
Microsoft® Windows .
Device Development Kit

development tools tor providing Microsoft® Windows device support

Virtual Device Adaptation Guide

VERSION3.0

for the MS-DOS® Operating System

Microsoft Corporation

Infonnation in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu
ment is furnished under a license agreement or nondisclosure agreemenl The software
may be used or copied only in accordance with the terms of the agreemenl It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any fonn or by any means, electronic or mechanical, including photocopying and record
ing, for any purpose without the express written permission of Microsoft.

@Copyright Microsoft Cmporation, 1989. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, OW -BASIC, QuickC, Code View, and XEN1X are registered
trademarks of Microsoft Corporation.

Paintbrush is a registered trademark of Zsoft Corporation.

IBM is a registered trademark of lntemational Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Cmporation.

Tandy is a registered trademark of Tandy Corporation.

Aldus is a registered trademark of Aldus Corporation.

COMPAQ is a registered trademark of Compaq Computer Cmporation.

Document No. xxxx
Part No. yyyy
10 9 8 7 6 s 4 3 2 1

April 1, 1990 Microsoft Confidential Beta Release

Table of Contents
Virtual Device Adaptation Guide

Introduction to Virtual Devices ix
What You Should Know Before You Start ix
Organization of This Document ix
Notational Conventions . xi

PART 3 Writing Virtual Devices

Chapter 16 Overview of Windows in 386 Enhanced Mode 16-1
16.1 The Operating Environment 16-1
16.2 VIrtual Machines 16-3

16.2.1 The Privilege Rings ofa VM 16-3
16.2.2 VM Handles•.......................... 16-6
16.2.3 The Client Register Structure•.........•.. 16-6

16.3 The Virtual Machine Manager 16-7
16.4 VIrtual Devices 16-7

16.4.1 VxD Components•............... 16-8

16.4.2 The Device Control Procedure 16-8
16.4.3 The Device Descriptor Block 16-8

16.5 How VxDs Work 16-10
16.5.1 Enhanced Windows Execution Scheduling 16-10
16.5.2 Memory Models 16-14
16.5.3 Services .•...•.............................. 16-15
16.5.4 Callback Procedures 16-16
16.5.5 I/O Port Traps 16-17

16.5.6 Loading Sequence 16-17

16.5.7 VxD Examples•.................. 16-20

Beta Release Microsoft Confidential April 1, 1990

Iv Cantsnts

Chapter 17 Virtual Device Programming Topics 17-1
17.1 WritingVxDs ..•.......•............................. 17-1

17.1.1 Understanding the Ring 0 Memory Model•.... 17-2
17.1.2 VxD Segmentation 17-3
17.1.3 VxD Declaration•.................. 17-3

17.1.4 VxD Services ...•.........•.................. 17-5

17.1.5 VxDAPis•.............. 17-7

17.2 Addlllg a VxD to Windows 17-8
17.2.1 MASMS 17-9
17.2.2 LINK386•...................... 17-9

17.2.3 ADDHDR•••....•..... 17-11
17.2.4 MAPSYM32•.•...•..•........•••.... 17-11

17.3 Initializing a VxD••... 17-11

17 .3.1 Real-Mode Initialization••••.. 17-11

17.3.2 Protected-Mode Initialization•...•......... 17-14
17.4 · TrackingTheVMStates 17-15

17.4.l VM Creation and Initialization 17-15

17.4.2 VMStateChanges 17-15

17.4.3 VMTennination••...........•.......... 17-17
17.5 Exiting Windows•.•.•..••..•..••....... 17-18

Chapter 18 The VDD and Grabber DLL 18-1

April 1, 1990

18.1 Introduction to VDDs•..•................•..... 18-1

18.1.1 VDD Messages 18-2

18.1.2 VDD 1/0 Trapping and Hooked Pages•..... 18-2
18.1.3 VDD Efficiency • • . 18-2

18.1.4 VDD Development Sequence•............. 18-3

18.2 Converting Your 2.x VDD . • . 18-3
18.2.1 INCLUDE Files • • . • . . • • • 18-3
18.2.2 Changes to the System, Grabber DlL, and Shell

Interfaces . • • 18-4

18.3 The VDD Device Control Procedure•...•....•. 18-4

18.3.1 Initialization•...... 18-4
18.3.2 VM Creation, Initialization, Destruction, and State

Changes . 18-5
18.4 VDD Services .. 18-6

18.4.1 Grabber API . 18-6

Microsoft Confidential Beta Release

Contents v

18.5 The Grabber DLL 18-8
18.5.1 On-Screen Selection Interfaces 18-8

18.5.2 Selection Interface Procedures 18-10
18.5.3 Non-Windows Application Painting Interfaces 18-13
18.5.4 Miscellaneous Interfaces 18-15

PART 4 Virtual Device Services

Chapter 19 Memory Management Services 19-1
19.1 System Data Object Management 19-2
19.2 Device V86 Page Management 19-8
19.3 GDT/LDTManagement 19-11
19.4 System Heap Allocator 19-16

19.5 System Page Allocator 19-19
19.6 Looking At Physical Device Memory in Protected Mode 19-37
19.7 DataAccessServices 19-38
19 .8 Special Services For Protected Mode APis 19-39
19.9 Instance Data Management 19-47

19.10 Looking At V86 Address Space 19-51

Chapter 201/0 Services and Macros 20-1
20.1 HandlingDifferentl/OTypes 20-1

20.2 1/0 Macros .. 20-3
20.3 1/0 Services .. 20-4

Beta Release Microsoft Confidential April 1, 1990

vi Contents

Chapter 21 VM Interrupt and Call Services 21-1

Chapter 22 Nested Execution Services . 22-1

Chapter 23 Break Point and Callback Services 23-1

Chapter 24 Primary Scheduler Services . 24-1

Chapter 25 Time-Slice Scheduler Services 25-1

Chapter 26 Event Services • 26-1

Chapter 27 Timing Services . 27-1

Chapter 28 Processor Fault and Interrupt Services 28-1

Chapter 29 Information Services . 29-1

Chapter 30 Initialization Information Services 30-1

Chapter 31 Linked List Services 31-1

Chapter 32 Error Condition Services . 32-1

Chapter 33 Miscellaneous Services . 33-1

Chapter 34 Shell Services . 34-1

Chapter 35 Virtual Display Device (VDD) Display Services ... 35-1
35.1 Displaying a VM's Video Memory in a Window 35-1
35.2 Miscellaneous VDD Services . 35-3

Chapter 36 Virtual Keyboard Device (VKD) Services 36-1

April 1, 1990 Microsoft Confidential Beta Release

Contents vii

Chapter 37 Virtual PIC Device (VPICD) Services 37-1
37 .1 Default Interrupt Handling 37-1
37.2 Vrrtualizing an IRQ 37-2
37.3 Vrrtualized IRQ Callback Procedures 37-2
37.4 VPICD Services 37-5

Chapter 38 Virtual Sound Device (VSD) Services 38-1

Chapter 39 Virtual Timer Device (VTD) Services 39-1

Chapter 40 V86 Mode Memory Manager Device Services 40-1
40.1 Initialization Services 40-2
40.2 API Translation and Mapping 404

40.2.1 Basic API Translation 404
40.2.2 Complex API Translation 404
40.2.3 Hooking The Interrupt 40-5
40.2.4 Mapping vs. Copying 40-6
40.2.5 Writing Your Own Translation Procedures 40-6
40.2.6 Sample API Translation 40-7

Chapter 41 Virtual DMA Device (VD MAD) Services 41-1

Appendixes

A Terms and Acronyms A-1

B Understanding Modes B-1
B.1 Windows Modes B-1
B.2 Microprocessor Modes B-1

C Creating Distribution Disks for Drivers C-1

Beta Release Microsoft Confidential April 1, 1990

viii Contenls

D Enhanced Windows INT 2FH API D· 1
D.1 Call-In Interfaces .•..............•............•......•. D-1

D.1.1 Enhanced Windows Installation Check (AX=1600H) . D-1
D.1.2 Releasing Current Virtual Machine's Time-Slice

(AX=1680h)•....•.......• D-2
D.1.3 Begin Critical Section (AX=1681h)•......... D-3
D.1.4 End Critical Section (AX=1682h) D-3
D.1.5 Get Current Vntual Machine ID (AX=1683h) D-3
D.1.6 Get Device API Entry Point (AX= 1684h) D-3
D.1.7 Switch VMs and CallBack (AX=1685h)• D-4
D.1.8 Detect Presence of INT 31H Services (AX=1686h) ... D-5

D.2 Call Out Interfaces•............•..... D-5
D.2.1 Enhanced Wmdows and 286 DOS Extender

Initialization (AX=1605h) D-5
D.2.2 Enhanced Windows and 286 DOS Extender Exit

(AX=1606h)•........................... D-8
D.2.3 Device Call Out API (AX=1607h) D-8
D.2.4 Enhanced Windows Initialization Complete

(AX=1608h)•.•...•................. D-8
D.2.5 Enhanced Windows Begin Exit (AX=1609H) D-9

D.3 Windows/386 Version 2.xx API Compatibility D-9
D.3.1 Installation Check D-9
D.3.2 Detennining the Current Vntual Machine (Get VM ID) D-9
D.3.3 Critical Section Handling D-10

April 1, 1990 Microsoft Confidential Beta Release

Introduction to Virtual Devices
This document explains how to modify existing device drivers or create new virtual dev
ices that will work with Microsoft Windows 3.0 when running in 386 enhanced mode.

This introduction provides some background information that you should review before
using this documentation. The topics are presented in the following order:

• What you should know before you start

• Organization of this document

• Notational conventions

What You Should Know Before You Start
To program virtual devices for Wmdows when running in 386 enhanced mode, you should
be familiar with Part 1, "Writing Windows Device Drivers," in the Microsoft Wmdows
Device Driver Adaptation Guide and the following topics. Suggested reference materials
are shown by topic:

Topics

MS-DOS

Microsoft Wmdows 3.0, (especially the
Memory Management topics)

Assembly-language programming for the
Intel 80386 microprocessor

Reference

Duncan, Ray. Advanced MS-DOS.
Microsoft Press, P.O. Box 97017, Red
mond WA. 98073-9717. ISBN Number:
0-914845-77-2

MS-DOS Encyclopedia. Microsoft Press,
P.O. Box 97017,Redmond WA. 98073-
9717. ISBN Number: 1-5565-174-8

Microsoft Windows 3.0 Software
Development Kit, ''Programming Topics"

Ahem-Wahlstrom. Intel 80386
Programmer's Reference. Intel Literature
Sales, P.O. Box 58130, Santa Clara, CA.
95052-8130. Order Number: 230985-
8130

Organization of This Document
This document is divided into the following parts and chapters:

Beta Release Microsoft Confidential April 1, 1990

x Virtual Dev/cs Adaptation Quids

April 1, 1990

Part 3, "Writing Virtual Devices," describes the requirements of a virtual device, and the
environment of Wmdows when running in 386 enhanced mode. Part 3 contains the follow
ing chapters:

Chapter 16, "Overview of Windows in 386 Enhanced Mode," which provides the concep
tual foundation of the Windows virtual machine environment

Chapter 17, "Vutual Device Programming Topics," which provides a more in-depth look
at various programming topics.

Chapter 18, ''The VDD and Grabber DLL," which describes the development of a Vutual
Display Driver (VDD) and the dynamic-link library (DLL) needed to support a video
adapter.

Part 4, "Virtual Device Services," provides detailed descriptions of all the available serv
ices. It consists of the following 23 chapters:

• Chapter 19, "Memory Management Services"

• Chapter 20, 'W Services and Macros"

• Chapter 21, "VM Interrupt and Call Services"

• Chapter 22, ''Nested Execution Services"

• Chapter 23, "Break Point and Callback Services"

• Chapter 24, "Primary Scheduler Services"

• Chapter 25, ''Time-Slice Scheduler Services"

• Chapter 26, "Event Services"

• Chapter 27, ''Timing Services"

• Chapter 28, "Processor Fault and Interrupt Services"

• Chapter 29, ''Infonnation Services"

• Chapter 30, "Initialization Infonnation Services"

• Chapter 31, ''Linked List Services"

• Chapter 32, ''Error Condition Services"

• Chapter 33, "Miscellaneous Services"

• Chapter 34, "Shell Services"

• Chapter 35, "Vutual Display Device (VDD) Services"

• Chapter 36, "Virtual Keyboard Device (VKD) Services"

• Chapter 37, "Virtual PIC Device (VPICD) Services"

• Chapter 38, "Vutual Sound Device (VSD) Services"

Microsoft Confidential Beta Release

· Introduction ta Virtual Devices xi

• Chapter 39, "Virnlal Timer Device (VTD) Services"

• Chapter 40, "V86 Mode Memory Manager Device Services"

• Chapter 41, "Virnlal DMA Device (VDMAD) Services"

Part 5, "Appendixes," provides the following supplemental reference materials:

• Appendix. A, "Terms and Acronyms"

• Appendix B, "Understanding Modes"

• Appendix. C, "Creating Disttibution Disks for Drivers"

• Appendix. D, "Windows INT 2FH API"

Notational Conventions

Beta Release

The following notational conventions are used throughout the DDK documentation set

Convention

bold

italics

(Parentheses)

Monos pace

Meaning

Bold is used for keywords, such as function, register, macro, and
data structure field names. These names are spelled exactly as they
should appear in source programs. Notice the bold in the following
example:

Disable (lpDestDev)

Here, Disable is bold to indicate that it is the name of a function.
"

Italics are used to indicate a placeholder that should be replaced by
an actual argument In the preceding example, lpDestDev is italic
to indicate that it should be replaced by an argument

Parentheses enclose the parameter or parameters that are to be
passed to a function. In the preceding example, lpDestDev is the
parameter.

Monospace type is used for program code fragments and to il
lustrate the syntax of data structures.

Microsoft Confidential April 1, 1990

xii Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Part

3

Beta Release

Writing Virtual
Devices

Microsoft Windows 3.0, while running in 386 enhanced mode, allows single
threaded multitasking by creating a virtual machine environment. While this
may be a new type of environment for many programmers, the advantages of
freeing existing programs from the limitations of older hardware architectures
should make the effort of learning it worthwhile.

To run in the enhanced Windows environment, existing device drivers will need
to be modified into virtual devices. In Part 1, ''Writing Windows Device
Drivers," of the Microsoft Windows Device Driver Adaptation Guide the ques
tion of how long will it take to convert an existing device driver is examined.

Part 3 provides the overall concepts and functional descriptions of the environ
ment components that are necessary to write virtual devices.

Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

CHAPTERS
16 Overview of Windows in 386 Enhanced Mode
17 Virtual Device Programming Topics
18 The VDD and Grabber Dll

Beta Release Microsoft Confidential Aoril 1. 1990

Chapter

16
Overview of Windows in
386 Enhanced Mode

When Microsoft Windows 3.0 is loaded and invoked on an appropriately configured sys
tem, it runs in an "enhanced" mode designed to capitalize on the power of the Intel 80386
microprocessor. The 386 chip, in addition to an accelerated clock, a wider data path, and
an expanded command set, has a mode that supports multiple, independent memory re
gions. Enhanced Windows uses this microprocessor mode, the virtual 8086 mode, to build
multiple, independent virtual machines, each capable of running an application program.

Enhanced Windows supports this multitasking virtual machine environment with a sophis
ticated set of services, many provided by the virtual devices. Virtual devices (VxDs) pro
vide access to all the system resources, including memory management and scheduling,
and to all the hardware devices. VxDs are analogous to, and often modifications of, device
drivers used in other Windows modes.

By writing a VxD for a particular hardware device, the author integrates that device into
the powerful enhanced Windows environment For instance, a properly implemented vir
tual printer device will, by serializing access to the hardware port, enable two active appli
cations to share a single printer.

This chapter provides a general description of the virtual machine environment and intro
duces the components of a virtual device. However, detailed programming instructions for
the 80386 are not provided Before proceeding, a VxD programmer should already be fa
miliar with the topics described in the "What You Should Know Before You Start" section
in the "Introduction to Virtual Devices" at the beginning of this document

In the September, 1987, issue of the Microsoft Systems Journal, the article entitled
''Microsoft Windows/386: Creating a Vtrtual Machine Environment," discusses the struc
ture of Wmdows/386 version 2.x. It also contains an excellent description of the four
modes of the Intel 80386 microprocessor. A portion of that discussion is included in Appen
dix B, "Understanding Modes," to help you understand the current version of Windows
when running in 386 enhanced mode.

16.1 The Operating Environment

Beta Release

Windows in 386 enhanced mode has a virtual machine (VM) architecture that provides pre
emptive multitasking for DOS applications on the 80386 processor.

The following are its three major components, which are also graphically represented in
Figure 16.1:

• Vtrtual machines

Microsoft Confidential April 1, 1990

16-2 Virtual Dsrlce Adaptation Gu/dB

April 1, 1990

• Vutual Machine Manager

• Vutual devices

Windows 3.0 virtual machines (VMs) consist of a virtual 8086 (V86) mode portion and.
optionally. a protected-mode (PM) ponion. The first VM created is called the System VM.
This is the virtual machine in which the Wmdows graphic user interface runs. Non
Windows applications run in VMs of their own.

The Virtual Machine Manager (VMM) functions as a multitasking operating environment
The VMM provides services that conttol the main memory. the CPU execution time. and
the peripheral devices. It runs. along with all the VxDs. in one, flat-model. 32-bit memory
segment

The virtual devices (VxDs) either virtualize a peripheral device. provide services for the
VMM and VxDs. or both. The "x" in VxD stands for an ru:bitrary device. In an actual
device name. the ''x" is replaced with the name of the virtualized device. e.g., VDD for Vir
tual Display Device and VDMAD for Virtual DMA Device.

Devices, such as the programmable intenupt conttoller and printers, are shown outside of
the enhanced Windows virtualized environment

Notice that the hardware device may consist of software, e.g., routine (BIOS) as well as
hardware.

Enhanced Windows Environment

System VM VM VM

I 1-1 -1-1 -I
VMM !- Interrupt !- Interrupt !- Interrupt

I
VxD i VxD t VxD

11 11
t !--

Hardware device Peripheral device

.__ 11 I

Figure 16.1 An OverAll Block Diagram IN1VD_01.EPS

Microsoft Confidential Beta Release

Overview of Windows In 386 Enhanced Mode 16·3

16.2 Virtual Machines
When Wmdows is runnftlg in 386 enhanced mode, it creates memory partitions that have a
remarkable characteristic: programs that run within these partitions execute as though they
were running on an 80386 in real mode. Each of these partitions is called a virtual 8086
machine and has its own address space, 1/0 port space, and interrupt vector table. Multiple
virtual machines can be running simultaneously, with each under the illusion that it is in
complete control of the computer.

A virtual machine (VM) is a complete description of the state of an application. Each VM
includes the following:

• The memory associated with the application

• The processor registers

• The data structures associated with virtualization

Data is used by the VMM and VxDs to virtualize the hardware and to provide services. It
is maintained in a data structure called the Control Block. The processor registers are main
tained on the VMM stack and can be accessed via the Client Register Structure. The
memory can be accessed and manipulated by means of a number of VMM memory
manager services.

To optimize the use of memory and minimize the enhanced Windows environment over
head, most of MS-DOS and all the MS-DOS device drivers are not duplicated for each
VM, but rather are shared (global) among the VMs.

16.2.1 The Privilege Rings of a VM

Beta Release

A VM can have more than one privilege ring. Code executing in one privilege ring can
only have access to memory in the same privilege ring or one with a higher number (i.e.,
lower privilege level).

The 8086 (V86) mode portion, shown in Figure 16.2, runs in privilege ring 3. This is the
code and data most typically associated with MS-DOS applications.

The second part is a protected mode (PM) portion that runs at privilege ring 1, 2, or 3. This
portion can be used by applications running under enhanced Wmdows. In the System VM
(SYS VM), this portion is used to run Wmdows 3.0 code.

The third part is data utilized by the VMM and the VxDs running at privilege ring 0.

The Ring 0 data has three subparts:

1. The stack, which contains the Client Register Structure (CRS). The ring 0 stack is used
by the VMM and VxDs when a VM is running.

Microsoft Confidential April 1, 1990

16·4 Virtual Device Adaptation Gulde

April 1, 1990

2. The control block, which contains other data (i.e., values associated with the virtualiz.a
ti.on of hardware for a VM) local to a VM.

3. Data owned by a VxD, which contains information that maintains the state, such as the
state of the physical hardware, across all VMs.

Microsoft Confidential Beta Release

Overview at Windows In 386 Enhanced Made 16·5

Virtual Machine

Privilege Ring 3 (Virtual mode)

;'I
ROM

1 meg

(Global)

Display memory

Application code and data
640k

(Local)
V86 mode-< Windows/386 (portion)

(Global)

Network and TSR code
(Global)

MS-DOS
DOS device drivers

(Global)

Interrupt vectors
(Local) a.,

Privilege Ring 1,2, or 3

Protected mods i Windows 3.0 Applications
(Code for Windows 3.0

{optional) if VM is the system VM)

Privilege Ring o .
[VM handle} J Control block

I CB_VM_Status

CB_High_Linear 1--
+ VxDO offset

CB_ Client_Pointer

L CB_VMID
Stack

Client registers
VMM data +VxD1 offset

L VxDO data

Vx01 data

VxDn data

Figure 16.2 The Conceptual Detail of VMS INTVD_02.EPS

Beta Release Microsoft Confidential April 1, 1990

16·6 Virtual Devlt:a Adaptation Gulde

16.2.2 VM Handles
Enhanced Windows virtual devices refer to specific VMs by VM handles. By convention,
VM handles are usually stored in the EBX register. A VM handle is actually a 32-bit linear
address of the virtual machine's control block data sttucture.

16.2.3 The Client Register Structure

April 1, 1990

The Client Register Sttucture (CRS), as shown in Figure 16.3, contains the virtual machine
processor state including all the virtual machine's registers and flags. When a device wants
to look at or modify a virtual machine's registers, it must modify the CRS.

Alternate GS

Alternate FS
Alternate OS

Alternate ES
Alternate SS

Alternate ESP

Alternate EFl~s
Alternate CS

Alternate EIP

GS

FS

OS
ES

SS

ESP
EFlags

cs
EIP

Error code

EAX

ECX

EDX

EBX

Misc

EBP

ESI

em

Note: Alternate registers
hold values of mode not
in use, i.e., when in V86
mode, alternate registers
hold protected mode values.

Figure 16.3 The Client Register Structure INTVD_03.EPS

Microsoft Confidential Be'ta Release

Overview at Windows In 386 Enhanced Made 16·7

16.3 The Virtual Machine Manager
The Virtual Machine Manager (VMM) is a device-independent layer of code that provides
a framework upon which the virtual devices build virtualizations of physical devices or
provide services for each of the VMs. In this sense, the VMM lies between the VMs and
the VxDs. All interaction between the software running in the VMs and the VxDs occurs
via the interface provided by the VMM. The VMM also provides a set of services that al
lows for creating, destroying, running, synchronizing, and altering the state of the VMs.
The VMM, as shown in Figure 16.4, handles all the transitions of VMs to privilege ring 0,
provides scheduling services, manages memory, and provides services for such activities
as trapping l/O and hooking software interrupts.

VMM

1/0 emulation

Other services '

To VMs

I- Interrupts

Memory management

Event services

!-services

To VxDs

General purpose
Interrupt Handler

Schedulers

I Primary II Time slice I

Figure 16.4 The VMM Functions INTVD_04.EPS

~

16.4 Virtual Devices

Beta Release

Enhanced Windows virtual devices (VxDs) are the interfaces between application software
and the hardware. Most VxDs correspond to a hardware device, though not all do. For ex
ample, the VxDs for printers and displays simulate actual hardware interfaces, but the VxD
called Shell provides access to the Windows graphic user interface. VxDs use services pro
vided by the VMM and other VxDs.

VxDs can provide control functions, service functions, API functions, and callback pro
cedures that are used to virtualize, synchronize, and maintain the state of the hardware for
the VMs. A callback procedure is a request for notification when a specified event occurs
in the nonnal execution of the application code.

There must be a VxD for each piece of hardware that can have a different state in each of
theVMs.

Microsoft Confidential April 1, 1990

16-8 Virtual Derlt:11 Adaptation Gulde

16.4.1 VxD Components
Installable virtual devices have the following five, distinct parts, which are shown graphi
cally in Figure 16.5:

1. Real mode initialization code and data, which is discarded after loading parts 2 - 5

2. Protected mode (PM) initialization code, which is discarded after initialization

3. Protected mode (PM) initialization data, which is discarded after initialization

4. PM code, which contains the Device Control Procedure, API and callback procedures,
and services.

5. PM data, which contains the Device Descriptor Block. Service Table, and Global Data

16.4.2 The Device Control Procedure
The Device Control Procedure (DCP) is the dispatch point for most of the VMM interac
tion with the VxD. Besides the initialization of the system, there are device control calls
for creating, initializing, and destroying VMs; for setting the device focus to a VM; and for
indicating a change in the state of the VM.

The VMM broadcasts messages to all VxD DCPs indicating changes in the state of the sys
tem or of a VM. The DCP can then modify the device's data structure or the VM's state.
The address of the DCP is specified in a special data structure called a Device Descriptor
Block that all virtual devices must have. See Chapter 17, "Vutual Device Programming
Topics," for details on messages passed to the DCP.

16.4.3 The Device Descriptor Block

April 1, 1990

The Device Descriptor Block (DDB) is a VxD-unique data structure containing the VxD's
name, version IDs, and entry points for the three code areas: the Device Control Pro
cedure, V86-mode API procedure, and the PM API procedure. In addition, the DDB can
contain a pointer to a table of services provided by the VxD. See Chapter 17, "Vutual
Device Programming Topics, " for a detailed description of a DDB.

Microsoft Confidential Beta Release

Overview at Windows In 386 Enhanced Made 16-9

VxD

Initialization code and data Discarded
}-Real mode

Initialization code after I~

initialization
Initialization data

VxD code
Device Control Procedure

r-+I Code I
V86 AP/ procedures

I Code I
PM AP/ procedures

~I Code I
>- Protected

VxD data mode

Device Descriptor Block

Device name

Version IDs

DCP

V86 API procedures

PM API procedures
Service table

Service table
List of services

Global data

State of hardware
e.g., Who owns display

Misc.

Misc.
Control block

CB offset +VM Handle

J

State of VM

Figure 16.5 The Conceptual Detail of VxDs INTVD_05.EPS

Beta Release Microsoft Confidential April 1, 1990

16·10 Virtual Dsvlce Adaptation Gulde

16.5 How VxDs Work
The following sections contain general explanations of how V xDs work and provide infor
mation on the following topics:

• Scheduling

• Memoryuse

• Services

• Callback procedures

• I/O port traps

• Loading

16.5.1 Enhanced Windows Execution Scheduling

April 1, 1990

The following is a brief description of how events are scheduled and processed. The con
cepts are also graphically described in Fibure 16.6.

Events
The enhanced Windows VMM is a single-threaded. non-reentrant operating system. Be
cause it is non-reentrant. virtual devices that hook interrupts must have some method of
synchronizing their calls to the VMM. For this reason. enhanced Windows uses the con
cept of event proc~ing.

Event procedures are registered asynchronously and, then, called back just before the
VMM returns to the application. At this point, the event procedure can use all the VMM
services.

VxDs can also use event procedures to perform some action on a VM that is not the cur
rent VM. Examples of this include restoring the display to a VM when the display focus
changes or simulating an interrupt into a VM the next time the VM is scheduled.

There are two types of events: global and VM specific. Global events are processed before
returning to a virtual machine regardl~ of which VM is about to run. VM specific events
are only processed when the specified virtual machine is about to run.

Scheduler
When Windows is running in 386 enhanced mode, each application runs in it own virtual
machine (VM). Each VM can be given a share of the CPU time. To assign priority among
the VMs. the Virtual Machine Manager (VMM) has a Scheduler.

The Scheduler is the part of the VMM that determines which VM gets CPU time. It is
divided into two parts. At the lowest level, the Primary Scheduler maintains execution pri
orities, and the VM with the highest priority is allowed to run. VxDs will raise and lower

Microsoft Confidential Beta Release

Beta Release

, overview of Windows In 386 Enhanced Mode 16·11

the execution priorities to affect task switching among the VMs. The second level of sched
uling is handled by the Time Slicer, which boosts a VM's execution priority for a given
time slice.

With the Primary Scheduler, there are specific values assigned to execution priorities to ac
complish task switching without violating the need for some sections of code to execute ex
clusively until completion. Additionally, high-priority device events, such as interrupts that
must be serviced in a timely manner, will boost execution priorities of VMs that need to be
Serviced. The VMM provides services and defines execution priorities to handle these
cases.

The enhanced Windows Time Slicer is the preemptive multitasking portion of the Sched
uler. It relies on time-slice priorities and flags to determine how much CPU time should be
allocated to various virtual machines.

Every VM has a foreground and a background time-slice priority. These should be distin
guished from a VM's execution priority. The VM with the largest execution priority will
run, preventing other VMs from executing. The VM with the largest time-slice priority
will run more often than other VMs but it will not necessarily prevent other VMs from ex
ecuting.

Transitions Into and Out of the VMM and VxDs
The enhanced Windows VMM uses the protection mechanism of the 80386 to force privi
lege ring transitions, as shown in Fibure 16.6 whenever an application program issues a
software interrupt or causes a protection fault One example is when a VM performs 1/0 to
a hooked port. The exact mechanisms used to make the transition into the VMM are not
important to a virtual device developer. It is almost never necessary to directly intercept a
processor fault or hardware interrupt The only device that handles hardware interrupts
directly is the Virtual PIC (Programmable Interrupt Controller) Device. Callback pro
cedures have been provided to signal a calling routine when a specific event occms. (See
Section 16.5.4, "Callback Procedures," for more information.)

Programmers familiar with the 80386 architecture may assume that, to hook an interrupt, a
virtual device will hook the protected-mode Interrupt Descriptor Table (ID1) directly.
However, this is not true for Windows in 386 enhanced mode. Services to hook interrupts
at this level are provided by the VMM.

WARNING VxDs must never modify the actual IDT. To do so will cause enhanced Windows to crash.

The sequence of events for entering the VMM from a virtual machine because of an inter
rupt is as follows:

1. The VM performs an operation that generates a fault.

2. A ring transition occurs, and the appropriate IDT interrupt handler is called.

3. The VMM dispatches the interrupt to the appropriate handler by a CALL.

Microsoft Confidential April 1, 1990

16·12 Virtual Device Adaptation Gulde

April 1, 1990

4. The protected-mode handler processes the fault and executes a near RET.

5. The VMM processes any outstanding events.

6. An IR.ET is executed that causes a ring transition back to the VM.

Notice that the VMM looks at the interrupt before any virtual devices and immediately
before returning to the virtual machine.

Microsoft Confidential Beta Release

Overview of Windows In 386 Enhanced Mode 16·13

V86
Mode

(Privilege
Ring 3)

Application in VM
requires 1/0

r•••••••••••··----··-·--·--------------•
I I

! Ring 386 pushes i

VM executes
INal,21h

386 checks
IOPM

! transition GS, FS, OS, ES, ! N
l SS, ESP, I•+-------<
I EFLAGS, CS, EIP
j @ onto stack l_______________________ _ _____________ :

Protected
Mode VMM general

purpose interrupt
handler pushes EAX,

(Privilege ECX, EDX, EBX,
Ring O)@ Misc., EBP, ESI,

B and EDI onto stack

Decode VM
instruction VMM

VPICD generates
address of the
control VM's
Control Block

VPICD relUrns
vir1Ual mask register

is simulated by

Perform 1/0

Call to VxD

Increment
Client_IP past
1/0 instruction

1/0 instruction }

placing AL relUmed VMM
by VPICD into AL

Figure 16.6

Beta Release

Movel/O~
address into EDX

in the CRS

Register contents
at this stage

EBX VM handle
EDX 1/0 port
ECX 110 type
EBP CRS Pop registers

pushed in@

r•••••••••••••••••••••• •••••••••••-,
i Ring . j
' transition Pop regi.sters ' j pushed in@ I
I : ·----------------------- ------------·

Continue VM
execution

Microsoft Confidential

Process events

April 1, 1990

16·14 Virtual Device Adaptallon Gulde

16.5.2 Memory Models

April 1, 1990

Windows in 386 enhanced mode makes use of the 80386's ability to run different memory
models. Some devices may have initialization code that is run in real mode. See Section
16.5.6, "Loading Sequence," for the loading sequence description. After that code is
successfully run, a transition is made to protected mode (using selector: off set addressing)
in which the VMM is installed and begins executing. The VMM creates a separate VM
that consists of a V86-mode portion and an optional, protected-mode (PM) portion for
each application.

The VMM and all the enhanced Windows VxDs run in 32-bit, flat-model protected mode.
This means that every VxD has complete access to 4 gigabytes of linear address space. A
VxD can access any VM's memory at any time.

Because enhanced Wmdows is flat model, virtual devices cannot change the CS, DS, ES,
or SS segment registers. These segment registers always contain a selector that has a base
of 0 and a limit of 4 gigabytes. Devices can use the FS and GS segment registers, but there
usually is no reason to do so. VMM services will not modify the FS or GS segment
registers. Pointers are always 32-bit linear addresses unless otherwise specified.

NOTE Since the VMM (privilege ring 0 code) resides in a single, flat memory segment, the selector of
the selector.offset PM addressing for the VMM and VxDs never changes.

Modes
Application programs typically run in a V86-mode portion of the enhanced Windows oper
ating environment An example of an exception is the Windows graphic user interface,
which also uses a protected-mode portion.

As described in Appendix B, "Understanding Modes," V86 mode is similar to real mode.
The crucial difference between the two is that memory protection, virtual memory, and
privilege-checking mechanisms are in effect when code runs in V86 mode. Therefore, a
program executing in V86 mode cannot interfere with the operating environment or dam
age other processes. If the program reads or writes memory addresses that have not been
mapped into its VM or manipulates l/O ports to which it has not been allowed access, an
exception (fault) is generated, and the operating environment regains control.

Privilege Rings
The VMM and the VxDs are at the highest (0) privilege level. Protected-mode applications
such as Wmdows run at privilege level l, and V86 applications run at privilege level 3, as ·
shown in Figure 16.7.

Since all virtual devices run at protection ring 0, they have the ability to execute any 80386
instruction without producing a protection violation. However, devices should not execute
protected insttuctions as they will usually cause Windows to crash immediately. The only
exception to this is the Virtual Math Coprocessor Device, which is allowed to change the
80387 bits in the CRO register.

Microsoft Confidential Beta Release

Overview at Windows In 386 Enhanced Mode 16· 15

Figure 16.7 Enhanced Windows 3.0 Prlvllege Rings INTVD_07.EPS

16.5.3 Services

Beta Release

Services are the shared routines of the VMM and VxDs. VxDs use services to handle inter
rupts. to initiate callback procedures. and to process exceptions/faults.

Notice that there are some VxD services that the VMM requires. Most notable of these are
the services provided by the Vutual Programmable Interrupt Controller Device (VPICD),
which virtualizes the PIC for the VxDs (for requesting interrupts) and the VMs.

Detailed descriptions of each service are provided in Part 4, "Virtual Device Services."
The services are also categorized there as follows:

• Memory Management Services

• 1/0 Services and Macros

• VM Interrupt and Call Services

• Nested Execution Services

• Break Point and Callback Services

• Primary Scheduler Services

Microsoft Confidential April 1, 1990

16·16 Virtual Device Adaptation Gulde

• Tune-Slice Scheduler Services

• Event Services

• Tuning Services

• Processor Fault and Interrupt Services

• Infonnation Seivices

• Initialization Information Services

• Linked List Seivices

• Error Condition Services

• Miscellaneous Services

• Shell Services

• Vntual Display Device (VDD) Services

• Vlrtaul Keyboard Device (VKD) Services

• Vntual PIC Device (VPICD) Setvices

• Vntual Sound Device (VSD) Seivices

• Vntual Tuner Device (VID) Services

• V86 Mode Memory Manager Device Services

• Vntual OMA Device (VDMAD) Services

16.5.4 Callback Procedures

April 1, 1990

Some services allow a calling routine to register a procedure that will be called back when
a particular event occurs. Callback procedures are used for maintaining the VM state via
J/O and interrupt trapping and synchronizing· with the VMM via the event seivices.

The VMM includes services that allow virtual devices to install callback procedures to do
the following:

• Trap interrupts from virtual machines

• Trap I/O to specific ports

• Trap access to memory

• Schedule per-VM or global time-outs

• Schedule per-VM or global events

• Detect when a VM returns from an interrupt or FAR call

Microsoft Confidential Beta Release

overview of Windows In 386 Enhanced Mode 16-17

• Detect when a VM executes a particular piece of V86 code

• Detect the release of the critical section

• Detect changes to the VM's interrupt enable flag

• Detect task switches

16.5.5 /ID Port Traps
The VMM provides a service called Hook _IO _Port. The service takes two parameters:
the port to be hooked, and the address of the procedure to be called whenever the port is
accessed.

When a VxD calls Hook IO Port, the VMM sets the appropriate bit in the 1/0 permission
map (IOPM) and registers the procedure. When a virtual machine executes an instruction
that reads or writes data from an l/O port, the 80386 looks up the port number in the l/O
permission map. If the corresponding bit in the IOPM is set, then the instruction will cause
a protection fault that results in calling the registered procedures.

Hardware Interrupt Hooks
The Virtual Programmable Interrupt Controller Device (VPICD) routes hardware inter
rupts to other virtual devices, provides services that enable virtual devices to request inter
rupts, and simulates hardware interrupts into virtual machines.

When a virtual device needs to hook a specific IRQ, it must ask VPICD for permission. If
another device has already virtualized the IRQ, then VPICD will refuse.

Software Interrupt Hooks
The software interrupt hooks that are unique to the enhanced Windows environment are de
scribed in Chapter 20, "I/O Services and Macros," and Chapter 21, "VM Interrupt and Call
Services."

16.5.6 Loading Sequence

Beta Release

The following is a generalized description of the loading sequence. Figures 16.8 and 16.9
are an example of a specific loading sequence.

When Windows in 386 enhanced mode is first started, the following happens:

1. The loader loads the VMM and all the specified virtual devices into extended memory.

2. The loader passes control to the VMM initialization routine.

3. The initialization routine completes the initialization of the VMM and calls all the VxD
initialization routines.

4. The System VM is created and initialized.

Microsoft Confidential April 1, 1990

16·18 Virtual Device Adaptation Gulde

April 1, 1990

5. The Shell VxD executes Windows.

Each enhanced Windows device can have different sections of code that are executed
during various phases of initialization and normal program execution, as shown in Figure
16.8.

The first phase of initialization is load time. During load time, the virtual device can abort
the loading of the device, abort the loading of enhanced Windows, specify instance data,
and exclude pages of memory from utilization by enhanced Windows. This load time code
is in its own segment and run in real mode and, then, discarded. See Chapter 17, "Virtual
Device Programming Topics," for details on real mode initialization.

The rest of the virtual device is run in 32-bit, flat-model protected mode and is divided into
four parts:

• Initialization code

• Initialization data

• Code

• Data

The initialization code and data are purged from memory after initialization, as shown in
Figure 16.9. These segments contain routines and data that are accessed only during the
three phases of enhanced Windows system initialization: Sys_ Critical_ Init, Device_ Init,
and Init_ Complete. Some of the enhanced Windows VMM services are available only
during initialization.

The sections of code and data that are not specifically for initialization perform the device
virtualization and can provide services for other devices.

Microsoft Confidential Beta Release

Beta Release

Real Mode

Begin
initialization

Get
VxD file

_ Loop is done for
each specified device

Overview at Windows In 386 Enhanced Made 16-19

Execute Real
Mode init

Load Protected Mode
code and data

Abort

To Protected Mode

Figure 16.8 The Loading Sequence Flow Chart INTVD_08.EPS

Microsoft Confidential April 1, 1990

16-20 Virtual Device Adaptation Guide

Protected Mode

From
Real Mode'

WIN/386 VMM
initializes

Sort VxOs by
initialization order

Begin building
SYS VM

VMM broadcasts
Sys_Critical_lnit
control message

_ Interrupts
enabled

VMM broadcasts
Oevice_lnit

_ VxD services
enabled

VMM broadcasts
In it_ Complete

_!nit code and
data discarded

VMM broadcasts
Sys_ VM_lnit

Execute
Windows 3.0

Figure 16.9 The Loading Sequence Flow Chart (cont.) INTVD_OBa.EPS

16.5.7 VxD Examples

April 1, 1990

Often, new VxDs are actually modifications of existing ones. To help with your VxD
development, Microsoft includes with the DDK the code for the following fully oper
ational VxDs. We encourage you to use them as examples whenever convenient.

Virtual COM Device (VCD)
The VCD does the following:

• Raises a contention if two VMs access the same port.

Virtual Mouse Device (VMD)
The VMD does the following:

• Reflects mouse interrupts to the VM currently using the mouse.

• Tracks the cursor state at the INT 33H level.

Virtua/PrinterDevice(VPD)
The VPD does the following:

• Raises a contention if two VMs attempt to use the same LPT port

Microsoft Confidential Beta Release

Overview of Windows In 386 Enhanced Mode 16-21

Virtual Programmable Interrupt Controller Device (VP/CD)
The VPICD does the following:

• VJrtualizes the PIC 1/0 for each VM.

• Provides interrupt handling.

• Provides services for other devices to do interrupt handling.

Virtual Sound Device (VSD)
The VSD does the following:

• Tracks the state of the speaker enable biL

• T'unes out sound for non-exclusive VMs.

Virtual Timer Device (VTD)
The VTD does the following:

• Queues timer interrupts for each VM.

• Determines which VMs will receive timer interrupts.

• Tracks VMs changing the timer characteristics and may crash them.

• Informs the VMM about elapsed time.

Beta Release Microsoft Confidential April 1, 1990

16·22 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

17
Virtual Device
Programming Topics

This chapter presents details on writing and installing VxDs. You should be familiar with
Chapter 16, "Overview of Windows in 386 Enhanced Mode," before proceeding with the
material. For explanations on specific types of Services provided by the Virtual Machine
Manager (VMM), refer to the chapters in Part 4, "Virtual Device Services." This chapter is
divided into the following general topics:

• Writing VxDs

• Adding a VxD to Windows

• Initializing a VxD

• Tracking the VM states

• Exiting Windows

We recommend that you scan all the topics before beginning a VxD project You should
also review the sample VxDs supplied on the Microsoft Windows Device Development Kit
(DOK) disks for examples of how to accomplish specific tasks. The following table sug
gests some VxDs to study when investigating specific service topics.

Service topic

Memory management

Hardware interrupts

l/O

Scheduler

Events

Timeouts

SampleVxD

VDD

VKD

VPD

VKD

VKD

VKD

17.1 Writing VxDs

Beta Release

Enhanced Windows virtual devices are not "Windows" programs. You do not need to
know anything about Windows programming to write a VxD.

Microsoft Confidential April 1, 1990

17·2 Virtual Device Adaptation Gulde

Often, new VxDs are simply modifications of existing ones. To help with your VxD
development, Microsoft includes the code for many, fully operational VxDs in the
Microsoft Windows Device Development Kit. We encourage you to use them as examples
whenever convenienL

However, some VxDs will require a significant effort to develop. The following can be
used as a guideline when writing a complex VxD.

1. Build a skeleton. Using the supplied sources as a guide, build a skeleton of the VxD
with the device control procedure, the services, and the API procedures defined but not
functional.

2. Add the initialization functionality, including the control block and global memory allo-
cation, physical page hooking, 1/0 hooking, and interrupt hooking.

3. Fill out the procedures that handle the various hooks.

4. Test the procedures.

5. Implement the APls and services, if there are any.

6. Test the APis and services.

17.1.1 Understanding the Ring D Memory Model

April 1, 1990

The part of the enhanced Wmdows environment containing the VMM and all the VxDs
(ring 0), is one, flat-model, 32-bit segmenL This means that all the code and data belong to
the same group. Two selectors are created: one for code and one for data. Both have a base
of zero and a limit of four gigabytes, so all the segment registers point to the same address
space (the entire virtual address space provided by the 80386 processor).

When a VxD is loaded, all the offsets are fixed according to the the VxD's actual position.
This is different from MS-DOS 's loading of .EXE files, in which segments are fixed up
and offsets are left untouched.

All procedures are NEAR, and data pointers are 32-bit offsets.

VxDs do not externalize routines or data. To access VMM or VxD services, a dynamic
link mechanism is employed using macros contained in VMM.INC. The VMM services
are available with the VMMcall macro, and the VxD services with the VxDcall macro.
Data is shared via declared services only.

You must use the OFFSET32 macro in your flat model 32 bit segments anywhere you
would normally use the OFFSET assembler directive. That is, in all segments except for
the real-mode initialization segmenL This macro correctly defines all the offsets so that
LINK386 will do the correct offset fixups. For example:

' mov esi, OFFSET32 My_Data

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17·3

17.1.2 VxD Segmentation
As discussed in Chapter 16, "Overview of Windows in 386 Enhanced Mode," VxDs have
five functional parts. Each of these parts exists as a separate segment. Macros have been
created to define segments for each of the parts.

Each macro name consists of a segment descriptor followed by "_SEG," which means that
this macro begins the segment. A segment descriptor terminated by "_ENDS," is used for
macros that end the segment. For example, macros used for defining a segment for real
mode load-time initialization would appear as VxD _REAL_ INIT _ SEG and
VxD _REAL_INIT _ENDS.

In some enhanced Windows installations, it will be possible to demand page portions of
VxDs. These installations require a dedicated swap device or a fully virtualized hard disk
with a dedicated swap partition. This way, paging can be done without concern for reenter
ing portions of DOS, device drivers, or BIOS. To support paging, a VxD must p!ace the fol·
lowing in locked memory:

• Device Control Procedure (DCP)

• Device Descriptor Block (DOB)

• Hardware interrupt procedures (and the data accessed by them)

• Asynchronous services that can be called from hardware interrup procedures

Some of the macros supplied in VMM.INC (e.g., Declare_ Virtual_ Device) correctly
place code and data objects in locked segments. The following are the different segment
descriptor types: ·

VxD_REAL_I NIT
VxD_ICODE
VxD_IDATA
VxD_LOCKED_CODE
VxD_LOCKED_DATA
VxD_CODE
VxD_DATA

- Real-mode load-time initialization
- Protected mode initialization code
- Protected mode initialization data
- Code that cannot be paged
- Data that cannot be paged
- Pageable code
- Pageable data

17.1.3 VxD Declaration

Beta Release

A VxD's first few lines of code must always be the assembler directive, the INCLUDE
files, and the declaration parameters.

Assembler Directive
Every VxD must inform the assembler that the code is 80386 protected-mode code. This is
done by including the following directive:

.386p

Microsoft Confidential April 1, 1990

17-4 Virtual Devlt:e Adaptation Gulde

INCLUDE Files
INCLUDE files enable VxDs to use code located in other parts of enhanced Windows. The
following INCLUDE files should always be included:

Filename

VMM.INC

DEBUG.INC

VPICD.INC

SHELL.INC

Description

Contains definitions of all the enhanced Window services, as
well as required macros and equates.

Contains useful macros for dumping messages to a debugging
tenninal and perfonning checks on various data. The macros pro
vided by this file produce code only when the VxD is assembled
with the DEBUG switch. See the Microsoft Windows Software
Development Kit (SDK) for information on the Windows debug
ging services.

Contains equates and service declarations for the Vutual
Programmable Interrupt Conttoller Device (VPICD). All en
hanced Windows interrupts are handled by the VPICD. The VPD
uses the VPICD services to hook all the printer port's hardware
interrupts.

Contains definitions of the public services provided by the Shell
VxD. The Shell device provides the VxDs with access to the
Windows graphics user interface, thus giving the VxDs the abil
ity to display dialog boxes to the user. For example, if two VMs
attempted simultaneously to use the same printer, the VxD could
call Resolve_ Contention, which would display a dialog box
asking the user to choose between the two VM applications.

Declaration Parameters
The declaration of the VxD is accomplished by its Device Descriptor Block (DDB). The
DDB is generated automatically by the Declare_ Virtual_ Device macro. The following ex
ample is from the VPD sample provided with the DDK.

DECLARE_VIRTUAL_DEVICE VP0,3,0,VPD_Control, VPD_Device_ID, VPD_Init_Order,,,,

The table in Figure 17 .1 descnbes each of the parameters:

April 1, 1990 Microsoft Confidential Beta Release

Virtual Dsv/cs Programming Topics 17·5

Parameter VPD Example
l"I

Name up to 10 characters VPD

Major Version byte number 2 >
Minor Version byte number 0

DCP Name VPD_Control
I~

Device ID declared in VMM if VxD
provides services VPD_Device_IO

Initialization Order determines the order Since VPD does
of VxD initialization require initializing
relative to other VxDs before any particular

VxD, the number in
VMM.INC is large

>
Service Table Name VPD does not

provide services

V86 API Procedure Name VPD does not
provide services

PM API Procedure Name VPD does not
provide services , ..

Figure 17 .1 The VxD Declaration Parameters PRTG0_01.EPS

17.1.4 VxD Services

Beta Release

the functionality a VxD provides, either to the VMM and other VxDs or through them to
applications, is always by means of exported services. After defining the service calling
conventions, this section then describes how to declare a service, and verify that a VxD is
available to provide a service, and provides a comparison of st.andard vs. asynchronous
services.

Service Calling Conventions
All the enhanced Windows services use either a register-based calling convention or a 32-
bit C-type calling convention. In general, all the VMM calls use C calling conventions,
and all VxD services are register based.

The C convention services all begin with an underscore U in front of the service name.
They are similar to the st.andard C conventions: all parameters are passed on the stack, and
results are returned in the EAX and EDX registers.

Unlike the st.andard C conventions, the EBX, ES, FS, and GS registers are preserved as
well as the ESI and EDI registers. Only the flags and the EAX, ECX, and EDX registers
are modified.

The VMMcall and VxDcall macros support stack parameter passing like the st.andard C
macro package. For example:

Microsoft Confidential April 1, 1990

17·6 Virtual Device Adaptation Gulde

April 1, 1990

VMMcall _HeapAllocate, <SIZE Data_Node, 0>

will generate the following code:

push 0
push SIZE Data_Node
int 20h
dd _HeapAllocate
add esp, 2*4

Notice that the parameters are pushed on the stack from right to left as in the standard con
vention.

All the Windows services for running in 386 enhanced mode that do not begin with an un
derscore U are register-based services. All the parameters to the services are passed in
registers and all the results are returned in registers. If a service does not explicitly return a
result in a register, than that register will be preserved.

Declaring Services
Virtual devices use two macros, Begin Service Table and End Service Table, that are
declared in VMM.INC to export services. The service table is normally declared in an IN
CLUDE file that other VxDs can include to import the services. For example, a typical
service table declaration would look something like this for the Virtual "FOO" Device:

Begin_Service_Table VFooD

VFooO_Service vFooD_Get_Version, LOCAL
VFooD_Service vFooD_Oo_Something
VFooD_Service vFooD_Do_Somthing_Else
VFooO_Service vFooD_Oo_Yet_Another_Thing, VxD_INIT

End_Service_Table VFooD

The Begin_ Service_ Table macro uses a single argument to generate the macro used to de
clare individual services. Begin_ Service_ Table names the macro by taking the name of
the device and appending "_Service" to it In the preceding example, VFooD _Service is
the name of the macro.

The Device_ Service macro can take one or two parameters. The first parameter is the
name of the service (e.g., Get_ Version). This must match the name of a procedure that
was declared with the BeginProc macro using the "Service" or "Async_Service" options.
The second parameter is optional. If it is omitted, then the service procedure is declared as
an external reference in the VxD_CODE segment

If the special value "LOCAL" is used as the second parameter (as in the VFooD_Get_ Ver
sion declaration), then the procedure is not declared as external. This option is used when
the service is declared in the same file in which the service table will be created. If, in this
case, it were to be declared external, then MASM would generate an error.

If the service procedure is not in the same file as the one used to create the service table,
and not in the VxD_CODE segment, then you must supply the name of the segment it res-

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-7

ides in so that the proper external declaration can be made. In the above example, the
VFooD _Service VFooD _Do_ Yet_ Another_ Thing service is declared to be in the
VxD _INIT code segment

The fust service for every device must be a Get_ Version service. This service must return
with AX != 0 and the Carry flag clear. See the following section, "VxD Presence Verifica
tion," for more details.

Once the table of services has been created, you must force the table to be generated in one
of the VxD source files by defining a special equate (EQU) called "Create_xxx_Serv
ice_Table," where xxx is the name of the device before including the service declaration
INCLUDE file. For example, the main source file of the VFooD service table would con
tain the following INCLUDE statements:

INCLUDE VMM.INC
INCLUDE Debug.INC
Create_VFooD_Service_Table EOU true
INCLUDE VFooD.INC

This must be done in the same source file that contains the device declaration. This table is
automatically generated and the pointer to the table is stored in the device's DOB.

Notice that, since the macros generate equates, you will now want to add service declara
tions to the end of the INCLUDE ftle. However, never change the order of the declara
tions. Adding, removing, or changing the order of services changes the service numbering
and all the devices that call these services will need to be rebuilt

VxD Presence Verification
Many devices, such as the EBIOS device, will not load under certain circumstances (for ex
ample, when the machine does not have an extended BIOS data area). Before calling
device services for devices other than VPICD, Shell, VKD, or other standard devices, you
should make sure the device is loaded by calling the device's Get_ Version service.
Get Version for a device will return with AX = 0 and the Carry flag set if the device is not
instiiied.

Standard Vs. Asynchronous Services
Most services are not reentrant. This means they cannot be called from hardware interrupt
procedures. However, a select group of services is declared as "Async" services and can be
called from hardware interrupt procedures. You may declare services that can be called
from interrupt handlers by using the "Async _Service" option for the BeginProc macro.

17.1.5 VxD AP/s

Beta Release

While device services are used to communicate with other enhanced Windows virtual dev
ices, APis are used to communicate with software running in a virtual machine. For ex
ample, the Shell device supports an API that is used to communicate with the Wmdows
support program for non-Windows applications that runs in the System VM.

Microsoft Confidential April 1, 1990

17·8 Vlrlual Device Adaptation Gulde
)

A device can support an API for V86-mode code, protected-mode code, or both. The pro
cedure entry point(s) for the API is specified in the device declaration macro (see Section
17.1.3, "VxD Declaration" for more details on Declare Virtual Device). The VM
software issues an Int 2FH with AX= 1684H and BX =-Device_ID to get the address to
call to access the API. See Appendix D. "Windows INT 2FH API," for more information.

When the device API procedure is called with the following parameters:

EBX = Current VM handle
EBP - Client register structure
Client_CS:IP - Instruction following API call

API procedures must examine the client registers (through the client register structure) to
determine which API call was made. The nonnal calling convention uses AH = Major
function number and AL = Minor function number. Other registers are used for parameters
to the functions. However, a device can use any calling convention that is appropriate. If
you wish to return a value to the caller, then the API procedure should modify the client
registers.

API procedures may modify the EAX, EBX, ECX, EDX, ESI, and EDI registers.

17.2 Adding a VxD to Windows

April 1, 1990

This section describes in general the steps necessary to install a newly written and de
bugged VxD into the enhanced Wmdows environment These steps are specified and ex
ecuted from the MAKE file. Detailed instructions are also included in the MAKE ftle
located on the supplied DDK disks.

There are three required steps for installation, with each requiring a specific software tool:

1. Assemble the VxD code with MASMS.IOB, which is the special version of the assem
bler used to handle a new pseudo group, FLAT.

2. Link the .DEF files with LINK.386, which is the linker used to create the special 32-bit
.EXEs. .

3. Declare the code to be a VxD with ADDHDR, which adds special VxD information
into the .EXE produced with Link386.

An optional fourth step, is available for debugging:

4. Generate symbol files with MAPSYM32, which is available to generate 32-bit symbol
(.SYM) files for debugging.

These four tools are included in this verSion of the DOK.

See the following sections for detailed invocation instructions.

The following MAKE file sample is from the Virtual Printer Device (VPD). The complete
source for building the VPD is included on the DOK disks.

Microsoft Confidential Beta Release

Virtual Device Programming Topics 11·9

vpd.obj: vpd.asm
masm5 -p -w2 vpd:

vpd.386: vpd.obj vpd.def
link386 spd, spd.386/NOI /NOD /NOP,/MAP,,vpd.def
addhdr vpd.386
mapsym32 vpd

The MAKE file assumes that the four tools are located under the MS-DOS PATH com
mand. If they are not, then you must modify the MAKE file to specify their exact locations.

17.2.1 MASM5
This is a special version of MASM that supports 32-bit flat-model code. It has been named
MASM5 to differentiate it from other versions of MASM you may already have. It has the
same command-line options and format as MASM 5.1, so you can refer to version 5.1
documentation for information on this program.

It is recommended that the ·P and -w2 options be used when assembling virtual devices.
The ·P option specifies that impure code segment references should generate warning mes
sages. This is desirable, because it is illegal to write data with a CS override. The -w2 op
tion sets the warning level to 2, so that warning messages are generated for such things as
jumps that are within SHORT range and for data size mismatches.

MASM5 will look for INCLUDE files in the current directory and the INCLUDE path
specified by the environment variable INCLUDE. Therefore, ·the DDK INCLUDE files
(e.g., VMM.INC, VPICD.INC, and VDD.INC) should be either in the current directory or
located along the INCLUDE path.

17.2.2 LINK386

Beta Release

The LINK386 command line is as follows:

link386 <object> {<object>}, <device name>.386 {/<option>}, [<map file
name>][/MAP], ,<device name>.def

For example:

link386 vpd, vpd.386/NOI /NOD /NOP, /MAP,,vpd.def

LINK386 links into one device file the individual object (OBJ) files that make up a virtual
device. By convention, Windows devices have the extension .386. The command line
specifies the object files(s), the desired output file, option switches, and definition file. The
following is a list describing the option switches in the preceding examples.

Option

/NOi

Full Name

NOIGNORECASE

Microsoft Confidential

Description

Specifies that case should not be
ignored.

April 1, 1990

17·10 Virtual Dev/cs Adaptation Gulde

April 1, 1990

Option

/NOD

/NOP

/MAP

Full Name Description

NODEFAULTIJBRARYSEARCH Specifies that LINK386 should not
search for default libraries.

NOPACKEDCODE Specifies that code segments
should not be packed into one
code segment in the .EXE file.

Specifies that all public symbols
should be included in the MAP
file.

Definition (DEF) files are used with LINK386 to identify the device descriptor block
within the device and the types of segments. DEF files for virtual devices all look similar
to the following example:

LIBRARY VPD

DESCRIPTION 'Win386 VPD Device (Version 2.0)'

EXETYPE DEV386

SEGMENTS

EXPORTS

_LTEXT PRELOAD NONDISCARDABLE
_LDATA PRELOAD NONDISCARDABLE
_!TEXT CLASS '!CODE' DISCARDABLE
_!DATA CLASS '!CODE' DISCARDABLE
_TEXT CLASS 'PCODE' NONDISCARDABLE
_DATA CLASS 'PCODE' NONDISCARDABLE

VPD_DDB @1

The LIBRARY line is required to identify the device as a module that is part of a system
rather than an executable application. The DESCRIPTION line is optional and simply re
cords the text string into the .386 file. The EXETYPE line is required to identify the .386
file as an enhanced Windows device file.

The SEGMENTS section is identical for all devices, because it identifies the six possible
types of protected-mode segments that can be part of a device. (If a device has a real-mode
initialization section, then it can have seven types of segments. However, the real-mode
section does not need any special identification in the DEF file.)

The EXPORTS section is also required; it identifies the name and location of the device
descriptor block for the virtual device. It must match the name used in the Declare_ Vir·
tual _Device statement in the device source, with _DDB appended to the end. It must also
be identified as ordinal number 1 with the @.

Microsoft Confidential Beta Release

Virtual Device Programming Tap/cs 17-11

17.2.3 ADDHDR
The ADDHDR command line is as follows:

addhdr <device name>.386

For example:

addhdr vpd.386

ADDHDR simply reads the specified 32-bit .EXE file, perfonns some validation checks,
and writes some additional header infonnation needed by the enhanced Windows loader
into the file's .EXE header.

17.2.4 MAPSYM32
The MAPSYM32 command line is as follows:

mapsym32 <device name>

For example:

mapsym32 vpd

MAPSYM32 reads a MAP file and creates a 32-bit .SYM file for use with the Windows de
bugger, WDEB386. The IMAP option must be specified for LINK386 to generate the nec
essary MAP file.

17.3 Initializing a VxO
As described in Chapter 16, "Overview of Windows in 386 Enhanced Mode," VxDs are
initialized along with the enhanced Windows environment Both real mode and protected
mode code may be used and are described in the following subsections.

17.3.1 Real-Mode Initialization

Beta Release

Each VxD can have a portion that is run in real mode at load time. This capability is pro
vided to enable a VxD to detennine whether or not it can operate in the current environ
ment and to provide information to the loader about how it should vary the environment
This portion is only executed at load time and, then, is discarded

A real-m~ portion is declared as a NEAR procedure in a special 16-bit segment with the
rest of the VxD code. At load time, if the loader determines that a real-mode portion is pre
sent, it loads it and jumps to its entry point as specified by the END statement at the end of
the file (CS:O if no entry point is found). Upon entry CS = DS = ES, so code and data must
be mixed in the same segment The code can then perform the checks that are necessary
and return an exit code back to the loader.

Microsoft Confidential April 1, 1990

17·12 Virtual Dev/CB Adaptation Guida

Entry

April 1, 1990

Valid ~xit codes are as follows:

• 0 - Everything is fine, and the loader should continue loading the protected-mode por
tion and the rest of the VxDs.

• 1 - This device is not compatible with the cmrent environment and will not be loaded,
but the loader can continue to load other VxDs.

• 2 - Something is wrong and the loader should abort the Windows load completely.

If 1 or 2 is returned, then the loader will nonnally print an appropriate error message
naming the VxD that failed. If the real-mode portion has already handled the message re
porting or does not want any default error message, then it should set the high bit of the re
turn code in AX (i.e., 8001H or 8002H.)

The real-mode portion can also infonn the loader to do the following:

• Pass a DWORD of reference data to the protected-mode portion of the device.

• Pass a table of pages in low memory (0-IMb) that should be excluded from general use
by the enhanced Windows memory manager.

• Pass a table of pointers to data that should be instanced for each virtual machine.

It is possible for a VxD to exclude pages and/or declare instance data without actually
having a protected-mode portion; it should return 8001H as the return code, so that the
loader will attempt no further loading of the device and will not display the default error
message.

The real-mode portion can perform most BIOS or DOS interruptS and examine memory to
check the environment of the machine. It cannot attempt to perform any type of DOS exit
calls because these will halt the loader in an unclean state, and it will be necessary to re
boot the machine. Also, any open files should be closed before returning since they will
not be closed by the loader.

The following is the actual definition of the real mode initialization interface:

Cs = OS = ES = segment of loaded code and data
IP= specified entry point or 0.
SI = environment segment, passed to the loader from DOS
AX = VMM version number
BX = flags

bit 0: duplicate device ID already loaded
bit 1: duplicate ID was from the INT 2F device list
bit 2: this device is from the INT 2F device list

EDX = reference data from INT 2F response, or 0

SS:SP point to loader's stack.

Microsoft Confidential Bera Release

Exit

Bera Release

Virtual Device Programming Topics 17·13

Must return with a NEAR return
AX = return code (see above)
BX= ptr to list of pages to exclude (0, if none), where:

list
= one or more words in the range 1 to 9FH (terminated) by a word of zero

SI - ptr to list of Instance data items (0, if none), where:
list

=one or more instance data items followed by three words
of zero Cnote that 0-3FF, the interrupt vectors are
always instanced). instance data item= pointer to
data (word segment, word offset),word length of data

EDX = DWORD of reference data to be passed to the protected-mode portion.
<This can be a linear pointer to ROM data, a constant, etc. that will
affect the way the protected portion might operate. For example, an EBIOS
device can pass the EBIOS page number, so that the protected-mode portion
does not have to look for the page again.)

All the other registers except SS:SP can be modified.

The macros VxD REAL INIT SEG and VxD REAL INIT ENDS are defined in
VMM.INC to facilitate cfeating a real-mode portion of a-device driver. The real-mode por
tion cannot access code or data outside of its segment. If this is attempted, the linker will
generate warnings and a corrupt .386 file. Fixed segments such as the BIOS (40H)
segments are an exception to this. It is possible to have declared in multiple source files
real-mode portions that will all be linked together (e.g., separating message text from the
code.)

The following is an example of real-mode initialization code:

VxD_REAL_INIT_SEG
BeginProc ebios_init

mov ah, 0C0h
int 15h
test es:[bx.SO_featurel], EBIOS_allocated
jz short no_ebios_fnd
mov ah, 0Clh ; get segment adr of EBIOS
int 15h

jc short no_ebios_fnd
mov ax, es get EBIOS segment address
shr ax, 8 convert to a page #
movzx edx, ax return EBIOS pg as ref

data
mov bx, OFFSET exc_ebios_page ptr to exclusion table
mov [bx], ax exclude EBIOS page

from memory manager use
xor si, si no instance data to

declare
mov ax, Device_Load_Ok go ahead and load the

device
jmp short init_exit return to loader

Microsoft Confidential April 1, 1990

11·14 Virtual Device Adaptation Gulde

no_ebios_fnd:
mov ah, 9
mov dx, OFFSET no_ebios_msg print message thru DOS
int 21h
xor bx, bx no exclusion table
xor si, si no instance data table
xor edx, edx ; no reference data
mov ax, Abort_Device_Load + No_Fail_Message

init_exit:
ret
exc_ebios_page dw 0, 0

don't load pmode portion
and don't display a

; error msg

no_ebios_msg db 'PS/2 type EBIOS not detected', 13, 10, '$'
EndProc ebios_init
VxD_REAL_INIT_ENDS
END ebios_init specify real mode

initialization entry point

17.3.2 Protected-Mode Initialization

April 1, 1990

The enhanced Windows environment has a three-phase, protected-mode initialization. Re·
turning a carry during any of the phases will abon the VxD load.

Phase 1. Sys_Critical_lnit
During the first phase of initialization, interrupts are not yet enabled Therefore, this phase
should accomplish the following tasks as quickly as possible.

• Initialization of critical functions necessary when interrupts are enabled.

• Claiming a panicular range of V86 pages if necessary (such as the video memory for
theVDD).

• Registering device services needed by other devices in later initialization phases.

• Initialization of data needed by the services. During this phase, the System VM Simo·
late _Int and Exec _Int commands must not be used.

Phase 2. Device_lnit
This is where most devices do the bulk of their initialization. The System VM has been
created so interaction with the System VM via such commands as Simulate Int and
Exec_ Int is allowed. Notice that this is the phase where the equivalent functions to
Create_ VM for the System VM. Most VxDs will allocate their control block area or other
pieces of memory needed, hook interrupts, hook 1/0 ports, specify instance data, and ini
tialize themselves and the System VM control block.

Microsoft Confidential Beta Release

Virtual DBvl1:1 Praoramm1no Topia 17-15

Phase 3. lnit_Complete
This is the final phase of Device_ Init that is called just before the WIN386 INIT pages are
re~ and the instance snapshot is taken. VxDs that want to search for a region of V86
pages = AOH to use should do so during this phase. Most devices, though, will not need to
do anything here.

17.4 Tracking.The VM States
Most likely, the VxD that you are writing needs to keep ttack of the status of the different
VMs that may need your VxD. This includes VM creation, initialimtion, and tennination.
The following subsections describe these and other possible VM srates.

17.4.1 VM Creation and Initialization
Like the initialization of the enhanced Windows environment, a VM's go through a multi
phase process.

Phase 1. Create_ VM
This call creates a new VM. EBX = VM handle of the new VM. Returning Carry will fail
the Create_ VM. VxDs should initialize data associated with the VM, especially the con
ttol block.

Phase 2. VM_Critieal_lnit
EBX = VM handle of the new VM. Returning Carry will cause the VM to VM_Not_Ex
ecuteable, then be destroyed. VM Simulate_Int or Exec_Int activity is allowed. The VxD
interacts with the VM to initialize the state of the sofware in the VM (e.g., the VDD does
INT lOH to set the initial display mode).

Sys_ VM_lnit
Same as VM _Init, except is initializes the System VM. If Carry is returned, all of en
hanced Windows will exit.

17.4.2 VM State Changes

Beta Release

During the normal execution of enhanced Wmdows, VMs will go through state changes.
Most srate changes may be ignored by VxDs. However, depending on the purpose of the
VxD, some may require VxD response. The following calls describe the possible VM state
changes.

Microsoft Confidential April 1, 1990

17-16 Virtual Device Adaptation Gulde

April 1, 1990

VM_Suspend
The VM is not runnable until a resume. EBX = VM handle. The call cannot be failed. The
VxD should unlock any resources associated with the VM.

VM_Resume
The VM is leaving a suspended state. EBX = VM handle. Returning a carry fails and
backs out of the resume. Unlock any resources and otherwise prepare internal data struc
tures for the VM to start running again.

Set_Device_Focus
This sets the focus of the specified VxD to the specified VM. EBX = VM handle of
desired VM. EDX = Device ID. If VxD specific set focus, = 0 if device critical set focus
(all devices).

This call cannot be failed. Restore the hardware associated with the device to the state of
the specified VM. As much as possible, remove VxD interaction with VM (such as disa
bling 1/0 trapping) so that VM can run as fast as possible.

Begin_Message_Mode
This call prepares the device for message processing. This is only of interest to the key
board, mouse, and display. When in message mode, special services provided by the dis
play and keyboard are used to interact with the user. Message mode is used for the Alt+ Tab
screen and for message boxes when Windows is not available to process a message box.
EBX = VM handle going into message mode: This call cannot be failed.

End_Message_Mode
EBX = VM handle leaving message mode. This call cannot be failed.

Reboot_ Processor
This call requests a machine reboot. The device (usually the keyboard device) that knows
how to reboot the machine does the necessary operations.

Ouery_Destroy
This call asks if it can destroy the running VM. Query_ Destroy is an infonnation call
made by the Shell device before an attempt is made to initiate a destroy VM sequence on a
running VM that has not exited normally. EBX = VM handle. Returning carry indicates
that a device "has a problem" with allowing this. It is recommended that the VxD return
ing the Carry indicating a problem call SHELL_ Message to post an infonnational dialog
about the reason for the problem.

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-17

Debug_ Query
Debug_ Query is a special call for device-specific DEBUG information display and activ
ity. This call is made in response to the user typing <VxD name> at the debug prompt,
where <device name> is the name specified in the Declare_ Virtual_Device macro (i.e., in
theDDB).

17.4.3 VM Termination

Beta Release

Graceful termination of a VM occurs in the following three steps:

Phase 1. VM_ Terminate
During this phase of normal VM termination. EBX = VM handle. Call cannot be failed.
VM Simulate_Int and Exec_Int activity is allowed.

Sys_ VM_ Terminate
Same as VM _Terminate, except terminates the System VM (Normal enhanced Windows
exit only. On a crash exit, this call is not made). System VM Simulate_Int, Exec_Int ac
tivity is allowed.

Phase 2. VM_Not_Executeable
During the second phase of VM termination. EBX = VM handle, EDX = Flags (see
VMM.INC). Notice that in the case of destroying a running VM, this is the first call made
(i.e., the VM Terminate call does not occur). Call cannot be failed. VM Simulate Int
and Exec_Int activity is not allowed. Flags for VM_Not_Executeable control calC(passed
in EDX) are as follows:

Flag

VNE_ Crashed

VNE Nuked

VNE CreateFail

VNE CrlnitFail

VNE _ InitFail

Meaning

VM has crashed.

VM was destroyed while active.

Some device failed Create_ VM.

Some device failed VM_Critical_Init.

Some device failed VM _ Init.

Phase 3. Destroy_ VM
During this final phase of nonnal VM tennination. EBX = VM handle. Notice that con
siderable time can elapse between the VM_Not_Executeable call and this call. Call can
not be failed. VM Simulate_ Int and Exec_ Int activity is not allowed.

Microsoft Confidential April 1, 1990

17·18 Vlrlual Dtwlt:e Adaptation Balde

17.5 Exiting Windows

April 1, 1990

There are two calls that can alert a VxD that enhanced Wmdows is exiting: System_ Exit
and Sys_ Critical_ Exit.

System_Exit
This call is made when Windows is exiting either normally or via a crash. Interrupts are
enabled. The instance snapshot has been restored. System VM Simulate_ Int and Exec _Int
activity is not allowed. However, the VxD may modify the System VM memory to restore
the system state to allow a graceful exiting of Wmdows.

Syst_Critical_Exit
This call is made when enhanced Windows is exiting either normally or via a crash. Inter
rupts are disabled. System VM Simulate_Int and Exec_int activity is not allowed. VxDs
should reset their associated hardware to a quiescent state to allow a graceful return to real
mode.

Microsoft Confidential Beta Release

Chapter

18
The VDD and Grabber DLL

This chapter describes the Vutual Display Device (VDD) and the Grabber DLL, a
Wmdows dynamic-link library. Software writers should be familiar with the terms and con
cepts covered in Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chap
ter 17, "Virtual Device Programming Topics/' before continuing with this chapter.

The topics in this chapter are presented in the following order:

• Introduction to VDDs

• Converting your 2.x VDD

• VDD device control procedure

• VDD services

• The Grabber DLL and its procedures

18.1 Introduction to VDOs

Beta Release

There are two parts that are necessary to support a video adapter running in 386 enhanced
mode.

• The Vutual Display Device (VDD) is the part of Windows in 386 enhanced mode that
supports saving, restoring, and emulating the hardware for an application running in a
Virtual Machine (VM).

• The Grabber DLL is a Windows dynamic-link library that the WINOLDAP Windows
application uses to look at and obtain the state of a VM's video adapter. The Grabber's
primary responsibility is rendering the video display into a format that Wmdows can
use.

The general structure of the virtual devices under Windows 3.0 is quite different from the
version 2.x structure. While the low-level save, restore, and ttapping routines that were
written for version 2.x VDDs should work, the interface with the rest of the enhanced
Wmdows environment will be quite different

The Grabber DLL's interface with WINOLDAP and the VDD is also different The biggest
difference is that in version 2.x the Grabber was WINOLDAP.GRB and not a DLL.

Microsoft Confidential April 1, 1990

18-2 Virtual Device Adaptation Guide

18. 1. 1 VDD Messages
The sample VDD makes use of Shell event services to keep WINOLDAP informed of
changes in a windowed VM's display. When the VDD detects a change in the video state,
it sends a message to WINOLDAP, which then queries the state change and modifies the
windowed display appropriately.

When the VDD encounters a situation that requires a user's choice or interaction, it uses
the Shell message services to print messages and get responses. For example, when there is
not enough memory to save and restore a VM' s video state, the user is informed of the
problem and that a portion of the display may be lost.

18.1.2 VDD 1/0 Trapping and Hooked Pages
When an application is running in the background, the VDD traps all the video 1/0, saving
the output port values and emulating the input port values. fu some cases, the detection of
a mode change can result. In this case, the memory should be disabled and hooked to
enable the page fault routine to remap the memory.

A VDD should detect mode changes and illegal memory accesses. This is done by disa
bling and hooking page faults that occur when the video memory is accessed by the VM.
The page fault routine determines how to map the accessed memory by both determining
whether the VM has the display focus and by examining the state of the controller. The
page fault routine can also be used to demand page the video memory. It will restore and
map the video pages needed to create the physical display and to satisfy the application's
video memory accesses.

18.1.3 VDD Efficiency

April 1, 1990

To maximize the efficiency of Windows, a VDD is, in many cases, tightly coupled with the
Windows 3.0 display driver. For instance, the EGA display would normally have to be
trapped at all times to maintain the controller state properly. fustead, an API has been de
fined for communications between the Windows display driver and a VDD. Additionally,
the EGA Windows display driver uses a special portion of video memory and a special al
gorithm that allows for a subset of the video controller state to be saved and restored
without explicitly saving away the current register values. When adapting a VDD to new
displays, it is a good idea to look at alternatives to trapping all the display adapter access to
maintain the video state. Notice also that the Grabber is usually tightly coupled to the
Windows display driver, specifically to the display-dependent bitmap format.

There are also three PIF bits that the user can specify to disable trapping in VMs where the
applications running in the VMs only modify registers that can be read. The VDD designer
should use these PIF bits, if possible.

Another good area to consider optimizing AP! emulation , especially the INT lOH Write
1TY function. The user can specify this emulation with a PIF bit.

Microsoft Confidential Beta Release

The VDD and Grabber DLL 18·3

18.1.4 VDD Development Sequence
Chapter 17, "Virtual Device Programming Topics," discusses the general requirements for
writing a VxD. This chapter focuses on the specific example of how to develop a Vutual
Display Device. To develop a VDD, follow these steps:

1. Build a skeleton. Using the supplied sources as a guide, build a skeleton of the VDD
with all the services and API procedures defined but not functional.

2. Add the initialization functionality, including the control block allocation, global
memory needed, physical page hooking, 1/0 hooking, and interrupt hooking.

3. Fill out the routines that handle the various hooks.

4. Test it while running Windows and other VMs, full screen.

5. Implement the Grabber API, including the procedures that report controller state, return
video memory structures, and report video state modifications.

6. Test it while running VMs in a window. Do a thorough test, running many different
applications in all the different states (i.e., exclusive, background, and windowed).

18.2 Converting Your 2.x VOO
The core of your Windows 2.x VDD should work with little change. You only need to
change some of the way that you access memory. For example, use the _MapPbysTo
Linear function rather than adding PhysToLinr to physical addresses, and use the control
block value CB_ High_ Linear to add to BIOS memory address for accessing those
memory locations.

However, you need to do quite a bit of work to change the initialization and system func
tion interface. Additionally, you no longer link VDD with the rest of Windows in 386 en
hanced mode, but rather create a separate .386 file that is linked dynamically with the
Windows function. It will probably work best if you pull out your Windows 2.x routines
and insert them in the Windows 3.0 VDD model sources.

Notice that the definition of exclusive is different for Windows 3.0 and that the SetFocus
routine takes into account whether or not the VM is running in a window (i.e., VDD will
get a SetFocus call for the System VM on a VM that is running in a window, instead of a
SetFocus to the VM itself).

18.2.1 INCLUDE Files

Beta Release

Most of the modules will only need VMM.INC, VDD.INC, DEBUG.INC, and a device
specific INCLUDE file (e.g., EGA.INC). Some modules will also require a file describing
the interface between them and some external user of their functions (e.g.,
VMDAEGA.INC for the Grabber). By changing over to the new INCLUDE files, you will

Microsoft Confidential April 1, 1990

18-4 Virtual Devft:B Adaptation Gulde

generate several undefmed references. Modifying the references to use the equivalent
Wmdows 3.0 functionality is a flfSt step in creating your Wmdows 3.0 VDD.

18.2.2 Changes to the System, Grabber DLL, and Shell Interfaces
Examine the parts of the supplied Wmdows 3.0 VDD to understand the new system inter
face. You willneed the VDD lnit, VDD New, VDD Exit, VDD Destroy, VDD Set·
Type, and VDD _SetFocus routines to me the new de'Vice C9ntrol interface. The -
functionality of VDD _Install should be handled by scheduling VM events. The
VDD _ Mem _Check routiqe is replaced by the VDD specifically calling the Shell to give
the user a message. VDD _ CHK _Device is also replaced by sending WINOLDAP a
message when the display needs to be updated and by scheduling time outs to do the detec·
tion. The register values and what you can and cannot do in an 1/0 trap, page fault, and in
terrupt trap are also changed. Mostly, there is much more flexibility allowed, and there are
changes in register save/restore and parameter passing conventions.

Previously, VDD provided a single VDD _Control with various subfunctions. Most of the
VDD _Control calls are replaced by the device API mechanism. Notice that the way that
the routines retrieve the Grabber DLL's registers is different (i.e., by using EBP and the
Client_ Reg definitions). Also notice the increased number of functions and other changes
in the functionality of the Grabber DLL interface.

The Shell device requires a number of new functions that are implemented as device serv
ices. Additionally, the old ID call is device service 0. Please see the somce examples and
other sections of this document for more information.

18.3 The VDD Device Control Procedure
The Device Control Procedure is the dispatch point for most of the Virtual Machine
Manager's (VMM) interaction with the VDD. Some modifications in the following areas
will be necessary.

18.3.1 Initialization

April 1, 1990

The following are the areas in the initialization process where some modifications might
be needed.

Real Mode Initialization
Most video adapters will not need any real-mode code to be functional. However, a few
developers will want to add some real-mode code to query device state or to reserve por
tions of memory that may not be touched during the initialization of other devices or used
for general system pmposes. For example, you may have a memory-mapped interface that
will be banned by other code reading and writing at those addresses (Windows in 386 en
hanced mode searches the area between COOOOH and EFFFFH for the existence of RAM
or ROM). Since all real-mode code is executed during system load, it is recommended that

Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-5

you use it only if the same functionality cannot be accomplished during one of the initiali
zation phases of the protected-mode driver.

Sys_ Critical_lnit
During Sys_ Critical_ Init, a VDD should allocate its control block data area, register serv
ices, allocate address space, allocate memory needed globally, and define any pointers or
other data that are required for the VDD functionality. Remember that interrupts are dis
abled during this call, so keep it as short as possible.

Oevice_lnit
During Device_ Init, a VDD should initialize its global state (such as which VM is cur
rently attached to the physical display), set up the 1/0 and interrupt trapping needed,
specify instance data and, then, initialize the System VM's control block. As noted in Chap
ter 16, "Overview of Windows in 386 Enhanced Mode," this initialization call is equiv
alent to VMCreate for the System VM, along with the global device initialization.

/nit_ Complete
During Init_ Complete, a VDD should do any consistency checks that have to be done
after all the other devices have completed their initialization. Normally, a VDD will not
need to do anything with this control call.

Sys_ VM_lnit
During Sys_ VM_Init, a VDD should set the initial display-mode System VM, initialize
the rest of the control block data for the system VM, and set the display focus to the sys
tem VM.

18.3.2 VM Creation, Initialization, Destruction, and State Changes

Beta Release

The following areas will also need some modifications:

• During creation, initialize the control block and allocate any VM specific memory. If
the allocation fails, return the Carry flag set to abort the VM creation.

• During initialization, set the video state of the VM, typically by making calls to the
Video BIOS and trapping the 1/0 to set up the video state structure.

• During destruction, deallocate any memory allocated for the VM and make sure there
are no pointers left that refer to the destroyed VM.

• The SetFocus routine is responsible for giving the specified VM the physical display.
Notice that there is display SetFocus and critical SetFocus. Both should give the physi
cal display to the indicated VM. Also notice that the actual restoring of the physical dis
play should occur by executing the VD D _Restore routine as an event

Microsoft Confidential April 1, 1990

18-6 Virtual Device Adaptation Gulde

18.4 VOO Services
When a Begin_ Message_ Mode control call is made, the VDD goes into a special mode
that allows the Shell device to use the VDD message services to output text to the screen
without changing the VM's video state. When the message is complete, an
End _Message_ Mode control call is made that restores the focus VM to the hardware.

As described in Chapter 17, "Virtual Device Programming Topics," a VxD 's services are
available to the VMM and other VxDs. The following is a list of the general VDD serv
ices.

18.4.1 Grabber AP/

April 1, 1990

The Grabber uses Get_ Version to verify that it is matched with the correct VDD. When
ever the Grabber needs access to the video memory or the video controller state it queries
the VDD. The VDD returns a data structure describing the requested memory or controller
state.

Get_Mem is used to get current contents of the video memory while updating the win
dowed display. Get_GrbMem is used to get a snapshot of the entire screen in response to a
ALT+ PRTSCN from the user in a full screen VM. Free_Mem and Free_ Grab are used to tell
the VDD that the grabber is no longer using this memory. Get_State and Get_GrbState re
turn current and grabbed controller states respectively. Get_Mod is used to incrementally
update the windowed display. Get_Mod returns a data structure which indicates modifica
tions to the current display. The Grabber DLL will modify only those parts of the window
that have changed and then issue a Clear_Mod to inform the VDD that the modifications
have been carried out.

In order to make sure that the video memory or state will not change when the Grabber is
accessing the memory, the VM should not be running after a Get_Mem or Get_Mod call.
The VM can continue to run only after a Free_Mem call or an explicit Unlock_App call
from the Grabber.

Service

Get_ Version

Get_ Grab_ Rtn

PIF State

Description

Currently not used, but if implemented, it should return the ver
sion.

Called by the shell to detennine which routine to call when the
user types the garb screen key.

Called by the Shell after VM creation to indicate the VDD PIP
bits for the VM. See the definitions for the bits in VDD.INC. The
interaction with the VM should be adjusted (i.e., memory alloca
tion and trapping) according to the PIP bits.

Microsoft Confidential Beta Release

Beta Release

Service

Hide_ Cursor

Set_VMType

Get_ModTime

Set_HCurTrk

Query_ Access

The VDD and Grabber DLL 18-7

Description

Allows the Shell or other device to inhibit the display of the
cursor in a window. It has no effect when the VM is full screen
and on the VM's video state.

Called by the Shell each time the VM's execution state or win
dowed state is changed. VDD should adjust its internal state,
such as initializing the structure needed to maintain the display
changes when the VM is windowed.

Used by the POLL device to determine if the video state is idle.

Called by the keyboard device when a user is typing keys. It indi
cates to pass to the Grabber a flag indicating that the cursor
position should always remain on the screen for windowed VMs.
Otherwise, the cursor will only be tracked as it moves vertically.
This prevents excessive horizontal scrolling of the window.

Called by the muse device when it wants to touch the video
memory to touch the video memory to update the cursor. If the
access canot be handled by the VDD, it will return false.

Each of the following VDD message services is only functional during Message Mode.

Service

Msg_ClrScm

Msg_ ForColor

Msg_ BakColor

Msg_ TextOut

Msg_ SetCursPos

Description

Clears the screen to an initial background color.

Sets the foreground color.

Sets the background color.

Outputs a string of characters.

Sets the hardware cursor position.

The Grabber uses the VDD Get_ Version service to verify that it is matched with the cor
rect VDD. The API described below enables the Grabber DLL to operate. The Grabber
APis, Get Mem and Get GrbMem, return a data structure that indicates to the Grabber
how to look at the VM's Video memory. Get_ GrbMem is caled after the user has typed
ALT + PRTSCN when running a full screen application. It returns a shapshot of the video
memory at the time the user typed ALT+ PRTSCN. Get_Mem prevents the VM from run
ning until Free_ Mem is called so that the video memory and video state will not change
while this memory is being accessed.

Free..:. Mem and Free_ Grab indicate that the Grabber DLL is done using the memory data
structure and, therefore, the data structure can change as necessary. For a screen grab, this
indicates to release the memory allocated. For a normal Get Mem, this indicates to allow
the VM to run again. -

Microsoft Confidential April 1, 1990

18·8 Virtual Device Adaptation Guide

Get State and Get GrbState return a data structure indicating the controller state of the
VM:-The controllerstate coupled with the memory state allow the Grabber to render the
VM's video state into a window or into the Clipboard (grab).

Get_ Mod and Clear_Mod assist the Grabber DLL in rendering a VM's video state into a
window. Get_Mod returns a data structure that indicates all the changes made to the video
state since the last Get_ Mod call. The Grabber DLL will then modify only those partrs of
the window that have changed. Clear_Mod indicates to the VDD that the modification
state should be initialized to no modifications.

18.5 The Grabber OLL
The Grabber is a dynamic-link library (DLL) primarily responsible for representing the
VM's display state to the Windows display driver. It is the library of procedures used by
WINOLDAP, the Windows application responsible for creating, destroying, and changing
the state of VMs. WINOLDAP makes private calls to the Shell device, which in turn calls
the necessary VMM services. Therefore, it is WINOLDAP, using the Grabber (and through
it the Windows display driver), that is actually responsible for windowing the display state
ofaVM.

Each of the Grabber procedures is a cProc and has to be exported. The procedure code can
be shared by several instances of WINOLDAP, and therefore, the placement of VM
specific data must be deliberate. The Grabber DLL procedures provide support for the fol
lowing:

• Screen grabbing

• Marking and selecting

• Painting non-Windows applications in a window

• Doing other miscellaneous functions

The Grabber generates data in the following situations:

• When an Extended Paint structure (EXTPAINTSTRUC) is passed from WINOLDAP.

• When a procedure requires local data. (Local data is maintained on the stack.)

18.5.1 On-Screen Selection Interfaces

April 1, 1990

The user can make on-screen selections with the keyboard, mouse, or through a hot key.
The keyboard or mouse are used only while in a window; a hot key (ALT+PRTSCRN) is used
while in full-screen or windowed mode.

The procedures that handle on-screen selections are as follows:

• BeginSelection

Microsoft Confidential Beta Release

Beta Release

The VDD and Grabber DLL 18-9

• EndSelection

• KeySelection

• AdjustlnitEndPt

• MakeSelctRect

To perf onn a selection by using the keyboard, the user performs the following steps:

1. Choose the Mark command.

2. Move the cursor to the start point of the selection.

3. Sweep through a selection using SHIFT + DIRECITON keys.

4. Press ENTER to end a selection and copy it to the Clipboard (or ESC to end the selection
without a copy).

On choosing Mark from the menu, BeginSelection gets called with argument <0,0>.

During the first phase, the cursor is moved to the actual start point. KeySelection handles
the cursor movement. It returns the new start point every time a DIRECITON key is pressed.
Notice that the selection could potentially begin at each cursor position. Therefore, every
time the start point is changed, EndSelection is called to cancel the previous selection, and
BeginSelection is called with the new start point.

Once the cursor is positioned at the actual start point, the user sweeps through a selection
area using SHIFT+DIRECITON keys. KeySelection handles the cursor movement. It returns
the new end point of the selection. Now each call to KeySelection is followed by a call to
MakeSelctRect to record the current selection rectangle. On pressing ENTER, the actual
end point and the final selection rectangle are established.

Therefore, the last call to BeginSelection establishes the actual start point, the last call to
KeySelection returns the actual end point, and the final call to MakeSelctRect records the
actual selection rectangle. If only DIRECITON keys are pressed, the user is shifting the start
point. If SHIFT+DIRECITON keys are pressed, the user is changing the active end point.

NOTE The start point and the end point of a selection have to be aligned on character boundaries in
text mode. In graphics mode, the Grabber chooses some granularity for cursor movement (e.g.,
DWORD of pixels).

The coordinates of the start point and the end point are given in screen coordinates - a window client
area position corrected by the scroll bar position. Client area coorindate = <0,0> corresponds to the
screen coordinate <ColOrg,RowOrg>. (ColOrg and RowOrg are available in the extended paint struc
ture.)

Microsoft Confidential April 1, 1990

18·10 Virtual Device Adaptation Gulde

18.5.2 Selection Interface Procedures

AdJustlnitEndPt
Description

Enlty

Exit

BeginSelectlon
Desorlptlon

Entty

Exit

ConsSelecRec
Description

Entty

Exit

April 1, 1990

This section presents descriptions of the Selection Interface Procedures in alphabetical
order.

This procedure adjusts the initial selection end point. To start off, the start point and the
end point are the same. (This is how BeginSelection records them). On the first SHIFI' +
DIREC110N key call to KeySelection, notice that KeySelection returns the wrong end
point. This routine returns the correct end point. It returns (X+DELTAx, Y +DELTAy)
where <X,Y > is the given end point. DELTAx and DELTAy are as defined in KeySelec
tion.

lpPntStruct = EXTPAINTS1RUC

YCoOrd,XCoOrd = (Y,X) point to be adjusted

DX.AX= (Y,X) end point adjust down and to right for initial selection.

This procedure starts the selection at the indicated point.

lpPntStruc = EXTPAINTS1RUC

YCoOrd,XCoOrd = (Y,X) screen coord of start pt

[lpPntStruc.SelStruc.SelctSRect] Display rectangle in the EXTPAINTS1RUC selection
structure set

This procedure makes the display rectangle consistent with the selection.

lpPntStruc = EXTPAINTS1RUC

[lpPntStruc.SelStruc.SelctSRect] Display rectangle in the EXTPAINTS1RUC selection
structure set.

Microsoft Confidential Beta Release

EndSelection
Description

Entry

Exit

lnvertSelection
Description

Entry

Exit

KeySelection
Description

Entry

Exit

Beta Release

The VDD and Grabber DLL 18·11

This procedure stops the selection.

lpPntStruc = EX1PAINTSTRUC

None

This procedure inverts the selection.

lpPntStruc = EX1PAINTSTRUC

DX.AX= (Y,X) screen CoOrd of"active" selection endpoint

This procedure is for keyboard selection.

lpPntStruc = EX1PAINTSTRUC

StartType = 0 if SHIFT key UP
!= 0 if SHIFT key DOWN

MFunc

MFunc

= OToRight
= 1 To Left
=2Down
=3Up

=OToRight
= 1 To Left
=2Down
=3Up

DX,AY = (Y X) screen CoOrd of new select end pt

KeySelection responds to DlRECTION keys and SHIFT+DlRECTION keys.

DlRECTION key response: (SHIFT key UP)

if <LEFT Key)
return <X-DELTAx, Yl

Microsoft Confidential April 1, 1990

18-12 Virtual Device Adaptation Gulde

MakeSelctRect
Description

Entry

Exit

;else it (KlGHI Key)
return (X+DELTAx, VJ

;else if (DOWN Key)
return CX, Y+DELTAy)

;else if CUP Key)
return CX, Y-DELTAy);

where <X,Y> is current end point

DELTAx DELTAy are the font width and height in text mode and some appropriate value
in graphics mode.

SHIFT+DIRECITON key response:

Similar to above except <X,Y> is current end point

This procedure sets a new selection. It is called after every call to KeySelection in re
sponse to SHIFr +DIRECTION key. Given a new end point, it adjusts the new end point to be
character-aligned in text mode (and on-a convenient boundary in the video memory in
graphics mode). It also adjusts for screen maxima It sets the Selection rectangle based on
the current start point and end point

lpPntStruc = EXTPAINTSTRUC

YCoOrd,XCoOrd = (Y,X) screen CoOrd of new end point

[lpPntStruc.SelStruc.SelctSRect], Display rect in extended paint
selection structure set

AX = 0, if no change was made to selection parameters

NOTE [lpPntStruc.SelStruc.SelctSRect] must still be set in this case

RenderSelection
Description

Entry

April 1, 1990

This procedure renders the selection into the Clipboard format

lpPntStruc = EXTPAINTSTRUC

wParam

lParam

Parameter from VDD message(= -1 ifVMDOSAPPorigin

Parameter from VDD message (=O if VMDOSAPP origin) Event ID

Microsoft Confidential Beta Release

Exit if CDX < 0)
Error

else if CDX = 0)
No· Selection

else if CDX > 0)
DX = format, (CF_OEMTEXT or CF_BITMAPl
AX = Handle, (Memory Handle or Bitmap Handle)

The VDD and Grabber DLL 18·13

18.5.3 Non-Windows Application Painting Interfaces

GetDisplayUpd
Oacription

Entry

Exit

PaintScreen
Description

Entry

Exit

Beta Release

This section presents descriptions of Non-Windows Application Painting Interfaces in al
phabetical order.

This procedure calls the VDD to get a display update (if any) and stores it in the Paint
structure.

It prevents any further changes from occurring in the application. The application restarts
after a call to one of the following; UpdateScreen, PaintScreen, or GrbUnLockApp.

lpPntStruc = EXTPAINTSTRUC

wParam

lParam

Parameter from VDD message (= -1 if VMDOSAPP origin)

Parameter from VDD message (=O if VMDOSAPP origin) Event ID

AX = Display update flags (see grabpntinc for tDisp_ flags)

This procedure paints the indicated region of the screen.

This procedure paints the non-Wmdows application screen into a window. The origin of
this is a Windows paint as opposed to a display update (that is handled at UpdateScreen).
When a non_ Windows application receives a Windows Paint message, Paint Screen gets
called,

lpPntStruc = EX1PAINTSTRUC

AX != 0 Screen Painted

AX = 0 Screen not painted, probably low Windows memory problem

Microsoft Confidential April 1, 1990

18-14 Virtual Device Adaptation Guide

Se!Paintfnt
Osscriptian

Enlry

UpdateScreen
Osscriptlan

Entry

Exit

GrbUnlockApp
Osscrlptan

Entry

April 1, 1990

This procedure sets the font for painting in the extended paint structure so that WINOL
DAP can compute the paint rectangle for use on PaintScreen calls. This is called right
before a call to PaintScreen. It is also called right before a call to UpdateScreen.

lpPntStruc = EX1PAINTSTRUC

lpWidFullScr

lpHeightFullScr

Word pointer for width return

Word pointer for height return

FntHgt and FntWid values in EX1PAINTSTRUC set

NOTE Values are set to 0 if it is a graphics screen.

[lpWidFullScr] =Width of full screen in pix (Text or Graphics)

[lpHeightFullScr] = Height of full screen in pix (Text or Graphics)

DX is height of full screen in scan lines if Graphics. in text lines if Text

AX is width of full screen in pix if Graphics, in chars if Text.

This procedure updates changed portions of the screen. When a non-Windows application
modifies the display on its own. UpdateScreen is called

lpPntStruc = EX1PAINTSTRUC

AX = 1 if Screen Paint. unless fGrbProb bit set in EPStatusFlags

AX= 0 if Screen not painted. probably low Windows memory problem

This procedure undoes the implied application lock of GetDisplayUpd

lpPntStruc = EX1PAINTSTRUC

Microsoft Confidential Be'la Release

The VDD and Grabber DLL 18·15

Exit None

18.5.4 Miscellaneous Interfaces
This section presents descriptions of Miscellaneous interfaces in alphabetical order.

CheckGRBVersion
Description

Enlry

Exit

CursorOff
Dest:tiplion

Entry

Exit

CursorOn
Description

Enlry

Exit

Beta Release

This procedure checks out the VDD version.

lpPntSbUc = EX1PAINTSTRUC

IfCAX=0)
OK

AX != 0
Bad version

AX= 1
Version ft error

AX= 2
Display type mismatch CVDD and Grabber are not compatible)
DX = Grabber Version number

This procedure destroys the cursor for an application.

lpPntSbUc = EX1PAINTSTRUC

Caret destroyed

This procedure creates the cursor for an application if it has one.

lpPntSbUc = EX1PAINTSTRUC

Caret created

Microsoft Confidential April 1, 1990

18·16 Virtual Device Adaptation Guide

CursorPosit
D•crlption

Enlry

Exit

Getfontlist
Description

Enlry

Exit

GrabComplete
D•cr/ption

Entry

Exit

Grab Event
D•t:rlption

Entry

April 1, 1990

This procedure returns the position of the cursor on the display.

lpPntStruc = EX1PAINTSTRUC

DX.AX = (Y,X) screen CoOrd of upper left of cursor

= (-1,-1) if no cursor

This procedure returns a pointer to the list of extra fonts you want loaded.

lpFontBuf ·> Buffer for font info

Font Buffer filled in

Signals that we are finished with the grab. This is called after the grab is complete. It is
time to call the VDD and have it free the grab memory.

lpPntStruc = EX1PAINTSTRUC

wParam

IParam

None

Parameter from VDD message (= -1 if VMOOSAPP origin)

Parameter from VDD message EVENT ID

Private Grabber messages. This procedure provides a private channel of event communica
tion between the VDD and the Grabber to perform a hot key screen grab.

lpPntStruc Extended paint structure

wParam Parameter from VDD message

Microsoft Confidential Beta Release

Exit

lnltGrabber
D•cription

Entry

Exit

Screenfree
D•cription

Entry

Exit

Beta Release

The VDD and Grabber DLL 18·11 .

lParam Parameter from VDD message EVENT ID

None

This is the library initialization procedure.

DI = Module handle of the library

CX = Size of local heap (should be 0)

DS = Seg addr of library data segment (isn't one)

AX= 0
I nit Error

AX != 0
OK

This procedure frees anything associated with this application.

lpPntStruc = EX1PAINTSTRUC

Any allocated stuff associated with the application is freed

Microsoft Confidential April 1, 1990

18-18 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Part

4

Beta Release

Virtual Device
Services

This part documents all the enhanced Windows virtual machine environment
services. They are grouped by service type and presented in the order shown on
the following page.

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter
17, "Virtual Device Programming Topics," for general environment discussions.

Microsoft Confidential April 1, 1990

Aoril 1, 1990 Microsoft Confidential Beta Release

CHAPTERS
19 Memory Management Services
20 110 Services and Macros
21 VM Interrupt and Call Services
22 Nested Execution Services
23 Break Point and Callback Services
24 Primary Scheduler Services
25 Time-Slice Scheduler Services
26 EventServices
27 Timing Services
28 Processor Fault and Interrupt Services
29 Information Services
30 Initialization Information Services
31 Linked List Services
32 Error Condition Services
33 Miscellaneous Services
34 Shell Services
35 Virtual Display Device (VDD) Services
36 Virtual Keyboard Device (VKD) Services
37 Virtual PIG Device (VP/CD) Services
38 Virtual Sound Device (VSD) Services
39 Virtual Timer Device (VTD) Services
40 V86 Mode Memory Manager Device Services
41 Virtual DMA Device (VDMAD) Services

Beta Release Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

Chapter

19

Beta Release

Memory Management
Services

Note to Readers: The introduction for this chapter should be considered potentially inac
curate as it has not been proofed for technical accuracy. However, the individual services
documentation may be considered authoritative, though it has not been edited for gram.mer.

Enhanced Windows supplies a rich set of memory management services. Since many of
the services are unnecessary for most VxD development, only a commonly used subset is
listed in this introduction. However, all the memory management services are documented
in either this chapter or in Chapter 40, "V86 Mode Memory Manager Device Services."

See also Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17,
"Virtual Device Programming Topics," for general environment discussions. Memory man
agement is also discussed in the Microsoft Windows Software Development Kit,
Programming Tools and in Chapter 6, "Network Support," in the Microsoft Windows
Device Driver Adaptation Guide".

The Enhanced Windows environment uses a virtual memory scheme capable of overcom
ing the limits of actual physical memory. Though it may not be physically present, a virtual
memory of 4 gigabytes is theoretically addressable. This is done by swapping (paging)
code and data to and from RAM and a secondary storage device. Since VxDs reside within
the 32-bit protected-mode portion of the environment, they may make use of the scheme's
advantages by using the memory management services.

Windows determines the amount of virtual memory actually available based on the total
amount of physical memory on the system and the amount of disk space available. This
can be changed (downward) by modifying the swap file size specified in the SYS1EM.INI
file.

Windows will continue to allocate physical memory until it has been used up. Then, it will
begin moving 4-kilobyte pages of code and data from physical memory to disk to make ad
ditional physical memory available. Windows pages in 4-kilobyte blocks, rather than un
equal-sized code and data segments. The swapped 4-kilobyte block may be only part of a
given code or data segment, or it may cross over two or more code or data segments.

This memory paging is transparent to a program. If an attempt is made to access a code or
data segment of which some part has been paged out to disk, the 80386 issues a page fault
interrupt to Windows. Windows then swaps other pages out of memory and restores the
pages that the program needs.

The Windows memory management services are presented in the following categories.
The services specified under some of the categories comprise the commonly used subset.

Microsoft Confidential April 1, 1990

19-Z Virtual Dev/CB Adaptation Gulde

• System Data Object Management

Allocate_ Device_ CB_ Area

• Device V86 Page Management

AWgn _Device_ V86 _Pages

• GOT/LDT Management

• System Heap Allocator

Heap Allocate

Heap Free

• System Page Allocator

CopyPageTable

MaplntoV86

ModifyPageBits

PageAllocate

PageFree

PageLock

PageUnlock

PageGetAlloclnfo

PhyslntoV86

• Looking at Physical Device Memory in Protected Mode

MapPhysToLinear

• Data Access Services
GetFirstV86Page

• Special Services for Protected Mode APis

• Instance Data Management

• Looking at V86 Address Space

(Are we missing GetNuUPageffandle, Addlnstanceltem & LookingatV86Address
Space?)

19.1 System Data Object Management

April 1, 1990

These services provide support for allocating special system areas. The three areas man
aged are the Control Block (i.e., the data structure passed to VxDs indicating which VM is
involved), the Global V86 Addressable Area, and the GOT and LDT.

Microsoft Confidential Beta Release

Memory Management Services 19-3

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., Allocate_Device_CB_Area is actually _Allocate_Device_CB_Area), and the
arguments are pushed right to left (unlike the PUM calling convention used by Windows, which is left
to right). The return value(s) is returned in C standard EDX:EAX. It is the responsibility of the caller to
clear the arguments off the stack. Registers EAX, ECX, and EDX are changed by calls. Registers OS,
ES, FS, GS, EBP, EDI, ESI, and EBX are preserved.

Allocate_Device_CB_Area

Beta Release

unsigned Allocate_Device_CB_Area(n8ytes,flags)
unsigned nBytes:
unsigned flags;

This call is used to allocate a region of the Per VM Control Block data structure to a partic
ular device. Devices typically want some data that is "per VM". For example, a device
which is virtualizing a particular set of J/O ports for the VM needs a place to store each
VMs "instance" of the J/O port state. This is done by allocating a region of the VM Con
trol Block large enough to hold a device specific data structure which contains the state.
For example, if the device specific data structure looks like this:

FooDeviceCB Struc
FooDevRegl db ?
FooDevReg2 db ?
FooDevReg3 db ?
FooDevReg4 db ?
FooDevState dd ?

FooDeviceCB Ends

Space in the VM Control Block would be allocated like this:

VxD_DATA_SEG
FooDevCBOffset dd ?
VxD_DATA_ENDS
VxD_ICODE_SEG

Dev 1/0 register 1
Dev 1/0 register 2
Dev 1/0 register 3
Dev I/O register 4
State flags for device

Allocate the Control Block space. This is in Foo's INIT routine

VMMCall _Allocate_Oevice_CB_Area,<<SIZE FooOeviceCB>,0>
or eax,eax
jz short No_CB_Space_Error : Probably FATAL error
mov [FooDevCBOffset],eax

VxO_ICDOE_ENOS.

VxD_COOE_SEG

In VxD procedures the Control Block pointer is passed
in EBX the control block may be pointed to like this.

mov edx,ebx

Microsoft Confidential April 1, 1990

19-4 Virtual Device Adaptation Gulde

RelumValUB

Comments

add edx,L~oouev~liUttsetJ
mov al,[edx.FooDevRegl]

VxO_COOE_ENDS

The nBytes parameter specifies the number of bytes of space to be allocated. There are cur
rendy no bits defined in the flags, this parameter must be set to 0.

Returns nonzero Control Block Offset of the block allocated if successful, returns zero if
the space could not be allocated (This is probably a fatal error, it is up to the caller to de
cide what is to be done in this case).

Control block Offsets returned from this call will be DWORD aligned. The nBytes parame
ter does not have to be a multiple of 4, but if it isn't, it will currently be rounded up to a
multiple of 4. This may change in a later releases, so do no depending one rounding.

The above code sample is not the only way to do things. There are many other ways the
Control Block Offset value can be used to access your devices specific region of the con
trol block.

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys
tem initialization. Tiying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

When Control Block regions are allocated they are initialized with value 0 in all byteS.
When new VMs are created, all bytes of the Control Block are set to 0.

Allocate_Global_V86_Data_Area

April 1, 1990

unsigned Allocate_Global_V86_0ata_Area<nBytes,flags)
unsigned nBytes;
unsigned flags;

This call is used to allocate a region of the Global V86 Addressable Area to a particular
device. This area is used for device specific objects which must also be addressable by the
Vutual mode code running in the Vutual Machine.

An example is a Virtual mode software interrupt which is trapped by the device and causes
the return of a Vutual mode pointer to some data associated with the device. The data must
be in the VM's V86 address space since a Virtual mode pointer to it is returned. In this
case there is no reason for the interrupt hook code to also be in the Global V86 Address
able Area, that can all be in the protected mode device.

The nBytes parameter specifies the number of bytes of space to be allocated Current flags
bits:

Microsoft Confidential Beta Release

Return Value

Comments

Beta Release

Memory Management Services 19·5

GVUAWordAlign lUU
GVDADWordAlign EOU
GVDAParaAlign EQU
GVDAPageAlign EOU
GVDAlnstance EOU
GVDAZerolnit EOU
GVDAReclaim EQU

0000000000000000000000000000000lli
000000000000000000000000000000108
000000000000000000000000000001008
000000000000000000000000000010008
000000000000000000000001000000008
000000000000000000000010000000008
000000000000000000000100000000008

All unused bits must be zero. GVDAxxxxAlign bits specify the indicated alignment
(WORD, DWORD, PARAGRAPH, PAGE) for the start of the block. If none are set,
BYTE alignment is assumed. GVDAlnstance, if set, indicates that the block is an item of
VM instance data for which each different VM has its own private values. If GVDAln·
stance is clear, the block is global data and all VMs share the same value setting. GVDAZ
erolnit, if set, indicates that the block is to initialized with value 0 in all bytes of the block.
If GVDAZerolnit is clear, the block will have random values in it

GVDAReclaim is only valid if GVDAPageAlign is set IF GVDAReclaim is set, then the
physical pages of the region should be "reclaimed" by the MMGR and placed on the free
list, and the NUL page should be mapped in the region.

Returns nonzero linear address of the block allocated if successful, returns zero if the
space could not be allocated This is probably a fatal error, it is up to the caller to decide
what is to be done in this case.

The Flag bit equates are defined by including VMM.INC. The equates should be used.

For blocks allocated with GVDAlnstance set, the Addlnstanceltem call is made by this
routine for you.

Note the interaction with Allocate_ Temp_ V86 _Data_ Area.

Specifying multiple GVDAxxxxAlign bits will result in random behavior. At most ONE of
these bits must be set

The returned linear address is a ring 0 linear address. It is up to the caller to convert this
into a Virtual mode SEG:OFFSET form if that is needed

The linear addresses returned by this call will be <lOOOOOh the limit of virtual mode ad
dressability.

Generally only data needs to be placed in these blocks, but code can be placed if desired.

WARNING You must be very careful if allocating two blocks, one for code which is not instanced,
and one for data which is Instanced because you cannot assume that the two blocks will be within 64K
of each other and thus addressable with the same segment register in virtual mode.

If the VxD desires the values of Instance fields allocated with this call to have a set initial
value whenever a new VM is created, the field must be initialized with the desired values

Microsoft Confidential April 1, 1990

19·6 Virtual Device Adaptation Gulde

Special nat11 tor
GVDAPageAlign

April 1, 1990

immediately after making this call. The contents of the instance blocks at the time VxD in
itiali2'Jltion is completed is what each new VM is created with.

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

This type of allocation is intended to support Vxds which need a global page aligned piece
of V86 address space where they can MaplntoV86 data. The best example of such a VxD
is the PageSwap device.

The nBytes parameter should be a multiple of 4096 (page size).

Note that this page is global but that Maplnto V86, PhyslntoV86, and LinMaplntoV86
are calls which are local to a specific VM. This means that a VxD which wishes to
globally change the mapping of this region must traverse the VM list with
Get_Next_ VM_Handle and perfonn the map in each VM individually.

WARNING Do not issue any of the map calls on this region before SYS_VM_lnit device call time.
Failure to follow this rule can cause the page type bits in the page table to get set improperly.

VxDs using this should set the correct initial VM state in their Create_ VM device call
code. The initial state of the region is actually a copy of the current state of
SYS_ VM _Handle, but you should not rely on this. Set the initial state you want explicitly
by making a MaplntoV86, or PhyslntoV86 call.

The physical page(s) which are mapped into this region at the time you allocate it are not
pages that the MMGR worries about. It is up to the VxD to put the physical pages to good
use. The addresses of these physical pages(s) is found by doing a CopyPageTable call on
the SYS_ VM _Handle and looking at the physical address in the page table entries.

Do not assume that the physical addresses of these pages equals the linear address re
turned. This will be true on most machines, but not on some. These pages by using are
mapped with Physlnto V86.

If GVDAReclaim is set, then the physical pages that currently are mapped in the region
will be reclaimed by the MMGR and placed on the free list. The NUL page will then be
mapped in the region.

If GVDAReclaim is clear, the physical page(s) which are mapped into this region at the
time you allocate it are not pages that the MMGR worries about. It is up to the VxD to use
these physical pages for something useful. Try to avoid just wasting them. The addresses
of these physical pages(s) is found by doing a CopyPageTable call on the
SYS_ VM _Handle and looking at the physical address in the page table entries.

It is invalid to assume that the physical addresses of these pages = the linear address re
turned. This will be true on most machines, but on some it will not. These pages are
mapped using Physlnto V86.

Microsoft Confidential Beta Release

Memory Management Services 19·7

You will not be able to Assign_ Device_ V86 _Pages the pages of this region. They are al
ready marked as globally owned because they are below FirstV86Page.

You cannot set both GVDAReclaim and GVDAinstance. Attempting to do so will result
in an error.

Allocate_ Temp_ V86_Data_Area

Return Value

Comments

Beta Release

unsigned Allocate_Temp_V86_Data_AreaCnBytes,flags)
unsigned nBytes;
unsigned flags;

This call is used to allocate a region of the Global V86 Addressable Area to a particular
device during system initialization.

The primary reason for allocating this area is to create a buffer into which data associated
with some Simulate Int activity (like an INT 21H DOS system call) can be placed The
area allocated with this call only exists for a short period of time during initialization. The
nBytes parameter specifies the number of bytes of space to be allocated. There are cur
rently no bits defined in the flags, this paranu~ter must be set to 0.

Returns nonzero linear address of the block allocated if successful, returns zero if the
space could not be allocated (insufficient memory, or temp area already allocated).

There is only one Temp area, therefore only one allocation will be allowed to be outstand
ing at a time. Attempts to allocate the Temp area when it is already allocated will result in
an error.

The Allocate Global V86 Data Area call does not function while the Temp Area is allo
cated. The Temp Areamustbe released with Free_ Temp_ V86 _ Data_Area before the
Allocate_ Global_ V86 _Data_ Area call can be made again.

Maire sure you Free_ Temp_ V86 _Data_ Area the temp area as soon as possible.

The returned linear address is a ring 0 linear address. It is up to the caller to convert this
into a Vntual mode SEG:OFFSET form if that is needed

The linear address returned by this call will be < IOOOOOh the limit of virtual mode address·
ability.

Since this area exists only temporarily, it doesn't make sense to Instance any of it.

The linear address returned from this call is paragraph aligned

The contents of the block will always be Zero Initialized by this call.

Microsoft Confidential April 1, 1990

19·8 Virtual Device Adaptation Guidi

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

Free_ Temp_V86_Data_Area

RllumValus

Comments

unsigned Free_Temp_V86_0ata_Area()

This call is used to free the Temp_ V86_Data_Area allocated with Allo·
cate_Temp_ V86_Data_Area.

Returns nonzero if successful, returns zero if unsuccessful (Temp Area not allocated).

The Allocate_ Global_ V86 _Data_ Area call does not function while the Temp Area is allo
cated. The Temp Area must be released with Free_ Temp_ V86 _Data_ Area before the Al·
locate_ Global_ V86 _Data_ Area call can be made again.

Once this call is issued, the Linear Address that was returned from Allo·
cate_ Temp_ V86 _Data_ Area can no longer be used for anything. The system will prob
ably crash if this is attempted.

NOTE ·This routine itself is in the init segment of WIN386. It can therefore only be called during sys
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

19.2 Device VB6 Page Management

April 1, 1990

Certain types of VxDs may want to "take over control" of certain regions of VM V86
address space for use by the VxD. The best examples of this are as follows:

• The display device (VDD), which wants to reserve those areas of the AOH to BFH page
address range that are used by the display device.

• The EMM device (part of V86MMGR), which wants to use a region of VM V86
address space between pages AOH and lOOH for the high memory EMM 3.20 Mapping
Wmdow.

• The device responsible for management of the EBIOS page, page 9FH, on machines
like the IBM PS/2 Model 80.

The following calls enable VxDs to allocate VM V86 address ranges for such purposes
and cooperate with other VxDs that also might want to use them. There are two types of as
signment that can be used: global, which applies to all VMs in the system, and local,
which applies to only one VM. The VDD video and EBIOS page assignments are ex
amples of global assignment (although these could be local depending on the specifics of

Microsoft Confidential Beta Release

Memory Management Services 19·9

the implementation). The EMM assignments are an example of local assignments. The
EMM driver does not want to take over VM V86 page assignment in VMs that are not
using EMM because then all those pages cannot be used by any other device. Thus, it
waits until a specific VM makes an EMM call of a certain type at which point the EMM
driver may do a local page assignment in that particular VM to assign the EMM pages of
the V86 address space to the EMM device. The global versus local assignment is specified
via the VMHandle parameter on the calls. If the handle is nonzero, it is local; if the handle
is zero, it is global.

No protection is provided with this mechanism; all that is provided is information so that
devices can cooperate. There is nothing to prevent a VxD from mapping pages that it does
not own or a page owned by some other VxD. A device that does these things is simply un
cooperative and not correctly implemented.

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., Assign_Oevice _V86_Pages is actually _Assign_Oevice_V86_Pages), and
the arguments are pushed right to left (unlike the PUM calling convention used by Windows, which is
left to right). The return value(s) is returned in C standard EDX:EAX. It is the responsibility of the caller
to clear the arguments off the stack. Registers EAX, ECX, and EDX are changed by calls. Registers OS,
ES, FS, GS, EBP, EDI, ESI, and EBX are preserved.

Assign_Device_V86_Pages Assign_Device_V86_Pages service

Return Value

Comments

Beta Release

unsigned Ass i gn_Oevi ce_V86_Pages (VML i nrPage, nPages, VMHandl e, flags)
unsigned VMLinrPage:
unsigned nPages:
unsigned VMHandle:
unsigned flags:

This call is used to assign a region of VM V86 address space to a device. VMLinrPage
specifies the linear page number (>=0, <=lOFh) of the first page of V86 address space to
be assigned. nPages specifies the number of pages to be assigned starting at VMLinrPage.
The entire specified range must be >=0, <=lOFh, an error will occur if it is not All of the
specified pages must be on-assigned, or an error will occur. VMHandle specifies the VM to
Local assign the pages in, if this parameter is 0, it means the pages are to be Global as
signed. There are currently no bits defined in the flags, this parameter must be set to 0.,

Returns nonzero if the assignment was successful, returns zero if the assignment failed (at
least one page in the specified range is already assigned, or invalid page range).

During device initialization only Global Assignments are allowed, and there are restric
tions on the pages which can be assigned. Pages between FirstV86Page and page OAOh
can only be top down, in order assigned during device initialization. Local Assignments,
and General assignment between FirstV86Page and page OAOh must wait until device in
itialization is complete.

Microsoft Confidential April 1, 1990

19-10 Virtual Device Adaptation Gulde

Note that Global Assignment of a page that is already assigned, either Local to any VM, or
Global assigned will fail. Global assignment can only work on pages which are not cur
rendy assigned in any VM.

DeAssign_Device_ V86_Pages

Rllurn Value

Comments

unsigned DeAssign_Device_V86_PagesCVMLinrPage,nPages,VMHandle,flags)
unsigned VMLinrPage;
unsigned nPages;
unsigned VMHandle;
unsigned flags;

This call is used to deassign a region of VM V86 address which was previously assigned
with Assign_Device_ V86_Pages. VMLinrPage specifies the linear page number (>=0,
<=lOFh) of the first page to be deassigned. nPages specifies the number of pages to be
deassigned starting at VMLinrPage. The entire specified range must be >=0, <=lOFh, an
error will occur if it is noL All of the specified pages must be assigned, or an error will
occur. VMHandle specifies the VM to Local deassign the pages in, if this parameter is 0, it
means the pages are to be Global deassigned. There are currently no bits defined in the
flags, this parameter must be set to 0.

Returns nonzero if the deassignment was successful, returns zero if the deassignment
failed (at least one page in the specified range is already deassigned, or invalid page range).

During device initialization this call will always fail. This call only works after device in
itialization is complete.

An extreme amount of chaos will occur if someone Global DeAssigns a range which is ac
tually Local Assigned, or DeAssigns a region which was not obtained via a successful As
sign_ Device_ V86 _Pages.

Get_Device_V86_Pages_Array

April 1, 1990

unsigned Get_Device_V86_Pages_ArrayCVMHandle,ArrayBufPTR,flagsl
unsigned VMHandle;
unsigned ArrayBufPTR:
unsigned flags;

This call is used to obtain a copy of the assignment bit map array for Device_ V86 _Pages.
This allows the caller to determine which regions of the VM V86 address space are cur
rently assigned, and which are available. VMHandle specifies the VM to get the assign
ment bit map of, if this parameter is 0, it means to get the Global assignment array.
ArrayBufPTR points to a buffer large enough to contain the array. The assignment array is
an array of l lOh bits, one bit for each page in the range 0-lOFh. Thus the size of the array
is ((llOh/8)+3)/4 = 9 DWORDS.

Microsoft Confidential Beta Release

Retum Value

Comments

Memory Management Services 19·11

Bits in the array which are set (=l) indicate pages which are assigned, bits which are clear
(=0) indicate pages which are not assigned. Thus to test the bit for page number N (0 N
lOFh) you could use code like this:,

mov ebx, N MOD 32 : Bit number in DWORD
mov eax, N I 32 : DWORD index into array
bt dword ptr ArrayBufPTR[eax*4],ebx; Test bit for page N
jnc short PageUnAssigned PageAssigned:

Note that this code is mearly intended to illustrate how the bit array works. This code is
not the most efficient, or the only way to implement this test. There are currently no bits
defined in the flags, this parameter must be set to 0.

Returns nonzero if successful, returns zero if the bit array could not be returned (Invalid
VMHandle).

The Global Bit Array only indicates those pages which are currently Globally owned. Bits
with 0 in them do not necessarily indicate pages which can be Global As·
sign_ Device_ V86 _Paged. The reason is that one of the VMs in the system may have that
page Local Assign _Device_ V86 _Paged. In order to determine if a page can be globally as
signed, the Global array must be examined, AND all of the VM Local arrays must be ex
amined.

19.3 GOT/LDT Management
These services provide a way for VxDs to allocate Global Descriptor Table (GOT) selec
tors and set up a Local Descriptor Table (LDT) for protected-mode execution. Notice that
the intent of these services is to suppon segmented environments in protected mode. In
general, VxDs should never need to allocate GDT selectors or set up an LDT. The only rea
son these services are needed is to support protected-mode applications. Notice that the
LDT is a per-VM object; each VM can (may) have its own LDT. Since enhanced Windows
is a flat model system, do not create multiple segments.

Allocate_GOT _Selector

Beta Release

unsigned Allocate_GDT_SelectorCDescDWORDl,DescDWORD2,flags)
unsigned DescDWORDl;
unsigned DescDWORD2;
unsigned flags:

This call is used to create a new GDT selector. DescDWORD 1 and DescDWORD2 form
the 8 bytes of information to be placed in the new descriptor. DescDWORDJ is the high
order 4 bytes of the descriptor containing the high 16 bits of the base, the high 4 bits of the
limit and the status and type bits. DescDWORD2 is the low order 4 bytes for the descriptor
containing the low 16 bits of the base and limit. Use BuildDescDWORDs to help you set

Microsoft Confidential April 1, 1990

19-12 Virtual Device Adaptation Gulde

Return Value

Comments

up these arguments. There are currently no bits defined in the flags, this parameter must be
set to 0.

Returns a 64 bit long which is actually two 32 bit DWORDs. The low DWORD (EAX) is
the non-zero selector if succesfull. The high DWORD (EDX) is split into two 16 bit word
returns. The low 16 bits of EDX is the GDT descriptor which describes the GDT itself. Un
like the LDT, it is strongly recommended that this selector not be used to edit the GDT. If
you mess up editing the LDT, you will probably just crash one app, but if you mess up
editing the GDT, you will crash the whole system. The high 16 bits ofEDX is the number
of selectors currently in the GDT (the "limit" of the GDT expressed as a number of selec
tors, (LIMIT+ 1)/8). Both DWORDS have value 0 if the allocation failed (Bad De
scDWORD arguments, GDT is full, insufficient memory to grow GDT).

The RPL of the selector returned from this call will be set to the DPL of the selector set in
DescDWORDl.

The low 16 bits of the ED X return does not change, but it is safest to save the value of the
GDT selector after each Allocate GDT Selector call. This selector will have DPL = RPL
= 0, and the Tl bit (bit 2) will be clear. -

The high 16 bits of the EDX return must be saved after each call, if its value is important,
because the size of the GDT may change on each call.

The prefered method of changing a GDT descriptor is to use SetDescriptor, rather than
using the GDT selector which is returned by this call.

Allocate_LDT _Selector

April 1, 1990

unsigned long
Allocate_LDT_Selector(VMHandle,DescDWOROl,OescOWOR02,Count,flags)
unsigned VMHandle;
unsigned OescOWOROl;
unsigned DescDWOR02:
unsigned Count:
unsigned flags;

This call is used to create new LDT selector(s) in the specified VM context VMHandle is
a valid VM handle and indicates the VM context for which the selector(s) will be valid. De
scDWORDl and DescDWORD2 fonn the 8 bytes of infonnation to be placed in the new
descriptor(s). DescDWORDl is the high order 4 bytes of the descriptor containing the high
16 bits of the base, the high 4 bits of the limit and the status and type bits. DescDWORD2
is the low order 4 bytes for the descriptor containing the low 16 bits of the base and limit.
Use BuildDescDWORDs to help you set up these arguments. The Count parameter speci
fies the number of contiguous LDT selectors to allocate. This parameter supports Block
Selector Assignment strategies. USE16 segmented applications cannot address objects
larger than 64K Bytes in size without having multiple selectors that describe the sequential
64K Byte blocks of the object. For an object <=64K bytes in size, or instances where it is

Microsoft Confidential Beta Release

Return Value

Comments

MemaryManagementServlces 19·13

inappropriate, Count= 1. For an object >64K bytes in size, Count= (Size + (64K -
1))/64K. Notice that the selectors allocated for count >1 all have the same descriptor
DWORDs in them. It is up to the caller to edit the base and limits of the individual selec
tors in a Block Selector Assignment using the LDT selector returned in the low 16 bits of
EDX. There are currently no bits defined in the flags, this parameter must be set to 0.

Returns a 64 bit long which is actually two 32 bit DWORDs. The low DWORD (EAX) is
the nonzero selector if successful, if Count was > 1, this is the FIRST selector, the second is
EAX+S, the third EAX+ 16, etc. The high DWORD (EDX) is split into two 16 bit word re
turns. The low 16 bits ofEDX is the LDT descriptor which describes the LDT itself. The
allows the caller to do things such as change the present bit of LDT selectors and change
the base and limit The high 16 bits of EDX is the number of selectors currently in the
LDT (the "limit" of the LDT expressed as a number of selectors, (LIMIT+ 1)/8). Both
DWORDS have value 0 if the allocation failed (Bad DescDWORD arguments, LDT is
full, invalid VMHandle insufficient memory to grow LDT).

The RPL of the selector returned from this call will be set to the DPL of the selector set in
DescDWORDl and the TI bit (bit 2) will be set.

The high 16 bits of the EAX return are zero since selectors are 16 bit quantities.

Note that LDT selectors are PER VM and only valid in that VM context (VM must be cur
rent VM for selector to be valid). Use SelectorMapFlat to look at regions described by
LDT selectors in VMs which are not the current VM.

The low 16 bits of the EDX return does not change once the LDT of a particular
VM is created, but it is safest to save the value of the LDT selector after each
Allocate LDT Selector call. This selector will have DPL = RPL = Protected Mode
Application PriVuege, and the TI bit (bit 2) will be set.

The high 16 bits of the EDX return must be saved after each call, if its value is important,
because the size of the LDT may change on each call.

The multiple selectors allocated with Count > 1 must be individually freed.
Free LDT _Selector does not have a count

The prefered method of changing an LDT descriptor is to use SetDescriptor.

Use of ALDTSpecSel is not advised. Reliance on specific "hard coded" LDT selectors is
contrary to good system design principals. Note that a bit like this does not exist for Allo
cate GDT Selector, this is intentional. A call with this bit set may always fail for some
values of the Count parameter, and it may start failing for all values of the Count parame
ter in a later release of the product.

BuildDescDWORDs

Beta Release

unsigned long BuildDescDWORDsCDESCBase,DESCLimit,DESCType,DESCSize,flags)
unsigned DESCBase;

Microsoft Confidential April 1, 1990

19·14 Virtual Device Adaptation Gulde

Return Va/us

Comments

unsigned UlSCLimit;
unsigned OESCType;
unsigned DESCSize;
unsigned Flags

This call is used to help you build the DescDWORDl and DescDWORD2 arguments for
calls to Allocate_LDT/GDT_Selector. DESCBase is the 32 bit BASE for the descriptor.
DESCLimit is the 20 bit LIMIT for the descriptor. DESCType specifies the type BYTE
(Only low 8 bits of the parameter are valid, other bits must be 0) for the descriptor. This is
the byte that occupies bits 8-15 of the high DWORD of the descriptor (Present bit, DPL
and TYPE fields). DESCSize specifies bits 20-23 of the high DWORD of the descriptor
(Granularity, Big/Default). Notice that these bits occupy bits 4-7 of the DESCSize parame
ter, other bits must be 0. In other words DESCSize specifies a byte just like DESCType
where only the high 4 bits of the byte are specified.

Current flags bits:

BDDExplicitDPL EQU 000000000000000000000000000000018

All unused bits must be zero. BDDExplicitDPL, if set, indicates that the DPL value
specified in the DESCType field is to be used. If this bit is clear, then the DPL specified in
the DESCType field is ignored and the DPL returned will be set to the protected mode
application RPL. Since most selectors are built for the use by protected mode applications,
this provides a convienient way to build descriptors without having to actually know
which ring protected mode applications run in.

Returns the low DWORD of the descriptor (DescDWORD2) in EAX, and the high
DWORD of the descriptor (DescDWORDl) in EDX.

If you are building selectors for use by Protected Mode applications use the built-in capa
bility provided by not setting the BDDExplicitDPL bit. Do not make assumptions about
which ring protected mode applications run in. The selection of a ring for PM applications
will be changed in future revs of Wmdows.

Free_GDT_Selector

Rsturn Va/us

April 1, 1990

unsigned Free_GOT_SelectorCSelector,flags)
unsigned Selector;
unsigned flags:

This call is used to free a GOT selector allocated with a previous Allocate_ GDT _Selector
call. Selector is the return from a previous Allocate GDT Selector call. There are cur
rently no bits defined in the.flags, this parameter must be set to 0.

Returns nonzero value if successful, returns zero if the free failed (invalid Selector).

Microsoft Confidential Beta Release

Memory Management Services 19-15

Cammsnts Certain system selectors cannot be freed since they are required tor operation of WIN386.

Free_LDT _Selector

Return Value

Comments

GetDescriptor

RIJlum Value

Cammentl

Beta Release

unsigned Free_LDT_Selector(VMHandle,Selector,flags)
unsigned VMHandle;
unsigned Selector;
unsigned flags:

This call is used to free a LDT selector allocated with a previous Allocate_ LDT_ Selector
call. VMHandle indicates the VM context of the selector. Selector is the return from a pre
vious Allocate LDT Selector call. There are currently no bits defined in the.flags, this
parameter must be set to 0.

Returns nonzero value if successful, returns zero if the free failed (invalid Selector, invalid
VMHandle).

The RPL bits of the passed Selector are ignored by this call.

unsigned long GetDescriptor(Selector,VMHandle,flags) unsigned Selector:
unsigned VMHandle;
unsigned flags:

This call is used to get a copy of the two descriptor DWORDs associated with the given
LDT or GDT Selector. Selector is a GOT or LDT selector value to get the descriptor of.
The VMHandle parameter is ignored if Selector is a GOT selector. If Selector is an LDT
selector, then VMHandle indicates the appropriate VM context for the Selector. There are
currently no bits defined in the.flags, this parameter must be set to 0.

Returns the low DWORD of the descriptor (DescDWORD2) in EAX, and the high
DWORD of the descriptor (DescDWORDJ) in EDX. Returns zero in both DWORDs if
there was an error (invalid selector, invalid VM handle).

The high 16 bits of the Selector argument are ignored (this is because the 80386 CPU often
sets them to somewhat random values when DWORD operations are performed on seg
ment registers).

The RPL bits of Selector are ignored.

The VMHandle parameter must be valid for LDT selectors.

Microsoft Confidential April 1, 1990

19·16 Virtual Darice Adaptation Gulde

SetDescrlptor

Return Value

Comments

unsigned SetOescriptor(Selector,VMHandle,OescDWORDl,OescOWOR02,flags)
unsigned Selector;
unsigned VMHandle;
unsigned OescOWOROl;
unsigned OescDWORD2;
unsigned flags;

This call is used to set (change) the descriptor of the given Selector. Selector is a GOT or
LDT selector value to set the descriptor of. The VMHandle parameter is ignored if Selector
is a GOT selector. If Selector is an LDT selector, then VMHandle indicates the appropriate
VM context for the Selector. DescDWORDl and DescDWORD2 fonn the 8 bytes of infor
mation to be placed in the descriptor. DescDWORDJ is the high ORDER 4 bytes of the
descriptor containing the high 16 bits of the base, the high 4 bits of the limit and the status
and type bits. DescDWORD2 is the low ORDER 4 bytes for the descriptor containing the
low 16 bits of the base and limit Use BuildDescriptorDWORDs to help you set up these
arguments. There are currently no bits defined in the flags, this parameter must be set to 0.

Returns non-zero value if succesfull, returns zero if it failed (invalid Selector, invalid
VMHandle). -

The high 16 bits of the Selector argument are ignored (this is because the 80386 CPU often
sets them to somewhat random vah,1es when DWORD operations are perfonned on seg
ment registers).

The RPL bits of Selector are ignored.

The VMHandle parameter must be valid for LDT selectors.

19.4 System Heap Allocator

April 1, 1990

The purpose of the heap allocator is to provide a memory manager service to system com
ponents to allocate small (i.e., less than a page size) blocks of memory for long term or
short tenn use.

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., HaapAllocata is actually _HaapAllocata), and the arguments are pushed right
to left (unlike the PL/M calling convention used by Windows, which is left to right). The return value(s)
is returned in C standard EDX:EAX. It is the responsibility of the caller to clear the arguments off the
stack. Registers EAX, ECX. and EDX are changed by calls. Registers DS, ES, FS, GS, EBP, EDI, ESI, and .
EBX are preserved.

The heap uses a boundary tag allocation scheme similar to the one used by the MS-DOS
operating system. This has the benefit of not placing some fixed limit on the total number
of heap blocks. It has the disadvantage of having a fixed overhead of extra space per block.

Microsoft Confidential Beta Release

HeapAllocate

Rtllum Va/us

Commsnn

Beta Release

Memory Manaosmenl Services 19-17

The heap overhead is about 16 bytes per block. Users should keep this in mind when allo
cating lots of objects of small size. Try to combine such needs into larger heap blocks to
cut down on the overhead.

WARNING You are strongly warned against making assumptions about the placement and size of
the heap boundary tag structures. Future versions al WIN386 may change this behavior of the heap.

NOTE 4 byte (DWORD) alignment is maintained on heap blocks. This could be increased in a later
version, but at least DWORD alignment is guaranteed.

unsigned HeapAllocateCnbytes,flags)
unsigned nbytes:
unsigned flags;

This is the call to allocate a block from the heap. nbyt.es is a 32 bit unsigned integer which
is the size, in bytes, of the block. Cunent flags bits:

HeapZerolnit EOU 000000000000000000000000000000018

All unused bits must be zero. Heapz.erolnit, if set, indicates that if the allocation is succes
ful. the memory is to be initialized with value 0 in all bytes of the block. If HeapZerolnit is
clear, the block will have completely random values in it.

The return value is the 32 bit RING 0 address (offset relative to standard WIN386 RING 0
OS) of the block. Value is 0 if the allocation failed (insufficient memory).

Blocks are DWORD aligned as noted, but sizes do not have to be a multiple of 4.

There is no "protection" of the heap. Care must be taken not to overrun the size of your
block. Failure to do this will result in odd behavior and crashes.

There is no "motion" of blocks in the heap (heap blocks are all fixed), except via
HeapReAllocate, and therefore no compaction. You are advised not to use the heap in
such a way as to severely fragment it. You will end up wasting lots of memory by doing
this.

The Flag bit equates are defined by including VMM.INC, please use the equates.

Allocation of 0 length heap blocks is not allowed.

Microsoft Confidential April 1, 1990

19-18 Virtual Device Adaptation Gulde

Heap free

Return Value

Comments

HeapGetSize

Return Value

Comments

unsigned HeapFree(hAddress,flags)
unsigned hAddress;
unsigned flags;

This call is used to free an existing block of heap. hAddress is the value returned from a
previous call to HeapAllocate or HeapReAllocate and indicates the block to be freed.
There are currently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if the block was succesfully freed, zero if the free was unsuccesful
(invalid hAddress).

None

unsigned HeapGetSizeChAddress,flags)
unsigned hAddress;
unsigned flags;

This call is used to get the size of an existing block of heap. hAddress is the value returned
from a previous call to HeapAllocate or HeapReAllocate and indicates the block to get
the size of. There are currently no bits defined in the flags, this parameter must be set to 0.

Returns the size, in bytes, of the block. Returns zero if there was an error (invalid
hAddress).

None

HeapReAllocate

April 1, 1990

unsigned HeapReAllocate(hAddress,nbytes,flagsl
unsigned hAddress;
unsigned nbytes;
unsigned flags;

This call is used to grow or shrink or reinitialize an existing block of heap. hAddress is the
value returned from a previous HeapAllocate or HeapReAllocate call and indicates the
block to be reallocated. nbytes is a 32 bit unsigned integer which is the new size in bytes of
the block. Current flags bits:

HeapZerolnit
HeapZeroRelnit
HeapNoCopy

EOU
EOU
EOU

000000000000000000000000000000018
000000000000000000000000000000108
000000000000000000000000000001008

Microsoft Confidential Beta Release

Return Va/us

Cammsnts

Memory Management Services 19· 19

All unused bits must be zero. HeapZerolnit, if set, indicates that if the reallocation is
succesful, and the reallocation is growing the size of the block, the "grow area" of the
block is to be initialized with value 0 in all bytes. This bit is ignored on a reallocation
which is not growing the size of the block. HeapZeroRelnit, if set, indicates that the EN
TIRE block is to be reinitialized with value zero in all bytes of the block. HeapNoCopy, if
set, indicates that the previous contents of the block are irrelevant, and don't need to be
copied into the newly sized block. There is no reason that more than one of these bits
should be set. If none of the bits are set, the previous contents of the block are copied into
the new block, up to the lesser of the size of the new block, and the size of the old block,
and the "grow area", if any, is not initialized with anything.

The return value is the 32 bit RING 0 address (offset relative to standard WIN386 RING 0
DS) of the new block. Value is 0 if the reallocation failed (insufficient memory, or invalid
hAddress).

Do not make assumptions about the relationship between the passed in hAddress and the
hAddress returned. Assume that the returned hAddress is always different than the passed
in hAddress.

In the case where this call fails, the passed in hAddress block remains valid. In the case
where this call works and returns a new hAddress, the passed in hAddress is no longer
valid (old block has been HeapFreed).

There is no "protection" of the heap. Care must be taken not to overrun the size of your
block. Failure to do this will result in odd behavior and crashes.

There is no "motion" of blocks in the heap (heap blocks are all fixed), and therefore no
compaction. You are advised not to use the heap in such a way as to severely fragment it.
You will end up wasting lots of memory by doing this.

Note that this call can be used to reset the contents of an existing heap block to 0 by setting
nbytes to the current size of the block and setting HeapZeroRelnit.

You cannot HeapReAllocate a block to size 0, use HeapFree.

The Flag bit equates are defined by including VMM.INC, please use the equates.

19.5 System Page Allocator

Beta Release

The purpose of the page allocator is to provide the main allocation of 80386 4 K pages to
particular VM or VxDs.

Microsoft Confidential April 1, 1990

19·20 Virtual Device Adaptallon Gulde

CopyPageTable

Return Value

Comments

April 1, 1990

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., PagaAllocata is actually _PageAllocata), and the arguments are pushed right
to left (unlike the PUM calling convention used by Windows, which is left to right). The return value(s)
is returned in C standard EDX:EAX. It is the responsibility of the caller to clear the arguments off the
stack. Registers EAX, ECX, and EDX are changed by calls. Registers OS, ES, EBP, EDI, ESI, and EBX
are preserved.

unsigned CopyPageTable(LinPgNum,nPages,PageBufPTR,flags)
unsigned LinPgNum:
unsigned nPages:
unsigned *PageBufPTR:
unsigned flags:

This call is used to obtain a copy of a WIN386 page table. This call is intended as an assist
to WIN386 system components that need to analyze the linear to physical mapping (such
as OMA devices). LinPgNum is the page number of the first page of the range. This can be
anything in the range 0 - OFFFFFb. Thus addresses in the range 0-3FFh refer to addresses
in the IM V86 address space of the current VM. To compute the page number of any re
gion simply take the address relative to the standard RING 0 WIN386 OS and shift it right
by 12 bits. For example, the linear address 60001AB6h is in page number 60001h. Align
ment considerations of this address (beyond 4K alignment) are the responsibility of the cal
ler. nPages is the number of page table entries to copy. PageBufPTR is a 32 bit RING 0
offset relative to the standard WIN386 RING 0 OS which is the address of a buffer where
the page table will be copied. Caller must insure that this buffer is large enough. Each page
table entry is a DWORD, so the buffer must be at least nPages*4 byteS long. There are cur
rently no bits defined in the flags, this parameter must be set to 0.

Returns a nonzero value if the copy is succesful, returns 0 value if the copy was succesful,
but at least a part of the range overlapped a region where the corresponding Page Directory
Entry is not present.

You get a copy of the Page Tuble; writing to your buffer has no effecL

Note that V86 page tables stop at page lOFh.

To look at the page table of a VM that is not the current VM simply use the high linear
address of the VM. For instance to look at the page table starting at V86 address OAOOO:O
of a VM which is not the current VM go:

mov eax,flJAf/J000h
add eax,[ebx.CB~High_Linear]
shr eax,12

V86 linear adress of 0Af/Jf/J0:f/J
High linear address
Convert to page number

Microsoft Confidential Beta Release

Memory Management Services 19-21

Note that the above sequence always works correctly (works if the VM is the current VM
as well). So simply doing this in all cases avoids the complication of worrying about
whether the VM is the current VM.

The intent of this call is for you to look at the physical addresses in the high 20 bits of the
entries. The low 12 bits of system information may be examined however.

You are warned to be careful about keeping this buffer for any length of time. The actual
page table entries can change while the copy you got won't The information in the copy
should be analysed quickly.

GetDemandPagelnfo
void GetDemandPagelnfo(BufPtr,flags)

DemandlnfoStruc *BufPtr;
unsigned flags;

This call is for use by the demand paging device. It provides information for the demand
pager.

DemandlnfoStruc struc
DILin_Total_Count dd ? Size of linear address space in pages
DIPhys_Count dd ? Count of phys pages
DIFree_Count dd ? Count of free phys pages
DIUnl ock_Count dd ? Count of unlocked phys Pages
DILinear_Base_Addr dd ? Base of pageable address space
DI Li n_Total_Free dd ? Total free linear pages
DI Reserved dd 12 DUPC?l Reserved

DemandlnfoStruc ends

Return Value

Comments

Be'ta Release

DU.in_ Total_ Count is the size in pages of the linear address space subject to demand
paging. Dll.inear_Base_Addr is the linear address of the start of the demand pageable re
gion. Thus there are Dll.in_Total_Count pages starting at address Dll.inear_Base_Addr
which are subject to demand paging. Dll.in_Total_Free is the number of the
DU.in_ Total_ Count pages which are currently free. Notice that this space may not be allo
catable in a single block, it is the total free, not the size of the largest free block. Note that
if Dll.inear_Base_Addr = 0, this means that the demand pageable region of the system is
not contiguous. DIPhys_Count is the total number of physical pages under the control of
the memory manager. DIFree_Count is the number of pages currently on the free list. DI
Unlock_Count is the count of pages which are currently unlocked, notice that free pages
are unlocked. There are currently no bits defined in the flags, this parameter must be set to
0.

This call does not have a return value. It simply fills in the structure pointed to by BufPtr.

The reserved field is exactly that, reserved. Do not make any assumptions about what is in
this region. Behavior will change in later releases.

Microsoft Confidential April 1, 1990

19-22 Virtual Device Adaptation Gulde

GetfreePageCount

Return Value

Comments

unsigned long (flags)
unsigned flags;

This call is used to obtain the count of free 4 K pages. And the count of pages that can be al
located as PageLocked. There are currently no bits defined in the flags, this parameter
must be set to 0.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the 32 bit count of free 4K pages in the system which could be allo
cated with the PageAllocate call. The High DWORD (EDX) is the 32 bit count of pages
available for allocation as PageLocked pages at the current time.

You should be careful about making assumptions about being able to tum around and issue
a call to allocate all of the pages returned by this call. Besides any alignment considera
tions, it is possible someone could get in and allocate some or all of the pages before you.
This call is intended to be advisory in nature.

Note that in a demand paged virtual memory system such as WIN386 the free pages count
is usually very close to 0. It is more relevant to use the EDX return to make judgements
about allocation possibility. EDX contains the count of pages currently available for alloca
tion as PageLocked pages. Note that many assumptions are not valid. EAX<=EDX is not
a valid assumption for instance.

Note that in a virtual memory environment it is not a good idea to go soaking up tons of
virtual address space. Start with some, then PageReAIIocate it to make it bigger if needed.

GetSetPageOutCount

Return Value

April 1, 1990

unsigned GetSetPageOutCount(NewCount,flagsl
unsigned NewCount;
unsigned flags;

This call is for use by the demand paging device. It allows the paging device to manipulate
a memory manager parameter associated with demand paging. This parameter is the "page
out ahead" count. Whenever a page is paged out to satisfy a page in, an additional
PageOutCount-1 pages are also paged out and put on the free list (if possible).There is one
bit in the flags:

GSPOC_F_Get equ 000000000000000000000000000000018

All other bits must be zero. If GSPOC_F _Get is set, the call returns the current value of
the page out count in EAX, and the NewCount parameter is ignored. If GSPOC_F _Get is
not set, the call sets the value of the page out count to N ewCount.

Returns the page out count if GSPOC_F _Get is set. else it has no return.

Microsoft Confidential Beta Release

Comments

Memory Management Services 19-23

WARNING This call is intended for use by the PageSwap device, others should not be calling it!
Others making this call can disturb the operation of the PageSwap device.

There is an equate for the flag bit in VMM.INC, use the equate.

GetSysPageCount

Rstum Va/us

Comments

GetVMPgCount

Return Value

Comments

Beta Release

unsigned GetSysPageCountCflags)
unsigned flags;

This call is used to obtain the current count of system (PG_SYS) 4K pages. There are cur
rently no bits defined in the flags, and this parameter must be set to 0.

The return value is the 32 bit count of 4K pages allocated as PG_SYS pages in the system.

It is generally true that this number is the size of WIN386. However, this is the general
case only.

unsigned long GetVMPgCountCVMHandle,flags)
unsigned VMHandle:
unsigned flags:

This call is used to get the current count of 4K pages allocated to a particular VM. The
VMHandle parameter must be a valid VM handle and indicates the VM to get the allocated
page count of. There are currently no bits defined in the flags, this parameter must be set to
o.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the total count of pages (of all types butPG_SYS) in the system allo
cated for this VM. The High DWORD (EDX) is the count of pages which are allocated to
this VM, but which are not mapped into the VM's lMeg address space at the current time.
Value (both dwords) is 0 if the call failed (invalid VMHandle).

You should be careful about assuming that EAX-EDX is the size of the VM. It is in one
sense, but not in the standard DOS senses.

Microsoft Confidential April 1, 1990

19-24 Virtual Device Adaptallan Gulde

MaplntoV86

April 1, 1990

unsigned MaplntoV86(hMem,VMHandle,VMLinPgNum,nPages,Page0ff ,flags)
unsigned hMem;
unsigned VMHandle;
unsigned VMLinPgNum;
unsigned nPages;
unsigned PageOff;
unsigned flags;

This call is used to map some or all of the pages of a memory block into a specific VM's
Vutual 8086 address space. hMem is the value returned from a previous call to PageAllo·
cate or PageReAllocate and indicates the block to be mapped. VMHandle parameter must
be a valid VM handle and indicates the VM into which the map is to occur. VMLinPgNum
is the address in the IM V86 address space where the map will start (this is a page number.
thus linear address 60000h = page 60h). Alignment considerations of this address (beyond
4K alignment) are the responsibility of the caller. Map addresses below page lOh, or above
lOFh will cause an error. nPages is the number of pages to map. PageOffis the number of
pages into the hMem block to the first page of the block which is to be mapped at
VMLinPgNum (thus PageOff is 0 to map the first page of hMem at VMLinPgNum).
nPages and PageOff allow one hMem block to be scatter mapped into different VM loca
tions. An error will occur if PageOff + nPages is greater than the size of hMem.

Current flags bits:

PageDEBUGNulFault EQU 00000000000000000000000000010000B

All unused bits must be zero. PageDEBUGNulFault, if set, indicates that if hMem is the
handle of the NUL system page, and this is the DEBUG version of WIN386, access to
these pages should cause a page fault DEBUG exception. This bit is ignored if hMem is
not the system NUL page handle, or this is not DEBUG WIN386.

It is generally true that hMem blocks mapped with this call should not be composed of
PG_SYS pages. This is not disallowed, but is not advised.

There is a special hMem handle that can be used with this call. The value of this handle is
obtained by calling the routine GetNulPageHandle (actual name _ GetNulPageHandle)
which will return you this special hMem handle in EAX. This is the hMem of the system
NUL page. This page is used to occupy regions of the address space which are "unused"
but for which it is not desirable to cause a page fault if they are accessed. The NUL page is
multiply mapped at many locations in the system, so its contents are always random.
Under DEBUG WIN386, a fault occurs if the NUL page is touched and the PageDEBUG
NulFault bit was set on the call which mapped the page.

If the PageSwap device is type one (not direct to hardware), there is an implied PageLock
on the pages mapped with this call, and an implied PageUnlock on the pages which this
call is mapping over. This is consistent with the fact that pages mapped into V86 address
space must be locked (V86 memory cannot be demand paged). If the PageSwap device is
type two (direct to hardware) than the implied lock and unlock done by this call are dis
abled because in the case of a type two PageSwap device V86 memory CAN be demand

Microsoft Confidential Beta Release

RBlum Vala•

Comllltlllll

Memoty Manaasmsnt Sstvlcas 19-25

paged. See lhe PageAllocate documentation for a description of the different PageSwap
device types and lheir relevance.

RebJmS a 00111.Cro value if the map is succesful, renuns 0 value if the map was unsuccesful
(invalid hMem, invalid VMHandk, map range illegal. size discrepancy, insufficient
memory on implied PageLock).

The implied PageLock, which is performed on all of the pages mapped if the PageSwap
device is type oneAg, is consistent with the fact that V86 memory cannot be Demand
Paged while lhe VM is in a runable state. Whenever the V86 memory mapping is changed
via MaplntoV86, the previous memory that was mapped in that region of the VM is un
locked. The conect way to think of this is that there is an implied PageLock whenever
memory is mapped into a V86 context, and an implied Page Unlock whenever it is "un
mapped" from the V86 contexL This "unmapping" can OCClD' when: A different handle (in
cluding the NulPageHandle) is MaplntoV86ed or LinMaplntoV86ed to the region, or a
PbyslntoV86 is performed to the region.

There is nothing to prevent you from mapping the same block, or piece of a block, into
multiple places in a VM, or into multiple VMs. Such operations are not particularly advis
able though. For one thing, the reporting of memory owned by a VM will be disturbed. For
this reason it is also not generally a good idea to map pages that were allocated as belong
ing to one VM into a different VM. The one exception to this general rule is the request for
a map by one VM to look at the memory of a different VM. Such maps should be of a rela
tively short duration.

The page auributes for these pages will be P _USER+P _PRES+P _ WR11E. P _DIRTY and
P _ACC will be cleared by the call. PG_ TYPE will be set to whatever the type of the
hMem pages are.

The Flag bit equates are defined by including VMM.INC, please use the equates.

The intent ofMaplntoV86 support for pages between page lOh and FustV86Page is to
support WIN386 devices which have Allocate_ Global_ V86 _ Data_Area a
GVDAPageAlign region. Use of mapping in this region to other addresses can easily
crash the system and should be avoided.

Regions which span across YarstV86Page are not allowed.

The reason for the page IOh limitation is that on most versions of the Intel 80386 CPU
there is an errata which prevents you from setting up a Linear != Physical address mapping
in the fllSt 64K of the address space.

ModifyPageBits

Beta Release

unsigned HodifyPageBits(VMHandle,VHLinPgNum,nPages,bitANO,bitOR,pType,flags)
unsigned VHHandle;
unsigned VMLinPgNum;
unsigned nPages;

Microsoft Confidential April 1, 1990

19-26 Virtual Device Adaptation Sult/B

Comments

April 1, 1990

unsigned bitANU;
unsigned bitOR;
unsigned pType;
unsigned flags;

This call is used to modify the page protection bits associated with PG_HOOKED pages in
the V86 address space of a VM. It allows the P _PRES. P _WRITE. and P _USER bits of the
pages to be modified along with PG_TYPB if appmpriatc. The VMHandle parameter must
be a valid VM Handle and indicates the VM whose page bits are to be modified. VMUnPg
Num is the page nwnber in the lM V86 VM address space where the modification will
start (this is a page nwnber. thus linear address AOOOOh = page AOh). When clearing the
P _PRES bit (making pages not present), all of the pages specified (nPages starting at
VMLinPgNum) must be PG_HOOKED pages for which a HOOK Page Fault handler has
been registered, and pType must be PG_HOOKED. nPages is the number of pages to mod
ify the bits of. Addresses below the start of VM specific memory, or above lOFh will cause
an error. bitAND is an AND mast f<r the bits, bitOR is an OR mask. Thus to clear
P _PRES, P _WRITE, and P _USER, bitAND would be (not
P _PRES+P _ WRITE+P _USER), and bitOR would be zero. To set P _USER, and clear
P _ WR11E, leaving P _PRES IDlCbanged, bitAND would be (NOT P _WRITE), and bitOR
would be P _USER. Having bits other than P _WRITE. and P _USER set in bitOR will
cause an error. Having bits other than P _.PRES, P _ WRJ.TE. and P _USER clear in bitAND
will cause an enor.

This call always has the side effect of clearing P _DIRTY and P _ACC. Thus to just clear
these two bits, give a bilAND of OFFFFFFFFh, and a bitOR of 0. pType indicates a value to
be placed in the PG_lYPE field. The allowed values are:

PG_HOOKED EOU 7
PG_IGNORE EOU -1 C0fFFFFFFFh >

Any other value will cause an error. PG_IGNORE indicates that the PG_TYPE field is not
to be modified by the call. This is the value that lnJlSt be set if P _PRES bit is being set (or
being left set). PG_HOOKED must be specified if the P _PRES bit is being cleared by the
call. Recall that making a PbyslntoVM call sets the type field for the physical pages to
PG_SYS. This parameter is provided so that the page types can be reset to PG_HOOKED
when the mapping is changed to not present Recall that MaplntoVM also resets the
PG_ TYPE field to the type of the pages of hMem. There are currently no bits defined in
the flags, this parameter must be set to 0.

Returns a noll7.Cl'O value if successful, returns 0 value if unsuccessful (invalid VMHandle,
invalid bits in bilAND or bitOR, invalid pType, page range bad).

You cannot use this call to set the Present bit. You may either clear the present bit, or leave
it unaffected. Use MaplntoV86 or PbyslntoV86 to make pages present

Microsoft Confidential Beta Release

PageAllocate

Beta Release

Memory Management Services 19-27

unsigned PageAllocateCnPages,pType,VMHandle,AlignMask,minPhys,
maxPhys,PhysAddrPTR,flags)

unsigned nPages;
unsigned pType;
unsigned VMHandle;
unsigned AlignMask;
unsigned minPhys;
unsigned maxPhys;
unsigned *PhysAddrPTR;
unsigned flags;

This is the call to allocate a block of memory. The memory allocated is actually just linear
address space, whether there is actually physical memory mapped for this block as part of
the allocation is specified by the flags. nPages is a 32 bit unsigned integer which is the size
in 4K pages of the block. pType indicates the type of page(s) being allocated:

PG_VM
PG_SYS
PG_HOOKED

EQU
EQU
EQU

0
1
7

PG_ VM pages are pages which are specific to a particular VM context. The handle of
PG_ VM memory blocks will typically be placed in the VM Control Block someplace.
PG_HOOKED pages are pages which will be mapped into the VM at locations where the
component has registered a HookPageFault handler. Like PG_ VM pages, PG_HOOKED
pages are specific to a particular VM context. The VMHandle parameter must be a valid
VM Handle for all page types except PG_SYS. PG_SYS pages are global system pages
which are valid in all VM contexts (pages are specific to the WIN386 system component
which allocates them, rather than to a VM). The VMHandle parameter is not relevant to
PG_SYS pages and it must be set to 0 when allocating PG_SYS pages.

Current flags bits:

PageZerolnit
PageUseA-lign
PageContig
PageFixed
Pagelocked
PagelockedlfDP

EQU
EOU
EQU
EOU
EQU
EQU

000000000000000000000000000000018
000000000000000000000000000000108
000000000000000000000000000001008
000000000000000000000000000010008
000000000000000000000000100000008
000000000000000000000001000000008

All unused bits must be zero. PageLocked, if set, indicates that a PageLock is implied as
part of the PageAllocate operation. This forces the allocate to make all pages of the handle
present when the handle is allocated consistent with the implied PageLock. PageLock·
edilDP, if set, indicates that a PageLock is implied as part of the PageAllocate only if the
PageSwap device is not direct to hardware. There are two basic behavior types for the
PageSwap device. Type one pages through DOS and/or the ROM BIOS. This type of
PageSwap device places restrictions on the ability to demand page certain types of system
memory because of the fact that it runs partly in V86 mode as part of its operation.
PageSwap type two pages by talking directly to the disk hardware. This second type of
PageSwap device removes some of the restrictions because it runs completely in protected

Microsoft Confidential April 1, 1990

19-28 Virtual Dev/cs Adaptation GuldB

April 1, 1990

mode when accessing the paging device. PageLocked indicates that the memory should be
locked regardless of which type of PageSwap device is presenL PageLockedln>P indi
cates that this memory only needs to be locked if the PageSwap device is type one. Page
Fixed. if set. indicates behavior similar to PageLocked as far as the implied PageLock is
concerned. and in addition a Fixed handle can never be unlocked, and its linear address
will never change (via PageReAllocate). Note that ReAllocation of a Fixed handle will
generally not succeed due to the Fixed restriction on the ability to change the linear
address of the handle. Note that an allocation without an implied PageLock via
PageLocked. PageLockedIO>P, or PageFixed will simply allocate linear address space.
The pages of such a handle will be made present .. on demand" when the address space is
touched. If it is desired to make part of the handle present to perfonn some function. use
PageLock to force the contents to be loaded. PageUseAlign, if set. indieates that the Align
Mask. minPhys, maxPhys. and PhysAddTPTR parameters are specified. If PageUseAlign is
clear. the AlignMask, minPhys. maxPhys, and PhysAddrPTR parameters are set to 0 and ig
nored. Note that if PageUseAlign is set, PageFixed must also be specified. It makes no
sense to have an aligned memory handle which is not fixed. PageZ.erolnit. if set. indicates
that if the allocation is succesful. the memory is to be initialized with value 0 in all bytes
of the block. If PageZ.erolnit is clear, the block will have completely random values in it.
PageContig, if set, indicates that the Physical memory pages of the block are to occupy
sequential Physical memory addresses (memory is "physically contiguous;. PageContig
is ignored if PageUseAlign is not set.

PageUseAlign is provided to assist device drivers that wish to allocate buffers for use by
the device which have additional alignment restrictions enforced by the hardware (such as
64K and 128K alignment for DMA). If the PageUseAlign bit is set. AlignMask specifies
an alignment (power of 2> 4k) requirement for the first physical page of the block. Physi
cal page numbers are the physical address of the page shifted right by 12. Correct align
ment is tested for by ANDing AlignMask with the first physical page number and testing
for zero. If the AND is zero, the page has the correct alignmenL Thus:

00000000h
00000001h
00000003h
00000007h
0000000Fh
0000001Fh

4K alignment (ignore AlignHask)
SK alignment

16K alignment
32K alignment
64K alignment

128K alignment

Remember that you will probably also want to set the PageContig biL minPhys and max
p hys place additional physical address restrictions on the physical pages of the memory
block. These specify the minimum and maximum allowed physical page numbers. All
physical page numbers of the block must be >=minPhys, and <max.Phys. For instance. for
setting up a DMA buffer for an 80386 accelerator card in a PC XT, the buffer needs to be
physically restricted to pages less than 1 MB since the XT DMA controller cannot DMA
into pages above 1 MB. In this case, minPhys would be 0, and max.Phys would be IOOh. If
you don't want to specify this (i.e. you just want AlignMask), set minPhys to 0, and max.
Phys to OFFFFFFFFh. Note that when PageUseAlign is set. the physical page address
(physical page number shifted left by 12) of the start of the block will be returned via the
PhysAddTPTR pointer parameter.

Microsoft Confidential Beta Release

Retum Value

Comments

Page Free

Return Value

Comments

Beta Release

Memory Management Services 19·29

NOTE PageUseAlign PageAllocations can only be performed during device initialization. Aligned
PageAllocations will fail if done after device initialization.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the memory handle of the block. The High DWORD (EDX) is the 32
bit RING 0 address (offset relative to standard WIN386Ring 0 DS) of the block. If
PageUseAlign was specified, the physical address of the start of the block is placed in the
DWORD pointed to by PhysAddrPTR. Value (both DWORDs) is 0 if the allocation failed
(insufficient memory).

You should be careful about making assumptions about any apparent relationship between
the memory handle and the blocks RING 0 or physical address. Any such apparent relation
ship is subject to change in a later release.

PhysAddrPTR had better point somewhere reasonable when PageUseAlign is sj>ecified.
There is no way to check its validity, if it's garbage you'll either cause a page fault or
stomp on something you shouldn 'L

PageAllocation of 0 length blocks is not allowed.

PageLocked and PageLockedlIDP should not both be set Only one, or the other, or
neither are valid settings. Note also that PageLockedlfDP cannot be set on calls made
before the init complete system control call is made. This is because it is not possible to ask
the PageSwap device what type it is before it has been initialized.

The Flag bit equates are defined by including VMM.INC, please use the equates.

unsigned PageFree{hMem,flags)
unsigned hHem;
unsigned flags;

This call is used to free an existing block of pages. hMem is the value returned from a pre
vious call to PageAllocate or PageReAllocate and indicates the block to be freed. There
are currently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if the block was succesfully freed, zero if the free was unsuccesful
(invalid hMem).

It is the responsibility of the WIN386 system components which allocate non-PG_SYS
pages to free them when the VM they are associated with is destroyed. There is no "auto
matic" freeing of such memory done by the memory manager. PG_SYS pages do not need
to be freed before WIN386 exits.

It is not an error to PageFree a handle which is all or partially locked.

Microsoft Confidential April 1, 1990

19-30 Virtual Device Adaptation Gulds

WARNING Be very careful about PageFreeing blocks which are currently MaplntoV86ed to some VM
context. Doing this can result in a crash.

PageGetAlloclnfo

Return Va/1111

Commentr

unsigned long PageGetAlloclnfoCflags)
unsigned flags:

This call is used to obtain information prior to a PageAllocate or PageReallocate call. It
returns the largest block of linear address space that could be allocated, together with infor
mation relating to allocation of Locked or Fixed memory. There are currently no bits de
fined in the flags, this parameter must be set to 0.

The return value is a 64 bit long which is actually two 32 bit DWORDs. The Low
DWORD (EAX) is the 32 bit count of free 4K pages in the system which could be allo
cated with the PageAllocate as not PageLocked or PageFixed memory. The High
DWORD (EDX) is the 32 bit count of pages available for allocation as PageLocked pages
at the current time.

You should be careful about making assumptions about being able to turn around and issue
a call to allocate all of the pages returned by this call. Besides any alignment considera
tions, it is possible someone could get in and allocate some or all of the pages before you.
This call is intended to be advisory in nature.

EAX contains the size of the largest available region of linear address space. EDX con
tains the count of pages currently available for allocation as PageLocked pages. Notice
that many assumptions are not valid. EAX >= EDX is not a valid assumption for instance.

You should be very careful about turning around and doing a PageAllocate with the EAX
return from this call. You can cause all sorts of odd behavior if you take up all of the linear
address space. You should allocate memory on an as needed basis instead of allocating
huge blocks of memory most of which you do not use.

PageGetSizeAddr

April 1, 1990

unsigned long PageGetSizeAddrChMem,flags)
unsigned hMem;
unsigned flags;

This call is used to get the size and linear address of an existing block of pages. hM em is
the value returned from a previous call to PageAllocate or PageReAllocate and indicates
the block to get the size and address of. There are currently no bits defined in the flags, this
parameter must be set to 0.

Microsoft Confidential Beta Release

Return Value

Comments

Page Lock

Return Value

Comments

Beta Release

Memory Management Services 19·31

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the size in 4K pages of the block. The High DWORD (EDX) is the 32
bit RING 0 address (offset relative to standard WIN386 Ring 0 DS) of the block. Value
(both DWORDs) is 0 if the call failed (invalid hMem).

Note that the size of a handle is the total size of the handle and has nothing to do with what
pieces of the handle may or may not be present.

unsigned Pagelock<hMem,nPages,PageOff,flags)
unsigned hMem;
unsigned nPages;
unsigned PageOff;
unsigned flags;

This call is used to lock (make present) all or part of an existing memory handle. hMem is
the value returned from a previous call to PageAllocate or PageReAllocate and indicates
the block to be locked. nPages specifies the count of pages to be locked. PageO!f specifies
the page offset from the start of the block of the first page to be locked. nPages together
with PageOff allow all or only part of the hMem block to be locked. An error will occur if
PageOff+nPages is greater than the size of hMem. There are currently no bits defined in
the flags, this parameter must be set to 0.

Current flags bits:

PagelockedlfOP EOU 000000000000000000000001000000008

All unused bits must be zero. PageLockedlIDP, if set, indicates that the lock only needs to
be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to hardware), calls to this routine with PageLock
edlIDP set are effectively NOPs. See the PageAllocate documentation for a description of
the different PageSwap device types and their relevance.

Returns nonzero value if the block was succesfully locked, zero if the lock was unsucces
ful (invalid hMem, insufficient memory).

This call may be issued on hM em blocks which are PageFixed, but this is a wasted call
since PageFixed blocks are always locked (present).

Because of the overcommit associated with demand paging, callers must be prepared for
this call to fail due to unavailability of sufficient memory to make the region present.

Note that PageLockedIIDP cannot be set on calls made before the init complete system
control call is made. This is because it is not possible to ask the PageSwap device what
type it is before it has been initialized.

Microsoft Confidential April 1, 1990

19-32 Virtual Device Adaptation Gulde

Each Page of a handle has an individual lock count. Each lock increments the counter. The
counter must go to 0 for the page to be unlocked. This means that if the handle is locked 5
times, it has to be unlocked 5 times.

Do not leave handles locked when they don't need to be, unlock handles as soon as
possible to make the physical memory associated available for use by demand paging.

The Flag bit equates are defined by including VMM.INC, please use the equates.

PageOutDirtyPages

Rltum Value

April 1, 1990

unsigned PageOutDirtyPagesCnPages,flags)
unsigned nPages;
unsigned flags;

This call is for use by the demand paging device. It allows the paging device to periodi
cally .. flush" out dirty pages to prevent a large number of dirty pages from accumulating in
the system. nPages is the maximum number of dirty pages to flush at this time.

Current flags bits:

PagePOPSetBase
PagePOPClearBase
PagePDPQueryOirty

EOU
EOU
EOU

000000000000000001000000000000008
000000000000000010000000000000008
000000000000001000000000000000008

All unused bits must be zero. The PageSwap device may wish to flush out all dirty pages
in the system as part of a "background" activity ("write out ahaead''). These two bits allow
this to be done, it allows the caller to manipulate a variable associated with the page out
scan which will cause the scan to stop. This "base" page number that is set allows the
PageSwap device to tell when the PageOutDirtyPages call has completed a scan of the
entire address space looking for dirty pages. PagePDPSetBase tells PageOutDirtyPages
to set the base page number to the current scan start poinL PagePDPClearBase tells
PageOutDirtyPages to clear the base page number, setting it to NONE. A return value of
0 is used to detect when a PageOutDirtyPages call has stoped because it.has hit the base
page. This is not totally reliable, but is a reasonable approximation, since PageOutDirty
Pages can return 0 because there are no dirty pages (this is rather unlikely though).
PagePDPQueryDirty, if set, indicates that the call is to return the current count of DIRTY
demand pageable pages, the nPages argument and all other flags are ignored if this bit is
set (call returns the count of dirty pages as its sole function).

Returns the actual count of dirty pages flushed by the call (0 is valid).

Microsoft Confidential Beta Release

Notes

Memory Management Services 19-33

WARNING This call is intended for use by the PageSwap device, others should not be calling it!
Others making this call can disturb the operation of the PageSwap device.

This call functions something like a partial "commit" of the dirty pages in the system. Note
that ALL of the dirty demand pages can be flushed by specifying a large value for nPages
(like OFFFFFFFFh).

This call operates only on current page out candidates.

The Flag bit equates are defined by including VMM.INC, please use the equates.

PageReAllocate

Beta Release

unsigned PageReAllocate(hMem,nPages,flags)
unsigned hMem;
unsigned nPages;
unsigned flags;

This call is used to grow or shrink or reinitialize an existing block of memory. hMem is the
value returned from a previous PageAllocate or PageReAllocate call and indicates the
block to be reallocated. Note that handles allocated with PageUseAlign set cannot be
PageReAllocated. nPages is a 32 bit unsigned integer which is the new size in 4K pages
of the block.

Current flags bits:

PageZerolnit
PageZeroRelnit
PageNoCopy
Pagelocked
PagelockedlfDP

EOU
EOU
EOU
EQU
EOU

000000000000000000000000000000018
000000000000000000000000001000008
000000000000000000000000010000008
000000000000000000000000100000008
000000000000000000000001000000008

All unused bits must be zero. PageLocked and PageLockedIIDP, if set, indicates that if
this PageReAllocation is growing the size of the handle, the pages added to the handle are
to be PageLocked or PageLockeditl>P (see PageAllocate for explanation). If the
PageReAllocation is not growing the handle these bits are ignored Note that PageFixed
is not specified, PageReAllocation of a PageFixed handle is implied as PageFixed by the
handle itself. PageZerolnit, if set, indicates that if the reallocation is succesful, and the re
allocation is growing the size of the block, the "grow area" of the block is to be initialized
with value 0 in all bytes. This bit is ignored on a re-allocation which is not growing the
size of the block. PageZeroRelnit , if set, indicates that the entire block is to be reinitial
ized with value zero in all bytes of the block. PageNoCopy, if set, indicates that the pre
vious contents of the block are irrelevant, and don't need to be copied into the newly sized
block. There is no reason that more than one of these three bits should be set If none of the
bits are set, the previous contents of the block are copied into the new block, up to the
lesser of the size of the new block, and the size of the old block, and the "grow area", if
any, is not initialized with anything.

Microsoft Confidential April 1, 1990

19·34 Virtual Device Adaptallon Gulde

Return Value

Comments

PageUnLock

April 1, 1990

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the memory handle of the new block. The High DWORD (EDX) is the
32 bit RING 0 address (offset relative to standard WIN386 Ring 0 DS) of the block. Value
(both DWORDs) is 0 if the reallocation failed (insufficient memory, handle wrong type, in
valid handle).

Do not make assumptions about the relationship between the passed in hMem and the
Address returned, if specified. Assume that the returned hMem and address are always
different than the passed in hMem and previous address.

ht the case where this call fails, the passed in hMem and previous address of the block re
main valid. In the case where this call works and returns a new hMem and address, the
passed in hMem and previous address are no longer valid (old block has been PageFreed).

WARNING Be very careful about PageReAllocating blocks which are currently MaplntoV86ed to
some VM context. Doing this can result in a crash.

PageLocked and PageLockedIIDP should not both be set Only one, or the other, or
neither are valid settings. Note also that PageLockedIIDP cannot be set on calls made
before the init complete system control call is made. This is because it is not possible to ask
the PageSwap device what type it is before it has been initialized.

Note that this call can be used to reset the contents of an existing block to 0 by setting
n.Pages to the current size of the block and setting PageZeroRehtit.

You cannot PageReAllocate a block to size 0, use PageFree.

The Flag bit equates are defined by including VMM.INC, please use the equates.

unsigned PageUnlock(hMem,nPages,PageOff ,flags)
unsigned hMem;
unsigned nPages;
unsigned PageOff;
unsigned flags;

This call is used to unlock all or part of an existing memory handle that was previously
locked. hMem is the value returned from a previous call to PageAUocate or PageReAllo·
cate and indicates the block to be unlocked. n.Pages specifies the count of pages to be un
locked. PageOff specifies the page offset from the start of the block of the first page to be
unlocked. nPages together with PageOff allow all or only part of the hMem block to be un
locked. An error will occur if PageOff+nPages is greater than the size of hMem.

Current flags bits:

Pagelocked I fOP
PageMarkPageOut

EQU
EQU

000000000000000000000001000000008
000000000000000000100000000000008

Microsoft Confidential Beta Release

Return Value

Comments

PhyslntoV86

Beta Release

Memory Management Services 19-35

All unused bits must be zero. PageLockedlfDP, if set, indicates that the unlock only needs
to be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to hardware), calls to this routine with PageLock
edlfDP set are effectively NOPs. See the PageAllocate documentation for a description of
the different PageSwap device types and their relevance. PageMarkPageOut, if set, indi
cates that if this unlock actually does unlock the pages (lock count goes to 0) the pages are
to be made prime candidates for page out. This flag should only be set if it is unlikely that
these pages are going to be touched for a while. Effectively what this does is clear the
P _ACC bits of the pages which causes them to be first level page out candidates.

Returns nonzero value if the block was succesfully unlocked, zero if the lock was un
succesful (invalid hMem, no part of range is locked).

This call may be issued on hMem blocks which are PageFixed, but this is a wasted call
since PageFixed blocks cannot be unlocked.

Note that PageLockedlfDP cannot be set on calls made before the init complete system
control call is made. This is because it is not possible to ask the PageSwap device what
type it is before it has been initialized.

Each page of a handle has an individual lock count. Each lock increments the counter. The
counter must go to 0 for the page to be unlocked. This means that if the handle is locked 5
times, it has to be unlocked 5 times.

The Flag bit equates are defined by including VMM.INC, please use the equates.

unsigned PhysintoV86(PhysPage,VMHandle,VMLinPgNum,nPages,flags)
unsigned PhysPage;
unsigned VMHandle;
unsigned VMLinPgNum;
unsigned nPages;
unsigned flags:

This call is very similar to the Maplnto V86 call only instead of taking a memory handle
argument, it takes a Physical address (page number). The intent of this call is to "hook up"
a particular VM to the actual Physical device memory of a device (such as the video
memory of a display adaptor). PhysPage is the physical page number of the start of the re
gion to be mapped, and indicates the block of physical memory to be mapped For in
stance, to hook up to the 64K of video memory at AOOO:OOO, PhysPage would be AOh and
nPages would be I Oh. The VMHandle parameter must be a valid VM handle and indicates
the VM into which the map is to occur. VMLinPgNum is the address in the IMeg V86
address space of the VM where the map will start (this is a page number, thus linear
address AOOOOh =page AOh). Alignment considerations of this address (beyond 4K align
ment) are the responsibility of the caller. Map addresses below page lOh, or above IOFh
will cause an error. nPages is the number of pages to map. The physical region is assumed

Microsoft Confidential April 1, 1990

19·36 Virtual Device Adaptation Gulde

Return Va/us

Comments

to be contiguous (thus if mapping three pages, they will be PhysPage, PhysPage+ 1 and
PhysPage+2 in that order). If the physical region is not contiguous, you will have to issue
multiple calls in succession. There are currently no bits defined in the flags, this parameter
must be set to 0.

Returns a nonzero value if the map is succesful, returns 0 value if the map was unsuccesful
(invalid VMHandle, map range illegal).

You are warned to be careful with this call. Very strange things will happen if you specify
a physical region which is unoccupied, or belongs to some other device.

The page attributes for these pages will be P _USER+P _PRES+P _WRITE. P _DIRTY and
P _ACC will be cleared by the call. PG_ TYPE will be set to PG_SYS.

The intent of PbyslntoV86 support for pages between page lOh and FirstV86Page is to
support WIN386 devices which have Allocate_ Global_ V86 _Data_ Area a
GVDAPageAlign region. Use of mapping in this region to other addresses can easily
crash the system and should be avoided.

Regions which span across FirstV86Page are not allowed.

The reason for the page 1 Oh limitation is that on most versions of the Intel 80386 CPU
there is an errata which prevents you from setting up a Linear != Physical address mapping
in the first 64k of the address space.

TestGlobalV86Mem

April 1, 1990

unsigned TestGlobalV86Mem(VMLinAddr,nBytes,flags)
unsigned VMLinAddr;
unsigned nBytes;
unsigned flags;

Some WIN386 devices wish to test whether a given piece of V86 address space is LOCAL
to a particular VM, or GLOBAL. The reason for this test is that GLOBAL V86 address
ranges are valid and identical in ALL VM contexts, while LOCAL V86 address ranges are
valid in only one VM context This difference can yield optimizations. For instance, opera
tions involving GLOBAL address ranges will typically not need to be "virtualized" in any
way since the range is valid and addressable in ALL VM contexts. LOCAL address range
operations may have to be "virtualized" though since it is possible for a piece of Virtual
Mode code to try and use the address in the "wrong" VM context where the address range
is invalid, or points to the wrong memory. This call can be used to test whether a V86
address range is GLOBAL or LOCAL. VMLinAddr is the linear address of the first byte of
the V86 address range. This address is relative to the standard WIN386 RING 0 OS (ie. the
linear address of 02Cl:OFC5 would be 02C10 + OFCS = 3BD5). nBytes is the length of the
V86 address range in bytes. There are currently no bits defmed in the flags, this parameter
must be set to 0.

Microsoft Confidential Beta Release

Return Va/us

Commsntr

Memory Management Services 19-37

Returns 0 if the address is not a valid V86 address range, or the address range is LOCAL.
Returns 1 if the address range is GLOBAL. Returns 2 if the address range is partly
LOCAL and partly GLOBAL (range overlaps a GLOBAL/LOCAL boundary). Returns 3 if
the address range is GLOBAL but overlaps with an Instance data region.

The distinction between GLOBAL and INSTANCE is rather subtle because INSTANCE
pages are "physically global" even though their content is LOCAL. The physical address
of instance data pages never changes, thus instance pages are GLOBAL in the physical
address sense. The content of instance data regions is per VM though which means they
are LOCAL in the sense of "what is in them".

The MMGR does not know any of the specifics about what is going on in the regions
above FirstV86Page. This routine will return LOCAL for all regions above FirstV86Page,
INCLUDING the AO-FF adapter/ROM BIOS area. Some pieces of this region may actu
ally be GLOBAL in terms of how they are used, but this service doesn't know any of the
details so it cannot detennine this.

19.6 looking At Physical Device Memory in Protected
Mode

VxDs, such as virtual display drivers, that have a certain region of physical address space
associated with them, such as Video Memory, need a way to look at the device-specific
memory when the device is running. The method by which this is done is by using a serv-
ice that returns the correct linear address (relative to the standard Ring 0 DS). ·

MapPhysTolinear

Rstum Va/us

Beta Release

unsigned MapPhysToLinearCPhysAddr,nBytes,flags)
unsigned PhysAddr;
unsigned nBytes;
unsigned flags:

P hysAddr is the physical address of the start of the region to be looked at This is simply
the 32 bit physical address, there are no alignment considerations. Physical addresses start
at 0, thus the address of physical page OAOh is OAOOOOh. nBytes is the length of the physi
cal region in bytes starting from PhysAddr. This parameter is used to verify that the entire
range is addressable. There are currently no bits defined in the flags, this parameter must
be set to 0.

Returns the RING 0 DS offset of the first byte of the physical region. Will return
OFFFFFFFFh if the specified range is not addressable.

Microsoft Confidential April 1, 1990

19-38 Virtual Device Adaptation Guidi

Commsnts

WARNING You are warned to be careful with this method. Use of this for purposes beyond looking
at device specific physical memory is extremely dangerous and is not approved.

Physical addresses do not move. It is perfectly fine to get the linear address of a physical
region at Device_Init device call time and then use it later. You do not have to keep recal
ling MapPhysToLinear every time you want to look at the region.

For instance to look at physical page AOh you would do this:

VMMCall _MapPhysTolinear,<0A0000h,10000h,0>

DS:[EAXJ now addresses this physical page. Physical memory is mapped contiguously at
this selector so Page OAlh would be 4096 bytes beyond the above address.

19. 7 Data Access Services
These services are used to get the contents of public memory manager variables. Access to
these variables is done via calls to support the DynaLink architecture of WIN386. All of
these services return the value of the associated variable in EAX.

GetFlrstV86Page

Comments

unsigned GetFirstV86Page()

This call returns the page number of the first page of VM specific V86 memory.

FirstV86Page MOVES during device initialization. Do not get the value at device init
time, and then use it later, as the value is invalid.

GetNulPageHandle
unsigned GetNulPageHandle<>

This call returns the memory handle of the system NUL page.

GetAppflatDSAlias()

April 1, 1990

unsigned GetAppFlatDSAlias()

This call returns a selector which can be used by protected mode applications to look at the
same data that the standard WIN386 RING 0 OS loo.ks at. This is useful when a WIN386
devide driver wishes to provide a protected mode service to applications and wants the
application to be able to address the same memory that the WIN386 device driver does.

Microsoft Confidential Beta Release

MemotY Managsmsnt SBtvlt:a 19-39

This selector is read only. This is so that the WIN386 address space is protected tiom a
misbehaved application. IT is not recommended that you build a read/write version of this
selector. ff the application needs to WRITE you should build a descriptor with a much
more restricted Base and Limit so that the application can only modify those things which
it is allowed to modify.

This selector is RPL = DPL= Protected Mode Application Privilege. N01E that a
WIN386 device driver can also use this selector if desired even though the devices run at a
different privilege level. Its type is ''USE 16", this doesn't mean much since it is a data
selector.

This is a GDT selector.

WARNING You must not do a Free_GDT_Selector on this selector. It is not protected, and so it will
get freed. Then anyone using it will fault and crash the system. This selector is provided to prevent
multiple devices from creating multiple versions of the same selector and wasting GOT entries unneces·
sarily.

Notice that enhanced Wmdows is "USE 32", therefore a protected application, which is
"USE 16", will have to use the DB 67h addressing mode override on its instructions to get
32 bit addressing (MASM will do this for you automatically if you set things up correctly).

This service can be used to discover what protection ring Protected Mode applications run
at by doing a LAR on the returned selector. Be very .careful about what you do with this bit
of infonnation.

19.8 Special Services Far Protected Made AP/s

LlnMaplntoV86

Beta Release

These services are provided to support VxDs that need to manipulate protected-mode
address space. For example, applications running in protected mode need a way to map re
gions of protected-mode, segmented address space into the virtual machine's virtual 8086
context. A specific example is the MS-DOS INT 21 API. The data pointed to on the INT .
21 calls needs to be mapped into the VM's V86 address space so that MS-DOS can access
it and perfonn the requested.operation.

WARNING Do not use these services for purposes other than their intended use. These calls can be
quite dangerous and can result in strange behavior or crashes if misused.

unsigned long LinHaplntoV86CHLinPgNum,VHHandle,VHLinPgNum,nPages,flags)
unsigned HlinPgNum;
unsigned VHHandle;
unsigned VHLinPgNum:

Microsoft Confidential April 1, 1990

19-411 Virtual D•lt:e Atlaplallaa 811/JJB

Rsturn Value

Comm11*

April 1, 1990

unsigned nPages:
unsigned flags:

NOTE Please be advised that the following description has been identified as out of date in some re
spects though updated information was unavailable at time of printing.

This call is provided to assist the interface address mapper functions. Its purpose is to pro
vide a way for the address mapper to map regions of protected mode address space into a
VM V86 address space so that API calls can be performed. This calls opexation is very siJn
ilar to Maplnto V86, the difference being that instead of taking a memory handle, it takes
a linear address. The call duplicates the memory map down into the indicated VM's V86
address range. HLinPgNum, togethel' with nPages, indicates the region of protected mode
address space, or V86 address space that is to be mapped. This is a page number, linear
address 60610000h would be passed in as 60610h. As with MaplntoV86 there are implied
PageLock and PageUDlocks. Note that the linear address is relative to the srandard
WIN386 Ring 0 OS selector. The VMHandle parameter must be a valid VM handle and in
dicates the V86 space into which the map is to occur. VMLinPgNum is the address in the
lMeg VM V86 address space where the map will start (this is a page number, thus linear
address 60000h =page 60h). Alignment considemlions of this address (beyond 4K align
ment) me the responsibility of the caller. Map addresses below page lOh. or above lOFh
will cause an error. nPages is the number of pages to map. Note that if HLinPgNum is a
V86 page ~umber (at the LOW V86 address (at the LOW V86 address <=page lOOh) the
call does nothing except return the HUnPgNum parameter in EDX. There are currendy no
bits defmed in the flags. This parameter must be 0.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is a nonzero value if the map is succesful, returns 0 in eax if the map was
unsuccesful (invalid address range. invalid VMHandle. map range illegal, size discrepancy,
insufficient memory for implied PageLock). The High DWORD (EDX) is only valid if
EAX is nonzero. It is set to the VMUnPgNum parameter if the HLinPgNum parameter was
not a LOW V86 space address. otherwise it is set to the HLinPgNum parameter. In short,
EDX is the V86 address where the memory is mapped.

As with MaplntoV86 there is an implied PageLock which is performed on all of the
pages mapped. This is consistent with the fact that V86 memory cannot be Demand Paged
while the VM is in a runable state. Whenever the V86 memory mapping is changed via
UnMaplntoV86, the previous memory that was mapped in the VM is unlocked. The cor
rect way to think of this is that there is an implied PageLock whenev.er memory is mapped
into a V86 context, and an implied PageUnlock whenever it is "unmapped" from the V86
conteXL This "unmapping" can occur when: A different handle (including the NulPage
Handle) is MaplntoV86ed to the region, or a PhyslntoV86 is performed to the region.

The V86 region mappped into by this call should be MaplntoV86ed with the NulPage
Handte when the V86 mapping region is no longer needed. There is nothing to prevent you
from mapping the same protected mode linear address into multiple places in a VM. or

Microsoft Confidential Beta Release

LinPagelock

Beta Release

Memory Management Services 19·41

into multiple VMs. Such operations are not particularly advisable though. For one thing,
the reporting of memory owned by a VM will be disturbed.

The reason this call exists is because a protected mode API mapper does not have access to
the memory handles associated with the various regions of protected mode address space.
VxDs which do have access to the memory handles of the memory to be mapped should
be using Maplnto V86 to map the memory, not this routine.

For regions in the Physical addressing region this call will convert into a PbyslntoV86 call.

For regions in the lllGH VM Linear addressing region this call will perform a map of the
memory from one VM into another VM (or into a different location in the same VM).
N01E CAREFULLY: The intent of this support is to provide a way for the V86MMGR
device to map a region of V86 address space which is currently LOCAL to one VM into a
GLOBAL region that is addressable by all VMs. This type of API is needed by network
API mappers. Do not use this capability in your VxD, use the V86MMGR service. The
details of this aspect of operation will change in a later release and code using the old
method will not function properly.

The page attributes for these pages will be P _USER+P _PRES+P _WRITE. P _DIRTY and
P _ACC will be cleared by the call. PG_ TYPE will be set to whatever the type of the pages
are at its protected mode linear address.

The intent of LinMaplntoV86 support for pages between page lOh and FirstV86Page is
to support WIN386 devices which have Allocate_ Global_ V86 _Data _Area a
GVDAPageAlign region. Use of mapping in this region to other addresses can easily crash
the system and should be avoided.

Regions which span across FirstV86Page are not allowed.

The reason for the page lOh limitation is that on most versions of the Intel 80386 CPU
there is an errata which prevents you from setting up a Linear !=Physical address mapping
in the first 64k of the address space.

unsigned LinPageLock(HLinPgNum,nPages,flags)
unsigned HLinPgNum;
unsigned nPages;
unsigned flags;

This call is provided to assist the interface address mapper functions. Its purpose is to pro
vide a way for the address mapper to lock regions of protected mode address space so that
API calls can be performed. This calls operation is very similar to PageLock, the differ
ence being that instead of taking a memory handle, it takes a linear address. HLinPgNum,
together with nPages, indicates the region of protected mode address space that is to be
locked. This is a page number, linear address 60610000h would be passed in as 60610h.
Note that the linear address is relative to the standard WIN386 Ring 0 DS selector.

Current flags bits:

Microsoft Confidential April 1, 1990

11-42 Vlttual Oerlt:s Al/aplallall SaldB

Rllllnl flab11

PageLQckedltUP l:.UU

All unused bits must be mo. PageLockedlfDP, if set. indicates that the lock only needs to
be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to banlware). calls lO this routine with PageLock
edlfDP set are effectively NOPs. See the PageAUocate documentation for a description of
the different PageSwap device types and their relevance.

Returns a nonzero value if the lock is succesful, returns 0 value if the lock was unsuccesful
(invalid address range, insufficient memory for lock).

SEE PageLock.

LlnPageUnLock

Rllllnl V1/u1

April 1, 1990

unsigned LinPageUnlockCHlinPgNum,nPages,flags)
unsigned HlinPgNum;
unsigned nPages;
unsigned flags;

This call is provided to assist the interface address mapper functions. Its purpose is to pro
vide a way for the address mapper to unlock regions of proteeted mode address space after
API calls are performed. This calls operation is very similar to PageUDLock, the differ
ence being that instead of taking a memory handle, it takes a linear address. HLinPgNum,
together with nPages, indicates the region of proteeted mode address space that is to be IDl
locked. This is a page nwnber, linear address 60610000h would be passed in as 60610h.
Note that the linear address is relative to the standard WIN386 Ring 0 DS selector.

Current Oags bits:

PagelockedlfDP
PageHarkPageOut

EOU
EQU

000000000000000000000001000000008
000000000000000000100000000000008

All unused bits must be zero. PageLockedlfDP, if set. indicates that the unlock only needs
lO be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to banlware). calls to this routine with PageLock·
edlfDP set are effectively NOPs. See the PageAUocate documentation for a description of
the different PageSwap device types and their relevance. PageMarkPageOut, if set, indi
cates that if this unlock actually does unlock the pages (lock count goes to 0) the pages are
to be made prime candid.ales for page OUL This flag should only be set if it is unlikely that
these pages are going lO be touched for a while. Effectively what this does is clear the
P _ACC bits of the pages which causes them to be first level page out candidates.

Returns a nomero value if the unlock is succesful, returns 0 value if the unlock was un
succesful (invalid address range).

Microsoft Confidential Beta Release

Msmory Mana11smsnt Sstvlt:BS 19-43

SEE PageUnLock.

PageCheckllnRange

Rlturn Vallie

unsigned PageChecklinRange<HlinPgNum,nPages,flags)
unsigned HlinPgNum;
unsigned nPages;
unsigned flags;

This call is provided to as&st the interface address mapper functions. Its purpose is to pro
vide a way for the address mapper to validate an intended range for LinPageLock or Lin
Maplnto V86. Sometimes a MAXIMUM length range is specified because the true range
is unknown. This call will return an adjusted nPages argument which will be adjusted
down in size if the specified range crosses an wm:asonable boundary. HLinPgNum, to
gether with nPages, indicates the region of protected mode address space that is to be
checked. This is a page nwnber, linear address 60610000h would be passed in as 60610h.
NOie that the linear address is relative to the standard WIN386 Ring 0 DS selector. There
are currendy no bits defined in the flags, this parameter must be O.

Returns an adjusted nPages agrumenL This will be zero if the range is totally wuea
SOll8ble, and will return nPages if no adjustment was needed.

The end of a handle is a boundary that will result in an adjustmenL

SelectorMapFlat

Rllum Value

Beta Release

unsigned SelectorHapFlat<VHHandle,Selector,flags)
unsigned VHHandle;
unsigned Selector;
unsigned flags;

This call is provided to as&st the interface address mapper functions. Its purpose is to pro
vide a way for the address mapper to get the RING 0 DS offset of the base of a particular
GDT or LDT selector. This call assists the address mapper in converting a Selector:Off
setl6 or Selector:Offsel32 pointer into its .. Oat model" linear address which can then be
passed to LinMaplntoVM. Selector is a GDT or LDT selector (note that the argument is a
DWORD not a WORD) value to get the base address of. The VMHandle parameter is ig
nored if Selector is a GOT selector. If Selector is an LDT selector, then VMHandle indi
cates the appropriate VM context for the Selector. There are cmrently no bits defined in
the flags, this parameter must be 0.

Returns the linear address of the base of the selector if succesful, returns FFFFFFFFh if it
is unsuccesful (invalid selector).

Microsoft Confidential April 1, 1990

19-44 Virtual Device Adaptation Gulde

Comments You can pass this routine the standard WIN386 RING 0 DS selector, and it will return 0 as
the base. This is a silly thing to do, but it does work.

The VMHandle parameter must be valid for LDT selectors.

SetResetV86Pageable

April 1, 1990

unsigned SetResetV86Pageable<VMHandle,VMLinPgNum,nPages,flags)
unsigned VMHandle;
unsigned VMLinPgNum;
unsigned nPages;
unsigned flags;

This call allows the normal locking/unlocking behavior associated with a specific range of
V86 memory to be modified. VMHandle is the VM in which the behavior is being mod
ified. VMLinPgNum is the address in the lMeg V86 address space where the behavior
modification will start (this is a page number, thus linear address 60000h = page 60h).
Alignment considerations of this address (beyond 4K alignment) are the responsibility of
the caller. Map addresses below FirstV86Page, or above IOOh will cause an error. nPages
is the number of pages to modify the behavior of. Normally a MaplntoV86 causes the
memory that is mapped to be locked. In the case where this particular VM is currently run
ning a Protected Mode application, it is desirable to undo the lock, and change this nonnal
lock/unlock behavior. This allows those unused pieces of the V86 address space to be
paged out and the memory they are using to be used by someone else. Note that we can
only undo this normal behavior because the behavior of the protected mode application is
well known. In particular, we know that none of the V86 memory that is being unlocked
contains code that is executed, or data that is touched, at interrupt time (including software
interrupt time). The typical use of this call is by the WIN386 device which loads a pro
tected mode application. When the PM app is loaded, the device calls SetRestV86Pagea
ble with the PageSetV86Pageable bit set on those pieces of the V86 address space above
FirstV86Page which can be unlocked; this is typically all of the V86 memory above
FirstV86Page which is currently DOS Free. NOTE that DOS data areas such as the lOOh
byte Program Header Prefix must not be included in the ranges because they are accessed
by DOS. Similarly, when the Protected Mode application Exits, the application loader calls
SetResetV86Pageable with PageClearV86Pageable set, on the V86 memory it had ini
tially modified during the load.

The other aspect of the behavior that can be modified has to do with the "other memory"
(the memory that is not V86Pageable) in the VM. Normally this memory is locked, except
when the pager is type 2 (direct to hardware). Not locking the V86 memory allows VM's
V86 pages to also be Demand Paged. This has the benefit of allowing DOS applications to
also run in a Demand Paged environment. Sometimes though, this is an undesired behavior

- because of the paging latency which it introduces in the VM. The V861ntsLocked bit of a
VM allows this aspect to be controled. Setting the V86IntsLocked behavior causes the
"other memory" to always be locked, even if the pager is type 2. Setting this behavior has
two important effects:

Microsoft Confidential Beta Release

RBlumVa/ua

Commants

Beta Release

Memory Management Services 19-45

• There is never any "paging latency" while the virtual mode code in this VM is running.
This prevents time critical V86 code from having its timing severly disturbed due to the
paging overhead.

• The paging device can enable interrupts in this VM when it is performing paging opera
tions because it knows that a nested page fault will not occur from this VM since all of
its interrupt time code is always locked.

Current flags .bits:

PageSetV86Pageable
PageClearV86Pageable
PageSetV86Intslocked
PageClearV86Intslocked

EOU
EQU
EOU
EOU

000000000000000000000010000000008
000000000000000000000100000000008
000000000000000000001000000000008
000000000000000000010000000000008

All unused bits must be zero. PageSetV86Pageable, if set, indicates that the normal lock
ing behavior of MaplntoV86 is to be disabled (V86 memory can be paged) for the indi
cated region. PageClearV86Pageable, if set, indicates that the normal locking behavior is
to be enabled on the indicated region. PageSetV86IntsLocked, if set, indicates that the
"lock all V86 memory that is not V86Pageable regardless of pager type" behavior is to be
enabled. PageClearV86IntsLocked, if set, indicates that the "lock all V86 memory that is
not V86Pageable regardless of pager type" behavior is to be disabled. Note that only one
of these bits can be set on a call. Setting more than one bit will result in an error. There are
two bits in CB_ VM _Status that indicate the current state of these behaviors:

VMStat_PageableV86
VMStat_V86Intslocked

EOU
EOU

000000000000000000001000000000008
000000000000000000010000000000008

The VMStat_PageableV86 bit is set if any regions behavior has been modified (there is at
least one non zero bit in the array returned by GetV86PageableArray). The
VMStat _ V861ntsLocked bit is set if the "lock regardless of pager type" behavior has
been enabled in this VM.

Returns non-zero value if the set or clear worked, zero if the current state of the VM was
not consistent with the call (invalid VMHandle, VMStat PageableV86 or
VMStat _ V861ntsLocked state inconsistent with setting of PageSet/ClearV86Pageable
or PageSet/ClearV86IntsLocked bit in flags, range invalid) or the lock of the memory as
sociated with PageClearV86Pageable or PageSetV86IntsLocked failed.

The intent of this call is to better support Protected mode applications running in a VM,
not to allow you to randomly make v86 parts of VMs pageable! Do not issue this call on a
VM unless you are loading a Protected mode app into it.

The V86MMGR device makes a PageSetV861ntsLocked call on VMs which are created -
with their base memory specified as locked.

Extreme care must be used when manipulating the Pageable V86 behavior of regions above
AOOO:O. This should not be done unless the region is GLOBAL or LOCAL As·
sign_Device_ V86_Pages owned by the caller.

Microsoft Confidential April 1, 1990

19-46 Virtual Device AtlaptaUaa Balde

There is no REGION associated with PageSetV86IntsLocked and PageCiearV86Int·
sLocked calls. The IMPLIED region is always "everything that isn't V86Pageable". For
this reason the HLinPgNum and nPages arguments should be set to 0 on these calls.

VMM.INC contains equates for all of the flag bits described, use the equates.

GetVB6PageableArray

Retum Value

Comments

unsigned GetV86PageableArrayCVMHandle,ArrayBufPTR,flags)
unsigned VMHandle:
unsigned ArrayBufPTR:
unsigned flags;

This call is used to obtain a copy of the bit array of pages whose behavior has been mod
ified via SetResetV86Pageable. This allows the caller to detennine which regions of the
VM V86 address space have had the nonnal lock/unlock behavior modified. VMHandle
specifies the VM to get the bit map of. ArrayButP'IR points to a buffer large enough to
contain the array. The assignment array is an array of lOOh bits, one bit for each page in
the range 0-lOOh. Thus the size of the array is ((lOOh/8)+3)/4 = 8 DWORDS. Bits in the
array which are set (= 1) indicate pages whose normal lock/unlock behavior is disabled,
bits which are clear (=O) indicate pages whose behavior is normal. Thus to test the bit for
page number N (0 <= N <= OFFh) you could use code like this:

mov ebx, N MOO 32
mov eax, N I 32
bt dword ptr ArrayBufPTR[eax*4],ebx:
jnc short PageNormal

PageModified:

: Bit number in OWORD
: OWORD index into array

Test bit for page N

Note that this code is mearly intended to illustrate how the bit array works. This code is
not the most efficient, or the only way to implement this test. There are currently no bits
defined in the flags, this parameter must be set to 0.

Returns non-zero if succesfull, returns zero if the bit array could not be returned (Invalid
VMHandle).

Making this call on a VM whose VMStat_ Pageable V86 bit is clear is not an error, it
simply returns a bit array whose bits are all 0.

PageDiscardPages

April 1, 1990

unsigned PageOiscardPagesCLinPgNum,VMHandle,nPages,flags)
unsigned LinPgNum;
unsigned VMHandle;
unsigned nPages:
unsigned flags;

Microsoft Confidential Beta Release

Retum Value

Comments

Memory Management Services 19-47

This call is provided to assist management of PM applications by providing a way to mark
pages as "no longer in use". What this does is allow regions which were previously "in
use" to be "discarded". This means that the page does not have to be "paged in" to make it
present, thus eliminating the disk access required for the page in. LinPgNum and nPages
together specify the range to be discarded. LinPgNum is a page NUMBER. If LinPgNum
is< llOh, or at a VM high linear address, then the range lies in a VM and the VMHandle
parameter specifies the VM. In this case, all pages of the range must be marked V86Pagea
ble or the call will fail. Pages in the range which are not present or are locked are ignored,
this call effects only demand pageable pages.

Current flags bits:

PageZerolnit
PageDiscard

EOU
EOU

000000000000000000000000000000018
000000000000000100000000000000008

Setting PageDiscard indicates that a full discard is to take place, the P _ACC and P _DIRTY
bits in the page table entrys for the pages are both cleared. If PageDiscard is clear, all the
call does is clear the P _ACC bit in the page table entrys for the pages making them pri
mary page out candidates (the DIRTYness and content of the pages is preserved in this
case). Setting PageZeroinit is relevant only if PageDiscard is also set, and it indicates that
the pages are to be marked "zero the contents of this page the next time it is paged in". In
this case this subsequent page in is a NOP since the pages have been discarded, this simply
causes the pages to come back in with a known value (0) in them instead of random gar
bage.

Returns a non-zero value if successful, otherwise it returns zero (iDvalid range or VM
handle).

The Flag bit equates are defined by including VMM.INC, please use the equates.

19.9 Instance Data Management

Beta Release

The purpose of these services is to provide a means of identifying to the system those areas
of virtual 8086 mode memory (V86 memory) that contain per Virtual Machine or "In
stance" data. Each of the VMs in the system has its own, private instance of this data and
anything the VM does to the values in these locations has no effect on other VMs since the
values are different in each VM.

Microsoft Confidential April 1, 1990

19-48 Virtual Device Adaptation Balde

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., Addlnstanceltem is actually _Addlnalanceltem), and the arguments are
pushed right to left (unlike the PIJM calling convention used by Windows, which is left to right). The re
turn value(s) is returned in C standard EDX:EAX. It is the responsibility of the caller to clear the argu
ments off the stack. Registers EAX, ECX, and EDX are changed by calls. Registers OS, ES, EDP, EDI,
ES~ and EBX are preserved.

Addlnstanceltem

INDOS_Field
ALWAYS_Field

Retum Value

April 1, 1990

unsigned Addlnstanceltem(InstStrucPTR,flags)
unsigned InstStrucPTR:
unsigned flags:

This call is used to identify a region of instance data in the V86 address space. In
stStrucPTR is a pointer to an instance data identification structure which has this form:

InstDataStruc struc
I nstli nkF RESERVED SET TO 0

RESERVED SET TO 0 I nstli nkB
InstlinAddr
InstSize

dd
dd
dd
dd
dd

?
?
?
?
?

Linear address of start of b~ock
Size of block in bytes

Inst Type Type of the block
InstDataStruc ends

The InstLinkF and InstLinkB fields are filled in by the Instance data manager and cannot
be used by the caller. InstLinAddr defines the start of the block of instance data, NOTE
THAT TIIlS IS NOT IN SEG:OFFSET FORM, it is a linear address. Thus the correct
value for 40:2F would be 42F. InstSize is the size of the instance data block in bytes
starting at InstLinAddr. InstType defines one of two types of instance data:

equ
equ

100h : Bit indicating INOOS switch requirements
200h : Bit indicating ALWAYS switch requirements

ALWAYS_Field type indicates that the field must always be switched when a VM is
switched. All instance data sepcified by VxDs should be of this type. INDOS_Field type is
reserved for special types of DOS internal data which only need to be switched with the
VM if the VM is currently INOOS.

There are currently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if the instance data block was succesfully added to the instance list,
zero if the block was unsuccesful added (This is probably a FATAL error).

Microsoft Confidential Beta Release

Memory Management Services 19·49

NOTE There are two basic ways to allocate the space for the lnstDataStrucs pointed to with ln
stStrucPTR. The first is to simply staticly allocate them in the INIT data segment. The space they oc
cupy will then be reclaimed when the INIT space is reclaimed. The other way is to allocate them on the
System heap using HeapAllocate. The space can then be freed by HeapFreeing all of the heap handles
in the device Sys_VM_lnit code which is called after all of the system initialization (including the in·
stance data initialization) is done.

WARNING If you allocate space for lnstDataStrucs on the heap you must be sure NOT to HeapReAl
locate the heap blocks after passing the address to Add Instance Item because this will invalidate the ln
stStrucPTR value you previously passed to Addlnstanceltem.

NOTE This routine is in the init segment of WIN386. It can therefore only be called during system in
itialization. Trying to call it after system initialization and the system INIT segment space has been re
claimed will result in a fatal page fault.

Once this call is made. the caller must not ever touch the lnstDataStruc pointed to again.
The caller has passed control of this data block to the insttance data manager and tamper
ing with it will result in the instance data manager failing to identify the instance data cor
rectly.

Note that only one, contiguous region of instance data can be identified with each struc
ture. It is a good idea for the caller to coalesce adjacent blocks of instance data it is identi
fying in order to cut down the call overhead and data space requirements, but this is not
required.

There is a declaration of the InstDataStruc data structure in VMM.INC.

MMGR_Toggle_HMA

Beta Release

unsigned MMGR_Toggle_HMACVMHandle,flags}
unsigned VMHandle;
unsigned flags:

This call is an interface to the Instance data manager which allows devices such as the
V86MMGR XMS device to control the behavior of the "highmem" memory area, or
"HMA", of a VM (V86 linear pages IOOh through IOFb). Any device which wishes to
modify the" lMeg Address Wrap" behavior of a VM MUST use this call to infonn the In
stance data manager what is going on. This is because the Instance manager must know
whether IMeg Address Wrap is on or off to manage the instance data correctly for a VM.
VMHandle is a valid WIN386 VM handle which indicates the VM to which the call is to
be applied. Current flags bits:

MMGRHMAPhysical EQU
MMGRHMAEnable EQU
MMGRHMADisable EQU
MMGRHMAOuerry EQU

000000000000000000000000000000018
000000000000000000000000000000108
000000000000000000000000000001008
000000000000000000000000000010008

Microsoft Confidential April 1, 1990

19-50 Virtual Device Adaptation Gulde

RetumValu1

Camm1nts

April 1, 1990

All unused bits must be zero. ONe, and only one of MMGRHMAEnable,
MMGRHMADisable, MMGRHMAQuerry BITS must be specified, the call will have ran
dom results if this is not true. MMGRHMAPhysical bit is a modifier which modifies the
operation of the MMGRHMAEnable bit: See discussion of MMGRHMAEnable.
MMGRHMADisable, if set, causes the Instance manager to restore the nonnal Wrap map
ping for pages 100 through lOF thus Disabling the HMA. This is a REMAP of pages OOh
through OFh of the VM and causes the VMs address space to "wrap" back to address zero
for addresses > lMeg as it does on an 8086 processor. MMGRHMAEnable, if set, disables
lMeg address wrap in the VM, thus Enabling the HMA. Exactly what this does is control
led by the MMGRHMAPhysical bit. If MMGRHMAPhysical is set, MMGRHMAEnable
causes PHYSICAL pages lOOh through lOFh to be mapped in Linear pages lOOh through
lOFh of the VM consistent with the operation of a Global HMA which is shared by all
VMs. If MMGRHMAPhysical is not set, Linear pages lOOh through lOFh will be marked
as not present System Pages in the VM. It is then up to the CALLER to map some other
memory handle into this region of the VM after this call. This is consistent with the opera
tion of a per VM HMA. Note that if the VM accesses these pages before this mapping is
set up, an erroneaous page fault will occur which will crash the VM, or the system.
MMGRHMAQuerry, if set, returns the current state of the HMA in the VM.

This call has no return value unless MMGRHMAQuerry was specified in the flags. In this
case the call will return value 0 if the HMA is Disabled (lMeg address wrap is enabled},
and it will return a nonzero value if the HMA is Enabled (lMeg address wrap is disabled).

This call is reserved for the V86MMGR XMS device. Other devices should not be using
this call. Modifying the Wrap state of a VM without the V86MMGR XMS device knowing
about it will probably result in a state error and a crash.

The device issuing this call must be a device which has succesfully Globally or Locally As·
sign_Device _ VM_ Paged pages lOOh through lOFh in the indicated VM. This is not a call
which multiple devices should make for a VM as doing so will cause confusion between
the devices.

When VMs are created, they are created with the HMA Disabled (lMeg Address Wrap
enabled) consistent with nonnal operation on an 8086 processor. The device responsible
for the HMA in a VM must adjust this in its Create_ VM device call if needed.

Note that no distinction is drawn on the MMGRHMAQuerry return between
MMGRHMAPhysical being specified, or not specified on a previous MMGRHMADisable
call.

NOTE Instance data is not allowed in the hma.

The flag bit equates are in VMM.INC, please use the equates.

Microsoft Confidential Beta Release

Memory Management Serv/&111 19-51

19.10 Looking At VB6 Address Space
From time to time. Vx.Ds may wish to look al or modify some piece of the virtual 8086
mode address SJ8CC of a VM that is not the current VM. The documented way to do this is
as follows.

CB_Hlgh_Llnear

Beta Release

There is a Corurol Block variable which is a linear address of lhe stan of lhe VM's address
splCC. Thus to look al VM linear adress 40:17 wilh EBX being the VM Handle of the VM
you •re interested in you would do this:

mov esi,(40h SHL 4) + 17h
add esi,[ebx.CB_High_Linear]

ESI now points to this location in the V86 address space. This can be used to look at. mod
ify any V86 address including instance dala addresses.

NOTE No code should EVER touch a part of V86 address space at its •tow" address
(>=0,<=400000h) EVEN FOR THE CURRENT VM. There is NO REASON to do this, use CB_High_Llnear
in ALL cases to look at V86 addresses.

Microsoft Confidential April 1, 1990

19-52 Vltlual Devita Adaplal/oll Sil/di

April 1, 1990 Microsoft Confidential Beta Release

Chapter

20
110 Services and Macros

This chapter documents the services available for 1/0. Also included are two macros and a
discussion explaining their usefulness.

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

When a virtual machine executes an instruction that reads or writ.es data from an 1/0 port,
the 80386 looks up the port number in the 1/0 Permission Map (IOPM). If the correspond
ing bit in the IOPM is set, then the instruction will cause a protection fault

Enhanced Windows provides services that virtual devices use to trap l/O. The fll'St thing a
virtual device must do is hook the port while the device is being initialized. This is done by
calling a service called Hook_IO _Port. It takes two parameters: the number of the 1/0
port to hook and the address of a callback procedure.

When Hook_ IO_ Port is called, enhanced Windows sets the appropriate bit in the 1/0 per
mission map and registers the callback procedure. Whenever a VM accesses the port, the
VMM will call the procedure with the following parameters:

EBX = Handle of VM that accessed the port
EDX =Port number
ECX = Type of 1/0
If VM is outputing data to the port then
EAX/AX/AL =Output value

20.1 Handling Different 1/0 Types
The value passed in ECX determines the type of input or output as specified by Table 20.1.

Table 20.1 110 Register Values

Value Type of Jnput/output

OOH Byte input

04H Byte output

08H WORD input

OCH WORD out.put

lOH DWORD input

Beta Release Microsoft Confidential April 1, 1990

20-2 Virtual Devlt:s Adaptation Gulde

April 1, 1990

14H DWORD output

Masks that apply only to string 1/0 are shown in Table 20.2.

Table 20.2 String VO Register Values

Value

20H

40H

SOH

lOOH

Type of Input/output

String l/O
Repeated string l/O
32-bit addressing mode string IJO
Reverse string l/O (VM's direction flag is set)

For all string 1/0 operations, the high WORD of ECX contains the segment for the string
1/0. This allows VxDs to ignore the issues of segment overrides on these instructions;
VMM has already detennined the correct segment value. Thus, a value of 3247016CH
would specify that the VM is doing word reverse repeated string output to 3247:DI.

For example:

High word= segment 3247
OCh = Word output
20h = String 1/0
40h =Repeated string 1/0
lOOh =Reverse 1/0

It would be unreasonable to expect every VxD to support 48 different types of 1/0. There
fore, the VxD environment only requires VxDs to support byte input and output, even
though a VxD can directly support any type of 1/0 that is appropriate. For example, there
is no reason for the Virtual Printer Device (VPD) to support WORD input and output since
printer ports are only 8-bits wide.

However, there are 16-bit VxDs for 16-bit ports that must directly support WORD 1/0 as
well as byte 1/0.

Furthermore, devices such as disk drives might need to directly emulate string 1/0 for
some ports to achieve acceptable performance. A device can emulate some types of 1/0
and ignore others.

But what happens if someone does WORD string output to a printer port? You canotjust
throw the 1/0 away! For this reason, enhanced Windows has a catch-all routine called
Simulate_IO that converts 1/0 into something the virtual device can understand. Notice in -
the port trap code of the VPD example that entry points start with the Emu-
late_ Non_ Byte_ IO macro. This macro generates the following code:

cmp ecx, 4
jbe SHORT Foo

Microsoft Confidential Beta Release

1/0 Services and Macros 20-3

VMMjmp Simulate_IO

Foo:

So, if a VM attempted to do non-repeated fotward word string 1/0, the following sequence
of calls to the VPD trap code would be issued:

Call VPD trap with:

EBX = VM handle
EDX = 358h (Port#)
ECX = 23A8002Ch (String l/O from segment 23A8h)
EBP = Client register structure

VPD jumps to Simulate_I/O which calls VPD again with:

EBX = VM handle
EDX = 358h (Port#)
ECX = OCh (OCh =Word output)
AX = Word output
EBP = Client register structure

VPD jumps to Simulate_I/O which calls VPD again with:

EBX = VM handle
EDX = 358h (Port#)
ECX = 04h (04h = Byte output)
AL = Byte output
EBP = Client register structure

VPD then simulates the byte output and returns.

Notice that the high-order byte of the word output would be sent to the trap routine for
VPD trap port # + 1. So, if VPD is trapping port 358H, then word output to this port will be
converted into byte output to ports 358H and 359H (exactly the way the hardware works).

20.2 1/0 Macros

Beta Release

There are two useful macros for l/O trap routines. The first macro, Emu
late_ Non_ Byte_ IO, generates the following code:

cmp ecx, Byte_Output
jbe SHORT Is_Byte_IO
VMMjmp Simulate_!O

I s_Byte_!O:

Dispatch_Byte_IO, the second useful macro, takes two arguments. The first is the destina
tion for byte input, and the second is the destination for byte output This macro passes
back all non-byte l/O to Simulate_ IO. A typical 1/0 trap routine looks like the following
example:

Microsoft Confidential April 1, 1990

2o-4 Virtual Oevlt:e Adaptation Gulde

BeginProc VfooO_Trap_Data
Dispatch_Byte_IO Fall_Through, VFood_Out_Data

<Code for byte input>

ret

VfooD_Out_Data:

<Code for byte output>

ret
EndProc VfooD_Trap_Data

Notice the special value Fall_ Through that instructs the Dispatch_ Byte_ IO macro that
byte input should fall through to the following code. You can substitute Fall_Through for
either the input or output parameter (but not both) or specify two labels.

20.3 1/0 Services
This section presents detailed infonnation on each of the following 1/0 services in the fol
lowing order:

• Enable_ Global_ 'lrapping

• Disable_ Global_ 'lrapping

• Enable_ Local_ Trapping

• Disable_ Local_ 'lrapping

• Install_IO_Handler

• Install_Mult_IO_Handlers

• Simulate_IO

Enable_ Global_ Trapping, Dlsable_Global_ Trapping
01JScription

Entry

Exit

April 1, 1990

These services enable and disable J/O port trapping in every VM. A callback hook must
have been installed during initialization before either of these services is used.

The global trapping state is by default enabled. When a VM is created, it will be created
with the current global trapping state.

EDX = 1/0 port number

None

Microsoft Confidential Beta Release

1/0 Services and Macros 20-5

Uses Flags

Enable_Local_Trapplng, Dlsable_Local_ Trapping
Description

Entry

Exit

Uses

These services enable and disable 1/0 port trapping in a specific VM. A callback hook
must have been installed during initialization before either of these services is used.

EBX = VM handle
EDX = 1/0 port number

None

Flags

lnstalUO_Handler (lnltializatlon only)
Desorlption

Entry

Exit

Uses

Callbat:k

Beta Release

This service installs a callback procedure for I/0 port trapping and enables trapping for the
specified port in all VM's. Only one procedure may be installed for each port.

When an 1/0 callback is installed, the default global trapping state is enabled. You can dis
able trapping of a port for every or specific VMs using the Enable/Disable_ Global_ Trap
ping and Enable/Disable _Local_ Trapping services.

ESI = Address of procedure to call
EDX = 1/0 port

If carry set then
ERROR: Port already hooked by another device or
unable to hook any more ports (out of hooks)

else
Port hooked successfully

Flags

EBX = Current VM handle
ECX =Type of l/O
EDX =Port number
EDP -> Client register structure

If output then
EAX/AX/AL = Data output to port

else (input)

Microsoft Confidential April 1, 1990

20-6 Virtual Device Adaptation Gulde

Ca 11 back procedure must return EAX/ AX/ AL for data input from
port

lnstall_Mult_IO_Handlers (Initialization only)
Description

En/fY

Exit

Uses

Callback

Simulate_IO
Description

April 1, 1990

This service makes repeated calls to the Install _IO_ Handler service with the entries in a
table built using macros as follows:

Begin_Vxd_IO_Table Table_Name
Vxd_IO <port#>, <procedure name>

Vxd_IO <port #>, <procedure name>
Vxd_IO <port#>, <procedure name>

End_Vxd_IO_Table Table_Name.

EDI= Address ofVxD_IO_Table

If carry set then
ERROR: One or more ports already hooked by another device

or unable to hook any more ports (out of hooks>
EDX = N.umber of port that could not be hooked

else
Ports hooked successfully

FJags

EBX = Current VM handle
ECX =Type of 1/0
EDX =Port number
EDP -> Client register structure

If output then
EAX/AX/AL = Data output to port

else (input>
Callback procedure must return EAX/AX/AL for data input from
port

This service is used to break complex I/O instructions into simpler types of I/O. An J/O
handler should jump to this service using VMMjmp Simulate_ IO whenever the handler is
called with a type of I/O that it does not directly support. A typical 1/0 trap handler would
start with code similar to the following:

Microsoft Confidential Beta Release

Beta Release

1/0 Services and Macros 20·1

Sample_IO_Handler:
cmp ecx, Byte_Output
je SHORT SIH_Simulate_Output
jb SHORT SIH_Simulate_Input
VMMjmp Simulate_IO

Since byte input is 0 and byte output is 4, a single compare can be used to determine if the
J/O is byte input, output, ornot supported. When Simulate_ IO is invoked, it will break the
J/O into simpler 1/0 types and recursively call Sample_IO_Handler.

For example, assume Sample_ IO_ Handler is the J/O trap handler for port 534H. If it was
called with ECX =Word_ Output, then it would immediately jump to the Simulate_ IO
service. Simulate IO would then break the J/O instruction into byte output to ports 534H
and 535H. When Sample_ IO_ Handler was called again, it would be able to virtualize the
byte output to port 534H. The output to port 535H would be handled by another port trap
routine, or, if there was not one installed, the output would be reflected directly to hard
ware port 535H.

Two macros, Emulate_ Non_ Byte_ IO and Dispatch_ Byte_ IO, are provided as con
venient ways to invoke this service.

Emulate Non Byte IO is usually the first line of an 1/0 trap handler. It simply compares
ECX to Byte _{>utput and, if it is greater, it jumps to the Simulate_ IO service. For ex
ample:

Sample_IO_Handler:
Emulate_Non_Byte_IO
<Here ECX will be 0 for byte input or 4 for byte output)

Dispatch_ Byte _IO is usually more convenient since it will also jump to the appropriate
code for byte input or output. The macro takes two parameters. The first parameter speci
fies the label to jump to for byte input, and the second specifies the label to jump to for
byte output. Either parameter (but not both) can have the special value Fall_ Through,
which specifies that the code to handle that 1/0 type immediately follows the macro. For
example:

Sample_IO_Handler:
Dispatch_Byte_IO Fall_Through, <SHORT SIH_Output>
(... Code here for handling byte input ...)
ret

SIH_Output:
(... Code here for handling byte output ...)
ret

If, for efficiency reasons, you want to provide code to virtualize 1/0 other than byte input
and output, test for the types that you can handle and then jump to this service to emulate
other types of 1/0.

Notice that the entry parameters to this service are identical to the parameters passed to
your l/O trap routine. You should jump to this service using the VMMjmp macro with all

Microsoft Confidential April 1, 1990

20·8 Virtual Device Adaptation Gulde

Entry

Exit

April 1, 1990

of the registers in the same state as when your 1/0 trap routine was called (although you
may modify ESI and EDI since they are not parameters).

EAX = Data for output insuuctions
EBX = Current VM handle
ECX =Type of 1/0 (same as passed to 1/0 trap routine)
EDX = I/O port
EBP -> Client Register Structure

All registers modified. If input, then AX or EAX will contain virtualized input value.

EAX, EBX, ECX, EDX, ESI, EDI, Flags

Microsoft Confidential Beta Release

Chapter

21

Beta Release

VM Interrupt and Call
Services

The VM Interrupt and Call Services supported by enhanced Wmdows are described in this
chapter in the following order:

• Build_Int_Stack_Frame

• Call_ When_ VM _ Ints_ Enabled

• Disable_ VM _ Ints

• Enable_ VM_Ints

• Get_PM_Int_Type

• Get_ V86_1nt_ Vector

• Get_PM_lnt_ Vector

• Hook_ V86_Int_Chain

• Hook _PM_ Int_ Chain

• Set_PM_Int_'l)'pe

• Set_ V86_1nt_ Vector

• Set_PM_lnt_ Vector

• SimuJate _Far_ Call

• Simulate_Far_Jmp

• SimuJate _Far_ Ret

• Simulate_Far_Ret_N

• Simulate_Int

• Simulate_Iret

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device (VxD) Programming Topics," for general discussions on VM Interrupts and Call
Services.

Microsoft Confidential April 1, 1990

21·2 Virtual Dsvlt:B Adaptation Gulde

Bulld_lnt_Stack_Frame
DllBt:tiption

E111ry

Exit

Uses

This service will save the current CS:IP and flags on the VM's stack and, then, set the
CS:IP to the value passed to the routine. The next time the VM is entered, the effect will
be that an interrupt occurred, directing control to the procedure provided.

The procedure that is called must do an IRET to return.

Sample code:

VHHcall Begin_Nest_Exec
mov ex, [My_Private_VM_Proc_Segment]
mov edx, [My_Private_VM_Proc_Offset]
VMMcall Build_Int_Stack_Frame
VMMcall Resume_exec

VMMcall End_Nest_Exec

ex = Code segment of procedure to call
EDX = Offset of procedure to call (high word must be 0 for 16-bit apps)

None

Client_ cs, Client_EIP, Client_Flags,Flags

Call_When_VM_lnts_Enabled
D•t:tiptlon

Entry

Exit

Uses

Callback

April 1, 1990

If a VxD needs to be called when interrupts are enabled, it can use this service to be
notified when the VM enables interrupts. If the current VM's interrupts are already
enabled when this service is called, your callback procedure will be called immediately.

It is usually more convenient to use the Call_ Priority_ VM _event service instead of cal
ling this service directly. However, this service is faster.

EDX =Reference data
ESI = Offset of procedure to call

None

Client_ Flags, Flags

EBX = Handle of current VM
EDX =Reference data passed to this service
EBP -> Client register structure
Called procedure may destroy EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Microsoft Confidential Beta Release

VM Interrupt and Call Services 21·3

Disable_ Vm_lnts
Dnt:ription

Entry

Exit

Usn

This service will disable interrupts during VM execution for the current virtual machine.
This has the same effect as the VM executing a CU instruction.

None

None

Flags

Enable_VM_lnts
D•t:ription

Entry

Exit

Uses

This service will enable interrupts during VM execution for the current virtual machine.
This has the same effect as the VM executing an STI instruction.

If any VxDs have scheduled callback events using the Call_ When_lnts_Enabled or
Call_ Priority_ VM _Event services, then the callback procedure(s) will be called before
this service returns.

None

None

Flags

GeLPM_lnLType

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this printing.

GeLVB&_lnLVector, GeLPMJnLVector
Description

Beta Release

These services return the current VM's interrupt vector for the mode specified. For V86
mode, this is the DWORD located in the real mode interrupt vector. A PM interrupt vector
table is maintained by the VMM for every virtual machine.

Microsoft Confidential April 1, 1990

21-4 Virtual Device Adaptation Gulde

Enlry

Exit

Usss

Notice that for PM interrupts, a return value of zero indicates that the interrupt vector has
not been hooked. This is an optimization so that unhooked interrupts can be immediately
reflected to V86 mode without any processing in protected mode. If a protected mode
application or VxD calls the DOS Get_ Vector service, then the DOS API mapper will allo
cate a PM callback break point and set the appropriate inteITUpt vector if the vector is cur
rendy zero. The break point will invoke code that reflects the interrupt to V86 mode.
Therefore, VxDs should use this service instead of the DOS Get_ vector interface to get
the current PM interrupt vector.

EAX = Interrupt number

If interrupt vector points to 0:0 then
Zero flag set

else

ECX = 0
EDX = 0

Zero flag clear
ex a cs of vector (high word zero)
EOX = EIP of interrupt vector (for V86 mode and 16-bit

protected mode programs the high word will be zero)

ECX, EDX, Flags

Hook_V86_1nLChaln (Initialization only)

D111criptlon

Examp/1

April 1, 1990

These services are used to monitor software interrupts and simulated hardware inteITUpts
in Virtual 8086. More than one VxD is allowed to hook an inteITUpt The last inteITUpt
hook will be the first one called Every interrupt hook can either service the inteITUpt or
allow the interrupt to be reflected to the next handler in the chain. If no interrupt hook pro
cedure consumes the interrupt, then it will be reflected to the virtual machine.

To consume an interrupt, a hook procedure must return with the Carry flag clear. If the
Carry flag is set when an inteITUpt hook returns, then the inteITUpt will be passed on to the
next handler in the chain or, if the end of the chain is reached, reflected to the current vir
tual machine.

If a VxD calls the Simulate_ Int service, then all interrupt chain hooks will be called
before the interrupt is reflected into the virtual machine. Simulated hardware inteITUpts
will also be routed through the interrupt hooks. Therefore, your code should not assume
that the VM has just executed a software interrupt instruction.

Wmdows running in enhanced mode supports an API using software interrupt 2FH. The
code to handle the Release Time-Slice API looks like this:

Microsoft Confidential Beta Release

Entry

Exit

Uses

Callback

Beta Release

VM lnte«upt and Cs/I Services 21·5

Win38b_Partial_APl_initialization:
mov eax, 2fh
mov esi, OFFSET32 Win386_Partial_API_Hook
VMMcall Hook_V86_Int_Chain
clc
ret

Win386_Partial_API_Hook
cmp [epb.Client_AX], 1680h
je SHORT Win386_PA_Our_Call
stc
ret

Win386_PA_Our_Call:
VMMca 11 Rel ease_ Ti me_Sl ice
clc
ret

When Win386 Partial API Hook is called, it checks for 1680H in the VM's AX
register. If Client_AX i;1680H, then it reutrns with Carry set, and the interrupt will be re
flected to the next handler in the interrupt chain. However, if Client_AX = 1680H, then it
releases the current virtual machine's time-slice and consumes the interrupt by returning
with Carry clear.

EAX = Interrupt#
ESI Procedure to call

If carry set then
ERROR: Invalid interrupt number

else
Interrupt hook installed

Flags

EAX = Interrupt#
EBX = Current VM handle
EBP -> Client register structure

If the callback procedure returns with carry clear then
The interrupt is NOT passed to the next interrupt hook

else Cif carry set)
The interrupt IS passed to the next interrupt hook

Microsoft Confidential April 1, 1990

21·6 Virtual Device Adaptation Gulds

SeLPM_lnLType

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this printing.

Set_ V86_1nt_ Vector, SeLPM_lnLVector
D•t:riptlon

Entry

Exit

Uses

This service sets the current interrupt vector for the mode specified. If a VxD calls
Set_xxx_Int_ Vector before the Sys_ VM_Int control call is made, then the installed han
dler will become part of the default interrupt vector table. In other words, every VM will
be created with interrupt vectors set during enhanced Windows environment initialization.
If this service is called after Sys_ VM _ Init, then the handler will only be installed in the
current virtual machine.

EAX = Interrupt number
ex = cs to set into vector
EDX = EIP to set interrupt vector (for V86 mode and 16-bit protected mode programs the
high word should be zero)

None

Flags

Slmulate_Far_Call
Description

April 1, 1990

This service places the current VM's CS:IP on the VM's stack and puts the CS:IP
specified in CX:EDX in the Client_CS:EIP. The next time the VM is executed, it will be
as if a FAR call had been inserted in the VM's instruction stream.

~+-C/ienfs current SS:(E}SP

~-Client's SS:(E)SP after simulation

Client_CS • CX
Client_EIP .. EDX

Figure 21.1 Slmulate_Far_Call (?) SERV_02.EPS

Microsoft Confidential Beta Release

VM lnte«upt and Call Services 21-1

Entry CX = Segment of procedure to call
EDX = Offset of procedure to call (high word 0 if 16-bit application)

Exit Old Client_ CS, Client_EIP, Client_ ESP, Flags

Simulate_Far_Jmp
D111t:riplion

Entry

Exit

Uses

This service places the specified CS:IP into the VM's CS:IP to simulate a FAR jmp in
struction.

ex = cs to jump to
EDX = EIP to jump to (High word should be zero for 16-bit or V86 apps)

None

Client_EIP, Client_ ESP, Flags

Simulate_Far_Ret
Decsription

Entry

Exit

U111

This procedure pops the top two WORDs orDWORDs on the current VM's stack into the
client's CS:(E)IP.

8 -Client's SS:(E)SP after simulation
Client_ CS

Client (E)IP
- - Client's current SS:(E)SP

Figure 21.2 Slmulate_Far_Ret (?) SERV_03.EPS

None

None

Flags

Simulate_Far_Ret_N
D111cription

Beta Release

This procedure pops the top two WORDs or DWORDs on the current VM's stack into the
client's CS:(E)IP and. then. subtracts EAX from the VM's stack pointer.

Microsoft Confidential April 1, 1990

21·8 Virtual Devin Adaptation Gulde

Entry

Exit

UsBS

Simulate_lnt
D•t:ription

Entry

Exit

Uses

April 1, 1990

EAX =Number of bytes to pop after far ret

None

Client_ CS, Client_ EIP, Client_ ESP, Flags

-----Client's SS:(E)SP after simulation
Nbytes

Client_ CS

Client_(E)IP
._ __ __._Client's current SS:(E)SP

Figure 21.3 Slmulate_Far_Ret_N (?) SERV_04.EPS

This service is used mainly by the Vntual Programmable Interrupt Controller Device to
simulate hardware interrupts. Most VxD writers will want to use the Exec_Int service to
simulate interrupts.

This service has exactly the same effect as a VM executing an Int on instruction. All VxD
interrupt chain hooks are called and, if the interrupt is not consumed by one of these
hooks, an IRET frame is built on the VM's stack. Notice, however, that the VM interrupt
code will not be executed until the enhanced Windows environment returns to the virtual
machine. If you want to execute an interrupt, then you should use the nested execution
services (Exec_Int).

This service is mode sensitive. Therefore, if the VM is currently in V86 mode, then a V86
interrupt will be simulated. Otherwise, a PM interrupt will be simulated. Since reflecting a
PM interrupt may force a mode change to V86 mode, VxD writers must be very careful
when calling this service while running a protected-mode application.

EAX =Interrupt number

If Simulate_ Int is called while running a PM application and the PM interrupt vector is 0,
then the mode is chnaged to V86.

Client_ CS, Client_EIP, Client_ Flags, Flags

Microsoft Confidential Beta Release

S imu late_lret
DBSuiption

Enlry

Exit

Beta Release

VM Interrupt and Call Services 21·9

This service pops the values at the top of the current VM's stack into the current VM's
CS:IP and flags. If the current VM is a 32-bit protected-mode application, then this serv
ice will pop three DWORDs instead of WORDs (simulate an IRETD).

§ +-Client's SS:(E)SP after simulation
Client_ Flags

Client_ CS

Client (E)IP
- +- Client's cu"ent SS:(E)SP

Figure 21.4 Slmulate_lret (?) SERV_01.EPS

None

None

Client_ CS, Client_EIP, Client_ESP, Client_ Flags, Flags

Microsoft Confidential April 1, 1990

21·10 Virtual Device Allaptal/on Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

22
Nested Execution Services

These services provide a way for VxDs to call routines in a VM. Notice that the VxD must
make sure that the service being called is in a callable state (i.e., you must not reenter serv
ices that do not expect to be reentered).

Begin_Nest_Exec
Description

Beta Release

This service is used by devices that need to call software in a virtual machine. For ex
ample:

VMMcall Begin_Nest_Exec
mov [ebp.Client_AH], 30h
mov eax, 21h
VMMcall Exec_Int

VMMcall End_Nest_Exec

Start nested execution
30h = Get MS-DOS Version #
Execute an Int 21h in the
current VM to call DDS
End of nested exec calls

will make the DOS Get Version call. The version will be in the Client AH and Client AL - -registers.

This service only works for the current VM. The VM registers changed by the call WILL
BE CHANGED IN THE VM. If you want to save and restore a VM's registers you should
use the "Save Client State" and "Restore Client State" services or the
"Push_ Clien(_ State'' and "Pop_ Client_ State macros."

You may execute any number of interrupts between a Begin/End_ Nest_ Exec pair. For ex
ample the following is valid:

VMMcall Begin_Nest_Exec

VMMcall Exec_Int

VMMcall Exec_Int

VMMcall Simulate_Far_Call
VMMcall Resume_Exec

VMMcall Exec_Int
VMMcall End_Nest_Exec

This service will force the VM into protected mode execution if there is a protected mode
application running in the current VM. If there is no protected mode application, then the
VM will remain in V86 mode. When End_ Nest_ Exec is called the VM will be returned to

Microsoft Confidential April 1, 1990

22·2 Virtual Device AdaptaUan Su/de

Entry

Exit

Uses

whatever mode it was in when Begin_Nest_Exec was called For more information on
what is entailed in a mode switch refer to the documentation for "Set PM Exec Mode"
and ''Set_ V86_Exec_Mode". - - -

If the execution mode changes from V86 to PM then this service will automatically switch
the VM to the locked PM stack (and End Nest Exec will switch it back). This allows
most devices to change execution modes Withoot worrying about demand paging issues.

None

Client_ CS:IP contains a break point (used by nested exec services) If a protected mode
application is running then

VM execution mode is protected mode
else

VM execution mode is Virtual 8086 mode
Exec_Int and Resume_Exec services may be called

Client_ cs, Client_ IP, Flags

Begin_NesLV86_Exec
OBScriptlon

Entry

Exit

USES

April 1, 1990

This service will set the the current VM in Vutual 8086 mode and prepare the VM for
nested execution. This service is nonnally used by devices that want to convert protected
mode calls into V86 calls. For example, the DOSMGR device uses this call to map INT
21H DOS calls issued from protected mode programs into Virtual 8086 mode DOS calls.

This call, like Begin_ Nest_ Exec, saves the current execution mode of the virtual machine
(either V86 or PM) and End _Nest_ Exec will restore the mode. ·

None

Client_ CS:IP contains a break point (used by nested exec services)
VM is in Vn1Ual 8086 mode.
Exec_ Int and Resume_ Exec services may be called

Client_ CS, Client_IP, Flags

Microsoft Confidential Beta Release

Nested Execution Services 22-3

Begln_PM_Exec

Des1:1lption

EnltY

Exit

Beta Release

ED. NOTE Please be advised that this service may no longer be supported or may have changed.
Presented here is the most current documentation available at time of printing.

This service is used by devices that load protected mode applications to set the execution
mode to protected mode. It will set the VMStat_PM_App and VMStat_PM_Exec status
flags in the current VM's control block status field and set the current execution mode to
protected mode: If the 32-bit option is selected it will also set the VMStat _PM_ Use32
flag.

It is up to the caller to save the current client registers and restore them after calling
End PM Exec. None of the protected mode registers will be initialized by this call. There
fore Tt is up to the caller to initialize DS, ES, FS, GS, CS, EIP, SS, and ESP. Also note
that the loader must allocate any memory and selectors the protected mode program will
use. The loader must supply a stack segment for the application.

Typically, loaders have the following logic:

Start_Load:
mov edi, (Per-VM buffer to save state)
VMMcall Save_Client_State
mov eax, (0 or ll
VMMcall Begin_PM_Exec
jc Error
(Load application code and data)
(Set Client_CS:EIP to application entry point)
<Set Client_SS:ESP to application stack stack segment)
(Set initial values for Client_DS, ES, FS and GS>
ret (This will jump to programs entry CS:EIP.l

End_Program: (Normally catch Int 2lh, AH=4Chl
VMMcall End_PM_Exec
mov esi, CPer-VM buffer of saved client state>
VMMcall Restore_Client_State
ret <Returns to previous program in this VMl

Since more than one protected mode program may be loaded in a VM this service main
tains a count The first time it is called it sets the VMStat_PM_App flag and sets the ex
ecution mode to proteced mode. Subsequent calls to this will increment the counter (unless
the service fails) and set the execution mode to protected mode. You must call
End_ PM_ Exec once for every call to Begin _PM_ Exec.

EAX =Flags
Bit 0 = 1 if application is 32-bit, (0if16-bit)

all other flags reserved and must be 0

If carry flag clear then
Successful - VM is in PM execution mode.

Microsoft Confidential April 1, 1990

22-4 Virtual Device Adaptation Gulde

Uses

VMStat_PM_App tlag set in current VM's control block status tlags

else

ERROR: Could not begin PM execution because out of memory or
another PM application is different mode (16-bit requested
while 32-bit running or 32-bit requested while 16-bit
running>

Flags

Begin_Use_Locked_PM_Stack
Dest:ription

Entry

Exit

UBll

End_Nest_Exec
Dest:ription

Entry

April 1, 1990

This service is used by devices that need to ensme that a protected mode program is run
ning on a stack that will not be demand paged. Most devices can rely on
Begin_Nest_Exec to switch stacks automatically and so this service is only important for
devices such as the Virtual Programmable Interrupt Controller Device (VPICD) which ex
plicitly change the execution mode of a VM.

A call to this service must be followed by a call to End_ Use_ Locked _PM_ Stack. Note
that this service may be called repeatedly, but only the first call will switch stacks. Sub
sequent calls will increment a counter but remain on the current locked stack.

Cuttent execution mode of VM must be protected mode (VMStat_ PM_ Exec status bit
must be set).

If locked stack not already in use then
Client's SS:SP will be ch~nged to locked protected mode stack

else
Client's SS:SP will be unchanged

Flags

This must be called after a call to Begin_ Nest_ Exec. A device must never retmn to the
VMM while still in nested execution. If Begin_Nest_Exec changed the execution mode of
the VM then this service will restore it to the previous mode. Note that this service WIIL
NOT restore the client's registers (except CS:IP) to the values they were when
Begin_Nest_Exec was called. If you need to preserve the VM's registers you must use the
Push/Pop_ Client_State macros.

None

Microsoft Confidential Beta Release

Exit

U111

Nested Execution Setvlces 22-5

V M execution mode restored to previous execution mode (before
Begin Nest Exec was called)

Client's origin"il CS:IP restored

Client_ CS, Client_ IP, Flags

End_PM_ExecEO

D111t:tiptian

Entry

Exit

U111

NOTE Please be advised that this service may no longer be supported or may have changed. Pre
sented here is the most current documentation available at time of printing.

This service must be called once for every call to Begin_ PM_ Exec. If the internal count
mainlined by Begin/End_PM_Exec is decremented to zero then the VMStat_PM_App
flag in the control block is cleared and and the VM will be placed in V86 execution mode.
Otherwise, if the count remains greater than zero then the VM execution mode is not
changed and none of the client registers will be altered.

None

VM may be in V86 execution mode if final End_ PM _Exec

Flags.

End_Use_Locked_PM_Stack
D111t:ripllan

Entry

Exit

Uses

Beta Release

This service must be called once for every call made to Begin Use Locked PM Stack.
It will decrement the locked stack use counter and if it is decrCmented to zero then it will
switch the VM back to it's original SS:SP.

None

If locked stack count decremented to 0 then

else

Client's SS:SP will be restored to original values before
Begin_Use_Locked_PM_Stack was called.

Client's SS:SP will be unchanged

Flags.

Microsoft Confidential April 1, 1990

22·6 Virtual Device Adaptation Gulde

Exec_lnt
Dnt:riplion

Entry

Exit

Uses

Exec_VxD_lnt
Dncription

April 1, 1990

YOU MUST CALL BEGIN NEST EXEC OR BEGIN NEST V86 EXEC BEFORE
CALLING nns SERVICE. IT MAY BE CALLED ANYNuMBER OF TIMES BE-
1WEEN A BEGIN/ END NEST EXEC PAIR.

This service simulates an intetTUpt and then resumes VM execution. It has exactly the
same effect as calling:

mov eax, (Int #)
VMMcall Simulate_Int
VMMcall Resume_Exec

Since most nested execution calls simulate interrupts, this service is provided for con
vienence. See Resume_ Exec for more details on how this service is used.

EAX = # of interrupt to execute

Interrupt has been executed

Flags

This service is used by virtual devices to call DOS or BIOS services as though they were
an application program. For example, the following code gets the current DOS version:

mov ax, 3000h
push DWORD PTR ~lh
VMMcall Exec_VxD_Int
CAL = Major DOS version, AL = Minor DOS version)

All DOS and BIOS calls that are supported in protected mode programs will be supported
by this service. The VM's registers and flags will not be changed by this serivce so there is
no need for the caller to save and restore the client register structure. The interrupt number
on the stack will be removed by this serivce so the caller should NOT add four to ESP
after calling this serivce.

To make calling this service easier, a macro called VxDint is defined in VMM.INC as fol
lows:

VxDint MACRO Int_Number
push Int_Number
VMMcall Exec_VxD_Int
ENDM

Microsoft Confidential Beta Release

Beta Release

Nested Execution Services 22·7

This service makes it possible to write code in a virtual device that is very similar to real
mode code. For example, below is the code that opens a file named "FOO.TXT'' and reads
the first 100 bytes:

VxO_OATA_SEG
Foo_File_Name db
Read_Buffer db

VxD_DATA_ENDS

"FOO.TXT", 0
100 dup (?}

VxD_CODE_SEG
BeginProc Sample_File_Read

mov ax, 3000h
mov edx, OFFSET32 Foo_File_Name
VxDint 21h
jc Error

mov bx, ax
mov ecx, 100
mov edx, OFFSET32 Read_Buffer
mov ah, 3Fh
VxDint 21h
jc Error

<Do stuff with the data here}

EndProc Sample_File_Read
VxD_CODE_ENDS

Open file with handle
DS:EDX - File name
Call DOS
If carry then error
else AX = File handle
BX = File handle
Read 100 bytes
Into this buffer
DOS Read
Call DOS
Error if carry else
EAX = # bytes read

WARNING Interrupts will only be routed through virtual device interrupt hooks. THEY WILL BYPASS
ANY HOOK THE APPLICATION HAS INSTALLED IN PROTECTED MODE. This may be a problem, for ex
ample, if an application hooks Int 21 h to watch file opens and then a VxD uses this service to open a
file (the application would not see the file open).

Do not change DS or ES before calling this service. You should always use the ring 0
linear address of the data instead of changing the selector value. This may require using
the _ SelectorMapFlat service to determine the base of a selector.

Do not call services that will change DS or ES. Mappers should return valid pointers
without changing the segment register value, but calls that explicitly change the DS or ES
selectors should never be called. For example, if a call returns a pointer in DS:(E)DX then
this would be OK to call since the mapper would convert the ponter to use the ring 0 linear
address in EDX without modifying DS. However, if a service returns a selector only then
you should not use Exec_ VxD _Int to call it This can normally be made to work by using
code similar to the following:

Push_Client_State
VMMcall Begin_Nest_CV86_}Exec

<Fiddle with client registers}

Microsoft Confidential April 1, 1990

22·8 Virtual Device Adaptation Gulde

Enlry

Exit

Uses

VMMcall lxec_lnt

(Get segments/selectors)

VMMcall End_Nest_Exec
Pop_Cli ent_State

DWORD at [ESP+4] is number of interrupt to execute

All registers and flags modified by interrupt will be changed. The interrupt nwnber on the
stack will have been removed.

All registers and flags modified by interrupt will be changed.

Restore_Cllent_State
D•t:tiption

Enlty

Exit

April 1, 1990

This service restores a VM execution state that was saved using the Save Client State
service. If the client state was saved using the Push_ Client_ State macro then you should
use Pop_ Client_State to restore the VM's execution state. The Pop_ Client_State macro
looks like:

Pop_Client_State MACRO
push esi
lea esi, [esp+4]
VMMcall Restore_Client_State
pop. esi
add esp, SIZE Client_Reg_Struc
ENDM

Note that this service can have interesting side effects if it is not used carefully. For one
thing, it will change modes from V86 to protected mode or from protected to V86 mode if
the state being restored is in a different execution mode from the current one. Also, it may
change the state of the current virtual machine's interrupt flag and so it may cause call
backs to events scheduled through the "Call_ When_ VM _ Ints _Enabled" or "Call_ Prior
ity_ VM _Event" services.

ESI -> Buffer

VM execution state is restored

Flags

Microsoft Confidential Beta Release

Resume_Exec
Dest:riptlon

Beta Release

Nested Execution Services 22-9

YOU MUST CALL BEGIN NEST EXEC OR BEGIN NEST V86 EXEC BEFORE
CALLING TIIlS SERVICE.IT MAYBE CALLED ANY-NUMBER OF TIMES BE
TWEEN A BEGIN/ END NEST EXEC PAIR.

This service immediately executes the current virtual machine. When the virtual machine
returns to the same point it was at when Begin Nest Exec was called, this service will re-
turn. For example: - -

Push_Client_State
VMMcall Begin_Nest_Exec

mov ex, [Target_CSJ
mov eax, [Target_CS_EIPJ
VMMcall Simulate_Far_Call
VMMcall Resume_Exec

<Examine results returnd in Client registers)
VMMcall End_Nest_Exec
Pop_Client_State

will return when the called procedure returns.The following code will process any out- ·
standing events and immediately return:

VMMcall Begin_Nest_Exec
VMMcall Resume_Exec
VMMcall End_Nest_Exec

Since the Resume_Exec resumes execution at the same point that Begin_Nest_Exec was
called it will return immediately.

This service is also useful for devices that must wait for an external event (such as a hard
ware interrupt) to occur before returning to the virtual machine. Since Resume_ Exec al
lows outstanding events to be processed, simulated harware interrupts can be sent to the
virtual machine while waiting:

CPush_Client_State is not needed)
VMMcall Begin_Nest_Exec

My_Wait_Loop:
test [My_Status], Done
je Exit_My_Wait_Loop
VMMcall Resume_Exec
VMMcall Release_Time_Slice
jmp My_Wait_Loop

Exit_My_Wait_Loop:
VMMcall End_Nest_Exec
CPop_Client_State is not needed)

Note that you do not need to save and restore the client registers in this loop since simu
lated hardware interrupts and events will not modify the client registers. You should only
use the Push/ Pop_ Client_State macros when your VxD code explicitly calls code in a
virtual machine or directly modifies any client register.

Microsoft Confidential April 1, 1990

22·10 Virtual Dev/cs Adaptallon Gulde

Entry

Exit

Uses

This service and Exec Int may be called multiple times in between calls to Begin/End
nest exec. For exampIC the following code is valid:

Push_Client_State
VMHcall Begin_Nest_Exec
mov eax, (Int #)
VHMcall Exec_lnt
mov ex, [Target_CS]
mov eax, [Target_CS_EIP]
VMMcall Simulate_Far_Call
VMMcall Resume_Exec

VMMcall End_Nest_Exec
Pop_Client_State

Since events are processed when Resume_Exec (or Exec_Int) is called, a task switch may
occur.

None

None

Flags

Save_ClienLState
Dest:r/plian

April 1, 1990

This service will copy the contents of the current VM's Client Register Structure to the
specified buffer.The buffer must be the size of the structure named "Client_ Reg_Struc"
which is defined in VMM.INC. The saved state can later be restored by calling Re
store_ Client_ State.

Most of the time it is easier to use the Push Client State macro than to call this service
directly. Push_Client_State copies the client's state onto the protected mode stack. The
macro code is as follows:

Push_Client_State MACRO
sub esp, SIZE Client_Reg_Struc
push edi
lea edi, [esp+4]
VMHcall Save_Client_State
pop edi
ENDM

As you can see this macro will reserve space on the caller's stack for the buffer. You must
use the Pop_ Client_ State macro to get rid of the contents saved on your stack. The macro
will not change any registers.

Microsoft Confidential Beta Release

Entry

Exit

Usss

Nestsd Execution Servlcss 22-11

This service is typically used by devices that need to make calls to code in a virtual ma
chine that are unrelated to the current VM's thread of execution. For example, the demand
paging device (PageSwap) does the following:

Push_Client_State
VMMcall Begin_Nest_Exec

(Perform disk I/0)

VMMcall End_Nest_Exec
Pop_Client_State

Note that the Push_Client_State macro is placed BEFORE the call to Begin_Nest_Exec
and the Pop_ Client_ State macro is AFIER the call to End_ Nest_ Exec. Any other combi
nation would probably crash Win386.

WARNING Always use this service to save the client state. Don't just copy the VM's client register
structure and later copy it back as this will almost certianly cause Win386 to hang or crash.

EDI -> Buffer

Buffer contains a copy of the current VM's client register structure

Flags

SeLPM_Exec_Mode
0111cription

Entry

Exit

Usss

Beta Release

This service forces the current virtual machine into protected mode. Most devices will
want to use Begin_ Nest_ Exec instead of this service.

Changing the execution mode of a VM will not change the VM's EAX, EBX, ECX, EDX,
ESI, EDI, and EBP registers or MOST flags. The VM flag and IOPL flags will change.
DS, ES, FS, GS, SS, ESP, CS, and EIP will be restored to the previous values for pro
tected mode.

If the current VM is already in protected mode then this service has no effect

None

VM is in PM execution mode

Flags

Microsoft Confidential April 1, 1990

22·12 Virtual Device Adaptation Gulde

SeLV86_Exec_Mode
D•cripllon

Entry

Uses

April 1, 1990

This service forces the current virtual machine into V86 mode. Most devices will want to
use Begin_ Nest_ V86 _Exec instead of this service.

Changing the execution mode of a VM will not change the VM's EAX, EBX, ECX, EDX,
ESI, EDI, and EBP registers or MOST flags. The VM flag and IOPL flags will change.
DS, ES, FS, GS, SS, ESP, CS, and EIP will be restored to the previous values for V86
mode. VM execution mode will be restored to previous execution mode (before
Begin_Nest_Exec was called). Client's original CS:IP will be restored

If the current VM is already in V86 mode then this service has no effect.

None

VM is in V86 execution mode

Flags

Microsoft Confidential Beta Release

Chapter

23
Break Point and Callback
Services

The services described in this chapter are used to handle breakpoint and callback pro
cedures.

The discussion of these services is presented in the following order:

• Allocate_ V86 _Call_ Back

• Allocate _PM_ Call_ Back

• Call_ When_ VM _Returns

• Install_ V86_Break_Point

• Remove_ V86 _Break_ Point

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Allocate_V86_Call_Back, Allocate_PM_Call_Back
Dest:ription

Beta Release

A V86 callback is used to transition from V86 mode into a protected mode VxD. The call
back is a SEGMENT:OFFSET that, when executed by a V86 machine, will cause a pro
cedure in a virtual device to be called.

APM callback is used to transition from a protected-mode application to a VxD. The can~
back is a SELECTOR:OFFSET that, when executed, will cause a procedure in a virtual
device to be called.

These services are typically used by devices that need to be called by software running in a
virtual machine. When the VM software calls the callback address, the VxD gets control
and can service the VM's request.

Initialization:
mov
mov
VMMcall
mov
mov
shr
mov
ret

edx, My_Ref_Data
esi, OFFSET33 My_API_Procedure
Allocate_V86_Call_Back
[My_V86_Call_Back], eax
[ebp.Client_Dl], ax
eax, 16
[ebp.Client_ES], ax

Microsoft Confidential April 1, 1990

23·2 Virtual Device Adaptation Guide

Entry

Exit

Usn

Callbat:k

My_APl_Procedure:
. . . <Do something here)
VMMcall Simulate_Far_Ret
ret

EDX =Reference data (any DWORD)
ESI = Procedure to call

EAX = CS:IP of V86 callback address

EAX,Flags

EBX = Current VM handle
EDX =Reference data
EBP -> Current VM's client register structure

Call_When_ VM_Returns
Dnt:rlptlon

Entry

April 1, 1990

This service is normally used to watch the "back end" of a software interrupt For ex
ample, assume that the procedure 116 _Hook has been placed in the V86 interrupt chain
(using the Hook_ V86_Int_Cbain service). If the procedure wants to look at the return
value from INT 16H, it would use the following code:

116-Hook:
xor eax, eax
mov esi, OFFSET32 116_Return
VMMcall Call_When_VM_Returns
stc
ret

116_Return:
<Examine results of Int 16h)
ret

; No time-out
; Call this when iret executed
; Hook the return
; Reflect to next int handler

This service actually replaces the client's CS:IP with a callback. Since at the point
116 _Hook is executed the interrupt IRET frame has not yet been built on the client's stack,
the callback will be pushed on the client's IRET frame. When the VM executes an IRET to
return from the interrupt, the callback break point will be executed and control will be
transferred to 116 _Return. This service will take care of restoring the client's CS:IP
registers to their original value.

EAX = Milliseconds until time-out (0 if no time-out)
If negative value then callback will be called for both time
out AND return (unless return before time-out).

Microsoft Confidential Beta Release

Exit

Us111

Callback

EDX = Reference data
ESI = Address of procedure to call

Client_ CS:EIP replaced with callback address

Client_ CS, Client_ EIP, Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

If carry set then
Time-out occurred before VM returned

else

Break Paint and Callback Services 23·3

Client_CS:IP restored to original value
VM returned and executed break point
If time-out value specified was negative then

If Zero flag set then
Time-out DID occur. Second call to this callback

else
Time-out did not and will not occur.

lnstal I_ V86_Break_Polnt
0111t:tiptian

Beta Release

This service is used to patch V86 code in a VM. It is primarily used by the OOSMGR
device to place patches in the DOS BIOS. Most VxD will have no use for this service. A
good example of a "typical" use for this service is the Windows/386 XMS virtual device.
Since there is already a real mode XMS driver when the VxD environment starts, the vir
tual XMS device must place a V86 break point at the real XMS driver entry point so that it
can intercept all XMS calls.

This service places a Windows/386 V86 break point instruction at the specified SEG
MENT:OFFSET in the current virtual machine. V86 break points will normally be placed
in global VM memory during device initialization. V86 break points must be placed only
in RAM that will have a constant linear address (they cannot move or be placed in ROM).

When a VM executes the break point, control will be passed to the VxD that installed it.
The client's (VM's) CS:IP will still point to the break point that caused the fault. There
fore, the virtual device must change the CS:IP or else. the break point will be executed
again when the VxD environment returns to the VM. In the case of the virtual XMS
device, it would call Simulate Far Ret to return to the code that called the XMS driver.
Other devices may want to simulate-the instruction that was patched out and increment the
IP past the patch, jump to another CS:IP using Simulate_ Far _Jmp, or return from an in
terrupt handler using Simulate_ Iret.

Microsoft Confidential April 1, 1990

23-4 Virtual Devlt:B Adaptatllll fluids

Entry

Exit:

Callbat:k

If a particular V86 break point is no longer needed, then the VxD should call Re-
move_ V8'_ Break_ Point. Also, any break points that are placed in global V86 code (code
loaded before Wmdows/386 was loaded) must be removed at System_Exit time.

NOTE The segment used to install a V86 break point must be the code segment the virtual machine
will use when it executes the code that is being patched. For example, H you place a patch at
0100:0010 and the virtual machine hits the break point at OOFF:OOOOh (which is the same linear
address as 0100:0010), then an error will occur even though the VM executed a valid break point.

EAX =CS:IP
EDX =Reference data (any DWORD)
ESI = Offset of procedure to call

If carry set then
Could not install break point

else
V86 break point successfully installed

Flags

EAX =Client CS:IP that faulted
EBX = Handle of current VM
EDX = Reference data
ESI =Linear address of break point (CS « 4 + IP)
EBP ·> Oient register structure

Remove_ V86_Break_Point
D•t:tipllon

Entry

Exit

April 1, 1990

This service is used to remove a V86 break point that was installed using the In-
stall_ V8' _Break_ Point service. It will restore the original contents of the memory auto
matically.

EAX = CS:IP of break point to remove

If carry set then
ERROR: Not a valid V86 break point

else
Previous value restored at break point SEG:OFFSET

Flags

Microsoft Confidential Beta Release

Chapter

24

Beta Release

Primary Scheduler Services

Each virtual machine is a separate task in the enhanced Windows envirorunenL There are
several services that are used to control the scheduling of virtual machines.

Every VM has an execution priority. The VM with the highest execution priority is al
lowed to nm unless the VM is suspended or is blocked waiting for a critical section to be
freed. A VM's execution priority can be raised or lowered using the Adjust_ Execu
tion_ Priority service.

A Vx.D can force a particular virtual machine to run by boosting its execution priority.
However, VxD authors should take care when changing the priority of a VM since doing
so can radically effect the behavior of the Windows time-slicer.

To allow the mutual exclusion of non-reentrant code, the scheduler supports a single criti
cal section. The current VM can claim the critical section at any time by calling
Begin_ Critical_Section. If another VM owns the critical section, then the current VM will
block until the critical section is released. Once the critical section is claimed, the VM's ex
ecution priority is boosted. However, VMs with higher priorities will still be allowed to ex
ecute. Nonnally, VMs are only boosted higher than the critical section priority when a
hardware intenupt is simulated.

A VM may be suspended if it is not in a critical section. However, the system VM can
never be suspended. A suspended VM will never be scheduled, regardless of its execution
priority, until it is resumed.

An important thing to keep in mind is that since the enhanced Windows environment is a
single-threaded operating system, you do not have to be concerned with a task switch from
within a procedure. For example, another VM will not be scheduled while in a virtual
device l/O trap handler. Task switches take place when a VxD makes an explicit call to the
scheduler (i.e., End_ Critical_ Section) or at event processing time. Notice that since
events are processed when Resume_ Exec or Exec_ Int are called, a task switch may occur
while performing nested VM execution. Also, touching or locking unlocked demand
paged memory may cause a task-switch. In summary, the times when a task switch may
occur are as follows:

• Explicit calls to the scheduler

• Perfonning nested execution (Resume_ Exec or Exec_ Int)

• Touching or locking demand-paged memory

Microsoft Confidential April 1, 1990

24-2 Virtual Device Adaptauan Gulde

The discussion of services providing support for the Primary Scheduler is presented in the
following order:

• Adjust_Exec_Priority

• Begin_Critical_Sectioo

• Call_ Wheo_Not_ Critical

• Call_ When_ Task _Switched

• Claim_Critical_Sectioo

• Eod_Crit_Aod_Suspeod

• End_ Critical _Section

• Get_Crit_Section_Status

• No_Fail_Resume_VM

• Nuke_VM

• Release_ Critical_ Section

• Resume_VM

• Suspend_ VM

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Vntual
Device Programming Topics," for general environment discussions.

Adjust_Exec_Prlorlty
Oacriptlon

April 1, 1990

This service is used to raise or lower the execution priority of the specified VM. Since the
non-suspended VM with the highest execution priority is always the current VM, this serv
ice will cause a task switch under two circumstances:

1. The execution priority of the cuxrent VM is lowered (EAX is negative}, and there is
another VM with a higher priority that is not suspended.

2. The execution priority of a non-suspended VM which is not the current VM is raised
(EAX is positive} higher than the current VM's execution priority.

Note that even if the cmrent VM is in a critical section, a task switch will sti.11 occur if the
priority of another non-suspended VM is raised higher than the current VM's priority.
However, this will only happen when a VM is given a time-critical boost. for example, to
simulate a hardware interrupL There are equates defined in VMM.IN'C that should be used
when adjusting a VM's priority. They are listed below in order from lowest to highest

Microsoft Confidential Beta Release

Entry

Exit

Us11

Equate Name

Reserved_ Low_ Boost

Cur _Run_ VM_Boost

Low _Pri _Device_ Boost

Higb _ Pri _Device_ Boost

Critical_ Section_ Boost

Time_ Critical_ Boost

Reserved _High_ Boost

Primary Scheduler Services 24-3

Description

Reserved for use by system.

Time-slice scheduler boosts each VM in turn by this
value to force them to run for their alloted time-slice.

Used by VxDs that need an event to be processed in a
timely fashion but that are not extremely time critical.

Tune critical operations that should not circumvent the
critical section boost should use this boost

VM priority is boosted by this value when
Begin_ Critical_ Section is called.

Events that must be processed even when another VM is
in a critical section should use this boost. For example,
VPICD uses this when simulating hardware interrupts.

Reserved for use by system.

It is often more convienient to call Call Priority VM Event than to call this service
directly. - - -

EAX = + or - priority boost (signed long integer)
EBX = VM handle

None

Flags

Begin_Critical_Sectlon
Description

Beta Release

Use of this service causes the current VM to enter a global critical section. Only one VM
can own the critical section at a time. If a VM calls this service while another VM owns
the critical section, then the current VM will block until the critical section is released.

The critical section is maintained as a count and so n calls to Begin_ Critical_ Section
must be followed by n calls to End_ Critical_ Section before the VM will leave the critical
section.

When the critical section is first claimed, the execution priority of the current VM is
boosted by the Critical_ Section_ Boost value defined in VMM.INC. This means that task
switches to other VMs will only occur for time-critical operations such as simulating hard
ware interrupts.

Microsoft Confidential April 1, 1990

24-4 Virtual Device Adaptation Gulde

Entry

Exit

Critical sections are used for code that must not be entered in more than one VM. For ex
ample, while in DOS, the OOSMGR VxD places the VM in a critical section. If another
VM makes a DOS call, then it will block until the critical section owner's DOS call
completes. However, this scenario is unlikely since a VM has an extremely high execution
priority while it owns the critical section, and, therefore, other VMs will not run until the
critical section is released. A scenario that would cause a VM to block is as follows:

VM X calls DOS to read a file.
The OOSMGR calis Begin_Critical_Section for VM X. This raises

VM X's priority by the Critical_Section_Boost.
The Virtual Keyboard Device simulates an interrupt to VM Y.
VM Y is sceduled since it has a higher execution priority

(simulated interrupts use the Time_Critical_Boost).
A T&SR program •wakes up• on the keyboard interrupt and calls DOS.
The DOSMGR calls Begin_Critical_Section for VM Y.
VM Y blocks since another VM owns the critical section.
VM X is sched~led since it has the highest exectution priority.
The DOS read for VM X completes.
DOSMGR calls End_Critical_Section for VM X. This lowers

VM X's priority by the Critical_Section_Boost.
VM Y is un-blocked and scheduled since it has the highest priority.
VM Y continues execution at the instruction immediately after the

call to Begin_Critical_Section and executes the DOS call.

Sometimes it is preferable to boost the current VM by the Time_ Critical_ Boost value in
stead of entering a critical section. This prevents the main thread of execution from run
ning in all but the current VM but avoids blocking a VM when it is not really necessary.

None

None

Flags

Call_When_Not_Critlcal
Deuriplion

April 1, 1990

This service will call a VxD when the critical section is released. Notice that it will not ex
ecute the callback until the current VM's execution priority is less than the Critical_ Sec
tion Boost even when the current VM is not in a critical section. This is done because
mostVxDs that use this service will want to wait until the critical section is free and no
hardware interrupts are being simulated.

Normally it is more convenient to use the Call_ Priority_ VM _Event service than to call
this service directly.

Microsoft Confidential Beta Release

Entry

Exit

Us11

Callback

ESI = Address of call-back procedure
EDX =Reference data to pass to callback procedure

None

Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Primary Scheduler Services 24·5

Procedure can corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Call_When_ Task_Switched
D1st:riptlon

Entry

Exit

Uses

Callback

This service provides a way to be informed each time a different VM is to be executed.
The specified procedure will be called every time a task switch occurs. Since this is a
frequent operation in most environments, this service should be used sparingly, and the
callback procedure should be optimized for speed.

VxDs must sometimes save the state of a hardware device every time a task switch occurs
and restore the hardware state for the VM that is about to be run. However, VM events can
often be used in place of using this service.

ESI = Pointer to procedure to call at task switch time

None

Flags

EAX =Handle of VM switching away from (old Cur_ VM _Handle)
EBX =Current VM (just switched to)

Procedure can destroy EAX, EBX, ECX, EDX, ESI, EDI and Flags

Clalm_Crltlcal_Section
Oest:ription

Beta Release

This service will increment the critical section count by the specified value. It has the same
effect as calling Begin_ Critical_ Section repeatedly but is faster. Refer to the documenta
tion for Begin_ Critical_ Section for more information on the various side effects of enter
ing a critical section.

Microsoft Confidential April 1, 1990

24·6 Virtual Device Adaptation Saide

Entry ECX =#of times to claim the critical section (0 is valid & ignored)

Exit None

Usu Flags

End_Crit_And_Suspend
Dat:r/ption

Entry

April 1, 1990

This service will release the critical section and immediately suspend the current VM. It is
used to block a VM until another event can be processed. This service is used by the Shell
VxD to display Windows dialog boxes using code similar to this:

Show_Dialog_Box:
VMMcall
jc
VMMcall
mov
VMMcall
mov
mov
mov
VMMcall
VMMcall
jc

Get_Crit_Section_Status
Cant_Do_It!
Begin_Critical_Section
eax, Low_Pri_Device_Boost
Get_Sys_VM_Handle
ecx, llb
edx, OFFSET32 CDialog_Box_Data_Structure>
esi, OFFSET32 Show_Dialog_Event
Call_Priority_VM_Event
End_Crit__And_Suspend
Did_Not_Work!
: <When End_Crit_And_Suspend returns the dialog box
: will have been displayed)

Show_Dialog_Event:
<Call Windows to display the dialog box>
mov ebx, [Handle_Of_VM_That_Called_Show_Dialog_Box]
VMMcall Resume_VM
jc Error!
ret

The Show_ Dialog_ Box procedure enters a critical section to prevent the Call_ Prior
ity_ VM _Event service from switching to the system VM immediately. It then calls
End_ Crit _And _Suspend, which blocks the cunent VM. The Show_ Dialog_ Event pro
cedure runs in the system (Windows) VM and actually displays the dialog box. When it is
finished, it resumes the VM that called Show_ Dialog_ Box.

This service must only be called when the critical section has been claimed once. That is
the reason for the initial test of the critical section state in the Show_ Dialog_ Box pro
cedure in the sample code.

None

Microsoft Confidential Beta Release

Exit

Us11

Primary Scheduler Services 24-7

If carry set then

else

ERROR: Could not suspend VM or could not release critical
section (crit claim count != ll

Call worked. VM execution restarted by another VM calling
• Resume_VH".

Flags

End_Crltlcal_Section
Dacription

Entry

Exit

Uses

This service is used to release the global critical section after a call to Begin_ Critical_ Sec
tion has been issued. If the critical section ownership count is decremented to 0, then
ownership of the critical section is released. Since releasing the critical section lowers the
execution priority of the current VM, this service will cause a task switch if a non-sus
pended VM has a higher priority.

None

None

Flags

Get_Crit_Section_Status
Oacriplion

Entry

Exit

Uses

Beta Release

This service returns the critical section claim count in ECX and the owner of the critical
section in EBX. If ECX is 0, then the current VM handle will be returned in EBX.

If this service returns with the Carry flag set, then the VM is in a time-critical operation
such as a hardware interrupt simulation. (It has an execution priority = Critical_ Sec
tion_ Boost.)

None

EBX = VM handle of current owner (Current VM if ECX = 0)
ECX = # of times critical section claimed
If carry set then VM is in a time-critical operation or critical section.

Flags

Microsoft Confidential April 1, 1990

24·8 Virtual Device AdaptaUon Gulde

No_Fail_Resume_ VM

Nuke_VM
D•criplian

Enlry

Exit

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this release.

This service is used to close a VM that has not yet tenninated nonnally. It is usually called
by the Shell VxD to close VMs that the user has selected to tenninate using the Wmdow
Oose option on the VM's system menu.

Needless to say, this service should be used very cautiously.

EBX = Handle of VM to destroy

If entry EBX = Current VH handle then
This service will never return (same as Crash_Cur_VH>

else

Flags

If EBX = System VM handle then
This service will never return (fatal error-crash to DOS>

else
VM has been nuked

Release_Crltlcal_Section
D•t:riptian

Enlry

Exit

Uses

April 1, 1990

This service will decrement the critical section count by the specified value. It has the
same effect as calling End_ Critical_ Section repeatedly but is faster.

ECX = # of times to release ownership of critical section (0 valid)

None

Flags

Microsoft Confidential Be'ta Release

Resume_VM
Description

Entry

Exit

Uses

Suspend_VM
Description

Entry

Bera Release

PrlmaTY Scheduler Services 24·9

This service is used to resume the execution of a VM that was previously suspended by a
call to Suspend_ VM. If the suspend count is decremented to 0, the VM will be placed on
the queue of ready processes. A task switch will occur to the resumed VM if it has a higher
priority than the current VM.

It is sometimes not possible to resume a VM. Normally, this is because a VxD is unable to
lock the VM's memory handles. Every VxD is notified when a VM is resumed and can fail
the call. In this case, this service will return with Carry set, and the VM will remain sus
pended with a suspend count of 1.

EBX = VM handle

If carry clear then
If suspend count decremented to 0 then VM is runnable

else
Error could not resume (Suspend count remains 1)

Flags

This service will suspend the execution of a specified Vrrtual Machine. Any VM, except
the system VM, that is not in a critical section can be suspended. This service Will fail if
the specified VM is the critical section owner or the system VM. The system VM can
never be suspended.

This service maintains a count that is incremented each time a VM is suspended. There
fore, if this service is called n times for a given VM, Resume_ VM must be called n times
before the VM will be executed.

When a VM is being suspended for the first time (its suspend count is incremented from 0
to 1), all devices will receive a control call with EAX = VM _Suspend. Devices may not
refuse to suspend a VM. However, VxDs are allowed to fail the VM Resume control call.
Subsequent calls to Suspend_ VM will not result in a VM _Suspend "Control call until the
VM has been resumed.

When a VM is suspended, the CB VM Status field in the control block will have the
VMStat_Suspended bit set When a VM is suspended, VxDs should not touch any
memory owned by that VM unless the VxD has previously locked the memory. You may,
however, examine or modify the contents of a suspended VM's control block.

EBX = VM handle

Microsoft Confidential April 1, 1990

24·10 Virtual Device Adaptation Guide

Exit

Uses

April 1, 1990

If carry flag clear then
VM suspended

else
Error: Could not suspend VH CVM is in a critical section or
is the system VM>

Flags

Microsoft Confidential Beta Release

Chapter

25

Beta Release

Time-Slice Scheduler
Services

The enhanced Windows time-slice scheduler is the preemptive multitasking portion of the
scheduler. It relies on time-slice priorities and flags to determine how much CPU time
should be allocated to various virtual machines.

Every VM has a foreground (focus) and a background time-slice priority. These should be
distinguished from a VM's Execution Priority. A VM with the largest Execution Priority
will run, preventing other VMs from executing. The VM with the largest time-slice prior
ity will run more often than other VMs but it will not necessarily prevent other VMs from
executing.

There are three flags that affect the way the time-slicer schedules virtual machines:
VMStat_Exclusive, VMStat_Background, and VMStat_High_Pri_Background. These
flags are saved in the CB_ VM_Status field of each VM's control block. You may examine
these flags but you must never modify them directly. To change any of the flags, you must
call the Set_Time_Slice_Priority service.

If a VM that has the VMStat _Exclusive bit set is assigned the execution focus, then it will
become the only VM that is allowed to run. In this case, foreground and background priori
ties are meaningless since the VM is using 100 percent of the CPU time. The Re·
lease_Time_Slice service has no effect on an exclusive virtual machine. High-priority
background VMs will not run when an exclusive VM has the execution focus.

If the VM with the focus is not exclusive, then any VM that has the VMStat _Background
flag set will be allowed to run based on their background time-slice priority. The VM with
the focus will be scheduled based on its foreground time-slice priority. -

For this scheduler, a higher priority indicates that the VM should get more CPU time. The
larger the priority, the faster the VM will run.

The algorithm used to allocate time determines the percentage of CPU time each VM
should get based on their percentage of the total of all the time-slice priorities. For ex
ample, assume the following VMs exist:

VM Foreground Background Flags
Priority Priority

1 100 50 Exclusive, Background
2 100 50 Background
3 50 25 <none - foreground, non-exclusive)
4 250 75 Background

Microsoft.Confidential April 1, 1990

25-2 Virtual Device Adaptation Guide

April 1, 1990

If the execution focus is set to VM 1, then it will use 100 percent of the CPU time since it
has the exclusive flag set. If the execution focus is set to VM 2, then VMs 1, 2, and 4 will
run.VM 3 would not be scheduled since it does not have the background flag seL

To detennine how much time each VM should be allocated, the time-slicer first sums all
the VM priorities and, then, calculates the percentage of CPU time each VM should re
ceive as follows:

VH 2 foreground pri = 100 I 225 * 100 = 45~ of CPU
VM 1 background pri = 50 I 225 * 100 = 22% of CPU
VM 4 background pri = 75 I 225 * 100 = 33% of CPU

Total 225

Notice that a foreground priority of 10,000 (the maximum allowed) is special. When a VM
with priority 10,000 is the execution focus VM, only high-priority background VMs will
run unless the focus VM explicitly releases its time slice. This is different from an exclu
sive VM since other VMs can run if the focus gives up its time.

High-priority background VMs execute when a priority 10,000 VM has the focus even if
the focus VM is not releasing its time.

The discussion of services providing support for the Time-Slice Scheduler is presented in
the following order:

• Adjust_Execution_Time

• Get_ Execution _Focus

• Get_ Time _Slice_ Granularity

• Get_ Time _Slice_ Priority

• Release_Time_Slice

• Set_Execution_Focus

• Set_ Time_ Slice_ Granularity

• Set_ Time _Slice _Priority

See Chapter 16, "Overview of Windows in 386 Enhanced Mode,'' and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Microsoft Confidential Beta Release

Tlme-Sllce Scheduler Services 25-3

Adjust_Execution_ Ti me
Description

Entry

Exit

Usss

This service allows a device to change the amount of time a VM will be allowed to ex
ecute regardless of the VM's time-slice priority. Usually this service is used by devices
such as the Vrrtual COM Device to boost temporarily the priority of a VM that is receiving
lots of interrupts. This service can also be used to reduce the amount of time a VM will be
allowed to run by passing a negative value in EAX. However, this is likely to cause execu
tion starvation and is discouraged.

The value specified in EAX is the number of additional (or fewer) milliseconds the VM
will be allowed to run. It has the same effect on all VMs regardless of their time-slice prior
ity. This means that if a VxD calls this service with EAX = 1000, then the specified VM
will be allowed to run an additional second regardless of its time-slice priority.

Notice that if the specified VM is not on the time-slice execution list, then this service will
do nothing. It will not force a non-runnable VM to execute. In other words, a non-back
ground VM cannot be forced to run in the background by boosting its execution time.

Be careful not to abuse this service! It can result in starvation for other processes.

EAX = + or - milliseconds to adjust execution time by
EBX = VM handle

None

Flags

Get_Execution_Focus
Description

Entry

Exit

Usss

This service returns the handle of the VM that is the focus or foreground VM. This service
can be called from an interrupt handler.

None.

EBX = Handle of VM with execution focus

EBX,Flags

Get_ Time_Slice_Granularlty
Dsst:ription

Beta Release

This service returns the current time-slice granularity in EAX. The value returned is the
minimum number of milliseconds a VM will be allowed to run before being rescheduled.

Microsoft Confidential April 1, 1990

25-4 Virtual Dev/cs ADaptaUan Gulde

Enlry None

Exit EAX = Minimum time-slice size in milliseconds

Uses EAX,Flags

Get_ Time_Stice_Priority
D•t:r/ption

Enlry

Ex.it

U1es

This service returns the time-slice execution flags, the foreground and background priori
ties, and the percent of CPU usage for a specified VM. Notice that the percent of CPU
time renuned indicates the amount of time the VM is allowed to run, but this number will
not reflect me actual amount of CPU time if any VM releases its time slice since other
VMs will be allowed to execute during that VM's time slice.

EBX = VM handle

EAX =Flags (Appropriate flags from CB_ VM_Status control block
field)

VMMStat Exclusive
VMStat_ Background
VMStat_ High_ Pri_ Background

ECX = Foreground time-slice priority (high word 0)
EDX = Background time-slice priority (high word 0)
ESI = % of total CPU time used by VM

Flags

Release_ Time_Sllce
D•cription

Entry

Exit

Uses

April 1, 1990

This service causes the current VM to give up any time remaining in its current time slice
and allows the next VM in the time-slice queue to run. This service should be called when
ever a VM is idle to allow other VMs to execute faster. If there is only one VM in the time
slice queue, this service will do nothing.

None

None

Flags

Microsoft Confidential Beta Release

Tlme-Sllce Scheduler Services 25-5

Set_Execution_Focus
Description

Enlry

Exit

Uses

This service changes the time-slice exection focus to the specified virtual machine. The
VM with the focus executes with its foreground priority. If the VMStat_ Exclusive flag is
set, then it will be the only VM scheduled. Otherwise, background VMs will be allowed to
run. All VMs except the focus VM, background VMs, and the system VM will be sus
pended.

EBX = VM handle

None

Flags

SeLTime_Slice_Granularity
Description

Ent,Y

Exit

Uses

This service is used to change the minimum amount of time the time-slice scheduler will
allocate to a VM. Smaller values will make multitasking appear smoother but will increase
overhead due to the large number of task switches required Larger values will allow more
time for the VMs to execute but may make execution appear sporadic to the user.

EAX = Minimum time-slice size in milliseconds

None

Flags

SeLTime_Slice_Priority
Description

Beta Release

This service sets the time-slice execution flags (background, high-priority background, and
exclusive status flags) and the foreground and background priorities for a specified VM.

To change part of a VM's time-slice priority status, first call Get_ Time_ Slice_ Priority,
then change only the values you are interested in and call this service. For example, to set
a VM into background mode, you would do the following:

mov ebx, [Handle_Of_VM_To_Change]
VMMcall Get_Time_Slice_Priority
or eax, VMStat_Background
VMMcall Set_Time_Slice_Priority

Microsoft Confidential April 1, 1990

25·6 Virtual Device Adaptation Gulde

Entry

Exit

Usn

April 1, 1990

EAX=Flags
VMStat Exclusive
VMSta(Background
VMStat_Higb _ Pri_ Background

EBX = VM handle
ECX = Foreground priority (high word must be 0)
EDX = Background priority (high word must be 0)

If carry set then
ERROR: Could not change priority I flags for VM

else
Priority and flags changed

Flags

Microsoft Confidential Beta Release

Chapter

26

Beta Release

Event Services

Enhanced Windows is a single-threaded, non-reentrant operating environment Because it
is non-reentrant. virtual devices that hook hardware interrupts must have some method of
synchronizing their calls to VMM. For this reason, enhanced Windows has the concept of
"event" processing.

When a VxD is entered due to an asynchronous interrupt. such as a hardware interrupt, the
device is limited to a very specific subset of functions. It is allowed to do only the follow
ing:

• Call any Vrrtual PIC Device (VPICD) service

• Call any asynchronous VMM service (see individual services for details)

• Schedule events

Obviously, devices that service hardware interrupts will often need to use services other
than the ones listed above. When this is the case, the VxD will need to schedule an event
When an event is scheduled, the caller defines a procedure to call when it is OK to make
any VMM call. When VMM calls this procedure, the VxD can finish processing the asyn
chronous event.

VM events are often useful for devices that do not service hardware interrupts and can be
scheduled at any time except during a Non-Maskable Interrupt (NMI).

When an event service routine is called, it is entered with the following:

• EBX =Current VM handle

• EDX = Reference data passed when the routine was set up

• EBP -> Client register structure

The event callback procedure can modify EAX, EBX, ECX, EDX, ESI, and EDI.

The discussion of services providing support for events is presented in the following order:

• Call_Global_Event

• Call_ Priority_ VM _Event

• Call_ VM _Event

Microsoft Confidential April 1, 1990

26·2 Virtual Device Adaptation Gulde

• Cancel_Global_Event

• Cancel_Priority_ VM_Event

• Cancel_ VM_Event

• Schedule_ Global_ Event

• Schedule_ VM _Event

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Call_Global_Event
Description

Entry

Exit

Uses

Callback

This procedure is a faster method of servicing asynchronous events. If the current thread of
execution begins in a virtual machine (it was not an interrupt from within the VMM), then
the event procedure will be called immediately. Otherwise, the event will be scheduled.

ESI = Offset of procedure to call
EDX =Reference data (will be passed back to procedure)

If ESI .. 0 then
Event procedure was called

else
ESI = Event handle (can be used to cancel events)

ESI,Flags

EBX = Current VM handle
EDX =Reference data
EBP ·> Client register structure

Call_Prlorlty_ VM_Event
Dssoriptlon

April 1, 1990

This service combines the functionality of Call_ VM _Event,
Call_ When_ VM _ Ints_Enabled, Call_ When _Not_ Critical, and Adjust_ Exec_ Priority
into one, easy to use service. As with all event services, this service can be called from an
interrupt handler.

Call_Priority_ VM_Event is used by VxDs for several purposes. The most common uses
are as follows:

• To wait until a VM enables interrupts and the critical section is free so the V xD can call
DOS or some other non-reentrant code.

Microsoft Confidential Beta Release

Example

Beta Release

Event Services 26·3

• To boost a VM's priority and wait until the VM enables interrupts to simuJate an inter
rupt type event For example, the VNETBIOS uses this service for asynchronous net
work request POST callbacks.

• To force an event to be processed in another VM by boosting the VM's Execution Prior
ity.

Assume a VxD implements a print spooler that will call a VM back when a bUffer has been
sent to the printer. It could use this service to notify the appropriate VM that its buffer has
been printed as follows:

VxO_Code_SEG
BeginProc Print_Buff_Empty

mov eax, Low_pri_Oevice_boost
mov ebx, [Call_Back_VM_Handle]
mov ecx, PEF_Wait_ForSTI or PEF_Wait_Not_Crit
mov edx, [Call_back_CS_IP]
mov esi, Buff_Empty_Call_Back_Event
VMMCall Call_Priority_VM_Event
ret

EndProc Print_Buff_Empty
BeginProc Buff_Empty_Call_Back_Event

VMMcall Begin_Next_Exec ;Get ready to call VM
mov ecx, edx
shr edx, 16 ;ECX =Segment to call
movzx edx, dx ;EOX =Offset to call
VMMca ll Bui l d_I nt_Stack_Frame
VMMcall Resume_Exec ;call the VMM's

;callback ret
EndProc Buff_Empty_Call_Back_Event

VxO_CODLENOS

The Print_ Buff_ Empty procedure could be called from a hardware interrupt handler in
any virtual machine. It uses Call_ Priority_ VM _Event to force the correct VM to be
scheduled. The priority boost specified in EAX will force the event to be processed
quickly although not as fast as a hardware interrupt. The options specified in the ECX
register will force the event to be delayed until the critical section is free and the VM's in
terrupts are enabled. The reference data in ED X contains the CS:IP of the procedure to
call in the VM.

When Buff_ Empty_ Call_ Back_ Event is called it can make several assumptions: it is run
ning in the desired VM, the critical section is not owned, and the VM has enabled inter
rupts. It uses the CS:IP value passed in EDX to simuJate a pseudo-interrupt in the VM.
The procedure called in the VM would have to execute an IRET to return from the call
back. When Buff_ Empty_ Call_ Back_ Event returns, the execution priority boost is auto
matically deducted.

THIS EXAMPLE IS INCOMPLETE! -An actual VxD bandier would need to do
more work. It does not address several problems. For example
''Buff_Empty_Call_Back_Event" does not take into account whether the call should

Microsoft Confidential April 1, 1990

26·4 Virtual Dev/cs Adaptation Gulde

Entry

Exit

Uus

Callback

Call_ VM_Event
Oacriplian

Entry

April 1, 1990

be made to a V86 CS:IPor protected mode CS:IP. It also would not work for 32-bit
protected mode programs since it would need to pass a 32-bit offset (EIP) to Simu
late Far Call.

EAX =Priority boost (can be 0)
EBX = VM handle
ECX "'Option flags (defined in VMM.INC)

PEF _ Wait_For_STI - Event will not be called until
VM enables interrupts

PEF _ Wait_Not_Crit- Event will not be called until
VM is not in a critical section
or time-critical operation.

PEF _Dont_Unboost - Priority of VM will not be reduced
after return from event procedure.

All other bits are reserved and must be 0.
EDX =Reference data (will be passed back to procedure)
ESI = Offset of procedure to call

If ESI = 0 then
Event procedure already called

else
Event procedure will be called later

ESI • Event handle (can cancel using Cancel_Priority_VH_Eventl

Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags

This procedure is a faster method of servicing asynchronous events. If the current thread of
execution begins in a virtual machine (it was not an intenupt from within !he VMM) and
the event is for the current VM, then the event procedure will be called immediately. Other
wise, the event will be scheduled.

EBX = VM handle
ESI = Offset of procedure to call
EDX =Reference data (will be passed back to procedure)

Microsoft Confidential Beta Release

Exit

Uses

Callback

If ESI = 0 then
Event procedure was called

else
ESI = Event handle (can be used to cancel events)

Flags

EBX = Current VM handle
EDX =Reference data
EBP -> Client register structure

Event Services 26·5

Cancel_G lobal_Event
Description

Entry

Exit

Uses

This service is used to cancel an event that was previously scheduled by
Schedule Global Event or Call Global Event. Notice that, once a scheduled event is
serviced, you must not attempt to cancel that event .

NOTE It is valid to pass ESI = 0 to this service (it will do nothing). This is provided so that code that
uses this service can use 0 to indicate no event scheduled and not have to perform a test every time it
wants to cancel an event. For example:

xor esi, esi
xchg esi, [My_Event_Handle]
VMMcall Cancel_Global_Event

will always work even if no event was scheduled. You will also need to set [My;...Event_Handle] to 0 in
your event procedure.

ESI =Event handle (0 is acceptable)

Global event has been canceled

Flags

Cancel_Priority_VM_Event
OBSt:tiption

Beta Release

This service is used to cancel an event that was previously scheduled by Call_ Prior
ity_ VM _Event. Notice that once a scheduled event is serviced, you must not attempt to
cancel that event

Microsoft Confidential April 1, 1990

26·6 Virtual Device Adaptation Guide

Entry

Exit

Us11

NOTE It is valid to pass ESI = 0 to this seivice (it will do nothing). This is provided so that code that
uses this seivice can use 0 to indicate no event scheduled and not have to perform a test every time it
wants to cancel an event. For example:

xor esi, esi
xchg esi, [My_Event_Handle]
VMMcall Cancel_VM_Event

will always work even if no event was"Scheduled. You will also need to set [My_Evenl_Handle] to 0 in
your event procedure.

Do not use this service to cancel events scheduled using the Call_ VM_Event or
Schedule_ VM_Event services. You must cancel normal VM events using the Can
cel_ VM_Event service.

ESI = Priority event handle (0 is valid)

Event canceled, ESI contains garbage

Flags,ESI

Cancel_VM_Event
D•criptlon

April 1, 1990

This service is used to cancel an event that was previously scheduled by
Schedule VM Event or Call VM Event. Notice that, once a scheduled event is serv
iced, you must not attempt to cancel that evenL

NOTE It is valid to pass ESI = 0 to this service (it will do nothing). This is provided so that code that
uses this seivice can use 0 to indicate no event scheduled and not have to perform a test every time it
wants to cancel an event. For example:

xor esi, esi
xchg esi, [My_Event_Handle]
VMMcall Cancel_VM_Event

will always work even if no event was scheduled. You will also need to set [My_Evenl_Handle] to 0 in
your event procedure.

Do not use this service to cancel events scheduled using the Call_ Priority_ VM _Event
service. You must cancel priority events using the Cancel_Priority_ VM_Event service.

Microsoft Confidential Bera Release

Event Services 26·7

Entry EBX = v M handle
ESI =Event handle (0 is acceptable)

Exit None

Uses Flags

Schedule_Globat_Event
Description

Entry

Exit

Uses

Callback

This procedure is used to schedule asynchronous events that are not VM specific. The
events will be processed immediately before the VMM IR.ETs to any VM.

ESI = Offset of procedure to call
EDX =Reference data (will be passed back to procedure)

ESI =Event handle (can be used to cancel event)

ESl,Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Schedule_VM_Event
Description

Entry

Exit

Uses

Beta Release

This procedure is used to schedule asynchronous events that are VM specific. The events
will be processed immediately before the VMM IR.ETs to the specified VM.

VM events will only be executed in the VM for which they were scheduled for. Therefore,
if a VM event is scheduled for a VM other than the current virtual machine, it will not be
processed until a task switch occurs to that VM.

EBX = VM handle
ESI = Offset of procedure to call
EDX =Reference data (will be passed back to procedure)

ESI =Event handle (can be used to cancel event)

ESI, Flags

Microsoft Confidential April 1, 1990

26-8 Virtual Device Adaptation Guide

Callback

April 1, 1990

EBX =Current VM handle (VM event was scheduled for)
EDX =Reference data
EBP -> Client register structure

Microsoft Confidential Beta Release

Chapter

27
Timing Services

Tuning services are provided for use by VxDs that need to perfonn periodic operations or
need to establish the amount of time elapsed since a particular event. They are described
here in the following order:

• Cancel_Time_Out

• Get_Last_Updated_System_Time

• Get_Last_ Updated_ VM _Exec_ Time

• Get_System_Time

• Get_ VM_Exec_Time

• Set_Global_Time_Out

• Set_ VM_Time_Out

• Update_ System_ Clock

See Chapter 16, "Overview of Windows in Enhanced Mode," and Chapter 17, "Vrrtual
Device Programming Topics," for general environment discussions.

Cancel_Tlme_Out
Description

Entry

Beta Release

This service is used to cancel a time-out that was scheduled through either
Set_ VM _ Tim.e _Out or Set_ Global_ Time_ Out.

NOTE It is valid to pass ESI = 0 to this service (it will do nothing). This is provided so that code that
uses this service can use 0 to indicate no time-out scheduled and not have to perform a test every time
it wants to cancel a time-out. For example:

xor esi, esi
xchg esi, [Local_Time_Out_Handle]
call Cancel_Time_Out

will always work even if no time-out was scheduled.

ESI = Time-out handle to cancel OR 0 if no time-out to be canceled

Microsoft Confidential April 1, 1990

27-2 Virtual Device Adaptation Guide

Exit Time-out is canceled, old time-out handle now invalid

Uses Flags

Get_Last_Updated_System_ Time

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this release.

Get_Last_Updated_ VM_Exec_ Time

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this release.

Get_ System_ Time
Description

Entry

Exit

Uses

This service will return the time in milliseconds since the enhanced Windows environment
was started. There is no way to detect rollover of the clock through this function but the
clock will take 49.5 days to roll over.

If you are concerned about rollover, you should schedule a time-out every 30 days.

None

EAX =Elapsed time in milliseconds since enhanced Windows was started

EAX,Flags

Get_ VM_Exec_ Time
Description

April 1, 1990

This service returns the amount of time that a particular VM has executed. Every VM
starts with an Exec_ Time of 0 when it is created, and the Exec_ Time is only increased
when the VM is actually executed. Therefore, the value returned does not reflect the length
of time the VM has existed. Instead, it indicates the amount of time that task has actually
been the currently running VM.

Microsoft Confidential Beta Release

Timing Services 27·3

Entry None

Exit EAX = Amount of time in milliseconds that VM has executed

USBI EAX,Flags

SeLGlobal_Tlme_Out
Oesuiption

Entry

Exit

Uses

Callbat:k

Schedules a time-out that will occur after EAX milliseconds have elapsed.

The callback procedure will be called with ECX equal to the number of milliseconds that
have elapsed since the actual time-out occurred. Time-outs are often delayed by 10 milli
seconds or more since the normal system timer runs at 20 milliseconds or slower. If you
need more accurate time-outs, then you must increase the timer interrupt frequency. See
the VID documentation for more details on setting the timer interrupt period.

EAX = Number of milliseconds to wait until time-out
EDX = Reference data to return to procedure
ESI = Address of procedure to call when time-out occurs

If time-out was NOT scheduled then
ESI = 0 (This is useful since 0 = NO TIME-OUT SCHEDULED>

else
ESI = Time-out handle (used to cancel time-out)

ESI,Flags

EBX = Current VM handle
ECX =Number of EXTRA milliseconds that have elapsed
EDX =Reference data
EBP -> Client register structure
Procedure may corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags

SeLVM_Time_Out
Description

Beta Release

Schedules a time-out that will occur after a VM has executed for the specified length of
time. Notice that the time-out will occur after the VM has run for EAX milliseconds.
Therefore, if there is more that one VM executing, it may take more than EAX millisec
onds to occur.

The callback procedure will be called with ECX equal to the number of milliseconds that
have elapsed since the actual time-out occurred. Time-outs are often delayed by 10 milli
seconds or more since the normal system timer runs at 20 milliseconds or slower. If you

Microsoft Confidential April 1, 1990

27-4 Virtual Dev/CB Adaptation Gulde

Entry

Exit

Usss

Callback

need more accurate time-outs. then you must increase the timer interrupt frequency. See
the V1D documentation for more details on setting the timer interrupt period.

EAX = Number of milliseconds to wait until time-out
EBX = VM handle
EDX =Reference data to return to procedure
ESI = AdcL-ress of procedure to call when time=out occurs

If time-out was NOT scheduled then
ESI = 0 (This is useful since 0 = NO TIME-OUT SCHEDULED)

else
ESI = Time-out handle (used to cancel time-out)

ESI.Flags

EBX =Current VM handle (VM time-out was scheduled for)
ECX =Number of EX1RA milliseconds that have elapsed
EDX =Reference data
EBP -> Client register structure
Procedure may corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags.

Update_System_Clock
Description

Entry

Usss

April 1, 1990

This service must be called only by the Virtual Tuner Device. If more than one device calls
this service, then the YMM timing services will not behave correctly. The timer calls this
procedure to update the current system time and the current VM's execution time. The
value passed in ECX is the number of milliseconds that have elapsed since the last call to
this service. In other words, if the current system time is n. then, after a call to Up-
date_ System_ Clock, the current system time would be n+ECX.

This service assumes interrupts are disabled!

ECX = Elapsed time in milliseconds

Flags

Microsoft Confidential Beta Release

Chapter

28
Processor Fault and
Interrupt Services

The discussion of services providing general support for processor faults and interrupts are
presented in the following order:

• Get_Fault_Hook_Addrs

• Get_NMI _Handler_ Addr

• Hook_NMI_Event

• Hook_ V86 _Page

• Set_ NM!_ Handler_ Addr

See Chapter 16, "Overview of Wmdows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Get_Fault_Hook_Addrs
Dest:tiptian

Entry

&ii

Uses

Beta Release

Returns the address of the V86 mode, PM application, and VMM reenter fault handlers for
a specified fault. If the fault does not have a handler, then this procedure will return 0. You
cannot get the hook address for interrupt 2 (NMI). You must use the Get/Set_ NMl _Han·
dler _ Addr services to hook interrupt 2.

EAX =Interrupt number

If carry clear then

else

EDX =Address of V86 Mode App fault handler (0 if none installed)
ESI = Address of Prat Mode App fault handler (0 if none installed)
EDI =Address of VMM Re-enter fault handler (0 if none installed)

ERROR: Invalid fault number

Flags

Microsoft Confidential April 1, 1990

28·2 Virtual Device Adqaptatlan Gulde

Get_NMl_Handler_Addr
D•criptlan

Entry

Exit

April 1, 1990

If a VxD needs to hook the Non-Maskable Interrupt (NMI), it must first call this service to
get the current NMI handler address, save the address so the current handler can be
chained to it, and then set the new address.

Notice that your NMI interrupt handler can only touch local data in the device's
VxD_LOCKED_DATA_SEG. It cannot touch memory in a VM handle, V86 memory, or

. any other memory. It also cannot cali any services, including services that can be called
during nonnal hardware interrupts. Because an NMI can occur at any time, it is difficult to
do much of anything during interrupt time that is guaranteed not to reenter a non-reentrant
procedme or affect a data structure.

Most NMI handlers will want to have an NMI event handler. This handler is similar to a
normal event handler except that you only need to hook the NMI event chain once instead
of scheduling an event every time. Every NMI event handler will be called every time an
NMI occurs. Thus, most NMI interrupt routines simply detect that the NMI is for them and
set a variable that their NMI event handler uses to perform some function. For example:

Initialization:

clc
ret

VMMcall Get_NMl_Handler__Addr
mov [NMl_Chain_Addr], esi
mov esi, OFFSET32 My_NMl_Handler
VMMcall Set_NMl_Handler__Addr
mov esi, OFFSET32 My_NMl_Event
VMMcall Hook_NMl_Event

My_NMLHandl er:
in al, My_Stat_Port
test al, Hy_lnt_Hask
jz SHORT HNH_Exit
inc [NHl_From_He]

HNH_Chain:
jmp [NHl_Chain__Addr]

Hy_NHl_Event:
xor al, al
xchg al, [NHl_From_Me]
test al, al
jz SHORT NHE_Exit

CDo something here - NMI from my device)
HNLExit:

ret

None

ESI =Offset of current NMI handler

Microsoft Confidential Beta Release

Processor Fault and Interrupt Services 28·3

Uses ESl,Aags

Hook_NMl_Event
Dacription

Entry

Exit

Uses

Callback

See the documentation mentioned earlier in this chapter on Get_ NMI _Handler_ Addr for
information on this service.

ESI = Address of NMI event procedure

None

Hags

EBX = Current VM handle
EBP -> Client register structure

Procedure may corrupt EAX, EBX, ECX, EDX

Hook_V86_Fault, Hook_PM_Fault, Hook_VMM_Fault
Dacription

Beta Release

These services replace the fault handler procedure address with the procedure supplied.
They will return the old fault handler's address or 0 to indicate that there was no previous
fault handler. If the value returned in ESI is non-zero, then you may chain to the next han
dler with ALL REGISTERS PRESERVED. Your handler can "eat" a fault without chain
ing by executing a near return (not an iret) and can modify EAX, EBX, ECX, EDX, ESI,
and EDI.

If you hook a fault during the Sys_ Critical_ Init phase of device initialization, your fault
handler will be "behind" any VMM fault handler. If the VMM cannot properly handle a
fault (for example, a General Protection fault), then it will chain to the next handler. By
hooking GP faults during Sys_ Critical_Init your VxD can intercept any GP fault that
would otherwise crash the current VM. Any hooks installed after Sys_ Critical_ Init will be
placed "in front of' the default VMM fault handlers. This allows devices to examine faults
before they are processed by the VMM.

Note that the processor Non-Maskable Interrupt (NMI) must be hooked using the
Get/Set_NMl_Addr services (do not call Hook_xxx_Fault with EAX = 2). Also, hard
ware interrupts should be hooked using the Virtual Programmable Interrupt Controller
Device (VPICD). A VxD should NOT attempt to circumvent the VPICD using these serv
ices.

For version 3.0 of enhanced Windows, the largest interrupt number available is 4FH. Inter
rupts OOH- lFH are reserved by Intel for processor faults. Interrupts 20H-2FH are reserved

Microsoft Confidential April 1, 1990

28-4 Virtual Device Adqaptallon Gulde

Entry

Exit

Uses

Callback

by enhanced Wmdows. Interrupts 50H-SFH are used by the VPICD. Interrupts 40H and
41H are used by the debugger. Interrupts 42H-4FH are free for use by VxDs.

EAX =Interrupt number
ESI =Procedure offset

If carry clear then
ESI =Old procedure offset (0 if none)

else
ERROR: Invalid fault number in EAX

ESI, FJags

Interrupts disabled
EBX = Current VM handle
If fault from V86 or PM app then

EBP -> Client_Register_Strucuture
else

VMM reentered- Only asynchronous services may be called
EBP -> VMM re-entrant fault stack frame

If your handler chains, then it must preserve all registers (even registers not documented as
entry conditions to this callback).

Hook_V86_Page
Description

April 1, 1990

This service allows VxDs to intei:cept page faults in portions of the V86 address space of
every virtual machine. It is used by devices such as the Virtual Display Device to detect
when particular address ranges are accessed

You must specify a page number and address of a callback routine to this service. If it is in
stalled successfully, your hook will be called every time a page fault occurs in any VM on
that page. See the memory manager _Modify_Pages documentation in Chapter 19,
.. Memory Management Services," for making hooked pages not present and for registering
the ownership of pages.

The callback routine is responsible for mapping memory at the location of the page fault or
crashing the VM. In unusual circumstances, it may be appropriate to map a NULL page at
the faulting address page. See the memory manager documentation for details on mapping
memory and mapping NULL pages.

Microsoft Confidential Beta Release

Enlry

Exit

Uses

Callback

Processor Fault and Interrupt Services 28-5

NOTE Do not rely on the contents of the CR2 (page fault) register. Use the value passed to your call
back in EAX.

EAX =Page number (AOh - FFh)
ESI = Address of trap routine

If carry flag set then
ERROR: Invalid page number or page already hooked

else
Page hooked

Flags

EAX =Faulting page number
EBX = Current VM handle
EBP does NOT point to the client register structure.

Procedure may COITUpt EAX, EBX, ECX, EDX, ESI, EDI, and Flags

SeLNMl_Handler_Addr
Description

Enlry

Exit

U11s

Beta Release

See the documentation mentioned earlier in this chapter on Get_ NMl _Handler_ Addr for
information on this service.

ESI = Offset of new NMI handler

None

Flags

Microsoft Confidential April 1, 1990

28·6 Virtual Device Adqaptatlaa Gulde

April 1, 1990 Microsoft Confidential Bera Release

Chapter

29

Beta Release

Information Services

These services return the requested information without instigating any other action.

They provide information on the following:

• VMhandles

• The VMM reenter count

• HMAXMS

• Installation stab.ls of the debugger

They are described here in the following order:

• Get_Cur_ VM_Handle

• Get_Next_ VM_llaildle

• Get_Sys...:. VM _Handle

• Get_ VMM_Reenter_Count

• Get_VMM_Version

• GetSet _ HMA _Info

• Test_ Cur_ VM _Handle

• Test_Debug_Installed

• Test_Sys_VM_Handle

• Validate_ VM _Handle

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Microsoft Confidential April 1, 1990

29-2 Virtual Device Adaptation Gulde

Get_Cur_ VM_Handle
Description

Entry

Exit

Usu

This service returns the handle to the currently running VM. It is valid to call this service
at interrupt time.

None

EBX = Current VM handle

EBX,Flags

GeLNext.VM_Handle
Dacription

Entry

Exit

Uses

VMM maintains a list of all valid VM handles. This service provides a means of scanning
the list easily. Normally, code that uses this service looks something like this:

VMMcall Get_Cur_VM_Handle
Scan_Loop:

CDo something to VM state)

VMMcall Get_Next_VM_Handle
VMMcall Test_Cur_VM_Handle
jne Scan_Loop

This allows the state of every VM to be modified However, there are also other uses for
this service. There is no guaranteed ordering of the list other than the fact that each VM
will appear in the list only once. Notice also that the list is circular so you will need to test
for the end case (Next VM = First VM). It is valid to call this service at interrupt time.

EBX = VM handle

EBX = Next VM handle in VM list

EBX,Flags

GeLSys_ VM_Handle
Description This service returns the System VM handle. It is valid to call this service at interrupt time.

Entry None

April 1, 1990 Microsoft Confidential Beta Release

lntarmatlan Services 29·3

Exit EBX =System VM handle

Uses EBX,Flags

Get_ VMM_Reenter_Count
Description

Entry

Exit

Uses

This service is used to determine if the VMM has been reentered from an interrupt The
normal situation for reentering VMM is from a hardware interrupt, page fault, or other pro
cessor exception. Since most VMM services are non-reentrant, this test should be used to
determine if other VMM services can be called or if a global event should be scheduled.
Notice that the Call Global Event service tests this condition automatically and will
schedule an event if-VMM has been reentered.

None

ECX = 0 indicates VMM has NOT been re-entered. If!= 0 then
ECX = # of times re-entered

Flags

Get_VMM_Version
Description

Entry

Exit

Uses

This service returns the Windows/386 VMM version.

None

AH = Major version number (3)
AL = Minor version number (0)
Carry flag clear

EAX ,Flags

GetSet_HMA_lnfo
Description

Beta Release

This service returns and sets information related to the HMA XMS region.

This service is intended to assist the XMS driver that is part of the V86MMGR device. It
allows the protected-mode XMS code to find out if there was a global HMA user in before
Windows/386 was started and allows access to the Enable count variable (Get and Set).
This service is always valid (i.e., not restricted to initialization).

Microsoft Confidential April 1, 1990

29-4 Virtual Device Adaptation Gulde

Enlry

Exit

Us11

ECX =OGet
ECX !=OSet

If Get

DX = A20 enable count to set for Win386 loader
NOTE TIIAT THE GLOBAL HMAFLAG CANNOT BE SET. It is not
appropriate or valid to set this.

EAX ~ 0 if WIN386 DID NOT allocate t.'le IDl".A (GLOBAL HMA User)
EAX != 0 if WIN386 allocated the HMA (NO GLOBAL HMA User)
EDX = A20 enable count before Win386 came in

If Set

EAX, EDX, Flags

TesLCur_VM_Handle
D•t:riptlan

Entry

Exit

U11s

This routine tests to see if the given VM handle is the handle of the currently running VM.
It is valid to call this service at interrupt time.

EBX = VM handle to test

z.ero flag is set if VM handle passed in
is currently running VM's handle. (je Is_ Cur_ VM)

Flags

TesLDebug_lnstalled
D•t:riptian

Entry

Exit

Uses

April 1, 1990

Tests internal flag that indicates whether a debugger exists or not It is valid to call this
service at interrupt time.

None

Zero flag= Debugger NOT installed (i.e., jz No_Debug_Installed)

Flags

Microsoft Confidential Beta Release

Information Services 29-5

Test_Sys_ VM_Handle
Oest:tiption

Entry

Exit

Uses

This routine tests to see if the given VM handle is the handle of the system VM. It is valid
to call this service at interrupt time.

EBX = VM handle to test

Zero flag is set if VM handle passed in is system VM's handle. Ge Is_ Sys_ VM)

Flags

Valldate_ VM_Handle
Oest:tiption

Entry

Exit

Uses

Beta Release

This service is used to test the validity of a VM handle. This service can be called at inter
rupt time.

EBX = VM handle to test

If carry flag set then
ERROR:VM handle is invalid

else
Value in EBX is a valid VM handle

Flags

Microsoft Confidential April 1, 1990

29-6 Virtual Device AIJaptatlan Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

30

Beta Release

Initialization Information
Services

These services provide access to the SYS1EM.INI file and the envirorunent variables. Con
figurable VxDs will use these services to get their configuration parametezs. They are de
scribed here in the following order:

• Convert_ Boolean_ String

• Convert_Decimal_String

• Convert_F'ixed_Point_String

• Convert_Hex_String

• Get_ Conrig_Directory

• Get_ Environment_String

• Get_Exec _Patb

• Get_Machine_Inro

• Get_Next_Profile_String

• Get_Profile_Boolean

• Get_Prome_Decimal_Int

• Get_Prome_Fixed_Pomt

• Get_Prome_Hex_Int

• Get_Prome_String

• Get_PSP_Segment

See Chapter 16, ''Overview of Wmdows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Microsoft Confidential April 1, 1990

30-2 Vl"ual Device Adaptation Gulde

Convert_Boolean_String (Initialization only)
D•crlpl/on

Entry

USIB

This service attempts to detennine if the string pointed to by EDX is 1RUE or FALSE.
There are many valid values for 1RUE and FALSE. A short list of valid values for 1RUE
are:

True, Yes, On, 1

For false they include:

False, No, Off, 0

This list may grow to include other words such as "oui" and "ja."
This service is only valid during initializ.ation.

EDX = Pointer to ASCilZ string to convert to boolean

If carry clear then
EAX = 0 if FALSE, -1 if TRUE, zero flag NOT set

else
String was not a valid boolean CEAX not changed)

Flags,EAX

Convert_Decimal_String (Initialization only) ·
Oest:riptlon

Entry

Exit

USBB

April 1, 1990

This service converts a string that contains a decimal value and returns the value in EAX.
It also returns a pointer to the character that tenninated the decimal integer value. This is
useful for parsing entries such as:

FOO=l00,300

since the 100 would be returned with EDX pointing to the",". The pointer could be incre
mented one byte and, then, this service called again to evaluate the second number.

Notice that a NULL string or a string that does not contain a valid decimal integer will re
turn 0 and EDX will not be advanced since the first character of the string terminated the
analysis. This service is only valid during initialization.

EDX =Pointer to ASCllZ string to convert to integer

EAX = Value of decimal string
EDX =Pointer to terminating character (non-valid decimal char)

EAX, EDX, Flags

Microsoft Confidential Beta Release

Initialization Informal/on Services 30·3.

Convert_Fixed_Point_String (Initialization only)
OB8t:tiptian

Entry

Exit

Uses

This service returns the value of a fixed point decimal number string pointed to by EDX.
Use Get Profile String to initialize EDX to point to the string to be parsed. Fixed Point
is zero or more &cimal digits followed by a terminator or a decimal point followed by
zero or more decimal digits. The value returned is ECX* lO*<value of string>. Note that
decimal digits beyond the accuracy specified by ECX are ignored in the value returned in
EAX, but EDX points to the byte following the last valid ASCII decimal digit. Values that
begin with a minus will evaluate to negative numbers. Positive values may optionally
begin with a plus sign.

This service is only valid during initialization.

ECX =Number of decimal places
EDX = Pointer to ASCilZ string to convert to integer

EAX = Value of fixed point string
EDX =Pointer to terminating character (non-valid character)

EAX, EDX, Flags

Convert_Hex_String (lnltlallzatlon only)
D•criptian

Enlry

Exit

Uses

This service converts the string pointed to by EDX to Hexadecimal. Hexadecimal is zero
or more hexadecimal digits (0-9, A-F) followed by a terminating character or a small or
capital letter "h". The "h" has no effect on the value. EDX is left pointing to the next byte
after the "h" or, if the "h" is not present, after the last valid hexadecimal digit. Use
Get_Prottle_String to set up EDX to point to the string to be parsed. This.service is only
valid during initialization.

EDX -> ASCilZ string to convert to integer

EAX =Value of hexadecimal string
EDX advanced to terminating character (non-valid hex char)

Flags

Get_Conflg_Dlrectory (lnitlallzation only) .
Description

Beta Release

This service returns a pointer to the directory that contains the configuration files for the
enhanced Windows environment (such as SYSTEM.INI). The string returned is guaranteed

Microsoft Confidential April 1, 1990

30-4 Virtual Device Adaptation Gulde

Entry

Exit

Usn

to be a valid, fully qualified pathname that ends with a terminating ·-..:· followed by a
NULL (0) byte.

None

EDX = Pointer to ASCilZ directory name

EDX,Flags

GeLEnvlronment_Strlng (Initialization only)
Dest:tlptian

Entry

Exit

Usas

This service takes a pointer to an ASCIIZ string that is the name of an environment varia
ble and returns a pointer to an ASCIIZ string that is the value of that environment variable.
Environment variables are set using the DOS SET command and should be of the format
"SET <variable name>=<Variable value>" with no intervening spaces between the varia
ble name, the equal sign, and the variable value. Environment strings are an alternative
way of setting parameters for virtual device drivers. In general, these should be used spar
ingly, as the environment is of limited size. Use environment strings only when the value
is a global entity, used by more than one program or device driver. This service is only
valid during initiali7.ation.

ESI =pointer to ASCIIZ string environment variable name

If carry is set then
Environment string was not found

else
EOX = pointer to ASCIIZ string value of environment variable

EDX,Flags

GeLExec_Path (lnltlalization only)
Dt111crlptlan

Entry

April 1, 1990

This service returns a pointer to an ASCIIZ string that gives the full path by which
WIN386.EXE was executed. It is used to locate files associated with the enhanced
Wmdows environment or the virtual device drivers that are not in subdirectories indicated.
by the PATH environment variable. This service is only valid during initialization.

None

Microsoft Confidential Beta Release

Exit

Initialization Informal/an Services 30·5

EDX = Pointer to ASCllZ string of twl path name + program name (program name is
"WIN386.EXE'')

ECX =Number of characters in string up to and including the last·~·

Get_Machine_lnfo (Initialization only}
Oest:ription

EnltY

Uses

This service returns information about the computer system running enhanced Windows.

None

AH = DOS Major Version
AL = DOS Minor Version
BH = DOS OEM serial number
BL = Machine Model Byte (at FOOO:FFFE in system ROM)
IIlGH 16 bits of EBX are other flags

GMIF _80486 EQU lOOOOh 80486 processor
GMIF _PCXT EQU 20000h PCXT accelerator
GMIF _MCA EQU 40000h Micro Channel
GMIF _EISA EQU 80000h EISA

EDX = Equipment flags (as returned from Int Uh)
ECX = 0 if not PS/2 or extended BIOS, else ECX contains a

ring 0 linear address to System Configuration Parameters
returned from BIOS service Int lSh, AH=COh. See the PS/2
BIOS documentation for details on this structure.

EAX, EBX, ECX, EDX, Flags

Get_Next_Profile_String (lnitlallzatlon only)
Description

Enlty

Exit

Beta Release

This service, given a pointer to a profile string, will retmn a pointer to the next profile
string with the key name provided. It is used by devices that have multiple entries with the
same key name. First, use Get_Profile_String to get the first entry with a given key name
and, then, use this service to get subsequent entries. Do not modify the string returned
This service is only valid during initiali2:ation.

EDX =Pointer returned from previous Get_(Next)_Profile_String
EDI = Pointer to key name string

If carry clear then
EDX =NEXT string from SYSTEM.IN!

else
No more matching entries found

Microsoft Confidential April 1, 1990

30·6 Virtual Device Adaptation Gulde

usu EDX,FJags

GeLProfile_Boolean (Initialization only)
Daer/pt/on

Entry

Exit

Usss

This service returns the value of a Boolean profile entry from the SYS1EM.INI file in
EAX. If the profile string is not found, then EAX will not be modified. Profile entries are
of the form:

[SectionName]
KeyName=<value>

That is, Section Name is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or nonprintable characters. The value fol
lowing the equal sign can be in a number offonnats. Boolean is "Yes," "No," "Y," "N,"
''Troe," "False," "On," "Off," "l ," or ''O"(foreign versions of Windows may add other lan
guage equivalents to the above). Logical TRUE returns -1 and logical FALSE returns 0.

This service is only valid during initializ.ation.

EAX = Default value
ESI =Pointer to section name string or 0 for [386enh]
EDI =Pointer to key name string

If carry set

else

Entry not found or invalid boolean value
EAX = Default value

If value string was null,
zero flag is set and

EAX =Default value
else

EAX = 0 if FALSE, -1 if TRUE SYSTEM.INI entry value

Flags

GeLProflle_Decimal_lnt (Initialization only)
D•cription

April 1, 1990

This service returns the value of a decimal profile entry from the SYS1EM.INI file in
EAX. If the profile string is not found, then EAX will not be modified. Profile entries are
of the form:

[SectionName]
KeyName=<value>

That is, SectionName is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or non-printable characters. The value

Microsoft Confidential Beta Release

Enlry

Exit

Us11

lnltlallzal/an lnfannallan Services 30-7

following the equal sign must be a decimal value. It can begin optionally with a plus (+) or
minus (-) and must contain all decimal digits with no embedded spaces or decimal points.

This service is only valid during initialization.

EAX =Default value (optional)
ESI =Pointer to section name string or 0 for [386enh]
EDI =Pointer to key name string

If carry is set
Entry was NOT found
EAX = Default value <value passed to this procedure)

else
If value string was null, zero flag is set and

EAX = Default value
else

EAX =Value of SYSTEM.IN! entry

Flags

Get_Profile_Fixed_Point (Initialization only)
. Dest:riplian

Entry

Exit

Beta Release

This service returns the value of a fixed point decimal number profile entry from the SYS-
1EM.INI me in EAX. If the profile string is not found, then EAX will not be modified.
Profile entries are of the fonn:

[SectionName]
KeyName=<value>

That is, SectionName is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or nonprintable characters. The value fol
lowing the equal sign can be in a number of formats. Fixed Point values may begin with an
optional plus (+) or minus (-) followed by zero or more decimal digits followed by a termi
nating character or by a decimal point followed by zero or more decimal digits. The value
returned is lQAECX*<value of string>.

This service is only valid during initialization.

EAX = Default value
ECX =Number of decimal places
ESI = Pointer to section name string or 0 for [386enh]
EDI = Pointer to key name string

If carry is set
Entry was NOT found
EAX = Default value (value passed to this procedure>

Microsoft Confidential April 1, 1990

30·8 Virtual Device Adaptation 611/1111

else

else

If value string was null, zero flag is set and
EAX = Default value

EAX =Value of SYSTEM.IN! entry

Get_Proflle_Hex_lnt (Initialization only)
D11cript/an

Entry

Exit

Uses

This service returns the value of a hexadecimal number profile entry from the SYS
TEM.INI file in EAX. If the profile string is not found, then EAX will not be modified.
Profile entries are of the fonn:

[SectionName]
KeyName=<value>

That is, SectionName is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or nonprintable characters. The value fol·
lowing the equal sign can be in a number of fonnats. Hexadecimal is zero or more hex
adecimal digits (0-9, A-F) followed by a terminating character or a small or capital letter
"h." The "h" has no effect on the value. If the value following the equal sign is not a valid
hexadecimal number, EAX is unchanged

This service is only valid during initialization.

EAX =Default value (optional)
ESI =Pointer to section name string or 0 for [386enh]
EDI =Pointer to key name string

If carry is set
Entry was NOT found
EAX = Default value (value passed to this procedure)

else
If value string was null

zero flag is set
EAX = Default value

else
EAX =Value of SYSTEM.IN! entry

Flags

Get_Proflle_String (Initialization only)
D11criptian

April 1, 1990

This service searches the initialization file for a ~cified entry and returns a pointer to a
string. Do not modify the string in place. The pointer returned points into the initialization
tile data area. If you need to modify the string, you must first copy it and, then, modify iL
This service is only valid during initialization.

Microsoft Confidential Beta Release

Entry

Exit

Uses

ln/liallzation Informal/on Services 30-9

EDX =Pointer to default string (optional)
ESI = Pointer to program name string or 0 for [386enh]
EDI = Pointer to key name string

If carry clear
EDX =Pointer to ASCIIZ string from SYSTEM.INI

else
EDX is unchanged

Flags, may change EDX

Get_PSP _Segment (Initialization only)
Dnrriplion

Entry

Exit

Uses

Beta Release

This service returns the segment of the WIN386.EXE PSP. Use it to locate PSP values
other than the EXEC path and environment variables since separate services are available
for retrieving those ASCIIZ strings. Notice that a segment value is returned. To convert the
segment to an address, shift the value left by 4 bits. This service is only valid during
initializ.ation.

None

EAX = Segment of WIN386.EXE PSP (high word always = 0)

EAX,Flags

Microsoft Confidential April 1, 1990

30· 10 Virtual Device AdaptatJo11 Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

31

LisLAllocate
Dsscription

Entry

Exit

Be'ta Release

Linked List Services

These services provide a convenient set of routines for managing a linked-list data struc
ture. They are described here in the following order:

• List_ Allocate

• List_ Attach

• List_ Attach_ Tail

• List_ Create

• List_Deallocate

• List_Destroy

• List_Get_First

• List_Get_Next

• List_Insert

• List_Remove

• List_Remove_First

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

This service allocates a new node for the list specified by ESI. The contents of the node
are undefined (probably nonzero). Normally, a node is immediately attached to the list
through the List_ Attach or List_ Insert services after it has been allocated.

ESI =List handle

If list was created with LF_Alloc_Error flag then
If carry clear then

EAX -> New node
else

Error:Could not allocate node

Microsoft Confidential April 1, 1990

31·2 Virtual De'llce Adaptation Guidi

Uses

LlsLAttach
Dat:ripUon

Example

else
EAX -> New node
<Current VM crashed if node can not be allocated - Service
never returns to caller)

EAX,Flags

This service attaches a list node to the head (i.e., front) of a list. Notice that EAX must
point to a node that was allocated using List_Allocate.

Nodes can be attached to any list that has the same size node. This can be used, for ex
ample, to move a node from one list to another.

Assume we have the following list:

Ix I-· 1-...... 1 v I •-I-...... I z Io I
List_Attach with EAX ---·I a I
Produces the following list:

I a I•• 1-I - f x I ••+-I --11 1 v I ••+-I --.. 1 z Io I
Figure 31.1 SERV_OS.EPS

Entry

Exit

Uses

ESI = List handle
EAX->Node

Node attached to list

Flags

LlsLAttach_ Tail
Dat:ripllon

April 1, 1990

This servii:e attaches a list node to the tail (i.e., end) of a list EAX must point to a node
that was allocated using List_ Allocate.

Nodes can be attached to any list that has the same size node. This can be used, for ex
ample, to move a node from one list to another.

Microsoft Confidential Beta Release

Linked List Services 31·3

Example Assume we have the following list:

Ix l-•1--... .. lvl •-1--... .. 1 z I ol
List_Attacb_Tail with EAX-1 QI
Produces the following list:

Ix l-•l---.. 1 Y l-•l--. .. 1 z j ej--. .. ja I ol
Figure 31.2 SERV_11.EPS

Entry

Exit

Uses

LisLCreate
Osscriptian

Beta Release

ESI = List handle
EAX ·> Node to insert

Node inserted at tail (end) of list

Flags

This service is used to create a new list structure. This service returns a list handle that is
used when calling all subsequent list services.

Lists nonnally allocate nodes from a "pool" of free nodes. This prevents the overhead that
would be incurred by calling _ HeapAlloc and _ HeapFree for every list allocation and
deallocation. Once a node is creat.ed, it is never destroyed. lnst.ead, List_ Deallocate places
the node back in the free pool. The node can then be recJaimed quickly when List_ Allo
cate is called.

If the size of the list nodes are large, you should force them to be allocated from the system
heap by setting the LF _Use_ Heap flag. All allocate/deallocate calls for lists created in this
way will use_ HeapAlloc and_ HeapFree to create and destroy nodes.

If you want to be able to access a list during hardware interrupts, you should set the
LF _Async flag. This forces list operations to be atomic operations (they cannot be re
ent.ered). If you select this option, you inust call list services with INTERRUPTS DIS
ABLED or an error will occur. You must disable interrupts even if you are not calling the
list service from an interrupt Remember, always use pushf/CLI/popf to disable interrupts.
Never explicitly use STI unless other documentation states that this is permissable. Notice
that since _ HeapAllocate and _ HeapFree cannot be called from a hardware interrupt, you
cannot select this option and LF _Use_ Heap.

The LF _Anoe_ Error flag should be used if you would like to recover from an allocation
error (i.e., out of memory). The default behavior for a failed allocation is to crash the cur-

Microsoft Confidential April 1, 1990

31-4 Virtual Device Adaptation Gulde

Entry

Uus

rent VM. However, if your VxD would like to have the allocation return an error, set this
flag. If this option is selected, then List_ Allocate will return with the Carry flag set when
an allocation fails. Otherwise, it will crash the current virtual machine whenever it cannot
allocate a new node.

EAX =Flags
LF _Use_Heap - All data on system heap (Can't use with LF _Async)
LF _Async - List services can be called at interrupt time
LF _Alloc_Error - Return from alloc with carry set if can't allocate

ECX =Node size

If Carry Flag is clear then
ESI = list handle

else
Error: Unable to create list

ESI,Flags

Llst_Deallocate
Ot11t:1/pllo11

Entry

Exit

Uses

LisLDestroy
Description

Entry

Exit

April 1,, 1990

This service places a list node in the free memory pool. Once a node has been deallocated,
it should not be referenced again. You must remove the node from any list to which it is at
tached before deallocating it.

ESI = List handle
EAX -> List node

EAX is undefined

EAX,Flags

This service deallocates all nodes on a list and destroys the list handle. Once a list has been
destroyed, its handle is no longer valid

ESI =List handle

ESI is undefmed
List is destroyed, all nodes deallocated.

Microsoft Confidential Beta Release

Llst_Get_First
Dear/pt/on

Llst...GeLNext
Dalt/pt/on

Beta Release

Uakld Lisi Sstvlces 31·S

This service retmns a pointer to the first node in a list. If the list is empty, it will return 0
and Ille Zero Flag will be set.

FSI = List handle

If ZF is clear then
EAX -> First node 1n list

else
L1st ts empty. EAX • 0.

EAX,FJags

This service retums the next node in a list. It is used to traverse the list when searching for
a specific element. If the end of the list is reached. it will return 0 and the Zero Flag will be
set.

'fypically, this service is used in coojlDlCtion with List_ Get_ First to scan an entire list.

EXAMPLE:
BeginProc Scan_Hy_List

mov esi, [Hy_L1st_Handle]
VHHcall List_Get_First
Jz SHORT Scan_Done

Scan_Loop:
<Do something with EAX here>

VHHcall list_Get_Hext
jnz Scan_loop

Scan_Oone:
ret

EndProc Scan_Hy_list

FSI =List handle
EAX->Node

IfZF is clear then
EAX ·>Next node in list

else
End of list reached. EAX = 0.

Microsoft Confidential April 1, 1990

31·6 VlrlUal Dsvlt:B Adaptation GaltlB

Uses

List_lnsert
Dest:riptlon

Example

EAX,Flags

This service inserts a node at a specified point in a list The caller must specify two nodes:
the node to be inserted in EAX, and a position to insert the node after in ECX. This means
that node EAX will occupy the position in the list immediately after node ECX. If ECX is
zero, then node EAX will be inserted at the head of the list

Nodes can be inserted in any list that has the same size node. This can be used, for ex
ample, to move a node from one list to another.

Assume we have the following list:

lxl••~l-••lvl-•-1 --•lzlol
List_Insert with ECX pointing to Y-node and EAX pointing to Q-node
produces the following list:

Ix 1-• l--·I v I -•-I --.. I a l-•-1--·I z Io I
Figure 31.3 SERV_OB.EPS

Entry

Uses

Llst_Remove
Dest:rlption

April 1, 1990

ESI =List handle
EAX ->Node to insert
ECX ·> Node to insert after (0 to attach to head)

Node inserted in list

Flags

This service removes a specified node from a list The node will not be deallocated by this
service. It is up to the caller to deallocate the node or attach it to another list (it can only be
attached to a list with node size equal to the original list).

Microsoft Confidential Beta Release

Linked List Services 31·7

Example Assume we have the following list:

List_Remove with EAX pointing to Y-node produces the following list:

Figure 31.4 SERV_14.EPS

Entry ESI = List handle
EAX -> Node to remove from list

Exit Node removed from list

Uses Flags

LisLRemove_First
Description

Example

This service removes the first node from a list. Notice that the node is not deallocated by
this service. It is up to the caller to deallocate the node or attach it to another list (it can
only be attached to a list with node size equal to the original list).

Assume we have the following list:

List_Remove_First produces the following list:

Iv 19-t• li---. .. I z Io I

and EAX ---1 X I
Figure 31.5 SERV_16.EPS

Entry ESI = List handle

Exit If Zero Flag is clear then
EAX ->Node that has been removed from list

else
List is empty and EAX = 0

Beta Release Microsoft Confidential April 1, 1990

31·8 Virtual Device Adaptation Gulde

Uses EAX, Flags

April 1, 1990 Microsoft Confidential Be'la Release

Chapter

32

Crash_Cur_VM
Description

Entry

Exit

Error Condition Services

These error services are used by VxDs when they have detected the VM to be in an unre
coverable state. Examples of situations that might lead to such a state include an attempted
VM execution of a protected instruction or an operation which might fail due to lack of
memory. The services are described here in the following order:

• Crash_ Cur_ VM

• Fatal_ Error_ Handler

• Fatal_ Memory_ Error

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, ''Virtual
Device Programming Topics," for general environment discussions.

This service will crash the current VM. It is to be called when a catastrophic error has oc
cured in the VM, such as executing an illegal instruction or attempting to program a piece
of hardware in a way incompatible with the device virtualization.

If the system VM is the current VM, enhanced Windows will exit with a fatal error without
explicitly crashing the other VMs.

None

None

Fatal_Error_Handler
Description

Beta Release

This service is called (or jumped to) when a fatal error is detected. It returns to real mode
and, optionally, prints out an error message. You can hang the computer by selecting the
EF _Hang_ On_Exit flag (defined in VMM.INC).

All the devices are informed about the exit before returning to real mode.

The Fatal_ Error macro supplied in VMM.INC is a convenient way of calling this service.

Examples:

Microsoft Confidential April 1, 1990

32-2 Virtual Devlu Adaptation Gulde

Entry

&it

Fatal_Error
Fatal_Error <OFFSET32 Hy_Err_Hsg>

ESI = Ptr ASCIIZ string to display (0 if none)

This exits with no error message
Exits and prints error messagi

EAX =Exit flags to send to the loader (real mode exit code)
Bit 0 = I - Hang system on exit to real mode
Others undefined and must be 0

None

All registers

Fatal_Memory_Error
Daer/pt/on

Entry

&it

Uses

April 1, 1990

This routine calls the Fatal_ Error_ Handler with exit flags equal to zero and the message
"Not Enough Memory to Run Windows/386". It should be called during Device_ Init,
Init _Complete, or Sys_ VM _ lnit if there is not enough memory to initialize.

None

None

All registers

Microsoft Confidential Beta Release

Chapter

33
Miscellaneous Services

The services discussed in this chapter provide functions not easily categorized such as
hooking another VxDs API and sending system control messages. They are provided here
in the following order:

• Begin _Reentrant_ Execution

• End_ Reentrant_ Execution

• Hook_ Device_ Service

• Hook Device V86 API - - -
• Hook_ PM_ Device_ API

• Map_Flat

• MMGR_SetNULPageAddr

• Simulate_ Pop

• Simulate Push

• System_ Control

See Chapter 16. "Overview of Windows in 386 enhanced mode" and Chapter 17, "Virtual
Device Programming Topics" for general environment discussions.

Begin_Reentrant_Execution
Description

Beta Release

THIS IS A VERY DANGEROUS SERVICE. BE VERY CAREFUL WHEN CAILING
IT. Most virtual devices have no reason to use this service. Do NOT use this service to
avoid scheduling events on hardware interrupts.

It is intended to be used by devices that hook VMM Faults (re-entrant processor exeptions)
that must call non-asynchronous VMM or VxD services or execute a VM. This would be
valid to use, for example, if a VxD provided a ring 0 software interrupt interface (although
this is NOT RECOMMENDED - You should provide device services through the
Win386 dynamic-linking mechanism). It would be INVALID to use this service during a
hardware interrupt (such as a timer or disk interrupt).

Microsoft Confidential April 1, 1990

33·2 Virtual Device AdaptaUon Gulde

Entry None

Exit ECX =Old reentrancy count (must be passed to End_ Reentrant_ Execution)

Us11 ECX,Flags

End_ReentranLExecutlon
DBBt:rlptlon A VxD that calls Begin_Reentrant_Execution must call this service before returning.

Entry ECX = Reenttancy count returned from Begin_ Reentrant_ Execution

Exit None

Uses Flags

Hook_Oevlce_Servlce
011t:riptlon

April 1, 1990

This service allows one device to monitor or replace a device service. extreme care must
be taken here not to destroy the functionality of the device whose routine is being moni
tored or replaced. This service also allows VMM services to be hooked (the VMM is
device 1).

Hooking a service is often useful for monitoring the activities of other devices. For ex
ample, if a device needed to know whenever a VM was set into background mode, it could
use the following code:

<Initialization code)
mov eax, Set_Time_Slice_Priority
mov esi, OFFSET32 My_Hook_Proc
VMMca ll Hook_Devi ce_Servi ce
jc Error!
mov [Real_Proc], esi

BeginProc My_Hook_Proc

MHP_Chain:

test eax, VMStat_Background
jz SHORT MHP_Chain
pushad
<Do something here)
popad

jmp [Real_Proc]
EndProc My_Hook_Proc

Microsoft Confidential Beta Release

Entry

&it

Uur

Miscellaneous Services 33·3

Every time a VxD calls Set_Time_Slice_Priority, the My_Hook_Proc procedure will be
called. The hook procedure should normally chain to the actual device or VMM service al
though this is not required. Also, be sure to save and restore any registers in your hook pro·
cedure.

You will notice that the sample initialization code moves Set_Time_Slice_Priority into
EAX. Remember, services are defined as EQUATES, not external procedure references.
Thus, Set Time Slice Priority is just a number. (VMM device ID< < 16 + Service num-
ber). - - -

Your hook must preserve all registers that are not modified by the service you have
hooked. Also, if flags are passed as an entry or exit parameter, your hook procedure must
also preserve the flags.

Be careful about hooking C calling convention (stack-based) services. If you want to ex
amine the "back end" of a C calling convention service, you will need to copy the entire
parameter stack frame before calling the actual service.

More than one VxD can hook a device service. The last hook installed will be the first one
called.

EAX =Device ID<< 16 +Service number (use service equate)
ESI = New procedure

If carry clear then
ESI =Old dynalink procedure

else
ERROR. Invalid Device or Service number

ESI, Flags

Hook_Device_ V86_API' Hook_PM_Device_API
D111t:1iption

Entry

Beta Release

These services allow a VxD to hook another virtual device's V86 or protected mode API
interface.You are responsible for chaining to the real API handler. Be careful to preserve
the EBX and EBP registers when calling the next handler in the chain.

Most VxDs will never need to hook another virtual device's API procedure. These services
are provided mainly as a mechanism for devices that may be developed in the future to in
tercept API calls to other virtual devices. For example, a new version of the Virtual Mouse
Device may need to intercept calls to the Virtual Display Device so that it can save and re
store the mouse cursor. In such a case, these services could be used.

EAX = Device ID
ESI = Offset ofnew API handler

Microsoft Confidential April 1, 1990

33-4 Virtual Device Adaptation Gulde

Exit

U111

Callback

Map_Flat

D11criptian

April 1, 1990

If carry clear then

else

ESI = Offset of previous API handler <used to chain to next
handler>

ERROR: Device does not support API interface

ESI,Flags

EBX = Current VM handle
EBP -> Client register structure
(Same parameters as standard API entry point)

NOTE Please be advised that the following description has been indentified as out of date in some re
pects though updated information was unavailable at the time of this printing.

This service provides a convenient way of converting a SEGMENT:OFFSET or SELEC
TOR:OFFSET pair into a linear address. Map_ Flat works only for the cwrent VM. It de
tennines whether the value passed to it is a V86 segment or a PM selector by the execution
mode of the current VM. This allows VxDs to use identical code for PM and V86 handlers.
For example, assume a VxD wanted to simulate DOS reads in both V86 and protected
mode. It would hook both the V86 and PM int chains with the same procedure:

VxD_OOS_Read_Hook:
cmp [ebp.Client_AH], 3Fh ; 0: Is it a read
jne SHORT VxD_DRH_Reflect N: Reflect it

; Y: DS:DX -> Read buffer
mov ax, <Client_DS SHL 8) + Client_DX
VMMcall Map_Flat ; EAX =Lin addr of DS:DX

<Do something useful here)

clc
ret VxD_DRH_Reflect:
stc
ret

Eat this int 2lh

Notice that the above procedure does not need to examine the VM's execution state. By
calling Map_FJat, it converts the DS:DX pointer into a valid linear address regardless of
the VM's execution mode.

The Client_ Ptr _Flat macro will generate this code automatically. For the proceding ex
ample, you would use:

Microsoft Confidential Beta Release

Entry

Exit

Uses

Miscellaneous Services 33·5

Client_Ptr_~lat eax, US, UX

The first parameter specifies the 32-bit register to contain the linear address. The second
parameter specifies the client's segment The third parameter is optional and specifies the
offset register (if blank, then an offset of 0 is assumed).

EAX =Ring 0 linear address

Flags,EAX

MMGR_SetNULPageAddr
DESCRIPTION This call is used to set the physical address of the system nul page.

It can be called at device INIT time to set the address of a KNOWN non-existant page in
the system. This is usually called by the V86MMGR device because he does memory
scans and therefore has a good idea about what a good page will be.

ENTRY EAX is PHYSICAL address for NUL Page (Page number« 12)

EXIT None

USES Flags

Simulate_Pop
Description

Entry

Exit

Uses

Beta Release

Returns the WORD or DWORD at the top of the current VM's client stack and adds 2 or 4
to the client's SP.

None

EAX =Word popped from application's stack (high word 0 if use 16 app)

EAX, Client_ ESP, Flags

Microsoft Confidential April 1, 1990

33·6 Virtual Devin Adaptation Gulde

Slmulate_Push
Osst:riptian

Enlry

Exit

Pushes a WORD or DWORD onto the current VM's client st.ack and decrements the VM's
SPby2or4.

If in V86 mode or 16 bit PM application then
AX = WORD to push

else
EAX = OWORO to push

(D)WORD pushed on application program's st.ack

Client_ESP, Flags

System_Control
Osst:riptian

April 1, 1990

This service sends system control messages to all the VxD's and for some messages, to
parts of VMM as well. Notice that incorrect usage of the system control messages can
cause erratic behavior by the system. For example, only the Shell device should initiate
Create_ VM and Destroy_ VM messages. Also notice that when a Set _Device_Focus
message is done with a device ID of zero, all devices with a settable focus must set their
focus to the VM indicated.

The valid System_ Control messages are as follows:

Microsoft Contide,ntial Beta Release

Enlry

Beta Release

Mlscsllansous Ssrvlcss 33-7

Initialization

System VM creation

System VM destruction
(WIN386 exit)

Other VM creation

Other VM destruction

VM state changes

Special messages

Sys Critical Init
DeVice Init -
Init_ Complete

Sys VM Init
Sys=VM=Terrninate

System_ Exit
Sys_ Critical_ Exit

Create VM
VM Critical Init
VM=Init -

VM Terminate
VM-Not Executable
Destroy_VM

VM_Suspend
VM Resume
Set_Device _Focus

Reboot Processor
Debug_ Query

The control calls that are valid for devices to issue areas follows:

Create_VM
Destroy_VM
Set_Device_Focus

EAX = System control message

C used by SHELL>
C used by SHELL>

EBX = VM handle (if needed by message)
ESl,EDl,EDX = message specific parameter, such as Device ID (for

Set_Device_Focus message)
ECX register is used by this service and cannot contain any parameter that
will be passed through to the devices.

Microsoft Confidential April 1, 1990

33·8 Virtual Device AdaptaUan Gulde

Exit

Usu

April 1, 1990

Carry Set
Call failed

Carry Cl ear
Call Succeeded
If Entry EAX = Create_VM

EBX = New VM handle created

Flags, EBX if Create_ VM

Microsoft Confidential Beta Release

Chapter

34

SHELL_Event
D•cription

Entry

Exit

Beta Release

Shell Services

The Shell services provide a way for VxDs to communicate with the user. This chapter pre
sents descriptions of the Shell services in the following order:

• SHELL_Event

• SHELL_Get_ Version

• SHELL_Message

• SHELL_ Resolve_ Contention

• SHELL_SYSMODAL_Message

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

This procedure posts an event in the windows shell to VMDOSAPP. This service is pri
marily for SHELL to WINOLDAPP COMMUNICATION. The VDD also sends a couple
messages to WINOLDAPP other devices should have no use for this service.

EBX is VM Handle for Event
ECX is event#
AX = wParam for event
High 16 bits EAX special boost flags
ESI is callback procedure for event (=0 if none)
EDX is reference data for event callback

Carry Clear
Event placed in queue
EAX is "Event Handle" of event ONLY VALID IF ENTRY ESI != 0

Carry Set
Event not placed

VMDOSAPP not present
Insufficient memory for placement

Microsoft Confidential April 1, 1990

34·2 Virtual Device AdaptaUon fluids

callback

USllS

Carry Set
Event could not be placed in VMDOSAPP queue
EDX =reference data
NOTE THAT EBX != VM Handle of event!

Carry Clear
Called when VMDOSAPP signals event processing complete
EDP -> VMOOSAPP Client frame so registers can be accessed
EDX =reference data
NOTE THAT EBX != VM Handle of event!

FJags,EAX

SHELL_GeLVerslon
0111cription

Exit

This procedure returns the version of the Shell VxD.

None

AH= Major version
AL =Minor version
Carry Flag set

EAX,FJags

SHELL_Message
D111criptlon This procedure is called to put up messages. Refer to SHEIL.INC and the Microsoft

Windows Software Development Kit for infonnation on message box parameters.

EnltY

Exit

April 1, 1990

EBX = VM Handle of VM responsible for message
EAX =Message box flags (SEE MB_xxxx in SHELL.INC)
ECX -> NUL tenninated Message Text
EDI -> NUL tenninated caption Text= 0 for standard caption

-> NUL for No caption
ESI -> Callback procedure to call with response when dialog is
finished == 0 if no call back desired
EDX =Reference data for callback

Carry Clear
EAX is "Event Handle" of message

Carry Set
Message cannot be displayed (insufficient memory)

Microsoft Confidential Beta Release

Callback

Use1

Shell Services 34-3

CALLER MAY WISH TO CALL SHELL SYSMODAL MESSAGE IN THIS CASE.
SHELL_ Sysmodal_ Message will not fail:- -

Called when message box is complete
EAX =Response code from dialog box (SEE IDxx in SHELL.INC)
EDX =reference data

Flags,EAX

SHELL_Resolve_Contention
Description

EnltY

Exit

Uses

This procedure is called to resolve contention. It displays a dialog box in which the user
chooses which VM should get ownership of the device.

EAX = VM handle of current device owner
EBX = VM handle of contending VM (Must be Cur_ VM _Handle)
ESI -> 8 byte device name SPACE PADDED!!!

EBX = VM handle of contention winner
If carry is set then contention could not be resolved

EBX,Flags

SHELL_SYSMODAL_Message
Description

Exit

Uses

Beta Release

This procedure is called to put up SYSMODAL messages. Refer to SHELL.INC and the
Windows SDK for information on message box parameters.

EBX = VM Handle of VM responsible for message
EAX =Message box flags (SEE MB_xxxx in SHELL.INC)

NOTE THAT MB_SYSTEMMODAL MUST BE SET.
ECX -> NUL terminated Message Text
EDI -> NUL terminated Caption Text= 0 for standard caption

-> NUL for No caption

EAX =Response code from dialog box (SEE IDxx in SHELL.INC)

Flags,EAX

Microsoft Confidential April 1, 1990

34-4 Virtual Device AdaptaUoa Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

35
Virtual Display Device
(VDD) Services

These are the Vutual Display Device (VDD) services. See Chapter 18, "The VDD and
Grabber DLL," for a more detailed explanation.

35.1 Displaying a VM's Video Memory in a Window
There are several API services supplied to efficiently render a VM's video memory into a
window. These routines are called by the Grabber. Since the Grabber runs in a virtual ma
chine, parameters are passed in the Client Registers and in VM memory pointed to by the
Client Registers.

The first step in updating windowed VMs is for the Shell to call Set_ VMState with a para
meter indicating that the VM is to be windowed. This will enable the VDD controller and
memory state tracking and reporting of changes. When the VM is no longer windowed,
Set_ VMState is called again. When the VMState is not windowed, the Get_Mod call will
always return no changes, and the video update message will never be generated.

The Grabber has to be assured that the call to get the video memory is consistent with the
call to get the video state; for example, displaying a mode 3 VM in mode 10 is incon
sistent To support this, the VM will not run after a Get_Mod or Get_Mem call. The VM re
sumes only after a Free_Mem or UnLock_App call. This way the VM's state will not
change during the process of window updating.

Notice that when a VM's video state changes, including controller state clanges such as
cursor movement and memory modification, the VDD will send WINOLDAPP a display
update message. All the changes made to the video state will accumulate and be reported
by Get_ Mod until a Clear_ Mod call is made. There will only be one display update
message per Clear_ Mod call.

VDD_Msg_BakColor
Description

Entry

Exit

Beta Release

After calling Begin_ Message_ Mode, this service sets up the background attribute.

EAX =Color (for EGNVGA driver, a text mode attribute)
EBX = VM handle

None

Microsoft Confidential April 1, 1990

35·2 Virtual Devl&e Adaptation Gulde

Usss Flags

VDD_Msg_ClrScrn
Osscrlptlan

Entry

Exit

Uns

This routine is called by the Shell to initialize the screen for putting up messages. If the
focus VM is the current VM, it will clear the screen immediately. Otherwise, the screen
will be initialized when the focus changes. ABegin_Message_Mode device control must
be issued before this service is used.

EBX = VM handle
EAX =background attribute

EAX = width in columns
EDX =height in rows

Flags, EAX, EDX

VDD_Msg_ForColor
Osscriptlon

Entry

Exit

Uses

After calling Begin_Message_Mode, this service sets up the foreground attribute.

EAX =Color (for EGNVGA driver, a text mode attribute)
EBX = VM handle

None

Flags

VDD_Msg_SetCursPos
Osscriptian

Entry

Exit

April 1, 1990

After calling Begin_ Message_ Mode, this routine sets the cursor position.

EAX=row
EDX=column
EBX = VM handle

None

Microsoft Confidential Beta Release

Virtual Display Device (VDD) Services 35·3

Uses Flags

VDD_Msg_TextOut
Description

Entry

Exit

Uses

After calling Begin _Message_ Mode and setting up the foreground and background colors,
this service puts characters on the screen.

ESI = address of string
ECX =length of string
EAX =row start
EDX =column start
EBX = VM handle

None

Flags

35.2 Miscellaneous VDD Services
The services discussed in this section provide other VDD functions not easily catagorized,
such as hiding the cursor. They are provided here in alphabetical order.

VDD_Get_GrabRtn
Description

Entry

Exit

Uses

This service returns the address of video grab routine. The grab routine is called by the
Shell device when the appropriate hot key is pressed by the user. It makes a copy of the vis
ible screen and controller state of the current VM. That copy is then accessible via the
GRB _Get_ GrbState and GRB _Get_ GrbMem services.

None

ESI = address of grab routine

Flags, ESI

VDD_Get_ModTime
D•cription

Beta Release

This routine is used to determine if any video activity has occurred. The poll device uses it
to determine if the VM is idle.

Microsoft Confidential April 1, 1990

35·4 Virtual Device At/aptaUon Balde

Enlry EBX = VM handle

Exit EAX = System Timer at last video modification

Usu Flags,EAX

VDD_Get_Verslon
Ducrlpt/on

Entry

Exit

UIBI

This service returns the version number and device ID.

None

ESI = ptr to 8 byte ID string
AH = major version
AL = minor version
Carry Flag clear

Flags, AX, ESI

VDD_Hlde_Cursor
Ducr/ption

Entry

Exit

Uses

VDD_PIF _State
Description

April 1, 1990

This service hides/shows the cursor in a window. If EAX is nonzero, then this service sets
a hide cmsor flag or else clears the flag. This is so that, if the mouse is using a hardware
cmsor, it can turn off that cmsor while the VM is windowed (since the VM will no longer
own the mouse).

EAX = 0 if cursor SHOULD be displayed in a window
I= 0 if cursor SHOULD NOT be displayed in a window

EBX = control block pointer

None

Flags

This service informs the VDD about PIF bits for the VM just created.

Microsoft Confidential Beta Release

Enlry

Exit

Uses

EBX = VM handle
AX =PIFbits

None

Flags

Virtual Display Device (VDD J Services 35-5

VDD_SeLHCurTrk
D111t:ription

Enlry

Exit

Uses

This service sets flag passed to VMDOSAPP indicating that V:MDOSAPP should maintain
the cursor position within the display window for this application. This is called by the
Keyboard driver when a keyboard interrupt is simulated into a VM.

EBX = VM handle

None

Flags

VDD_SeLVMType
D111t:ription

Entry

Exit

Usu

This service is used to inform the VDD of a VM's type. The parameter explicitly passed is
the windowed flag. The VM status flags, Exclusive and Background, are implicity passed.
This should be called prior to running the VM and each time thereafter that any of the VM
parameters are modified. Notice that, for a system critical Set_ Focus, this routine may not
be called before the Set_ Focus. In that case, the VDD is responsible for doing an implied
Set_ VMType (not windowed).

EAX = state flag (= nonzero if changing to windowed VM)
EBX = VM handle whose state is to change

None

Flags

VDD_Query_Access
D111t:ription

Beta Release

This service is used by the other virtual devices when they want to access video memory.
The VxD should not access video memory unless this routine says it is OK.

Microsoft Confidential April 1, 1990

35-6 Virtual Devlcs Adaptation Gulde

Entry EBX = VM handle

Exil if access is OK, carry flag = 0
else carry flag = 1

Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter

36

Beta Release

Virtual Keyboard Device
(VKD) Services

The Virtual Keyboard Device (VKD) provides services that support hot keys, Message
Mode key handling, and keyed input to VMs. The services are presented in the following
order:

• VKD _ API _Force _Key

• VKD_API_Get_ Version

• VKD _Cancel_ Hot_ Key_ State

• VKD Cancel Paste - -
• VKD _Define_Hot_Key

• VKD_Define_Paste_Mode

• VKD _Flush_ Msg_ Key_ Queue

• VKD _Force_ Keys

• VKD _ Get_Kbd _Owner

• VKD _Get_ Msg_ Key

• VKD Get Version

• VKD_Local_Disable_Hot_Key

• VKD_Local_Enable_Hot_Key

• VKD _Peek_ Msg_ Key

• VKD_Reflect_Hot_Key

• VKD _Remove_ Hot_ Key

• VKD _Start_ Paste

These are protected-mode API services used by WINOLDAP to send keys to a windowed
VM.

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

Microsoft Confidential April 1, 1990

36·2 Virtual Device Adaptallon Su/de

VKD_APl_Force_Key
D1111:riptlon This service forces a key into a VM as if it were typed on the keyboard. Because VKD will

scan these forced keys for hot keys, forcing VKD hot keys is allowed.

Enlry

Exit

U1111

EBX = VM handle (0 for current focus)
CH = scan code
CL = repeat count (1 or more)
EDX =shift state (-1 means no change)

Carry Set, if error

None

NOTE Currently limited to focus VM, so service will fail if EBX II 0 or EBX II focus VM handle.

VKD_APl_Get_ Version
Description

Entry

Exit

Uses

This service gets the version number of the VKD device.

None

AH = major, AL = minor
Carry clear

None

VKD_Cancel_Hot_Key_State
D111cripl/on This service causes the VKD to exit the hot key state.

Enlry None

Exit Keys will start being passed into the focus VM again

U111s None

April 1, 1990 Microsoft Confidential Beta Release

Virtual Keyboard Device (VKDJ Services 36·3

VKD_Cancel_Paste
Dest:tiption This service cancels the paste that was started in the VM with VKD _Start_ Paste.

EnttY EBX is VM handle

Exit None

U111 Flags

VKD _Define_Hot_Key
Oest:rlption

Beta Release

This service defines a hot key notification routine. Hot keys are detected by ANDing the
shift state mask wi~ the global shift state, then comparing the resulting state with the shift
state compare value. If this matches, and the key code matches, then the callback routine is
called with the specified reference data in EDX.

AL = scan code of the main key
AH = 0, if normal code
AH = 1, if extended code (ExtendedKey_B)
AH = OFFh, if either (AllowExtended_B)
EBX = shift state

high word is mask that is ANDed with the global shift state
when checking for this hot key; low word is masked shift state
compare value.
Equates for common shift mask and compare values are
defined in VKD.INC:

HKSS_Shift for either shift key
HKSS_Ctrl for either control key
HKSS_Alt for either ALT key

The macro ShiftState is also defmed to load EBX with the mask
and compare value. e.g.,

ShiftState <SS_ALT + SS_Toggle_mask>, SS_RAlt
loads EBX so that the hot key will only be recognized when the
Right ALT key is held down.
VKD>INC also defines "SS_" equates for the different shift state
bits and common combinations of bits.

CL =flags
CallOnPress - Call callback when key press is detected
CallOnRelease - Call callback when key release is

detected
(keyboard may still be in hot-key hold
state)

CallOnRepeat - Call callback when repeated press is

Microsoft Confidential April 1, 1990

36-4 Virtual Device Adaptation Gulde

Exit

Uses

Callback

April 1, 1990

detected
CallOnComplete - Call callback when the hot key state is

ended(all shift modifier keys are
released) or when a different hot key is
entered (i.e. pressing ALT 1 2, if both
ALT+ 1 and ALT +2 are defmed hot keys,
then ALT+ 1 's callback will be called
before ALT+2's to indicate that the ALT+l
is complete even though the ALT key is
still down)

CallOnUpDwn - Call on both press and release
CallOnAII - Call on press, release and repeats
Priority Notify - Used with one of the call options to

specify that the callback can only be
called when interrupts are enabled and the
critical section is un-owned

Local_Key - Key can be locally enabled/disabled

ESI = offset of callback routine
EDX =reference data
EDI = maximum notification delay if Priority Notify is set,

0, means always notify (milliseconds)

If Carry clear then
EAX =definition handle

else the definition failed (no more room)

Flags

Called when hot key is detected, and detection meets mask
requirements. (CallOnPress, CallOnRelease, CallOnRepeat,
CallOnUpDwn, or CallOnAll)

AL = scan code of key
AH = 0, if key just pressed (Hot_ Key _Pressed)

= l, if key just released (Hot_ Key _Released)
= 2, if key is an auto-repeat press (Hot_ Key _Repeated)
= 3, hot key state ended (Hot_Key _Completed)

EBX is hot key handle
ECX = global shift state
EDX is reference data
EDI =elapsed time for delayed notification (milliseconds)

(normally 0, but if PriorityNotify is specified then this value
could be larger)
This procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Microsoft Confidential Beta Release

Virtual Keyboard Device (VKD) Services 36·5

VKD_Define_Paste_Mode
Description

Entry

Exit

Uses

This service selects the VM's paste mode, whether INT 16 pasting can be attempted or not.
Some applications hook INT 9 and do things that will not allow pasting to be done through
INT 16H. Normally, VKD can detect this by setting a timeout to see if any INT 16s are
being done by the application, and if not, then switching to INT 9 paste. But, some appli
cations may do some INT 16s, in which case the paste would be broken. Therefore, this
·service is provided to allow the Shell device to force a VM into INT 9 paste, based only on
aPIF bit.

AL = 0 allow INT 16 paste attempts
AL = 1 force INT 9 pasting
EBX = VM handle

None

Flags

VKD_Flush_Msg_Key_Queue
Description This service flushes any available keys from the special message mode input buffer.

Entry EBX = VM handle

Exit Input buffer has been cleared

Uses Flags

VKD_Force_Keys
Description

Entry

Exit

Beta Release

This service forces scan codes into the keyboard buffer that look exactly like they had
been typed on the physical keyboard. These keys will be processed in the context of the
focusVM.

ESI points to a buffer of scan codes
ECX is # of scan codes in the buffer

If the keyboard buffer was overflowed, then
Carry set
ECX is # of remaining scan codes that did not fit

Microsoft Confidential April 1, 1990

36·6 Virtual Device Adaptation Gulde

Usa1 ECX.FJags

VKO_Get_Kbd_Owner
D11cription This service gets the VM Handle of the keyboard focus VM.

EnltY None

Exit EBX = VM Handle of keyboard owner

U1n Flags, EBX

VKO_Get_Msg_Key
D111crlptlon This service returns the next available key from the special message mode input buffer and

removes it from the buffer. If no key is available, then it returns with the Z flag set. (This is
not a blocking read!)

EnltY

Exit

U1e1

EBX = VM handle

Z flag clear, if key was read
AL = scan code
AH= modifier flags
MK_Shift - a SHIFI' key is down
MK_Ctrl - a CTRL key is down
MK_Alt - an ALT key is down
MK_Extended - the key is an extended key
Z flag set, if no key available

EAX,FJags

VKD_Get_ Version
011crlptlon

EnltY

Exit

April 1, 1990

This service gets the VKD version number.

None

AH = major, AL = minor
Carry Flag clear

Microsoft Confidential Beta Release

Virtual Keyboard Device (VKD) Services 36·7

Uses EAX,Flags

VKD _Local_Disabl e_Hot_Key
Description

Entry

Exit

Uses

This service disables a hot key in the specified VM. It is only allowed on hot keys which
were declared with the Local_Key bit set in CL.

EAX is hot key handle
EBX is VM handle

None

Flags

VKD_Local_Enable_Hot_Key
Description

Entry

Exit

Uses

This service enables a hot key in the specified VM.

EAX is hot key handle
EBX is VM handle

None

Flags

VKD_Peek_Msg_Key
Description

Entry

Exit

Beta Release

This service returns the next available key from the special message mode input buffer
without removing it from the buffer. If no key is available, then it returns with the Z flag
set.

EBX = VM handle

Z flag clear, if key available
AL = scan code
AH = modifier flags
MK_Shifi • a shift key is down
MK_Ctrl - a control key is down
MK_Alt - an alt key is down

Microsoft Confidential April 1, 1990

36-8 Virtual Device Adaptauon Gu/tie

Uses

MK_Extended - the key is an extended key
Z flag set, if no key available

EAX,Flags

VKD_Reflect_Hot_Key
D•t:rlption

Entry

Exit

This service reflects a hot key into a specified VM and exits the hot key state. This service
is normally called by a hot key notification callback routine. It enables the callback to send
the hot key into a VM and pretend that it wasn't really recognized as a hot key. VKD will
simulate the required key strokes to get the VM into the state of this specified shift state,
then it will simulate the key strokes for the hot key itself, and finally simulate key strokes
to get the VM to match the current global shift state.

EAX is hot key handle
EBX is VM handle
ex is required shift state

Hot key has been reflected, and VKD is no longer in hot key state

Flags

VKD_Remove_Hot_Key
D•r:riptlon This service removes a defined hot key.

Entry EAX is hot key definition handle to be removed

None

Uses Flags

VKO _Start_Paste
D•r:rlption

April 1, 1990

This service puts a VM into paste mode by simulating keyboard activity with keystrokes
taken from the specified paste buffer. Depending on the mode set with the service
VKD _Derme_Paste_Mode (default is to try INT 16 pasting), VKD waits for the VM to
poll the keyboard BIOS through its INT 16 interface. If the VM does keyboard input
through the BIOS, then VKD will simulate the keyboard input at this high level (plugging
in ASCII codes.) If the VM fails to perform any INT 16s within in a timeout period, or the

Microsoft Confidential Beta Release

Entry

C1/lbact

Beta Release

Virtual Ksyboarll Dnlt:B (VKD) SBtvlt:BS 36·9

mode has been set to avoid INT 16 pasting. then VKD will simulale the necessary hanl
ware interrupts to perform the pasting. Physically typed hot keys are still processed while
pasting is in progress.

EAX is linear address of paste buffer
the paste buffer contains an array of key structures:

OEM_ASCII_ value db ?
scan_code db ?
shifLstate dw ?
shift state bits are:
OOOOOOOOOOOOOOlOb shift key depressed
OOOOOOOOOOOOOlOOb ctrl key depressed

The scan code should be FFb and the shift state FFFFh, if VKD should convert the key to a
ALT +numpad sequence. (this information is identical to what is given by the Wmdow's
keybomd routine OEMKeyScan)

EBX is VM handle
ECX is number of paste entries in the paste buffer
ESI is call back address (can be 0)
EDX is reference data

Carry clear
paste is started

Carry set
paste failed, unable to allocate memory for buffer copy

Flags

Called when paste is completed or cancelled
EAX is completion flags
Paste_ Complete - paste completed successfully
Paste _Aborted - paste cancelled by user
Paste_ VM _Term - paste aborted because VM terminated
EBX is VM handle of VM that was receiving the paste
EDX is reference data
Procedure can modify EAX, EBX. ECX, EDX. FSI, EDI, and Flags

Microsoft Confidential April 1, 1990

36·10 Vlrlual Devlt:11 Allaplallon Guida

April 1, 1990 Microsoft Confidential Beta Release

Chapter

37
Virtual PIC Device (VP/CD)
Services

The Virtual Programmable Interrupt Controller Device {VPICD) routes hardware inter
rupts to other virtual devices, provides services that allow virtual devices to request inter
rupts, and simulates hardware interrupts into virtual machines. See Chapter 16, "Overview
of Windows in 386 Enhanced Mode," and Chapter 17, "Vrrtual Device Programming Top
ics," for general discussions of the VPICD.

Peripherals, such as disk drives and COM ports, use hardware (physical) interrupts to
notify software of changes in their status.

The topics in this chapter are presented in the following order:

• Default Interrupt Handling

• Vrrtualizing an IRQ

• Vrrtualized IRQ Callback Procedures

• VPICD Services

• Grabber

37. 1 Default Interrupt Handling

Beta Release

The most basic function of VPICD is to emulate the functions of the physical interrupt con
troller (PIC). This entails reflecting interrupts into virtual machines and simulating l/O
such as recognizing when a VM issues an EOI {End Of Interrupt), reading the mask
register, etc. When VPICD is initialized, it sets up a default interrupt handler for every In
terrupt ReQuest (IRQ). These handlers determine which VM an interrupt should be re
flected into, and they arbitrate conflicts between virtual machines that attempt to unmask
the same interrupt.

An interrupt that is unmasked when enhanced Wmdows is initialized is considered a global
interrupt A global interrupt will always be reflected into the currently executing virtual ma
chine, and any VM can mask or unmask the IRQ. If a virtual machine unmasks an IRQ
that was masked when the enhanced Windows environment was initialized, it will own
that IRQ. All interrupts for an owned IRQ will be reflected only to the IR.Q's owner. If
another virtual machine attempts to unmask the interrupt, the second VM will be termi
nated and the user will see a dialog box that tells him to reboot his computer.

It is important to remember that this is only the default behavior of VPICD. If another vir
tual device virtualizes an IRQ it is up to the device that virtualized the interrupt to deter-

Microsoft Confidential April 1, 1990

31·2 Virtual Device Adaptation Gulde

mine which VMs receive interrupts and arbitrate conflicts. Once an IRQ is virtualized,
VPICD's default handling for that IRQ stops.

37.2 Virtualizing an IRQ
When a virtual device needs to hook a specific IRQ (Interrupt ReQuest), it must ask
VPICD for pennission. If another device has already virtualized the IRQ, then the call will
fail if either of the VxDs is unable to share the IRQ (both must have the Can Share option
set for two VxDs to use the same IRQ). -

When a VxD calls VPICD _ Virtualize _ IRQ, it passes a pointer to a structure called an
IRQ Descriptor that contains the number of the IRQ and the address of several callback
procedures. This structure is included in the file VPICD.INC:

VPICO_IRQ_Oescriptor STRUC
VIO_IRO_Number dw ?
VIO_Options dw 0
VIO_Hw_lnt_Proc dd ?
VIO_Virt_lnt_Proc dd 0
VIO_EOI_Proc dd 0
VIO_Mask_Change_Proc dd 0
VIO_IRET_Proc dd 0
VIO_IRET_Time_Out dd 500

VPICO_IRO_Oescriptor ENDS

The VID _IRQ_Number contains the number of the IRQ the VxD wishes to virtualize.
VID _Options is a bit field that is used to specify special options. The next five fields
specify the address of various callback procedures. The final field determines the maxi
mum amount of time in milliseconds that VPICD will allow before the interrupt is timed
out. Tune-outs are very important to prevent the enhanced Windows environment from
hanging while simulating a hardware interrupt.

37.3 Virtua/ized IRQ Callback Procedures

April 1, 1990

A virtual device may specify up to five callback procedures in its IRQ_ Descriptor struc
ture. One of these, Hw _Int_ Proc, is required. The other callback procedures are optional
and are simply used to inform a virtual device whenever the state of the virtualized IRQ
changes. For example, the VU't_ Int_ Proc procedure will be called whenever an interrupt
is simulated into a VM; the Mask_ Change_ Proc is called whenever a virtual machine
masks or unmasks the interrupt, etc. Each of the callback procedures is described in this
section in detail and in alphabetical order. Callback procedures may modify EAX, EBX,
ECX, EDX, ESI, and Flags. Although they will be called with interrupts disabled, they are
allowed to enable them. If the procedures perform a lot of processing, interrupts should be
executed.

Microsoft Confidential Beta Release

Virtual PIC Device (VP/CD) Services 37·3

VID_Hw_lnLProc
Description

Enlry

Exit

VID_EOl_Proc
Description

Enlry

Exit

The VID Hw Int Proc procedure is called whenever a hardware interrupt occurs. Notice
that the procedure is just that, a procedure that returns using a near return - not an IRET.
Since the the VxD environment kernel is single-threaded, the services that this procedure
is allowed to call are limited because it is possible for an interrupt to occur while executing
in the VMM. Therefore, many interrupt procedures will need to use the
Schedule Call Global Event services to perfonn additional processing of an interrupL A
typical vii>_Hw_Int_Proc will service the physical device, call VPICD_Phys_EOI to
end the physical interrupt, and set the virtual IRQ request for a specific virtual machine.
Some devices may never request an interrupt for a virtual machine and others may request
more than one interrupt per physical interrupt. In any case, every physical interrupt does
not need to be reflected 1-1 into a virtual machine.

Interrupts Disabled
EAX = IRQ handle
EBX = Current VM handle

None

The VID EOI Proc callback is normally used for devices that are partially virtualized.
For example, the Vutual Mouse Device (VMD) lets the MS-DOS mouse driver handle all
I/O with the mouse hardware. The VMDjust reflects the interrupt to the VM that owns the
mouse. Since it doesn't service the device during the VMD _ Hw _Int procedure, it can't
call VPICD _Phys_EOI at this point (since it's not the end of the interrupt). Once a virtual
machine has serviced the interrupt, it will issue an EOI and, at this point, the VMD calls
VPICD _Clear _Int_Request followed by VPICD _Phys_EOI. The default interrupt
routines need the VID _ EOl _ Proc callback for the same reason - they have to wait for
the VM to service the interrupting device before they physically signal an EOI to the IRQ.

Interrupts Disabled
EAX = IRQ handle
EBX =Current VM handle

None

VID_Virt_lnLProc
Description

Beta Release

The VID Virt Int Proc callback can be useful for implementing critical sections around
a simulated hafdware interrupL A VxD will request an interrupt, and that interrupt may be
simulated at a later point in time. This callback is issued at the point when the interrupt is

Microsoft Confidential April 1, 1990

37·4 Virtual Device Adaptation Gulde

Enlry

Exit

VID_IRET_Proc
Description

April 1, 1990

actually being simulated into the virtual machine. This call is made after the "point of no
return" has been passed. Therefore, it is impossible for a virtual device to stop the interrupt
once this call has been issued. A VxD that uses this callback will usually also use the
VID _ Vll't _IRET _ Proc callback to detect the end of the simulated interrupt.

Interrupts Disabled
EAX = IRO handle
EBX # Current VM handle

None

This callback is useful for devices that must simulate large numbers of interrupts in a short
period of time. For example, the Virtual COM Device will simulate an interrupt, allow one
character to be read from the COM port, and wait for the virtual machine to IRET before
putting more data into the virtual COM receive buffer. This is because many programs
would crash if too many bytes of data were queued and shovelled into the virtual machine
too quickly. The crash would occur because the program's stack would overflow. For ex
ample, assume that a terminal program has an interrupt routine that looks like this:

push ax ; (Push AX, DX is the
push dx ; minimum possible)
(Read a byte from the COM port)
mov al, 20h Non-Specific EOI
out 20h, al EOI the PIC
sti Enable interrupts
coo other stuff)
pop dx
pop ax
iret

This is a perfectly valid interrupt procedure and, in fact, it is very common in actual termi
nal programs. Now consider what would happen if the Virtual COM Device (VCD) had
500 bytes of data queued, and it did not use the VID _IRET _ Proc callback. When the VM
reads a byte of data, VCD puts the next byte of data into the receive buffer and request
another interrupt. When the terminal program executes the STI instruction, VPICD imme
diately simulates another COM interrupt. This sequence of events is repeated 499 times,
each time nesting an interrupt while in the terminal program's interrupt routine. The prob
lem is that the IRET frame on the stack requires 6 bytes per interrupt, and the 2 pushed
registers take up 4 more bytes for a total of 10 bytes per interrupt. Since we would nest
500 interrupts, SK bytes of stack space would be required.

Since this is obviously unacceptable, VCD waits for the terminal program to IRET before
simulating another interrupt. The Virtual Timer uses similar logic to prevent shoving too
many timer interrupts into a virtual machine.

Microsoft Confidential Be'ta Release

Entry

Exit

Interrupts Disabled
EAX = IRO handle
EBX =Current VM handle
If carry is set then interrupt timed-out

None

Virtual PIC Device (VPICD) Services 37-5

VID_Mask_Change_Proc
Description

Entry

Exit

The VID Mask Change Proc is often used to detect contention for a device. The default
interrupt routines use this Callback to detect conflicts with nonglobal interrupts.

Interrupts Disabled
EAX = IRO handle
EBX = Current VM handle
ECX = 0 if VM is unmasking IRO, != 0 if masking IRO

None

37.4 VP/CO Services
This section presents descriptions of VPICO services in alphabetical order.

VPICO_Call_When_Hw_lnt
Description

Beta Release.

You must call this procedure with interrupts disabled. This service enables other VxDs to
be notified when every hardware interrupt occurs. It is intended to be used by the Virtual
OMA Device (VDMAD) to detect when a OMA transfer is complete. However, any VxO
can use this service. It should be noted though, that since your callback will be called for
every hardware interrupt, it could have a major performance impact on systems with dev
ices that interrupt frequently. Therefore, you should avoid using this service.

A callback installed by this service is responsible for chaining to the next handler in the in
terrupt filter chain, and it must preserve the EBX register for the next handler.

Sample_Hook_Init:
pushfd
cli
mov esi, OFFSET32 My_Int_Hook
VxDcall VPICD_Call_When_Hw_Int
popfd
mov [Next_Int_Hook_Addr], esi
clc
ret

Microsoft Confidential April 1, 1990

37-6 Virtual Device Adaptauan Gulde

My_Int_Hook:
push ebx
<Do something useful here)
pop ebx
jmp [Next_lnt_Hook_Addr]

En/fY ESI -> Procedure to call

Exit ESI -> Procedure to chain to

Uses ESl,Flags

Callback EBX =Cur_ VM_Handle

VPICD_Clear_lnt_Request
OBSariptian

EllllY

Exit

uus

This service resets an IRQ request that was previously set by a call to
VPICD _Set_Int_Request. If the IRQ is being shared with another device, then this serv
ice may not reset the virtual request if another device has also set the virtual IRQ.
However, the request will be cleared when all devices that have called Set_Int_Request
call this service.

EAX = IRQ handle
EBX = VM handle

Vutual IRQ request is cleared

Flags

VPICD_Convert_Handle_To_IRQ
OBSariptian This service returns the number of the IRQ for the IRQ handle in EAX.

EAX = IRQ Handle

Exit ESI = IRQ Number

Uses ESI,Flags

April 1, 1990 Microsoft Confidential Beta Release

Virtual PIC Dsvlce (VP/CD) Services 37·7

VPICD_Convert_lnt_To_IRQ
Description

Entry

Exit

Uses

This service takes an interrupt vector number and returns the number of the IRQ that is
mapped to that interrupt For example, INT 8 will typically be converted to IRQ 0.
However, VMs are allowed to remap the virtual PIC to any interrupt vector they wish.
Therefore, devices should never make assumptions about to which interrupt vector a partic
ular IRQ is mapped.

EAX = Interrupt vector number

If carry is clear then
EAX = IRO number

else
Interrupt vector not mapped to any IRO

None

VPICD_Convert_IRQ_ To_lnt
Dest:r/pt/on

Entry

Exit

Uses

This service accepts an IRQ number and returns an interrupt vector number for a specified
VM. For example, typically IRQ 0 will be converted to INT 8 on an IBM PC. However,
VMs are allowed to remap the virtual PIC to any interrupt vector they wish. Therefore,
devices should never make assumptions about to which interrupt vector a particular IRQ is
mapped.

EAX = IRQ number - NOT HANDLE!
EBX = VM handle

EAX = Interrupt vector

EAX,Flags

VPICD_Get_Complete_Status
Refer to VPICD _Get_ Status for description.

VPICD_Get_IRQ_Complete_Status
Description

Beta Release

This service is similar to VPICD _Get_ Complete_ Status except that it takes an IRQ num
ber as a parameter instead of an IRQ handle. This is useful for devices to inspect an IRQ
before attempting to virtualize it or for inspecting the state of another device's interrupt

Microsoft Confidential April 1, 1990

37·8 Virtual Devit:B Adaptation Gulde

Entry

Exit

Uses

Also, since it indicates whether or not an IRQ has been virtualized already, it can be used
by devices to prevent conflicts when more than one device may want to use an IRQ.

EAX = IRQ number

ECX = Status as described for VPICD _Get_ Complete _Status

If the carry flag is set then
The IRQ has been virtualized

else
The IRQ has not been virtualized

ECX,Flags

VPICO_GeLStatus
Description

Entry

Exit

April 1, 1990

These services return the status of a virtual IRQ for a specified VM. The status returned in
ECX is defined by equates in the VPICD.INC file. VPICD_Get_Status will only return
the Virtual In _Service and IRET _Pending status bits. VPICD _Get_ Complete _Status
will return with all status bits defined The shorter version is supplied because it is much
faster, and the status renirned contains the most commonly used information.

EAX = IRQ handle
EBX = VM handle

ECX = Status flags (see equates VPICD.INI)

Bit Description

0=1 A Vll'tUal IRET is pending

l=l The IRQ is virtually in service

2=1 The IRQ is physically masked

3=1 The IRQ is physically in service

4=1 VM has masked the IRQ

5=1 The Vll'tUal IRQ is set (by any VxD)

6=1 The physical IRQ is set

7=1 Tha calling VxD's Vll'tUal IRQ is set

Microsoft Confidential Beta Release

Virtual PIC Device (VP/CD) Services 37-9

UIBS E<..:X,Aags

VPICD_Get_Version
OBSt:ription

Entry

Exit

Uses

This service returns the VPICD major and minor version numbers.

None

AH =Major version
AL = Minor version
EBX=Flags

Bit 0 = I - Master/Slave PC/AT type configuration
0 - PC/X.T type single PIC configuration

Other bits reserved for future versions.
ECX =Maximum IRQ supported (07H or OFH)
Carry flag clear

EAX, EBX, ECX, Flags

VPICD_Phys_EOI
Description

Entry

Exit

Uses

Calling this procedure will end a physical interrupt and will allow further hardware inter
rupts from the specified IRQ. Notice that an interrupt that is physically in service will not
suppress interrupts to "lower priority'' IR.Qs, since VPICD does not prioritize hardware in
terrupts. Therefore, it is acceptable for an interrupt to be physically in service for an arbi
trary length of time.

EAX = IRQ handle

None

Flags

VPICD_Physically_Mask
DBSt:ript/on

Entry

Beta Release

This service will mask the specified IRQ on the hardware PIC. This will suppress all hard
ware interrupts on the IRQ until VPICD_Physically_Unmask or
VPICD _Set_ Auto _Masking is called.

EAX = IRQ handle

Microsoft Confidential April 1, 1990

37·10 Virtual oevlceAdaptatlan Gulde

Exit IRQ is masked

USllS Flags

VPICD_Physically_Unmask
Dacript/an

Enlry

Exit

Us111

This service will unmask the specified IRQ on the hardware PIC regardless of the mask
state of virtual machines. This means that even if every VM has masked the virtual IRQ,
the physical mQ will remain unmasked

EAX = IRQ handle

IRQ is masked

Flags

VPICO_Set_Auto_Masking
Dacrlptian

Entry

Exit

Usss

Automatic masking is the default state for every IRQ. It can be overridden by
VPICD _Physically _Mask/Unmask. When automatic masking is used, the state of the
physical mask is determined by the state of every virtual machine's virtual mask. If at least
one VM has the IRQ unmasked, then the physical IRQ will remain unmasked. Otherwise,
the mQ will be masked on the hardware PIC.

EAX = mQ handle

mQ will be physically unmasked if at least one VM has unmasked the IRQ.

Flags

VPICO_Set_lnt_Request
Description

April 1, 1990

This service sets the virtual interrupt request for the specified IRQ and VM. It may cause
an interrupt to be simulated immediately. However, in many cases, the interrupt will not be
simulated until a later point in time. The interrupt will not be simulated immediately if:

• The virtual machine has interrupts disabled.

• The virtual machine has masked the mQ.

Microsoft Confidential Beta Release

Entry

Exit

Usss

Virtual PIC Device (VP/CD) Setvlces 37-11

• A higher priority virtual IRQ is in service.

• It is not possible to run the specified VM (it is suspended, etc).

• There are other reasons the interrupt may be postpOned.

However, since the interrupt may be simulated immediately, virtual devices that have a vir
tual interrupt handler must be able to handle the case when their virtual interrupt procedure
is called before this service returns.

Setting an interrupt request is not a guarantee that the interrupt will ever be simulated. For
example, if the VM has masked the interrupt and never unmasks it, the interrupt will never
be simulated. Also, a call to VPICD Clear Int Request that is made before the virtual in
terrupt is simulated will prevent the fnterruPi sunulation.

It is important to keep in mind that VPICD simulates a level triggered PIC. This means
that once a virtual EOI occurs, another interrupt will be simulated immediately unless the
virtual interrupt request is cleared.

EAX = IRQ handle
EBX = VM handle

Vntual IRQ request is set

Flags

VPICD_ Test_Phys_Request
Dsscription

Entry

Exit

Usss

This service will return with Carry set if the physical (hardware PIC) interrupt request is
set for the specified IRQ.

EAX = IRQ handle

Carry flag = Physical Interrupt Request state

Flags

VPICO_Virtuallze_IRQ
Dsscription

Beta Release

This is not an async service; it cannot be called during an interrupt. This service is used to
gain access to a specified virtual interrupt request The caller passes this procedure a
pointer to the IRQ descriptor (the structure declared in VPICD.INC) which specifies:

Microsoft Confidential April 1, 1990

37·12 Virtual Device Adaptation Gulde

Entry

Exit

Usas

April 1, 1990

• IRQ number (required)

• Options

• Hardware interrupt handler (required)

• Vutual interrupt handler

• Vutual EOI handler

• Virtual mask change handler

• Vll'tUal IRET handler

• Vutual IRET time-out (0 for no time-out)

For more information on the various options and parameters to this service see Section
37 .3 .. Vutualizing an IRQ," earlier in this chapter. When this service returns, if Carry is
set, then the IRQ cannot be virtualized. Otherwise, EAX contains an IRQ handle. This
handle is used for all subsequent communication with VPICD.

If every device that virtualizes the IRQ has the Can_ Share option set then the IRQ can be
shared by up to 32 devices.

EDI-> VPICD_IRQ_Descriptor

If carry clear then
EAX = IRQ Handle

else
Error - Handle already allocated or invalid IRQ #

EAX ,Flags

Microsoft Confidential Beta Release

Chapter

38

VSD_Bell
Description

Entry

Exit

Uses

Virtual Sound Device (VSO)
Services

These two services enable VxDs to generate a warning beep or return the VSD version
number:

• VSD_Bell

• VSD_Get_ Version

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions.

This service is provided so that devices can generate a warning beep. This is normally used
when the user presses an invalid key or when an error occurs. Notice that this service will
produce a 1/2-second tone, but it will then return immediately (it does not busy wait).

None

None

Flags

VSD_Get_Verslon
OBBcription

Entry

Exit

Uses

Bet:a Release

This service returns the version number of the Virtual Sound Device.

None

AH= Major version number
AL= Minor version number
Carry flag clear

EAX,FJags

Microsoft Confidential April 1, 1990

38-2 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

39
Virtual Timer Device {VTD)
Services

This chapter presents descriptions of the following VTD services:

• VTD _Begin_ Min_ Int_ Period

• VTD _Disable_ Trapping

• VTD _Enable_ Trapping

• VTD_End_Min_Int_Period

• VTD _Get_ Interrupt_ Rate

• VTD_Get_ Version

• VTD _ Update_System _Clock

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general· environment discussions.

VTD_Begin_Min_lnt_Period
Description

Beta Release

This service is used by VxDs to ensure a minimum accuracy for system timing. When this
service is called, if the interrupt period specified is lower than the current timer interrupt
period, the interrupt period will be set to the new frequency.

Until a matching VTD _End_ Min_ Int_ Period call is made, the timer interrupt period is
guaranteed never to be slower than the value specified.

A VxD should call this service only once before calling VTD _End _Min_ Int_ Period.

'fypically the Begin/End_ Min_ Int_ Period services are used by devices such as execution
profilers that need extremely accurate timing. VMM system time-out services rely on the
V1D to keep time. Therefore, more frequent timer interrupts will allow the time out serv
ices to be more accurate.

Microsoft Confidential April 1, 1990

39·2 Virtual Devtce Adaptation Gulde

Entry

Us11s

WARNING Fast timer interrupt periods can be very, very expensive in terms of total system perform
ance. For example, on some machines a timer interrupt of 1 millisecond will degrade total machine
throughput by 10 percent and disk l/O by up to 50 percent.

EAX =Desired interrupt period

If carry clear then
Interrupt period set

else
Specified interrupt period is not valid

Flags

VTD_Dlsable_Trapping
D•t:ription

Exit

Uses

April 1, 1990

This service will force VTD to stop J/O trapping on the timer ports for a specified virtual
machine. VTD _Enable_ 'lrapping must be called once for every call made to this service.
By default, timer port trapping is enabled when a VM is created.

It is sometimes necessary to disable temporarily 1/0 trapping for virtual machine code that
reads the timer in extremely tight timing loops. A good example is the hard disk BIOS
code that reads the pons hundreds of times per disk transfer. The overhead for servicing
the J/O traps would cause disk perfonnance to slow to a crawl.

WARNING This service must be used very carefully. If a VM reprograms the timer while port trap
ping is disabled, system timing will behave randomly. Only "trusted• code should be executed when
timer port trapping is disabled.

If this service is called N times, then VTD _Enable_ 'lrapping must also be called N times
before trapping is reenabled. This allows nested calls to this service by more than one VxD.

EBX = VM handle

None

Flags

Microsoft Confidential Beta Release

Virtual Timer Device (VTD) Services 39-3

VTD_Enable_ Trapping
Dut:tiption

Entry

Exit

Uses

This service must be called to re-enable timer I/O port trapping after calling VTD _Dis
able_ Trapping. Notice that this call must be made once for every call to VTD _Dis
able_ Trapping. Only when every disable call has been matched by a call to this service
will port trapping be reenabled.

EBX = VM handle

None

FJags

VTD_End_Min_lnLPeriod
Dut:tiption

Entry

Exit

Usss

This service allows a device to ''unrequest" a timer interrupt period that it set earlier
through the VTD _Begin_ Min _Int_Period service. See the documentation for
VTD _Begin_ Min_ Int_Period earlier in this chapter for more information on the proper
use of this service.

EAX = Value passed earlier to Begin_ Begin _Min_ Int_Period

If carry clear then
Interrupt period request removed successfully

else ·
Specified interrupt period is not valid

FJags

VTD_Get_lnterrupt_Period
Dest:tipllon This service returns the current timer interrupt period.

Entry None

Exit EAX =Length of time between ticks in milliseconds

Uses FJags

Beta Release Microsoft Confidential April 1, 1990

39-4 Virtual Device Adaptation Gulde

VTD_GeLVersion
Description

Entry

Exit

This service returns the version number and the range of interrupt periods allowable by
this device.

None

EAX = Version number (AH= Major; AL= Minor)
EBX = Fastest possible interrupt period in milliseconds
ECX = Slowest possible interrupt period in milliseconds
Cany flag clear

EAX, EBX, ECX, Flags

VTD_Update_System_Clock
Description This service should only be called by the VMM. Devices should call the Get_Sys-

tem_ Time VMM service. The VMM will then call this service to update the system clock.

Entry None

None

Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter

40

Beta Release

V86 Mode Memory
Manager Device Services

The V86MMGR is responsible for managing memory in the Virtual 8086 portion of each
VM. It supports EMS and XMS, is responsible for allocating the base memory for VMs
when they are created, and translates APis from protected-mode applications into V86
calls for other VxDs.

See Chapter 16, "Overview of Windows in 386 Enhanced Mode," and Chapter 17, "Virtual
Device Programming Topics," for general environment discussions. Other chapters that dis
cuss memory management are Chapter 19, "Memory Management Services," and Chapter
6, "Network Support," in the Microsoft Windows Device Driver Adaptation Guide.
Memory management is also discussed in the Microsoft Software Development Kit, Pro
gramming Tools.

The V86MMGR services are presented as follows:

• Initialization Services

V886MMGR Get Version -
V86MMGR_ Allocate_ V86 _Pages

V86MMGR_ Set_EMS_XMS _Limits

V86MMGR_ Get_EMS_XMS_Limits

• API Translation and Mapping Services

V886MMGR_Set_Mapping_Info

V86MMGR_XJat_API

V86MMGR _Load_ Client_ Ptr

V86MMGR_Allocate _ ButTer

V886MMGR_ Free_ Buffer

V86MMGR_ Get_Xlat_Buff _State

V86MMGR _Set_ Xlat _Buff_ State

V86MMGR_ Get_ VM_Flat_Sel

V86MMGR_ Get_Mapping_Info

V86MMGR_ Map_Pages

V86MMGR_Free_Page_Map_ Region

Microsoft Confidential April 1, 1990

40-2 Virtual Device Adaptation Gulde

40.1 Initialization Services
These services are used when a VM is created except for the V86MMGR_ Get_ Version,
which may be used anytime.

V86MMGR_GeLVersion
Description

Entry

Exit

Uses

Returns the version of the V86MMGR VxD.

None

AH = Major version nwnber
AL = Minor version number
Carry flag clear

EAX,Flags

V86MMGR_Allocate_ V86_Pages
Description

Entry

Exit

Uses

April 1, 1990

This service is used by the SHELl... VxD to set up the initial base memory of a VM when it
is created. It allocates the memory, maps it into the virtual machine, and does a local As
sign_ Device_ V86 _Pages for the region allocated

EBX = VM handle
ESI = Desired size of VM address space in K bytes
EDI = Minimum size of VM address space in K bytes
ECX =Flags, see bit definitions in V86MMGRINC

NOTE The ESI and EDI sizes include the O·FirsLVM_Page region of V86 address space.

If carry set then
ERROR: Could not allocate memory

else
Memory allocated and mapped into VM

EAX = ACTUAL number of pages allocated and mapped (size of VM). Notice that this
size does not include the space from 0-First_ VM _Page

EAX,Flags

Microsoft Confidential Beta Release

V86 Made Memory Manager Device Services 40·3

V86MMGR_Set_EMS_IMS_Limits
Description

Entry

Notes

Exit

Uses

This service is used by the SHELL VxD to set the EMS and XMS limit parameters for a
VM.

EBX = VM handle to set limits of
EAX =Min EMS kilobytes
EDX =Max EMS kilobytes
ESI = Min XMS kilobytes
EDI = Max XMS kilobytes
ECX =Flag bits, see V86MMGR.INC

To disable access to XMS or EMS memory, Set Max= Min = 0
To set only one of the two limits, set the OTHER Max= Min = -1
The XMS Limit does not include the HMA.

If carry set then could not set limits
Insufficient memory for Min allocation request
note that some of the limits may have been set. To Find
out what happened, use V86MMGR _Get_ EMS_ XMS _Limits

else limits set

Flags

V86MMGR_Get_EMS_xMS_Limits
Description

Entry

Exit

Usss

Beta Release

This service is used by the SHELL VxD to get the EMS and XMS limit parameters for a
VM.

EBX = VM handle to get limits of

EAX =Min EMS kilobytes (always a multiple of 4)
EDX =Max EMS kilobytes (always a multiple of 4)
ESI =Min XMS kilobytes (always a multiple of 4)
EDI =Max XMS kilobytes (always a multiple of 4)
ECX = 0 if access to the HMA is disabled
ECX = 1 if access to the HMA is enabled

EAx. ECX, EDX, ESI, EDI, Flags

Microsoft Confidential April 1, 1990

40-4 Virtual Devlt:e Adaptation Saide

40.2 AP/ Translation and Mapping
One of the major roles of the V86MMGR is to provide a mechanism for other Vx.Ds to
translate API calls made from application software running in protect.ed mode into the V86
portion of the virtual machine. The term .. API translation" is used in this docwnent to de
scribe the conversion of an API call in prot.ect.ed mode into a corresponding V86 mode
call. Because enhanced Wmdows runs under a standard DOS, DOS and BIOS calls must
be reflect.ed to V86 mode code to handle the call. There is a layer of code in the OOSMGR
device that converts prot.ect.ed mode DOS calls into V86 calls. (

The main translation service. V86MMGR _ Xlat_API. is a simple interpreter that copies
data into a buffer in the V86 address space and converts pointers to point to the copied
data. Note that the data is copied. The memory is not mapped into V86 memory by chang
ing page tables.

Other services are provided to allocate buffer space. map memory into global V86 address
space. and perfonn other functions necessary for API tmnslation.

Nore that the tmnslation services only work for the current VM and most must be called
when running in the prot.ect.ed mode portion of the VM.

40.2.1 Basic AP/ Translation
Many APis require little or no translation. Others are extremely complex and require a
great deal of coding. The simplest API is one that has no pointers. A software interrupt
based API, in which all parameters are passed in the EAX, EBX, ECX. EDX, ESI. EDI.
and EBP registers and flags. requires no special translation software. By default. enhanced
Wmdows will reflect an interrupt that is execut.ed in prot.ected mode into V86 mode. For
example, the BIOS printer interface (Int 17h) requires no tmnslation code since all APls
are register-based with no pointers.

However, most APis have at least some calls that take poitlters as parameters. For ex
ample, to open a file through DOS, you must point at the name of the file to open with the
DS:DX registers. Since the address that a prot.ected mode program will pass in DS:DX is

. not usually addressable in the V86 portion of the VM. there must be code that copies the
filename into a buffer that is addressable in V86 mode so that DOS can access the
filename.

40.2.2 Complex AP/ Translation

April 1, 1990

Some APls are too complex or their buffers are too large to be handled by the
V86MMGR _ Xlat_API service. The DOS Exec function takes a pointer to a data structure
that contains more pointers. This API requires special code to translate the pointers in the
data structure and to copy the data that those pOinters point to into V86 mode memory.

The.DOS read and write file functions can have buffers as large as 64K. The typical
V86MMGR translation copy buffer is 4K. Therefore. these calls require code to divide the
call into several smaller reads or writes in V86 mode.

Microsoft Confidential Beta Release

V86 Made Memory Manager Device Servl!e~ 41J.5

40.2.3 Hooking The Interrupt

Beta Release

Since the ttanslation code should be the last protected mode handler you will need to hook
the PM interrupt vector (using the Hook_PM_Int_ Vector service) during the Sys_ Criti
cal_ Init or Device_ Init phases of initialization. All translation code should be initialized
before the !nit_ Complete phase of initialization so that the Exec~ VxD _Int service (pro
vided by the VMM) can be uSed during this phase. Note that the V86MMGR translation
services (except for Set_Mapping_Info)'should not be called during Sys_Critical_:Jnjt or
Device Init

By hooking the intermpt vector instead of using the Hook_ PM_ Int_ Chain service you
will allow protected mode applications to hook software interrupts "in front" of your trans
Jation code. This is very important for the Windows kernel since it needs to monitor the ac
tivity of Windows applications' API calls.

Sample Code
The code for a typical translation VxD looks like this:

VxO_ICOOE_SEG
BeginProe Hy_Xlat_Init

mov eax, Hy_Translation_Int_Number
VHHeall Get_PH_lnt_Veetor
mov [Chain_Segment], ex
mov [Chain_Offset], edx
mov esi, OFFSET32 Hy_Xlat_Proeedure
VHHeall Alloeate_PH_Call_Baek
mov
movzx
shr
mov
VHHeall
ele
ret

eex, eax
edx, ex
eex, 16
eax, Hy_Translation_Int_Number
Set_PH_Int_Veetor

EndProe My_Xlat_lnit
VxD_ICOOE_ENDS

VxO_COOE_SEG
BeginProe Hy_Xlat_Proeedure

movzx eax, [ebp.Client_AH]
emp eax, My_Max_APl_Number
ja Chain_To_Next_Handler
VHMeall Silliulate_Iret
mov edx, My_Trans_Seript_Table[eax*4]
VxDeall V86MMGR_Xlat_API
ret

Chain_To_Next_Handler:
movzx eex, [Chain_Segment]
jeexz Refleet_To_V86_Now
mov edx, [Chain_Offset]
VMHeall Simulate_Far_Jmp

Microsoft Confidential April 1, 1990

411-6 Vlflual Derlt:ll Allaptallll11 Saide ·

ret
Reflect_To_V86:...How:

VHHcall 8egin_Nest_V86_Exec
mov eax. Hy_Translation_lnt_Number
VHHcall Exec_lnt
VHHcall Enct_Nest_Exec

. ret
EndProc Hy..J(lat_Procedure
VxD_CODE_EHDS

If the value in AH is not translated by this handler then it will be reflected to the next pro
b:Cted mode intcnupt handler. If there is not another PM inteuupt bandier (code segment is
zero) then the interrupt is immediately reflected to V86 mode.

You will note dull My_XJ.aLProcedure calls the Simulate_Iret service before it calls
V86MMGR_Xlat_APL If you plan to"eat" an interrupt it is usually best to call this serv
icefimt. Iftheiietwas simulated after the call to V86MMGR_Xlat_API then any flagsre
tumcd by the V86 inteaupt handler would be desttoyed (an iret pops flags from the
intmupt Slack: frame).

40.2.4 Mapping vs. Copying
Some VxDs need to use the paging mechanism of the 386 to map pages from extended
address space into the lMB V86 address space of cvecy virtual machine. The Virtual Net
BIOS Device mes the mapping services when an asynchronous receive is issued so dull
the proper physical memory will be updated regardless of which VM is cmrently running.
When memory is mapped using V86MMGR_Map _Pages it will be mapped to the same
linear address in every virtual machine. Thus it is best to avoid using these services.

Do not use mapping as an altemative to copying just because you think mapping seems
easier. It is faster to copy memory than to map it since the memory manager does not need
to perform any page table mapping and lockiilg. Mapping also uses a lot of address space
(allbough it teqWres DO memory), The mapping services should only be used for APls that
iequire memory mapped to the same address in every VM.

Note that the mapping services allow memmy from one VM"s V86 address space to be
mapped into all VMs ata common address. Don't use this for interprocess communication.
It will eat mapping space that may be required by odiez devices. If you want to design an
IPC interface. either make it W01'k for PM applications (which can share memcxy) or copy
thedala.

40.2.5 Writing Your Own Translation Procedures

April 1, 1990

Often. it is impossible to translate part or all of an API using the supplied macro interpre
ter. Therefore you may need to write procedures that do all .or part of the translalion. Ex
amples of calls that require extra code are the DOS read and write commands and the get
and set interrupt vector commands. The DOS commands to get and set interrupt vectors be
have differently in protected mode since they must book the proteeted mode interrupt vec
tors. These calls are never reflected to the "real'" DOS rmming in V86 mode.

Microsoft Confidential Beta Releasa

V86 Mode Memory Manager Device Services 40-7

The DOS read and write file commands can use a buffer as large as 64K. Since the transla
tion buffers can be as small as 4K, reads and writes must be divided before being reflected
to DOS.

Since most APis have some interfaces that can be handled by the V86MMGR _Xlat_ API
script language and others that must be translated by custom procedures you will probably
want to dispatch to the custom procedures using the Xlat_ API _Jmp _To_ Proc macro.

To adjust V86 segment registers you should leave the VM in PM_ Exec_ Mode and change
the Alt_ Client registers. When in PM_ Exec_ Mode these registers contain the V86 seg
ment registers and stack pointer. They will contain the PM segment registers and stack
pointer when the VM is in V86 _Exec_ Mode.

40.2.6 Sample AP/ Translation

Entry

Exit

Entry

Exit

Entry

Exit

Beta Release

This sample API is for an imaginary, incredibly simple network. The functions allow you
to connect to a server and send or receive data. Assume that the network supports the fol
lowing API from software interrupt 92h:

Function 0: Get version

AH=O

AH= Major version
AL =Minor version

Function 1: Get Server Name

AH=l
DS:DX =Pointer to a 16 byte buffer to hold name

None

Function 2: Connect To New Server

AH=2
DS:DX =Pointer to null terminated string that is name of server

None

Microsoft Confidential April 1, 1990

40-8 Virtual Devlt:e Adaptauon Glllde

Entry

Exit

April 1, 1990

Function 3: Read/Write Data

AH=3
ES:BX = Pointer to command block with following structure:

Offset

0

1

3

Size

1 .

2

4

Command field values:
0 =Read data from server
1 = Write data to server

None

Description

Command

Buffer size

Buffer pointer

Since function 0 is register based it requires no translation other than reflecting the inter
rupt to V86 mode. Functions 1 and 2 both can be translated by scripts using the
V86MMGR_Xlat_API service. Function 3 requires a custom translation procedure.

VxO_OATA_SEG
FctnJLScri pt:

Xlat_APl_Exec_lnt 92h
Fctn_l_Scr1pt: Xlat_APLF1xed_Len ds, dx, 16

Xlat_APl_Exec_lnt 92h
Fctn_2_Script: Xlat_APl_ASCIIZ ds, dx

Xlat_API_Exec_Int 92h
Fctn_3_Script:

Xlat_APl_Jmp_To_Proc Trans_Fctn_3
Copy_Command_Block_Script:

Xlat_APl_Fixed_Len es, bx, 7
Xlat_APl_Exec_Int 92h

Xlat_Ptr_Table:
dd
dd
dd

VxO._DATA_ENDS

VxO_COOE_SEG

OFFSET32 Fctn_0_Scr1pt
OFFSET32 Fctn_l_Script dd
OFFSET32 Fctn_3_Script

BeginProc Translate_Sample_API
movzx edx, [ebp.Client_AH]
cmp edx, 3
ja Chain_To_Next_Handler
VMMcall Simulate_Iret
mov edx, Xlat_Ptr_Table[edx*4]
VxDcall V86MMGR_Xlat_API

Microsoft Confidential

OFFSET32 Fctn_2_Script

Beta Release

Beta Release

V86 Mads Memory Manager Davies Servlcss 40-9

jc lranslation_lrror ret
Chain_To_Next_Handler:

movzx ecx, [Chain_Segment]
jecxz Reflect_To_V86_Now
mov edx, [Chain_Offset]
VMMcall Simulate_Far_Jmp
ret

Reflect_To_V86_Now:
VMMcall Begin_Nest_V86_Exec
mov eax, 92h
VMMcall Exec_lnt VMMcall
End_Nest_Exec
ret

Translation_Error:
Debug_Out "Unable to translate sample API"
VHMjmp Crash_Cur_VM

EndProc Translate_Sample__API

BeginProc Trans_Fctn_3
push fs
push gs
pushad

Get pointer to command block
mov ax, CClient_ES*100h)+Client_BX
VxDcall V86MHGR_Load_Client_Ptr

If· command is invalid then fail the ca 11
mov al, BYTE PTR fs:[esi]
cmp al, 1
ja Can_Not_Translate

Get buffer size and pointer from command block
mov dx, fs
mov gs, dx
mov edx, esi movzx ecx, WORD PTR gs:[edx+l]
mov fs, WORD PTR gs:[edx+5]
movzx esi, WORD PTR gs:[edx+3]

Allocate a buffer, copying data if command is a write
bt eax, 0
VxDcall V86MMGR__Allocate_Buffer
jc Can_Not_Translate
mov DWORD PTR gs:[edx+3], edi

Copy the command block and execute the interrupt
push edx
mov edx, OFFSET32 Copy_Command_Block_Script
VxDcall V86MMGR_Xlat__API
pop edx
jc Can_Not_Translate

Free the buffer, copying data if command is a read
mov al, BYTE PTR gs:[edx]
bt eax, 0
cmc
VxDcall V86MMGR_Free_Buffer

Restore original pointer in command block
mov WORD PTR gs:[edx+5], fs

Microsoft Confidential April 1, 1990

40·10 Virtual Device Adaptation Gulde

mov WUKU PIK gs:Ledx+3J, si
clc

Trans_F3_Exit:
po pad
pop gs
pop fs
ret

Can_Not_Translate: stc
jmp Trans_F3_Exit

EndProc Trans_Fctn_3

VxO_COOE_ENDS

V86MMGR_Set_Mapping_lnfo
Description

Entry

Exit

Uses

This service must be called during the Sys_ Critical_ Init or Device_ Init phase of device
initialization. It is used to define the minimum amount of translation buffer and global V86
map address space that will be required. VxDs such as the VNETBIOS use this service to
ensure that there will be adequate global page mapping space to map netwoxk buffers. By
default the translation copy buffer size is 4K and there are no global mapping pages.

Multiple VxDs may call this service. The V86MMGR will use the largest value for each of
the parameters when allocating buffer space. In other words, if 10 VxDs request a two
page copy buffer then the copy buffer will be two pages (not 20).

Note that while a large copy buffer can speed up operations such as DOS reads, it requires
extra memory to be allocated for every VM. Therefore, you should try to get by with a
copy buffer size of one page if possible.

AL = Minimum number of pages required for default copy buffer
AH = Maximum number of pages desired for default copy buffer
BL = Minimum number of pages required for global page mapping region
BH = Maximum number of pages desired for global page mapping region

None

Flags

V86MMGR_Xlat_API
Description

April 1, 1990

This service is actually a simple interpreter that executes scripts that are created using mac
ros defined in V86MMGR.INC. The macros are described in detail below.

Microsoft Confidential Beta Release

Entry

Exit

Uses

Beta Release

V86 Mode Memory Manager Device Services 40-11

EBX =Current V M handle
EBP -> Client register structure
EDX -> Script to translate

EDX is destroyed
If carry set then

EITOr while executing script
else

Script has been executed successfully

EDX,Flags

Xlal...APLExet:_lnt lint Number]

Tenninates the interpretation of the translation script and reflects the specified interrupt
into V1I'tUal 8086 mode. When the interrupt returns then it will return to the caller.

DOS_No_Xlat_API:
Xlat_APl_Exec_lnt 2lh

Xlat...APLFixed_Len [Segment], [Offset], [Length Constant]

Copies a fixed length buffer from extended memory into the translation buffer and fixes up
the V86 Seg:Offset.

This service will fail if there is not enough room in the translation buffer to copy the data.

For example. the DOS Get Current Directory function (AH=47h), must be called with
DS:SI pointing to a 64-byte buffer. The following script would perfonn the appropriate
translation:

DOS_Get_Current_Directory_API:
Xlat_APl_Fixed_Len ds, si, 64
Xlat_APl_Exec_lnt 2lh

Xlat...APLVar_Len [Segment], [Offset], [Length Register]

Copies a variable number of bytes from extended memory into the translation buffer. This
is used for APis where the caller places the buffer size in a register.

This service will fail if there is not enough room in the translation buffer to copy the data.

For eXa01ple, the Int lOh write string function (AH=OEh), must be called with ES:BP
pointing to the string to print and CX equal to the number of bytes to display. The follow
ing script would translate this call:

Int_l0h_Write_String:
Xlat_API_Var_Len es, bp, ex
Xlat_API_Exec_Int 10h

Microsoft Confidential April 1, 1990

40· 12 Virtual Device Adaptation Gulde

April 1, 1990

Xlat__APl_Calt:_Len /Segment}. /Plr_Otf}, [CaJ1:_pro1:_AddrJ

Used to copy buffers that change in size. You must specify the selector.offset register pair
that points to the buffer and the name of a procedure that will calculate the actual buffer
size. The procedure will be called with FS:ESI pointing to the buffer and must return with
ECX equal to the number of bytes to copy. The procedure must preserve all registers ex
cept ECX.

This service will fail if there is not enough room in the translation buffer to copy the data.

For example, the DOS buffered keyboard input command (AH=OAh) can have a buffer
size from 3 to 257 bytes long. The first byte of the buffer specifies the length of the input
buffer as follows:

Contents Byte

0 Maximum number of characters to read (1-255); this value must be set
by the process before Function OAh is called.

1

2-(n+2)

Count of characters read.

Actual string of characters read, including the carriage return;
n =number of bytes read.

The translation code for this API would look something like this:

VxO_OATA_SEG
Buff_Keyboard_Input_API:

Xlat_APl_Calc_len ds, dx, Calc_Input_Buff_Size
Xlat__API_Exec_Int 21h

VxO_OATA_ENOS

VxO_COOE_SEG
BeginProc Int_2l_PM_To_V86_Translator

cmp
jne
VMMcall
mov
VxOcall
ret

[ebp.Client_AH], 0Ah
Not_Buffered_Keyboard_lnput
Simulate_Iret
edx, OFFSET32 Buff_Keyboard_Input_API
V86MMGR_Xlat_API

EndProc Int_2l_PM_To_V86_Translator

BeginProc Calc_lnput_Buff_Size

movzx ecx, BYTE PTR fs:[esi]
add ecx, 2
ret

EndProc Calc_Input_Buff_Size
VxD_CODE_ENOS

Microsoft Confidential Beta Release

Beta Release

V86 Mode Memory Manager Device Services 40·13

Xlat_APl_ASCllZ [Plr_Seg], [Plr_Otf]

Copies a null-terminated string into V86 memory and adjusts the V86 pointer appro
priately. Note that the string will not be copied back after the call is complete.

This service will fail if there is not enough room in the translation buffer to copy the string.

For example, the DOS Open File With Handle function (AH=3Dh), must be called with
DS:DX pointing to the name of the file to open. The following script could be used trans
late the API:

DOS_Open_File_With_Handle:
Xlat_APl_ASCllZ ds, dx
Xlat_APl_Exec_lnt 21h

Xlat_APLJmp_To_proc [Proc_NameJ

Terminates the interpretation of the translation script and transfers control to a user defined
procedure. The procedure can completely handle the API translation or can call
V86MMGR Xlat API again. This can be useful for APis that have several sub-APls
such as the OOS I6cn. calls.

The procedure will be called with EBX equal to Current VM Handle, EBP pointing to
Client register structure, and EDX points to the next entry in the translation script (if there
is one). It must preserve every register except for EDX. Therefore the procedure must pre
serve EAX, EBX, ECX, ESI, EDI, EBP, DS, ES, FS, and GS.

Your procedure should return with the carry flag clear if the translation was successful.
Otherwise, it should return with carry set to indicate an error.

X/at_APlReturn_Plr f Plr_SegJ, f Plr_Off]

Used for calls that return a pointer to a structure. For 16-bit protected mode programs, if an
appropriate selector does not exist to map the call, then this service automatically creates
one. For 32-bit protected mode programs the selector returned will always be the
V86MMGR_ VM_Flat_Selector and the offset will be adjusted. Note that although this
macro is placed before the Exec_ Int macro in a translation script, the pointer is created
after the interrupt has been executed.

This service will fail if it can not create an appropriate LDT selector.

For example, this service is used to translate Int 15h with AH=COh, which returns a pointer
in ES:BX that points to a hardware information structure on PSJ2 machines. The following
script would return the appropriate pointer:

Get_Machine_Info:
Xlat_APl_Return_Ptr es, bx
Xlat_APl_Exec_lnt 15h

Microsoft Confidential April 1, 1990

40-14 Virtual Device Adaptation Guids

April 1, 1990

Xlal_APl_Relllflt.SBf [Plr_SegJ

Used for calls that reblm a segment. If an appropriate selector does not exist to map the
call then this service automatically creates one. Note that although this macro is placed
before the Exec_ Int macro in a translation script, the selector is created after the intenupt
has been executed.

This service will fail if it can not create an appropriate LDT selector.

For example. this service is used to translate Int 15h with AH=Clh, which reblms the seg
ment of the EBIOS data area in ES. The following script would return a selector that
points to the EBIOS ·data area:

Get_EBIOS_Selector:
Xlat_APl_Return~Seg es
Xlat_APl_Exec_lnt 15h

Translal/llf Multiple Painters

The intetpreter can copy multiple buffers. For example, the following translation table
translates the DOS rename file call (AH = 56h):

Rename_API:
. Xlat_APl_ASCllZ. ds, dx

Xlat_APl_ASCllZ es, di
Xlat_APLExec_lnt 2lh

The first instruction copies the null-terminated string (ASCIJZ string) that DS:DX points
to into the translation buffer in V86 memory, sets the V86 DS to the translation buffer seg
ment. and changes DX to the offset in the buffer.

The second macro copies the ASCIIZ string that is pointed to by ES:(E)SI into V86
memory and adjusts the pointer accordingly.

The final macro terminates the interpretation of the script and reflects an Int 2lh into the
V86 portion of the VM When the Int 21h returns, both buffers will be freed.

You can combine any of the macros, although you should keep in mind that
Xlat_ API _Exec_ Int and Xlat_ API _Jmp _To_ Proc both tenninate interpretation of the
current script.

WARNING You should always specify the exact length of a buffer or else strange things may occur.
For example, it is incorrect to translate an API that has a maximum buffer size of 128 bytes by using
the Xlat_APl_Fixed_Len macro if the buffer can be smaller than 128 bytes. This can cause bugs if the
program has data that is ·updated at interrupt time that is located past the end of the buffer.

For example, assume a program has the following data:

Buffer_Length db 64
Buffer_Data db 64 dup (?)

Microsoft Confidential Bera Release

I i me_Ut _Uay
Other_Stuff

dd
db

VB6 Mode Memory Manager Device Services 40-15

Id
500 dup <?>

Assume the program updates the Tune_Of_Day field from the timer intemipL If the trans
lation code copies 128 bytes of data starting with Buffer_Length into V86 mode memory
and while processing the call a timer interrupt executes then the Tune_Of_Day field will
be incremented. However, when the buffer is copied back the old time will be copied 011
top of the current (correct) Tune_ Of_Day field.

V86MMGR_Load_Cllent_Ptr
Dest:r/ption

Enlry

This service will load FS:ESI with the specified Oient_Seg:OffseL If the VM is running a
16-bit protected mode then the high word of the offset in ESI will be zeroed. Otherwi~. if
the VM is running a 32-bit program or is in VxD_Exec_Mode then the high word of"ESI
will not be zeroed. This allows most translation procedures to operate correctly without the
need to test the execution mode of the cwrent VM.

The value passed in AX should be fonned from the Oient Register Structure equates. For
example, to load the VM's DS:(E)DX you would use the following code:

mov ax, (Client_DS * 100h) + Client_DX
VxDcall V86MMGR_Load_Client_Ptr
(FS:ESI -> Same address as Client_DS:<E>DX>.

VM must be in protected mode
AH= Client segment register equate
AL = Client offset register equate
EBX = Cwrent VM Handle
EDP -> Client register structure

FS:ESI ~> Client's buffer

FS, ESI, Flags

V86MMGR_Allocate_Buffer
Dnt:ription

Beta Release

Allocates a portion of the cwrent VM's translation buffer and optionally copies data from
the PM pointer in FS:ESI into the allocated buffer.

Note that this service will map fewer bytes than the value specified in the ECX parameter
if the length of the buffer extends past the FS segment limit. Therefore, you need to pre
serve the value returned in ECX from this service to use when deallocating the buffer
using V86MMGR_Free_Buffer.

Microsoft Confidential April 1, 1990

40-16 Virtual Device Adaptation Gulde

Entry

Exit

Uses

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first
buffer freed.

Current VM must be in protected mode
EBX = Current VM Handle
EBP -> Client register structure
ECX =Number of bytes to allocate
FS:ESI =Pointer to extended memory to copy
If carry flag is set then

Source buffer will be copied into V86 buffer
else

Source buffer will not be copied into V86 memory

If carry set then
ERROR: Could not allocate buffer (out of space)

else ·
ECX = Actual number of bytes allocated (<=original EC:X)
High WORD of EDI = V86 segment of translation buffer
Low WORD of EDI= Offset of allocated buffer

ECX, EDI, Flags

V86MMGR_Free_Buffer
Description

Entry

Exit

Uses

April 1, 1990

Deallocates a buffer that was allocated by the V86MMGR Allocate Buffer service. It
will optionally copy data from the translation buffer to the buffer poiilted to by FS:ESI.

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first
buffer freed.

Current VM must be in protected mode
EBX = Current VM Handle
EBP -> Client register structure
ECX =Number of bytes to free (returned from Allocate_Buffer)
FS:ESI =Pointer to extended memory buffer
If carry flag is set then

Buffer will be copied from V86 memory before buffer freed
else

Buffer will not be copied

None

Flags

Microsoft Confidential Beta Release

V86 Mode MemofY Manager Device Services 40-17

V86MMGR_GeLXlaLBuff_State
Description

Entry

Exit

Uses

This service returns information about the current mapping buffer staws.

WARNING Always call this service to find the segment of the translation buffer. Since the buffer can
move at any time you should never make any assumptions about the size or location of the buffer.

EBX = VM handle (any VM handle valid)

EAX = V86 segment of translation buff er (high word 0)
ECX =Number of bytes of buffer not in use
EDX =Total size of buffer in bytes (max size lOOOOh)

EAX, EBX, ECX, Flags

V86MMGR_SeLXlaLBuff_State
Description

Entry

Exit

Uses

This service is used to switch to an alternate mapping buffer. This feature is provided for
protected mode terminated-and-stay resident programs which may need to switch to a pri
vate translation buffer before executing protected mode DOS calls since the default buffer
maybe full.

You should get the current translation buffer state, set the new state, perform any DOS call,
and then set the state back to the original values.

EBX = VM handle (any VM handle valid)
EAX = V86 segment of translation buffer (high word 0)
ECX =Number of bytes of buffer not in use
EDX =Total size of buffer in bytes (max size lOOOOh)

None

Flags

V86MMGR_GeLVM_FlaLSel
Description

Beta Release

This service returns a selector that points to the base of the specified VM's V86 address
space. This is useful for 32-bit applications since this selector can be used to point to any
address in the VM's V86 address space. The selector is writeable and has a limit of
11,000h bytes so that the high memory area is also addressable.

Microsoft Confidential April 1, 1990

40·18 Virtual Device Adaptat/on Gulde

Entry

Exit

The selector returned is in the specified VM's LDT. Therefore, the selector is only valid to
use when the VM is running (is the current VM).

EBX = VM handle (any VM handle is valid)

EAX = Selector with base at high linear addr of V86 memory (high word 0)

EAX,Flags

V86MMGR_GeLMapplng_lnfo
OBlt:tiptlon This service will return information about the current page mapping areas.

Entry None

Exit CH= Number of pages reserved for global mapping (total)
CL =Number of pages available (not in use) for global mapping

V86MMGR_Map_Pages
DBlt:tlptlon

Entry

Uses

April 1, 1990

This service maps the specified buffer into every VM at the same address using page map
ping. If the contents of memory are changed in one VM, the change will be reflected in the
original buffer as well in all other VMs.

ESI -> Linear address to map
ECX =Number of bytes to map

If carry flag is set then
ERROR: Could not map memory

else .
Memory is mapped
ESI = Map handle (used to free the map region)
EDI= Linear address of map buffer(< 1 meg)

ESI, EDI, Flags

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40·19

V86MMGR_Free_Page_Map_Region
Description

Entry

Exit

Uses

Beta Release

This service will "urunap" pages that were mapped by the V86MMGR _Map_ Pages serv
ice.

ESI =Map handle to free

Old map buffer address contains null memory
ESI is undefined

ESl,Flags

Microsoft Confidential April 1, 1990

40-20 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Chapter

41

April 1, 1990

Virtual OMA Device
(VO MAD) Services

The VO MAD virtualizes OMA (Direct Memory Access) 1/0 for standard OMA channels
for all VMs. By default, it handles all programmed l/O for the OMA controllers and arbi
trates I/O to the physical OMA ports so that more than one VM can be using the same
OMA channels at the same time. In some cases, the default handling of OMA channels is
not desirable. To handle these cases, VO MAD provides a number of services to enable
another VxO to take control of the virtualization of specific OMA channels.

VOMAD also provides some services that can be used by Bus Master devices that have
their own OMA controllers. These devices still need to be able to lock and unlock OMA re
gions in memory and determine the physical addresses of these regions. Bus Master dev
ices can also make use of the buffer services, if they cannot otherwise scatter/gather a
linear region that is not physically contiguous.

The VDMAD services available for Bus Master use are as follows:

• VDMAD_Copy_From_ButTer

• VDMAD_Copy_To_ButTer

• VDMAD _Default_ Handler

• VDMAD _Disable_ Translation

• VDMAD_Enable_Translation

• VDMAD_Get_EISA_Adr_Mode

• VDMAD_Get_Region_Info

• VDMAD _Get_ Version

• VDMAD_Get_ Virt_State

• VDMAD_Lock_DMA_Region

• VDMAD_Mask_Channel

• VDMAD _Release_ Buffer

• VDMAD_Request_Buffer

• VD MAD_ Reserve_ Buffer_ Space

• VDMAD _Scatter_ Lock

Microsoft Confidential Beta Release

41·2 Virtual Device Adaptauon Gulde

• VDMAD_Scatter_Unlock

• VDMAD_Set_EISA_Adr_Mode

• VDMAD_Set_Phys_State

• VDMAD_Set_Region_lnfo

• VDMAD_Set_ Vll't_State

• VDMAD_Unlock_DMA_Region

• VDMAD _ UnMask _Channel

• VDMAD _ Virtualize _Channel

VDMAD_Copy_From_Buffer
Description

Entry

Exit

Uses

This service allows another device to copy data from the VDMAD buffer to the actual
DMA region associated with the buffer. This service is called after VD MAD Re·
quest_Buffer, after a memory write transfer and before VDMAD _Release_Buffer.

EBX =buffer ID
ESI = region linear
EDI = offset within buffer for start of copy
ECX=size

Carry clear
data copied from buffer into DMAregion

Carry set
AL = OAh (DMA_Invalid_Buffer) - invalid buffer

id supplied
= OBh (DMA_Copy_Out_Range) - (ESI + ECX) is

greater than buffer size

Flags

VDMAD_Copy_ To_Buffer
Description

Entry

April 1, 1990

This service allows another device to copy data into the VDMAD buffer from the actual
DMAregion associated with the buffer.this service is called after VDMAD Re·
quest_Buffer and before starting a memory read transfer. -

EBX =buffer id
ESI = region linear

Microsoft Confidential Beta Release

Exit

Uses

EDI = offset within buffer for start of copy
ECX=size

Carry clear
data copied from OMA region into buffer

Carry set

Virtual OMA Device (VDMAD) Services 41·3

AL = OAh (DMA_Invalid_Buffer) • invalid buffer
id supplied

Flags

= OBh (DMA_Copy_Out_Range) - (FSI + ECX) is
greater than buffer size

VDMAO_Oefault_Handler
D•t:tiption

Entry

Exit

USIS

Default OMA channel I/O callback routine. This routine receives notifications of virtual
state changes and handles setting up the physical state to start J?MA transfers.

get virtual state
If channel virtually unmasked then

lock region
If lock fails then

request buffer
If memory read opeartion then

copy data to buffer
set phyical state
physically unmask channel

EAX =OMA handle
EBX = VM handle

None

Anything

VDMAD_Dlsable_Translation
DBSt:tiption

Beta Release

This service disables the automatic translation done for the standard OMA channels.It is
necessary, if a V86 app or driver, or a PM app uses the OMA services thru INT 4BH to de
termine actual physical addresses for OMA transfers. A disable count is maintained. so a
matching call to VD MAD_ Enable_ Translation is required for each call to this service to
re-enable translation.

Microsoft Confidential April 1, 1990

41-4 Virtual Dsv/ce Adaptation Gulde

Entry

Exit

Usn

EAX = DMAbandle
EBX = VM Handle

Carry clear
automatic translation is disable for the channel

Carry set
the disable count overflowed

Flags

VDMAO_Enable_ Translatlon
Description

Entry

Exit

This decrements the disable collllt associated with a standard DMA channel If the disable
count goes to o. then automatic translation is re-enabled. See VD MAD_ Disable_ Thansla
tion for further information.

EAX = DMAbandle
EBX = VM Handle

Carry clear .
service completed successfully
Z-flag clear, if automatic translation is re-enabled

Carry set
attempt to enable when translation already enabled

F1ags

VDMAD_GeLEISA__Adr_Mode
Description

Exit

April 1, 1990

Get EISAextended mode - the hardware doesn't allow for reading the extended mode for a
channel. so VDMAD defaults to the ISA defaults (channels 0-3 are byte channels and 5-7
are word channels with word addresses and counts) An INI switch can specify an alternate
setting.

EAX = Channel# (0 •• 7) or
OMA Handle

CL = 0 - 8-bit 1/0. with count in bytes
CL = I - 16-bit 1/0, with count in words and adr shifted
CL = 2 - 32-bit 1/0, with collllt in bytes
CL = 3 - 16-bit 1/0, with collllt in bytes

Microsoft Confidential Beta Release

Virtual OMA Device (VDMAD) Services 41·5

Uses ECX,Flags

VDMAO_GeLRegion_lnfo
Description

Entry

Exit

Uses

Get infonnation about the current region assigned to a DMA handle. This infonnation can
be used by a handler to call the following services:

• VDMAD_Unlock_DMA_Region

• VDMAD _Release_ Buffer

• VDMAD_Copy_To_Buffer

• VDMAD _ Copy_From_Buffer

EAX =OMA handle

BL =buffer id
BH =pages locked (0 =FALSE, else TRUE)
ESI = region linear
ECX = size in bytes

EBX, ECX, ESI

VDMAO_GeLVersion
Description

Entry

Exit

Uses

Beta Release

Reb.JmS the version of the Vntual. DMA Device

None

AH= Major version nwnber
AL =Minor version number
ECX =Buffer size in bytes (0, if not allocated; a buffer will always

be allocated, but it doesn't happen until Device_ lnit)
Carey flag clear

EAX,Flags

Microsoft Confidential April 1, 1990

41-6 Virtual Device Adaptation Gulde

VDMAD_GeLVirt_State
Description

Entry

Exit

Uses

This service allows a channel owner to determine the current virtual state of the channel
The virtual state consists of all the information necessary to physically program the DMA
channel for a DMA transfer (linear address of target region, byte length of region, mode of
transfer, and state of mask bit and software request bit) This state information reflects how
the VM thinks the hardware is currently programmed.

EAX =DMAhandle
EBX = VM handle

If translation is enabled
ESI = high linear address of the user's DMA region

(high linear is used so that the DMA can proceed
even if a different VM is actually running at the
time of the transfer)

Else
ESI =physical byte address programmed {shifted left 1,

for word ports)
ECX =count in bytes
DL= mode (same as 8042 mode byte with channel# removed

and DMA_masked & DMA_requested set as
appropriate:

DMA_masked channel masked and not ready
for a transfer

DMA_requested software request flag set)
DH= extended mode (ignored on non-PS2 machines that don't

have extended DMAcapabilities)

ESI, ECX, EDX, flags

VDMAD_Lock_DMA_Region
Description

April 1, 1990

This service attempts to lock a region of memory for a DMA transfer. It is called before a
DMA transfer is started (before the physical state is set for a channel and before it is un
masked.)

It first verifies that the region is mapped to contiguous pages of physical memory.

Then it determines whether the region will result in a DMA bank (page)

wrap

On AT class machines each channel has a base address register and a page address
register. The base address register is incremented after each byte or word transfered. If
the increment of this 16 bit register results in the roll over from FFFFb to 0, then the

Microsoft Confidential Beta Release

Entry

Exit

Uses

Virtual OMA Device (VDMAD) Services 41-7

transfer wraps to the start of the DMA bank because the page register is not updated.
Nonnally DOS watches for this condition and adjusts INT 13h parameters to split trans
fers to avoid this wrap, but DOS doesn't know anything about the difference between
linear and physical addresses under enhanced Windows, so VDMAD checks again to
prevent wrap from occurring undesirably.

If all of these checks are okay, then the service calls the memory manager to lock the physi
cal pages.

NOTE This routine does not check to see if the region is within some physical maximum constraint.
If the region is lockable, then it locks the memory, and it is up to the caller to check to see if the physi
cal region is acceptable. If the region is not acceptable, then the caller should unlock the region and
perform a buffered DMA transfer.

~I = linear address of actual DMA region
ECX = # of bytes in DMA region
DL = lb, if region must be aligned on 64K page boundary

= lOb, if region must be aligned on 128K page boundary

Carry set, if lock failed
ECX = # of bytes that are lockable in the region

(starting from ESI)
AL= 1 (DMA_Not_Contiguous), region not contiguous

= 2 (DMA_Not_Aligned), region crossed physical
alignment boundary

= 3 (DMA_Lock_Failed), unable to lock pages
ELSE

EDX = physical address of the DMA region
the region has been locked

EAX, ECX, EDX, Flags

VDMAD_Mask_Channel
Description

Entry

Exit

Uses

Beta Release

This service physically masks a channel so that it will not attempt any further DMA trans
fers.

EAX = DMA handle

None

Flags

Microsoft Confidential April 1, 1990

41-8 Virtual Device Adaptal/on Gulde

VDMAD_Release_Buffer
Dat:ription

Entry

Exit

Uses

Release the VDMAD buffer assigned to a DMA channel from a previous VDMAD _Re
quest_ Buffer call. This routine exits from a critical section and the DMA buffer will now
be available for other users. Any data in the buffer is not automatically copied, so
VDMAD _Copy_ From _Buffer must be called if the data is importanL

EBX = Buffer ID

Carry clear
buffer released

Carry set
bad ID

Flags

VDMAD_RequesLBuffer
Dat:rlption

Entry

Exit

Us11

This service reserves the DMA buffer for a DMA ttansfer.

ESI = linear address of actual DMA region
ECX =#of bytes in DMA region

Carry clear
EBX = buffer ID
EDX =the physical address of the buffer

Carry set
AL= 5 (DMA_Butfer_Too_Small), region request is

too large for buffer
= 6 (DMA_Buffer_In_Use), buffer already in use

EAX, EBX, ESI, Flags

VDMAD_Reserve_Buffer_Space
Description

Beta Release

This service allows other devices that are going to handle DMA to make sure that
VDMAD allocates a buffer large enough for any ttansfers that they might require. It also
allows a device to specify a maximum physical address that would be valid for the
device's OMA requests (such as lMb for an XT.) During the Device_Initphase of initiali
zation, VD MAD will allocate the DMA buffer using all of the contraints specified by other
devices.i.e. the buffer will be at least as big as the largest size specified by the calls to this
service, and it will be allocate below the lowest maximum physical addresses specified.

Microsoft Confidential April 1, 1990

Entry

Exit

Usss

Virtual OMA Device (VDMAD) Services 41-9

This service is only available during Sys_ Critical_ Init.

EAX =#of pages requested
ECX =maximum physical address that can be included in a

OMA transfer; 0, if no limit.

None

Flags

VDMAD_Scatter_Lock
Description

Entry

Exit

Usss

Beta Release

This service attempts to lock all pages mapped to a OMA region and return the actual
physical addresses of the pages.

EBX = VM Handle
AL = 0, if the DDS table should be filled with physical

addresses and sizes of the physical regions that
make up the DMAregion

AL = l, if the DDS table should be filled with the actual
page table entries

AL = 3, if the DDS table should be filled with the actual
page table entries and not present pages should not
be locked

EDI·> extended DDS (OMA Descriptor Structure)

Carry clear
Z-flag set
whole region was locked successfully

Z-tlag clear
partial region locked

Carry set
nothing locked

EDX =#of table entries needed to descn"be whole region
DDS_size =#of bytes locked
DDS table has been updated
if request was for page table copy (AL=l OR 3), then

ESI = offset into first page for start of the region

EDX, ESI, Flags

Microsoft Confidential April 1, 1990

41-10 Virtual Device Adaptation Gulde

VDMAD_Scatter_Unlock
Dncriplion This service attempts to unlock all pages locked by a previous call to VDMAD _Scat

ter _Lock

Entry

Exit

Uses

EBX = VM Handle
AL = 0, if the DDS table should be filled with physical

addresses and sizes of the physical regions that
make up the DMAregion

AL= 1, if the DDS table should be filled with the actual
page table entries

AL = 3, if the DDS table should be filled with the actual
page table entries and not present pages should not
be locked

EDI-> extended DDS (DMA Descriptor Structure)
('The table at the end of the DDS is not required, so
it is not necessary to maintain the table for this
unlock call.)

Carry clear
Lock counts have been decremented. Ifno other VxD's
had pages locked, then the pages have been unlocked.

Carry set
The memory was not locked.

Flags

VDMAD_Set_EISA_Adr_Mode
Description

Entry

Exit

Uses

April 1, 1990

Set EISA extended mode

EAX =Channel# (0 .. 7) or
DMAHandle

CL = 0 - 8-bit l/O, with count in bytes
CL = 1 - 16-bit I/O, with count in words and adr shifted
CL = 2 - 32-bit I/O, with count in bytes
CL= 3 - 16-bit I/O, with count in bytes

None

Flags

Microsoft Confidential Beta Release

Virtual OMA Dev/ca (VDMAD} Servlcas 41·11

VDMAD_SeLPhys_State
Dest:tiption

Entry

Exit

Uses

This service programs the OMA controller state for a channel. All that it needs to know is
the desired mode. The location and size of the buffer is taken from the infonnation passed
to the service VDMAD _Set_ Region_ Info which must be called previously.

EAX =OMA handle
EBX = VM handle
DL =mode
DH = extended mode

None

Flags

VDMAD_SeLRegion_lnfo
D•t:tiption

Entry

Exit

Uses

Set infonnation about the current region assigned to a OMA handle. This service must be
called before calling VDMAD _Set_Phys_State.

EAX =OMA handle
BL =buffer id
BH =pages locked (0 =FALSE, else TRUE)
ESI = region linear
ECX = size in bytes
EDX =physical address for transfer

None

Flags

VDMAD_SeLVirt_State
Dest:tiption

Entry

Beta Release

Modify the virtual state of a OMA channel. This is service is used when a channel owner
wants to change the virtual state of a channel from how the VM programmed it This might
be used to split a OMA request into smaller pieces, etc.

EAX =OMA handle
EBX = VM handle
If translation is enabled

ESI = high linear address of the user's OMA region

Microsoft Confidential April 1, 1990

41·12 Virtual DBVICB Adaptation Gu/dB

Else

(high linear is used so that the DMA can proceed
even if a different VM is actually running at the
time of the transfer)

ESI =physical byte address programmed (shifted left 1.
for word ports)

ECX =count in bytes
DL= mode (same as 8042 mode byte with channel# removed

and DMA_masked & DMA_requested set as
appropriate:

DMA_masked channel masked and not ready
for a bansfer

DMA_requested software request flag set)
DH= extended mode (ignored on non-PS2 machines that don't

have extended OMA capabilities)

None

Flags

VDMAD_Unlock_DMA_Reglon
Description

Entry

Exit

Uses

This service unlocks the DMA region previously locked to a channel. It is called after a
DMA transfer is complete and the channel has been masked. So that the controller will not
attempt any further bansfers to the programmed address.

ESI =linear address of actual DMA region
ECX = # of bytes in DMA region

Carry clear
memory unlocked

Carry set
enor

Flags

VDMAD_UnMask_Channel
Description

Entry

April 1, 1990

This service physically unmasks a channel so that DMA transfers can proceed.

EAX =OMA handle
EBX = VM Handle

Microsoft Confidential Be'la Release

Virtual OMA Device (VDMAD) Services 41-13

Exit None

Uses Flags

VDMAD_Virtualize_Channel
Description

Entry

Exit

Uses

Callback

Beta Release

This service allows another VxD to claim ownership of a standard DMA channel. The new
owner registers a callback routine that will be called whenever the virtual state of the chan
nel is changed as a result of 1/0 done in a VM. In some cases a device doesn't want to
allow a VM to perform DMA to a channel at all (they will handle programming based on a
private API, etc. instead of virtualized hardware 1/0), so it is possible to pass a 0 to specify
a null callback routine. VDMAD will continue to trap the 1/0 for the channel, but won't
ever change the physical state of the channel as a result of any VM 1/0.

EAX is Channel #
ESI is 1/0 Callback procedure (0 =none)

Cany set if channel is already owned
ELSE

EAX is DMA handle

Flags

ENTRY
EAX = DMA handle
EBX = VM handle
Proc can modify EAX, EBX, ECX, EDX, ESI, EDI, and flags

EXIT
None

Microsoft Confidential April 1, 1990

41·14 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Appendixes
A Terms and Acronyms

8 Understanding Modes

C Creating Distribution Disks for Driver

D Windows INT 2FH AP/

Beta Release Microsoft Confidential April 1, 1990

Aoril 1. 1990 Microsoft Confidential Beta Release ·

Appendix A Terms and Acronyms
The following list explains the tenns and acronyms that are found in the Device Development Kit
for Wtndows 3.0.

8 ~~~~~~~~~~~~
Banding The process of dividing a display smface
such as a page into smaller rectangles, composing
those individual bands within memory, and then
sending the output to the printer one band at a time.

Clipping The process of removing any portion of
a graphic image that extends beyond a specified
boundary.

Control Black A per Vutual Machine (VM) data
structure in which Vutual Devices (VxDs) and the
Virtual Machine Manager (VMM) can maintain the
VM's state information.

Control Panel A Windows application that lets
you change system settings, including printer as
signments and characteristics.

0 ~~~~~~~~~~~~
Device Driver The dynamic-link: library that pro
vides the hardware-dependent, low-level interface
between Wmdows GDI functions and the graphics
output device.

Dynamic Data Exchange (DDE) A protocol that
cooperating programs can use to exchange data
without user intervention.

Dynamic-Link Library (DLL) A library with
which an application is fixed up upon initial load
ing. (needs improving)

Device Independent Bitmap (DIB) A bitmap for
mat that can be interpreted and converted by a
device driver into its own specific format. It is
called "device independent" because any driver

capable of using DIBs can display (or otherwise
use) the DIB to the best of its ability.

E
Escape A device-dependent operation that is not
supported by the device-independent GDI module.
The entry point in the device driver is called Con
trol(); in GDI (i.e., to the application), it is called
Escape().

F
Fant Resource A group of individual fonts that
have various combinations of heights, widths, and
pitches.

G --~~~~~~~~~~~~
Graphics Device Interface (GDI) A device-inde
pendent, high-level graphics manager. GDI
provides the interface that feeds graphics com
mands from Windows application programs to the
device driver.

GDI Ubrary A set of supporting functions for
device drivers. These utilities include versions of
output functions such as Bitblt and Strblt, a Trans
pose function for banding devices, and priority
queue functions for daisywheel printers.

I
IOPM I/O Permission Map

Metafile A collection of GDI function calls stored
in a binary coded form and used to transfer device
independent pictures between programs.

Beta Release Microsoft Confidential April 1, 1990

A-Z Vltlllal Derlt:IJ At/allatlan SultlB

Mlcmsoft Macnl Assemlller (MASM) An as
sembly language compiler. Venion S.0 includes
inaeased speed (2S'6 fasta than 4.0). simplified
segment declamtions. support for die 80386 and
80387 processors. a veISion ofCodeView that's
compatible with four languages. utilities to aid in
program development, and comple1ely revised
manuals.

N ______________________ ~

Non-Windows Appllcatlan A progmm that does
not make use of the W'mdows environment. Instead,
it calls MS-DOS and the BIOS. and accesses the
bald~ directly.

p ------------------------Pa g Ing A capability used by enhanced W'mdows
by which any linear address (defmed by segment:
offset) in the sysrem can be mapped to any physical
memory.

Palette The mnge of colors that the video adapter
can display and manage.

Plxel The SllUlllest element of a physical display
surface that can be independendy assigned color or
inrensity.

Plxel Array A matrix of pixels that defines the
color for a region on an acmal display. There is ex
actly one pixel definition for each addl:essable
picture clement of a rast« display coveied by the
pixel anay.

Presentation level Protocol (PLPt A standard pro
tocol used for transmiuing high quality &exL

PrlmlUve A basic graphic fUncdon to be per
formed.

Print Manager 'the W'mdows utility that prints
files without suspending the opemdon of other pro
grams. It also enables you to change the priority of
print jobs or to cancel them.

Printer Command Language (PCL) The language
used by Hewlett-Packard e Laserjet e and com
patible pintm.

Protected Made (PM) A mode of the 80386 pro
cessor that provides a linear address of 4 gigabytes
per segment and 16K segments. tbc=by breaklltg
the 640K banier and giving applications access to
much more memmy. W'mdows and W'mdows appli
cations run in protected mode. VxD's must handle
access from both protected mode and virtual 8086
mode.

R -----------------------------------
Raster Device A device that uses a mattix of pix-
els covering the entire screen or page area (display
or printed surface) to draw graphics. Pixels (points)
are turned on and off, bit-by-bit.

Resolution The nmnber of visibly distinct dots
that can be displayed in a given area of the screen.
'I)pical ~Iution is 100 dots per inch.

Red, Green, Blue (RGB) Valiies from a color
table. This color table is used in mapping froni a
color index to corresponding color values.

s -------------------------Scal 1 n g Coordinate scaling ttansforms points
from one level to another. GDI scales coordinales
from NOC space to values approprlate for your
graphics device.

System VM The first Vutual Machine (VM) undez
enhanced W"mdows. The VM in which W'mdows
runs.

T ~~----~--------------
TS Rs Tenninate-and-Saay Resident applicalions

v--------------~--------
vectar Device A device that draws graphics with
lines. Beginning and ending poincs are set and a
line is drawn between them.

April 1, 1990 Microsoft Confidential Beta Release

Virtual Device Interface (VOi) The ANSI graphics
interface upon which GDI is based. VDI is a stand
ard interface between device-dependent and
device-independent code in a graphics environ
ment. VDI makes all device drivers appear identical
to the application program.

VDMAD Vrrtual DMADevice

VDD Virtual Display Device

VKD Virtual Keyboard Device

VMD Vutual Mouse Device

VPICD Vrrtual Programmable Interrupt Controller
Device

Virtual 8086 mode (V86) Amode of the 80386
processor by which the 80386 emulates the func
tion of the 8086 processor. In this mode, each
segment has a linear address limit of 64K and the
applications can address a total of IM+ 64K - 16
bytes.

Virtual "x" Device (VxO) The name of the device
virtualized replaces the "x" in this name. There
must be a VxD for each piece of hardware that can
have a different state in each of the VMs. Any piece
of hardware that does not have an associated VxD
is global. It must handle interleaved access from
multiple VMs or have a global piece of software
(such as a DOS device driver or TSR) that serial
izes access to the hardware. All the VxDs run in the
same, flat-model, 32-bit segment as the rest of the
VMM. A VxD can also provide services that are not
directly associated with a piece of hardware (e.g., a
piece of code that replaces an MS-DOS or BIOS
service).

Virtual Machine (VM) The collective state of an
instance (maintained in the control block) of the
VMM and the VxDs, and the memory associated
with the program executing in the VM. This in
cludes all the code and data in virtual 8086 mode as
well as protected mode.

Appendix A Terms and Acronyms A-3

Virtual Machine Manager (VMM) The core of en
hanced Windows. It runs, along with all the VxDs,
in one, flat-model, 32-bit segment.

WDEB386 An enhanced Windows version 3.0 de
bugger program.

Window A rectangular region on a display screen
in which the system displays the contents of an
application.

Windows Application Any program that has been
specifically designed to run under Microsoft
Windows.

WIN.IHI The Windows initialization file in which
you maintain the system-wide settings. This is a
text-based file that resides under the Windows soft
ware directory.

Beta Release Microsoff Confidential April 1, 1990

A-4 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

AppendixB
Understanding Modes

Windows 3.0 documentation uses the term "mode" in overlapping ways. This appendix is
provided to clarify the different uses.

8.1 Windows Modes
To provide the greatest features for the available hardware, Windows 3.0 can run in three
software modes: real, standard, or 386 enhanced. The following table compares the
memory models and required microprocessor for each of these Windows modes.

Windows3.0 Real Mode Standard Mode 386 Enhanced Mode

Supported Real Mode Real Mode Real Mode
Memory Protected Mode (16-bit) Protected Mode (32-bit)
Model V86Mode

Required 8086
Hardware 80286 80286

80386 80386 80386
80486 80486 80486

8.2 Microprocessor Modes

Be'ta Release

As the Intel microprocessors evolved greater capabilities, they continued to support the
programs and operating systems of the earlier architectures. As a result, the 80386 has no
fewer than four modes. Each is compared below to the earlier architectures.

The first is the familiar real-mode, wherein the 80386 functions as a fast 8086/88-com
patible processor with some bonus opcodes. Like the 80286, the 80386 always powers up
in real mode and can, therefore, run any existing 8086 operating systems and software. .

In protected-mode, the 80386 can take on two different personalities. It can execute a logi
cal superset of the 80286 protected-mode instructions and run 16-bit programs. Or, while
in its native protected mode, it can use 32-bit instructions, registers, and stacks and can
allow individual memory segments as large as 4GB. The native protected mode also has an
additional level of address translation-supported in hardware by page tables-that allows
much greater flexibility in mapping the linear address onto physical memory. In either pro
tected mode, the 80386 translates selectors and offsets to linear addresses using descriptor
tables in much the same manner as the 80286.

Microsoft Confidential April 1, 1990

B-2 Virtual Device Adaptation Gulde

April 1, 1990

The forth operating mode, virtual 86 mode (V86), provides another form of 8086 emula
tion. But now, instead of a single program running in a single memory partition, the 80386
can create multiple partitions, each capable of running a real-mode program. Each parti
tion has its own address space, I/0 port space, and interrupt vector table. Enhanced
Wmdows uses the V86-mode partitions to create virtual machines, the fundamental com
ponents in its virtual machine architectme. The architectme is described in Chapter 16,
"Overview of Windows in 386 Enhanced Mode."

The following table summarizes the four modes of the 80386 microprocessor:

Mode

Real Mode

Protected Mode (16-bit)

Protected Mode (32-bit,
native mode)

VIrtUa.I. 86 Mode

Description

Functions as a very fast 8086/88-compatible processor.

Functions in protected mode as an enhanced 286 processor.

Functions in protected mode using full 32-bit instructions, registers,
and stacks.

Runs multiple, protected, virtual 8086 machines, each with its own
lMB of memory space.

Microsoft Confidential Beta Release

AppendixC
Creating Distribution Disks for Drivers

Not available for this release.

Beta Release Microsoft Confidential April 1, 1990

C·2 Virtual Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

AppendixD
Windows INT 2FH AP/

Enhanced Windows 3.0 supports an Application Program Interface (API) designed to
enable DOS device drivers, TSR programs, and application programs to take full advan
tage of the multitasking abilities of the enhanced Windows environmenl

Most application program writers will use the interface that releases the current virtual ma
chine's time-slice. This API allows enhanced Windows and OS/2 to multitask non
Wmdows specific DOS applications more efficiently. The Release Tune Slice API should
be used by applications even if they are not running under enhanced Windows. This allows
OS/2 to detect idleness in DOS applications. OS(l will recognize the enhanced Windows
release time-slice call but it does not support other enhanced Windows APis.

The Microsoft 80286 DOS extender will issue the initialization and exit INT 2FH API
calls so that real mode software can free extended memory through XMS. The 286 DOS
extender also supports the Int 3 lh service detection Int 2FH API call.

Other APis are used by DOS device drivers and TSRs that have enhanced Windows
specific requirements.

D.1 Call-In Interfaces
Call-in interfaces are APis that real mode DOS device drivers, TSRs, and applications use
to communicate with enhanced Windows. These include:

• Get Windows version

• Get virtual machine ID

• Begin critical section

• End critical section

• Release time slice

• Get device API entry point

• Switch VMs and callback

D.1.1 Enhanced Windows Installation Check (AX=1600HJ

Beta Release

This API call is valid under all versions of enhanced Windows. If a program intends to use
a enhanced Windows API, it must first make sure that the enhanced Windows environment
is running. To do this issue:

Microsoft Confidential April 1, 1990

D-2 Virtual Device Adaptation Gulde

mov ax, 1600h
int 2Fh
test al, 7Fh
jz Not_Running_Win386
<Otherwise enhanced Windows is running)
cmp al, 1
je Running_Ver_2xx
cmp al, -1
je Running_Ver_2xx
CElse al contains major version, AH contains minor')

If 0 or 80H is returned in AL, enhanced Windows is not running. Any other value means
that enhanced Windows is running. A value of 1 or -1 (OFFH) indicates that the application
is running under enhanced Wmdows version 2.0 or 3.0. Otherwise, AL will contain the
major version nwnber (3 or higher) and AH will contain the minor version number. The
table below summarizes the possible return values:

Value in AL

OOH

80H

OlH

FFH

Anything else

Meaning

Enhanced Wmdows 3.x or Wmdows/386 version 2.xx is not
running

Enhanced Wmdows 3.x or Wmdows/386 version 2.xx is not
running

Wmdows/386 version 2.xx running

Wmdows/386 version 2.xx running

AL= Major version nwnber AH=Minor

D.1.2 Releasing Current Virtual Machine's Time-Slice (AX=168Dh)

April 1, 1990

NOTE This API should be used only by non-Windows specific applications. Windows programs
. should yield their time by calling the WaitMessagefunction.

This API is used by programs to indicate that the program is idle (usually waiting for the
user to type something). By issuing this interrupt, applications prevent enhanced Wmdows
from wasting time running a program that is essentially doing nothing. This allows other
programs to use the time.

Programs should always use this API even if they are not Windows-specific applications
and even if they are not currently running under Windows in 386 enhanced mode. This al
lows OS/2 to detect idleness even though it does not support the complete enhanced
Windows API. The only check you should make before issuing the API call is to make sure
that the INT 2FH intetnlpt vector is not zero.

Sample code:

Microsoft Confidential Beta Release

mov ax, 352Fh
int 21h
mov ax, es
or ax, bx
jz Skip_ldle_Call
mov ax, 1680h
int 2Fh

Skip_ldle_Call:

; DOS get vector 2Fh
; ES:BX = Vector
: 0: Is it zero?

Y: Skip this
N: Tell Win

we're idle.

Windows INT 2FH AP/ D-3

If the API is supponed, the INT 2FH will return with AL=O, otherwise it will return with
AL unchanged (80h). Usually application programs will not be interested in the return
value.

Note that when an application uses this API it will continue to run occasionally so your
program should re-issue the intemlpt in the program's idle loop. In other words, this API
does NOT block your application until a key is pressed.

D.1.3 Begin Critical Section (AX=1681h)
If a DOS device driver or TSR needs to prevent a task-switch from occurring, it should call
this interface. When a virtual machine is in a critical section, no other task will be allowed
to run except to service hardware intenupts. For this reason, the critical section should be
freed (using the end critical section API) as soon as possible.

D.1.4 End Critical Section (AX=1682h)
This API must be called to release ownership of the critical section that was claimed using
the Begin Critical Section API. Every call to Begin Critical Section must be followed by a
matching call to End Critical Section.

D.1.5 Get Current Virtual Machine ID (AX=1683h)
This API returns with BX= Cum:nt virtual machine ID. The ID is unique for each virtual
machine. Although Windows currently runs in VM l, your software should not rely on
this. Also, if a VM is destroyed, its ID may be reused by another new virtual machine. Be
sure to lmlt VM IDs as a word (not a byte). An ID of 0 will never be returned.

D.1.6 Get Device AP/ Entry Point (AX=1684h)

Beta Release

Some Vx.Ds (enhanced Windows device drivers) provide a set of services that application
programs can access. For example, the Virtual Display Device provides services that the
Wmdows old application program uses to display DOS programs in a window. Any VxD
can support an API for DOS applications. Your program must issue an INT 2FH with
AX=l684h and BX= Virtual device ID. The entry point address will be returned in ES:DI.
Your application must execute a FAR CALL to this address to call the virtual device. If the
value returned is 0:0 then the device does not suppon an API, otherwise ES:DI is the

Microsoft Confidential April 1, 1990

D-4 Virtual Devlt:11 Adaptation Gulde

address of the procedure to call. You should either make sure your application is running
on veISion 3.0 or zero ES and DI before using this APL

xor
mov
mov
mov
int

di, di : *Only necessary if you have
es, di : * not checked for Win ver 3.0 *
ax, 1684h
bx, My_Oevi ce_ID
2Fh

mov ax, es
or ax, di
jz APl_ls_Not_Supported
(else API address in ES:DI>

*

The definition of a device API is specified by the virtual device driver. Refer to individual
virtual device documentation for details.

D.1.7 Switch VMs and Cal/Back (AX=1685h)

April 1, 1990

Some DOS devices, such as networks, nCed to perform functions in a specific virtual ma
chine. These devices can use this interface to force the appropriate virtual machine to be in
stalled so that they can modify the VM's data. Refer to Chapter 24, ''Primary Scheduler
Services," for infonnalion on appropriate priority boosts.

:Eniry: AX = 1685h
BX = VM ID of virtual machine to switch to
CX=Flags

Bit 0 = 1 if wait until interrupts enabled
Bit 1 = 1 if wait until critical section unowned
All other bits must be 0

DX:SI =Priority boost (DX=High word, Sl=Low word)
ES:DI = CS:IP of procedure to call

If carry set then
AX - Error code

else
Event will be called or has been called already.

Error codes: 1 = Invalid VM ID
2 = Invalid priority boost
3 = Invalid flags

Callback procedure: Must save all registers modified
Must IR.ET to caller
Priority will remain boosted until procedure irets

Microsoft Confidential Beta Release

Windows INT 2FH AP/ D-5

D.1.8 Detect Presence of INT 31H Services (AX=1686h)

Entry

Exit

If a program needs to detect the presence of the INT 31H protected mode API, it can use
this INT 2FH. Note that this particular API is also supported by the Microsoft 80286 DOS
extender for protected mode Windows. INT 3 lH services are only supported for protected
mode programs.

AX= 1686h

If AX = fil then
INT 31H services are available and can be called

else CAX !=fill
INT 31H services are not available

D .2 Call Out Interfaces
Enhanced Windows will broadcast INT 2FH to real mode device drivers and TSRs to in
form them of various activities. These can be used to load enhanced Windows installable
devices, free extended memory, instance per-VM data structures, and turn on or off various
device services or features. For example, SmartDrv can free extended memory for en
hanced Windows to use when the initialization call is made and then reclaim it when it re
ceives the termination call. DOS devices such as networks can inform the enhanced
Windows loader to load a special protected mode installable device that cooperates with
the real mode network device driver.

D.2.1 Enhanced Windows and 286 DDS Extender Initialization
(AX=1605h)

Beta Release

The enhanced Wmdows loader and the Microsoft 286 DOS extender will broadcast an INT
2FH with the following parameters:

AX= 1605h
ES:BX=O:O
DS:SI=O:O
CX=O
DX=Flags
Bit 0 = 0 if enhanced Windows initialization
1 if Microsoft 286 DOS extender initialization

. All other bits reserved and undefined.

Any DOS device driver or TSR can hook Int 2FH and watch for this particular broadcast
When this broadcast is received, the real mode software can inform enhanced Windows or
the 286 DOS extender that it should not load by returning with CX != 0. The TSR or
device that fails the initialization should print an error message so the user can take appro
priate steps to reconfigure the machine. Enhanced Windows and the Microsoft DOS ex-

Microsoft Confidential April 1, 1990

D·6 Virtual Device Adaptation Gulde

April 1, 1990

tender will not print an error message-they will only issue the tennination API call and re
turn to DOS.

If it is OK for enhanced Windows or the DOS extender to load. the real mode software
should not modify CX and may want to do one or more of the following:

• Release extended memory through the XMS interface.

• Switch back to real mode (if currently in virtual 8086 mode) or set DS:SI to the Virtual
8086 mode enable/disable routine address.

• Load an installable device (enhanced Windows only).

• Instance private data structures (enhanced Windows only).

The DOS extender only pays attention to the value returned in CX. It will not instance any
data or load enhanced Windows installable device drivers. The DOS extender only issues
this call so that extended memory can be released and the machine can be placed in real
mode if it is currently in virtual 8086 mode.

Instance data refers to data in a TSR or DOS Device driver that must have a private copy
in each VM. Nonnally, all TSRs and devices loaded before enhanced Windows is run are
considered global memory. That means that all of the data is shared between virtual ma
chines. However, there are some pieces of data that actually should be maintained on a per
VM basis. For example, the DOS command line buffer needs to be instanced (this is done
automatically by enhanced Wmdows). However, TSRs such as the DOS command line edi
tors will not function properly unless they identify the data that needs to be instanced.

The first two options (release extended memory, or switch from V86 to real mode) are up
to the device to handle on its own. The last options require returning a pointer to a list of
structures to load. Your INT 2FH hook must first chain to the next INT 2FH handler with
all registers unmodified. When the handler returns you must take the ES:BX value re
turned and place it in the following data structure in the Next_ Dev _Ptr field:

Win386_Startup_Info_Struc STRUC
SI S_Versi on db 3, 0
SIS_Next_Oev_Ptr dd ?
SIS_Virt_Oev_File_Ptr dd 0
SIS_Reference_Oata dd ?
SIS_Instance_Oata_Ptr dd 0
Win386_Startup_Info_Struc ENOS

Your software must point ES:BX at this structure and return. This allows multiple en
hanced Windows installable devices to be loaded through a single INT 2FH call.

The SIS_ Version field is used by enhanced Windows to detennine the size of the struc
ture. This field should always contain 3, 0 to indicate that it is version 3.0.

The SIS_ Next_ Dev_ Ptr points to the next structure in the list. This field must be filled in
with the returned ES:BX after your software chains to the next INT 2FH handler.

Microsoft Confidential Beta Release

Beta Release

Windows INT 2FH API 0·1

SIS_ Virt _Dev_ File_ Ptr is a pointer to an ASCIIZ string that contains the name of a en
hanced Windows virtual device file. DOS devices such as networks use this to force a
special enhanced Windows protected mode virtual device to be loaded. If this field is zero,
then no device will be loaded.

The SIS_ Reference_ Data is only used when the SIS_ Virt _Dev_ File_ Ptr is non-zero.
This DWORD will be passed to the virtual device when it is initialized. The DWORD can
contain any value. Often it contains a pointer to some device specific data structure.

The SIS_ Instance_ Data_ Ptr field points to a list of data to be instanced. If the field is
zero, then no data will be instanced. Each entry in the list has the following structure:

Instance_Item_Struc STRUC
IIS_Ptr dd ?
IIS_Size dw ?

Instance_Item_Struc ENDS

The list is terminated with a zero DWORD.

Your handler must preserve all registers except the values returned in ES, BX, and ex. It
must also preserve DS and SI unless it explicitly changes them to return the address of the
virtual 8086 mode enable/disable routine. Remember, any device that returns with ex != 0
will force enhanced Windows or the 286 DOS extender to abort. If the load is aborted, the
termination INT 2FH will be issued immediately.

Enhanced Wmdows supports loading with a virtual mode program such as an EMM
''LIMulator" running provided that the program supports a virtual 8086 mode enable/dis
able callback routine. The address of the routine must be returned in DS:SI. If your TSR or
device driver sets this return parameter, it should first check to make sure that DS and SI
are both zero. If they are non-zero, then fail the initialization by setting CX=non-zero. No
tice that the Microsoft 286 DOS extender will not call this routine. Therefore, you must
either set the processor into real mode during the initialization INT 2FH or set CX=non
zero to abort the load.

The virtual mode enable/disable callback will be called with AX=O to disable V86 mode
(return to real mode) and AX= 1 to re-enable V86 mode. Just before attempting to enter
protected mode enhanced Windows will disable V86 mode after every VxD has been
loaded. It will call the enable/disable routine with AX=O and with interrupts disabled. Do
not enable interrupts in your routine unless the routine will return with Carry set to indi
cate failure. After enhanced Windows exits, it will call the enable/disable routine in real
mode with AX= 1 and with interrupts disabled to set the machine back into V86 mode.

The enable/disable routine will be called with a FAR return frame. It must return with the
carry flag clear to indicate success or Carry set to indicate an error. If an error is returned
from the disable call, then enhanced Windows will abort. The error return from the enable
V86 call will be ignored and the machine will be left in real mode. It is the responsibility
of the enable/disable routine to print an error message.

Microsoft Confidential April 1, 1990

0·8 Virtual Device AdaptaUon Gulde

D.2.2 Enhanced Windows and 286 DOS Extender Exit (AX=1606h)
When enhanced Wmdows or the 286 DOS extender tenninates it will broadcast an INT
2FH with the following parameters:

AX= 1606H.
DX=FJags
Bit 0 = 0 if enhanced Wmdows exit
1 if Microsoft 286 DOS extender exit
All other bits reserved and undefined.

This call will be issued in real mode. It allows devices and TSRs to undo anything they did
when enhanced Windows or the DOS extender initialized. For example. a device like
SmartDrv may re-allocate extended memory that it released during initialization.

If the inirializ.ation broadcast fails (returns with ex != 0) then this broadcast willbe issued
immediately.

0.2.3 Device Call Out AP/ (AX=1607h)
This API is. in reality. more of a convention than an API. It specifies a standard mecha
nism for enhanced Wmdows virtual devices to talk to DOS device drivers and TSRs.

Some devices need to ask real-mode DOS software for information. For example, the Vtt
tual NetBIOS mapper VxD will issue an INT 2FH to determine if a netwmk supports an
extended NetBIOS API. The standard device call out will have AX= 1607H and
BX=Device ID. As with the device API entry point call-in interface. the details of the inter
face are specified by the device that issues the interrupt.

This interrupt may be issued at any time, either in real mode or after enhanced Windows
has begun execution.

D.2.4 Enhanced Windows Initialization Complete (AX=1608h)

April 1, 1990

This API call is made by enhanced Wmdows after all the installable devices have initial
ized. At this point. it is still possible to identify instance data and perform other functions
that are restricted to enhanced Wmdows initialization time. The enhanced Windows device
initialization phase is complete, so it is possible to call enhanced Wmdows device API
entry points.

Microsoft Confidential Beta Release

Windows INT 2FH API 0·9

WARNING Real mode software such as a TSR or DOS device driver may be called after the en
hanced Windows initialization call and before this API call is made. It is the responsibility of the real
mode software to detect and properly handle this situation.

D.2.5 Enhanced Windows Begin Exit (AX=1609H)
This API call is issued at the beginning of a nonnal Enhanced Windows exit sequence. It is
sent at the start of the Sys_ VM_Terminate device control call phase. All VxDs still exist
so calls to device API entry points are still valid.

WARNING This call will not be made in the event of a fatal system crash. Also, real mode code may
be executed after this API call has been made and before enhanced Windows has returned to real
mode. It is the responsibility of the real mode software to detect and properly handle these situations.

D.3 Windows/386 Version 2.xx AP/ Compatibility
The release of Windows/386 (version 2.xx) had a limited Application Program Interface
that was defined to help support real mode DOS device drivers such as networks. The 2.xx
API allows DOS programs to:

• Detennine if Windows/386 or enhanced Wmdows (version 3.0) is running

• Get the ID of the current Virtual Machine

• Enter and leave a global critical section

The APis used under version 2.xx are fairly complex and inflexible. We suggest that. un
less your application or device driver absolutely needs to run under version 2.xx, you ig
nore all version 2.xx APis and use the 3.0 APls instead.

D.3.1 Installation Check
To test for Windows/386 version 2.xx you should issue an Int 2tb with AX=1600h. Refer
to Windows Installation Check for complete documentation for this API call.

D.3.2 Determining the Current Virtual Machine (Get VM ID)

Beta Release

Once the software has determined that it is running under Windows086 version 2.xx it
must make another call to get the API procedure address. To do this issue:

mov ax, 1602h
int 2fh
CES:DI -> Windows/386 API procedure)

Microsoft Confidential April 1, 1990

D':.10 Virtual Device Adaptation Gulde

The API procedure is the same address for every virtual machine, so you will need to issue
this call only once (although you can issue it as often as you want).

To get the ID of the current virtual machine jump to the Windows/386 API procedure with
AX= 0 and ES:DI - the address to return to.

Sample code:

mov di, cs
mov es, di
mov di, OFFSET Win386_AIP_Return
xor ax, ax ; AX - 0
jmp [Win386_API_Proc]

Win386_API_Return:
<Now BX contains the current VM ID>

Note that you must place the return address in ES:DI and JUMP to the API procedure.
When Wm386 returns control to your program it will return to ES:DI.

This interface is supported under version 3.0 only for compatibility reasons. New DOS
devices or applications should use the version 3.0 interface.

D.3.3 Critical Section Handling

Apnl 1, 1990 .

Wmdows/386 version 2.xx does not support API calls to enter and leave a critical section.
However, by incrementing and decrementing a special DOS critical section counter called
the InDOS flag, you can force the current virtual machine into a critical section. In
crementing InDOS is not sufficient to enter a critical section in version 3.0. You will need
to make an API call first and then, if it fails, increment the InDOS flag;

To get the address of the InOOS flag issue the following DOS call (documented in The MS
DOS Encyclopedia):

mov ah, 34h
int 21h
CES:BX -> InDOS flag)

The InDOS flag is a byte within the MS-DOS kernel The value in InDOS is incremented
when MS-DOS begins execution of an Interrupt 21H and decremented when MS-DOS 's
processing of that function has completed. When you increment the byte, current versions
of enhanced Wmdows will not switch to another virtual machine. Therefore, to enter a criti
cal section, you need to increment the byte and to leave a critical section you should decre
ment the InDOS flag.

Microsoft Confidential Beta Release

Beta Release

Windows INT 2FH AP/ D·11 · ..

WARNING You must make sure your code never decrements the In DOS flag through zero. DOS will
set the lnDOS flag to zero under some error conditions (for example, the user types CTRL+C). Also, even
if the lnDOS flag is non-zero, an Int 28H may cause the VM to be rescheduled.

For versions 3.xx and greater of Windows you will need to issue an INT 2FH AX= 1681H
to begin a critical section and AX = 1682H to end a critical section. Note that if a program
enters the critical section N times, it must also issue the end critical section interrupt N
times before the critical section is actually released. Thus, nested begin/end critical section
calls are valid. Both of these APis will zero the AL register to indicate that the critical sec
tion API is supported. You should not increment and decrement InDOS under versions of
Wmdows that support these API calls.

Unlike the InDOS critical section method, an INT 28H will not reschedule the current vir
tual machine. The only way a task switch will occur is by completely releasing the critical
section.

Since you need to call the Windows API or increment the InDOS flag you will probably
want to write two procedures similar to the following:

Begin_Win_Critical_Section:
push ax
mov ax, 168lh
int 2Fh
test al , al
jz BCS_Ouick_Exit
push es
les ax, [lnOOS_Address]
inc BYTE PTR es:[ax]
pop es

BCS_Quick_Exit:
pop ax
ret

End_Win_Critical_Section:
push ax
mov ax, 1682h
int 2Fh
test al, al
jz ECS_Quick_Exit
push es
les ax, [lnDOS_Address]
cmp BYTE PTR es:[ax], 0
je <Error handler routine)
dee BYTE PTR es:[ax]
pop es

ECS_Oui ck_Ex it:
pop ax
ret

Microsoft Confidential Apri/1, 1990

0·12 Vlttua/ Device Adaptation Gulde

April 1, 1990 Microsoft Confidential Beta Release

Index
A
ADDHDR, defined, 17-11
Addlnstanceltem service, 19-48
Adjust_Exec_Priority service, 24-2
Adjust_Execution_T!IDe service, 25-3
Allocate Device CB Area service, 19-3
Allocate - GDT S~lecror service, 19-11
Allocate - Glob;;i V86 Data_Areaservice, 19-4
Allocate - LDT ~lee~ service, 19-12
Allocate=PM_CalLBack service, 23-1
Allocate_Temp_ V86_Data_Areaservice, 19-7
Allocate_ V86_Call_Backservice, 23-1

8
Begin_ Critical_Section service, 24-3
Begin__Nest_Exec service, 22-1
Begin_Nest_ V86_Exec service, 22-2
Begin_PM_Exec service, 22-3
Begin_Reenttant_Execution service, 33-1
Begin_Use_Locked_PM_Stack service, 22-4
Break Point and Callback services

Allocate_PM_ Call_Back. 23-1
Allocate_ V86_Call_Back. 23-1
Call_ When_ VM_Retums, 23-2
fustall_ V86_Break_Point, 23-3
Remove V86 Break_Foint, 23-4

Build_Int_Stack_Frame service, 21-2
BuildDescDWORDs service, 19-13
,..
" Call Global Eventservice,26-2
Call=Prioricy_ VM_Eventservice, 26-2
Call VM Event service, 26-4
Call -~ Not Critical service, 24-4
Call -When-Task Switched service, 24-5
Call-When -VM "'in.ts Enabled service, 21-2
Call -When - VN -Re~ service, 23-2
Callbackpr~iires, 16-16
Calling conventions, defmed, 17-5
Cancel Global Event service, 26-5
CanceCPrioricy_ VM_Event service, 26:5
Cancel Time Out service, 27-1
Cancel-VM Event service, 26-6
CB_High_Ikear service, 19-51
Claim Critical Section service, 24-5
Convert_Bool~_String service, 30-2
Convert_Decimal_String service, 30-2

Beta Release

Convert_Fixed_Point_String service, 30-3
Convert_Hex_String service, 30-3
CopyPageTable service, 19-20
Crash_Cur_ VM service, 32-1

D
DCP. See device control procedure
DDB. See device descriptor block
DeAssign_Device_ V86_Pages service, 19-10
Device control procedure, defined, 16-8
Device descriptor block, defined, 16-8
Disable_ Global_ Trapping service, 20-4
Disable_Local_Trapping service, 20-5
Disable_ VMJnts service, 21-3

E
Enable_Global_Trapping service, 20-4
Enable_Local_Trapping service, 20-5
Enable VM Ints service, 21-3
End_ Crlt_~d_Suspend service, 24-6
End_Critical_Section service, 24-7
End_Nest_Exec service, 22-4
End PM ExecED service, 22-5
End - R~trant Execution service, 33-2
End=Use_Locfu_FM_Stack service, 22-5
Error Condition services

Crash_Cur_ VM, 32-1
Fatal_Error_Handler, 32-1
Fatal_Memory _Error, 32-2

Event services
Call_Global_Event, 26-2
Call_Priority_ VM_Event, 26-2
Call_ VM_Events, 26-4
Cancel_Global_Event, 26-5
Cancel_Priority_ VM_Event, 26-5
Cancel VM Event, 26-6
Schedttle Global Event, 26-7
Schedule= VM_E;-ent, 26-7

Exec_fut service, 22-6
Exec_ VxD_Intservice, 22-6

F
Fatal Error Handler service, 32-1
Fatal=Mem~ry _Error service, 32-2
Free GDT Selector service, 19-14
Free - LDT Selector service, 19-15
Free=Temp_ V86_Data_Areaservice, 19-8

Microsoft Confidential April 1, 1990

Z ladBZ

G~--------------------~
Get_Config_Directary service. 30-3
Get_Cril_Secl:ion..Stams service, 24-7
Get_Cur_ VMJ{andle service. 29-2 ·
Get_Device_ V86_Pages_An:ay service, 19-10 '.
Get_Environment_Saing service, 30-4
Get_Exec_Parhservice, 30-4
Gec_Execulion_Focus service. 25-3
Get_Lasc_Updatod_Systcm_'lune service, 27-2
GetJ.uLUpc:latecLVM_Exec_'limoserrice,27•2
Get_Mlchine_Jnfo service, 30-S
Get_Nen_Pro61e_5uing service. 30-S
Oel_Nen_ VMJfladle service, 29-2
Gec_PM_Int_Vectorservice,21•3
Get_Profile_Boolelllservice, 30-6
Get_Profile_Decimal.Jnuerrice. 30-6 .
Get_Profile_F"mcl.J>ointserrice. 30-7
Gec_Profile_Hc_,lnt service. 30-8 ..
Get_Profile_Slrinl HrYice, 30-8
GeLPSP_Segmca1service,30-9
Get_sys_ VMJlandlesczvice, 29·2
Oei_Sysr-._'lmie service. 27-2
Gec_'lune_Slice_Onmdaril:y scvice, 25-3
GeL'lune_Slice~ HrYic:e. 25-4
Get_ V86_Inl_ Vector savic::e. 21-3
Gee_ VM_Exec_T"une savic::e. 27-2
Get. VMM..,Realbrr_Coumserrice. 29·3
Get_ VMM_ Ve:rsioa senice, 29.J
Get_PM_Int_ Typeservice, 21-3
GerAppFlatOSAliu service, 19-38
GecDemandPageinfc>"IC'Yic:e. 19-21
GetFustV86Pqe ~ 19-38 · ··
GetFreePageCoum scrricc, 19-22
GetNulPqeffandle serrice. 19-38
GetSet.J{MAJ,nfo seMce. 29-3
OetSetPageOutCount IC'Yice, 19~22
GecSysPqeCoumservice, 19-23
GetVMPageCounllC'Yice, 19-23

H ~------------------~~ Hudwareiruerrupf.h9ob.16-17
HeapAllocare HrYice, 19-17
HeapFree service, 19-18
HeapGetSize service, 19-18
HeapReAllOClle service, 19-18
Hoo~Device_Service service. 33-2
Hoo~Device-V86_.API SClVice, 33-3
Hoo~PM_Oevice_.API service, 33-3
Hoo~ V86.]nt_Chain SClVice, 21-4

I
J/O services and macros

Disable_Global_Trapping, 20-4
Disable_I..ocal_Trapping,20-S
Enable_ Global. Trapping, 20-4
Enable_Local_ Trapping, 20-S
JnstallJO_H81ldler. 20-S
lnstall_.Mull_IO_llandlas, 20-6
SimulareJO, 20-6

J/O port traps, 16-17
IDT. Sa lnrmupt Descriptor table
Informalionservices

Get_Cur_ VM.Jlandle, 29-2
Get_Nexi_ VM_Handle. 29-2
GeLSys_ VM_HIDdl.e, 29-2
Get. VMM_Reenter_Count, 29-3
Get_ VMM_ Vasion, 29-3
GetSeUIMA.Jnfo, 29-3
Test_Cur_ VM_Haadle, 29-4
Test_Debug.Jmtalled, 29-4
Test_Sys_ VMJlanclle. 29-5
Validate_ VMJllDdl.e, 29-S

Inilillizationinform•rionservices
Convert.J)ool~tting,30-2
Convert.J)ec:inW_Suing, 30-2
Convert_FixedJ>oinLSlring. 30-3
Ccmvert_Hex_Slring., 30-3
Oet_Coafig_Direc:tozy, 30-3
Get_Environmes:u_Suing. 30-4
GeLExec_Padl. 30-4
Get_MachineJnfo, 30-S
Get_Nen_Pro61e_Suing. 30-S
Get_Profile_Boolcan, 30-6
Oet_Profile.J)ecimal.Jnr. 30-6
Get_Profile_Fixed_Point, 30-7
Get_ProfileJlax.jnt, 30-8
GeU'zofile_Slrinc, 30-8
Get_PSP _Segment, 30-9

InstallJO_H81ldler service, 20-S
lnstall_Mull_IO_Handlers service, 20-6
Install_ V86_Brea,U>oint service, 23-3
Jrucrrupt descriptor table

In protec:ted-mode, 16-11

L
Linlc386, defined. 17-9
Linked Ust services
List~31-1
List_Aaach, 31-2
List_Amch_Tail, 31-2
List_Creare, 31-3

April 1, 1990 Microsoft Confidential Beta Release

List_Deallocate, 31-4
List_Destroy, 31-4 '' '
List_Get_First, 31-5
List_Get_Next, 31-5
List_lnsert, 31-6
List_Remove, 31-6
List_Remove_First, 31-7

LinMaplntoV86 service, 19-39
LlnPageLock service, 19-41
LlnPageUnLock service, 19-42
List_Allocate service, 31-1
List_Attach service, 31-2
List_Attach._Tail service, 31-2
List_Create service, 31-3
List_Deallocate service, 31-4
List_Destroy service, 31-4
List_Get_First service, 31-5
List_Get_Next service, 31-5
List_Insert service, 31-6
List_Remove service, 31-6
List_Remove_Firstservice, 31-7

M __________ _
Map_Flat service, 33-4
MaplntoV86 service, 19-24
MapPhysToLlnear service, 19-37
MAPSYM32, defined, 17-11
MASMS, defined, 17-9
Memory Management services

Data Access services
GetAppFlatDSAlias, 19-38
GetFirstV86Page, 19-38
GetNulPageHandle, 19-38

Device V86 Page Management services
Assign_Device_ V86_Pages, 19-9
DeAssign_Device_ V86_?ages, 19-10
Get_Device_ V86_Pages_.Array, 19-10

GOT/LDT Management services
Allocate_GDT_Selector, 19-11
Allocate_LDT_Selector, 19-12
BuildDescDWORDs, 19-13
Free_GDT_Selector, 19-14
Free_LDT_Selector, 19-15

Instance Data Management services
Addlnstanceltem, 19-48
MMGR_ToggleJIMA, 19-49

Physical Device Memory in PM services
MapPhysToLinear, 19-37

Special services for PM APis
LinMaplnto V86, 19-39
LinPageLock, 19-41
LinPageUnLock, 19-42

PageCheckLinRange, 19-43
... SelectorMapFlat, 19-43 -.. ,,,,_.,..,,,
System Data Object Management services

Allocate_Device_CB_Area, 19-3
Allocate_ Global_ V86 Data_Area, 19-4

·· Aiiocat.e_Temp..:.V8(Data_Area, 19-;·- ·
Free_Temp_ V86_Data_Area, 19-8 : -

System Heap Allocator services
HeapAllocate, 19-17 ·
HeapFree, 19-18
HeapGetSiz.e, 19-18
HeapReAllocate, 19-18

System Page Allocator services
CopyPageTable, 19-20
GetDemandPagelnfo, 19-21 , .. :-·,,
GetFreePageCount, 19-22
GetSetPageOutCount, 19-22
GetSysPageCount, 19-23
GetVMPageCount, 19-23
MaplntoV86, 19-24
ModifyPageBitli, 19-25
PageAllocate, 19-27
PageFree, 19-29
PageGetAlloclnfo, _ 19-30 .: .
PageGetSizeAddr, 19-30
PageLock, 19-31 · --
PageOutDirtyPages, 19-32 •- - -- -
PageReAllocate, 19-33 - ·
PageUnLock, 19-34
PhyslntoV86, 19-35
TestGlobalV86Mem. 19-36

V86AddressSpaceservices
CB_High_Linear, 19-51 _

,

Miscellaneous services ' · · · ·

~···'·

Begin_Reenttant_Executioit 3~;.(__ · · · . ,.
End_Reentrant_Execution. 33-2. - · ...
Hook_Device_Service,.33~2 -· · ' :
Hook_Device_ V86_.API, 33-3
Hook_PM_Device_API, 33-3
Map_Flat, 33-4
MMGR_SetNULPageAddr, 33-5. _
Simulate_Pop, 33-5
Simulate.Yush, 33-6
System_Control,33-6 ___ _

MMOR_SetNULPageAddr service, 33;5 ..
MMGR_Toggte_HMAservice, 19-49; .· -.
Mode ;_,

Protected-mode, 16-3 - '
Virtual 86, 16-3

ModifyPageBits service, 19-25

Index 3

Beta Release Microsoft Confidential April 1, 1990

N -------------
Hoo)L V86_Fault. 28-3
HoolL V86.J>age., 28-4
HoolL VMM_Fault. 28-3 Nested Execution services

Begin.)lest_Bxec. 22-1
Begin.JtleaL V86_Exec. 22-2
BcgUU>M_Ihec. 22-3 .
~Use_l.ocbd_PM_Stack.22-4
End..JfesLExec. 22-4 .
End_PM_ExecED. 22-S
Eml.UseJ,.ocbdJ'M_Stack.22-S
Exec.)at. 22-6
Exec_ VxD.Jnt. 22-6
Restore_ClimuJwe. 22-8
Resume_Exec. 22-9
Save_CJient.Swe. 22-10
SeLPM_Buc:Jdode. 22-11
Set_ V86_.Exec_.Mode. 22-12

No_Fail_Resume_ VM se:rrice. ~ •..
Nuke_ VM mvk:e. 24-8 .

:< . Set..J™Lffandler_.Addr. 28-S
. Prorected mode

'. ~·. Inilializalion. 17-14
Intampt descriptor table. 16-11

. Prorectedmode, defined, 16-14

. R ----------
Reaimode

· · Initializ•rion. 17-11
·· Release Critical Section service. 24-8
.~:Tune_slice service, 25-4
Remove_ V86_Break_Pointservic:e. 23-4
Restore_Client_State service. 22-8
Resume_Bxec service, 22-9
Resume_ VM service. 24-9

p -----------

s _________ _
Save Client State service. 22-10
Schedwe_Gfubai_Event service, 26-7
Schedule_ VM_Eveni service. 26-7
SelectorMapFlatservice, 19-43

April 1, 1990

Services. 16-15
Set_E.xeculion_Foc service. 25-S
Set_Olobal_Tune_Out service, 27-3
Set.J'M..Bxec....Mode service. 22-11
Set_PM_ID1_ Vector service. 21-6
Set_Tnne_Slice_Granularity seivice, 25-S
Set_Time_Slic:e_l>riori.cy service-.. 25-S
Set_ V86_Exec....Mode service. 22-12
Set_ V86Jnt._ Vector service, 21-6
Set_ VM_Tune_Outservice. 27-3
SetJ'MJnt_Type service. 21-6
Shell services

SHEIL..Ev-. 34-1
SHELL_Get_ Version. 34-2
SHEIL_Message. 34-2
SHElL_Resolve_Contcntion.34-3

SHEU.. defined, 16-7
Simulate_Far_Call service. 21-6
Simulate_FarJmp service. 21-7
Simulate_Far_Ret_N service. 21-7
Simulate_Far_Ret service. 21-7
Simulate.Jnt service. 21-8
SimulateJO service. 20-6
Simulate_Iretservice. 21-9
Simulate_Pop service, 33-S
Simulate.J'ush service. 33-6
Software inratupt hooks. 16-17

·

Microsoft Confidential Beta Release

Suspend_ VM service. 24-9
SystaJLControls service. 33-6 r __________ _
Test Cur VM Handle service. 29-4
Test=De~g_fustalled savice, 29-4
Test_Sys_ VM_Handle service. 29-S
T cstGlobalV86Mem service, 19-36
Tune-Slice Scheduler services

Adjust_Execution....Tune. 25-3
G~Execution_Focus, 25-3
Get_ Tmie_Slice_Granularity, 2S-3
Get_ Tune_Slice_Priority, 25-4
Set_Execution_Focus 25-S
Set_ Tune_Slice_Oranul.arily, 25-S
Set_ Tune_Slice_l>riority, 25-S

Tune-Slice Scheduler services
Release_Tune_Slice. 25-4

Tunin& suvices
CanceLTune_Out, 27-1
Get_Last_Updated_System_Tune. 27-2
Get_Last_Updated_ VM_Excc_Tune,27-2
G~SYstaJLTune, 27-2
Get_ VM_Excc_Tune,27-2
S~Globll_Tune_Out,27-3
s~ VM_Tune_Out, 27-3
Updatc_Systan_Clock. 27-4 u __________ _

Updue_System._Clock savice. 27-4 v __________ _
V86 Mode Memory Manager Device services

V86MMGR_Alloc:are_Buffcz, 40-lS
V86MMGR_Allocate_ V86_Pages, 40-2
V86MMGR_FreeJhufer, 40-16
V86MMGR_Free....Page_Map_Region. 40-19
V86MMGR_Get_EMS_.XMS_Umiis, 40-3
V86MMGR_Getjfappingjnfo, 40-18
V86MMGR_Get_ Version. 40-2
V86MMGR_G~ VM_Flat_SeJ. 40-17
V86MMGR_Get_)Qat.J3uff_Stare, 40-17
V86MMGR_Load_Cliart.J>tr, 40-lS
V86MMGR_Map_Pages, 40-18
V86MMGR_S~EMS.)CMS_Limits,40-3
V86MMGR_Setjfapping_lnfo, 40-10
V86MMGR_Set_)Clat_Buff_Stare, 40-17
V86MMGR.)01t_API, 40-10

V86. Su Virtual 86 mode
V86MMGR services. Su V86 Mode Mernmy Manacer
Device services
Validale_ VM_Handleservice, 29-5

1111/a 5.

VDD services. S« Virlml Display Device services
VDMAD_Requcst_Buffer semce. 41-8
VDMAD services. Su Vmml OMA Device services
Vmm186mode;~t6-1~" .,,, ·
Virtual device

API.17-7
API proceclute..16..S, l 7-4.
Declaration, 17-3
Device c:on1rol procedure. 16-8

; , Device ex>n1rol pocedure ruane., 17-4
Device desc::riptor block. 16-8
ID, 17-4 .
lnitializllian.17-4, 17-11
Memory model..17-2

.~. Segmentalion, 17-3

. Service iable. 17-4
. Version, 17-4

,Jiftualdevice,defined.16-2
Virlml devices
·~ . Defined.16-7

ScMces.17-S
Writing strategy, 17-1

Virtual Display Device sc:rviceS
VDD_<leLGrabRtn, 35-3
VDD_Get.,ModT'une, 3~-3
VDQ_Get_ Versioll. ~'.:4
VDD_Jlide_Cursor, 35-4
VDD_MsgjlakColor, 3S-l
VDD_Msg_ClrScm, 35-2
VDD_Msg_ForColcr, 35-2
VDD_Msg_SetCursPos, 35-2
VDO_Msg_TextOut, 35-3
VDD_pJF _Srare, 35-4
VDD_Set_HCur'I'tt., 35-5
VDO_Set_ VM'I'ype, 35-S

Virtual OMA Device savices
VDMAD_Copyjram.JJuffer, 41-2
VDMAD_Copy_To.JJuffer,41-2
VDMAD_DefaultJlandlcr,41-3

. VDMAD.J)isable_Tnmslation.41-3.
VDMAD_Enable_Trmslatlon,414
VDMAD. Get EISA._Adrjf~}i,.4.
VDMAD=Get:RegionJnfo, 41~5 . ·'·
VDMAD_Get_ Version, 41-S
VDMAD_Oet_Virt_Swe,41-6 ,
VDMAD_Lock...D~egicm.·:41-6
VDMAD..)dask_Owmel. 41-7

·. VDMAD_Release.JJuffcr,41-8
VDMAD_Request.JJuffer,41-8 ..
VDMAD_Reserve.JJuffer_Space..41-8
VDMAD_Scauer_Lock. 41-9
VDMAD_Scaue:r_Unlock, 41-10
VDMAD_Set_EIS~_M~41~19

Beta Release Microsoft Conndential

f lada
'~ ...

April 1, 1!J90

VPICD_Get_ V~37-9
· · VPICD..Phys_EOI. 37~
,NPICD_Pliysic:aJJy_Mast,37-9
. VPICD..Physically_Unnwk. 37-10
,,VPICD_S~_Muking. 37-10

:· .· VPICD_SetJ:itt_ReqUest.37-10
.• VPICD~Test_Phys_Request. 3'7-l 1
· VPICD_Vinualiz.e_IRQ.37-11 ·.· ..

v.U1Wi!Sound omce s«viccs ..
. . VSD_lleU. 38-1

. VSD~Oet.,:.Venion,38-1
Viniial Tuner Device services

\1TD.JkginJr1in,Jm_Period. 39-1
· VfD.J)isable_Trlpping. 39-2

. Vl'D_l!nabl4_Tnpping.~
vrD_Bnd..MUUnLi>Crio'd';39-3

· .. VTD ... ~_Period,39-3
· .·. . VTD_OeL Version. 39-4 .

.. V'.fD_U~_Sysrem_Cloc:'k.394
· VtcD ~;'Su Virtual KeYbomd Device services
VM· InreriUpt 8nd Call serviceS · ·. ·. .

~uildJnl-Scack...Ftame. 21-2
Clll. ~ VM_Inrs_F.nabled, 21-2 ·

;, . . Disable.., VMJnts, 21-3
·.;" · · . Eilable_VMJnll.21-3 :.-

GetYMJm_v~. 21-3 ·
- .. Get_V86Jm_ Vecror, 21-3

~Type.21-3
tloo1L V86Jnt.Cbain. 21~

'. $ct,;,.PMJDt_ Vector, 21-6 ~ ...
Set_V86_1nt_Vectot,21-6 .

. ·Set_PM_lnt.,;.Type. 21-6 ..
·• · ' Silimlare_F•_Call.21-6

. ·· · · Siniulare_FarJ~ 21-7
Simubile_F .. _Rei,21:-7 .. "'
SPlare_F•_Ret_N, 21-7

. Simulale_lm.21-8 .
Simulce__Iiet.21-9.

VM. s. virtual machine
VMM. Sa Yinual machine mamgu
VPICD senices. Su Virtual PIC Device serv1ccs
VPICD. See Yinual progammable intemlptconuoller
dev'ice
VSD_llell senice. 38-1
VSD_Gel_ Vasion, 38-1
VSD serYices. See Virtual Sound Device services
VTD services. Su Virnlal Tuner Device services
VxD. Su Yinual deYice

MicrosQft Confidential Beta Release

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	16-001
	16-002
	16-003
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	19-001
	19-002
	19-003
	19-004
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	19-47
	19-48
	19-49
	19-50
	19-51
	19-52
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	23-01
	23-02
	23-03
	23-04
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	27-01
	27-02
	27-03
	27-04
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	32-01
	32-02
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	34-01
	34-02
	34-03
	34-04
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	36-01
	36-02
	36-03
	36-04
	36-05
	36-06
	36-07
	36-08
	36-09
	36-10
	37-01
	37-02
	37-03
	37-04
	37-05
	37-06
	37-07
	37-08
	37-09
	37-10
	37-11
	37-12
	38-01
	38-02
	39-01
	39-02
	39-03
	39-04
	40-01
	40-02
	40-03
	40-04
	40-05
	40-06
	40-07
	40-08
	40-09
	40-10
	40-11
	40-12
	40-13
	40-14
	40-15
	40-16
	40-17
	40-18
	40-19
	40-20
	41-01
	41-02
	41-03
	41-04
	41-05
	41-06
	41-07
	41-08
	41-09
	41-10
	41-11
	41-12
	41-13
	41-14
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06

