
-

Microsoft®- .WindoWs
Device Development Kit

development tools for providing Microsoft® Windows device support

Device. Driver Adaptation Guide

VERS/ON3.0

for tbs MS-DDS@ Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software descn'bed in this docu
ment is fumished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mecballical. incluc:ling photocopying and record
ing. for any purpose without the express written permission of Microsoft.

@Copyright Microsoft Corpora1ion, 1989. All rights reserved.
Simultaneously published in the U.S. and Canada.

Prinled and bound in the United States of America.

Microsoft.MS, MS-DOS. OW-BASIC, QuickC, CodeView, and XENIX areregist.ered
trademarks of Microsoft Corporation.

Paintbrush is a registered trademark of Zsoft Corporation.

mM is a registered trademark: of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

. Tandy is a registered trademark of Tandy Corporation.

Aldus is a registered trademark of Aldus Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.

DocumentNo.xxxx
Part No. yyyy
10 9 8 7 6 5 4 3 2 1

April 1, 1990 Microsoft Confidential Beta Release

Table of Contents
Device Driver Adaptation Guide

Introduction to Device Drivers xvii
What Should You Know or Have Before Starting? xvii
DOK Documentation Set•..•...•..................... xviii

Microsoft Wmdows Device Driver Adaptation Guide•.. xviii
Microsoft Wmdows Vutual Device Adaptation Guide xx

Notational Conventions ..•.............•.........•.•.•......•.. xx

PART 1 Writing Windows Device Drivers

Chapter 1 Overview of Windows 1-1
1.1 What are Device Drivers and Virtual Devices? 1-1

1.2 Programs vs. Libmries .•..•...........•.............•••. 1-2

1.3 How the Wmdows Pieces F:tt Together•... 1-2

1.4 How Long Will it Take to Write a Device Driver or Vutual
Device? ... • ... 1-3

1.5 Core Wmdows Modules That Interface With Your Driver 1-4
1.6 Other Modules in the Windows Environment•..•........ 1-4
1.7 CompilingandLinkingtheDriverModules• 1-5

1.8 Windows Calling Conventions ...•.........•.......•..... 1-6

1.9 How to Use the INCLUDE Files •.......................•. 1-8

1.9.1 CMACR.OS.IN'C•.....•...•.•.•.•..•... 1-8

1.9.2 GDIDEFS.INC•.•.•..••.•.• 1-13

1.9.3 WIN'DEFS.IN'C .•.... ••.....•..•....... 1-13

Chapter 2 Display Drivers 2-1
2.1 Filling Out the GDIINFO Data Structure 2-1

2.1.1 Screen Metrics•...•..................... 2-3

2.1.2 Bit Planes and Bits Per Pixel 2-7
2.1.3 Supported Capabilities and the Output Function 2-8

2.2 The Enable and Disable Functions 2-13

2.2.1 Initializing Your Graphics-Board Hardware•.... 2-14

Beta Release Microsoft Confidential April 1, 1990

Iv Conlllnts

2.2.2 Initializing Your Other Hardware 2-14
2.2.3 Copying Your PDEVICE Data Structure 2-18
2.2.4 Comments on the Disable Function 2-19

2.3 The RealizeObject Function 2-19
2.3.1 Background Infonnation•............ 2-19
2.3.2 General Attributes • . • . . . 2-21
2.3.3 The Pen Object 2-21
2.3.4 The Brush Object 2-22 •
2.3.5 Using the RealizeObject Parameters 2-23

2.4 The Colorlnfo Function•........................... 2-24
2.5 The BitBlt Function 2-25

2.5.1 Background Information .. ; .•................... 2-25
2.5.2 The BitBlt Parameters 2-26

2.6 The StrBlt/ExtTextOut Functions 2-32
2.6.1 The ExtTextOut Function 2-33
2.6.2 The ExtTextOut Parameters•....... 2-33

2. 7 Stub Functions•............................ 2-37
2.8 The Move and Check Cursor Functions 2-37

2.8.1 Excluding Cursors•.................... 2-38
2.8.2 The CheckCursor Function • 2-39

2.9 The Control Function•.................. 2-39
2.10 Additional Functions . • 2-39
2.11 How to Build Display Driver Resources 2-40

2.11.1 Creating theFONTS.ASMFile 2-41
2.11.2 CreatingtheCONFIG.ASMFile 2-41
2.11.3 Creating the COLORTAB.ASM File 2-44
2.11.4 Creating Icons, Cursors, and Biunaps 2-45
2.11.5 Assembling and Linking FONTS.ASM,

CONFIG.ASM, and COLORTAB.ASM 2-48
2.11.6 Using RC to Create the .RES File 2-49

2.12 Display Drivers Checklist . 2-49

Chapter 3 Display Drivers: New Features 3-1
3.1 Color Palette Management•................ .3-1

3.1.1 The Hardware Palette Calls3-1
3.1.2 The Color Translate Table 3-2
3.1.3 The Palette Translate Table 3-3
3.1.4 DIBs with Color Palette Management 3-3

April 1, 1990 Microsoft Confidential Beta Release

Contents v

3.1.5 The UpdateColors Function ..•............•...... 3-4
3.1.6 Changes to GDIINFO 3-5

3.1. 7 Ordinal Reference Numbers•...... 3-5
3.2 Protected-Mode Support .•................•....•......•.. 3-5
3.3 Greater Than (>) 64K Font Support••...•...•.••... 3-7
3.4 Device-Independent Bitmaps .•..•........•.•..•.•...•.... 3-7

3.4.1 SetDIBits and GetDIBits •........•.....•.•••••... 3-8
3.4.2 SetDIBitsToDeviee ; 3-~
3.4.3 Changes in the GDIINFO Block and .DEF File 3-25

3.5 Checklist For Updating 2.x Display Drivers To 3.0 ...•.....•. 3-26

Chapter 4 Display Driver Grabbers 4-1
4.1 Nantlng Conventions ..•..•..•......•.....••...•...•••... 4-2
4.2 Grabber Entry Points ..•.••................. .'•.•.. 4-2

4.21 Standard Function Dispat.ch Table ••.•.••....•.•.•. 4-2
4.2.2 Extended Function Dispat.ch Tuble .•.....•...•.•..• 4-3

4.3 Data Structures•...••..•••...•...•.....••..•.•... 4-3
4.3.1 Grabber lnfonnation Structure••....•....•.•.. 4-3
4.3.2 Grabber Request Packet Structure ... '· ..•....••...• 4-4
4.3.3 Grab Buffer Structure••........ 4-5

4.3.4 lnfonnation Context Structure•.......... 4-5
4.3.5 Device Context Structure .•....•......•......•... 4-6

4.4 Coordinate Systenl .•.••.••.•....•••...•.•.•.•..•.•.•..• 4-7
4.5 Buffer Size Calculations .•.•....•........•.....•.....•.•• 4-7

4.5.1 MAX_GBTEXTSIZE and MAX_GBGRPHSIZE .•••• 4-8
4.5.2 MAX_CDSIZE•......................... 4-8
4.5.3 MAX_ VISTEXT and MAX_ VISGRPH ...•.•.•.... 4-8
4.5.4 MAX_'IOTTEXT and MAX_'IOTGRPH•.• 4-9

4.5.5 GrabTextSize and GrabGrphSize•........• 4-10
4.5.6 SaveTextSize and SaveGrphSize•.....••.. 4-10

4.6 Function Reference••........• 4-10

Chapter S Printer Drivers S-1
5.1 Basic lnfonnation•.........................• 5-1

5.1.1 The GDI Interface 5-2

5.1.2 Additional Printer Driver Responsibilities•...... 5-2
5.1.3 Printer-Driver Developer Responsibilities 5-3

Beta Release Microsoft Confidential April 1, 1990

vi Contents

5.2 Printer Driver Initialization5-3
5.21 The EnableO Function and Its Parameters 5-3
5.2.2 The GDIJNFO Data Structure 5-4

5.3 The Printer Driver Environment 5-11
5.3.1 The DEVMODE Data Structure 5-11

5.3.2 The GetEnvironmentO Function 5-12
5.3.3 The SetEnvironmentO Function 5-12
5.3.4 The DeviceModeO Function 5-13

5.3.5 The ExtDeviceModeO and DeviceCapabilitiesO
Functions . 5-13

5.4 Print Manager Support • 5-14

5.4.1 The OpenJob() Function 5-14

5.4.2 The StartSpooJPageO and EndSpoolPageO Functions 5-14

5.4.3 The WriteSpoolO and WriteDialogO Functions 5-15
5.4.4 The CloseJob() and DeleteJobO Functions 5-15

5.5 The ControlO Function 5-16
5.5.l TheQUERYESCSUPPORTEscape 5-17
5.5.2 The SETABOR'IPROC Escape ~ 5-17

5.5.3 The STARIDOC Escape 5-17
5.5.4 Raster vs. Vector Devices . • . 5-18

5.5.5 Using Banding Drivers . 5-18

5.5.6 The END DOC and ABORTDOC Escapes 5-20
5.5.7 Final Notes on Escapes 5-21

5.6 GDI Graphics Objects • 5-21

5.6.1 Logical and Physical Objects . 5-21

5.6.2 Device Objects • 5-22
5.6.3 The GDI Information Functions 5-22

5.6.4 The GDI Information Brute Functions 5-23

5.7 Perfonning Output•....•.....•........•........ 5-24

5.7.1 The GDI Output Brute Functions 5-24

5. 7.2 The GDI Color Library . • 5-25
5.7.3 The GDI dmTransposeO Function 5-25

5.7.4 TheGDIPriorityQueueFunctions 5-26

5.7.5 Interpreting GDI Coordinates 5-27

5.7.6 Output Functions Summary 5-27

5.8 Stub Functions .•..................................... 5-28
5.9 Updating 2.x Printer Drivers to 3.0 . 5-28

5.9.1 Memory Management. 5-28

April 1, 1990 Microsoft Confidential Beta Release

Cantsnts vii

5.9.2 Device Initiali7.ation Conventions ...•............. 5-31
5.9.3 Driver Interface Functions 5-31

5.10 Checklist for Printer Drivers 5-31

Chapter 6 Network Support 6-1
6.1 New Features .•..•....•...•.•..............•.......... 6-1

6.1.1 Alleviating the Memory Crunch ..• ,. .•.•........•.. 6-!
6.1.2 Adding and Deleting Network Connections•.... 6-2
6.1.3 Network Printing .•.••.......................... 6-2
6.1.4 NetworkErrorMessages•..•.•.......... 6-3
6.1.5 Network-Specific Dialog Functions•........ 6-3
6.1.6 Running Windows From a Network Drive•. 6-4
6.1.7 Supporting Large Numbers of Outstanding NCBs 6-4

6.2 Attaining COJnpatibility ...•............•.......•..•..... 6-4
6.2.1 Wmdows User Interface: The Wmdows Network Driver 6-5
6.2.2 Enhanced Wmdows 3.0: Virtual Device Architecture .. 6-5
6.2.3 Standard Wmdows3.0: The DOS Extender's Domain .. 6-6
6.2.4 Testing Compatibility•..•.........• 6-7

6.3 COJnpatibility Issues and Solutions••.••••......•.•. 6-7
6.3.1 The Problem of Space 6-7
6.3.2 The Problem of Global EMS .•...•.•.•.••..•.•.... 6-7
6.3.3 The Problem of Asynchronous Events 6-9
6.3.4 The Problem of Protec~ode API •............. 6-13
6.3.5 The Problem of VU1Ualizing Connections•.•. 6-17

6.4 Support and Distribution 6-18

Chapter 7 Network Drivers 7-1
7.1 Initializing, Enabling, and Disabling 7-1
7.2 Passing Buffers•....••.........•................. 7-2
7.3 Determining Network Capabilities•. 7-2
7.4 Displaying the Driver-Specific Dialog Box 7-4
7.5 Displaying the Browse Dialog Box •.....•............•.... 7-5
7.6 Getting the Current Username 7-6
7. 7 Device Redirecting Functions•.......•.....•........ 7-6

7. 7.1 Adding Networlc Connections•............ 7-6
7. 7.2 Removing Network Connections•.. 7-7
7.7.3 Listing Network Connections .••........•...•..... 7-8

Beta Release Microsoft Confidential April 1, 1990

viii CanttJnts

7.8 Net Printing Functions :•.................. 7-9
7.8.1 Watching a Network Print Queue•...........• 7-9
7.8.2 Stop Watching a Network Print Queue ...•...•...• 7-10
7.8.3 Locking Network Queue Data • . • • • • • • . . • . . • • • • • . 7-10
7.8.4 Unlocking Network Queue Data 7-12
7.8.5 Notification of Queue Status Changes• 7-13
7.8.6 OpeningaNetworkPrintJob ••.•.•..•....•.....• 7-14
7.8.7 ClosingaNetworkPrintJob .••••.•.•..••••..•.•. 7-14 •
7.8.8 Putting a Print Job on Hold .•...•....••...•..•.•. 7-15
7.8.9 ReleasingaHeldPrintJob•.••............ 7-16
7.8.10 Cancelling a Print Job ..•..••••..••.••..••.••••. 7-16
7.8.11 ChangingtheNumberofCopies••••••••• 7-17
7.8.12 AbortingaPrintJob .•••••••••.••....•..•..••.• 7-17

7.9 Extended Error Functions .••••.•••••••••••••••••••••••• 7-18
7.9.1 Getting the Current Network Error ..•••..••.•.•.••• 7-18
7.9.2 Getting Extended Error Infonnation ..•.•.••.••... 7-19

7.10 Return Values •••••••••••••••.•••.•.••.••••••..••••.•• 7-19
7.11 Function Summary •••••••••••••••••••••••••••••••••••• 7-20

Chapter 8 Keyboard Drivers 8-1
8.1 Initialization Code •.•.•..•....•.••.•..•..•••..••••..•.•. 8-1
8.2 Keyboard Entries: Exported Functions •••••.•••••••••••••••. 8-2
8.3 Internal Functions ••.••.•.••••.•••••..•••.•.•...•......•. 8-2
8.4 The Keyboard Jntermpt Handler and Event Procedure Call .•... .8-3

8.4.1 Parameter Details .•.•••••••.••••..••••.•••••••.• 8-3
8.4.2 Extended Keyboards•...••.•..•....•..••.•• 8-3
8.4.3 The OS/2 CompatibilitY Box .•.••••.•.•.•...•...•. 8-4

8.5 Keyboard Driver Internal Tables ..•.••.•.•..•.•..••••.•..•. 8-4
8.5.1 Keyboard State Vector .••.•...••••.•....•....••• .8-4
8.5.2 Keyboard Infonnation. (KBINFO) Data Structure .•... 8-5
8.5.3 Key Translation Tables•.........•.••.......•. 8-5

8.6 Keyboard DU.. •.........•.......•..•.....•......••..... 8-7
8.7 SYSTEMJNI Keyboard Infonnation · ...••.................. 8-7
8.8 Wmdows Vtrtual Key Codes••........•......•..•.. 8-8
8.9 A Checklist for Modifying a 3.0 Keyboard Driver 8-13
8.10 Functions Reference •.•.......•.......•................ 8-15

April 1, 1990 Microsoft Confidential Beta Release

Contents Ix

Chapter 9 Miscellaneous Drivers 9-1
9.1 Updating 2.x Drivers to 3.0 9-1
9.2 CommunicationsandSowidDrivers•.. 9-1

9.2.1 DCB - Device Control Block Structure• 9-2
9.3 Mouse Drivers ... 94

9.3.1 Mouse Functions ..••.....•............•.•...... 9-5
9.3.2 Addition to MOUSE.DEF ~ ... 9-~
9.3.3 MOUSEINFO - Mouse Hardware Characteristics

Structure•..........•.............•.. 9-6
9.3.4 CURSORINFO - Cursor Information Data Structure ••. 9-7

PART 2 General Reference for Device Drivers

Chapter 10 Common Functions 10-1

Chapter 11 Device Driver Escapes 11-1
11.1 Introduction to Driver Escapes•............••...... 11-1
11.2 Genemlized Error Return Codes 11-3
11.3 Driver Escape Descriptions 11-3

Chapter 12 Data Structures and File Formats 12-1

Beta Release

12.1 Infonnation Data Structures 12-1
12.1.1 The GDIINFO Structure•...••........ 12-2
12.1.2 The GDIINFO Field Descriptions •....••...•.....• 12-3
12.1.3 GDIINFO-dpTextFieldPrecisionLevels 12-10

12.1.4 CURSORINFO-Cursor Information Data Structure 12-13
12.2 Parameter Data Structures .•.•.•........••............. 12-14

12.2.1 POINT-Point Data Structure••........•.• 12-14
12.2.2 RECT-RectangleDataStructure 12-14
12.2.3 RGB - Logical Color Specification 12-15
12.2.4 DRAWMODE- Drawing Mode Specification 12-16
12.2.5 RASTEROP - Rast.er Operations 12-18
12.2.6 CURSORSHAPE - Cursor Data Structure 12-19
12.2.7 LOGPEN - Logical Pen Attribute Information 12-20
12.2.8 LOGBRUSH - Logical Brush Attribute Information 12-21

12.3 Physical Data Structures 12-22

Microsoft Confidential April 1, 1990

12.3.1 BITMAP-Phy~ Bitmap Data Structure • • • • • • 12-22
12.3.2 PDEVICE-Private Device Data Structure • . . 12-26
123.3 PCOLOR - Physical Color Definition • • • • • • • • • • • • 12-26
12.3.4 PPEN - Physical Pen Data Structure • • • • • • • • • . • • • 12-27
12.3.S PBRUSH-PhysicalBrushDataStructure ••••••• 12-27

12.4 Rasrerand VectorFontFileFormalS ••••••••••••••••••••• 12-27
12.4.1 FONTINFO- 'lbe Physical Font Descriptor • • • • • • 12-28
12.4.2 LOGFONT- The Logical Font DescriptOr • • .. • • • • 12-35

Chapter 13 The Font File Format . . • • • • . . • • • • • . • • . • • • • • • • • • • • 13-1
13.1 TEXTMETRIC- Basic Font Metrics 13-1
13.2 T.EXTXPORM-Actual 'ThJtt Appearance Information • • • • • • • 13-4
13.3 FONTINOO - The Physical Font • 13-6

Chapter 14 Raster Operadon Codes and Dermidons ~ •••••••• 14-1
14.1 'lbe Operation Codes • 14-2
14.2 'lbe Operation Code List ••..•••.••.....••••.•..•••.•••• 14-3

Chapter 15 Miscellaneous Character Set Tables . • • • • • • . . • . • . • 15-1

Virtual Device Adaptation Guide
Introducdon to Vu1ual Devices ••.•••••••••.•••••••••••••.••.•• ix

What You Should Know Before You Start ••• ; ••••••••••••••••••••••• ix
Organization of'Ibis Document •••••••••••••••••••••••••••••••••• ix
Notational Conventions • • • • • • • • • • • • • • • • • • •••••••••••••••••.••••. xi

PART 3 Writing Virtual Devices

Chapter 16 Overview of Windows in 386 Enhanced Mode 16-1

April 1, 1990

16.1 'lbe Operating Enviromnent ••••••••••••••••.••••••••••• 16-1
16.2 Vutual Machines • • • • • • • • • • • • • • . • 16-3

16.2.1 The Privilege Rings of a VM . • • . • . . • . . • • • • . • • • . . 16-3
16.2.2 VM IJandles • • • • • • • • • • • • . • • • • • • • • • • • • • • . • • • • • 16-6
16.2.3 The Client Register Structure •..••...•..•...••••• 16-6

... -· -

Microsoft Confidential Beta Release

16.3 The Vu:tual Machine Manager • 16-7
16.4 Virtual Devices • • • • • • • . • • • • • • • • • • • . • • • • • • . • . • • • . . . • • . . 16-7

16A.1 VxD Components •••.•••••••••••.••••••..•.••. 16-8
16.4.2 The Device Conttol Procedure ••••••••••••••..••• 16-8
16.4.3 The Device Descriptor Block • • • • • • . . . • • • . • . • 16-8

16.5 llow VxDs Wolk • • • • • • • • • • • • . • • • • • • • • . • • • • • . • • • . • • • • 16-10
16.5.1 Enhanced Wmdows Execution Scheduling •••••.•. 16-10.
16.5.2 Memory Models ••••••••••••••••••••••••••••• 16-14

16.5.3 Services • • • • • • • • • . • 16-15
16.5.4 Callback Procedures •••••.•••••••••. • • • • • • . • • • . 16-16
16.5.5 1iO Port 'Iiaps ••••••••••••••••••••••••••••••• 16-17
16.5.6 Loading Sequence •••••••••••••••••••••..••.•• 16-17
16.5.7 VxD Examples ••••••••••••••••••••••••••••••• 16-20

Cantsnts xi

Chapter 17 Vn1ual Device Programming Topics 17-1

Beta Release

17.1 Writing VxDs •• 17-1
17.1.1 Understanding the Ring 0 Memory Model .••••.•.•• 17-2
17.1.2 VxD Segnienration •••••••••••••••••••••••••••• 17-3
17.1.3 VxD Declaration •••••••••••••••••••••••••••••• 17-3
17.1.4 VxD Services •••••••••.•••••••••••••..•••••••• 17-5
17.1.5 VxDAPis •••••••••••••••••••••••••••••••••••• 17-7

17.2 Adding a VxDtoWmdows •••••••••••••••••••••••••••••• 17-8

17.2.1 MASM5 ••••••••••••••••••••••••••••••.•••••• 17-9

17.2.2 LINK386 ••.•••.••••••••••••••••.•••••••••••• 17-9
17.2.3 ADDIIDR •••••••••••••.•••••.••••••••••.•.• 17-11
17.2.4 MAPSYM32 ••••••.••••••••••••••••••••••••• 17-11

17.3 Initializing a VxD •••••••••••••••••••••••••••••••••••• 17-11
17.3.1 Real-Mode Initiali7.ation .•••••••••••••••••••••• 17-11

17.3.2 Protected-Mode Inhializatiou •••••••.•••.•••.••• 17-14
17 .4 'Ihlcking The VM States .•..•..•••..•••••••••.•.•..•••. 17-15

17.4.1 VMCreationandlnirialization •.••...•••.••••••. 17-15
17.4.2 VM State Changes ..•.•••.•.•.•.••••••.••.•••. 17-15
17.4.3 VM'Thnnination ...•....•••••••.••....•••.••. 17-17

17.5 ExitingWllldows ••••••••••••.••••••.•.•.••••••••.•••• 17-18

Microsoft Confidential April 1, 1990

xu Contents

Chapter 18 The VDD and Grabber DLL•................ 18-1
18.1 Introduction to VDDs .••••.•......••••.........••..•... 18-1

18.1.1 VDD Messages- ••••••••••••••••••••••••••••••• 18-2
18.1.2 VDD J/O Trapping and Hooked Pages • . • • • • • . • . • . • 18-2
18.1.3 VDD Efficiency • • • • • . • • • . . • • . • • • • • • • • • . • 18-2
18.1.4 VDD Development Sequence •.••••••••••••••••••• 18-3

18.2 Converting Your 2.x VDD • • • • • • • • . • • . • • • • . . • • • • • • • • 18-3
18.2.1 INO.UDB Files • • . • • • • • • • • • • • • • • . • • • • • • • • • • • • 18-3
18.2.2 Changes to the System, Grabber DIL. and Shell

Interfaces . • • • • • • . . • • • • • • • • • . • • • • • • . • • • • • • • • • • 18-4
18.3 The VDD Device Control Procedure • 18-4

18.3.1 Iniria1i?Jltion ••••••••••••••••••••••••••••••••• 18-4
18.3.2 VM Creation. Initialization. Destruction, and State

Changes • • • • • • • • . • . . • • . . • • . . . • • • . • • . • • • • • . • • . 18-5
18.4 VDD Services • • • • • • • • • • • • • . . • • . • • . . • . • • • . • • . • . • • • • • . . 18-6

18.4.1 Grabber API .••••••..•••.••.•.••...•.•••••.•• 18-6
18.S The Grabber DU.. • • • • • • • • • . • • • • • • • • • . • • • • • • • • • • • • • • • • . 18-8

18.5.1 On-Screen Selection Interfaces . • • • • . • • • • • • • • • . • • 18-8
18.S.2 Selection Interface Procedures • • • . • • • • • • • • • • • • • • 18-10
18.S.3 Non-Wmdows Application Painting Intedaces • • • • . 18-13
18.S.4 Miscellaneous Interfaces . • • • . • . • • • • • • • • • • • • • • • 18-15

PART 4 Virtual Device Services

Chapter 19 Memory Management Services • • . • 19-1
19.1 System Data Object Management ..••••..•.••.•......•..• 19-2

April 1, 1990

19.2 DeviceV86PageManagement•........... 19-8
19.3 GOT/LDT Management. ..•.•.•.•.•.•.••.•.••.••.•..••. 19-11
19.4 System Heap Allocator . • • • . . • . • 19-16
19.S System Page Allocator ••.••..••••. ~ ...•.•••...•..•.•.• 19-19
19.6 Looking At Physical Device Memory in Protected Mode 19-37
19.7 Data Access Services ..••••..•...•......••.•..•.•.•••. 19-38
19.8 Special Services For Protected Mode APis ..•..••..•....•• 19-39
19.9 Instance Data Management•.•...•.•..•......... 19-47
19.10 Looking At V86 Address Space•..........•..••..•. 19-51

" ... -

Microsoft Confidential Beta Release

Contents xiii

Chapter 201/0 Services and Macros•.....•••........ 20-1
20.1 Handling Different I/O 1YPes •••.•....•....•......•.•..•. 20-1
20.2 J/O Macros •• 20-3
203 J/O Services •.•• 204

Chapter 21 VM Interrupt and Call Services . . . • • • • 21-1 .
Chapter 22 Nested Execution Services ••.....••...•...•.....• 22-1

Chapter 23 Break Point and Callback Services•..•...•.• 23-1

Chapter 24 Primary Scheduler Services • • . • . . . • . . . • 24-1

Chapter 25 'lime-Slice Scheduler Services ••••.••••..••.•..•• 25-1

Chapter 26 Event Services ••...••••.••••.•..••.•.....•..•••• 26-1

Chapter 27 'liming Services ...•....•••...•••.•• · • • • . • • • • • • . • . 27 -1

Chapter 28 Processor Fault and Interrupt Services ••.••.••.•. 28-1

Chapter 29 Information Services • • • . . . • • • • • . • . • • . . • 29-1

Chapter 30 Initialization Information Services .•....•.•..•••• 30-1

Chapter 31 Linked List Services • • • . • • • . • • • • • • • • • • . • 31-1

Chapter 32 Error Condition Services • • . . • • . . • . • • 32-1

Chapter 33 Miscellaneous Services . . • • . • • • • . . . • • . 33-1

Chapter 34 Shell Services • • • 34-1

Chapter 35 Virtual Display Device (VDD) Display Services .•. 35-1
35.1 Displaying a VM's Video Memory in a Window ...•......... 35-1
35.2 Miscellaneous VDD Services•.......•...•.• 35-3 ... -·. ~

Beta Release Microsoft Confidential April 1, 1990

xiv Contsnts

Chapter 36 Virtual Keyboard Device (VKD) Services 36-1

Chapter 37 Virtual PIC Device (VPICD) Services•.• 37-1
37.1 Default Inteaupt Handling •.•••••.•.••••••.•.••••••••••. 37-1
37 .2 VJitUalizing an JR.Q • 37-2

37 3 VU1Ualized IRQ Callback Procedures ..••••••..•.•••.•••.. 37-2

37.4 VPICD Services .••••••..••.•••..••.•..•.••••••••••••. 37-5

Chapter 38 Vn1ual Sound Device (VSD) Services•....... 38-1

Chapter 39 Virtual Timer Device (VTD) Services ..•••.•..... 39-1

Chapter 40 V86 Mode Memory Manager Device Services 40-1
40.1 Jnjrializatiou Services ..•..•..••.•••..•.•••.••..••.••••• 40-2
40.2 API Translation and Mapping . • • • • • . • • • • . • • • • • . • • . • • • • . • 40-4

402.1 Basic API Translation .•••...•..•••••••••••••.• 40-4
40.2.2 Complex API Tumslation . . • • . • • • • • • • • • . • • • • • • • • 40-4
40.2.3 Hooking The Interrupt • • • • . . • • • • . • • • • • • • . • • • • • • 40-5
402.4 Mapping vs. Copying • . . • • • • • • . • • . • • . . • • . • • • • • • 40-6
40.2.5 Writing Your Own Translation Procedures .•.•••••• 40-6
402.6 Sample API Translation . . • . . • • . • • . . . • . • . • 40-7

Chapter 41 Vn1ual DMADevice (VDMAD) Services 41-1

Appendixes

A Terms and Acronyms A-1

B Understan.din.g Modes .•...................•..........•... B-1
B.l Wmdows Modes .•..................................... B-1
B.2 Microprocessor Modes .•..•.........••..•..•....••...••. B-1

C Creating Distribution Disks for Drivers C-1

April 1, 1990 Microsoft Confidential Beta Release

Contents xv

D Enhanced Windows INT 2FH API•.•...•....••. D-1

Beta Release

D.1 Call-In Interfaces ••••••..•...•••.•.••.••.•.•••••.•••••• D-1
D.1.1 Enhanced W"mdows Installation Check (AX=l600H) •• D-1
D.1.2 Releasing Current Vutual Machine's Tune-Slice

(AX=1680h) ••••••••••••.•••••••••••••••••.••• D-2
D.1.3 Begin Critical Section (AX=l68lh) •..•••••.....•• D-~
D.1.4 Bod Critical Section (AX=l682h) .••••.••••••••••• D-3.
D.1.5 Get Current Vutual Machine ID (AX=l683h) •••••.•• D-3
D.1.6 Get Device API Entry Point (AX=1684h) ••••••••••• D-3
D.1.7 Switch VMs and CallBack (AX=1685h) •••••••••••• D-4

D.1.8 Detect Presence of INT 31H Services (AX=1686h) ..•• D-5
D.2 Call Out Interfaces ••••••••••••••••••••••••••••••••••••• D-5

D.2.1 Enhanced Wmdows and 286 DOS Extendez
lnirialization (AX=1605h) ••••••••••••••••••••.••• D-5

D.2.2 Enhanced Wmdows and 286 DOS Extendez Exit
{AX=1606h) ••••••••••••••.•.••••••••.••.•.••• D-8

D.2.3 Device Call Out API (AX=l607h) ••••••••••••••••• D-8
D.2.4 Enhanced Wmdows Inirializ.ation Complete

(AX=l608h) •••••••.••.••.••••.••••.•••••••••.• D-8

D.2.5 Enhanced Wmdows Begin~ (AX=160CJH) •.•••••• D-9
D.3 Wmdows/386 Veision 2.xx API Compatibility ••••••••.••..•• D:-9

D.3.1 lns1allation Check •••••••••••••.••••••••••••••••• D-9
D.3.2 Determining the Cmrent Vutual Machine (Get VM ID) D-9
D.3.3 Critical Section :Handling ••••••••••••••••••••••• D-10

:·•

Microsoft Confidential

···:,··

April 1, 1990

xvi Contents

April 1, 1990 Microsoft Confidential Beta Release

Introduction to Device Drivers
This document is intended for device driver writers working as consultants and for Inde
pendent Hardware Vendois (IllVs) and computer manufacturers. The infonnation con
tained herein is proprietary to Microsoft Corporation. Therefore. only those members of
your organization directly involved in the development of Microsoft Wmdows device
drivers should have access to this documeDL •

This inttoduction provides some background information that you should review before
using the documentation provided with the Microsoft W'uulows Device Development Kit
(DDK). Included here are sections on the following:

• What you need to know or have before you start

• Description of the manuals provided with the DDK

• Notational conventions used throughout the DDK documentation

What Should You Know or Have Before Starting?

Beta Release

You will need to know Wmdows, MS-DOS®• MASM. and. if writing a printer driver. the
C programming Janguage. Definitions of key tenns used·in describing device drivers and
virtual devices are provided in Appendix A. "Tenns and Acronyms." which is located in
the Microsoft W'uulows V"utual Device Adaptation Guitk.

The Microsoft Windows Installation and Update Guitk for the DDK provides detailed
information on· the requirements for setting up your development environment and the con
tents of the source disks included with the DDK.

You will need to purchase the Microsoft Windows Software Development Kit (SDK) and
the retail Wmdows package for testing. You will also need to purchase access to the
Microsoft OnLine software support system to get technical support while developing your
driver.

The Microsoft Windows Software Developmmt Kit contains reference material, a special
linker. the Wmdows Resource Compiler (RC). special versions of the SYMDEB and
Code View debuggers. header files. and several utilities that aid development and testing.

It also provides several INO..UDE and header (.H) files that contain decJanuions of all the
Wmdows functions, definitions of many macro identifiers that you can use in
programming. and structure definitions. Import libraries included in the kit allow LINK to
resolve calls to Wmdows functions and to prepare the program's .EXE file for dynamic
linking.

Microsoft OnLine can provide you with the accurate. interactive support you need to re
main as productive as possible. Use it to retrieve information (on vinually all of
Microsoft's products) from our technical product KnowledgeBase, to search through our

Microsoft Confidential April 1, 1990

xviii Devle8 Dtlvsr Adaptauoa Gulde

Software Library for sample drivers and source code. or to submit Service Requests
(specific questions on writing device drivers) directly to one of our highly qualified cus
tomer support engineers. Watch the Exchange Bulletin Board for announcements on the
availability of new sample sources for special devices. For more information about
Microsoft OnLine, call Microsoft Product Support Services Telemarketing at (800) 443-
4672. (Is the number still correct?)

DOK Documentation Set
The 3.0 version of the Microsoft W'uulows Device Development Kit has been completely
reorganized. It now qonsists of the following four manuals:

• Microsoft Windows Device Driver Adaptation Guide. which covers how to write or
modify device drivers for Wmdows 3.0 when running in either real or standard mode.

• Microsoft W'uulows V'utual Device Adaptation Guide. which covers how to write
virtual devices for Wmdows 3.0 when running in 386 enhanced mode.

• Microsoft Windows Installation and Update Guide, which provides information on
the DDK source code, test scripts. utilities, and building tools provided with. and the
development environments required for. Wmdows 3.0 when running in either real,
standard. or 386 enhanced mode.

• Microsoft W'uulows Printers and Fonts Kit,. which includes infonnation on the Printer
Font Metrics (PFM) file fonnats and the new PFM Editor, along with technical notes
on the PC1JHP LaserJet and PostScript printer. driveIS.

We recommend that both novice and advanced device driver and virtual device writers
read the Microsoft Windows Installation and Update Guide, this introduction. and Chapter
1, "Overview of Windows." After that. you can skip to the appropriate chapter(s) for the
particular driver with which you work.

The following sections summarize the contents of each part and chapter in the two main
DDK documents.

Microsoft Windows Device Driver Adaptation Guide

April 1, 1990

Part 1. "Writing Wmdows Device Drivers," consists of nine chapters that provide infor
mation on writing or modifying specific Wmdows 3.0 device drivers.

Chapter 1. "Overview of Wmdows." provides infonnation common to both device driver
and virtual device writers, such as definitions, time requirements, calling conventions, and
INCLUDE tile descriptions.

Chapter 2, "Display Drivers," contains infonnation specific to writing or modifying
Wmdows 3.0 display driveIS. The major functions are described briefly and examples are
given.

Microsoft Confidential Beta Release

Beta Release

Introduction to Dsvlcs DrlvstS xix

Chapter 3. "Display Driven: New Features ... discusses from a device driver standpoint the
Wmdows 3.0 changes to color palette management, protected-mode support, greater than
64K fonts. and device-independent bitmaps (Oms). More detailed information on each of
these new features is provided in the Microsoft Windows Software Development Kit.

Chapter 4. "Display Driver Grabbers. .. contains descriptions of the functions and data
structures used by the grabbers that work with Wmdows 3.0 when nmning in real and
standaid mode. Vutual device grabbers are discussed in the Microsoft Wuulows Virtual
Device Adaptation Guitk.

Chapters. "Print.er Drivers." contains infonnation specific to writing or modifying
Wmdo\VS 3.0 print.er drivers. The major functions and escapes are described briefly and ex
amples are given. The rela1ionship between GDI and printer drivers is also discussed in
detail.

Chapter 6. "Network Support," contains descriptions of the new benefits provided to net
wOlic users. incompa1:10ility problems and solutions. and how to make your network
software work well with Wmdows 3.0.

Chapter 7. "Network Drivers, .. contains infonnalion specific to writing or modifying
Wmdows 3.0 network drivers. The major functions are descn"bed briefly and examples are
given.

Chapter 8. "Keyboard Drivers." contains infonnation specific to writing or modifying
Wmdows 3.0 keyboard drivers. The major functions are described briefly and examples
are given.

Chapter 9, ''Miscellaneous Drivm." contains brief descriptions of the communications,
sound, and mouse drivers.

Part 2, "General Reference for Device Drivers." consists of six chapters that provide
general reference-type infonnation for use in writing or modifying Windows 3.0 device
driveIS.

Chapter 10. "Common Functions, .. provides an alphabetical listing with detailed descrip
tions of the main functions used by most device driveIS.

Chapter 11, "Device Driver Escapes. .. provides an alphabetical listing with detailed
descriptions of the escapes used mainly by print.er drivers.

Chapter 12, "Data Sttuctures and File Fonnats," contains detailed descriptions of the
major data structures and file formats used by most device drivers.

Chapter 13, "The Font File Fonnat," provides descriptions of the three main data struc
tures used with fonts: TEXTMETRIC, 'IEXTXFORM. and FONTINFO.

Chapter 14, "Rast.er Operation Codes and Definitions," provides a table of raster operation
codes and their definitions, along with a brief description of reverse Polish notation.

Chapter 15, "Miscellaneous Character Set Tables," contains a brief description of character
sets and provides examples of the main ones used by Wmdows 3.0: ANSI, OEM, and
SYMBOL.

Microsoft Confidential April 1, 1990

xx Device Driver Adaptation Gulde

Microsoft Windows Virtual Device Adaptation Guide
Part 3, "Writing Virtual Devices," consists of three chapters that provide infonnation on
writing Wmdows 3.0 virtual devices. A more detailed description of each chapter is pro
vided in the introduction to that document.

Part 4, "Virtual Device Services," consists of 23 chapters that provide infonnation on each
of the major categories of services used with virtual devices. A more detailed description
of each chapter is provided in the introduction to that document.

Part 5, "Appendixes," consists of the following four appendixes that contain information
common to both device drivers and virtual devices. The first two provide useful infor
mation that can be reviewed quickly before you read the specific device-related chapters.
The remaining appendixes deal with topics that may be more useful after reading the
specific device-related chapters.

• Appendix A, "Terms and Acronyms"

• Appendix B, "Understanding Modes"

• Appendix C, "Creating Distribution Disks for Drivers"

• Appendix D, "Enhanced Windows INT 2FH API"

Notanona/Convennons

April 1, 1990

The following notational conventions are used throughout the DOK documentation set.

Convention

bold

italics

(Parentheses)

Monos pace

Meaning

Bold is used for keywords, such as function, register, macro, and
data structure field names. These names are spelled exactly as they
should appear in source programs. Notice the bold in the following
example:

Disable (lpDestDev)

Here, Disable is bold to indicate that it is the name of a function.

Italics are used to indicate a placeholder that should be replaced by
an actual argument. In the preceding example, lpDestDev is italic
to indicate that it should be replaced by an argument.

Parentheses enclose the parameter or parameters that are to be
passed to a function. In the preceding example, lpDestDev is the
parameter.

Monospace type is used for program code fragments and to il
lustrate the syntax of data structures.

Microsoft Confidential Beta Release

Part

1

Beta Release

Writing Windows
Device Drivers

This first part of the Microsoft Windows Device Driver Adaptation Guide pro
vides information on how tO write or modify Windows device drivers; make
them compatible and work efficiently with Miaosoft Windows 3.0 when run
ning in both real and scandard modes; and make them bimodal. i.e., capable of
running under either real or protected mode.

Separate chapters are provided for descriptions of each of the major device
drivers. Some information that is common to many of the drivers is provided in
Chapter 1, "Overview of Windows." However, most of the common reference
type information is provided in Part 2, "General Reference for Device Drivers."

Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

CHAPTERS
1 Overview of Windows
2 Display Drivers
3 Display Drivers: New Features
4 Display Driver Grabbers
5 Printer Drivers
6 Network Support
7 Network Drivers
8 Keyboard Drivers
9 Miscellaneous Drivers

Beta Release Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

Chapter

1 Overview of Windows

'Ibis chapter contains information that is common to or used by most of the different
Wmdows 3.0 device drivers. Since these drivers are the basic building blocks for enhanced
Windows virtual devices (VxDs). references are also made. where appropriate. to
Wmdows VxDs. The following information is provided here:

• Definitions of device drivers, virtual devices. programs. and libraries

• ·Description of how Wmdows device drivers and virtual devices worlc together

• Estimates on the time required to write a device driver

• Descriptions of the Wmdows moduJes and those needed to build a device driver

• Explanation of the W'mdows calling conventions

• Description of the Wmdows INCLUDE files

Subsequent cbaptelS will detail. bow to write specific device drivers. Notice, however. that
for some drivers. such as the Mouse and Keyboard drivers, you should be able to use the
supplied source code and not need to write a new driver.

1.1 What are Device Drivers and. Virtual Devices?

Beta Release

A device driver is often called a Wmdows dynamic-link library or DU. (to distinguish it
from a program). It forms the interface between Wmdows and a particular piece of periph
eral hardware (e.g •• a printer or a display screen). 'Ibis DU. contains the Wmdows
Gmphics Device Interface (GDI) functions needed to access or drive a specified device or
family of devices. It also contains infonnation naming the types of devices it supports.

In other words, a device driver is the software that provides the bardware-dependent. low
level interface between the Wmdows functions and the output device.

A separate driver must be written for each peripheml in the system. However, to avoid .
using up too much memory. the driver is only loaded when it is installed into the system.
(This sentence sounds funny/strange. Is ''installed into the system" the correct phrase
here?)

An enhanced Wmdows virtual device (VxD) is a separately compiled program (is pro
gram the rightword considering the definition of program given in the next section?)
that is loaded and linked with the Vutual Machine Manager (VMM) when enhanced
Wmdows is first started. Each VxD is responsible for handling a specific piece of bard-

Microsoft Confidential April 1, 1990

1-2 Devlt:e Dtlver Adaptatlan Ga/8

ware or for providing services used by the Vutual Machine's (VM's) application program.
'See the Microsoft Windows Virtual Device Adaptation Guide for detailed information on
VxDs.

Jn enhanced Wmdows, the VxD sits between the Windows driver (in the System VM) and ·
the actual hardware. These two pieces of code can communicar.e via established I/O pons.
or they can esl8blisb a new interface (e.g., an output string instead of an output character
for a parallel port VxD). Jn addition to this interaction, the VxD must also seriaU7.e access
to the hardware ports by other VMs IUDDing simultaneously with Wmdows.

1.2 Programs vs. Libraries
From the user's perspective, a Wmdows program and a Wmdows library (or device driver,
which is a type of library) are very dift'erent. The user cannot run a Wmdows h'brary
direcdy. Wmdows loads a part of a library into memory only when a program needs to use
a function that the hbrary provides. The user can, of course. run any Wmdows program.

Jn fact. the user can run multiple insbmces of the same Wmdows program. Wmdows uses
the same code segments for the different instances but creates a unique data segment for
each. Wmdows never runs multiple instances of a Wmdows library.

From the progmmmer's perspective, a Wmdows program is a task that usually creates and
manages windows on the ttisp1ay. Libraries are mOOu1e,, that assist the task. A programmer
can write additional library modules that one or more prognuns can use. For the
progmmmer, one important distinction between programs and libraries is that a Wmdows
library does not have ils own Slade; instead. the library uses the SlaCk of the program that
calls the function in the library.

When Wmdows loads a program or a li1xary into memory, it must resolve all the calls the
module makes to functions in other modules. Windows does this by inserting the addresses
of the functions into the code-a process called dynamic linking.

1.3 Haw the Windows Pieces Fit Together

April 1, 1990

Wmdows requires device drivers for the hardware on which it runs. regardless of whether
you are running Wmdows in real, standard. or 386 enhanced mode and in real or prot.ected
mode. However, when you are nmning enhanced Wmdows, it may also require a virtual
device.

The purpose of a Wmdows device driver (used with the real, standard, and 386 enhanced
mode versions) and that of an enhanced Wmdows virtual device (used only with Wmdows
when IUDDing in 386 enhanced mode) is different. A Wmdows device driver exists to per
fonn actions on its device, such as printing a circle or getting the mouse location. It maps
an idealized device API onto limited real devices. An enhanced Wmdows virtual device ex
ists to virtualize the hardware; it does not, at least not in a visible manner, provide an API
and services. Instead of mapping a general API onto specific devices, it simply traps and
virtualizes all access to that device.

Microsoft Confidential Beta Release

OVetvlewotWtndows 1-3

Explanations of the three versions of Wmdows and how to write or modify the appropriate
driver or virtual device for your hardware are provided in Part l, "Writing Wmdows
Device Drivers." in this guide and in Part 3, ''Writing Vll1Ual Devices," in the Microsoft
Windows Virtual Device Adaptation Guide.

1.4 How Long Will it Take to Write a Device Driver or
Virtual Device?

'Ibe development cycle depends on a nmnber of factois. including whether or not you are
modifying an existing driver and the complexity of the interface to the hardware. If you
are developing an enhanced Wmdows virtual device, you must also factor in at least two to
three weeks to learn all about the enhanced Wmdows architecture and environmenL

If you have already written a Windows device driver and simply want to make it com
patible with Wmdows 3.0 when running in protected mode, modifying and/or writing the
necessary code should take only a week or two. If your device driver is simple and only
does l/O and Windows function calls, any changes will be minor and can be done in a
week.

If the device is complex and not similar to one of the Miaosoft-supplied device drivers,
the effort could take several months or longer.

Yoo will need to do additional work to develop an enhm>ced Windows virtual device
(VxD) if the hardware can be accessed from non-Wmdows programs as well as from
Wmdows. Displays, serial communications, pointing devices, and parallel printer ports all
fall into this category. 'Ibe V:xD serializes access to the hardware so that program output
from the various prognuns that are running does not get mixed together. Additionally, a
V:xD can handle asynchronous data transfer more efficiently than a Wmdows device
driver. Therefore, for running under enhanced Windows, you may want to move that
functionality out of the device driver and into the VxD. However, the driver still needs the
functionality to run under Wmdows in real or standanl mode.

Writing a VxD for serializing access to a piece of hardware will take a week or two. Build
ing additional functionality into·a VxD for asynchronous data transfer will take a couple of
weeks longer than the time it takes to implement the code for doing the actual data transfer.

If you are writing an enhanced Wmdows virtual device for a piece of hardware that is only
slightly different from one of the standard supplied device drivers, it should only take a
few weeks. However. drivers for completely different video adapters or displays may take
up to several months to write.

1.5 Core Windows Modules That Interface With Your Driver

Beta Release

Wmdows bas several machine-independent modules that take control of your computer's
resources and maintain the user interface for application programs. Miaosoft develops
these Wmdows modules, and they are ready for use with your computer.

Microsoft Confidential April 1, 1990

1-4 Devlcs Ddver AdaptaUan Gulde

The following modules form the hean of Wmdows:

Module

GDI.BXE

KERNEL.EXE

USER.EXE

Description

The Graphics Device Interface (GDI). It generates the graphics
opemtions needed to create images on the system display and
other display devices.

Conttols and allocates all the machine resources for use w\th
Wmdows. It works with your computer's operating system to
manage memory, load the applications, and schedule the execu
tion of programs and other tasks.

Creates and maintains windows on the display screen. It carries
out all user requests to create, move, size, or desttoy a window;
conttols the screen's icons and cursors; and directs mouse, key
bomd. and other input to the appropriate application.

You call GDI or KERNEL from your driver to request that they cmry out certain functions.
USER may call your driver to perform some operations.

1.6 Other Modules in the Windows Environment

April 1, 1990

In addition to the core Wmdows modules (i.e .• GDI. KERNEL. and USER), there are other
modules including device drivers that are necessary to complete the Wmdows environ
ment. F.ach module is designed to support a unique function within the system.

The following are brief descriptions of each of these modules and device drivers: (Lisa,
are these names still correct and is the list complete? What about GRABBER.EXE
and NETWORK.DRY?)

Module

COMM.DRY

DISPLAY.DRY

FONTS.FON

KEYBOARD.ORV

MOUSE.DRY

OEMFONTS.FON

SOUND.ORV

SYSTEM.DRY

Description

Supports serial device communications.

Supports the system display and pointing device cursor.

Contains system font resources.

Supports keyboard input.

Supports mouse or other pointing device input.

Contains terminal font resources for running non-Wmdows
applications.

Supports the sound generation and system speaker.

Supports the system timer, information about system disks,
and access to OEM-defined system hooks.

Microsoft Confidential Beta Release

Module

WINOLDAP.GRB

WINOLDAP.MOD

Overview at Windows 1·S

Description

Supports data exchange between non-Wmdows applications
andWmdows.

Supports the loading and execution of non-Wmdows appli
cations.

1be above generic filenames are reserved. Therefore, do not name your display driver DIS
PLAY.ORV. Instead, use a unique descriptive name with the .DRV extension. For example.
the high resolution EGA display drivel' provided with Wmdows is called
EGAHIRES.DRV. Or you can identify the vendor and device with a name such as
V7VGA.DRV for the VJdeo7 VGA driver.

1. 7 Compiling and linking the Driver Modules
(Lisa, I pulled this section out of the old DDK files and just cleaned up some of the ter·
minology. We hadn't discussed this anywhere else. But it needs a good technical re
view to make sure it's still accurate. Thanks.)

The following files are requUed to build the device driver module:

Type

Resource file

Somcefiles

INCLUDE files

Libraries

Description

Defines the dialog box for the DeviceMode ftmction.

Contain the device driver code. including the required func
tions.

Contain the definitions used by the device driver. The files
PRINTER.H (C preprocessor definitions) and
GDIDEFS.INC (assembly language definitions) should al
ways be included, along with any additional INCLUDE files
the device driver supplies and uses.

Contain the suppmting f1mctions. As a minimmn. device
drivers must link with the C Windows library (SWIN
LIBC.LIB), USER.LIB, and GDI.LIB.

1.8 Windows Calling Conventions

Beta Release

Yoo can write Wmdows device drivers in assembly language or in a Microsoft high-level
language. Wmdows requires specific segment name and calling conventions that all
Microsoft high-level languages and MASM provide. However, assembly language
programmers should use the CMACROS assembly language macro package since it will
provide them with these conventions automatically. They can: also use MASM 5.1 and

llAicrosoftConfidential April 1, 1990

1·6 D1rlt:11 Ddrer AdaptaUon Gulde

April 1, 1990

later versions, wlllch also provide some built-in high level language features. (See Section
1.9, "How to Use the INCLUDE Files," for details on using the CMACROS INCLUDE
fiJe. See also the Microsoft Windows Software Development Kit Prograrnmt!r's Reference ·
for furtb« details.)

Windows uses the following convention to call and return a device driver function:

• 'Ille CS register points to the called driver's code segment, which must not be Jatger
than 64 kilobytes. Drivers can depend on the code segment to remain in any fi¥.ed posi
tion in physical memory if it is declared as fixed in the .DEF file.

• Whenever you write code that calls a device driver exported function, your code must
execute the Sl8.Ddanl Windows prolog shown in the sample code that follows this
description. 'Ille e:ProdcBegiD macro pair does this automatically for you. The stand
ant Wmdows proJog sets the DS (data segment) register to point to the called function's
DGROUP (which must not be 1atger than 64K).

If declared as fixed in the .DEF fiJe, the data segment is not moved and can be de
pended on to remain in place. A device driver can save data in its data segment in one
function with full confidence tbal it will not be lost or modified by other parts of
Wmdows.

However, while it is fixed from the point of view of the owning code. it may not be so
in the view of code outside of Wmdows. That is, it might be swapped out to dist or
banked in EMS. Therefore, special measures must be taken by code that will be called
by memory-resident software.

However, the data segment can also be written to be moveable to allow for more flex
ible allocation of memory space. Drivers need to be as small as possible to ensure suffi
cient memory space far~

• (RoaG, pis review per your email on Fonts in Wgh EMS) When mapping screen
fonts into high EMS, the fonts are locked into memory only when they are actually
being used. Wllh Jatge-ftame EMs. they are mapped into high EMS, causing the map
ping out of any discardable code currently occupying the space. Once the font is locked
down, the integrity of any discardable code cannot be guanmteed, and the global heap
is invalidated.. making it impossible to load any new discardable code. Therefore. for
display drivers, all the font/text openllions in the Ext'l'extOut, StrBlt, GetChar·
Widths, and (perhaps?) Control functions need to be in the fixed segmenL

• 'Ille SS register points to the caller's (Le., application's) stack segment, which will be
different from the driver's data segment. Dynamic Link Libmries (DU.s), such as
device driven, do not have their own stack segment. They use whatever stack is availa
ble (Le., the applic.atioD's stack).

• The called function must save and restore any of the following registers that it uses: SS,
SP, BP, SI, DI. and DS. However, if you use CMACROS.INC, the BP and DS
registers are automatically saved and restored.

• The direction flag must be cleared when exiting any function that sets or modifies iL
The DS, SI, and DI registel'S must also be preserved.

Microsoft Confidential Be'la Release

Beta Release

Overview of Windows 1·1

• A function call's code must place returned values in AX if they are 16-bit, and in
DX:AX if they are 32-bit.

• Use FAR calls in your code to reach all the expoited entries into a function. Each ex
ported entty must execute a FAR retmn.

• The cEnd macro generates the proper epilog code (if necessary) and the return instruc
tion.

• At the time of the call, all parameters for the entty are present on the ~with the
last parameter closest to the stackframe pointer, and the others at offsets deeper in the
stack. Thus, CALL OEMFUNC(argl, arg2, arg3) is implemented:

push argl
push arg2
push arg3
call far OEMFUNC

The entty and exit code in the OEMFUNC function is as follows:

OEMFUNC PROC far
mov ax, ds ;Windows prolog support
nop
inc bp
push bp
mov bp, Sp
push ds
mov ds, ax
sub sp, <# bytes of local stack space>
push si
push di

Now let's get the parameters off of the stack:

mov
mov
mov

Body of routine here.

OEM FU NC

pop
pop
sub
mov
pop
pop
dee
ret
ENDP

ax, [bp+A]
bx, [bp+8]
ex, [bp+6]

di
si
bp, 2
sp, bp
ds
bp

:now AX contains argl
;similarly, BX contains arg2
;puts arg3 into ex

bp :Windows epilog support
H bytes of parameter space, in this case 6

• All pointer arguments are passed as 32-bit quantities. occupying two WORDs on the
stack. The segment portion is pushed first. then the offset portion. This allows you to
use the LDS or LES instruc~~~ f9_ ~trieve pointers from the stack.

Microsoft Confidential April 1, 1990

1-8 Derlt:e Dtlver Adapt.atloa Balda

· 1.9 How to Use the INCLUDE Files
When writing assembly language drivers, you will need to incorporate at least the follow
ing INO..UDE (.INC) files, which can be found in either the SDK or DDK. See the
Microsoft W'urdows Installation and Update Guide for the DDK for a list of the files pro
vided with this kit.

• CMACROS.INC

• GDIDEFS.INC

• WINDEFS.INC

Some of these contain both C and ASM definitions and. therefore, can also be used in
drivers wmrm in C. Some of the other include files provided with the DDK are
WJNDOWS.H and SPOOL.H. which is used by printer drivers. (Lisa, is SPOOL.ff the
correct name now?)

1.9.1 CMACROS.INC

April 1, 1990

1be most imponant INCLUDB file is CMACROS.INC, which contains a set of assembly
Janguage macros that were written to be compatible with the Microsoft Macro Assembler
(MASM) vS.l. CMACROS.INC provides a simplified interface to the function and seg
ment conventions of bigb-Jevel languages. such as C and Pascal. (Lisa, bas it been up
dated to work with any newer MASM version that might have come out since this
was written last year?)

You must include this file at the beginning of the assembly-language somce file by using
the INCLUDE dh'ective. You must also give the full pathname if the macro file is not in
the current dhectory or in.a <tirectory specified on the·command line.

1be Cmacros are divided into the following groups:

Group

Segment macros

Storage-allocalion macros

Function macros

Description

Give access to the code and data segments that an
application can use without any special definition.
Medium·, large-, and huge-model applications can
define additional segments by using the createSeg
macro. These segments have the names, attributes,
classes. and groups required by Wmdows.

Allocate static memory (either private or public). de
clare externally defined memory and procedures, and
allow the definition of public labels.

Define the names. attributes, pammeters, and local
variables of functions.

Microsoft Confidential Beta Release

Beta Release

Group

Call macros

Special-definition macros

Overview of Windows 1·9

Description

Can be used to call cProc functions and high-level
language functions. These macros pass arguments
according to the calling convention defined by the
?PLM option, which is defined in the file with the
Cmacros.

Inform the Cmacros about user-defined variables,
function-register use, and register pointers.

Allow assertions to be coded into an assembly-lan
guage somce program. This lets you code optimum
instruction sequences for some operations based on
the variable allocation or bit position of a flag in a
WORD, and assert that the assumptions made are
ttue. They also generate an error message to the con
sole and an error message in the listing. Both the t.ext
that caused the error and the result of its evaluation
are displayed in the generated error message.

In other wools, the Cmacros take care of many of the housekeeping tasks necessary for set
ting up stack frames, calling between modules written in C and those written in assembly
language, and defining local and global variables.

Since the CMACROSJNC file bas no comments in it, this section will include explana
tions of some of the functions that you will use in a Wmdows device driver. For infor
mation on the other functions, detailed descriptions of syntax, and individual examples,
refez to the chapter on Assembly-Language Macros in the Microsoft Windows Software
Dei/elopment Kit Tools manual. (Is the reference correct?)

Setting Up Stack Frames
How to set up stack frames is the fust concept to be discussed. The device driver is always
called from the device-independent Wmdows Graphics Device Interface (GDI). GDI
passes the parameters for each drawing command to the device driver on the stack. (All
calls from GDI are FAR calls.) When the driver is called, the parameters for the call have
been pushed onto the stack at offset ss:[bp+6]. By using the Cmacros, you can automati
cally retrieve these parameters in a clear and easily documented way. Otherwise, you must
refer to these parameters by offsets from a:[bp+6], which can quickly become confusing.
For more infOimation on calling conventions, refer to the Mixed Language Programming
Guitk included with the MASM documentation. ·

The following is a skeleton of the Bit Block Transfer (BitBlt) assembly language file show
ing how CMACROS.INC is used typically in a device driver.

title BitBlt Skeleton

i
.xlist

Microsoft Confidential April 1, 1990

1·111 DBvlCll Ddvtlt Adaptallol 611/de

April 1, 1990

:use small model (the default> memS
?PLM-1
?WIN•l
?CHKSTK•l

:use Pascal calling Cthe default>
;generate prolog-epilog code (the default>
:call CHKSTK for all procs in this file

include CHACROS.INC
• list

. • sBegin Data
• Define a public data item called HyData: . • globals HyData,9,2
• Define a private data item called BitBltData: . • staticW Bit81tData,9,l
sEnd Data

page
sBegfn Code
assumes cs,Code
assumes ds,Oata
:
cProc Bit8lt,<FAR,PUBLIC,WIN,PASCAL>,<si,di>

parmD lpDestDev
parmW DestxOrg
parmW DestyOrg
parmD lpSrcDev
parmW SrcxOrg
parmW SrcyOrg
parmW xExt
parmW yExt
parmD Rop
parmD 1 pP8rush
parmD lpOrawMode

localB LocalData
localW LocalWordData
localV Loca1298ytesofData,20

cBegin
I
I Your code goes here.
I
cEnd

.
sEnd Code
end

If you have questions on any of the terms used in the skeleton example, refer to the chapter
on Assembly-Language Macros in the Microsoft Windows Software Development Kit Tools

Microsoft Confidential Beta Release

Beta Release

OvetvlewatWlndows 1·11

manual. Several Cmacros features will also be discussed here in more depth. (Is the
reference correct?)

Keywords
WIN and PASCAL, as used on the cProc line, allow you to overrule the ?PLM and
?WIN flags. In the skeleton example. they are redundant. However, the sample drivers in
cluded in the DOK sometimes use them. and they are certainly bannless. .
You can also use NODATA as a keyword in the cProc line. Normally, the prolog and
epilog code set the DS register to point to the default dala segment whenever the process
type is FAR. However, this is sometimes Wasteful and can result in an unwanted destruc
tion of the AX register since AX is used to set up DS. Therefore. you can use the
NODATA keyword to prevent the prolog and epilog code from modifying DS. For ex
ample:

cProc EnableCursor,<FAR,PUBLIC,WIN,PASCAL,NODATA>.<es>

Case Sensitivity
If you are assembling your program using MASM's case sensitivity switch (-Ml), some of
the names docmnented in the Assembly-Language Macros chapter of the Microsoft
Windows Software Development Kit Tools manual will not work. Make sure that you use
the following syntax for the default segment names:

Code Data Stack

and:

CodeOFFSET DataOFFSET StackOFFSET

Also notice that the arg command should be in lower case.

Defining Multiple Modules
There are some easier ways to define multiple modules using the same stack frame. For ex
ample, take the case in which a BitBlt process. like the one shown in the skeleton ex
ample, should really be logically divided into two modules. One would contain
hardware-independent code and the other would contain hardware-dependent code.
However. both of them still need to share the same variables that are passed on the stack
and defined as variable names by Cmacros. In such cases. some programmers would use
the following calling sequence in module one:

arg lpDestDev
arg DestxOrg
arg DestyOrg
etc •
cCall BitBltHoduleTwo

and the following receiving sequence in module two:

Microsoft Confidential April 1, 1990

1·12 Devlt:B Driver At/aptat/aa GuldB

April 1, 1990

cProc BitBltHoduleTwo<FAR,PUBLIC,WIN,PASCAL>

etc ••
cBegin

parmD lpDestDev
parmW DestxOrg
parmW DestyOrg

However. this intec-module calling sequence is extremely wasteful in tenns of setting up
the stack frame in both the caller and the FAR call. Instead. Cmacros allows you to create
a dummy cProc header in all the modules that will share the same stack frame (ext;ept. of
comse. the calling module). Then. use the <Bogen> qualifier on the cBegin line. Cmacros
will create the equates for the stack frame but will not generate any code in the dummy
process. After that. you can make NEAR.calls to any subprocesses without any wasteful
ness. as shown in the following example:

In File 1:
externHP Hodule2
• cProc Hodulel,<FAR,PUBLIC,WIN,PASCAL>,<si,di>

parmD Paraml
parmW Param2
parmB Param3

cBegin
I
I some code.
I
cCall Hodule2
I
I
I
cEnd

In File 2:
cProc HoduleFamilyDunvny,<FAR,PUBLIC,WIN,PASCAL>

parmD Paraml
parmW Param2
parmB Param3

c8egin <nogen> ;don't generate any code-just equate stack
;offsets for the parameters to symbolic names

cEnd <nogen> ;don't generate any code-just end the process

I

cProc Hodule2,<HEAR,PUBLIC> .
c8egin
I

;How Hodule2 will be able to use the same stack frame variable as
;Module!. The far call has been avoided as well as the pushing of the
;stack frame in Module!.

Microsoft Confidential Beta Release

i
cEnd

Ovstvtew of Windows 1·13

1.9.2 GOIDEFS./NC
GDIDEFS.INC allows you to refer to symbolic constants and structures by their Wmdows
standard names. which is good practice. To shorten the assembly time and cross-reference
lists. you can selectively include parts of GDIDEFS.INC by defining equates that tell the
assembler which parts to include. These equates are listed as follows: •

Equate

incLogical equ 1

incDevice equ 1

incFont equ 1

incDrawMode equ 1

incOutput equ 1

incControl equ 1

Definition

Includes logical pen, brush, and font definitions

Includes the symbolic names for GDIINFO definitions

Includes the FONTINFO and 'IEXTXFORM definitions

Includes the DRAWMODE data structure definitions

Includes the output style constants

Includes the escape number definitions

1.9.3 . WINDEFS.INC

Be'la Release

WINDEFS.INC contains two very useful macros that are used to tum off hardware inter
mpts such as those from the floppy and bard disk controllets, math coprocessor, timer, key
board. and mouse. Use the EnterCrit and LeaveCrit macros whenever you do not want
an asynchronous intmupt to reenter an area of code that Windows is executing.

Using the mouse intmupt as an example, it is possible for the mouse to generate intenupts
faster than yom mouse-handling code can process them. Therefore, it is likely that
Wmdows could be updating a mouse coordinate when another mouse coordinar.e came
along wanting to be serviced. Due to this succession of interrupts, special care must be
taken to prevent any loss of mouse actions.

To manage this situation, when you are about to update yom mouse coordinates, use the
EnterCrit macro. This will stop the mouse interrupts from occurring. After you get the
new mouse coordinates, then you can use the LeaveCrit macro to reallow int.ermpts. Do
not use simple CLI and STI instructions to accomplish this since they will not correctly re
store the states of the flags and interrupts.

Microsoft Confidential April 1, 1990

1·14 Device Ddver Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

2 Display Drivers

(Lisa, do you want to provide me with a marketing-oriented spiel similar'to the one
you did for printer drivers? I already incorporated your last two printer paragraphs
since they seemed rather generic.)

This chapter descnl>eS the support you need to provide in your Microsoft Windows display
driver. Of course, the extent of the support you provide depends on the type of hardware
supported. However, we strongly encourage you to implement all the stmctures and func
tions defined in this chapter, if aPJ>licable to your device. By doing so, Wmdows appli
cations will be able to take full advantage of your hardware device.

The DDK includes sample code for display driver sources. These provide you with ex
amples of how the following functions are used by Wmdows to display output to the
screen:

• Output

• Enable and Disable

• ReallzeObject

• Colorlnfo

• BitBlt

• StrBlt/ExtTextOut

• Control

The functions are listed here and described in the following sections in the order in which
we recommend you implement them. A few additional functions that you also need to im
plement are also briefly described here. These can be done in any order after StrBlt.
Detailed descriptions of all these functions are provided in Chapter 10, "Common Func
tions."

2. 1 Filling Out the GD/INFO Data Structure

Beta Release

The first step toward producing a successful Wmdows display driver is to fill out properly
the GDIINFO data structure. (You can find the file for this data structure in your model
driver.) The GDIINFO data sttucture tells Wmdows about the capabilities of your device.
It also tells Wmdows applications how to expand and conttact their bitmaps to achieve a

Microsoft Confidential April 1, 1990

Z-2 Dnlt:e Ddver Atlaplallan Gulde

April 1, 1990

WYSIWYG appearance on your display. To ensure yourself of a consistent-looking dis
play, you must follow exactly the calculations in this section.

1be GDIINFO data sttucture is organi7.ed as shown in the following table. All the entries
are WORDs (2 bytes). Most of the items will be discussed in greater detail in subsequent
sectioos. For additional information on GDIINFO from a printer driver's viewpoint, see
Chapter s. "Printer DriveIS."

Value

dpVersioD

dpTedmology

dpHonSU:e

dp VertSU:e

dpHorzRes

dpVertRes

dpBitsPixel

dpPlanes

dpNumBrushes

dpNumPens

dpNumFoots

dpNumColors

dpDEVICEsize

dpCurves

dpLines

dpPolygonaJs

dpTm

dpCllp

dpRaster

Offset

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

Contents

VersiOn number (always use the number 0300H)

Device type (Plouet-0, Display= I. Printcr=2,
other types are found in GDIDEFS.INC)

Width of display in mm

Height of display in mm

X-resolution in pixels

Y-resolutioo in scanlines

Bits per pixel

Number of planes

Number of brushes

Number of pens

Reserved (Must be 0)

Number of fonts that the device has
'

Number of uue, non-dithered colors on device.
(or number of reserved colms for palette
capable devices)

Number of bytes required for PDEVICE struc
ture

Curves capabilities

Polyline drawing capabilities

Polygonal capabilities

Text drawing capabilities

Clipping ability for shape drawing only

Miscellaneous capabilities (BitBlt)

Microsoft Confidential Beta Release

Display Drivers 2-3

Value Offset Contents

dpAspectX 40 Xaspect

dpAspectY 42 Yaspect

dpAspectXY 44 Hypotenuse of X and Y aspect

dpStyleLen 46 Length of patterned line segments

dpMLoW'm 48 Metric Lo-Res Wmdow

dpMLoVpt 52 Metric Lo-Res Viewport

dpMHiW'm 56 Metric ID-Res Wmdow

dpMHiVpt 60 Metric ID-Res V:iewport

dpELoW'm 64 English Lo-Res Wmdow

dpELoVpt 68 English Lo-Res Viewport

dp.EHl'W'm 72 English m-Res Wmdow

dp.EHl'Vpt 76 English ID-Res Viewport

dpTwpW'm 80 TWJPWmdow

dpTwpVpt 84 TWlP Viewport

dpLogPixelsX 88 Pixels per inch in x
dpLogPixelsY 90 Pixels per inch in y

dpDCManage 92 DC Management (always 4 for displays)

94 5 WORDs that are reserved (must be 0)

dpPalColors 104 Number of simultaneous colors
(for palette-capable devices)

dpPalReserved 106 Number of reserved system colois
(for palette-capable devices)

dpPalResolut 108 Palette resolution, which equals the
number of bits going int.o video DACS

2.1.1 Screen Metrics

Be'ta Release

The screen metrics entries include such items as width and height in mm. These values are
closely related to the screen resolution, aspect, and fonts that you want to use. (Lisa,
please check the following!)

Microsoft Confidential April 1, 1990

2-4 Dsvlt:I Dtlver AdaptaUon GuidB

Ap_rll 1, 1990

Wmdows provides the following raster fonts:

• Comier- a fixed-width font

• Helv - a proportional font without serifs

• Tms Rmn - a proportional font with serifs

• Symbol - arepresematicm of the AGFA Compugrapbics PosTScRlPT ® madl symbols
and the Adobe '™PosTScRlPT® symbol sets

• System - a proportional font without serifs

• Fixed System - the Wmdows 2.0 fixed-width system font

• Terminal

• OEM

WJDdows also currently provides six versions of these screen and system fonts:

• COURA. BELVA, TMSRA. SYMBOLA, CGASYS, CGAFIX: for a 2 to l~ low-resolu
tion device such as the CGAdisplay. (Actual pixels per inch= 96 in X and 48 in Y.)

• COURB. HELVB. TMSRB. SYMBOLB. EGASYS, EGAFIX: for a 1.33 to 1 device
such as the BOA. (Actual pixels per inch= 96 in x and n in Y.)

• COURC, HELVC, TMSRC, SYMBOLC: for a 1 to 1.2 device. (Generally used for
printing devices.) (Actual pixels per inch= 60 in x and 72 in Y.)

• COURD, HELVD, TMSRD, SYMBOLD: for a 1.66 to 1 device. (Generally used for
printing devices.) (Actual pixels per inch= 120 in x and n in Y.)

• COURB, HELVE, TMSRE. SYMBOLB, VGASYS. VGAFIX: for a 1 to 1 device such
as the VGA display. (Actual pixels per inch= 96 in X and 96 in Y.)

• COURP, HELVF, TMSRF, SYMBOLF, 8514SYS, 8Sl4FIX: for a 1 to 1 device such as
the8Sl4/Adisplay. (Actualpixelsperinch= 120i1'1Xand 120in Y.)

Pixels Per Inch
For the Wmdows font mapper to match one of these default fonts to your display, you have
to "fix" the numbers used in the various screen metrics entries. First, you must decide on
what numbers to use in the two entries, "Pixels per inch in X" and "Pixels per inch in Y,"
which are offsets 88 and 90 in the structure. You should fill in the two entries with the "ac
tual pixels per inch" numbers given in the above-mentioned list of fonts to ensure your
device can display these fonts. For example. if the target display caid bas square pixels,
use the closest entry for the "E" fonts or "F" fonts and put a 96 or 120 in offset 88 and a 96
or 120 in offset 90 of the data structure.

Microsoft Confidential Beta Release

Bet:a Release

Display Drivers 2-5

Width and Height in mm
Once you have determined the "logical" pixels per inch, you can easily calculate the width
and height of the screen in mm. The equation for calculating the width in mm is as follows:

X-resolution in pixels (offset 8) • 25 4 . h
Pixels per inch in X (offset 88) · mm per 11lC

You can similarly calculate the height in mm as follows:

Y-resolution in scanlines (offset 10) • 25 4 · ch
Pixels per inch in Y {offset 90) • mm per 10

Feel free to round off these values to even numbers.

Tbs Metric, English, and TWIP Windows and Viewports
Some W'mdows application programs rely on these numbers to produce printer output with
spacing that is proportional to the screen. By using these numbers. an applica1ion could
show a border or graphic picture that will be proportionaaely the same size on the printer as
it is on the screen.

You must keep all these ratios the same because it might be prefenible for an application to
use the metric system mtber than the inches/feet (English) system far its calculations. For
exampl~ W'mdows Write allows the user to choose whether to ex.press the border widths in
mm or inches. Therefore, it is up to the device driver to provide the correct numbers.

The Metric Lo-Res W'mdow and Viewport consist of four WORD-length entries:

offset48

offset50

offset52

offset54

Width in mm* 10

Height in mm * 10

X-resolution in pixels

- (Y-resolution in scanlines)

The Metric Hi-Res Wmdow and Viewport consist of four WORD-length entries:

offset56

offset58

offset60

offset62

Width in mm * 100

Height in mm * 100

X-resolution in pixels

-(Y-resolution in scanlines)

The English Lo-Res Wmdow and Vrewport consist of four WORD-length entries:

Microsoft Confidential April 1, 1990

2-6 Dlrlt:ll Dttwt Adaptation Balds

April 1, 1990

offset64

o1fset66

offset68

o1fset70

Width in mm* 1,000

Height in mm * 1,000

X-resolution in pixels * 254

- (Y-resolution in scanlines * 2S4)

The English m-Res Wmdow and Viewport consist of four WORD-length entries:

offset 72 Width in mm * 10,000

offset74

offset76

offset78

Height in mm * 10,000

X-resolution in pixels * 254

- (Y-resoluti.on in scanlines * 254)

.

1be TWIP (a printer's point= 1(12 of an inch) Wmdow and Viewport consist of four
WORD-length entries:

offset 80 Width in mm* 14,400

offset82

offset84

offset86

Height in mm • 14,400

X-resolution in pixels * 254

-(Y-resoluti.on in scanlines • 254)

Notice that Wmdows performs a WORD-length, signed calculation on these windows and
viewports. 'lb.erefore, you cannot calculate numbers bigger than 32K. (3~768). However. if
your screen is larger than just a few inches wide, you will exceed d1is limit when you start
calcuJaling the English windows and viewpcxts and may even exceed it on the Mettic
windows and viewports. Fortunately, you can simply scale down the calculated values by
dividing them by some fixed amount. You must use the same amount to divide the "width
in mm and X-resolution" and the "height in mm and Y-resoluti.on."

For example, assume the following results to your TWIP calculation:

Wu:ldl in mm= 280
Height in mm= 210
X-resolution = 1024
Y-resoluti.on = 768

280 • 14,400 = 4,032.000 =Width in mm
210 • 14,400 = 3,024,000 =Height in mm
1024 • 254 = 260,096 = X-resolution
- (768 • 254) = - 195,072 = Y-resolution

A divisor that gives you a number< 32K. for the widtb/X-resolution pair is 512.

A divisor that gives you a number < 32K. for the height/Y-resolution pair is 384.

Microsoft Confidential Be'la Release

Display DrlvstS 2·7

Therefore. the numbers that you should put in your GDIINFO data structure are as follows:

4,032,000 I 512 = 7875 =Width in mm
3,024,000 / 384 = 7875 =Height in mm
260,096 / 512 = 508 = X-resoluti.on
- (195,072) / 384) = -508 = Y-resolution

The X and Y Aspect Ratios
These metric calculations are based on the aspect ratios~ihat you must know for your dis
pJay cards. That is. you must know whedrer your display card bas a 1: 1 aspect ratio (square
pixels), a 1.33: 1 aspect ratio (such as the EGA), or some other aspect ratio. You figured
this out when you chose which font mettic to use. Now you must find whole numbers that
are less than 100 and that produce a whole number hypotenuse when put through the Py
thagorea theorem equation. The equation is as follows:

a2 +b2 =Cl
Where Cl is the hypotenuse.

For example, if you use 10 for both a and b when you have a square pixel display, then you
will get the following:

ia2 + 1<>2 = 200

The square root of 200 rounded to a whole number is 14. Therefore, for this example, you
would put the following:

x aspect (offset 40) = 10
Y aspect·(offset 42) = 10
Hypotenuse of X and Y aspect (offset 44) = 14

The following is an example for a 1.33:1 display. If you choose 48 for the X-aspect and 38
for the Y-aspect, then the calculation will give a hypotenuse (rounded to a whole number)
of61.

The Length of Patterned Line Segments
The final metric calculation is for the length of patterned (also known as styled) line
segments. This is simply calculated as follows:

2 • Hypotenuse

Wmdows uses this number to make the patterned lines that it draws into bitmaps and onto
displays appear correct and consistent on different displays and printers.

2.1.2 Bit Planes and Bits Per Pixel

Be'ta Release

The EGA and VGA drivers included in this kit are planar in nature. Therefore, put the
number 4 in the "Number of Planes" (offset 14) entry. This means that they have 4 planes
and are capable of 16 true, non-dithered colors (two colors per plane to the fourth power=
16). It also bas the number 1 in the "Bits Per Pixel" (offset 12) entry.

Microsoft Confidential April 1, 1990

2-8 Devtt:s Ddver Atlaptallan Gulde

Many of today's more sophisticated displays allow you to draw onto them using pixel
color values. i.e., to write all of their planes in one pass. These devices are called packed
pixel devices and include the 8514/Aand TI 34010-based devices.

The "Number of Planes" entry for an 8-bit per pixel driver is 1. However, the "Bits Per
Pixel" entry in the structure bas the number 8, which indicates that it takes 8 bits (one
byte} to~ each pixel on the display. Therefore, such a device is capable of display
ing 28==256 colon on the screen.

The number of planes and bias-per-pixel also define the biunap format that the deVice
driver must understand. See Chapter 12, "Data Structures and Fde Formats." for more
iDfmmation on the BITMAP data structure. .

Some display devices allow addressing of the board in either planar cx- packed pix.el mode.
However, it is more efficient for both you and Wmdows to use the packed pixel mode
whenever possible. For more infonnation on the packed pixel somces included in the
DDK. see the Installation and Update Notes.

2.1.3 Supported-Capabilities and the Output Function

April 1, 1990

Now you must decide what capabilities you want your driver to support. You will need to
decide on which shapes you will choose to draw using your device's hardware. Windows'
only requirement is that you be able to draw solid or patterned single-pixel-wide horizontal
lines (scanliMs} and solid single-pixel-wide lines in any direction (polylinu).

However. it may be faster for you and produce better results if you use your display's
advanced hardware to draw such shapes as circles. ellipses. and alternate-fill polygons.
The Cmves. Polylines, and filled figure (Polygonal) capabilities allow you to tell Wmdows
that you want it to call your Output function to give you a chance to draw the figure with
your hardware.

Wmdows 2.0 and later versions give you further flexibility in supporting Output shapes.
Assume that you can draw a polygon with 256 vertices but not with 257. Or. that you can
draw ellipses to your screen but do not wish to duplicate the algorithm for ellipse drawing
into main memory bitmaps (Wmdows, however. requires that any figure you claim you
can draw onto the screen must also be able to be drawn to a main memory bitmap).

You then say that you have the ability to draw polygons and ellipses. When your driver's
Output function is called. you can have it return a failure return code and have Wmdows
synthesize the figure fcx- you with the basic building blocks (scanlines, solid polylines. and
pixels).

The following is a list of the Output function's capabilities and their corresponding offset
numbers. These will be discussed in greater detail in the following subsections.

• Curves (offset 28)

• Polyline Drawing (offset 30)

• Polygonal Drawing (offset 32)

Microsoft Confidential Beta Release

Bera Release

Display Drivers 2·9

• Text Drawing (offset34)

• Clipping (offset 36)

• Miscellaneous Raster/BitBlt (offset 38)

Curves (Offset 28)
The following table shows what you can draw when you set each bic

Value Bit Capability

CC_CIRCLES 0 Circles

CC_PIE 1 Pie wedges

cc_CHORD 2 Chord arcs

CC_ELLIPSES 3 Ellipses

cc_wmE 4 Wide, solid-curved borders around curve
figures

cc_STYLED s Patterned lines SWTOWlding curves

cc_WIDESTYLED 6 Wide, patteined-curved borders around curve
figures

CC_INTERIORS 7 Can fill the interiors of curves

NOTE All other bits in the WORD should be set to zero. If the driver doesn't support curves, all bits
should be set to zero.

Wmdows can use an ellipse to draw a circle if circles are not support:ed by the driver. If
your device can fill the ellipse, then you should set the interiors bit. Wmdows can also use
an alternale-fill polygon to draw wide borders (both solid and patterned) just as efficiently
as if the driver supported them correctly.

Polyline Drawing (Offset 30)
The following table shows what you can draw when you set each bit:

Value Bit Capability

LC _POLYLINE 1 Polylines (all display drivers must set this bit)

LC_MARKER 2 Reserved

LC_POLYMARKER 3 Reserved

Microsoft Confidential April 1, 1990

2·10 Dsvlt:B Dtlver Adaptallan SuldB

April 1, 1990

Value

LC_ WIDE

LC_STYLED

LC_ WIDESTYLED

LC_INTERIORS

Bit

4

s
6

7

Capability

WJdelines

Patterned lines

WJde patterned lines

Can fill the interiors of wide lines

NOTE All other bits in the WORD should be set to zero. H the driver doesn't support arrt line capabili
tiel, aa bits should be set to zero.

If your device supports alt.emaJe-fill polygons, then Wmdows can efficiently use the poly
gons to create wide lines. However, if your device supports wide lines. you might want to
support them, since you cannot "fail" on chawing wide lines into a main memory bitmap.

If you support styled lines, make sure that the lengths of the line segments that your hard
ware draws are the same as those at offset 46 (dpStyleLen) of GDIINFO. Also. if you sup
port wide or styled polylines. you must suppm them to both main memory bitmaps and to
your screen.

NOTE If you decide to support styled lines. you must support them to both main memory bitmaps
and screen bitmaps. This is because Windows wiU not let you return a fai1ure from OUtput for arrt of
the line styles.

If your bard.ware supports styled and wide lines, it is probably wotth the effort to imple
ment them. even though they are used mtb.er inftequently. However, Wmdows also does a
fine job of synthesizing them by using pixel chaws, which are slow but work. (In the ·
sample driven, wide lines are not supported. but styled lines are.)

Polygonal Drawing (Offset 32)
The following table shows what you can chaw when you set each bit:

Value Bit Capability

PC_POLYGON 0 Altemat.e-fill polygons

PC_RECTANGLE 1 Rectangles

PC· TRAPEZOID 2 Wmding number fill polygons

PC_SCANLINE 3 Scanlines (all display drivers must set this bit)

PC_WIDE 4 WJde borders around polygonal figures

Microsoft Confidential Beta Release

Beta Release

Value

PC_STYLED

PC_ WIDFSTYLED

PC_INTERIORS

Bit

s
6

7

Display Drivers 2-11

Capability

Patterned bordeis arolllld polygonal figures

Wide patterned borders around polygonal
figures

Can fill the interiors of polygonal figures

NOTE All other bits in the WORD should be set to zero. If the driver doesn't support polygons. all bits
should be set to zero.

Again. we do not recommend supporting wide borders since Wmdows will use altemate
fill polygons (Le., the kind that most haidware supportS) to produce these borders.

There are no drivers currendy written that support the winding number fill polygons. Most
hardware is incapable of doing winding number fill polygons because it is a fairly complex
algorithm.

However, we do recommend patterned border support if the hardware supports iL Great
speed increases are possible with polygonal patterned borders.

Text Drawing (Offset 34)
The following bible shows what you can draw when you set each biL The bits Marked with
an asterisk (*) are the ones you should set (if your device bas the capability).

Value Bit Capability

TC_OP _CHARACTER O* Can draw text with pixel justification (re-
quired) I

TC_OP _STROKE l* Can do everything that bit 0 set can. and
also rowe text

TC_CP_STROKE 2* Can clip to a pixel boundary(required for
displays)

TC_CR_90 3 Can rowe text 90 degrees (does not
work)

TC_CR_ANY 4 Can rotate text to any angle (does not
work)

TC_SF _X_YINDEP s Can scale a font in X and Y directions in-
dependently

TC_SA_DOUBLE 6 Can double the size of the font

Microsoft Confidential April 1, 1990

2-12 Device Ddver Adaplalllln Gulde

April 1, 1990

Value

TC_SA_INTEGER

TC_SA_CONTIN

TC_EA_DOUBLE

TC_IA_ABLE

TC_UA_ABLE

TC_SO_ABLE

TC_RA_ABLE

TC_VA_ABLE

TC_RESERVED

Clipping (Offset 36)

Bit

7

8

9*

10*

11*

12*

13*

14*

15

Capability

Can scale the font by any integer size
(3X.4X)

Can scale the font by any amount

Can bold the font

Can ilalicize the font

Can underline the font

Can do a "strikeout" on the font

Can draw with raster fonts (required for
displays)

Can draw with vector fonts (not on dis-
plays; only for plotters.)

.Reserved

If your hardware device can "scissor clip" to a rectangular region. then you should put a 1
here and support clipping in your driver's Output function.

This capability is used only by Wmdows to detennine whether or not you can clip Output
shapes. Text must be clipped to a pixel boundary by the driver no matter what is placed in
this field.

Output. StrBlt (ExtTe:xtOut), BitBlt, SetDIBitsToDevice, and UpdateColors (for
palatte-capable devices) are the only functions that require any clipping.

Miscellaneous Raster/BitBlt (Offset 38)
Many of these capabilities are required, and not optional, for displays. For example,
Microsoft has evaluated some Wmdows 2.x drivers that do not support huge (>64K) bit
maps. Many applications, such as Wmdows Paint, depend on this support and will not
work correctly if the display driver does not handle them. Also, if you expect to support
most of the major applications, your display driver must support ExtTextOut

Since FastBorder shares a bit with the ExtTextOut capability, you must set the bit.
However, you can return a failure code from FastBorder for which Windows will compen
sate. The 8514/Adriver does this.

The following table shows what you can draw when you set each bit. The ones marked
with an asterisk (*) are reqllired for display drivers.

Microsoft Confidential Beta Release

Value

RC_BITBLT

RC_BANDING

RC_SCALING

RC_BITMAP64

RC_GD120_0UTPUT

RC_ GD120_STATE

RC_SAVEBITMAP

RC_DI_BITMAP

RC_PALETI'E

RC_DIBTODEV

RC_ BIGFONfS

RC_STRETCHBLT

RC_FLOODFILL

Bit

O*

1

2

3*

4*

5

6

7

8

9

10

11

12

Capability

Can do BitBlt

Display Drl11e1S 2-13

Requires GDI banding support (printers
only)

Requires GDI scaling support (printers
only)

Supports huge, >64K (multi-segment) bit
maps

Supports ExtTextOut, FastBorder, and
GetCbarWidth

State block support (printers only)

SaveScreenBitmap capability (strongly
recommended for displays)

Can do Get and Set oms and RLE to
and from memory in all the om resolu
tions (1,4,8, and 24 bits-per-pixel).
However, if the flag is not set, GOI will
simulate in monochrome.

Can do color palette management

Can do SetDmitsToDevice

Can do >64K fonts (set only in protected
mode) in the new version 3.0 format
However, if the flag is not set, all the
fonts will be in the old version 2.0 format.

Can do StretchBlt

Can do FloodFill

2.2 The Enable and Disable Functions

Beta Release

The following are the call parameters for Enable and Disable:

cProc
parmD
parmW
parmD
parmD
parmD

Enable,<FAR,PUBLIC,WIN,PASCAL>,<si,di>
lpDestDev
Style
lpDestDevType
lpOutputFile
lpData

Microsoft Confidential April 1, 1990

2-14 Devtcs Ddver Adaptation GuldB

cProc Disable,<FAR,PUBLIC,WIN,PASCAL>,<si,di>
parmD lpDestDev

GDI calls the Enable function twice for display drivers. The first time, the passed variable
is Style= 1. This means that GDI wants you to move your GDilNFO data structure into the
area pointed to by lpDestDev. You must return, in the AX register, the size in bytes (=
sizeGDIINFO) of your GDilNFO data sttucture.

The second time (with Style= 0), three things must occur. These are discussed in the fol
lowing sections.

2.2.1 Initializing Your Graphics-Board Hardware
(Peterbe, does this section just refer to 2.x drivers now? Has this been iixed?)

First, you must initialize your graphics-board hardware to be ready to run Wmdows.
However, there is a special caveat here. For Windows to properly initialize its keyboard,
you must set the byte at 40H:49H into an IBM® ROM BIOS-compatible graphics mode.
For many high-resolution devices that do not use the ROM BIOS to set up their modes,
this may seem unnecessary. However, the Windows keyboard will be locked out unless
this is done.

There are two possible ways to do this. Either move a 6 (CGA graphics mode) into the
byte at 40H:49H, or use the ROM BIOS call to set mode 6. Be sure to save the original
byte at 40H:49H so you can restore it at Disable time.

The following is an example of how to do this using the ROM BIOS:

mov
int
mov

mov
int

ax,0f00h
Hlh
DisplayModeSave,al

ax,6
Hlh

;save the current display mode

;make sure this is in your default
;Data segment
;set to IBM display mode 6

2.2.2 Initializing Your Other Hardware

April 1, 1990

Next, you should perfonn any initialization of your other hardware. You do not need to
clear the screen at this time (however, some prefer to do so). Wmdows will call BitBlt to
do that for you.

While initializing, you must call a special function (INT 2FH) to make your Wmdows
driver work in the 0Sf2 Compatibility Box. Because Wmdows is so graphic in nature and
because the cursor operates asynchronously from the rest of Wmdows, you must be sure to
leave and reenter Windows in an orderly fashion when switching in and out of the Com
patibility Box.

Your hardware could get extremely confused if 0Sf2 switched away from you while you
were in the middle of setting up for a draw! If 0Sf2 calls into the Compatibility Box using

Microsoft Confidential Beta Release

Beta Release

Display DrlVBIS 2-15

INT 2FH when you are in a state from which you cannot switch in an orderly fashion, you
can return a failure code to OS/2. OS/2 will keep trying to call you until it receives a
successful code. Then, you should save any states that you need to restore upon reentry
and allow the switch to occur.

When you switch back into the Compatibility Box, you reinitialize your hardware and call
Wmdows to repaint the screen. OS/2 uses the INT 2FH functions 4001H (Notify Back
ground Switch), to switch from the Compatibility Box to OS/2, and 4002H (Notify Fore
ground Switch), to switch back into the Compatibility Box. (See the following
subsections for descriptions of these functions.)

OS/2 also uses the following functions:

Number

4000H

4003H

4004H

4005H

4006H

4007H

Name

Enable VM-Assisted Save/Restore

Enter Critical Section

Exit Critical Section

Save Video Register State

Restore Video Register State

Disable VM-Assisted Save/Restore

Therefore, the Enable function must hook INT 2FH and check each call to that interrupt to
see if it is one of the above-mentioned functions. You hook the interrupt by using the fol
lowing MS-DOS functions: 35H to get the old vector and 25H to set the new vector. Be
sure to save the address of the old interrupL

You should look at the SSWITCH.ASM file in one of the sample drivers to see how INT
2FH is hooked. Notice that you must hook INT 2FH, even when running under versions
3.x or 4.x of MS-DOS, because many network systems (including MS-NE'I) that are run
ning under a "real mode" MS-DOS will want to use the same functionality that OS/2 uses.
See the following subsections and Volume 2, Chapter 42, "INT 2FH API," for more
detailed infonnation.

However, before you hook INT 2FH, you must get the address of a special function in the
Wmdows USER module that forces a repaint of the entire screen. This is because when
you switch back from OS/2 to Windows, which is running in the Compatibility Box, you
must restore the screen to the state in which it was when you exited. Fortunately, the
USER module's function can do this automatically for you.

Tu get the address for this special function, first call the Wmdows function GetModule
Handle. This returns a special identifier to the USER module called a handle.

Once you have the handle to the module, you call the Wmdows function GetProcAddress,
giving the special process identifier for the repaint function (this identifier is always the

Microsoft Confidential April 1, 1990

2·16 Device Driver Adaptation Bu/de

April 1, 1990

number 275 decimal). GetProcAddress returns to you a long pointer to the repaint func
tion, which you then save and call when appropriate.'

(MarcW, please review carefully my edited text here.)

INT 2FH/AX=4000H - Enable VM·Assisted Save/Restore
A Vutual Machine (VM) application (such as Wmdows) can issue this call when it is in
itializing to determine what level of virtualiz.ation the Vu:tual Display Device (VD{?) sup
ports and to disable l/O trapping of unreadable registers whenever this VM is in the
fOieground. The VDD instead relies on the VM's INT 2FH support to save and restore the
VM's register state (see functions 400SH and 4006H). If this capability is enabled, the
VDD returns in AL a non-zero value, which may be one of the following:

OOlH - No modes virtualized in background
002H - Only text modes virtualized in background
003H - Only text and single-plane graphics modes virtualized
OFFH - All supported video modes virtualized

The state of the video adapter at the time this call is made will be the state restored prior to
Notify Foreground Switch (function 4002H) and requests by Restore Video Register
State (function 4006H). Also, video memory is no longer saved across screen switches; it
is the application's responsibility to completely reinitialize video memory after a Notify
Foreground Switch requesL

INT 2FH/AX=4001H • Notify Background Switch
The VDD issues this call to a VM that is being unconditionally switched to the back
ground. Once this call is complete, the VM can continue to run. However, if it accesses
video memory while in an unvirtualized video mode, it will be frozen until brought to the
fOieground again. The VM must return from this call within lOOOms; otherwise, the screen
switch will proceed anyway.

It is expected, though not required, that an application that has enabled VM-Assisted
Save/Restore (function 4000H) will not access video memory or registers after this notifi
cation, to avoid being frozen in a video mode that cannot be virtualized. However, any
application that does so can still be detected and frozen if the operation cannot be virtual
ized. When VM-Assisted Save/Restore is not enabled, the VM's registers and memory
are completely saved after this call has returned (or timed-out).

INT 2FH/AX=4002H ·Notify Foreground Switch
The VDD issues this call to a VM that is being unconditionally switched to the foreground.
The VM can assume that it once again has complete access to the physical display hard~
ware. No time-out is enforced on this call.

H the VM has enabled VM-Assisted Save/Restore, it is now expected to reinitialize
completely the video memory. The state of the adapter will already be restored to the state
that existed when function 4000H was issued. H VM-Assisted Save/Restore is not

Microsoft Confidential Beta Release

Beta Release

Display Drivers 2-17

enabled, the full state of the adapter (memory and registers) will already be restored, and
this call need not be acted upon.

Under certain error conditions, this notification may be issued without a corresponding
Notify Background Switch (function 4001H); an example is the critical section time-out,
discussed in the following two subsections.

INT 2FHIAX=4003H .- Enter Critical Section
A VM application (such as Windows) issues this call whenever it is in a critical section and
consequently cannot respond to a Save Video Register State request (function 4005H).
When a Save is required (e.g., to reprogram temporarily the video hardware to perform a
Oipboard copy operation) and the VM is in a critical section, the required operation is
postpaned for up to lOOOms or until the Exit Critical Section call (function 4004H) is
made, whichever comes first. If time-out occurs, then the VDD reprograms the hardware
anyway and, when its operation is complete, initiates the Notify Foreground Switch re
quest (descn"bed earlier in this section), in an attempt to reinitialize the application properly.

A count of Enter Critical Section requests is kept, so that nested calls can be made. If the
count will overflow, the Enter request is ignored.

INT 2FH/AX=4004H - Exit Critical Section
A VM application (such as Wmdows) issues this call when it has completed its critical sec
tion processing. If there is a pending Save Video Register State request, then it is per
formed immediately afterward.

The cowit of Enter Critical Section requests is decremented. If the count will widerfl.ow,
the Exit Critical Section request is i~ored.

INT 2FHIAX=4005H - Save Video Register State
The VDD issues this call when it requires access to the video hardware registers (e.g., for a
full-screen Clipboard copy operation). The VM receiving this call must save any data nec
essary to restore effectively its video state when a Restore Video Register State request
(function 4006H) is issued later. The VM must return this call within lOOOms; otherwise,
the required operation will proceed anyway.

This call is issued only if the VM has enabled VM-Assisted Save/Restore (see function
4000H). It is not issued prior to Notify Background Switch calls (function 4001H); it is
issued only at times when the hardware must be reprogrammed for what are essentially
brief and non-visible operations.

INT 2FH/AX=4006H - Restore Video Register State
The VDD issues this call when it relinquishes to a VM the access to the video registers.
The VM receiving this call should restore any register states necessary to continue uninter
rupted foreground operation. No time-out is enforced on this call.

Microsoft Confidential April 1, 1990

2-18 Device Driver Adaptation Guide

This call is issued only if the VM has enabled VM-Assisted Save/Restore (see function
4000H). Whatever registers the VDD modified are restored to the state saved at the time of
function 4000H. In other words, before this call is issued, every register is guaranteed to be
either unchanged or reset to the state at the time of function 4000H; precisely which
registers may be reset is undefined, but the set is restricted to those Sequencer and
Graphics Controller registers that do not affect the display.

INT 2FH/AX=4007H - Disable VM-Assisted Save/Restore
A VM application (such as Windows) issues this call when it is terminating to re-enable
J/0 trapping of unreadable registers whenever this VM is in the foreground. The INT 2FH
functions that save and restore the VM's register state (4005H and 4006H. defined earlier
in this section) are no longer issued for this VM, and the enter/exit critical section services
(4003H and 4004H, also defined earlier) are ignored.

2.2.3 Copying Your POEVICE Data Structure

April 1, 1990

The.last thing to do while in your Enable function is to copy the PDEVICE structure you
want to the area pointed to by lpDestDev. This call to Enable should return a 1 in AX if all
was successful. Otherwise, it will return a 0.

The PDEVICE data structure defines so-called physical objects used solely by the device
driver to identify to itself such things as bitmaps, pens, and brushes. Therefore, the con
tents of this data structure are normally determined by the device driver writer.

The PDE VICE structure has only one WORD-length field that is required by Wmdows.
That field is the first WORD in the structure. For displays, it must hold the number 2000H.
This number will be put into the first WORD of any BITMAP data structure (always
pointed to by the lpDestDev parameter passed in the call) that Windows asks the device
driver to draw onto the device.

If the bitmap is to be drawn into a "main memory" bitmap, the first WORD of the BIT
MAP data structure will always be 0. In this way, the device driver can tell where to draw
the bitmap.

All the other fields in the PDEVICE structure may or may not be used by the driver in
whatever way it wants to.

The "bitmapped" displays (such as the CGA and VGA) duplicate a BITMAP data structure
into the PDEVICE structure. This is because, in most cases, their drawing functions work
exactly the same for drawing onto the device as they do for main memory draws.

In the case of high-resolution (non-bitmapped) devices, you probably only need to use the
required first WORD of the PDEVICE structure. Since PDEVICE is passed to you on al
most every call, you may just want to store some appropriate states in it. This is totally up
to you.

Microsoft Confidential Beta Release

Display DrlvelS 2-19

2.2.4 Comments on the Disable Function
This is a simple function. When the Disable function is called, first return your device to
the state in which it was when you started Wmdows, and then restore the byte at 40H:49H
to its original state and unhook yourself from INT 2FH.

In protected mode, the device should now ask enhanced Windows to start l/O trapping
again.

The Disable function is called whenever the Wmdows graphics mode is about to termi
nate. That is, whenever the user wishes to leave Windows or switch to a .. badly behaved"
non-Wmdows application (one that cannot run in a window since it relies on being able to
call the screen hardware directly).

It is not called when switching in and out of the OS/2 Compatibility Box (OS/2 takes care
of hardware reinitialization). When retwning from a non-Windows application, the Enable
function (witli Style= 0) is called.

Over a non-Wmdows application call and during the .. switch-out" from the Compattbility
Box to OS/2, your driver's Data segment will be saved intact Other segments will be
thrown out Therefore, your driver should treat accordingly any data that it needs to have
saved. Also, your Enable process should reinitialU.e any flags relating to screen states
since these will probably be destroyed by the exit to the non-Wmdows application.

2.3 The RealizeObject Function
The following are the call parameters and return values for the RealizeObject function:

cProc

Returns:

parmD
parmW
parmD
parmD
parmD

RealizeObject,<FAR,PUBLIC>
lpDestDev
Style
lplogicalObj
lpPhysicalObj
lpTextXForm (or WindowOrigin>

If lpPhysicalObj = 0, it returns the size required for a physical object in AX.

If lpPhysicalObj <> 0, it returns 1 if successful and zero if unsuccessful.

2.3.1 Background Information

Beta Release

The Wmdows Graphics Device Interface (GDI) is a device-independent graphics drawing
engine. It communicates with a Windows application through the Wmdows Application
Programming Interface {API), which is documented in the Microsoft Windows Software
Development Kit. The GDI then calls your device driver to translate its device-independent
graphics order into a real picture on a screen or printer page.

Microsoft Confidential Apri/-1, 1990

2-20 Dev/a Ddvet Adaptation Gulde

April 1, 1990

Wmdows recognizes three types of objects at the device driver level:

• Pen

• Brush

• Font

The pen is used to draw polylines and borders around objects drawn by the Output func
tion. It bas three attributes:

• Color

• Style (or pattern, such as dotted lines)

• Width

The second object is called a brush (or pattern). This object is used to fill figures drawn by
Output, and to fill {with some logical operation) rectangular areas drawn by BitBlt.

For example, the rectangular areas that make up a Wmdows screen are all drawn by BitBlt
using a brush. The brush bas the following attributes:

• Pattern {an 8-pixel by 8-pixel repeating block pattern)

• Color(s)

• Hatch (predefined patterns that use an explicit foreground and background color that is
assigned to them)

The last object is the font that is used to draw text by the StrBlt and ExffextOut func
tions. Display drivers generally do not realize fonts and should fail with an em>r return
code of zero if asked to do so.

Hardware rarely uses the exact same representation of a Wmdows object that Windows
does. For example, it is inconvenient for the IBM 8514 display adapter to deal in terms of
ROB 24-bit colors. It prefers to look at colors as 8-bit quantities. However, the most
device-independent way for an application to pass down its desired color is by using the
ROB representation.

The ReallzeObject function is where the translation between device-independent (or logi
cal) and device-optimal {or physical) objects takes place.

But why not simply use GDI's logical objects and translate them into device-optimal ob
jects at the actual time of drawing? The answer is that GDI tries to be economical. It stores
many pretranslated objects and might use this same object in hundreds of different draws.
The translation is done only once for many draws. '

Microsoft Confidential Beta Release

Display Drivers 2·21

2.3.2 General Attributes
The following is a brief discussion of the general attributes of the RealizeObject function
and how best to use it for display drivers.

First. we must reiterate the most important concept of the Wmdows display driver inter
face:

Whatever you do on the screen, you must also be able to do into a main (host) memory bit
map.

However, some displays support many of the complex drawing functions that Windows al
lows the driver to support For example, assume there is a certain display device that sup
ports all sorts of patterned line drawing with any width of line.

Nonnally, the device driver writer would register all of these capabilities into his
GDIINFO data structure and, then, write a polyline routine with a physical pen that sup
ports wide and styled lines. Everything seems to work well. The writer then runs sorpe of
the toy applications included in this kit and everything works really fast

Unfortunately, Wmdows requires the same abilities (the ability to write wide and styled
polylines) for drawing into an arbitrary main memory bitmap. The device driver writer
would have to duplicate all of his board's wide and styled line drawing capability into an
8086. routine running on the PC. Not only is this quite often a huge task in terms of the al
gorithm, but it also makes the device driver unnecessarily large. Therefore, the device
driver writer should often allow GDI to support the more complex pen styles and widths,
even though there is a sacrifice of some speed when drawing with these pens.

2.3.3 The Pen Object

Beta Release

The logical pen has the following structure:

Value Offset Description

lopnStyle 0 Pen style

lopnWidth 2 Width of pen in pixels
4 Height of pen in scanlines

lopnColor 6 RGB pen color (doubleword: high byte is 0)

The following are the possible styles that can be passed in offset 0 of the logical pen struc
ture:

Value

LS_SOLID

LS_DASHED

Style code Description

0 Solid line

1 Dashed line

Microsoft Confidential April 1, 1990

2·22 Device Driver At/aptatlaa Gulde

·Value

LS_DOTI'ED

LS_DOTDASHED

LS_DASHDOTDOT

LS_NOLINE

Style code

2

3

4

s

Description

Dotted line

Dot-dashed line

Dash-dot-dotted line

NUIL. Draw no line.

Be sure to support the NULL style in your drawing code. If you get a pen with this style,
you should draw no line and return a success code.

You might want to not support wide and/or styled lines. If you do support them, you must
make sure that you support the same styling algorithms when drawing to the screen and
main memory. However, ODI is able to synthesize correctly both wide and styled lines
quite efficiently. Therefore, you may not want to support them in your flI'St pass and add
their support Jater only if necessary. To do so, just set the correct bits in your ODIINFO
data structure to tell Wmdows that you do not support wide and/or styled lines.

Under certain conditions. GDI may pass you a logical pen with a wide or styled line, even
if you have told ODI that you do not support them. In that case, realize the pen into a physi
cal object with a solid, one-pixel wide (nominal) pen. GDI will be smart enough to still do
the styling and wide-line activities itself.

The physical pen structure may be anything that you like. You may want to put special
case flags into the physical pen to communicate special case ~wing enhancements to the
ac1llal drawing routines.

2.3.4 The Brush Object

April 1, 1990

The logical brush has the following structure:

Value

lbStyle

lbColor

lb Hatch

Offset

0

2

6

Description

Brush style (O=Solid, !=Hollow, 2=Hatched, 3=Pat
temed)

For solid brushes: RGB color (high byte = 0) For
·palette-capable devices, if the high byte is not zero,
then the low WORD is an index and not an ROB.

For hatched brushes: ROB foreground color (high
byte=O)

For patterned brushes: pointer to pattern BITMAP
structure

Hatch style (not used for other brush styles)

Microsoft Confidential Beta Release

Value

IbBkColor

Offset

8

Display Drivers 2·23

Description

. Physical color for hatch background (not ROB. See
Section 2.4, ''The Colorlnfo Function," for a descrip
tion.)

You should realize hollow brushes. If they are passed to a drawing routine, no fill should
be done at all. However, if the raster operation that is passed to BitBlt is NOT Destination,
you should logically NOT the entire rectangular area passed, even if the passed brush is
hollow.

Solid brushes can be dithered. If your Style is solid and does not match exactly the color
that you have in your palette, then you probably want to dither iL For an example of how
to dither, refer to the sample code included with the DDK.

The following are the possible hatch styles that can be passed in offset 6 of the logical
brush structure:

Value Style code Description

HS_HORJZONTAL 0 Horizontal (-)

HS_ VERTICAL 1 Vertical (1111)

HS_FDIAGONAL 2 Forward diagonal (////)

HS_BDIAGONAL 3 Backward diagonal·(\\\\)

HS_ CROSS 4 Cross (++++)

HS_DIAGCROSS 5 Diagonal crosshatch (XXXX)

2.3.5 Using the RealizeObjecl Parameters

Beta Release

It is important to understand how to use the RealizeObject parameters. When your display
is called, you must first determine whether the caller (GDI) actually wants you to realize
an object, or if it is asking for how much space to allocate for the realized (physical) ob
jecL

If GDI is asking for the size of the physical object, the parameter lpPhysicalObj will be
zero. You then return in AX the size (in bytes) of your physical pen, brush, or fonL If you
do not support the realization of fonts, simply return a zero.

If GDI is asking you to realize a logical object into a physical one, lpPhysicalObj will be
pointing to the memory location where you must put your completed physical object, and
lpLogicalObj will be pointing to the logical object that GDI wants you to translate.

The Style parameter tells you whether or not you are to realize a pen (=1), brush (=2), or
font (=3). You would then do the translation and return AX=l as a success code or AX=O

Microsoft Confidential April 1, 1990

2-24 Device Driver Adaptation Gulde

as a failure code. For example, if you do not support the realization of fonts, you would re
tum AX=O.

The last parameter is "dual-purpose." If you are asked to realize a font, it is a pointer to the
1EXTXFORM data structure. (See Chapter 13, "The Font File Format," for more infor
mation.)

If you are asked to realize a brush or patterned pen, this parameter is not a pointer. It is ac
tually two WORDs - the starting coordinates in X and Y of the window in which the
application (the one that called GDI) is running.

Therefore, it is essential to establish a pattern reference point. Most displays use a pattern
reference point starting at the same location as the starting point of the draw. In other
words, for an 8-bit repeating pattern, the first. bit of the pattern is at the X-origin of the
draw. Then, at the X-coordinate (X-origin+8), the pattern begins to repeat itself.

During BitBlt, the pattern reference point must be at the beginning of the window in
which the application is running. Therefore, you must rotate any patterns so that they begin
their repetition relative to the application's window. If you do not rotate them, you run the
danger of the patterns not "meshing" if the user decides to move the window containing
the application to a different place on the screen.

2.4 The Colorlnfo Function

April 1, 1990

The following are the call parameters and return values for the Colorlnfo function:

cProc

Returns:

parmD
parmD
parmD

Colorlnfo,<FAR,PUBLIC>,<si ,di>
lpDestDev
Colorln
lpPhysicalColor

If lpPhysicalColor is NULL, DL:AX will contain the RGB color corresponding to the
physical color passed in Colorln. DH must be zero.

If lpPhysicalColor is not NULL, DL:AX contains the RGB value of the device's color
that most closely matches the color passed in Colorln. DH must be zero.

The next step in writing your device driver is the Colorlnfo function. This function is
closely related to RealizeObject since it deals with translations between logical colors,
which are passed as doubleword RGB values (with the high byte of the doubleword = 0),
and physical colors, which are those recognized and used most readily by your device.
However, for palette-capable devices only, if the high byte is not zero, then an index
(WORD) is passed and not an RGB color.

Since the RealizeObject function also requires the translation from logical to physical
colors when creating physical pens and brushes, you may have already written most of this
function when you wrote the RealizeObject function. Simply follow the instructions

Microsoft Confidential Bera Release

_Display Drivers 2·25

found above and in the description for the Colorlnfo function given in Chapter 10, "Com
mon Functions."

NOTE The high byte of any doubleword RGB color returned by your device driver must be zero.

2.5 The BitBlt Function
The following are the call parameters for the BitBlt function:

cProc
parmD
parmW
parmW
parmD
parmW
parmW
parmW
parmW
parmD
parmD
parmD

BitBlt,<FAR,PUBLIC>,<si,di>
lpDestDev
DestxOrg
DestyOrg
lpSrcDev
SrcxOrg
SrcyOrg
xExt
yExt
Rop3
lpPBrush
lpDrawMode

2.5.1 Background Information

Beta Release

BitBlt is perhaps the most important function used in Wmdows. You might want to imple
ment it first so that you can go into the debugger and watch Wmdows take shape on your
screen. It is BitBlt that actually draws on the screen the rectangles that comprise the
Wmdows desktop. It also draws the icons and other bitmaps, but not the cursor.

When Windows first starts up, the following occurs:

I. Enable is called twice.

2. Colorlnfo is called a number of limes.

3. RealizeObject is called to create the default Wmdows pens and brushes (black solid
pen. white solid pen. black brush, white brush, etc.).

(Ask Chip how to change this paragraph.)

Then the Wmdows MS-DOS Executive begins execution and calls Color Info and Real
izeObject to create the brushes for its screen. Notice that no pens are used for the MS
DOS Executive screen, and that no Polylines or Scanlines are drawn. BitBlt and StrBlt do
all the drawing on this screen. Therefore, these are the only two drawing functions that you
need to implement to see your driver running the MS-DOS Executive. You can write stub
functions for all the rest.

Microsoft Confidential April 1, 1990

2·26 Device Driver Adaptation Gulde

The first thing that BitBlt draws is the colored screen background. To do this, it uses the
BrushCopy raster operation to draw a rectangle. Depending on how you treated this brush
in your RealizeObject function, it will be either a solid or dithered brush.

Next, BitBlt draws a number of borders and rectangles, also using various brushes that you
already realized.

NOTE When debugging your driver for the first time, it is a good idea to set SYMDEB or WDEB386
breakpoints at Colorlnfo, RealizeObject, and BitBlt so that you can see how brushes are realized and
used in Windows.

Lastly, BitBlt puts up the comer icons. These are monochrome bitmaps that are first drawn
to a main memory bitmap that is maintained by USER. This composite bitmap is created
using BitBlt during the early part of Wmdows initialization. (This one bitmap contains all
the bitmaps that are part of the driver's resources.) These monochrome bitmaps are then
transferred to the screen.

2.5.2 The BitBll Parameters

April 1, 1990

This section discusses in detail how to use each of the passed parameters for BitBlt. Addi
tional infonnation on the function and its parameters is provided in Chapter 10, .. Common
Functions."

lpDestDev
This is a long pointer to a PDEVICE data structure. If it is a main memory bitmap (i.e., .
WORD 0 of the structure = 0), it will be a BITMAP data structure. (See Chapter 12, .. Data
Structures and File Fonnats," for the documentation on these structures.)

If the destination is the device (i.e., screen, printer, etc., and WORD 0 of the structure =
2000H), then the structure is whatever you defined the PDE VICE data structure to be at
Enable time. You should determine the characteristics of the destination bitmap from this
structure. Such things as its color fonnat, width, and height can be extracted from the struc
ture.

Remember that the destination can be either a bitmap in main PC memory or the device.
There is always an lpDestDev passed to BitBlt.

DestxOrg and DestyOrg
These are the starting X and Y coordinates for the draw on the destination bitmap (or
device).

There are a number of calculations that you need to do if you are drawing into a bitmap.
Because the bitmap is arranged as a series of addresses (called linear addresses), you must
convert the X and Y coordinates into these linear addresses. The following is an example
of how to do this for a monochrome (1 bit-per-pixel) bitmap. Notice that by varying this
macro somewhat, you can do the calculation for any color format.

Microsoft Confidential Beta Release

Display Drivers 2·27

include CMACROS.INC
include GDIDEFS.INC
ConvertXYTolinear macro
local GetStartinglineAddress

mov ax,DestxOrg
mov dx,ax

;;get starting X
::copy this for bit offset calc

::Get the byte containing the starting X-coordinate into AX:

shr ax,3 ;;divide by 8 CS bits per byte)

::The remainder of the divide by 8 is the bit offset into the byte of
::the starting X-coordinate.

and dl,07h ::this is the way we get a remainder

::Now AX & DL contain the linear byte and bit offset of the starting
::X-coordinate on each line. Save them for use in the BLT loop:

mov DestxOrgByteOffset,ax
mov Destx0rg8it0ffset,dl

;;Now it's time to obtain the linear address of the starting-Y. Since we
::may have a huge bitmap, we need to get the line offset into the proper
::segment:

mov ax,DestyOrg ;;get starting Y
xor bx,bx ::initialize huge bitmap segment adder
xor dx,dx ;;initialize nbr of lines per segment
lds si,lpDestDev ;;get pointer to BITMAP structure

;;into DS:SI
mov cx,[si].bmSegmentlndex ;;get the huge bitmap flag

::The huge bitmap flag will be 0 if the bitmap is a small one.
;;Skip huge bitmap processing if bitmap is small CCX= 0):

jcxz GetStartinglineAddress

::We have a huge bitmap. Given the DestyOrg in AX, we can find which
;;segment the bitmap is in and the line's offset within that segment.

mov bx,[si].bmScanSegment ;;get nbr of scanlines per segment
: ;from BITMAP

div bx

;;After the divide, AX will have the segment offset of the DestyOrg, and
;;DX will have the starting line within that segment. By multiplying
::the result in AX by 1000H C64K), we will get the number of segments to
::add on to our starting segment to get to the segment containing the
;;starting Y-coordinate.

mov
mul

Beta Release

di,dx
ex

;;save line offset from multiply
;;multiply by 64K <remember, CX has huge
;;increment: value depends on mode of processor)

Microsoft Confidential April 1, 1990

2·28 Dsvlce Ddver Adaptation Gulde

mov
mov

bx,ax
ax,di

;;save this result in BX
;;restore saved line offset to AX

GetStartinglineAddress:

::The following code applies to both small and huge bitmaps.
::At this point:
,, AX contains the line offset into the segment of the starting line.
,, BX contains the amount to be added to the segment address to get
,, to the starting Y-coordinate's segment.

mov cx,[si].bmWidthBytes

mul ex

::get number of bytes per line from
: :BITMAP

::Now AX contains the linear address within the segment of DestyOrg.
::It's now time to add everything together to get to the starting byte
:;of the BLT.

lds si,[si].bmBits ::now OS:SI points to the bitmap's start
mov dx,ds ::get to correct segment in the bitmap
add dx,bx
mov ds,dx ::now OS points at the correct segment
add si,ax ::now DS:SI points at starting line
add si,DestxOrgByteOffset

;;Now DS:SI points to the byte containing the starting CX,Y) coordinate
::in the bitmap.

endm

/pSrcDev
This pointer may point to the source PDEVICE data structure or it may be NULL. To deter
mine whether or not this parameter means anything, you must interpret the Rop3 parame
ter to see if a source is involved in the block transfer (see the next subsection).

If the Rop3 parameter does. not include a source, then this pointer points to NULL. If there
is a source, this is the PDEVICE of that source.

SrcxOrg and SrcyOrg
Again, if the Rop3 parameter indicates that there is a source operand in the block transfer,
then these two parameters will contain the starting X and Y coordinates of the source of
the block transfer. If there is no source involved in the block transfer, these two parameters
will be ignored.

The BitBlt function can be difficult in that SrcxOrg and SrcyOrg may be negative (due to
scaling done by GDI). Therefore, we recommend you include the following code fragment
in your BitBlt function:

ClipBitBltSource macro
local CheckYClip

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers 2-29

local DoneClipping
mov ax,SrcxOrg ;;get starting X

;;is it negative?
;;no, continue

or ax,ax
jns CheckYClip

;;If the starting X-coordinate is negative, we must adjust the SrcxOrg
;;to 0, bump down the xExt by the amount that we clipped, and advance
;;the DestxOrg by the amount that we clipped.

neg
sub
add
mov

CheckYClip:

ax
xExt,ax
DestxOrg,ax
SrcxOrg,0

;;get amount clipped in X
;;adjust the xExt

;:Now, check the Y-clipping in a similar manner:

mov
or
jns

ax,SrcyOrg
ax,ax
DoneClipping

;;get starting Y
;;is it negative?
: ;no, continue

;:If the starting Y-coordinate is negative, we must adjust the SrcyOrg
;;to 0, bump down the yExt by the amount that we clipped, and advance
;;the DestyOrg by the amount that we clipped.

neg
sub
add
mov

DoneClipping:
endm

Beta Release

ax
yExt,ax
DestyOrg,ax
SrcyOrg,0

xExt and yExt

;;get amount clipped in Y
;;adjust the yExt

These are the width and height of the block transferring area. By adding them to the X and
Y origins and subtracting 1, you can get the ending X-coordinate of a line. Notice that
these apply both to the source and the destination.

Rop3
This parameter is crucial to your understanding of BitBlt (See Chapter 14, "Raster Opera
tion Codes and Definitions," for a list of the codes as well as a detailed description of how
to read Rop3 codes and reverse Polish notation.)

The Rop3 parameter (known in the Windows 2.0 Adaptation Guide as Rop) is a ternary
(three operand) raster operand. That is because there can be three operands (Le., source,
destination, and pattern) involved in the block transfer. The Rop3 parameter describes
which of the three operands is involved in the block transfer and what you must do with
each operand. In conttast, the Output and Pixel functions use a binary raster operation
(Rop2), which involves only the brusij (or pen) and the destination. No source is involved.

Microsoft Confidential April 1, 1990

2·30 Dev/cs Driver Adaptation Gulde

April 1, 1990

The first thing that you should do in your BitBlt function is to "decode" the Rop3 parame
ter. What you must learn from the Rop3 code is the number of operations to do in the block
transfer, the operands involved, and the actual operation script. For memory-mapped
boards (those similar in architecture to the CGA, EGA, VGA, and Hercules), you can use
the prototype functions included in the sample drivers. For hardware such as the 8514/Aor
TI-34010-based boards, you should probably construct a table of the 256 possible Rop3
parse strings, the number of operations involved in the block transfer, and the operands in
volved. Such a table is given here as an example:

OperationSource
OperationPattern
OperationDest
OperationUnaryNOT
LogOpBLACK
LogOpWHITE
LogOpReplace
LogOpANO
LogOpOR
LogOpXOR
;

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

1
2
3
4
0 SHL 4
llilh
20h
30h
41ilh
Slilh

;An example parse string for Rop3 number 0BH CPSDnaon)
;would then be .
RopB db

db
db
db

RopBLength
equ

S-RopB

OperationUnaryNOT
OperationSource + LogOpAND
OperationPatte-rn + LogOpOR
OperationUnaryNOT

In addition to the table of parse strings, you must also create a lookup table so you can lo
cate the given parse string for decoding the Rop3. This lookup table can have the following
efficient format:

Location Description

Offset of the parse string WORDO

Byte2

Byte3

Number of operations in the Rop3 (in the case of RopB, it would be 4)

Operands-present flag (bit 0 = source present,
bit 1 = brush present,
bit 2 = destination must be saved) .

Then, at the beginning of the block transfer, you can do the lookup based on the passed
Rop3:

mov bx,DataOFFSET RasterOplookupTable
mov di,seg_Rop3
shl di ,2 ;each entry has 4 bytes

Microsoft Confidential Beta Release

Beta Release

mov
mov
mov

mov
mov

ax,[bx+di]
ParseStringAddress,ax
ax,[bx+di+2]

ParseloopCounter,al
OperandsPresentFlags,ah

Display Drivers 2-31

;get address of parse string
;save it
;get nbr of operations in Rop3
;in AL, operands present flags
;in AH
; save it

You will then have taken all the information necessary for doing the block transfer from
theRop3 parameter. By testing bits in the operands-present flag, you can make determina
tions such as whether or not there is a source or a brush involved, and whether or not the
destination must be saved.

The concept of saving the destination is an important one. Asswne you are told to execute
Rop3 code 8BH. Its reverse Polish string is DSPDxoxn. Its parse string would be repre
sented as follows:

Rop8B db OperationPattern+LogOpXOR ;this destroys the destination
db OperationSource+LogOpOR
db OperationDestination+LogOpXOR;the destination has

;already been destroyed
db OperationUnaryNOT

As you can see, this Rop3 could not be done unless the destination was saved from being
destroyed by the first operation! Therefore, in the operands-present flag, you should re
serve a bit that tells you that you must pre-save the destination from destruction before you
begin perfonning the block transfer.

The last Rop3 concept is actually a shortcut. As you can imagine, typing in parse strings
for all 256 Rop3s is quite tedious, not to mention the huge memory requirement for all 256
parse strings and lookup table entries! However, the Rop codes 128 through 255 are
simply the Rop codes 0 through 127 with a NOT added on to the back. Therefore, you only
need 128 parse strings. If the Rop3 code is >=128, you can add on a NOT to the end of the
Rop3 operation. Also, if the original Rop3 parse string ends with a NOT operation, you can
cancel the two NOTs and save two operations.

For example:

Rop code 0FH is a NOT Pattern
Rop code F0H is a Pattern copy

Since Rop FOH is nonnally > 128, you would take its inverse (OFH) and add on a NOT to
the end. However, since Rop OFH has a NOT as its last operation, the two NOTs cancel
and FOH becomes a simple Pattern copy.

lpPBrush
If the Rop3 code indicates that a pattern is involved in the block transfer, this points to a
PBRUSH structure that was realized in RealizeObject.

If there is a brush operand, it can be put onto the screen by simply drawing a solid or pat
terned rectangle bounded by DestxOrg,DestyOrg,xExt, andyExt.

Microsoft Confidential April 1, 1990

2-32 Device Driver Adaptation Gulde

If a hollow brush is passed to BitBlt, the brush portion of the operation should not be
done. However, all the other operations (such as Source and NOT opemtions) must still be
done.

/pDrawMode
The lpDrawMode parameter is used only for mono-to-color and color-to-mono conver
sions. If your device is color, then Wmdows can ask you to convert a monochome (1 plane,
1 bit-per-pixel) bitmap into a bitmap matching your board's and driver's color format. The
colors contained in the lpDrawMode parameter (background color at byte offset 4 and fore
ground color at byte offset 8 in the structure) allow you to do this conversion. The follow
ing holds true:

1. Mono-to-color conversion:

• Bits that are 1 in the monochrome bitmap become background color.

• Bits that are 0 in the monochrome bitmap become foreground color.

2. Color-to-mono conversion:

• Color bytes that match the background color become background color, which is 1
(for white).

• Anything that does not match the background color is foreground color, which is 0
(for black).

NOTE Every color device must support the transferring of monochrome (Black/White) bitmaps to the
screen as well as color bitmaps.

Even though the lpDrawMode parameter has other fields such as OpaqueFlag (at byte off
set 2) and Rop2 (at byte offset 0), these are totally disregarded by BitBlt All block trans
fers are opaque no matter what the lpDrawMode pammeter says, and Rop3 is used instead
ofRop2.

2.6 The StrB/t/ExtTextDut Functions

April 1, 1990

StringBlt (Sti'Blt) is the old Wmdows l.x name for ExtTextOut The two names are now
often used synonymously since StrBlt is used as an entry point to the Extended Text Out
(ExtTextOut) function. It is documented in more detail in Chapter 10, "Common Func
tions."

The function is still needed for compatibility with the earlier version. However, only a few
old applications still call StrBlt. while most new ones do noL They are simply mapped by
GDI to ExtTextOut You will need to put in only one piece of code (shown in Chapter 10,
''Common Functions") and then jump into ExtTextOut

The following are the call parameters for the StrBlt function. They are the same as the first
nine parameters of the ExtTextOut funcqpn.

Microsoft Confidential Beta Release

cProc StrBlt,<FAR,PUBLIC>, <si, di>
parmD 1 pOestDev
parmW DestxOrg
parmW DestyOrg
parmO lpClipRect
parmD lpString
parmW Count
parmD lpFontlnfo
parmD lpDrawHode
parmD lpTextXForm

Display Drivers 2·33

2.6.1 The ExtTextOut Function
ExtTextOut is one of the text drawing functions. It worlcs in conjunction with BitBlt to do
the drawing on the screen. To see your driver running on the screen, all you need to imple
ment are these two functions.

This function replaces the StrBlt function for Wmdows version 2.0 and later. The follow
ing are the call parameters for the ExtTextOut function:

cProc ExtTextOut,<FAR,PUBLIC,WIN,PASCAL>,<si, di>
parmD lpDestDev
parmW OestxOrg
parmW OestyOrg
parmO lpClipRect
parmD lpString
parmW Count
parmD lpFontlnfo
parmD lpOrawHode
parmO lpTextXForm
parmO lpCharWidths
parmO lpOpaqueRect
parmW Options

2.6.2 The ExtTextOut Parameters

Beta Release

This section provides supplemental infonnation on how to use each of the passed parame
teIS for ExtTextOut For more details, refer to the description for this function given in
Chapter 10, "Common Fwictions."

lpDestDev
The lpDestDev parameter tells you what you are drawing onto. For displays, this is the dis
play device or bitmap.

DestxOrg and DestyOrg
The DestxOrg and DestyOrg parameters give the origins of the top-left corner of the string.

Microsoft Confidential April 1, 1990

Z·34 Device Driver Adaptation Guidi

April 1, 1990

lpC/ipRect
The lpClipRect parameter is a long pointer to the clipping rectangle.

Clipping is the hardest part of ExtTextOut. If you did not have to clip, then the ExtTex·
tOut function would be small and easy to implement. You would simply take each
character's bitmap from the Font biunap, transfer it to the screen, and then expand it for
the number of bits per pixel and planes you have.

However, you must clip, and there are some rules to remember. One of them is that for all
clip rectangle or rectangle (RECI') data structures or scanlines, the ending coordinates are
always one greater than the actual pixel numbec at which you are to stop drawing. There
fore, if the clip rectangle has the coordinates 0, 0, 10, 10 (where the Os are the starting X
and Y, and the 10s are the ending X and Y), you only draw pixels 0 to 9 and do not draw
through the 10th pixel.

The RECT data structure contains the following two points:

typedef struct {

Where:

short left, top:
short right, bottom;
JRECT;

Left, top are the coordinates that specify the upper-left comer of the rectangle.

Right, bottom are the coordinates that specify the lower-right comer of the rectangle.

JpString
The lpString parameter is a long pointer to the string itself. Each character in the string is a
byte length.

Count
Count can have one of three meanings.

Fll"St, if Count is positive (i.e., greater than zero), then it is the number of characters to dis
play from the string.

Second, if Count is negative (i.e., less than zero), then you just return the length of the
string as if there were no clipping rectangle. You run the string bit with no characters and
return the height in DX and the X-length in AX. Then run the text justification and
character spacing algorithm described in the DRAWMODE data structure.

Third, if Count is zero, then check the Options flag. If the 2s bit is set in the Options flag,
then it infers that you have to draw an opaque rectangle.

If lpOpaqueRect is zero (even if the Options flag is 2), do nothing and return success.

If lpOpaqueRect is not zero, then you do the following:

Microsoft Confidential Beta Release

Beta Release

Display Drivers 2·35

1. Get the opaquing rectangle {described by lpOpaqueRect).

2. Intersect it with the clipping rectangle.

3. Intersect the rectangle with the bitmap.

4. Check to make sure that the rectangle is valid.

5. Draw the opaquing rectangle.

Logically, this is rather difficult due to the lack of sufficient variables. Therefore, you need
to do lots of checks to make sure that the clipping and opaquing rectangles are valid.

In summary, if Count is zero, then it can infer one of two things:

There is nothing to do, so you can get out. Or, you should only draw the opaquing
rectangle pointed to by lpOpaqueRect.

/pFontlnfo
This is a long pointer to the FONTINFO data structure and represents the physical font in
use. (See the FONTINFO data structure fields in Chapter 12, .. Data Structures and File For
mats.") Notice that you can be presented with characters that are not in the character set or
do not fall within the range of dfFirstChar to dtLastChar. In such a case, you should use
the dIDefaultChar field.

JpDrawMode
This is a long pointer to the DRAWMODE data structure that includes the current text
color, background mode, background color, text justification, and character spacing. (See
the DRAWMODE data structure in Chapter 12, .. Data Structures and File Formats.")

If the background mode (or 'lransparent/Opaque flag) is 1, then you draw the string
transparently. If it is 2, then you draw the siring opaquely.

If the string is to be drawn opaquely (e.g., if the foreground color is red and the back
ground color is green), first draw the green and, then, draw the red character on top of it. If
it is to be drawn transparently, just draw the red foregrolDld and forget the background.
However, you must get the total length of the string first.

If there is a break character, use the text justification and character spacing algorithm de
scribed below. As you are rlDlning the string (either making the count or putting the string
on the page), you should get the TBreakExtra flag from the DRAWMODE data structure.
If it is zero, then it is not a justified string and you can disregard the infonnation given
here. However, you must always add the CharacterExtra in the DRAWMODE data struc
ture to the width of the character.

If no justification is required, TBreakExtra will be set to zero. To enable justification, an
application must set TBreakExtra and BreakCount to the desired values. The other justi
fication fields are evaluated using these values and BreakErr is set to BreakCount/2+ 1.

Microsoft Confidential April 1, 1990

2·36 Device Driver Adaptation Su/de

April 1, 1990

It is expected that StrBlt will be implemented as described below, but any implementation
that spreads the excess pixels across the character breaks satisfies the requirements of text
justification.

width • width of char
if TBreakExtra <> 0 and char = BreakChar then

width - width + BreakExtra
BreakErr • BreakErr - BreakRem
if BreakErr <• 0 then

width = width + 1
BreakErr = BreakErr + BreakCount

end if
endif
width - width + CharacterExtra move over by width

JpTextXForm
The TEXTXFORM data structure is used by devices that have hardware font capability.
(See Chapter 13, "The Font Ftle Format," for a description of the TEXTXFORM data
structure.) If the hardware can italicize, then lpTextXF orm tells you that this is an italic
font and you look up your font in there. However, we are not currently aware of any dis
play devices with smart font capabilities that use this structure.

JpCharW/dths
If not NULL, then lpCharWidths is a long pointer to an array of words. Each word speci
fies the width from the start of the current character origin to the next character origin.

For example, assume the first character is an A, the next one is a B, and the normal width
of A is 4 pixels. However, if lpCharWuiths is 5, then you would move the B over by one
pixel. If lpCharWuJths is only 3, then the B would be almost on top of the A. Notice,
though, that you cannot have a negative character width. It would always be changed to
zero since you cannot go backwards.

JpOpaqueRect
The lpOpaqueRect parameter, if not NUI.L, is a long pointer to the opaquing rectangle.
See the earlier discussion on the Options flag, under the Count parameter, for further infor
mation on the actions required by this parameter.

Options
The Options parameter is an integer with bits set to indicate ExtTextOut options. See the
earlier discussion under the Count parameter for additional information on this parameter.

Notice also that whenever the clipping or opaquing rectangles intersect, those rectangles
also need to be intersected with the bitmap to make sure the boundaries of the clipping
rectangle are within the confines of the bitmap. You should look at the height and width of
the binnap (which are in the BITMAP data structure at offsets 2 and4) to make sure that
the clipping rectangle passed is intersected with those. That way, you will get the smallest

Microsoft Confidential Be'la Release

Display Drivers 2·37

possible rectangle composed of the three items: the bitmap, the clipping rectangle, and (if
specified) the opaquing rectangle.

2. 7 Stub Functions
The following are two stub functions to which you need to set up calls. They are not cur
rently supported in GDI and should always return a failure code. However, they may be
supported in the future. Simply copy verbatim the code reproduced here to your driver and
you will be finished with their support.

cProc SetAttribute, <FAR, PUBLIC>
parmO lpOestOev
parmW StateNum
parmW Index
parmW Attribute

cBegin
xor ax.ax ;always return AX = 0
cEnd

cProc DeviceBitmap, <FAR, PUBLIC>
parmO lpOestDev
parmW Command
parmD lpBitmap
parmD lpBits

cBegin
xor ax,ax ;always return AX = 0
cEnd

You must also add a termination function called WEP(bSystemExit). or W'mdows Exit Pro
cedure, to accommodate the support of dynamic-link h'braries (DILs)~ This function indi
cates whether all of Windows is shutting down or just the single DIL. More detailed
descriptions are provided in Chapter 10, "Common Functions," and in the SDK Guide to
Programming.

2.8 The Move and Check Cursor Functions

Beta Release

The MoveCursor function moves the cursor to the given screen coordinates. However,
that can be rather difficult if you do not have a hardware cursor and have to move your
own cursor on the screen when it is saved in memory or cached on the board.

The following is a sample procedure showing how to move the cursor:

1. Clear the interrupt flags using the EnterCrit macro. Stopping them will stop the cursor
from moving.

2. Obtain the X and Y coordinates for the position at which they want you to place the
cursor. These are passed to you by USER.

Microsoft Confidential April 1, 1990

2-38 Device Driver Adaptation Gulde

3. Put them into a variable called UndoneXandY. Save this in case you are unable to draw
the cursor because something else is happening.

4. Get the old X and Y coordinates.

5. Set a DrawBusy flag saying that you are busy drawing and the driver should not try to
draw another cursor at this time.

6. Use the LeaveCrit macro to allow interrupts again.

If the DrawBusy flag is on, then you have the undone coordinates saved in UndoneXandY.
When you are able to draw again, you can then go ahead and do it. Otherwise, you disable
the old cursor and put the new cursor on.

A more complete description of this function is available in Chapter 10, "Common Func
tions."

2.8.1 Excluding Cursors

April 1, 1990

Sometimes you may want to exclude or get rid of the cursor from the screen before doing
something like a BitBlt, StrBlt, or drawing function. Or you may not want to read the
cursor back when reading from the screen because it is difficult and time consuming.

How do you tell where your cursor was or from what area to exclude it? Do a check to see
where the X and Y coordinates are and exclude them if they lie within your exclude re
gion.

• For BitBlt, just disable the cursor within the rectangle that you are transferring.

• For Output for Scanlines, exclude the whole scanline.

• For Poly lines, exclude the clip rectangle.

• For Polygons, exclude the clip rectangle.

• For Ellipse, Circle, Rectangle, and other drawing functions, exclude it from the bound
ing rectangle.

• For StrBlt, exclude it from the bounding rectangle and/or the opaquing rectangle.

To make the cursor run smoothly for these excludes, just before you start dealing with the
board hardware, do the following:

1. Set the DrawBusy flag, which disallows cursor movement. MoveCursor, however, is
still registering these movements.

2. Check out your exclude region.

If the cursor falls within that exclude region, you exclude or tum off the cursor. That re
moves the cursor from the screen and restores whatever was there before.

Microsoft Confidential Beta Release

Display Drlve11 2·39

3. Do your draw.

4. After you are finished with the draw, call UnexcludeCursor.

S. See if the cursor was excluded.

If it was not, just get out and you are finished.

If it was, take UndoneX and UndoneY, which are the movements that were registered
while you were in the process of drawing, and enable the cursor at those coordinates.

2.8.2 The CheckCursor Function
This function is called on every timer interrupt. It allows the cursor to be displayed if it is
no longer excluded. A description of this function is available in Chapter 10, .. Common
Functions."

However, you can also call the UnexcludeCursor routine described above since it does
the same thing.

2. 9 The Control Function
The Control function is required for display drivers. However, they need to support only
the following two escapes:

• QUERYESCSUPPORT

• GETCOLORTABLE

Wmdows 2.x drivers also needed to support SETCOLORTABLE. However, for Windows
3.0, that escape is no longer required due to color palette management considerations. See
Chapter 3, .. Display Drivers: New Features," for more information on color palette man
agement.

You will use QUERYESCSUPPORT to tell a calling application that you support a subset
or none of the Control subfunctions. For more detailed information on escapes in general
and complete descriptions of these escapes. see Chapter 11, .. Device Driver Escapes."

2.10 Additional Functions

Beta Release

Display drivers also need to include the following additional functions:

(Gunter please add missing values.)

Function

EnumDFonts

Ordinal value

@6

Microsoft Confidential April 1, 1990

2-40 Dslllcs Driver Adaptation Gulde

Function

Pixel

ScaoLR

DeviceMode

Inquire

FastBorder

EnumObj

GetCharWidth

StretchBlt (optional)

SetCursor

Ordinal value

@9

@12

@13

@

@

@

@15

@27

@ 102

To determine when your driver needs these and for more detailed infonnadon on each of
them, refer to their descriptions in Chapter 10, "Common Functions."

2.11 How to Build Display Driver Resources

April 1, 1990

Display drivers contain most of the cursors, icons, and biunaps that are used by Wmdows.
They are supplied by the display driver to take advantage of all the capabilities of the
driver (e.g., color icons). Also, the definitions of certain system parameters (e.g .• default
colors and border widths) are supplied by the display driver. All of this infonnation is sup
plied as resources added to the driver by the resource compiler (RC.EXE).

Wmdows 3.0 has changed a number of these resources, most notably the bitmaps required
to implement the 3-D effecL We recommend that you use the set of biunaps supplied in the
DDK that best matches the resolution/capabilities of your display. Since many existing
Wmdows applications expect the old images to still exist, the driver must supply these as
well. See the DDK's Installation and Update Notes for a detailed list of the required re
sources and for more information.

The resource file (.RES) is built from the following pieces:

1. A FONTS.ASM file that contains infonnation about font stock objects.

2. A CONFIG.ASM file that contains infonnadon about default system colors, line
widths, cursor/icon sizes, etc.

3. A COLORTAB.ASM file that contains the color table for Control Panel's Color Tuner
dialog.

-
4. A set of icons, cursors, and bittnaps.

S. A .RC file that is used by the resource compiler to build the binary resource file (.RES).

Microsoft Confidential Beta Release

Display DrlvetS 2-41

2.11.1 Creating the FONTS.ASM File
The FONTS.ASM file tells Wmdows the characteristics of certain fonts that Windows uses
as stock objects.

This file also defines these same characteristics for the two fonts minimally required to run
such programs as Wmdows Write. These are the ANSI fJXed-pitch (Courier) and variable
pitch (Helvetica®) fonts. Normally, you will not have to create these fonts; you may use
the ones supplied with Wmdows at the aspect ratio closest to that of your display or other
device.

The FONTS.ASM file consists of three data structures that describe these same characteris
tics plus one for the Terminal font Each data structure is of type LOGFONT (see Chapter
12, "Data Structures and File Fonnats.'' for more infonnation on that structure). The order
of the three LOGFONT structures in the FONTS.ASM file must be as follows:

1. OEM font (of facename "Terminal")

2. ANSI fJXed-pitch font (usually Courier)

3. ANSI variable-pitch font (usually Helvetica)

2.11.2 Creating the CONFIG.ASM File

Beta. Release

The CONFIG.ASM file tells Wmdows about many of the default characteristics of the
screen, such as:

• Colors

• Line widths, both horizontal and vertical

• Scroll bar "thumb" sizes

• CW'SOr and icon compression ratios

The following is a prototype CONFIG.ASM file:

OEM segment public

;Machine dependent parameters

dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?

;Height of vertical thumb (in pixels)
;Width of horizontal thumb Cin pixels)
;Icon horiz compression factor (can be 1 or 2)
;Icon vert compression factor (can be 1 or 2)
;Cursor horz compression factor (can be 1 or 2)
;Cursor vert compression factor (can be 1 or 2)
;Reserved
;cxBorder (thickness of vert lines) (usually 1 pixel)
;cyBorder (thickness of horiz lines) (usually 1 pixel l

Microsoft Confidential April 1, 1990

2-42 Device Driver Adaptation Gulde

April 1, 1990

RGB macro R, G, B
db R,G,8,0
endm

;Default system color values

OEM ends

RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RBG

130 • 130 • 130
192,192,192
000,064,128
255,255,255
255,255,255
255,255,255
000,000,000
000,000,000
000,000,000
255,255,255
128,128,128
255,255,255
255,255,255
000,000,000
255,255,255
192,192,192
128,128,128
192,192,192
000,000,000

;clrScrollbar
;clrDesktop
;clrActiveCaption
;clrlnactiveCaption
;clrHenu
;clrWindow
;clrWindowFrame
;clrHenuText
;clrWindowText
;clrCaptionText
;clrActiveBorder
;clrlnactiveBorder
;clrAppWorkspace
;cl rHil iteBk
;cl rHil iteText
;clrBtnFace
;clrBtnShadow
;clrGrayText
;clrBtnText

NOTE The values shown in the example above are the default colors shipped with the VGA color dis
play. These are the recommended values.

The following are detailed descriptions of each field:

Field

en VertThumHeight

cnHorizThum Width

cnlconXRatio

cnlcon YRatio

cnCurXRatio

Description

A 2-byt.e value specifying the height in pixels of the
vertical scroll bar thumb.

A 2-byt.e value specifying the width in pixels of the
horizontal scroll bar thumb.

A 2-byt.e value specifying the ratio by which the icon
width is to be reduced before displaying.

A 2-byte value specifying the ratio by which the icon
height is to be reduced before displaying.

A 2-byt.e value specifying the ratio by which the
cursor width is to be reduced before displaying.

Microsoft Confidential Beta Release

Beta Release

Field

cnCurYRatio

Reserved

cnXBorder

cnYBorder

cnScrollBarColor

cnDesktopColor

cnActiveCapColor

cnlnactiveCapColor

cnMenuBackgndColor

cnWindowBackgndColor

en Caption Color

cnMenuTextColor

cnVV"JBdowTextColor

cnCaptionTextColor

cnActiveBorderTextColor

cnlnactiveBorderTextColor

cnWorkSpaceTextColor

Display DrlvetS 2·43

Description

A 2-byte value specifying the ratio by which the
cursor height is to be reduced before displaying.

A 2-byte reserved field that should be set to zero.

A 2-byte value specifying the thickness in pixels of
vertical lines.

A 2-byte value specifying the thickness in pixels of
horizontal lines.

A 4-byte RGB value specifying the default color of
the scroll bar.

A 4-byte RGB value specifying the default color of
the Wmdows background.

A 4-byte ROB value specifying the default color of
the caption in the active window.

A 4-byte RGB value specifying the default color of
the caption in an inactive window.

A 4-byte RGB value specifying the default color of
the menu background .

A 4-byte RGB value specifying the default color of a
window's background

A 4-byte RGB value specifying the default color of
the caption.

A 4-byte RGB value specifying the default color of
the text in a menu.

A 4-byte RGB value specifying the default color of
the text in a window.

A 4-byte ROB value specifying the default color of
the text in a caption.

A 4-byte ROB value specifying the default color of
the text in an active border.

A 4-byte RGB value specifying the default color of
the text in an inactive border.

A 4-byte ROB value specifying the default color of
the application workspace (MDI background).

Microsoft Confidential April 1, 1990

2-44 Device Driver Adaptation Gulde

Field

cnHilightBk

cnHilightText

cnBtnFace

cnBtnShadow

cnGrayText

cnBtnText

Description

An RGB value specifying the highlight color used in
menus, edit controls, listboxes, etc.

An RGB value specifying the text color for
highlighted text

An RGB value specifying the color of the
3-D button face shading.

An RGB value specifying the color of the
3-D button edge shadow.

An RGB value specifying the color of Solid Gray to
be used for drawing disabled items. (Must be zeros if
no solid gray is available.)

An RGB value specifying the text color in Windows
3.0 pushbuttons.

2.11.3 Creating the COLORTAB.ASM File

April 1, 1990

The COLORTAB.ASM file contains a list of the colors that are to appear in the Control
Panel's Color Tuner dialog. This table should contain all the solid colors that are repre
sentable as RGB values as well as all the good looking dithers. The table may contain up
to 48 RGB values.

The following is a prototype of a COLORTAB.ASM file that contains the suggested RGB
values for 4-plane EGA or VGA drivers.

RGB macro R, G, B
db B,G,R,0
endm

COLORTABLE segment public

dw 48 : f colors in table
RGB 80h,80h,0Ffh
RGB 80h,0FFh,0FFh
RGB 80h,0Ffh,80h
RGB 80h,0Ffh,00h
RGB 0Ffh,0Ffh,80h
RGB 0Ffh,80h,00h
RGB 0C0h,80h,0Ffh
RGB 0Ffh,80h,0Ffh
RGB 00h,00h,0Ffh
RGB 00h,0FFh,0FFh
RGB 00h,0Ffh,80h
RGB 40h,0FFh,00h
RGB 0Ffh,0Ffh,00h

Microsoft Confidential Beta Release

Display Drivers 2-45

RGB 0C0h,80h,00h
RGB 0C0h,80h,80h
RGB 0FFh,00h,0FFh
RGB 40h,40h,80h
RGB 40h,80h,0FFh
RGB 00h,0FFh,00h
RGB 80h,80h,00h
RGB 80h,40h,00h
RGB 0FFh,80h,80h
RGB 40h,00h,80h
RGB 80h,00h,0FFh
RGB 00h,00h,80h
RGB 00h,80h,0FFh
RGB 00h,80h,00h
RGB 40h,80h,00h
RGB 0FFh,00h,00h
RGB 0A0h,00h,00h
RGB 80h,00h,80h
RGB 0FFh,00h,80h
RGB 00h,00h,40h
RGB 00h,40h,80h
RGB 00h,40h,00h
RGB 40h,40h,00h
RGB 80h,00h,00h
RGB 40h,00h,00h
RGB 40h,00h,40h
RGB 80h,00h,40h
RGB 00h,00h,00h
RGB 00h,80h,80h
RGB 40h,80h,80h
RGB 80h,80h,80h
RGB 80h,80h,40h
RGB 0C0h,0C0h,0C0h
RGB 40h,00h,40h
RGB 0FFh,0FFh,0FFh

COLORTABLE ends

2.11.4 Creating Icons, Cursors, and Bitmaps

Beta Release

ICBs acceptable for use by many display resolutions and aspect ratios are provided in
various subdirectories of the resource file directories on the disks provided with the DDK.
See the DD K's Installation and Update Guide for detailed lists of the subdirectories.

· If you want to create your own ICBs, you can do so by using the SDK Paint application. In
creating ICBs, you should meet the criteria given in the following table on Cursor, Icon,
and Bitmap files.

NOTE The maximum allowable cursor and icon sizes are 64x64 pixels.

Microsoft Confidential April 1, 1990

2·46 Device Driver Adaptation Guide

April 1, 1990

Resource Name

CVRSQRS

OCR. • .NORMAL

OCRJBEAM

OCR_S1ZENWSE

OCR_SlZENESW

OCR_S1ZEWE

OCR_S1ZENS

Type

cursor

cursor

cursor

cursor

Filename

NORMAL.CUR

mEAM.CUR

WAIT.CUR

SJZENWSE.CUR

SIZENESW.CUR

SJZEWE.CUR

SJZENS.CUR

Purpose

An upward diagonal
arrow used as the de
fault mouse cursor.

An I-beam shaped
cursor used in edit con
trol windows.

An hourglass that is
used while cmying out
lengthy operations.

A two-beaded mow
used when sizing
windows. Arrows point
NW and SE.
A two-headed mow
used when sizing
windows. Arrows point
NE and SW.

A two-beaded mow
used when sizing
windows. Arrows point
W.andE.
A two-beaded mow
used when sizing
windows. Arrows point
NandS.

NOTE The foDowing cursors are no longer used by Wtndows, but must be provided for compatibility with ex
isting Windows applications that may expect them to be available.

OCR_ CROSS

OCR_ UP
OCR_S1ZE

OCRJCON

IC.QNS
OICJ{AND

cursor

cursor
.cursor

cursor

icon

CROSS.CUR

UP.CUR
SJZE.CUR

ICON.CUR

.HANDlCO

Microsoft Confidential

An upright cross used
as a selection marker.

An upward mow ..

A box shape formerly
used when sizing tiled
windows.

An empty box formerly
used when the mouse
was in the icon area.

A stop sign used to indi
cate an error condition
that halts opera.ti.on.

Beta Release

Beta Release

Resource Name Type

OIC_QUES icon

OIC_BANG icon

OIC_NOTE icon

OIC_SAMPLE icon

BUMAPS

Filename

QUESJCO

BANGJCO

NOTEJCO

SAMPLEJCO

Display Drivers 2-47

Purpose

A question mark used
when querying for a
reply.

An exclamation mark
used to emphasiz.e the
consequences of an
operation.

An asterisk used to indi
cate non-critical
situations.

The default icon used
when no other icon to
an operation cm be
found.

The following 7 shapes have two fonns: the normal image and the depressed image. These are used
to create the 3-D effect of pushing in a button.

OBM_RESTORE bitmap
OBM_RESTORED

OBM_REDUCE bitmap
OBM_REDUCED

OBM...ZOOM bitmap
OBM_.ZOOMD

OBM_RGARROW bitmap
OBM_RGARROWD
OBM_LFARROW bitmap
OBM_LFARROWD

OBM_UPARROW bitmap
OBM_UPARROWD

OBM_DNARROW bitmap
OBM_DNARROWD
OBM_CIDSE bitmap

OBM_CHECK bitmap

OBM_CHECKBOXES bitmap

RESTORE.BMP
RESTORED.BMP

MIN.BMP
MIND.BMP

MAX.BMP
MAXD.BMP

RIGHT.BMP
RIGHTD.BMP
LEFf.BMP
LEFfD.BMP

UP.BMP
UPD.BMP

DOWN.BMP
DOWND.BMP
SYSMENU.BMP

OCHECK.BMP

OBUTION.BMP

Microsoft Confidential

Images used as the re
store button on the title
bar.

Images used as the min
imize button on the title
bar.

Images used as the max
imize button on the title
bar.

A right-pointing arrow
for scroll bms.

A left-pointing arrow
for scroll bms.

An up-pointing arrow
for scroll bms.

A down-pointing arrow
for scroll bms.

A double-wide image
that contains system
menu shapes for both
main windows and MDI
windows.

A check mark used to
check menu items.

A box used for check
boxes in dialogs.

April 1, 1990

2-48 Device Driver Adaptation Gulde

Resource Name Type Filename Purpose

OBM_COMBO biunap COMBO.BMP An arrow used in
combo boxes.

OBM_MNARROW biunap MNARROW.BMP An arrow used in multi-
level menus.

NOTE ths following bitmaps are no longer used by Windows, but must be supplied for compatibility with
appHcations that sxpsct them to be available.

OBM_B1NCORNERS biunap OB1NCORN.BMP A circle fonnerly used
to draw round-cornered
pushbuttons.

OBM_SIZE biunap OSIZE.BMP A size box formerly
used on tiled windows.

OBM_BTSIZE biunap OBTSIZE.BMP A size box used at the
intersection of vertical
and horizontal scroll
bars.

OBM_OLD_RESTORE biunap OREST.BMP Restores the biunap
used for Wmdows 2.x.

OBM_OI.D_REDUCE bitmap ORED.BMP Minimizes the bitmap
used for Wmdows 2.x.

OBM_OI.D_ZOOM biunap OZOOM.BMP Maximizes the biunap
used for Wmdows 2.x.

OBM_OI.D_RGARROW bitmap ORIGHT.BMP A right-arrow bitmap
used for Wmdows 2.x.

OBM_OI.D_LFARROW . biunap OLEFI'.BMP A left-arrow bitmap
used for Wmdows 2.x.

OBM_OI.D_UPARROW biunap OUP.BMP An up-arrow bitmap
used for Wmdows 2.x.

OBM_OI.D_DNARROW bitmap OOOWN.BMP A down-mow bitmap
used for Wmdows 2.x.

OBM_OI.D_CLOSE biunap OCLOSE.BMP The system-menu bit-
maps used for Wmdows
2.x.

2.11.5 Assembling and Linking FONTS.ASM, CONFIG.ASM, and
COLDRTAB.ASM

To create FONTS.BIN, CONFIG.BIN, and COLORTAB.BIN, follow this procedure:

April 1, 1990 Microsoft Confidential Beta Release

masm fonts;
link fonts;
exe2bi n fonts;

(Substituting "config" and "colortab" for "fonts" as appropriate.)

Display DrlvetS 2-49

2.11.6 Using RC to Create the .RES File
Once you have completed all the preceding steps, you must create a script for the resource
compiler/editor (RC). We recommend that you use a .RC file from one of the resource file
directories.

Issue the following command to compile your resources:

re -r filename.re

where "filename" is the name of your RC script. The output from this operation will be
your completed .RES file.

2.12 Display Drivers Checklist

Beta Release

The following checklist is a summary of the major points made in this chapter. An addi
tional checklist for updating 2.x display drivers to the 3.0 requirements is provided in
Chapter 3, "Display Drivers: New Features."

0 To display output to the screen, you must first implement at least the following func
tions:

D Output

D Enable and Disable

D RealizeObject

D Colorlnto

D BitBlt

D StrBlt/ExtTextOut

D Control

o SetDmits and GetDmits

0 In the GDIINFO data structure, you must support the following capabilities:

Value

dpLines

dpPolygonals

Offset#

30

32

Contents

Poly lines

Scanlin es

Microsoft Confidential

Bit Value

LC_POLYLINE

PC_SCANLINE

Bit#

1

3

April 1, 1990

Z-50 Device Driver Adaptation Gulde

April 1, 1990

Value

dpRaster

Offset#

38

Contents

oms
Bit Value

RC_DI_BITMAP

RC_DIB10DEV

Bit#

7

9

RC_BITBLT 0

RC_GDI20_0U1PUT 4

Q Display drivers must support at least the following escapes in the Control function:

0 QUERYESCSUPPORT

0 GETCOLORTABLE

0 SETCOLORTABLE (do not use with palette-capable devices)

Q To build a resource file (.RES), you need the following items:

0 AFONTS.ASMfile

0 A CONFIG.ASM file

0 A COLORTAB.ASM file

0 A set of icons, cursors, and bitmaps

o A.Refile

Microsoft Confidential Beta Release

Chapter

3
Display Drivers: New
Features

This chapter provides infonnation on the new Wmdows 3.0 features that affect display
drivers and how to work with them. These include the following:

• Color Palette Management

• Protected Mode Support

• >64KFonts

• Device Independent Biunaps

3.1 Color Palette Management
Display devices that are capable of displaying at least (and possibly more than) 256 simul
taneous colors out of a palette may need to provide a color palette management interface.
(See the Microsoft Windows Software Development Kit for a complete description of color
palette management.)

Color palette management requires the following functionality from the driver:

• An interface to get {read) and to set (write) the hardware palette

• An interface to get/set the driver-maintained color translate table

Depending on the capabilities of your hardware, there will be some additional reqUire
ments as explained in the following subsections.

3.1.1 The Hardware Palette Calls

Beta Release

For the get/set hardware palette calls, the following parameters are passed to the driver in
this order:

cProc SetPalette, <FAR, PUBLIC, WIN, PASCAL>
parmW nStartlndex
parmW nNumEntries
parmD lpPalette

The parameters passed have the following meaning:

Microsoft Confidential April 1, 1990

3-2 Dev/cs Driver Adaptation Saide

Parameter

nStardndex.

nNumEntries

lpPalette

Description

The zero-based (color) index into the palette Look Up Table (LU1)
specifying where to put the first ROB triplet. Subsequent ROB trip
lets are placed in subsequent palette LUT entries (in increasing
order).

The total number of entries to set in the device's hardware palette.

A far pointer to the ROB colors to be set into the palette. They are
stored as Red, Green, Blue, and Flags. occupying one doubleword.
The flags have no meaning for the driver and should be ignored.

For a GetPalette call, the same parameters are passed but the driver fills the ROB array
pointed to by lpPalette. A zero should be written in the Flags field.

3.1.2 The Color Translate Table

April 1, 1990

The driver has to maintain a color translate table to translate the logical color indices,
passed to it by GDI, into the acwal physical color indices. The color translation has to
occur before any mster operation (ROP) is perfonned (i.e., ROPs are always applied to
physical colors).

The following data structures contain logical colors that may need to be translated to physi
cal colors before they can be used:

lpDrawMode
lpPen
1 pPBrush

memory bitmaps

:translate foreground <text> and background colors
;translate pen color
:Cstructure is device specific) translate all the
;color indices
;translate all the bitmap bits

Notice that the application has to perfonn color translation only wh~ the physical device
is involved. In other words, if a line is drawn into a memory bitmap or a bitmap is trans
feaed (bit' ed) into another memory device, no color translation is required. On the other
hand, if a bitmap is bit' ed to or from the screen into a memory bitmap or a line is drawn
directly onto the screen, color translation is required. In the case of a block transfer from
the screen to the screen (where the physical device is both the souree and destination of the
block transfer). color translation is not needed since all the color indices are already trans
lated into physical indices.

Color specifications are passed to the palette-managing display drivers in two forms:

• OxFFOOiiii, where iiii is the index to use

• OxOORRGGBB, which gives the explicit ROB color to use. Match this color as closely
as possible among the 20 reserved colors. In the case of a brush, the color may be
dithered with the 16 VGA colors.

Microsoft Confidential Beta Release

Display Drivers: New Features 3-3

Since the reserved colors will always have fixed indices, their logical and physical indices
will be identical.

Color translation hooks have to be placed in the following functions:

• Output (translates pen, brush, and draw mode)

• Pixel (translates pen)

• ExtTextOut and StrBlt (translate draw mode)

• BitBlt (translates brush and draw mode)

3.1.3 The Palette Translate Table
For the get/set palette translate table calls, a far pointer to an array of indices (i.e.,
WORDS) of a size specified in dpPaIColors is passed to the driver for the logical-to
physical color index mapping (for more information on dpPalColors, see Section 3.1.6,
''Changes to GDIINFO"). In the case of GetPalThans, the driver copies its translate table
into the array that GDI passed to iL

The functionality for the SetPalThans call is a little more complicated. If the pointer to the
color table is not NUU., the driver has to copy the translate table into its own data seg
ment and also has to construct an inverse of the table it was passed. The inverse table is
needed for block transfers from the screen to a memory bitmap.

In constructing the inverse table, the driver may come across ambiguities because different
logical colors can map to the same physical color. It is up to the driver to decide how to re
solve these cases since the net result will look the same no matter how such ambiguities
have been resolved.

If the pointer to the color table is NUU., the driver needs to construct identity translate ta
bles. It can also set accelerator bits to bypass the various translations outlined above. For
BitBlt, bypassing color translation results in substantial perfonnance improvements.

3.1.4 O/Bs with Color Palette Management

Beta Release

The color table for a device-independent bitmap (DIB) consists of WORD indices to be
used as the "colors" for the bitmap. For SetDIBitsToDevice, they are physical indices; for
SetDIBits, they are logical indices.

(RonG, please review this carefully to be sure I haven't misinterpreted you! Thanks.)

In the GetDIBits, SetDIBits, and SetDIBitsToDevice functions, the final parameter,
lpConversionlnfo, provides infonnation that is useful only for palette-capable devices.
However, all devices need to include this parameter.

During a Get operation, it provides a long pointer to a translate table with the following re
sults:

Microsoft Confidential April 1, 1990

3-4 . Device Ddver Adaptation Gulde

Bitcount

1

4

8

24

Result

A palette-sized array of bytes, each one either OOH or FFH during the
Get The array is used to determine if the index in the bitmap corre
sponds to a zero or a 1 in the DIB.

A palette-sized array of bytes, each one containing a value between
OOH and FFH. Each index in the biunap will map to the correspond
ing 4-bit values in the DIB.

lpConversi.onlnfo will equal an identity table that can be ignored.

A palette-sized array of DWORD values, each one containing the
RGB value (and unused high byte) corresponding to the index in the
bitmap.

During a Set operation, this long pointer will contain something meaningful only when set
ting from a bitmap with a bitcount of 24. It will then point to some data maintained by
GDL For every RGB value in the DIB, the device will call a function in GDI as follows:

DeviceColorMatch(RGBvalue, lpConversionlnfo)

where RGBvalue is a DWORD containing the RGB value to be color matched (with the
high byte ignored).

This GDI function will then return an index to use to represent that color in the device-de
pendent bitmap.

3.1.5 The UpdateCo/ors Function
An UpdateColors function/entry point needs to be added to the driver for all palette
capable devices. UpdateColors is called to redraw a region directly in place and on screen
using the translate table passed in this call. That means that it performs read pixel (color
index), translates a pixel's color index, and writes the translated index back in place for all
the pixels in the region specified in the call.

The following parameters are passed:

cProc UpdateColors, <FAR, PUBLIC>
parmW wStartX
parmW wStartY
parmW wExtX

:starting column Cin screen pixels>
;starting row Cin screen pixels>
:X extent of region (in screen pixels)
:Y extent of region (in screen pixels)
;array of words, log->phys translate

parmW wExtY
parmO lpTranslate

The origin is assumed. to be in the upper-left corner of the screen.

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers: New Features 3-5

3.1.6 Changes to GD/INFO
Tu support palette devices, three WORD entries have been appended to the GDIINFO
structwe, which is defined in GDIDEFS.INC:

dpPalColors,
dpPal Reserved,
dpPalResolut,

dw ?, : total number of simultaneous colors
dw ?, : #of reserved colors
dw ?, : palette resolution (in bits) of video OAC

The number of reserved colors on the palette is always 20, with 16 corresponding to the
VGA colors and 4 special colors. Half of the reserved palette colors are placed at the begin- .
ning and half at the end of the palette. (See the sample palette-device code provided with
the DDK for the exact colors to use.)

The driver also has to set the RC_PALETIE bit for the dpRaster entry in GDIINFO
(RC_PALETIE equ 0000000100000000b). When set, this bit means that the driver can do
palette management.

The driver's version number (dp Version) must be updated to 0300H as well.

3.1. 7 Ordinal Reference Numbers
The following is a list of the ordinal reference numbers of the entry points required for
color palette management support:

SetPalette @22

GetPalette @23

SetPalTrans @24

GetPalTrans @25

UpdateColors @26

These lines go into the display driver's definition file under EXPORTS.

3.2 Protected-Mode Support

Beta Release

Wmdows 3.0 drivers have to be bimodal, ie., they have to I'llll in protected mode as well
as 8086 real address mode. (See the Microsoft Windows Software Developrrumt Kit for
more infonnation on Wmdows memory managemenL) To enable the device driver writer
to write into the code segment (normally not allowed in protected mode) and to perform
segment (actually selector) arithmetic to advance in 64K blocks, some help from KERNEL
is needed.

Some of these functions (with their ordinal reference numbers given in parentheses) may
need to be imported from KERNEL:

Microsoft Confidential April 1, 1990

3-6 Device Ddver Adaptation Guide

April 1, 1990

Function (ordinal value)

AllocSelectorO (@175)

FreeSelector(wSel) (@176)

PrestoChangoSelector(wSrcSe/,
wDestSel)(@l 77)

AllocCSToDSAlias(wSel) (@170)

AllocDSToCSAlias(wSel) (@171)

_AHlncr (@114)

LongPtr Add (@180)

Description

Allocates and returns an uninitialized selec
tor for the driver's use in AX.

Frees a selector allocated by AllocSelector.

Makes the destination selector the same as
the source selector, except that
DATA->CODE or CODE-> DATA.

Creates a data selector alias for the code
selector passed (returned in AX).

Creates a code selector alias for the data
selector passed (returned in AX).

Performs selector/segment arithmetic. This
is an absolute value that has a value of
lOOOH in real address mode and a selector
to next selector increment in protected
mode.

Performs segment arithmetic on a long
pointer and a DWORD offseL

The following actions cause a general protection (GP) fault if you do them while in pro
tected mode:

• Accessing (reading or writing) an array beyond its limit.

• Having an offset wrap-around (going from OFFFFH to 0 using a string instruction).

• Loading an invalid selector into a segment register.

• Updating code segment variables.

• Doing segment arithmetic (except as described above) for selector registers.

• Comparing segment (selector) registers to see which is lower in memory.

• Doing CLis (Clear Interrupts) and STis (Set Interrupts).

• Using undocumented MS-DOS calls. Use Windows calls whenever possible.

It should be noted that loading a segment register or making a far call takes substantially
longer in protected mode. Therefore, you should minimize changing selectors and the num
ber of far calls, particularly in loops.

Microsoft Confidential Beta Release

Display Drivers: New Features 3·7

3.3 Greater Than (>) 64K Font Support
The font structure has been enhanced for drivers capable of supporting >64K fonts. The
changes are as follows:

• The version number of the fonts in the dfVersion field in the font structure will now be
0300H.

• The CharTable array in the font structure now has 6 bytes per character. Each entry
consists of a WORD followed by a DWORD. The first WORD is the width of the
character. The following DWORD is the byte offset from the beginning of the FONT
INFO structure to the character's bitmap. With 32~bit offsets, the size of the font struc
ture, including the bittnaps, is no longer limited to 64K.

• Additional fields have been added to the font header between dfDBFiller and
dfCharOft'Set.

The following are changes that need to be made in the display driver code:

• The driver must let GDI know that it can support > 64K fonts. To do this, the driver
must set the RC_BIGFONT (0000010000000000b) bit of the raster capabilities WORD
in the GDIINFO structure. Once this is done, GDI will ensure that all the fonts that the
driver gets to handle are in the new format.

• Tu handle the 32-bit offset, the device driver code has to make use of the extended
register set of the 80386. It will have to use ESI, EDI, EAX, EBX, ECX, and EBP.
The existing code can be modified easily by using just the corresponding extended
registers for the register used by drivers that work with 16-bit offsets.

• Due to the additional fields in the header (which, however, are not currently being
used), the driver may need to recompute the offset to the character offset table.

3.4 Device-Independent Bitmaps

Be'la Release

Color bittnaps have always been susceptible to problems involving device dependencies.
To alleviate these problems, Wmdows 3.0 now supports device-independent bitmap (DIB)
formats and new API calls to handle these maps.

The following API calls have been introduced to handle DIBs:

Call

SetDIBits

GetDIBits

Description

Copies the information from a DIB into a device- depend
ent bibnap format

Does the inverse conversion, copying out the bits from a
device-dependent bittnap into a om format.

Microsoft Confidential April 1, 1990

3-8 Device Ddver Adaptation Gulde

Call

SetDIBitsToDevice

Description

Allows an application to block transfer (blt) any portion of
a om directly onto the screen. However, in this case, a
direct copy of the source is done with no other raster opera~
tions being supported.

The driver also has to support a dummy function, CreateDffiitmap, that should just return
zero in AX indicating that the creation of a om is not supported at the driver level.

The following sections discuss the structure of each of these functions and their implemen
tation at the device driver level. For a more detailed discussion of the BITMAPINFO and
RGBQUAD data sttuctures, see the Microsoft Windows Software Development Kit.

3.4.1 SetDIBits and GetDIBits

April 1, 1990

The entry point in the driver for these two functions is the same. GDI passes an extra flag
to the driver indicating whether to execute the Set or the Get call. In the following ex
amples, the .. entry point function" for these two functions is called DeviceBitmapBits.
This function does some validations and, then, calls either the Set or the Get subfunctions
to do the actual task.

For a modular design, you should handle all the Run Length Encoded (RLE) Dms in a sep
arate function. This entry point function checks to see whether or not the om is in RLE
format If it is, then it calls RLEBitBlt, a function local to the driver, to do the bit transfer.
We will discuss the sttucture of RLEBitBlt aft.er describing the local functions that handle
unencoded oms.

Since the SetDIBits and GetDIBits functions are not used as often as the other important
functions such as BitBlt or ExtTextOut, you should group them in a separate discardable
code segment

The structure of this function is as follows:

createSeg
sBegin

_OIMAPS,OIMapSeg,public,CODE
DIMapSeg

externNPSetDeviceBitmapBits
externNPGetDeviceBitmapBits

cProc

parmD

parmw
parmW
parmW
parmD
parmD
parmD

DeviceBitmapBits,

lp_dst_device

set_or_get
i Start
num_scans
lp_Dl_bits
lp_DIB_header
lp_OrawMode

; if defined in a separate file
; if defined in a separate file

<FAR,PUBLIC,WIN,PASCAL>,<si, di>

a long pointer to a device-dependent bitmap
device
0 => set, 1 => get bits call
start scan number in the source map
number of scans to copy
long pointer to the actual bits in the DIB
long pointer to the OIB heade~ block
long pointer to the GOI ORAWMOOE structure,

Microsoft Confidential Beta Release

Beta Release

Display Drivers: New Features 3·9

only used to decode an RLE
parmD lp_Conversionlnfo long pointer to Conversion Translate Table

[Any local variable definitions]

cBegin

[Do validations on the input parameters and return with AX set to 0 if the parameters are
not valid.]

[Test to see if the om is in RLE fonnat. For RLE oms, the biStyle field of the OIB
header block will have the bit named RLE FORMAT 8 set. For RLE oms. do the fol-
lowing: - -

1. Prepare a clipping rectangle. For SetDffiits, the extents of the clipping rectangle are
the width and height of the om. However, for GetDmits, the extents are the width and
height of the swface from which the bits are to be obtained.

2. Calculate the X and Y extents of the block to be transferred. These are identical to the
X and Y extents of the clipping rectangle.

The destination rectangle top-left comer is treated as being at (0,0).

The parameters to the call are as follows:

RLEBitBlt Clp_dst_dev,
0,0,
xExt,yExt,
iStart,
num_scans,
set_or_get,
1p_c1i p_rect,
lp_DrawHode,
lp_Dl_Bits,
lp_DIB_header

/*bitmap descriptor */
/*distance to left corner*/
/*extents of blt*/
/*start scan number*/
/*no. of scans to blt*/
/*direction of blt*/
/*lptr to clip rect*/
/*lptr to the structure*/
/*lptr to DIB buffer*/
/*lptr to header*/)

3. Return from DeviceBitmapBits with the status code retumed by RLEBitBlt in AX.]

[Prepare variables that might be needed by the Set or Get subfunctions.]

Microsoft Confidential April 1, 1990

3·10 Devlt:s Ddver Adaptation Ou/de

April 1, 1990

[If Set or Get is 0, call SetDeviceBitmapBits to copy the bits from the DIB fonnat into
the device-specific fonnat. If Set or Get is l, call GetDeviceBitmapBits to do the copy in
the reverse direction.]

[Preserve in AX the status code returned by the Set or Get subfunctions.]

(fhe return value in AX is actually the number of scanlines copied.)

cEnd

cProc CreateDIBitmap,<PUBLIC, FAR>

: the dummy procedure

cBegin
xor ax, ax

cEnd

sEnd DIMapseg
end

Check the input parameters to make sure the following is true:

• The long pointers are all valid (NULL pointers can be detected here and errors re
ported).

• Set or Get should be either a 0 or a 1.

• The bits-per-pixel in the DIB fonnat must be 1, 4, 8, or 24 and the number of planes
must be I.

• The width of the device-dependent bitmap should be the same as that of the DIB.

Next, decide whether or not the DIB is run length encoded. If it is, prepare panuneters for
RLEBitBlt and call it to complete the ttansfer.

For normal DIBs, once you know that the input parameters are valid, you are ready to do
the actual job by calling the Set or Get subfunctions as appropriate. However, this is also a
convenient time to compute any variables that have to be derived from the input parame
ters and that are used by both subfunctions. For example, the following information might
be computed at this point:

• Flags specifying whether the device-dependent bitmap is in a color or monochrome for
mat and whether or not it spans a 64K boundary. Notice that the DIB could be a color
map with the device-dependent bitmap in a monochrome formaL If that were the case,
you would then have to do the appropriate color conversions.

Microsoft Confidential Beta Release

Beta Release

Display Drivers: New Features 3·11

• Other variables that would be of use during the actual conversion can also be calcu
Jated at this stage. These would include. for example. the width of a source and destina
tion scan in bytes. and the starting byte offsets in the source and the destination maps.

SetDeviceBit111apBits
This is a NEAR function that is called from the DeviceBitmapBits function. It converts
and copies the bits in the DIB format into the device-dependent fonnat. Because most of
the initial calculations have already been done in the calling function. the parameters to
this function would be the derived variables and the pointers to the source and destination
bitmap amlys. Also included here is the RGBQUAD data structure for the color table.

The structure of this function would be something similar to the following example:

[The function should be put in the _DIMAPS segment.]

anpfnPreProc

dw
dw
dw
dw

label word

eti_l
eti_4
eti_S
eti_24

preprocessor jump table

preprocessor for 1 bit/pixel DIB
preprocessor for 4 bits/pixel DIB
preprocessor for 8 bits/pixel DIB
preprocessor for 24 bits/pixel DIB

'eti_' can be read as 'external_to_internal_'

cProc SetDeviceBitmapBits, <NEAR, PUBLIC>

parmD

parmD
parmD
parmD
parmD
parmD

l p_bits_start

num_scans
iStart ;
lp_Ol_bits_start;
1 p_DIB_header
fbsd

long pointer to the start scan of the
destination bitmap

number of scans to copy
start scan number
long pointer to 018 bits start scan
long pointer to 018 header
flag byte passed by DeviceBitmapBits

[Other derived parameters such as width of scans. flags. etc.]

[Local and other temporary variables]

localW full_byte_proc
localW partial_byte_proc

localV color_translate,256

cBegin

address of full-byte conv routine
address of partial-byte conv

routine
color translation table

[Depending on the number of bits/pixel. do fonnat-specific initializations. Decide which
local routine to use to convert bits from the source that yield one byte for the destination.
and which routine to use for the partial bytes at the end of the destination (if any).]

(Convert the source bitmap area one scan at a time. For every scan, use .. call
full_ byte _proc .. with the number of complete destination bytes that are to be generated
and "call partial_ byte _proc" with appropriate end-byte masks for the partial bytes near -· -

Microsoft Confidential April 1, 1990

3·12 Device Driver AdaplaJ/an Su/de

April 1, 1990

the ends of the scans in the destination map (if any). While updating the pointers to the
next scan and copying the bytes in a scan, take care of cases when the scans may cross the
64K boundaries.]

[Set AX to I, to indicate success.]

cEnd

: organize the local byte conversion routines here .
eLicolor_full proc near

: code for external_l_bits/pixel_to_internal_color_format
: yields one or more complete destination bytes

el_icolor_full endp

el_icolor_partial proc near

: code for external_l_bits/pixel_to_internal_color_format
: yields the last few bits on the destination map

el_icolor_partial endp
• e4_icolor_ful1 proc near

: code for external_4_bits/pixel_to_internal_color_format
: yields one or more complete destination bytes

e4_icolor_full endp

e4_icolor_partfal proc near

: code for external_4_bit/pixel_to_internal_color_format
: yields the last few bits on the destination map

e4_icolor_partial endp
• eS_icolor_full proc near

: code for external_S_bits/pixel_to_internal_color_format
: yields one or more complete destination bytes

eS_icolor_full endp

e8_icolor_partial proc near

: code for external_S_bits/pixel_to_internal_color_format
: yields the last few bits on the destination map

e8_icolor_partial endp

Microsoft Confidential Beta Release

Bera Release

Display Drivers: New Features 3·13

.
24_icolor_full proc near

: code for external_24_bits/pixel_to_internal_color_format
: yields one or more complete destination bytes

e24_icolor_full endp

e24_icolor_partial proc near

: code for external_24_bits/pixel_to_internal_color_format
: yields the last few bits on the destination map

e24_icolor_partial endp

[A similar set of functions would be defined for the 4 DIB formats to do the conversion
into a monochrome device-dependent biunap format.]

By having a separate conversion routine for each DIB format and for each of the two types
of device-dependent biunap formats (i.e., color and monochrome), a lot of conditional
checks can be avoided in the body of the main conversion loop, which improves the re
sponse.

Each entry in the color table for non-palette devices, which is passed through the BITMAP
INFO header, consists of an RGB Quad. The following is the RGBQUAD data structure:

typedef struct {
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;
} RGBOUAD;

Format-Specific Initializations
There are three reasons for having format-specific initializations:

1. To store the addresses of the appropriate full and partial byte procedures in the respec
tive variables used in the "call" instructions in the body of the loop.

2. To calculate the number of complete source bytes that result from the conversion and
the alignment of the partial bits in the last byte.

3. To prepare the color table holding the color in the device-specific fonnat for each of
the colors in the DIB format (The color mapping for 24 bits/pixel should be done
during the conversion to avoid having to store a huge table.)

Microsoft Confidential April 1, 1990

3·14 Device Driver Atlaptatloa Gu/1111

April 1, 1990

The biClrUsed field of the om header block is important here. If it is zero, the om
uses the fonnat-specific default color table size. That is, a 4-bits per pixel om will
have 16 colors, an 8-bits per pixel om will have 256 colors, etc. However, if bi·
ClrUsed is nonzero, it specifies the size of the table and cannot be more than the de
fault size.

Another point to notice here is that some of the om formats may never yield a partial
byte. For example, since the sowce scans are always OWORD aligned, the l, 4, and 8 bits
per-pixel om fonnats will always yield an integral number of destination bytes if the desti
nation fonnatis 1 bit/pixel (and may have multiple planes). In these cases, we can use the
tun_ byte _proc alone to convert the entire scan (including the filler bits at the end, if there
are any). However, we can still define partial-byte conversion routines for these cases and
use them for those scans that span a 64 K boundary.

Doing the color mapping from the independent to the device-specific format speeds up the
conversion process substantially. If you did it the other way, you could end up doing the
mapping for the same sowce color as many times as it appears in the picture. You could, of
course, store the converted colOIS on the stack. However, in the 24 bits/pixel case, the con
verted table size would become huge (a maximum of 16 megabytes). Then, you would
have to do the color mapping at the same time as the transfer.

GetDeviceBitmapBits
This function has a structure exactly the same as its Set counterpart, except for the color
mapping and the fact that the direction of copy is now reversed.

Here you actually need to do an inverse color mapping, from the device-specific format to
one of the om fonnats. You also have to create the logical color table that resides in the
om header block. The device driver, if it is not a palette device, can fill up the logical
eolor table with whatever color it supports and, then, use the corresponding indices in the
biunap. It must also set the number of colors it is using in the biClrUsed field of the
header block.

(This example and table need to be changed to a 4-plane version. Ron or Gunter?)

Consider an example in which the display device is a 3-plane EGA device; the first plane
is for red, the second for green, and the third for blue; and in which the om has 8
bits/pixel. The logical color table for the om has provisions for 256 colors, but the 3-plane
driver can deal with only 8 colois. Actually, since the device represents each color com
ponent in only 1 bit, a zero bit can be thought of as representing a logical color of 0 and a 1
bit as representing a color of255. The driver would prepare a color table for the om that
looked like the following:

Entry No.

0

1

Red

0

255

Green

0

0

Microsoft Confidential

Blue

0

0

Beta Release

Beta Release

Display Drivers: New Features 3-15

Entry No. Red Green Blue

2 0 255 0

3 255 255 0

4 0 0 255

5 255 0 255

6 0 255 255

7 255 255 255

The device driver may fill in just 8 colors and set biClrUsed = 8, or it may fill up entries 8
through 255 with zeros and set biClrUsed = 0.

While doing the conversion, a pixel for the destination DIB can be prepared by storing a
bit from each plane of a pixel in the lower significant 3 bits out of the 8, with the other bits
all beingO.

The color mapping tables for each of the DIB formats are predefined for a particular driver
and should be copied into the DIB header during the fonnat-specific initialization.

RLEBitB/t
This function handles bit transfers both between a screen or a bitmap and a Run Length En
coded (RLE) om and vice versa. This function is organized as follows:

FetchFromBuffer label word

dw
dw

DIMapSegOFFSET
DIMapSegOFFSET

FetchlntoBuffer label word

dw
dw
dw
dw

DIMapSegOFFSET
DIMapSegOFFSET
DIMapSegOFFSET
DIMAPSegOFFSET

color_get_pixel_from_buffer
mono_get_pixel_from_buffer

mem_color_get_pixels_masked
mem_mono_get_pixels_masked
dev_color_get_pixels_masked
dev_mono_get_pixels_masked

cProc RLEBitBlt,<FAR,PUBLIC>,<si, di, es>

parmD l pPDevi ce
parmW DstX
parmW DstY
parmW DstXE
parmW DstYE
parmW StartScan
parmW NumScans
parmW SetGet
parmD lpClipRect

;bitmap/screen descriptor
:top left corner x on destination
;top left corner y on destination
;x extent of blt rectangle
;y extent of blt rectangle
;start of the band of RLE with regards to whole
;number of scans in RLE band
;0=>set RLE, l=>get RLE, 2=>get RLE length
;lptr to clipping rectangle

Microsoft Confidential April 1, 1990

3-16 Device Driver Adaptation Gulde

April 1, 1990

parmO lpDrawMode
parmO lpOIBinfo
parmD lpRLEbits

localW X
localW Y

localB SurfaceFlags

RLE_HONOequ 01h
RLE_OEVICE equ 02h
RLE_HUGE equ 04h

;lptr to draw mode structure
;lptr to RLE 018 info block
;lptr to RLE buffer

;current position for RLE

;defines the following flags

;monochrome bitmap/screen
;display surface is device
;display surface >64k bitmap

;define some variables to hold addresses of device-format specific routines.

localW set_partial_pixels
localW set_full_pixels
localW set_get_start_offset

localW fill_pixel_buffer

[Defme other local variables.]

cBegin

:set a masked byte
;unmasked set bytes
;translate Cx,y) to offset on
; display surface
;function to fill buffer

[Set up the flag bits in SurfaceFiags and a long pointer to point to the st.art byte of the dis
play surface.]

[The Y orientation of RLE om is the inverse of the Windows convention. You st.art encod
ing from the bottom left of the display surface and work up. So, set the current position at
X = OstX and Y = DstY + DstYE - 1.]

[If a "get" from the surface into the RLE om is called for, go to GetRLEBits.]

[If a "get length" is called for, do the same as GetRLEBits, but only return the size of the
necessary output buffer. Put this length into the info block as well.]

SetRLEBits:

[Create a color translate table, converting the logical colors specified in the RLE om
header block into color indices in the device format. Notice that. if the biCirUsed field is
nonzero, it specifies the number of colors contained in the color table.

Also, for monochrome display surfaces, set the "color index byte" to be OOH or OFFH de
pending on whether the color is to be treated as black or white. J

[If the display surface is EGA/VGA, do the following:

1. Exclude the cursor from within the clip rectangle.

2. For color devices, initialize the adapter registers to be in write mode 2. Enable all the
planes for color devices and just plane 0 for monochrome displays. Leave the address·

Microsoft Confidential Beta Release

Beta Release

Display Drivers: New Features 3-17

of the bit-mask register in the graphics· controller
address register.

3. Set up the following memory variables to the corresponding function addresses:

set_partial_pixels

seLfull_pixels

set_get_stan_offset

<- dev_set_pixels_partial

<- dev_set_pixels_full

<- set_small_stan_offset]

[For memory bitmaps, set up the address variables as follows:

1. For color memory bitmaps:

set_partial_pixels

set_full_pixels

2. For monochrome memory bitmaps:

set_pixels_partial

set_full_pixels

3. For small bitmaps:

set_get_stan_offset

4. For huge bitmaps:

set_get_stan_offset

<- mem_set_pixels_partial

<- mem_set_pixels_full

<- monomem_set_pixels_partial

<-monomem_set_pixels_full

<- set_small_stan_offset

<- set_huge_stan offset]

[If the draw mode in the DRAWMODE structure is opaque, then the intersection of the
clip rectangle and the rectangle encoded by the RLE must now be flooded with the back
ground color.]

[Load DS:SI and point to stan of RLE buffer. Load ES with display surface selector.]

set_decode_RLE:

[If the Opaque flag is set in DRAWMODE, fill the client rectangle with bkColor. Use
ROP2 throughout]

[Get the type of RLE record and select one of the following cases.]

[t:ass: absolute mode:}

• Get the number of pixels in the segment

Microsoft Confidential April 1, 1990

3-18 Device Driver Adaptauaa Balde

April 1, 1990

• Save SI and the number of pixels in the segment.

• Call set_get_segment (defined later, it figures out the position of the segment relative
to the clip rectangle and returns the number of pixels within the clip rectangle in ex.
the abscissa of the start of the segment in DI. and updates DS:SI in case of clipping to
the first visible pixel's color byr.e.)

• If CX=O. the segment is totally clipped.

• If ex != o. call set_multi _pixel_segment to decode and transfer the pixels.

• Restore SI and update it by the number of pixels in the segment.

• Jump back to set_decode_RLE.

f t:asa: encoded run:/

• Save SI and the number of pixels in the segment.

• Call set_get_segment to get the count of pixels within the clip rectangle and the sunt
abscissa in DI. Ignore the returned value of SI and have SI pointing to the color for the
pixel in the segment. ·

• If CX=O. the segment is totally clipped.

• If ex != o. call set_ one _pixel_ segment to decode and transfer the pixels.

• Update SI by the number of pixels in the segment.

• Jump back to set_decode_RLE.

ft:ase: delta •oded record:/

• Update X and Y by the delta_x and delta_y specified in the record.

• Jump back to set_decode_RLE.

[case: 1nd-ot-lin1:J

• SetX=DstXand Y= Y-1.

• Jump back to set_decode _RLE.

{t:aBI: Bnd-Of-SBgmlllt:J

• Update DS:SI to the start of the next 64K segment.

[case: Ind-of-frame:]

Microsoft Confidential Beta Release

Beta Release

Display Drivers: New Features 3-19

• You are done with the transfer. If the surface is a device, then do the reinitializ.ations
and unexclude the cursor.

• Set AX=l (success).

• Jump to RLEend.

GetRLEBits:

[Fill up the color table with the colors that the device supports and set biCirUsed.]

[If the surface is a device, then exclude the cursor from within the clip rectangle.]

[Depending on whether the surface is color or monochrome, get the appropriate routine
from the FetchFromBuffer and FetchlntoBuffer tables and put it into get_pixel _from_ buff
er and save_get_pixel_addr, respectively.]

[Set up F.S:DI to point to the start of the RLE buffer and load DS with the surface selec
tor.]

[Based on the type of the surface, load in DS:SI the offset that corresponds to the start
point (X,Y).]

get_rect_code_loop:

[Save SI and set the number of buffered pixels fetched from the display surface to be 0.]

[Load the address saved in save_get_pixel_addr into the fill_pixel_buffer variable.]

[Call get_next_pixel to get the pixel at (X,Y).]

[Remember the pixel value as last_pixel and set the count of pixels to be 1.]

[Encode the pixels in one scan. This piece of code can be implemented based on a state
transition model

The states are as follows:

State

initial_ state

initial to encode or
encode_to _encode

encode _absolute

encode_ overnow

Description

You start here for every scanline and, at this point, re
member the value of the last pixel.

You come here when the next pixel matches the first
pixel value that you remembered.

When the new pixel differs from the last pixel, you
switch to the absolute encoding mode.

When the number of pixels in an encoded run reaches
255, you have to close the record. Remember the new
pixel as the last pixel, set the count to 1, and go back to
the initial state.

Microsoft Confidential April 1, 1990

3·20 Device Driver Adaptation Gulde

April 1, 1990

State

initial_ to_ absolute

absolute_ absolute

absolute_ overflow

encode to scan end or
absolute _to _scan_ end

Description

You get here when you start from an initial state with the
first two pixels being different.

You stay here as long as you keep getting different pixels.

Similar to encode_ overflow; you have to close this run
as the number of pixels reaches 255.

At each of the states, you count the number of pixels left
in the scan. When this turns to 0, you get to one of these
states, depending on whether you were in an encoded or
an absolute run.]

[After converting every scan, set the code for end-of-line.]

[Decide if the worst-case encoding of the next scan is going to fit in the remainder of the
current segment. If it does not, then add an end-of-segment code and update ES:DI to the
next segment.]

[Until there are no more scans to convert, loop back to get_rect_code_loop.]

: you have reached the end of encoding.

[Find out the size of the encoded image from the current and initial value of ES:DI and
save this in the biSizelmage field of the DIB header block.]

[If the display surface was a device, bring back the cursor.]

[Set AX= 1, for success.]

RLEend:

[Return back to caller.]

cEnd

; the support routines come here .
• set_get_segment proc near

[Entry:

Returns:

(X,Y)

lpClipRect

AX

DS:SI

- start of segment on display surface

- clip rectangle on the surface

- number of pixels in the segment

- points to color byte for first pixel

Microsoft Confidential Beta Release

Beta Release

Display Drivers: Nsw FeaturBs 3-21

[Entry:

- abscissa of the first wiclipped pixel

-numberofunclippedpixe~

DI

ex
DS:SI - color byte for first wiclipped pixel (ignore this for

encoded runs)]

set_get_segment endp

set_multi_pixel_segment proc near

[Decodes an absolute segment]

[Gets the bitmask for the fJCSt pixel (DI,Y).]

; the above routine uses the function address in the set_get_start
; offset to translate CDI,Y> to an offset

[If the surface is a device, load the address of the bitmask register in DX. Otherwise, load
the width of a scan in DX.]

[For each pixel in the segment, get the color byte pointed to by DS:SI and translate it to a
device color index. Then, call through the memory variable set_partial_pixels to transfer
the pixel. Update the bitmask to the nextbit]

set_multi_pixel_segment endp

set_one_pixel_segment proc near

[Get a start and end byte mask for the segment and the number of intennediate bytes.]

[1iansfer the partial bytes at the end using the address of the function in set_partial_pix
els and the intennediate bytes using the function whose address is in set _full _pixels.]

set_one_pixel_segment endp

: the following routines all take the following parameters:
: ES:DI - destination byte
: AL - color value
: AH - bitmask for the byte
: DX - address of bitmask register for device or offset to next

scan for bitmask.

dev_set_pixels_partial proc near

[Writes a masked byte to the device.]

Microsoft Confidential April 1, 1990

3-22 Device Driver Adaptation Gulde

April 1, 1990

dev_set_pixels_partial endp

dev_set_pixels_full proc near

[Writes a complete byte to the device without masks.]

dev_set_pixels_partial endp

: likewise

me11Lset_pixels_partial
mem_set_pixels_full
monomem_set_pixels_partial
monomem_set_pixels_full

masked byte for color bitmaps
complete byte for color bitmap
partial byte for monochrome memory
complete byte for monochrome memory .

; Then come the two routines to calculate the start offset on the
; display surface.

set_get_small_offset - for device or small bitmaps
set_get_huge_offset - for > 64k bitmaps

[These routines take (Dl, Y) as the coordinate and return the offset in ES:DI.]

The strategy that you use for obtaining the next pixel is as follows:
At any point, you get all the pixels from the current byte in the
surface and buffer them.

If the first byte has a mask, you throw off the unused portion of
the byte and maintain a count of the pixels in the buffer.

As long as you have pixels in the buffer, you get the pixels from
there and this routine is device-format independent.

When the buffer is empty, you get the next set of bits from the
surface. For this, you have separate routines for screen and
bitmap, and for color and monochrome.

Since you have to define the following routines, the parameters to
them would be the mask and current byte.

For color devices;

dev_color_get_pixels_masked
dev_color_get_pixels

; For monochrome displays:

dev_mono_get_pixels_masked
dev_mono_get_pixels

- masked pixels from color screen
- complete byte fetch

- masked byte fetch
- complete byte fetch

; correspondingly, you have four routines for bitmap:

Microsoft Confidential Beta Release

; two for color and two for monochrome:

mem_color_get_pixels_masked
mem_color_get_pixels
mem_mono_get_pixels_masked
mem_mono_get_pixels

Display Drivers: New Features 3-23

; finally, the structure of the get_next_pixel routine is as follows:

get_next_pixel proc near

[If you still have pixels in the buffer, call a routine to fetch pixels from the buffer. You
may have one routine to fetch color pixels and another to fetch monochrome pixels.]

[If the buffer is empty, call a device-format specific routine to fetch the next byte from the
display surface and buffer them. Return with the first pixel in the buffer and update the
count of pixels in the buffer.]

get_next_pixel endp

The reason for organizing the structure of the routine in the above fonnat is that there are
two distinct parts. The main part is device independent and controls the transfer process.
This takes help from the second part which is a collection of device-type specific routines.

3.4.2 SetDIBitsToDevice

Beta Release

This third API call in the set is for block transferring (blt'ing) a portion of a DIB directly
onto the screen. This call saves you the trouble of first converting the DIB into the device
dependent format and, then, transferring it onto the screen. However, only a direct copy of
the DIB is provided. Should you want to use the other raster operations that BitBlt sup
ports, you must first convert the DIB into the internal fonnat Moreover, only one direction
of copy (DIB to screen) is provided.

The process of copying out the bits is similar to the one adopted in the SetDeviceBitmap
Bits ftmction except that for some devices, such as the EGA/VGA, the nature of the hard
ware might make it advantageous to copy one pixel at a time. Here you would need a mask
for the current pixel in a byte and, in these cases, you could do away with the partial_ byte
conversion routines and continue working with a mask that is rotated and aligned for every
pixel that you copy out

The idea of having a color translate table and fonnat-specific initialization remains the
same. The structure of this ftmction is outlined below. (Please notice the different calling
parameters.)

[The function should be defined in the_DIMAPS segment as was done for the others.]

cProc SetOIBitsToOevice,<FAR,PUBLIC,WIN,PASCAL,<si, di>

parmO lp_dest_device : long pointer to screen device descriptor

Microsoft Confidential April 1, 1990

3·24 Device Driver Adaptation Gulde

April 1, 1990

top left corner x coordinate
top left corner y coordinate
start scan number in the OIB buffer
number of scans to copy

parmW
parmW
parmW
parmW
parmD
parmD
parmD
parmD
parmD

ScreenXOrigin
ScreenYOrigin
StartScan
NumScans
lp_clip_rect
lp_OrawHode
lp_OIB_bits
lp_OIB_header
lp_Conversionlnfo

long pointer to clip rect on screen
long pointer to GOI drawmode structure
long pointer to the OIB buffer
long pointer to DIS header block
long pointer to Conversion Translate Table

[Notice that the om bit buffer may not start at the start scan nwnber 0, but could start at
the number contained in StartScan. However, omYOrigin is the actual Y origin relative to
start scan 0. Also remember that the om bit is actually inverted in the Y direction.]

[Define local and temporary variables here.] .

cBegin

[If the biStyle field of the om header has the RLE_FORMAT_8 bit set, then call RLE·
BitBlt to do the transfer. The set of parameters for the calls is similar to what was used in
the DeviceBitmapBits function, except that the extents of the rectangles are the extents of
the om. The Set or Get code is zero to imply a set, and the top-left comer of the destina
tion is set to ScreenXOrigin and ScreenYOrigin.]

[Validate the input parameters and retwn with AX set to 0 if any of the parameters are not
valid.]

[Clip the bit rectangle in the om against the clipping rectangle on the screen. Return with
AX set to 0 (i.e., 0 scans copied) if the rectangle is clipped totally and nothing shows.]

[Exclude the display of the cursor from the bit area on screen.]

[Calculate the required parameters such as length of scan, start bitmask, number of pixels
to bit on a scan. and number of scans to bit]

[Start offset of the first bytes on the screen and in the om. Remember that the source
rectangle is going to be copied upside down onto the rectangle on the screen.]

[Perform fonnat-specific initializations depending upon the number of bits/pixel in the
om. This includes storing the address of the routine that converts the source pixels one
pixel at a time, while adjusting the pixel mask every time.]

[Transfer the source rectangle out one scan at a time, each time calling the conversion
routine whose address has been computed during initialization. While the pointers are
being updated to the next scan start and the pixels are being copied, take care of scans that
span a 64K segment boundary.]

[Return with AX set to the number of scans copied.]

cEnd

; at this point, organize the format-specific initialization and
; conversion routines.

Microsoft Confidential Beta Release

Display Drivers: New Features 3-25

[These routines are similar to the ones discussed for SetDeviceBitmapBits except for the
following differences.

• Partial-byte procedures are not necessary, but segment crossing should be taken
care of in the conversion routines for scans that do span a segmenL

• The conversion routine takes as input a start mask and the number of pixels to con
vert. It adjusts the mask after copying each color-translated pixel. This is repeated
until the complete scan is covered.]

[As in the case of the SetDeviceBitmapBits function, you need to have separate functions
depending upon whether the driver is a monochrome or color device. You can make this
function be specific only to a color or a monochrome driver and save some code.]

This completes the discussion on the implementation of the three API calls. The next sec
tion discusses the extra bit settings in the GDIINFO block and how to declare these func
tions in the .DEF file.

3.4.3 Changes in the GD/INFO Block and .DEF File

Beta Release

You must use the GDIINFO block to inform GD! that the driver can now handle DIBs. Do
this at offset number 38 of the block (Miscellaneous Raster Capabilities), using the equate
RC_DI_BITMAP (defined as OOOOOOOOlOOOOOOOb in GDIDEFS.INC) for DIB-to
memory bitmap capabilities and the equate RC_DIBTODEV (defined as
OOOOOOlOOOOOOOOOb in GDIDEFS.INC) for DIB-to-device transfer capabilities. However,
if you do not set the RC_DI_BITMAP flag, GDI will simulate in monochrome.

The three DIB entry point functions (at the driver level) should be exported by defining en
tries in the export section of the .DEF file for the driver. These entries should be made
right after the ExtTextOut and attribute functions, before the polyline drawing function,
and in the following order:

DeviceBitmapBits @19

CreateDIBitmap @20

SetDIBitsToDevice @21

Moreover, the new code segment that holds the code for these functions should also be de
fined as a discardable code segment. The definition in the .DEF file should be as follows:

SEGMENTS
DIMAPS MOVEABLE DISCARDABLE SHARED

°'jJther segments

Microsoft Confidential April 1, 1990

3·26 Device Drlvsr AdaptatJon Gulde

3.5 Checklist For Updating 2.x Display Drivers To 3.0

April 1, 1990

The following is a list of the major new Windows 3.0 features that will affect drivers:

• Color Palette Management

• Protected Mode Support

• >64KFonts

• Device Independent Biunaps

Sections briefly highlighting the changes that you will need to make to your drivers were
provided in this chapter. However, we strongly recommend that you also review the corre
sponding sections in the Microsoft Windows Software Development Kit (SDK). They con
tain more information that might be useful to you while reading this chapter and its
checklist

While rebuilding a Wmdows 2x driver with 3.0 tools, you should use the following check
list, which summarizes the points made in this chapter, to keep track of each supported fea
ture as added. When done, thoroughly retest the driver to ensure compatibility.

Cl Display devices capable of displaying at least 256 simultaneous colors out of a palette
may require a color palette management interface. To support palette management, the
device driver must provide the following:

0 An interface to get (read) and to set (write) the hardware palette.

[] An interface to get/set the driver-maintained color 1ranSlate table.

o An UpdateColors function/entry point

0 An updated version number (0300H).

0 A setting for the RC_PALE1TE bit forthe dpRaster entry in GDilNFO.

[] Color translation in all draw mode, pen, and physical brush structures.

Cl All Windows 3.0 drivers have to be bimodal, i.e., they have to run in proteeted mode as
well as 8086 real address mode. To do so, you may need to import some of these func
tions from KERNEL:

0 AllocSelectorO (@175) - to get a selector

0 FreeSelector(wSel) (@176)- to free a selector

0 PrestoChangoSelector(wSrcSel, wDestSel) (@177)- for code<-> data selector
conversion

0 AllocCSToDSAlias(wSel) (@170) - to get a data alias of the code selector

0 AllocDSToCSAlias(wSel) (@171) - to get a code alias of the data selector

0 _AlHncr (@114)- to do selector huge increments

Microsoft Confidential Beta Release

Beta Release

Display Drivers: New Features 3·27

0 LongPtrAdd (@180)- to do "segment" arithmetic

Cl To avoid general protection faults, do not do any of the following:

a Access (read or write) an array beyond its limits.

a Have an offset wrap-around (going from OFFFFH to 0 using a string instruction).

a Load an invalid selector into a segment register.

0 Update code segment variables.

a Do segment arithmetic (except as described) for selector registers.

a Compare segment (selector) registers to see which is lower in memory.

a Do CLis and STis.

a Use undocumented MS-DOS calls. You should use Windows calls whenever
possible.

· Cl To support> 64K fonts. make the following code changes:

a The driver must set the RC_BIGFONT bit of the raster capabilities (dpRaster)
WORD in the GDIINFO data structure.

a When addressing character bitmaps. modify the existing code by using the corre
sponding extended (32-bit) register for the register used by drivers that work with
16-bit offsets.

a Due to the additional (but currently unused) fields in the header between
dfDBFiller and dfCbarOffset. the driver may need to recompute the offset to the
character offset table or use an appropriately updated structure.

Cl To handle device-independent bitmaps (DIBs), use the following new functions:

a SetDmits (has the same entry point as GetDIBits)

a GetDIBits (has the same entry point as SetDmits)

0 SetDmitsToDevice

0 CreateDIBitmap (a <f!:muny function)

Cl In the GDIINFO block, define as discardable the new code segment for these DIB func
tions.

Microsoft Confidential April 1, 1990

3·28 Device Driver Adaptation Gulde

April 1, 1990 Microsoft Confidential Be'la Release

Chapter

4

Beta Release

Display Driver Grabbers·

The "grabber" is that portion of the non-Windows application support layer that allows the
video subsystem to be shared between Windows and non-Windows applications. The grab
ber implements the video subsystem-specific logic necessary to save and restore video con
text when switching applications. The grabber also supports the capmre of data from
non-Windows application screens.

Microsoft supplies a number of grabbers for common video subsystems with the retail ver
sion of Windows. Specialized, or less commonly used, video subsystems will require a
grabber module customi7.ed for that particular hardware if non-Windows applications are
to be properly supported. The somce code for the Microsoft grabbers is included with this
Device Development Kit (DOK).

A number of changes have been made to the grabbers for the real and standard mode ver
sions of the Wmdows 3.0 release. Specifically, grabber functions no longer used by
Wmdows 3.0 have been removed. In general, grabbers compatible with Windows 2.1
should work with Windows 3.0, but the 3.0 grabbers will not worlc with Wmdows 2.1. The
grabber source code included with the DDK still contains the unused functions. However,
they are excluded via IFDEF statements in the source.

Wmdows 3.0 can operate in either protected or real mode on an 80286 and later proces
sors. Regardless of the mode in which Wmdows is running, the grabber is always invoked
in the processor's real mode, making it possible to use the grabber with protected-mode
and real-mode Windows. For infonnation on the grabbers used with the enhanced mode
version of Wmdows 3.0, see Chapter 18, ''The VDD and Grabber DLL," in the Microsoft
Windows Virtual Device Adaptation Gui.de.

This chapter documents the interface between Windows running in standard and real mode
and the video-specific grabber module. Only the functions acrually used by Wmdows 3.0
are documented; descriptions of functions used by previous Windows releases are not in
cluded.

Some portions of the grabber documentation, such as the data structure descriptions, are
specific to the implementation of the Microsoft-supplied grabbers. This information is sup
plied under the assumption that these grabbers will be the starting point for anyone who
wants to create a new grabber module.

Familiarity with the Microsoft-supplied grabber source code is assumed throughout this
chapter.

Microsoft Confidential April 1, 1990

4-2 Device Driver Adaptation Gulde

4. 1 Naming Conventions
The grabber files supplied in the retail version of Wmdows 3.0 have been renamed to re
flect the version with which they are to be used Instead of VGA.ORB, we now have
VGA.GR2 for real and standard mode Windows and VGA.GR3 for enhanced mode
Wmdows. In some cases, several drivers may share one grabber (e.g., EGACOLOR.GR2
is used for both EGAHIRES.DRV and EGAIIlBW .DRV).

4.2 Grabber Entry Points
The grabber module is loaded by Wmdows when the user runs a non-Wmdows appli
cation. Wmdows then calls a number of grabber entry points to determine parameters, such
as the video save buffer size, and to initialize the video subsystem for the application.
Windows also makes other calls into the grabber to perform functions such as saving the
screen before doing an application context switch and restoring the screen after the context
switch.

4.2.1 Standard Function Dispatch Table

April 1, 1990

Wmdows loads the grabbers as a binary image and, then, transfers control to them by
means of a jump table at offset 0 of the grabber code segmenL

Wmdows computes the offset of the desired entry point using the knowledge that a near
jump is 3 bytes long. However, as Windows makes a far call to the jump table, the grabber
must do a far return even though the functions are near. Wmdows will always set DS equal
to the grabber's CS before ~g the call. ·

Wmdows checks for the existence of an optional jump opcode at offset OlSH and, if it ex
ists, assumes that the InitScreen entry point is presenL If present, InitScreen will be
called when a non-Wmdows application starts up and, subsequently, after every context
switch to that application.

The following is an example of a function dispatch table:

org 0

StdFuneTable label word
jmp InquireGrab
jmp Obsolete
jmp Obsolete
jmp Obsolete
jmp InquireSave
jmp SaveSereen
jmp RestoreSereen
jmp InitSereen

;Fune 00001h
:Fune 00002h
;Fune 00003h
;Fune 00004h
:Fune 00005h
:Fune 00006h
;Fune 00007h
.: Fune 00008h

Microsoft Confidential Beta Release

Display Driver Grabbers 4-3

NOTE With the exception of lnitScreen, which is an optional entry point, the format of this table
must remain fixed and mustreside at offset 0.

4.2.2 Extended Function Dispatch Table
The Windows 2.03 release added a number of extended functions to the grabber interface.
Because of the nature of the table in the preceding section, extensions to the grabber inter
face are made by means of subfunction calls to an existing standard function entry point
The standard function used for this purpose is the lnquireGrab call. lnquireGrab must
dispatch control to additional function handlers if, upon entry, AX contains a function num
ber in the indicated range.

The following is an example of the extended function dispatch table. Notice that this table
differs from the standard table because it contains offsets, not jump instructions.

ExtFuncTable
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

label word
Obsolete
Obsolete
Obsolete
Obsolete
GetBlock
Obsolete
GetVersion
DisableSave
EnableSave
SetSwapDrive
Get Info
Obsolete

; Fune 0FFF4h
; Fune 0FFF5h
; Fune 0FFF6h
;Fune 0FFF7h
;Fune 0FFF8h
;Fune 0FFF9h
;Fune 0FFFAh
;Fune 0FFFBh
; Fune 0FFFCh
;Fune 0FFFDh
; Fune 0FFFEh
; Fune 0FFFFh

4.3 Data Structures
The following are examples of the most commonly used Windows grabber data structures.
This is the way Microsoft does iL However, you may elect to~ your own ~ta struc
tures or modify the following ones.

4.3.1 Grabber Information Structure

Beta Release

The extended grabber call GRAB_GETINFO fills a structure provided by Windows with
the current video state information. All non-dimensionless quantities are one-based.

Grablnfo struc
giDisplayld db ? ;Display ID Code
giScrType db ? ;see below
giSizeX dw ? ;X raster size in .lmm units
giSizeY dw ? ;Y raster size in .lmm units
giCharsX db ? ;# X char cells (columns)
giCharsY db ? ;# Y char cells Crows)
giMouseScaleX db ? ;X transform for MS-MOUSE

Microsoft Confidential April 1, 1990

· 4·4 Der/cs Driver Adaptation Gulde

giMouseScaleY db
giReserved db

Grablnfo ends

?
38 dup C?l

:Y transform for MS-MOUSE

The following are the bitmaped codes for the giScrType field in the GRABINFO structure:

ST_TEXT
ST_GRPH
ST_LARGE
ST_SPECGRAB

- 00000000b ;screen is alphanumeric
- 00000001b ;screen is graphics
= 00000010b ;screen too big to switch
= 00000100b :reserved

4.3.2 Grabber Request Packet Structure

April 1, 1990

Upon entry, all the block functions expect ES:DI to point to a GRABREQUEST structure
that is formaued as follows. Since not all the fields are used by some functions, field usage
is detailed in the header for each function.

GrabRequest struc
grlpData dd ? :long ptr to I/O buffer
grXorg db ? ;x or1g1n <unsigned)
grYorg db ? :Y origin <unsigned)
grXext db ? ;x extent <unsigned)
grYext db ? :Y extent (unsigned}
grStyle db ? :style flags
grChar db ? ;char code for fill ops
grAttr db ? :attribute for fill ops

GrabRequest ends

The following are the codes for the t'ScreenOps field of the GRABREQUEST data struc
ture's grStyle field:

SCR_OP_MASK

F_BOTH
F_CHAR
F_ATTR
C_BOTH
c_CHAR
C_ATTR
c_cHAR_F_ATTR
C_ATTR_F_CHAR

- 00000lllb

- 000h
- 001h
- 002h
- 003h
- 004h
= 005h
- 006h
... 01117h

:fill w/ single char and attr
;fill w/ single char only
;fill w/ single attr only
;copy chars and attrs from lpOata
:copy chars only from lpData
:copy attrs only from lpData
:copy chars from 1 pData, fi 11 w/ attr
;copy attrs from lpData,fill w/ char

The following are the codes for the fFormat field of the GRABREQUEST data structure's
grStyle field:

FORMAT_HASK
FMT_NATIVE
FMT_OTHER

- 1001/10000b
- 0111000000b
= 10000000b

:mask to extract fFormat
:use format native to mode
:use clipbrd or fScreenOps

The following are the error codes for block operations:

Microsoft Confidential Be'la Release

ERR_UNSUPPORTED = 0FFh ;block op not supported
ERR_BOUNDARY = 0FEh ;src or dest range error

Display Driver Grabbers 4-5

4.3.3 Grab BuUer Structure
The following is the fonnat of the GRABST data structure: (Amit, what else can we say
about this structure?)

GrabSt struc
gbType dw ? ;see below
gbSize dw ? ;length (not including 1st 4 bytes)
gbWidth dw ? ;width of bitmap in pixels
gbHeight dw ? ;height of bitmap in raster lines
gbPlanes dw ? ;#of color planes in the bitmap
gbPixel dw ? ;# of adj color bits on each plane
gbWidth2 dw ? ;~idth of bitmap in 0.1 mm units
gbHeigh2 dw ? ;height of bitmap in 0 .1 mm units
gbBits dw ? ;the actual bits

GrabSt ends

The following are the codes for the gbType field of GRABST:

GT_TEXT = 1
GT_OLDBITMAP = 2
GT_NEWBITMAP = 3
GT_RESERVED4 = 4
GT_RESERVEDS = 5

4.3.4 Information Context Structure

Beta Release

INFOCON1EXT is a global structure shared by all the grabbers and may be considered
the non-Windows application version of the GDIINFO structure for Windows drivers. It
provides information needed by functions at all levels of the grabber source directory tree.
While storage for this structure is always allocated ih the leafnode directory module for
each grabber. it is typically validated by the GetMode function. Notice that it is essentially
a superset of the GRABINFO structure returned by the Geilnfo entry point GRAB INFO
has sufficient reserved space so that this infonnation may be made available to the
Wmdows layer in the future as well as allow for more fields being added if needed.

InfoContext struc
icOisplayld db ? ;Display ID code
icScrType db ? ;Screen type code
icSizeX dw ? ;Horz raster size in . lmm units
icSizeY dw ? ;Vert raster size in .lmm units
icCharsX db ? ;Number of character columns
icCharsY db ? ;Number of character rows
icMouseScaleX db ? ;Mouse to grabber coord xform in X
icMouseScaleY db ? ;Mouse to grabber coord xform in Y
icPixelsX dw ? ;Number of pixels in X
icPixelsY dw ? ;Number of pixels in Y

Microsoft Confidential April 1, 1990

4-6 Device Driver Adaptauan Gulde

icWidthBytes
i cBitsPi xe l
icPlanes
iclnterlaceS
iclnterlaceM
iclpScr
icScrlen

lnfoContext ends

dw
db
db
db
db
dd
dw

?
?
?
?
?
?
?

;Width in bytes of a row/scanline
;Number of adjacent bits/pixel
;Number of planes per pixel
;Interlace shift factor
;Interlace mask factor
;Long pointer to screen
;Current screen page length

4.3.5 Device Context Structure

April 1, 1990

The DEVICECONTEXT structure is a device-dependent structure private to the low-level
grabber modules. Its layout. content. and/or length will vary from grabber to grabber in
other branches of the grabber source directory tree.

The following is the DEVICECONTEXT structure for CGAHERC grabbers:

OeviceContext struc
dcScrMode db ? ;BIOS screen mode
dcScrStart dw ? ;regen start position
dcCursorPosn dw ? ;cursor position in CRTC format
dcCursorMode dw ? ;cursor start/stop scanlines
dcModeCtl db ? ;3x8 mode reg data
dcExModeCtl db ? ;3xx extended mode reg data
dcColorSelect db ? ;309 color select reg data
dcCrtcParms dw ? :->CRTC parms for non-BIOS modes
dcfSwitchGmt db ? ;switch graphics/multiple text

OeviceContext ends

The following is the DEVICECONTEXT structure for EGA grabbers:

OeviceContext struc
dcScrMode
dcScrStart
dcCursorPosn
dcCursorMode
dcAddrPatch
dcfSwitchGmt
dcFileNum
dcFontBank
dcSwapPath

OeviceContext ends

db
dw
dw
dw
db
db
dw
db
db

?
?
?
?
?
?
?
4 dup <?>
64 dup <?J

;BIOS screen mode
;regen start position
;cursor position in CRTC format
;cursor start/stop scanlines
;30x I 3Bx patch byte
;Switch graphics/multiple text
:->random number in swapfile
; ERI font info
;full swap path

The following is the DEVICECONTEXT structure for VGA grabbers:

OeviceContext struc
dcScrMode db
dcScrStart dw
dcCursorPosn dw
dcCursorMode dw
dcAddrPatch db
dcfSwitchGmt db

?
?
?
?
?
?

Microsoft Confidential

;BIOS screen mode
;regen start position
;cursor position in CRTC format
;cursor start/stop scanlines
;30x I 3Bx patch byte
;Switch graphics/multiple text

Beta Release

de Fl l eNum
dcFontBank
dcSwapPath

DeviceContext ends

dw
db
db

Display Driver Grabbers 4-7

? ;->random number in swapfile
8 dup C?> ;VGA has 8 font banks
64 dup C?> ;full swap path

4.4 Coordinate System
All the grabber block functions operate using a left-hand coordinate system that is based
on character cells in a manner similar to that used by the PC's BIOS. The origin of the dis
play surface (0,0) is located in the upper-left comer of the screen. Positive X direction is to
the right and positive Y direction is downward. The coordinate space consists of the set of
integers that range from 0 to (icCharsX - 1) in the X direction and from 0 to (icCharsY -
1) in the Y direction. The quantities icCharsX and icCharsY are found in the gniliber's IN
FOCONTEXT structure, which may be obtained at any time by calling the extended grab
ber entry point Getlnfo. Notice that points in this space represent the upper-left comer of
the character cells, not their center.

As indicated by their names, the block functions operate on blocks of character cells. A
block is fully specified by its origin (relative to the screen origin) and its X and Y extents
in the GRABREQUEST structure. The extents are unsigned one-based quantities. A block
is defined to be the set of character cells in the 2-D range ([grXorg, grXorg + grXext],
[grYorg, grYorg + grYext]). Notice that specifying an extent of 0 on either axis has the
same effect as specifying an extent equal to the maximum screen extent on that axis. In
other words, the entire screen may be easily specified by setting:

grXorg = grYorg = grXext = grYext = 0

For graphics mode, the same cell~based convention applies so that Wmdows need not dis
cern differences between graphics and text screens. The size of a character cell in graphics
mode is defined as the same size cell that BIOS would use to display text using INT 0 lOH
functions. Although the current grabbers do not yet support the specification of arbitrary
block regions in graphics mode, it is still possible to request a full-screen GetBlock opera
tion by using the preceding procedure. An attempt to specify any other block in graphics
mode will return the ERR_ UNSUPPORTED error code.

Although the ERR_BOUNDARY em>r code is provided in GRABBER.INC for blocks
that violate the screen boundaries, none of the block functions can check currently for this
condition. Thus, the operation proceeds with undefined results.

4.5 Buffer Size Calculations

Beta Release

The low-level functions of all the grabbers define a number of equates used to calculate
the size of various data buffers needed to take screen snapshots and context switch the dis
play subsystem. Since these calculations vary widely among display adapters, the motiva
tions for many of the assumptions may not be clear. Therefore, the explanation provided in
the following subsections is an attempt to clarify this process.

Microsoft Confidential April 1, 1990

4·8 Device Ddver Adaptation Gulde

4.5.1 MAX_GBTEXTSIZE and MAX_GBGRPHSIZE
These two equates delme the maximum size of the GRABST header (defined in GRAB
BER.INC) when used to hold text and graphics, respectively, during a screen grab (snap
shot). The size of the data portion is display dependent and defined by MAX_ VIS1EXT
and MAX_ VISGRPH.

4.5.2 MAX_CDSIZE
This equate defines the minimum size of the context data buffers needed to support a video
context switch (SaveScreen/RestoreScreen). It does not include the size of buffers re
quired to save the actual screen data, which is defined by MAX_TOTTEXT and
MAX_TOTGRPH. The definition of this equate is split across 3 lines to make it fit within
SO columns.

All grabbers include the size of the Device Context (DC) and Information Context (IC)
structures as well as the size of the video BIOS data area in this equate. The OEM may ad
ditionally include the size of OEM-specific data structures that must be saved. Also, a
given display device may require storage for such things as device-specific BIOS areas.
For the EGA, this includes the size of the EGA BIOS data area as well as the 4 bytes com
prising the EGA SavePtr.

4.5.3 MAX_ VISTEXT and MAX_ VISGRPH

April 1, 1990

For most supported display devices, the size of the visible portion of a text or graphics
page is less than the total size of the page. Therefore, some video RAM is unused. Screen
grabs are defined to copy only that portion of the screen that is visible. Unfortunately, the
size of the visible page varies among display modes. Since InquireGrab can return only
one size for text pages and one size for graphics pages, we must set MAX_ VIS1EXT and
MAX_ VISGRPH to the size of the largest visual page we want to capture.

Notice that the page size indicated for text is actually somewhat larger than a visual page
since the screen grab buffer fonnat specifies that text grabs must have carriage-re
turn/linefeed pairs at the end of each line except the last, which must be tenninated by a
WORD of zeros.

The character generator on the EGA is programmable and, therefore, the size of a visual
page is unknown at the time of lnquireGrab. One could simply specify a giant buffer, but
that would be wasteful most of the time. Thus, we have chosen the EGA's 43-line mode as
the largest text screen we will attempt to handle. Anything larger will require that the user
select the PIP settings for graphics. However, the VGA grabber will allow SO-line screen
grabs.

For graphics grabs, the maximum size we support is 16K for the EGA, which is enough for
one page of 640x200xl or 320x200x2 graphics. We do not support the hires/multicolor
modes due to their large memory requirements (grabs are asynchronous and cannot be
swapped to disk).

Microsoft Confidential Beta Release

Display Driver Grabbers 4·9

4.5.4 MAX_ TOTTEXT and MAX_ TOTGRPH

Beta Release

According to settings in the PIP file, a context switch must save either the entire current
page of text or "graphics/multiple text." The fonner case is well defined and includes both
the visual and offscreen portions of the current text page. The latter, however, is open to in
terpretation by the implementer. For example, any graphics mode on the CGA adapter re
quires the entire frame buffer, allowing for only one page of graphics. Therefore, saving
the graphics page completely saves all the possible text pages as well.

Some display adapters, such as EGA and Hercules, differ in this respect in that they con
tain multi.pie graphics pages. Here, you could interpret the PIF setting to mean "multi.pie
graphics/multiple text" and allocate space for the union of all text and graphics pages. You
could also elect to save the user some memory and allocate space for only the largest
single graphics page (interpreting it as "single graphics/multiple text'').

Unfortunately, both interpretations usually require prohibitive amounts of memory. On the
EGA or VGA, the fll'St method would require that you save all 256K. The second would re
quire saving 128K, since the largest graphics page is in mode OIOH (640x350x4) and re
quires four planes of 32K (including offscreen memory). Therefore, the situation must be
examined for each display adapter and a compromise reached.

As a compromise on the EGACOLOR or VGACOLOR grabbers, you must interpret the
PIP setting as "single page of lores graphics/some of the text pages." This method requires
an allocation of only 16K, which is enough for one page of lores graphics or four of the
80x25 text pages. Since it is increasingly important to save hires graphics also, the EGA
grabber is designed to save one page of hires graphics using virtual memory by swapping
the page to disk. This method is much slower than saving to a memory buffer, but uses less
of the user's memory. Unlike screen grabs, this technique is safe to implement because
Wmdows must also swap to disk, and thus ensures that you do not reenter MS-DOS for
filel/O.

The only compromise required on the EGAMONO or VGAMONO grabbers is the inter
pretation of the PIF setting as "single page of graphics/all text pages." This means it is
possible to lose a graphics page if the non-Wmdows application is maintaining two pages
of graphics. However, this is a rare enough occurrence that we choose not to penalize the
user with a 64K data buffer requirement "just to be safe."

As a compromise on the HERCULES grabber, you must interpret the PIF setting as "single
page of graphics/no text pages." The logic here is based on the assumption that when
graphics is active, text is not and, therefore, does not need to be saved. Furthennore, it
would take 64K to save both graphics pages, which is far too much memory to request. It
is rare that the user runs an application that maintains images on both graphics pages, so it
is not necessary to require a 64K buffer.

No compromise is required on the CGA adapter since we save all 16K of the adapter's
memory.

Microsoft Confidential April 1, 1990

4-10 Device Driver Adaptation Gulde

4.5.5 GrabTextSize and GrabGrphSize
The GrabTextSize variable holds the minumum buffer size needed to support a text grab.
The GrabGrphSize variable holds the minimum buffer size needed to support a graphics
grab. These variables are initialized to the sum of MAX_GBTEXTSIZE and
MAX_ VISTEXT, and MAX_GBGRPHSIZE and MAX_ VISGRPH, respectively. They are
maintained as variables instead of constants so that the grabber initialization functions may
modify their size at run time if other features are detected that need consideration.

4.5.6 SaveTextSize and SaveGrphSize
The SaveTextSize variable holds the minimum buffer size needed to support a text context
switch, while the SaveGrphSize variable holds the minimwn buff er size needed to support
a graphics context switch. These variables are initialized to the sum of MAX_CDSIZE and
MAX_TOTfEXT, and MAX_CDSIZE and MAX_TOTGRPH, respectively. They are
maintained as variables instead of constants so that the grabber initialization functions may
modify their size at run time if other features are detected that need consideration.

If the EGA Register Interface (ERi) is present for the EGA, the size of the ERi's context
buffer is added to these variables during Devlnit so that data may be saved as well. This is
important since, in many cases, some applications (such as Microsoft Word) use the ERI to
modify EGA registers, in which case this context data will be more accurate than the DC
and IC structures alone.

4. 6 Function Reference

DisableSave
Purpose

Entry

Exit

EnableSave
Purpose

April 1, 1990

The following are alphabetically organized descriptions of the grabber functions used for
Windows 3.0 when running in real and standard modes.

Disables video context switching.

This entry point gives the grabber the chance to remove any hooks installed by Ena
bleSave.

DS=CS

None

Enables video context switching.

Microsoft Confidential Beta Release

Entry

Exit

GetBlock
Purpose

Entry

Beta Release

Display Driver Grabbers 4-11

This entry point gives the grabber the chance to install any hooks needed for context
. switching.

DS=CS

None

Copies a rectangular area of the screen to the buffer.

GetBlock copies a rectangular block of screen data to a specified buffer in a specified for
mat.

DS=CS
ES:DI -> GRABREQUEST structure

In GRABREQUEST, the fields are as follows:

Field

lpData

Xorg

Yorg

Xext

Yext

Style

Description

If lpData = NUIL, GetBlock does not actually perfonn the transfer;
it simply returns the number of bytes the operation would have re
quired. Otherwise, lpData is asswned to point to the buffer that
receives the screen data.

Specifies the unsigned X coordinate of the origin of the transfer in
alpha coordinate space.

Specifies the unsigned Y coordinate of the origin of the transfer in
alpha coordinate space.

Specifies the unsigned X extent of the rectangular block to transfer as
measured from the origin specified by Xorg and Yorg. lfXext is
zero, the entire width of the current screen is assumed.

Specifies the unsigned Y extent of the rectangular block to transfer as
measured from the origin specified by Xorg and Yorg. lfYext is
zero, the entire height of the cwrent screen is asswned.

The only field of Style used for GetBlock operations is the fFormat
field.

Microsoft Confidential April 1, 1990

4-12 Device Driver Adaptation Gulde

Exit

Error Exit

Comments

Getlnfo
Purpose

April 1, 1990

Field

Char

Attr

Description

If !Format= FMT_NATIVE, the data is copied in the native screen
format for the current screen mode. Thus, text screens result in
character/attribute pairs being copied. while graphics screens result in
a bitmap. Since the native fonnat is screen dependent, we recom
mend that it be used for save/restore purposes only; no interpretation
of the data should be attempted.

If !Format= FMT_OTHER, the data will be copied in a variant of
the Wmdows Clipboard format defined by the grab buffer structure
GRABST in GRABBER.INC. This buffer will have gbType
GT_1EXT for text screens and gbType GT_NEWBITMAP fonnat
for graphics screens.

Not used for GetBiock operations.

Not used for GetBlock operations.

AX= number of bytes transferred

AX = error code
CF =1

In text mode, the display adapter may contain multiple character sets or allow
downloadable character sets. The data returned in Clipboard format will be translated to
the "standard" OEM set if it can be determined that another set is in use, which character
set it is, and if a translation table is available for the job. The EGA is an example of an
adapter that makes it hard to determine that a set has been downloaded and practically im
possible to determine which one it is.

Returns the GRABINFO structure.

Getlnfo fills a buffer pointed to by ES:DI on entry with data in the GRABINFO fonnat
Notice that the INFOCON1EXT structure is copied since it is a superset of the GRA
BINFO structure (although INFOCONTEXT is not as big as GRABINFO, because of the
existence of reserved fields in the latter).

Although Wmdows knows nothing about the reserved fields, you end up filling some of
them with the extra data in INFOCONTEXT because it is convenient for debugging pur
poses. Because these fields are still reserved, they may change at any time.

Microsoft Confidential Beta Release

Ent11

Exit

GetVersion
Purpose

Exit

lnitScreen
Purpose

Ent11

Exit

lnquireGrab
Purpose

Beta Release

Display Driver Grabbers 4·13

Notice that the block functions also check the cwrent mode and retmn ERR_UNSUP
POR'IED to indicate non-support for the request, which is the preferred way to determine
support for a given mode.

FS:DI -> GRABINFO structure to fill

AX= 0 if block ops not supported on current mode (graphics)
AX= 1 if block ops supported on current mode (text)

Returns the grabber version number.

None

AX= version number

(Amit, please review carefully.) Initializes the screen to a known text mode and a re
quested number of lines p~ screen.

This function is called by Wmdows once before the non-Wmdows application starts up.
Wmdows also calls this function after the non-Windows application's screen has been
saved and the DisableSave function has been called during a context switch away from the
application. The function is called a third time after the non-Windows application fmishes
execution. The last two calls to this function ensure that the display is left in a known text
mode before putting up Windows' preview switcher screen or going back to Wmdows.

DS=CS

AX= Number of lines per screen
(If the number of lines requested cannot be supported by the display device, it will be
rounded down to a figure that the device can support. Notiee that this parameter is new for
Wmdows 3.0. Earlier grabber versions do not take any parameter.)

None

Returns the size of the grab buffer n~ or dispatches an extended function call.

Microsoft Confidential April 1, 1990

4·14 Device Driver Adaptation Gulde

Entry

Exit

Comments

lnquireSave
Purpose

Entry

Exit

April 1, 1990

In Microsoft Windows 1.0x, this routine handled only grab buffer size requests.

Microsoft Wmdows 2.0x added the extended functions dispatched by lnquireGrab. For
an explanation of the new subfunctions mentioned in Section 4.2.1, "Standard Function
Dispatch Table," and Section 4.22, "Extended Function Dispatch Table," refer to their
descriptions in this section.

DS=CS
AX=n

where n is either:

1 Inquire text grab buffer size
2 Inquire graphics grab buffer size
n > 2 Extended subfunction request

If the function nwnber is 1 or 2,
DX:AX = size in bytes for the grab buffer

else
exit status depends on the extended call.

To get any useful work from the grabber, Windows must call either InquireGrab or In·
quireSave before any other call (lnitScreen is a possible exception). This is an opportu
nity to initialize the module if it is the first time one of these entry points has been called.

The grabbers supplied by Microsoft also perfonn first-time internal initialization when
either lnquireGrab or InquireSave are called for the first time.

See also: InquireSave, GRABBER.INC, ENTRY.ASM

Returns the necessary size of the screen save buffer.

DS=CS
AX=n

where n is either:

1 Inquire text context save buffer size
2 Inquire graphics context save buffer size

DX:AX =size in bytes for save buffer

Microsoft Confidential Beta Release

RestoreScreen
Purpose

Ent rt

Exit

Error Exit

Comments

SaveScreen
Purpose

Ent rt

Exit

Error Exit

Comments

SetSwapDrive
Purpose

Beta Release

Restores a previously saved display context.

AX = size in bytes of screen save area
DS=CS
ES:DI -> save area

CF = 0 (screen was successfully restored)

CF= 1 (unable to restore screen)

Display Driver Grabbers 4-15

Windows guarantees that the offset portion of the screen save area will always be zero.

Saves the current display context.

AX = size in bytes of screen save area
DS=CS
ES:DI -> screen save area

CF= 0 (screen was successfully saved)

CF= 1 (unable to save screen)

Wmdows guarantees that the offset portion of the screen save area will always be zero.

Sets the current swap drive and path.

The next SaveScreen call following this call uses the given swap drive letter to open the
swapfile, if needed. Failure to call this function at least once before SaveScreen may result
in a failure to context switch. This drive and path information is stored as a static value and
need not be set before every call to SaveScreen. If it is known that the swap drive will re
main constant for the "life" of the grabber instance, then we recommend that this call be
done once, after Windows' decision to allow context switching has been made.

Microsoft Confidential April 1, 1990

4-16 Device Driver Adaptation Gulde

Entry

April 1, 1990

BL = ASCII drive letter for swap (A. or B. or C, .•.)
= OFFH if no swap drive available

ES:DI -> d.-pathname template for Wmdows temporary file fonnat
DS=CS

None

Microsoft Confidential Beta Release

Chapter

5 Printer Drivers

Microsoft Windows 3.0 printer drivers provide the interface necessary to obtain device in
dependence between the Windows environment and the printer hardware. The driver gives
Wmdows and Wmdows applications information on suppon for fonts. paper trays and
sizes, printer orientation, graphics capabilities. color. and other advanced features that may
be available on the printer. This infonnation may be used by applications in creating the
desired printed output

Since printed output can come in a variety of different mediums by different types of dev
ices. you must have a unique driver to support your hardware's technology. Such types of
technology could be categorized as raster devices (e.g .• dot matrix. most laser. and inkjet
printers and some film recorders), vector devices (e.g., plotters), or devices with higher
level languages. such as POSTSCRIPT.

The printer driver interacts with the Graphics Device Interface (GDI), Print Manager, and.
indirectly, with Wmdows applications via the GDI Escape function. The Escape function
supports many subfunctions; some are required by the driver, and others are specifically de
fined to take full advantage of unique technologies. In some cases, these additional escapes
provide Wmdows applications with suppon not available through GDI. such as a mecha
nism to take advantage directly of higher-level devices. See Chapter 11, "Device Driver
Escapes," for more infonnation on and detailed descriptions of these escapes.

This chapter describes the support you need to provide in your printer driver. Of course,
the extent of the support you provide depends on the type of hardware supported.
However. we strongly encourage you to implement all the structures and functions defined
in this chapter that are applicable to your device. By doing so, Windows applications will
be able to take full advantage of your hardware device.

5.1 Basic Information

Beta Release

A Wmdows printer driver is a Windows dynamic-link library (DU.) that implements a set
of standard graphics primitives for a particular printer device. Unlike most device drivers.
a printer driver is generally not responsible for hardware communication with the printer, a
task nonnally reserved for the Windows Print Manager and the communications driver.
The printer driver essentially translates the device-independent GDI interface into a stream
of printer commands and data.

Microsoft Confidential April 1, 1990

5-2 Device Driver Adaptation Guide

5.1.1 The GD/ Interface
GDrs interface to a printer driver is much simpler than an application's interface to GDI,
since GDI takes care of all the coordinate transformations, object management, and most
clipping. There is, however, an analogy between the two sets of fwictions.

Applications that call GDI functions draw into GDI device contexts. A device context (DC)
is GD I's device-independent virtualization of the output device, be it the display, a printer,
a memory bitmap, or even a metafile not associated with any specific device.

When GDI creates a device context, the printer driver is asked to supply information about
the printer, for example, the resolution of the device and the number of colors. In addition,
the printer driver is asked to create its own internal state information about the device. The
device-dependent state (referred to as the physical device structure or PDEVICE) corre
sponds to the DC at the driver level.

The application can request information about the device context, for example, to deter
mine what fonts are available. GDI will call the driver to supply device-specific infor
mation. GDI will supply the driver with the PDEVICE structure that corresponds to the
DC the application is using.

Another portion of GDI deals with managing drawing tools or objects, such as pens,
brushes, and fonts. For the most part, GDI manages these objects itself. However, when
the application uses one of the objects to create output, GDI asks the driver to create a
device-specific representation of the object

When an application performs output to a particular DC by using the graphics functions,
GDI will first perform any necessary transformations and, then, call the driver to perfonn
that output into the corresponding physical device. For simpler printer drivers, GDI may
also simulate complex graphics, such as filled polygons, with simpler driver primitives.

5.1.2 Additional Printer Driver Responsibilities

April 1, 1990

Printer drivers are responsible for providing a means for applications and the system Con
trol Panel to set up and manage the printer. Each printer driver contains a dialog box for
selecting printer options, such as paper size and orientation. In Windows 3.0 printer
drivers, this setup may also be directly manipulated by applications without going through
the dialog box.

In most cases, printer drivers are not responsible for sending bytes directly to the output
port Instead, printer drivers call special GDI fwictions to perform output Depending on
the options selected by the user, those functions will route the output to a specific port, to a
disk file, across a network connection, or to a temporary file for later output by Print
Manager.

Microsoft Confidential Beta Release

Printer Drivers 5·3

5.1.3 Printer-Driver Developer Responsibilities
Since printer drivers are Windows DU.s, the prospective printer-driver developer should
understand Wmdows programming, particularly in the areas of libraries, which are differ
ent from applications, and memory management, which is essential for ensuring good per
formance and cooperation within Wmdows. An undexstanding of application programming
is less important but useful for writing the driver's Setup dialog box and for understanding
the printer driver's role in providing Windows device-independent graphics.

Source code for several printer drivers has been supplied on the disks provided in this kit
These sources can provide a good basis for developing drivers for similar printers. The
samples cover a wide range of devices, including the following:

• A simple driver for the Epson ® printer

• A color driver for IBM's PC Color Printer

• Drivers for two different laser printer command languages, PCL (for the
HP® LaserJet®) and PosTSCRIPT.

The next few sections provide descriptions of the services the driver must provide and the
Windows functions intended for driver use.

5.2 Printer Driver Initialization
When Wmdows creates a device context (DC) for a device, GDI makes two calls to an
entry point in the device's driver called EnableO.

The first call to EnableO is used to create a data structure for GDI called GDIINFO. The
pmpose of the GDIINFO structure is to describe the device to GDL The structure of
GDIINFO is the same for all device drivexs. (See Section 5.2.2, ''The GDIINFO Data
Structure," in this chapter for a complete description. See also Chapter 2, "Display
Drivers," for another description of GDIINFO from a display driver's perspective.)

The second call to EnableO causes the driver to initialize a second data structure called
PDEVICE. PDEVICE is entirely device dependent and generally used by the device driver
to store state information for a printing job.

5.2.1 The Enable() Function and Its Parameters
The EnableO function is declared as follows:

WORD FAR PASCAL Enable(
LPSTR lpDest,
WORD style,
LPSTR lpDevice,
LPSTR lpOutput,
LPDEVMODE lpinitData);

Beta Release Microsoft Confidential April 1, 1990

5-4 Devlt:IJ Ddver Adaptauan Gulde

The lpDest parameter may contain a far pointer to either a GDIINFO or a PDEVICE struc
bll'e. depending on the contents of the style parameter. If the low-order bit of style contains
o. the device driver initializes the GDIINFO structure. Otherwise, lpDest points to the
PDEVICE structure the driver must initialize.

In either case, if the high-order bit is set. GDI creates an information context (i.e., a device
context used only for querying the device for infonnation and not for output). Some
drivers can reduce the amount of memory they allocate by assuming no output

The lpDevice parameter points to aNULL-tenninated string that identifies the device (e.g .•
PCL I HP Laserjet). For printer devices, the name of the device is the string installed in the
[devices] section of the WIN.INI file.

The lpOUlpUl parameter points to a NULL-terminated filename or MS-DOS device name
that identifies, for printer devices. the output port to which Print Manager sends the printer
data.

Printers often have a number of Setup options that a device driver can represent in a
device-dependent initialization data fonnat. This data may appear in a buffer pointed to by
lpl nitData. The role this data plays in controlling the driver will be discussed in Section
5.3, "The Printer Driver Environment" ·

EnableO returns the size of the structure copied if successful or zero if an error occurred.

5.2.2 The GD/INFO Data Structure

April 1, 1990

The structure of GDIINFO is as follows:

typedef struct _gdiinfo {
int dpVersiont
int dpTechnology;
int dpHorzSize_-
int dpVertSize;
int dpHorzRes;
int dpVertRes;
int dpBitsPixel:
int dpPlanes:
int dpNumBrushes:
int dpNumPens:
int futureuse;
int dpNumFonts:
int dpNumColors:
unsigned dpOEVICEsize:
unsigned dpCurves;
unsigned dpltnes;
unsigned dpPolygonals;
unsigned dpText;
unsigned dpClip;
unsigned dpRaster:
int dpAspectX:
int dpAspectY;

Microsoft Confidential Beta Release

Beta Release

int
int
POINT
POINT
POINT
POINT
POINT
POINT
POINT
POINT
POINT
POINT
int
int
int
int
int
int
int
int
int
int
int

GDII NFO;

dpAspectXY;
dpStylelen:
dpMLoWin;
dpMLoVpt;
dpMHiWin;
dpMHiVpt;
dpELoWin;
dpELoVpt;
dpEHiWin;
dpEHiVpt;
dpTwpWin;
dpTwpVpt;
dplogPixelsX;
dplogPixelsY;
dpDCManage;
futureuse3;
futureuse4;
futureuse5;
futureuse6;
futureuse7;
dpPalColors;
dpPalReserved;
dpPalResolut;

Printer Drivers 5-5

This rather large structure really has three kinds of fields in it:

• Driver management fields

• Driver capabilities fields

• Device dimension fields

The Driver Management Fields
These fields include the following:

Field

dpVersion

dpTechnology

dpDEVICEsize

Description

Contains the version of Windows for which the driver was writ
ten (not the driver version number). This field should contain
Ox300 for drivers written for Windows 3.0.

Contains .an index that broadly classifies the device. Possible
elassifications are either: Vector Plotter{O),Raster Display (1),
Raster Printer (2), Raster Camera (3), Character Stream (4),
Metafile or VDM (5), or Display File (6).

Provides Size of (PDEVICE) or the number of bytes that GDI
should allocate for the device's PDEVICE structure, which is ini
tialized by the driver during the second EnableO call.

Microsoft Confidential April 1, 1990

5·6 Dsvlt:e Driver Adaptation Gulde

April 1, 1990

Field

dpDCManage

Description

Specifies how multiple device contexts for the same device are
to be treated.

The dpDCManage field contains a combination of three bits. ,

Bit

DC_SPDevice (1).

DC_ lPDevice (2)

DC_IgnoreDFNP (4)

Description

Uses separate GDIINFO and PDEVICE structures for each
DC created for the driver.

For each combination of device name and output port name,
only one DC is allowed to exist (i.e., only one PDEVICE is
allocated).

Uses the same PDEVICE and GDIINFO structures for all the
DCs.

If none of these bits is set,· there will be one GDDNFO and PDE VICE structure allocated
per output file, regardless of the number of device contexts created on the port.

When DC_tPDevice and DC_IgnoreDFNP are combined, only one DC is allowed to
exist for a device, regardless of the output filename. Other combinations of bits are invalid.

Printer drivers normally set the DC_ SPDevice bit, allowing multiple independent jobs to
be spooled to the same printer simultaneously.

The Driver Capabilities Fields
The driver capabilities are specified by the following fields:

Field

dpNumBrushes

dpNumPens

dpNumFonts

dpNumColors

dpCurves

dpLines

Description

The number of predefined brushes supported by the device.

The number of device pens.

The number of device fonts in the printer.

The actual number of physical, non-dithered colors that the
device can prinL

A bit field describing the driver's ability to output curved
graphics (such as ellipses, arcs, or wedges) and what kind of ef
fects can be·supported.

A bit field describing the driver's ability to draw lines and
polylines, and the effects that may be achieved with such figures.

Microsoft Confidential Be'ta Release

Beta Release

Field

dpPolygonals

dpText

dpClip

dpRaster

Printer Drivers 5·7

Description

The capability of the device to support polygons and scanlines.

A bit field describing the level of support in the driver for text
output, such as support for Windows fonts, transfonnations and
effects, and scaling and output precision.

A bit field describing whether or not the device can do clipping.
If this field is 0, the device cannot clip output. If it contains 1,
the device can clip to an arbitrary rectangle.

Additional capabilities for raster and display devices, such as bit
map and banding support.

Brushes, pens, fonts, and colors are discussed in more detail in Section 5.6, "GDI Graphics
Objects."

The bit fields for curves through rasters are discussed in more detail in Section 12. 7.1,
''Information Data Sbllctures."

There are several· new bits for the dpRaster field that have been defined for version 3.0
drivers. They are as follows:

Bit

RC_DI_BITMAP

RC_PALETIE

RC_DIBTODEV

RC_BIGFONTS

RC_STRETCHBLT

RC_FLOODFil..L

Description

The device supports the conversion of device-independent bit
maps to compatible-memory bitmaps in all the DIB
resolutions (1, 4, 8, and 24 bits-per-pixel). However, if the
flag is not set, GDI will simulate in monochrome.

The device uses a color palette. This bit is primarily for dis
play devices.

The device can copy a device-independent bitmap to the page
via SetDIBitsToDeviceO.

The device driver supports Windows font files in the new,
version 3.0 format, which supports greater than 64K fonts.
However, if the flag is not set, all the fonts will be in the old,
version 2.0 fonnat.

The device supports StretchBltO.

The device supports FloodFillO. ·

For more infonnation on these new, version 3.0 output functions, see Section 5.7, "Per
forming Output."

Microsoft Confidential April 1, 1990

5-8 Darice Olivar AdaplaUaa Guida

April 1, 1990

There are three additional fields that are used only if the driver is marked as version Ox300
or higher. Generally, these entries are used only for display drivers that use a color palette.
The fields are as follows:

Field

dpPalColors

dpPalReserved

dpPalResolut

Description

The number of palette colors

The number of reserved palette registers

The color resolution or the number of bits in the palette registers

These fields will be ignored if the RC_ PALE'ITE bit is not set in the dpRaster field.
However, they must be present (and accounted for in the length returned by EnableO) if
the driver is version 3.0.

The Device Dimension Fields
The last category of GDDNFO entries provides the dimension information. The fields are
as follows:

Field

dpHorzSize

dpVertSize

dpHorzRes

dpVertRes

dpBitsPixel

dpPlanes

Description

The width of the printable area in millimetexs.

The height or length of the printable area in millimeters.

NOTE The maximum width and length of text that can be printed on a
page is determined by choosing either the Portrait or Landscape mode.
In Portrait mode, the page is taller than wide, when viewing the text
upright. In Landscape mode, the page is wider than tall, when viewing
the text upright.

The width of the printable area in device units {pixels).

The height or length of the printable area in device units (raster
lines or pixels).

The number of bits required to represent the state of a single
pixel in a single graphics plane.

The number of graphics planes.

These last two fields are used mostly by bitmapped display
drivers. Genenilly, one value is 1 and the other is the number of
bits per pixel, depending on the layout of the display memory.
Most printers do not support color, so 1 can be used in both
fields. Banding color drivers should use the same values they use
for their band bitmaps.

Microsoft Confidential Beta Release

Beta Release

Field

dpAspectX

dpAspectY

dpAspectXY

dpStyleLen

dpLogPixelsX

dpLogPixelsY

Printer Drivers 5-9

Description

NOTE Devices choose numbers that match how they output color. To
use the color brute functions for dot matrix support, these must matc:h
what is used there.

The horizontal component of the aspect ratio.

The vertical component of the aspect ratio.

The diagonal component of the aspect ratio (along the hy
potenuse of a right triangle of sides dpAspectX and dpAspectY).

These last three values represent the device aspect ratio. Since
they are used relative to one another, they may be scaled as
needed to get accurate integer values. They should be kept under
1000 for numfical stability ~ GDI calculati~ns. In general,
dpAspectXY = dpAspectX + dpAspectY .

For example, a device with a 1:1 aspect ratio (such as a 300 dpi
laser printer) can use 100 for dpAspectX and dpAspectY and
141(100*1.41421...) fordpAspectXY.

This value specifies the minimum length of a dot in a styled line
relative 'to the dpAspectXY value. It is usually 2 * dpAspectXY.

The logical pixels per inch along the horizontal axis.

The logical pixels per inch along the venical axis of the page.

The adjective "logical" is for displays. For readability reasons.
they use a logical inch, which is larger than a real ruler inch.
Printer drivers should always use real inches. A 300 dpi laser
printer puts 300 in both fields.

The POINT Dimension Fields and Mapping Modes
The remaining dimension fields of the GDIINFO structure (i.e., those with type POIN'I)
are used for scaling coordinates when certain mapping modes are in use. For each mapping
mode, there is a viewport point and a window point.

Place the device resolution in pixels-per-inch in the viewport fields and the number of log;,
cal units-per-inch in the window fields. The y-coonlinate of the viewport is negated to re
flect the fact that the x-axis (y = 0) is along the top of the paper in the default mapping
mode (MM_TEXT, which specifies device coonlinates) withy increasing while going
down the page; whereas in the other mapping modes, the x-axis (y = 0) is along the bottom
edge of the page.

There are five mapping modes with which to be concerned:

Microsoft Confidential April 1, 1990

5·10 ·Device Driver Adaptation Gulde

April 1, 1990

Mode

MM_LOENGLISH

MM_HIENGLISH

MM_LOMETRIC

MM_HIMETRIC

MM_TWIPS

Description

100 logical points per inch. Specified in the dpELoWin and
dpELoVpt fields.

1000 points per inch. Specified in the dpEHiWin and
dpEHiVpt fields.

10 points per millimeter or 254 points per inch. Specified in
the dpMLoWin and dpMLoVpt fields.

100 points per millimeter or 2540 points per inch. Specified
in the dpMHiWm and dpMHiVpt fields.

1440 points per inch. Specified in the dpTwp Wm and
dpTwp Vpt fields. (A twip is a twentieth of a point. which is
lfl2nd of an inch.)

For example, on a 300 dpi laser printer. the MM_ TWIPS mapping mode will require that
dpTwpWm be set to (1440,1440) and dpTwp Vpt be set to
(300. -300).

After EnableO returns GDIINFO to GDI, GDI will use the dpDEVICEsize field to allo
cate a PDEVICE structure and, then. call EnableO again to initialize it.

The structure of PDEVICE is entirely up to the device driver writer. This structure will be
passed to the driver on all output or information function calls and is the driver's view of
the device context. You should store any information about the print job that the driver
needs to keep in the PDEVICE structure.

NOTE Static storage in the driver's automatic data segment is undesirable for the following reasons:
there may be multiple. independent DCs in existence simultaneously, and it increases the size of the
driver even when no DC is in existence.

The only Consttaint on the PDEVICE structure is that the first WORD contain a non-zero
value. A device driver may be called to perform an output operation to a bitmap rather than
to the device itself. In this case. a BITMAP structure replaces the PDEVICE structure.
with the first WORD= 0. This mechanism is diSC<Ussed in more detail in Section 5.7, "Per
forming Output."

Once GDI bas successfully loaded the driver and allocated and initialized both the
GDIINFO and PDEVICE structures, GDI will return a device context handle to the appli
cation. The applica1ion may query the DC for metric information or create a print job, by
using a mechanism described in Section 5.4, "Print Manager Support."

When the application is finished with the device context that was created by CreateDCO.
it will call DeleteDCQ to destroy the device context. GDI will inform the device driver by
calling the DisableO function, declared as follows:

Microsoft Confidential Beta Release

PrlnterDrlvers 5-11

void FAR PASCAL Disable<LPPDEVICE lpPDevice);

After this call, the PDEVICE structure will be deallocated. If there are no other DCs in ex
istence using this device driver, the driver DIL (dynamic-link library) will be unloaded
from the system.

5.3 The Printer Driver Environment
Printers normally have a large number of options from which the user can select such
things as paper size, paper source, or installed font cartridges.

This infonnation can come from any of four sources:

1. The driver's default setup.

2. The driver's WIN.IN! section of user options. The WIN.INI should maintain at least
one such section so that modified printer setups can be retained from session to session.
This infonnation is edited by the driver's Setup dialog box.

3. The driver may call GDI to retain the driver's environment from DC to DC on a port
by-port basis. This allows faster initialization of the driver and avoids the time-consum
ing process of reading options from the WIN.IN! file.

4. The application can pass the environment to the driver in a buffer pointed to by the
Ip/ nitData parameter of the EnableO function.

Upon device initialization (i.e., during the pair of EnableO calls), this information is used
to set up information in the GDIINFO and PDEVICE structures. For example, the paper
size selection will affect the height and width fields. Also, a printer that allows multiple
graphics densities will modify the various resolution fields.

5.3.1 The DEVMDDE Data Structure

Beta Release

The DEVMODE data structure is used for the environment and the initialization data
(which are the same). By convention, all drivers place the device name in the first 32 bytes
of DEVMODE as a NULL-tenninated string. All the other data is device dependent.

For Wmdows 3.0, a new convention has been adopted that defines an additional number of
fields. These fields allow you to do some device-independent manipulation of the device
environment. When EnableO is called, the device driver should first check lplnitData to
see if the application has supplied valid initialization data. If it is valid, then the driver
should use that environment, not the default one, to initialize the GDIINFO and PDEVICE
structures. The driver should neither use nor modify the default environment information.

Microsoft Confidential April 1, 1990

5-12 Device Driver Adaptation Gulde

5.3.2 The GetEnvironment() Function
If no initialization infonnation is supplied, the driver should check the printer environment
maintained by GDI using the GetEnvironmentO function, which is declared as follows:

WORD FAR PASCAL GetEnvironment
LPSTR lpPort,
LPDEVMODE lpDevMode,
WORD cbDevHode);

GetEnvironmentO will copy into the DEVMODE buffer (pointed to by lpDevMode) the
first cbDevMode bytes of the environment for the port whose name is specified by the
NULL-terminated string pointed to by lpPort. The return value is the number of bytes actu
ally copied (which may be less than anticipated), or 0 if there is no environment for the
port.

If the environment cannot be found or if the data obtained is invalid or intended for
another device, the device driver should extract user settings from the WIN.INI file. To do
this, it would use the profile string functions documented in the Microsoft Windows
Software Development Kit. However, the driver should contain useful defaults for all
strings, so that it can create a valid environment even if the WIN.INI file is empty.

The driver should use the device name string at the beginning of the DEVMODE structure
to determine whether or not the environment obtained from GetEnvironmentO is correct.

A driver may also maintain additional infonnation in its DEVMODE structure to deter
mine validity if the device name matches one the driver supports.

5.3.3 The SetEnvironment() Function

April 1, 1990

If the environment was not found, the driver should set the environment so that future DCs
created with the driver can use the environment This is accomplished with the SetEn
vironmentO call, which is declared as follows:

WORD FAR PASCAL SetEnvironment(
LPSTR lpPort,
LPDEVMODE lpOevMode,
WORD cbOevMode);

Similar to the GetEnvironmentO function, the lpPort parameter points to the output port
for which the environment is being maintained, lpDevMode points to the driver data, and
cbDevMode contains the length. If cbDevMode is zero, the environment is deleted entirely.
The return value is the number of bytes copied, -1 if the environment is being deleted, or 0
if an error occurs.

The driver should always set up the default environment if it is not present, except when
the driver is initialized with a non-default environment (i.e., the lplnitData parameter to
EnableO points to application-supplied data).

Microsoft Confidential Beta Release

Printer DrlvetS 5-13

5.3.4 The OeviceMode() Function
All printer drivers are required to export a function called DeviceModeO, which pops up a
dialog box to edit the default environment This function sets the profile strings in the
WIN.INI file for the options chosen by the user. It should also set the environment using
the SetEnvironmentO function.

DeviceModeO is declared as follows:

WORD FAR PASCAL DeviceModeC
HWND hWnd,
HANDLE hlnstance,
LPSTR 1 pDevi ce,
LPSTR lpPort>:

This is the only function ever called directly by an application and the only function that
does not involve any GDI or driver data structures such as PDEVICE.

Since the function must pop up a dialog box with which the user can modify printer set
tings, the application supplies the dialog's parent window with the hWnd parameter. The
application also supplies the module handle of the driver DLL in the hlnstance parameter.
The lpDevice parameter points to the device name (e.g., PCL I HP Laserjet), and lpPort
points to the output port.

The DeviceModeO function needs to use the Windows API for dialog boxes, which is de
scribed fully in the Systems Application Architecture, Common User Access: Advanced In
terface Design Guide. This document describes the suggested appearance and user
interface for the Setup dialog box.

The most common way to call DeviceModeO is with the Control Panel application.
However, other applications that make heavy use of printer output, such as Microsoft
Write or Micro8oft Excel, may also provide a means for calling the printer driver's Device
ModeO function.

5.3.5 The ExtDeviceMode() and OeviceCapabilities() Functions

Bet:a Release

Newer drivers also export two environment-related functions: ExtDeviceModeO and
DeviceCapabilitiesO. These two functions are part of the new environment conventions
for Wmdows 3.0, which were designed to allow·greater application control over the printer
environment

ExtDeviceModeO allows the application to call the driver to obtain device initializ.ation
data either from the user or from the application's modifications to the default environment

(Craig, don't we need to add something about Device Caps?)

See the Microsoft Windows Software Development Kit for complete documentation oil the
new Wmdows 3.0 device initialization convention.

Microsoft Confidential April 1, 1990

5-14 Dev/cs Driver Adaptation Gulde

5.4 Print Manager Support
A printer driver does not need to manipulate any hardware. Windows handles all the port
output for the driver, either directly or through the Print Manager. GDI contains several
functions a device driver can call to perfonn output. The driver does not need to know if
output is being queued or written directly to the port.

5.4.1 The OpenJob() Function
To create a print job, a driver calls the OpenJobO function, which is defined as follows:

HANDLE FAR PASCAL OpenJobCLPSTR lpOutput, LPSTR lpTitle, HOC hdc);

The output will be sent to the port or file specified by lpOutput. This infonnation is passed
to the driver during the EnableO call. The lpTule parameter points to an application-sup
plied tide for the document; this tide appears in the Print Manager display. The hdc para
meter is the application's device context, i.e., the GDI handle for the application's print job.

The lp1itle and luJc parameters are obtained from the application via job control calls
made to the driver from the application. This mechanism is described in detail in Section
S.S, "The ControlO Function."

The return value from OpenJobO is a handle used by the driver to refer to the printer job
in other GDI calls.

5.4.2 The StartSpoo/Page() and EndSpoo/Page() Functions

April 1, 1990

Printer output is divided into pages. Each page is stored in a temporary file on the ma
chine's hard disk when Print Manager is running. Dividing a print job into pages allows
Print Manager to begin printing one page while the driver is still generating output on later
pages. A Print Manager page does not need to correspond to a physical page of printed out
put; the division is the driver's decision.

When Print Manager is not running, page division is not very important since temporary
files are not involved. However, starting and ending to at least one Print Manager page is
still required.

There are two calls for manipulating Print Manager pages:·

int FAR PASCAL StartSpoolPage{HANDLE hJob>:

int FAR PASCAL EndSpoolPageCHAHOLE hJob);

Calls to StartSpoolPageO and EndSpoolPageO can occur at any point during the output
Some drivers use one spool page per physical page. Others use one page for the whole job.
Notice that the printing of a particular page by the Print Manager application does not
begin until it receives the corresponding EndSpoolPage() call.

Microsoft Confidential Beta Release

Printer Drlve/S 5·15

A driver can perfonn output at any point between these two calls. When EndSpoolPageO
is called and Print Manager is loaded. the page's temporary file is submitted to the
Wmdows Print Manager.

Both functions return a status code. Positive values indicate success. Negative values indi
cate that an error has occurred. The defined error conditions are as follows:

Error code

SP_ERROR

SP _APPABORT

SP _USERABORT

SP _OUTOFDISK

SP _OUTOFMEMORY

Dermition

General error condition

The application aborted the job by returning FALSE to
GDI from an application-supplied function.

The user deleted the job via the Print Manager appli
cation.

There is not enough disk space to create or extend the
Print Manager temporary file.

The function failed due to a low memory condition.

These status values are returned by all the Print Manager-supported GDI calls except
OpenJobO.

5.4.3 The WriteSpool() and WriteDialog() Functions
There are two functions for perfonning output:

int FAR PASCAL WriteSpool(HANDLE hJob, LPSTR lpData, WORD cch);

int FAR PASCAL WriteDialogCHANDLE hJob, LPSTR lpMsg, WORD cch);

WriteSpoolO is the function used to output device data to the port or Print Manager tem
porary ftle. It must be called after a call to StartSpoolPageO and before the corresponding
EndSpooUobO.

The hJob parameter is a handle returned by OpenJobO. lpData is a far pointer to the
device-dependent data to write, and cch is the number of bytes to write.

WriteDialogO is used by a driver to pop up a message box at a certain point in the print
job. For example, a driver for a printer using manual paper loading can call WriteDialogO
to ask the user to place a new sheet in the printer. The print job will not continue printing
until the user presses the OK button in the message box. The user may also click a Cancel
button to terminate the print job.

5.4.4 The CloseJob() and DeleteJob() Functions

Beta Release

There are two ways to terminate a print job. Nonnally, a driver calls the CloseJobO func
tion, .

Microsoft Confidential April 1, 1990

5·16 Device Driver Adaptation Gulde

int FAR PASCAL CloseJobCHANDLE hJob>:

Here. h.lob is the handle returned by OpenJobQ. The retmn value is either positive if no er
rors occurred or it is one of the error codes defined in Section S.4.2.

If the driver detects an error condition or is asked to terminate a job by the application (as
described in Section S.S. "The ControlO Functionj, the driver will call Delete.JobO.

int FAR PASCAL DeleteJob{HANDLE hJob, WORD wDummy);

The hlob parameter is the job handle returned from OpenJobO. The wDummy parameter
is cmrently unused.

The return value is positive if the job is successfully deleted, or is one of the negative sta
tus values if an error occurs.

5.5 The Cont~ol() Function

April 1, 1990

The Print Manager functions in GDI are often called when the printing application per
fonns job control actions. such as starting a job or inserting a page break. All of these
special functions go through the ControlO function. which is declared as follows:

short FAR PASCAL Control(LPPDEVICE lpPDevice, WORD nFunction,
LPSTR lplnData, LPSTR lpOUIData);

The lpPDevice parameter points to the PDEVICE structure maintained by the device
driver. which was-initialized during the EnableO call.

The nFunction parameter contains the index of a device-dependent operation to perform.

The lplnData parameter is a far point.er to input data defined by the function specified by
nFunction. ·

The lpOUIData parameter points to a buffer for output data, if required.

The specific subfunctions are oft.en called escapes. since the application calls the driver's
ControlO function through the GDI function EscapeO. Notice, however. that GDI modi
fies some escapes before calling ControlO. This chapter will focus on those escapes that
are common to most or all print.er drivers.

A complete list of all the escapes appears in Chapter n. "Device Driver Escapes." The
driver writ.er should consult that chapter for details on all the ControlO subfunctions.

Notice that similar documentation appears in the Microsoft Wmdows Software
Development Kit (SOK). However. applications call through the GDI EscapeO function,
which has different parameters, and the behavior of some escapes differs between the
driver and the application because of GOI interaction. For this reason, whenever there are
any disagreements between the two documents, this document should be used when deal
ing with the driver's ControlO function, and the SOK should be used when calling
EscapeO from a Windows application.

Microsoft Confidential Beta Release

PrlnterDrlvers 5·17

The return value from ControlO depends on the particular escape being called. In general,
positive values indicate success, negative values indicate an error, and zero can indicate
either an unimplemented escape or a general error condition.

Some escapes that copy data of an indetenninate length to a buffer addressed by lpOut
Da1a return the number of bytes (or array elements, etc.) copied or, if lpOutData is NULL,
the size of the data that would be copied if lpOutData contained a non-NULL pointer. This
would allow the application to query for the size of a buffer to allocate before actually cal
ling the escape.

When an escape uses negative values to indicate an error, the driver should use the prede
fined SP_* values whenever appropriate, especially when the Print Manager library func
tions are involved. The ControlO function should always return zero (i.e., unimplemented)
for escapes that are unimplemented or unrecognized.

5.5.1 The QUERYESCSUPPORT Escape
All drivers are required to implement the QUERYESCSUPPORT escape. For this escape,
lplnData points to a WORD that contains the index of another escape.

The driver must return a positive number if the driver implements that escape, or zero if
the escape is unimplemented. The driver always returns non-zero if the escape queried for
is QUERYESCSUPPORT.

5.5.2 The SETABORTPROC Escape
SETABORTPROC is the first escape an application calls when actually printing. An appli
cation calling the GDI function EscapeO for the SETABOR1PROC escape passes a
pointer to a callback function in lplnData. This callback function is used to check for user
actions such as aborting the print job. The printer driver, however, is not responsible for
the callback function; GDI modifies the SETABOR'IPROC escape so that lp/nData points
to the application's device context handle.

The hDC parameter given to the driver by this escape should be used witlt the OpeoJobO
function to enable the output functions in GDI to call the application's abort procedure.
Printer drivers generally save this handle in the PDEVICE structure.

5.5.3 The STARTOOC Escape

Beta Release

Usually, STAR'IDOC is the next escape an application calls. STARTDOC indicates to GDI
and the device driver that the application is actually interested in printing and is not just
querying the printer DC for information.

This escape also supplies a Print Manager job title in a NULL-terminated string pointed to
by lplnData. The lpOutData parameter is unused. This supplies the title used by the Open
JobO function.

Microsoft Confidential April 1, 1990

5·18 Device Ddver Adaptation Gulde

Tugether with the port name supplied as a parameter to EnableO and the HDC supplied by
the SETABORIPROC escat>C• the driver now has all the data necessary to call OpenJobQ.

5.5.4 Raster vs. Vector Devices
From this point, there are two paths the driver can take, depending on the printer tech·
nology. Many printers (such as dot matrix and most laser printers) are raster printers, i.e.,
they print out text and graphics as bitmaps or raster lines.

Other devices (such as plotters and PosTSCR.IPT-based printers) are vector devices, which
draw text and graphics as a sequence of vectors or lines. (Although POSTSCRIPT printers
are based on raster engines, the language itself is vector oriented except where bitmaps are
concerned.)

Raster devices usually have constraints that cause problems for implementing the full GDI
device model Raster devices, for example, do not implement any vector graphics opera
lions. Therefore, all vector graphics must be drawn into a bitmap before they are sent to
the printer. Some devices, such as dot matrix printers, do not allow the driver to print any
where on the page. They require that text and graphics be output in the order of the print
direction posilion on the page.

These bitmaps can be enormous for a device such as a 300 dpi laser printer. In such cases,
the driver can break up the page into smaller rectangles that are printed indM.dually. For
each of the rectangles, GDI or the application will draw all the graphics that fit in each
rectangle into a bitmap and, then, print each individual bitmap.

These rectangles are called bands, and the printing process that uses these bands is called
banding. It is usually necessary to band raster printers; however, banding is not necessary
for vector devices.

For vector devices (i.e., non-banding devices), the application calls GDI graphics func
tions. which are translated into device driver graphics primitives (see Section 5.7, "Per
forming Output." for further details). After each page, the application uses the
NEWFRAMB escape to eject the page. NEWFRAME uses neither lplnData nor lpOut
Data.

5.5.5 Using Banding Drivers

April 1, 1990

With banding drivers, there are two possibilities. An application can either treat the driver
as if it were a non-banding device by calling the GDI functions and ending each page with
the NEWFRAME escape, in which case GDI performs the banding, or it can handle the
banding itself.

The NEXTBAND Escape
In either case, the view from the driver is similar. Before any graphics are drawn, the
driver is called upon to perform the NEXTBAND escape. When ControlO is called for the
NEXTBAND escape, lplnData points to a POINT structure, and lpOutData points to a

Microsoft Confidential Beta Release

Beta Release

PrlnterDrlvers 5·19

RECT sttucture. The driver should initialize its band biunap and set the RECT structure to
the size of the rectangle in device coordinates that the band represents on the page.

The POINT structure is added by GDI to detennine the scaling factor for graphics output
Some devices support the use of graphics at a lower resolution than text to allow for faster
output The x-coordinate of the POINT corresponds to horizontal scaling and the y-coordi
nate to vertical scaling.

The value in the structure corresponds to a shift count A point of (0,0) specifies graphics
at the same density as text, whereas a point of (1,1) specifies half-density graphics in both
directions, e.g., a 300 dpi laser printer printing biunaps at 150 dpi.

The driver's output function is then called to perform output into the band bitmap. When
all the output for the band is finished, the driver is called for another NEXTBAND escape.
The driver outputs the band in the band bitmap, reinitializes the bitmap, sets a new
rectangle, and continues with the next band as it did with the first

When all the bands on the page are exhausted, and the driver receives a NEXTBAND
escape, it should output the last graphics band and, then, set the rectangle pointed to by
lpOutData to (0,0,0,0) to indicate that there are no more bands on the page. It should also
perform all the processing necessary to eject the completed page. The next NEXTBAND
escape will correspond to the fust band of the next page.

If the application perfonns banding, it will call EscapeO to get the band rectangles. If GDI
is handling banding on behalf of an application, then GDI collects all the graphics calls on
a page into a metafile, i.e., a temporary file containing a list of the graphics calls and their
parameters. When the application calls EscapeO to perform the NEWFRAME escape,
GDI turns this escape into a sequence of NEXTBAND calls to ControlO. GDI sets the clip
region for the actual printer DC to the band rectangle and, then, plays back the metafile,
which recreates all of the application's output in the band bitmap. GDI does this for each
band until the band rectangle returned by the driver is empty.

Some devices, such as raster laser printers, allow text to be placed anywhere on the page at
any time. Furthermore, these printers do not place text into the band bitmap, since all the
device fonts exist in printer or cartridge memory. To optimize text output, their drivers use
a single, full-page band for all the text output and a sequence of smaller bands for
bitmapped graphics.

As an optimization, some of these drivers maintain a flag to detect whether or not any out
put, other than text, is attempted during the first, full-page band. If not, the driver skips the
graphics bands.

The BANDINFO Escape
Some devices, such as laser printers, can print text and graphics anywhere on the page but
still require banding support for vector graphics operations. Since these devices usually
use their own internal device fonts, they can greatly improve their text printing perfonn
ance by using a single, full-page band for text only as the first band The driver ignores
graphics calls during this band and handles only ExtTextOutO or StrBltO calls. Graphics
are printed on subsequent, smaller bands.

Microsoft Confidential April 1, 1990

5-20 Device Driver Adaptation Guide

An application that is aware of this process can speed up its printing operation by determin
ing whether text or graphics will be printed on the current band. It may do so using the
BANDINFO escape. The application can also use BANDINFO to optimize the banding
process.

For the BANDINFO escape, both lplnData and lpOutData point to the BAND
INFOSTRUCT structure:

typedef _bandinfostruct {
BOOL fGraphics;
BOOL fText;
RECT rcGraphics;
} BANOINFOSTRUCT;

The application calls BANDINFO immediately after NEXTBAND. If lpOutData is non
NULL and graphics will be printed in the current band, the driver will set the fG raphics
flag in the output structure. If text will be printed, the IText flag will be non-zero. The
rcGraphics flag is not used for output

Therefore, on the first band, the driver would set the rectangle returned by NEXTBAND to
the whole page. If it receives a BAND INFO escape, it will set tText and clear fGraphics.

On subsequent bands, it will band the page in small rectangles, handle only graphics calls,
and, if the application calls BAND INFO, clear IText and set fGraphics. ·

The application can also optimize the banding process somewhat by describing the page
with the structure passed by lplnData. The application sets the fGraphics flag, if there are
any graphics on the page, and the tText flag if there is any text If there are no graphics,
the driver may be able to skip the graphics bands. The application should also set
rcGraphics to the rectangle bounding all non-text graphics on the page. The driver has the
option of banding only the specified graphics rectangle rather than the whole page.

Vector fonts complicate the process somewhat. Since vector devices using banding gener
ally cannot print vector fonts, these fonts are simulated using polylines or scanlines. There
fore, they appear to the driver to be graphics in the text band. Since vector fonts can appear
anywhere on the page and require graphics banding support, the driver must band graphics
on the whole page even if the BANDINFOSTRUCT passed by the application specifies
otherwise.

If the application never calls BAND INFO, the driver can decide whether or not to band
graphics by maintaining a flag that is set if any graphics calls are seen during the text band.
See Chapter 11, .. Device Driver Escapes," for complete documentation on the escapes.

5.5.6 The ENDDOC and ABORTDOC Escapes .

April 1, 1990

When an application has completed all output, it calls the END DOC escape. END DOC
does not use either lplnData or lpOutData. At this point, the driver may call CloseJobO.

Another common escape is ABORTDOC, which is also called ABORTPIC in older docu
mentation or applications and has the same number assigned. This escape allows GDI or

Microsoft Confidential Beta Release

Printer Drivers 5-21

the application to abort a print job. Generally, if the job is valid, the driver will clean up
and call DeleteJobO.

5.5. 7 Final Notes on Escapes
Few, if any, applications use QUERYESCSUPPORT to look for SETABORTPROC,
STARIDOC, NEWFRAME, ENDDOC, or ABORIDOC. Therefore, a printer driver
should handle all of these escapes.

In addition, there are a few applications that perform banding without verifying that band
ing is required either by using QUERYESCSUPPORT or the GetDeviceCapsO function
(which examines the GDIINFO structure). A non-banding driver can easily support such
an application by returning the full page as the band rectangle on the first NEXTBAND
call and returning an empty rectangle for the next NEXTBAND call and ejecting the page.

There are a large number of other escapes that may or may not be appropriate to a specific
driver. They are all listed alphabetically and described in detail in Chapter 11, "Device
Driver Escapes."

5.6 GD/ Graphics Objects
Applications use the GDI graphics objects to perfonn drawing operations. The objects that
a device driver needs to be aware of are the following:

• Pens

• Brushes

• Fonts

5.6.1 Logical and Physical Objects

Beta Release

Applications create logical objects that are device-independent fonns of graphics tools.
Physical objects are device-dependent representations of the same tools that are passed to
the driver to perfonn output The process of converting a logical object into a physical ob
ject is called realizing the object A physical object may be used many times for drawing.
The realization process is used to eliminate the overhead of converting a logical to a physi
cal object at the time of output

Applications use the SelectObjectO function to select logical objects into a device context
for use in drawing.

GDI and the driver convert the logical object into a physical object GDI fll'St queries the
driver for the size of a given physical object and, then, allocates storage for it and calls the
driver to perform the realization.

Microsoft Confidential April 1, 1990.

5·22 Device Driver Adaptation Gulde

The contents and organization of the data structure defining a physical object are
completely up to the driver writer. Usually, the data structure for the physical object in
cludes the logical object plus some other infonnation that the driver needs.

5.6.2 Device Objects
Most drivers will also maintain and manipulate device objects. Device objects are data
structures that represent a graphic primitive that the device supports very well.

The most common type of device object is a device font. Most printers are capable of print
ing some set of built-in fonts. The concept of device fonts enables drivers and applications
to take advantage of a device's ability to render fonts. Device fonts are also expected to
produce better results (print faster and look better) than GDI fonts.

However~ drivers may also wish to support GDI raster and vector fonts. For banding dev
ices. it is usually not difficult to support GDI raster fonts because the brute functions for
dot-matrix support may be used to render these fonts into the banding bitmap. GDI raster
fonts are only useful for devices (such as lower-resolution dot matrix printers) with resolu
tions near those of the display.

For non-banding devices, supporting GDI raster fonts is not as easy. In fact. the PosT
SCRIPT driver (a non-banding device) does not support GDI raster fonts.

Supporting vector fonts is also optional. If a driver does not support vector fonts, GDI will
simulate them by drawing line segments.

5.6.3 The GD/ Information Functions

April 1, 1990

The functions discussed in this section are used to provide GDI and applications with infor
mation about the driver and the device. They do the following:

• Realize objects

• Enumerate objects

• Translate logical and physical colors

• Determine character widths

The Rea/izeObJect() Function
Physical objects are created to avoid the overhead of translating logical objects to physical
ones at drawing time. A realized object can be used to perform many drawing operations.
Therefore, the RealizeObjectO function should produce physical objects that can be used
with minimal overhead by the output functions. RealizeObjectO, not the output functions,
should perform any operations (such as translating or converting) that would slow down
the output functions.

Microsoft Confidential Beta Release

Printer Drivers 5-23

The EnumDFonts() Function
EnumDFontsO is used to enumerate all the device fonts. It is passed a face name that re
fers to the device font to enumerate.

The first call to EnumDFonts() passes a NULL face name. This indicates that the driver
should enumerate each face name that it supports. Subsequent calls will pass in one of
these face names. The driver should then enumerate all the sizes of that font.

The EnumObj() Function
EnumObj() is used to enumerate all the pens and brushes that a device supports. The
enumeration process communicates logical descriptions of objects to the application. All
these objects must be unique, i.e., when translated into physical objects and used for draw
ing, they should produce different output.

All the styles and colors of pens and brushes should be enumerated. Since pens are defined
to be only pure colors, only logical colors that will translate to pure physical colors should
be enumerated. For devices that support many colors (e.g., 8-bit displays), only a subset of
all the colors should be enumerated.

The Colorlnfo() Function
ColorlnfoO is used to translate physical and logical color representations. It will translate
in both directions, i.e., from physical to logical and from logical to physical. When given a
logical color, the nearest physical color should be returned. When given a physical color,
the logical color that best describes that color should be returned. This function is used to
support the GDI function GetNearestColor().

The GetCharWidth() Function
GetCharWidthO is used to determine character widths for variable width fonts. It is im
portant that the values returned by this function match and that the actual widths be used
when displaying characters on the display surface. Ariy differences will produce misalign
ments, and any text fonnatting or justification will not work as intended.

5.6.4 The GD/ Information Brute Functions

Beta Release

Since output must be supported to both the display surface and memory bitmaps, each of
the preceding functions should check to see if the PDEVICE passed indicates that a
memory bitmap, rather than the actual device, is referenced. If this is the case, the equiv
alent brute function (for dot-matrix support) should be called, passing on all the parame
ters. The following brute functions take the same parameters as the corresponding driver
functions:

• dmRealizeObject()

• dmEnumDFonts()

Microsoft Confidential April 1, 1990

5·24 Device Driver Adaptation Gulde

• dmEnumObjectO

• dmColorlnfoO

• dmGetCharWidthO

Notice, however, that dmEnumDFontsO always returns 1. Therefore, it need not be
called, and you can simply return 1 when the output device is a memory bitmap.

5. 7 Performing Output
There is a relatively small set of functions used for performing output. These functions
take as parameters a destination device, parameters that control the output, and physical ob
jects that have been realized previously.

How the output functions are implemented depends on whether or not the device uses
banding. Banding devices have their output stored in a metaftle. This metafile is replayed
for every band that is rendered (either by GDI or applications that wish to implement band
ing). Therefore, output coordinates must be mapped into the current band, and output out
side of the band must be clipped.

Non-banding devices perfonn output to the device in one pass. Therefore, the device must
have access to the entire display surface. Drivers must be able to perform all the output
functions to both the display surface and to memory bitmaps. This restriction would make
it very difficult for devices that supported complex drawing primitives if it were not for the
help that GDI and the display driver supply.

5. 7.1 The GD/ Output Brute Functions

April 1, 1990

There are also brute functions that match all the output functions (and all the object and
enumeration calls) except FastBorderO and ExtTe:XtOutO. For banding devices, this
means that the output functions do little more than detect where output is going (to a
memory bitmap or to the current band bitmap), translate the output coordinates into band
coordinates and, then, call the brute functions. Only ExtTextOutO may require a little
more code to break character drawing up into StrBltO calls. (See Section 2.6, "The
StrBlt/ExtTextOut Functions," for more detailed information on these requirements.)

The following output brute functions take the same parameters as their corresponding
driver functions:

• dmBitBltO

• dmOutputO

• dmPixelO

• dmStrBltO

• dmScanLRO

Microsoft Confidential Beta Release

Printer Drivers 5·25

The brute functions are used extensively by banding devices to build their bands' bitmaps.
However, non-banding devices must also use the brute functions when the destination is a
memory bitmap. Notice that the brute functions only support monochrome devices (1 bit
per-pixel, I-plane bitmaps). If the driver is not monochrome, it must either use the sup
plied color brute function library or implement the brute functions itself.

5. 7.2 The GD/ Color library
The dot-matrix (brute) library functions in GDI, such as dmBitBltO and dmOutputO, are
written for monochrome printers and do not support color. To simplify the writing of color
drivers, source code for a color version of the required functions is supplied with the DOK.

This color library implements color versions of all the dm*O functions except dmTran
sposeQ, which does not depend on color format The arguments and return values of these
functions are the same as those for the GDI monochrome versions of these functions.

The library implements color using a 3-plane RGB (Red, Green, Blue) banding bitmap,
which is converted to CMY (Cyan, Magenta, Yellow) when the bitmap is sent to the
printer. If your printer requires a different format, you will need to modify the supplied
sources for your driver.

A sample printer driver is supplied for the IBM Personal Computer Color Printer. This
driver is similar in structure to the sample Epson driver and has several files in common
with iL

If you are modifying or upgrading a driver written for Wmdows 2.x to support Wmdows
3.0, you should be aware of modifications made to these libraries for protected-mode
memory-management support. Both dmBitBltO and dmOutputO compile short, efficient
functions into an automatic variable and, then, call them to perform the actual operation. In
proteeted mode, this requires creating a CS alliis for the stack segment (See Section 5.9,
"Updating 2.x Printer Drivers to 3.0," for more information on memory management and
code and data segment mixing.) This is perfonned at the beginning of the two affected
functions.

A selector must be allocated for these two functions to operate. It is stored in the global
ScratchSelector, which is external to the hbrary and which must be supplied by the driveL
In the sample IBM PC Color Printer driver, it is allocated and freed in EnableO and Dis·
ableO, respectively. These functions appear in the file RESET.C. The code for the affected
library functions appears in BITBLT.ASM and OUTPUT.ASM.

5.7.3 The GD/ dmTranspose() Function

Beta Release

The GDI library of dot-matrix supporting functions also provides a function for transpos
ing bits in a bitmap. The dmTranspose (lpSrc, lpDst, WidthBytes) function assumes,
however, that neither the source nor the destination bitmap exceeds 64K. The source and
destination bitmaps must also be disjoint; dmTransposeO does not transpose in place.

(CraigC, please review this next paragraph's first sentence carefully. I changed it
around from what was in the old DDK and so I'm nervous about its accuracy.)

Microsoft Confidential April 1, 1990

5·26 Device Driver Adaptation Gulde

This function copies the Width.Bytes nwnber eight times (ie., it copies eight scanlines)
from the source pointer (the string to be copied and transposed) to the destination pointer
(the buffer that holds the transposed string), transposing bits as it copies. The eight most
significant bits, one from each of the eight scanlines, make up the first byte of the trans
posed line; the eight next most significant bits make up the next byte, and so on.

The Wulth.Bytes parameter is a short integer specifying the nwnber of bits in each scanline.
Nonnally, the order in which bits from the eight scanlines are packed into a byte is the
same as the order of the scanlines. This order can be reversed by giving a negative value
for Width.Bytes. When Width.Bytes is negative, the most significant bit from the first scan
line becomes the eighth bit in the first byte of the transposed line, the most significant bit
from the second scanline becomes the seventh bit, and so on.

5. 7.4 The GD/ Priority Queue Functions

April 1, 1990

The GDI library provides the priority queue data type that is used with device-specific
fonts to sort output strings into the correct order on the page. Priority queues are accessed
through a two-byte value, known as the "key." Each key can also have two bytes of infor
mation, called a "tag," associated with it.

The following list provides brief descriptions of each of the priority queue functions.

Function

CreatePQ(size):hPQ

MinPQ(hPQ):tag

ExtractPQ(hPQ):tag

losertPQ(hPQ, tag, key):Result

Description

Creates a priority queue. Size, a short integer
value, is the maximwn number of items to be
inserted into this priority queue. hPQ is a
handle to the priority queue if the function is
successful. Otherwise, hPQ is zero.

ReturnS the tag associated with the key
having the smallest value in the priority
queue, without removing this element from
the queue.

ReturnS the tag associated with the key
having the smallest value in the priority
queue and removes the key from the queue.

Inserts the key and its associated tag into the
priority queue. Result, a short integer value,
is 1RUE if the insertion is successful. Other
wise, it is ERROR(-I).

Microsoft Confidential Beta Release

Function

SizePQ(hPQ, sizechange):Result

DeletePQ(hPQ):Result

Printer Drivers 5-27

Description

Increases or decreases the size of the priority
queue. Sizechange (Craig, the old book
showed newsize in the description but size
change in the syntax line?) is a short integer
value specifying the number of entries to be
added or removed. Result, also a short integer
value, is the number of entries that can be ac
commodated by the resized priority queue.
Result is ERROR(- I) if the resulting size is
smaller than the actual number of elements in
the priority queue.

Deletes a priority queue. Result, a short in
teger value, is 1RUE if the queue is deleted.
Otherwise, it is ERROR(-1).

5. 7.5 Interpreting GD/ Coordinates
Drivers must be careful to interpret properly the coordinates that GDI passes to the output
functions. GDI uses an upper-left inclusive and lower-right exclusive rectangle. Therefore,
the rectangle coordinates (0,0,3,3) imply the type of fill shown in Figure 5.1.

Upper
left

0

2

3

0 2 3

Figure 5.1 GDI Coordinate Mapping (prnt_D1)

What this means is that the upper-left coordinates of a rectangle map to a device pixel into
which the driver should draw. The lower-right coordinates are not drawn into. This concept
is important to understand to avoid the problems created by being "off by one."

5. 7. 6 Output Functions Summary

Beta Release

Detailed descriptions of the following output functions appear in Chapter 10, "Common
Functions."

• OutputO

Microsoft Confidential April 1, 1990

5-28 Device Driver Adaptation Gulde

• BitBlt()

• StrBltO

• ExtTextOutO

The display driver descriptions of these may also be useful for non-banding devices that re
quire a more detailed understanding of the semantics of these functions. FastBorderO
need not be implemented for printers. It is intended only for displays.

Printers with special bitmap-manipulating abilities should support the new Windows 3.0
DIBs functions. (See Section 3.4, "Device-Independent Bitmaps," for a description of the
functions.)

5.8 Stub Functions
Since printer drivers are dynamic-link libraries (DLLs) that GDI loads via the LoadLi
brary() function, they must also export the termination function called WEP(bSys
temExit), or Windows Exit Procedure, to accommodate the support of DLLs. This function
indicates whether all of Windows is shutting down or just the single DLL. More detailed
descriptions are provided in Chapter 10, "Common Functions," and in the SDK's Guide to
Programming.

Printer drivers must also include the same two stub functions (i.e., SetAttribute and
DeviceBitmap) for which sample code is provided in Chapter 2, "Display Drivers."
Simply copy verbatim the code reproduced there.

5.9 Updating 2.x Printer Drivers to 3.0
Windows 3.0 offers several enhancements that affect printer drivers. The following are
those with the greatest effect and will be discussed in this section:

• Memory management

• New device initialization conventions

• New driver interface functions

5.9.1 Memory Management

April 1, 1990

Memory management significantly affects printer drivers that are being updated. Drivers
that do not support the new Windows 3.0 printer driver features will still run with
Windows 3.0, although they will not be as functional as fully updated drivers. However,
drivers that are unaware of the new Windows 3.0 protected-mode memory-management re
quirements will probably fail to operate at all.

Microsoft Confidential Beta Release

Beta Release

Printer Drivers 5-29

Wmdows 3.0, in both standard and enhanced mode, ta1ces advantage of protected-mode
memory management This memory management is less tolerant of the following kinds of
driver bugs or practices:

• References to NULL pointers

• Reads and writes past the allocated length of segments

• Mixing code and writable data in the same segment

• Huge pointer arithmetic based on the overlapping segment architecture of the 8086 pro
cessor

NULL Pointer References
The printer driver sample sources shipped in the Windows 2.1 DDK passed, as the default
string, NULL pointers into the Kernel function GetProfileStringQ. This is improper be
havior that will cause a General Protection (GP) fault in Windows 3.0.

The correct practice is to pass an empty string (i.e., a far pointer to a zero byte). The
sample sources for the Wmdows 3.0 DDK have been updated to reflect this.

Segment Overrun Problems
(Craig: please check the wording here.)

Another problem with the Windows 2.1 DDK sample sources was a segment-overrun bug.
Banding raster printer drivers, such as the Epson and IBM graphic printer drivers, use the
GDI function dmTransposeO when converting the band bitmap to the printer's native
command language. The dmTransposeO function always converts eight rows at a time.
Therefore, drivers that output seven rows at a time generally do the following:

• Transpose eight rows

• Set the most significant bit to 1 or zero

• Output that data

• Then skip seven rows in the bitmap.

That way, the next first row will be the last row that the previous pass ignored.

This presents a problem for the last row. If a row has a (hypothetical) width of 100-bytes,
which corresponds to 800 pixels, then dmTransposeQ will access 800 bytes to convert
eight rows. However, the last row will leave only 700 bytes in the segment In protected
mode, the first access made by dmTransposeO past the 700-byte limit will result in a GP
fault. The simplest solution is to add a row of "slop" bytes to the end of the band bitmap,
allowing dmTransposeO to function as expected.

Microsoft Confidential April 1, 1990

5-30 Device Driver Adaptation Guide

April 1, 1990

Code and Data Segment Mixing
There is an additional problem that usually is only an issue for display drivers, but that
also affects color raster printer drivers (such as the sample IBMCOLOR driver). Since the
dot-matrix library (also referred to as the "brute" functions) in GDI supports only mono
chrome bitmaps, color drivers generally include their own version of these functions,
which are extended to support their particular bitmap format These functions are generally
derived from the "color dot-matrix library" supplied with the DDK.

The BitBlt() and Output() functions work by compiling a short function that efficiently
implements the desired operation. These functions are written into arrays allocated on the
stack. To compile the function, it must appear in a writable data segment (which the stack
always is). However, to actually call the function, it must be in a code segment (which the
stack never is). Thus, BitBlt() and Output() will cause a GP fault when attempting to call
the compiled function.

The solution is to create a CS alias. Normally, only one selector is used to refer to a region
of memory. However, if the descriptor for another selector contains the same linear address
and length as the original, accessing either selector will refer to the same linear address.
Then, if the new selector is marked as a code segment, a program can call a function in
that segment

Windows device drivers can call AllocSelectorO to get an uninitialized selector and Pres
toChangoSelector() to copy the base and length and the modified attributes to the new
selector. This is demonstrated in the color library for the Windows 3.0 DDK.

If a printer driver is allocating read/write variables in a code segment, it will encounter the
same problem since the code segment is no longer writable. In this case, the driver is prob
ably better off placing the variables in its default data segment This is because the
Windows KERNEL always adjusts far-call entry prologs to point to the correct segment. It
is also generally considered poor programming practice to use a CS alias to access code
segment variables.

Huge Pointer Arithmetic and Selector Tiling
None of the printer drivers shipped as DDK sources has ever used segment arithmetic for
accessing objects greater than 64K at a time. However, if you are updating a driver that
does so, you will need to address this issue.

Windows 3.0 uses selector tiling to allow drivers (and applications) to allocate objects
larger than 64K and access them with 16-bit offsets. In short, Windows will allocate
multiple selectors (all 64K, if necessary, except possibly the last one) and use selectors sep
arated by some fixed amount, represented by the variable ahincr. In real mode,
_ahincr is set to lOOOH, allowing the same code to execute in any memory configuration.

Selector tiling is explained in more detail in the Microsoft Windows Software Development
Kit.

Microsoft Confidential Beta Release

Printer Drivers 5-31

5.9.2 Device Initialization Conventions
A new device initialization convention adopted for Windows 3.0 printer drivers allows
applications much greater control over printer drivers. All the sample printer drivers in
cluded with the DDK implement the new device initialization convention. This convention
is explained in detail in the Microsoft Windows Software Development Kit.

The convention adds to a printer driver the following two new functions:

• ExtDeviceMode()

• DeviceCapabilities()

ExtDeviceMode() enables applications to obtain device initialization data, by optionally
prompting the user or making device-independent modifications to the initialization data,
which can then be passed to the CreateDC() function. GDI then calls the Enable() func
tion with a pointer to this information, allowing the driver to preset its GDIINFO and
PDEVICE structures according to the application's options, rather than the defaults. That
way, the application can store different printer settings for itself and its documents or even
request specific setup properties, such as orientation.

(CraigC, don't we need to explain DeviceCapabilitiesO here?!)

5.9.3 Driver Interface Functions
There are a number of new functions that a driver can export for GD I's benefit. They are
used to support the new Device-Independent Bitmap (DIB) fonnat or to improve perform
ance on certain GDI operations, such as StretchBlt(). The functions include the following:

• StretchBlt()

• SetDIBitsToDeviceO

(Chrisg, can you give me a list of the others?)

5. 1 O Checklist for Printer Drivers

Beta Release

The following checklist is a summary of the points made in this chapter along with some
additional general information for updating all device drivers.

0 All Windows 3.0 drivers have to be bimodal, i.e., they have to run in protected mode as
well as 8086 real address mode. To do so, you may need to import some of these func
tions from KERNEL:

D AllocSelector() (@175) - to get a selector

D FreeSelector(wSel) (@176)- to free a selector

Microsoft Confidential April 1, 1990

5-32 Device Driver Adaptation Gulde

April 1, 1990

0 PrestoCbangoSelector(wSrcSel, wDestSel) (@177) - for code<->data selector
conversion

0 AllocCSToDSAlias(wSel) (@170) - to get a data alias of the code selector

0 AllocDSToCSAlias(wSel) (@171}- to get a code alias of the data selector

O _Alllncr (@114)- to do selector huge increments

0 LongPtrAdd (@180)- to do "segment" arithmetic

0 To avoid general protection faults, do not do any of the following:

0 Access (read or write) an array beyond its limits.

0 Have an offset wrap-around (going from OFFFFH to 0 using a string instruction).

0 Load an invalid selector into a segment register.

0 Update code segment variables.

0 Do segment arithmetic (except as described) for selector registers.

0 Compare segment (selector) registers to see which is lower in memory.

0 Do CLis and STis.

0 Use undocumented MS-DOS calls. You should use Windows calls whenever
possible.

Microsoft Confidential Beta Release

Chapter

6
Network Support

This chapter provides an overview of network support in Microsoft Wmdows version 3.0
and contains descriptions of the following areas:

• New benefits provided to network users

• Issues that may cause incompatibilities between Windows and networks

• How network vendors can make their software work well with Wmdows 3.0

• Which networks are supported in Windows 3.0 and how such pieces are distributed

6.1 New Features
The following subsections detail the new support that Wmdows 3.0 offers to network users.

Some basic restrictions still apply:

• The user must start the network before starting Wmdows.

• There is no support for workstations running Windows while also acting as servers.

6. 1.1 Alleviating the Memory Crunch

Beta Release

The most pressing problem for Windows 2.x has been memory. Windows has always been
hampered by the 640K barrier, and loading network software (typically between 50 and
150 KB) often reduces available memory drastically. Often, users find they need to choose
between running large applications and running their network.

Wmdows 3.0 solves this in the most dramatic way possible. Instead of gradually decreas
ing memory requirements, the 640K barrier was removed altogether. Both the standard and
enhanced modes for Wmdows now run in protected mode on the appropriate hardware, al
lowing Windows and Windows applications to directly access all the memory on the sys
tem.

This by itself should solve 80 per cent of our customers' problems. However, protected
mode also brings along some new compatibility issues, which are discussed in Section 6.3,
"Compatibility Issues and Solutions."

Microsoft Confidential April 1, 1990

6-2 Device Driver Adaptation Gulde

6.1.2 Adding and Deleting Network Connections
Previous versions of Windows made it inconvenient for the user to change network connec
tions. Under Wmdows/286, users had to start up a non-Windows application (such as
USE.EXE) to make the connection. Under Windows/386, we recommended that the user
not even attempt to change connections.

Under Windows 3.0, the user can:

• Connect and disconnect network drives from File Manager.

• Connect and disconnect network printers from Control Panel.

Both processes are integrated into the standard Windows user interface and do not require
spawning off any network utilities. They are actually performed using calls to the network
driver (described in Section 6.2.1, "Windows User Interface: The Windows Network
Driverj. See Figure 6.1 for an example of the Connect Network Drive dialog box.

Connect Network Drive

J21i¥e Leiter. lt!li!iJi-1 _:t '-------------.,

.lletMXI< Path:c::: l=======;-------'
Pa-d: .__ ___ _.

181 Add to Previoua u.1

c- I I Cancel II,__ e-.. ,--·-... --.11 !!•-.... ...

Figure 6.1 Creating a net connection from File Manager

On some networks, the user can browse through a list of the available network resources
and select ones to connect to. On all networks, the user can save a list of commonly used
connections and reconnect to them with a minimum number of keystrokes.

6.1.3 Network Printing

April 1, 1990

The Windows Print Manager (formerly known as the Spooler) can recognize networks. It
handles local printers much as it did for version 2.x, but it now recognizes network printers
and manipulates them using the network driver. (See Figure 6.2 for an example of a Print
Manager dialog box.) This allows the following advantages.

• Faster printing to network printers

• The ability to view the contents and status of network print queues, including detailed
infonnation on each job

• The ability to pause, resume, and delete your own jobs waiting in network print queues

Microsoft Confidential Beta Release

Network Support 6·3

• Accurate and detailed network error messages

A file information line
The printer queue information line for a local queue I Message box

- • !iii ... ·l·
Qplions l!'icw tlelp J
_e-e l B.esume l Qelete Jllhe PCL I HP Lasec.let on LPT1 (Local) is Printing o "'r Write-MEMO.INRI

25%ot12K 4:45PM 9-29-1989
2 Calendar- SCHEDULE.CAI. 6K 4:47 PM 9-29-1989
3 Write-STATUS.INRI 25K 4:49 PM 9-29-1989 v PostScript Printer on \\PRT310421,A.PUJ3011 [Active]
A Paintbrush -ARTWORK.BMP lOOK 4:47 PM 9-29-1989

/1

The rinter ueue information line for a network p q q ueue
Figure 6.2 The Print Manager dialog box-netsup_2.img.

6.1.4 Network Error Messages
In many cases, Windows can now give more accurate error messages when there are net
work errors. This is most noticeable in Print Manager, but is also seen under conditions
such as network access violations and severe network errors.

6.1.5 Network-Specific Dialog Functions

Beta Release

Control Panel allows the user to invoke a network-specific dialog box, which can provide
access to any additional features the network supports. For example, the dialog box could
allow the user to log in under a new name or send messages to another user, if the network
supports these operations.

The dialog box is provided by the network driver, and its design is completely up to the
developer. However, the design should follow the guidelines described in the Systems
Application Architecture, Common User Access: Advanced Interface Design Guide, and
Microsoft should be allowed to review these designs before the drivers are distributed. If
this dialog box offers the user any options, some mechanism should be included to enable

Microsoft Confidential April 1, 1990

6·4 Device Driver Adaptation Guide

the user to access on-line help. How to use the Windows Help Engine is described in the
Microsoft Windows Software Development Kit. (Greg, Still True?)

It is also the place where the driver version, copyright, and other information can be dis
played. We strongly recommend that this dialog box provide some way for the user to
learn the name of the network and the version numbers of both the network software and
the Windows network driver.

6.1.6 Running Windows From a Network Drive
Many corporations are choosing to put a single copy of Windows on the network, rather
than putting separate copies on every workstation. This is much easier for MIS depart
ments to maintain, upgrade, and control.

Under Windows 2.x, this was not feasible, since the Windows files were linked for particu
lar hardware during Setup. Drivers and fonts were bound together into a few large binary
files (i.e., WIN200.BIN and WIN200.0VL), and the entire Setup process had to be re
peated to change the configuration.

Jn Windows 3.0, we have attempted to remove these barriers. All the necessary drivers and
fonts are left as separate files on the user's disk (or the network Windows directory). The
ones to be used are specified in the user's SYSTEM.INI file, and changing configurations
consists of nothing more than copying the proper files to the user's disk (if not already
there) and modifying entries in their .INI files. (Greg, still true?)

The advantage for networks is that a single Windows directory can contain files for more
than one configuration. Each file is left unmodified and with its original name. A networl.(
administrator can install all the files their users require, and individual users need only
have their own personal directory containing .INI and temporary files. The users can mod
ify their own .INI file (manually or using Setup) without affecting others using the same
software. This is possible because Setup has a special option to create a personal directory
that references the common Windows directory on a network.

6.1. 7 . Supporting Large Numbers of Outstanding NCBs
Previous versions of Windows/386 imposed a limit on the number of Network Control
Blocks (NCBs) that could be outstanding. However, this limit was too small for some net
woa-intensive applications. The NETBIOS device for enhanced Windows 3.0 now sup
ports up to 4K ofNCBs, which should be adequate for most situations.

6.2 Attaining Compatibility

April 1, 1990

With previous versions ofWindows/386, many network vendors had to modify their net
woa software to be "Windows/386 aware" for the two products to coexist at all.

For the most part, that is still true with version 3.0. However, we now have new alterna
tives and new problems that need to be confronted. Windows running in enhanced mode

Microsoft Confidential Beta Release

Network Support 6-5

has become much easier to support, and Windows running in standard or real mode has be
come much harder.

6.2.1 Windows User Interface: The Windows Network Driver
As described in Section 6.1, ''New Features," the Windows Control Panel, File Manager,
and Print Manager provide the user with access to network functions. To enable these to
work under many different networks (each with its own capabilities and API), we have de
signed a Windows network driver. Just as a printer driver takes high-level calls designed
for a mythical "super printer" and maps them to calls understood by one specific printer,
the network driver takes a standard set of calls and translates them to the API of one
specific network.

The standard Windows package contains several drivers to support popular networks.
Microsoft provides support for Microsoft LAN Manager and a generic driver for NET
BIOS and Microsoft Network-based networks. Most networks based on these products can
use the standard drivers provided by Microsoft However, network vendors can also write
custom drivers to take advantage of their own features and extensions.

For each network, a single driver should be used for Windows in both real and protected
modes. The driver may also serve as a convenient place to put other code unrelated to the
functions it provides to Windows. Common examples include the following:

• Code that uses INT 3 lH to map APls between protected and real modes (as described
in Section 6.3.4, ''The Problem of Protected Mode API").

• Entry points for high-level functions provided for network-specific Windows appli
cations.

• Code to hook incoming network messages and display then in a pop-up dialog box for
the user.

See Chapter 7, ''Network Drivers," for more information on developing Windows network
drivers.

6.2.2 Enhanced Windows 3.0: Virtual Device Architecture

Beta Release

In previous versions of Windows/386, it was difficult to add support for new configura
tions. It required the developer to modify code entwined throughout the Windows/386 core
software and build a customized version of the product The changes made by one
developer were incompatible with additions made by other third parties.

For version 3.0, the entire system has been redesigned. Support for new hardware or
software configurations can be added in modular format, as self-contained "virtual dev
ices," which can be developed independently. Each virtual device is a self-contained pro
gram module that can be distributed and installed separately, can be loaded at runtime as
needed, and can cooperate with the other virtual devices in a harmonious way.

Microsoft Confidential April 1, 1990

6·6 Device Driver AtlaptaUon Gulde

Windows 3.0 also includes two network-related virtual devices: VNE1BIOS (for NET
BIOS support) and DOSNET (for Microsoft Networlcs). Either may be modified, extended,
or replaced to fit your network's needs. Notice, however, that the DOSNET device pro
vides services that are also used by other virtual devices. Therefore, it cannot be
completely removed; you must leave at least a stub to provide those services. See the
DOSNET source code for more details.

Volume 2 of the Microsoft Windows Device Development Kit contains more detailed infor
mation on creating enhanced Wmdows virtual devices.

6.2.3 Standard Windows3.0: The DOS Extender's Domain

April 1, 1990

For Windows 3.0 running in standard mode, the protected-mode operation not only offers
great benefits but also causes new compatibility problems.

Wmdows running in standard or real mode does not provide the same sophisticated, exten
sible environment that enhanced Windows does. Luckily, its needs are also not as great be
cause it does not multitask non-Windows applications. Most hardware devices will not
require changes to the DOS Extender; for example, displays are handled by the Wmdows
"grabber," and support for all major mice is already built into the standard DOS Extender.

However, some problems still exisL Just as with Wmdows 2.x, the problem of asyn
chronous events still arises when switching between non-Windows applications, and the
problem of the protected-mode API occurs for Windows applications calling the network.
(Both of these problems are discussed in more detail in Section 6.3, "Compatibility Issues
and Solutions. j The latter can be handled by placing code in the network driver, but the
former may require changes to the DOS Extender itself.

The DOS Extender is an independent executable file distnbuted with Wmdows.

It takes care of changing the processor state between real and protected modes, mapping
APis, and virtualizing system components that require global supervision.

Just as with Wmdows/386 2.x, support for these types of devices must be integrated into
the body of the DOS Extender. That is, a new version of the DOS Extender must be
created to support a new configuration. The standard version supplied by Microsoft will
support the most common configurations, but specialized adaptations will have to be done
by third-party vendors. Some network vendors may have to do this work. To decide
whether or not it is needed for specific cases will require reading the detailed descriptions
in this chapter and in Chapter 7, ''Network Drivers," as well as thorough testing.

One unfortunate limitation of this design should be noted: it will be difficult to combine
the adaptations done by two third-party vendors. That is, if a network vendor creates a
DOS Extender to support their software, and another company creates a DOS Extender to .
support their hardware, there will be no way to run the two at the same time. Someone will
have to build a merged version of the two products, or any users running with both needs
will be unable to run protected-mode Wmdows. Fortunately, few configurations will actu
ally require modifying the DOS Extender, so conflicts of this sort should be rare.

Microsoft Confidential Beta Release

Network Support 6-7

6.2.4 Testing Compatibility
The DDK's Installation and Update Notes includes guidelines for third parties to follow to
make sure their products work with Windows 3.0. These include detailed testing pro
cedures to help track down the problems discussed in this document These procedures
constitute the acceptance test used by Microsoft to verify compatibility.

6.3 Compatibility Issues and Solutions
The following subsections detail the major compatibility issues that existed with Windows
2.x and now with version 3.0, along with recommended solutions to these problems.

6.3.1 The Problem of Space
The biggest problem in running Windows with various networks has been lack of space. In
Windows version 3.0, this problem is eliminated by moving Windows and Windows appli
cations into protected mode, where they have access to all the memory in the system, not
just the first 640K.

However, while this solution is good for Windows applications, it does not help non
Windows applications. The network softWare is global. It will continue to take the same
amount of memory from both Windows and non-Windows applications. The difference is
that, in the latter case, it is taking up n kilobytes out of 640K, whereas from Windows
applications it is taking n from the much larger memory space available in protected mode.

6.3.2 The Problem of Global EMS

Beta Release

Many networks are attempting to free up space for other applications by loading portions
of themselves into expanded memory (EMS).

Windows can coexist with most EMS systems found on 80286 machines, allowing this
process to continue. However, on 80386 machines, we run into two possible problems:

• While running, enhanced Windows provides its own EMS emulation, which takes pre
cedence over existing expanded memory managers. However, unless a cooperating
EMS emulator is used, there can be no EMS continuity before, during, and after en
hanced Windows is run.

• Wmdows cannot run in protected mode at the same time as other protected-mode
software, including EMS emulators for the 80386 processor.

In many cases, these problems will prevent global software (such as MS-DOS or a net
work) from using EMS in situations where you need to run Windows.

Microsoft Confidential April 1, 1990

6-8 Device Driver Adaptation Guide

April 1, 1990

However, Microsoft provides a solution to these problems. Windows 3.0 includes a new
version of EMM386.SYS (the MS-DOS EMS emulator for the 80386 processor) that
cooperates with enhanced Windows.

If this EMS emulator is installed in the system and is being used when enhanced Windows
is started, enhanced Windows extracts information about its current handles and continues
to support these while it is running. EMM386 is turned off during this period. When en
hanced Windows exits, it turns EMM386 back on.

There are certain restrictions that apply to any global software that will make use of this
feature:

• The software must not allocate or deallocate handles while enhanced Windows is run
ning. That is, EMS handles must be the same size when enhanced Windows exits as
they were when it started.

• Any time the software needs to map a handle while enhanced Windows is running, it
must save the current context, perform the mapping, use the data, and then restore the
original context It must declare itself to be in a critical section during this entire
process. Even though the Expanded Memory Manager (E:MNI) handles are global, any
mapping is local to the current virtual machine (VM). Therefore, if enhanced Windows
were to switch tasks when the software was using EMM, the mapping would suddenly
change. Entering a critical section prevents this VM switching from occurring. Notice
that MS-DOS device drivers are already in a critical section when called from MS
OOS.

The following table and explanatory notes describe the ways in which Windows reacts to
other expanded memory managers:

Enhanced Windows Standard Windows
Open handles Open handles

Expanded Memory Manager Yes No Yes r\o

Unknown 386 Emulator Error (1) Error (1) Error (!) Error (1)

Physical Expanded Memory Error (1) OK (2) OK (3) OK (3)

EMM386 4.0 or Compaq CEMM Error(!) OK (4) Error (1) OK (5)

EMM386 for Windows 3.0 OK C6l OK (6) Error(!) OK (5)

1. Windows will print an error message and abort

2. Enhanced Windows will bypass and ignore an installed physical EMS board that has no
open handles. Enhanced Windows will then provide simulated expanded memory to
Windows applications and non-Windows applications. When enhanced Windows exits,
the physical EMS will once again be available.

3. Standard Windows will ignore the installed physical EMS, which will continue to func
tion and may be used by Windows applications and non-Windows applications. There

Microsoft Confidential Beta Release

Network Support 6-9

is no break in continuity across standard Windows execution, so memory-resident appli
cations can continue uninterrupted.

4. Enhanced Windows can turn off certain expanded memory emulators (including
Microsoft EMM386 4.0 and Compaq CEMM), provided they have no open handles.
Enhanced Windows will then provide simulated EMS to Windows applications and
non-Windows applications. The EMS emulator will be reenabled when enhanced
Windows exits.

5. Standard Windows can tum off certain expanded memory emulators (including all the
versions of Microsoft EMM386 and Compaq CEMM), provided they have no open
handles. There will be no EMS available while standard Windows is running. The EMS
emulator will be reenabled when standard Windows exits.

6. Enhanced Windows will take over any open handles and disable the emulator until en
hanced Windows exits. As noted above, EMS-using software must obey certain guide
lines in this configuration.

6.3.3 The Problem of Asynchronous Events

Beta Release

Handling asynchronous events is a problem in all multitasking situations. The problem oc
curs when network software does not realize that it is being called by several different
applications. It tries to communicate with an application that has moved or been replaced,
and the system usually crashes.

Figures 6.3 and 6.4 show a typical scenario in which enhanced Windows, MS-DOS, MS
DOS device drivers, and the network TSR are all loaded before enhanced Windows and
are, therefore, shared between all the virtual machines. While the two applications are run
ning concurrently in separate virtual machines, the following happens:

1. App2 makes an asynchronous network call, passing in the addresses of a buffer and a
callback function.

2. The network software stores the addresses, sends off the asynchronous request to the
network, and immediately returns to the caller.

3. Time passes, and enhanced Windows gives control to App3.

4. The network sends back the requested information. The network software gets control
(either through the network card generating an interrupt or by polling on a timer inter
rupt) and reads the information.

5. The network software copies the information to the buffer address that it stored.
However, in the current VM's context, this address does not point to App2's buffer but
to the middle of App3 's code. If App3 were to run after this, it would probably crash.

6. The network software calls the procedure address that it stored earlier. In VM2 this was
App2's post routine, but in VM3 it is a random piece of App3's data.

7. Therefore, random things result

Microsoft Confidential April 1, 1990

6-10 Device Driver Adaptation Gulde

April 1, 1990

VM2 VM3
640K

App2 App3

Local to each Vlvf

r"'i ~Buffer

'- Net

DOS
OK

Figure 6.3 Address recorded for App2's buffer NETSP _03.EPS

VM2 VM3
640K

App2 App3

Local to each Vlvf

Buffer ,... Random
~code

'- Net

DOS
OK

Figure 6.4 Writes to right address but In the wrong VM NETSP _04.EPS

As indicated earlier, this is not a problem unique to enhanced Windows. It is also true in
real-mode Windows with EMS, as well as other applications that bank code or data in ex
panded memory, and even nonnal applications that use overlays. In each case, the environ
ment or the application has to make a special effort to work with the moving targets.

When is this not a problem? If the application is doing only synchronous network opera
tions, and those operations occur entirely in a critical section (such as an MS-DOS call},
you are safe since neither mode of Windows will switch contexts until the operation has
completed. This means that no work is usually required to support an application accessing
a redirected drive.

Microsoft Confidential Beta Release

Beta Release

Network Support 6-11

The problem is less severe under standard or real-mode Windows, since it does not multi.
task non-Windows applications. In this case, the user must explicitly choose to switch
tasks. However, in enhanced Windows, tasks are constantly being switched without the
user's knowledge.

The following subsections discuss various solutions to problems resulting from asyn
chronous calls.

Modifying the Network Software to be Enhanced Windows
Aware
The first solution is relatively easy. It requires changes to the network software, but no cus
tomizing of enhanced Windows.

Every time the network saves an application's buffer or callback address, it must ask en
hanced Windows for the current virtual machine's ID number (VM ID) and save that with
the addresses. Later, when it needs to access these locations, it can again ask for the cur
rent VM ID. If the two numbers are not the same, then the network software knows its
stored addresses are invalid for this VM.

This solution worked fine under enhanced Windows 2.x. The network could get the current
VM's ID using an INT 2FH call. If it found itself in the wrong context, it could simply go
back to sleep and try again at the next timer interrupt, repeating the process until it hap
pened to occur in the right virtual machine.

Version 3.0 provides the same solution, but with an improvement When the network
wakes up in the wrong virtual machine, it can tell enhanced Windows to schedule a call
back for itself the next time the proper VM is run. This way it does not have to keep
waking up unnecessarily with every timer tick. (Where refer? INT 2FH?)

This method still leaves the possibility of overrunning tlie network's buffer if too many
packets come in before enhanced Windows is able to schedule a switch to the target VM.
However, overrun problems can happen occasionally even in real mode so the software
should be able to handle it correctly.

Creating A Virtual Device to Route Interrupts
With enhanced Wmdows version 3.0, it is possible to write a virtual device that under
stands the network well enough to route events to their proper virtual machines.

For example, when the network card generates an interrupt telling the network software
that its information packet has arrived, the virtual device could read in the information and
determine which VM it was supposed to reach. If that VM is running right then, the virtual
devjce can immediately simulate the interrupt down into virtual mode and pass the infor
mation off to the network software. Otherwise, it can schedule an event for the target VM,
including boosting its priority to get it to run as soon as possible, and, at that time, simulate
the interrupt

Using this method, the network software never has to worry about seeing an interrupt in
the wrong cont.ext Thus, the network software should not need to be modified at all.

Microsoft Confidential April 1, 1990

6-12 Device Driver Adaptation Gulde

April 1, 1990

Notice also that the virtual device could take on some part of the network functionality,
thus bypassing the nonnal network software in some or all cases. This would avoid the bot
tleneck of having to call the normal network software in virtual mode; the virtual device
could copy the data directly to the target application's buffers, and so forth. This would
also avoid data-overrun problems when enhanced Windows is unable to switch to the
proper virtual machine in a reasonable amount of time. And, finally, it could free up
memory for non-Windows applications by, in effect, moving the entire networlc into pro
tected mode.

Treating Asynchronous Calls as Critical Sections
A filter or the network software could declare a critical section around the entire duration
of an asynchronous call It would start the critical section when it first sent the request over
the wire and end it only when the response came back. During that time, Windows would
not be able to switch tasks, so the return event would always occur in the proper appli
cation's context

The problem with this is that some asynchronous requests can be outstanding for a very
long time. It is common for a network or an application to keep an asynchronous read al
ways outstanding, to make sure that it never loses any data coming in. Of course, this
would never allow Windows to switch away; the user would usually have to exit the appli
cation to reach other tasks.

If this method were only being used by a specific application, it might be worth it for the
user to run it exclusively like this. If it were being done constantly by the networlc
software, it would be unusable.

Advising Against Switching Away
In this scenario, you do not modify enhanced Windows or the networlc. You simply tell the
user that all the applications that use asynchronous networlc requests must be run in exclu
sive mode (with multitasking disabled), and the user must not switch away manually while
the application is active.

This achieves basically the same results as the previous example, except that it requires no
code changes and allows the user to accidentally crash their system if they carelessly dis
obey the advice.

Configuring the PIF File to Prevent Switching
By setting the appropriate bits in the application's PIF file, you can prevent Windows from
ever switching away when the application is running. This is not the most convenient way
to use the application, but it does prevent the user from switching away while asyn
chronous events are outstanding.

The main weakness is that the user may not have proper PIF files for all their network
applications.

The Microsoft Windows User's Guide contains more information on configuring PIF op
tions.

Microsoft Confidential Beta Release

Network Support 6·13

6.3.4 The Problem of Protected-mode AP/

Beta Release

This is a problem with Windows 3.0, but only for Windows applications that call non
Windows APis.

In Windows 3.0, Windows applications run in protected mode, while MS-DOS, the BIOS,
and all tenninate-and-stay-resident (TSR) programs (such as networks) run in virtual
mode. The fonner use selector:offset addresses, the latter use segment: offset addresses. Be
cause the two types are incompatible, it presents problems when a protected-mode appli
cation (e.g., any Windows application) needs to pass an address to MS-DOS, the BIOS, the
network, or any other software loaded before Windows. The problem can occur as follows:

1. The Windows application places the address of its buffer into a pair of registers or on
the stack. They are in the fonn of a selector:offset pair, pointing to some data in the
application's data segment.

2. The application executes an interrupt to talk to the network.

3. Enhanced Windows or the DOS Extender reflect the interrupt down into virtual mode,
so that the network software (which cannot run in protected mode) can handle it

4. The network extracts the selector:offset pair passed in and misinterprets it as a seg
ment:offset address.

5. The network reads from or writes to a random piece of conventional memory, causing
unpredictable but usually fatal results.

In practice, the process may vary slightly, but it usually ends with memory being trashed

The solution is to intelligently translate the application's·selector:offset into a valid seg
ment:offset before handing the address off to the network software. This is often referred
to as "mapping" the API between modes. The mapper must hook the interrupt in question
and determine the exact API being used. In every case where an address is being passed,
the mapper must copy the passed data or buffer space down into virtual-mode memory, re
place the selector:offset register values with a segment:offset pair pointing to the data's
new location, and, finally, simulate the original interrupt to let the recipient software
handle it (See Figure 6.4 for an illustration of this process.)

When the network software returns from the interrupt, the API mapper must go through
the same process but in reverse, copying data from the real-mode address to a protected
mode location, and readjusting the pointer to a selector: offset again so that the original cal
ler can use it correctly.

Microsoft Confidential April 1, 1990

6-14 Device Driver Adaptation Gulde

April 1, 1990

Windows
and

Windows
Applications ES:BX is a selector:offset

pointing to the Protected
Mode data. Protected Mode

Enhanced
Windows

Virtual Net Device

..... --------------1~1~---
1MB

640K

OK

VM1

riiiil
~

Virtual
Mode heap

~
~

ES:BX is a se/ector:offset
pointing to the Virtual
Mode copy of the data.

Figure 6.5 Mapping an address from PM to virtual mode

Virtual Mode

If the API involves passing buffers that contain segment addresses, the API mapper must
also translate all of these, as well as copy the data they point to into V86 address space.

Notice that this is not usually a problem. Windows already takes care of translating the fol
lowing most commonly used APis:

• Standard MS-DOS calls (including network-related MS-DOS functions)

• Standard BIOS calls

• Standard NETIUOS calls

Jn addition, no work is required ~ the following cases:

• An application doing 1/0 directly to the hardware.

• An API going only between applications running in protected mode.

Microsoft Confidential Beta Release

Beta Release

Network Support 6-15

• An API going only between software running in real mode.

• An API that does not involve passing addresses or any data in segment registers or on
the stack.

Usually, it is a problem only when a protected-mode Windows application needs to pass
addresses to a real-mode TSR or device driver, using an API that Windows does not under
stand. Unfortunately, many networks fit all these requirements.

The following subsections describe several ways to implement API mapping.

Enhanced Windows Virtual Devices and the DOS Extender
In enhanced Windows, a virtual device can be wrinen to handle API mapping; in standard
Windows the code must be integrated into the standard Windows DOS Extender. This is
the standard method used for all APis supported by the packaged product.

When the API is relatively simple, the enhanced Windows code to do the mapping can be
almost entirely table driven, requiring only simple modifications to the basic examples pro
vided with this kit.

The main disadvantage of this method is that separate code needs to be written for the
Windows, real, standard, and enhanced mode environments.

The INT 31 H Translation Services
Enhanced Windows and the DOS Extender both provide a set of services to help protected
mode applications do their own API mapping. These INT 3 IH calls include services for
LDT selector-management, DOS memory-management, interrupts, and translations. They
can allow a single piece of code to map an API under either the real, standard, or enhanced
modes of Windows 3.0. Therefore, this is the recommended method for adding such sup
port.

These services do not provide intelligence; they only provide the mechanical means for
such activities as copying to and from real mode. It is still the responsibility of the appli
cation to analyze the arguments being passed and translate them one by one between pro
tected and real modes.

So who will actually call the translation services? They have to be called by code running
in protected mode, and that means Windows code. It can be done in several ways:

• A dynamic-link library (DLL) could be wrinen that traps all network interrupts
generated in protected mode. It would then use INT 31H services to map the arguments
down into real mode and simulate the interrupt for the real-mode software to handle.
This method has the advantage of supporting existing applications that use interrupt
based APls.

• A similar DLL could be wrinen but, instead of trapping interrupts, it could provide the
appropriate high-level network API to Windows applications. The DLL would look at
the current mode: if operating in real mode, it would simply call the standard network

Microsoft Confidential April 1, 1990

6-16 Device Driver Adaptation Gulde

April 1, 1990

interrupts, but if running in protected mode, it would use INT 3 lH. This method is
more efficient than the preceding one because it avoids the considerable overhead of
generating and trapping interrupts.

• A combination DLL could provide both a high-level procedural API for newer appli
cations and transparent interrupt-mapping services for existing
applications.

Once the DLL is written, it can be installed in various ways:

• The code can be built into the Windows network driver.

• The code can reside in a standalone DLL, which is installed by listing it on the
WIN.INI file's LOAD= line. This would have no user interface.

• The DLL can be built into a small application that the user starts manually or by using
the LOAD= entry in WIN.INI. This application could then provide other functions or a
user interface as well.

• If the API is going to be called by only a single application, the DLL could be dis
tributed as part of the application. We recommend that the code remain in a DLL rather
than be embedded in the application to maintain portability. The DLL can be dynami
cally linked at load time or explicitly when the application is running in protected
mode.

A Shortcut for Simple NETBIOS Extensions
The basic Windows installations come with NETBIOS support, because this is the most
common network interface across platforms.

Since many networks add simple extensions to this interface, the standard NETBIOS
device for enhanced Windows and the DOS Extender both support a special INT 2FH call
for communicating with NETBIOS software. The network (or a simple TSR or device
driver) should watch for this interrupt and respond by passing the address of a table de
scribing the complete API to be mapped. The mapper can then use this table to handle both
standard NETBIOS and the particular network's extensions.

The exact calling sequences will be described in Appendix E, "Enhanced Windows INT
2FHAPI."

In cases where the changes would have been trivial, this method will let the network ven
dor write a single piece of code and avoid modifying the Windows NETBIOS mappers. If
a TSR is used, this method also has the advantage that no changes need be made to the real
mode network software.

Handling the AP/ Entirely in Protected-mode
As mentioned in Section 6.3.3, "The Problem of Asynchronous Events," a virtual device
could be written that would emulate all the functionality of the real-mode network

Microsoft Confidential Beta Release

Network Support 6-17

software, watching for interrupts from protected or real mode and talking directly to the
network card.

The advantages of this are enonnous: not only would it remove the necessity of copying ar
guments between real and protected mode, but it could also allow the user to remove the
real-mode software altogether, freeing up space for non-Wmdows applications.

However, this is obviously a lot of work; in effect it means rewriting the network software
for a new platform. It is also not a feasible solution for Windows in standard mode.

6.3.5 The Problem of Virtualizing Connections

Beta Release

VJitualizing connections is a problem in enhanced Windows (for both versions 2.x and 3.0)
and to a lesser extent in other multitasking systems.

When dealing with multiple application contexts but global network software, we run into
problems if the user is able to add and delete network connections. Some of these are real
issues of compatibility and system integrity, while others are matters of maintaining area
sonable user interface. For example:

• If App 1 is reading files from a network drive and the user goes into another virtual ma
chine and deletes the connection to that server, what happens to Appl?

• If the user adds a new connection while in one virtual machine, should an application
running in another VM suddenly see another valid drive letter appear?

• If the user makes a connection in Windows and, then, starts another virtual machine,
should the connection just made be inherited by the second VM?

• If the user makes a connection in one task and, then, exits that task without deleting the
connection, the network may not be able to clean up its data structures. This can leave
us with an "orphan" connection that can never be accessed or deleted. If you accumu
late too many orphan connections, the network becomes clogged and useless.

In a perfect world, Wmdows should either maintain completely separate virtual machines,
each with its own set of network connections, or keep a single global state. Unfortunately,
these are not achievable without being intimate with the specific version of MS-DOS and
the network installed.

However, some basic virtualization is necessary; problems might occur if one application
could change another's current directory.

Windows in standard mode takes a simple approach. It saves and restores the current
drive:directory context whenever it switches between non-Windows applications. This is
done using the standard DOS calls.

Wmdows in enhanced mode is more complex. It provides a separate set of drive structures
for each task. We supplement this with some support for MS-Net and NEIBIOS based net
works, trying to maintain a balance between user expectations ancf gystem integrity.

Microsoft Confidential April 1, 1990

6-18 Device Driver Adaptallon Guide

On MS-Net networks, the enhanced Windows DOSNET device provides the following sup
port

• If a connection exists before Windows is started, it is global and cannot be deleted from
within Windows or any VMs.

• If the user makes a connection in Windows and, then, spawns off another virtual ma
chine, that VM inherits Windows' connections as of that time.

• If a VM has inherited a connection from Windows, it cannot delete it

• If any VM exists that inherited a particular connection from Windows,
Windows cannot delete that connection.

In addition, the enhanced Windows NETBIOS device provides the following support:

• When a VM terminates, enhanced Windows will cancel any outstanding asynchronous
network requests it had and cancel all its local connections.

• When Windows exits, enhanced Windows will cancel any outstanding asynchronous
network requests it had and cancel all its local connections.

Notice that this will not work on other networks. In fact, since enhanced Windows is
virtualizing the drive data structures, some networks might get terribly confused to see
their drives changing as tasks are switched.

Some networks may choose to handle the virtualization themselves. By keeping track of
the current virtual machine ID, the network can maintain a separate state for each VM and
manage these however it sees fit

This can also be improved by providing an enhanced Windows virtual device that can in
form the network software when virtual machines are created and destroyed. The virtual
device can even manage instance data within the network software by transparently insert
ing the appropriate data for the current virtual machine context.

6.4 Support and Distribution
Various networks may require one or more of the following:

• A Wmdows network driver

• One or more enhanced Windows virtual devices

• A modified DOS Extender

• A modified version of the network software

April 1, 1990 Microsoft Confidential Beta Release

Beta Release

Network Support 6-19

Microsoft provides the components necessary to support Microsoft Network and Microsoft
LAN M:anager. Most networks that are compatible with these can continue to use the stand
ard versions.

In addition, the source to the Microsoft Network and NETBIOS components is made avail
able as examples and can be modified when necessary.

In cases where the network software needs to be modified, those changes need to be dis
tributed by the network vendor. If a customer calls Microsoft with problems, they will be
informed of the necessary upgrade and told to contact their vendor.

Network vendors who develop other components should also make these components
available to their customers. In some cases, though, Microsoft may be able to distribute
these components. See Appendix C, "Creating Distribution Disks for Drivers," in the
Microsoft Windows Virtual Device Adaptation Guide for more information on distribution
possibilities.

Microsoft Confidential April 1, 1990

6·20 Device Driver Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

7 Network Drivers

The Wmdows network driver provides the Wmdows Shell and system utilities with a
generic network interface. This interface provides a subset of functions that are generally
available across many networlcs. The main functions specified in this chapter, and which
should be supported in the driver, include:

• Making and breaking network connections

• Printing over a network connection

• Tracking the progress of print jobs on the network spooler

The Windows Shell, Control Panel, and Print Manager use these functions. Therefore, the
driver should be fully functional to support each of these features, if applicable to your net
work.

In some cases, there will also be a unique network driver for each version of a particular
network product. The functions they export will be called via entry points in the USER
module of the Wmdows core.

The driver should export calls with their export ordinals. (See Section 7 .11, ''Function
Summary," for a complete list of the functions and their export ordinals.) It is not neces
sary to have stub routines for unimplemented functions.

7.1 Initializing, Enabling, and Disabling

Beta Release

The driver's initialization routine (the DlL's eniry point) should check to make sure that
the appropriate network is actually installed and running. If it is not, the initialization
routine should put up an appropriate error dialog box to inform the user and return a value
of FALSE, which will prevent the driver from being loaded and taking up space unneces
sarily. The system then behaves exactly as if no network driver were installed.

The driver also has the option of implementing the Enable() and Disable() functions. If it
does implement them, they must be exported with the proper ordinal values of 21 for
EnableO and 22 for DisableO. These functions are then called when Windows is enabling
and disabling the OEM layer. (Greg, please check the Enable and Disable functions in
the Common Functions chapter. Is it appropriate for me to refer to them here as they
are now or do I need to add some pertinent comments to them?)

Microsoft Confidential April 1, 1990

7·2 Device Driver Adaptation Guide

EnableO is called when Windows is loading the driver for the first time and when resum
ing Windows after it has been suspended. That is, when running in real or standard modes
and returning to Windows after switching away from a non-Windows application.

DisableO is called before the driver's WEPO function when Windows is closing down and
when Windows is about to be suspended. That is, when running in real or standard modes
and Windows is about to be suspended to switch to a non-Windows application.

For example, if a network driver needs to hook an interrupt, it should make such a hook
during the EnableO function and remove it during the DisableO function. This would pre
vent the driver's hook routine from being called when Windows was swapped out to disk.

7.2 Passing Butters
The following calls take the address and size of a buffer into which the function will place
a variable-sized data structure.

• WNetGetConnectionO

• WNetGetErrorTextO

• WNetGetUserO

In each case, the mechanism used is the same. First, the caller allocates a buffer. It then
passes its address to the function in lpBuffer and the address of a WORD con~ining the
buffer size in lpBujferSize. The function then copies as much of the requested data struc
ture aS it can into the buffer.

If it all fits, the function returns successfully. However, if it does not, the data may be left
incomplete, and the function returns the WN_MORE_DATA status. In both cases, lpBuffer
Size is filled with the number ofbyteS actually required by the data structure. This way, if
the buffer passed in was too small and the function failed, the caller may allocate a new
buffer of the required size and call the function again.

All the data structures used are of a fixed size. They are allocated in a contiguous anay
starting at the beginning of the buffer. When they need to refer to variable-length strings,
the data structures will contain pointers in the form of WORD offsets into the buffer. The
driver should allocate space in the buffer to store these strings, starting at the end of the
buffer and growing downward. When there is insufficient room in the middle for one more
structure and its attendant strings, the driver stops adding data and returns the
WN_MORE_DATA value.

7.3 Determining Network Capabilities
WORD FAR PASCAL WNetGetCaps(WORD nlndex);
Export Ordinal@ 13 .

April 1, 1990 Microsoft Confidential Beta Release

Beta Release

Network Drivers 7·3

This function is used for detennining which network calls are supported by the current
driver.

Unlike all the other calls, this function does not return an error status. Instead, the nlndex
parameter specifies a query, and that defines the possible values returned.

A few of the nlndex values cause a constant to be returned. However, in most cases, the
nlndex parameter specifies which set of services is being queried, and the return value is a
bitmask indicating which services in that set are supported. A zero value would indicate
that none of the services in that set is supported.

Each value for nlndex is listed below, along with the constants defining the bits in the re
turned mask.

#define WNNC_SPEC_VERSION 0x0001

The high and low bytes of the return value contain the major and minor version num
bers of the network driver specification to which the driver confonns.

For this version, it would return Ox.0300.

#define WNNC_NET_TYPE 0x0002

Returns a WORD value; the high byte contains the network type, and the low byte may
contain a subtype. The following Net Type values are defined:

#define WNNC_NET_None
#define WNNC_NET_MSNet
#define WNNC_NET_LanMan
#define WNNC_NET_NetWare
#define WNNC_NET_Vines
#define WNNC_NET_l0NET

0x0000
0x0100
0x0200
0x0300
0x0400
0x0500

Developers working on new drivers should register their new type and subtype values
with Microsoft

#define WNNC_DRIVER_VERSION

Returns the driver version number.

#define WNNC_USER

Returns a mask of:

#define WNNC_USR_GetUser

#define WNNC_CONNECTION

Returns a mask of:

#define WNNC_CON_AddConnection
#define WNNC_CON_CancelConnection

Microsoft Confidential

0x0003

0x0004

0x0001

0x0006

0x0001
0x0002

April 1, 1990

7-4 Device Driver Adaptation Guide

#define WNNC_CON_GetConnections
#define WNNC_CON_AutoConnect
#define WNNC_CON_BrowseOialog

0x0004
0x0008
0x0010

Notice that the WNNC_ CON_AutoConnect bit does not represent a network driver
fWlction. Instead, it means that the network will support the standard MS-DOS Open
function for automatically connecting to network resources.

#define WNNC_PRINTING

Returns a mask of:

#define WNNC_PRT_OpenJob
#define WNNC_PRT_CloseJob
#define WNNG_PRT_HoldJob
/ldef i ne WNNG_PRT_Re 1 ea seJob
#define WNNC_PRT_CancelJob
#define WNNC_PRT_SetJobCopies
#define WNNC_PRT_WatchOueue
#define WNNC_PRT_UnwatchQueue
#define WNNC_PRT_LockQueueOata
#define WNNC_PRT_UnlockQueueOata
#define WNNC_PRT_ChangeMsg
#define WNNC_PRT_AbortJob

0x0007

0x0002
0x0004
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0xl000
0x2000

Notice that the WNNC_PRT_ChangeMsg bit does not represent a network driver func
tion, but rather means that the driver will send SP _QUEUECHANGED messages to
Print Manager. See Section 7.8.1, "Watching a Network Print Queue," for details.

lldefi ne WNNC_OEV ICEMOOE

Returns a mask of:

/!define WNNG_OEVM_Oevi ceMode

#define WNNC_ERROR

Returns a mask of:

#define WNNC_ERR_GetError
ltdefine WNNC_ERR_GetErrorlnfo

0x0008

0x0001

0x000A

0x0001
0x0002

7.4 Displaying the Driver-Specific Dialog Box

April 1, 1990

WORD FAR PASCAL WNetDeviceMode(HWND hParent);
Export Ordinal@ 14

As with printer drivers, the network software may have many options that cannot be pre
dicted or incorporated into a generic interface. Therefore, we provide a method for bring
ing up a dialog box that is provided by the network driver and is tailored to the specific

Microsoft Confidential Beta Release

Network Drivers 7-5

network's needs. (See the Systems Application Architecture, Common User Access:
Advanced Interface Design Guide for a description of the style to which the user interface
should confonn.)

This dialog box is the proper place for the authors to display information such as the
driver's name, version numbers of both the driver and the installed network software, and
copyright notice.

This is also the place from which the user can access functionality that is specific to the
network. For example, if the network supports sending messages to another user, the driver
can supply an interface in its device-mode dialog box. The user will be able to invoke this
dialog box from the Windows Control Panel.

The hl'arent parameter specifies the handle to a window that should be used as the dialog
box's parent

7.5 Displaying the Browse Dialog Box

Beta Release

WORD FAR PASCAL WNetBrowseDialog(HWND hl'arent, WORD nType,
LPSTR szPath);
Export Ordinal@ 15

This function displays one or more dialog boxes that enable the user to select a network re
source. The nType parameter specifies what kind of resource you are looking for; possible
values include WNBD_CONN_DISK1REE and WNBD_CONN_PRINTQ. The szPath
string is used to pass back the network path of the selected resource. The hl'arent parame
ter is the handle to a window that should be specified as the parent of the new dialog box.

The function returns a string containing the complete network path selected. It should be
formatted so that it can be passed unaltered to WNetAddConnectionO.

If the caller allocates a buffer that is too small to hold the path, it cannot call again because
that would cause the driver to prompt the user a second time. Therefore, the caller will allo
cate a buffer of at least 128 characters in length.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_ VALUE

WN_CANCELLED

WN_BAD_POINTER

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid nType value

Cancelled at user's request

Invalid pointer

Out of memory

Microsoft Confidential April 1, 1990

7-6 Device Driver Adaptation Gulde

7.6 Getting the Current Username
WORD FAR PASCAL WNetGetUser(LPSTR szUser, LPWORD
nBufferSize);
Export Ordinal@ 16

This function places the current username into the szUser string. It uses the standard mech
anism of returning the buffer size required in the nBufferSize parameter. (See Section 7.2,
''Passing Buffers," for more detailed information.)

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_USER

WN_MORE_DATA

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

Not logged in; no current usemame

The buffer was too small

Out of memory

7. 7 Device Redirecting Functions
These are calls that redirect standard MS-DOS devices, such as drive letters and LPT
ports, so that standard applications may use them and access the network in a totally trans
parent manner.

7. 7.1 Adding Network Connections

April 1, 1990

WORD FAR PASCAL WNetAddConnection(LPSTR szNetPath, LPSTR
szPassword, LPSTR szLocalName);
Export Ordinal@ 17

This function redirects a local device (either a disk drive or a printer port) to a shared
device on a remote server.

All szLoca/Name strings (such as ''LPTl:") are case independent The following illustrate
the most common names:

•A:• - •z:•
"LPTl:" - "LPT4:"

Microsoft Confidential Beta Release

Network Drivers 7-7

The empty string ("") indicates a non-redirected connection. Such connections are not ac
cessible by accessing a redirected port or drive letter. They must be opened explicitly by
using the MS-DOS Open function.

In these cases, WNetAddConnectionO serves only to specify a password for this network
path. Later, when the same network path is specified in an MS-DOS Open call, the net
work software may use this password.

Relllm Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_NElNAME

WN_BAD_LOCALNAME

WN_BAD_PASSWORD

WN_ACCESS_DENIED

WN_ALREADY_CONNECTED

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

Invalid network resource name

Invalid local device name

Invalid password

Security violation

Local device already connected to a re
mote resource

Out of memory

7. 7.2 Removing Network Connections

Beta Release

WORD FAR PASCAL WNetCancelConnection(LPSTR szName, BOOL
fForce);
Export Ordinal@ 18

This function cancels a redirection. The szName string specifies the name of the redirected
local device (such as .. LPfl:''). If a fully-qualified network path is specified, the driver
will cancel all the connections to that resource.

The fF orce parameter indicates whether or not any open files or open print jobs on the
device should be closed before the connection is cancelled. If/Force is FALSE and there
are open files or jobs, the connection will not be cancelled and the function will return an
error value.

Retum Values

WN_SUCCESS Success

Microsoft Confidential April 1, 1990

7·8 Device Ddver Adaptation Guide

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_ VALUE

WN_NOT_CONNECIED

WN_OPEN_FILES

WN_OUT_OF_MEMORY

Function not supported

Network error

Invalid pointer

szName is not a valid local device or net
work name

szName is not a redirected local device or
currently accessed network resource

Files are open andfForce was FALSE.
Connection was not cancelled.

Out of memory

7. 7.3 listing Network Connections

April 1, 1990

WORD FAR PASCAL WNetGetConnection(LPSTR lpLocalName, LPSTR
lpRemoteName, LPWORD nBufferSize);
Export Ordinal @ 12

This function returns the name of the network resource associated with a redirected local
device. (See Section 7 .2, "Passing Buffers," for more detailed infonnation.)

The szLocalName string specifies the name of the redirected local device. The name of the
remote network resource is returned in the lpRemoteName parameter.

This function uses the standard mechanism of talcing the maximum length of
lpRemoteName in nBufferSize and returning the actual required length in the same location.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_ VALUE

WN_NOT_CONNECTED

WN_MORE_DATA

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

szLocalName is not a valid local device

szLocalName is not a redirected local
device

Buffer was too small

Out of memory

Microsoft Confidential Beta Release

Network Drivers 7·9

7.8 Net Printing Functions
These are calls for printing over the network as well as for tracking network print jobs.

The driver may assume that it will only be called by Print Manager. To get maximum sup
port from Print Manager, you should implement all the functions that your network
software can handle.

7.8.1 Watching a Network Print Queue

Beta Release

WORD FAR PASCAL WNetWatchQueue(HWND hWnd, LPSTR szLocal, LPSTR
szUser, WORD nQueue);
Export Ordinal@ 8

This function instructs the driver that Print Manager is interested in the specified remote
queue.

The hWnd parameter is the handle to a window that should be notified when the status of a
job in the queue changes. See Section 7 .8.5, "Notification of Queue Status Changes," for
details.

The szLocal string should specify the name of a local device (such as "LPTI:'') that has
been redirected to a network print queue.

The caller may also specify an szU ser string that says that it is only concerned with jobs
belonging to a particular user. This parameter is advisory.

Print Manager will watch each redirected device appearing in the Print Manager client
area.

The caller may specify an nQueue value, which is an arbitrary WORD. When the queue
change notification occurs, the network driver will pass the nQueue WORD specified for
this queue as the wParam value. This will allow Print Manager to determine which queue
to refresh.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_ VALUE

WN_BAD_LOCALNAME

Success

Function not supported

Network error

Invalid pointer

Invalid window handle

Invalid local device name or local device
not redirected

Microsoft Confidential April 1, 1990

1-10 Device Driver Adaptation Guide

WN_ALREADY_LOCKED

WN_OUT_OF _MEMORY

Local device already being watched

Out of memory

7.8.2 Stop Watching a Network Print Queue
WORD FAR PASCAL WNetUnwatchQueue(LPSTR szlocal);
Export Ordinal@ 9

This function infonns the driver that Print Manager is no longer interested in a queue.

The szLocal string specifies the name of a local device that Print Manager no longer wants
to watch.

The driver may assume that watched queues will be cancelled before Print Manager termi
nates.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_QUEUE

WN_BAD_POINTER

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

szDestination is not a valid net queue or
redirected device

Invalid pointer

Out of memory

7.8.3 Locking Network Queue Data

April 1, 1990

WORD FAR PASCAL WNetLockQueueData(LPSTR szQueue, LPSTR
szUser, LPQUEUESTRUCT FAR* lplpQueueStruct);
Export Ordinal @ 10

Print Manager uses this function to lock a buffer, maintained by the driver, that describes
the state of the queue. (The structure can be created at this time if it was not already availa
ble.) The buffer will contain a single QUEUESTRUCT followed by zero or more JOB
STRUCTs and the variable-length strings to which they refer. The number of
JOBSTRUCT structures is specified by the pqlobCount field in QUEUESTRUCT. The
strings referenced by JOBSTRUCT and QUEUESTRUCT are stored by the mechanism de
scribed in Section 7.2, "Passing Buffers."For example, assuming that lpQS is the
LPQUEUESTRUCT returned by WNetLockQueueData(), the expression

(LPSTRl lpQS + lpQS -> pqComment

Microsoft Confidential Beta Release

Beta Release

Network Drivers 7-11

is a FAR pointer to the queue comment All offsets are relative to this pointer, not the
beginning of individual JOBS1RUCTs.

The szQueue string is the name of a local or remote queue.

The driver places a FAR pointer to QUEUES1RUCT at the location pointed to by the
lplpQueueStruct parameter.

If the szU ser string is not NUU., it indicates that Print Manager is only interested in jobs
belonging to that user. However. it is advisory. and Print Manager will not assume that
QUEUES1RUCT will only contain infonnation on those jobs.

While Print Manager's lock is in effect, the queue data must not be modified or moved.

Queue Stmcture

typedef struct _queuestruct
WORD pqName:
WORD pqComment;
WORD pqStatus;
WORD pqJobcount:
WORD pqPrinters:

} QUEUESTRUCT;

Queue Statusa

#define WNPRO_ACTIVE
#define WNPRO_PAUSE
#define WNPRO_ERROR
#define WNPRO_PENDING

#define WNPRO_PROBLEM

Job Stmcture

0x0000
0x0001
0x0002
0x0003

0x0004

typedef struct _jobstruct
WORD pjld;
WORD pjUsername;
WORD pjParms;
WORD pjPosition:
WORD pjStatus;
DWORD pjSubmitted;

DWORD pjSize:

WORD pjCopies;

/* queue name (offset) */
/* queue comment string (offset) */
/* queue status */
/*number of JOBSTRUCTs following */
/* number of printers for queue */
/* (zero if not available) */

/* Ok *I
I* this queue is paused */
/* network error *I
/* queue has been deleted */
/* it wi 11 last until current *I
I* jobs are done; no new jobs *I
I* may be started *I
I* all printers are stopped */

/* job ID */
I* submitting user name (offset) */
I* implementation string (offset) */
I* position of job in the queue */
/* job status */
/* time when job was submitted */
/* Cfrom 1970-1-1 in seconds) */
/* job size in bytes */
I* C-ll means not available) */
/* number of copies *I
/* (0 means not available) */

Microsoft Confidential April 1, 1990

1-12 Device Driver Adaptation Gulde

WORD pjComment;
} JOBSTRUCT;

Job Statuses

#define WNPRJ_QSTATUS

#define WNPRJ~QS_QUEUEO
#define WNPRJ_OS_PAUSEO
#define WNPRJ_OS_SPOOLING
#define WNPRJ_OS_PRINTING

#define WNPRJ_OEVSTATUS

#define WNPRJ_OS_COMPLETE
#define WNPRJ_OS_INTERV
#define WNPRJ_OS_ERROR
4tdefi ne WNPRJ_OS_OESTOFFLIN
4tdefi ne WNPRJ_OS_OESTPAUSEO
#define WNPRJ_OS_NOTIFY
#define WNPRJ_OS_DESTNOPAPER
#define WNPRJ_OS_OESTFORMCHG
#define WNPRJ_OS_DESTCRTCHG
#define WNPRJ_OS_DESTPENCHG

/* comment for this job (offset)*/

0x0007 /* Bi ts 0-2 *I

0x0000 /* job queued *I
0x0001 I* job paused *I
0x0002 /* job spooling */
0x0003 /* job printing *I

0x1FF8 /* Bit 3-12 *I

0x0008 /* complete */
0x0010 /* intervention required *I
0x0020 /* printer error *I
0x0040 /* printer offline */
0x0080 /* printer paused */
0x0100 /* notify owner *I
0x0200 /* printer out of paper *I
0x0400 /* form change required */
0x0800 /* cartridge change req *I
0xl000 /* pen change required *I

Notice that if the queue status is WNPRQ_PROBLEM, which means that all the printers
on this queue have stopped, examining the job status for the fJI"St job in the queue will usu
ally reveal the exact nature of the problem. However, this may not be true if the queue is
serviced by multiple printers that could have different problems, or if the first job is paused
and the first non-paused job is being held up by an error.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_BAD_QUEUE

WN_BAD_POINTER

WN_OUT_OF _MEMORY

Success

Function not supported

szDestination is not a valid net queue or
redirected device

Invalid pointer

Out of memory

7.8.4 Unlocking Network Queue Data

April 1, 1990

WORD FAR PASCAL WNetUnlockQueueData(LPSTR szQueue);
Export Ordinal@ 11

Microsoft Confidential Beta Release

Network Drivers 7-13

This function infonns the driver that Print Manager is no longer examining a block of
queue data. The driver is free to deallocate, reallocate, move, or modify the queue infor
mation at this point.

The szQueue string is the name of a network printer queue and is either a redirected local
name or a remote name. This device should have been previously specified in a call to
WNetWatchQueueO.

Retum Va/ue1

WN_SUCCESS

WN_NOT_SUPPORTED

WN_BAD_QUEUE

WN_BAD_POINTER

WN_OUT_OF _MEMORY

Success

Function not supported

szDestination is not a valid net queue or
redirected device

Invalid pointer

Out of memory

7.8.5 Notification of Queue Status Changes

Beta Release

A driver indicates that it can support notification by setting the WNNC_PRT_ChangeMsg
bit returned by WNetGetCapsQ. See Section 7.3, "Determining Network Capabilities,"
for more detailed information.

When Print Manager is watching a queue, the driver is free to notify it of queue changes
by posting SP _QUEUECHANGED messages to the window handle specified by the hWnd
parameter. The driver must use the PostMessageO function and not the SendMessage()
function. The wParam parameter should contain the value passed by Print Manager in its
call to WNetWatchQueueO. The lParam parameter should be NULL.

The driver should only send messages relating to the queue that was specified in lpszLocal,
and only when jobs belonging to the current usemame change status. Moreover, the
message is purely advisory; the driver should not assume that a Lock/Unlock pair will
result from the posting of this message, or that Print Manager will only lock a queue in re
sponse to one of these messages. Conversely, Print Manager does not assume that any job
has actually changed status simply because this message was received.

As you can see, polling is easy to support with this mechanism; all that is required is for
the driver to post the SP _QUEUECHANGED messages periodically.

The Queue Changed Message

#define SP_QUEUECHANGED 0x0500 /* advises Print Manager that */
/* a queue has changed */

Microsoft Confidential April 1, 1990

7-14 Device Ddver Adaptation Gulde

7.8.6 Opening a Network Print Job
WORD FAR PASCAL WNetOpenJob(LPSTR szQueue, LPSTR szlob1itle, WORD
nCopies, LPWORD pfh);
Export Ordinal@ 1

This function initializes a print job for transmission across the net It returns a file handle
in the buffer indicated by the pfh parameter, which Print Manager can use to write to the
spoolfile.

The szQueue string may specify either a redirected local device or a fully qualified net
work name of a print queue.

If the szlobTztle string is omitted, the driver may use any appropriate default

On some networks, open print jobs will automatically be closed and printed after some
timeout period. It is the responsibility of the driver to make sure that the network does not
timeout on open print jobs, even if the application is inactive for long periods of time.

Return Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_QUEUE

WN_CANT_SET_COPIES

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

szDestination is not a valid net queue or
redirected device

Warning, printing one copy

Out of memory

7.8. 7 Closing a Network Print Job

April 1, 1990

WORD FAR PASCAL WNetCloseJob(WORD fh, LPWORD pidlob, LPSTR
szQueue);
Export Ordinal@ 2

This function finishes the processing of a spooled print job. It returns a unique Job ID in
the buffer indicated by the pid.Job parameter and the normalized name of the network
queue in the szQueue string. Together, these can be used to reference the job at any later
time.

If the driver cannot return the correct Job ID, it should return the constant value of
WN.:..NULL_JOBID, as shown below:

Microsoft Confidential Beta Release

Network Ddvers 1·15

#define WN_NULL_JOBID 0x0000 /* Job ID not available */

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_HANDLE

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

File handle is invalid

Out of memory

7.8.8 Putting a Print Job on Hold

Beta Release

WORD FAR PASCAL WNetHold.Job(LPSTR szQueue, WORD wJob/D);
Export Ordinal@ 4

This function attempts to hold a previously spooled network job.

The exact effect this has will depend upon the networlc. In most cases, the held job will
continue to move up in the queue until it is ready to prinL However, it will then not be al
lowed to print and will sit with the queue number of 1, while other jobs move around it
and are printed. This will last until the job is released using the WNetReleaseJobO func
tion.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_JOBID

WN_JOB_NOT_FOUND

WN_BAD_QUEUE

WN_ACCESS_DENIED

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

Job ID is invalid

No job with this ID found on this queue

szDestination is not a valid net queue ot
redirected device

Security violation

Out of memory

Microsoft Confidential April 1, 1990

7·16 Dsvlae Drlvlr Atlaptatlon Gulds

7.8.9 Releasing a Held Print Job
WORD FAR PASCAL WNetReleaseJob(LPSTR szQueue, WORD wJob/D);
Export Ordinal@ 5

This function attempts to release a previously held network job.

Relllm Values

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_QUEUE

WN_BAD_JOBID

WN_JOB_NOT_FOUND

WN_JOB_NOT_HELD

WN_ACCESS_DENIED

WN_OUT_OF _MEMORY

Function not supported

Network error

Invalid pointer

szDestination is not a valid net queue or re
directed device
Job ID is invalid

No job with this ID found on this queue

The job is not held

Security violation

Out of memory

7.8.10 Cancelling a Print Job

April 1, 1990

WORD FAR PASCAL WNetCanceUob(LPSTR szQueue, WORD wlob/D);
Export On:linal@ 6

This function attempts to cancel a previously spooled network job.

Success

Function not supported

Network error

Invalid pointer

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_QUEUE szDestination is not a valid net queue or
redirected device

Job ID is invalid WN_BAD_JOBID

WN_JOB_NOT_FOUND ~o job with this ID found on this queue

Microsoft Confidential Beta Release

WN_ACCESS_DENIED

WN_OUT_OF _MEMORY

Security violation

Out of memory

Network Drivers 7-17

7.8.11 Changing the Number of Copies
WORD FAR PASCAL WNetSetJobCopies(LPSTR szQueue, WORD wJobID, WORD
nCopies);
Export Ordinal@ 7

This function attempts to change the number of copies of a previously spooled job. If the
number is 0, the function will return an error status and will have no effect If the number
is too great for the queue to support, the number should be changed to the largest one
possible.

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POIN1ER

WN_BAD_ VALUE

WN_BAD_QUEUE

WN_BAD_JOBID

WN_JOB_NOT_FOUND

WN_ACCESS_DENIED

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

Invalid number of copies

szDestination is not a valid net queue or
redirected device

Job ID is invalid

No job with this ID found on this queue

Security violation

Out of memory

7.8.12 Aborting a Print Job

Beta Release

WORD FAR PASCAL WNetAbortJob (LPSTR szQueue, WORD fh);
Export Ordinal@ 3

This function cancels a print job while the file handle is still open.

The szQueue string is the name of the local device, and the fh parameter is the file handle
returned by WNetOpenJobO.

Microsoft Confidential April 1, 1990

7·18 Device Driver Adaptation Gulde

Retum Valun

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_QUEUE

WN_BAD_HANDLE

WN_ACCESS_DENIED

WN_OUT_OF _MEMORY

Success

Function not supported

Network error

Invalid pointer

szDestination is not a valid net queue or
redirected device

File handle is invalid

Security violation

Out of memory

7.9 Extended Error Functions
These functions are designed to get more detailed infonnation about network-dependent er
rors.

7.9.1 Getting the Current Network Error

April 1, 1990

WORD FAR PASCAL WNetGetError(LPWORD n.Error)
Export Ordinal@ 19

This function returns the network status code from the last network operation.

Notice that this is only guaranteed to be correct if the application calls immediately after
receiving the network driver error status. If another application is given a chance to run, it
may call the driver and the original extended error condition would be overwritten.

Retum Values

WN_SUCCESS

WN_BAD_POINTER

WN_NOT_SUPPORTED

WN_NO_ERROR

WN_OUT_OF _MEMORY

Success

Invalid pointer

Function is not supported

No error status available

Out of memory

Microsoft Confidential Beta Release

Network Drivers 7·19

7.9.2 Getting Extended Error Information
WORD FAR PASCAL WNetGetErrorText(WORD nError, LPSTR
lpBuffer, LPWORD nBufferSize)
Export Ordinal @ 20

This function returns a text description associated with a network error code. This is called
with the nError parameter containing a network error code (as retmned by WNetGetEr
rorO). All the parameters are handled as described in Section 7 .2, "Passing Buffers."

Retum Values

WN_SUCCESS

WN_NOT_SUPPORTED

WN_NET_ERROR

WN_MORE_DATA

WN_NO_ERROR

WN_BAD_POINTER

WN_OUT_OF _MEMORY

Success

Function is not supported

A networlc error occurred when
attempting to get the text

The buffer was too small

No error status available

Invalid pointer

Out of memory

7.1 O Return Values

Beta Release

Most network driver functions retmn zero if successful and unique non-zero values for
various error conditions.

Currently, there is one exception: WNetGetCapsO. which returns a mask of bits.

The following is a list of the normal return values:

#define WN_SUCCESS 0x0000 I* success
#define WN_NOT_SUPPORTED 0x0001 /* function not supported
#define WN_NET_ERROR 0x0002 /* misc network error
#define WN_MORE_DATA 0x0003 /* warning: buffer too small
#define WN_BAD_POINTER 0x0004 /*invalid pointer specified
#define WN_BAD_VALUE 0x0005 /* invalid value specified
#define WN_BAD_PASSWORD 0x0006 /* incorrect password specified
#define WN_ACCESS_DENIED 0x0007 /* security violation
#define WN_FUNCTION_BUSY 0x0008 /* function can't be reentered

/* and is currently being used
#define WN_BAD_USER 0x000A /* invalid username specified
#define WN_OUT_OF_MEMORY 0x000B /* out of memory
#define WN_CANCELLED 0x000C /* operation cancelled at user's

I* request

*/
*/
*/
*I
""I
*I
*I
*/
*/
*I
*/
*I
*I
*/

Microsoft Confidential April 1, 1990

7·20 Device Driver Adaptation Guide

#define WN_NOT_CONNECTED
#define WN_OPEN_FILES

lfdefi ne WN_BAO_NETNAME
lfdefi ne WN_BAO_LOCALNAME
#define WN_ALREAOY_CONNECTEO

#define WN_BAO_JOBID
#define WN_JOB_NOT_FOUNO
#define WN_JOB_NOT_HELO

#define WN_BAD_OUEUE

#define WN_BAO_HANOLE

#define WN_CANT_SET_COPIES

#define WN_ALREAOY_LOCKEO

#define WN_NO_ERROR

0x0030 /* device is not redirected */
0x0031 /* connection couldn't be can- */

/* celled, files are still open */
0x0032 /* network name is invalid */
0x0033 /* invalid local device name */
0x0034 /* local device already con- */

/* nected to a remote resource */
0x0040 /* invalid job ID */
0x0041 /* no job found with this IO */
0x0042 /* job cannot be released because*/

/* it is not currently held */
0x0043 /* name given does not correspond*/

/* to a network queue name or a*/
/* redirected local device */

0x0044 /* not a valid file handle, or */
I* handle not to network print */
I* file opened by driver */

0x0045 /* warning: cannot set number of */
/* copies, printing just one *I

0x0046 /*queue specified is already */
/* locked; from LockOueue func.*/

0x0050 /* No error status available */

7.11 Function Summary

April 1, 1990

The following is a complete alphabetical list of the network driver functions and their ex
port ordinals. Notice that if the driver exports functions that are not on this list, then those
functions should have export ordinals greater than 500. The numbers below 500 are re
served for functions with prescribed ordinal values. For example, the DeviceModeO
dialog box callback function should have an ordinal value above 500 so as not to conflict
with any required ordinals defined in future versions.

Function Export Ordinal

WNetAbortJobO @3

WNetAddConnectionO @17

WNetBrowseDialogO @15

WNetCancelConnectionO @18

WNetCanceUobO @6

WNetCloseJobO @2

WNetDeviceModeO @14

WNetGetCaps () @13

WNetGetConnection() @12

Microsoft Confidential Beta Release

Network Drivers 1·21

Function Export Ordinal

WNetGetErrorO @19

WNetGetErrorTextO @20

WNetGetUserO @16

WNetHoldJobO @4

WNetLockQueueDataO @10

WNetOpenJobO @l

WNetReleaseJobO @5

WNetSet.JobCopiesO @7

WNetUnlockQueueDataO @11

WNetUnwatcbQueueO @9

WNetWatcbQueueO @8

Beta Release Microsoft Confidential April 1, 1990

7·22 Devlt:e DriWN Adaptation Su/lie

.-

April 1, 1990 Microsoft Confidential Beta Release

Chapter

8
Keyboard Drivers

Among the disks provided with your Device Development Kit, you will find ones contain
ing source code for our Wmdows 3.0 keyboard driver. We recommend that you use our
driver either in its entirety or with any necessary customizing rather than try to write your
own. Section 8.9, "A Checklist for Modifying a 3.0 Keyboard Driver," provides steps for
you to follow after reviewing the information provided in this chapter.

When Wmdows is running, the Windows keyboard driver entirely replaces the DOS key
board driver. It is designed. as much as possible, to provide a hardware-independent inter
face between the keyboard driver and Wmdows. This was done to allow the Wmdows code
that deals with user interaction (e.g., menus and dialogs) to be as hardware-independent as
possible.

The Wmdows keyboard driver contains two major functions: the hardware intemJpt func
tion. and the ToAsciiO function. The first translates hardware scan codes to Wmdows vir
tual key codes, which are passed to Wmdows for action and queuing (as keyboard events),
and the second is called to translate the virtual keycodes in the queue (along with the cur
rent state of shift-lock. etc.) to ANSI characters.

For Windows 3.0. the keyboard driver has been split up into two modules, the driver and a
library of keyboard tables. The basic driver is somewhat hardware-specific and contains
translation tables only for the lenhanced USA keyboard. Tables for other keyboards (i.e ••
for other countries and other physical keyboards) are contained in an optional dynamic
linked library (OIL), which is copied by Setup or another application such as Conttol
Panel to the Wmdows directory.

Manufacturers should put hardware-specific code into their own version of the keyboard
driver and avoid changing the DlLs, unless their keyboard layout differs from an IBM
compatible system.

The following sections provide a description of the driver's sample source code.

8.1 Initialization Code

April 1, 1990

Initialization code is code that is executed only when the keyboard driver is first loaded.
This code is mainly used for identifying the hardware type.

The code will set a special flag if Wmdows is running in the OS/2 compatibility box. This
flag is used to determine whether or not certain keys (the SYSRQ key for SYMDEB and
screen switching) need to be handled in a special manner for OS(2.

Microsoft Confidential Beta Release

8-2 Device Dtlver Adaptallon Gulde

8.2 Keyboard Entries: Exported Functions
Once Windows finishes loading everything, it then calls the following exported functions.
(See Section 8.10, "Functions Reference," for descriptions of these functions.)

• AnsiToOemO

• AnslloOemBuffO

• Disable()

• Enable()

• EnableKBSysReqO

• GetKBCodePage()

• GetKeyboardTypeO

• InquireO

• Map VirtuaIKeyO

• OEMKeyScanO

• OemToAnsi()

• OemToAnsiBuffO

• ScreenSwitchEnableO

• SetSpeedO

• ToAsciiO

• VkKeyScanO

8.3 Internal Functions

Beta Release

The following functions are used internally by the keyboard driver and the keyboard DLL.
Control Panel is the only application that calls them. (See Section 8.10, "Functions
Reference," for descriptions of these functions.) (Greg/Peter, what else can we say about
internal functions?)

• GetTableSeg()

• NewTable()

Microsoft Confidential April 1, 1990

Keyboard DrlvetS 8·3

8.4 The Keyboard Interrupt Handler and Event Procedure
Call

This function primarily traps the keyboard hardware interrupt (INT 09H on most systems),
reads the hardware scan codes generated by the keyboard, and translates hardware scan
codes to Windows virtual key codes. These virtual key codes are passed to the Windows
USER module by calling the keyboard event procedure. This address was passed to the
keyboard driver in the EnableO function. (See Section 8.10, "Function Reference," for a
description of the EnableO function.)

8.4.1 Parameter Details
The keyboard event procedure is called with the following parameters:

AH= 0 for down stroke, 80H for up stroke
AL =Windows virtual key code
BH = 0 if no prefix byte, I if EO prefix byte preceded this scan code

{for IBM-compatible enhanced keyboard. For more infonnation,
see Section 8.4.2, "Extended Keyboards.").

BL= "Hardware" scan code

Notice that while the hardware scan code (which is OEM-dependent) is passed to
Windows, it is not used internally in Windows. It is subsequently passed to ToAsciiO,
which may use it for special purposes.

This function detects the System Request function (normally CTRL+ALT+PRINT SCREEN)
and generates an NMI interrupt, if SYMDEB appears to be trapping the NMI interrupt.

Under certain circumstances, control is passed to the MS-DOS keyboard interrupt handler,
which was installed when Windows was started. This is the case for CTRL+ALT+DELE1E
(soft reboot) and for the PAUSE key.

In the Windows 3.0 keyboard driver, the PRINTSCREEN key is used for making a screen
snapshot, which is saved in the Windows Oipboard. This is handled in the interrupt
routine by calling the event procedure with VK_SNAPSHOT in AL, with the value equal
to 0 (for full-screen snapshot) or I (for current-window snapshot) in BL.

8.4.2 Extended Keyboards

April 1, 1990

Some keyboards, such as the IBM enhanced keyboard, have an extra EN1ER key on the
numeric keypad, as well as separate keys for such functions as CURSOR CTRL, INSERT, and
DELE1E. On the IBM enhanced keyboard, these keys have the same scan codes as the main
EN1ER key, certain numeric-pad keys (with NUM LOCK OFF), etc., but the keyboard sends a
special prefix byte to indicate that these keys are pressed. In this case, the Windows 3.0
keyboard driver sets bit 0 of BH when calling the keyboard event procedure. If this bit is
set, bit 24 is set in the long parameter of the resulting WM_KEYDOWN, WM_ CHAR,
etc. messages.

Microsoft Confidential Beta Release

B-4 Dnlcs D""r Allaptal/Oa Bllld•

The following are the keys on the mM enhanced keyboard for which this extended bit is
set:

• INSERT, HOME, PAGE UP, DELETE, END, PAGE DOWN ·

• Cursor Keys

• Numeric-pad DIVIDE and ENTER keys.

For keyboards that have extended keys with special scan codes instead of prefixes, we rec
ommend that the scan codes be ttanslated to the IBM scan codes (to allow Wmdows to
translate these keys properly) and that BH be set to 1 when the event procedure is called
for a second ENTER key or for cursor keys, etc.

8.4.3 The OSil Compatibility Box
If Windows is nmning in the OS/2 compatibility box, two things are done in the interrupt
routine:

1. The cnu.+ALT+SYSRQ handling for SYMDEB is disabled.

2. The cnu. and ESC combinations are passed on to the OS/2 keyboard intermpt handler,
so that OS/2 screen switching will work.

8.5 Keyboard Driver Internal Tables
The following subsections deal with various internal sttuctw:es and tables used with this
driver.

8.5.1 Keyboard State Vector

Beta Release

This is a 256-byte vector, maintained by Wmdows, that contains an entry for each possible
virtual key code. For each entry, bit 7 is set, if the key is down, and cleared when the key is
released. Likewise, bit 0 is toggled each time a key is pressed if it was not already down
(i.e., repeats do not toggle this bit).

The address of this vector is passed to ToAsciiO. so that this function may examine the cur
rent state of the SHIFr KEYS, CAPS LOCK, etc. It is also passed to the EnableO function, so
that the entries for various shift keys are synchronized with the shift state bits that MS
OOS maintains at 40H: 17H.

Mouse buttons also get translated into their corresponding virtual key codes (i.e.,
VK._LBUTION, VK._RBUTION, VK._CANCEL, and VK._MBUITON) in the key state
vector. See Section 8.8, "Windows VU1Ual Key Codes," for a complete list of the virtual
key codes supported in Windows. This infonnation is also available in the WINOOWS.H
file.

Microsoft Confidential April 1, 1990

Keybaan/ DrlVBIS 8·5

8.5.2 Keyboard Information (KBINFD) Data Structure
The following is the data structure for keyboard information (KBINFO).

typedef struct tagKBINFO
{

BYTE Begin_First_range;
BYTE End_First_range;
BYTE Begin_Second_range;
BYTE End_Second_range;
int StateSize;
int NumFuncKeys

} KBINFO;

I* used for KANJI */
/* used for KANJI */
/* used for KANJI */
/* used for KANJI */
I* size of ToAscii state block*/
I* number of function keys */

8.5.3 Key Translation Tables

April 1, 1990

The following description is specific to the Microsoft keyboard drivers. Several of the
translation tables are associative tables that map a virtual key code or a combination of a
virtual key code and some other value (e.g., shift state) into an ASCII character. All such ta
bles in these drivers are assembled using special macros, defined in TRANS.INC, that ar
range the tables so that the first column of the table is a single vector, which may be
searched with a single-string scan instruction.

Table

keyTrTab

USTransPatcb

Description

This table maps hardware scan codes to Wmdows virtual key
codes. Some entries in this table in TABS.ASM may be overlaid
when a keyboanl DLL is loaded.

This is a copy of part of keyTrTab, which is used to overlay key
TrTab if an error occurs while changing keyboard DLLs.

Most of the remaining tables are either in a discardable segment in the driver (if no DLI.. is
loaded) or in a DLI... If they are in the driver, functions such as ToAsciiO that are using
them make sure that the table segment is loaded by calling GetTableSegO.

The tables in the driver are for the US keyboard. Several of the following tables are blank
for the US keyboard since it has no dead keys or CIRL+ALT keys.

In the DLL versions of these tables, there is often padding (i.e., zeros) at the end of a table
to allow for overlaying the tables.

The USA tables are available in the TAB4.INC file, which is included with the sample
source code. These tables for the USA enhanced keyboanl are duplicated in the
KBDUS.ASM fde.

Microsoft Confidential Beta Release

8·6 Dlvll:fl Dtlrlt Adaptation Gulde

Table

Asc"fi'an VK,
Asc"fi'an

AscControlVK,
AscControl

AscCtlAltVK,
AscCtlAlt

AscSbCdAltVK,
AscShCdAlt

CapitalTable

SGCapsVK,
SGTrans

Morto, MortoCode

DeadKeyCode,
DeadChar

Description

This associative table translates virtual key codes to ANSI for
unshifted and shifted key combinations. Asc"fi'an VK is a
byte array of virtual key codes; Asc"fi'an is a WORD array of
their translations. In each WORD, the low byte is the un
shifted translation, and the high byte is the shifted translation.
If the virtual key code is one for a letter (A..Z), this table is
bypassed.

This associative table translates virtual key code + CTRL to a
control character, when the virtual key code is not one for a
letter. For letters, the table is not used.

This associative table translates virtual key code + CTRL +
ALT to an ANSI character. This is empty for the us keyboard.

This associative table translates virtual key code + CTRL +
ALT+ SHIFT to an ANSI character. This is empty for the us
keyboard.

This is a list of the virtual keys for which the CAPS LOCK key
is effective, in addition to the letter keys (VK_A .. VK_Z).
This is empty for the US keyboard.

This table has entries only in the DLL for Swiss-German key
boards. It handles a special case where keys with SHIFT LOCK
are translated differently from shifted keys.

This table is searched to check if a particular virtual key code
and shift combination is for a dead key. If it is, the dead key
value is returned by ToAsciiO, with a negative character
counL This is empty for the US keyboard.

This associative table translates a combination of a dead key
(usually an accent character) and a letter into an accented let
ter. This table is accessed when the key after a dead key is
struck. If a translation is not found in this table, ToAsciiO
will return two characters in its output buffer: the dead key
plus the second character. This table is empty for the US key
board.

8.6 Keyboard DLL

Beta Release

The KBDxx.ASM tables file contains data in two segments: the CODE segment, which is
load-on-call and disposable, and the DATA segment, which is fixed. Data from the CODE
segment of the DLL is used to overlay the tables in the DATA segment of the driver. Data

Microsoft Confidential April 1, 1990

Keyboard Drivers 8·7

in the DATA segment of the OIL is not copied; instead. a pointer in the driver is set to the
DIL's DATA segment address.

The initial values in the tables in the DIL's DATA segment are for Enhanced (type 4) key
boards. For other keyboard types, the tables in the DIL's DATA segment must be patched
or overlaid from tables in the CODE segment

The copying or overlaying is done by the GetKbdTableO OIL function, which is called
from the driver after the driver loads the libl'3I')'. Once GetKbdTableO is called, the driver
accesses the DLL's fixed DATA segment directly. After initialization, the tables in the
CODE segment of the OIL are no longer used.

A header, containing offsets and sizes of the various tables in the DIL's DATA segment, is
always copied to the driver no matter what type of keyboard is installed.

Some DLLs contain the function GetKeyStringO. This function is called by the key
board's GetKeyNameTextO function (see the Microsoft Windows Software Development
Kit for a description of this function) to obtain key name strings in the language appro
priate to the keyboard. (See Section 8.10, "Functions Reference," for more details on
GetKbdTableO and GetKeyStringO.)

8.7 SYSTEM.IN/ Keyboard Information

[keyboard]

type - 4

subtype = 0

With Windows 3.0, some keyboard information is now set in the SYSTEM.INI file by the
Setup program when Windows is fll'St installed. Some of the values, though, may be
changed by the Windows part of Selllp during runtime. They appear in the following order
in the SYS1EM.INI file:

;Enhanced keyboard. This value overrides any
;type the keyboard driver can determine. This
;number generally defines a keyboard layout and
;is passed to the DLL initialization code. If
;you want the driver to select this value<IBM
;compatibles), leave this blank. Cl is XT,
;3 is AT, 4 is Enhanced>

;Used only for Olivetti/AT&T. Only affects
;anything now for one AT&T 6300+ keyboard, [but
;may be useful for Hewlett-Packard for
;distinguishing Vectra/non-Vectra keyboards.

keyboard.dll - KBDDA.Dll ;Keyboard layout (Danish keyboard in this
;example). May be omitted if you have a USA
;XT C83-key), AT (84-key), or Enhanced
;(101-key) keyboard. [This means you no
;longer copy the keyboard Dll to KBDDLL.MOD.]

oemansi.bin = XLATNO.BIN ;Danish/Norwegian code page translation. This

April 1, 1990 Microsoft Confidential Beta Release

8·8 Devlt:e Driver Adaptation Gulde

:setting is only tor NU/UA, PU, t~. ~A code
:pages now. Hust be blank for code page 437
:<normal IBM>.
;(Note: Another SYSTEH.INI or WIN.INI setting
;must be made to select the corresponding OEM
:font for real-mode Windows or Windows/386.)

8.8 Windows Virtual Key Codes
This section describes the Windows virtual key codes that are generated by the hardware
intenupt function in the keyboard driver. The translation of OEM scan codes to virtual key
codes is intended to provide a hardware-independent interface to Windows.

The virtual key code set consists of 256 byte values in the range 0 to 255. Most, but not all,
of the values used by standard drivers are in the range 0 to 127. There is a loose distinction
between "standard" keys, which do not vary much, and "OEM" keys, which do vary from
keyboard to keyboard.

Every OEM keyboard driver must provide the following virtual keys. Shift keys must be
available in the combinations Unshift.ed, SHIFT, CT'RL, and CTRL+ALT.

Type

Shift keys

Alphabetic keys

Numeric keys

Cursor and editing keys

Virtual Key Code

VK_SHIFT
VK_CONTROL
VK_MENU

VK_A .. VK_Z

VK_O •• VK_9

VK_UP
VK_DOWN
VK_LEFf
VK_RIGHT

Description

Either SHIFT key
The CT'RL key
The ALT key

"A" .. "Z"

The numeric keys at the
top of the keyboard.

On most keyboards, the following group of virtual key
codes is generated on the numeric keys only if NUMLOCK
is OFF:

VK_INSERT
VK_DELETE
VK_HOME
VK_END,
VK_PRIOR
VK_NEXT

The PAGE UP key
The PAGE DOWN key

Required function keys VK_l .. VK_lO Fl..FlO

Beta Release Microsoft Confidential April 1, 1990

April 1, 1990

Type

Other keys

Virtual Key Code

VK_ESCAPE
VK_TAB
VK_SPACE
VK_SNAPSHOT
VK_BACK

Keyboard DrlvetS 8·9

Description

TheESckey
The TAB key
The SPACE key
The PRINTSCREEN key
The BACKSPACE key

All the above virtual key codes must be generated for full Windows functionality.

Keyboards commonly contain various "lock" keys. such as VK_CAPITAL and VK_NUM
LOCK. If a keyboard driver generates ANSI characters on the numeric key pad using ALT
+ numeric-pad keys. it must do this translation only if NUMLOCK is ON. Also. care must be
taken (on IBM-compatible keyboards) that the cUISOr and editing keys on extended key
boards do not produce this translation.

If a keyboard has a numeric pad. the numeric keys will frequently be used as cursor-con
trol and editing keys ifNUMLOCK is OFF. lfNUMLOCK is ON, the virtual keycodes
VK_NUMPADO .• VK_NUMPAD9 are used for the digits. Keyboards with a DELETE key
that also generates the decimal point (period or comma) use VK_DELETE and VK_DECI
MAL to distinguish the two uses of the key.

Other keys may vary from keyboard to keyboard. The following set of virtual key codes is
generally used for punctuation keys. accented letter keys. and dead keys in the main sec
tion of a keyboard:

VK_OEH_l .. VK_OEH_B
VK_OEH_102
VK_OEH_PLUS, VK_OEH_HINUS, VK_OEH_COHHA, VK_OEH_PERIOD

Applications that send characters to other Windows applications by sending WM_KEY
OOWN and WM_KEYUP messages are expected to get the appropriate virtual key codes
to send by using the VkKeyScanO function. They must not assume any fixed translation
of the VK_OEM_* keys.

If a keyboard has more than 16 function keys, we recommend you use the virtual key
codes in the range VK_OEM_l 7 .• VK_OEM_24.

The mouse button virtual key codes (VK_LBUTTON, VK_RBU'ITON, VK_MBUTTON)
are generated intemally by Windows and are never generated by keyboard or mouse
drivers.

Keyboard drivers should not generate VK_EXECUTE or VK_SEPARATER.

The following list includes the virtual key codes that are defined for Windows. VK_SNAP
SHOT is new for Windows 3.0. This information is also in the VKWIN.INC and
VKOEM.INC files in the keyboard driver sources.

; values <80H. 0, 0ffh can't be used.

VK_LBUTTON
VK_RBUTTON

= 01H ; left mouse button
= 02H ; right mouse button

Microsoft Confidential Beta Release

8·10 Dsrit:11 Dllrer Adaptatloa Galt/II

VK_CANCH
VK_MBUTTON

- ~3H ; used tor control-break process1ng
- 04H ; middle mouse button (3-button mouse).

; 4 •. 7 undefl ned

VK_BACK • 08H
VK_TAB • 09H

; 0ah .• 0bh undefined

VK_CLEAR
VK_RETURN

VK_SHIFT
VK_CONTROL
VK_MENU
VK_PAUSE
VK_CAPITAL

= 0cH
= 0dH .

• 10H
= llH
- 12H
= 13H
= 14H
: 15h .. lah undefined
• lbH
: lch .. lfh undefined
= 20H
= 21H ; page up
= 22H ; page down
- 23H
.. 24H
• 25H
= 26H
= 27H
= 28H·

only used by Nokia •.
never used

VK_ESCAPE

VK_SPACE
VK_PRIOR
VK_NEXT
VK_END
VK_HOME
VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_SELECT
VK_PRINT
VK_EXECUTE
VK_SNAPSHOT
VK_INSERT
VK_DELETE
VK_HELP
VK_0

= 29H
= 2aH
= 2bH
- 2ch
= 2dH

PRINTSCREEN key starting with 3.0 Windows ..

Beta Release

VK_l
VK_2
VK...:3
VK_4
VK_5
VK_6
VK_7
VK_S
VK_9

VK_A
VK_B
VK_C
VK_D
VK_E

= 2eH
= 2fH
= 30H
= 31H
• 32H
= 33H
= 34H
= 35H
= 36H
= 37H
= 38H
= 39H
: 40h
= 41H
= 42H
= 43H
= 44H
= 45H

Microsoft Confidential April 1, 1990

April 1, 1990

VK_~

VK_G
VK_H
VK_l
VK_J
VK_K
VK_L
VK_H
VK_N
VK_O
VK_P
VK_Q
VK_R
VK_S
VK_T
VK_U
VK_V
VK_W
VK_X
VK_Y
VK_Z

VK_NUHPADB
VK_NUHPADl
VK_NUHPA02
VK_NUHPA03
VK_NUHPA04
VK_NUHPA05
VK_NUHPA06
VK_NUHPA07
VK_NUHPA08
VK_NUHPA09
VK_HULTIPLY
VK_AOO
VK_SEPARATER
VK_SUBTRACT
VK_DECIHAL
VK_OIVIDE

VK_Fl
VK_F2
VK_F3
VK_F4
VK_F5
VK_F6
VK_F7
VK_FS
VK_F9
VK_Fte
VK_Fll
VK_F12
VK_Fl3
VK_Fl4

= 4bH
= 47H
"'48H
= 49H
= 4AH
= 4BH
• 4CH
= 40H
• 4EH
= 4FH
= 5BH
= 51H
- 52H
= S3H
= S4H
• SSH
= S6H
"' S7H
"' 58H
• S9H
= SAH
; Sbh .. Sfh undefined
"' 6BH
= 61H
= 62H
= 63H
• 64H
• 6SH
"' 66H
= 67H
= 68H
= 69H
= 6AH
= 6BH

KeytJaartl DtlntS 8·11

= 6CH never generated by keyboard driver
= 60H
= 6EH
= 6FH

= 7BH
= 71H
= 72H
= 73H
= 74H
= 7SH
= 76H
= 77H
= 78H
= 79H
= 7aH
= 7bH
= 7cH
= 7dH

Microsoft Confidential Beta Release

8·12 Dev/es Driver Adaptation Guida

VK_H!>
VK_Fl6

va 1 ues >= 80H

- /eH
- 7fH

The codes VK_OEM_l through VK_OEM_S apply to all keyboards.
VK_OEM_l02 applys to non-USA Enhanced keyboards.
Other VK codes in this range may only apply to OEM special keyboards.

Beta Release

; This group is used for Nokia <Ericsson) keyboards.
VK_OEM_Fl7 = 80H Nokia
VK_OEM_Fl8 = 81H Nokia
VK_OEM_Fl9 = 82H Nokia
VK_OEM_F20 = 83H Nokia
VK_OEM_F21 = 84H Nokia
VK_OEH_F22 = 85H Nokia
VK_OEH_F23 • 86H Nokia
VK_OEM_F24 - 87H Nokia

; 88h .. 8Fh unassigned

; These apply to ALL keyboards.
VK_NUMLOCK = 090H ; NumLock on ALL keyboards
VK_OEM_SCROLL = 091H ; Scroll Lock on All keyboards

; 92h .. B9h unassigned

: This group
VK_OEM_l
VK_OEM_PLUS
VK_OEM_COMMA
VK_OEM_MINUS
VK_OEM_PERIOD
VK_OEM_2
VK_OEM_3

is used for punctuation
= 0BAH
= 0BBH
= 0BCH
.. 0BDH
= 0BEH
= 0BFH
= 0C0H

; Clh .. DAh unassigned

keys on ALL keyboards.

; Punctuation continued .. CALL keyboards)
VK_OEM_4 = 0DBH
VK_OEM_5 = 0DCH
VK_OEM_6 = 0DDH
VK_OEM_7 = 0DEH
VK_OEM_8 = 0DFH

; keycodes for Olivetti 'ICO' extended keyboard
; used internally, not seen by applications
VK_Fl7 = 0E0H ; Fl7 key on ICO
VK_Fl8 = 0ElH ; Fl8 key on ICO

: IBM-compatible 102 Enhanced keyboard (non-USA).
VK_OEM_l02 = 0E2H ; "<>"or "\I" on Enhanced 102-key

; More Olivetti ICO keyboard codes.

Microsoft Cont idential April 1, 1990

Keyboard DrlvetS 8·13

= ~l3H : Help key on 1c;u. VK_!C:U_HHP
VK_IC0_00 - 0E4H : 00 key on ICO. Appears internally in driver

: tables, never appears in Windows messages.

: ESh unassigned

: More Olivetti 'ICO'
VK_ICO_CLEAR - 0E6H ICO keyboard only.

: E7h •• ESh unassigned

: More Nokia/Ericsson definitions
VK_OEM_RESET = 0E9H : Nokia
VK_OEH_JUHP • 0EAH : Nokia
VK_OEH_PAl = 0EBH : Nokia
VK_OEH_PA2 • 0ECH : Nokia
VK_OEH_PA3 = 0EDH Nokia
VK_OEH_WSCTRL = 0EEH Nokia
VK_OEH_CUSEL - 0EFH Nokia
VK_OEH_ATTN = 0F0H Nokia
VK_OEH_FINNISH • 0F1H Nokia
VK_OEH_COPY . - 0F2H Nokia
VK_OEH_AUTO - 0F3H Nokia
VK_OEH_ENLW = 0F4H Nokia
VK_OEH_BACKTAB - 0F5H Nokia

F6h .• FEh unassigned.

FF can't be used.

8.9 A Checklist for Modifying a 3.0 Keyboard Driver

April 1, 1990

If you already have a Wmdows 2x keyboard driver, we recommend that you follow the
steps in this checklist to modify the sample Wmdows 3.0 keyboard driver, rather than your
old Windows 2.x keyboard driver. The result will be more compatible with Windows 3.0.

Also, you should always use the latest available version of the DOK somces . .
0 Use IFDEFs for the partS that you modify.

If you can assemble the driver with your IFDEFs OFF and generate the "normal"
KBD.DRV driver, then it will be easier to integrate support for your hardware into
Microsoft's sources in the future.

0 Identify or select the keyboard type •

. 0 You should avoid doing any UO during initialization to determine the keyboard
type. This should be done in Setup, not in the keyboard driver.

Microsoft Confidential Beta Release

Beta Release

C There are three things that are defined in SYSTEM.INI on the basis of the keyboard
hardware and read with Getl'rivatePrordeStringO or GetPrivateProrllelntO in
TABS.ASM:

• The name of the keyboard driver in the "KEYBOARD.ORV =" statemenL

• The keyboard type in the "TYPE=" statemenL
This is used to select among several different keyboard layouts for a particular
country, along with some other attributes. This value is also used by the keyboard
DLL to determine what patches to make in the keyboard translation tables.

• The keyboard subtype in the "SUBTYPE=" staremenL
This may be used to differentiate among keyboards that have the same layout (i.e.,
the same basic translation table) but that may have some special attributes. The
meaning of the subtype will depend on the particular OEM driver.

Cl The automatic detection of the keyboard type is mainly done for fairly generic sys
tems. However, it is possible for a driver developer to modify the SETUP.INF file
to provide manual selection of a keyboard driver (and its type and subtype).

Cl If you read any data from the ROM BIOS, you must use the special segment selec
tor _ROMBIOS, which corresponds to real address OFOOOOH. See the code in
INIT.ASM.

0 Compare your old interrupt function (i.e., DATACOM.ASM in Windows 2.x and
'IRAP.ASM in Windows 3.0) with the one in the Windows 3.0 sample keyboard driver.

You will find that the basic flow of the Windows 3.0 function is quite similar to that of
the one in the W'mdows 2.x keyboard driver. Simply make similar modifications in the
W'mdows 3.01RAP.ASM The table keyTrTab(] in TABS.ASM is used to translate
scan codes to virtual key codes. You will see some existing IFDEFs for special key
boards in this file.

0 Integrate special code for your keyboard in TOASCII.ASM by moving it from the
Windows 2.x to the Windows 3.0 version of the keyboard driver.

Notice that the InquireO function (in ENABLE.ASM) tells Windows how much space
to allocate for ToAsciiO 's stare vector, which maintains state between successive calls
to ToAsciiO.

0 Examine the INIT code and the EnableO and DisableO functions for any special ac
tions that need to be taken when Windows is loaded, when the keyboard driver is
enabled, and when the keyboard driver is disabled.

Notice that the W'mdows keyboard and mouse drivers are disabled when switching
from W'mdows to a full-screen MS-DOS application. The calls to the keyboard and
mouse EnableO functions are always done in the reverse order from the calls to the re
spective Disable() functions. This is done to handle systems in which the keyboard and
mouse must hook or unhook the same interrupts.

0 If the repeat speed of your keyboard cannot be set by software, the SetSpeedO function
may be omitted (but then the definition of the function must be omitted from the .DEF
file).

Microsoft Confidential April 1, 1990

Keyboard DrlvltS 8·15

8.1 O Functions Reference
The following is an alphabetically organized reference section that includes descriptions of
each of the functions listed in this chapter.

AnsiToOem(lpSrc, lpDst)
D111t:tiptlon

Return Value

Cammentr

This function translates a string in the ANSI character set to a string in the OEM character
set (which is code page 437 for most systems).

Parameter

lpSrc

lpDst

Description

A long pointer to the input ANSI string.

A long pointer to the output OEM string.

NOTE /pSrc and /pOstmay be the same.

Undefined

The default translation is for Code Page 437 (the standard USA IBM-PC character set).

Calling the EnableO function will cause the tables for this translation to be initialized. If
the desired code page is not 437, they will be read from a ftle.

AnsiToOemBuff(lpSrc, lpDst, nCount)
Desuiptian

Retum Value

April 1, 1990

This function performs the same translations as AnsiToOemO. but is used for translating
fixed-length byte arrays, such as database records., which may contain NUlL bytes.

Parameter

lpSrc

lpDst

nCount

Description

A long pointer to the input ANSI string.

A long pointer to the output OEM string.

The byte count.

NOTE /pSrcand /pOstmay be the same.

Undefined

Microsoft Confidential Beta Release

8·16 Dnlt:e Dllrflt Adaptation Bii/di

Disable()
Daltlptloa

Rllum Vain

CDllltnenls

'Ibis function restores the MS-DOS keyboard intermpt vector when exiting Wmdows.

None

None

The DisableO function restores the keyboard hardware intermpt vector to the keyboard
handler that was installed previously.

DisableO is called when exiting Wmdows and before starting or switching to a full-screen
MS-DOS application running under real or standard-mode Wmdows.

When DisableO is called. the MS-DOS keyboard flags (at 40H: l 7H in most mM-com
patible systems) must reflect the state of the SHIFT LOCK, NUMLOCK, and SCROLL LOCK
keys. (Nonnally, the Windows hardware intelTUpt function will handle this.)

The keyboard and mouse EnableO functions are always called in the reverse order of the
keyboard and mouse DisableO functions since some mouse drivers may hook into the key
board intelTUpL

Enable(eventProc, lpKeyState)
Daa-lptlan

RllumValue

Comments

Beta Release

'Ibis function installs the hardware interrupt for Wmdows and performs the necessary in
itialization of the driver.

Parameter

eventProc

lpKeyState

None

Description

The address (long) of the keyboard event procedure in USER. (See
Section 8.4, "The Keyboard lntelTUpt Handler and Event Procedure
Call," for more information on this function.)

The address (long) of the 256-byte key state vector in USER. It is
accessed here primarily to synchronize the entries for SHIFT LOCK and
NUMLOCK. with the current state maintained by the MS-DOS key
board driver.

The EnableO function must save the original hardware interrupt address in static memory.
The driver should maintain such things as the shift and numeric lock state, and the state of
indicator lights. Linkage with a keyboard DU. should be established (if one exists).

Microsoft Confidential April 1, 1990

Key/Joan/ DrlvetS 8·11

EnableO is called once when Windows is started up. It is also called when returning to
Wmdows from a full-screen application for which the keyboard was disabled.

EnableKBSysReq(fWord)
Description

Return Value

Comments

This function is used for enabling and disabling the CTRL+ALT+SYSREQ trap to the debug
ger.
Parameter

fWord

D~iption

H nonzero, then an internal byte counter is incremented. H zero and
the internal byte counter is nonzero, then the byte counter is decre
mented.

The value of the byte counter after any change.

The initial value of the byte counter is zero, which means that the debugger trap is dis
abled. H the byre counter is nonzero, the trap to the debugger is enabled. ·

GetKBCodePage()
Dat:tiptlan

Parameters

RetumValue

Comments

April 1, 1990

This function is used to detennine which OEM/ANSI tables are loaded in the keyboard
driver.

None

A code page (integer). This indicates which OEM/ANSI translation tables are loaded.

H the OEMANSI.BIN file is in the Windows directory and the code page is not 437, the
file will be read when Wmdows is booted and will overwrite the CP 437 OEM/ANSI trans
lation tables in the keyboard driver. Common values are as follows:

Code Page

437

860

863

865

850

Description

Default (USA, most countries. No OEMANSI.BIN file.)

Portugal (OEMANSI.BIN = XLATPO.BIN)

French Canada (OEMANSI.BIN = XLA1CA.BIN)

Norway/Denmark (OEMANSLBIN = XLA1NO.BIN)

International code page (OEMANSI.BIN = XLAT850.BIN)

Microsoft Confidential Beta Release

8-18 Device Driver Adaptation Gulde

If the code page is not 437, then the Setup program must copy one of the XI.AT* .BIN files
to OEMANSI.BIN. If the code page is 437, Setup must delete OEMANSI.BIN if it exists.

Each one of these .BIN files contains the following:

(word)

(word)

(256bytes)

Nwnber of bytes that follow (must be 258)

Code page number

OEM/ANSI translation tables

GetKbdTable(IType, lpKeyTrTab, lpHeader)
D111t:rlption

Return Value

Comments

This DLL function is called from the driver to do copying or overlaying.

Parameter

iType

lpKeyTrTab

lpHeader

Description

Keyboard type
l:XT, M24 83-key
2:0livetti M24 102-key "ICO"
3:AT 84- or 86-key
4:RTEnhanced 101-or 102-key
5:Nokia (Ericsson) 1050, 1051
6:Nokia 9140 keyboard

A FAR pointer to the KeyTrTabO in the driver.

A FAR pointer to the header for the translation tables.

This returns a FAR pointer to this DLL's DATA segment in DX:AX (where AX is 0).

The tables are patched, and various data are copied to the driver.

This function is in a load-on-call disposable segment, which means its memory may be re
claimed. The DATA segment is fixed.

GetKeyboardType(wWhich)
Description This function enables an application to determine the type of keyboard that is attached.

Parameter Description

wWhich Selects whether the basic type or the OEM subtype is returned.

Beta Release Microsoft Confidential April 1, 1990

Rlllum Va/UI Jf Which= 0, it returns keyboard type (1..6)

1: mM PC, XT or compatible (83-key)
2: Olivetti M24 "ICO" (102-key)
3: mM AT (84 keys) or similar
4: mM Enhanced (101 or 102 keys)
5: Nolda 1050, etc.
6: Nolda 9140, etc.

Key/JaanlDrlvets 8·19

If Which= 1, it may return OEM-dependent subtype infonnation, which should be nomero.

GetKeyStrlng(lnt nString, LPSTR lpStrlngOut)
Oat:t/ptian

Rlllurn Va/UI

Comments

GetTableSeg()
D•t:tiptlon

Paramet111

RetumVa/ue

Comments

April 1, 1990

This function is called by the keyboard's GetKeyNameTextO function to obtain key name
strings in the language appropriate to the keyboard.

Parameter

nString

lpStringOut

Description

The index to a list of strings.

The selected string is copied to this address.

The size of the string (exclusive ofNUU. termination) is returned in AX.

GetKeyNameTextO checks for this function in the DU. to obtain the localized version of
the key name.

This function is for internal use in the keyboard driver only. It is used when a DU. does
notexisL

None

Paragraph address of a discardable keyboard table segmenL

This function is called, only when a keyboard DU. does not exist, to load the segment con
taining the default keyboard translation tables and return its address.

This function is to be called only within the keyboard driver. It is not part of the Windows
API.

Microsoft Confidential Beta Release

8·20 Devlt:e Driver Adaptation Gulde

lnqulre(lpKBlnfo)
OBSt:t/ption This function fills in the data structure with infonnation about the keyboard hardware.

Parameter Description

lpKBlnfo A long pointer to the KBINFO data structure.

Retum Value The number of bytes transferred is returned in AX.

MapVlrtualKey(wCode, wMapType)
Description

Return Value

Comments

NewTable()
Description

Parameters

Beta Release

This function is intended to be used by the PIF Editor and Windows to get infonnation
about keyboard mapping.

Parameter

wCode

wMapType

Description

The input scan code or VK code

Selects mapping as follows:

wMapType = 0: Map VK to scan code

wMapType = 1: Map scan code to VK

wMapType = 2: Map VK to ASCII

AX = Mapped value

Returns 0 if mapping cannot be performed (scan codes and VK codes are always > 0).

For the first 2 mappings, the scan code to VK code translation table is examined to deter
mine the translations. Some valid codes may not be translated in this table.

For the 3rd type of mapping, uppercase letters A.:Z are returned for VK_A .• VK_Z. ASCII
digits are retmned for the top-row numeric keys VK_O .. VK_9. For punctuation and dead
keys in the main part of the keyboard, the unshifted character will be returned.

This function determines the keyboard type and tries to load a keyboard DLL.

None

Microsoft Confidential April 1, 1990

RllumValue None

The following entries in WIN.INI are accessed:

[keyboard]
type - 4; 1. .6.
OliType a 0 ; 0 for all but Olivetti systems

Ksyboattl Ddve111 8·21

Internal keyboard type variables are seL If a keyboard OIL is found and loaded, its handle
is saved; this is subsequently used by the driver to detennine whether to use the tables in
the movable TABS segment or the DIL tables.

This function determines the type of keyboard that is installed by reading WIN.INI values.
If they are not found, the default type is detennined by the type of system for which the
particular driver is designed.

OEMKeyScan(wOemChar)
D•t:tiptlon

Parameters

RetumVa/ue

Comments

This function maps OEM ASCll codes (O •• OFFH) into OEM scan codes and shift states.
This function provides infonnation that enables a program to send OEM text to another
program by simulating keyboard inpuL Windows, when running in 386 Enhanced mode,
uses it specifically for this purpose.

It is passed the OEM ASCll code as wOemChar.

AX = scan code
DX = shift state

bit 2 = CTRL + SHIFl' depressed
bit 1 = either SHIFr depressed

If the character is not defined in the tables, -1 is returned in both DX and AX.

This function does not provide translations for characters that require CTRL + ALT or dead
keys. Characters that are not translated by this function must be copied by simulating
ALT+ numeric-pad inpUL

This function calls VkKeyScanO in the Wmdows 3.0 drivers.

OemToAnsl(lpSrc, lpDst)
Description This function translates a string in the current OEM character set to ANSL

Parameter Description

April 1, 1990 Microsoft Confidential Beta Release

8·22 Dev/cs Ddver Adaptation Gulde

Return Value

Camm11111s

lpSrc A long pointer to the input ANSI string.

lpDst A long pointer to the output OEM suing.

NOTE JpSrcand lpDstmay be the same.

Undefined

The default translation is for code page 437 (the standard USA IBM-PC character set).

Calling the EnableO function will cause the tables for this translation to be initialized. If
the desired code page is not 437, they will be read from a file.

OemToAnslBuff(lpSRC, lpDst, nCount)
Dacriptian

Retum Value

This function performs the same translations as OemToAnsiO, but is used for translating
fixed-length byte arrays, such as database records, which may contain NULL bytes.

Parameter

lpSrc

lpDst

nCount

Description

A long pointer to the input ANSI suing.

A long pointer to the output OEM string.

The byte count.

NOTE /pSrc and lpDst may be the same.

Undefined

ScreenSwitchEnable(wEnable)
Description

Return Value

Beta Release

This function enables or disables screen switching under OS(l. It does not apply to run
ning under MS-DOS.

Parameter Description

wEnable Zero for disable, non-zero for enable.

Undefined

Microsoft Confidential April 1, 1990

Comments

Keyboard DrlVBIS 8·23

This function is called by the display driver to inform the keyboard driver that the display
driver is in a critical section and, therefore, it should ignore all OSfl screen switches until
the display driver leaves its critical section.

The parameter is saved as a flag that is tested in the interrupt function; if it is zero, the
OSfl key combination for screen switching is ignored.

On entry, screen switches are enabled.

SetSpeed(Rate)
Dt11t:tiptian

Return Value

Comments

This function is used by Conttol Panel and by Wmdows initialization to set the repeat rate
of the keyboard.

Parameter

Rate

Description

An integer value. The lowest S bits define the desired repeat rate. If
Rate is -1, this function returns a value indicating speed-setting capa
bility.

If rate_of_speed = -1

AX = -1 if not speed capable
AX= 0 if yes capable

If rate_of_speed does not= -1

AX= speed actually set on keyboard
AX = -1 if unsuccessful

This function is used in conjunction with a Conttol Panel dialog for setting the keyboard re
peat rate.

If the keyboard speed cannot be set from software, this function may be reduced to a stub
which always returns -1. In that case, the Conttol Panel program will not display a menu
selection for setting keyboard speed.

ToAscii(VirtKey, Scancode, lpKeyState, lpState, Keyflags)
Description

April 1, 1990

ToAscii() translates the virtual key code passed to it, along with the current keyboard state,
to an ANSI character.

Microsoft Confidential Beta Release

8·24 Devlt:e Drhler Adaptation Gulde

Return Value

Comments

Beta Release

Parameter

VirtKey

Scancode

lpKeyState

lpState

KeyFlags

Description

The Microsoft Windows vinual key code. (WORD value)

The "hardware" raw scan code originally passed to Windows when
the hardware interrupt function called the keyboard event procedure
in USER. The sign bit of this parameter is set if this is an UP key tran
sition. (WORD value)

The vector of key state flags maintained in USER. (See the following
Comments section and Section 8.5.1, "Keyboard State Vector," for a
description.) (long value)

The vector of data words. This is used mainly for the output of ANSI
characters. (long value)

The bit 0 flag's menu display. (WORD value)

The value returned in AX indicates the number of characters returned (1 byte per WORD)
in the state block (pointed to by lpState). Negative values indicate dead keys. Normally,
the following values occur:

Parameter

2

1

0

-1

Description

Two characters are returned (mainly an accent and a dead key
character, when a dead key cannot be translated otherwise).

One ANSI character is returned.

This virtual key code has no translation (for the current state of shift
keys, etc).

This key is a dead key. The character returned is nonnally an ANSI
accent character representing the dead key.

ToAsciiO is called mainly whenever TranslateMessageO is called to translate a virtual
key code (e.g., for WM_KEYOOWN messages).

The given parameters to ToAsciiO are not necessarily sufficient to translate the virtual key
code. This is because a previous dead key is stored internally in the driver. Also, the MS
OOS shift state byte is accessed by ToAsciiQ.

ToAscii() is responsible for maintaining the state of the keyboard LED indicator lights. For
most AT-compatible systems, this is done by making a ROM BIOS interrupt 16H call; for
others, 1/0 must be done directly to the keyboard.

ToAsciiO also has a special case which, if it is called with the vinual key code = 0, will
only set the keyboard lights according to the state of the appropriate entries in the key
board state vector. This function is intended to be called from the USER/unction SetK.ey-

Microsoft Confidential April 1, 1990

Keybaanl Drivers 8-25

boardState() and not used directly by applications. The Scancode parameter is ignored.
The vector pointed to by lpState should be different from the one used by nonnal
ToAscii() calls in USER and at least 4 bytes long.

Most translations are made on the basis of the Windows virtual key code. However, the
Scancode parameter's sign bit is used to distinguish key depressions (sign cleared) from
key releases (sign set). Also, the scan code is used in the translation of ALT+ number key
translations.

lpKeyState points to a 256-byte vector indexed by the virtual key code. In each byte, the
high-order bit indicates the state of the key and the low-order bit is toggled each time the
key is pressed. The CAPSLOCK key is handled in a special manner for some European key
boards.

VkKeyScan(wChar)
Description

Retum Value

Comments

April 1, 1990

This function translates an ANSI character code into a virtual key code and a shift state. It
is intended for applications that send text to other applications by simulating keyboard
input.

Parameter Description

wChar An ANSI character

AL = Windows virtual key code

AH = Shift state

0 No shift
I Character is shifted
2 Character is CTRL character
6 Character is CTRL + ALT
7 Character is SHIFT+ CTRL + ALT
3,4,5 These combinations never occur.

If no key with this translation is found, -I is returned in AX.

Vutual key codes applying to the numeric pad (VK_NUMPADO .. VK_DIVIDE) are not re
turned. This is done to force a translation for the main keyboard, if it exists.

Microsoft Confidential Beta Release

8·26. DeVlcs Driver Adaptation Gulde

Beta Release Microsoft Confidential April 1, 1990

Chapter

9
Miscellaneous Drivers

This chapJer provides some basic infonnation on several device drivexs for which source
code is included with the Microsoft Windows Device Development Kit (DDK). We recom
mend that, if possible, you simply modify these drivers instead of writing your own. ·

9.1 Updating 2.x Drivers to 3.0
None of the new feature enhancements in Windows 3.0 affects communications or sound
drivers. (What about being bi-modal for real and protected modes?)

However, we recommend that you rebuild your 2.x driver with the new Wmdows 3.0 build
ing tools provided in the Software Development Kit (SDK). You should also thoroughly
test your driver under Windows 3.0, and especially while running in protected mode. This
will ensure full compatibility with Wmdows 3.0.

The supplied communications driver source code has also been enhanced from earlier ver
sions of Wmdows. It now supports the COMM3 and COMM4 ports.

9.2 Communications and Sound Drivers

Beta Release

The Windows communications driver has entries that assign and deassign serial device in
stances to ports, enable and disable interrupt handlers for input from assigned serial dev
ices, and send and receive characters to assigned serial output devices. The data
transmission protoeol is communicated in a Device Control Block (DCB) when the serial
device is assigned.

The Windows sound driver generates the sounds specified by a parameter block. The block
is a series of notes whose first word specifies the number of notes. Each subsequent pair of
words defmes the duration of the note (in milliseconds) and the frequency of the note.

In most cases, there will be no need to modify the drivers shipped with Wmdows.
However, if you need to customize them, the sowce for the standard versions is provided
on one of the disks included with the DOK. We recommend that you modify these instead
of writing your own.

The APis that these drivers support are fully defmed in the SOK.

The Device Control Block (DCB) snucture, however, is provided in this section for your
convenience.

Microsoft Confidential April 1, 1990

9-2 Dev/cs Dtlver AtJaptaUon Gulde

9.2.1 DCB - Device Control Block Structure

typedef struct
char
us ho rt
char
char
char
us ho rt
us ho rt
ushort
us ho rt
us ho rt
ushort
ushort
ushort
ushort
ushort
us ho rt
us ho rt
ushort
ushort
ushort
char
char
us ho rt
us ho rt
char
char
char
us ho rt
} DCB;

April 1, 1990

RS-232 configuration parameters are communicated in a Device Control Block (DCB).
The Device Control Block structure is defined below; the C-strucwre definition is given.

Id:
Baudrate:
ByteSize:
Parity;
StopBits;
RlsTimeout;
CtsTimeout;
Dsrtimeout:
fBinary: 1:
fRtsDisable: 1:
f Parity: 1:
fDummy: 5:
fOutX: 1:
flnX: 1;
f Pechar: 1:
fNull: 1;
fChEvt: 1;
fDtrflow: 1;
fRtsflow: 1:
fDummy2: 1:
XonChar:
XoffChar:
Xonlim;
Xoffl im:
PeChar;
EofChar:
EvtChar:
TxDelay;

/* Internal device ID
/* Operating speed
/* Transmit/receive byte size
/* 0,1,2,3, or 4
/* Number of stop bits
/* Timeout for RLSD to be set
/* Timeout for CTS to be set
/* Timeout for DSR to be set
/* Binary mode flag
/* Disable RTS
/* Enable parity checking

I* Enable output X-ON/X-OFF
/* Enable input X-ON/X-OFF
I* Enable parity error replacement
I* Enable null stripping
I* Enable Rx character event
/* Enable DTR flow control
/* Enable RTS flow control

I* Transmit/receive X-ON character
/* Transmit/receive X-OFF character
I* Transmit X-ON threshold
I* Transmit X-OFF threshold
/* Parity error replacement character
I* End-of-input character
/* Event-generating character
/* Amount of time between characters

*/
*/
*I
*I
*/
*/
*/
*/
*/
*I
*I

*/

*/
*I
*/
*I
*/
*/

*I
*I
*I
*I
*/
*/
*/
*/

The fields in the DCB data strucwre have the following meanings:

Field

Id

Baudrate

Bytesize

Parity

Description

Device ID byte (COMl = 0, COM2 = 1, etc.) This is also the
value retwned by cOpen, when successful.

Operating speed; any baud rate supported by the hardware.

Transmitting and receiving byte size; nonnally in the range 4-8.

Parity setting, as follows:

0 None

1 Odd~

Microsoft Confidential Beta Release

Beta Release

Field

Stopbits

RlsTimeout

CtsTimeout

DsrTimeout

minary

fRtsDisable

tParity

fOutX

flnX

fPeChar

Description

2 Even

3 Marie

4 Space

Number of stop bits, as follows:

0 1 stop bit

1 1.5 Stop bits

2 2 stop bits

Mlscellansaus Drivers 9·3

Amount of time, in milliseconds, to wait for RLSD (receiving
line signal detect) to become high. RLSD flow control can be
achieved by specifying infinite timeout (OxFFFF)

Amount of time, in milliseconds, to wait for CTS (clear to send)
to become high. CTS flow control can be achieved by specifying
infinite timeout (OxFFFF)

Amount of time, in milliseconds, to wait for DSR (data set
ready) to become high. DSR flow control can be achieved by
specifying infinite timeout (OxFFFF)

Binary mode flag (0 is ASCil mode, 1 is binary). In ASCil
mode, EOFCHAR is recognized and remembered as end of re
ceived data.

If set, disables RTS line for as long as this device is open. Nor
mally, RTS is enabled when the device is opened and disabled
when closed.

If set, enables parity checking.

If set, indicates that X-ON/X-OFF flow control is to be used
during transmission. The ttansmitter will halt if an X-OFF
character is received and start again when an X-ON character is
received.

If set, indicates that X-ON/X-OFF flow control is to be used
during reception. An X-OFF character will be transmitted when
the receive queue comes within 10 characters of being full, after
which an X-ON chamcter will be transmitted when the queue
comes within 10 characters of being empty.

If set, indicates that characters received with parity errors are to
be replaced with the specified PECHAR.

Microsoft Confidential April 1, 1990

9-4 Dsvlce Ddver Adaptation Gulde

Field

tNull

fChEvt

fDtrFlow

fRtsFlow

XonCbar

Xoft'Cbar

XonLim

XoffLim

Pe Char

EofCbar

EvtCbar

TxDelay

Description

If set, received NUIL characters are to be discarded.

If set, indicates that the reception of EVTCHAR is to be flagged
as an event.

If set, indicates that the D1R signal is to be used for receive flow
control

If set, indicates that the RTS signal is to be used for receive flow
control

X-ON character for both transmit and receive.

X-OFF character for both transmit and receive.

Threshold value for receive queue. If the number of characters in
the receive queue drops below XONLIM and an X-OFF
character has been sent, an X-ON character is sent (if X-ON
flow control is enabled) and D1R is set (if enabled).

Threshold value for send queue. When the nwnber of characters
in the receive queue exceeds this value, an X-OFF character is
sent (if X-OFF flow control is enabled) and D1R is dropped (if
enabled).

Chamcter to be used as replacement when a parity error occurs.

Chamcter that signals the end of the input.

Character that triggers an event flag.

Minimwn amount of time that must pass between transmission
of characters.

9.3 Mouse Drivers
The Wmdows mouse driver provides the following:

• Initialization and termination functions for the mouse

• Information about whether or not a mouse is connected to the system

• The number of buttons on the mouse

• The rate at which it generates interrupts

• The threshold for acceleration of horizontal and vertical motion

• The resolution of the screen

April 1, 1990 Microsoft Confidential Beta Release

Miscellaneous Drivers 9-5

The mouse hardware interrupt handler is called whenever the mouse generates an inter
rupt The interrupt handler must place state flags in AX. These flags include information
about whether or not the mouse has moved and about button transitions.

The low-order bit is set if there was movement since the last interrupt; otherwise, it is
cleared. Bits 2-15 in AX specify the state of the buttons, which are numbered 1-N for this
purpose. Bit 2N is set if button N is depressed, bit 2N+ 1 is set if button N is up. DX is set
to the number of buttons.

If there has been mouse motion (low-order bit of AX is set), BX and CX hold the integer
values of motion since the last mouse interrupt was generated for X and Y, respectively.
When this data is in place, the interrupt handler calls an event-handling procedure supplied
by Microsoft Windows.

9.3.1 Mouse Functions
The following three functions are specific to the mouse driver.

lnquire(lpMOUSEINFO)
This primitive returns information about the mouse hardware.

The lpMOUSEINFO parameter is a long pointer to a data structure of type MOUSEINFO.
The structure contains information about the mouse hardware that is present, the number
of buttons on the mouse, and the rate at which the mouse can issue interrupts.

On return, AX holds the number of bytes actually written into the data structure.

Enable (lpEventProc)
This primitive sets up the mouse to call the procedure whose address was passed for each
mouse interrupt.

The lpEventProc parameter is a long pointer to the procedure that is to be called for each
mouse interrupt.

Disable()
This primitive removes the existing interrupt procedure from the mouse driver. After a call
to this procedure, there will be no support for interrupts from the mouse driver.

9.3.2 Addition to MOUSE.DEF

Beta Release

A call has been added to MOUSE.DEF for enhanced Windows initialization support. This
call,

MouseGetlntVect @4

returns the mouse's vector number under DOS. If there is no physical mouse, it returns -1.

Microsoft Confidential April 1, 1990

1-6 Dlwla IJ,,_ Adaptation Saids

NOTE Under 0812, some interrupt vectors are not shareable, including the mouse interrupt To deter
mine whether or not a mouse driver is already installed, you can do the following:
xor AX,AX
int 33h
If the interrupt returns != 0, then a mouse driver is, indeed, installed, and you must use it. If it returns
0, yau may Install your driver.
If yau are not operating under OS/2, you can still check for an installed mouse driver. However, you are
not obliged to use it; you may replace it with your own.

9.3.3 MOUSEINFD - Mouse Hardware Characteristics Structure

April 1, 1990

The values of the fields in this structure should be set so that they correctly reflect the rela
tionship between quadrature changes and pixel movement for the system's mouse and the
usual display.

typedef struct {
char msExist:
char msRelative;
short msNumButtons:
short msRate:
short msXThreshold;
short msYThreshold:
short msXRes;
short msYRes;
} HOUSEINFO:

The following is a description of the fields in this structure:

Field

msExist

msRelative

msNumButtons

msRate

msXThreshold

Description

Nonzero if the device i.rUtialization code was able to find and ini
tialize a mouse device.

Nonzero if the mouse device is set to return coordinates relative
to the previous position. It is zero if the mouse returns absolute
coordinates.

Identifies how many buttons are on the installed mouse. For the
mM PC with a Microsoft Mouse, this field is set to 2.

Specifies the maximum number of hardware interrupts per sec
ond that the mouse can generate. For the IBM PC with the bus
version of the Microsoft Mouse, this field is 34.

Specifies the mouse acceleration threshold for horizontal mo
tion. The threshold specifies the mickey per second rate at which
the mouse must travel before the pixel per mickey rate of the
mouse cursor is accelerated.

Microsoft Confidential Beta Release

Field

msYThreshold

msXRes

msYRes

Miscellaneous Drivers 9·7

Description

Specifies the mouse acceleration threshold for vertical motion.
The threshold specifies the mickey per second rate at which the
mouse must travel before the pixel per mickey rate of the mouse
cursor is accelerated.

Reserved.

Reserved.

9.3.4 CURSDRINFD - Cursor Information Data Structure

Beta Release

This data structure contains information about the system display's cursor module.

typedef struct {
short dpXRate:
short dpYRate:
} CURSORINFO;

The fields in this data structure have the following meanings:

Field

dpXRate

dpYRate

Description

The horizontal mickey-to-pixel ratio for this display. For the
IBM PC with a Microsoft Mouse, this is l.

The vertical mickey-to-pixel ratio for this display. For the IBM
PC with a Microsoft Mouse, this is 2.

Microsoft Confidential April 1, 1990

H Devlt:ll Dtltlet Alla/llBllOR Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

10

April 1, 1990

Common Functions

This chapter describes the common functions used by Microsoft Wmdows. The functions
performed by a GDI device driver fall into the following groups:

• Control

• Envirorunent

• Information

• Output

• Attribute

• Cursor

The following are the control functions (with their ordinal reference numbers) that
Wmdows uses to initialize and disable the physical display and to control the various out
put operations. They are required for all device drivers. (Lisa, true? Check the other lists
also and give me required vs. optional for which drivers.)

• ControlO@ 3

• DisableO@

• EnableQ@

• WEPO@

The following two envirorunent functions (with their ordinal reference numbers) are part
of GDI and can be used by device drivers to manage the printing enviromnent for a given
porL DeviceMode is called by applications and is required to be in the printer driver.

• DeviceModeO @ 13

• GetEnvironmentO@

• SetEnvironmentO @

The following infonnation functions (with their ordinal reference numbers) pass infor
mation about the graphics peripheral to which this device driver is attached. This includes
the physical characteristics (technology. size of output smface, resolution, colors. etc.) of
the graphics peripheral, and information about the capabilities of the device driver. They

Microsoft Confidential Beta Release

10-2 Device Driver Adaptation Gulde

Beta Release

also pass infonnation about fonts or other data structures. These functions are required for
(Lisa, which?) drivers.

• ColorlnfoO@

• DeviceBitmapO @

• EnumDFontsO@ 6

• EnumObjO@

• GetCharWidthO@ 15

The following output functions (with their ordinal reference numbers) perform all the ac
tual graphics operations on the display surface. Output is made to the device output surface
or to a bitmap in memory. Most of these functions are required for display and printer
drivers. Some are also used by (Lisa, which?) drivers. FastBorderO and StretchBltO are
optional display drivers.

NOTE The output functions must not overwrite the display cursor while it is still on the display
screen. Each function must check for the location of the cursor and remove it from the screen if it is in
any portion of the screen to be updated or read. This ensures that the cursor, H visible at all, is on the
top level of the screen. i.e., •in front or all the other items. The origin is the upper-left corner of the dis
play surface. Notice that X increases when going to the right, and Y increases when going downward.

• BitBltO@

• ExtTextOutO@

• FastBorderO@

• OutputO@

• PixelO@

• SaveScreenBitmapO @

• ScanLRO@ 12

• StretchBltO @ 27

• StrBltO@

The following display attribute functions (with their ordinal reference numbers) handle the
creation of physical representations of attribute bundles suitable for the device. Those
physical representations are the actual parameters to output primitive calls. These func
tions are required for (Lisa, which?) drivers.

• RealizeObjectO@

• SetAttributeO @

Microsoft Confidential April 1, 1990

BltBlt()

Cammon Functions 10·3

The following cursor functions (with their ordinal reference numbers) allow the Original
Equipment Manufacturer (OEM) to take advantage of any special cursor display hardware.
The OEM is responsible for hiding the cursor, if necessary, when the screen display
changes. These functions provide position and visibility control of the cursor, and the abil
ity to specify the bitmap to be displayed as the cursor. They are used for dedicated display
modules only. These functions are required for (Lisa, which) drivers.

NOTE A cursor consists of two monochrome bitmaps: an AND mask (applied first at the current
screen position) and an XOR mask (applied after the AND mask).

• CheckCursorO @

• InquireO@

• MoveCursorO@

• SetCursorO@ 102

Detailed descriptions of all the functions mentioned above follow this introductory section
and are presented in alphabetical order.

Syntax BitBlt (/pDestDev, DestXOrg, DestYOrg, lpSrcDev, SrcXOrg, SrcYOrg, Xext, Yest, Rop3,
lpPBrush, lpDrawMode)

April 1, 1990

Transfers bits delimited by a source rectangle from the source bitmap to the area delimited
by a destination rectangle on the destination bitmap. The type of transfer is controlled by
the raster operation that allows the specification of all the possible Boolean operations on
three variables (source, destination, and the pattern in the brush). Notice that the source
and destination may overlap, so the implementation must be careful about the direction in
which bits are copied. (See Section 2.5 "The BitBlt Function," for a more detailed discus
sion of the function and its parameters.)

Parameter

lpDestDev

DestXOrg and DestYOrg

lpSrcDev

Description

A long pointer to a data structure of type PDEVICE or
BITMAP.

Two short integers specifying the coordinate origin of
the destination rectangle on the destination device in
device units.

A long pointer to a data structure of type PDEVICE or
BITMAP.

Microsoft Confidential Beta Release

1fl-4 Device Dtlrer Adaptation Gulde

RetumValue

Comments

Beta Release

Parameter

SrcXOrg and SrcYOrg

Xext

Yext

Rop3

lpPBrush

lpDrawMode

None

Description

Two short integers specifying the coordinate origin of
the source rectangle on the source device in device units.

A short integer that specifies the horizontal extent of the
rectangle on both the source and destination devices in
device units.

A short integer that specifies the vertical extent of the
rectangle on both the source and destination devices in
device units.

A long integer specifying a ternary raster operation code
that defines the combining function to be used on the
source, destination, and pattern information to produce
the color that is placed at the destination for each pixel
being rewritten. (See Chapter 14, .. Raster Operation
Codes and Definitions.")

A long pointer to a structure of type PBRUSH that was
previously realized by this device. This brush is used as
the current pattern.

A long pointer to the DRAWMODE data structure. The
color information in the structure is only used to carry
out color conversions in bitmaps.

The source and destination rectangles, defined by their origin and extent on each
PDEVICE (in bitmap units), are the same size and may overlap. When this function is used
for filling the destination rectangle with a brush, the source device is ignored.

Refer to the GDIINFO data structure for a description of how BitBlt registers its output
capabilities.

When the source, brush pattern, and destination are not in the same color fonnat, BitBlt
must convert the source and brush pattern to the same format before copying to the destina
tion.

To convert a monochrome bitmap to a color bitmap, BitBlt must do the following:

1. Convert white bits (1) to the background color given in DRAWMODE.

2. Convert black bits (0) to the text (foreground) color given in DRAWMODE.

To convert a color bitmap to a monochrome bitmap, BitBlt must do the following:

Microsoft Confidential April 1, 1990

CheckCursor()

Common Funt:tlons 10·5

I. Convert all pixels that match the background color to white (1).

2. Convert all pixels that do not match the background color to black (0).

The cmrent background and foreground colms are defined by the current drawing mode
pointed to by lpDrawMode.

Syntax CbeckCursor O

This function is called on every timer interrupt. It allows the cursor to be displayed if it is
no longer excluded.

Return Va/ua None

Colorlnfo()
Syntax Colorlnfo (lpDestDev, Colorin, lpPCOWR): rgbColor

April 1, 1990

This function converts RGB color values to physical colors and vice versa. The operation
to be performed depends on the value of lpPCOLOR.

If lpPCOLOR is a nomero value, Colorin is asswned to be an RGB color value. The func
tion should choose the best possible physical color to match this color and, then, copy this
physical color to the location pointed to by lpPCOWR and return the RGB color value
that corresponds to this physical color.

If lpPCOWR is NULL, Colorin is assumed to be a physical color and the function should
return the corresponding RGB color value.

Physical colors returned by this function are only used by GDI to set text colors, back
ground colors, and pixel colors using Pixel

Parameter

lpDestDev

Colorin

Description

A long pointer to a data structure of type PDEVICE. See the
PDEVICE description in Chapter 12, "Data Structures and File
Formats."

A long integer that holds the desired intensities of red, green, and
blue (each of 8 bits). The color definition occupies 3 bytes of the
long integer, with red in the low byte, green in the second byte,
blue in the thild byte, and the fourth byte reserved.

Microsoft Confidential Beta Release

10·6 Derlt:e Driver Adaptation Gulde

Retum Value

Control()

Parameter

lpPCOLOR

Description

A long pointer to a variable of type PCOLOR. See the PCOLOR
description in Chapter 12, "Data Structures and File Fonnats."

rgbColor is a long integer that holds the intensities of red, green, and blue (each of 8 bits)
of the actual color that the device would use if asked to perfonn the Colorin color.

For palette-capable devices only, the high-WORD can be either 0 or OrFH. If the high byte
equals OFFH, then an index (not an RGB) is in the low-word Just return the index that was
passed in. No color conversion needs to be perfonned.

Syntax Control (lpDestDev, Function, lplnData, lpOUl/Jata): wReturnVal

RetumValue

DevlceBltmap()

Parameter

/pDestDev

Function

lplnData

lpOutData

Description

A long pointer to the destination device bitmap.

The predefined subfunctions for Control are described in Chap
ter 11, "Device Driver Escapes."

A long pointer to function-specific input data.

A long pointer to function-specific ouq>ut data.

This depends on the subfunction.

Syntax DeviceBitmap (lpDestDev, Command, lpBitmap, lpBits): wSuccess

Beta Release

The call to this function is not yet implemented in GDI. It must be implemented as a stub
function.

Parameter

lpDestDev

Command

lpBitmap

Description

A long pointer to a data structure of type PDEVICE.

An integer containing the number of the command

A long pointer to a data structure of type BITMAP containing a
description of the device bitmap.

Microsoft Confidential April 1, 1990

Rstum Va/us

Comments

DevlceMode()
Syntax

RelumVa/ue

Comments

April 1, 1990

Cammon Functions 10·7

Parameter Description

lpBits A long pointer to the contents of the device bitmap.

This call is only a stub at this time. It may be used in future versions of Windows. It cur
rently returns AX = 0.

You must set up the stack frame correctly to ensure correct returns to GDI should the stub
ever be called.

DeviceMode (hWnd, hlnstance, lpDestDevType, lpOutputfile)

The DeviceMode function sets the current printing modes for the device by prompting for
those modes using a dialog box. An application calls DeviceMode directly when it wants
the user to change the printing modes of the corresponding device. The function copies the
mode information to the environment block associated with the device and kept by GDI.
GDI initializes this environment block when the application calls CreateDC and gives
access to it through the SetEnvironment and GetEnvironment functions.

Parameter

hWnd

hlnstance

lpDestDevType

lpOutputfile

None

Description

A handle to the application's window.

The instance handle of the application.

A long pointer to a NULL-terminated string containing the
device name. The application passes the same device type name
as given in the CreateDC function.

A long pointer to a NULL-terminated string containing the name
of an MS-DOS file or device port. The application passes the
same device type name as given in the CreateDC function.

DeviceMode should be included in and exported from any device driver that pennits the
user to change modes.

(Lisa, please review this carefully.)

The driver should allow all dialog boxes created with DeviceMode to be dismissed at any
time by pressing ESC. This is because the Help application, when setting up printers, must
be able to respond to a request for help from another application at any time. It will try to

Microsoft Confidential Beta Release

10·8 Device Ddver Adaptation Gulde

Disable()

do so by sending a WM_COMMAND (IDCANCEL) message (equivalent to pressing the
ESC key) to all its task windows, including those brought up by the device driver.

To determine if your code does the right thing, do the following tesc

1. From Program Manager, choose the File and Run commands and, then, run WIN-
HELP.EXE.

2. From WINHELP, choose the File and Printer Setup commands.

3. Select your printer and press the Setup button.

4. Then, from every state reachable from that point, press ALT + ESC and Fl. (Lisa, all 3
together or do you get an action between ALT+ ESC and Fl?)

Help should respond by removing all its dialog boxes (including all the device driver
dialog boxes) and displaying help for Program Manager.

Syntax Disable (lpDestDev) •

If the Windows session is ending or if a non-Windows application (e.g., Microsoft Word)
is being run, the display needs to be disabled. In the case of a non-Windows application,
the display will be re-enabled later by a call to Enable.

This call disables the display for either purpose.

Parameter Description

lpDestDev A long pointer to a data structure of type PDEVICE.

Return Value None

Enable()
Syntax Enable (lpDestDev, Style, lpDestDevType, lpOutputFile, lpData) : wSize

Beta Release

This function initializes a device driver or returns information about the driver as defined
by the value of Style.

This function should save the current hardware state in static storage (usually within the
PDEVICE data structure passed) so that it can be restored when Microsoft Windows termi
nates.

Microsoft Confidential April 1, 1990

Retum Value

Comments

April 1, 1990

Parameter

/pDestDev

Style

lpDestDevType

lpOutputFile

lpData

Cammon Functions 10·9

Description

A long pointer to a data structure of type PDEVICE (if the DO
bit of Style is 0) or GDIINFO (if the DO bit of Style is 1).

An integer value specifying the type of action to take. If the high
bit is set, only an information context is requested. (This is done
if no hardware is actually connected.)

• OxOOOO Initialize the support module (PDEVICE) and periph
eral hardware.

• OxOOOl Fill the GDIINFO data structure with module infor
mation.

• Ox8000 Initialize the PDEVICE structure.

• Ox8001 Fill the GDIINFO data structure with module infor
mation.

A long pointer to a null-terminated ASCII string giving the name
of the type of physical device to be initialized. This string only
applies to support modules that can drive more than one type of
device. The parameter can be NULL if only one type of device is
supported.

A long pointer to a null-terminated ASCII string giving the MS
DOS filename of the physical device. For example, "CO Ml" for
a plotter or a null string for the dedicated system display. This
string will be the same string passed into the CreateDC function
as the desired physical device. It can be NULL.

A long pointer to device-specific information that is to be used
by the support module to initialize the environment of the given
physical device. It can be NULL if no such information is
needed.

On return, AX holds zero if it is unsuccessful (e.g., hardware is not initialized). Otherwise,
AX returns nonzero.

This function will only be called once for most physical devices. It can be called more than
once for a display, (e.g., if a non-Windows application is run; this requires that the display
be Disabled and, when the application is terminated, re-Enabled.)

In some cases, GDI may request a raster device to write on a memory bitmap without ena
bling the device first. This only occurs with raster devices that can write to memory bit
maps.

Microsoft Confidential Beta Release

10-111 DIWll:ll Driver Adaptation Gulllll

EnumDFonts()

NOTE Because of the interaction between a dedicated display driver and the keyboard driver, every
dedicated display driver should use the following procedure to ensure that the keyboard works cor
rectly under Windows:

Syntax EnumDFonts (lpDestDev. lpFaceName. lpCallbackFunc, lpClientData) : wLastCallback

Return Value

Comments

Beta Release

This function is used to enwnerate the fonts available on the device. For each appropriate
font, the callback function is called with the infonnation for that font. The callback func
tion is called until there are no more fonts or the callback function returns zero.

Parameter

lpDestDev

lpFaceName

lpCallbackFunc

lpClientData

Description

A long pointer to a data structure of type PDEVICE.

A long pointer that detennines the method of enumeration. If
lpFaceName points to a string containing the name of a font
face, all the fonts of that typeface are enumerated. If there are no
fonts of that face, none is enwnerated and EnumDFonts returns
1. If lpFaceName is NULL, one font of each face available is
selected at random and enwnerated. Again, if there are no fonts,
none is enwnerated and EnumDFonts will return 1.

A long pointer to the user-supplied callback function. See the fol
lowing Comments section.

A long pointer to the user-supplied data.

This function returns the last value returned by the callback function.

The callback function has the following form:

CallbackFunction (lpLogFont, lpTextMetrics, wFontType, lpClientData)

where lpLogFont is a long pointer to a data structure of type LOGFONT defined such that
it maps to the enumerated font; lpTextMetrics is a long pointer to a data structure of type
TEXTMETRIC defined with the values that would be returned by a GetTextMetrics call;
F ontType is an integer value indicating the type of the font; and lpClientData is a long
pointer to the user-supplied data passed to EnumDFonts. Sizes are in device units.

The label .. RAS1ER_FONTI'YPE" is to be ORed into wFontType to indicate that the font
is composed of a raster biunap rather than vector strokes. If the device is capable of text
ttansfonnations such as scaling and italicizing, only the base font will be enumerated. The
user is responsible for inquiring the device's text transformation abilities to determine
which additional fonts are available directly from the device.

Microsoft Confidential April 1, 1990

EnumObj()
Syntax

Return Value

Comments

April 1, 1990

Cammon Functions 10·11

EnumObj (lpDestDev, Style, lpCallbackFunc, lpClientData) : wLastCallback

This function is used to enumerate the pens and brushes available on the device. For each
object belonging to the given style, the callback function is called with the infonnation for
that object. The callback function is called until there are no more objects or the callback
function returns zero.

Parameter

lpDestDev

Style

lpCallbackFunc

lpClientData

Description

A long pointer to a data structure of type PDEVICE.

An integer value specifying the type of object to be enumerated.
It can be any one of the following values:

1: Enumerate pens.

2: Enumerate brushes.

All objects of the given type are enumerated. If there are no ob
jects of that type, none is enumerated and EnumObj returns 1.

A long pointer to the user-supplied callback function.

A long pointer to the user-supplied data.

This function returns the last value returned by the callback function.

The callback function has the following form:

CallbackFunction(lpLogObj, lpClientData)

where lpLogObj is a long pointer to a data structure of type LOGPEN or LOG BRUSH, de
pending on the style selected. En um Obj must map each physical object to a logical object
before passing to the callback function. lpClientData is a long pointer to the user-supplied
data passed to EnumObj.

When initializing, some older applications (such as Microsoft Excel for versions earlier
than 2.1) mistakenly expected the first 8 pens returned to them through the EnumObj func
tion to be the 8 default EGA colors. Therefore, even though their pens are not nonnally
enumerated in that EGA order, driver writers should first return the 8 default EGA pens
with these RGB values and, then, enumerate as many others as they want to enumerate.
They should do this for both brushes and pens.

EGA Pen

Black

RGB Value

0,0,0

Microsoft Confidential Beta Release

10·12 DIWll:ll Dtlnt AdaptallOll Bult/ti

ExtTextOut()

EGA Pen

White

Red

Green

Blue

Yellow

Magenta

Cyan

RGBValue

FF.FF.FF

FF,0,0

O,FF,O

0,0,FF

FF,FF,O

FF,O,FF

O,FF,FF

(Ron G. please review this carefully.)

This standard order for enumerating pens and brushes is also useful when you have a
device with full 24-bit resolution. First. you enumerate the eight standard colors. Then, you
can enumerate your own colors. However, you should also consider here the color appli
cations, such as Microsoft Excel, that enumerate 16 colors. Therefore, we recommend you
pick the eight most desirable colors. Then, after the fust 16 are enumerated, if the program
asks for more colors, you can select another set of colors up to a total of 256 colors.

We also recommend that you enumerate your solid pens first and, then, if you want to do
SO, the patterned ones.

For brushes, only enumerate the solid ones. And if they can be dithered, only enumerate
the "true" solid ones. GDI already knows about the hatched ones. Since there can be a very
large number of patterned ones, it is better not even to start enumerating them.

When enumerating brushes, the backgrowid color for hatched brushes is not returned.

Syntax ExtTextOut (lpDestDev, DestXOrg, DestYOrg, lpClipRect, lpString, Count, lpFontlnfo,
lpDrawMode, lpTextXForm., lpCharWulths, lpOpaqueRect, Options): dwSuccess

Beta Release

This function transfers the pattern for each character in the string from the font biunap to
the destination device. starting at the origin passed. In each character pattern, a one bit
specifies the characte.r foreground, and a zero bit specifies the character background. It is
effectively the Wmdows 2.0 and later StrBlt function. (See Section 2.6,"The StrBlt/Ext
TextOut Functions," for a more detailed discussion of the function and its parameters.)

Parameter

lpDestDev

DestXOrg

Description

A long pointer to the destination device biunap.

The left origin of the stting.

Microsoft Confidential April 1, 1990

April 1, 1990

Parameter

DestYOrg

/pClipRect

lpString

Count

lpFontlnfo

/pDrawMode

Common Functions 10-13

Description

The top origin of the string.

A long pointer to the clipping rectangle. Only pixels within the
rectangle are to be drawn. The upper-left comer of the rectangle
is assumed to be located at the upper-left corner of a pixel (not
the center). Thus, no pixels are drawn if the clipping rectangle is
empty (zero width and height), and only one pixel is drawn if it
has a width and height of 1. See also the description of the
RECT data structure in Chapter 12, "Data Structures and File
Formats."

A long pointer to the string itself.

Count has one of three meanings:

If Count is greater than zero, it is the number of characters to dis
play from the string. The placement of characters is determined
by the state of the Differential Data Analyzer (DDA) in the
DRAWMODE structure. On exit, the DDA must be reset to its
original state. (BreakErr is left as it was upon entry to StrBlt or
ExtTextOut.)

If Count is less than zero, no output is produced, and the extent
of the string is returned as a long integer. The X and Y values of
the extent are 16-bit quantities packed with Y in the high word
and X in the low word. The extent is defined as the bounding
box in pixels that the string would occupy if the clipping
rectangle were infinite. The size of the string is determined by
the state of the DDA in the DRA WM ODE structure. On exit, the
DDA must be set to its new state as advanced by the contents of
the string. (BreakErr is modified.)

If Count is zero, then check the Options flag. If the 2s bit is set
in the Options flag, then it infers that you have to draw an
opaque rectangle. See Section 2.6.2, ''The ExtTextOut Parame
ters,," for a more detailed discussion.

A long pointer to a data structure of type FONTINFO that repre
sents the physical font in use.

A long pointer to a data structure of type DRAWMODE that in
cludes the current text color, background mode, background
color, text justification, and character spacing. Refer to the
DRAWMODE data structure description in Chapter 12, "Data
Structures and File Formats," for a description of text justifica
tion and character spacing.

Microsoft Confidential Beta Release

10·14 Device Driver Adaptation Gulde

Return Value

Comments

Beta Release

Parameter

lpTextXForm

lpCharWuiths

lpOpaqueRect

Options

Description

A long pointer to a data suucwre of type TEXTXFORM that de
scribes text appearance that may differ from the actual values
specified by lpFontlnfo. This parameter allows more capable
devices to make changes to the standard font For example. if
ExtTextOut (or StrBlt) registers itself as capable of sizing
characters. lpTextXForm may specify a different point size from
the one specified by lpF ontl nfo. If a 16-point font replaces an 8-
point font. ExtTextOut must do bit doubling (or vector
doubling) to produce the desired font size. If ExtTextOut has no
transform capabilities and registers itself as such. the lpTexiX-
F orm parameter may be ignored.

The user may exercise explicit control over the spacing of each
character by passing in a vector of x movements. If lpChar
Wulths is non-NULL. then lpCharWuiths[n] is the adjustment
from the start of the nth character to character n+ 1. This number
may be larger or smaller than the actual width of the nth
character.

If non-NULL. a long pointer to the opaquing rectangle.

An integer with bits set to indicate ExtTextOut options.

If bit 02 (0x0004) is set in the Options flag, then the rectangle
pointed to by lpOpaqueRect is to be intersected with the
rectangle pointed to by lpClipRect. with the resulting area being
used to clip the string.

If bit D1 (Ox0002) is set in the Options flag, then the rectangle
pointed to by lpOpaqueRect is to be intersected with the
rectangle pointed to by lpClipRect. and the resulting area filled
with the background color given in DRAWMODE. The area is
to be filled regardless of opaque/transparent mode. Notice that
the text string bounding box and the opaquing rectangle are al
lowed to be disjoint rectangles.

Under certain circumstances, (e.g .• if the specified font is not supported). ExtTextOut re
turns DX:AX = SOOO:OOOOH to signify an error.

Otherwise, it returns DX:AX = OOOO:OOOOH to signify success.

However. if Count=< 0, it returns DX:AX = Yext :Xext

Refer to the GDIINFO data suucture for a description of how ExtTextOut registers its out
put capabilities and their meanings.

Microsoft Confidential April 1, 1990

FastBorder()
Syntax

Return Value

April 1, 1990

Common Functions 10·15 ·

The upper-left comer of the string is placed starting at the point defined by DestYOrg. This
means that the characters in the string appear below and to the right of the starting point

ExtTextOut uses the current drawing mode to determine the current text color, the back
ground mode (or Transparent/Opaque flag), and the background color. The background
mode determines whether or not ExtTextOut must draw an opaque bounding box before
drawing the characters. The background color determines what color that box must be. Ext·
TextOut does not use the current binary raster operation mode (ROP2).

For further information on TEXTXFORM, see Chapter 13, ''The Font File Formal"

FastBorder (lpRect, wHorizBorderThick, wVertBorderThick, dwRasterOp, lpDestDev,
lpPBrush, lpDrawMode, lpClipRect) : wSuccess

This function draws a rectangle with a border on the screen. However, the size is subject
to the limits imposed by the specified clipping rectangle. The border is drawn within the
boundaries of the specified rectangle.

Parameter

lpRect

wHorizBorder
Thick

wVertBorderThick

dwRasterOp

lpDestDev

lpPBrush

lpDrawMode

lpClipRect

Description

A long pointer to the rectangle to be framed.

The width in pixels of the left and right borders.

The width in pixels of the top and bottom borders.

The raster operation to be used.

A long pointer to a data structure of type PDEVICE, i.e., the
device to receive the output

A long pointer to a data structure of type PBRUSH.

A long pointer to a data structure of type DRAWMODE that in
cludes the current text color, background mode, background
color, text justification, and character spacing. See the DRAW
MODE data structure description in Chapter 12, "Data
Structures and File Formats," for a description of text justifica
tion and character spacing.

A long pointer to the clipping rectangle.

FastBorder returns AX = 0 on error, AX = I on success.

Microsoft Confidential Beta Release

10·16 Devlt:e Driver Adaptation GuldB

comments The specified rectangle should be given as (UpperLefiComer, LowerRightComer). lf it is
specified incorrectly, the sample function will draw the borders outside of the specified
rectangle, instead of correctly drawing them inside.

· The function is optional for display drivers. It is required at the GDI level but not at the dis
play level

The raster opemtion to be used will never have a source operand within iL

The lpDrawMode parameter is simply a long pointer to the DRAWMODE data structure.
It is included only for compatibility with earlier versions and is not crucial. The only field
that you may use from there is BackgroundColor.

GetCharWldth()
Syntax GetCbarWidtb (lpDestDev, lpBuffer, FirstChar,LastChar, lpFontlnfo, lpDrawMode,

lpFontTrans): wSuccess

Return Value

Beta Release

This function returns, for the specified font, the widths of the characters within the given
range. Characters outside of the font's range are given the width of the default character.

Parameter

lpDestDev

lpBuffer

FirstChar

LastChar

lpFontlnfo

lpDrawMode

lpF ontTrans

Description

A long pointer to a data structure of type PDEVICE. (Not cur
rently used by display drivers.)

A long pointer to the character width data, an array of 16-bit
values.

The first character of the range.

The last character of the range.

A long pointer to a data structure of type FONTINFO.

A long pointer to a data structure of type DRAWMODE that in
cludes the current text color, background mode, background
color, text justification, and character spacing. Refer to the
DRA WMODE data structure description in Chapter 12, .. Data
Structures and File Formats," for a description of text justifica
tion and character spacing. (Not currently used by display
drivers.)

A long pointer to a data structure of type TEXTXFORM. (Only
needed if the device can do font transformations, such as scaling
and italicizing.)

This function returns its information in a buffer to which lpBujfer points. In the event of an
error, it returns AX= 0.

Microsoft Confidential April 1, 1990

Common Functions 10-17

GetEnvlronment()
Syntax GetEnvironment (lpPort, lpDevMode, cbDevMode) : Bytes

RetumValue

Inquire()

This function copies the current environment associated with the device attached to the sys
tem port specified by lpPort into the buffer specified by lpDevMode. The environment,
maintained by GDI, contains binary data used by GDI whenever a display context (DC) is
created for the device on the given port

The function fails if there is no environment for the given port

Parameter

lpPort

lpDevMode

cbDevMode

Description

A long pointer to a NULL-tenninated string specifying the name
of the desired port

A long pointer to the buffer that receives the environmenL

An integer value specifying the maximum number of bytes to
copy.

Bytes is an integer value specifying the number of bytes copied to lpData. It is zero if the
environment cannot be found.

Syntax Inquire (lpCURSORINFO)

Return Value

Comments

Move Cursor()

This function returns the mouse's mickey-to-pixel ratio for your screen.

Parameter

/pCURSORINFO

Description

A long pointer to a device information block (data type CUR
SOR.INFO) that is filled in by the support module (device
driver?). The first word is the X mickey-to-pixel ratio, and the
second word is the Y mickey-to-pixel ratio.

On return, AX holds the number of bytes (4) actually written into the data sttucture.

This function is called once per initialization before the Enable function.

Syntax MoveCursor (absX, absY)

April 1, 1990 Microsoft Confidential Beta Release

f 0· 18 DINll:8 Dtlvsr Allaptatlaa Baille

RllumValae

Cammenll

Output()

1bis function moves the cwsor to the given screen coordinates. If the cursor is a composite
of screen and cursor bitmaps (i.e., not a hardware cursor), this function must ensure that
screen bits under the cmrent cmsor position are restored and the bits under the new posi
tion are saved. The function must move the cursor, even if the cursor is not cunendy dis
played.

Parameter

absX and absY

None.

Description

Absolute X and Y screen coordinates of the new cursor position.

Microsoft Windows may specify a position at which the cursor shape would lie partially
outside of the display bitmap. The OEM function is responsible for clipping the cursor
shape to the display boundary.

The MoveCursor function is called at mouse interrupt time, outside of the main thread of
Wmdows processing. Since MoveCursor may even intenupt its own processing, the
device driver should disable interrupts while reading the absX and absY coordinates by
using the EnterCrit and LeaveCrit macros. Do not use sn and ru instructions in the
driver.

Syntax Output (lpDestDev, Style, Count, lpPoints, lpPPen, lpPBrush, lpDrawMode, lpClipRect) :
wRetumVal

Beta Release

1bis function consists of the output primitive group, which includes all the shape-drawing
functions registered in GDIINFO.

Parameter

lpDestDev

Style

Count

lpPoints

Description

A long pointer to the destination device.

A short integer that defines the type of geometric primitive to be
drawn. The interpretation of the remaining parameters depends
on the style. The available style primitives are described follow
ing the parameter definitions.

A 16-bit integer specifying the number of points in the points list.

A long pointer to an army of short integers. The array has Count
elements, and each element contains two short integers. For
most of the output primitives, these are simply the device coordi
nates for each point on the figure.

Microsoft Confidential April 1, 1990

Return Value

Comments

April 1, 1990

Parameter

lpPPen

lpPBrush

lpDrawMode

lpClipRect

Cammon Functions 10-19

Description

A long pointer to a data structure of type PPEN.

A long pointer to a data structure of type PB RUSH.

A long pointer to a data structure of type DRAWMODE that in
cludes infonnation required to decide how to alter the pixels
(ROP2). It includes a specification of a mode in which to draw
the line (a logical function combining source and destination), a
background mode, and a physical foreground and background
color.

A long pointer to the clipping rectangle to be used to clip output.
For polygons and lines, lpC/ipRect contains the bounding box of
all the lines to be drawn. This parameter is ignored if the device
is unable to clip (see the dpClip field of the GDIINFO struc
ture). See also the RECT data structure.

If lpClipRect is zero, then the clipping rectangle is the entire dis
play surface.

Output returns the following:

• AX= I: success

• AX= 0: unrecoverable failure

• AX= -1: device driver could not support the passed style

The -1 return represents support for "smart" devices in the Windows GDI.

Refer to the GDIINFO data structure for a description of how Output registers its output
capabilities and their meanings.

lpC/ipRect should be intersected with the bitmap as well. The display driver should do it
and not rely on G DI to do it.

lpClipRect is only in effect in the GDIINFO data structure if the dpClip field says that you
can clip. Otherwise, the device can ignore it because the device cannot clip itself.

The only Output styles required by Windows 2.0 and later GDI are OS_SCANLINES and
OS_POLYLINES. With certain "smart" devices, you may want to use the device's capabil
ity to draw complex figures. However, in many cases the device is either limited by such
things as the number of vertices in a polygon or is not able to draw these complex figures
into a main memory bitmap, although it can draw them to the screen. In these cases, the
device driver is now allowed to return a -1 failure code. When GDI receives this return
code, it breaks the complex figure into component scanlines and polylines and draws the
figure with them.

Microsoft Confidential Beta Release

10-zo DllV/tl OtlrBr Adaptation Gulde

Beta Release

The defined styles are listed in this Comments section, with a brief description of what the
Output primitive does when each style is specified. The style type determines which of
the parameters in the Output primitive contain meaningful information. The lpDestDev
(device pointer) and lpDrawMode (raster op) parameters are common to all style types and
are not described further here.

For styles that define a closed area, the current interior pattern specified by the lpPBrush
parameter is used. For styles that define lines or borders, the current line pattern specified
by the lpPPen parameter is used.

If Output passed both a pen and a brush (i.e., if neither lpPBrush nor lpPPen is NULL),
then the interior should be drawn first with the brush and followed by the border drawn
with the pen.

The lpPoints parameter points to an array of pairs of shon integers that designate the
points used to produce the style specified. When the number of pQints required to produce
a style can vary (e.g., the polygon), the Coun1 parameter specifies the exact number of
points. For arc styles, Count is always five, specifying two points for the upper left and
lower right comers of the bounding rectangle, a start point, a stop point, and a special point
structure that actually contains the pair of angles used to sweep out the arc. The circle and
ellipse styles use only the first two of these points. The other styles use the Count and
lpPoints parameters to produce the appropriate output.

All the styles are briefly described below:

Style

OS_ARC(3)

OS_PIE(23)

Description

Causes an arc to be drawn on the device.
If the points are all the same, a point is
drawn. If they are collinear, a line is
drawn. Otherwise, a circular arc is de
fined that passes from the start to the stop
point (counterclockwise, as defined by
the upper and lower points and the size
of the specified angles). This style does
not define a closed figure even if the start
and stop points are identical.

Causes a Pie-type closed arc to be drawn
on the device. The arc is drawn as de
scribed above, then two additional lines
are drawn (one from each endpoint) to
the implicit center of the circular arc, de
fining a wedge-shaped enclosed area
which is filled.

Microsoft Confidential April 1, 1990

April 1, 1990

Style

OS_ CHORD (39)

OS_ CIRCLE (55)

OS_ELLIPSE (7)

OS_AL1ERNATE_FILL_POLYGON
(22)

OS_1RAPEZOID (20)

Common Functions 10-21

Description

Causes a Chord-type closed arc to be
drawn on the device. The arc is drawn as
described above, then the two endpoints
are connected with a straight line and the
enclosed area is filled.

Causes a circle to be drawn on the
device. The circle is centered at the impli
cit center, determined by the upper
lefunost and lower righunost points
passed, and has a radius equal to half the
width of the rectangle. A zero radius
colors a pixel at the center of the circle.

Causes an ellipse to be drawn on the
device. The ellipse is centered at the im
plicit center, determined by the upper
lefunost and lower righunost points
passed. It also has the width and height
implied by these points.

Specifies a polygonal area that is to be
drawn on the device and filled using the
alternate filling method (i.e., every other
enclosed region within a complex
polygon is filled). The Count parameter
contains the nwnber of points to be
passed. The polygon is drawn from the
first point, passed through subsequent
points, and closed back to the first point,
if necessary.

Formerly called Winding Number Fill
Polygon, it specifies a polygonal area
that is to be drawn on the device and
filled using the winding number filling
method (i.e., only enclosed regions
within a complex polygon are filled).
The Count parameter contains the num
ber of points to be passed. The polygon
is drawn from the first point, passed
through subsequent points, and closed
back to the first point, if necessary.

Microsoft Confidential Beta Release

10-22 Device Driver Adaptation Gulde

Beta Release

Style

OS_RECTANGLE (6)

OS_POLYLINE (18)

OS_SCANLINES (4)

Description

Causes a rectangle to be drawn on the
device, using two points passed as the
two corners. If the corner points are
called (Xl,Yl),(X2,Y2), then the driver
should draw a rectangle defined by
(Xl,Yl) and (X2-1,Y2-1) and exclude
the bottom right corner. For more infor
mation on the RECT data structure that is
passed to the driver, see Chapter 12,
"Data Structures and File Formats."

Causes a set of line segments to be
drawn on the device. The value of Count
must be at least two (2). Each line seg
ment is drawn from its starting point up
to, but not including, its end point. If
more than one line segment is drawn,
each new segment starts at the end point
of the previous segment Poly lines do not
define filled areas and are not implicitly
closed This style is required for both
raster and vector devices. Polylines do
not use brushes. The line style is deter
mined from lpPPen.

Provides a means to rapidly fill a set of
intervals with the pattern for a particular
raster line. There are always an even
number of X coordinates. Lines are
drawn from the starting point up to, but
not including, the end point Thus xl-x2,
x3-x4, are all lines drawn with the brush
pointed to by lpPBrush, or by the pen
pointed to by lpPPen if lpPBrush is
NULL. This style can be used with
memory bitmaps as well as on devices.
The first point gives the Y coordinate of
the scan. Each successive point is a pair
of X values that determine the position
and length of the scanline.

Microsoft Confidential April 1, 1990

April 1, 1990

Style

OS_BEGINNSCANO
OS_ENDNSCANO

Cammon Functions 10-23

Description

(Ron G, please review this carefully.)
Two new styles, for Windows 3.0 and
later versions, that will always come in
pairs. The first one indicates that a series
of Output calls of the OS_SCANLINE
style will follow. The pen, brush, and
drawmode parameters will correspond to
the ones used by the series of scanlines.
The following OS_SCANLINE calls will
also have information about the scan
lines, such as the Count and lpPoints.
The end of the series is marked by the
new Output call of the OS_ENDN
SCAN style.

These styles will speed up the filling of
polygons, widelines, and floodfills. The
bracketing of the scanlines will enable
devices to set up the pen, brush, and
drawmode infonnation only once per
figure instead of once per scanline. Dev
ices that do not understand these styles
will ignore them, and the scanline call
will remain unchanged.

Output uses the current binary raster operation mode (ROP2) when drawing lines and
scanlines. It also uses the current background mode and color, but not the text color.

When drawing solid lines, Output replaces the destination pixel with a combination of the
destination and the line color. The binary raster operation defines how the colors are com
bined. When drawing styled lines (e.g., lines with gaps), the function replaces the destina
tion pixels under the solid part of the line with a combination of destination and line
colors, the same as for a solid line. If the current background mode is OPAQUE, Output
replaces destination pixels under the gaps with a combination of the destination and the
current background color. Again, the raster operation mode defines how to combine these
colors. If the current background mode is 1RANSPARENT, Output leaves the destination
pixels unchanged. For example, to draw a line that inverts the destination color, use the
XOR binary raster operation code and a white pen, or use the NOT binary raster operation
code and a black pen.

Output uses a brush pattern to draw scanlines. When drawing a scanline, Output replaces
the destination pixel color with a combination of the destination color and the color of an
individual pixel in the brush. The binary raster operation code defines how the colors are
to be combined. Output leaves the destination pixel color unchanged if the current back
ground mode is TRANSPARENT and the brush pixel and background colors are equal. If
lpBrush is NULL, the pen is used for the scanlines. A pen is considered to be the same as a
solid brush for this purpose. However, unlike a brush, it cannot be dithered (except in the

Microsoft Confidential Beta Release

10·24 Dnlce Driver Adaptation Gulde

Pixel()

case of the LS_INSIDBFRAME pen style), and should not be considered totally inter
changeable with a brush.

If a device registers in the GDIINFO data structure that it can do styled polylines, then it
must do them for all devices, no matter whether it is the bitmap or the screen. It cannot fail
them.

We do not recommend that you implement the OS_CIRCLE style (55). GDI will always
call the OS_ELLIPSE style (7) to draw a circle. Since there are no efficiencies gained,
there is no reason to support the circle style.

We do not recommend that you support the OS_RECTANGLE style (6). You can support
it, though, and make it work. However, there is some special casing that you have to do
with little gain in efficiency or speed. If you do not support it, GDI will simply call BitBlt
and the OS_POLYLINE style (18) to draw the rectangle.

However, if there is no pen passed in the lpPPen field, then you use the brush and draw the
filling from the starting coordinate up to, but not including, the last pixel. If there is a pen
passed, then the border starts on that first pixel, and you do not start drawing the fill until
the second pixel. You stop two pixels from the end because the border is the last one.

You should always stop drawing scanlines one pixel before the ending coordinate. You do
not draw through the last coordinate.

Syntax Pixel (lpDestDev, wX, wY, dwPhysColor, lpDrawMode) : PhysColor

Beta Release

This function sets or rettieves the color of the specified pixel. If lpDrawMode is not
NULL, this function sets the given pixel to the color given by dwPhysColor, using the bi
nary raster operation given by lpDrawMode. If lpDrawMode is NUIL, the function returns
the physical color of the pixel given by wX and wY. (See the following Return Value sec
tion.)

Parameter

lpDestDev

wXandwY

dwPhysColor

lpDrawMode

Description

A long pointer to a data structure of type PDEVICE. See the
PDEVICE description in Chapter 12, "Data Structures and File
Formats."

Integer values that specify the device coordinates of the pixel to
be acted on.

A physical color value of type PCOLOR. See the PCOLOR
description in Chapter 12, "Data Structures and File Formats."

A long pointer to a data structure of type DRAWMODE that in
cludes the binary raster operation to carry out on the given pixel.

Microsoft Confidential April 1, 1990

Retum Va/Us

RealizeObJect()

Common Funt:tlans 10-25

It" lpDrawMode is NULL, the function returns the physical color of the pixel given by wX
andwY.

If lpDrawMode is non-NUU., the function returns DX:AX = 0000:0001.

On error. in either the SetPixel or GetPixel mode, the function returns DX:AX =
8000:0000.

Syntax RealizeObject (lpDestDev, Style, lplnObj, lpOutObj, lpTexiXForm) : wSize

April 1, 1990

This primitive directs the device driver to fill an attribute structure created by GDI that
will be used when drawing output primitives. It may also direct the driver to return the size
of such a structure.

If lpOUlObj is a nonzero value, it is assumed to be a long point.er to a data structure to be
filled with the physical attributes of an objecL Style specifies the type of object to be real
ized and lplnObj is a long point.er to a structure defining the logical attributes of the object
The function must ttanslate the logical attributes into sufficient infonnation to accurately
describe a physical object for use by output functions when drawing. Only the device
driver uses the PPEN and PBRUSH objects (except that GDI also uses the device fonts).
Therefore, the fonnat of these structures is up to the device driver writ.er.

If lpOUlObj is NUlL, the function is expected to return the size (in bytes) of the physical
data structure. After receiving the object size, GDI allocates space for the realized object
and calls RealizeObject again, passing a point.er to the allocated space in lpOutObj.

Parameter

lpDestDev

Style

Description

A long point.er to a data structure of type PDEVICE.

An integer that specifies the type of object to be realized. The
predefined objects are as follows:

OBJ_PEN (=l)

Pen - used to stroke out borders

OBJ_BRUSH (=2)

Brush - used to cover the interior of figures

OBJ_FONT (=3)

Fonts - used to specify the appearance of characters

If a negative Style is passed, the specified object is to be deleted.

Microsoft Confidential Beta Release

10-26 Dtw/1:11 IJllrlt Adaptation Gukll

Return Value

Comments

Parameter

lplnObj

lpOutObj

lpTexiXForm

Description

A long pointer to a data SIIUCture of type LOGPEN, LOG
BRUSH, or LOGFONT, depending on the given Style. This
paramer.er describes the logical attributes of the objecL

A long pointer to a data StIUcture to receive the realized objecL
For pens and brushes, the structure types are PPEN and
PBRUSH, respectively. For fonts, the StIUcture must contain
fields identical to the fields dfType through dfFace, with valid
pointers to device (if any) and facename strings, in the FONT
INFO data stIUcture. Additional infonnation is copied to a data
stIUcture of type TEXTXFORM pointed to by lpTextXForm.

A doubleword length value. It can serve one of two purposes, de
pending on the value of Style.

If Style is OBJ_BRUSH, lpTextXForm is not a point.er. Rather, it
is a data structure of type POINT, which contains the screen
coordinar.es of the window's origin. The bits in the realized brush
should be rotated so the upper-left comer aligns with some OEM
defined point relative to the new origin.

If Style is OBJ_FONT, lpTexiXForm is a long pointer to a data
structure of type TEXTXFORM, which contains additional infor
mation about the appearance of a realized font. Both the realized
font and the conr.ents of the 1EXTXFORM stIUcture are later
passed to the ExtTextOut function, allowing more capable dev-
ices to make changes to the standard fonL ·

If a device cannot realize an object, RealizeObject returns zero.

For further information on 1EXTXFORM data structures, see Chapr.er 13, "The Font File
FonnaL"

SaveScreenBltmap()
Syntax SaveScreenBitmap (lpRect, wCommand) : wSuccess

Be'ta Release

This function saves a single biunap from the display or restores a single (previously
stored) bitmap to the display. h is used, for example when a menu is pulled down, to store
the part of the screen that is "behind" the menu until the menu is closed.

Parameter Description

Microsoft Confidential April 1, 1990

Retum Value

Comments

Scan LR()
Syntax

April 1, 1990

/pRect

wCommand

A long pointer to the rectangle to use.

0: Save the rectangle.

1: Restore it

Cammon Functions 10-27

2: Discard previous save. if there was one.

This function returns AX = 1 if successful, AX = 0 for any of the following error condi
tions:

• "Shadow memory" does not exist (save, restore. ignore).

• "Shadow memory" is already in use (save).

• "Shadow memory" is not in use (restore).

• "Shadow memory" has been stolen or trashed (restore).

Because SaveScreenBitmap can save only one bitmap at a time, the device driver must
maintain a record of whether or not the save area is currently in use.

The bitmap is stored in "shadow memory" (i.e .• memory for which the device has control
of allocation). Therefore. the device can save the bitmap in whatever form is most con
venient for it. without the rest of Wmdows worrying about where it goes.

ScanLR (lpDestDev, wX. wY, wPhysCo/or. Style): wReturnVa/

This function scans the device surface in a left or right direction from the given pixel look
ing for the first pixel having (or not having) the given color. ScanLR is used by Microsoft
Wmdows Paintbrush to perform flood fills.

Parameter

/pDestDev

wXandwY

dwPhysColor

Description

A long pointer to a data structure of type PDEVICE. See the
PDEVICE description in Chapter 12, "Data Structures and File
Formats."

Integer values specifying the X and Y coordinates of the pixel
from which to start the scan.

A physical color value of type PCOLOR. See the PCOLOR
description in Chapter 12, "Data Structures and File Formats."

Microsoft Confidential Beta Release

10-28 Device Driver Allaptat/011 Gu/lie

Return Value

SetAttribute()
Syntax

Return Value

Comments

Beta Release

Parameter

Style

Description

An integer value specifying the scan style and direction. Bits 1
and 2 of this integer are active and can be set as follows:

• If bit 1 is set, scan for a pixel with color matching dwP hy
sColor.

• If bit 1 is cleared, scan for a pixel with color that does not
match.

• If bit 2 is set, scan to the left.

• If bit 2 is cleared, scan to the right.

On return, AX holds the X coordinate of the first pixel satisfying the given scan condition.

If either the given X or Y is not in the range of coordinates of the display surface or the bit
map, then AX = 8000H.

If no pixel is found that satisfies the given scan condition, then AX = -1.

SetAttribute (lpDestDev, StateN um, Index, Attribute) : wReturn Val

The code that calls this function is not yet implemented in GDI.

Parameter

lpDestDev

StateNum

Index

Attribute

Description

A long pointer to a data structure of type PDEVICE.

An integer that specifies the state number.

An integer.

An integer.

At this time, this call is just a stub function and returns AX = 0.

You must set up the stack frame correctly to ensure correct returns to GDI should the stub
function ever be called.

Microsoft Confidential April 1, 1990

Cammon Functions 10·29

SetCursor()
Syntax SetCursor (lpCURSORSHAPE)

Retum Vala•

Comments

This function sets the cursor bitmap that defines the cursor shape. Each call replaces the
previous bittnap with that pointed to by lpCURSORSHAPE. If lpCURSORSHAPE is
NULL, the cursor has no shape and its image is removed from the display screen.

Parameter

lpCURSORSHAPE

None.

Description

A long pointer to a data structure of type CURSORS HAPE
that specifies the appearance of the cursor for the specified
device.

The cursor bitmap is actually two bittnaps. The first bitmap is ANDed with the contents of
the screen, and the second is XORed with the result. This helps to preserve the appearance
of the screen as the cursor is replaced and ensures that at least some of the cursor is visible
on all the potential backgrounds.

SetEnvironment()
Syntax SetEnvironment (lpPort, lpDevMode, cbDevMode) : Bytes

Return Va/us

April 1, 1990

This function copies the contents of the buffer specified by lpDevMode into the environ
ment associated with the device attached to the system port specified by lpPort. SetEn
vironment overwrites any existing environment If there is no environment for the given
port, SetEnvironment creates it If cbDevMode is zero, the existing environment is de
leted and not replaced.

Parameter

lpPort

lpDevMode

cbDevMode

Description

A long pointer to a NULL-terminated stting specifying the name
of the desired port

A long pointer to the buffer containing the new environment

An integer value specifying the number of bytes to copy.

Bytes is an integer value specifying the number of bytes copied to the environment It is
zero if there is an error. It is -1 if the environment is deleted.

Microsoft Confidential Beta Release

ttJ-311 Dllllt:tl Dtlnr At/aptaUoa Gulde

StrBlt()
Syntax

Beta Release

StrBlt (lpDestDev, DestXOrg, DestYOrg, lpClipRect, lpString, Count, lpFontlnfo,
lpDrawMode, lpTextXForm)

This is an alt.emat.e entry point to ExtTextOut, which is provided for compatibility with
Windows 1.:XX.

For Wmdows 2.0 and later versions, StrBlt should be implemented as a call to ExtTex·
tOut, in the following manner:

cProc StrBlt, <FAR,PUBLIC>,<si, di>
parmd lpDestOev
parmw OestXOrg
parmw DestYOrg
parmd lpClipRect
parmd lpString
parmw Count
parmd lpFontlnfo
parmd lpDrawHode
parmd lpTextXForm

cBegin <nogen>:don't fool with the stack frame
:until we get to ExtTextOut .

;First, we must save our caller's far return address.
;Use CX & BX for this.

pop
pop .

ex
bx

:Now dummy up NULL parameters for the extra
:parameters needed by ExtTextOut:

xor
push
push
push
push
push
push
push
jmp

.
cProc

ax,ax :
ax ;push a dword for lpCharWidths
ax :
ax ;push a dword for lpOpaqueRect
ax :
ax ;push a word for Options
bx :push the caller's return address
ex :
ExtTextOut :now go do the StrBlt using

:ExtTextOut!

ExtTextOut,<FAR,PUBLIC,WIN,PASCAL>,<si, di>
parmd lpDestDev
parmw DestXOrg
parmw OestYOrg
parmd lpClipRect
parmd lpString
parmw Count

Microsoft Confidential April 1, 1990

cBegin

parmd lp~onttnto

parmd lpDrawHode
parmd lpTextXForm
parmd lpCharWidths
parmd lpOpaqueRect
parmw Options

Cammon Functions 10-31

Rlllll'll Value None

Stretch Bit()
Syntax StretcbBlt (lpPDevice, DestX, DestY, DestXE, DestYE, lpSrcPDevice, SrcX, SrcY, SrcXE,

SrcYE,Rop, lpPBrush, lpdm, lpClip): (What do I put here for the Return Value?)

April 1, 1990

This function allows devices that support the scaling of bitmaps to use this capability
Wlder Wmdows.

Parameter

lpPDevice

DestX

DestY

DestXE

DestYE

lpSrcPDevice

SrcX

SrcY

SrcXE

SrcYE

Rop

lpPBrush

lpdm

Description

A long pointer to the destination PDevice.

X on the destination rectangle.

Yon the destination rectangle.

X extent on the destination rectangle.

Y extent on the destination rectangle.

A long pointer to the source PDevice.

X on the source rectangle.

Y on the source rectangle.

XE on the source rectangle.

YE on the source rectangle.

The raster operation to be used.

A long pointer to a data structure of type PBRUSH.

A long pointer to a data structure of type DRAWMODE that in
cludes the current text color, background mode, background
color, text justification, and character spacing. Refer to the
DRAWMODE data structure description in Chapter 12, "Data
Structures and File Formats," for a description of text justifica
tion and character spacing.

Microsoft Confidential Beta Release

Rll11111 Value

WEP()

Parameter

lpClip

Description

A Jong pointer to the clipping rectangle given in destination
coonlinares.

StretchBltO returns a -1 upon failure and, then, GDI will simulate.

If the device cannot support a given call, it may fail (i.e., return a -1) and GDI will perform
the stretching. This allows devices to perfonn sttetching on cases that are supported but
have GDI do the wodc on those that are noL For example, if a device can stretch by integer
factors. or powers of two. it can use this capability.

If a device wants to support StretchBltO. it must set the RC_STRETCHBLT bit in the
raster capabilities field in the GDilNFO structure.

The driver must export the StretcbBltO function with the ordinal number 27.

Syntax WEP(bSystemExit)

This is a termination function. called Wmdows Exit Procedure. that is required to accom
modate the support of dynamic-link libraries (DU.S). This function indicates whether all
of Wmdows is shutting down or just the single DLL.

Parameter

bSystemExit

Description

(Gun~r, can you provide?)

Return value None.

Be'la Release Microsoft Confidential April 1, 1990

Chapter

11
Device Driver Escapes

The device driver escapes enable applications and device drivers to add support that is
otherwise not available through GDI's Application Program Interface (API). Although pre
defined escapes are useful for this purpose, they are not necessarily the perfect solution.
The more escapes we define and implement. the more code you tend to include. which bur
dens the driver and application.

We recommend that all applications support all the escapes for changing printer settings
and any others for speciali7.ed support that are really necessary.

Each device driver should support all the escapes that are possi"ble for that particular
device. The device driver developer should recogni7.e that an application will assume that
the printer setting escapes are available and that it may request the more specialized
escapes on high-end devices.

11.1 Introduction to Driver Escapes

April 1, 1990

The Graphics Device Interface (GDI) includes an entty point called EscapeO that is used
by applications to perform a device-dependent operation that may or may not be supported
on a given device or that may be relaled to the job control of a printing operation. GDI
cranslates EscapeO calls into calls to the device driver's ControlO function. GDI may per
form its own interpretation of the escape if it needs to. Therefore, there is not necessarily a
one-to-one correspondence between EscapeO and ControlO calls. However, the capabili
ties of these calls are referred to on both sides as driver escapes.

The ControlO function is required for all device driveis. However, you may choose to sup
port only a few of the escapes documented here or only the minimal functionality required.
For example, you can use QUERYESCSUPPORT to tell the calling application that you
support a subset or none of the Control flll1Ctions. Notice, though, that most of these
escapes are applicable only to printers. Most applications will not have to support calls to
these functions for display devices. In fact. the only escapes that are recommended for sup
port by display drivers are the following three:

• QUERYESCSUPPORT

• GETCOLORTABLE

• SETCOLORTABLE (not for palette-capable devices)

Microsoft Confidential Beta Release

11·2 Device Driver Adaptation Gulde

Beta Release

The most common escapes used by all printing applications and printer drivers are as fol
lows:

• QUERYESCSUPPORT

• SETABORTPROC

• STARTDOC

• NEWFRAME

• ENDDOC

• ABORTDOC

• NEXTBAND

The ControlO function is declared for printers in C as follows:

Int FAR PASCAL Control(
POEVICE FAR * lpPOevice,
WORD iFunction,
LPSTR lplnData,
LPSTR lpOutData
) ;

Where:

/pPDevice Points to a structure describing the physical device in use and is
defmed by the device driver itself.

iFunction

lplnData

lpOUlData

Selects the specific escape function to be perfonned.

Points to input data.

Points to a buffer for output data.

Although lplnData and lpOutData are declared as pointing to characters, they generally
point to some structure type. The precise type will depend on the escape function selected.

The generalized stack frame to expect on a call to ControlO, when using CMACROS in
assembly language for display drivers, is as follows:

cProc Control,<FAR,PUBLIC>,<si,di>
parmO lpOestDev
parmW SubFunction
parmD lplnOata
parmO lpOutOata

Microsoft Confidential April 1, 1990

Device Driver Escapes 11-3

11.2 Generalized Error Return Codes
All the retmn codes are returned as signed integers in the AX register. The following are
the generalized return codes used by the printer driver Control subfunctions. They are also
referred to in this document by their symbolic names. For all the Control subfunctions
(i.e., escapes), a positive number indicates success and a zero or negative return code indi
cates a failure. It is best, however, to use the specific generalized error return codes docu
mented here whenever they are indicated as appropriate.

Name (Integer)

SP _ERROR (-1)

SP _APPABORI' (-2)

SP _USERABORT (-3)

SP _OUTOFDISK (-4)

SP_OUTOFMEMORY (-5)

Description

A general error in banding.

The job was aborted because the application's call
back returned false (0).

The user aborted the job through the Print
Manager's "abonjob" function.

A lack of disk space caused the job to abon.

A lack of memory caused the job to abort.

11.3 Driver Escape Descriptions

April 1, 1990

The following is an alphabetical list of the escape functions, with their corresponding num
bers, that are included in this chapter. Following the list, you will find the detailed function
descriptions for each escape.

Additional escapes that are appropriate only to applications are provided in the Microsoft
Windows Software Development Kit.

Escape Name (Number)
• ABORI'DOC (2)

• BANDINFO (24)

• BEGIN_PAIB (4096)

• CLIP _lO_PAIB (4097)

• DRAFI'MODE (7)

• DRAWPATIERNRECT (25)

• ENABLEDUPLEX (28)

Microsoft Confidential Beta Release

11-4 DBrlt:e Dtlrer Ada/1111100 Gllltle

• ENABLEPAIRKERNING (769)

• ENBLERELATIVEWIDTHS (768)

• ENDDOC (11)

• END_PA1H (4098)

• ENUMPAPBRBINS (31)

• ENUMPAPERMETRICS (34)

• EPSPRINTING (33)

• EXT_DEVICE_CAPS (4099)

• EXTI'EXTOUT (512)

• FLUSHOUI'PUT (6)

• GETCOLORTABLE (5)

• GETEXTENDEDTEXTMETRICS (256)

• GETEXTBN'ITABLE (257)

• GE1FACENAME (513)

• GETPAIRKERNTABLE (258)

• GETPHYSPAGESJZE (12)

• GETPRINTINGOFFSET (13)

• GETSCALINGFACTOR (14)

• GETSETPAPERBINS (29)

• GETSETPAPERMETRICS (35)

• GETSETPRINTORIENT (30)

• GETIECHNOLOGY (20)

• GETIRACKKERNTABLE (259)

• GETVECTORBRUSHSIZE (27)

• GETVECTORPENSJZE (26)

• NEWFRAME(l)

• NEXTBAND (3)

• PASSTHROUGH (19)

Be'la Release Microsoft Confidential April 1, 1990

Device Driver Escapes 11-5

• QUERYESCSUPPORT (8)

• RESTORE_CTM (4100)

• SAVE_CTM (4101)

• SELECIPAPERSOURCE (18) (superceded by GETSE1PAPERBINS)

• SETABOR1PROC (9)

• SETALUUSTVALUES (771)

• SET_ARC_DIRECTION (4102)

• SET_BACKGROUND_COLOR (4103)

• SET_BOUNDS (4109)

• SETCOLORTABLE (4)

• SETCOPYCOUNT (17)

• SETDIBSCALING (32)

• SETKERNTRACK (770)

• SETLINECAP (21)

• SETLINEJOIN (22)

• SETMITERLIMIT (23)

• SET_POLY_MODE(4104)

• SET_SCREEN_ANGLE (4105)

• SET_SPREAD (4106)

• STARTDOC (10)

• TRANSFORM_CTM (4107)

"Japanese Version of Windows" Escape Name (Number)
• GAUIAREASIZE (2577)

• GAUIFONTSIZE (2576)

• GAUIITTOCODE (2580)

• GAUil..OCALCLOSE (2582)

• GAUil..OCALOPEN (2581)

• GAUil..OCALRESTORE (2585)

April 1, 1990 Microsoft Confidential Beta Release

11-6 Device Driver Adaptation Gulde

• GAIJILOCALSAVE (2584)

• GAIJILOCALSETFONT (2583)

• GAIJISYSTEMGETFONT (2578)

• GAIJISYSTEMSETFONT (2579)

• TI'YMODE (2560)

ABORTDOC (Escape # 2)
Syntax short Control (lpDevice. ABORTDOC. lplnData, lpOutData)

Retum Value

Comments

This escape aborts the current job, erasing everything the application has written to the
device since the last ENDDOC escape.

The ABORTDOC escape should be used for printing operations that do not specify an
abort function (with the SETABOR1PROC escape) and to terminate printing operations
that have not yet reached their first NEWFRAME or NEXTBAND call.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data strucrure of type PDEVICE. the destination
device bittnap.

Not used

Not used

The return value is positive if the function is successful; otherwise, it is negative.

This escape is called by GDI when a banding error occurs. It is also called by an appli
cation when an error occurs or when the application wants to cancel the print job. The
driver can delete the Print Manager job.

In some earlier printer drivers, this escape was called ABOR1PIC.

BANDINFO (Escape # 24)
Syntax short Control (lpDevice, BANDINFO, lplnData, lpOutData)

Beta Release

This escape copies information about a device with banding capabilities to a strucrure
pointed at by lplndata.

Banding is a property of an output device that allows a page of output to be stored in a
metafile and divided into bands, each of which is sent to the device to create a complete

Microsoft Confidential April 1, 1990

Return Value

April 1, 1990

Device Driver Escapes 11·7

page. Devices with banding capabilities avoid problems associated with devices that can
not scroll backwards.

The infonnation copied to the structure pointed at by Ip/ ndala includes a flag indicating
whether or not there is graphics in the next band. a flag indicating whether or not there is
text on the page, and a rectangle structure that contains a bounding rectangle for all
graphics on the page.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the desti
nation device bitmap.

A long pointer to a BANDINFOSTRUCT data structure containing the
following items:

Field

fGraphicsFlag

ITextFlag

GrapbicsRect

Type/Definition

BOOL Is non-zero if there are graphics on
the page; otherwise, it is zero.

BOOL Is non-zero if there is text on the
page; otherwise, it is zero.

RECT Is a rectangle structure that con-
tains the coordinates for a rectangle that
bounds the graphics on the page.

This data structure provides the primary communication between the
driver and the application as to what (graphics and/or text) is actually
on the page. See Section 5.5.5, ''Using Banding Drivers," for a descrip
tion of its use.

A long pointer, which may be NULL, to a data structure that is filled in
by the driver and that contains the same items as Ip/ nData.

Field

fGraphicsFlag

ITextFlag

GrapbicsRect

Type/Definition

BOOL Is non-zero if this is a graphics
band; otherwise, it is zero.

BOOL Is non-zero if this is a text band;
otherwise, it is zero.

No valid return data.

The return value is one if the escape function is successful; otherwise, it is zero.

Microsoft Confidential Beta Release

11-8 Device Driver Adaptation Gulde

This escape should only be implemented for devices that use banding. It should be called
immediately after each call to the NEXTBAND escape.

BEGIN_PATH (Escape # 4096)
Syntax short Control (lpDevice, BEGIN _PATH, lplnData, lpOutData)

Rstum Value

Comments

This escape opens a path. A path is a connected sequence of primitives drawn in succes
sion to form a single polyline or polygon. Paths enable applications to draw complex
borders, filled shapes. and clipping areas by supplying a collection of other primitives de
fining the desired shape.

Printer escapes that support paths enable applications to render images on sophisticated
devices such as PostScript printers without generating huge polygons to simulate them.

To draw a path. an application fust issues the BEGIN_PATH escape. It then draws the
primitives defining the border of the desired shape and issues an END_PATII escape. The
END_PATH escape includes a parameter specifying how the path is to be rendered.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NULL.

Not used and can be set to NULL.

This escape returns a short integer value specifying the current path nesting level. If the
escape is successful, the number of BEGIN_PATII calls without a corresponding
END_PATH call is the result Otherwise. zero is the result.

You may open a path within another path. A path drawn within another path is treated ex
actly like a polygon (if the subpath is closed) or a polyline (if the subpath is open).

You may use the CLIP _TO_PATH escape to define a clipping area corresponding to the in
terior or exterior of the currently open path.

Device drivers that implement this escape must also implement the END _PATH escape
and should also implement the SET_ARC_DIRECTION escape.

CLIP _TO_PATH.(Escape # 4097)
Syntax short Control (lpDevice, CLIP_ TO _PATH, lpClipMode. lpOutData)

Beta Release Microsoft Confidential April 1, 1990

Return Va/us

Comments

April 1, 1990

Device Driver Escapes 11·9

This escape defines a clipping area bounde9 by the currently open path. It enables the
application to save and restore the current clipping area and to set up an inclusive or exclu
sive clipping area bounded by the currently open path.

To clip a set of primitives against a path. an application should follow these steps:

1. Save the current clipping area using the CLIP _'IO_PATII escape.

2. Begin a path using the BEGIN_PA1ll escape.

3. Draw the primitives bounding the clipping area.

4. Set the clipping area using the CLIP _TO_PA1ll escape.

S. Close the path using the END_PA1ll escape.

6. Draw the primitives to be clipped.

7. Restore the original clipping area using the CLIP _TO_PA1ll escape.

Parameter

lpDevice

lpClipMode

lpOutData

Description

A long pointer to a data structure of type PDEVICE. which is the
destination device bitmap.

A long pointer to a short integer specifying the clipping mode. It may
be one of the following:

CLIP _SA VE(O). Saves the current clipping area.

CLIP _RESTORE(l). Restores the previous clipping area.

CLIP _INCLUSIVE(2). Sets a clipping area such that portions of
primitives falling outside the interior bounded by the current path are
clipped.

CLIP _EXCLUSIVE(3). Sets a clipping area such that portions of
primitives falling inside the interior bounded by the current path
should be clipped.

Not used and can be set to NUil...

A no117.ero value is returned if the call is successful. Otherwise, zero is the result.

Device drivers implementing the CLIP _TO_PATH escape must also implement the
BEGIN_PATH and END_PATH escapes and should also implement the
SET_ARC_DIRECTION escape.

Microsoft Confidential Beta Release

11·10 Device Dtlrllr At/aptatton Guida

DRAFTMODE (Escape '7)
Syntax short Control (lpDevice. DRAFI'MODE, lpDraftMode, lpOUIData)

Return Value

Commentr

This escape turns draft mode off or on.

Turning draft mode on instructs the device driver to print faster and with lower quality (if
necessary). The draft mode can only be changed at page boWldaries, for example, after a
NEWFRAME escape.

Parameter

lpDevice

lpDraftMode

lpOUIDala

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

The return value is a 32-bit address to a short integer value specifying
the draft mode. It is one for draft mode on and zero for draft mode off.

Not used and can be set to NUIL.

The return value is positive if the function is successful; otherwise, it is negative.

The default draft mode is off.

DRAWPAmRNRECT (Escape # 25)
Syntax short Control (lpDevice, DRAWPATIERNRECT, lplnData, lpOUIData)

Beta Release

This escape creates a pattern, gray scale, or solid black rectangle using the pattern/rule
capabilities of PCL printers. With the HP LaserJet IIP, this escape can also create a solid
white rectangle. A gray scale is a gray pattern that contains a specific mixture of black and
white pixels. A PCL printer is an HP LaserJet or LaserJet-compatible printer.

Parameter

lpDevice

lplnData

Description

A long pointer to a data structure of type PDEVICE, which is the desti
nation device bitmap.

A long pointer to a data structure containing the following items:

Field

pr Position

prSize

Type/Definition

POINT A point structme identifying the
upper-left comer of the rectangle.

POINT A point structme identifying the
lower-right comer of the rectangle.

Microsoft Confidential April 1, 1990

Rlllum Vala•

Comments

lpOUlData

prStyle

pr Pattern

Dev/CB DllVBr Est:apu 11·11

WORD Specifies the type of pattern. It
can be one of the following:

BlackRule 0
WhiteRule 1
Gray Scale 2
HP-Defined 3

WORD Ignored for a black rule. It repre-
sents the percent of gray for a gray scale
pattern. It represents one of six patterns for
HP-defined patterns.

Not used and can be set to NUIL.

The return value is non-7.CIO if the escape function is successful; otherwise, it is zero.

An application should use QUERYESCSUPPORT to determine whether or not a device is
capable of drawing pattemS and rules before implementing this escape. If a printer is
capable of outputting a white rule, the return value for QUERYESCSUPPORT is two.

The effect of a white rule is to erase any text or other pattern rules already written in the
specified area. For example, it is posst"ble to draw a large shaded area using prStyle = 1
and, then. print text in the erased area.

The driver sends all text and rules in bandl before any GDI bitmap graphics are senL
Therefore, it is not possible to erase bitmap graphics with white rules.

If an application uses the BANDINFO escape, all patterns and rectangles sent using
DRAWPATI'ERNRECT should be enwnerated as text and sent on a text band.

Patterns and rules created with this escape may not be erased by placing opaque objects
over them unless you have white rule capability. An application should use the function
calls provided in GDI to obtain this effecL

ENABLEDUPLEX (Escape # 28)
Syntaz short Control (lpDevice, ENABLEDUPLEX, lpfnData, lpOutData)

April 1, 1990

This escape enables the duplex printing capability of a printer. A device that has duplex
printing capability is able to print on both sides of the output medium.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device binnap.

Microsoft Confidential Beta Release

11·1Z Davia DllWltMlltnatlOll Ga//11

Rlllltll Va•

Parameter

lplnData

lp()UlData

Description

Along pointer to a WORD that contains one of the following values:

O=Simplex
1 = Duplex with vertical binding
2 = Duplex with horizontal binding

Not used and can be set to NUIL.

The return value is one if the escape function is successful; otherwise, it is zero.

An application should use the QUERYESCSUPPORT escape to determine whether or not
an output device is capable of creating duplex output If QUERYESCSUPPORT returns a
nonzero value, the application should send the ENABLEDUPLEX escape even if simplex
printing is desired. This guarantees the overriding of any values set in the driver-specific
dialog. If duplex printing is enabled and an uneven number of NEXTFRAME escapes is
sent to the driver prior to the ENDDOC escape, the driver will add one page eject before
ending the print job.

ENABLEPAIRKERNING (Escape # 769)
Syntax short Control (lpDevice, ENABLEPAIRKERNING, lp/nData, lpOutData)

Rfllum Va/us

Camm1nll

Beta Release

This escape enables or disables the driver's ability to kem character pairs automatically.
When it is enabled, the driver automatically kems those pairs of characters that are listed
in the font's character-pair kerning table. The driver reflects this kerning both on the
printer and in GetTextExtent calls.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a short integer value that specifies whether or not
automatic pair kerning is to be enabled (1) or disabled (zero).

A long pointer to a short integer variable that will receive the pre
vious automatic pair-kerning flag.

The return value is one if the function is successful; zero if not or if the escape is not imple
mented.

The default state of this capability is zero, that is, automatic character-pair kerning is dis
abled.

Microsoft Confidential Aprll 1, 1990

Device Driver Escapes 11·13

A driver does not have to support this escape just because it supplies the character-pair
kerning table to the application via the GETPAIRKERNTABLE escape. When the
GETPAIRKERNTABLE escape is supported but the ENABLEPAIRKERNING escape is
not, it is the application's responsibility to space the kerned characters properly on the out
put device.

ENABLERELATIVEWIDTHS (Escape # 768)
Syntax short Control (lpDevice, ENABLERELATIVEWIDTHS, lp/nData, lpOutData)

Return Value

Comments

April 1, 1990

This escape enables or disables relative character widths. When it is disabled (the default
setting}, each character's width can be expressed as an integer number of device units.
This guarantees that the extent of a string will equal the sum of the extents of the
characters in the string. Such behavior enables applications to build an extent table manu
ally using one-character GetTextExtent calls. When it is enabled, the sum of a string may
or may not equal the sum of the widths of the characters. Applications that enable this fea
ture are expected to retrieve the font's extent table and compute relatively-scaled string
widths themselves.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a short integer value that specifies whether or not
relative widths are to be enabled (1) or disabled (zero).

A long pointer to a short integer variable that will receive the pre
vious relative character-width flag.

The return value is one if the function is successful; zero if not or if the escape is not imple
mented.

The default state of this capability is zero, that is, relative character widths are disabled.

Enabling this feature causes values that are specified as "font units" and accepted and re
turned by the escapes described in this chapter to be returned in the relative units of the
font

Microsoft Confidential Beta Release

NOTE It Is assumed that only linear scaling devices will be dealt with in a relative mode. Non-linear
scaling devices should not implement this escape.

ENDOOC (Escape# 11)
Syntax short Control (lpDevice, ENDDOC, lp/nData, lp()UIData)

Return Vaill•

Cammlllll

This escape ends a print job that is started by a STARTDOC escape and that is to be ended
nonnally (i.e., not by an abort).

Parameter

lpDevice

lp/nData

lpOutData

Description

A long pointer to a data structure of type PDBVICE, which is the
destination device bitmap.

Not used and can be set to NUIL.

Not used and can be set to NUIL.

The return value is positive if the function is sUcccssfuI; otherwise, it is negative.

On a printing error, the BNDDOC escape should not be used to tenninate the printing
operation.

END_PATH (Escape ' 4098)
Syntax short Control (lpDevice, END_ PATH, lplnfo, lpOutData)

Bera Release

This escape ends a path. A path is a connected sequence of primitives drawn in succession
to form a single polyline or polygon. Paths enable applications to draw complex borders,
filled shapes, and clipping areas by supplying a collection of other primitives defining the
desired shape.

Printer escapes supporting paths enable applications to render images on sophisticated dev
ices such as PostScript printeis without generating huge polygons to simulate them.

To draw a path, an application fust issues the BEGIN_PATH escape. It then draws the
primitives defining the border of the desired shape and issues an END_PATII escape.

The END PATH escape takes as a parameter a pointer to a structure specifying the manner
in which the path is to be rendered. The structure specifies whether or not the path is to be
drawn and whether or not it is open or closed. Open paths define polylines, and closed
paths define fillable polygons.

Microsoft Confidential April 1, 1990

Parameter

lpDevice

lplnfo

April 1, 1990

Device Driver Escapes 11-15

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a structure of type PATH_INFO, which is defined
as follows:

typedef struct {
short RenderMode;
BYTE FillMode;
BYTE BkMode;
LOGPEN Pen;
LOGBRUSH Brush;
OWORO BkColor;
}PATH_INFO;

The RenderMode field of the structure referenced by lplnfo specifies
how the path is to be rendered. If RenderMode is one of these, then
the path is as follows:

NO_DISPLAY(O). Not drawn.

OPEN(l). Drawn as an open polygon.

CLOSED(2). Drawn as a closed polygon.

The FillMode field of the structure referenced by lplnfo specifies
how the path is to be filled. If FillMode is one of these, then the fill
is as follows:

ALTERNA1E(l). Done using the alternate-fill algorithm.

WINDING(2). Done using the winding-fill algorithm.

The BkMode field of the structure referenced by lplnfo also specifies
how the path is to be filled. This field is the equivalent of the
BkMode field found in the DRAWMODE structure passed to Out
putQ. Drivers that encounter a BkMode of zero should assume
Transparent and ignore BkColor.

The Pen field of the structure referenced by lplnfo specifies the pen
with which the path is to be drawn. If Render Mode is NO_DIS
PLAY, the pen is ignored.

The Brush field of the structure referenced by lpl nf o specifies the
brush with which the path is to be filled. IfRenderMode is NO_DIS
PLAY or OPEN, the pen is ignored.

Microsoft Confidential Beta Release

Rlllltn Va/Ila

Cammenll

Parameter

lpOutData

Description

The BkColor field of the structure referenced by lplnfo also specifies
how the palb is to be filled. This field is the equivalent of the
BkColor field in the DRAWMODE sll'Dcture passed to OutputQ.

Not used and can be set to NUIL.

This escape returns a short integer value specifying the current path nesting levet If the
escape is successful, the number of BEGIN_PATH calls without a corresponding
END _PATH call is the resulL Otherwise, -1 is the result.

You may draw a path within another path. A path drawn within another path is treated ex
actly like a polygon (if the subpath is closed) or a polyline (if the subpath is open).

You may use the CLIP_ TO_PATH escape to define a clipping area corresponding to the in
terior or exterior of the cmrently open path.

Device drivers that implement this escape must also implement the BEGIN_PATH escape
and should also implement the SET_ARC_DIRECTION escape.

ENUMPAPERBINS (Escape I 31)
Syntax short Control (lpDevice, ENUMPAPERBINS, lplnData. lpOutData)

Retum Value

Beta Release

This escape retrieves attn'bute information about a specified number of paper bins. The
GETSETPAPERBINS escape retrieves the number of bins available on a printer.

Parameter

lpDevice

lplnData .

lpOutData

Description

A Jong pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to an integer that specifies the number of bins for
which information is to be retrieved.

A Jong pointer to a data structure to which infonnation about the
paper bins is copied. The size of the sll'Dcture depends on the number
of bins for which information was requested. See the following Com
mi!nts section for a description of this data s1mcture.

The return value specifies the outcome of the escape. It is one if the escape is successful; it
is zero if the escape is not successful or not implemented.

Microsoft Confidential April 1, 1990

Comment.

Dev/cs Driver Escapes 11·17

The value pointed to by lplnData is an integer that specifies the number of paper bins tar
which infonnation is to be retrieved.

The lpOutData data sttuctme consists of two arrays. The fll'St is an array of short integers
containing the paper-bin identifier numbers in the following format:

short BinList[cBinMax]I

The number of integers in the array cBinMax is equal to the value pointed to by the lpln
Data parameter.

The second array in the lpOutData structure is a ragged array of characters in the follow
ing format:

char PaperNames[cBinMax])[cchBinName])

The cBinMax value is equal to the value pointed to by the lplnData parameter; the cchBin
Name value is the length of each string (currently 24).

ENUMPAPERMETRICS (Escape # 34)
Syntax short Control (lpDevice, ENUMPAPERMETRICS, lplnData, lpOutData)

April 1, 1990

This escape perfonns one of two jobs according to the mode. The first is to detennine the
number of paper typeS supported and return this value, which can then be used to allocate
an array of RECTs.

These RECTs get filled in with the coordinates of the imageable area during a second call.
That is, for example:

top cyMargin
left a cxMargin
right cxPage + cxMargin
bottom - cyPage + cyMargin

Where:
The units are device coordinates.
The orientation returned is always portrait.
For every supported paper type, the imageable area for each margin state is returned.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

If the long pointer points to zero, then the return value indicates how
many RECTs to allocate for subsequent calls.

If Ip/ nData points to a one, then lpO utData is filled with RECTs that
describe all the imageable areas supported, as shown in the code ex
ample given in the following Comments section.

Microsoft Confidential Beta Release

11·18 Derlt:I Dr/Wlr At/aptatloll flalllll

RBtllm Va/Ue It is posilive if suceesstul. zero if the escape is not implemented, and negative if an error
occurs.

The following is an example of code:

#define ENUMPAPERMETRICS C34)
#define INFORM (0)
#define PERFORM (1)

int result;
HANDLE hDCPrinter;
HANDLE hPapers:
LPRECT lpPapers:
int nPapers, j:

j = INFORM:
result e Escape ChDCPrinter,ENUMPAPERMETRICS,sizeofCintl,CLPSTRl&j,(LPSTRl&nPapersl:

if ChPapers = GlobalAllocCGPTR,Clong int) CnPapers * sizeof<RECT)))l

{

lpPapers - CLPRECT)GlobalLockChPapersl:

j = PERFORM:
result= Escape ChDCPrinter,ENUMPAPERMETRICS,sizeofCintl,CLPSTRl&j,(LPSTRllpPapersl:

... perform operations
GlobalUnlock(hPapers);
GlobalFree<hPapers);
}

EPSPRINTING (Escape #. 33)
Syntax short Control (lpDevice, EPSPRINTING, lpBool, lpOutData)

Beta Release

This escape only controls the downloading of the control portions of the PostScript prolog.
Its functionality includes CYM (Cyan, Yellow, Magenta) setup and automatic font
downloading.

Parameter

lpDevice

lpBool

Description

A long pointer to a data structme of type PDEVICE, which is the
destination device bitmap.

A long pointer to a flag indicating that this should be turned on
(1RUE or 1) or off (FALSE or 0).

Microsoft Confidential April 1, 1990

Retumvatue

Comments

Device Driver Escapes 11-19

It is positive if successful, zero if the escape is not implemented, and negative if an error
occurs.

Coding example:

#define EPSPRINTING C33)
#define ON Cl)
#define OFF (0)

int result:
HANDLE hDCPrinter;
bool fEps;
fEps = ON

result 2 Escape ChDCPrint,EPSPRINTING,sizeof(bool),(LPSTR>&fEps,NULL);

... setup

... print

... cleanup
fEps = OFF;

result= Escape ChDCPrint,EPSPRINTING,sizeof{bool),CLPSTR)&fEps,NULL);

This escape is used to suppress the output of the Wmdows PostScript header control sec
tion, which is about lOK. If it is used, no GDI calls are allowed.

EXT_DEVICE_CAPS (Escape# 4099)
Syntax

April 1, 1990

short Control (lpDevice, EXT_DEVICE_CAPS, lplndex, lpCaps)

This escape retrieves infonnation about device-specific capabilities. It serves as a supple
ment to the GetDeviceCaps function supplied by Windows.

Parameter

lpDevice

lplndex

lpCaps

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a short integer specifying the index of the capability
to be retrieved.

A long pointer to a 32-bit integer into which the capabilities will be
copied. The following capabilities are supported:

Microsoft Confidential Beta Release

11·20 Device Driver Adaptation Gulde

Parameter

Beta Release

Description

R2_CAPS(l). Specifies which of the 16 binary raster operations (see
the SetROP2 function, which is documented in the Microsoft
Windows Software Development Kit) are supported by the device
driver. A bit will be set for each supported raster operation. For ex
ample, the following code fragment tests for support of the
R2_XORPEN raster operation.

CCl<<R2_XORPEN)&&Caps)!=0

PATI'ERN_CAPS(2). Specifies the maximum dimensions of a
pattern brush biunap. The low-order WORD of the capability value
contains the maximum width of a pattern brush biunap; the high
order WORD contains the maximum height.

PATil_CAPS(3). Specifies whether or not the device is capable of
creating paths using alternate and winding interiors, and whether or
not the device can do exclusive or inclusive clipping to path interiors.
The path capabilities are obtained by OR'ing together the following
values:

PATH_ALTERNATE 1
PATH_ WINDING 2
PATH_INCLUSIVE 4
PATH_EXCLUSIVE 8

POLYGON_CAPS(4). Specifies the maximum number of polygon
points supported by the device. The capability value is an unsigned
value specifying the maximum number of points.

PATTERN_COLOR_CAPS(5). Specifies whether or not the device
can convert monochrome pattern biunaps to color. The capability
value is one if the device can do pattern biunap color conversions
and zero if it cannot

R2_TEXT_CAPS(6). Specifies whether or not the device is capable
of performing binary raster operations on text The low-order WORD
of the capability value specifies which raster operations are supported
on text. A bit is set for each supported raster operation, as in the
R2_CAPS escape. The high-order WORD specifies to which type of
text the raster capabilities apply. It is obtained by OR'ing together the
following values:

RASTER_TEXT 1
DEVICE_ TEXT 2
VECTOR_TEXT 4

Microsoft Confidential April 1, 1990

Rtllum Value

Comm"*

Device Driver Escapes 11-21

This escape returns a nonzero value if the specified extended capability is supported and a
zero if it is not.

A device driver implementing this escape must not modify the value of the 32-bit integer
described by lpCaps unless it returns a valid value for the capability.

EXTTEXTOUT (Escape# 512)
This is an older escape that has been replaced by the ExtTextOut driver function.

FLUSHOUTPUT (Escape # 6)
Syntax short Control (lpDevice, FLUSHOUTPUT, lplnData, lpOutData)

Retum Value

Comments

This escape flushes output in the device's buffer.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NUIL.

Not used and can be set to NUIL.

The return value is positive if the function is successful; otherwise, it is negative.

This escape is intended for banding printer drivers. When called, they should reinitialize
the banding bitmap (Le .. eliminate anything in the bitmap that is only partially drawn).

GETCOLORTABLE (Escape # 5)
Syntax short Control (lpDevice, GETCOLORTABLE, lp/nda, /pColor)

April 1, 1990

This escape retrieves an RGB color-table entry and copies it to the location specified by
lpColor.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Microsoft Confidential Beta Release

Rtllum Vaill•

lplnda

lpColor

A 32-bit address to a short integer value specifying the index of a
color-table entry. Color-table indices start at zero for the first table
enuy.

A 32-bit address to the long integer to receive the RGB color value
for the given enuy.

The return value is posilive if the function is successful; otherwise. it is negative.

Display drivers will probably want to support this escape. It returns RGB colors that are
mapped to the physical-color index passed in.

GETEXTENDEDTEXTMETRICS (Escape # 256)
8ynlu short Control (lpDevice, GETEXTENDEDTEXTMETRICS, lplnData, lpOutData)

Return Vaill•

Commes

Beta Release

This escape fills the buffer pointed to by lpOutData with the extended text metrics for the
currently selected font.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

lplnData A long pointer to a data structure of type EXTI'EXTDATA described
in the following Comments section.

lpOutData A long pointer to a data structure of type EXTI'EXTMETIUC. See
the following Comments section for a description of this data struc
ture.

The return value is the number of bytes copied to the buffer pointed to by lpOutData. This
value will never exceed nSize and will be zero if the function fails or the escape is not im
plemented.

The EXTI'EXTDATA structure pointed to by lplndata contains the following items:

typedef struct {
short
LPAPPEXTTEXTOATA
LPFONTINFO
LPT£XTXFORH
LPDRAWMODE
}EXTTEXTDATA;

nSize;
lplnData;
1 pFont;
lpXForm;
lpDrawMode;

Microsoft Confidential April 1, 1990

Device Driver Escapes 11-23

The lplnData field points to a WORD that contains the number of bytes pointed to by
lpOutData.

The values returned in many of the fields of the EXTIEXTMETRIC structure are affected
by whether relative character widths are enabled or disabled. See also the ENABLE
RELATIVEWIDIBS escape.

The EXTTEXTME1RIC data structure has the following fonnat:

typedef struc{
short etmSize:
short etmPointSize;
short etmOrientation;
short etmHasterHeight;
short etmHinScale;
short etmHaxScale;
short etmHasterUnits:
short etmCapHeight;
short etmXHeight;
short etmlowerCaseAscent:
short etmUpperCaseDescent;
short etmSlant:
short etmSuperScript;
short etmSubScript;
short etmSuperScriptSize:
short etmSubScriptSize;
short etmUnderlineOffset;
short etmUnderlineWidth;
short etmDoubleUpperUnderlineOffset:
short etmDoublelowerUnderlineOffset:
short etmDoubleUpperUnderlineWidth;
short etmDoublelowerUnderlineWidth;
short etmStrikeOutOffset:
short etmStrikeOutWidth;
WORD etmKernPairs;
WORD etmKernTracks;
}EXTTEXTHETRIC;

GETEXTENTTABLE (Escape # 257)
Syntax

April 1, 1990

short Control (lpDevice, GETEXTENTTABLE, lplnData, lpOutData)

This escape returns the width (extent) of individual characters from a group of consecutive
characters in the selected font's character set The first and last character (from the group
of consecutive characters) are function arguments.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Microsoft Confidential Beta Release

11·24 Dnlell Brint Atlaptatlan Gulde

Retum Value

Comments

lplnData

lpOutData

A Jong pointer to a data structure described in the following Com
ments section.

A long pointer to an array of type short. The size of the array must be
at least (chLast-chFirst + 1).

The retmn value is one if the function is successful and zero if it is not or if the escape is
not implemented.

The structure pointed to by lplnData contains the following items:

BYTE chFirst;
BYTE chlast;

The chFirst argument contains the character code of the first character.

The chLast argument contains the character code of the last character.

The values returned are affected by whether relative character widths are enabled or dis
abled. See also the ENABLERELATIVEWIDTHS escape.

GETFACENAME (Escape # 513)
Syntax short Control (lpDevice, GETFACENAME, lplnData, lpFaceName)

Return Value

Comments

Beta Release

This escape gets the facename of the current physical font

Parameter Description

lpDevice A long pointer to a data structure of type PDEVICE, which is the
destination device biunap.

lplnData

lpFaceName

Not used and can be set to NULL.

A long pointer to the buffer for the facename.

It is positive if successful, zero if the escape is not implemented, and negative if an error
occurs.

The following is an example of code:

#define GETFACENAME (513)
int result;
HANDLE hOCPrinter;
char szFacename [60]; /*must be at least 60 bytes */

Microsoft Confidential April 1, 1990

1t (!(result• ~scape ChUC~r1nt, G~l~AC~NAM~. ~.
CLPSTR>NULL, szFacename))

{
I* Handle error condition */
}

Device Ddver Escapes 11·25

GETPAIRKERNTABLE (Escape I 258)
Syntaz short Control (lpDevice, GETPAIRKERNTABLE, lplnData, lpOutData)

Rstum Va/us

Comments

April 1, 1990

This escape fills the buffer pointed to by lpOutData with the character pair-kerning table
for the cunently selected font.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NUU...

A long pointer to an array of KERNPAIR structures. (See the follow
ing Comments section for a description of this data structure.) This
array must be large enough to accommodate the font's entire
character pair-kerning table. The number of character kerning pairs in
the font can be obtained from the EXTIEXTME1RIC structure re
turned by the GE1EXTENDEDTEXTMETRICS escape.

The return value is the number of KERNPAIR structures copied to the buffer. This value is
zero if the font does not have kerning pairs defined, the function fails, or the escape is not
implemented.

The values returned in the KERNPAIR structures are affected by whether relative
character widths are enabled or disabled. See also the ENABLERELATIVEWIDTIIS
escape.

The KERNPAIR data structure bas the following fonnat:

typedef struc {
union {

BYTE each [2];

WORD both;
} kpPair;

short kpKernAmount;
} KERNPAIR;

I* UNION: 'each' and 'both'
share the same memory */

Microsoft Confidential Beta Release

11·21 Dlnllt:B Dtlnr Maptat1011 Gut•

GETPHYSPAGESIZE (Escape # 12)
Syntax short Control (lpDevice, GETPHYSPAGESIZE, lplnData, lpDitMnsions)

RetumValu1

This escape retrieves the physical page size in device units (i.e., how many pixels wide by
how many scanlines high) and copies it to the location pointed to by lpOutData.

Parameter

lpDevice

lplnData

lpDimensions

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NUlL.

A 32-bit address to the POINT data structure to receive the physi
cal page dimensions. The fields in the structure are filled as
follows:

Field

intx

inty

Contents

Horizontal size in device units.

Vertical size in device units.

The return value is positive if the function is successful; otherwise, it is negative.

GETPRINTINGOFFSET (Escape # 13)
Syntax short Control (lpDevice, GETPRINTINGOFFSET, lp/nData, lpOjfset)

Be'la Release

This escape retrieves the offset from location 0,0 (the upper left-hand comer of the physi
cal page), the point at which the acUJal printing or drawing begins.

This escape function is not generally useful for devices that allow the user to set the print
able origin by hand.

Parameter

lpDevice

lplnData

lpOjfset

Description

A long point.er to a data structure of type PDE VICE, which is the
destination device bitmap.

Not used and can be set to NULL.

A 32-bit address to the POINT structure to receive the printing off
set The fields of the structure are filled as follows:

Field Contents

Microsoft Confidential April 1, 1990

Retum Value

Parameter Description

intx

inty

Device Driver Escapes 11-21

Horizontal coordinate in device units of the
printing offset.

Vertical coordinate in device units of the print
ing offset.

The return value is positive if the function is successful; otherwise, it is negative.

GETSCALINGFACTOR (Escape # 14)
Syntax short Control (lpDevice, GETSCALINGFACTOR, /p/nData, lpFactors)

Return Value

This escape retrieves the scaling factors for the x and y axes of a printing device. For each
scaling factor, the escape copies an exponent of two to the location pointed to by lpF actors.

For example, the value 3 is copied to lpF actors for a scaling factor of 8.

Scaling factors are used by printing devices that cannot support graphics at the same reso
lution as the device resolution. This escape communicates to GDI the factor by which it
needs to stretch bitmaps when drawing them to the printer.

Parameter

lpDevice

lplnData

lpFactors

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NULL.

A 32-bit address to the POINT data structure to receive the scaling
factor. The fields of the structure are filled as follows:

Field

intx

inty

Contents

Scaling factor for x axis.

Scaling factor for y axis.

The return value is positive if the function is successful; otherwise, it is negative.

GETSETPAPERBINS (Escape# 29)
Syntax short Control (lpDevice, GETSETPAPERBINS, /p/nData, lpOutData)

April 1, 1990 Microsoft Confidential Beta Release

11·28 Deva DrlVflr Atlaplalloa Sllltlll

Return Value

Camm1nt1

Beta Release

This escape retrieves the number of paper bins available on a printer and sets the current
paper bin. See the following Comments section for more information on the actions per
formed by this escape.

Parameter

lpDevice

lplnData

lp()utData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a BININFO data structure that specifies the new
paper bin. See the following Comments section for a description of
this data structure, which may be set to NULL.

A long pointer to a BININFO data structure that contains infonnation
about the current or previous paper bin and the number of bins availa
ble. This data structure may be set to NULL.

The return value specifies whether or not the requested operation was successful.

There are three possible actions for this escape, depending on the value of the values
passed in the lplnData and lp()utData parameters:

lplnData

NULL

BININFO

BININFO

lpOutData

. BININFO

BININFO

NULL

Action

Retrieves the number of bins and the number of
the current bin.

Sets the current bin to the number specified in the
BinNumber field of the lplnData data structure
and retrieves the number of the previous bin.

Sets the current bin to the number specified in the
BinNumber field of the lplnData data structure.

The BININFO data structure has the following format:

short BinNumber;
short NbrofBins;
short Reserved;
short Reserved:
short Reserved;
short Reserved;

The BININFO data structure has the following fields:

Field

BinNumber

Description

Identifies the current or previous paper bin.

Microsoft Confidential April 1, 1990

Dev/cs Driver Escapes 11·29

Nbromins Specifies the number of paper bins available.

When setting the paper bin with GETSETPAPERBINS, the bin selected is set for the cur
rent job by setting the MSB (Ox8000) of the bin index. If this bit is not set, the selected
paper bin is made the default for later print jobs, and the current job's selection is un
·changed. Setting bit 15 enables an application to change bins in mid-job.

This escape was supponcd in version 3.1 of the PCL and PostScript drivers. However, it
did not allow the setting of the current bin, only the default. GETSETPAPERBINS will re
turn an error if the high bit is set on this version of the drivers, which allows the appli
cation to determine whether or not the older driver version is in use.

This escape was inconsistcnt.ly numbered as 30 in the Windows 2.1 PCL driver and as 29
in the PostScript driver. This has now been corrected, and the numbering is consistent with
this document.

GETSETPAPERMETRICS (Escape # 35)
Syntax

April 1, 1990

short Control (lpDevice, GlffSETPAPERMETRICS, lpNewPaper, lpOrigPaper)

This escape sets the paper type according lO the given paper-metrics information. h also
gets the current printer's paper-metrics information.

This escape expects a RECT data structure, representing the imagcable area of the physical
page, and assumes the origin is in the upper-left corner. That is, for example,

top - cyHargin
left cxHargin
right cxPage + cxHargin
bottom cyPage + cyHargin

Where:
The units expected and returned arc coordinates in device units.
The orientation is set to match that of the input RECT.
The margin state is seL

Parameter Description

lpDevice A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

/pNewPaper

lpOrigPaper

A long pointer lO a RECT data structure that poinl'i to the new imagc
ablc arca.

A long pointer to a RECT data structure that points to the original
value.

Microsoft Confidential Beta Release

Rltlltll Valtle It is positive if successlW. zero if the escape is not implemented. and negative if an error
occurs.

The following is an example of code:

#define GETSETPAPERHETRICS <35)
int result;
HANDLE hOCPrinter:
RECT newpaper, origpaper:

/* assuming newpaper's fields have been properly assigned •/
result • Escape <hDCPrint,GETSETPAPERHETRICS,sizeof<struct RECT>,

<LPSTRl&newpaper,<LPSTRl&origpaper>:

/* or if you do not care about restoring the original paper type •/
result • Escape ChDCPrint,GETSETPAPERHETRICS,sizeof(struct RECTl,

<LPSTRl&newpaper,NULL>:

/* check to ensure current printer supports the requested paper size •/
if (!result>

{
... error dialog - unable to set paper size .••

t• or if you only want the original paper type•/
result - Escape <hDCPrint,GETSETPAPERHETRICS,0,NULL.CLPSTR>

&orfgpaper>:

GETSETPRINTORIENT (Escape# 30)
Syntar

RetumValue

Beta Release

short Control (lpDevice, GETSETPRINTORIENT, lplnData, /pOUIData)

This escape returns or sets the cunent paper orientation.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to an ORIENT data structure that specifies the new
paper orientation. See the following Comments section for a descrip·
lion or this data structure. When it is set ro NUU., the
GETSETPRINTORIENT escape returns the current paper orientation.

Not used and can be set ro NUIL.

The return value specifies the current orientation if lplnData is NULL; otherwise, it is the
previous orientation or -1 if the escape failed.

Microsoft Confidential April 1, 1990

Comments The ORIENT data structure has the tallowing format

short Orientation;
short Reserved;
short Reserved;
short Reserved;
short Reserved;

Device Ddver Escapes 11·31

If Orientation is 1, the new orientation is portrait; if 2, the new orientation is landscape.

The new orientation will take effect for the next device context created for the device on
this port.

This escape is also known as GETSETPAPERORIENTATION.

This escape was inconsistently numbered as 29 in the Windows 2.1 PCL driver and as 30
in the PostScript driver. This has now been corrected, and the numbering is consistent with
this docwnenL

GffiECHNOLOGY (Escape '20)
Syntax

Retum Value

short Control (lpDevict, GETTECHNOLOGY, /plnData, /pTechno/ogy)

This escape rettieves the general technology type for a printer. This allows an application
to perfonn technology-specific actions.

Parameter

/pDevict

/plnData

Ip Technology

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device biunap.

Not used and can be set to NUU..

A long pointer to a buffer to which the driver copies a NUU.-tenni
nated string containing the printer technology type, such as
"PostScript."

The return value specifies the outcome of the escape. It is one if the escape is successful
and zero if the escape is not successful or not implemented.

GETTRACKKERNTABLE (Escape # 259)
Symaz

April 1, 1990

short Control (lpDevice, GETTRACKKERNTABLE, /p/nData, /pOutData)

This escape fills the buffer pointed to by lpOutData with the track-kerning table for the
currently selected font

Microsoft Confidential Beta Release

RBl11111 Va/111

Parameter

lpDevice

lplnDala

lpOutdata

Description

A long pointer to a data suucture of type PDEVICE. which is the
destination device bitmap.

Not used and can be set to NUU..

A long pointer to an army of KERN'IRACK structures. (See the fol
lowing Comments section for a description of this data structure.)
This array must be large enough to accomodate all the font's kerning
tracks. The number of 1racks in the font can be obtained from the
EXTIEXTMETRIC data structure returned by the GETEXTEN
DEDTEXTMETRICS escape. If lpOUlData is NULL.
GE'ITRACKKERNTABLE returns the number of table entries.

The return value is the number of KERNI'RACK sttuctures copied to the buffer. This
value is zero if the font does not have kerning baCks defined, if the function fails. or if the.
escape is not implemented.

The values returned in the KERNTRACK structures are affected by whether relative
character widths are enabled or disabled. See also the ENABLERELATIVEWIDTHS
escape.

The KERNTRACK data structure has the following fonnat

typedef struc {
short ktOegree:
short ktHinSize:
short ktHinAmount:
short ktHaxSize:
short ktHaxAmount:
) KERHTRACK:

GETVECTORBRUSHSIZE (Escape # 27)
Syntax short Control (lpDevice, GETVECTORBRUSHSIZE, lplnData, lpOUlData)

Beta Release

This escape retrieves the size in device units of a plotter pen used to fill closed figures.
GDI uses this information to prevent the filling of closed figures (e.g .• rectangles and el
lipses) from overwriting the borders of the figure.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which contains
the device context for the device on which the metafile appears.

Microsoft Confidential April 1, 1990

Retum Value

Comments

Parameter

lplnData

lpOutData

Device Driver Escapes 11-33

Description

A long pointer to a logical brush data structure that specifies the
brush for which data is to be returned.

A long pointer to a POINT data structure that contains in its second
WORD the width of the pen in device units. See the following Com
ments section for a description of this data structure.

The return value specifies the outcome of the escape. It is one if the escape is successful
and zero if the escape is not successful or not implemented.

The POINT data structure has the following format:

short x;
short y;

GETVECTORPENSIZE (Escape# 26)
Syntax

Retum Value

Comments

April 1, 1990

short Control (lpDevice, GETVECTORPENSIZE, lplnData, lpOutData)

This escape retrieves the size in device units of a plotter pen. GDI uses this information to
prevent hatched brush patterns from overwriting the border of a closed figure.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which contains
the device context for the device on which the metafile appears.

A long pointer to a logical pen data structure that specifies the pen for
which the width is to be retrieved.

A long pointer to a POINT data structure that contains in its second
WORD the width of the pen in device units. See the following Com
ments section for a description of this data structure.

The return value specifies the outcome of the escape. It is one if the escape is successful
and zero if the escape is not successful or not implemented.

The POINT data structure has the following format:

short x;
short y;

Microsoft Confidential Beta Release

11·34 "'1¥lt:tJ Dtldr Allaptallll11 Su/de

NEWFRAME (Escape # 1)
Syntax short Control (lpDevice, NEWFRAME, lplnData, lpOUIData)

Return Value

Comments

This escape infonns the device that the application has fmished writing to a page.

This escape is used typically with a printer to direct the device driver to advance to a new
page by perfonning a page-break algorithm or fonn feed.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NULL.

Not used and can be set to NULL.

The return value is positive if the escape is successful. Otherwise, it is one of the values
documented in Section 11.2, "Generalized Error Return Codes."

If you select a font into your printer device context (DC), print some text, and then issue a
NEWFRAME, the following text is printed using the default font What happens is that
NEWFRAME saves the DC and, then, restores it with the default values. Therefore, you
will have to reselect your font after each new page on banding devices.

NEXTBAND (Escape # 3)
Syntax short Control (lpDevice, NEXTBAND, lplnData, lpBandR.ect)

Beta Release

This escape informs the device driver that the application has finished writing to a band.
This causes the device driver to send the band to the printer and return the coordinates of
the next band.

This escape is used by applications that handle banding themselves.

Microsoft Confidential April 1, 1990

Retum Value

Comments

Parameter

lpDevice

lplnData

lpBandRect

Device Driver Escapes 11·35

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a P'ITYPE structure that specifies the shift count
for scaling graphics coordinates.

The return value is a 32-bit address to the RECT data structure to re
ceive the next band coordinates. The device driver copies the device
coordinates of the next band into this structure.

The return value is positive if the escape is successful. Otherwise, it is one of the values
documented in Section 11.2, "Generalized Error Return Codes."

This escape is intended mainly for banding printers.

The shift count mentioned in lplnData is used for devices such as laser printers that sup
port graphics at a lower resolution than texL The x coordinate specifies the X scale count
and the y coordinate the Y scale counL

PASSTHROUGH (Escape #19)
Syntax

Rstum Value

April 1, 1990

short Control (lpDevice, PASSTHROUGH, lplnData, lpOutData)

This escape enables the application to send data directly to the printer, bypassing the stand
ani printer-driver code.

Parameter

/pDevice

lplnData

/pOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Points to a structure, the first WORD of which contains the number
of bytes of input data. The remaining bytes of the structure contain
the data itself.

Not used and can be set to NULL.

This is the number of bytes transferred to the printer if the function is successful; it is zero
if the function is not successful or if the escape is not implemented. If the returned value is
nonzero but less than the size of the data, an error prohibited transmission of the entire
data block.

Microsoft Confidential Beta Release

11·36 Device Driver Adaptation Gulde

Comments There may be restrictions on the kinds of device data an application may send to the
device without interfering with the operation of the driver. In general, applications must
avoid resetting the printer or causing the page to be printed. Additionally, applications are
strongly discouraged from performing functions that consume printer memory, such as
downloading a font or a macro.

The driver should invalidate its internal state variables such as "current position" and "cur
rent line style" when executing this escape. The driver may issue a printer "save" com
mand prior to transmitting the first of a sequence of PASSTHROUGH escapes and issue a
"restore" command prior to executing the first command after the last PASSTHROUGH
escape. In other words, the application must be able to issue multiple, sequential PASS
THROUGH escapes without intervening "saves" and "restores" being inserted by the
driver.

This escape is also known as DEVICEDATA.

QUERYESCSUPPORT (Escape# 8)
Syntax

Return Value

short Control (lpDevice, QUERYESCSUPPORT, lpEscNum, lpOutData)

This escape finds out whether or not a particular escape function is implemented by the
device driver.

The return value is non-zero for implemented escape functions and zero for unimple
mented escape functions. All device drivers must return success if queried about whether
they support the QUERYESCSUPPORT escape.

Parameter

lpDevice

lpEscNum

lpOutData

Description

A long pointer to a data structure of type PDE VICE, which is the
destination device bitmap.

A 32-bit address to a short integer value specifying the escape func
tion to be checked.

Not used and can be set to NULL.

The return value is non-zero for implemented escape functions; otherwise, it is zero.

RESTORE_CTM (Escape# 4100)
Syntax

Beta Release

short Control (lpDevice, RESTORE_ CTM, lplnData, lpOutData)

This escape restores the previously saved current transformation matrix (CTM). The cur
rent transformation matrix controls the manner in which coordinates are translated, rotated,

Microsoft Confidential April 1, 1990

RetumValue

Commen/6

Device Driver Escapes 11·37

and scaled by the device. By using matrices, you can combine these operations in any
order to produce the desired mapping for a particular picture.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NULL.

Not used and can be set to NULL.

This escape returns a short integer specifying the number of SAVE_CTM calls without a
corresponding RESTORE_ CTM call. If the escape is unsuccessful, -1 is returned as a
result

Applications should not make any assumptions about the initial contents of the current
transformation matrix.

Drivers supporting this escape must also implement the SAVE_CTM and TRANS
FORM_CTM escapes.

The matrix specification used for this escape is based on the OS/2 GPI (Graphics
Programming Interface) model, which is an integer coordinate system similar to the one
usedbyGDI.

SAVE_CTM (Escape# 4101)
Syntax short Control (lpDevice, SAVE_CTM, lplnData, lpOutData)

April 1, 1990

This escape saves the current transformation matrix (CTM). The current transfonnation
matrix controls the manner in which coordinates are translated, rotated, and scaled by the
device. By using matrices, you can combine these operations in any order to produce the
desired mapping for a particular picture.

You can restore the matrix by using the RESTORE_CTM escape.

An application typically saves the current transfonnation matrix before changing it. This
enables the application to restore the previous state upon completion of a particular opera
tion.

Parameter

lpDevice

lplnData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Not used and can be set to NULL.

Microsoft Confidential Beta Release

11-38 D11v1t:1 DrlvBr Adaplatlon Guidi

Return Value

Comments

Parameter Description

lpOutData Not used and can be set to NULL.

This escape returns a short integer specifying the number of SAVE_CTM calls without a
corresponding RESTORE_CTM call. If the escape is unsuccessful, zero is returned as a
result.

Applications should not make any assumptions about the initial contents of the current
transformation mattix.

Applications are expected to restore the contents of the current transfonnation matrix.

Drivers supporting this escape must also implement the RESTORE_C1M and TRANS
FORM_CTM escapes.

The matrix specification used for this escape is based on the OS/2 GPI (Graphics
Programming Interface) model, which is an integer coordinate system similar to the one
usedbyGDI.

SELECTPAPERSOURCE (Escape # 18)
This is an older escape and is no longer used. It has been superceded by GETSETPAPER
BINS.

It enabled the application to detennine the available paper sources, select among them, and
pass the desired paper source to the device driver.

SETABORTPROC (Escape # 9)
Syntax

Bera Release

short Control (lpDevice, SETABORTPROC, lphDC, lpOutData)

This escape sets the abort function for the print job.

If an application wants to allow the print job to be cancelled during spooling, it must set
the abort function before the print job is started with the STARTDOC escape. Print
Manager calls the abort function during spooling to allow the application to cancel the
print job or to handle out-of-disk-space conditions. If no abort function is set, the print job
will fail if there is not enough disk space for spooling.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Microsoft Confidential April 1, 1990

Return Value

Comments

Parameter

lphDC

lpOutDOla

Device Drlvsr Escapes 11·39

Description

A long pointer to a handle to the application's device context for the
print job.

Not used and can be set to NUU..

The return value is positive if the function is successful; otherwise, it is negative.

lphDC points to the application hDC which is to be passed to the OpenJob function to
allow GDI to call the application's callback function.

SETALLJUSTVALUES (Escape # 771)
Syntax short Control (lpDevice, SETALWUSTVALUES, lplnDOla, lpOutData}

April 1, 1990

This escape sets all the text justification values that are used for text outpuL Text justifica
tion is the process of inserting extra pixels among break-characters in a line of texL The
blank character is nonnally used as a break character.

Parameter

lpDevice

lplnData

/pOutDOla

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a data structure containing the following items:

Field

nCbarExtra

nCharCount

nBreakExtra

nBreakCount

Type/Definition

short Specifies in font units the total extra
space that must be distributed over nChar-
Count characters.

WORD Specifies the number of characters
over which nCbarExtra is distributed.

short Specifies in font units the total extra
space that is distributed over nBreakCount
break characters.

WORD Specifies the number of break
characters over which nBreakExtra units are
distributed.

Not used and can be set to NULL.

Microsoft Confidential Beta Release

11'411 Dertt:B Dttver Adaptallal Sullltl

Comma1*

The return value is one if the escape function is successful; otherwise, it is zero.

The units used for nCharExtra and nBreakExtra are the font units of the device (see the
EXTI'EXTMETRIC escape) and are dependent on whether or not relative character widths
were enabled with the ENABLERELATIVBWIDTHS escape.

1be values set with this escape will apply to subsequent calls to ExtTextOut The driver
will stop distributing the nCharExtra amount when it has output nCharCount chamcters.
It will also stop distributing the space specified by nBreakExtra when it has output
nBreak.Count chamcters. A call on the same string to GetTextExtent made immediately
after the ExtTextOut call is processed in the same manner.

To reenable justification with the SetTextJustification and SetTextCharacterExtra func
tions, an application should call SETAWUSTVALUES and set the arguments nCharEx
tra and nBreakExtra to zero.

SET_ARC_DIRECTION (Escape I 4102)
Syntax short Control (lpDevice, SET_ARC_DIRECTION, lpDirection, lpOutData)

Return Value

Beta Release

This escape specifies the direction in which elliptical arcs are drawn using the GDI arc
function.

By convention, elliptical arcs are drawn countetclockwise by GDI. This escape enables an
application to draw paths containing aICS drawn clockwise.

Parameter

lpDevice

lpDirection

lpOutData

Description

A long pointer to a data sttucture of type PDEVICE, which is the
destination device bitmap.

A long pointer to a short integer specifying the arc direction. It may
be either COUNTERCLOCKWISE(O) or CLOCKWISE(l).

Not used and can be set to NUU..

This escape returns the previous arc direction.

The default arc direction is COUNTERCLOCKWISE.

Device drivers that implement the BEGIN_PATH and END_PATII escapes should also im
plement this escape.

This escape maps to PostScript language elements and is intended for PostScript line dev
ices.

Microsoft Confidential April 1, 1990

Device Driver Escapes 11·41

SET_BACKGROUND_COLOR (Escape# 4103)
Syntax short Control (lpDevice, SET_ BACKGROUND_ COLOR, lpNewColor, lpOldColor)

Retum Value

Comments

This escape enables an application to set and retrieve the current background color for the
device. The background color is the color of the display surface before an application
draws anything on the device. This escape is particularly useful for color printers and film
recorders.

This escape should be sent before the application draws anything on the current page.

Parameter

lpDevice

lpNewColor

lpOldColor

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device biunap.

A long pointer to a 32-bit integer specifying the desired background
color. This parameter can be NULL if the application merely wants to
retrieve the current background color.

A long pointer to a 32-bit integer into which the previous background
color will be copied This parameter can be NULL if the application
wants to ignore the previous background color.

This escape returns 1RUE if the escape is successful and FALSE if it is unsuccessful.

The default background color is white.

The background color is reset to the default when the device driver receives an ENDDOC
or ABORTDOC escape.

SET_BOUNDS (Escape# 4109)
Syntax short Control (lpDevice, SET_BOUNDS, lpBounds, lpOutData)

April 1, 1990

This escape sets the bounding rectangle for the picture being output by the device driver
that supports the given device context It is used when creating images in a file format
such as Encapsulated PostScript (EPS) and Hewlett Packard Graphics Language (HPGL)
for which there is a device driver.

Parameter

lpDevice

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Microsoft Confidential Beta Release

11-42 Dev/CB Dr/Ver Adaptat/Dn Ga/tie

Retum Value

Com11111nts

Parameter

lpBounds

lpOUlDa1a

Description

A long pointer to a rectangle, specified in device coordinates, that
bounds the image to be outpuL

Not used and can be set to NUIL.

This escape returns 1RUE if successful; otherwise, it returns FALSE.

The application should issue this escape before each page in the image. For single-page im
ages, this escape should be issued immediately before the STARTDOC escape.

When using coordinate ttansfonnation escapes, device drivers may not perfonn bounding
box calculations correctly. Using this escape saves the driver from the task of calculating
the bounding box.

Applications that want to support the EPS printing capabilities that will be built into fuwre
PostScript drivers should always issue this escape.

SETCOLORTABLE (Escape 4# 4)
Syntax short Control (lpDevice, SETCOLORTABLE, lpColorEntry, lpColor)

Beta Release

This escape sets an ROB color table entry.

If the device cannot supply the exact color, the function sets the entry to the closest
possible approximation of the color.

Parameter

lpDevice

lpColorEntry

lpColor

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A 32-bit address to a color table entry data strucwre. The strucwre
has the following fields:

Field

Index

rgb

Type/Definition

WORD The color table index. Color table
entries start at zero for the first entry.

LONG The desired ROB color value.

A 32-bit address to the long integer to receive the ROB color value
selected by the device driver to represent the requested color value.

Microsoft Confidential April 1, 1990

RBlum Value

Cammsnts

Device Driver Escapes 11-43

The return value is positive if the function is successful; otherwise, it is negative.

A device's color t.able is a shared resource; changing the system display color for one
window changes it for all the windows.

The SETCOLORTABLE escape has no effect on devices with fixed color t.ables.

This escape is intended for use by both printer and display drivers. However, the EGA and
VGA color drivers do not support iL It should not be used with palette-capable display
devices.

It is used by applications that want to change the palette used by the display driver.
However, since the driver's color-mapping algorithms will probably no longer work with a
different palette, an extension has been added to this function.

If the color index pointed to by /pColorEntry is FFFFH, the driver is to leave all color-map
ping functionality to the calling application. The application will necessarily know the
proper color-mapping algorithm and take responsibility for passing the correctly mapped
physical color to the driver (instead of the logical RGB color) in functions such as Real
izeObject and Colorlnfo.

For example, if the device supports 256 colors with palette indices of 0 through 255, the
application would detennine which index contains the color that it wants to use in a certain
brush. It would then pass this index in the low byte of the doubleword logical color passed
into RealizeObject The driver would then use this color exactly as passed instead of per
forming its usual color-mapping algorithm. If the application wants to reactivate the
driver's color-mapping algorithm (i.e., if it restores the original palette when switching
from its window context), then the color index pointed to by /pColorEntry should be
FFFEH.

SETCOPYCOUNT (Escape # 17)
Syntax short Control (lpDevice, SETCOPYCOUNT, lplnData, lpOUIData)

April 1, 1990

This escape specifies the number of uncollated copies of each page that the printer is to
prinL

Parameter

lpDevice

lplnData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a short integer value containing the number of un
collated copies to be printed.

Microsoft Confidential Beta Release

11·44 Dev/a Driver Adaptation Saide

Return Value

Parameter

lpOUlData

Description

A long pointer to a short integer variable that will receive the number
of copies to be printed. This may be less than the number requested if
the requested number is greater than the device's maximum copy
counL

The return value is one if the function is successful and zero if it is not or if the escape is
not implemented.

SETDIBSCALING (Escape # 32)
Syntax short Control (lpDevice, SETDIBSCALING, lplnData, lpOutData)

Rlllum Value

Comments

Beta Release

This escape sets the scaling parameters for subsequent SetDIBitsToDeviceO calls. This al
lows devices that can scale device independent biunaps (DIBs) to do so.

Description Parameter

lpDevice A long pointer to a data structure of type PDEVICE, which is the
destination device biunap.

lplnData An LPSTR that points to a DIBSCALE structure that specifies the
scaling mode.

lpOutData Not used and can be set to NULL.

Returns the previous ScaleMode or -1 if an invalid scale mode was requested.

lplnData points to a DIBSCALE structure that looks like the following one:

typedef struc{
short ScaleMode;
short dx;
short dy;
}DIBSCALE;

ScaleMode can be one of the following values:

Value Meaning

0 No scaling should be performed. DIBs are mapped directly to device
coordinates, which are the default mode values.

Microsoft Confidential April 1, 1990

Device Driver Escapes 11-45

Value Meaning

1 The om is scaled to match its true physical size as indicated by the
following fields in the BI1MAPINFOHEADER data structure:

biSize
biWidth
biHeight
biPlanes
biBitCount
biCompression
biSizehnage
biXPelsPerMeter
biYPelsPerMeter
biCJrUsed
biCJrlmportant

2 The om is scaled to be dx by dy device units in size. This gives the
application complete control over the size of the om.

SETKERNTRACK (Escape # 770)
Syntax short Control (lpDevice, SETKERNTRACK, lplnData. lpOUIData)

RstumValue

April 1, 1990

For driveis that support automatic track kerning, this escape specifies which kerning track
will be used. A kerning track of zero disables automatic track kerning. When this escape is
enabled, the driver automatically kerns all characters according to the specified track. The
driver reflects this kerning both on the printer and in GetTextExtent calls.

Parameter

lpDevice

lplnData

lpOUlData

Description

A long pointer to a data structure of type POEVICE, which is the
destination device bitmap.

A long pointer to a short integer value that specifies the kerning track
to use. A value of zero disables this feature.

Values one to nKernTracks (see the EXTIEXTMETRIC data struc-
ture provided under the description of the ·
GETEX1ENDEDTEXTMETRICS escape) correspond to positions
in the track-kerning table (using one as the first item in the table).

A long pointer to a short integer variable that will receive the pre
vious kerning track.

The return value is one if the escape is successful and zero if it is not or if the escape is not
implemented.

Microsoft Confidential Bera Release

11-46 Device Driver Adaptation Gulde

Comments The detault state of this capability is zero. which means that automatic track kerning is dis
abled.

A driver does not have to support this escape just because it supplies the track-kerning
table to the application using the GETI'RACKKERNTABLE escape. In the case where
GETI'RACKKERNTABLE is supported but SETKERN1RACK is not, it is the appli
cation's responsibility to properly space the characters on the output device.

SETLINECAP (Escape# 21)
Syntax short Control (lpDevice, SETLINECAP, lplnData, lpOutData)

Return Value

Beta Release

This escape sets the line end cap. An end cap is that portion of a line segment that appears
on either end of the segment The cap may be square or circular; it can extend past, or re
main flush with, the specified end points.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a short integer value that specifies the end-cap
type. The possible values and their meanings are given in the fol
lowing lisc

Value

-1

0

1

2

Meaning

Line segments are drawn by using the default
GDiendcap.

Line segments are drawn with a squared end
point that does not project past the specified
segment length.

Line segments are drawn with a rounded end
point; the diameter of this semicircular arc is
equal to the line width.

Line segments are drawn with a squared end
point that projects past the specified segment
length. The projection is equal to half the line
width.

A long pointer to a short integer value that specifies the previous
end-cap setting.

The return value specifies the outcome of the escape. It is positive if the escape is success
ful; otherwise, it is negative.

Microsoft Confidential April 1, 1990

Device Ddver Escapes 11-47

The interpretation of this escape varies with page-description languages (PDLs). Consult
your PDL documentation for its exact meaning.

This escape is also known as SETENDCAP.

SffilNEJOIN (Escape # 22)
Syntax

Retum Value

Comments

April 1, 1990

short Control (lpDevice, SETLINEJOIN, lp/nData, lpOutData)

This escape is used to tell the driver how an application wants to join two lines at an angle.
It sets the current line join parameter in the graphics state to int, which must be one of the
following integers: 0 (for Miter Join), 1 (for Round Join), or 2 (for Bevel Join).

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to the WORD-length, line join value to be used. If not
NULL, the driver should use this value. If NULL, then the line join
value is not changed.

If not NULL, a long pointer to a WORD-length value in which the
previous (or current if lplnData is NULL) line join value should be
returned.

The return value is TRUE (1) if the escape is successful.

Miter Join (0): The outer edges of the strokes for the two segments are extended until they
meet at an angle, as in a picture frame. (If the segments meet at too sharp of an angle, a
Bevel Join is used instead; this is controlled by the miter limit parameter established by
SETMITERLIMIT.)

Round Join (1): A circular arc with a diameter equal to the line width is drawn around the
point where the segments meet and is filled in, producing a rounded comer. (Stroke actu
ally draws a full circle at this point. If path segments shorter than one-half the line width
meet at sharp angles, an unintentional "wrong side" of this circle may appear.)

Bevel Join (2): The meeting path segments are finished with butt end caps (see SETLINE
CAP); then, the resulting notch beyond the ends of the segments is filled with a triangle.

Join styles are significant only at points at which consecutive segments of a path connect
at an angle; segments that meet or intersect fortuitously receive no special treatment.
Curved lines are actually rendered as sequences of straight line segments, and the current
line join is applied to the "comers" between those segments. However, for typical values
of the flatness parameter, the comers are so shallow that the difference between join styles
is not visible.

Microsoft Confidential Beta Release

11·48 Dnlcs Driver Adaptation Gulde

SETMITERLIMIT (Escape # 23)
Syntax

Return Value

Comments

Beta Release

short Control (lpDevice, SETMITERLIMIT, lplnData, lpOUIData)

This escape is used to tell the driver how an application wants to clip off miter-type line
joins when they become too long. It sets the current miter-limit parameter in the graphics
state to num, which must be a number greater than or equal to one.

Parameter

lpDevice

lplnData

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

Along pointer to the WORD-length, miter-limit value to be used. If
not NULL, the driver should use this value. If NULL, then the miter
limit value is not changed.

If not NULL, a long pointer to a WORD-length value in which the
previous (or current if lplnData is NULL) miter-limit value should be
returned.

The return value is TRUE (1) if the escape is successful.

The miter limit controls the stroke operator's treatment of corners when miter joins have
been specified (see the SE1LINEJOIN escape). When path segments connect at a sharp
angle, a miter join results in a spike that extends well beyond the connection point. The
purpose of the miter limit is to cut off such spikes when they become objectionably long.

At any given comer, the miter length is the distance from the point at which the inner
edges of the strokes intersect to the point at which the outside edges of the strokes intersect
(i.e., the diagonal length of the miter). This distance increases as the angle between the
segments decreases. If the ratio of the miter length to the line width exceeds the miter-limit
parameter, the comer is treated with a Bevel Join instead of a Miter Join.

The ratio of miter length to line width is directly related to the angle (x?) between the
segments by the formula:

miter length / line width = l / sin(x? /2)

The following are examples of miter-limit values:

• 1.415 cuts off miters (converts them to bevels) at angles less than 90 degrees.

• 2.0 cuts off miters at angles less than 60 degrees.

• 10.0 cuts off miters at angles less than 11 degrees.

The default value of the miter limit is 10. Setting the miter limit to 1 cuts off miters at all
angles so that bevels are always produced even when miters are specified.

Microsoft Confidential April 1, 1990

Device Dtlver Escapes 11-49

SET_POLY_MODE (Escape# 4104)
Syntax

Return Value

April 1, 1990

short Control (lpDevice, SET_POLY_MODE, lpMode, lpOutData)

This escape enables a device driver to draw shapes (such as Bezier curves) that are not sup
ported directly by GDI. This pennits applications that draw complex curves to send the
curve description directly to a device without having to simulate the curve as a polygon
with a large number of points.

The SET_POLY _MODE escape sets the poly mode for the device driver. The poly mode is
a state variable indicating how to interpret calls to the GDI functions Polygon and Polyline.

Parameter

lpDevice

lpMode

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device biunap.

A long pointer to a short integer specifying the desired poly mode,
the state variable indicating how points in Polygon or Polyline calls
should be interpreted. The device driver need not support all the
possible modes. It is expected to return zero if it does not support the
specified mode. The mode parameter may be one of the following:

PM_BEZIER. The points define a sequence of 4-point Bezier spline
curves. The first curve passes through the first four points, with the
first and fourth points as end points, and the second and third points
as control points. Each subsequent curve in the sequence has the end
point of the previous curve as its start point, the next two points as
control points, and the third as its end poinL

The last curve in the sequence is pennitted to have fewer than four
points. If the curve has only one point, it is considered a point If it
has two points, it is a line segmenL If it has three points, it is a para
bola defined by drawing a Bezier curve with the end points equal to
the first and third points and the two control points equal to the sec
ond point.

PM_POLYLINE. The points define a conventional polygon or
polyline.

PM_POLYLINESEGMENT. The points specify a list of coordinate
pairs. Line segments are drawn connecting each successive pair of
points.

Not used and can be set to NULL.

This escape returns the previous poly mode. If the return value is zero, the device driver is
assumed not to have handled the request.

Microsoft Confidential Beta Release

11·51J Dev/cs Drlvsr Adaptation Su/de

Comments

Beta Release

An application should issue the SET_POLY_MODE escape before it draws a complex
curve. It should then call Polyline or Polygon with the desired control points defining the
curve. After drawing the curve, the application should reset the driver to its previous state
by reissuing the SET_POLY_MODE escape.

Polyline calls are drawn using the cmrently selected pen.

Polygon calls are drawn using the cmrently selected pen and brush. If the start and end
points are not equal, a line is drawn from the start point to the end point before filling the
polygon (or curve).

Polygon calls using PM_POLYLINESEGMENT mode are treated exactly the same as
Polyline calls.

A Bezier cwve is defined by four points. The curve is generated by connecting the first
and second, second and third, and third and fourth points. The midpoints of these consecu
tive line segments are then connected. Then the midpoints of the lines connecting the mid
points are connected, and so forth as shown in Figure 11.1.

Figure 11.1 An Example of a Bezler Curve

The line segments drawn in this way converge to a curve defined by the following para
metric equations, expressed as a function of an independent variable t.

X(t) = (1-t)3x1+3(1-t)2tx2+3(1-t)rx3 + fx4

Y(t) = (l-t)3y1+3(1-t)2ty2+3(1-t)rY3 + fy4

The points (x1,y1), (X2,y2), (x3,Y3). and (X4.Y4) are the control points defining the curve.
The independent variable t varies from 0 to 1.

The supported poly modes are defined as follows:

PM_POLYLINE 1
PM_BEZIER 2
PM_POLYLINESEGMENT 3

Additional primitive types (other than PM_BEZIER and PM_POLYLINESEGMENT)
may be added to this escape in the future. Applications are expected to check the return
value from this escape to determine whether or not the driver supports the specified poly
mode.

Microsoft Confidential April 1. 1990

Device Driver Escapes 11·51

SET_SCREEN_ANGLE (Escape# 4105)
Syntax short Control (lpDevice, SET_SCREEN_ANGLE, lpAngle, lpOutData)

Return Value

Comments

Four-color process separation is the process of separating the colors comprising an image
into four component primaries: cyan, magenta. yellow, and black. The image is then repro
duced by overprinting each primary.

In traditional four-color process printing, half-tone images for each of the four primaries
are photographed against a mask tilted to a particular angle. Ttlting the mask in this man
ner minimizes unwanted moire patterns caused by overprinting two or more colors. The
SET_SCREEN_ANGLE escape sets the current screen angle to the desired angle and ena
bles an application to simulate the tilting of a photographic mask in producing a separation
for a particular primary.

Parameter

lpDevice

lpAngle

lpOutData

Description

A long pointer to a data structure of type PDE VICE, which is the
destination device bitmap.

A long pointer to a short integer specifying the desired screen angle
in tenths of a degree. The angle is measured counterclockwise.

Not used and can be set to NULL.

This escape returns the previous screen angle.

The default screen angle is defined by the device driver.

SET_SPREAD (Escape# 4106)
Syntax short Control (lpDevice, SET _SPREAD, /pSpread, lpOutData)

April 1, 1990

Spot color separation is the process of separating an image into each distinct color used in
the image. You then reproduce the image by overprinting each successive color in the
image.

When reproducing a spot-separated image, the printing equipment must be calibrated to
align each page exactly on each pass. However, differences between passes in such factors
as temperature and humidity often cause images to align imperfectly on subsequent passes.
For this reason, lines in spot separations are often widened (spread) slightly to make up for
problems in registering subsequent passes through the printer.

This process, called trapping, is implemented by the SET_SPREAD escape, which sets the
spread for the given device. The spread is the amount by which all the non-white primi
tives are expanded to provide a slight overlap between primitives to compensate for imper
fections in the reproduction process.

Microsoft Confidential Beta Release

11·52 Devlt:a DrMlr Adaptation SultJ11

Return Value

Comments

Parameter

lpDevice

lpSpread

lpOutData

Description

A long pointer t.o a data structure of type PDEVICE, which is the
destination device bitmap.

Along pointer t.o a short integer specifying the amount, in device pix
els, by which all the non-white primitives are t.o be expanded.

Not used and can be set t.o NULL.

This escape returns the previous spread.

The default spread is zero.

The current spread applies t.o all the bordered primitives (whether or not the border is vis
ible) and text.

STARTDOC (Escape # 10)
Syntax short Control (lpDevice, STARTDOC, lpDocName, lpOutData)

Return Value

Comments

Beta Release

This escape informs the device driver that a new print job is starting and that all sub
sequent NEWFRAME calls should be spooled under the same job, until an ENDDOC call
occurs.

This ensures that documents longer than one page will not be interspersed with other jobs.

Parameter

lpDevice

lpDocName

lpOutData

Description

A long pointer t.o a data structure of type PDE VICE, which is the
destination device bitmap.

A 32-bit address t.o a NULL-terminated string specifying the name of
the document. The document name is displayed in the Print Manager
window.

Not used and can be set t.o NULL.

The return value is -1 if an error occurs, such as insufficient memory or an invalid port
specification. Otherwise, it is positive.

The correct sequence of events in a printing operation is as follows:

1. Create printer device context

Microsoft Confidential April 1, 1990

Device Driver Escapes -11·53

2. Set the abort function to keep out-of-disk-space errors from aborting a printing
operation. An abort procedure that handles these errors must be set using the
SETABOR'IPROC escape.

3. Begin the printing operation with STAR1DOC.

4. End each new page with NEWFRAME or begin each new band with NEXTBAND.

5. End the printing operation with ENDDOC.

TRANSFORM_CTM (Escape.# 4107)
Syntaz short Control (lpDevice. TRANSFORM_ CTM, lpMatrix, lpOutData)

Return Va/us

Comm1n1B

April 1, 1990

This escape modifies the cmrent transformation matrix (CTM). The cmrent transformation
matrix conttols the ID81Uler in which coordinates are translated, rotated, and scaled by the
device. By using matrices, you can combine these opemtions in any ordec to produce the
desired mapping for a particular picture.

The new cmrent transfonnation matrix will contain the product of the matrix referenced by
the parameter lpMatrix and the previous cUJ.Tent transformation matrix (CTM = M * CI'M).

Parameter

lpDevice

Ip Matrix

lpOutData

Description

A long pointer to a data structure of type PDEVICE, which is the
destination device bitmap.

A long pointer to a three-by-three array of 32-bit integer values speci
fying the new transformation matrix. Entries in the matrix are scaled
to represent fixed-point real numbers. Each matrix entry is scaled by
65536. Thus, the high-order WORD of the entry contains the whole
integer portion. and the low-order WORD contains the fractional por
tion.

Not used and can be set to NULL.

This escape returns 1RUE if the escape is successful and FALSE if it is unsuccessful.

Applications should not make any assumptions about the initial value of the current trans
formation matrix.

Drivers supporting this escape must also implement the SAVE_CTM and RE
STORE_ CTM escapes.

The matrix specification used for this escape is based on the OS/2 GPI (Graphics
Programming Interface) model. which is an integer coordinate system similar to the one
usedbyGDL

Microsoft Confidential Beta Release

11·54 Device Ddver Adaptation Gulde

Japanese Escapes

Beta Release

The following is a list of the escapes reserved by Microsoft Japan and a short description
of each. Please contaet Microsoft Japan to reserve other escape functions.

Japanese F8cape (Number)

GADIFONTSJZE (Escape# 2576)

GAUIAREASJZE (Escape# 2577)

GAUISYS1EMGETFONT
(Escape # 2578)

GAUISYS1EMSE1FONT
(Escape # 2579)

GAIJIITTOCODE (Escape # 2580)

Description/Parameters

The driver must retmn the standard Kanji
font size in lpOutData. lpOutDaza points
to a POINT data structure. lplnData is un
defined and can be ignored.

The driver must retmn the number of
Gaiji fonts that can be registered at once
as a short integer. Both lplnData and
lpOutData are undefined and can be ig
nored.

The driver returns the Gaiji font pattern
in a monochrome bitmap fonnat. The
low WORD of lplnData contains (not
points to) the handle to the bitmap. lpOut
Data points to a buffer that contains the
Shift IlS (Japanese Industrial Standard)
code of the Gaiji font pattern to be re
trieved. If successful, the driver should
return AX= TRUE.

The driver sets the font pattern contained
in the bitmap whose handle is provided
in the low WORD of lplnData. lpOut
Data points to a buffer that contains the
Shift IlS code of the Gaiji font If
successful. the driver should return AX =
TRUE.

The driver returns the Shift ns code
from the index to the Gaiji area. The high
WORD of lplnData contains (not points
to) an index to the system reserve area
lpOutData points to a buffer that will
contain the Shift JIS code of the Gai ji
upon return. If successful, the driver
should return AX =TRUE.

Microsoft Confidential April 1, 1990

April 1, 1990

Japanese Escape (Number)

GAIJILOCALOPEN (Escape# 2581)

GAIJILOCALCLOSE (Escape# 2582)

GAIJILOCALSE1FONT
(Escape# 2583)

GADILOCALSAVE (Escape# 2584)

GADILOCALRESTORE
(Escape# 2585)

Device Driver Escapes 11·55

Description/Parameters

The driver should get ownership of the
Gaiji area. Both lplnData and lpOUIData
are undefined and can be ignored. If
successful, the driver should return AX=
'IRUE.

The driver releases ownership of the
Gaiji area. The high WORD of lplnData
contains (not points to) the handle that
was retmned to the caller by GAIJILO
CALOPEN. lpOutData is undefined and
can be ignored. If successful, the driver
should retmn AX= 'IRUE.

The driver sets a Gaiji font and retrieves
the Shift ns code for it Upon entry, the
low WORD of lplnData contains a
handle to the monochrome bitmap con
taining the Gaiji fonL The high WORD
of lplnData contains the handle returned
by GAIJILOCALOPEN. lpOUIData con
tains a pointer to a buffer that will
contain the Shift ns code of the Gaiji
upon return.

Saves the cWTCnt Gaiji area into global
memory in hardware-specific formal
The low WORD of lplnData contains the
flags to be passed by the driver to
GLOBALALLOC. The high WORD con
tains the handle returned by
GADILOCALOPEN. lpOUIData is unde
fined and can be ignored. This function
should return the handle of the global ob
ject in AX.

Restores the Gaiji area with the global ob
ject saved in GADILOCALSAVE. Upon
entry, the low WORD of lplnData con
tains the global memory handle that was
returned by GAIJILOCALSAV& The
high WORD contains the handle returned
by GAIJILOCALOPEN. lpOUIData is
undefined and can be ignored. Upon re
turn, AX should contain the nwnber of
free areas in the Gaiji area + 1.

Microsoft Confidential Beta. Release

11·56 Device Driver Adaptation Gulde

Japanese Escape (Number)

TIYMODE (Escape# 2560)

Description/Parameters

If called by an application, this call sig
nals Kanji Wmdows printer drivers to
disregard the passed FONTINFO data
and print using the printer's default hard
ware font. You should not attempt to
match the passed font (in FONTINFO).
The printer's hardware font must have
the width of Roman characters equal to
half the width of Kanji characters.

NOTE In Windows 1.x, this was escape num
ber 15. Since this conflicts with the standard
Microsoft escape number 15 (MFCOMMENT),
it was relocated to the current escape number.
Kanji's GDI, for Windows 2.x and later ver
sions, checks for escape number 15 whenever
called by an application and remaps it to the
correct number.

Beta Release Microsoft Confidential April 1, 1990

Chapter

12
Data Structures and File
Formats

The virtual machine (VM) that supports Microsoft Wmdows is comprised of several sets
of predefined functions. This chapter describes the data structures and file formats used by
those functions. The data structures are presented here in three sections:

1. Data structures returned by the inform8tion calls in each device driver used by
Wmdows.

2. Data structures used as parameters to calls on device drivers.

3. Data structures that are device dependent; these structures contain infonnation about
physical devices.

The data structure descriptions in this chapter are intended as a guide. The following
words, when used in the C-structure declarations discussed in this chapter. have the mean
ings shown here:

• char stands for an unsigned 8-bit integer.

• short stands for a signed 16-bit integer.

• . long stands for a signed 32-bit integer or a long pointer stored as a 16-bit segment
address and a 16-bit offset within that segment

Notice also that rectangles and points within a biunap are described using a coordinate sys
tem with its origin (X=O. Y =0) at the top-left comer of the rectangle or poinL The X
coon:linate increases to the right. and the Y coordinate increases downward.

12.1 Information Data Structures

Beta Release

Device drivers use information data structures to tell others about themselves. This section
includes detailed information on the GDIINFO data structure and its fields. with a separate
subsection dedicated to the dpText field's precision levels. The CURSORINFO data struc
ture is included both in this section and the Mouse driver chapter, which also includes the
MOUSEINFO structure. KBINFO can be found in Chapter 8, "Keyboard Drivers," and the
Device Control Block (DCB) structure is in Chapter 9, "Miscellaneous Drivers".

Microsoft Confidential April 1, 1990

12-2 Device Driver Adaptation Gulde

12.1.1 The GD/INFO Structure

April 1, 1990

The GDIINFO data structure describes the characteristics of the attached graphics device
in sufficient detail so that GDI can allocate space for the required data structures. This data
structure is used to describe the system screen to Microsoft Windows. Additional descrip
tions of GDIINFO are also included in Chapter 2, "Display Drivers," and in Chapter 5,
''Printer Drivers." ·

The cUITently defined fields are as follows:

typedef struct {
short int
short int
short int
short int
short int
short int
short int
short int
short int
short int
short int
short int
short int
unsigned short int
unsigned short int
unsigned short int
unsigned short int
unsigned short int
unsigned short int
unsigned short int
short int
short int
short int
short int
POINT
POINT
POINT
POINT
POINT
POINT
POINT
POINT
POINT
POINT
short int
short int
short int
short int
short int
short int
short int

dpVersion;
dpTechnology;
dpHorzSize;
dpVertSize;
dpHorzRes;
dpVertRes;
dpBitsPixel;
dpPlanes;
dpNumBrushes;
dpNumPens;
futureuse;
dpNumFonts;
dpNumColors;
dpOEVICEsize
dpCurves;
dplines;
dpPolygonals
dpText;
dpClip;
dpRaster;
dpAspectX;
dpAspectY;
dpAspectXY;
dpStylelen;
dpMLoWin;
dpMLoVpt;
dpMHiWin;
dpMHiVpt;
dpELoWin;
dpELoVpt;
dpEHiWin;
dpEHiVpt;
dpTwpWin;
dpTwpVpt;
dplogPixelsX;
dplogPixelsY;
dpDCManage;
futureuse3;
futureuse4;
futureuse5;
futureuse6;

Microsoft Confidential Beta Release

short int
short int
short int
short int
} GOIINFO:

Data Structures and Rle Formats 12·3

futureuse7:
dpPa l Col ors:
dpPa l Reserved;
dpPa l Re sol ut:

12~ 1.2 The GD/INFO Field Descriptions

Beta Release

When the term styled lines appears here, it actually means patterned polylines.

The fields in the GDIINFO data structure have the following meanings:

Field

dpVersion

dpTedlnology

dpHorzSize

dpVertSize

dpHorzRes

dpVertRes

dpBitsPixel

dpPlanes

dpNumBrusbes

dpNumPens

dpNumFonts

Description

Specifies the version number. This must be 300H.

Specifies the device technology from the following list:

Vector plotter(O)
Raster display(!)
Raster printer(2)
Raster camera(3)
Character-stream, PLP(4)
Merafile, VDM(S)
Display file(6)

The width of the physical display in millimeters.

The height of the physical display in millimeters.

The width of the display in pixels.

The height of the display in raster lines.

Specifies the number of adjacent bits on each plane involved
in making up a pixel. For a 256-color, I-plane, high resolution
display, this would hold the value 8, while the dpPlanes field
would hold the value 1.

Specifies the number of planes in frame-buffer memory. For a
typical frame buffer with red, green, and blue bit planes (such
as on a 3-plane EGA), this field would be 3.

Specifies the number of device-specific brushes supported by
this device.

Specifies the number of device-specific pens supported by this
device.

Specifies the number of device-specific fonts supported by this
device.

Microsoft Confidential April 1, 1990

12-4 DB'llt:t Drlrer Atlaplallon Guidi

April 1, 1990

Field

dpNum.Colors

dpDEVICEsize

dpCurves

dpLines

Description

Specifies the nwnber of entries in the color table for this
device or the numbers of reserved colors for palette-capable
devices.

Specifies the size of the data structure of type PDEVICE that
must be allocated for this device. It must be at least two bytes.

Specifies to GDI whether or not the device driver can perform
circles, pie wedges, chord arcs, and ellipses; whether or not
the interior of those figures that can be handled can be brllshed
in; and whether the borders of those figures that can be
handled can be drawn with wide lines, styled lines, or lines
that are both wide and styled. The field required is created by
setting the appropriate bits, as follows:

bit Oset means can do circles
bit 1 set means can do pie wedges
bit 2 set means can do chord arcs
bit 3 set means can do ellipses
bit 4 . set means can do wide lines
bit 5 set means can do styled lines
bit 6 set means can do lines that are wide and styled
bit 7 set means can do interiors

The high byte must be 0.

Specifies whether or not the support module can perform
polylines and lines; whether or not the interior of those figures
that can be handled can be brushed in; and whether the borders
of those figures that can be handled can be drawn with wide
lines, styled lines, or lines that are both wide and styled. The
field required is created by setting the appropriate bits, as fol
lows:

bit 0 set means cannot do lines
bit 1 set means can do polylines
bit 2 reserved
bit 3 reserved
bit 4 set means can do wide lines
bit 5 set means can do styled lines
bit6 set means can do lines that are wide and styled
bit 7 set means can do interiors

The high byte must be 0.

Microsoft Confidential Beta Release

Beta Release

Field

dpPolygonals

dpText

Data Structures and Flis Formats 12-5

Description

Specifies whether or not the device driver can perfonn poly
gons, rectangles, and scanlines; whether or not the interior of
those figures that can be handled can be brushed in; and
whether the borders of those figures that can be handled can
be drawn with wide lines, styled lines, or lines that are both
wide and styled. The field required is created by setting the ap
propriate bits, as follows:

bit 0 set means can do alternate fill polygons
bit 1 set means can do rectangles
bit 2 set means can do winding number fill polygons
bit 3 set means can do scanlines
bit 4 set means can do wide borders
bit 5 set means can do styled borders
bit 6 set means can do borders that are wide and styled
bit 7 set means can do interiors

The high byte must be 0.

Specifies what level of text support is provided by the device
driver. The levels of text support are listed below in terms of
ability (precision levels):

OutputPrecision (STRING, CHARACTER, STROKE)

ClipPrecision (CHARACTER, STROKE)

CharRotAbility (NONE, 90, ANY)

ScaleFreedom (X_ YIDENTICAL, X_ YINDE-
PENDENT)

ScaleAbility (NONE, DOUBLE, INTEGER,
CONTINUOUS)

EmboldenAbility (NONE, DOUBLE)

Italici7.eAbility (UNABLE, ABLE)

UnderlineAbility (UNABLE, ABLE)

S trikeOutAbility (UNABLE, ABLE)

RasterFontAble (UNABLE, ABLE)

VectorFontAble (UNABLE, ABLE)

Microsoft Confidential April 1, 1990

12·6 DBVIOI Driver Atlaptal/D118ulde

Field

dpClip

dpRaster

April 1, 1990

Description

Each precision level (STRING, CHARACIER, NONE, 90,
etc.) has a corresponding bit in dpText that is set if the device
is capable of that precision level Each precision level within
an ability is a superset of the precision levels below it. For ex
ample, in ScaleAbility, DOUBLE implies NONE, IN1EGER
implies DOUBLE and NONE, and CONTINUOUS .implies all
three. Since it is required that the lowest precision level of
each ability be supported, no bit is provided in dpText for the
lowest level of each ability. Therefore, if IN1EGER is set for
ScaleAbility, then DOUBLE must also be set, and NONE is
implied.

If a device claims to have an ability, it must have it for all
fonts, whether realized by the device or provided by GDI.

The bits of dpText are defined as follows:

bit 0 set means can do OutputPrecision CHARACIER
bit 1 set means can do OutputPrecision STROKE
bit 2 set means can do ClipPrecision STROKE
bit 3 set means can do CharRotAbility 90
bit 4 set means can do CbarRotAbility ANY
bit 5 set means can do ScaleFreedom

X_YINDEPENDENT
bit 6 set means can do ScaleAbility DOUBLE
bit 7 set means can do ScaleAbility INTEGER
bit 8 set means can do ScaleAbility CONTINUOUS
bit 9 set means can do EmboldenAbility DOUBLE
bit 10 set means can do ItalicizeAbility ABLE
bit 11 set means can do UnderlineAbility ABLE
bit 12 set means can do StrikeOutAbility ABLE
bit 13 set means can do RasterFontAble ABLE
bit 14 set means can do VectorFontAble ABLE
bit 15 reserved. Must be returned zero.

All the available abilities are described in Section 12.1.3,
"GDIINFO_dpText Field Precision Levels," following the
descriptions of the remaining GDilNFO fields.

Indicates that clipping is available to the device. If the field is
1, the device can clip to a rectangle in the Output function. If
the field is 0, it cannot clip.

Specifies raster abilities.

Microsoft Confidential Beta Release

Beta Release

Field

dpAspectX,
dpAspectY,
dpAspectXY

dpStyleLen

dpMLoWin

Data Structures and File Formats 12-7

Description

bit 0 set means device has BitBlt capabilities
bit 1 set means device requires banding support
bit 2 set means device requires scaling support
bit 3 set means device supports bitmaps larger than 64K
bit 4 set means device supports the new

(Windows 2.0) output functions (ExtTextOut,
FastBorder, and GetCbarWidth)

bit 5 set means device context has state block
bit 6 set means device can save bitmaps locally in

"shadow" memory
bit 7 set means can do Get and Set DIBs and RLE

to and from memory in all the existing DIB
resolutions (1, 4, 8, and 24 bits-per-pixel).
However, if the flag is not set, GDI will
simulate in monochrome.

bit 8 set means can do color palette management
bit 9 set means can do SetDIBitsToDevice
bit 10 set means can do >64K fonts (set only in

protected mode). However, if the flag is not
set, all the fonts will be version 2.0.

bit 11 set means can do StretchBlt
bit 12 set means can do FloodFill

Specify the relative width, height, and diagonal width of a
device pixel and correspond directly to the device's aspect
ratio. For the IBM PC CGA (640 x 200 pixels) screen, these
fields are 5, 12, and 13, respectively (that is, every pixel is a 5
by 12 rectangle). This corresponds to an aspect ratio of S verti
cal pixels to every 12 horizontal. For devices whose pixels do
not have integral diagonal widths, the field values can be mul
tiplied by a convenient factor to preserve information. For
example, pixels on a device with a 1 to 1 aspect ratio have a di
agonal width of 1.414. For good results, the aspect fields
should be set to 100, 100, and 141, respectively. For numerical
stability, the field values should be kept under 1000.

Specifies the minimum length of a dot generated by a styled
pen. The length is relative to the width of a device pixel and
should be given in the same wiits as dpAspectX. For example,
if dpAspectX is 5 and the minimum length required is 3 pix
els, dpStyleLen should be 15.

A constant specifying the width and height of the metric (low
resolution) window. Width is HorzSize* 10; height is Vert
Size*lO.

Microsoft Confidential April 1, 1990

12·8 Dsvlrs Dtlvar Adaplallon Gu/dB

April 1, 1990

Field

dpMLoVpt

dpMHiW'm

dpMHiVpt

dpELoWin

dpELoVpt

dpEHiWm

dpEHiVpt

dpTwpWin

dpTwpVpt

dpLogPixelsX

dpLogPixelsY

dpDCManage

Description

A constant specifying the horizontal and vertical resolutions of
the metric (low resolution) viewport. Horizontal is HorzRes;
vertical is -VertRes.

A constant specifying the width and height of the metric (high
resolution) window. Width isHorzSize*lOO; height is Vert
Size*lOO.

A constant specifying the horizontal and vertical resolutions of
the metric (high resolution) viewport. Horizontal is HorzRes;
vertical is -VertRes.

A constant specifying the width and height of the English (low
resolution) window. Width is HorzSize* 1000; height is Vert
Size*lOOO.

A constant specifying the horizontal and vertical resolutions of
the English (low resolution) viewport. Horizontal is
HorzRes*254; vertical is -VertRes*254.

A constant specifying the width and height of the English
(high resolution) window. Width is HorzSize* 10,000; height is
VertSize* 10,000.

A constant specifying the horizontal and vertical resolutions of
the English (high resolution) viewport. Horizontal is
HorzRes*254; vertical is-VertRes*254.

A constant specifying the width and height of the twip
window. There are 20 twips per 1 printer's point and 72
printer's points per inch. Width is HorzSize*14400; height is
VertSize* 14400.

A constant specifying the horizontal and vertical resolutions of
the twip viewport. Horizontal is HorzRes*254; vertical is -
VertRes*254.

This 2-byte field specifies the nwnber of pixels per logical
inch along a horizontal line on the display surface. This is used
to match fonts.

This 2-byte field specifies the number of pixels per logical
inch along a vertical line on the display.surface. This is used to
match fonts.

This 2-byte field contains the following bits:

Microsoft Confidential Beta Release

Field

dpPalColors

dpPalReserved

Beta Release

Description

DC_SPDevice (001)
DC_lPDevice (010)
DC_IgnoreDFNP (100)

Value

000

001

010

011

100

101

110

111

Data Structures and File Formats 12·9

Description

Action as previously existed.
Multiple DCs are allowed to exist for
every device/filename pair (DFNP),
and they will share the same PDev
ice. Multiple DFNPs can exist, each
having its own PDevice.

Each attempt to create a DC with the
same DFNP will cause a new PDev
ice to be allocated and initialized. A
new DFNP will cause a new PDevice
to be allocated and initialized.

There will only be one DC per
DFNP. An attempt to create a second
DC with the same DFNP will return
an error. A new DFNP will cause a
new PDevice to be allocated and ini
tialized.

Invalid.

Multiple Des are allowed to exist,
and they will share the same PDev
ice, regardless of the DFNP.

Invalid.

Only one DC can exisL An attempt
to create a second DC will return an
error.

Invalid.

Specifies the total number of simultaneous colors available in
Windows 3.0 for palette-capable devices. Other devices ignore
this field but must put something here.

Specifies the even number of reserved system colors available
in Windows 3.0 for palette-capable devices. Other devices ig
nore this field but must put something here.

Microsoft Confidential April 1, 1990

12·10 Device Driver Adaptation Gulde

Field

dpPalResolut

Description

Specifies the palette resolution, which equals the number of
bits going into video DACS. Nonpalette-capable devices ig
nore this field but must put something here. See Chapter 3,
"Display Drivers: New Features," for more infonnation on
color palette management and these three new fields for
Wmdows 3.0.

NOTE The window/viewport pair fields are the numerator and denominator of the scale fraction used
to correct for the device aspect ratio and to set to a fixed unit of measurement, either metric or English.
These numbers should be integers in the range of -32768 to 32767. When calculating these constants,
out-of-range values can be divided by some number to bring them back into range as long as the corre
sponding window or viewport constant is divided by the same number. See Chapter 2, •Display
Drivers: for an example of these calculations.

The dpRaster field is also used to indicate a scaling device. If the RC_SCALING bit (bit
2) is set, the device does graphics scaling. Certain devices perfonn graphics at one resolu
tion and text at another. Some applications require that character cells be an integral num
ber of pixels. If a device reported that its graphics resolution was 75 dpi but its text
resolution was 300 dpi, then its character cells would not be an integral number of pixels
(since they were digitized at 300 dpi). To get around this problem, GDI uses scaling dev
ices. The device driver registers itself as a 300 dpi device and all the graphics at 300 dpi
are scaled to 75 dpi. Any device that scales must have the RC_SCALING bit set Scaling
always reduces the resolution, never increases it GDI calls the control procedure with
GETSCALINGFACI'OR before graphics is done to a device. The scaling factor is a
SHIFT count that is a power of two. Therefore, a scale factor of 2 means reduce by 4, and
a scale factor of 1 means reduce by 2.

12.1.3 GD/INFO - dpText Field Precision levels

April 1, 1990

The following is a detailed description of each of the text-support precision levels for the
GDIINFO dpText field.

OutputPrecision (STRING, CHARACTER, STROKE)
OutputPrecision specifies which font attributes the output function may ignore. The device
is not required to ignore any given attribute; it is merely allowed to do so if that will facili
tate output. OutputPrecision has no effect on emboldening, italicizing, underlining, or
strikeout. If a device registers these abilities, it must perfonn them when requested.

Whenever either the character orientation or the difference between the character orienta
tion and the escapement angle is a multiple of 90 degrees, the intercharacter and interword
spacing will be the standard intercharacter spacing used for bounding boxes plus the
CharacterExtra and BreakExtra spacing. (Refer to the DRAWMODE data structure for
a description of intercharacter and interword spacing.)

Microsoft Confidential Beta Release

Beta. Release

Data Structures and File Formats 12-11

The standard intercharacter spacing at a given escapement angle and character orientation
is defined as the minimum spacing along the escapement vector, such that the character
origins are on the escapement vector, and the character bounding boxes touch. Variable
pitch fonts are achieved by using variable width bounding boxes. This model applies at all
attribute values. When the sides of the bounding boxes touch, extra space is added in X
and, when the tops touch, it is added in Y.

In all other escapement and orientation cases, the standard intercharacter spacing is device
dependent. The preferred implementation is as for the 90-degree cases. In all cases, it is re
quired that all character origins lie on the escapement vector. The precision levels for out
put are described in detail as follows:

Level

S1RING

CHARACTER

S1ROKE

Description

This level of precision is used where simplicity and efficiency
are more important than geometric precision of the text. The
goal of S1RING precision is to make the most use of hardware
character generation as possible. The effects of the text attributes
Height, Width, Escapement, and Orientation on appearance are
device dependent. Height and Width are used to determine a
''best-fit" character size. For S1RING and CHARACTER preci
sion, the largest font that does not exceed the requested size will
be used. If no such font exists, the smallest available font will be
used. Intercharacter and interword spacing must adhere to their
current settings. The device has the option of ignoring escape
ment and character orientation. The starting point of the
STRING is subject to any transforms in effect.

This level of precision is used when it is important that the string
occupy a given region, such as when labeling the axes of charts
and graphs. CHARACI'ER precision makes use of the hardware
character generation on a character-by-character basis. The ef
fects of the text attributes Height, Width, and Orientation on the
appearance are device dependent. Size is detennined as for
STRING precision. CHARACTER precision must adhere to
escapement. Only character orientation may be ignored. The
starting point of the string is subject to· any transforms in effect.

This level of precision treats the characters as if they were
generated by being stroked out as vectors. S1ROKE precision
must adhere to all current attributes, including size. The starting
point of the string is subject to any transfonns in effect.

ClipPrecision (CHARACTER, STROKE)
ClipPrecision specifies how accurately StrBlt can clip. At CHARACTER precision, a
character in the string is entirely invisible if, and only if, any portion of the character is out-

Microsoft Confidential April 1, 1990

12·12 Device Dtlver Adaptallan Gulde

April 1, 1990

side the clip region. With STROKE precision, only those portions of each character that
are outside the clip region are invisible. The rest of the character is visible.

CharRotAbi/ity (NONE, 90, ANY)
CharRotAbility refers to the ability to rotate individual character cells. NONE implies that
characters cannot be rotated. 90 means that characters can only be rotated in 90 degree in
crements. ANY implies arbitrary rotation angles.

It is assumed that arbitrary escapement angles can be achieved, if by no other means than,
by placing each character as a separate entity. Many devices are able to do arbitrary
character rotation only if the character orientation matehes the escapement angle. For such
devices, it is assumed that the driver will place each character individually at the proper
orientation and escapement, when escapement and character orientation do not match.

ScaleFreedom (X_ YIDENTICAL, X_ YINDEPENDENT)
ScaleFreedom specifies how the characters in a font may be scaled. X_ YIDENTICAL
means that the characters must be scaled by the same amount in each direction. X_ YINDE
PENDENT implies that the characters may be scaled independently in each direction.

Sca/eAbility (NONE, DOUBLE, INTEGER, CONTINUOUS)
ScaleAbility specifies by what amount the characters can be scaled. NONE implies no scal
ing. DOUBLE means the characters can be doubled. INlEGER allows any integer
multiple. CONTINUOUS gives exact scaling. Whenever a device cannot match a re
quested size exactly, because of X_ YIDENTICAL or noncontinuous scaling, it is required
that the device use the largest size available that will not exceed the requested size in either
direction.

EmboldenAbi/ity (NONE, DOUBLE)
EmboldenAbility indicates whether or not StrBlt can alter the weight of a font. NONE im
plies nothing can be done. DOUBLE can double the weight, usually by shifting one pixel
and overstriking. However, this method will not double the weight of bigger fonts. This
ability is not affected by OutputPrecision.

lta/icizeAbility (UNABLE, ABLE)
ItalicizeAbility is set ABLE if StrBlt can take a nonitalic font and skew it to make it italic.
This ability is not affected by OutputPrecision.

UnderlineAbility (UNABLE, ABLE)
UnderlineAbility is set ABLE if StrBlt can underline a font This ability is not affected by
OutputPrecision.

Microsoft Confidential Beta Release

Data Structures and Fiie Formats 12·13

StrikeOutAbility (UNABLE, ABLE)
SuikeOutAbility is set ABLE if StrBlt can strike out a font by drawing a line through it.
This ability is not affected by OutputPrecision.

RasterFontAble (UNABLE, ABLE)
RasterFontAble indicates whether or not the device is capable of using raster format fonts.

VectorFontAble (UNABLE, ABLE)
VectorFontAble indicates whether or not the device is capable of using vector fonnat fonts.

NOTE If the device driver returns the abilities listed below, it need never implement or adhere to any
of the font attributes. The only parameters affecting output will be the font face (physical font), fixed or
variable pitch, and text justification as specified in the DRAWMODE data structure.

OutputPrecision: STRING

ClipPrecision: CHARACTER

CharRotAbility: NONE

ScaleFreedom: X_ YIDENTICAL

ScaleAbility: NONE

EmboldenAbility: NONE

ItalicizeAbility: UNABLE

UnderlineAbility: UNABLE

SuikeOutAbility: UNABLE

RasterFontAble: UNABLE or ABLE

VectorFontAble: NOT RasterFontAble

The ClipPrecision ability must be implemented with STROKE precision on the console
device for Microsoft Windows to operate properly.

12.1.4 CURSORINFO - Cursor Information Data Structure

Beta Release

This data structure contains information about the system display's cursor module.

typedef struct {
short dpXRate;

Microsoft Confidential April 1, 1990

12·14 DIN/t:IJ Dflrlt Adaptation Bu/tie

short dpYRate:
} CURSORINFO:

The fields in this data sttucture have the following meanings:

Field

dpXRate

dpYRate

Description

The horizontal mickey-to-pixel ratio for this display. For the IBM PC
and the Microsoft Mouse, this is 1.

The vertical mickey-to-pixel ratio for this display. For the IBM PC
and the Microsoft Mouse, this is 2.

12.2 Parameter Data Structures
The following are the data structures that are used as parameters to the functions described
in this documenL

12.2.1 POINT - Point Data Structure
This data structure descn'bes the fonnat of a point as used by other data structures.

typedef struct {
short x;
short y;
} POINT;

The fields in this data structure have the following meanings:

Field Description

x The X-coordinate value of a poinL

y The Y-coordinate value of a poinL

12.2.2 RECT - Rectangle Data Structure

April 1, 1990

A rectangle is characterized by two points.

typedef struct {
short 1 eft, top:
short right, bottom:
} RECT;

The fields in this data structlll'C have the following meanings:

Microsoft Confidential Beta Release

Field

left, top

right, bottom

Data Structures and File Formats 12·15

Description

The coordinates that specify the upper-left corner of the rectangle
(points inclusive).

The coordinates that specify the lower-right corner of the rectangle
(points exclusive).

NOTE The "right, bottom" coordinates are actually one greater than the actual size the rectangle
would appear to require. Therefore, if passed a "right, bottom" coordinate pair of (640,480), the device
driver should use a rectangle with its lower right corner at (639,479).

12.2.3 RGB - Logical Color Specification

Beta Release

A logical color specifies the color desired by an application.

typedef long RGB;

The long integer is divided into four I-byte fields, three of which specify the intensity of
the primary colors. The intensities of the color values are on a scale of 0-255. The values
are packed in the low three bytes of the long integer in the following format:

r + 256*g + 64K*b.

That is, the lowest-order byte contains Red infonnation, the next byte contains Green infor
mation, and the third byte contains Blue infonnation. For palette-capable devices, if the
high byte is OOH, then this is an RGB color. However, if the high byte is OFFH, then the
low WORD is color index, not an RGB.

Each byte represents an intensity level for the specified color (i.e., red, green, and blue); 0
is the minimum intensity, 255 the maximum. When the colors are combined, they form a
new color. For example, when the colors are at minimum intensity (0,0,0), the result is
black. When the colors are at maximum intensity (255, 255, 255), the result is white. Gray
is half intensity in all colors (127,127,127); solid green is (0, 255, 0), and so on.

If a display device is not capable of all the possible RGB color combinations, the OEM
must decide which colors to display for the given RGB color values. For example, in a
black and white display with only one bit per pixel, the OEM must choose a cutoff inten
sity at which all the RGB values above the intensity are white and all below are black. One
method used to compute the cutoff intensity is to add the individual color intensities and
divide by two:

(R+G+B) /2

In this case, the cutoff intensity is 382, or (255+255+255)/2.

Microsoft Confidential April 1, 1990

12·16 Dev/cs Driver Adaptation Gulde

12.2.4 ORAWMOOE - Drawing Mode Specification

April 1, 1990

A drawing mode includes the infonnation required to draw lines on a display.

typedef struct {
short Rop2;
short BackgroundMode:
pColor BackgroundColor;
pColor TextColor:
short TBreakExtra:
short BreakExtra:
short BreakErr:
short BreakRem:
short BreakCount;
short CharacterExtra;
pColor LogicalBGColor;
pColor LogicalTextColor:
} DRAWHODE:

The fields within the DRAWMODE structure have the following meanings:

Field

Rop2

Description

A short integer value between 1 and 16 specifying the Boolean
combining function (of source and destination colors) to be
used. All the possible Boolean functions of two variables, .
using the binary operations AND, OR, andXOR, and the unary
operation NOT, are defined using the binary raster operations
table below:

Function of
Rop Dest and Pen

Binary Raster Op Table Code (or Pattern)

R2_BLACK 1 I* 0 */

R2_NOTMERGEPEN 2 /* DPon */

R2_MASKNOTPEN 3 /* DPna */

R2_NOTCOPYPEN 4 I* Pn */

R2_MASKPENNOT 5 /* PDna */

R2_NOT 6 /* Dn */

R2_XORPEN 7 /* DPx */

R2_NOTMASKPEN 8 /* DPan */

R2_MASKPEN 9 /* DPa */

Microsoft Confidential Beta Release

Beta Release

BackgroundMode

Background Color

TextColor

Data Structures and Fiie Formats 12-11

R2_NOTXORPEN 10 /* DPxn */

R2_NOP 11 /*D*/

R2_.MERGENO'IPEN 12 /* DPno*/

R2_COPYPEN 13 /*P*/

R2_.MERGEPENNOT 14 /* PDno*/

R2_.MERGEPEN 15 /* DPo */

R2_WlilTE 16 /* 1 */

A short integer specifying whether parts of lines not being
drawn in foreground color should be drawn in the background
color (opaque background) or left transparent (transparent
background). This mode also applies when a brush is used for
interiors, scanlines, and text.

A physical color specifying the background color to be used.
See Section 12.3.3, ''?COLOR-Physical Color Definition," for
more information about the PCOLOR data structure.

A physical color specifying the text color to be used. See Sec
tion 12.3.3, "?COLOR-Physical Color Definition," for more
information about the PCOLOR data structure.

The remaining fields in DRAWMODE specify text justification as follows:

Field

TBreakExtra

BreakExtra

BreakErr

BreakRem

Description

A short integer specifying the total number of pixels that
must be shared by, and inserted into, all the character breaks
in the string(s) output Also known as the Proportional String
flag.

A short integer specifying the number of pixels to insert at
every character break: div (TBreakExtra, BreakCount).

A short integer that maintains a running error term to be used
by StrBlt to track the number of BreakRem pixels that have
been consumed. This error term allows an application to do
justification across a line composed of several different out
put strings using different fonts.

A short integer specifying the remaining pixels to be scat
tered among the character breaks: mod (TBreakExtra,
BreakCount).

Microsoft Confidential April 1, 1990

12·18 Dtwlea Dtlver A//aptallon Buldll

Field

BreakCount

Character Extra

LogicaWGColor

LogicalTextColor

Description

A short integer specifying the number of character breaks
into which the extta pixels specified by TBreakExtra must be
inserted. .

A short integer specifying in pixels (or device units) the
amoWlt of extta space to put between characters output by
StrBlt.

Specifies the logical backgroWld color. See Section 12.3.3,
"PCOLOR-Physical Color Definition," for more information
about the PCOLOR data structure.

Specifies the logical text color. See Section 12.33,
"PCOLOR-Physical Color Definition," for·more information
about the PCOLOR data structure.

NOTE If no justification is required. TBraakExtra will be set to zero. To enable justification, an appli
cation must set TBraakExtra and BraakCount to the desired values. The other justification fields are
evaluated using these values and BreakErr is set to BraakCount/2+ 1.

It is expected that StrBlt will be implemented as described below, but any implementation
that spreads the excess pixels across the character breaks satisfies the requirements of text
justification.

width = width of char
if TBreakExtra <> 0 and char= BreakChar then

width • width + BreakExtra
BreakErr - BreakErr - BreakRem
if BreakErr <= 0 then

width = width + 1
BreakErr = BreakErr + BreakCount

endif
endif
width = width + CharacterExtra move over by width

12.2.5 RASTEROP- Raster Operations

April 1, 1990

A raster operation specifies how to combine the source, pattern, and destination during a
BitBlt.

GDI RASTER.OP includes the complete set of Boolean functions, using the binary opera
tDrs AND, OR, and XOR, and the unary operatDr NOT, on three variables. Those combining
functions are listed in Chapter 14, "Raster Operation Codes and Definitions," where the ac
tual name and reverse Polish notation for each value are given. Notice that the actual
values used to denote the 256 functions are 32-bit unsigned integers. Therefore, the table
of values is sparse, and one must be careful when specifying the RASTER.OP.

Microsoft Confidential Beta Release

Data Structures and File Formats 12-19

Chapter 14, "Raster Operation Codes and Definitions," also includes a description of the
process used to generate the 32-bit numbers.

Some of the more commonly used raster operation codes are listed below:

I/define SRCCOPY
#define SRCPAINT
/ldefi ne SRCANO
#define SRCINVERT
#define SRCERASE
I/define NOTSRCCQPY
I/define NOTSRCERASE
#define MERGECOPY
I/define MERGEPAINT
/ldefi ne PATCOPY
#define PATPAINT
#define PATINVERT
#define DSTINVERT
I/define BLACKNESS
#define WHITENESS

0x00CC0020 /*dest=source */
0x00EE0086 /*dest=source OR dest */
0x008800C6 /*dest=source AND dest */
0x00660046 /*dest=source XOR dest */
0x00440328 /*dest=source AND CNOT dest > *I
0x00330008 /*dest=<NOT source) */
0x001100A6 /*destm(NOT source) AND CNOT dest) */
0x00C000CA /*dest=(source AND pattern) */
0x00BB0226 /*dest~Csource AND pattern) OR dest */
0x00F00021 /*dest=pattern */
0x00FB0A09 /*DPSnoo */
0x005A0049 /*dest•pattern XOR dest */
0x00550009 /*dest=CNOT dest> */
0x00000042 /*dest=BLACK */
0x00FF0062 /*dest=WHITE */

12.2.6 CURSORSHAPE - Cursor Data Structure

Beta Release

The CURSORSHAPE data sttuctlll'e is used by Microsoft Windows to generate a cursor on
a physical display at the current cursor position. A cursor contains a hotspot within the
cursor shape that is aligned with the cursor position. It also contains two bitmaps of equal
size that are used to determine the appearance of the cursor as a function of the display
contents under the cursor. The fll'St bitmap is ANDed with the contents of the display and
the second bitmap is XORed with the result t.o generate the final appearance of the cursor
as opaque white, opaque black, transparent, or invert

typedef struct {
short csHotX;
short csHotY;
short csWidth;
short csHeight;
short csWidthBytes;
short csColor:
char csBits;
} CURSORSHAPE;

The fields within the CURSORSHAPE sttucture have the following meanings:

Field

csHotX,
csHotY

cs Width

Description

A point within the cursor shape that should be aligned with the
cursor position when displaying the cursor. Negative coordinates
are allowed, so that the hotspot can lie outside the cursor shape.

Width of the cursor shape in pixels.

Microsoft Confidential April 1, 1990

12·20 Device Driver Adaptation Guide

Field

csHeight

csWidthBytes

csColor

csBits

Description

Height of the cursor shape in raster lines.

Width of the cursor shape in bytes. This is currently 4.

Fonnat of color infonnation in following pixel array. This field
should contain zero.

An array of bits containing the two masks that define the cursor
shape. The first csHeight*csWidthBytes bytes define the AND
mask. The second csHeight*csWidthBytes bytes define the XOR
mask.

12.2. 7 LOGPEN - Logical Pen Attribute Information

April 1, 1990

The logical pen attribute structure is used by the device driver while drawing lines or per
imeters.

(Chris G, please correct the structure and definitions.)

typedef struct {
1 ong l opnStyl e;
POINT lopnWidth;
long 1 reserved;
long lopnColor;
l LOGPEN;

The fields within the LOGPEN structure have the following meanings:

Description Field

lopnStyle A long integer value specifying the type of interruptions to be used
in generating the pen. Predefined pen styles (with indexes 0-5, re
spectively) include:

lopnWidth

LS_SOLID
LS_DASHED
LS_DOITED
LS_DOTDASHED
LS_DASHDOTDOT
LS_NOLINE

Any other style should be ignored.

A data structW"e of POINT type whose fields specify the width and
height of dots created by the pen (in device units). A zero-width
pen is drawn with the system's smallest width. Negative-width
pens have no width and are NULL pens.

Microsoft Confidential Beta Release

Field

lreserved

lopnColor

Data Structures and File Formats 12·21

Description

A long integer reserved for future use.

A long integer specifying the RGB color with which the pen is to
be drawn. However, for palette-capable devices, if the high byte is
OFFH, then the low WORD is a color index. Use that index for the
physical color in the corresponding PPEN structure. If the high
byte is OOH, then you have an RGB.

12.2.8 LOGBRUSH - Logical Brush Attribute Information

Beta Release

The logical brush attribute structure is used while filling interiors.

typedef struct {
short lbStyle;
long lbColor;
short lbHatch;
long lbBkColor;
} LOGBRUSH;

The fields within the LOGBRUSH structure have the following meanings:

Field

lbStyle

lbColor

Description

Selects the type of brush. Predefined brush types (with indexes 0-3,
respectively) include the following:

BS_SOLID
BS_HOLLOW
BS_HATCHED
BS_PATIERN

The infonnation in the remaining fields varies depending on the
brush type selected.

If the brush style is BS_HOLLOW, the lbColor field is not used. If it
is BS_PATIERN, the field is a long pointer to the physical bitmap
(type BITMAP) defining the pattern. If the brush style is BS_SOLID
or BS_HATCHED, the lbColor field specifies the color in which the
brush is to be drawn. However, for palette-capable devices, if the
high byte is OFFH, then the low WORD is a color index. Use that
index for the physical color in the corresponding PPEN structure. If
the high byte is OOH, then you have an RGB.

Microsoft Confidential April 1, 1990

12-22 · Dsvll:e DtlVBr Adaptation Gulds

Field

lbllatcb

lbBkColor

Description

If the brush style is BS_SOLID or BS_HOLLOW. the lbHatcb field
is not used. If the brush style is BS_HATCHED. the lbllatcb field
specifies the orientation of the lines used to create the hatch. The
possible hatch values are as follows:

HS_HORJZONTAL horizontal hatch

HS_ VERTICAL vertical hatch

HS_FDIAGONAL 45-degree upward hatch from left to right

HS_BDIAGONAL 45-degree downward hatch from left to right

HS_CROSS horizontal and vertical cross-hatch

HS_DIAGCROSS 45-degree cross-hatch

If the brush style is BS_HATCHED. the lbBkColor field specifies
the background color of the hatched brush. However. for palette- .
capable devices. if the high byte is OFF.El. then the low WORD is a
color index. Use that index for the physical color in the correspond
ing PPEN sttucture. If the high byte is OOH. then you have an ROB.

12.3 Physical Data Structures
This section describes data sttuctures that contain information about physical devices.
These data sttuctures vary across devices. and their definition depends on the actual device.

12.3.1 BITMAP- Physical Bitmap Data Structure

April 1, 1990

A physical bitmap describes a rectangle of bits in main memory (private binnap).

typedef struct {
short bmType;
short bmWidth:
short bmHeight:
short bmWidthBytes;
byte bmPlanes;
byte bmBitsPixel;
long bmBits;
long bmWidthPlanes;
long bmlpPDevice:
short bmSegmentlndex;
short bmScanSegment;
short bmFillBytes;
short reserved!;

Microsoft Confidential Beta Release

Beta Release

Data Structures and File Formats 12·23

short reserved2;
} BITMAP;

The fields within the BITMAP structure have the following meanings:

Field

bmType

bmWidth

bmHeight

bm WidthBytes

bmPlanes

bmBitsPixel

bmBits

bm WidthPlanes

bmlpPDevice

Description

If the memory backing the bitmap is allocated in main
memory, this field is zero, and the remaining fields in the
data structure have the meanings defined here. If this is a dis
play bitmap, bmType is a unique number describing that
physical display, and the remaining information in the dat.a
structure is as defined by the OEM (see the preceding
PDEVICE structure description). This field permits hardware
architectures to treat display memory differently than main
memory, which may be of importance if the display bitmap is
organized differently than bitmaps in main memory. For
physical display bitmaps, this field and all the remaining
fields are initialized by the OEM-supplied Enable function
for the dedicated display.

Width of the bitmap in pixels.

Height of the bitmap in raster lines.

Number of bytes in each raster line of this bitmap. This value
is precomputed for easy calculation of the address of the next
raster line. bm WidthBytes must be an even number so that
all the scanlines will be aligned on a WORD boundary. No
tice that bmWidthBytes*8 can exceed bmWidth in the case
of a bitmap whose width in bits is not a multiple of 16.

Specifies the number of planes in frame-buffer memory.

Specifies the number of adjacent bits on each plane that are
involved in making up a pixel.

A long pointer to the array of pixels for this bitmap. For main
memory bitmaps, this is an actual memory address. This
memory address is guaranteed to be aligned on a WORD
boundary.

Specifies the width in bytes of each plane involved in making
up the bitmap. It is equal to bmWidthBytes*bmHeight.

A long pointer to the PDE VICE structure of the device for
which this bitmap is compatible.

Microsoft Confidential April 1, 1990

12-24 OW/cs OtlVer Adaptation Gulde

April 1, 1990

Field

bmSegmentlndex

bmScanSegment

bmFilmytes

Description

For bitmaps that are greater than 64K in length, this field is
nonzero. Otherwise, it is zero. It is used as a flag to tell you
whether or not you have a "huge" bitmap. To compute the
segment address for segment n, add n*bmSegmentlndex to
the starting segment address of the bitmap.

Specifies the number of raster (scan) lines contained in each
(64K) segment of a "huge" bitmap. (It is not used for small
bitmaps.) The total number of segments is equal to ceilling of
(bmHeight/bmScanSegment). A raster line is equal to
bm WidthBytes bytes. No segment may contain more than
64K.

Specifies the number of extra bytes in each segment Bitmaps
are allocated on 16-byte boundaries.

A Huge Bitmap Example
This example is for a display, such as the 3-plane EGA, that registers itself (in the
GDilNFO data structure) as having more than one bitplane. The following is the bitmap in
RAM:

+------------------------------------+
Bitmap Header

as described above
+------------------------------------+

*
*
*

+------------------------------------+ beginning of first segment
I Plane 0, scan line 0
JPlane 1, scan line 0
I Plane 2, scan line 0
JPlane 0, scan line 1
!Plane 1, scan line 1
!Plane 2, scan line 1
!Plane 0, scan line 2
!<etc.)· *
I *
I *
!Plane 0, line j-1
!Plane 1, line j-1
!Plane 2, line j-1 I bmFillBytes I <-- number of bytes of fill
+------------------------------------+ end of first/beginning of second
JPlane 0, scan line j
!Plane 1, scan line j
JPlane 2, scan line j
!Plane 0, scan line j+l
!Plane l, scan line j+l

Microsoft Confidential Beta Release

Beta Release

!Plane 2, scan line j+l
!<etc.> *
I *

Data Structures and Flis Formats 12·25

---------------(gap for rest of 2nd and further)

---------------continuation of n-lst
I
segment>
I
I

*

*
*

!Plane 0, scan line m-2
!Plane l, scan line m-2
!Plane 2, scan line m-2
!Plane 0, scan line m-1
jPlane·l, llnem-1

Cthis is the last complete

jPlane 2, line m-1 I bmFillBytes I <-- number of bytes of
+------------------------------------+ end of n-lst/beginning
!Plane 0, scan line m

fi 11
of nth

!Plane 1, scan line m
I Plane 2, scan line m
jCetc.> *
I *
completely
I *
!Plane 0, scan line n-1
!Plane 1, scan line n-1
!Plane 2, scan line n-1
+------------------------------------+

Diagram 1: Huge Bitmap, in RAM

(this segment is not

filled, and does NOT have any
Fi 11 Bytes. >

end of last scan line.

All the planes of a particular scanline must fit within the segment Otherwise, go to the
next segment and leave bmFillBytes worth of empty bytes at the end of the current seg
ment

The "outside world" (in this case, the EGA) does not see things this way, and some transla
tion must occur. It is performed by GDI. Diagram 2 shows the fonnat expected by the
EGA:

+------------------------------------+ beginning of first plane
jscan line 0
jscan line 1
!scan line 2
jscan line 3
I *
I
I

*
*

jscan line n-1
+------------------------------------+ end of first/beginning of second
jscan line 0
jscan line 1
jscan line 2
jscan line 3
I *

Microsoft Confidential April 1, 1990

12·26 Dev/cs Driver Alfaplallaa Gulde

I *
I *
!scan line n-1 .
+------------------------------------+ end of second/beginning of third
I scan llne 0
!scan line 1
!scan line 2
I scan l i.ne 3
I *
I *
I *
!scan line n-1
+------------------------------------+ end of third; also end of screen
Diagram 2: 3 Plane EGA Format, not a Huge Bitmap

12.3.2 PDEVICE - Private Device Data Structure
This data structure varies across devices. Device-dependent infonnation can be stored in
this data structure to indicate the current state of a given device. The type of information
stored may include the ciment pen, the current position, and the communication port of a
particular device.

The PDEVICE data structure is allocated by GDI before any call to enable a device driver.
The size of this data structure may vary and must be specified in the dpDEVICEsize field
of the GDIINFO data structure. A single field is present in all cases; which allows GDI to
detennine whether this is a system display or same other device.

typedef struct {
short magic;
} PDEVICE;

The first WORD is the one constant field in this data structure that is required for all dev
ices. This field, when zero, specifies that the device is a memory biunap. When the field is
nonzero, it specifies that the device is a physical system display bitmap. The Enable func
tion sets this field to a nonzero value.

12.3.3 PCDLDR - Physical Color Definition

April 1, 1990

A physical color specifies the color bits to be activated to achieve a given color on the
device. ·

typedef long PCOLOR;

The definition of a physical color differs, depending on whether the colors are generated
by contiguous bits or by multiple color planes. This specification is entirely dependent on
the device.

GDI does not use physical colors directly. Instead, it passes them to the appropriate output
functions to be realized by the device driver.

Microsoft Confidential Beta Release

Data Structures and File Formats 12-21

12.3.4 PPEN- Physical Pen Data Structure
The PPEN structure is filled by the RealizeObject function and passed to the Output func
tion to specify the physical pen to be used for drawing lines. The exact size and content of
a physical pen depend on the device for which it is fanned. The RealizeObject function
must fill this structure with appropriate valuei by translating the logical pen definition
passed to it into physical pen specifications for the device. Before calling RealizeObject,
GDI allocates sufficient space for the structure by calling RealizeObject with a NULL
pointer to the Output object to get the size of the structure for which it needs to allocate
space.

12.3.5 PBRUSH-Physical Brush Data Structure
The PBRUSH structure is filled by the RealizeObject fwiction and passed to the Output
function to specify the physical brush to be used for painting regions. The exact size and
content of a physical brush depends on the device for which it is fanned. The RealizeOb
ject fwiction must fill this structure with appropriate values by translating the logical brush
definition passed to it into physical brush specifications for the device. Before calling Real
izeObject, GDI allocates sufficient space for the structure by calling RealizeObject with a
NULL pointer to the Output object to get the size of the structure for which it needs to al
locate space.

12.4 Raster and Vector Font File Formats

Beta Release

In addition to the infonnation in the header of the file, a raster font file contains a string of
bytes, the actual bitmap, just as it will be loaded into contiguous memory by GDI. That
string begins in the file at the offset specified in the dffiitsPointer field described in the
following section.

The header infonnation for a vector font file is also described in the following section.
This section describes some additional infonnation for vector font files.

Each character is composed of a series of vectors consisting of a pair of signed relative
coordinate pairs starting from the character cell origin. Each pair may be preceded by a
special value indicating that the next coordinate is to be a pen-up move. The special pen
up value depends on how the coordinates are stored. For I-byte quantities, it is -128
(080H) and for 2-byte quantities, it is -32768 (08000H).

The character cell origin must be at the upper-left corner of the cell so that the character
hangs down and to the right of where it is placed.

The storage fonnat for the coordinates depends on the size of the font If either dfPix
Height or dfMaxWidtb is greater than 128, the coordinates are stored as 2-byte quantities;
otherwise, they are stored as 1-byte quantities.

Microsoft Confidential April 1, 1990

12·28 Device Ddver Adaptation Guide

12.4.1 FONTINFO - The Physical Font Descriptor

April 1, 1990

A font descriptor contains all the infonnation about a physical font needed by the low
level character draw primitives. This data structure is identical to the font file fonnat de
scribed in Chapter 13, ''The Font File Format," but with two exceptions. First, this
FONTINFO does not include the dfVersion, df'Size, and dfCopyright fields. Second, the
dfDevice, dtFace, dfBitsPointer, and dffiitsOffset fields are offset from the beginning of
the segment containing the FONTINFO data structure rather than from the beginning of
the file.

For Windows 3.0, these two versions of FONTINFO now also include the glyph table in
dfCharTable, which consists of structures that describe the bits for the characters in the
font file, and six new fields: dtFlags, dfAspace, dffispace, dfCspace, dfColorPointer,
and dfReservedl. The Windows 2.x version of FONTINFO, however, is still supported.

typedef struct {
short dfType;
short dfPoints;
short dfVertRes;
short dfHorizRes;
short dfAscent;
short dflnternalleading;
short dfExternalleading;
char dfltalic;
char dfUnderline;
char dfStrikeOut;
short dfWeight;
char dfCharSet:
short dfPixWidth;
short dfPixHeight;
char dfPitchAndFamily;
short dfAvgWidth;
short dfMaxWidth;
char dfFirstChar;
char dflastChar;
char dfDefaultChar;
char dfBreakChar;
short dfWidthBytes;
long dfDevice;
long dfFace;
long dfBitsPointer;
long dfBitsOffset;
char dfReserved;
long dfFlags;
short dfAspace;
short dfBspace;
short dfCspace;
long dfColorPointer;
long dfReservedl[4];
short dfCharTable;
char Facename[n];

Microsoft Confidential Beta Release

Beta Release

Data Structures and File Formats 12·29

char Devicename[n]:
char BitMaps[n]:
} FONTINFO;

The fields within the FONTINFO structure have the following meanings:

Field

dIType

dfPoints

dfVertRes

dfHorizRes

elf Ascent

dflnternalLeading

dfExternalLeading

dfltalic

Description

Two bytes specifying the type of font file.

The low-order byte is for exclusive GDI use. If the low-order
bit of the WORD is zero, it is a bitmap (raster) font file. If the
low-order bit is 1, it is a vector font file. The second bit is re
served and must be zero. If no bits follow in the file and the
bits are located in memory at a fixed address specified in dtBit
sOft'set, the third bit is set to l; otherwise, this bit is set to
zerQ. The high-order bit of the low byte is set if the font was re
alized by a device. The remaining bits in the low byte are
reserved and set to zero.

The high byte is reserved for device use and will always be set
to zero for GDI-realized standard fonts. Physical fonts with the
high-order bit of the low byte set may use this byte to describe
themselves. GDI will never inspect the high byte.

Two bytes specifying the nominal point size at which this
character set looks best.

Two bytes specifying the nominal vertical resolution (dots per
inch) at which this character set was digitized.

Two bytes specifying the nominal horizontal resolution (dots
per inch) at which this character set was digitized.

Two bytes specifying the distance from the top of a character
definition cell to the baseline of the typOgraphical font. It is
useful for aligning the baseline of fonts of different heights.

Specifies the amount of leading inside the bounds set by dfPix.
Height. Accent marks may occur in this area. This may be zero
at the designer's option.

Specifies the amount of extra leading that the designer requests
the application add between rows. Since this area is outside of
the font proper, it contains no marks and will not be altered by
text output calls in either the OPAQUE or TRANSPARENT
mode. This may be zero at the designer's option.

One byte specifying whether or not the character definition
data represent an italic font. The low-order bit is 1 if the flag is
set. All other bits are zero.

Microsoft Confidential April 1, 1990

12-30 Dev/cs Driver Adaptation Gulde

April 1, 1990

Field

dfUnderline

dfStrikeOut

dtWeight

dfCharSet

dfPixWidth

dfPixHeight

dfPitchAndFamily

Description

One byte specifying whether or not the character definition
data represent an underlined font The low-order bit is 1 if the
flag is set All other bits are zero.

One byte specifying whether or not the character definition
data represent a slruck out font The low-order bit is 1 if the
flag is set All other bits are zero.

Two bytes specifying the weight of the characters in the
character definition data, on a scale from 1-1000. A value of
400 specifies regu]ar weight type; 700 is bold; and so on.

One byte specifying the character set defined by this font. The
IBM PC hardware font has been assigned the designation 255
(FF Hex) and the ANSI character set has been assigned the des
ignation zero.

Two bytes. For vector fonts, it specifies the width of the grid
on which the font was digitized. For raster fonts, if dfPix
Width is non-zero, it represents the width for all characters in
the bitmap; if it is zero, the font has variable width characters
whose widths are specified in the dfCharWidth array.

Two bytes specifying the height of the character bitmap (raster
fonts) or the height of the grid on which a vector font was digi
tized.

Specifies the pitch and font family. The low bit is set if the font
is variable pitch. The high 4 bits give the family name of the
font Font families describe, in a general way, the look of a
font They are intended for specifying fonts when the exact fa
cename desired is not available. The families are as follows:

FF _DONTCARE(OOH)

FF _ROMAN(lOH)

FF _SWISS(20H)

FF _MODERN(30H)

FF _SCRIPT(40H)

Microsoft Confidential

Don't care or don't know.

Proportionally spaced fonts
with serifs. Times Roman,
Century Schoolbook, Bodoni,
etc.

Proportionally spaced fonts
without serifs. Helvetica, Uni
vers, Swiss, etc.

Fixed-pitch fonts. Pica, Elite,
Courier, etc.

Cursive or script fonts.

Beta Release

Field

dfAvgWidtb

dfMaxWidtb

dfFirstChar

dfl...astChar

dfDefaultChar

dffireakChar

dfWidtbBytes

dIDevice

dfFace

Beta Release

Data Structures and File Formats 12-31

Description

FF _DECORATIVE (50H) Novelty fonts. Old English,
etc.

Two byres specifying the width of characters in the font. For
fixed-pitch fonts, this is the same as dfPixWidth. For variable
pitched fonts, this is the width of the character "X."

Two bytes specifying the maximum pixel width of any
character in the font For fixed-pitch fonts, this is simply dfPix
Width.

One byte specifying the first character code defined by this
fonL Character definitions are stored only for the characters ac
tually present in a font, so this field should be used when
calculating indexes into either dffiits or dfCharWidtb.

One byte specifying the last character code defined by this
font Notice that all the characters with codes between dfFirst
Char and dfLastChar must be present in the font character
definitions.

One byte specifying the character to be substituted whenever a
string contains a character out of the range dfFirstChar
through dfl...astChar. The character is given relative to dfFirst
Char so that dIDefaultChar is the actual value of the
character less dfFirstChar. Ideally, dIDefaultChar should be
a visible character in the current font, e.g., a period (.).

One byte specifying the character that will define word breaks.
This character defines word breaks for word wrapping and
wordspacing justification. The character is given relative to
dfFirstChar so that dffireakChar is the actual value of the
character less dfFirstChar. dffireakChar is normally (32 -
dfFirstCbar), which is an ASCII space.

Two bytes specifying the number of bytes in each row of the
bitmap (raster fonts). No meaning for vector fonts. dfWid
thBytes is always an even quantity so that rows of the bitmap
start on WORD boundaries.

Four byres specifying the offset from the beginning of the seg
ment containing the FONTINFO data structure to the string
giving the device name. For a generic device, this value will be
zero (0).

Four bytes specifying the offset from the beginning of the seg
ment containing the FONTINFO data structure to the
NULL-telTilinated string that names the face.

Microsoft Confidential April 1, 1990

April 1, 1990

Field

dt'BitsPointer

dt'BitsOffset

dfFlags

dfAspace

dmspace

Description

Four bytes specifying the absolute machine address of the bit
map. This is set by GDI at load time. dt'BitsPointer is
guaranteed to be even.

Four bytes specifying the offset from the beginning of the seg
ment containing the FONTINFO structure to the beginning of
the bitmap infonnation. If the 04H bit in dffype is set, then
dmitsOtTset is an absolute address of the bitmap (probably in
ROM).

For raster fonts, it points to a sequence of bytes that make up
the bitmap of the font, whose height is the height of the font,
and whose width is the sum of the widths of the characters in
the font rounded up to the next WORD boundary.

For vector fonts, it points to a string of bytes or WORDS (de
pending on the size of the grid on which the font was digitized)
that specifies the strokes for each character of the font. dt'Bit
sOtTset must be even.

Four bytes specifying the bits flags, which are additional flags
that define the format of the Glyph bitmap, as follows:

OFF_FIX£D font is fixed pitch
equ0001h;

OFF_PROPORTIONAL font is proportional pitch
equ0002h;
OFF_ABCFIXED font is an ABC fixed font
equ0004h;

OFF_ABCPROPORTIONAL font is an ABC propor-
equ0008h; tional font

OFF_lCOLOR font is one color
equ0010h;
OFF_l6COLOR font is 16 color
equ0020h;

OFF_2S6COLOR font is 256 color
equ0040h;
DFF_RGBCOLOR font is RGB color
equfi:!fi:!Bfi:!h;

Two bytes specifying the global A space, if any. dfAspace is
the distance from the current position to the left edge of the bit
map.

Two bytes specifying the global B space, if any. dmspace is
the width of the character.

Microsoft Confidential Beta Release

Beta Release

Field

dfCspace

dfColorPointer

dfCharTable

Facename

Device name

Bitmaps

Data Structures and File Formats 12·33

Description

Two bytes specifying the global C space, if any. dfCspace is
the distance from the right edge of the bitmap to the new cur
rent position. The increment of a character is the sum of the
three spaces. These apply to all glyphs and is the case of
OFF _ABCFIXED.

Two bytes specifying the offset to the color table for color
fonts, if any. The format of the bits is like a DIB, but without
the header. That is, the characters are not split up into disjoint
bytes. Instead, they are left intact If no color table is needed,
this entry is NULL.

For raster fonts, this field contains four bytes for each
character in the font The first two bytes give the width of the
character in pixels, and the second two bytes give the offset to
the beginning of the character from the beginning of the seg
ment that contains the FONTINFO data structure.

For fixed pitch vector fonts, each 2-byte entry in this array
specifies the offset from the start of the bitmap to the begin
ning of the string of stroke-specification units for the character.
The number of bytes or WORDs to be used for a particular
character is calculated by subtracting its entry from the next
one.

For proportionally spaced vector fonts, each 4-byte entry is
divided into two 2-byte fields. The first field gives the starting
offset from the start of the bitmap of the character strokes as
for fixed-pitch fonts. The second field gives the pixel width of
the character.

NOTE In each font, there is an extra entry at the end of the
dfCharTable table. This is to allow you to calculate the width or num
ber of bytes of definition of the last character. Though this applies only
to vector fonts, the entry is present for all fonts.

An ASCII character string specifying the name of the font face.
The size of this field is the length of the string plus a NULL ter
minator.

An ASCII character string specifying the name of the device if
this font file is for a specific device. The size of this field is the
length of the string plus a NULL terminator.

This field contains the bitmap definitions. The size of this field
is whatever length the total bitmaps occupy. Each row of a
raster bitmap must start on a WORD boundary. This implies
that the end of each row must be padded to an even length.

Microsoft Confidential April 1, 1990

it-34 Devlee Otlrer Adaptallsll S111dB

April 1, 1990

NOTE When a device realizes a font using the RealizeObjact function, the dlface and dlDevice fields
must point to valid character strings containing the face and device names.

The glyph entries become dependent on the format of the Glyph bitmap.

DFF_FIXED
DFF_PROPORTIONAL

GlyphEntry struc
geW1dth dw
geOff set dd
Glyph Entry ends

DFF_ABCFIXED
DFF__ABCPROPORTIONAL

GlyphEntry struc
geWidth dw
geOff set dd
geAspace dd
geBspace dd
geCspace dd
GlyphEntry ends

?
?

?
?
?
?
?

; width of character bitmap in pixels
: pointer to the bits

width of character bitmap in pixels
pointer to the bits
A space in fractional pixels (16,16)
B space in fractional pixels Cl6.16)
C space in fractional pixels C16.16)

The fractional pixels are expressed as a 32-bit signed nwnber with an implicit binary point
between bits 15 and 16. This is referred to as a 16.16 ("sixteen dot sixteenj fixed-point
number.

The ABC spacing here is the same as defined above. However, here there are specific sets
for each character.

OFF _!COLOR
DFF_l6COLOR
DFF_256COLOR
DFF_RGBCOLOR

GlyphEntry
geWidth
geOffset
geHe'ight
geAspace
geBspace
geCspace
GlyphEntry

struc
dw
dd
dw
dd
dd
dd
ends

?
?
?
?
?
?

width of character bitmap in pixels
pointer to the bits
height of character bitmap in pixels
A space in fractional pixels (16.16)
B space in fractional pixels Cl6.16)
C space in fractional pixels <16.16)

DFF_lCOLOR means 8 pixels per byte

DFF_l6COLOR means 2 pixels per byte

DFF_256COLOR means 1 pixel per byte

Microsoft Confidential Beta Release

Data Strut:turss and Flis Formats 12--35

OFF_RGBCOLOR means RGBquads

NOTE The only format supported in Windows 3.0 will be OFF _FIXED and OFF _PROPORTIONAL

12.4.2 LDGFDNT - The Logical Font Descriptor

Beta Release

A logical font descriptor contains all the parameters for a logical font needed by the output
primitives.

typedef struct {
short lfHeight:
short lfWidth;
short lfEscapement;
short lfOrientation;
short lfWeight:
BYTE 1flta1 i c;
BYTE lfUnderline;
BYTE lfStrikeOut:
BYTE 1 fCha rSet;
BYTE lfOutPrecision:
BYTE lfClipPrecision:
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE lfFaceName (32];
} LOGFONT:

The fields within the LOGFONT data structure have the following meanings:

Field

ltlleight

Description

Specifies the height of the font in user units. The height of a
font can be specified in three ways.

If ltlleight is greatec than zero, it is transfonned into device
units and matched against the cell height of the available fonts.
If lflleight is zero. a reasonable default size is used. If
ltlleight is less than zero, it is transfonned into device units
and the absolute value is matched against the character height
of the available fonts.

For all height comparisons, the font mapper looks for the
largest font that does not exceed the requested size and, if there
is no such font, looks for the smallest font available.

Microsoft Confidential April 1, 1990

12-36 Device Driver Adaptat/IJn Guide

April 1, 1990

Field

lf'Width

lfEscapement

lfOrientation

UWeigbt

ltltalic

ltUnderline

lfStrikeOut

lfCbarSet

lfOutPrecision

Description

Specifies the average width of characters in the font in user
units. If ltWidth is zero, the aspect ratio of the device will be
matched against the digitization aspect ratio of the available
fonts looking for the closest match by absolute value of the
difference.

Specifies the angle, counterclockwise from the x-axis in tenths
of a degree, of the vector passing through the origin of all the
characters in the string.

Specifies the angle, counterclockwise from the x-axis in tenths
of a degree, of the baseline of the character.

Specifies the weight of the font ranging from 1 to 1000, with
400 being the value for the standard font. Passing a weight of
zero signals the font mapper to choose any value.

A I-byte flag that specifies whether or not the font is to be
italic. If the low bit is set, the font is to be italic. All other bits
are to be zero.

A 1-byte flag that specifies whether or not the font is to be un
derlined. If the low bit is set, the font is to be underlined. All
other bits are to be zero.

A I-byte flag that specifies whether or not the font is to be
struck out. If the low bit is set, the font is to be struck out. All
other bits are to be zero.

Specifies the character set to be used. It can be either of the fol
lowing:

ANSI_CHARSET

OEM_CHARSET

(OOH)

(FFH)

The ANSI character set is recommended since it is constant
across Windows machines and is available in more fonts than
any other set. The OEM character set depends on the specific
machine. See Chapter 15, "Miscellaneous Character Set Ta
bles," for a table of the ANSI character set and the OEM
character set distributed with the IBM PC.

Specifies the required output precision for text. Output preci
sion is described in detail in the GDIINFO data structure.
Output precision may be one of the following values:

OUT_DEFAULT_PRECIS (OOH)

Microsoft Confidential Beta Release

Field

lfClipPrecision

UQuality

Beta Release

Data Structures and File Formats 12·37

Description

OUT_S1RING_PRECIS (OIH)

OUT_CHARACTER_PRECIS (02H)

OUT_STROKE_FRECIS (03H)

Specifies the required clipping precision for text. Clipping pre
cision is described in detail in the GDIINFO data structure.
Clipping precision may be one of the following values:

CLIP _DEFAULT_PRECIS (OOH)

CLIP _CHARACTER_PRECIS (OIH)

CLIP _STROKE_PRECIS (02H)

A 1-byte flag that provides a hint to the font mapper as to what
quality output is required. A hint is information that the mapper
may use when it needs additional clarification to make a choice
of which physical font to use. Quality may be one of the fol
lowing values:

Value ---
DEFAULT_QUALITY(OOH)

DRAFf_QUALITY(OlH)

Microsoft Confidential

Description

Don'tcare.

The appearance of the
font is not as important.
For GDI fonts, scaling is
enabled so that more
sizes are available, at the
cost of appearance. Bold,
italic, underline, and
strikeout will be synthe
sized if needed.

April 1, 1990

12·38 DIV/ti Drlrar At/aptat/011 6111111

Field

UPitchAndFamily

April 1, 1990

Description

PROOF _QUALITY(02H) The character quality of
the font is more impor
tant than the exact
matching of the logical
font attributes. For GDI
fonts, scaling is inhibited.
Therefore, it may not be
possible to map as exact a
size as at the lower quali
ties. However, there will
be no degradation of ap
pearance. Bold, italic,
underline, and strikeout
will be synthesized if
needed.

Specifies the font pitch and family. The low 2 bits specify the
pitch of the font and can be any one of the following:

DEFAULT_PITCH

FIXED_PITCH

VARIABLE_PITCH

(OOH)

(OlH)

(02H)

The high 4 bits of the field specify the font family. The con
stants are defined such that the proper value can be obtained by
ORing together one pitch constant with one family constant
The font family name describes in a general way the look of a
font. Family names are intended for specifying fonts when the
exact facename desired is not available. The families are as fol
lows:

Family

FF _OONTCARE(OOH)

FF _ROMAN(lOH)

FF _SWISS(20H)

Microsoft Confidential

Description

Don't care or don't know.

Proportionally spaced
fonts with serifs. Times
Roman, Century School
book, Badoni, et.C.

Proportionally spaced
fonts without serifs.
Helvetica, Univers,
Swiss, etc.

Beta Release

Field

UFaceName

Beta Release

Data Structures and File Formats 12-39

Description

FF _MODERN(30H)

FF _SCRIPT(40H)

FF _DECORATIVE(SOH)

Fixed-pitch fonts. Pica,
Elite, Courier, etc.

Cursive or script fonts.

Novelty fonts. Old Eng
lish, etc.

An ASCII character string specifying the facename of the fonL
The size of this field is the length of the string plus a NULL ter
minator; it must not exceed 32, including the NULL.

A stting consisting of a single NULL indicates that any font
face may be used.

Microsoft Confidential April 1, 1990

12-411 Dev/cs Driver Adaptation Ga/de

April 1, 1990 Microsoft Confidential Beta Release

Chapter

13 The Font File Format

This chapter provides infonnation on the three main data structures used to describe the
physical font. its basic metrics. and the actual appearance of the text on the display device.

13.1 TEXTMETRIC - Basic Font Metrics

Be'ta Release

The TEXTMETRIC structure is a list of the basic metrics of a physical fonL The structlll'C
is rewmed by the GetTextMetrics function.

typedef struct {
short tmHeight;
short tmAscent:
short tmDescent;
short tmlnternalleading;
short tmExternalleading;
short tmAveCharWidth;
short tmMaxCharWidth:
short tmWeight;
BYTE tmltalic:
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmlastChar;
BYTE tmDefaultChar:
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet:
short tmOverhang;
short tmDigitizedAspectX;
short tmDigitizedAspectY;
} TEXTMETRIC;

The 1EXTMETRIC fields are described below. All the sizes are given in nonnalized units
(i.e., they depend on the cmrent mapping mode of the display context).

Field

tmHeight

tmAscent

Description

Specifies the height of characters (Ascent+ Descent).

Specifies the ascent of characters (units above the base
line).

Microsoft Confidential April 1, 1990

13·2 Devll:e Driver Adaptation Ill/di

April 1, 1990

Field

tmDescent

tmlntemalLeading

tinExternalLeading

tmAveCbarWidth

tmMaxCbarWidth

tmWeight

tmltalic

tmUnderlined

tmStruckOut

tmFirstChar

tmLastCbar

tmDefaultChar

tmBreakChar

tmPitchAndFamily

tmCharSet

Description

Specifies the descent of characters (units below the base
line).

Specifies the amount of leading inside the bounds set by
tmHeight. Accent marks may occur in this area. This
may be zero at the designer's option.

Specifies the amount of extra leading that the designer re
quests the application add between rows. Since this area
is outside of the font proper, it contains no marks and
will not be altered by text output calls in either the
OPAQUE or TRANSPARENT mode. This may be zero
at the designer's option.

Specifies the average width of characters in the font
(loosely defined as the width of the letter ''X'').

Specifies the maximum width of any character in the
fonL

Specifies the weight of the fonL

If non-zero, specifies an italic fonL

If non-zero, specifies an underlined fonL

If non-zero, specifies a struckout fonL

Specifies the value of the first character defined in the
fonL

Specifies the value of the last character defined in the
fonL

Specifies the value of the character that is to be substi
tuted for characters that are not in the font.

Specifies the value of the character that is to be used to
define word breaks for text justification.

Specifies the pitch and family of the selected font. The
low bit is set if the font is variable pitch. The high four
bits give the family of the fonL Refer to the LOGFONT
structure for a description of the font families.

Specifies the character set of the fonL

Microsoft Confidential Beta Release

Bera Release

Field

tmOverhang

The Fant File Format 13·3

Description

Specifies the per string extra width that may be added to
some synthesized fonts. When synthesizing some at
tributes such as bold or italic, GDI or a device may have
to add width to a string on both a per character and per
string basis.

For example, GDI emboldens a string by expanding the
intracharacter spacing and overstriking with an offseL It
italicizes a font by skewing the string. In either case,
there is an overhang past the basic string. For bold
strings, it is the distance by which the overstrike is off
set. For italic strings, it is the amount the top of the font
is skewed past the bottom of the font

The tmOverhang enables the application to detennine
the following:

1. How much of the character width returned by a
GetTextExtent call on a single character is the actual
character width, and how much is the per string extra
width.

2. The actual width is the extent less the overhang. Alter
nately, tmOverhang is the difference between the width
of a character when output singly versus in the interior
of a string.

Character Width
I ------1

Character Width
I ------1

I I
I I

I I
I I
!----!

I I
I I

I I
I I

1--
-----11----1

Character width
(including
whitespace>

Overhang = 0

Microsoft Confidential

Overhang
Character width
(including
whitespace)

Overhang > 0

April 1, 1990

13-4 Device Driver Adaptation Gulde

Field

tmDigitizedAspectX,
tmDigitizedAspectY

Description

Specify the aspect ratio of the device for which this font
was designed. The ratio of tmDigitizedAspectY to
tmDigitizedAspectX can be compared against the ratio
of AspectY to AspectX retrieved from GetDeviceCaps.

13.2 TEXTXFORM -Actual Text Appearance Information

April 1, 1990

This data structure describes the actual text appearance as displayed by the device. If there
are differences between the lEXTXFORM and FONTINFO data structures, StrBlt/Ext
TextOut is responsible for accommodating the differences for which it has claimed abili
ties, as specified in the dpText field in the GDIINFO data structure. However, there may
be more differences than the device can transform. In that case, GDI is responsible for
simulating the required transformations.

Most of the fields in this data structure correspond to the fields in the LOG FONT data
structure, but are expressed in device units. Notice that these fields may not correspond ex
actly to the logical font. For example, if the logical font specified a 19-unit font at string
precision and the closest available is a 9-unit font on a device capable of doubling, then
Height in the transform is 18.

typedef struct {
short Height;
short Width;
short Escapement;
short Orientation;
short Weight;
char Italic;
char Underline;
char Strikeout;
char OutPrecision;
char ClipPrecision;
short Accelerator;
short Overhang;
} TEXTXFORM;

The fields within the lEXTXFORM data structure have the following meanings:

Field

Height

Width

Description

Specifies the height in device units from the bottom of the lowest
descending character to the top of the tallest character.

Specifies the width in device units of the bounding box of the let
ter "X."

Microsoft Confidential Beta Release

Field

Escapement

Orientation

Weight

Italic

Underline

StrikeOut

OutPrecision

Clip Precision

Accelerator

Beta Release

The Fant File Format 13·5

Description

Specifies the angle in degrees counterclockwise from the X-axis
of the vector passing through the origin of all the characters in the
string.

Specifies the angle in degrees counterclockwise from the X-axis
of the baseline of the character.

Specifies the weight of the font ranging from 1 to 1000, with 200
being the value for the standard fonL

This field is a 1-byte flag that specifies whether or not the font is
to be italic. If the low bit is set, the font is to be italic. All the other
bits are to be zero.

This field is a 1-byte flag that specifies whether or not the font is
to be llllderlined. If the low bit is set, the font is to be underlined.
All the other bits are to be zero.

This field is a 1-byte flag that specifies whether or not the font is
to be struck ouL If the low bit is set, the font is to be struck ouL
All the other bits are to be zero.

Specifies the required output precision for this fonL Output preci
sion is described in detail in the GDIINFO data structme. Output
precision may be one of the following values:

OUT_DEFAULT_PRECIS
OUT_STRING_PRECIS
OUT_CIIARACTER_PRECIS
OUT_STROKE_PRECIS

Specifies the required clipping precision for this fonL Oipping pre
cision is described in detail in the GDIINFO data structme.
Clipping precision may be one of the following values:

CLIP _DEFAULT_PRECIS
CLIP _CHARACTER_PRECIS
CLIP _STROKE_PRECIS

This field has a bit-for-bit correspondence with the dpText field in
the GDilNFO data structme. Each bit in this field is set if the
corresponding ability is required to transfonn the physical font
(FONTINFO) into the displayed font (TEXTXFORM) as de
scribed by the logical font (LOGFON1).

Microsoft Confidential April 1, 1990

13·6 IJBVll:tl Driver Adaptation Balds

Field

Overhang

Description

GDI uses the bitwise difference between the Accelerator field and
dpText field to determine what abilities it should simulate. The
device may use the Accelerator field to determine which at
tributes it should perform based upon what needs to be done, what
it can do, and what GDI has simulated. By perfonning an AND
operation on Accelerator and dpText, StrBlt can determine
which transfonns it is responsible for performing.

This field has the same meaning as the tmOverhang field in the
TEXTMETRIC data structure. This field is set by the device for
device-realized fonts and is in device units. Notice that GDI uses
additional overhang if it emboldens the fonL

13.3 FONTINFO - The Physical Font

typedef

For Windows 3.0, FONTINFO also includes the glyph table in dfCharTable, which con
sists of structures that describe the bits for the characters in the font file and six new fields:
dtFlags, dfAspace, dffispace, dfCspace, dfColorPointer, and dtReservedl. The
Windows 2.x version of FONTINFO, however, is still supported.

struct
dfVers ion dw 0
dfSize dd 0
dfCopyright db 60 dup (0)
dfType dw 0 Type field for the font.
dfPoints dw 0 Point size of font.
dfVertRes dw 0 Vertical digitization.
dfHori zRes dw 0 Horizontal digitization.
df Ascent dw 0 Baseline offset from character cell top.
dflnternalleading dw 0 Internal leading included in font.
dfExternalleading dw 0 Preferred extra space between lines.
dfltalic db 0 Flag specifying if italic.
dfUnderl i ne db 0 Flag specifying if underlined.
dfStrikeOut db 0 Flag specifying if struck out.

/ BYTE dfStrikeOut: /
dfWei ght dw 0 Weight of font.
dfCharSet db 0 Character set of font.
dfPixWidth dw 0 Width field for the font.
dfPixHeight dw 0 Height field for the font.
dfPitchAndFamily db 0 Flag specifying variable pitch, family.
dfAvgWidth dw 0 Average character width.
dfMaxWidth dw 0 Maximum character width.
dfFi rstChar db 0 First character in the font.
dflastChar db 0 Last character in the font.
dfDefaul tChar db 0 Default character for out of range.
dfBreakChar db 0 Character to define wordbreaks.
dfWi dthSytes dw 0 Number of bytes in each row.

April 1, 1990 Microsoft Confidential Beta Release

dfDevice
dfFace
dfBitsPointer
dfBi tsOffset

dfReserved
dfFl ags
dfAspace
dfBspace
dfCspace
dfColorPointer
dfReservedl
dfCharTable

FONTINFO

dd
dd
dd
dd

db
dd.
dw
dw
dw
dd
dd
dw

0
0
0
0

0
0
0
0
0
0
4 dup
0

.
(0)

Offset to device name.
Offset to face name.
Bits pointer.

Ths Font Flis Format 13·7

Offset to the beginning of the bitmap.
On the disk, this is relative to the
beginning of the file. In memory, this
is relative to the beginning of this
structure.
1 byte reserved.
Bit flags.
Global A space, if any.
Global B space, if any.
Global C space, if any.
Offset to color table, if any.

Area for storing the character widths
and offsets, face name, device name
(option), and bitmap.
unsigned short dfMaps[OF_MAPSIZEJ

NOTE The constant •of _MAPSIZE• must be defined prior to the INCLUDE statement of the

Beta Release

GD IDEFS. INC file, or the array will defauh to one character element. This leaves room only for a single
set of NULL to designate no typeface name, no device name, and no bitmaps.

The fields within the FONTINFO data structure have the following meanings:

Field

dfVersion

dl'Size

dfCopyrigbt

dtType

Description

1\vo bytes specifying the version of the file.

Four bytes specifying the total size of the file in bytes.

Sixty (60) bytes specifying copyright infonnation.

Two bytes specifying the type of fontfde.

The low-order byte is exclusively for GDI use. If the low
order bit of the WORD is zero, it is a bitmap (raster)
fontfile. If the low-order bit is l, it is a vector fontftle. The
second bit is reserved and must be zero. If no bits follow in
the file and the bits are located in memory at a fixed
address specified in dffiitsOffset, the third bit is set to I;
otherwise, the bit is set to zero. The high-order bit of the
low byte is set if the font was realized by a device. The re
maining bits in the low byte are reserved and set to zero.

Microsoft Confidential April 1, 1990

13·8 Device Dr/VIit Adaptation Gulde

Field

dfPoin1S

dfVertRes

dfiforizRes

dfAscent

dftnternalLeading

dfExternalLeading

dfttalic

dRJnderline

dfStrikeOut

dfWeight

dfCharSet

April 1, 1990

Description

The high byte is reserved for device use and will always be
set to zero for GDI-realized standard fonts. Physical fonts
with the high-order bit of the low byte set may use this
byte to describe themselves. GDI will never inspect the
high byte.

Two bytes specifying the nominal point size at which this
character set looks best. ·

Two bytes specifying the nominal vertical resolution (dots
per inch) at which this character set was digitized.

Two bytes specifying the nominal horizontal resolution
(dots per inch) at which this character set was digitized.

Two bytes specifying the distance from the top of a
character definition cell to the baseline of the typographi
cal fonL It is useful for aligning the baselines of fonts of
different heights.

Specifies the amount of leading inside the bounds set by
dfPixffeight. Accent marks may occur in this area. This
may be zero at the designer's option.

Specifies the amount of extra leading that the designer re
quests the application add between rows. Since this area is
outside of the font proper, it contains no marks and will
not be altered by text output calls in either the OPAQUE or
TRANSPARENT mode. This may be zero at the de
signer's option.

One byte specifying whether or not the character definition
data represent an italic font. The low-order bit is 1 if the
flag is set. All the other bits are zero.

One byte specifying whether or not the character definition
data represent an underlined font The low-order bit is 1 if
the flag is set All the other bits are zero.

One byte specifying whether or not the character definition
data represent a struckout font The low-order bit is 1 if the
flag is set All the other bits are zero.

Two bytes specifying the weight of the characters in the
character definition data, on a scale of 1to1000. A
dfWeight of 400 specifies a regular weight.

One byte specifying the character set defined by this font.

Microsoft Confidential Beta Release

Beta Release

Field

dfPixWidtb

dfPixHeigbt

dfPitchAndFamily

The Font File Format 13-9

Description

Two bytes. For vector fonts, specifies the width of the grid
on which the font was digitized. For raster fonts, if dfPix
Width is nonzero, it represents the width for all the
characters in the biunap; if it is zero, the font has variable
width characters whose widths are specified in the
dfCharTable array.

Two bytes specifying the height of the character bitmap
(raster fonts), or the height of the grid on which a vector
font was digitized.

Specifies the pitch and font family. The low bit is set if the
font is variable pitch. The high four bits give the family
name of the font Font families describe in a general way
the look of a font. They are intended for specifying fonts
when the exact face name desired is not available. The
families are as follows:

FF _OONTCARE (0<<4)

FF _ROMAN (1«4)

FF _SWISS (2«4)

FF _MODERN (3«4)

FF _SCRIPT (4«4)

FF _DECORATIVE (5<<4)

Microsoft Confidential

Don't care or don't
know.

Proportionally spaced
fonts with serifs. Times
® Roman, Palatino ®,
Century Schoolbook,
etc.

Proportionally spaced
font without serifs.
Helvetica®, Swiss™,
etc.

Fixed-pitch fonts. Pica,
Elite, Courier, etc.

Cursive or script fonts.
(Both are designed to
look at least vaguely
like handwriting. Script
fonts have joined let
ters; cursive fonts do
not)

Novelty fonts. Old Eng
lish, etc.

April 1, 1990

13-10 Devlt:e Drlnr Atlaptatloa Guidi

April 1, 1990

Field

dfAvgWidtb

dfMaxW"adth

dfFirstCbar

dfLastCbar

dfDefaultChar

dfBreakChar

dfWidthBytes

dfDevice

dfFace

Description

'I\vo byteS specifying the width of characters in the font.
For fixed-pitch fonts. this is the same as dfPixWidtb. For
variable-pitch fonts, this is the width of the character "X."

'I\vo byteS specifying the maximum pixel width of any
character in the fonL For fixed-pitch fonts, this is simply
dfPixWidtb.

One byte specifying the first character code defined by this
fonL Character definitions are stored only for the
characters actually present in a font. Therefore. use this
field when calculating indexes into either dfBits or
dfCbarOtTset

One byte specifying the last character code defined by this
fonL Notice that all the characters with codes between
dfFirstChar and dfLastCbar must be present in the font
character definitions.

One byte specifying the character to substitute whenever a
string contains a character out of the range. The character
is given relative to dfFirstCbar so that dfDefaultCbar is
the actual value of the character less dfFirstCbar. The
dfDefaultCbar should indicate a special character that is
not a space.

One byte specifying the character that will define word
breaks. This character defines word breaks for word wrap
ping and word spacing justification. The character is given
relative to dfFirstCbar so that dmreakCbar is the actual
value of the character less that of dfFirstChar. The
dmreakChar is nonnally (32 - dfFirstChar). which is an
ASCII space.

Two byteS specifying the number of bytes in each row of
the bitmap. This is always even. so that the rows start on
WORD boundaries.

For vector fonts. this field has no meaning.

Four byteS specifying the offset in the file to the string
giving the device name. For a generic font. this value is
zero.

Four bytes specifying the offset in the file to the NUU.-ter
minated string that names the face.

Microsoft Confidential Beta Release

Beta Release

Field

dfBitsPointer

dfBitsOffset

dfFlags

dfAspace

dfBspace

The Fant Rle Format 13·11

Description

Four bytes specifying the absolute machine address of the
biunap. This is set by GDI at load time. The dfBitsPointer
is guaranteed to be even.

Four bytes specifying the offset in the file to the beginning
of the bitmap information. If the 04H bit in the dfi)'pe is
set, then dfBitsOffset is an absolute address of the binnap
(probably in ROM).

For raster fonts, it points to a sequence of bytes that make
up the bitmap of the font, whose height is the height of the
font, and whose width is the sum of the widths of the
characters in the font rounded up to the next WORD
boundary.

For vector fonts, it points to a string of bytes or words (de
pending on the si7.e of the grid on which the font was
digitized) that specify the strokes for each character of the
fonL The dfBitsOffset must be even.

Four bytes specifying the bits flags, which are additional
flags that define the fonnat of the Glyph bitmap, as fol
lows:

DFF_FIXED equ 0001h font is
fixed

DFF_PROPORTIONAL equ 0002h
pitch
font is pro-
portional

OFF _ABCFIXED equ 0004h
pitch
font is an
ABC fixed
font

DFF_ABCPROPORTIOHAL equ 0008h , font is an
: ABC propor-
: tional font

DFF_lCOLOR equ 0010h : font is
: one color

DFF_l6COLOR equ 0020h ; font is 16
: color

DFF_256COLOR equ 0040h ; font is
; 256 color

DFF_RGBCOLOR equ 0080h : font is
; RGB color

Two bytes specifying the global A space, if any. The
dfAspace is the distance from the current position to the
left edge of the bitmap.

Two bytes specifying the global B space, if any. The
dfBspace is the width of the character.

Microsoft Confidential April 1, 1990

13·12 Dev/Cl Drlrflt AdaptallOn 8""11

April 1, 1990

Field

dfCspace

dfColorPointer

dfCbarTable

<facename>

<devicename>

Description

1\vo byteS specifying the global C space, if any. The
dfCspace is the distance from the right edge of the biunap
to the new current position. The increment of a character is
the sum of the three spaces. These apply to all glyphs and
is the case for DFF _ABCFIXED.

Two byteS specifying the offset to the color table for color
fonts, if any. The fonnat of the bits is like a DIB, but
without the header. That is, the characters are not split up
into disjoint bytes. Instead, they are left intact If no color
table is needed, this entry is NULL.

For raster fonts, the CbarTable is an array of entries each
consisting of two 2-byte WORDs. The first WORD of
each entry is the character width. The second WORD of
each entry is the byte offset from the beginning of the
FONTINFO structure to the character bitmap.

There is one extra entry at the end of this table that de
scribes an absolute-space character. This entry corresponds
to a character that is guaranteed to be blank; this character
is not part of the nonnal character set

The number of entries in the table is calculated as
((dfi..astCbar - dfFirstChar) + 2). This includes a spare,
the sentinel offset mentioned below.

For fixed-pitch vector fonts, each 2-byte entry in this array
specifies the offset from the start of the bitmap to the
beginning of the string of stroke specification units for the
character. The number of bytes or WORDs to be used for a
particular character is calculated by subtracting its entry
from the next one, so that there is a sentinel at the end of
the array of values.

For proportionally spaced vector fonts, each 4-byte entry is
divided into two 2-byte fields. The first field gives the
starting offset from the start of the bitmap of the character
strokes as for fixed-pitch fonts. The second field gives the
pixel width of the character.

An ASCII character string specifying the name of the font
face. The size of this field is the length of the string plus a
NULL tenninator.

An ASCII character string specifying the name of the
device if this font file is for a specific device. The size of
this field is the length of the string plus a NULL terminator.

Microsoft Confidential Beta Release

Beta Release

Field

<bitmaps>

The Fant File Format 13·13

Description

This field contains the character biunap definitions. Each
character is stored as a contiguous set of bytes. (In the old
font fonnat, this was not the case.)

The first byte contains the first eight bits of the first scan
line (i.e., the top line of the character). The second byte
contains the first eight bits of the second scanline. This
continues witil what amounts to a f1TSt "column" is
completely defined.

The following byte contains the next eight bits of the first
scanline, padded with zeros on the right if necessary (and
so on, down through the second "column"). If the font is
quite narrow, each scanline is covered by one byte, with
bits set to zero as necessary for padding. If the font is very
wide, a third or even fourth set of bytes can be presenL

NOTE The character bitmaps must be stored contiguously and arranged in ascending order.

The following is a single-character example, in which we give the bytes for a 12x14 pixel
character, as shown here schematically.

**
* *

... * * ...

. . * * ..

. . * * ..

.. * * ..

.. * * ..

. . * * ..

. . * * ..

The bytes are given here in two sets, because the character is less than 17 pixels wide.

00 06 09 10 20 20 20 3F 20 20 20 00 00 00
00 00 00 80 40 40 40 C0 40 40 40 00 00 00

Notice that in the second set of bytes, the second digit of each is always zero. It would
correspond to the 13th through 16th pixels on the right side of the character, if they were
present

Microsoft Confidential April 1, 1990

13·14 ,,... Df#ral A//aptatlllll IJllllll

April 1, 1990

NOTE The character bitmaps must be stored contiguously and arranged in ascending order.

The glyph entties become dependent on the fonnat of the Glyph bitmap.

OFF _FIXED
DFF_PROPORTIONAL

GlyphEntry struc
geWidth dw
geOffset dd
GlyphEntry ends

OFF _ABCFIXED
DFF_ABCPROPORTIONAL

Glyph Entry struc
geWidth dw
geOffset dd
geAspace dd
geBspace dd
geCspace dd
GlyphEntry ends

?
?

?
?
?
?
?

width of character bitmap in pixels
pointer to the bits

width of character bitmap in pixels
pointer to the bits
A space in fractional pixels (16.16)
B space in fractional pixels (16.16)
C space in fractional pixels (16.16)

The fractional pixels are expressed as a 32-bit signed number with an implicit binary point
between bits 15 and 16. This is referred to as a 16.16 ("sixteen dot sixteen") fixed-point
number. ·

The ABC spacing here is the same as defined above. However, here there are specific sets
for each character. ·

DFF_lCOLOR
DFF_l6COLOR
DFF_256COLOR
DFF_RGBCOLOR

Glyph Entry
geWidth
geOff set
geHeight
geAspace
geBspace
geCspace
Glyph Entry

struc
dw
dd
dw
dd
dd
dd
ends

?
?
?
?
?
?

width of character bitmap in pixels
pointer to the bits
height of character bitmap in pixels
A space in fractional pixels (16.16)
B space in fractional pixels (16.16)
C space in fractional pixels (16.16)

DFF_lCOLOR means 8 pixels per byte

DFF_l6COLOR means 2 pixels per byte

DFF_256COLOR means 1 pixel per byte

DFF_RGBCDLOR means RGBquads

Microsoft Confidential Beta Release

The Font File Format 13·15

NOTE The only format supported in Windows 3.0 will be OFF _FIXED and DFF_PROPORTIONAL

Beta Release Microsoft Confidential April 1, 1990

13·16 Devlcs Driver Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

14

Beta Release

Raster Operation Codes and
Definitions

This chapter provides a table of raster operation codes and their definitions. The raster
operation codes define the ways in which BitBlt combines the bits in a source bitmap with
the bits in a brush or pattern bitmap and the bits in the destination bitmap.

The operands used in the operations are as follows:

S Source biunap

P Paintbrush or Patt.em currently selected

D Destination biunap

The Boolean operators used in these operations are as follows:

o Bitwise OR

x Bitwise Exclusive OR

a Bitwise AND

n Bitwise NOT (invert)

The opemtions are presented here in reverse Polish notation. For example, the operation
DPSoo performs a logical "OR" on the somce and pattern and, then, performs another logi
cal "OR" with the destination. The result is then stored in the destination.

Notice that there are alternate spellings of the same function. Therefore, although a particu
lar spelling may not be in the list, an equivalent form will be. For example, "DPoSo" is an
equivalent form to "DPSoo."

In general, the functions are spelled in such a way that it is easiest to read them outward
from the place at which they change from upper to lower case. For example, PSDPSanaxx
may be read as follows:

PSD PSa naxx: 'and' source with pattern.
PSDPSa n axx: complement result.
PS o PSan a xx: •and' with destination.
P s PDPSana x x: 'xor' with source.
P SDPSanax x: 'xor' with pattern.

The following is another, more complex example:(This expansion is of ROP 0017h from
the t.able below.)

Microsoft Confidential April 1, 1990

14·2 Dnlce Ddver Adapt81/Dn Sllltll

The ROP: SSPxDSxaxn

The expansion:

S SPx DSxaxn: 'xor' source and pattern.
SSPx osx axn: 'xor' destination and source.
S [sPx][DSx]a xn: 'and' the bracketed items.
s SPxDSxa x n: 'xor' result of last step with source.
SSPxOSxax n: complement result, and put into destination.

14.1 The Operation Codes

April 1, 1990

Each raster operation code is a 32-bit integer value; the high-order WORD of which is a
Boolean operation index, and the low-order WORD of which is the operation code. The 16-
bit operation index is a zero-extended 8-bit value that represents the result of the Boolean
operation on predefined pattern (P), source (S), and destination (D) values. For example,
the operation indices for the PSo, PSon, and DPSoo operations are as follows:

p s D PSo PSon DPSoo Arbitrary function

0 0 0 0 1 0 1

0 0 1 0 1 1 0

0 1 0 0 1 0

0 1 1 1 0 1 1

1 0 0 1 0 1 1
1 0 1 1 0 1 0

1 1 0 1 0 1 1

1 1 1 1 0 1 0

Hex Opcode: FC 03 FE 59

Any Boolean function can be represented by the suing of l's and O's on the right side of
such a table. In this case, PSon is the string 00000011 (read from the bottom up), which is
hexadecimal 03. (Recall that this is then zero-extended to the left: Ox0003.) Notice the
PSon function in line 4 of the table.

In general, any arbitrary function such as the one on the far right above, has a unique hex
adecimal number associated with it (in this case, Ox59). By looking in the table, one then
finds the appropriate Rop (in this case, Ox00590609) and a function that evaluates it
(DPSnox).

The first four digits of each opcode determine the location of the raster operation in the
table: the PSo operation is in line 252 (hex FC) of the table, DPSoo is in line 254 (hex FE),
and soon.

Microsoft Confidential Beta Release

Raster Operauon Codes and Delln/Uons 14-3

The most commonly used Rops have been given special names. Therefore, it is recom
mended that programs define the common name to be the Rop number and, then, use the
common name throughout, to be consistent with the current .. no magic numbers" style.

14.2 The Operation Code List

Beta Release

The following is a list of the Boolean functions in hexadecimal and reverse Polish nota
tion, along with the Hex Rop and common name.

Boolean
fUncdon
hi HEX

00

01

02

03

04

OS

06

07

08

09

OA

OB

oc
OD

OE

OF
10

11

12

13

14

15

16

17

18

19

Boolean
HEX funcdon
Rop lnRPollsb

00000042 0

00010289 DPSoon

00020C89 DPSona

000300AA PSon

00040C88 SDPona

OOOSOOA9 DPon

00060865 PDSxnon

000702C5 PDSaon

00080F08 SDPnaa

00090245 PDSxon

OOOA0329 DPna

OOOBOB2A PSDnaon

OOOC0324 SPna

OOODOB25 PDSnaon

OOOE08A5 PD Sanon

OOOFOOOl Pn

00100C85 PD Sona

OOUOOA6 DSon

00120868 SDPxnon
001302C8 SDPaon

00140869 DPSxnon

001502C9 DPSaon

00165CCA PSDPSanaxx

00171054 SSPxDSxaxn
00180059 SPxPDxa

00191CC8 SDPSanaxn

Microsoft Confidential

Common
name

BLACKNESS

NOTSRCCOPY

April 1, 1990

14-4 Devlt:B Driver Adaptation Gulde

Boolean Boolean
function HEX funcUon Common
lnHEX Rop lnRPoUsh name

lA 001A06CS PDSPaox

lB 001B0768 SDPSxaxn

lC 001C06CA PSDPaox

1D 00100766 DSPDxaxn

lE 001E01A5 PDSox

lF 001F0385 PDSoan
20 00200F09 DPSnaa

21 00210248 SDPxon

22 00220326 DSna

23 00230B24 SPDnaon

24 00240055 SPx.DSxa

25 00251CC5 PDSPanaxn

26 002606C8 SDPSaox

27 00271868 SDPSxnox

28 00280369 DPSxa

29 002916CA PSDPSaoxxn

2A 002AOCC9 DPSana

2B 002BlD58 SSPxPDxaxn

2C 002C0784 SPDSoax

2D 002D060A PSDnox

2E 002E064A PSDPxox

2F 002FOE2A PSDnoan

30 0030032A PSna

31 00310B28 SDPnaon

32 00320688 SDPSoox

33 00330008 Sn

34 003406C4 SPDSaox

35 00351864 SPDSxnox

36 003601A8 SD Pox

37 00370388 SDPoan

38 0038078A PSDPoax
39 00390604 SPDnox

3A 003A0644 SPDSxox

3B 003BOE24 SPDnoan

April 1, 1990 Microsoft Confidential Beta Release

Raster Operation Codes and Dellnll/ons 14-6

Boolean Boolean
function HEX function Common
lnHEX Rop lnRPoUsb name

3C 003C004A PSx

30 003D18A4 SPDSonox

3B 003E1B24 SPDSnaox

3F 003FOOBA PS an

40 00400FOA PSDnaa

41 00410249 DPSxon

42 00420DSD SDxPDxa

43 00431CC4 SPDSanaxn

44 00440328 SDna SRCERASB

4S 00450829 DPSnaon

46 004606C6 DSPDaox

47 0047076A PSDPxaxn

48 00480368 SDPxa

49 004916CS PDSPDaoxxn

4A 004A0789 DPSDoax

4B 004B060S PDSnox

4C 004COCC8 SDPana

40 004D19S4 SSPxDSxoxn

4B 004E064S PDSPxox

4F 004FOB25 PDSnoan

so OOS00325 PDna

Sl OOS10B26 DSPnaon

S2 OOS206C9 DPSDaox

S3 OOS30764 SPDSxaxn
S4 005408A9 DPSonon

SS OOSS()()()C) Dn

S6 OOS601A9 DPSox

S1 OOS70389 DPSoan

S8 OOS8078S PDSPoax

S9 OOS90609 DPSnox

SA OOSA0049 DPx PATINVERT
SB OOSB18A9 DPSDonox

SC OOSC0649 DPSDxox
SD OOSDOE29 DPSnoan

Be'ta Release Microsoft Confidential April 1, 1990

14-6 Devlt:e Drlvat Atlaptatlaa Guidi

Boolean Boolean
function BEX function Common
lnHEX Rop lnRPollsb name

SB OOSE1B29 DPSDnaox

SF OOSFOOB9 DP an

60 00600365 PDSxa

61 006116C6 DSPDSaoxxn

62 00620786 DSPDoax
63 00630608 SDPnox
64 00640788 SDPSoax
6S 00650606 DSPnox

66 00660046 DSx SRCINVERT

67 006718A8 SDPSonox

68 006858A6 DSPDSonoxxn

69 0069014S PDSxxn

6A 006A01E9 DPSax

6B 006Bl78A PSDPSoaxxn
6C 006C01E8 SDPax
6D 006D178S PDSPDoaxx
6E 006E1E28 SDPSnoax
6F 006FOC65 PDSxnan
70 00700CC5 PDSana

71 00711DSC SSDxPDxam

72 ·00720648 SDPSxox

73 00730B28 SDPnoan
74 00740646 DSPDxox

7S 00750E26 DSPnoan
76 00761B28 SDPSnaox

77 007700B6 DSan
78 00780185 PDSax

79 00791786 DSPDSoaxxn

7A 007A1E29 DPSDnoax

7B 007BOC68 SDPxnan

7C 007C1E24 SPDSnoax
70 007DOC69 DPSxnan
7E 007E09S5 SPxDSxo
7F 007F03C9 DPSaan

April 1, 1990 Microsoft Confidential Beta Release

Raster Operation Codes and Definitions 14·1

Boolean Boolean
funcdon HEX function Common
IDHEX Rop IDRPoUsh name

80 008003E9 DPSaa

81 00810975 SPxDSxon

82 00820C49 DPSxna

S3 00831£04 SPDSnoaxn

84 00840C48 SDPxna
85 00851EOS PDSPnoaxn

S6 008617A6 DSPDSoaxx

S7 008701CS PDSaxn

SS 008800C6 DSa SRCAND

S9 00891BOS SDPSnaoxn

SA 008AOE06 DSPnoa

SB 008B0666 DSPDxoxn

SC 008COE08 SDPnoa

SD OOSD0668 SDPSxoxn

SE 008ElD7C SSDxPDxax

SF 008FOCES PDSanan

90 00900C45 PDSxna

91 00911EOS SDPSnoaxn

92 009217A9 DPSDPoaxx

93 009301C4 SPDaxn

94 009417AA PSDPSoaxx

95 009501C9 DPS am

96 00960169 DPS xx

97 0097588A PSDPSonoxx

9S 009818S8 SDPSono:xn

99 00990066 DSxn

9A 009A0709 DPSnax

9B 009B07AS SDPSoa:xn

9C 009C0704 SPDnax

90 009D07A6 DSPDoaxn

9E 009El6E6 DSPDSaoxx

9F 009F0345 PDSxan

AO OOAOOOC9 DP a

Al OOA11B05 PDSPnaoxn

Beta Release Microsoft Confidential April 1, 1990

14·8 Dnlt:e D,,_ Allaptat/On Guhll

Boolean Boolean
func:tloa HEX function Common
IDHEX Rop IDRPoUsh name

A2 OOA20E09 DPSnoa

A3 OOA30669 DPSDxom
A4 OOA41885 PDSPonom

AS OOAS0065 PDm
A6 OOA60706 DSPnax

A7 OOA707AS PDSPoam

A8 OOA803A9 DPSoa

A9 OOA90189 DPSom

AA OOAA0029 D

AB OOAB0889 DPSono

AC OOAC0744 SPDSxax

AD OOAD06E9 DPSDaom

AB OOAEOB06 DSPnao
AF OOAF0229 DPno
BO OOBOOEOS PDSnoa

Bl OOB10665 PDSPxom

B2 OOB21974 SSPxDSxox

B3 OOB30CE8 SDPanan
B4 OOB4070A PSDnax

B5 OOB507A9 DPSDoam

B6 OOB616E9 DPSDPaoxx

B7 OOB70348 SDPxan
BS OOB8074A PSDPxax
B9 OOB906E6 DSPDaom
BA OOBAOB09 DPSnao

BB OOBB0226 DSno MERGE PAINT
BC OOBC1CE4 SPDSanax

BD OOBDOD7D SDxPDxan
BE OOBE0269 DPSxo

BF OOBF08C9 DPSano
co OOCOOOCA PS a MERGECOPY
Cl OOCUB04 SPDSnaom
C2 OOC21884 SPDSonom
C3 OOC3006A PSm

April 1, 1990 Microsoft Confidential Beta Release

Raster Operation Codes and Definitions 14·9

Boolean Boolean
function HEX function Common
lnHEX Rop lnRPoUsh name

C4 OOC40E04 SPDnoa
cs OOCS0664 SPDSxo:xn
C6 OOC60708 SDPnax

C7 OOC707AA PSDPoam
C8 OOC803A8 SDPoa

C9 00C90184 SPDoxn

CA OOCA0749 DPSDxax

CB OOCB06E4 SPDSao:xn

cc OOCC0020 s SRCCOPY

CD OOCD0888 SD Pono

CE OOCEOB08 SDPnao

CF OOCF0224 SPno

DO OODOOEOA PSDnoa

D1 OOD1066A PSDPxoxn

D2 00020705 PDSnax

D3 OOD307A4 SPDSoam

D4 00041078 SSPxPDxax

D5 OOD50CE9 DPSanan

D6 OOD616EA PSDPSaoxx

D7 00070349 DPSxan
D8 00080745· PDSPxax

D9 OOD906E8 SDPSao:xn
DA OODA1CE9 DPSDanax

DB OOOBOD75 SPxDSxan

DC OODCOB04 SPDnao
DD 00000228 SDno
DE OODE0268 SDPxo

DF OODF08C8 SD Pano

EO OOE003A5 PDSoa
El OOE10185 PDSoxn
E2 OOE20746 DSPDxax
E3 OOE306EA PSDPao:xn
E4 OOE40748 SDPSxax

E5 OOE506E5 PDSPaoxn

Beta Release Microsoft Confidential April 1, 1990

14·10 Devlca Driver Adaptallan Gulde

Boolean Boolean
function HEX function Common
lnHEX Rop lnRPoUsb name

E6 OOE61CE8 SDPSanax
E7 OOE70D79 SPxPDxan

E8 OOE81D74 SSPxDSxax

E9 OOE95CE6 DSPDSanaxxn
EA OOEA02E9 DPSao
EB OOEB0849 DPS mo
EC OOEC02E8 SD Pao
ED OOED0848 SDPmo

EE OOEE0086 DSo SRCPAINT
EF OOEFOA08 SDPnoo
FO OOF00021 p PATCOPY
Fl OOF10885 PDSono

F2 OOF20B05 PDSnao

F3 OOF3022A PS no
F4 OOF40BOA PSDnao
F5 OOF50225 PDno
F6 OOF60265 PDSxo

F7 OOF708C5 PDSano
F8 OOF802E5 PDSao

F9 OOF90845 PDSmo
FA OOFA0089 DPo

FB OOFBOA09 DPSnoo PATPAINT
FC OOFC008A PSo
FD OOFDOAOA PSDnoo

FE OOFE02A9 DPSoo
FF OOFF0062 1 WHITENESS

April 1, 1990 Microsoft Confidential Beta Release

Chapter

15

Bera Release

Miscellaneous Character
Set Tables

This chapter defines the major character sets used with Microsoft Windows 3.0 and pro
vides figures with samples of them.

One of the attributes of a Windows font is its character set. A character set is a mapping of
byte values to graphic symbols. For example, the ASCII character set maps the number 65
to the letter "A."

The following are the two most common character sets for Windows fonts:

• ANSI, the standard Windows font

• OEM, which refers to the native character set of the computer on which Windows is
running. For example, on IBM PC computers used in the United States, the OEM
character set is the IBM PC character set

Samples of these character set tables are provided in Figures 15.1 and 15.2.

A printer driver should attempt to support ANSI whenever possible. If necessary, the
printer should implement a translation table to convert ANSI codes to the printer's (or
printer font's) native character set For example, the PCL/HP LaserJet driver supplied with
Windows will convert ANSI into US ASCil, HP Roman 8, or ECMA 94, depending on the
character set of the selected printer font. This requires that the printer font contain symbols
similar to those used in ANSI.

The Microsoft Windows Graphics Device Interface (GDI) considers a font's character set
as the most important attribute when selecting a font from those available. The character
set has a high weight to ensure that the output is at least meaningful if not beautiful. To pre
vent unexpected results, drivers that implement their own font mappers in the RealizeOb·
jectO function should use criteria similar to GDI's when selecting fonts.

The Wmdows Symbol (CHARSET_SYMBOL) character set is new for Windows 3.0 and
is shown in Figure 15.3. Notice that these are not fonts or type faces. The characters for
this character set may be designed in a variety of type faces.

Other character sets are occasionally used for special pmposes in specific applications or
specialized drivers. If an application encounters a character set that it does not recognize
when enumerating fonts, it should remember the font and character set index to allow the
user to select the font and print it, unless it relies on the assignment of characters to byte
values. The application should make no assumptions about character assignments.

Microsoft Confidential April 1, 1990

15·2 Dev/a Driver Adaptation Gu/tis

April 1, 1990

o I
t I
2 I
3 I
4 I
S I
6 I
7 I
8 I
9 I

10 I
11 I
12 I
13 I
14 I
lS I
16 I
17 I
18 I
19 I
20 I
21 I
22 I
23 I
24 I
25 I
26 I
27 I
28 I
29 I
30 I
31 I

32

33 '
34 ..

3S I
36 $
37 %
38 &

39

40 (
41)

42 •

43 +

44

4S -
46 •

47 I
48 I
49 1
so 2
St 3
S2 4
S3 5
S4 6
SS 7
S6 8
S1 9
S8

S9

60 <
61 ..

62 >
63 ?

64 Q
65 A
66 B
67 c
68 D
69 E
70 F

71 G
72 H
73 I
74 J
7S K

76 L

77 M
78 H
79 0
80 p
81 Q

82 R
83 s
84 T
8S u
86 u
87 w
88 x
89 y
90 z
91 [

92 \

93 1
94

9S

96 ..

97 a
98 b
99 c

100 d

101 e
102 f
103 g
104 h
lOS i
106 j
107 k
108 1
109 Ill

110 n
lll 0

112 p
113 q
114 r
llS s
116 t
117 u
118 u
119 \II

120 x
121 y
122 z
123 {

124 I
125 }

126 -

127 I

128 I
129 I
130 I
131 I
132 I
133 I
134 I
13S I
136 I
137 I

138 I
139 I
140 I
141 I
142 I
143 I
144 I
14S •

146 •

147 I
148 I
149 I
1so I
1s1 I
1s2 I
1S3 I
154 I
lSS I
1S6 I

1S7 I
1S8 I
159 I

I Indicates that this character is not supported by Windows.

Figure 15.1 The ANSI Table

Microsoft Confidential

160

161 i
162 ¢

163 £
164 Ill

165 "'
166

167 §
168

169 @

170 ii

171 «
172 ..

173 -

174 ml
17S -

176 °
177 :!:

178 z

179 :I

180 ,

181 J1
182 1
183

184 ,,.

185 I

186 !!

187 »
188 !ti
189 %
190 ~

191 t.

192 A
193 Ii
194 ii
195 9
196 ii
197 ft
198 d:
199 !;
200 E:
201 e
202 E
203 r
204 i
205 i
206 t
201 I
208 D
209 R
210 0
211 0
212 ii
213 ii
214 ii
215 x
216 I
217 0
218 ii
219 0
220 u
221 y
222 I>
223 ft

224 :a
22S a
226 a
227 1
228 a
229 :a
230 Cl

231 ~

232 e
233 e
234 e:
23s e
236 i
237 i
238 i
239 i
240 8
241 ii'
242 0
243 6
244 a
245 0
246 ii
247 +
248 8

249 u
250 u
251 0
252 u
253 y
254 I>
255 y

Beta Release

Mlscellansous CharactfJf Sst Tables 15·3

128 G 144 E 160 a 176 I 192 I 208 I 224 I 240 I
i29 u 145 a! 161 " 177 I 193 I 209 I 22S 0 241 :I: 1

130 I! 146 Ill: 162 6 178 I 194 I 210 I 226 I 242 I
131 a 147 6 163 t1 179 I 195 I 211 I m 1 243 I
132 :I 148 H 164 " 180 I 196 I 212 I 228 I 244 I
133 a 149 b 165 R 181 I 197 I 213 I 229 I 24S I
134 I ISO Q 166 ii 182 I 198 I 214 I 230 J1 246 I
135 ~ 151 la 167 g 183 I 199 I 215 I 231 I 247 I
136 @ 152 .!j 168 i. 184 I 200 I 216 I 232 I 248 0

137 e 153 H 169 185 I 201 I 217 I 233 I 249 I
138 e 154 ii 170 ... 186 I 202 I 218 I 234 I 2SO I
139 ~ lSS ¢ 171 " 187 I 203 I 219 I 235 I 251 I
140 t 156 £ 172 " 188 I 204 I 220 I 236 I 2S2 I
141 i 157 " 173 i 189 I 20S I 221 I 237 I 2S3 a

142 ii 158 I 174 « 190 I 206 I 222 I 238 I 254 ..
143 ft 159 I 175 » 191 I 2f11 I 223 I 239 I 255 I

I Jndic:alel that this character is not supported by Windows.

Figura 15.2 The IBM PC Extended Character Set

Beta Release Microsoft Confidential April 1, 1990

15-4 Device Dr/vet Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Index
A
ABORTDOC esc:ape.11-6
ABORTPIC escape. Sa ABORTDOC escape
Aml"ToOem function, 8-15
Aml"ToOem.Bufffunction. 8-15

B ---------------------------------~ BANDINFO escape, 11-6
BANDJNFOSTRUCT datasttucture. 11-6
Banding drivers, 5-18
BBGIN_I>ATH escape.11-8
BININFO data structme, 11-28
BitBJt funclion, 2-25, 10-3
BITMAPdatastructure.12-22
Brute functions

GDI color h"brmy, 5-25
GDI dmTranspose. 5-25
GDI information, 5-23
GDI output, 5-24

c ---~~~~~~~~~~-
Calling conventions, 1-6
Character set tables, 15-1
Character set, defined, 15-1
CheckCmsor function, 2-39, 10-5
CLIP _TO_I>ATH escape, 11-8
Closeiob function, 5-15
CMACROS.INC file, 1-8
Color palette management, 3-1
Color translate table, 3-2
Colorlnfo function, 2-24, 5-23, 10-5
COLORTAB.ASM file, 2-44
Commonfuaitions

EnwnObj, 5-23
Common function ColorJnfo, 5-23
Common functions

BitBlt, 2-25, 10-3
CheckCursor,2-39, 10-5
Colorlnfo, 2-24, 10-5
Control, 2-39, 5-16, 10-6
DeviceBitmap, 10-6
DeviceMode, 5-13, 10-7
Disable,7-1,10-8
Disbale, 2-19
Enable, 2-13, 7-1. 10-8
EnwnDFonts, 5-23, 10-10
EnumObj, 10-11

Extl'extOut, 2-32, 10-12
FastBorder,10-15
GetCh.arWidth, 5-23, 10-16
GetBnviromnent,5-12, 10-17
Inquire, 10-17
MoveCursor,2-37,10-17
Output, 2-8, 10-18
Pixel, 10-24
RealizeObject, 2-19, 5-22, 10-25
SaveSc:reenBitmap, 10-26
ScanLR. 10-27
SetAuribute, 10-28
SetCunor, 10-29
SetEnviromnent, 5-12, 10-29
S1rBlt, 2-32, 10-30
S1retchBlt, 10-31
WEP, 10-32

CONFIG.ASM file, 2-41
Control function, 2-39, 5-16, 10-6
CURSORINFO data structure, 9-7, 12-13
CURSORSHAPE data structure. 12-19

D -------------------------------------Data SlrUCtures

BANDINFOSTRUCT, 11-6
BlNINF0, 11-28
BIT.tdAP, 12-22
CURSORINFO, 9-7, 12-13
CURSORSHAPE, 12-19
DCB,9-2
DBVM:ODE, 5-11
DIBSCALB, 11-44
DRAWMODE, 12-16
EX'ITEXTDATA, 11-22
EXTI'EXTMBTRICS, 11-22
FONTINFO, 12-28
GDIINFO, 2-2, 3-S, 3-25, S-4, 12-2
KBINF0,8-5
KBRNTRACK, 11-32
LOGBRUSH. 12-21
LOGFONT, 12-35
LOGPEN, 12-20
MOUSEINFO, 9-6
ORIENT, 11-31
PATHJNFO, 11-15
PBRUSH, 12-27
PCOLOR, 12-26
PDEVICB, 2-18, 5-10, 12-26

Beta Release Microsoft Confidential April 1, 1990

z lam

POJNT, 12-14
PPPN,12-27
RASTBR.OP, 12-18
RECT.12-14
ROB, 12-lS
TEXI'MBTRIC, 13-1
TEXTXFORM. 13-4

Oats structures
·FONTINFO, 13-6

DCB dataBllUCtUm, 9-2
.DBP file. 3-25
DeleteJob function, S-16
Device driver escapes

ABORTDOC. 11-6
BANDINFO, 11-6
BEGIN...PATH. 11-8
CLIP _TO..,PATH, 11-8
DRAFI'MODB.11-10
DRAWPATI'BRNR.ECf, 11-10
ENABLBDUPLBX. 11-11
ENABLEPAIRKERNING, 11-12
ENABLBRELA11VEWIDTHS, ll-13
END...PATH, 11-14
END...PATH, 11-8
ENDDOC, 11-14
BNUMPAPERBINS, 11-16
BNUMPAPBRMETRICS, 11-17
EPSPRINTING, 11-18
EXT_DBVICE_CAPS, 11-19
BXITEXTOUf, 11-21
FLUSHOUI'PUT, 11-21
GETCOLORTABLE.11-21
GETEXTENDEDTEXTMETRICS, 11-22
GET.EXTENITABl.E, 11-23
GETFACENAMB.11-24
GETPAIRKERNTABLE, 11-25
GETPHYSPAGESJZE, 11-26
GETPRINTINGOFFSET, 11-26
GETSCALINGFACTOR.11-27
GETSETPAPERBINS, 11-27
GETSETPAPBRMETRICS, 11-29
GETSETPRINTORIENT, 11-30
GE'ITBCHNOLOGY, 11-31
GE'ITRACKKERNTABLE.11-31
GETVECI'ORBRUSHSJZB, 11-32
GBTVECTORPENSJZE, 11-33
Japaneseescapes, 11-54
NEWFRAME. 11-34
:NEX:'I'BAND, 11-34
PASSTHROUGH, 11-35
QUERYESCSUPPORT, 11-36
RESTORE_CTM, 11-36
SA VE_CTM. 11-37

April 1, 1990

SELECTPAPERSOURCB. 11-38
SET....ARC_DIRECTION, 11-40
SET~ACKGROUND_COLOR.11-41
SET~OUNDS, 11-41
SET_POLY_MODB.11-49
SET_SCREEN_ANGLE.11-Sl
SET_SPREAD, 11-51
SETABORTPROC, 11-38
SETALUUSTV ALUES, 11-39
SETCOLORTABLE. 11-42
SETCOPYCOUNT, 11-43
SETDIBSCALING, 11-44
SETKERNTRACK. 11-45
SETLINECAP, 11-46
SETLINEJOIN. 11-47
SET.MITERLIMIT, 11-48
STARTDOC, 11-52
TRANSFORM_CTM.11-53

Device driver, defined, 1-1
Device fon1S, 5-22
Device-independent bitmaps (DIBs), 3-3, 3-7
Device initialization convention, 5-31
Device objects

Device fonts, 5-22
GDI raster fonts. 5-22
GDI vector fonts, S-22

DeviceBitmap function. 2-37, 5-28, 10-6
DeviceCapabilities func:lion. S-13
DEVICECONTBXT grabber data structure, 4-6
DEVICEDATA escape. See PASSTHROUGH escape
DeviceMode function. 5-13, 10-7
DEVMODE data structure, 5-11
DIBSCALE data structure, 11-44
Disable function, 2-19, 7-1, 8-16, 9-S, 10-8
DisableSave grabber function, 4-10
Display driver grabber functions

DisableSave, 4-10
EnableSave, 4-10
GetBloc:k, 4-11
Getlnfo, 4-12
GetVersion. 4-13
InitScreen, 4-13
JnquireGrab, 4-13
JnquireSave, 4-14
RestoreScreen, 4-15
SaveScreen. 4-15
SetSwapDrive, 4-15

Display driver grabbers, defined, 4-1
DRAFI'MODE escape, 11-10
ORA WMODE data structrue, 12-16
DRA WPATIERNRECT escape, 11-10
Dynamic-linked library, defined, 1-2

Microsoft Confidential Beta Release

E
Enable function. 2-13, 5-3, 7-1, 8-16, 9-5, 10-8
ENABLEDUPLEXescape, 11-11
EnableKBSysReq function. 8-17
ENABLEPAIRKERNING escape, 11-12
ENABLERELATIVEWIDTHS escape, 11-13
EnableSave grabber function. 4-10
END_PATH escape, 11-14
END_PATHescape, 11-8
ENDDOC escape.11-14
EndSpoolPage function, 5-14
EnterCri.tmacro, 1-13, 2-37
EmnnDFonts function, 5-23, 10-10
EnwnObj function, 5-23, 10-11
ENUMPAPERBINS escape. 11-16
ENUMPAPERMETRICS escape, 11-17
EPSPRINTINGescape.11-18
Escapes. See Device driver escapes
EXT_DEVICE_CAPS escape. 11-19
ExtDeviceMode function. 5-13
EX'ITEXTDATA data structure, 11-22
EX'ITEXTMETRIC data structure, 11-22
EX'ITEXTOUI' escape. 11-21
ExtTextOutfunction, 2-32, 10-12

F ~~~~~~~~~~~-
Fas tB order function, 10-15
Files

CMACROS.INC, 1-8
COLORTAB.ASM, 2-44
CONFIG.ASM, 2-41
.DEF,3-25
FONTS.ASM, 2-41
GDIDEFS.INC, l-13
INCLUDE, 1-8
MOUSE.DEF, 9-5
Resource (.RES), 2-40
WINDEFS.INC, l-13

FLUSHOUTPUI' escape, 11-21
Font file formats

FONTINFO, 12-28, 13-6
LOGFONT, 12-35
Raster font files, 12-27
TEXTMETRIC, 13-1
TEXTXFORM, 13-4
V ector font files, 12-27

Font support, greater than 64K, 3-7
FONTINFO data structure, 12-28, 13-6
FONTS.ASM file, 2-41
Function dispatch table

Extended, 4-3

Standard, 4-2
Functions

Closejob, 5-15
DeleteJob, 5-16
DeviceCapabilities, 5-13
EndSpoolPage, 5-14
ExtDeviceMode, 5-13
OpenJob, 5-14
StartSpoolPage, 5-14
UpdateColors, 3-4
WriteDialog, 5-15
WriteSpool, 5-15

Index 3

G ~~~~~~~~~~~~
GDI color library brute functions, 5-25
GDI dmTranspose brute function, 5-25
GDI information brute functions, 5-23
GDI output brute function, 5-24
GDI priority queue functions, 5-26
GDI raster fonts, 5-22
GDI vector fonts, 5-22
GDl.EXE,, defined, 1-4
GDIDEFS.INC file, 1-13
GDIINFO data structure, 2-2, 3-5, 3-25, 5-4, 12-2
GetBlock grabber function, 4-11
GetCharWidth function, 5-23, 10-16
GETCOLORTABLEescape, 11-21
GetEnvironment function, 10-17
GetEnvironmentO function. 5-12
GETEXTENDEDTEXTMETRICS escape, 11-22
GETEXTENTTABLE escape, 11-23
GETFACENAME escape, 11-24
Getlnfo grabber function, 4-12
GetKBCodePage function. 8-17
GetKbdTable function, 8-18
GetKeyboardType function, 8-18
GetKeyString function. 8-19
GETPAIRKERNTABLEescape, 11-25
GETPHYSPAGESJZE escape, 11-26
GETPRINTINGOFFSET escape, 11-26
GETSCALINGFACTOR escape, 11-27
GETSETPAPERBINS escape, 11-27
GETSETPAPERMETRICS escape, 11-29
GETSETPAPERORIENT ATION escape. See
GETSETPRINTORIENT escape
GETSETPRINTORIENT escape, 11-30
GetTableSeg function, 8-19
GETTECHNOLOGYescape, 11-31
GETTRACKKERNTABLE escape, 11-31
GETVECTORBRUSHSJZE escape, 11-32
GETVECTORPENSJZE escape, 11-33
Get Version grabber function, 4-13

Beta Release Microsoft Confidential April 1, 1990

4 Index

Grabber data structure
INFOCONTEXT, 4-5

Grabber data structures
DEVICECONTEXT, 4-6
GRABINFO, 4-3
GRABREQUEST, 4-4
GRABST,4-5

Grabber equares
MAX_CDSlZE. 4-8
MAX_GBGRPHSlZE. 4-8
MAX_GBTEXTSlZE. 4-8
MAX_TOTGRPH. 4-9
MAX_TO'ITEXT,4-9
MAX_ VISGRAPH. 4-8
MAX_ VISTEXT, 4-8

Grabbers. defined, 4-1
GRABINFO grabber data structure, 4-3
GRABREQUEST grabber data structure, 4-4
GRABST grabber data structure, 4-5

I
Icons, Cl.ll'SOIS, and Billnaps (ICBs), 2-45
INCLUDEfiles.1-8

CMACROS.INC.1-8
GDIDEFS.INC, l-13
WINDEFS.INC, l-13

INFOCONTEXT grabber data structure, 4-5
InitScreen grabber function. 4-13
Inquire function. 8-20, 9-5, 10-17
InquireGrab grabber function. 4-13
InquireSave grabber function, 4-14

J
Japaneseescapes, 11-54

L

MapVirtua.IKey, 8-20
NewTable, 8-20
OEMKeyScan, 8-21
<JeniToAns~8-21
<JeniToAnsiBuff. 8-22
ScreenSwitchEnable, 8-22
SetSpeed. 8-23
ToAsc~8-23
Vk:KeyScan, 8-25

LeaveCritrnacro, 1-13, 2-38
Library, defined.1-2
LOGBRUSH data structure, 12-21
LOGFONT data structure, 12-35
LOGPEN data structure, 12-20

Macros
EnterCrit.1-13
LeaveCrit, 1-13

MapVirtua.IKey function, 8-20
Memory rnamagement, 5-28
Mouse driver functions

Disable, 9-5
Enable, 9-5
Inquire, 9-5

MOUSE.DEF file, 9-5
MOUSEINFO data structure, 9-6
MoveCursor function. 2-37, 10-17

Network compatibility
Attaining it, 6-4

K ~~~~~~~~~~~~~-
Issues and solutions, 6-7

Network driver functions
WNetAddConnection, 7-6
WNetBrowseDialog, 7-5
WNetCancelConnection, 7-7
WNetCancellob, 7-16
WNetCloseJob, 7-14
WNetDeviceMode, 7-5
WNetGetCaps, 7-3
WNetGetConnection. 7-8
WNetGet:Ezror, 7-18
WNetGetErrorText, 7-19
WNetGetUser, 7-6
WNetHoldJob, 7-15
WNetLockQueueData, 7-10
WNetC>penJob, 7-14
WNetReleaseJob, 7-16
WNetUnlockQueueData, 7-12

KBINFO data structure, 8-5
KERNEL.EXE., defined. 1-4
KERNTRACKdatastructure, 11-32
Key translation tables. 8-5
Keyboard driver functions

AnsiToOem. 8-15
AnsiToOemBuff. 8-15
Disable, 8-16
Enable, 8-16
EnableKBSysReq, 8-17
GetKBCodePage, 8-17
GetKbdTable,8-18
GetKeyboardType, 8-18
GetKeyString, 8-19
Gefi'ableSeg, 8-19
Inquire, 8-20

April 1, 1990 Microsoft Confidential Beta Release

WNetUnwar.chQueue. 7-10
WNetWUCbQueue. 7-9

Networkieaum values. 7-19
Network support and clistribwion. 6-18
Netwodt support featmes. 6-1
Netwrok driYcr ftmcdons

WNetAhonlob. 7-17
Nenvrak drvier flmcdons

WNer.Ser1obCopies. 7-17
NEWFRAMB escape. 11-34
NewTable function, 8-20
NEXTBANDescape.11-34

o~~~~~~~~~~~-
oEMKeyScm function. 8-21
OemToAnsifunclion, 8-21
OemTaAmiBuff func:lion. 8-22
Openlob fUaclion. S-14
ORIENTdlramw:an.11-31
Owputfmtcrion, 2-8.10-18

p ----------------------------~ Paleae cnnslare table, 3-3
PASSTHROUGH escape. 11-3S
PA11UNFO dala saw:cme. 11-lS
PBRUSH dal& structure. 12-27
PCOLOR dal& Sll'UCUe. 12-26
PDEVICB dmSUUCIUl'e, 2-18, S-10, 12-26
Pixel fmtcrion, 10-24
POINT du sauc&ule. 12-14
PPEN darastrucQJre,, 12-27
Pn>gnm. defined. 1-2
Pmtecr.ed-mode support. 3-S

Q~~~~~~~~~~~-
QUERYESCSUPPORT escape. 11-36

R ---------------------------------~ Ruter device. defined, 5-18
Rasrer font file fonnll. 12-27
Rasrer operalioo codes. defined, 14-1
RASTEROP data sauc:wre, 12-18
RealizcObjecc function, 2-19, S-22. 10-2S
RECTdarastructure. 12-14
Resource (.RES) file, 2-40
RESTOR.E_CTM escape. 11-36
RescoreScreen grabber function. 4-15
ROB dara sll'UCIUl'e, 12-15

Index s

s ~~~~~~~~~~~-
SA VE_ C'I"M esc:ape. 11-37
SaveSc:reen grabber function. 4-15
SaveScremBianap func:don. 10-26
ScanLR. fmK:tion. 10-27
Screen metrics, defined, 2-3
Sc::reenSwitchEnable func:tioa, 8-22
SELECTPAPERSOURCB escape. 11-38
SELECTPAPERSOURCE escape. Sa
GETSETPAPERBINS escape
SET_ARC_I)IRECTIONescape.11-40
SET_BACKGROUND_COLORescape.11-41
SET_BOUNDSescape.11-41
SET_POLY_MODEescape.11-49
SET_SCRBEN_ANGLB escape, 11-Sl
SBT_8PREAD escape.11-51
SBTABORn>ROC escape. 11-38
SETAWUSTVALUES escape.11-39
SetAaribur.e function. 2-37. 5-28. 10-28
SETCOLORTABLE escape. 11-42
SETCOPYCOUNT escape. 11-43
SelOmorfuncdoa.10-29
SETDmSCAIJNGescape. 11-44
SE'I'ENDCAP escape. Sa SETIJNECAP escape
SetEmimnmenl funclion. 10-29
Set.EmiJomnem() funclion, S-12
SETKERNTRACK escape. 11-45
SBTL1NECAP escape. 11-46
SETLINEJOIN escape. 11-47
SBTMlTBRUMlT escape. 11-48
SerSpeed function. 8-23
SerSwapOriYe grabber function, 4-15
STARTDOC escape. 11-S2
SllrtSplOIPage function. 5-14
SarBk func:tioa, 2-32, 10-30
SttetcbBlt function. 10-31
Slllb function

WEP,5-28
Slllb functions

DeviceBiimap. 2-37, S-28
SetAaribute, 2-37, S-28
WEP,2-37

T ---------------------------------Tables
Character set, 15-1
Color translare, 3-2
Function clisplldJ. 4-2 t.o 4-3
Key nmJasion, 8-S
Paleae translate. 3~3

TEXTMETRIC data SlrUClUre, 13-1

Beta Release Microsoft Confidential April 1, 1990

6 lat/ex

TEXTXFORM data structure. 13-4
ToAcsii function, 8-23
TRANSFORM_CTM escape. 11-53

u ________________________ _
UpdateColors function. 3-4
USER.EXE. defined, 1-4

v ______________________ _
v «:tOr device. defined, 5-18
V et:tor font file fonnat, 12-27
Virtual device. defined, 1-2
Virtual key codes, 8-8
Vk:KeyScan function, 8-25

.r~------------------------
WEP function, 2-37, 5-28, 10-32
WINDEFS.INC file.1-13
WNetAbortJob function. 7-17
WNetAddConnection, 7-6
WNetBrowseDialog function, 7-5
WNetCancelConnection, 7-7
WNetCancelJob function, 7-16
WNetCloseJob function. 7-14
WNetDeviceMode function. 7-5
WNetGetCaps function. 7-3
WNetGetCOlUlection, 7-8
WNetGetEnorfunction. 7-18
WNetGetBtrorTextfimction, 7-19
WNetGetUser fimction, 7-6
WNetHoldJob function. 7-15
WNetl..ockQueueData, 7-10
WNetOpenJob function, 7-14
WNetReleaseJobfimction, 7-16
WNetSetHobCopies function, 7-17
WNetUnlock.QueueData function, 7-12
WNetUnwatchQueue. 7-10
WNetW atchQueue function. 7-9
WriteDialog function. 5-15
WriteSpool function, 5-15

April 1, 1990 Microsoft Confidential Beta Release

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	01-001
	01-002
	01-003
	01-004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	15-01
	15-02
	15-03
	15-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06

