only one instance of itself to be running, other
clipboard viewers can also send this message to the clipboard owner.
Handling these multiple clipboard viewers isn't impossible for the clip
board owner (given that wParam identifies the particular viewer), but it
isn't easy, either.

799

SECTION V: DATA EXCHANGE AND LINKS

• WM_PAINTCLIPBOARD-This message tells the clipboard owner to
update the clipboard viewer's client area. Again, wParam is a handle to
the clipboard viewer's window. The IParam parameter is a pointer to a
PAINTSTRUCT structure. The clipboard owner can obtain a handle to the
clipboard viewer's device context from the hdc field of this structure.

• WM_HSCROLLCLIPBOARD and WM_ VSCROLLCLIPBOARD-These
messages inform the clipboard owner that a user has scrolled the
clipboard viewer's scroll bars. The wParam paraf!1eter is a handle to the
clipboard viewer's window, the low word of IParam is the scrolling
request (the same as wParam in normal scroll bar messages), and the high
word of IParam is the thumb position if the low word is SB _THUMB
POSITION. (This value is the same as the low word of IParam in a normal
scroll bar message.)

Handling these messages may look like more trouble than it's worth. However, the process
does provide a benefit to the user: When copying text from WRITE to the clipboard, the
user will find it comforting to see the text still formatted in CLIPBOARD's client area.

The third way to use private clipboard data formats is to register your own clipboard
format name. You supply a name for this format to Windows, and Windows gives your pro
gram a number to use as the format parameter in SetClipboardData and GetClipboard
Data. Programs that use this method generally also copy data to the clipboard in one of the
standard formats. This approach allows CLIPBRD.EXE to display data in its client area
(without the hassles involved with CF _OWNERDISPLAY) and permits other programs to
copy data from the clipboard.

As an example, let's assume we've written a vector drawing program that copies data
to the clipboard in a bitmap format, a metafile format, and its own registered clipboard for
mat. CLIPBRD.EXE will display the metafile. Other programs that can read bitmaps or
metafiles from the clipboard will obtain those formats. However, when the vector drawing
program itself needs to read data from the clipboard, it will copy the data in its own
registered format, because that format probably contains more information than the
bitmap or metafile.

A program registers a new clipboard format by calling:

wFormat - RegisterClipboardFormat (lpszFormatName) :

The wFormatvalue is between OxCOOO and OxFFFF. A clipboard viewer (or a program that
obtains all the current clipboard formats by calling EnumClipboardF,0rmats) can obtain
the ASCII name of this format by calling:

GetClipboardFormatName (wFormat, lpsBuffer, nMaxCount)

Windows copies up to nMaxCount characters into IpsBuffer.

800

Chapter 16: The Clipboard

Programmers who use this method for copying data to the clipboard might want to
publicize the format name and the actual format of the data. lfthe program becomes popu
lar, other programs can then copy data in this format from the clipboard.

BECOMING A CLIPBOARD VIEWER
A program that is notified of changes in the clipboard contents is called a "clipboard
viewer." The CLIPBOARD program that comes with Windows is a clipboard viewer, but
you can also write your own clipboard viewer program. Clipboard viewers are notified of
changes to the clipboard through messages to the viewer's window procedure.

The Clipboard Viewer Chain

Any number of clipboard viewer applications can be running in Windows at the same time,
and they can all be notified of changes to the clipboard. From Windows' perspective, how
ever, there is only one clipboard viewer, which I'll call the "current clipboard viewer."
Windows maintains only one window handle to identify the.current clipboard viewer, and
it sends messages only to that window when the contents of the clipboard change.

Clipboard viewer applications have the responsibility of participating in the "clip
board viewer chain" so that all running clipboard viewer programs receive the messages
that Windows sends to the current clipboard viewer. When a program registers itself as a
clipboard viewer, that program becomes the current clipboard viewer. Windows gives that
program the window handle of the previous current clipboard viewer, and the program
saves this handle. When the program receives a clipboard viewer message, it sends that
message to the window procedure of the next program in the clipboard chain.

Clipboard Viewer Functions and Messages

A program can become part of the clipboard viewer chain by calling the SetClip
boardViewer function. If the primary purpose of the program is to serve as a clipboard
viewer, the program can call this function during processing of the WM_CREATE message.
The function returns the window handle of the previous current clipboard viewer. The
program should save that handle in a static variable:

static HWND hwndNextViewer
fother program lines}

case WM_CREATE :
fother program lines}

hwndNextViewer - SetClipboardViewer (hwnd) ;

If your program is the first program to become a clipboard viewer during the Windows ses
sion, then hwndNextViewerwill be NULL.

801

SECTION V: DATA EXCHANGE AND LINKS

Windows sends a WM_DRAWCLIPBOARD message to the current clipboard viewer
(the most recent window to register itself as a clipboard viewer) whenever the contents of
the clipboard change. Each program in the clipboard viewer chain should use Send Message
to pass this message to the next clipboard viewer. The last program in the clipboard viewer
chain (the first window to register itself as a clipboard viewer) will have stored a NULL
h wndNext Viewer value. If hwndNextViewer is NULL, the program simply returns without
sending the message to another program. (Don't confuse the WM_DRAWCLIPBOARD and
WM_PAINTCLIPBOARD messages. The WM_PAINTCLIPBOARD message is sent by a
clipboard viewer to programs that use the CF _OWNERDISPLAY clipboard format. The
WM_DRAWCLIPBOARD message is sent by Windows to the current clipboard viewer.)

The easiest way to process the WM_DRAWCLIPBOARD message is to send the mes
sage to the next clipboard viewer (unless hwndNextViewer is NULL) and invalidate the
client area of your window:

case WM_DRAWCLIPBOARD :
if (hwndNextViewer)

SendMessage (hwndNextViewer, iMessage. wParam, lParam)

InvalidateRect (hwnd, NULL, TRUE)
return 0 ;

During processing of the WM_PAINT message, you can read the contents of the clipboard
by using the normal OPen Clipboa rd, GetClipboardData, and CloseClipboard calls.

When a program wishes to remove itself from the clipboard viewer chain, it must call
ChangeClipboardChain. This function requires the window handle of the program leav
ing the viewer chain and the window handle of the next clipboard viewer:

ChangeClipboardChain (hwnd. hwndNextViewer) ;

When a program calls ChangeClipboardChain, Windows sends a WM_ CHANGECLIP
BOARD message to the current clipboard viewer. The wParam parameter is the handle
of the window removing itself from the chain (the first parameter to ChangeClip
boardChain), and the low word of lParam is the window handle of the next clipboard
viewer after the one removing itself from the chain (the second parameter to
ChangeClipboardChain).

When your program receives a WM_CHANGECLIPBOARD message, you must there
fore check to see if wParam is equal to the value of hwndNextViewerthat you've saved. If it
is, your program must set hwndNextViewerto the low word of lParam. This action ensures
that any future WM_DRAWCLIPBOARD messages you get won't be sent to the window
removing itself from the clipboard viewer chain. If wParam isn't equal to hwndNext
Viewer, and hwndNextViewerisn't NULL, send the message to the next clipboard viewer:

802

case WM_CHANGECBCHAIN :
if (wParam -- hwndNextViewer)

hwndNextViewer - LOWORD (lParam)

else if (hwndNextViewer)

Chapter 16: The Clipboard

SendMessage (hwndNextViewer, iMessage, wParam, lParam)
return 0 ;

You shouldn't need to include the else if statement, which checks hwndNextViewer for a
non-NULL value. A NULL hwndNextViewervalue would indicate that the program execut
ing this code is the last viewer on the chain, in which case the message should never have
gotten this far.

If your program is still in the clipboard viewer chain when it is about to terminate,
you must remove your program from the chain. You can do this during processing of the
WM_DESTROY message by calling ChangeClipboardChain.

case WM_DESTROY :
ChangeClipboardChain (hwnd, hwndNextViewer) ;
PostOuitMessage (0) ;
return 0 ;

Windows also has a function that allows a program to obtain the window handle of
the first clipboard viewer:

hwndViewer = GetClipboardViewer () ;

This function isn't normally needed. The return value can be NULL if there is no current
clipboard viewer.

Here's an example to illustrate how the clipboard viewer chain works. When Win
dows first starts up, the current clipboard viewer is NULL:

Current clipboard viewer: NULL

A program with a window handle of hwndl calls SetClipboardViewer. The function
returns NULL, which becomes the hwndNextViewervalue in this program:

Current clipboard viewer:
hwndl's next viewer:

hwndl
NULL

A second program with a window handle of hwnd2 now calls SetClipboardViewer and
gets back hwndl:

Current clipboard viewer:
hwnd2's next viewer:
hwndl's next viewer:

hwnd2
hwndl
NULL

803

SECTION V: DATA EXCHANGE AND LINKS

A third program (hwnd3) and then a fourth (hwnd4) also call SetClipboardViewerand get
back hwnd2 and hwnd3:

Current clipboard viewer:
hwnd4's next viewer:
hwnd3's next viewer:
hwnd2's next viewer:
hwndl's next viewer:

hwnd4
hwnd3
hwnd2
hwndl
NULL

When the contents of the clipboard change, Windows sends a WM_DRAWCLIPBOARD
message to hwnd4, hwnd4 sends the message to hwnd3, hwnd3 sends it to hwnd2, hwnd2
sends it to hwndl, and hwndl returns.

Now hwnd2 decides to remove itself from the chain by calling:

ChangeClipboardChain (hwnd2, hwndl) ;

Windows sends hwna4 a WM_CHANGECBCHAIN message with wParam equal to hwnd2
and the low word of IParam equal to hwndl. Because hwnd4's next viewer is hwnd3,
hwnd4 sends this message to hwnd3. Now hwnd3 notes that wParam is equal to its next
viewer (hwnd2), so it sets its next viewer equal to the low word of IParam (hwndJ) and
returns. The mission is accomplished. The clipboard viewer chain now looks like this:

Current clipboard viewer:
hwnd4's next viewer:
hwnd3's next viewer:
hwndl's next viewer:

A Simple Clipboard Viewer

hwnd4
hwnd3
hwndl
NULL

Clipboard viewers don't have to be as sophisticated as CLIPBRD.EXE. A clipboard viewer
can, for instance, display only one clipboard format. The CLIPVIEW program, shown in
Figure 16-2, is a clipboard viewer that displays only the CF _TEXT format.

", ;, 3" ·.H' , ..• •..•.. ;l\; 1 i< i ii)/i < ». > ? .••••••.. \
...... ··.· · .. i/>

> I .. 'V." III/~~' ~i.i ~ ,-- :../:<i iii)
(i••

'& ,j '~l"· ([:"i#(;;~'i ~."q lP ~e • .•...
»

i *dJil~~J i;i;i; L:; · .. ·.·<i · ,·,:C >i ;l ... VttW c · .. ··• • •...••...•..•... <
/ .••••••••••.

i))j : p • ~...m s~r·ll: »>\ i ~~T:t -:7.-·;, .,.~: S~i; ;,u/i i< .•...• »>•.• .•.•.• .•..•••.. ••.•.•... (Vi ii)) •..•....) .» i
•...

••••••••••••• i> iriii,'~) 1."J ~w ijr.~iJ I~)~P' I~ /

• •••••

\i 1~,!\lik7} ~,;~ f 1 1,:1 ri,v,.I. Jt:~t i(i >i
:;~:< .. ~

\. ~~r.£~(I.' ;; ~. t j6 .> II P '.~ t::YI

• ,.>.~ » ········i> i
i '>rl' f}V~ ~{0; F(i .•••.•..•» « ..• ··...i>\)) }

i

. .i)< ··.··i ••. i /
• ••••

.....• cl i pvi ew. obj :iC1}) ~4~~hs ·.·.···i ,lii/(.i>:i;;i •. i

';'
i cl ~ c ~ Gsw J~~W2>~l [)f :>\ ;~. ~.".'.'.) ..••.••... ;)\ ii((i><
\./i.< <i {{{. i"i ·.·.i ...»>/.< iii i • .••...•••..

Figure 16·2. The CLIPVIEW program.

804

CLIPVIEW.C

I*~ ~ ~""" •••••• " •••••• - -- ~ ~ - - ~ - _ ••• " ••••••.•
CLIPVIEW.C .. Simple Clipboard Viewer

(e) Charles Petzold. 1990
···············~-,,·-""··············~·~··*I

#inelude(windows.h>

long FAR PASCAL WndProc (HWND~ WORD, WORD. LONG) ;

int PASCALWinMain (HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpszCmdLine. int nCmdShow)

{
static char szAppName [1 ="Cl i pView"
HWND hwnd :
MSG msg;
WNDCLASS wndclass

Chapter 16: The Clipboard

(continued)

805

SECTION V: DATA EXCHANGE AND LINKS

(continued)

806

Chapter 16: The Clipboard

CLIPVIEW processes WM_CREATE, WM_CHANGECBCHAIN, WM_DRAWCLIP
BOARD, and WM_DESTROY messages as discussed above. The WM_PAINT message sim
ply opens the clipboard and uses GetClipboardData with a format of CF _TEXT. If the
function returns a global memory handle, CLIPVIEW locks it and uses DrawText to display
the text in its client area.

A clipboard viewer that handles data formats beyond the five standard formats
(as CLIPBRD.EXE does) has additional work to do, such as displaying the names of all the
formats currently in the clipboard. You can do this by calling EnumClipboardFormats
and obtaining the names of the nonstandard formats from GetClipboardFormatName. A
clipboard viewer that uses the CF _OWNERDISPLAY format must send these four messages
to the clipboard to display the data:

WM_PAINTCLIPBOARD
WM_SIZECLIPBOARD

WM_ VSCROLLCLIPBOARD
WM_HSCROLLCLIPBOARD

If you want to write such a clipboard viewer, you have to obtain the window handle of the
clipboard owner using GetClipboardOwner and send that window these messages when
you need to update the clipboard viewer's client area.

807

Chapter 17

Dynamic Data
Exchange

(DDE)

Dynamic Data Exchange (DDE) is one of three mechanisms of interprocess communi
cation supported under Windows. The other two are the Windows clipboard (which I
discussed in Chapter 16) and shared memory in dynamic link libraries (Chapter 19).

DDE is based on the messaging system built into Windows. Two Windows programs
carryon a DDE "conversation" by posting messages to each other. These two programs are
known as the "server" and the "client." A DDE server is the program that has access to data
that may be useful to other Windows programs. A DDE client is the program that obtains
this data from the server.

A DDE conversation is initiated by the client program. The client broadcasts a mes
sage (called WM_DDE_INITIATE) to all currently running Windows programs. This
message indicates a general category of data the client needs. A DDE server that has this
data can respond to this broadcasted message. At that point, the conversation begins.

A single Windows program can be both a client to one program and a server to an
other, but this requires two different DDE conversations. A server can deliver data to mul
tiple clients, and a client can obtain data from multiple servers, but again, this requires
multiple DDE conversations. To keep these conversations unique and separate, each

809

SECTION V: DATA EXCHANGE AND LINKS

conversation (on both the client and server sides) uses a different window. Generally, a
program that supports DDE will create a hidden child window for each conversation it
maintains.

The programs involved in a DDE conversation need not be specifically coded to
work with each other. As I'll discuss in the next section, generally the writer of a DDE
server will publicly document how the data is identified. A user of a program that can act as
a DDE client (such as Microsoft Excel) can use this information to establish a DDE conver
sation between the two programs.

If you write a family of two or more Windows programs that must communicate with
each other but not with other Windows programs, you may consider defining your own
messaging protocol. However, this is not recommended. While it may work in Windows 3,
it is possible that future versions of Windows will not support any form of message-based
interprocess communication except for DDE.

Because DDE uses the messaging system built into Windows, it fits very naturally in
the environment. But this is not to say that DDE is easy to implement. The protocol has
many options, and programs must be ready to deal with some rather tricky problems.

BASIC CONCEPTS
When a client asks a server for data, it must be able to identify the type of data it wants.
This is done with three character strings, called the "application," the data "topic," and the
data "item."

Application, Topic, and Item

The idea of the application, topic, and item is best approached with an example. In this
chapter, I'll show you how to write a Windows DDE server program called DDEPOP. This
program contains population data of the United States from the 1970 census and 1980
census. Based on a linear extrapolation, the program can calculate the instantaneous ("at
this moment") population of any state or of the United States as a whole. (A linear ex
trapolation is not quite accurate, of course, but then again, this is only a sample program.)

Anybody who writes a DDE server program should document how this data is iden
tified using three character strings:

810

• The server application name: In this example, this is simply "DDEPOP."
Each server has only one application name, the name of the program.

• The topic name: All DDE servers support at least one topic. In the case of
DDEPOP, only one topic is supported, which is identified by the string
"US_Population~" Conceivably, the DDEPOP program could be expanded
to include data concerning the square-mile areas of the states, in which
case the program would support a second topic named "US_Area."

Chapter 17: Dynamic Data Exchange (DDE)

• The item name: Within each topic, a DDE server supports one or more
data items. In DDEPOP, the item identifies the state using the standard
two-character post-office abbreviation, such as "NY" for New York, "CA"
for California, and "US" for the total. DDEPOP supports 52 items-the 50
states, the District of Columbia ("DC"), and the total.

This documentation is sufficient to use the DDEPOP server with another Windows
program that can act as a client, for example, Microsoft Excel. To use DDEPOP with
Microsoft Excel, you can type the following into a spreadsheet cell:

-DDEPOP:US_PopulationlUS

These three strings indicate the application, topic, and item (in this case, the total
United States population). If DDEPOP.EXE is not already running, Microsoft Excel will at
tempt to execute it. (DDEPOP must be in the current directory or in a directory listed in the
PATH environment variable.) If successful, Excel will initiate a DDE conversation with
DDEPOP, obtain the population data, and display the population as a number in the cell.
These population figures can be formatted, graphed, or used in calculations.

What's most interesting is that the population figures will be periodically updated in
the spreadsheet. This is known as a "hot link" or (in a slight variation) "warm link." Every 5
seconds, DDEPOP recalculates the population data and notifies a client when an item has
changed. In the case of the total U.S. population, you'll see the figure increase by 1 about
every 15 seconds.

The Types of Conversations

There are three basic types of DDE conversations-cold link, hot link, and warm link.
These conversations use DDE messages defined in the DDE.H header file. The Simplest of
the three conversations is known as the cold link.

1. The Cold Link
A cold link conversation begins when a client broadcasts a

WM_DDE_INITIATE message identifying the application and topic it
requires. (The application and topic may be set to NULL to begin a
conversation with any server application or any data topic.) A server
app~ication that supports the specified topic responds to the client with a
WM_DDE_ACK ("acknowledge") message:

Client

1---- WM_DDE_INITIATE _~-... ~
(application, topic) ,.

Server

.... ~I----WM_DDE_ACK ----I

811

SECTION V: DATA EXCHANGE AND LINKS

812

The client then requests a particular data item by posting a WM_DDE
_REQUEST message. If the server can supply this data item, it responds
by posting a WM_DDE_DATA message to the client:

WM DOE REQUEST ...
- (item) -

Client ~- WM_DDE_DATA Server "' (item)

(WM_D0 E_ACK) ...
(positive) -

I've also indicated here that the client can acknowledge to the server that
it has received the WM_DDE_DATA message. This is optional (which I've
indicated by putting the WM_DDE_ACK message within parenthesis).
The server indicates whether it wants this acknowledgment in a flag
passed with the WM_DDE_DATA message. A flag passed with the
WM_DDE_ACK message indicate"s a "positive" acknowledgment.

If the client posts a WM_DDE_REQUEST message to the server, and
the server cannot supply the requested data item, then the server posts a
"negative" WM_DDE_ACK message to the client:

WM_DDE_REQUEST ...
(item)

,.

Client Server
~ WM_D0 E_ACK
"' (negative)

The DDE conversation continues with the client posting WM_DDE
_REQUEST messages to the server-for the same data item or different
data items-and the server responding with WM_DDE_DATA or
WM_DDE_ACK messages. The conversation is terminated when the
client and server post each other WM_DDE_TERMINATE messages:

Client Server

1-oII::~-WM_DDE_TERMINATE----1

Although I've indicated that the client posts the first WM_DDE_TER
MINATE message, this is not always the case. The server can post the first
WM_DDE_TERMINATE message, and the client must respond to that.

Chapter 17: Dynamic Data Exchange (DDEJ

2. The Hot Link
One problem with the cold link is that the data the server has access

to may change with the passing of time. (This is the case with DDEPOP,
which calculates an instantaneous population that can change.) In the
cold link, the client does not know when the data changes. The hot link
solves this problem.

Again, the DDE conversation begins with a WM_DDE_INITIATE
message and a WM_DDE_ACK message:

Client Server

WM DDE INITIATE ,.
1--- (application, topic) ---I,.~

1-4~1--- WM_DDE_ACK ---0000I

The client indicates the data item it requires by posting a WM_DDE
_ADVISE message to the server. The server responds by posting a
WM_DDE_ACK message indicating if it has access to this-item:

Client

1---- WM DDE ADVISE ---l"~
- (item) ~

Server

fooIII I---- WM_DDE_ACK ---0000I

A positive acknowledgment indicates the server can supply the data; a
negative acknowledgment indicates that it cannot.

At this point, the server is obligated to notify the client whenever
the value of the data item changes. This notification uses a WM
_DDE_DATA message, to which the client (based on a flag set in the
WM_DDE_DATA message) mayor may not respond with a WM
_DDE_ACK message:

Client

foIIil-__ WM DDE DATA ___ """'I
..... - (item)

Server

1---- (WM_DDE_ACK) ------i!~

813

SECTION V: DATA EXCHANGE AND LINKS

814

When the client no longer wishes to be advised of updates to the data
item, it posts a WM_DDE_UNADVISE message to the server, and the
server acknowledges:

1----WM_DDE_UNADVISE _----" ... ~
(item) ,.

Client Server
1-IIII;:f---- WM_DDE_ACK -------l

The conversation is terminated with the posting of WM_DDE_TER
MINATE messages:

Client Server-

The cold link and the hot link are not mutually exclusive. During a single
DDE conversation, a client may ask for some data items by using WM-
_DDE_REQUEST (for a cold link) and ask for others by using WM_DDE
_ADVISE (for a hot link).

3. The Warm Link
The warm link combines elements of the cold link and hot link. The

conversation begins as normal:

Client

1--__ WM_DDE_INITIATE -----l"'~
(application, topic)

Server

As with the hot link, the client posts a WM_DDE_ADVISE message to the
server, and the server acknowledges either positively. or negatively:

1--__ WM_DDE_ADVISE __; ... ~
(item) ,.

Client Server
.... ~I---- WM_DDE_ACK ----l

Chapter 17: Dynamic Data Exchange (DOE)

However, a flag passed with the WM_DDE_ADVISE message indicates
that the client wishes only to be informed of changes in data without
immediately receiving the new data item. So the server posts WM
_DDE_DATA messages with NULL data:

Client Server

l<1li.11--__ WM_DDE_DATA ___ --I

""" (NULL item)

1----- WM_DDE_ACK -----l~~

Now the client knows that a particular data item has changed. To obtain
this item, the client uses a WM_DDE_REQUEST message, just as in the
cold link:

WM DDE REQUEST ...
- (item) ,.

Client .., WM DDE DATA Server - (item)

(WM_DDE_ACK) ... ,.

As in the hot link, a client can stop being advised of changes in data items
by posting a WM_DDE_ADVISE message to the server:

Client Server

1--__ WM_DDE_UNADVISE _--:l"'~
(item) ,.

I<III~I--- WM_DDE_ACK ---~

The conversation is terminated with the WM_DDE_TERMINATE
messages:

Client Server

815

SECTION V: DATA EXCHANGE AND LINKS

These three types of conversations use all the DDE messages except two:
WM_DDE_POKE (in which a client gives a server unsolicited data) and WM_DDE
_EXECUTE (in which a client sends a command string to a server). These messages are
rarely used, and I won't be covering them in this chapter.

The DDE.H header file also defines four structures:

• DDEACK (used in the WM_DDE_ACK message)

• DDEADVISE (used in the WM_DDE_ADVISE message)

• DDEDATA (used in the WM_DDE_DATA message)

• DDEPOKE (used in the WM_DDE_POKE message)

I'll' deal with the first three structures as I discuss the sample programs in this
chapter.

Character Strings and Atoms

I've discussed how a DDE client and server identify data using three character strings
the application, topic, and item. But in the actual messages between the client and server,
these character strings do not appear: "Atoms" are used instead.

Atoms are WORD values that refer to character strings in a case-insensitive manner.
You can use atoms within your own program for working with character strings, in which
case-rIre-amnirable-(the-rablelhat references tile atom values wltll1fie stnngs) IS stored In
your program's default data segment.

You define an atom as follows:

ATOM aAtom ;

You can add a string to the atom table using the function:

aAtom = AddAtom (lpString) ;

If the character string does not already exist in the atom table, this function adds it and
returns a unique value identifying the string. Each atom has a "reference count," which is
the number of times A ddA tom has been called for the same string. The reference count is
initially set to 1. If the character string already exists in the atom table (that is, if this is the
second or subsequent time that AddAtom has been called for the same string), the function
returns the number identifying the character string and increments the reference count.

The function:

DeleteAtom (aAtom)

decrements the reference count. When the count is 0, the atom and character string are
removed from the atom table.

816

Chapter 17: Dynamic Data Exchange (DDE)

The function:

aAtom - FindAtom (lpString) ;

will return the atom associated with the character string (or 0 if the string is not in the atom
table). This function does not affect the reference count of the atom.

The function:

nBytes - GetAtomName (aAtom. lpBuffer. nBufferSize)

returns the character string for an atom. The last parameter indicates the size of the buffer
pointed to by the second parameter. The function returns the number of bytes copied to
the buffer and does not affect the reference count.

These four functions (there are several others of lesser importance) allow you to
work with atoms within your own program. However, because the atom table is stored in
your program's default data segment, the atoms are unique to your program. To use atoms
with DDE, you must use another set of four functions, similar to the functions described
above:

aAtom - GlobalAddAtom (lpString) ;
GlobalDeleteAtom (aAtom) ;
aAtom - Global FindAtom (lpString) ;
nBytes - GlobalGetAtomName (aAtom. lpBuffer. nBufferSize) ;

The atom table for these atoms is stored in a shared data segment in a dynamic link
library within Windows and hence is common to all Windows programs. One program
can use GlobalAddAtom to add a string to the atom table and pass the atom to another
program. This other program can use GlobalGetAtomName to obtain the character string
associated with the atom. This is how Windows programs identify the DDE application,
topic, and item.

The rules regarding the use of atoms with DDE are described in the documentation
of the DDE messages in Chapter 15 of the Microsoft Windows Programmer's Reference.
These rules are extremely important: It is not good if an atom that is still required by one
program is deleted from the atom table by another program. Neither is it good if atoms that
are no longer required are not deleted from the atom table. For this reason, you must be
careful about how your program handles atoms.

Atoms are used for the DDE application, topic, and item strings. The data structures
that are transferred from one Windows program to another must be allocated using
GlobalAlloc with the GMEM_DDESHARE option. This allows the global memory block to
be shared among multiple Windows programs. The DDE rules that govern which program
is responsible for allocating and freeing these global memory blocks are also quite strict.

817

SECTION V: ,DATA EXCHANGE AND LINKS

A DDE SERVER PROGRAM
We are now ready to begin looking at DDEPOP, the DDE server program that can supply
instantaneous state population data to a DDE client. This program is shown in Figure 17-1.

;!I~··
il;,I,.""""""",·""""I"""f",,,,',l

••..•••...••.......•....••. ::".,:.""::,:" .

..•. ' ;},. ·/"".'i'.'.'i,

•••

'i .
i .. ·· "

/ ..

.•. I .I ...
,\~\;\\):\\\\~~;::·\\\):i:~::\~:::\\;: .

••••••••••••••••••••••••••••••••••

Figure 17·1. The DDEPOP program.

818

""",:

,.,., .

: '\.

• •••••••••••••••••••••
. " .. :'/

••••••••••••••••••••

••••••••

IT

(continued)

Chapter 17: Dynamic Data Exchange (DDE)

(continued)

819

SECTION V: DATA EXCHANGE AND LINKS

.. /

.................

> .••. i ..••• • •• ·

(continued)

820

Chapter 17: Dynamic Data Exchange (DDE)

if (!SetTimer (hwnd. IO_TIMER. 5000, NULL»
{
MessageBox(hwnd, "Too many clocks or timers!", szAppName,

MB_ICONEXCLAMATION : MB_OK) :

return FALSE;
}

ShowWindow (hwnd. SW_SHOWMINNOACTIVE)
UpdateWi ndow (hwnd):

lI.wParam
1l •• ····LOWORDrOParam)
lIHIWORD(lParam)

hwndClient~iwParami;

aApPi== GlobalAddAtom(szAppName)
aT()p==iGlob~JAddAtOm· (SZT9Pic)i:

(continued)

821

SECTION V: DATA EXCHANGE AND LINKS

(continued)

822

Chapter 17: Dynamic Data Exchange (DOE)

(continued)

823

SECTION V: DATA EXCHANGE AND LINKS

ii"

i ••• ••••• •• ····.,·.·.·· •• • •••••• ··.i >(? i,\ > .. '
.",

.'.,., .,\ ",',',',",,', , .",.",."",'

'··.i }/ ...

",

X", ••

•. '.".<
.... ,".x/

.. ,.,.'

I,~
W x'>

IA

"1'1

•. ,.".

., ,

r

824

', ... '
......

... ,

., .. ', .. ",'".

.•• '.'.

\ ',.'.""',

,''''
. "

nc

lar
<'x

ie"~

'i'"

, .. , .

, ... " .

. ,

,.\«<""

"""""«<' «~,<xx

II
«;'l~

••••••••••••••••••••••••••••••••••

(continued)

Chapter 17: Dynamic Data Exchange (DDE)

(continued)

825

SECTION V: DATA EXCHANGE AND LINKS

(continued)

826

Chapter 17: Dynamic Data Exchange (DDE)

(continued)

827

SECTION V: DATA EXCHANGE AND LINKS

: .. r [J .),.
}

i:i,/})' .\\
hi

/ r" .•. ~., T

i i) y
i:·'

i
1"". \

i

' .. '::" .
,

'ie'
i

: ",:
:" /\ i. i<

~1
.:;i

II ii
:".'. 'i ?/

Ii (
:::

«
y}
Ira \i \:

i ...• :,. \
,'::)\ \:
.:.::~

< ' •••••• i

)\

iiF
':\ ;; Pi ': \ it i'

",'

.>i "i: i

i
:}~'"

:~ ',. ii

Uri ~,C
, /,

:.

if :r i
~. ;'1'

i
,ie', i\

i
/. i ... 0 < \ i

\ r. ;))\
.... :':. :i": \

i .• ::.: ...
iY /? i :>\ ::::'}

.i, :\ i
)i >i

\ (i

(:i .:::
<

,/: i

.'.: :

t II
:.

\
': i

.}
:'" J

:.:,;, II '1 /;
.}

i:.: } (:

i
) ::

I" f'.. Q \ 'C.
i

'>
r :':

i;
IJ·

;P\.)A ':':'
::

'/' T ,J
\ ') ;r }

:",.,:' :,"':: 7< \i\ ,.,.,.,

(continued)

828

Chapter 17: Dynamic Data Exchange (DOE)

for (i - 0 ; i < NUM_STATES : i++)
if (lpPopAdvise(i].fAdvise)

if (lpPopAdvise[i].lPopPrev 1- pop(i].lPop)
{
if (!PostDataMessage (hwnd. hwndClient. i.

lpPopAdvise[i].fDeferUpd.
lpPopAdvise[i].fAckReQ,
FALSE»

(continued)

829

SECTION V: DATA EXCHANGE AND LINKS

(continued)

830

Chapter 17: Dynamic Data Exchange (DOE)

831

SECTION V: DATA EXCHANGE AND LINKS

DDEPOP.ICO

f:=:=:)~
B.::::~

US
PDP.

I described earlier how you can use this server with Microsoft Excel. Later in this chapter
I'll show you a DDE client program (called SHOWPOP) that also uses DDEPOP as a server.

The DDEPOP Program

You'll notice that the top of the DDEPOP.C listing contains the line:

#include <dde.h>

This is the header file that includes the DDE messages and data structures.
This is followed in the DDEPOP.C listing by the structure called pop that contains all

the two-character state codes, the 1970 population figures, the 1980 population figures,
and a fourth field initialized with zeros that will contain the current population based on
the system date and time.

The program also defines a second structure (called POPADVISE) using a typedeJ
statement. I'll discuss later how this structure is used.

832

Chapter 17: Dynamic Data Exchange (DOE)

In WinMain, the program terminates if hPrevlnstance is not equal to NULL. There is
no reason for multiple copies of DDEPOP to be running under Windows. The program
registers two window classes. The first has the class name "DdePop" used for the pro
gram's main window. The second has the class name "DdePop.Server." This second class
is used for the child windows that are created to maintain multiple DDE conversations.
Each conversation requires its own child window based on this window class.

In this second window class, the cbWndExtra field of the WNDCLASS structure is
set to hold two words per window. As you'll see, the first will be used to store the window
handle of the client that the server window is communicating with. The second will
be a handle to a global memory block that contains NUM_STATE structures of type
POPADVISE.

After DDEPOP creates its main window, it explicitly sends the window a
WM_ TIMER message. The sole purpose of this message is to allow WndProc an oppor
tunity to initialize the IPop field of the pop structure with the current population based
on the IPop70 and IPop80 fields and the system date and time. The program also calls
SetTimer to set a 5-second timer to periodically update the IPop field.

You'll notice that ShowWindow is called with the SW_SHOWMINNOACTIVE
parameter and that WndProc returns 0 from the WM_QUERYOPEN message. This keeps
DDEPOP displayed as an icon (similar to the FREEMEM program from Chapter 5).

The WM_DDE_INITIATE Message

A DDE conversation is initiated by a client by broadcasting a WM_DDE_INITIATE mes
sage to all top-level windows. (As you'll see when I discuss the DDE client program later in
this chapter, this is accomplished by calling Send Message with a OxFFFF window handle as
the first parameter.)

The WM_DDE_INITIATE message is handled by a DDE server in its main window
procedure. As in every DDE message, the wParam parameter is the handle to the window
sending the message. This is the window handle of the client. WndProc stores this in the
variable hwndClient.

For the WM_DDE_INITIATE message, the low word of IParam is the atom identify
ing the desired application. This could be NULL if the client wants a response from any
server. The high word of IParam is the atom identifying the desired topic. Again, this could
be NULL if the client wants a response from a server that can supply any topic.

WndProc processes the WM_DDE_INITIATE message by calling GlobalAddAtom to
add atoms for its application name ("DdePop") and topic name ("US_Population"). It then
checks if the atoms supplied in the low word and high word of IParam are NULL or match
these atoms.

If the atoms match, then WndProc creates a hidden child window based on the
"DdePop.Server" window class. This window (whose window procedure is ServerProc)
will handle all subsequent DDE messages in the DDE conversation. The first of the two
words reserved for the window is set to the handle of the client using SetWindowWord.

833

SECTION V: DATA EXCHANGE AND LINKS

WndProc then acknowledges the WM_DDE_INITIATE message by sending a WM
_DDE_ACK message back to the client. The wParam parameter is the handle of the just
created server window, and lParam contains the atoms identifying the server application
name and the topic name. (If the client requested all topics and the server supports mul
tiple topics, then the server would send multiple WM_DDE_ACK messages back to the
client, one for each topic it supports.)

A program that receives a WM_DDE_ACK message is responsible for deleting all
atoms that accompany the message. WndProc calls GlobalDeleteAtom for the two atoms it

. created only if it does not send a WM_DDE_ACK message to the client.
The WM_DDE_INITIATE message and the WM_DDE_ACK message On response to

WM_DDE_INITIATE) are the only two DDE messages that are sent using Send Message
rather than posted using Post Message. As we'll see later in this chapter, this means that a
client sending a WM_DDE_INITIATE message receives the WM_DDE_ACK responses
before the original Send Message call has returned.

·The ServerProc Window Procedure

With the sending of the WM_DDE_ACK message in response to the WM_DDE_INITIATE
message, the DDE conversation has begun. As I mentIoned, when WndProc sends the
WM_DDE_ACK message back to the client, it sets the wParam parameter to the handle
of the child window it creates for the conversation. This means that all subsequent DDE
messages occur -Between tile chent and this child window, whose window procedure
is ServerProc.

ServerProc processes its WM_CREATE message by allocating memory required to
hold NUM_STATES structures of type POPADVISE. (I'll discuss how these are used
shortly.) The handle to this global memory block is stored as the second reserved word
using Set Window Word. This memory block is freed when ServerProc receives a
WM_DESTROY message.

A client posts a WM_DDE_REQUEST message to a server when it wants data that is associ
ated with a particular item. This is the type of transaction known as the cold link. The
server responds by posting a WM_DDE_DATA message to the client with the data or a
WM_DDE_ACK message if it cannot satisfy the request. Let's look at how ServerProc
handles the WM_DDE_REQUEST message.

As is usual with DDE messages, the wParam parameter accompanying WM_DDE
_REQUEST is the handle to the window posting the message, in this case the client. The
low word of the lParam parameter is a requested data format. The high word of lParam is
an atom identifying the requested data item.

The formats of DDE data are the same as clipboard formats, so this low word of
lParam will most commonly be one of the identifiers beginning with the CF prefix. A

834

Chapter 17: Dynamic Data Exchange (DOE)

client may send multiple WM_DDE_REQUEST messages to a server for the same item but
with different formats .. The server should respond with a WM_DDE_DATA message for
only the formats it supports. Far and away the most common format for DDE data is
CF _TEXT, and this is the only format that DDEPOP supports.

So, when processing the WM_DDE_REQUEST message, ServerProc first checks if
the requested format is CF~ TEXT. ServerProc then calls the GlobalGetAtomName func
tion to get the character string associated with the atom passed in the high word of lParam.
If the client knows what it's doing, this will be a two-character string identifying the state.
AJor loop goes through the states and attempts to match this with the szState field of the
pop structure. If there's a match, ServerProc deletes the atom by calling GlobalDeleteAtom
and then calls PostDataMessage (a function towards the end of DDEPOP that posts the
WM_DDE_DATA message and which I'll describe shortly). ServerProc then returns.

If the requested format is not CF _TEXT, or if there was no match between the item
atom and one of the state names, then ServerProc posts a negative WM_DDE_ACK mes
sage indicating that the data was not available. It does this by setting the JAck field of a
DDEACK structure (defined in DDE.H) to FALSE. The DDEACK structure is converted to a
word, which forms the low word of lParam. The high word of lParam is the atom for the re
quested item. PostMessage posts the WM_DDE_ACK message to the client.

Notice how the atom is handled here. The documentation for WM_DDE_REQUEST
states: "When responding with either a WM_DDE_DATA or WM_DDE_ACK message,
reuse the altem atom or delete it and create a new one." What this means is that the state of
the global atom table should not be altered by the server-that is, the reference count for
the item atom should not be incremented or decremented.

There are three cases here:

• If the requested format is CF _TEXT and the atom matches one of the state
names, then ServerProc calls GlobalDeleteAtom before calling the
function in DDEPOP.C named PostDataMessage. This PostDataMessage
function (as we'll see shortly) re-creates the atom when posting a
WM_DDE_DATA message to the client.

• If the requested format is not CF _TEXT or if the atom does not match one
of the state names, then ServerProc calls Post Message to deliver a negative
WM_DDE_ACK message to the client. The atom is simply reused in this
message.

• However, if this PostMessage call fails (perhaps indicating that the client
has been unexpectedly terminated), then ServerProc deletes the atom
because the client cannot. .

We are not yet finished with the WM_DDE_REQUEST message because we have
not yet examined how DDEPOP's PostDataMessage responds with the WM_DDE_DATA
message. That's next.

835

SECTION V: DATA EXCHANGE AND LINKS

DDEPOP's PosfDafaMessage Function

The PostDataMessage function towards the end of DDEPOP.C is responsible for posting
a WM_DDE_DATA message to a client. This function is set up to also handle WM
_DDE-ADVISE messages (which I'll discuss shortly), so it's a little more complex than
if it only had to handle WM_DDE_REQUEST messages.

PostDataMessage has six parameters:

• hwndServer- the window handle of the server

• hwndClient-the window handle of the client

• i-which is the index of the pop array identifying the state for which
population data is requested

• fDeferUpd- which ServerProc sets to FALSE when responding to
WM_DDE_REQUEST messages .

• fAckReq-which ServerProc also sets to FALSE in this case

• /Response-which ServerProc sets to TRUE to indicate a response from a
WM_DDE_REQUEST message

(I'll discuss the fDeferUpd and fAckReq parameters shortly when we get to the
WM_DDE_ADVISE message. For now, just ignore all parts of PostDataMessage when
eitherof1heseLwo-p-ar~rmeterSisseCtOTROE.)

PostDataMessage begins by calling GlobalAddltem to create an atom for the two
character state name. (You'll recall that ServerProc deleted the atom before calling
PostDataMessage.) It then calls wsprintj to convert the population for the state (updated
by WndProc within the past 5 seconds) to a character string terminated with a carriage
return and line feed.

PostDataMessagethen uses GlobalAllocwith the GMEM_DDESHARE option to allo
cate a block of memory large enough for a DDEDATA structure (defined in DDE.H) with
the actual data (the character string sZPopulation) appended to the end. In the case of
PostDataMessage being used in response to a WM_DDE_REQUEST message, the fields of
the DDEDATA structure are set as follows:

836

• The /Response field of the DDEDATA structure is set to TRUE, indicating
that the data is in response to a WM_DDE_DATA message.

• The /Release field is also set to TRUE, indicating that the client should free
the global memory block just allocated.

• The fAckReq field is set to FALSE, indicating that a WM_DDE_ACK
message from the client is not required.

• The cjFormat field is set to CF _TEXT, indicating that the data is in a text
format.

Chapter 17: Dynamic Data Exchange (DDE)

• The szPopulation array is copied into the area of the memory block
beginning at the Value field of the structure.

PostDataMessage then uses PostMessage to post a WM_DDE_DATA message to the
client. As usual, wParam is the handle of the window sending the message (the server).
The low word of IParam is the handle of the memory block containing the DDEDATA
structure, and the high word of IParam is the atom identifying the data item (the two
character state name).

If Post Message is successful, then we're done. The client is responsible for freeing the
memory block and deleting the atom. If PostMessage fails (perhaps because the client is no
longer with us), PostDataMessage frees the memory block it allocated and deletes the atom.

The WM_DDE_ADVISE Message

You are, I trust, beginning to recognize some of the complexities involved in DDE. It gets a
little more complex with WM_DDE_ADVISE and the hot link.

The WM_DDE_REQUEST message I've just discussed allows the client to obtain data
from the server. But if this data changes (as the instantaneous population wilD, then the
client has no way to know that. Allowing the client to know when data has been updated is
the purpose of the WM_DDE_ADVISE message. On receipt of this message, a server is re
sponsible for notifying the client when t~e data has changed. (This notification is accom
plished by the server posting WM_DDE_DATA messages to the client.) This can be tricky
because the server must "remember" which items the client has asked to be advised on.
Moreover, the client will ask that this data be posted in particular ways.

In a WM_DDE_ADVISE message, the low word of IParam is a handle to a global
memory block containing a DDEADVISE structure as defined in DDE.H. The high word of
IParam is the atom identifying the data item.

When processing WM_DDE_ADVISE, ServerProc first checks that the cjFormat
field of the DDEADVISE structure is CF _TEXT. It then obtains the text string referenced by
the atom and checks it against the szState field of the pop structure.

If there's a match, then ServerProc gets a pointer to the array of POPADVISE struc
tures that it allocated during the WM_CREATE message. This array has a POPADVISE
structure for each state, and there is a different array for each window carrying on a DDE
conversation. This array is used to store all information ServerProc will need to update
items to the client.

The fields of the POPADVISE structure for the selected state are set as follows:

• The /Advise field is set to TRUE. This is simply a flag that indicates that
the client wants updated information on this state.

• The /DeferUpd ("deferred update") field is set to the value of the same
field in the DDEADVISE structure. A FALSE value indicates that the client
wants to establish a warm link rather than a hot link. The client will be

837

, SECTION V: DATA EXCHANGE AND LINKS

advised of a change in data without getting the data immediately. (In this
case, the server posts a WM_DDE_DATA message with a NULL value
rather than a handle to the global memory block containing a DDEDATA
structure. The client will later post a normal WM_DDE_REQUEST
message to obtain the actual data') A TRUE value indicates that the client
wants the data in the WM_DDE_DATA message.

• The JAckReq ("acknowledgment requested") field is set to the value of the
same field in the DDEADVISE structure. This is a very tricky value. A
TRUE value instructs the server to post the WM_DDE_DATA with the
JAckReq field of the DDEDATA structure set to TRUE so that the client
is required to acknowledge the WM_DDE_DATA message with a
WM_DDE_ACK message. A TRUE value does not mean that the client is
requesting a WM_DDE_ACK message from the server; it's requiring that
the server require a WM_DDE_ACK message·from the client when· later
posting the WM_DDE_DATA message.

• The !PopPrev field is set to the current population of the state. ServerProc
uses this field to determine if the client needs notification that the
population has changed.

ServerProc is now finished with the DDEADVISE structure and frees the memory
-----bloek-as-the-documentation-for-WM=DDE=ADVISE-instrucrs:-ServerPr(Tc-mITst-n~ow

acknowledge the WM_DDE_ADVISE message by posting a positive WM_DDE_SBACK
message. The JAck field of the DDEACK structure is set to TRUE. If PostMessage fails, then
ServerProc deletes the atom.

If the data format was not CF _TEXT, or if there was no match for the state, then
ServerProc posts a negative WM_DDE_BACK message. In this case, if the PostMessage
call fails, ServerProc both deletes the atom and frees the DDEADVISE memory block.

In theqry, handling of the WM_DDE_ADVISE message is now complete. How
ever, the client has asked that it be n()tified whenever a data item changes. Given that the
client doesn't know any value of the data item, it is necessary for ServerProc to post a
WM_DDE_DATA message to the client.

It does this using the PostDataMessage function, but with the third parameter
set to the JDeJerUpd field of the POPADVISE structure, the fourth parameter set to the
JAckReq field of the POPADVISE structure, and the last parameter set to FALSE (indicating
a WM_DDE_DATA message posted in response to WM_DDE_ADVISE rather than
WM_DDE_REQUEST).

It's time for another look at PostDataMessage. Toward the beginning of the function,
note that if the jDeJerUpd parameter is TRUE, then the function simply sets hDdeData to
NULL rather than allocating memory for it.

IftheJAckReqparameter is TRUE, then PostDataMessagewaits for a WM_DDE_ACK
message from the client after posting the WM_DDE_DATA message. It does this by calling

838

Chapter 17: Dynamic Data Exchange (DDE)

PeekMessage. PostDataMessage deletes the atom in the WM_DDE_ACK messag~. If the
WM_DDE_ACK message does not arrive within three seconds-or if the message is a
negative acknowledgment-thenPostDataMessage frees the global data block containing
the DDEDATA structure.

If you think that you can skip over part of this work by assuming that a client will .
never post a WM_DDE_ADVISE message with the deferred update or acknowledgment
requested fields set to TRUE, guess again. Microsoft Excel does precisely that, establishing
a warm link with acknowledgments to the WM_DDE_DATA messages.

Updating the Items

After processing a WM_DDE_ADVISE message, a server is required to notify the client
when an item has changed. How this works depends on the server. In the case of DDEPOP,
a timer is used to recalculate the populations every 5 seconds. This occurs while process
ing the WM_ TIMER message in WndProc.

WndProc then calls EnumChildWindows with the TimerEnumProc function (lo
cated after ServerProc in DDEPOP.C). TimerEnumProc sends WM_ TIMER messages to all
the child windows, which will all be using the ServerProc window procedure.

ServerProc processes the WM_ TIMER message by looping through all the states and
checking if the POPADVISE structure field jAdvise is set to TRUE and the population has
changed. If so, it calls PostDataMessage to post a WM_DDE_DATA message to the client.

The WM_DDE_UNADVISE message instructs a server to stop posting WM_DDE_DATA
messages when a data item has changed. The low word of IParam is either the data format
or 0, indicating all data formats. The high word of IParam is either the item ATOM or NULL
to indicate all items.

DDEPOP handles the WM_DDE_UNADVISE message by setting the appropriate
jAdvise fields of the POPADVISE structure to FALSE, and then acknowledging with a posi
tive or negative WM_DDE_ACK message.

The WM_DDE_ TERMINATE Message

When a client wishes to terminate the conversation, it posts a WM_DDE_ TERMINATE
message to the server. The server simply responds with its own WM_DDE_ TERMINATE
message back to the client. ServerProc also destroys the child window on receipt of
WM_DDE_ TERMINATE because it is no longer needed, and the conversation that the
window has maintained is terminated.

ServerProc also processes WM_DDE_POKE and WM_DDE_EXECUTE messages,
but in both cases simply responds with a negative acknowledgment.

If DDEPOP is closed from its system menu, then it must terminate all DDE
conversations with its clients. So, when WndProc receives a WM_CLOSE message, it calls

839

SECTION V: DATA EXCHANGE AND LINKS

EnumChildWindows with the CloseEnumProc function. CloseEnumProc sends WM
_ CLOSE messages to all the child windows.

ServerProc responds to WM_CLOSE by posting a WM_DDE_ TERMINATE message
to the client and then waiting for another WM_DDE_ TERMINATE message back from the
client.

A DDE CLIENT PROGRAM
Now that we've examined a DDE server program that you can use with Microsoft Excel,
let's examine a DDE client program that uses DDEPOP as a server. This program is called'
SHOWPOP and is shown in Figure 17-2.

1 iii
j;<;B<

~." ~"'.' \(
•••••

.....

/ ~~

r 2: \ }i i "i
.. ~ } i .·if

> '(> Ii····

•••••••••••••••

i 3.:;,:, :i? _L; • .•••••. I.)

i< fit ;:. II 'lit :co iii~ .J.~

·~.7/
it .' 7Ji 11(\ji i .. ,

........

IJ~ ~~' .. \ ii ?i

.~.
ITh~} ••....

)

t I '~;~~'I r.~ i··•..• ?

········ 7.························· ~~."n~-n :3V.>V?<>+U)

it (... ·~.r ·:· ...)) •. \(i ••••••• .(i \ ... \. "'tIC) i\

....

Figure 17·2. The SHOWPOP program.

840

••••••••

• •••••••••••••••

.•.........•

• •••••••••••••••••••••••••••••••••••

••••••• 111111\'
.

•••••••••••••••••••••••••••••••

..... .}

lIlt "111\1 i

<

III)

~I\ · .,~It### 'I

i)\

.;~~.! .••••••••••••••

.....

(continued)

Chapter 17: Dynamic Data Exchange (DOE)

(continued)

841

SECTION V: DATA EXCHANGE AND LINKS

(continued)

842

Chapter 17: Dynamic Data Exchange (DDE)

(continued)

843

SECTION V: DATA EXCHANGE AND LINKS

(continued)

844

Chapter 17: Dynamic Data Exchange (DDE)

(continued)

845

SECTION V: DATA EXCHANGE AND LINKS

(continued)

846

Chapter 17: Dynamic Data Exchange (DDE)

{
X - cxChar :
y -i * cyChar
}

else,
{
x ~ 44 *cxChar :
y (1 - (NUM_STATES + 1) I 2) * cyChar
}

(continued)

847

SECTION V: DATA EXCHANGE AND LINKS

•••••••••••••••••••••••••••••••

!illl
.....) i···.···

.. i

rIB

This program displays the names of the states in its window with the updated populations
obtained from DDEPOP using the WM_DDE_ADVISE facility. You'll note that SHOWPOP
contains a structure called pop just like DDEPOP, but this version contains the two-letter
state abbreviations, the state names, and a field called /Pop (initialized with zeros) that will
contain the updated populations obtained from DDEPOP.

848

Chapter 17: Dynamic Data Exchange (DOE)

SHOWPOP carries on only one DDE conversation, so it only needs one window for
this conversation, and it uses WndProc for this purpose.

Initiating the DDE Conversation

I've chosen to initiate the DDE conversation by sending WndProc a user-defined message
(which I've called WM_USER_INITIATE) after the UpdateWindow call in WinMain.
Normally a client would initiate the conversation in response to a menu command.

In response to this user-defined message, WndProc calls GlobalAddAtom to create
atoms for the application name of the server ("DdePop") and the topic name ("US_Popula
tion"). WndProc broadcasts the WM_DDE_INITIATE message by calling SendMessage
with a OxFFFF window handle.

As we've seen, a server that scores a match with the application and topic atoms is
required to send a WM_DDE_ACK message back to the client. Because this message is sent
using Send Message rather than posted, the client will receive the WM_DDE_ACK message
before the original Send Message call with the WM_DDE_INITIATE message has returned.
WndProc handles the WM_DDE_ACK message by storing the window handle of the server
in the variable hwndServerand deleting the atoms that accompany the message.

If a client broadcasts a WM_DDE_INITIATE message with NULL application or topic
names, then it must be prepared to receive multiple WM_DDE_ACK messages from each
of the servers that can satisfy the request. In this case, the client must decide which server
to use. The others must be posted WM_DDE_TERMINATE messages to terminate the
conversation.

It is possible that hwndServer will still be NULL after the WM_DDE_INITIATE
Send Message call. This means that DDEPOP is not running under Windows. In this case,
WndProc attempts to execute DDEPOP by calling WinExec. The WinExec call searches
the current directory and the PATH environment variable to load DDEPOP. WndProc then
again broadcasts the WM_DDE_INITIATE message. If hwndServer is still NULL, then
WndProc displays a message box notifying the user of the problem.

Next, for each of the states listed in the pop structure, WndProc allocates a DDE
ADVISE structure by calling GlobalAlioc with the GMEM_DDESHARE flag. The fAckReq
("acknowledgment requested") flag is set to TRUE (indicating that the server should post
WM_DDE_DATA messages with the fAckReq field in the DDEDATA field set to NULL). The
jDeferUpd flag is set to FALSE (indicating a hot link rather than a warm link), and the
cfFormat field is set to CF _TEXT. GlobalAddAtom adds an atom for the two-letter state
abbreviation.

This structure and the atom are passed to the server when SHOWPOP posts the
WM_DDE_ADVISE message. If the Post Message call fails (which might happen ifDDEPOP
is suddenly terminated), then SHOWPOP frees the memory block, deletes the atom, and
exits the loop.

849

SECTION V: DATA EXCHANGE AND LINKS

Otherwise, SHOWPOP waits for a WM_DDE_ACK message by calling PeekMessage.
As the DDE documentation indicates, the client deletes the atom accompanying the mes
sage, and also frees the global memory block if the client responds with a negative
acknowledgment.

It's quite likely that this WM_DDE_ACK message from the client will be followed by
a WM_DDE_DATA message for the item. For this reason, SHOWPOP calls PeekMessageand
DispatchMessage to extract any DDE messages from the message queue and dispatch them
to WndProc.

The WM_DDE_DATA Message

Following the WM_DDE_ADVISE messages, WndProcwill receive WM_DDE_DATA mes
sages from the server containing updated population data. The low word of lParam is a
memory handle to a global block containing a WM_DDE.:...DATA structure, and the high
word of lParam is the atom identifying the data item.

SHOWPOP checks if the cjFormatfield of the DDEDATA structure is CF_TEXT. (Of
course, we know that DDEPOP uses CF _TEXT exclusively, but this is just for the sake of
completeness.) It then obtains the text string associated with the item atom by calling
GlobalGetAtomName. This text string is the two-letter state abbreviation.

Using a jor loop, SHOWPOP scans through the states looking for a match. If it finds
one, it copies the population data from the DDEDATA structure into the szPopulation
array, converts it to a long integer using the C function atol ("ASCII to long"), stores it in the
pop structure, and invalidates the window.

All that remains now is cleaning up. If the client requested an acknowledgment of
the WM_DDE_DATA message, WndProc posts one. If no acknowledgment was requested
(or if the PostMessage call fails), then the item atom is deleted. If the Post Message call fails,
or if there was no match on the state (indicating a negative acknowledgment), or if the
fRelease flag in the DDEDATA structure is set to TRUE, then SHOWPOP frees the memory
block. .

I originally wrote SHOWPOP so that it posted WM_DDE_ADVISE messages with the
jAckReq field of the DDEADVISE structure set to FALSE. This indicates to the server that
the WM_DDE_DATA messages should be posted with the jAckReq field of the DDEDATA
structure set to FALSE, which in turn indicates to the client that it should not post WM
_DDE_ACK messages to the server acknowledging the WM_DDE_DATA messages. This
worked fine for normal updates. However, if I changed the system time in Windows while
SHOWPOP was running, then DDEPOP posted 52 WM_DDE_DATA messages to
SHOwPOP without waiting for acknowledgment. This caused SHOWPOP's message queue
to overflow, and it lost many of the updated populations.

The lesson is clear: If a client wishes to be advised of many data items that can
change all at once, then it must set the jAckReq field of the DDEADVISE structure to TRUE.
This is the only safe approach.

850

Chapter 17: Dynamic Data Exchange (D'DE)

The WM_DDE_ TERMINATE Message

Handling a WM_DDE_ TERMINATE message posted by the server is simple: SHOWPOP
simply posts another WM_DDE_ TERMINATE message back to the client and sets the
hwndServer variable to NULL (indicating the conversation is over).

If SHOWPOP is closed (indicated by a WM_CLOSE message), then the program first
posts a WM_DDE_UNADVISE message to the server to prevent any future updates. This
uses a NULL item atom to indicate all data items. SHOWPOP then posts a WM_DDE_ TER
MINATE message to the server and waits for a WM_DDE_ TERMINATE message to return
back from the server.

WHEN THINGS GO WRONG
Programming can be comparatively easy when you can assume that nothing can go wrong.
But as you've seen, even when everything in a DDE conversation proceeds as expected,
complexities involving the creation and deletion of atoms and global memory blocks can
be tricky.

DDE is further complicated by the potential for problems, and these problems are
accentuated because there are two programs involved rather than just one. You've seen
that whenever a PostMessage calls (indicating that the other program has unexpectedly
terminated), you must clean up afterwards.

It is almost impossible to reach a point in DDE coding when you are absolutely cer
tain that you've accounted for all possibilities of error-particularly when considering that
the program your program is communicating with may have errant behavior. The only
advice I can offer here is simply to do the best you can.

851

Chapter 18

The Multiple
Document

Interface (MDI)

The Multiple Document Interface (MDI) is a specificatiop for applications that handle
documents in Microsoft Windows. The specification describes a window structure and
user interface that allow the user to work with multiple documents within a single applica
tion (such as text documents in a word processing program or spreadsheets in a spread
sheet program). Simply put, just as Windows maintains multiple application windows
within a single screen, an MDI application maintains multiple document windows within a
single client area. The first MDI application for Windows was the first Windows version of
Microsoft Excel. Both the Program Manager and File Manager in Windows 3 are MDI
applications.

Although the MDI specificiation has been around since Windows 2, at that time MDI
applications were difficult to write and required some very intricate programming work.
With Windows 3, however, much of that work has already been done for you. Windows 3
includes one new window class, four new functions, two new data structures, and eleven
new messages for the specific purpose of simplifying MDI applications.

853

SECTION V: DATA EXCHANGE AND LINKS

THE ELEMENTS OF MD.
The Multiple Document Interface is described in the CUA Advanced Interface Design
Guide. The main application window of an MDI program is conventional-it has a title
bar, a menu, a sizing border, a system menu icon, and minimize/maximize icons. The
client area, however, is often called a "workspace" and is not directly used to display
program output. This workspace contains zero or more child windows, each of which
displays a document.

These child windows look much like normal application windows. They have a title
bar, a sizing border, a system menu icon, minimize/maximize icons, and possibly scroll
bars. None of the document windows has a menu, however. The menu on the main applica
tion window applies to the document windows.

At anyone time, only one document window is active (indicated by a highlighted
title bar) and appears in front of all the other document windows. All the document child
windows are clipped to the workspace area and never appear outside the application
window.

At first, MDI seems a fairly straightforward job for the Windows programmer. All you
need to do is create a WS_CHILD window for each document, making the program's main
application window the parent of the document window. But with a little exploration of an
MDI application such as the Windows 3 File Manager, you'll find some complications that
require difficult code.

854

• An MDI document window can be minimized. Its icon appears at the
bottom of the workspace. (Generally an MDI application will use
different icons for the main application window and each type of
document window.)

• An MDI document wi~dow can be maximized. In this case, the .title bar of
the document window (normally used to. show the filename of the
document in the window) disappears, and the filename appears
appended to the application name in the application window's title bar.
The system menu icon of the document window becomes the first item in
the top-level menu of the application window. The icon to restore the size
of the document window becomes the last item in the top-level menu and
appears to the far right.

• The system keyboard accelerator to close a document window is the same
as that to close the main window, except using the Ctrl key rather than Alt.
That is, Alt-F4 closes the application window while Ctrl-F4 closes the
document window. In addition, Ctrl-F6 switches among the child docu
ment windows within the active MDI application. Alt-Spacebar invokes
the system menu of the main window, as usual. Alt-- (minus) invokes the
system menu of the active child document window.

Chapter 18: The Multiple Document Interface (MDI)

• When using the cursor keys to move among items on the menu, control
normally passes from the system menu to the first item on the menu bar.
In an MDI application, control passes from the application system menu
to the active document system menu to the first item on the menu bar.

• If the application is capable of supporting several types of child windows
(for example, the worksheet and chart documents in Microsoft Excel),
then the menu should reflect the operations associated with that type of
document. This requires that the program change the menu when a
different document window becomes active. In addition, when n9
document window exists, the menu should be stripped down to only
those operations involved in opening a new document.

• The top-level menu bar has an item called Window. By convention, this is
the last item on the top-level menu bar except for Help. The Window
submenu generally has options to arrange the document windows within
the workspace. Document windows can be "cascaded" from the upper
left or "tiled" so that each document window is fully visible. This
submenu also has a list of all the document windows. Selecting one moves
that document window to the foreground.

All of these aspects of MDI are supported in Windows 3. Some overhead is required
of course (as will be shown in a sample program), but it's not anywhere close to the amount
of code you'd have to write to support all these features directly.

WINDOWS 3 AND MDI
Some new terminology is necessary when approaching the Windows 3 MDI support. The
main application window is called the "frame window." Just as in a conventional Windows
program, this is a window of the WS_OVERLAPPEDWINDOW style.

An MDI application also creates a "client window" based on the predefined window
class "MDICLIENT." The client window is created by a call to CreateWindow using this
window class and the WS_CHILD style. The last parameter to CreateWindowis a pointer to
a small structure of type CLIENTCREA'fESTRUCT. This client window covers the client
area of the frame window and is responsible for much of the MDI support. The color of this
client window is the system color COLOR_APPWORKSPACE.

The document windows are called "child windows." You create these windows by
initialiZing a structure of type MDICREATESTRUCT and sending the client window a
WM_MDICREATE message with a pointer to this structure.

The document windows are children of the client window, which in turn is a child
of the frame window. The parent-child hierarchy is shown in Figure 18-1 on the follow
ing page.

855

SECTION V: DATA EXCHANGE AND LINKS

Frame window
(Main application window)

I

Client window

I
I

Child window 1 Child window 2 Child window 3 (Document windows)

Figure 18·1. The parent-child hierarchy of a Windows MDI application.

You need a window class (and window procedure) for the frame window and for each type
of child window supported by the applicati9n. You don't need a window procedure for the
client window because the window class is preregistered.

I mentioned earlier that the MDI support of Windows 3 includes one new window
class, four new functions, two new data structures, and eleven new messages. I've already
mentioned the new window class, which is MDICLIENT, and the new data structures, CLI
ENTCREATESTRUCT and MDICREATESTRUCT. Two of the four new functions replace
DejWindowProc in MDI applications: Rather than call DejWindowProc for all unprocessed
messages, a frame window procedure calls DejFrameProc and a child window procedure
calls DejMDIChildProc. Another new function, TranslateMDISysAccel, is used in the same
way as TranslateAccelerator, which I discussed in Chapter 9. The fourth new function is
ArrangelconicWindows, but one of the special MDI messages makes this function unnec
essary for MDI programs.

In the sample program coming up, I'll demonstrate nine of the eleven MDI messages.
(The other two are not normally required.) These messages begin with the prefix WM
_MDI. A frame window sends one of these messages to the client window to perform an
operation on a child window or to obtain information about a child window. (For example,
a frame window sends an WM_MDICREATE message to a client window to create a child
window.) The WM_MDIACTIVATE message is an exception: While a frame window can
send this message to the client window to activate one of the child windows, the client
window also sends the message to the child windows being activated and deactivated to
inform them of this change.

856

Chapter 18: The Multiple Document Interface (MOl)

THE SAMPLE PROGRAM
The Windows 3 Software Development Kit (SDK) includes a sample program called
MULTIPAD that demonstrates how to write an MDI program. However, MULTIPAD con
tains quite a bit of code that has nothing to do with MDI. It might be easier for you to get a
better feel for MDI programming by examiriing a smaller program that does little except
demonstrate the MDI features.

The components of this program, called MDIDEMO, are shown in Figure 18-2.

Figure 18·2. The MDIDEMO program. (continued)

857

SECTION V: DATA EXCHANGE AND LINKS

•••••••

···HEy~QP~T~;i ?
n ./

... typedef H~~~Op~TA?NEAR *Ne~~bbQOATA:t ;.)..........

.......

.. I/~t~Ubttif~for~tOtihg data uni que to~ach Rectchi 1 d window
</\:J..;iS.'/

i·· .. ·?

..
• •••••••

.. ..•.

·.···r

(continued)

858

Chapter 18: The Multiple Document Interface (MDI)

wndclass.hCursor ... LoadCursor (NULL, IOC_ARROW)
wndclass.hbrBackground - COLOR_APPWORKSPACE + 1
wndclass.lpszMenuName - NULL;
wndclass~lpszClassName - szFrameClass

(continued)

859

SECTION V: DATA EXCHANGE AND LINKS

,>
",:

n

'"

860

.))

",.", :.: •. : ..
~.,~

/ ,"'. . ,,}
, .

>'>}'

,? , •. ,: .

•. \ ••. "... <

ii }
r/".'.'\

(continued)

case WM_COMMAND :
switch (wParam)

{
case IDM_NEWHEllO

Chapter 18: The Multiple Document Interface (MDI)

(continued)

861

SECTION V: DATA EXCHANGE AND LINKS

(continued)

862

Chapter 18: The Multiple Document Interface (MOl)

BOOl FAR PASCAL CloseEnumProc (HWND hwnd, lONG lParam)
{
if (GetWindow (hwnd, GW_OWNER»

return 1 :

(continued)

863

SECTION V: DATA EXCHANGE AND LINKS

(continued)

864

Chapter 18: The Multiple Document Interface (MDI)

(continued)

865

SECTION V: DATA EXCHANGE AND LINKS

•••••••••••••••••••••••••••••

\ .
....

(continued)

866

Chapter 18: The Multiple Document Interface (MDI)

Rectangle (hdc~ min (xLeft. xRight). min (yTop. yBottom),
max (xLeft, xRight)imax (yTop. yBottom»

ReleaseDC (hwnd. hdc) :
OeleteObject (hBrush) :
LocalUnlock (hRectData)
return 0

(continued)

867

SECTION V: DATA EXCHANGE AND LINKS

(continued)

868

Chapter 18: The Multiple Document Interface (MDI)

POPUP "&Window"
(

}

MENUITEM "&Cascade\tShift+FS",
MENUITEM "&Tile\tShift+F4".
MENUITEM "Arrange &Icons".
MENUITEM "Close&Al1",
}

fFdefineIDM.;;.BLACK
Ildefi rieIDM.:RED
IJdefi neIDM_GREEN
f/derine 10M.;;.BLUE
{,defi neIDM __ WH ITE

Ildefine· •• · I DM.2TILE
IJdefi neIOM __ CASCAOE
/JdefJne 10M_ARRANGE
f/defineIDM __ CLOSEALL

10M_CASCADE
10M_TILE
10M_ARRANGE
IOM_CLOSEALL

869

SECTION V: DATA EXCHANGE AND LINKS

MDIDEMO supports two types of extremely simple document windows: One displays
"Hello, World!" in the center of its client area, and the <?ther displays a series of random
rectangles. (In the source code listings and identifier names, these are referred to as the
Hello document and the Rect document.) Different menus are associated with the~e two
types of document windows. The document window that displays "Hello, World!" has a
menu that allows you to change the color of the text.

Three Menus

Let's turn first to the MDIDEMO.RC resource script. The resource script defines three menu
templates used by the program.

The program displays the MdiMenuInit menu when no document windows are
present. This menu simply allows creating a new document or exiting the program.

The MdiMenuHello menu is associated with the document window that displays
"Hello, World!" The File submenu allows opening a new document of either type, closing
the active document, and exiting the program. The Color submenu lets you set the text
color. The Window submenu has options for arranging the document windows in a
cascaded or tiled fashion, arranging the document icons, and closing all the windows. This
submenu will also list all the document windows as they are created.

The MdiMenuRect menu is associated with the random rectangle document. This is
the same as the MdiMenuHello menu except that it does not include the Color submenu.

870

Chapter 18: The Multiple Document Interface (MDI)

The MDIDEMO.H header file defines all the menu identifiers as well as three
constants:

#define INIT_MENU_POS a
#define HELLO_MENU_POS 2
#define RECT_MENU_POS 1

These identifiers indicate the position of the Window submenu in each of the three
menu templates. This information is needed by the program to inform the client window
where the document list is to appear. Of course, the MdiMenuInit menu doesn't have a
Window submenu, so I've indicated that the list should be appended to the first submenu
(position 0). The list will never actually be viewed there, however. (You'll see why this is
needed when I discuss the program later.)

The IDM_FIRSTCHILD identifier doesn't correspond to a menu item. This is the
identifier that will be associated with the first document window in the list that will appear

. in the Window submenu. You should choose this identifier to be greater than all the other
menu IDs.

Program Initialization

In MDIDEMO.C, WinMain begins by registering window classes for the frame window and
the two child windows. The window procedures are called FrameWndProc, Hello Wnd
Proc, and RectWndProc. Normally, different icons should be associated with these window
classes. For the purpose of simplicity, I've simply used the standard IDI_APPLICATION
icon for the frame and child.

Note that I've defined the hbrBackground field of the WNDCLASS structure for the
frame window class to be the COLOR_APPWORKSPACE system color. This is not entirely
necessary because the client area of the frame window is covered up by the client window,
and the client window has this color anyway. However, using this color looks a little better
when the frame window is first displayed.

The lpszMenuName field is set to NULL for each of these three window classes. For
the Hello and Rect child window classes, this is normal. For the frame window class I've
chosen to indicate the menu handle in the CreateWindow function when creating the
frame window.

The window classes for the Hello and Rect child windows allocate extra space for
each window using a nonzero value as the cb WndExtra field of the WNDCLASS structure.
This space will be used to store a local memory handle that will reference a block of
memory (the size of the HELLODATA or RECTDATA structures· defined near the top of
MDIDEMO.C) used to store information unique to each document window.

Next, WinMain uses LoadMenu to load the three menus and save their handles in
global variables. Three calls to the GetSubMenu function obtain handles to the Window
submenu to which the document list will be appended. These are also saved in global
variables. The LoadAccelerators function loads the accelerator table.

871

SECTION V: DATA EXCHANGE AND LINKS

A call to CreateWindow in WinMain creates the frame window. During the WM
_CREATE processing in FrameWndProc, the frame window creates the client window.
This involves another call to CreateWindow. The window class is set to MDICLIENT, which
is the preregistered class for MDI client windows. The last parameter to CreateWindow
must be set to a pointer to a structure of type CLIENTCREATESTRUCT. This structure has
two fields:

• hWindowMenu is the handle of the submenu to which the document list
will be appended. In MDIDEMO, this is hMenulnitWindow, which was
obtained during WinMain. You'll see later how the menu is changed .

• idFirstChild is the menu, ID to be associated with the first document
window in the document list. This is simply IDM_FIRSTCHILD.

Back in WinMain, MDIDEMO displays the newly created frame window and enters
the tpessage loop. The message loop differs a little from a normal loop: After obtaining the
message from the message queue with a call to GetMessage, an MDI program passes the
message to TranslateMDISysAccel (and TranslateAccelerator if, like the MDIDEMO pro-
gram, the pr~gram also has menu accelerators). .'

The TranslateMDISysAccel function translates any keystrokes that may correspond to
the special MDI accelerators (Ctrl-F6, for example) into a WM_SYSCOMMAND message. If
neither TranslateMDISysAccel nor TranslateAccelerator returns TRUE (indicating that a
message was translated by one of these functions), do not call TranslateMessage and
DispatchMessage.

Notice the two different window handles passed to TranslateMDISysAccel and
TranslateAccelerator: hwndClient and hwndFrame, respectively. The WinMain function
obtains the hwndClient window handle by calling GetWindow with the GW _CHILD
parameter.

CREATING THE CHILDREN
The bulk of FrameWndProc is devoted to processing WM_COMMAND messages that sig
nal menu selections. As usual, the wParam parameter to FrameWndProc contains the
menu ID number.

For wParam values of IDM_NEWHELLO and IDM_NEWRECT, FrameWndProc
must create a new document window. This involves initializing the fields of an
MDICREATESTRUCT structure (most of which correspond to CreateWindow parameters)
and sending the client window a WM_MDICREATE message with IParam set to a pointer
to this structure. The client window then creates the child document window.

Normally, the szTitle field of the MDICREATESTRUCT structure would be the file
name corresponding to the document. The style field can be set to the window styles
WS_HSCROLL or WS_ VSCROLL or both to include scroll bars .in the document window.

872

Chapter 18: The Multiple Document Interface (MDI)

The style field can also include WS_MINIMIZE or WS_MAXIMIZE to initially display the
document window in a minimized or maximized state.

(The IParam field of the MDICREATESTRUCT structure provides a way for the frame
window and the child window to share some variables. This field could be set to a local or
global memory handle that references a block of memory containing a structure. During
the ~M_CREATE message in the child document window, IParam is a pointer to a
CREATESTRUCT structure, and the IpCreateParams field of this structure is a pointer to
the MDICREATESTRUCT structure used to create the window.)

On receipt of the WM_MDICREATE message, the client window creates the child
document window and adds the title of the window to the bottom of the submenu speci
fied in the MDICLIENTSTRUCT structure used to create the client window. When the
MDIDEMO program creates its first document window, this is the File submenu of the
MdiMenuInit menu. We'll see later how this document list gets moved to the Window sub
menu of the MdiMenuHello and MdiMenuRect menus.

Up to nine documents can be listed on the menu, each preceded by an underlined
number from 1 to 9. If more than nine document windows are created, this list is followed
by a "More windows" it,em on the menu. This item invokes a dialog box with a list box that
lists all the document windows. The maintenance of this document list is one of the nicest
features of the Windows 3 MDI support.

MORE FRAME WINDOW MESSAGE PROCESSING
Let's continue with FrameWndProc message processing before turning our attention to the
child document windows.

When you select Close from the File menu, MDIDEMO.c1oses the active child win
dow. It obtains the handle to the active child window by sending the client window a
WM_MDIGETACTIVE message. If the child window' responds affirmatively to a WM
_QUERYENDSESSION message, then MDIDEMO sends the client window a WM_MDI
DESTROY message to close the child window.

Processing the Exit option from the File menu requires only that the frame window
procedure send itself a WM_CLOSE message.

Processing the Tile, Cascade, and Arrange Icons options from the Window submenu
is a snap, requiring only that the WM_MDITILE, WM_MDICASCADE, and WM_MDI

,ICONARRANGE messages be sent to the client window.
The Close All option is a little more complex. FrameWndProc calls EnumChildWin

dows, passing a pointer referencing the CloseEnumProc function. This function sends a
WM_MDIRESTORE message to each child window, followed by a WM_QUERYENDSES
SION and (possibly) a WM_MDIDESTROY message. This is not done for the icon title win
dow, indicated by a non-NULL return of GetWindow with the GW _OWNER parameter.

873

SECTION V: DATA EXCHANGE AND LINKS

You'll notice that FrameWndProc does not process any of the WM_COMMAND mes
sages that signal one of the colors being selected from the Color menu. These messages are
really the responsibility of the document window. For this reason, FrameWndProc sends
all unprocessed WM_COMMAND messages to the active child window so that the child
window can process those messages that pertain to its window.

All messages that the frame window procedure chooses not to process mu.st be
passed to DefFrameProc. This is one of the new MDI functions. It replaces DefWin
dowProc in the frame window procedure. Even if a frame window procedure traps the
WM_MENUCHAR, WM_NEXTMENU, WM_SETFOCUS, or WM_SIZE messages, these
also must be passed to DefFrameProc.

Unprocessed WM_COMMAND messages must be passed to DefFrameProc. In par
ticular, FrameWndProc does not process any of the WM_COMMAND messages resulting
from the user selecting one of the documents from the list in the Window submenu. (The
wParam values for these options begin with IDM_FIRSTCHILD.) These messages are
passed to DefFrameProc and processed there.

Notice that the frame window does not need to maintain a list of window handles of
all document windows it creates. If ever these handles are needed (such as when process
ing the Close All option from the menu), they can be obtained using EnumChildWindows.

THE CHILD DOCUMENT WINDOWS
Now let's look at Hello WndProc, which is the window procedure used for the child docu-
ment windows that display "Hello, World!" ,

As with any window class used for more than one window, static variables defined in
the window procedure (or any function called from the window procedure) are shared by
all windows created based on that window class.

Data that is unique to each window must be stored using a method other than static
variables. One such technique involves window properties. Another approach (the one I
used) uses memory space reserved by defining a nonzero value in the cbWndExtra field of
the WNDCLASS structure used to register the window class.

In MDIDEMO, I use this space to store a local memory handle that references a block
of memory the size of the HELLODATA structure. Hello WndProc allocates this memory
during the WM_CREATE message, locks it, initializes the two fields (which indicate the
currently checked menu item and the text color), unlocks the block, and stores the local
memory handle using SetWindowWord.

When processing a WM_COMMAND message for changing the text colors (recall
that these messages originate in the frame window procedure), Hello WndProc uses Get
Window Word to obtain a handle to the memory block containing the HELLODATA struc
ture. Using this structure, Hello WndProc unchecks the checked menu item, checks the
selected menu item, and saves the new color.

874

Chapter 18: The Multiple Document Interface (MDI)

A document window procedure receives the WM_MDIACTIVATE message when
ever the window becomes active or inactive (indicated by a TRUE or FALSE value in
wParam). You'll recall that the MDIDEMO program has three different menus: Mdi
MenuInit for when no documents are present, MdiMenuHello for when a Hello document
window is active, and MdiMenuRect for when a Rect document window is active.

The WM_MDIACTIVATE message provides an opportunity for the document win
dow to change the menu. If wParam is TRUE (meaning the window is becoming active),
Hello WndProc changes the menu to MdiMenuHello. If wParam is FALSE, Hello WndProc
changes the menu to MdiMenuInit.

Hello WndProc changes the menu by sending a WM_MDISETMENU message to the
client window. The client window processes this message by removing the document list
from the current menu and appending it to the new menu. This is how the document list is
transferred from the MdiMenuInit menu (which is in effect when the first document is cre
ated) to the MdiMenuHellomenu. Do not use the SetMenu function to change a menu in an
MDI application.

Another little chore involves the checkmarks on the Color submenu. Program op
tions such as this should be unique to each document. For example, you should be able to
set black text in one window and red text in another. The menu checkmarks should reflect
the option chosen in the active window. For this reason, Hello WndProc unchecks the
selected menu item when the window is becoming inactive and checks the appropriate
item when the window is becoming active.

The window procedure gets the first WM_MDIACTIVATE message with wParam set
to TRUE when the window is first created and gets the last message with wParam set to
FALSE when the window is destroyed. When the user switches from one document to an
other, the first document window receives a WM_MDIACTIVATE message with wParam
set to FALSE (at which time it sets the menu to MdiMenuInit) and the second document
window receives a WM_MDIACTIVATE message with wParam set to TRUE (at which time
it sets the menu to MdiMenuHello or MdiMenuRect as appropriate). If all the windows are
closed, the menu is left as MdiMenuInit.

You'll recall that FrameWndProc sends the child window a WM_QUERYENDSES
SION when the user selects Close or Close All fr,om the menu. Hello WndProc processes
the WM_QUERYENDSESSION and WM_CLOSE messages by displaying a message box
and asking the user whether the window can be closed. (In a real program, this message
box would ask whether a file needed to be saved.) If the user indicates that the window
should not be closed, the window procedure returns O.

During the WM_DESTROY message, Hello WndProc frees the local memory block
allocated during the WM_CREATE message.

All unprocessed messages must be passed on to DejMDIChildProc (not DejWin
dowProc) for default processing. Several messages must be passed to DejMDIChildProc
whether the child window procedure does something with them or not. These are:

875

SECTION V: DATA EXCHANGE AND LINKS

WM_CHILDACTIVATE, WM_GETMINMAXINFO, WM_MENUCHAR, WM_MOVE, WM
_SETFOCUS, WM_SIZE, and WM_SYSCOMMAND.

RectWndProc is fairly similar to Hello WndProc in much of the overhead involved,
but it's a little simpler (no menu options are involved and the window does not verify with
the user whether it can be closed), so I needn't discuss it. But note that RectWndProc
breaks after processing WM_SIZE so it is passed to DejMDIChildProc.

THE POWER OF WINDOW PROCEDURES
Much of the support in Windows 3 for the Multiple Document Interface is encapsulated in
the MDICLIENT window class. I think this clearly illustrates the power of the object
oriented architecture of Windows. The client window procedure serves as an intermediary
layer between the frame window and the various document windows.

Now let's look at another powerful feature of Windows-dynamic link libraries.

876

Chapter 19

Dynamic Link
Libraries

Dynamic link libraries (also called DLLs, dynamic libraries, "dynalink" libraries, or library
modules) are one of the most important structural elements of Windows. Most of the disk
files associated with Windows are either program modules or dynamic link library mod
ules. So far we've been writing Windows programs; now,it's time to take a stab at writing
dynamic link libraries. Many of the principles you've learned in writing programs are also
applicable to writing these libraries, but there are some important differences.

LIBRARY BASICS
As you've seen, a Windows program is an executable file that generally creates one or
more windows and uses a message loop to receive user input. Dynamic link libraries are
generally not directly executable, and they do not receive messages. They are separate
files containing functions that can be called by programs and other DLLs to perform cer
tain jobs. A dynamic link library is brought into action only when another module calls one
of the functions in the library.

The term dynamic linking refers to the process that Windows uses to link a function
call in one module to the actual function in the library module. "Static linking" occurs
when you run LINK to create a Windows .EXE file from various object COB]) modules and
run time library CLIB) files. Dynamic linking occurs at run time.

877

SECTION V: DATA EXCHANGE AND LINKS

TKERNEL.EXE, USER.EXE, and GDI.EXE files, the various driver files such as KEY
BOARD.DRV, SYSTEM.DRV, and SOUND.DRV, and the video and printer drivers are all
dynamic link libraries. These are libraries that all Windows programs can use.

The various font resource files with the extension .FON are "resource-only" dynamic
link libraries. They contain no code and no data but instead have fonts that all Windows
programs can use. Thus, one purpose of dynamic link libraries is to provide functions and
resources that can be used by many different programs. In a conventional operating sys
tem, only the operating system itself contains routines that other programs can call on to
do a job. In Windows, the process of one module calling a function in another module is
generalized. In effect, by writing a dynamic link library, you are writing an extension to
Windows. Or you can think of dynamic link libraries (including those that make up Win
dows) as extensions to your program. The code, data, and resources in a dynamic link
library module are shared among all programs using the module.

Although a dynamic link library module may have any extension (such as .EXE or
.FON), the standard extension in Windows 3 is .DLL. Only dynamic link libraries with the
extension .DLL will be loaded automatically by Windows. If the file has another extension,
the program must explicitly load the module using the LoadLibrary function.

You'll generally find that dynamic libraries make most sense in the context of a large
application. For instance, suppose you write a large accounting package for Windows that
consists of several different programs. You'll probably find that these programs use many
common routines. You could put these common routines in a normal object library (with
the extension .LIB) and add them to each of the program modules during static linking
with LINK. But this approach is wasteful, because each of the programs in this package
contains identical code for the common routines. Moreover, if you change one of these rou-'
tines in this library, you'll have to relink all the programs that use the changed routine. If,
however, you put these common routines in a dynamic link library called (for instance)
ACCOUNT.DLL, then you've solved both problems. Only the library module need contain
the routines required by all the programs (thus requiring less disk space for the files and
less memory space when running two or more of the applications), and you can make
changes to the library module without relinking any of the individual programs.

Dynamic link libraries can themselves be viable products. For instance, suppose you
write a collection of three-dimensional drawing routines and put them in a dynamic link
library called GDI3.DLL. If you then interest other software developers in using your
library, you can license it to be included with their graphics programs. A user who has
several of these programs would need only one GDI3.DLL file.

Library: One Word, Many Meanings

Part of the confusion surrounding dynamic link libraries results from the appearance of
the word library in several different contexts. Besides dynamic link libraries, we'll also be
talking about "object libraries" and "import libraries."

878

Chapter 19: Dynamic Link Libraries

An object library is a file with the extension .LIB containing code that is added to
your program's .EXE file when you run the linker during static linking. For example, the
normal Microsoft C object library that you link with small-model Windows programs is
SLIBCEW.LIB.

An import library is a special form of an object library file. Like object libraries, im
port libraries have the extension .LIB and are used by the linker to resolve function calls in
your source code. However, import libraries contain no code. Instead, they provide LINK
with information necessary to set up relocation tables within the .EXE file for dynamic
linking. The LIBW.LIB and WINS7EM.LIB files included with the Windows Software De
velopment Kit are import libraries for Windows functions. If you call Rectangle in a pro
gram, LIBW.LIB tells LINK that this function is in the GDI.EXE library and has an "ordinal
number" of 27. This information goes into the .EXE file so that Windows can perform
dynamic linking with the GDI.EXE dynamic link library when your program is executed.

Object libraries and import libraries are used only during program development.
Dynamic link libraries are used during run time. A dynamic library must be present on the
disk when a program is run that uses the library. When Windows needs to load a dynamic
link library module before running a program that requires it, the library file must be
stored in either the current directory, a directory accessible through the PATH string
in the MS-DOS environment, the Windows directory, or the SYSTEM subdirectory of the
Windows directory.

Examining Libraries with EXEHDR

Both program files and dynamic link library files are in the New Executable format. You
can get some sense of the workings of dynamic linking by running the EXEHDR program
(included with Microsoft C 6) with the -v (verbose) parameter on the various files included
with Windows and seeing what type of information the files contain. EXEHDR divides its
output into five main sections, in this order:

• The old MS-DOS .EXE header information

• The New Executable format header information

• A list of the code and data segments in the module

• The exported functions of the module

• Relocation information for each segment

Some of this information won't be present for resource-only library modules (such as the
.FON files). You'll notice that the first line of the second section begins with either
"Module," indicating a program module, or "Library," indicating a dynamic link library.

If you run EXEHDR on KERNEL.EXE, USER.EXE, or GDI.EXE, you'll find that many
of the names of the exported functions (the fourth section of the output) are familiar.

879

SECTION V: DATA EXCHANGE AND LINKS

These are the functions that the library makes available for other modules to call. Each
exported function has an "ordinal number" associated with it. This is simply a positive
number in the "ord" column of the EXEHDR output.

Both program modules and library modules can call functions that are exported from
other library modules. To the module that makes the call, the function is said to be "im
ported." These imported functions show up in the last section of the EXEHDR display as
relocation items, generally in the form of the library module name followed by a period
and the ordinal number of the function.

When Windows loads a program into memory for execution, it must resolve the calls
that the program makes to imported functions. If the library module containing these func
tions has not yet been loaded into memory, Windows loads at least the data segment and
one code segment into memory and calls ~ short initialization routine in the library mod
ule. Windows also creates "reload thunks" (a topic discussed in Chapter 7) for the exported
functions in the library. The calls in the program to external functions can then be
resolved by inserting the addresses of the reload thunks in the code segment of the program.

The second section of the EXEHDR output points up some differences between
programs and libraries. Windows programs have a line that reads:

Data: NOSHARED

This means that new data segments are created for each instance of the program. Because
a single instance of a Windows library is shared by all programs that need it, this line is
different for Windows libraries. It can be either:

Data: SHARED

or:

Data: NONE

depending on whether the library has one data segment or none.
A Windows program must have at least one data segment (called the automatic data

segment), because this data segment contains the program's stack. In the EXEHDR output
~f a program file, you'll see an indication of the stack size ("Extra Stack Allocation"). How
ever, a library module doesn't have its own stack, and thus EXEHDR won't show this line.
A dynamic link library always uses the stack of the program that calls the functions in
the library. The absence of a stack for the library module has some significant implications
that I'll cover later in this chapter.

Because each Windows program has its own stack, Windows must switch between·
stacks when switching from one program to angther. A stack's presence in a program iden
tifies the program as a distinct process that can receive messages from Windows. A library
module is not a process and does not receive messages. When a program calls a function in
a library module, no task switch takes place. To Windows, the program making the call to
the library is still running even though code in the library is being executed.

880

Chapter 19: Dynamic Link Libraries

STRPROG AND STRLIB
We'll begin by writing a program with a dedicated dynamic link library and see how they
work together. The program is called STRPROG ("string program"), and the dynamic link
library is called STRUB ("string library"). STRUB has three exported functions that
STRPROG calls. Just to make this interesting (and to force you to think about some of
the implications), one of the functions in STRUB uses a call-back function defined in
STRPROG.

STRUB is a dynamic link library module that stores and sorts up to 256 character
strings. The strings are capitalized and stored in STRUB's own data segment. STRPROG
can use STRUB's three functions to add string~, delete strings, and obtain all the current
strings from STRUB. The program has two menu items (Enter and Delete) that invoke
dialog boxes to add and delete these strings. STRPROG lists all the current strings
stored in STRUB's data segment in STRPROG's client area.

This function defined in STRUB adds a string to STRUB's data segment:

Baal FAR PASCAL AddString (lpStringln)

The parameter lpString is a far pointer to the string. The string is capitalized within the
AddString function. If an identical string already exists in STRUB's data segment, this
function adds another copy of the string. AddString returns TRUE (nonzero) if it is suc
cessful and FALSE (0) otherwise. A FALSE return value can result if the string has a length of
0, if memory could not be allocated to store the string, or if 256 strings are already stored.

This STRUB function deletes a string from STRUB's data segment:

Baal FAR PASCAL DeleteString (lpStringln)

Again, the parameter lpString is a far pointer to the string. If more than one string matches,
only the first is removed. DeleteString returns TRUE (nonzero) if it is successful and FALSE
(0) otherwise. A FALSE return value indicates that the length of the string is 0 or that a
matching string could not be found.

This STRUB function uses a call-back function located in the calling program to
enumerate the strings currently stored in STRUB's data segment:

short FAR PASCAL GetStrings (lpfnGetStrCallBack, lpParam)

The call-back function must be defined as follows:

Baal FAR PASCAL GetStrCallBack (lPSTR lpString, lPSTR lpParam)

The GetStrCallBack function must be exported· from the program that calls GetStrings.
The lpfnGetStrCallBack parameter to GetStrings must be obtained from MakeProcln
stance. GetStrings calls GetStrCallBack once for each string or until the call-back function
returns FALSE (0). GetStrings returns the number of strings passed to the call-back func
tion. The lpParam parameter is a far pointer to programmer-defined data. Note that all the
pointers passed as function parameters are far pointers, because STRUB must reference
data in the caller's data segment.

881

SECTION V: DATA EXCHANGE AND LINKS

The STRLIB Library

Figure 19-1 shows the three files necessary to create the STRLIB.DLL dynamic link library
module. STRLIB has a lot in common with the Windows programs that we've been writing,
but there are also some subtle (and some not-sa-subtle) differences.

11' """"'}'?'./

. ~ III
• ••••••

I"

• ••••••

(..

••. '."s ~' ,t
Ilorc} .,.".

3:
II 11

••••••

.• ' •••••• '

...

">

•••••••••••••••

• ••••••••••••••••••

(I
nr

Figure 19·1. The STRIfB library. (continued)

882

Chapter 19: Dynamic Link Libraries

(continued)

883

SECTION V: DATA EXCHANGE AND LINKS

,., , ... , ,.',. "",.,",(,', .••. , ,.'., ••• ' ••• . }\i))

tiii /\\/<>:jJ (~[ts,n,I9,tal)
\iretuthFA LSE ·?1

""/ '"""'."': ",>, .>:".",:, I.",i,) ,/\

fOr C6::i}d<nTota 1/: j++1
}})h~yrjogS[j]~} hStri:r:~~ [j if 1] ;

,.

§hortFAR PASCAL GetSttl ngs (GETSTRl pfriGetStrCall Back, LPSTR 1 pPa ram)
'.....y {

.. , ,:,

BOOt •••••• bReyyxP/:
NPSTRllpStrlhg ;
~ppn~~1ti1 .. ""

. ' .. ""
':" .

••••• .. :

/" i

••••••

<ii
~~,

'.(

> "". , .',. r

:<
.;] iL ;;, i·' it:.'·'. ","

)

r ,
VI ~'

p 'J: Il
~~.: 'I " lit

H i, i

I ~~
· .. i ·...Y7

''''

884

Chapter 19: Dynamic Link Libraries

In addition, you'll need the LIBENTRY.OB] file included with the Windows Software
Development Kit and stored in the library subdirectory of the SDK directory. (The
assembly-language source code for this object module is also included in the SDK.)

Make File Differences

With a close look, you'll notice a couple differences between the STRLIB.MAK make file
and previous make files used for creating Windows programs.

First, the compile line in STRLIB.MAK includes a compiler switch, -ASw, that isn't
required when compiling Windows programs. The -A switch is the flag for a "customized
memory model." The S indicates small model. The w means that the compiler is to assume
that the data segment isn't equal to the stack segment. This isn't normal, but it's important
that you use this for a library module. The implications of the -ASw switch are discussed in
greater detail later in this chapter.

Second, the link section of the make file creates the STRLIB.DLL file using the
following statement:

link strlib libentry, strlib.dll lalign:16, NUL, Inod sdllcew libw, strlib

Note the inclusion of the LIBENTRY.OB] file in the object module field. In the field that
contains the nondefault libraries, I've listed SDLLCEW.LIB rather than SLIBCEW.LIB.
SLIBCEW.LIB is the C run time library for Windows programs; SDLLCEW.LIB is the C run
time library for dynamic link libraries. LIBW.LIB is the import library.

The Library Entry Point

The most obvious difference between STRLIB.C and our Windows programs is the ab
sence of WinMain. Instead, there is a function called LibMain. LibMain is called from the
LIBENTRY.OB] module. This is required because of the different ways in which Windows
programs and Windows dynamic link libraries are initialized during startup.

When you link a Windows program with LINK, a function called _astart is
linked into the program. This is the entry point to the program. On entry to _astart,

the CPU registers contain the following information:

BX

ex
DI

SI

ES

Stack size

Heap size

Instance handle

Previous instance

Program segment prefix

The start-up code (which comes from SLIBCEW.LIB) performs some initialization and then
calls the WinMain function, which is the perceived entry point when you program for
Windows in C.

885

SECTION V: DATA EXCHANGE AND LINKS

For dynamic link libraries, no start-up code is provided in SDLLCEW.LIB. That's why
LIBENTRY.OB] (or something similar). is required. Windows calls LibEntryonce (when the
first program that requires the dynamic link library is loaded) with the CPU registers set as
follows:

DI Instance handle

DS library's data segment

CX Heap size

ES:SI Command line

Note the differences between these registers and those for a Windows program. A register
containing the stack size isn't required, because library modules don't have a stack. A
register containing the previous instance handle isn't required, because library modules
can't have multiple instances. For most uses of libraries, the command-line parameter in
ES:SI isn't used. LibEntry must return nonzero if initialization is successful and 0 if errors
are encountered. A failed initialization causes Windows to not run the program that
requires the library.

LIBENTRY initializes the local heap by calling Local/nit and then calls LibMain,
which is in STRLIB.C. The LibMain definition looks like this:

int FAR PASCAL LibMain (HANDLE hlnstance. WORD wDataSeg. WORD wHeapSize.
LPSTR lpszCmdLine)

{
if (wHeapSize > 0)

UnlockData (0) ;

return 1 ;
}

This simply unlocks the data segment of the library (which is locked by the Local/nit call
in LIBENTRY) and returns 1. If you need to do additional initialization when the library is
first loaded, you can do it here.

Note the differences implied here between programs and libraries. On entry to a
program, the start-up code passes control to WinMain, which performs initialization and
then enters a message loop. Multitasking takes place during GetMessagecalls. The program
exits the message loop (and WinMain) only when the program retrieves a WM_QUIT mes
sage from the message queue. On entry to a library, the start-up code must perform initial
ization and then return control to Windows with a nonzero value. The rest of the library
sits dormant in memory until another module calls one of the exported functions.

You can also add a "de-initialization" routine to a library; the routine is called when
a prograrp using the library terminates. Information on this can be found in Chapter 20 of
the Guide to Programming book, included in the Windows Software Development Kit.

886

Chapter 19: Dynamic Link Libraries

The STRLIB Functions

Aside from the LibMain initialization function, STRLIB contains only the three functions
that it will export to be used by other programs. All these functions are defined as FAR and
PASCAL. They must be FAR because they will be called from the code segment of another
module (STRPROG). You aren't required to define them as PASCAL, however: That's simply
a convention used in other Windows libraries to save a few bytes of space. These three
functions use Windows' local memory allocation functions to allocate space in the local
heap for storing the character strings. Because the AddString function allocates moveable
local blocks, we've essentially given Windows the job of reorganizing the local heap when
necessary to allocate more memory.

The Library Module Definition File

The module definition file for a library looks somewhat similar to the .DEF file for a pro
gram, but there are also significant differences between the two. For program modules, the
module definition file contains a NAME statement indicating that the module is a program.
For librarie~, the first line is a LIBRARY statement:

LI BRARY STRLI B

This statement identifies the module as a library. The library CODE statement is the same
as that used for programs:

CODE PRELOAD MOVEABLE DISCARDABLE

You can also use LOADONCALL, but for a library with a single code segment, the segment
must be loaded into memory so that the initialization routine can be executed.

For a Windows program, the DATA statement indicates that the data segment is
MULTIPLE, which means that each instance of the program uses the same data segment.
For the STRLIB library, the data segment is marked as SINGLE, because a library can have
only one instance:

DATA PRELOAD MOVEABLE SINGLE

If the library doesn't include a data segment, the DATA statement is:

DATA NONE

Notice how these directives relate to the information obtained from EXEHDR.
Because we want STRLIB to use its local heap to store its character strings, we have to

give it a local heap in the HEAPSIZE statement:

HEAPSIZE 1024

This is the initial size of the local heap. Windows can expand the data segment of the
library to accommodate a larger heap if one is needed. Notice there's no STACKSIZE
statement in the module definition file-a library module doesn't have its own stack.

887

SECTION V: DATA EXCHANGE AND LINKS

For a Windows program, the EXPORTS section of the module definition file lists all
far functions within the program that can be called by Windows. Generally, this list in
cludes at least one window procedure., For a dynamic link library, the EXPORTS section
lists all far functions that can be called by programs and other library modules. This is the
EXPORTS section of STRLlB.DEF:

EXPORTS AddString
DeleteString
GetStrings

The STRPROG Program

The STRPROG program, shown in Figure 19-2, is fairly straightforward. The two menu op
tions (Enter and Delete) invoke dialog boxes that allow you to enter a string. STRPROG
then calls AddString or DeleteString. When the program needs to update its client area,
it calls GetStrings and uses the function GetStrCallBack to list the enumerated strings.

Figure 19·2. The STRPROG program. (continued)

888

Chapter 19: Dynamic Link Libraries

(continued)

889

SECTION V: DATA EXCHANGE AND LINKS

(continued)

890

Chapter 19: Dynamic Link Libraries

(continued)

891

SECTION V: DATA EXCHANGE AND LINKS

;,
::'i" 'i,:,} i""",

""""i"""

"":: (iii

<, """ ,",,""",

..... ,' .\>

.... >\ \/ :'.",:

< . :

.. ,,:

i \i i .\

:": :::: case I DM1DELETE. ':i .' '. » r
if\ (Di~lo9BA~.~M.rst ...•. ~::O~J:e.~eOlg;:i hwnd: 1 prpOl gProc))?

{ .\(\ i ... ,.'
() if} {DeletJstrirg (s.£stFihg).)i.i? •

E~ym~j:.h~6ws <lpfriEnUmCalJ Back: Od) ;'
el se ···:··:::·::··:::::·:···:···:·:::·

.~essageBeep (0):

i:':

.... :. (.....•.•.. : •.

::.:: :

case WMg8INT:
hdc~.Begj ~pai nt (hwnd. &ps) ;

(.

~2M;~)~2j0~i!0~~I:~·~ •• ~>9<:~>11~~: .. 'r<l~m':tl~l~~

......
.•... :

":

:.,.: :.
<, ' .

......

892

.: .. : ..

.....

(continued)

Chapter 19: Dynamic Link Libraries

893

SECTION V: DATA EXCHANGE AND LINKS

.......•
~ *"'''' ;~~;£;+"'~~;;.;;;;.~;;.;; w ~ ~ ~ ~ * * *7* * * * * * * *

···~·STRPROG+Qq;niOduT~~~n~j .. fJOQ fi i e
: ~ .. t .t·:~ ~ * ~.~ ~ ~ ~ ~ * * * * * * * * * * * * ~ ~ * ~ * ••• ~ ~ ~

i

SIB~BOG

i Y} ..••.......•. iiii>
.........

·······<.«t.

Near the top of the STRPROG. C source code file are declarations of the three functions in
STRUB that STRPROG will call:

BOOl FAR PASCAL AddString (lPSTR);
BOOl FAR PASCAL DeleteString (lPSTR) ;
short FAR PASCAL GetStrings (FARPROC. CBPARM FAR *) ;

If you plan to use library functions in several different programs, you'll want to put the
declarations in a header file. This header file will be similar to (although I hope not as long

. as) WINDOWS.H.
These three functions are also listed in the IMPORTS section of STRPROG's module

definition file: ,

IMPORTS STRlIB.AddString
STRlIB.DeleteString
STRlIB.GetStrings

These correspond to the three functions in the EXPORTS section of STRUB.DEF. The
IMPORTS section directs UNK to add information to STRPROG .EXE that allows Win
dows to dynamically link STRPROG's calls to these functions with the actual function
routines in STRUB.DLL The EXPORTS section in STRLIB.DEF makes the functions in
STRLIB.DLL available to other modules. The IMPORTS section in STRPROG .DEF indicates
the module-STRLIB-and t~e functions in STRLIB that STRPROG requires.

894

Chapter 19: Dynamic Link Libraries

Running STRPROG

Once you've created STRLIB.DLL and STRPROG.EXE, you're ready to run STRPROG.
Before you do so, be sure that STRLIB.DLL is in the current directory or a directory that is
listed in the PATH string· of the MS-DOS environment. Windows must be able to load
STRLIB.DLL when you execute STRPROG. If Windows can't find STRLIB.DLL, it will
display a message box asking you to put the STRLIB.DLL disk in drive A.

When you execute STRPROG .EXE, Windows performs fixups to functions in
external library modules. Many of these functions are in the normal KERNEL, USER, and
GDI library modules. But Windows also sees that the program calls thre~ functions from
STRLIB, so Windows loads the STRLIB.DLL file into memory, creates reload thunks for the
three functions, and calls STRLIB's initialization routine. The far calls within STRPROG
to these three functions are dynamically linked with the reload thunks that branch to
functions in STRLIB. You can then use STRPROG to add and delete strings from STRLIB's
internal table. STRPROG's client area shows the strings currently in the table.

The calls from STRPROG to the AddString, DeleteString, and GetStrings functions in
STRLIB are very efficient and have almost no overhead except for the reload thunk. In fact,
the link between STRPROG and STRLIB is as efficient as if the three functions in STRLIB
were simply i~ another moveable code segment in STRPROG. So what? you say. Why
do I have to make this a dynamic link library? Can't I include these three routines in
STRPROG.EXE?

Well, you could. In one sense, STRLIB is nothing more than an extension of
STRPROG. However, you may be interested to see what happens when you execute a sec
ond instance of STRPROG. Because only one instance of STRLIB is loaded for both in
stances of the program, and because STRLIB uses its own local heap to store the character
strings, all instances of STRPROG essentially share this data. (The En um CallBack function
in STRPROG serves to notify all STRPROG's instances that the contents of STRLIB's data
segments have changed. Enum Windows causes Windows to call EnumCaliBack with
handles to all parent windows. EnumCaliBack then checks to see if the class name of each
window equals "StrProg" - if it does, the function sends the window a privately defined
WM_DATACHANGE message.) And you can easily imagine an enhanced version of
STRLIB managing a database that is shared by several instances of the same program or by
single instances of different programs.

Far Function Prologs

In the discussion of memory management in Chapter 7, I went into great detail about
how Windows moves code and data segments in memory and handles multiple instances
of programs. Some of that discussion centered on the prolog that the compiler adds to
far functions.

When Windows loads a code segment into memory, it alters the function prolog of all
exported far functions in the segment. This table shows the results of that process:

895

SECTION V: DATA EXCHANGE AND LINKS

Nonexported Exported Function
Far Function in.a Program

PUSH OS NOP

POP AX NOP

NOP NOP

INC BP INC BP

PUSH BP PUSH BP

MOV BP, SP MOV BP, SP

PUSH OS PUSH OS

MOV OS,AX MOV OS,AX

Exported Function
in a Library

MOV AX,xxxx

INC BP

PUSHBP

MOV BP, SP

PUSH OS

MOV OS,AX

These three prologs differ in the way that DS (the data segment address register) is set on
entry to the funCtion. In each case, the original value of DS is saved in the function prolog
and restored in the function epilog.

The nonexported far function simply sets AX equal to DS and then DS equal to AX.
This does nothing.

For an exported function in a program, Windows inserts NOPs in the first 2 bytes of
the function. The resultant prolog then sets DS equal to AX. This prolog requires that AX
be set to the data segment of the particular instance of the program. By itself, the function
is incomplete. You must call MakeProclnstance for these exported functions so that Win
dows builds an "instance thunk" that sets AX equal to the data segment address of the in
stance. (The only case in which you don't need to call MakeProclnstance for an exported
function is for a window procedure specified in a window class structure.).

The exported function in a library is somewhat simpler. Because the library can have
only one instance, Windows can simply insert a 3-byte instructio~ that sets AX equal to the
data segment. address of the library. Thus, you don't need to use MakeProclnstance with
exported far functions in library modules. When a program calls a far functi~n exported
from a library module, this prolog sets the data segment equal to the library's data seg
ment. The library function can then use its own data segment. It continues to use the stack
segment of the program that called it.

The Use of Call·Back Functions

Now that we know what these function prologs look like, let's examine what happens
when STRPROG calls the GetStrings function. GetStrings requires a call-back function in
STRPROG called GetStrCallBack.

Because GetStrCallBack is exported, Windows inserts NOPs in the first 2 bytes of the
function when STRPROG's code segment is loaded into memory. While processing the
WM_CREATE message, STRPROG calls MakeProclnstance for this function:

lpfnGetStrCallBack = MakeProcInstance (GetStrCallBack. hInst) ;

896

Chapter 19: Dynamic Link Libraries

On return from MakeProclnstance, the variable IpjnGetStrCallBack points to code
that looks like this:

MOV AX, yyyy
JMP GetStrCallBack

where Y.Y.YY is the data segment address of this instance of STRPROG.
STRPROG calls GetStrings to update its client area:

GetStrings (lpfnGetStrCallBack, &cbparam) ;

The GetStrings function is in STRUB. The parameter cbparam is a structure containing
information that GetStrings simply passes back to GetStrCallBack, which then uses the
information to display the strings in the client area.

In STRUB, the prolog to GetStrings sets AX equal to the data segment of the library,
saves the current value of DS (the data segment of STRPROG), and sets DS equal to AX.
Now the function can use its own data segment to obtain the strings currently stored. When
it obtains a string, it calls the call-back function passed as a parameter to GetStrings:

bReturn = (*lpfnGetStrCallBack) «LPSTR) npString, lpParam) ;

This actually calls the instance thunk for GetStrCallBack set up by MakeProclnstance. The
instance thunk sets AX equal to STRPROG's data segment. The function prolog saves the
current value of DS (the data segment of STRUB) and sets DS equal to AX. Now
GetStrCallBack is using STRPROG's own data segment and can process the string. When
GetStrCallBack returns control to GetStrings, the function epilog restores the original
value of DS, which is STRUB's data segment. GetStrings is ready to find the next string.

When GetStrings is finished, the function epilog restores the value of DS to
STRPROG's data segment. As you can see, although control bounces back and forth be
tween STRPROG and STRUB, each module is always using its own data segment. During
this entire process, however, the stack segment never changes. It is always STRPROG's
stack segment. For code in STRPROG, this situation is just fine. For code in STRUB, it can
pose some problems.

THE DS != 55 ISSUE
The segmented architecture of the Intel 8086 family of microprocessors has been giving
programmers grief for many years now. But nowhere does segmented architecture cause
more problems than in Windows libraries. If you skipped the first half of Chapter 7, think
ing that you'd never need to know about segmented architecture and the intricacies of near
and far pointers, now is the time to read it. And even if you've read it carefully, you might
still benefit from this quick review.

The Intel 8086 family of microprocessors operating in real mode can address 1
megabyte of memory. This memory is addressed by a combination of a 16-bit segment

897

SECTION V: DATA EXCHANGE AND LINKS

address and a 16-bit offset address. The 16-bit segment address marks the beginning of a
64-KB area of memory. The offset address is relative to the begi~ning of the segment. In
protected mode, the segment address references a 24-bit base address in a descriptor table.
The offset address is added to this.

The 8086-family microprocessors have four registers that contain segment addresses:
the code segment register (CS), the data segment register (DS), the stack segment register
(SS), and the extra segment register (ES). The instruction pointer (IP) always addresses
code within the code segment. The stack pointer (SP) always addresses the stack within
the stack segment. Registers that address data can do so relative to any of the four current
segments. When programming in Microsoft C, 16-bit pointers that specify only an offset
address are called near or short pointers, and 32-bit pointers that contain both a segment
address and an offset address are called far or long pointers.

In C, all variables defined as outside functions (on the external level) and all variables
defined as static within functions are stored in static memory. The compiler uses near
pointers relative to the 8086 data segment (DS) to address variables stored in, static
memory.

All parameters to functions and all variables within functions that are not defined as
static are stored on the stack. The compiler uses near pointers relative to the 8086 stack
segment (SS) to address the stack.

When you use a near pointer in a C program, the pointer can reference a variable
either in static memory or on the stack. The compiler has no way to determine whether
the near pointer is an offset to DS or SS. For this reason, C programs are normally con
structed to use the same segment for data and the stack. Simply put, DS == SS. This is
almost required for a C implementation on 8086-family microprocessors, because C does
not differentiate between pointers to static variables and pointers to stack variables.

Let's take an example. In a small-model or medium-model program, you can use the
normal C strlen function to find the length of a string. The parameter to strlen is a near
pointer to the string:

wLength = strlen (pString) :

The string itself could be stored either in static memory or on the stack. You could define
pString like this:

char *pString - "This is a string" :

In this case, the string "This is a string" is stored in static memory, and the near pointer is
relative to the beginning of the data segment. However, you could do something like this
within a function:

898

char szString [20] :
[other program lines}

wLength - strlen (szString)

Chapter 19: Dynamic Link Libraries

In this case, the szString array takes up 20 bytes on the stack. When you refer to szString,
you're actually referring to a near pointer relative to the stack segment.

How does the strlen function know whether the near pointer is an offset in the stack
segment or in the data segment? It doesn't. If you take a look at the assembly-language code
for strlen in the SLIBCEW.LIB library, this is what you'll find:

strlen NEAR PROC

PUSH BP
MOV BP. SP
MOV OX. OJ

MOV AX. OS
POP ES. AX

MOV 01, [BP+4]
XOR AX. AX
MOV CX. -1
REPNZ SCASB
NOT CX
OEC CX
XCHG AX. CX

MOV OJ. OX

MOV SP. BP
POP BP
RET

strlen ENOP

Prologue

Save OJ

Set ES equal to OS

Get OJ ptr off stack

Search for zero in ES:OJ
Calculate length

Restore OJ

Epilogue

The strlen function assumes that the near pointer is an offset in the data segment.
It sets ES equal to DS using this code:

MOV AX. OS
MOV ES. AX

It then uses ES to scan the string for a terminating o. To write a strlen function that would
work with a near pointer in the stack segment, you would need to replace these lines with:

MOV AX. SS
MOV ES. AX

But you've never had to worry about this little problem in Windows programs, because DS
equals SS.

Windows dynamic libraries are another story. The data segment is the library's own
data segment, but the stack segment is the stack of the caller. That is, DS != SS. If you call
strlen in a Windows library for a string that is stored on the stack, the function won't work
correctly, because the strlen function assumes that the near pointer is relative to the data

899

SECTION V: DATA EXCHANGE AND LINKS

segment. When you first realize the implications of this, you're likely to assume that pro
gramming Windows dynamic libraries is very difficult. Let's just say that it's not quite as
carefree a process as writing a Windows program, but the job certainly isn't impossible.
After all, the bulk of Windows consists of dynamic libraries-the KERNEL, USER, and GDI
modules.

At one time, the recommended practice was to use no normal C library functions
within a dynamic library and to instead write your own functions. This restriction has now
been loosened, and information is available to let you use C library functions intelligently.
The conventions followed in the strlen function hold in most of the functions in the normal
C library distributed with the Microsoft C Compiler: Most functions that accept pointers
assume that the pointer is relative to the data segment; these functions do not assume that
DS is equal to SS. Any C rut). time function that cannot be used in a dynamic link library is
not included in SDLLCEW.LIB.

When you compile C source code for a small-model Windows library, include the
switch -ASw, and for a medium-model Windows library, include the switch -AMw. These
switches tell the compiler to assume that DS is not equal to SS. Nothing very magical hap
pens here. The primary purpose of these switches is to alert you to possible problems in
your code. For instance, within a function, you might define an array and a pointer:

int array [3]
int *ptr

If you say:

array [0] = array [1] + array [2] ;

the compiler uses SS to reference the elements of array, because the compiler knows that
array is on the stack. However, you might have code like this:

ptr = array ;
*ptr = *(ptr + 1) + *(ptr + 2) ;

In the first statement, the compiler assigns the near address of array (which happens to be
referenced from the stack segment) to the near pointer ptr. But when generating code for
the second line, the compiler assumes that ptr references a variable in the data segment.
That's wrong.

If you have a program with a construction like this and you compile with the -ASw
switch and a warning level of 1 or 2, you'll get 'a warning message for the assignment of the
array address to ptr:

warning C4058: address of automatic (local) variable taken, DS 1= SS

You can translate this message as: "You've assigned the address of a local variable on the
stack to a near pointer. Future use of this near pointer will involve the data segment.

900

Chapter 19: Dynamic Link Libraries

You've specified that you want the compiler to assume DS is not equal to SS. This assign
ment statement contradicts your intentions."

You can fix this by making ptr a far pointer, as follows:

int array [3] :
int far *ptr :

ptr "" array :

Now the compiler assigns the full 32-bit address of array (the stack segment and the offset)
to ptr. You're safe in using ptr. Or you can make array a static variable:

static int array [3] :
int *ptr :

ptr .,. array

The compiler now assumes that ptr references data in the data segment; this is correct,
because array is defined as static.

Don't assume that you'll always be alerted to problems like this. Here's another
example. You have a function that sums up the first 100 elements of an integer array:

int sumup (int array [])
{
int i • n .,. 0

for (i - 0 : i < 100 : i++)
n += array [i] :

return n :
}

If you call this function and the array happens to be on the stack, you're in trouble:

int array [100] :
[other program lines}

sumup (array) : /* A problem here */

This won't even generate a warning message, but it's obviously incorrect. How <:10 you get
around it? Use far pointers. Define the function like this:

int sumup (int far array [])

and call the function like this:

sumup «int far *) array)

Or make array a static variable:

static int array [100] ;
[other program lines}

sumup (array) ; /* No problem here*/

901

SECTION V: DATA EXCHANGE AND LINKS

This is a better solution for an array of this size anyway, because it avoids putting 200 bytes
on the calling program's stack.

You can avoid many of the DS != SS problems simply by not using stack variables and
instead defining all your local variables as static. If you want to use stack variables for some
items to save space in the data segment, you should avoid using the stack either for arrays
or for any variables that require pointers. Finally, if you use pointers with stack variables,
make them far pointers.

The parameters to a library function are always on the stack. If you need to use a
pointer to reference a function parameter, use a far pointer.

OTHER LIBRARY RESTRICTIONS
The start-up code that is added to a Windows program during linking with LINK uses 'the
registers passed to the program on entry, together with some DOS function calls, to set
various global variables in the program's data segment. These variables allow programs ac
cess to the DOS environment and to other information. This start -up code isn't present in
Windows libraries. For this reason, you can't use the getenv or puienv functions in librar
ies, nor can you use the following global variables defined in Microsoft C:

. .

_dosvermajor

_osmajor

_psp

_dosverminor

_osminor

environ

I mentioned earlier that a dynamic library module doesn't receive messages. How
ever, a library module can call GetMessage and PeekMessage. The messages the .library
pulls from the queue with these functions are actually messages for the program that called
the library function. In general, the library works on behalf of the program calling it, a rule
that holds for most Windows functions that a library calls. The obvious exceptions are local
memory allocation functions. As you saw with the STRLIB library, these functions use the
library's local heap.

A library can allocate global memory for the program instance calling the library.
The global memory blocks are automatically freed when the program instance terminates.

A dynamic library can load resources (such as icons, strings, and bitmaps) either from
the library file or from the file of the program that calls the library. The functions that load
resources require an instance handle. If the library uses its own instance handle (which
is passed to the library during initialization), then the library can obtain resources from
its own file. To load resources from the calling program's .EXE file, the library function
requires the instance handle of the program calling the function.

902

Chapter 19: Dynamic Link Libraries

Registering window classes and creating windows in a library can be a little tricky.
Both the window class structure and the CreateWindow call require an instance handle.
Although you can use the library module's instance handle in creating the window class
and the window, the window messages still go through the message queue of the program
calling the library when the library creates the window. If you must create window classes
and windows within a ,library, then it's probably best to use the calling program's in
stance handle.

Because messages for modal dialog boxes are retrieved outside a program's message
loop, you can create a modal dialog box in a library by calling DialogBox. The instance
handle can be that of the library, and the hwndParent parameter to DialogBox can be set
to NULL.

DIFFERENT METHODS FOR SPECIFYING LINKS
The module definition files for STRPROG and STRUB show only one of several possible
methods for listing functions to be exported from one module and imported in another.
STRUB's EXPORTS section looks like this:

EXPORTS AddString
DeleteString
GetStrings

STRPROG's IMPORTS section refers to both the library module and the function names:

IMPORTS STRLIB.AddString
STRLIB.DeleteString
STRLIB.GetStrings

Here's another method: The module definition file for STRUB can assign "ordinals"
to each of the functions. These are simply unique positive integers preceded by @:

EXPORTS AddString @1
DeleteString @2
GetStrings @3

STRPROG's IMPORTS section then references these numbers:

IMPORTS AddString ~ STRLIB.l
DeleteString = STRLIB.2
GetStrings = STRLIB.3

This method gives STRPROG a smaller .EXE file, because the file simply stores the or
dinal numbers rather than the names of all the functions. For a large number of imported
functions, this method provides a significant reduction in .EXE size. It's a little trickier to
use than the first method, because you have to be sure you get the numbers right.

You can also use function names in the program that are different from those in the
library. For instance, suppose that in STRPROG you use the names AddStr, DelStr, and

903

SECTION V: DATA EXCHANGE AND LINKS

GetStr instead of AddString, DeleteString, and GetStrings. You can reference these aliases
to the real function names in the IMPORTS section:

IMPORTS AddStr = STRLIB.AddString
DelStr = STRLIB.DeleteString
GetStr ~ STRLIB.GetStrings

Or if the module definition file for STRLIB defines ordinals for each of the functions, the
IMPORTS section will look like this:

IMPORTS AddStr = STRLIB.l
DelStr = STRLIB.2
GetStr = STRLIB.3

Even if you don't explicitly specify ordinal numbers for the exported functions in the
library module definition file, LINK assigns ordinal numbers to the functions. You can
determine these ordinal numbers by running EXEHDR on the library module.

USING IMPORT LIBRARIES
I implied earlier that in writing your own library module, you're adding an extension to
Windows-an extension that serves you in a manner similar to that of the standard
KERNEL, USER, and GDI library modules. So, you ask, why do I have to list all the names of
imported functions from my own dynamic libraries when I don't have to specifically im
port the KERNEL, USER, and GDI functions that I use? Well, in the early days of Windows
programming (long before the introduction of the product), programmers had to do pre
cisely that. They ended up with module definition files that looked like this:

IMPORTS USER.RegisterClass
USER.CreateWindow

[etc, etc, etc.}

This process was simplified greatly by the use of "import libraries." Import libraries are
much like object libraries in that LINK uses them to resolve function calls within a pro
gram. But the import library contains no (or very little) code, only a reference that recon
ciles the function name you use in your program with the library module containing this
function and the actual function name. This is exactly what you do in the IMPORTS section
of a .DEF file. An import library for STRLIB would allow LINK to know that a function call
to AddString is really an imported function from STRLIB called AddString or an imported
function from STRLIB with an ordinal number of 1.

When you link a Windows program or dynamic link library, the LIBW.LIB import li
brary reconciles all the normal Windows functions you use in the program (mostly from
KERNEL, USER, and GDI) and the ordinal numbers. That's why this import library must be
specified in the library field of the LINK command line when linking. Think of it this way:

904

Chapter 19: Dynamic Link libraries

LINK has to resolve all calls that a program makes to external functions. It can do this in
one of three ways: extract the function itself from an object library, get a reference to
a library module name and function name (or ordinal) from an import library, or get a
library module name and function name (or ordinal) from the IMPORTS section of the
module definition file.

You can create an import library for a dynamic library module by running the
IMPLIB program included with the Windows Software Development Kit. The syntax is:

IMPLIB libname.LIB libname.DEF

IMPLIB looks only at the EXPORTS section of the module definition file. It creates a file
with the extension .LIB. After the import library is created, you can add normal object
modules to the .LIB file using the LIB.EXE program included with the Microsoft C
Compiler.

Figure 19-3 shows a revised make file and module definitiori file for STRLIB; Figure
19-4 on the following page shows a revised make file and module definition file for
STRPROG. The new STRLIB make file creates an import library called STRLIB.LIB. In the
STRPROG make file, this import library must be specified in the library field of the LINK
command line. The new STRPROG.DEF file requires no IMPORTS section.

Figure 19·3. A revised make file and module definition file for
the STRIfB library.

(continued)

905

SECTION V: DATA EXCHANGE AND LINKS

.10

1

Figure 19·4. A revised make file and module definition file for the STRPROG program.

906

Chapter 19: Dynamic Link Libraries

INTERCEPTING WINDOWS FUNCTION CALLS
One interesting use of dynamic libraries is in debugging. For instance, you might want to
write a dynamic link library that extensively checks the parameters your program is pass
ing to the normal Windows functions. Such a library for checking parameters to the GDI
functions might be called CHECKGDI; a typical function in CHECKGDI.C would look
something like this:

int xRectangle (hdc. xleft. yTop. xRight. yBottom)
HDC hdc:
short xleft. yTop. xRight. yBottom :
{
BOOl bError - FALSE :
int iCode:

1* check parameters. set bError to FALSE and iCode
to an error code if errors are encountered *1

if (bError)
FatalExit (iCode)

return Rectangle (hdc. xleft. yTop. xRight. yBottom) :
}

You can give this function any name you want, as long as it isn't the same as the name of a
real Windows function. (I've called it xRectangle.) The FatalExit function causes the
debugging version of Windows to display a stack trace on a terminal attached to the
COMl port.

The EXPORTS section of CHECKGDI.DEF lists all these checking functions but gives
each of them an external name that is the name of the actual Windows function:

EXPORTS Rectangle = xRectangle @1
Ellipse = xEllipse @2
lineTo = xlineTo @3

[and soforthl

You compile and link this CHECKGDI library in the same way as STRUB. The creation of
the CHECKGDI.LIB import library looks like this:

implib checkgdi.lib checkgdi.def

Now if you have a program in development that calls normal GDI functions, you can
do parameter checks during run time by linking the program (I'll assume the program is'
called MYPROG) as shown below:

link myprog. lalign:16. NUL. Inod Inoe checkgdi slibcew libw. myprog

Because you have included the CHECKGDI.LIB library in the library field of LINK, any
calls in your program to Rectangle, Ellipse, LineTo, and so forth will actually reference the

907

SECTION V: DATA EXCHANGE AND LINKS

xRectangle, xEllipse, and xLineTofunctions in the CHECKGDI.EXE library. In CHECKGDI
the functions perform the checks you want and then call the actual GDI functions.

Once you're done debugging, you can make the program call the regular Windows
GDI functions simply by deleting MYPROG.EXE and relinking like this without the
CHECKGDI.LIB import library:

link myprog, /align:16, NUL, slibcew libw, myprog

Now LINK will use LIBW.LIB to r~concile your GDI calls with the functions in the normal
GDI module. Because this approach requires no changes to your program source code, it is
a clean way of inserting debugging code between your calls to Windows functions and
the actual functions.

DYNAMIC LINKING WITHOUT IMPORTS
Rather than have Windows perform dynamic linking when your program is first loaded
into memory, you can link a program with a library module while the program is running.
We used this technique in Chapter 15 when we had to can the DeviceMode function in a
printer driver module.

For instance, you would normally call the Rectangle function like this:

Rectangle (hdc, xLeft, yTop, xRight, yBottom) ;

You can also call Rectangle by first defining two variables:

HANDLE hLibrary;
FARPROC lpfnRectangle ;

Now you set hLibrary to the handle of the library and IpfnRectangle to the address of the
Rectangle function:

hLibrary = LoadLibrary ("GDI.EXE") ;
lpfnRectangle = GetProcAddress (hLibrary, MAKEINTRESOURCE (27» ;

The LoadLibrary function returns an MS-DOS error code (less than 32) if the library file
can't be found. In GetProcAddress, the second parameter is a number (27) that you convert
to a far pointer to a string by setting the segment address equal to 0; 27 is the ordinal
number of Rectangle obtained from the EXEHDR listing of GDI.EXE. Now you can call
the function and then free the library:

(*lpfnRectangle) (hdc, xLeft, yTop, xRight, yBottom) ;
FreeLibrary (hLibrary) ;

For libraries in which the module definition file doesn't define ordinals for the
expo):"ted functions, you can use the function name in the GetProcAddress call:

lpfnFunction = GetProcAddress (hLibrary, "FunctionName") ;

908

Chapter 19: Dynamic Link Libraries

Don't use this method for linking to modules that use ordinal numbers for the exported
functions. The names of the functions in a library remain resident in memory only if the
module definition file doesn't include ordinals or if the keyword RESIDENTNAME is used
with the functions in the EXPORTS statement.

Although this technique doesn't make much sense for the Rectangle function, it will
definitely come in handy. You need to use it when you don't know the name of the library
module until run time, as is the case with the DeviceMode function in the printer drivers.

The code above uses the LoadLibraryand FreeLibrary functions. Windows main
tains "reference counts" for all library modules. LoadLibrary causes the reference count to
be incremented. The reference count is also incremented when Windows loads any pro
gram that uses the library. FreeLibrary causes the reference count to be decremented, as
does the termination of an instance of a program that uses this library. When the reference
count is 0, Windows can discard the li~rary from memory, because the library is no longer
needed.

RESOURCE-ONLY LIBRARIES
Any function in a dynamic link library that Windows programs or other libraries can use
must be exported. However, a dynamic link library need not contain any exported func
tions. What would such a DLL contain? The answer is resources.

Let's say you're working on a Windows application that requires a number of bitmaps.
Normally, you would list these in the resource script of the program and load them into
memory with the LoadBitmap function. But perhaps you want to create several sets of bit
maps, each set customized for one of the major display adapters used with Windows. It
would make most sense to store these different sets of bitmaps in different files, because a
user would need only one'set of bitmaps on the fixed disk. These files are resource-only
libraries.

Figure 19-5 shows how to create a resource-only library file called BITLIB.DLL that
contains nine bitmaps. The BITLIB.RC file lists all the separate bitmap files and assigns
each one a number. To create BITLIB.DLL, you need nine bitmaps named BITMAPl.BMP,
BITMAP2.BMP, and so forth. You can create these bitmaps in SDK Paint.

Figure 19·5. The BIT LIB library. (continued)

909

SECTION V: DATA EXCHANGE AND LINKS

bitlib! obj
.. ' c1 iHc

.• : •••.• Dltlib: res
rc ;r

,: ',:';,:i::.//'}\.::),: ...

·;.;; .••.• ;.,'.:.:;.i·; ••• :.',.' •• ':".i~ir. .

••••••

•••••••••••••••••••••••••

':'.,:

910

:Jjj~ljb;c
~ASw);Gswn ~Ow "7{·.J:

;)bltli b:rc
bf~lJb:rc

~WZ~Zp ~i~~
t.)

i·I.
.Ii

··/:.:i:.,,:i::::
i::::i·,,:,'ii.·

l b:c
:::;·i:<"

••••••••

.:i:.".',:'/:,//

.111 ~ •. IJ. . .•• ':.' •. '

: ..

.'

i\ :·.'.·.i

.; •••••••••••••••••••••••• !:

Chapter 19: Dynamic Link Libraries

The SHOWBIT program, shown in Figure 19-6, reads the bitmap resources fro!ll BITLIB
and copies them to the clipboard. You can cycle through the bitmaps by pressing a key on
the keyboard.

Figure 19·6. The SHOWBITprogram. (continued)

911

SECTION V: DATA EXCHANGE AND LINKS

(3 rit PAscACwi~Mi irt (HAN 0 LEtt I nstand~l~ANbL~!.hPt~VI nsta nee
...........

..... "'" ,. ~:llt~ ;', i,! \~~,!.~~~ , ?i
......} ······fii. LPSTR~gf~sm~.~i ne. iNt.nfmdShpW)

)< i·····. {/ ' .. ·\<iL •• ·.·\r
•.•...• st~ti2char szAppName []<;! "ShowBit".:
;F;,~W~~R! [~,~nd 'r!~t .x'; •••••••••.• ··>.···MSG msg;(......) >
............> WNPCLAS'SWrldc 1.~ s~: .:.,

, ii > :>)

) i jf(! here~in~t~nt~) < i
"': i(i [.. /)ti

iJj ['h l~nd~~;~~l'StYl~!',<CS_HREO~~ j OS "VREDRAW ; j

(•......••••.•••. i(wndcl ass.1 pfnWndProc+ WhdProc ;
;; '1 \, ,'Wndc 1 as s:cbCl sEx t r a '. ;.;. 0 : ~1~!i i
••.•• :./ < .\? wndclass4cbWndExtra·.>4\p ;J .••. .i .':

/ ..•..) · .. · .• ·::·.·~ndc1 ass. hlnstanc~Hirlnstanb~ ;< it L)
.... \ ··.·····wndcl a.~s. hIeon; 00: NULL : ~~];'

< ··...'hdql?~~;~cursorl==)~oadcursor (NULL, :.lDC:"ARROW) :

(iwndcl ass:hbrBaCkgrouhdTI~etS~~t.~~b~~tt(W .. ~IIE BRUSH) :
..... ··.··.·.i i~ndcl ass.l pszMenuName} .. NULL: iii

••.•.•.. wndclas;~ ...•) ps~.Cl assNa~e .•. ~·.~~AppName.;).
i····· · ······jl(..{ ... ·.i\ < >

> i Reg is terClas s .. .< &wndcHa$$> fit . ,.' .' . .y; ';'\T}':''j' 'J~\~":i/>
.'. <>< '., J jt.;~ .. ,ii }
<..... hwnd~)t~~JteWi nd6~(s.iAppNariie "showgi tmaps from BITLIB (~ress Key)*'.
ii i> •.•. .····.r:·l 'i'WSOVERLAPPEDWINddW;";~>/~ . /
\iii./)PW USEDEFAULT. OW USEQ~FAQLr;

............•..... ·.>r}i/ ·····.CWlCUSEOEFAULT. OW USEDEFAULT;
2,.,t~ 'Li';' ~~ill. N~lL\ iltlnst~nceji"NUlm; i/><•• » .s;:, > (................./ iF i

)L ShowWi ridi:iw (hwnd, .. ncm1~tow):(»r .
..••••..•... •• ··....8P.~ateWfridO~(.~~hd~.~ ••••••••••••..... •• ·•· ••• ·...)i

....... ii . .]J1
·····..iwhile(GiitMessagef (&msg~ NULL, o. 0»

(i{/.~" i{ ? "i. >

....y> t~ansl at~M~ssage;r&m1~»~
•.....• >.. • .•••••.• \ o} spatchMessag~ (&msg) : >
i>(•.•••••• }' /
<>)i..ii,hli~2" ",

. i re~HFn mS9iJ~~F.~~ ; <
............... } :................. ... / ". i 3

.ic~~1;~l[ii) .(»' <>
........

ii ·.i\ > ,'.. . ..•.•.•...........•........iI' r' .,., iL":>;';lC(~ ..:
i '~gl~ DrawBltll!~p~np9· ~9S' shOrt xStart, sP9Ft ySt~nt. HB ITMAP hBi tma p)
······.>i > (.$:~{~)/i\.i

<\•. B I T~~.~>.pmlt.t)ii i) r

) DWORD dwS 1 ze :<
(.i}iH~e)~'~hMemDC i~</)

ii< •..•.•• • / Hi
> i PO I NTg~r{ i (tii/ ii

(continued)

912

Chapter 19: Dynamic Link Libraries

(continued)

913

SECTION V: DATA EXCHANGE AND LINKS

?"'«<":
iI~ .

. ,~ ••• ~ ••• ~ •.• ~ ••••••••••••••••••••••••••

) '}

,.,:,i

'.",

.'.' <

i· ... · .. · ... ····.~· ... ~··.~.~ .. t·.~ ... ~..
i
/

>t~1111 •••••••

" ..

L Y / '., .. '

T ;f I:)' ()

/
' •..••••.

:.
i

••••••••••••••••••••••

•••••••••••••••••••••••••

•••••••••••••••••••••••••

i t .····:i .
\ .•.. , ..

••••••• (i<
i} "}

){ . ./ """ .> '.' ' •••••• '../{)

During processing of the WM_CREATE message, SHOWBIT gets a handle to BITLIB.DLL:

if «hLibrary = LoadLibrary ("BITLIB.DLL"» < 32)
MessageBeep (0) :

If BITLIB.DLL isn't in the current directory or in a directory accessible through the PATH
string in the MS-DOS environment, Windows displays a message box asking the user to
insert the BITLIB.DLL disk in drive A. If the user presses Cancel, LoadLibrary returns an
MS-DOS error code (less than 32), in which case SHOWBIT simply beeps.

SHOWBIT can obtain a handle to a bitmap by calling LoadBitmap with the library
handle and the number of the bitmap:

hBitmap = LoadBitmap (hLibrary, MAKEINTRESOURCE (nCurrent» :

914

Chapter 19: Dynamic Link Libraries

This returns an error if the bitmap corresponding to the number nCurrent isn't valid or if
not enough memory exists to load the bitmap.

While processing the WM_DESTROY message, SHOWBIT frees the library:

FreeLibrary (hLibrary) ;

When the last instance of SHOWBIT terminates, the reference count of BITLIB.DLL drops
to 0 and the memory it occupies is freed. As you can see, this is a simple method of
implementing a "clip art" program that could load precreated bitmaps (or metafiles) into
the clipboard for use by other programs.

915

Index

Note: Italicized page numbers refer to illustrations.

Special Characters
& (underlining) 339, 430
II (comments) 31

A
ABORTDOC 734
Abort procedure in printing 742-49

banding arid 766-67
implementing 745
operation of 744-45
printing dialog box and 749,753-54

ABOUTI program 404-17
ABOUT2 program 417-31
ABOUT3 program 432-37
Accelerators. See Keyboard accelerator(s)
ACCELERATORS resource script statement 387
Active window 90, 135. See also Input focus
AddAtom816
Address in memory 265
Alarm, preset 173
ALTERNATE polygon filling mode 571,572
Alt key

character-set conversion using 131
system keystrokes and 91-92,93

Ami (software) 3
Animation 631-36
ANSI character set 127, 128

converting 129-31
fonts and 128

ANSLCHARSET character set 682, 686
ANSLFIXED_FONT 655
AnsiLower129
AnsiLowerBuf!129
AnsiNext 129
AnsiPrev 129
AnsiToOem 130, 131, 443
AnsiToOemBuf!130
AnsiUpper129
AnsiUpperBuf!129
ANSL VAR_FONT 655
AppendMenu 351-53,363,380
Apple Computer, Inc. 5
Apple LaserWriter Plus device 511
Application modal windows 179
Application programs, interaction of GDI

module, printer driver, and 718
Application window, elements of 13

Arc 544, 562
ARCS program 563-68
A rrangeIconicWindows 856
Arrow mouse cursor 134, 169
ASCII character set, standard vs. extended 125
ASCII code 107, 108
Ascn keyword option 388
Aspect ratio 660,662,686

calculating 663
ASPECTX, ASPECTY, ASPECTXY 513
ASSERT.H 440
Assertion message box 440-41
assert macro 440
_astart885
-ASw switch 885
Atoms 816-17,835
Atom statement 816
Autosave feature 174

B
Background color 30, 53, 221

in COLORSI program 235-36, 237-38
filling in line gaps and 549
icons and 237-38, 311
inverse 311
multiple instances and 237
OPAQUE mode 549, 573, 653
setting 222, 653-54
TRANSPARENT mode 573, 653

Banding technique 717, 762-71
abort procedure and 766-67
PRINT4 program illustrating 767-71
RECT structures and 763-66

Bankline 287
Bank -switched memory 287
BEEPERI program 180 -83
BEEPER2 program 186-89
BeginPaint37,49,496,516, 520
Binary raster operation. See ROP2 codes for

binary raster operations
Bit(s), transferring, with BitBlt 620 -21
BitBlt 168, 615, 657

color conversions of 629
coordinates 618-19
drawing bitmaps on display surface with

621-22
mapping mode conversions with 630

917

PROGRAMMING WINDOWS

BitBlt (continued)
printer driver and 733
SCRAMBLE program and 625-27
transferring bits with 620-21

BITLIB library 909-15
Bitmap(s) 317-21, 605-14

BIt functions and 168 (see also BIt)
brushes based on 575-76

creating and using 577-79
in RESOURCE2 program 317-21

changing, with StretchBlt168, 170
clipboard witp 778, 783
color vs. monochrome 576, 608-10, 629
creating library file that contains 909-15
device-dependent (old) format 606-10
device-independent (DIB) format 606,

610-14
disadvantages of 606
drawing, on display surface with BitBlt

621-22
handle 575
in icons and cursors 310-12
image 311
mask 311
memory device context and 370
metafiles (see Metafile(s))
stretching 630-31

Bitmap(s), displaying menu items using
370-85

adding a keyboard interface 385
constructing menus 383-85
creating bitmaps for 380
creating bitmaps with text 381-82
GRAFMENU 371-79
memory device context and 370,380-81
scaling bitmaps 382-83

BITMAPCOREHEADER structure 612
BITMAPFILEHEADER structure 611
Bitmap fonts. See Raster (bitmap) font
BITMAPINFOHEADER structure 611
BITMAPINFO structure 613
BITMAP resource script statement 321, 575
BITMAP structure 575-76,577,607
BITSPIXEL 513
BLACK_BRUSH 558
BLACKNESS 618
BLACKONWHITE 631
BLACK_PEN 544
BLOWUP1 program 165-71
BLOWUP2 program 783-90
BIt 615-36 .

animation 631-36

918

BIt (continued)
BitBlt615

holding space for operations of 625-28
transferring bits with 620-21

color conversions 629
coordinates 618-19
DrawBitmap and 621-22
mapping mode conversions 630
memory device contexts and 625-28
PatBlt 618-18
ROP codes and 622-24
StretchBlt 630-31

BM_ button messages 213-14
BM_CHECK 425
BM_GETCHECK 214, 215
BM_GETSTATE 214, 215
.BMP extension. See Bitmap(s)
BM_SETCHECK 214, 215, 216
BM_SETSTATE 214, 215, 487
BM_SETSTYLE 214
BN_CLICKED 213, 424
BN _DISABLE 217
BN _HILITE 217
BN_PAINT 217
BN_UNHILITE 217
Boldface characters 681
BOUNCE program 631-36
Bounding box 559-63
BP register 265,280
Brush(es) 184, 222-24

alignment of 580-82
bitmaps and 575-76
brushing interiors 572-7 4
creating, in RESOURCE2 program 317-21
creating and using bitmap 577-79
deleting 236
dithering and 572
filling current area with 592
handles to 222, 558
hatch styles 573
predefined 30
setting color of 223

Brush origin 580-82
BS_3STATE 216
BS_AUT03STATE 216
BS_AUTOCHECKBOX 215, 216, 427
BS_AUTORADIOBUTTON 216
BS_ button styles 211-12
BS_CHECKBOX 215
BS_DEFPUSHBUTTON 214
BS_GROUPBOX 216-17
BS_HATCHED 573
BS_HOLLOW 574

BS_PATTERN 574
BS_PUSHBOX 215
BS_PUSHBUTTON 214
BS_RADIOBUTTON 216
BS_SOLID 574
BS_USERBUTTON 213,217
BTNLOOK program 207-10
Button(s) 5

colors 219,221-24
determining state of mouse 97, 135

Button window class 207-19
BTNLOOK program 207-10
changing button text 217
check boxes in 215-16
child messages to parents in 212-13
creating child windows in 211-12
enabled buttons in 217-18
group boxes in 216-17
input focus and 218-19
notification code 213
parent messages to child in 213-14
push buttons of 214-15
radio buttons in 216
user-defined buttons in 217
visible (displayed) buttons in 217-18

BX register 265

c
.C file. See Source code (.C) file
C (language)

dynamic link libraries and 898-900
"Hello, world" program 15-16
library functions in, vs. Windows functions

11-12
memory allocation functions 301-2
menu created using 352-53
vs. Windows 40

Calculator, hexadecimal 479-87
Call-back functions 184-91

in dynamic link libraries 896-97
MakeProclnstance and 284-85
proper handling of 189-91

caUoc 271, 301
Cancel button in dialog boxes 427-28
Caption bar 6
CAPTION statement 414
Caret 116-25. See also Cursor(s)j Mouse cursor

functions 116-17
TYPE program and 11i-25

Case conversion 129
cbprefix 29
CF _BITMAP 778, 783
CF_DIB 779

CF _DIF 778, 779
CF _DSPBITMAP 798
CF _DSPMETAFILEPICT 798
CF _DSPTEXT 798
CF _METAFILEPICT 778, 790
CF _OEMTEXT 779
CF _OWNERDISPLAY 799
CF _PALETTE 779
CF _SYLK 778, 779
CF _TEXT 778, 804
CGA. See Color Graphics Adapter (CGA)
ChangeClipboardChain 802
ChangeMenu 363
Character(s)

boldface 681
dead 109-10
drawing line through 681
escapement of 680
height of 666, 680
italic 681
vs. keystrokes 90
orientation of 680
size 55-56
underlining 681
width 680

Character messages 90, 107-8
dead-character messages and 109-10
translating keystroke messages into 97,

106-9
WM_CHAR messages 109

Character sets 125-28
ANSI 127, 128
ASCII 125-126
fonts and 128, 681-82
internationalization concerns 129-31
MS-DOS and 127,130-31
numeric keypad 131
OEM 126-27

Character string(s) 322-25
application, topic, and item 810-17
atoms and 816-17
graying 656-58
memory space and 324-25
MessageBox used with 323-24
putting, into list boxes 246-47
as resource 322
using 322-24

Check box(es) 215-16
CHECKBOX statement 415,426
CheckDlgButton 426
CHECKED menu item option 340
CHECKERI program 147-53

Index

919

PROGRAMMING WINDOWS

CHECKER2 program 153-58
CHECKER3 program 159-64,205
CheckMenultem 350, 364
CheckRadioButton 426
Child window(s) 13, 32

child ID 163
communication with parent window

212-14,242-43
creating 163-64,211-12
as edit controls 89,90
hit-testing with 158-64

Child window(s), Multiple Document Interface
(MDI) 855

creating 872-73
hierarchy of parent to 855, 856
storing unique data for each 874-75

Child window control(s) 205-60
button class of 207-19
COLORSI program 226-38
colors and 219-24
creative use of control IDs 487
dialog box 409,415-17,424-27
edit class of 238-44
listbox class of 244-60
OK and Cancel buttons as 427-28
scrollbar class 225-26
static class of 224-25
user-defined 431-39
WM_COMMAND for, vs. menus 343

Child window procedure 159, 163-64
Chord 526, 562
CLASS statement 414
Class style identifiers 29
CL.EXE C compiler 21
Clicking a mouse 134 .
Client area

calculating number of text lines in 66
calculating size of 65 -66
coordinates 144

converting, to/from screen coordinates
145

defined 45
images outside 171
painting text on (see Painting text)

Client-area mouse messages 134-42
activating! changing input focus 135
double-clicks 142-43
mouse button states 135
vs. nonclient -area mouse messages 134
shift-key processing 142
simple mouse-processing example 136-43
system modal message box! dialog boxes

and 135-36

920

CLIENTCREATESTRUCT 855, 856, 872
ClientToScreen 145, 520
Clipboard 399, 777-807

bitmaps used with 783
BLOWUP2 program illustrating 783-90
CLIPBOARD program vs. 777
closing 782
delayed rendering technique with 797-98
functions of 781-82
getting text from 780-81
metafile/metafile picture 790-95
multiple data items with 795-96
opening 782
owner 799
private data formats and 798-801
standard data formats for 778-79
transferring text to 779-80
viewer (see Clipboard viewer)

CLIPBOARD program vs. clipboard 777
Clipboard viewer 801-7

clipboard viewer chain and 801
CLIPVIEW program illustrating 804-7
functions/messages 801-4

CLIP _CHARACTER_PRECIS 682
CLIP _DEFAULT_PRECIS 682
Clipping rectangles 51, 52, 586-87
Clipping regions 586-87
CLIP _STROKE_PRECIS 682
CLIPVIEW program 804-7
Clock, using timer for 198-204
CLOCK program 173
Clock tick 175
close 445
CloseClipboard780, 781, 795
Close MetaFile 498, 637, 639
CLOVER program 587-92
Code passages 127
Code segment(s) 266, 272-78

attributes 277-78
avoiding movement problems with 276-77
demand-loaded 263
discardable 264
memory models and 272-73, 275
multiple 273-74
naming 274
_TEXT 278

CODE statement 277, 887
Cold link 811-12
Color(s) 183-84

background (see Background color)
bitmap conversions 629
bitmap format 609-10,612
brushes and 572-74

Color(s) (continued)
button vs. system 219
clipboard format for palette handle 779
controls for 219-24

button colors 221-24
system colors 220-21
WM_CTLCOLOR messages and 222-24

converting bitmaps to dithered 184, 514, 572
in icons and cursors 310-12
information about 513-14
PatBltoperations and 617-18
pens 549, 573
pixel 541
RGB 183,542,612
ROP2 codes and 556-57
static window controls and 223-25
text 53, 653
timer and 180-84

COLOR_APPWORKSPACE 855
COLOR_BACKGROUND 221, 225
Color Graphics Adapter (CGA) 512

icon size on 310-11
COLOR_GRAYTEXT 658
COLORONCOLOR 631
COLORS 1 program 226-38

automatic keyboard interface in 234
code 237-32
coloring background in 235-36
coloring scroll bars in 236-37
as icon 237-38
multiple instances in 237
window subclassing in 234-35

COLORS2 program 473-79
COLOR_SCROLLBAR 226
COLOR_WINDOW 221, 224, 225
COLOR_ WINDOWFRAME 221, 225
COLOR_ WINDOWTEXT 221
CombineRgn 585
COMBOBOX statement 415, 416
Command-line parameter 27
Comments (/ /) 31
Communications, timer and 174
Compiler switches 21-22,273,2'74,281,885
Compiling resources 304-6
COMPLEXREGION 586
CONNECT program 136-43
Context. See Device context
Context code field 93
Context switching 7, 8
Control 716
Control Panel program, colors and 219, 220
CONTROL program 173
CONTROL statement 388, 416, 417, 437

Coordinates 54, 55, 57
Bit 618-19
client area 144, 145, 520
conversion of 630
device 494, 519':"'22
dialog box template 409
logical 53, 517, 519, 520-22
mapping mode 519-20
mouse 34, 135, 141
pixel 494, 517
screen 31-32,53, 144, 145, 519-20
text 53-54
virtual 494, 529
window 31-32,520

CopyMetaFile 647
CopyRect 584
cos 569
CountClipboardFormat 796

Index

C Programming Language, The (Kernighan
and Ritchie) 15

create 445
CreateBitmap 380, 382, 575, 578, 607
CreateBitmaplndirect 380, 383, 575, 579, 607,

609
CreateBrushlndirect 574, 579
CreateCaret 116, 117
CreateCompatibleBitmap 380, 575, 607
CreateCompatibleDC 380, 381, 382, 497, 614
CreateDCI71, 497.509

parameters 720-23
CreateDialog 471
CreateDIBitmap 613
CreateDiscardableBitmap 607
CreateEllipticRgn 585
CreateEllipticRgnlndirect 585
CreateFont 668
CreateFontIndirect 381, 668, 679
CreateHatchBrush 222, 573
CreateIC203,381, 382,497, 508, 509,721
CreateMenu 351, 383
Create MetaFile 498, 636, 639
CreatePatternBrush 222,321,574,578
CreatePen 545, 546, 548
CreatePenlndirect 545, 547
CreatePolygonRgn 585
CreatePolyPo/ygonRgn 585
CreateRectRgn 584
CreateRectRgnlndirect 585
CreateRoundRectRgn 585
CreateSolidBrush 184, 222, 573, 574
CreateWindow 31-32,56

child windows and button class parameters
211-12

921

PROGRAMMING WINDOWS

CreateWindow (continued)
child windows and static class 224-25
main window vs. child windows created

by 163
Multiple Document Interface and 855
popup menus and 341

Cross-hair pattern cursor 134,169
CS_CLASSDC 516-17
CS_DBLCLKS 143
CS_HREDRAW 29
CS_OWNDC 516
CS _ prefix 29
CS register 265, 266
CS_ VREDRAW 29
CTLCOLOR_BTN 222
CTEXT statement 409, 410, 415, 429
Ctrl key 108
CUA Advanced Interface Design Guide

keyboard accelerators and 386
menu format and 351
Multiple Document Interface 854

Current (software) 3
Cursor(s) 303, 306-16. See also Caret; Mouse

cursor
alternate 315-16
handle 169, 315
movement keys 98, 428
predefined 314
RESOURCE1 program for displaying

customized 306-10
scroll bar messages and 234
SDKPAINT tool for creating 310-12
shift and 98

CURSOR resource script statement 315
CURVECAPS 512
CW_USEDEFAULT 31-32

D
Data exchange. See Dynamic Data Exchange

(ODE)
Data formats

clipboard 778-79
private 798-801

Data Interchange Format (DIF) 778
Data items, multiple, and clipboard 795~96
Data segment(s) 266, 272-78

attributes 277-78
avoiding movement problems with 276-77
default 270
locking 299-300
moving and reloading 278-88
multiple 275

922

Data segment(s) (continued)
stack segment and, as dynamic linking

issue 897-902
DATA statement 277, 887
Data structures 25
Data types 24-25
Date

getting time and 203
internationalization of 203-4

DDE. See Dynamic Data Exchange (ODE)
DDEACK816
DDEADVISE 816, 837
DDEDATA 816, 836-37, 850
DDEPOKE 816
DDEPOP program 818-40

DDE.H in 832-33
PostDataMessage in 836-37
ServerProc window procedure in 834
updating items· 839
WM_DDE_ADVISE message in 837-39
WM_DDE_INITIATE message in 833-34
WM_DDE_REQUEST message in 834-35
WlV1;_DDE_ TERMINATE message in 839-40
WM_DDE_UNADVISE message in 839

Debugging
assertion message box and 440-41

. dynamic link libraries and 907-8
pens and 549

DEFAULT _PITCH 683
DEFAULT_QUALITY 682
.DEF file. See Module definition (.DEF) file
DeJFrameProc 874
DeJMDIChildProc 856, 875
DEFPUSHBUTTON statement 409-10,415
DeJWindowProc 35-36,41,856

processing nonclient-area mouse messages
with 143, 145

processing WM_PAINT with 50
Delayed rendering technique 797-98
DeleteAtom 816
DeleteDC 497
DeleteMenu. 363
DeleteMetaJile 638, 639
DeleteObject 184, 321, 382, 574, 586, 668-69
Dependent file list 306
Designer (software) 3
DestroyCaret 116, 117
DestroyMenu 365
DestroyWindow41, 473
DEVCAPS1 program 498-512

displays invoked in 510, 511
DEVCAPS2 program 723-33

checking for BitBlt capability in 733

DEVCAPS2 program (continued)
DeviceMode call in 731-32

Device-based fonts 659-60
Device context 48-52,115,495-517

DEVCAPSI program and 498-512
handle to 37,171
memory 614-15
metafile 498, 636-37, 639
methods for getting handles to 49-50, 52,

496-98
printer 720-33
saving 515-17
in transparent mode 116

Device context attributes 48-49, 53,
514-15 (table)

information on 498
for text 653-64

Device coordinate system 53,494,519-20
viewport and 520-22

DEVICE_DEFAULT _FONT 655
Device-dependent bitmap format 606-10

bitmap dimensions 610
color forinat 609-10
creating bitmaps in programs 607-8
monochrome format 608-9

DEVICE_FONTTYPE 688
Device-independent (DIB) format 606,610-14

creating 613-14
file formats 611-12

Device-in~ependent graphics interface 9-10
DeviceMode 731-32
DeviceStatement 721
DGROUP segment (local memory) 270, 271
DialogBox 471
Dialog bpx(es) 6, 7, 13, 303, 403-89

child window controls in 403
DIALOG utility and 408,487-89
as edit controls for text input 89
keyboardtnterface 89
message box as alternative to 439-41
modal 404-39
modeless 471-87
for opening files 447-57
painting on 430-31
for printing 749-54
for saving files 447-57
system modal 135, 404
utility for creating 408, 487-89
working with files and 442-71

Dialog box manager 403
Dialog box procedure 403, 410-12
Dialog box template 403, 408-10

coordinate system for 409

DIALOG resource script statement 409
DIALOG utility 408,487-89

Index

DIB. See Device-independent (DIB) format
DIB_PAL_COLORS 613
DIB_RGB_COLORS 613
DIG CLOCK program 198-204

'code 198-202
getting date/time with 203
internationalization of 203-4
popup window 202, 203

DI register 265
Discardable memory 268-69, 294
DISCARDABLE memory option 277, 316, 322,

337,409
"Discardable" program segment attribute 277
DispatchMessage 34
Display(s). See also Graphics Device Interface

(GDI); Painting text; Screen
CGA 310,512
color (see Color(s))
coordinates 57
EGA 184, 310, 512
IBM 8514A 311, 512
icon size and 310-11
information context handle for 508
printers vs. video 715 -16
saving vs. repainting 47
size of 512-13
typefaces for video 662
VGA 184, 310, 510, 512
video resolution 664-65

Display parameter 28
Dithered colors 184, 514, 572
DKGRAY _BRUSH 558
DlgDirList 443, 454, 455-56
DlgDirSelect 454, 455..-56
DLLs. See Dynamic link libraries
.DLG files. See Dialog box(es)
Documents. See also Multiple Document

Interface (MOl)
Escape subfunctions for. manipulating

734 (table)
printing multipage 761

Dot-matrix printer, banding for 717, 764, 765,
766

Double-clicks, mouse 134,142-43
keyboard simulation of 259
time of 142

DPtoLP521-22
DRAFT _QUALITY 682
Dragging a mouse 134
DrawIcon 314,592
Drawing modes 550-52

923

PROGRAMMING WINDOWS

DrawMenuBar 364
DrawText 37, 437, 652
Drop-down menu 335
DS register 265, 266, 279

DS != SS problems and dynamic linking
897-902

DSTINVERT 618
DT _BOTTOM 653
DT _CENTER 652
DT _EXPANDTABS 653
DT _EXTERNALLEADING 653
DT_LEFT652
DT _NOCLIP 653
DT _RIGHT 652
DT _SINGLELINE 653
DT _ TABSTOP 653
DT_TOP 653
DT _ VCENTER 653
DT _ WORDBREAK 653
Dynamic Data Exchange (DDE) 291, 809-51

application, topic, and item in 810-11
character strings and atoms in 816-17
conversations

initiating DDE 849-50
types of 811-16

DDEPOP server program 818-40
PostDataMessage and 836-37
prolog for 285
ServerProc window procedure and 834
SHOWPOP client program 840-51
WM_DDE_ADVISE message and 837-39
WM_DDE_DATA message and 850
WM_DDE_INITIATE message and 809,

833-34
WM_DDE_REQUEST message and 834-35
WM_DDE_ TERMINATE message and

839-40,851
WM_DDE_UNADVISE message and 839

Dynamic link libraries 8,12-13,877-915
basics 877-80
DS!= SS issue in 897-902
dynamic linking vs. static linking 877
examining, with EXEHDR 879-80
import libraries and 904-6
intercepting Windows function calis 907-8
library restrictions 902-3
linking, without imports 908-9
link specification methods 903-4
object libraries, import libraries, and 878-79
resource-only libraries 909-15
STRLIB sample library 881, 882-88

924

functions and module definition file
887-88

Dynamic link libraries, STRLIB sample library
(continued)

E

library entry point 885-86
make file differences in 885

STRPROG program illustrating 881, 888-97
call-back functions and 896-97
executing 895 .
far function prologs 895-96
revised 905-6

Edit child window control class 89,238-44
edit control notification 242-43
messages to edit controls 243-44
POPPAD1 program 238-41
styles of 241-42
using edit controls with window

subclassing 243
EDITTEXT statement 415, 416
Ellipse 437, 560
EM_CANUNDO 398
EM_GETLINE 244, 759
EM_GETLINECOUNT 244, 759
EM_GETSEL 243, 244, 399
EM_LINEINDEX 244
EM_LINELENGTH 244
EmptyClipboard780, 795, 797
EM_REPLACESEL 244
EMS. See Expanded Memory Specification

(EMS)
EM_SETSEL 400
EnableMenultem 350, 364
EnableWindow 218, 431, 746
EndDialog 473
ENDDOC 716, 734
EndPaint37,49,496
Enhanced Graphics Adapter (EGA) display

184, 512
icon size on 310-11

Enhanced mode (80386 chip) 264
EnumClipboardFormats 796, 800
EnumFonts 687, 772
EnumFunction 687-88
EnumMetaFile 648
ENVIRON program 249-53
environ variable 252
Error codes, printer 760, 762
Error messages, displaying 323-24
ERROR region value 586
ES_AUTOHSCROLL 241
ES_AUTOVSCROLL 241
Escape 716

abort procedures and 746

Escape (continued)
printing, spooling, and 716-20, 733-34
subfunctions 734 (table) .

ES_CENTER 241
ES_LEFT 241
ES_MULTILINE 241
ES_NOHIDESEL 242
ES register 265, 898
ES_RIGHT 241
Excel (software) 3

running under Windows 9
ExcludeClipRect 587
.EXE file(s)

format 12·
module definition files and creating 38-39

EXEHDR program, examining libraries with
879-80

Expanded memory 286-87
small and large frame configuration 287

Expanded Memory Specification (EMS) 8, 264,
286

Exported far functions. See Call-back
functions

Exporting dialog box procedure 412
EXPORTS section, module definition file 185,

282,283,412,656,688,743,745,888,
903

Extended character set 125, 126
Extended Key Flag field 93
ExtFloodFill592
ExtTextOut 652

F
Far call 12-13

vs. near call 267
Far function(s)

exported (call-back) 184-91, 284-85
prologs to 280-82,285,895-96
setting up stack frames for 280-82

Jar keyword 11-12
Jar pascal functions 11
Far (long) pointer 12-13, 265

vs. huge pointer 295
vs. near pointer 267

FARPROC 186
Jclose445
Jdopen445
Jopen445
FF _DECORATIVE 661, 683
FF _DONTCARE 661, 683

'FF _MODERN 661, 683
FF _ROMAN 661, 683
FF _SCRIPT 661, 683

FF _SWISS 661, 683
File(s) 442-71

Index

converting contents of, to/from character
sets 131

converting names of, to/from OEM
character set 130

dialog boxes for opening, saving, deleting,
and parsing 447-57

getting valid names of 456-57
input/output methods for 445-47
listing 253-60, 455-56
OpenFile for opening 442-44
POPPAD3 program illustrating dialog boxes

and 457-71
File attribute code 253-54
FILEDLG program 447-54
Filled areas, drawing 558-82

ARCS program illustrating 563-68
bounding box 559-63
brushes

alignment of 580-82
bitmaps and 575-76
creating/using 577-79

brushing interiors 572-74
pie chart trigonometry 569-71
polygon and polygon filling 571-72

FillRect 184, 583
FillRgn 585,586
FindAtom 817
FindResource 326
FIXED memory option 277, 316, 337, 409
Fixed memory segments 267-68,282
FIXED_PITCH 683,684
Fixed-pitch fonts 115, 117, 683
Floating-point math 197
FloodFill592
_JmaUoc 302
Font(s) 659-714. See also Character(s); Text

character sets and 128
fixed-pitch 115, 117, 655
leading and spacing type and 665-66
logical 667-87
logical inches and 664-65
logical twips mapping mode 666-67
points and twips 664
printing and 772-73
push buttons and size of 214
raster 54
resource files 662-64, 878
scaling 382-83
stock 654-55
system (see System font (SYSTEM_FONT))

925

PROGRAMMING WINDOWS

Font(s) (continued)
terminal 128
typeface families 661-62, 683
types of 659-60
variable-width, vs. fixed-pitch 54
weight identifiers 681

FONT LIST program 689-70
Jopen 49, 445
Foreign language characters 129
Formatting text 700-714

one-line alignment 701-2
paragraph justification 702-14

FORMFEED program 734-37
FrameRect 583
FrameRgn 585, 586
Frame window procedures 872-74
Jread445
Jree301
FreeLibrary 732, 909
Free memory

calculating 197
display amount of available 191-95
global memory and 266

FREEMEM program 191-97
FreeResource 326
FS register 265
Function(s)

call-back 184-91
calls 11-12
vs. C library 11
in HELLOWIN program 23
intercepting calls to 907':"'8

FW (font weight) 681
Jwrite445

G
GOI. See Gniphics Device Interface (GOI)
GOI.EXE module 493
GOI fonts (raster and stroke) 659-60
GEM (software) 5
GetAsyncKeyState 97
GetAtomName 817
GetBitmapBits 576, 608
GetBitmapDimension 610
GetBitmapFont 384
GetBkColor 550
GetBkMode 550
GetBValue 184
GetCaretBlinkTime 116
GetCaretPos 116
GetClassName 799
GetClass Word 235
GetClientRect 37, 431

926

GetClipboardData 781, 797, 798
GetClipboardFormatName 800
GetClipboardOwner 799
GetClipboardViewer 803
GetCopy381
GetCurrentPosition 543
GetCurrentTime 204
GetCursorPos 152
GetDC 52, 496, 497, 516, 520
GetDeviceCaps498, 614,667

color information from 513-14
printing and 733,762,773
size of video display from 512-13

GetDIBits 613
GetDlgltem 425, 487
GetDlgltemText 456
GetFreeSpace 197
GetGValue 184
GetInstanceData 334
GetKeyState 96-97, 142
GetMapMode 518
GetMenu350
GetMenultemCount 364
GetMenultemID 364
GetMenuState 365
GetMenuString 365
GetMessage 33

data segment moves and 279
nonpreemptive multitasking with 42-43

GetMessageTime 143, 204
GetMetaFile 640
GetMetaFileBits 646
GetNearestColor 514
GetNextDlgGroupltem 430
GetNextDlgTabltem 430
GetObject382, 547,574, 576,608,669
GetParent 205
GETPHYSPAGESIZE 734, 773
GetPixel542
GetProcAddress 732
GetProfilelnt 203
GetProfileString 203,509,721
GetROP2551
GetRValue 184
GetStockObject 30, 115, 381

brushes and 222, 558
pens and 545
selecting OEM character set and 128
stock font 654

GetSubMenu 359, 364
GetSysColor 220, 658
GetSystemMenu 362, 384

GetSystemMetrics 58, 133, 310, 385
displaying information from 59-66

GetTempFileName 639
GetTextColor 653
GetTextExtent 382, 701
GetTextFace 669, 685
GetTextMetrics 382, 519

character dimensions and 55,56
fonts and 655, 668, 685

GetUpdateRect 586
GetViewportOrg 524
Get Win do wDC 496, 520
GetWindowLong 234 '
GetWindowOrg 524
GetWindowRect 520
GetWindowText 217, 243
GetWindowTextLength 243
GetWindowWord 425
GetWinFlags 265,287,302
GHND global handle 291
GlobalAddAtom 817
GlobalAlloc 275,289-90,292,295,302,817
GlobalCompact 197, 292
GlobalDeleteAtom 817
GlobalDiscard 293
GlobalFindAtom 817
GlobalFlags 294
GlobalFree 292
GlobalGetAto mName 817
GlobalHandle 302
GLOBALHANDLE data type 289
GlobalLock 276,291-92,296
Global memory 266-71

discardable 268-69, 294
fixed and moveable segments 267-68, 282
huge blocks of 294-96
local memory 270-71
memory allocation for 288-89
organization of 270,271

GlobalReAlloc 293
GlobalSize 293
GlobalUnlock 292
GMEM_DDESHARE 287, 291, 817
GMEM_DISCARDABLE 290, 294
GMEM_DISCARDED 294
GMEM_FIXED 290
GMEM_MOVEABLE 291
GMEM_NOCOMPACT 291
GMEM_NODISCARD 291
GMEM_ZEROINIT 291
GPTR global pointer 291
GRAFMENU program 371-79
Graphical interface, Windows as 9-10

Index

Graphical user interface (GUO 5-7
concepts and rationale of 5
as consistent user interface 6-7
history of 5

Graphics Device Interface (GDO 9-10, 48-66,
493-539

device context 48-54,495-517 (see also
Device context)

drawing graphics (see Graphics drawing)
dynamic link libraries of 12
formatting text and 56-58
GDI fonts (see Font(s))
interaction of application programs, printer

driver, and GDI module 718
mapping mode 517-39
metafiles (see Metafile(s))
objects (see Bitmap(s); Brush(es); Logical

font(s); Penes); Region(s))
philosophy of 493-95
printers/plotters (see Printers and plotters)
SYSMETS program example 58-66
system font and 54-56
text metrics details 58-66
TextOut and 48, 52-54

Graphics drawing 541-604
filled areas 558-82
lines 542-57
miscellaneous GDI functions for 592-97
points 541-42
programs for 598-604
rectangles, regions, and clipping 583-92

Graphics objects 5. See also Button(s); Icon(s);
Scroll bares) .

Graphics printing 737-62
abort procedure 742-49
adding printing to POPPAD program

755-60
basics of 740-42
dialog box for 749-54
error codes 760-62
PRINT program versions 737-40, 747-49,

750-53, 767-71
GRAY_BRUSH 558
GRAYED menu item option 339, 340
GrayString 656-58
Group box(es) 216-17, 428-30
GROUPBOX statement 415, 424
GS register 265
GUI. See Graphical user interface (GUO
GWL_ WNDPROC 234
-Gw switch 273, 274, 281
-GW switch 274

927

PROGRAMMING WINDOWS

H
halloe 302
Handle(s)

bitmap 575
brush 222, 558
cursor 169, 315
defined 25
device context 37, 49-52, 496-98
icon 313-14
identifiers for 25
memory 268
menu 341, 364
as near pointers 300-301
parent window 32
pen 545
program instance 32
user-defined resources 326
window 25, 32
window menu 32

HANDLE identifier for generic handle 25
HBITMAP handle 575
hbr prefix 30
HBRUSH handle 558
HCURSOR cursor handle 169, 315
HDC identifier for handle to a device context

25,49
Header file 306. See also WINDOWS.H
Header memory segment 267
HEAD program 254-60
head UNIX utility 254
HEAPSIZE statement 887
HELLOWIN program 15-39

make file 16, '20-22
module definition (.DEF) file 18, 38-39
output display 19, 20
source code file 17-18, 22-38

creating windows in 31-32
displaying windows in 32
function calls in 23
handle types in 25
Hungarian notation in 26
message(s) in 35-38
message loop in 33-34
new data types in 24-25
program entry point in 27-28
registering window classes in 28-31
uppercase identifiers in 24
window procedures in 34-38

HELP menu item option 339
HEXCALC program 479-87
HICON data type 30,313
HideCaret 116, 117

928

HiliteMenultem 364
Hit-testing in programs 146-64

CHECKER1 sample program illustrating
147-53

CHECKER2 program with keyboard
interface 153-58

child windows used for 158-64
hypothetical example 146-47
keyboard emulation of the mouse and

, 151-58
message for nonclient 145

HIWORD macro 66, 135, 543
HOLLOW _BRUSH 558
HORZRES 512
HORZSIZE 512
Hot link 813-14
Hourglass cursor 134, 169
HPEN pen handle 545
HRGN type 584
HS_BDIAGONAL 573
HS_CROSS 573
HS_DIAGCROSS 573
HS_FDIAGONAL 573
HS_HORIZONTAL 573
HS_ VERTICAL 573
HTCLIENT 145
HTERROR 145
HTNOWHERE 145
HTTRANSPARENT 145, 224
Huge global memory blocks 294-96
Huge pointer vs. far pointer 295
Hungarian notation 26
HWND identifier for handle to a window

25,32,34

I
IBM 8514A video adapter 512

icon size on 311
IBM Corporation 4
IBM Enhanced Keyboard 93
IBM extended character set 126, 127
IBMGRX.DRV 509
leon(s) 5, 303, 306-16

color of 311-12
COLORS1 program as 237-38
drawing 592
forcing 196-97
handles for 312-14
maintaining status as 197
minimizing windows to 36
NULL 195-96,238
predefined 30,313-14

leon(s) (continued)
RESOURCE1 program for displaying

custoIlJ.ized 306-10
setting 30
size of 310-11
SDKPAINT tool for creating 310-12
uses of, in programs 314-15

ICON resource script statement 313, 314, 315
ICON statement 409, 410, 415, 429
IDABORT440
IDCANCEL 423, 427, 440
IDC_ARROW cursor 30, 134
IDC_CROSS cursor 134
IDC_ WAIT cursor 134, 169
Identifiers 24, 25

class style 29
for scroll bars 70

IDLAPPLICATION icon 30, 313
IDM_FIRSTCHILD 872
IDOK 410, 423, 440
IDNO 440
IDRETRY 440
IDYES 440
Image(s) outside client area 171
IMPLIB program 905
Import libraries 13, 879, 904-6

dynamic linking without 908-9
INACTIVE menu item option 339, 340
#include statement 27
In/lateRect 584
Initialized static data 270
Input. See Child window control(s)j Keyboardj

Mousej Timer
Input focus 87, 89-90

buttons and 135, 218-19
caret display and 116-17
dialog boxes and 428
displaying mouse button and 152

Input/output for files 445-47
InsertMenu 363, 380
Instance(s), multiple 237

dynamic link libraries and 895
Instance handle 27-28, 32

setting 29-30
INSTANCE option 278
Instance overhead segment 267
"Instance" program segment attribute 277
Instance thunk 284
Intel microprocessor family

dynamic link libraries and architecture
of 897-98

memory modes 264
memory segments 265 -66

Index

Internationalization issues
character sets 128, 129-31
date and time formats 203-4
keyboard 97, 109-10
MS-DOS 128, 130-31

Interrupt(s)
handling timer 175-76
vs. messages 42

Interrupt 08H 175
Interrupt 09H 88
IntersectClipRect 587
IntersectRec 584
Intuition (software) 5
InvalidateRect 48, 50, 586

structuring programs for painting with
76-83

InvalidateRgn 586
Invalid rectangle 47-48

defining boundaries of 51
erasing background of 50

InvertRect 583
InvertRgn 585, 586
IP register 265, 898
IsClipboardFormatAvailable 399, 780, 796
IsDialogMessage 753
IsDlgButtonChecked 426
IsRectEmpty 584
IsWindowEnabled 218
Is Window Visible 218
Italicized characters 681
Items, Dynamic Data Exchange and 811, 839'

d
JUSTIFY program 702-14

K
KERNEL dynamic link library 12
Kernighan, Brian 15
Keyboard 87-131. See also Keystroke(s)

basics 87-90
caret and 116-25
character messages and 106-10
emulating mouse with 151-58
generating OEM codes from 131
internationalization concerns and 129-31
messages 91-98,110-16
numeric keypad 131
simulation of double-clicks 259
Windows character sets and 125 - 28

Keyboard accelerator(s) 89,385-401
accelerator table 387-89
POPPAD2 program with menu and 391-401
reasons for using 386

929

PROGRAMMING WINDOWS

Keyboard accelerator(s) (continued)
receiving messages from 390-91
rules on assigning 386-87
translating keystrokes 389-90

Keyboard driver 88-89,131
Keyboard interface

for bitmap menu items 385
for CHECKER program 153-58
for dialog box 428
for HEXCALC program 487
for scroll bar messages 234
for SYSMETS program 98-106

KEYLOOK program 110-16
Keystroke(s). See also Keyboard

vs. characters 90
messages 90,91-98

IParam variable for 92-93
shift states 96-97
system and non system 91-92
translating, into character 97, 106-10
using 97-98
virtual key codes 93-96

translating, for keyboard accelerators
389-90

KillTimer175,177

L
Landscape mode 731

banding in 765, 766
Large frame expanded memory 287
Laser printer, banding for 717,765
LB_ADDSTRING 246
LB_DELETESTRING 246
LB_DIR 253-60, 455
LB_ERR 246
LB_ERRSPACE 246
LB_GETCOUNT 247
LB_GETCURSEL 247
LB_GETSEL 248
LB_GETTEXT 247
LB_GETTEXTLEN 247,248
LB_INSERTSTRING 246
LBN _DBLCLK 248, 249
LBN _ERRSPACE 248, 249
LBN _KILLFOCUS 248
LBN _SELCANCEL 248
LBN _SELCHANGE 248, 249
LBN _SETFOCUS 248
LB_OKAY 246
LB_RESETCONTENT 246, 260
LB_SELECTSTRING 247
LB-':'SETCURSEL 247
LB _SETSEL 248

930

LBS_MULTIPLESEL 245
LBS_NOREDRAW 245
LBS_NOTIFY 245
LBS_SORT 245, 246, 254
LBS_STANDARD 245
LBUTTON134
_Iclose 445, 447
_Icreat 445 -46
Leading of type 665-66
Least recently used (LRU) algorithm 268
LF _FACESIZE 683, 685
LHND local handle 297
LibEntry 886
LIBENTRY.OB] 885, 886
LibMain 885, 886
Libraries. See Dynamic link libraries
LIBRARY statement 887
LIBW.LIB 22, 879, 904
LIM EMS 4.0 264
Line(s), drawing 542-57

alignment and 701-2
avoiding device dependencies when 549
color and 556-57
creating, selecting, and deleting pens

for 545-49
drawing modes for 550-'-52
filling in gaps 549-50
ROP2LOOK program illustrating 552-56
stock pens used for 544-45

LINECAPS 512
LineDDA 593
LINEDDA program 594-97
LineProc 593
Line spacing in points 667
LineTo 139, 151, 542
LINK program 12-13, 21, 38. See also Dynamic

link libraries
entry table created by 282

List box 244-60 .
ENVIRON application of 249-53
HEAD program for Windows and 254-60
list box defined 244
listing files using 253-60
putting strings into list box 246-47

. receiving messages from list boxes 248-49
selecting/extracting entries in list boxes

247-48
styles 245-46

LISTBOX statement 415, 416
_llseek 445 -46
LMEM_DISCARDABLE 297
LMEM_FIXED 297
LMEM_MOVEABLE 297

LMEM_NOCOMPACT 297
LMEM_NODISCARD 297
LMEM_ZEROINIT 297
LoadAeeelerators 389
LoadBitmap 321, 380, 578, 914
LoadCursor 30, 169
LoadJcon 30, 313
LoadLibrary732, 878, 908,909
LoadMenu 341, 383
LoadMenulndireet 353
LOADONCALL load option 277, 316, 337, 409
"Load" program segment attribute 277
LoadResouree 326
LoadString 323, 324
LoealAl/oe 297-98
LoealCompaet299
LoealDiseard 299
LoealFlags 299
LoealFree 298
LoealFreeze 299
LOCALHANDLE data type 289

, Local heap 271
memory allocation for global heap

and 288-89
organization of 271

Loeallnit 886
LoealLoek 298
LoealMelt 299
Local memory 270

DGROUP segment 270, 271
memory allocation 288-89, 296-98
organization of 270, 271

LoealReAl/oe 299
LoealSize 299
loealtime 203
LoealUnloek 298
Lock count 289
LoekData 299
LoekResouree 276, 326
LOGFONT structure 381, 668, 679
Logical coordinates 520-22

vs. device coordinates 519
metric mapping modes and 525-28
vs. screen coordinates, 53, 517

Logical font(s) 667-.:.87
creating, selecting, and deleting 668-69
font-mapping algorithm for 683-84
getting information on 669,685-87
PICKFONT program illustrating 669-79
structure of 679-83

Logical inch(es) 513, 664-65
Logical twips 666-67
LOGPEN structure 547

LOGPIXELSX and LOGPIXELSY 513
Long pointer. See Far (long) pointer
_lopen445-46
Lotus-Intel-Microsoft Expanded Memory

Specification 4.0 8, 264, 286
LOWORD macro 66, 135, 543
IParam message parameter 34, 35, 40-41

button colors and 222
button windows 211, 213
calculating client area using 66
edit control notification 242
file specification string 254
hit-testing and 146
keystroke-message fields of 92-93
list boxes and 248, 254
menu messages 342
mouse coordinates and 135,141
screen coordinates and 144
scroll bar 70

lpln prefix 29
LPtoDP522
LPTR local pointer 297, 300
_lread 445, 447

Index

LRU algorithm. See Least recently used (LRU)
algorithm

Iseek445
Istreat447
Istremp447
lstrepy 447, 781
Istrlen447
LTEXT statement 415, 429
LTGRAY _BRUSH 558
_lwrite 445, 447

M
Macintosh computer 5
mac macro 75
main 27
Main menu 335
Make (.MAK) files 20-22

altering, to compile programs as
medium-model 273

for resources 305-6
in STRUB library 885

MAKEINTRESOURCE macro 313
MAKELONG macro 301
MAKEPOINT macro 141
MakeProelnstanee 276, 656, 743 '

call-back functions and 186,284-85
creating instance thunk with 284
dialog box invocation and 412-13
thunks and 190

mal/oe 271, 301, 302

931

PROGRAMMING WINDOWS

MapDialogRect 431
Mapping mode(s) 517-39

constrained 529
conversions of 630
default 53, 54
device coordinates and 53,519
device coordinate system and 519-20
drawing bounding box and 559, 561
identifiers 518 (table)
logical coordinates and 53,517,519
logical twips 666-67
"metric" 525-28
MM_ANISOTROPIC 528, 533-34
MM_ISOTROPIC 528, 529-33
MM_ TEXT 522-25
pen widths and 546-47
user-defined 528-34
viewport and window 520-22
WHATSIZE program illustrating 534-39

MB_ABORTRETRYIGNORE 439
MB_APPLMODAL 440
MB_DEFBUTTONI 439
MB_DEFBUTTON2 439
MB_DEFBUTTON3 439
MB_ICONEXCLAMATION 439
MB_ICONHAND 270
MB_ICONINFORMATION 439
MB_ICONQUESTION 439
MB_ICONSTOP 439
MB_NOFOCUS 440
MB_OK439
MB_OKCANCEL 439
MB_RETRYCANCEL 439
MB_SYSTEMMODAL 270, 440
MBUTTON134
MB_YESNO 439
MB_ YESNOCANCEL 439
MOL See Multiple Document Interface (MDI)
MDICLIENT window class 855, 856
MDICREATESTRUCT 855,856,872
MDIDEMO program 857-70

menu structure in 870-71
program initialization in 871-72

Memory block(s) 288-302
allocating local 296-99
allocation shortcuts for 300-301
attributes of allocated 290-91
C memory allocation functions for 301-2
global memory functions and 290-93
huge global 294-96
locking 289-90, 298
locking data segments 299-300
protected mode and 302

932

Memory device context 614-15
creating bitmaps using 370, 380-81
drawing with 625-28

Memory management 8, 263-302
allocating memory within programs

288-302
C memory allocation functions 301-2
discardable global memory 294
example 289-90
glQbal memory functions and 290-93
huge global memory blocks 294-96
local memory 296 -99
locking data segments 299-300
locking memory blocks 289
protected mode and 302
shortcuts 300-301

character strings and memory space 324-25
code and data segments 272-78

memory models of 272-73, 275
multiple code segments 273-74
problems in moving 276-77
program segment attributes 277-78

free memory (see Free memory)
modes (real, prQtected, and enhanced)

8,264-65
moving/reloading program segments278-88

dynamic libraries and 285-86
in expanded memory 286-87
far functions and 280-82
program execution· and 282-84
in protected mode 287-88
role of MakeProclnstance 284-85
walking the stack and 286

organization of Windows memory 266-71
discardable memory 268-69
fixed and moveable segments 267-68
global memory layout 269-70
local memory 270-71

resoures and 263-64, 316-21
segmented, in Intel chips 265-66

Memory models 272-73
compact and large 275
medium 273, 274
mixed 272

"Memory" program segment attribute 277
Memory swapping 269
Menu(s) 303, 335-85

accelerators and, in POPPAD2 program
391-401

enabling menu items 398-99
processing menu options 399-401

bitmap images in 370-85
changing 363

Menu(s) (continued)
defining

with CreateMenu and AppendMenu
351-53

with LoadMenulndirect 353
in resource script 336-37

etiquette for 351
functions useful for working with 364-65
handle to 341
for MDIDEMO program 870-71
menu template 336-40
message processing 342-44
multiple top-level 365-70
popup 335-36, 338, 339, 353-59
referencing, in programs 340-41
selecting items from 336
structure 336
system menu 359-63
top-level 335, 338, 339

Menu bar 335
MENUBARBREAK menu item option 340
MENUBREAK menu item option 339, 340
MENUDEMO program 344-49
MENUITEM separator statement 339-40
MENUITEM statement 339
MENUITEMTEMPLATE structure 353
MENU resource script statement 337
MENU statement 414
message 34, 35, 40
Message(s) 13-15,33-34

character 90
client -area mouse 134-42
default processing 35-36
dialog box processing of 411~12, 472
dynamic linking and 902
to edit controls 243-44
generated by other messages 41,146
vs. interrupts 42
keyboard accelerator 390-91
keystroke 88, 90, 91-98, 110-16
from list boxes 248-49, 253-60
menu 342-44
nonclient-area mouse 134
nonqueued 41-42
parameters (see IParam message parameter;

wParam message parameter)
posting, vs. sending 41
processing of 35-38
queued14-15,33,41-42,43
scroll bar 69-71
structure of 33-34
timer 176-77

MessageBeep 150, 180 /

Index

MessageBox 439
Message box(es) 439-41

assertion 440-41
clipboard problems with 782
if timers are not available 179-80
popup information in 441
system modal 135-36

Message loop 15,33-34,389
META 647
Metafile(s) 605-6, 636-39

clipboard and 778, 790-95
disk 638-40,646
dos and don'ts of 648-49
memory 636-38, 646
preexisting 640-42
as resources 642-47
structure of 647-48

Metafile device context 498, 636-37, 639
Metafile picture 778, 790-95
Metric mapping modes 525-28
MF _BITMAP 343
MF _BYCOMMAND 365
MF _BYPOSITION 364, 365
MF _CHECKED 343, 364
MFCREATE program 640-42
MF _DISABLED 343
MF _GRAYED 343
MF_HELP 343
MF _HILITE 364
MF _MOUSESELECT 343
MF_POPUP 343
MFRESORC program 643-46
MF _SYSMENU 343
MF _UNCHECKED 364
MF _UNHILITE 364
Microsoft Corporation 4
min macro 75
MK_CONTROL 135
MK_LBUTTON 135
MK_MBUTTON 135
MK_RBUTTON 135
MK_SHIFT 135
MLIBCEW.LIB 273
MM_ANISOTROPIC 518, 528, 533-34, 790
MM_HIENGLISH 518,525,534
MM_HIMETRIC 518, 525, 534
MM_ISOTROPIC 518, 528, 529-33, 790
MM_LOENGLISH 518, 525, 526, 534
MM_LOMETRIC 518, 525, 534
MM_ TEXT 53, 518, 522-25, 534, 559

GrayString and 657
x-coordinate 54
y-coordinate 54

933

PROGRAMMING WINDOWS

MM_ TWIPS 518, 525, 534
Modal dialog boxes 404-39

ABOUT1 program illustrating 404-17
ABOUT2 program illustrating 417-31
ABOUT3 program 431-39
Cancel button 427-28
controls for

defining 415-17
user-defined 431-39
working with 424-27

dialog box procedure for handling messages
in 410-12

dialog box template for creating 408-10
functions useful with 431
invoking 412-13
message processing 411-12
vs. modeless dialog boxes 471-73
OK button 427-28
painting on 430-31
style of 413-14
tab stops and groups in 428-30

Modeless dialog boxes 471-87
COLORS2 program illustrating 473-79
HEXCALC program illustrating 479-87
vs. modal dialog boxes 471-73
using control IDs in 487

ModifyMenu 363
Module definition (.DEF) file 18, 38-39

in dynamic link library 887-88
EXPORTS section 185, 282, 283, 412, 656,

688,743,745,"888
stack and local heap size specified in 271

Monochrome bitmap format 608-9
Mouse 133-71

basics 133-34
capturing 135, 164-71
client-area messages 134-42
coordinates of 34, 135

converting, to POINT structure 141
double-clicks of 134, 142-43
hit-testing in programs and 145,146-64
keyboard emulation of 151-58
nonclient-area messages 143-46
position of 135
scrolling with (see Scroll bares))
shift-key processing 142

Mouse buttons
actions of 134
state of 97, 135

Mouse cursor 30
changing 169-70,315-16
display count for 151
displaying, and input focus 152

934

Mouse cursor (continued)
hot spot on 133, 134
predefined 134

Mouse key 135
Moveable entry point 282
MOVEABLE memory option 277, 316,

322,337,409
Moveable memory segments 267-68

discarding 268-69
memory allocation of 289-90

MoveTo139,151, 542
MoveWindow 431
MS-DOS

dynamic linking and 902
internationalization and character-set

support 127, 130-31
no mixed programming with 11
Windows vs. 10-11

MS-DOS applications under Windows 10
MSG message structure 25,33-34
MULTIPAD program 857
Multiple Document Interface (MDI) 853-76

creating child documents with
FrameWndProc message 872-74

document windows procedure 874-76
elements of 854-55
MDIDEMO program illustrating 857-70
menu structure of 870-71
program initialization in 871-72
Windows 3 and 855-56

Muitiple instances 237
dynamic link libraries and 895

MULTIPLE program segment attribute 277
Multitasking and Windows 7-8, 263. See also

Memory management
nonpreemptive 42-43
timer and 173

N
Near function call

vs. far call 267
return address 280

Near (short) pointer 265
vs. far pointer 267
handles as 300

New Executable file format 12
NEWFRAME 716,717,734
NeWS (software) 5
NEXTBAND 734, 763
NextStep (software) 5
NMAKE utility 20
NOINVERT option 388
Nonclient-area mouse messages 143-46

Nonclient hit test 145
NONE program segment attribute 278
Nonpreemptive multitasking 42-43
NOPOPUPS program 365-70
NOTEPAD program 89
-NT switch 274
NULL_BRUSH 558, 559
NULL icon 195-96,238
NULL_PEN 558
NULL pen 544
NULLREGION 585
NUMCOLORS 513
Numeric constants, identifiers for 24, 28
Numeric keypad, generating OEM characters

using 131

o
Object, defined 14
Object library 879
Object module (.OBJ) file 21
Object-oriented programming 13
OEM character set 126, 127, 682

converting 129-31
fonts and 128
generating, from keyboard 131

OEM_CHAR_SET 682, 686
OEM_FIXED_FONT 128,655
OEM Scan Code field 92
OemToAnsi 130, 131
Oem ToAnsiBuf!130
OF _CANCEL 444
OF _CREATE 443
OF _DELETE 444
OF _EXIST 443-44
Of!setClipRgn 587
Of!setRect 583
OF _PARSE 444
OF _PROMPT 444
OF_READ 443
OF _READWRITE 443
OF _REOPEN 444
OFSTRUCT structure 442
OF _VERIFY 444
OF _WRITE 443
OK button in dialog boxes 427-28
OKMsgBox 441
open 40, 445
OpenClipboard 780, 781, 782
OpenFile130,442-44
Openjob716
OS/2 operating system 4, 612
OUT _CHARACTER_PRECIS 682
OUT _DEFAULT _PRECIS 682

Index

OutputFunction 656,717
OUT _STRING _PRECIS 682
OUT _STROKE_PRECIS 682

p
PageMaker (software) 3
Page swapping 264
PAINTBRUSH program 158, 611
Paint information structure 47-48, 50-52. See

also PAINTSTRUCT structure
Painting dialog boxes 430-31
Painting text 32, 36. See also Text

background color (see Background color)
client areas and 45-46
Graphics Device Interface and 48-66
saving vs. repainting 47
scroll bars and 67-83
valid and invalid rectanges for 47-48,50-51
WM_PAINT message and 46-47, 49, 76-

PaintRgn 585, 586
PAINTSTRUCT structure 25, 37,49, 50-52, 496
Paper, returning size of 734, 773
Paragraphs

formatting/justifying text 702-14
in memory 266

PARe. See Xerox Palo Alto Research Center
(PARC)

Parent window(s)
communication with child window 212-15,

242-43
handle 32, 205
Multiple Document Interface (MDI) 856

pascal calling sequence 12
PatBlt171, 615, 616-18, 656

coordinates 618-19
PATINVERT 618
Pattern. See Brush(es)
PeekMessage

data segment moves and 279
drawing graphics with 599-600
printing with 744

Penes)
bounding boxes and 560
color 549, 556, 557 (table)
creating/selecting/deleting 545-49
current pOSition 543
setting 542
styles 546
using stock 544-45
width of, and mapping modes 546-47

PICKFONT program 669-79
Pie 562, 563, 570
Pie charts, trigonometry of 569-71

935

PROGRAMMING WINDOWS

Pixels
color 541
coordinate system 494,517
cursor hot spot 133
determining dimensions of 310
logical inch 513
manipulating (see Bit)
number of color bits per 513

PLANES 513
Play MetaFile 637, 638
PM_NOREMOVE 599
PM_REMOVE 599
POEPOEM program 326, 327-33
Point(s)

calculating, on straight line 594
CONNECT program for connecting 136-40
drawing 541-42
line spacing in 667
saving 140-41
type, fonts, and 518, 664
for window and viewpoint extents 521

Pointer 12. See also Far (long) pointer; Near
(short) pointer

POINT structure 33, 140-41
converting, to/from RECT structure 141

Polygon 571, 572
POLYGONALCAPS 512
Polygon filling mode 571-72
PolyLine 544
POORMENU program 359, 360-62, 363
POPMENU program 354-58, 359
POPPADI program 238-41
POPPAD2 program 391-401

enabling menu items in 398-99
processing menu options in 399-401

POPPAD3 program 457-71
adding printing to 755-61

POPUP statement 339
Popup windows 335-36, 338, 339-40, 343,

353-59. See also Dialog box(es)
creating 202
handle of 364
positioning and sizing 203

Portrait mode 731
banding in 764, 765

PostDataMessage 836-37
Post Message 42
PostQuitMessage 38, 41
PPOINT data type 141
PRECT data type 141
PRELOAD load option 277, 316, 409
Presentation Manager 4,5
Previous instance parameter 27

936

Previous Key State field 93
PRINTI program 741-42
PRINT2 program 747-49
PRINT3 program 750-53
PRINT4 program 767-71
Printer device context 716, 720-33

CreateDC parameters 720-23
revised DEVCAPS program and 723-33

Printer driver
interaction of GDI module, application

programs, and 718
landscape vs. portrait mode 731

Printers and plotters 715-73
banding techniques for 717,762-71
fonts and 772-73
information context handle for 509
printing, spooling, and Escape 716-20
printing with (see Printing)

printj 57
Printing 733-37

Escape and 716-20, 733-34, 761
FORMFEED program 734-37
of graphics and text 737-62

abort procedure 742-49
adding printing to POPPAD program

755-60
basics of 740-42
canceling 759
dialog box for 749-54
error codes 760-62

PRINT program versions 737-40, 747-49,
750-53, 767-71

Printing dialog box 749-54
Print Manager program 716,717-18

operation of 7~9
PRINT program 737-40
Program instance handle 32
Programming for Windows

benefits of 10-15
function calls and 11-12
message-driven architecture in 13-15
MS-DOS and 10-11
New E~ecutable file format 12
object~oriented 13
window procedures and 14-15

Program modules vs. libraries 880
Program overhead segment 267
Program segment(s) 266-71

attributes of 277-78
CODE and DATA 272-78
moving and reloading 278-88

dynamic library differences 285-86
expanded memory and 286-87

Program segment(s), moving and reloading
(continued) .

far functions and 280-82
program execution and 282-84
protected mode and 287-88
role of MakeProclnstance 284-85
walking the stack 286

Prolog instructions 280-82, 285, 895-96
PROOF _QUALITY 682
Protected mode 8,264,287-88
PS_DASH 546
PS_DASHDOT 546
PS_DASHDOTDOT 546
PS_DOT546
PS_INSIDEFRAME 546, 547
PS_NULL 546
PS_SOLID 546
PtInRect 584
pt message parameter 34
Push button(s) 214-15

customized 438
OK and Cancel, in dialog boxes 427-28

PUSHBUTTON statement 415

Q
_ QUERYESCSUPPORT 734

Queued messages 14-15, 33, 41-42, 43

R
R2_BLACK 550, 551
R2_COPYPEN 550, 551
R2_NOP 551, 559
R2_NOT 552
R2_NOTCOPYPEN 551
R2_NOTMERGEPEN 551, 557
R2_ WHITE 551
R2_XORPEN 557
Radio button(s) 216

in dialog boxes 423-26
RADIOBUTTON statement 415
rand 627
RANDRECT program 601-4
RASTERCAPS 733, 762
Raster devices 494
Raster (bitmap) font 54, 659-60

aspect ratio 660
RASTER_FONTTYPE 688
Raster operations. See ROP codes for raster

operations
RBUTTON134
.Re. See Resource script eRC)
RC_BANDING 510, 762
RC_BITBLT 510, 733
Re.EXE resource compiler 21, 22, 304-6

Index

.RC extension. See Resource script eRC)
rcinclude 489
RC_INVOKED 388
RCPP.EXE 306
read 445
Real mode 8
real/oc 301
Rectangle 150, 559-60
Rectangle(s) 583-84

clipping 51, 52, 586-87
CLOVER program and 587-92
drawing filled 559-60
drawing random 598-604
swapping contents of two 625-28
valid and invalid 47-48,50-51

RECT rectangle structure 25, 37, 51, 583
banding and 763-66
converting, to/from POINT 141

Region(s) 583
clipping 586-87
CLOVER program illustrating 587-92
creating and painting 584-86

RegisterClass 28, 31
creating instance thunk with 284

RegisterClipboardFormat 800
ReleaseCapture 165
ReleaseDC 52, 496
Reload thunk 282-83
RemoveMenu 363
Repeat Count field 92
Resource(s) 303-4. See also Bitmap(s);

Character string(s); Cursor(s); Dialog
box(es); Font(s); leon(s); Keyboard
accelerator(s); Memory management;
Menu(s)j User-defined resource(s)

compiling 304-6
discardable 268
dynamic link libraries of only 909-15
font files 662-64
loading, by dynamic link libraries 902-3
make file for 305-6
memory and 263-64, 316-21
metafiles as 642-47

RESOURCE1 program 310-16
RESOURCE2 program 317-21
Resource script eRC) 304-5

accelerators 387-88
hitmaps 321
character strings 322
cursors 315
dialog boxes 409, 489
icons 313,314, 316 .
load and memory options 316

937

PROGRAMMING WINDOWS

Resource script CRC) (continued)
menus 337
user-defined resources 325

Resource table 304
RestoreDC 517
RGB color values 183-84, 612
RGB macro 183-84, 542
RGBQUAD structure 612
RGBTRIPLE structure 612
RGN_AND 585
RGN _COPY 586
RGN_pIFF 585
RGN_OR585
RGN_XOR585
Ritchie, Dennis 15·
ROP2 codes for binary raster operations

550-52
color and 556-57
drawing modes 551 (table)

ROP2LOOK program 552-56
ROP codes for raster operations 616, 656

supported by BitBlt 620 (table)
supported by PatBlt 617 (table)
using different 622-24

RoundRect 561
RTEXT statement 415, 429

5
SaveDC517
SB_BOTTOM 70
SB_ENDSCROLL 70
SB_LINEDOWN 70
SB_LINEUP 70
SB_PAGEDOWN 70
SB_PAGEUP 70
SBS_HORZ 225
SBS_ VERT 225
SB_ THUMBPOSITION 70-71, 83
SB_THUMBTRACK 70-71,83
SB_TOP70
Scaling bitmaps 382-83
Scaling factor in window and viewpoint

extents 521
SC_ARRANGE 343, 363
SC_CLOSE 343,363
SC_HSCROLL 343, 363
SC_KEYMENU 342, 343
SC _MAXIMIZE 343
SC_MAXIMUM 363
SC_MINIMIZE 343
SC_MINIMUM 363
SC_MOUSEMENU 342, 343
SC_MOVE 343, 363

938

SC_NEXTWINDOW 343, 363
SC_PREVWINDOW 343, 363
SCRAMBLE program 625-28
Screen. See also Display(s)

coordinates 31-32, 53, 144, 145, 517, 519-20
system metrics 58-66

Screen ToClient 145, 520
SC_RESTORE 343,363
Scroll bares) 5, 67-83,592

arrows 67
building a better scroll 77-83
coloring 236-37
in edit controls 241
keyboard interface and logic of 98-99
messages 69-71
range and position 68-69, 82-83
vs. scroll bar controls 225-26
scrolling in SYSMETS2 program 71-83
thumbs 67, 68, 69
vertical 67

Scrollbar child window control class 225-26
automatic keyboard interface 234
in COLORSI program 226-32
window subclassing and 234-35,259

SCROLLBAR statement 415, 416
Scroll DC 592, 593
ScrollProc 235
Scroll thumb 67, 68, 69
ScrollWindow 82-83, 592
SC_SIZE 343, 363
SC_ TASKLIST 343, 363
SC_ VSCROLL 343, 363
SDKPAINT tool

creating bitmaps with 380, 575, 577, 611
creating icons and cursors with 310-12

SDLLCEW.LIB 885, 886
Segment addresses 287
Segment arithmetic 295
Segmented memory. See also Code segment(s);

Data segment(s); Program segment(s)
discardable 268-69, 294
fixed 267-68, 282
Intel microprocessor family 265-66
local memory 270,271
moveable 267-68, 282
segment defined 266

Segment registers 265,266,279,280,897-902
SEGMENT statement 278
SelectClipRgn 586
SelectObject

bitmaps and 381, 614
brushes and 558,574
fixed-pitch fonts and 115

SelectObject (continued)
fonts and 381, 654, 668
metafiles and 649
OEM character set and 128
pens and 545, 548
regions and 586

Selectors, segment addresses as 287
SendDlgltemMessage 426
SendMessage 42

adding keyboard interface to SYSMETS with
100-106

buttons and 215, 216
list boxes and 246,247-48,455
sending messages to edit control with

243-44
Server application name 810-11
ServerProc window procedure 834
SETABORTPROC 734, 743
SetBitmapBits 576, 608
SetBitmapDimension 610
SetBkColor221, 222, 550, 653
SetBkMode 116, 550, 653
SetBrushOrg 223, 580
SetCapture 164
SetCaretBlinkTime 116
SetCaretPos 116
SetClassWord 235,314
SetClipboardData 780, 797, 798
Set Clipboa rd Viewer 801
SetCursorI69,315-16
SetCursorPos 152
SetDIBits 613
SetDIBitsToDevice 614
SetDlgltemlnt 479
SetDlgltem Text 456
SetFocus 219, 248
SetFontMapperFlags 684
SetMapMode 518
SetMapperFlags 684
SetMenu 341, 351, 370
SetMenultemBitmaps 385
SetMetaFileBits 646
SetPixel139, 541-42
SetRect583
SetRectEmpty 584
SetROP2551
SetScrollPos 68, 226
SetScrollRange 68, 226
SetStretchBltMode 789
SetSysColor 220
SetTextAlign 65, 652
SetTextCharacterExtra 654
SetTextColor221, 222,653

Index

SetTimer174
three methods for using 177,184-86,191

SetViewportOrg 522,523,527-28
SetWindowLong 234
SetWindowOrg 522, 523-25
SetWindowText 217, 243
SHIFTJIS_CHARSET 682
Shift keys/states

character messages and, 108
keyboard states 96-97
mouse processing 142

SHIFT keyword option 388
Short pointer. See Near (short) pointer
ShowCaret 116, 117
ShowCursorl51-52
ShowKey115
SHOWPOP program 840-51

initiating DDE conversations in 849-40
WM_DDE_DATA message processing in

850
WM_DDE_ TERMINATE message

processing in 851
ShowWindow 32, 196, 202, 217
Simonyi, Charles 26
SIMPLEREGION 585
sin 569
SI register 265.
SLIBCAW.LIB 197
SLIBCEW.LIB 22, 197, 273, 885
Small frame expanded memory 287
SM_CXICON 310
SM_CXCURSOR 310
SM_CYICON 310
SM_MOUSEPRESENT 133
Source code (.C) file 22-38
SP _APPABORT error 743, 762
SP _ERROR error 762
SP _NOTREPORTED 760
Spooler statement 719
Spooling 716-20
SP _OUTOFDISK error 736, 742, 762
SP _OUTOFMEMORY error 762
SP register 265,898
sprint! 57-58
SP _USERABORT error 759, 762
SRCAND 624
SRCCOPY628
SRCINVERT 624
SS_BLACKFRAME 224
SS_BLACKRECT 224
SS_CENTER 225
SS_GRAYFRAME 224

939

PROGRAMMING WINDOWS

SS_GRAYRECT 224
SS_ICON 225
SS_LEFT 225
SS register 265, 279

DS != SS issue and dynamic link libraries
897-902

SS_RIGHT 225
SS_USERITEM 225
SS_ WHITEFRAME 224
SS_ WHITERECT 224
Stack 12, 271

after prolog instruction 281
after prolog instruction execution 280
walking the 286

Stack frame 280-82
Standard mode 264
STARTDOC 716, 734
Static child window control 224-25

in COLORS1 program 226-32
static variable 42, 57
Status reports, using timer to update 173,

191-97
strcat447
strcmp447
strcpy447
StretchBlt168-69, 170, 383, 615

coordinates 618-19
stretching bitmaps with 630-31, 788, 789

StretchDIBits 614
String(s).· See Character string(s)
STRINGTABLE resource script statement 322,

323
strlen 447
STRUB library 881

functions in 887
library entry point 885-86
library module definition file 887-88
make file differences in 885
revised make and module definition files

for 905-6
Stroke font(s) 659, 660
STRPROG program 881, 888-97

execution of 895
IMPORTS section 894, 903-4
revised make and module definition files

906
strtok 509
STYLE statement 409,413-14,472
Subclassing. See Window subclassing
SW _SHOWMAXIMIZED 196
SW _SHOWMINNOACTIVE 32, 196
SW _SHOWNOACTIVATE 202

940

SW _SHOWNORMAL 32, 196
SYMBOL_CHARSET 682
Symbolic Link format 778
SYSMETS1 program 58-66

window procedure 64-65
SYSMETS2 program 71-75

adding vertical scroll bar to 71-75
restructuring for painting 76-83

SYSMETS3 program 77-83
improvements in 82-83

SYSMETS program, adding keyboard interface
to 98-106

adding WM_KEYDOWN logic to, by
duplicating scroll bar logic 98-99

sending messages to, using Send Message
100-101

System colors 219, 220-21
SYSTEM.DRV driver and Windows timer

175-76
SYSTEM_FIXED_FONT 115,117,655
System font (SYSTEM_FONT) 54-56, 128,

214,655
System menu 335, 359-63, 384

keyboard accelerators and 390-91
in dialog boxes 414

System metrics display programs 58-66
scrollings in 71-83

System modal dialog box 135,404
Systems Application Architecture Common

User Access Advanced Interface Design
Guide. See CUA Interface Design Guide

SYSTEM subdirectory 12
Systemwide resource 116

T
Tab(s)

expanding, into spaces 652, 653
in dialog boxes 428-30

TA_BASEUNE 652
TA_BOTTOM 652
TA_CENTER 652
Tag Image File Format (TIFF) 779
TA_LEFT652
TA_RIGHT 652
TA_TOP 652
TA_UPDATECP 652
TC_IA_ABLE bit 681
TC_SO_ABLE bit'681
TC_UA_ABLE bit 681
tell 445
Terminal fonts 128
Text 651-58. See also Character(s); Character

string(s); Font(s)

Text (continued)
bit flags identifiers for display of 38
changing, in button windows 217
color 222
coordinates 53-54
creating bitmaps with 381-82
device context attributes for 653-54
drawing functions 37, 651-53
formatting 56-58, 700-714
getting, from clipboard 780-82
graying character strings 656-58
mapping mode 522-25
opaque and transparent modes 116
painting on client areas with (see Painting

text)
positioning 64-65
static child window control and styles of 225
transferring, to clipboard 779-80
using stock fonts for 654-55

TEXTCAPS 512
_TEXT code segment 278
Text editor TYPE program 117-25
TEXTMETRIC structure 55-56, 519

fields of 685-86
TextOut48, 52-54, 517,651-53
Text printing 737-62

abort procedure 742-49
adding printing to POPPAD program

755-60
basics of 740-42
dialog box 749-54
error codes 760-62
PRINT program versions 737-40,747-49,

750-53,767-71
Thunk 190

instance 284
reload 282-83

TIFF 779
Time

getting date and 203
internationalization of 203-4
standard Windows 204

time 203
time message parameter 34
Timer 173-204

basics 174-77
color and 180, 183-84
messages 176-77
pacing of movement 174
three methods for using 177-91
typical uses for 173-74
unavailable 178-79
using, for a clock 198-204

Index

Timer (continued)
using, for a status report 191-97
Windows standard time and 204

Title bar 6
Toolbook (software) 3
Topic name, DDE 810-11
Top-level menu(s) 335, 338
TrackPopupMenu 359
Transition State field 93
TranslateAccelerator 386, 390, 856
TranslateMDISysAccel872
TranslateMessage 34,107
Twips 518, 525, 666-67
Typeface

families 661
leading and spacing 665-66
logical inches 664-65
points 664
video display 662

Typematic (autorepeat) feature 91, 108
TYPE program 117-25

U
Underlining (&) 339, 430
Uninitialized static data 270-71
UnionRect 584
unlink 639, 640
UnlockData 300
UnlockResource 326
UnrealizeObject 223, 580
UpdateWindow 32, 83

structuring programs for painting with
76-77

Uppercase identifiers 24, 25
User(s), advantages of Windows to 4-10

device-independent graphics interface 9-10
graphical user interface (GUI) 5-7
memory management 8
MS-DOS applications under Windows 10
multitasking 7-8.

User-defined buttons 217
User-defined child control boxes 431-39
User-defined resources 275, 325-34

handle 326
POEPOEM program illustrating 327-33
TEXT resource script statement for 325

USER.EXE 493
USER.LIB 12

V
ValidateRect 586
ValidateRgn 586
Valid rectangles 47

941

PROGRAMMING WINDOWS

Variable-naming convention 26
VARIABLE_PITCH 683
Vector devices 494
Vector (stroke) fonts 659, 660
VERTRES 512
VERTSIZE 512
VGA. See Video Graphics Adapter (VGA)
Video device. See Display(s); Screen
Video Graphics Adapter (VGA) 184, 512

displaying basic information on 510
icon size on 310-11

Viewport device coordinates 520-22
VIRTKEY keyword option 388
Virtual-86 mode 264 .
Virtual coordinate system 494, 529
Virtual key codes 93, 94-96 (table)
VK_CONTROL 142
VK_LBUTTON 142
VK_MBUTTON 142
VK_RBUTTON 142
VK_SHIFT 142
vsprintJ 441

W
Walking the stack 286
Warm link 814-15
WF _LARGEFRAME 287
WF _SMALLFRAME 287
WHATSIZE program 534-39
WHITE_BRUSH 558
WHITENESS 618
WHITEONBLACK 631
WHITE_PEN 544
Whole-window coordinates 520
WIN87L1B.LIB import library 197, 879
WINDING polygon filling mode 571, 572
Window(s)

active 90
application modal 179-80
coordinates 31-32,520,520-22
creating with CreateWindow 31-32
defined 13
destroying 38
displaying 32
elements of 6-7
forcing, to appear as icon 196-97
handles to 25, 32
minimizing, to an icon 36
overlapping 31, 36
painting text on client area of (see Painting

text)
popup 202, 203
resizing 29,36,40

942

Window(s) (continued)
size of 32
style (see Window style)
subclassing 234-35

Window caption 31
Window class 14, 31

as child window control (see Child window
control(s))

defining icon! cursor in 30
device contexts for 516
registering 28-31, 284

Window menu handle 32
Window procedure 14-15,34-38,40,876

child (see Child window procedure)
conditions leading to receipt of WM_PAINT

message by 46-47
frame 872-74
processing messages with 35-38

default 35-36
WM_DESTROY example 38
WM_PAINT example 36-38

setting 29
in SYSMETS1.C program 64-65

Windows (software) 3-44
advantages of, to programmers 10-15
advantages of, to users 4-10
vs. C language programs 30
first program using 15-39
history of 4
input (see Keyboard; Mouse; Timer)
memory organization (see Memory

management)
programming huddles using 39-44
standard time in 204
version 3 and Multiple Document Interface

855-56 .
Window scroll bars. See Scroll bares)
WINDOWS.H 11

identifiers in 24, 25
including 27
WNDCLASS structure in 28-31

Windows Software Development Kit 11
Window style 31

dialog box 413
edit 241-42
list box 245-46
static 224-25

Window subclassing 234-35, 259
edit controls and 243

WIN.lNI
kolor} section 220
[device} section 721-22
!intlJ section 203-4

WIN.lNI (continued)
[ports} section 723
[windows} section 509, 719, 720
WinMain 22
CreateWindow in, vs. in window procedure

163-64
defining 27

WINSTUB.EXE program 39
WM_ASKCBFORMATNAME 799
WM_CHANGECLIPBOARD 802
WM_CHAR 107, 109
WM_CHILDACTIVATE 876
WM_CLEAR 243, 400
WM_CLIPCHILDREN 236
WM_CLOSE 41, 400
WM_COMMAND 211, 213, 216, 217, 242, 245,

248
dialog box and 411-12, 426, 427
keyboard accelerators and 385-86,391
for menus vs. child window controls 343

WM_COPY 243, 399
WM_CREATE 56
WM_CTLCOLOR 221, 222-24, 236
WM_CUT 243, 399
WM_DDE_ACK 811, 813, 814, 815
WM_DDE_ADVISE 813,814,836,837-39
WM_DDE_DATA 813, 815, 836, 839, 850-51
WM_DDE_EXECUTE 816
WM_DDE_INITIATE 809, 811, 813,

814,833-34
WM_DDE_POKE 816
WM_DDE_REQUEST 812, 815, 834-35
WM_DDE_ TERMINATE 812, 813, 815,

839-40,851
WM_DDE_UNADVISE 814, 815, 839
WM_DEADCHAR 107, 110
WM_DESTROY 38, 41
WM_DESTROYCLIPBOARD 797
WM_DEVMODECHANGE 509, 700
WM_DRAWCLIPBOARD 802
WM_ENDSESSION 401
WM_ERASEBKGND 236
WM_FONTCHANGE 700
WM_GETMINMAXINFO 876
WM_HSCROLL 69, 70, 82-83, 225
WM_HSCROLLCLIPBOARD 800
WM_INITDIALOG 411, 754
WM_INITMENU 342
WM_INITMENUPOPUP 343,398
WM_KEYDOWN 91, 92, 98

adding logic of, to SYSMETS program 98-99
translating 100-101, 107

WM_KEYUP 91, 92, 107, 438

Index

WM_KILLFOCUS 90,117,152,218
WM_LBUTTON 134, 135, 438
WM_MBUTTON 134, 135
WM_MDI856
WM_MDIACTIVATE 856, 875
WM_MDICASCADE 873
WM_MDICREATE 855, 856, 872
WM_MDIDESTROY 873
WM_MDIGETACTIVE 873
WM_MDIICONARRANGE 873
WM_MDIRESTORE 873
WM_MDISETMENU 875
WM_MDITILE 873
WM_MENUCHAR 344, 876
WM_MENUSELECT 342
WM_MOUSEMOVE 134
WM_MOVE 520, 876
WM_NCHITTEST 145,224
WM_NCLBUTTON 144
WM_NCMBUTTON 144
WM_NCMOUSEMOVE 143
WM_NCRBUTTON 143
WM_PAINTCLIPBOARD 800, 802
WM_PAINT message 36-38

device context and 496
painting text using 46-47, 49
processing with PeekMessage 600
structuring areas to paint with 76-83

WM_PASTE 243, 400
WM_ prefix 35
WM_QUERYENDSESSION 401, 873
WM_QUERYOPEN 197
WM_QUIT 34, 41
WM_RBUTTON 134, 135
WM_RENDERALLFORMATS 797
WM_RENDERFORMAT 797, 798
WM_SETCHECK 216
WM_SETFOCUS 90,117,152,876
WM_SETREDRAW 245, 247
WM_SIZE 40, 82, 519, 876
WM_SIZECLIPBOARD 799
WM_SYSCHAR 107
WM_SYSCOLORCHANGE message

processing 654
trapping 224

WM_SYSCOMMAND 41, 342, 343, 363, 876
keyboard accelerators and 385,390

WM_SYSDEADCHAR 107
WM_SYSKEYDOWN 91-92

translating 107
WM_SYSKEYUP 91-92
WM_TIMER 173,174,175,176

sending, to another function (call-back)
184-91

943

PROGRAMMING WINDOWS

WM_ TIMER (continued)
sending, to normal window procedure

177-84
WM_UND0399
WM_USER 213-14
WM_ VSCROLL 69, 70, 75, 82-83, 225
WM_ VSCROLLCLIPBOARD 800
WM_ WININICHANGE 204
WNDCLASS structure 25

defining 28-31
Word for Windows (software) 3
wParam message parameter 34, 35, 40-41

button colors and 222
button windows 211, 213
character messages 107
edit control notification and 242
list boxes and 248
meri"u messages 342
mouse messages, client-area 135
mouse messages,nonclient-area 135,145
scroll bar identifiers 70
shift-key states and 142
virtual key codes and 93-96
write 445
WriteSpool717
Write word processor 6

944

WS_BORDER 241, 245
WS_CAPTION 245
WS_CHILD 416, 855
WS_CLIPCHILDREN 478
WS_DLGFRAME 409, 414
WS_GROUP 410, 428, 429
WS_HSCROLL 68, 241, 872
WS_MAXIMIZE 873
WS_MAXIMIZEBOX 414
WS_MINIMIZE 873
WS_OVERLAPPEDWINDOW 31
WS_POPUP 409
wsprintj58, 115
WS_SIZEBOX 245
WS_SYSCOMMAND 359
WS_SYSMENU 359, 414
WS_ TABSTOP 234, 411, 428
WS_ THICKFRAME 414
WS_ VISIBLE 217-18, 416, 472
WS_ VSCROLL 68, 241, 245, 872
WYSIWYG (what you see is what you get) 5

X
Xerox Palo Alto Research Center (PARC) 5
X-Window system (software) 5

Charles Petzold

Charles Petzold is a freelance writer specializing in Windows and OS/2. He is a contribut
ing editor to PC Magazine, where he writes about OS/2 programming in the "Environ
ments" column. He has written articles about Windows and OS/2 for the Microsoft Systems
Journal and is the author of Programming the OS/2 Presentation Manager (Microsoft
Press). A new book, The OS/2 Graphics Programming Interface, is expected in 1991.

The manuscript for this book was prepared and submitted to Microsoft Press in electronic
form. Text files were processed and formatted using Microsoft Word.

Principal word processors: Deb Kern and Judith Bloch
Principal proofreader: Shawn Peck
Principal typographer: Lisa G. Iversen
Interior text designer: Darcie S. Furlan
Principal illustrator: Rebecca Geisler-Johnson
Cover designer: Thomas A. Draper
Cover color separator: Rainier Color

Text composition by Microsoft Press in ITC Garamond Light with display type in Helvetica
Black, using" the Magna composition system and the Linotronic 300 laser imagesetter.

Printed on recycled paper stock.

AficmsoftUniversily

An Open and Shut Case for Windows~Training
When you attend Microsoft University, our courses take
you to the heart of our microcomputer software architecture.
Lab sessions provide practical, hands-on experience and
show you how to develop and debug software more
efficiently. Our qualified instructors explain the philosophy
and principles that drive our system designs.

.Windows Courses for Support Personnel
Our courses for professional support engineers train them to
help end users overcome the kinds of operational difficulties
that they typically encounter with Microsoft Windows.
Students receive hands-on experience installing Microsoft
Windows and configuring the system. Finally, they receive
valuable experience in troubleshooting, role-playing with
common problems and mistakes, and dealing with end users.

Windows Courses for Developers
We offer courses for experienced software developers who
are new to deVeloping applications for the Microsoft
Windows graphical environment, as well as courses for
more seasoned Windows developers. Course work includes
experience with the development tools in the Windows
Software Development Kit (SDK) as well as the exploration

of the Graphics Device Interface (GDI). In addition to
our regular schedule of classroom courses, we offer the
Fundamentals of Microsoft Windows Programming, an
intensive, hands-on video course.

The On-Site Solution
When training 10 or more people in an organization, con
sider our Windows on-site solution. On-site courses are
more convenient because we bring the training to your com
pany. We can accommodate as many as 24 students per
class, which significantly lowers the cost per student.

The Window of Opportunity
Is Never Open Very Long
We appreciate the pressures of the marketplace and know
what a difference timely training can make in the success of
your Windows project. That's why we offer regularly
scheduled Windows classes at our regional training facilities
in the United States and Canada. To receive our current
course schedule, which describes our courses in detail and
provides complete registration information, call Microsoft
University at (206) 828-1507, code 608.

I'D LIKE TO KNOW MORE!

D Please send me the most current course schedule.

D Please have a representative call me regarding an on-site course for

Course / Topic

D Please send me more information on the following Microsoft
University courses:

D MS® OS/2 D Microsoft SQL Server

D MS OS/2 Presentation Manager D Microsoft Windows'"

D MS LAN Manager D Microsoft C

When it's available, please send me information on:

D Microsoft University Technical Training Video Courses

Course / Topic

code 608

PLEASE PRINT

Name:

Job Title/Function:

Company (If applicable):

Street Address:

City: State: Zip

Daytime Phone:

Please clip along dotted line and mail to:

MicI'OsoftUniversity
One Microsoft Way, Redmond, W A 98052-6399
Microsoft, the Microsoft logo, and MS are registered trademarks, and Windows are
trademarks of Microsoft Corporation.

Microsoft'

Microsoft Windows Programmer's Reference Library
The core documentation-including both technical data and programming tutorials- that Microsoft

provides with the Microsoft Windows Software Developer's Kit (SDK) can now be purchased separately. These
three volumes provide the most accurate and up-to-date Windows 3 programming information available.

"If you intend to do any serious Windows programming. these books are a must. They provide virtually
everything you may want to know about how to program in C for and in the Windows environment."

PC Techniques

Contents:

Windows·
MICROSOFf® WlNDOWS™
GUIDETOPROGRA~G

Microsoft Corporation

Part One: Introduction to writing Windows applications.
Includes overview of the Windows environment and an
in-depth look at a sample Windows application. Guide to Programming

Microsoft'

Windows'
Programmer's Reference

Microsoft'

Windows'
Programming Tools

An example-packed introduction to writing appli
cations using the Microsoft Windows version 3
application programming interface (API). Spe
cifically written for the C programmer who wants
to leam how to use Windows' functions, mes
sages, and data structures to build efficient and
reliable applications. Step-by-step instruction ac
companied by dozens of sample applications that
can be compiled and run with Windows.

560 pages, softcover 7l /s x 91/4 $29.95
Order Code: WIGUPR

MICROSOFf® WlNDOWS™
PROGRAMMER'S REFERENCE
Microsoft Corporation
An up-to-date, comprehensive reference to each
component in the Windows 3 application pro
gramming interface (API). Indispensable to every
Windows programmer, this infonnation is the
foundation for any program that takes advantage
of Windows' special capabilities.

1152 pages, softcover 73/s x 91/4 $39.95
Order Code: WIPRRE

MICROSOFf® WlNDOWS™
PROGRA~G TOOLS
Microsoft Corporation
Detailed instruction on using the programming
tools that come with the Microsoft Windows
SDK. This book examines how the Help system
elements combine to produce a system helpful to
the user, and it explains in detail how to plan, write,
and compile a working Windows Help system.

400 pages, softcover 73/s x 91/4 $24.95
Order Code: WIPRTO

Part Two: Programming Windows applications. Explains
basic Windows programming tasks, such as creating
menus, printing, and using the clipboard. Each chapter
covers a specific topic and provides a sample
application.

Part Three: Advanced programming topics. Introduces and
explains memory management, Dynamic Data
Exchange, Multiple Document Interface, and more.

Index.

Contents:
Volume One: Reference information describing the

Windows functions and messages-Windows Manager
Interface Function; Graphics Device Interface Function;
System Services Interface Function; Functions Directory;
Messages Overview; and Messages Directory.

Volume Two: Reference material for other components of
the Windows API-Data Types and Structures; Resource

Script Statements; File Formats; Module-Definition
Statements; Binary and Ternary Raster-Operations
Codes; Printer Escapes; Assembly Language Macros
Overview and Directory; Windows DDE Protocol
Information.

Appendixes; Index.

Contents:
Part One: Compiling and linking source files using the C

Compiler, the linker, and the Resource Compiler.
Part Two: Creating and maintaining Windows program

resources using the Resource Editors-SDK Paint, Dialog
Editor, and Font Editor.

Part Three: Using the debugging and testing tools
CodeView, the Symbolic Debugger, the 80386
Debugger, Spy, Heap Walker, Shaker, Profiler, Swap.

Part Four: Planning, writing, and compiling a Windows
Help system.

Index.

Microsoft Press books are available wherever quality computer books are sold.
Or call1-800·MSPRESS for ordering information or placing credit card orders. Please refer to BBK when placing your order.

In Canada, contact Macmillan of Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7.
In the U.K., contact Microsft Press, 27 Wrights Lane, London W8 5TZ.

PROGRAMM NG Second Edition

WINDOWS~ Charles Petzo l d

The Classic Guide to Progmmming Wmdows 3

U,S.A.
U.K.
Canada

"Broad in scope and omitting little, this book is a must for
anyone serioltS about Windows." BYTE magazine

"Superb programmer's introduction to Windows." Computer Book Review

The first edition of PROGRAMMING WINDOWS - aka "the Petzold book" - has
been the essential reference fOl' thousands of programmers working in the Microsoft
Windows graphical environment. The exciting enhancements of version 3 - its
ability to dil'ectly access 16 MB of memory, the scores of new applications, and its
intuitive user interface-have all combined to make version 3 a far richer and more
attractive development environment for programmers.

This new edition of PROGRAMMING WINDOWS-completely updated and revised
to highlight version 3 capabilities - is once again packed with keen insight, tried-and
true programming techniques, scores of complete sample programs written in C, and
straightfol'ward explanations of the Microsoft Windows progl'amming envimnment.

Of special interest to version 3 programmers are the new chapters detailing Dynamic
Data Exchange (DDE) and the Multiple Document Interface (MDI) features. Other
topics include

Reading Input. Working with input from the keyboard and the mouse; using the timer
and the child window contl'ols.

Using Resources. Undel'standing memory management; WOl'king with icons, cursors,
bitmaps, and strings; getting the most from menus, accelerators, and dialog boxes.

The Graphics Device Interface (GDI). Drawing graphics; manipulating graphical infOl'
mation with bits, bits, and metaftles; working with text and fonts; using printers.

Data Exchange and links. Using the clipboal'd, Dynamic Data Exchange, the Multiple
Docum~t Interface, and the Dynamic Link Library.

PROGRAMMING WINDOWS, Second Edition. The most authol'itative, example
packed, and thorough resource for programmers new to the Microsoft Windows version
3 graphical environinent, those familiar with earliel' versions, and anyone looking for
information on the dynamics and structure of the Microsoft Windows environment.

$29,95
£27.95
$39.95 The Authorized

Editions
I Rl'CIIIIIIII l' //(/e d I . __ ..,-t I " •• ,011 111111

