
WAITE GROUP
PRESS N

THE WAITE GROUP ' S $

THE DEFINITIVE PROGRAMMER'S REFERENCE

JAMES L. CONGER

THE WAITE GROUP'S

I
The Definitive Programmer's Reference

James L. Conger

1996 ESWAR BOOKS
COMPUTER & TECH. BOOKS

Archana Arcade, No.16, Natesan SI.: 1

Next to Ranganathan St., T.Nagar
Madras ·600 017. (() : 43459 02·

Gdlgotia Publications pvt.ltd ..
/

THE WAITE GROUP'S
WINDOWS APi BIBLE

James L Conger

The Definitive P~ogramme~'s Reference 1996

© 1992 by The Waite Group, Inc.

All rights reServed. No part of this manual shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, desktop publishing, recording, or otherwise, without -
permission from the publisher. No patent liability is assumed with respect to the use of the information

<, contained herein. While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use 'of the information contained herein.

All terms mentioned 1n this book that are known to be trademarks or service marks are listed below. In
addition, terms suspected of being trademarks or service marks have been appropriately capitalized. Waite

.. :-~Group Press cannot attest to the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity 9f any' trademark or service mark.

<'

Microsoft Windows, and MS .. DOS are registered trademarks of Microsoft Corporation.
Sound Blaster is a trademark o{Creative Labs, Inc.
The .W,a(tl;! Group is a registered trademark of The Waite Group, Inc.

\ I,

AUTHORIZED EDITION FOR SALE IN INDIA ONLY"

REPRINTED 1996

Published by Suneel Galgotia for G~lgotia 'Pub,ications (P) Ltd.; 5, Ansari Road, Darya Ganj,
New Del~i - 110002 and printed at Konark Press. 5/2,Ol,;~,Par~~.IfJ]~nifN~gru! •. Delhl-92

•... ,

ISBN: 81 ~ 85623 ~ 75 ~ 9

To Claire

_Acknowledgments
I wish I could say that I knew every aspect of Windows programming before I began to write this book. I was surprised
t'O find out how much of Windows I had never used, and in many cases, never noticed. Spelunking the remote corners
of Windows was an enjoyable experience, but I needed a lot of help.

I am particularly indebted to Mark Peterson, who edited the book and provided many insights and useful ex
amples. I also received help from Don Stegall, who kindly contributed a keyboard hook example and helped on several
weird problems I encountered. When I became desperate, I turned to Dennis Cook, Len Gray, Rudyard Merrian, and
many other contributors to the MSOPSYS forum on CompuServe. t:!' .

Although this book was processed almost exclusively through electronic media, it was amazing how much work
was needed to get the book in its final form. Scott Calamar supervised the entire operation, with a lot of help from
Julianne Ososkej Pat Rogondino, Kathy Carlyle, and K.D. Sullivan. Finally, I would like to thank Mitchell Waite for
proposing the book, guiding its design and content, and for being the constant champion of the project.

iv

Introduction
The purpose of this book is to save Windows programers time. Most of us who have been programming with Windows
for a few years have become accustomed to having our desks cluttered with various books. Mine seems to always have
four or five Windows Software Development Kit manuals, a well thumbed copy of Charles Petzold's excellent book
Programming Windows, several printouts of example programs, and perhaps a few other books buried under the
pile.

The Windows Bible is an attempt to assemble most of the information you need in one place. FolIO\ving the
organization of the other Waite Group bibles, the Windows Bible. is organized by subject. Each chapter covers a
separate topic. The chapter introductions cover basic concepts. The details are covered in the function and message
descriptions.

A key element to making the book useful is the use of short example programs. They are particularly important
,vith Windows, where functions are seldom used alone. Most functions require the support of a series of related
functions and messages to do their task. The example programs show a function or ~essage in context, with support
ing functions in place, and \vith variables properly declared.

The example programs in this book are different from examples used in Windows tutorials. Tutorials generally use
longer example programs, \vith many functions and messages demonstrated at one time. The examples in the Win
dows Bible are as short as possible. Their only purpose is to demonstrate one function or message or at most a few
related fu~ctions or messages. They do show the proper use of the function or message, ,vithout a lot of other distrac
tions.

In some cases, the emphasis on keeping the examples short and clear caused me to write what borders on writing _
simplistic code. For example, the preferred way to find out the corre d text line spacing is to use the GetTextMetricsO
function. It determines character heights on the screen. This assures that the spacing will be correct, regardless of
the video resolution used. In the Windows API Bible examples, fixed line spacing is used for demonstration output in
chapters that do not focus on display of text. This avoids the distraction of having GetTextMetricsO show up in every
example. The correct usage of GetTextMetricsO is explained in the chapter on text output. '

The structure of the book groups related subjects. Chapter 1 is an introduction for those new to Windows. Chap
ters 2 to 5 deal with the creation of windows, and the related menu and scrolling functions. Chapters 6 to 9 cover the
various aspects of Windows messages. Chapters 10 to 12 deal with output to the screen and printers. The remaining
chapters cover separate topics which are only loosely related.

One disadvantage to the organization by related subjects is that it is not possible to introduce the reader to each
subject in succession. For example, several of the message hook functions in Chapter 8, Message Processing Func
tions, require the use of dynamic link libraries. DLLs are not covered until Chapter 28, Dynamic Link Libraries.
Cross references are included in these cases.

This book was completed using Windows version 3.0 and the Beta 1 pre-release of Windows version 3.l. Changes
and additions to version 3.0 functions and messages that occur in version 3.l are documented. In most cases, version
3.l adds optional features by providing new functions in dynamic link libraries. This assures compatibility with soft
ware developed under version 3.0.

v

Size constraints made it impossible to include all of the new Windows 8.1 features in one book. All of the funda
mental subjects and the material common to versions 3.0 and 3.1 are included. The new OLE (object linking and
einoeddirtg} and True Type fonts are not covered. DDE (dynaJl1i~ data exchange; is discussed using the message-'
based protocJls,.but not using the version 3.1 DDEML library. I intend to cover these subjects in a separate volume,
which is currently. under development. The material in the Windows ~l Bible will remain valid and is common to all
Windows applications.

While writing the book I was surprised to find a number of functions that I had not run into in four years of
Windows programming. Some of these more obscure functions turned out to be remarkably useful. The experienced
reader may find the discussions of message hooks, communications and sound support, atoms, and dynamic data
exchange (DOE), and the multiple document interface (MDI) worth reviewing. . '

Good luck with your Windows projects! ,

Jim-Conger

vi

Table of Contents
Introduction
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chap tel 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Appendix A
AppendixB
AppendixC
Appendix D
Index

.. ; v
Overview of \Vindows Programming ... 1
Creating Windows .. 12
Windows Support Functions ... 29
Menus-: .. : .. ~ , .. 109
Scroll Bars ... 147
Mouse and Cursor Functions .. 163
Keyboard Support ... : 191
Message Processing Functions ::' ... : 216
\Vindows Messages ; .. ~.' ; 259
Device Contexts, Text Output, and Printing' ... ; 350
Painting the Screen .. ' ... 434
Color Palette Control ... , : .. 528

:~:~i.~~~:~~~:~~~::::::::::::::::::::::::::::::::::::::>~~:::;:::::::::::::m
Icons .. :~ 710

~~~n~i:~~~;~~~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::7::::::::::::::::::::::::: ~!~ 
Character Sets and Strings .......................................... ~ ............................... : ............. : .............................. 758 
l\tS-DOS and Disk File Access ........................... :: ................................................... :: ................. ~ ............... 774 
Communications Functions ............................................................ ;~::~ .................................................. 804 
Atom Functions .............................. ~ ........................................................................................................... 826 
l\fetafiles : ..................................................................................................................................................... 836 
The Timer .................................................................................................................................................... 849 
Resources .............................................. : ..................................................................................................... 855 
Execution Profiling and Debuggirig .......................................................................................................... 872 
Help File Support ............................................................................................................................ , ...... ; ... 883 
Dynamic Link Libraries ............. ~ .............................................................................................................. ;892 
l\fultiple Document Interface (MDI) .......................................................................... ,' ............................ 905 
Dynamic Data Exchange (DDE) ............................................................................................................... 918 
Bibliography and Sources of Additional Information ............................................................................ 937 
Useful Macros from WINDOWS.H ....................................................................................................... ~ ..... 939 
Mouse Hit Test Codes ............................................................................................. : .................................. 940 
WINDOWS. H Li~ting~ ... ; ........................................................................... ,' ................................................. 941 

, ......................... l .............................. : ......................................................................................................... 1003 

vii 



Table of Contents .' \ 
Chapter 1 Overvie,v of\Vindows Programming .............................................................................................. ~ ........... 1 

. Windows Programming Overview .............................................................................................................. 1 
Structure of a \Vindows Program ............................................................................................................... 1 
GENERIC.C Example Windows Program .................................................................................................. 2 
How Windows Programs Are Compiled and Linked ................................................................................ 6 
How \Vindows Programs \Vork ......... : .................................... : ................................................... ~ ................ 7 
Windows Naming Conventions-WINDOWS.H ........................................................................................ 7 
Improving GENERIC ................................................................................................................................... 9 
Instances and Message Loops .................................................................................................................. 10 

_ Program Listing Conventions in This Book ....................................................................................... : .... 11 

Chapter 2 Creating Windows ..................................................................................................................................... ·12 
Using CreateWindowO Based on an Existing Class .............................................................................. 12 
Creating New Window Classes with Separate Message Processing ................................................. ~ ... 14 
Messages Generated by CreateWindow() ........................................................................................... ~ ... 17 
Other Uses for \Vindow Controls .............................................................................................................. 17 
Function Description~ .. ~ ........................................................................................................................... 18 

Chapter 3 \Vindows Support Functions .................................................................................................................... 29 
Direct Changes to Windo\v Attributes ..................................................................................................... 29 
Changing the Class Data ............... : .................................................................................................. ; ....... 29 
Data Attached to a Window or Class ........ ; ............................................................................... , .............. 30 
Notes: Enumeration Functions ................................................................................................................ 30 
Cautions ................................................................................................................. ~ ................................. 33 
Function'Descriptions ................................................................................................................ ~ .............. 33 

Chapter 4 Menus ........................................................................... ; ........................................................................... 109 
Main l\fenus and Popup Menus ................................ , ............................................................................. 109 
Building Menus in the Resource File ................................ : ................................................................... 109 
Adding a Menu to the Program's \Vindow .................... ; ........................................................................ 111 
Changing Menus ...................................................................................................................................... 111 
Bitmaps as l\lenu Items ........................... : ............................................................................. ~ ................ 112 
TheCheckmark Bitmap ................................................................ : ......................................................... 112 
Owner-Drawn Menu Items ..................................................................................................................... 112 
Menu l\fessages ........................................................................................................................................ 115 
Menu Function Summary ....................................................................................................................... 115 

viii 



\ Chapter 5 Scroll Bars ............................................................... 1 ................................................................................ 147 
Scroll Bar Concepts ................................................................................................................................ 147, 
Scroll Bar Position and Range ....................... ; ....................................................................................... 148 
Scroll Bar Messages ................................................................................................................................ 148 
Scroll Bar Function Summary ................................................................................................. : .............. 149 

Chapter 6 Mouse and Cursor Functions ................................................................................................................. 163 
1\louse l\lessage Overview ....................................................................................................................... !Ji3 
Common 1\louse Messages ..................................................................................................................... lI64 
1\louso Functions ............................................................................................................................ ) ........ 165 
Caret Functions ...................................................... ; .................................................................. )"' ............. 165 
Mouse and Cursor Function Summaries ......................................................................... ; ..................... 166 

Chapter 7 Keyboard Support ................................................................................................... <: ................................. 191 
Virtual Keys .............................................................................................................................................. 191 
Keyboard Messages ................................................................................................................................. 193 
Messages with Non-English Keyboards ................................................................................................. 195 
Keyboard Accelerators ............................................................................................................................ 195 
Keyboard Function S~mmary ................................................................................................................. 198 
Keyboard Function Descriptions .............................................................................. ~ ............................ 198 

Chapter 8 l\lessage Processing Functions .............................................................................................................. 216 
~fessage Flo\v ........................................................................................ ~ .................................................. 216 

Processing 1\lessages ......................................................................................................................... 217 
Progranl Control ................................................................................................................................ 217· 
Sources of Messages .......................................................................................................................... 217 
Reentrant Functions ......................................................................................................................... 218 

l\lessage Hook Functions ........................................................................................................................ 218 
Cautions ................................................................................................................................................... 219 
l\lessage Function Su'mnlary ....................................................................................................... : ........... 219 

Chapter 9 Windows Messages ....................................................... : .......................................................................... 259 
rransmitted l\lessages ............................................................................................................................ 259 
Transmitted Button l\lessage Summary ................... ,' ............................................................................ 2~0 
Button Notification Codes ...................................................................................................................... 262 
Button Notification Code Summary ...................................................................................................... 263 
Button Notification Code Descriptions : ................................................................................................ 264 
Combo Box l\fessages .............................. : ............................................................................................... 265 
O\vuer-Redra\vu Combo Boxes : .............................................................................................................. 267 
Combo Box l\lessage Summary ......................................... ; .................................................................... 269 
Combo Box Message Descriptions ......................................................................................................... 270 
Conlbo Box Notification Codes Summary ............................................................................................. 277 
Combo Box Notification Codes Descriptions ........................................................................................ 279 
Dialog Box \Vindo\v l\lessages ................................................................................................................ 280 
Edit Control Messages ................................................................. ~ .......................................................... 280 
Edit Controll\fessage Summary ............................................................................................................. 282 
Edit Control Message Descriptions ................................................................................. : ..................... 283 
Edit Control Notification Messages ....................................................................................................... 290 
Edit Control Notification Message Descriptions .................................................................................. 291 

ix 



List Box Messages ...................................................... :! ... IJI .......... ,', ••• :, ... :; .......... " .... .-............................. 293 
List Box Message Summary .................................................................................................................... 296 
List Box Message Descriptions .............. ; .............................................................. ~ ................................ 296 
List Box Notification Codes ............. : ................................................................................ , ..................... 305 
List Box Notification Code Descriptions ................................................ : ................................................ 305 
Window l\lessages .................................................................... : ............................................................... 307 

Chapter 10 Device Contexts, Text Output, and Printing ....................... : ................................................................. 350 
The Device Context ................................................................................................................................. 350 
HandlingWM~PAINT Messages ................................................ ~ ............................................................ 351 
Selecting Objects into a Device Context ........................... .-..................................................................... 351 
Private Device Contexts .......................................................... : .............................................................. 352 
Saving a Device Context ......................................................................................................................... 352 

Mapping Modes .................................................................................................................................. 352 
Fonts ................................................................................................................................................... 354 

Printer Support ....................................................................................................................................... 354 
The Pl'inter Device Driver ...................................................................................................................... 357 
Text and Device Context Function Summary ....................................................................................... 358 
Text and Device Context Function Descriptions ................................................................ · ................. 360 

Chapter 11 Painting the Screen ................................................................................................................................ 434 
The WM_PAINT Message ...................................................................................................................... ;434 
Invalid Rectangle ................................................................................................................................... : 435 
The Device Context ............... ; ................................................................................................................. 435 
Selecting.Objects into the Device Context ........................................................................................... 436 
Default and Stock Objects ............................................................... : ...................................................... 437 
Colors ........................................................................................................................................................ 438 
Regions ...................................................................................................................................................... 438 
Painting FUnction Summary .................................................................................................................. 439 
Painting Function Descriptions ............................................................................................................. 441 

Chapter 12 Color ·Palette Control .............................................................................................................................. 528 
Hardware,Palettes ................................................................................................................................... 528 
Color Palettes in Windows ...................................................................................................................... 528 
The Logical Palette ........................................ ; ........................................................................................ 529 
Creating a Logical Palette ...................................................................................................................... 529 
Windows Color Palette Messages ............. : ............................................................................................ 530 
Palette Function Summary ........................................................................................................ ~~; ......... 530 
Palette Function Descriptions ................................................................................................................ 531 

Chapt~r 13 Dialog Boxes ............................................................................................................................................. 552 
An Example Dialog Box .......................................................................................................................... 552 
Types of Dialog Boxes .............................................................................................................................. 555 
Indirect and Parameter Dialog Box Functions .................................................................................... 556 
Communicating with Dialog Box Controls .. ~ ............................................................... ~ ......................... 556 
The Dialog Box Keyboard Interface ....................................................................................................... 558 
Dynamic Dial(Jg Boxes .............................. , ............................................................................................. 558 
Dialog Template Statement Description .............................................................................................. 560 
Dialog Box Control Statements ....................................... : ...................................................................... 561 
Dialog Box Function Summaries ..... ~ ........................................................... ; ......................................... 565 
Dialog Box Function Descriptions .......................................................................................................... 566 

x 



Chapter 14 Memory Management ............................................. ; .................... :' ............................................... _ ......... 611 
Local and Global Memory ............................................................................................... : ........................ 611 
Segments and Offsets ................................................................................................ : ............................. 612 
Allocating Memory in the Local Heap .................................................................................................... 612 
Allocating Memory.in the Global Heap .................................................................................................. 613 
Moveable, Fixed, and Discardable Memory Blocks ..................................................................... : ....... 614 
Traps to Avoid ............... ~ .......................................................................................................................... 615 
Windows Memory Configurations .......................................................................................................... 615 
~loveable Program Code .................................................................................................... : .................... 616 
Compiler Memory Models .................... : .................................................................................................. 616 
Locked, Fixed, and Page-Locked Memory Blocks ................................................................................. 617 
Running Other Modules .......................................................................................................................... 617 
~lodule-Definition Statements· ............................................................................................................... 617 
Module-Definition Statement Descriptions .......................................................................................... 618 
Memory Function Summary ................................................................................................................... 621 
Memory Function Descriptions ................................................................................ ~ ........... : ................ 623 

Chapter 15 Bitmaps ........................................................................................... ~ ........................................................ 668 
DDB Bitmap Format ............................................................................................................................... 668 
Using DDB Bitmaps ................................................................................................................................. 669 
Memory Device Contexts ......................................................................................................................... 669 
Stretching and Painting Bitmap Images ............................. : .................................................................. 670 
Problems with the Old Bitmap Format, ................................................................................................... 670 
Device-Independent Bitmaps (DIB) ..... ~ .. : ............. ; ......................................... , ..................................... 671 

Working with DIBs .............................................................................................. : .............. : .......... ~ .. 673 
DIB Example ........................... ; ............... :-: ....... ; ........... :.: .... : ........ ; ..................... ~ ..... ,~ ................................ 673 
Bitmap Function Summary ........................................ : .................................................................. , ..•..... :.675 
Bitmap Function Descriptions ............................................................................................................... 676 

Chapter 16 Icons ..................... : ....................................................................................................................... : ........... 710 
Using Icons ............................................................................................................................................... 710 
Creating Icons at Run Time ................................................................................................................... 711 
Icon Function Summary ............................ : ..................................................................... ; ........................ 712 
Icon Functiorr Descriptions ................................................................. ; .... j:: ......................................... 712 

Chapter 17 The Clipboard .......................................................................................................................................... 719 
Using the Clipboard ............................................................................................................................... :719 
Clipboard Formats ..................................................... (. ........................................................................... 720 
Multiple Clipboard Formats ............................................. : ..................................................................... 721 
Delayed Rendering of Clipboard Data .................................................................................................. 721 
Bitmap and Metafile Clipboard Formats ....................... : ...................................................................... 722 
Clipboard Viewer Programs ................................................................................................................... 722 
Clipboard Function Summary ................................................................................................................ 723 
Clipboard Function Descriptions .......................................................................................................... 723 

/ I 

Chapter 18 Sound Functions ...................................................................................................................................... 741 
Sound Sources ......................................................................................................................................... 741 
Sound Drivers ............................................................................................................................ · .............. 741 
Voices and Voice Queues ........................................... : ............................................................................ 742 
Voice Thresholds ......................... : ......................................... : ................................................................... 743 
Sound Function Error Codes .................................................................................................................. 743 . 
Sound Function Summary .......................... ~ ....... : .................... ' ................................................................ 743 
Sound Function Descriptions ................ : ................... 1 ................................... : .......................................... 744 

xi 
" ,r 



Chapter 19 Character Sets and Strings .............. :::::-. ..................................................................................... ; ........... 758 
Character Sets ......................................................................................................................................... 758 
Character Set Conversions ..................................................................... : ............... : ............................... 758 
Fonts and Character Sets ............................. ; ......................................................................................... 758 
String Functions ............... : ...................................................................................................... : .... ; .......... 758 
Character Set and String Function Summary .................................................................. :: .................. 760 
Character Set and String Function Descriptions ................................................................................. 760 

Chapter 20 MS-DOS and Disk File Access ................................................................................................................. 774 
Disk Files ................. ; ................................................................................................................................ 774 
Lists of File Names ........................................................................................... ; ...................................... 775 
Initialization Files ................................................................................................................................... 775 
MS-DOS and Disk File Function Summary ................... ; ....................................................................... 776 
M3-DOS and Disk File Function Descriptions ..................................................................................... 777 _ 

Chapter 21 Communications Functions ................................................................................................................... 804 
Communications Support ......................................................... ;.: ........................................................... 804 
Reading Data in the Receive Data Queue ............................................................................................. 805 
Communications Function Summary .................................................................................................... 805 
Communications Function Descriptions .............................................................................................. 806 

Chapter 22 Atom Functiorts ......................................... ; ............................................................................................. 826 
Atom Tables ............................................................................................................................................. 826 
Atom Data Structure ....................................................................................................................... ~ ....... 826 
Data Exchange .......................................................................................................................................... 827 
Atom Function Descriptions ......................................................................................... ~ ........................ 827 

Chapter 23 l\1etafiles ................................................................................................................................................... 836 
Creating and Playing a Memory Metafile .............................................................................................. 836 
Creating and Displaying a Disk Metafile ........................................................................... · ................... 836 
Metafile Disk Format .............................................................................................................................. 837 
Altering the Metafile Image ................................................................................................................... 838 
Metafile Limitations ............................................................... : ............................................................... 838 
Metafile Function Summary ..................................................................... ; ............................................. 839 
Metafile Function Descriptions ............................................................................................................. 839 

Chapter 24 The Timer ................................................................................................................................................. 849 
Using Timers .............................................................. : ............................................................. : ............... 849 

~~~:; ~i~~r~~~ii~~~·::::::::::::::::::::::::::::::::::::::::~::::'~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:~ 
Timer Function Summary .. ;: ... 850
Function. Descriptions ... 850

Chapter 25 Resources ~.; ... ~ 855
, The Resource Compiler ... 855

The Resource Script File .. ~ ... 856

~~!~::~~l::~~~.~.~.:::::::::::,::~~~
Resource Function Summary ... 859
Resource Function-Descriptions ... 859

xii

Chapter 26. Execution Profiling and Debugging .. : .. : 872
How the ProfilerWorlcs .. : 872
Preparing to Run the Profiler .. 872
Using the Profiler .. 874
Debugging Functions .. 874
Execution Profiling and Debugging Function Summary .. ; 874
Execution Profiling and Debugging Function Descriptions ... 875

Chapter 27 Help File Support .. 883
Building a Help File .. 883
Help Document Special Characters .. ; 884

(Defining Hypertext Jumps and Index Entries .. 885
Adding Search Strings and BookInarks ... 885
Adding Bitmap Graphics ... 885
Compiling a Help File ; ... 886
Help Project File Options ... 886

Project [Files] Section ... ; 886
Project [Buildtags] Section ... 886 ..
Project [Options] Section ... 887 .
Project [Alias] Section ... 888 -
Project [Map] Section .. 888
Project [Bitmaps] Section : .. 888

Using the Help System .. 889

Chapter 28 Dynamic Link Libraries .. 892
What Is a DLL? .. ; 892
Creating a DLL .. 802
Using the Functions in a DLL .. 895
Other Ways to Call DLL Functions .. 896
Importing Windows Library Functions ... 897
Problems with Writing DLLs ... 897
Debugging DLLs ... :898
Dynamic Link Library Function Summary .. : .. 898
Dynamic Link Library Function Descriptions .. 899

Chapter 29 Multiple Document Interface (1wlDI) ... ; 905
MDI Frame and Child Windows ... 905
The Structure of an MDI Application .. 905
1wlDI Interface Bugs ... 907
MDI Example Program ... 907
MDI Function Summary ... 915
MDI Function Descriptions .. 915

Chapter 30 Dynamic Data Exchange (DDE) .. :.918
How DDE Data Is Exchanged ... : ... : 918 -
Applications, Topics,' and Item Identifiers ... 919
Cold DDE Link ... : 919
Hot DDE Link ; .. ~ 920
Warm DDE Link ... 921
Generalized DDE Conversations ... ;-. .. ,.~ ... 922
Other DDE Data Transmission Messages : .. : ; ... : .. ; ... ; ~ 922

xiii

Adding a New Group to the Program Manager .. ; : : ;~ 923
Obtaining File Names from Microsoft Excel ... ; 926
DDE Message Summary .. -....., :929
DDE Message Descriptions ... " :: 929

Appendix A Bibliography and Sources of Additional Information .. : 937
Books on Windows : .. .1: ; •• ! ~ 937
Other Programming Reference Books ... · ::937
Sound Driver Support and Information ~~ .. : 938

Appendix B Useful Macros from WINDOWS.H ... ; : 939

Appendix C Mouse Hit Test Codes ... 940

Appendix D WINDOWS.H Listing .. 941

Index : ... 1003

xiv

This chapter introduces Windows programming and develops the GENERIC.C program. GENERIC.C will serve as the
. basis for all of the examples in this book.

Windows Programming Overview
If you have been programming in DOS or in a minicomputer environment, your first look ai a Windows program may be
a little disconcerting. Windows programs are different. The differences boil down to a few basic principles.

1. Instead of telling the computer what to do one step at a time, Windows programs are structured to wait there until
the program receives a message from Windows. Messages are statements like "The user just clicked a button with
the mouse pointer-do something!"

2. The Windows environment has built-in support for all the basic hardware such as the video display, memory,
mouse, keyboard, and printers. Microsoft takes care of worrying about all of the latest hardware-freeing you to
create applications. Programmers spend their time learning and using the 600 Windows functions, rather than
writing their own code to support multiple printers, video cards, etc.

3. WindoWsmoves programs and data around in memory to make room for other program pieces and data. This
. movement allows many programs to coexist in a fairly limited amount of memory, but it also means that the
programmer cannot assume that anything will stay put for long. Windows gives you all of the tools you need to deal .
with moveable memory, but it t3:kes a little getting used to.

Despite these differences, Windows is not a difficult environment in which to work. When you have gotten over
the initial hurdle of writing a few simple programs, the tremendous built-in power of Windows will spoil you. It will be
difficult for you to eVer go back to more primitive environments.

If you are new to programming with the Windows environment, my main advice is to dive in and try it. You will find
that most Windows programs are remarkably similar, so that when you have one running, the second one is a matter
of modification. One of the main goals of this book is to provide working examples for all of the Windows functions,
savihg you the time it takes by figuring out how every one of them is used. For efficiency, a simple "GENERIC" pro
gram, which is described in the next section, is used as the basis for most of the programming examples.

Structure of a Windows Program
Most Windows programs have two C functions in common,WinMainO and WndProcO. Only WinMain() is required,
although WndProcO shows up in almost every. Windows program. WndPi'ocO can be named anything you want, but
most programmers name it WndProcO. WinMain() must be named "WinMain," just like the mainO function in a
conventional C program. Any large program will have many other functions doing tasks for WndProc(), but these two
functions will be there to begin.

WmMainO - Calls several functions that tell the Windows environment about the properties of the program's main
window. This includes what color to paint the window, the name of the icon to show when the program is initial

, ized, where to find the program's menu, etc. WinMainO also contains some standard, code to process Windows
messages to and from the program you are writing. WinMainO is also the entry anti exit point of the program,
again like mainO in a conventional C program. < •

WINDOWS ·API BIBLE

,·00 It! Quit

Figure 1~1. The GENERIC Program's Window.

Do It! Quit

O~I did it!

Figure 1-2. ' GENERIC After Clicking the liDo It!" lIJenu
Item.

WndProcO - This is where you write the program logic. This function is usually called the "message processing ,
function" as Windows messages are interpreted and acted upon Within this function.

; ,Let's take a look at a simple example. We will create aprogram that looks like Figure 1·1. The program creates a
window with the title "generic" and with two menu items, "Do It!" and "Quit". When the program is first run, it just sits
there.

Moving the mouse pointer to "Do It!" and clicking the left mouse button causes-text to appearin the window, as
shown in Figure 1-2. Clicking the "Quit" menu'item causes the program to stop and th'e\vindow to disappear. The
millimize and maximize buttons in the upper right corner work pet; standard Windows conventions', as does the system
button in the upper left corner. ' . ' , ,

GENERIC.C Example Windows Program
Listing 1-1 shows all of the C code needed to make GENERIC.C. Although the code looks complex at first glance, it is
remarkably short. Remember that this program creates a window that can be moved and sized on the screen, shrunken
to an icon, expanded to the size of the screen, and which has a fUnctioning menu. '

0, Listing 1-1. GENERIC.C
I*generic.c generic windows application *1
#include <windows.h> 1* window's header file - always included *1
#inc,lude "generic.h" 1* the application's header file */ .'

int PASCAL WinMain (HANDLE,hlnstance, HANDLE hPrevlnstance, LPSTR.lpszCmdLine, int nCmdShow)
{ 1* variable types defined in windows.h ,*1

HWND
MSG
WNDCLASS

hWnd ;
msg ;
wndc lass;

1* a handle 'to a message *1
, 1.* a message *1 ,

1* the window class *1

ghlnstance = hlnstance ; 1* store in3tance handle 'as global yare *1

if (!hPrevlnstance)
{

1* load data into window class struct. *1

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon ::, ,
wndc lass '. hCursor
wndclass.hbrBackground
wndclass.lpszMenuName

2

= CS_HREDRAW ~S_VREDRAW;

= WndProc ;
= 0 ;
= 0 ;
= hlnstance ;
= LoadIcon (hInstance, gszAppName)
= LoadCursor,(NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;

, = gszAppName ; ,

}

1. OVERVIEW OF WINDOWS PROGRAMMING ...

wndclass.lpszClassName gszAppName;
1* register the window class *1

if (!RegisterClass (&wndclass»
return FALSE;

hWnd CreateWi ndow (1* create the program's window here *1
1* class name *1 gszAppName,

gszAppName,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL) ;

1* window name *1
1* window style *1
1* x position on screen *1
1* y position on screen *1
1* wi dth of wi ndow * 1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handle (null = use class menu) *1'
1* instance handle *1
1* lpstr (null = not used) *1

1* mak.e window visible *1 ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd) ; 1* send first WM_PAINT message *1

1* the nex t wh i le() loop is the "message loop" * 1

while (GetMessage (&msg, NULL, 0, 0»
{

1* wai t for a. message * I

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

1* does some key conversions *1
1* sends message to WndProc() *1

return msg.wParam ; 1* returns application's exit code *1

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG. lParam)
{

HDC hDC ; 1* device context handle *1

switch (iMessage)
{

1* process windows messages *1

}

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC:: GetDC (hWnd) ; 1* get device context *1
TextOut (hDC, 10, 20, "Ok, I did it!", 13);
ReleaseDC (hWnd, hDC); 1* release device context *1
break;

case IDM_QUIT: 1* send' end of application message *1
DestroyWindow (hWnd) ;

break
case WM_DESTROY:

break;

PostQuitMessage (0)
break;

1* stop application *1

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

The WinMainO function looks more complex than it is. The saving grace is that this function remains almost
unchanged from one program to the next. You just copy that part into your next project. I will explain what it does in
a moment. Let's deal with the WinProcO function first.

WinProcO processes messages from Windows. The messages are all integers, but for clarity they are given names
in theWINDOWS.H header file. The two messages that GENERIC.C has to process are W~CCOMMA1'lD (a menu item
was pressed), and WM_DESTROY (stop the application and close its window). The menu items are labeled IDM_DOIT
and IDM_QUIT. These names are defined ~n the program's header file GENERIC.H, shO\Vn in Listing 1-2.

3

WINDOWS API BIBLE

o Listing 1-2. GENERIC.H Header File
1* generic. h '
#define 10M_DOlT 1* menu item id values */
#define 10M_QUIT 2

1* g loba l vari ables *1
; nt ghlnstance ;
char gszAppName (J = '~gencri e" ;

1* function prototypes *1
long ~AR PASCAL WndProc (HWND, unsigned, WORD, LONG)

When the user clicks the "Do It!" menu item, Windows sends the GENERIC program a \VM_COMMAND message.
Part ofthis mes~age is the menu item number, in this case IDM_DOIT which we defined equal to one in GENERIC.H.
When the WndProcO function in GENERIC.C gets this message, it executes the code:

case IOM_OOIT:*I
hOC = GetDC (hWnd) ; 1* get device context */
TextOut (hOC, 10,20, "Ok, I did it!", 13);
Releas~DC (hWnd, hOC) 1* release device context *1
break; ,

The program uses the Windows function GetDCO, to get some information about the video screen. Using this
information (called the device context), the program writes the words "Ok, I did it!" using the Windows function
TextOutO. Finaliy, the memory tied up with the screen information is released by using ReleaseDCO. Those three
functions put th~ words on the screen.

Similarly, if,the user clicks the "Quit" menu item, the program executes the DestroyWindowO function.
DestroyWindowc) deletes the program's window, causing the program to end. This is called "terminating" an applica
tion. Windows sends the program the \VM_DESTROY message, which is processed to exit the program.

We have covered the operation of the WinProcO function. What about all of the code in the upper WinMainO
function of GENERIC.C? Most of this code deals with creating the program's main window. Creating a window is a
three step process:,

1. First, you have to create a window "class." The class is described by filling in a bunch of data in a structure called
wndclass. Here is an example of one of those lines.

wndclass.hlcon = Loadlcon (hlnstance, gszAppName) ;

In this case, every window created with this window class will refer to an icon with the same name as the program
"generic." The global variable gszAppName is defined in the GENERIC.H header file. Once all of the window class, ' 'tft
data is filled in, you notify Win90ws that you have created a new class of windows by using the function
RegisterClassO.

2. 'Second, you use the CreateWindowO function to create one or more windows based on the window class.
CreateWindowO passes more information on to windows, such as the style of the window, the background color,
etc.

3. Finally, you display the window by calling the ShowWindowO function. At the bottom of the WinMainO function
you will see the rather odd loop:

while (GetMessage (&msg, NULL, 0, 0»
{

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

1* the message loop *1

This loop, called the message loop, is in every Windows program. Windows passes all of the messages to the
program via the functions in this loop. There are a few other functions that can be used in the message loop for special
purposes like menu accelerator keys, but usually the loop will look exactly like this one.

If you want to type in the'GENERIC.C program, compile it, and run it, you will need a couple of other small files.
These files are the resource file that defines the menu, icon, and other resources used by the program; the definition

I'.

4

1. OVERVIEW OF WINDOWS PROGRAMMING V

file that gives the compiler some guidance when creating the program; and the make file, to help automate compiling
~nd linking the program.

The resource file GENERIC.nC is simple. It includes an icon file GENERIC.lCO that was created with the
SDKPaint application that comes with the Windows Software Development Kit. It also defines the program's menu.
Note that the menu items are given lD numbers, which are defined in the header file.

o Listing 1-3. GENERIC.RC Resource File'
1* generic.rc
#include <windows.h>
lIinclude "generic.h"

generic ICON generic.ico

generic MENU
BEGIN

MENUITEM "&Do It!"
MENUlTEM U&Qui t",

END

IDM_DOIT
IDM_QUIT

The .DEF definition file provides the linker with information on how to assemble the finished program. Chapter
14, Memory Management, contains a full discussion of all of the statements that can be put in definition files. Here is
a brief description of this example file.

The DESCRIPTION string is added into the file, usually to contain copyright information. EXETYPE of WINDOWS
tells the linker that this will be a Windows 3.0 version program. The STUB line names a small file that ends up
becoming the beginning of the finished program. The WINSTUB file is the code that prints out a warning message if a
user tries to run a Windows program from DOS.

The CODE and DATA statements control how memory will be managed for this program. Listing 1.4. shows the
normal settings. ~WS~ZE anq STAOKSIZE control the amount of memory allocated for the program's local data
heap ~t:lq s~ack. Fi~allYI the EXPORTS section names all of the functions (besides the mandatory WinMainO) that the
program will want Windows to call.

e::> Listing 1-4. GENERIC.DEF Def'mition File
NAME
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

GENERIC
'generic windows' program'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELQAD MOVEABLE MULTIPLE
1024
5120
WndProc

NMAKE.EXE is a program that runs other programs, typically compilers and linkers. NMAKE automates compila-
. tion of a program based on an NI\1AKE control file. The convention is to name the NMAKE control file the same as the

main C program, but without an extension. For example, the N~1AKE file for GENERIC.C is GENERIC, shown in
Listing 1.5. The GENERIC listing starts with the ALL statement. This tells NI\1AKE that we are trying to create
GENERIC.EXE and that any file that has been saved more recently than GENERIC.EXE is going to need to be included
in the next compilation. .

The next two lines define macros. Anytime the CFLAGS word is found preceded by a dollar sign and parentheses,
the line of compiler switches "-c -D LINT_ARGS -A -Os -Gsw -W2" is substituted. These are the standard compiler
switches for compiling a small Windows C program. Similarly, LFLAGS is replaced by /NOD, a linker control switch.
These flags are discussed in Chapter 14 on memory management.

The remaining lines tell NMAKE which files to compare to decide if a file needs to be recompiled. For example, if
either GENERIC.C or GENERIC.H has been saved more recently than GENERIC.OBJ, the next line is executed. The
resource compiler, RC.EXE is controlled by the next group of commands. The last group controls the linker. Note that
RC is run again at the very end of the NMAKE file. The resource compiler adds the compiled resource data (from our
resource file above) to the program file and then marks "the completed program as a Windows 3.0 version application.

5

WINDOWS API BIBLE

o Listing 1-5. GENERIC-The NMAKE File
ALL: generic.exe

CFLAGS=-c -0 LINT_ARGS -AS -Os -Gsw -W2
LFLAGS=/NOO

generic.obj : gener.ic.c generic.h compi le the C fi le
S(CC) $(CFLAGS) generic.c .

generic.res: generic.rc generic.ico
rc -r generi c. rc

compile the resource file

gener;c.exe : generic.obj generic.def generic.res
link $(LFLAGS) generic, , ,libw slibcew, generic
rc generic.res

link'm together

The last file you have to create is the program's icon. This is done using the SDKPaint application, choosing the
icon file type. Save the icon you create as GENERIC.ICO. Once you have all of these files, you can create the working
program by typing the command

NMAKE GENERIC

from within DOS. If you have not done all of this, I suggest you try it. The GENERIC application serves as the basis for
most of the programming examples in the rest of the book. You can run the program by double-clicking the
GENERIC.EXE file name from within the file manager, or by using the "Program Run" menu item from the program
manager, or by typing WIN GENERIC from the DOS command line.

How Windows Programs Are Compiled and Linked
In a conventional C program, you build the program by first compiling all of the C language files and then linking them
to make the final exem1table file (an .EXE file in DOS). Windows works the same way, but with an added step: the
resource compiler. One of the many clever ac;;pects of the Windows environment is the separation of programming
code (C code) from programming resources. In Windows, resources refer to things like menus, dialog box outlines,
icons, bitmaps, and blocks oftext. They are stored in it resource file, separate from the C language files. Resource files
are compiled using the resource compiler, RC.EXE.

If you look at the GENERIC.RC file, you ,vill see that only two resources are included in this simple example. The
first is the icon. The resource compiler reads the line

generic ICON generic.ico

and pulls in the icon data from the file GENERIC.ICO. The name "generic" on the left is then associated with the data
from this file.

Similarly the lines

generic MENU
BEGIN

MENUITEM "&00 It!"
HENUITEM "&Quit",

ENO

I O~'-OO IT
10M_QUIT

define a menu with two items ("Do It!" and "Quit"), which are associated with the menu item numbers IDM_DOIT and
IDM_QUIT (defined in GENERIC.H). Given this simple definition, Windows knows to space the menu items along the
menu line of the window, highlight the items when clicked with the mouse, etc. The only thing left for the programmer
to worry about is what ~ction to take when the menu item~ are activated. -

6

1. OVERVIEW-OF WINDOWS PROGRAMMING "

The other added file needed for Windows programs is the definition file. GENERIC.DEF provides basic informa
tion about how to build the Windows program. For example, you specify the amount of memory to reserve for the
program's stack and free memory area, how memory is to be managed (MOVEABLE ...), and the name ofthe functions
that Windows will be passIng messages to (EXPORTS ...). We will discuss this file in the chapter on memory manage
ment functions. For now,just realize that a file like this is needed for every Windows program and that .DEF files tend
to all be similar. The full sequence of events in the creation of the GENERIC.EXE program is as follows:

GENERIC.C -> compiled by CL -> GENERIC.OBJ
GENERIC.RC -> compiled by RC -> GENERIC.RES
GENERIC.OBJ + GENERIC.RES + GENERIC.DEF -> linked by LINK and RC -> GENERIC.EXE

The NMAKE file takes care of all of this for us, so that you only have to issue one command (NMAKE GENERIC) to
create the complete program.

How Windows Programs Work
If you check the file size of the GENERIC.EXE file, you will find that it is about 8200 bytes. This is remarkably s,mall,
considering that you'have a resizeable graphics window, icon and menu functions built in, and full mouse support. The
secret to this small size is that Windows programs do not contain even a fraction of the program code needed to do all

- of these operations. The program you create makes uses of a large collection of functions that are part of the Windows
environment when Windows is running on your computer. Every Windows program shares these working libraries of
functions for control of the screen, printers, keyboard, mouse, menus, bitmaps, and a long. list of other functions.

This collection of working functions is maintained in files stored in the SYSTEM directory on your hard disk. The
SYSTEM directory was created when you installed Windows. The three primary files are

GDI.EXE Video display and printer functions.
USER.EXE Mouse, keyboard, sound, communications port and timer support .
. KERNEL.EXE File and memory management.

Each ofthes~ programs in turn calls driver files (like DISPLAY.DRV) for specific functions. Windows onliloads
the modules it needs into memory and swaps them out of memory when they are no longer needed. Besides saving you,
the programmer, from having to create all of this logic every time you \\Tite a complete program, Windows also greatly
reduces memory consumption. All of the9tpplication programs running at once share the same basic support library
for the hardware.

As we will see in Chapter 14, Memory Management, Windows does even more than this to conserve memory. If
you write a large program with a number of C files linked together, Windows will load just the parts it needs to start up.
Later, as the user makes use of other functions, Windows will load the other parts as needed. Windows will also move
data and programs around in memory to make room for new material. All of this is transparent to the user. The bottom
line is: Our little GENERIC.C program may not look like much in its raw C language form, but when it is operating as
a running program, it has an army of Windows functions behind it.

I

Windows Naming Conventions-WINDOWS.H
Windows has a lot of functions. To minimize the chance of passing the wrong kind of data to a function, the developers
of Windows developed a consistent naming convention so that the name of the variable indicates the type of data to
which it refers. This system of names is often call "Hungarian notation" in honor of its inventor, Charles Simonyi. The
basic system of prefixes is shown in Table 1-1.

7

t\'INDOWS API BIBLE .

b ' BOOl (int, use only TRUE and FALSE values, 1 and 0)

by BYTE (unsigned char)

c: char

d~ . DWORD (doubles word, an unsigned long integer)

fr.

9
h

n

p

s

sz

w

function

global (the author's use of "gO)

handle (explained below)

int (two byte integer)

long

short (int) or-near pointer

pointer

string

string tenninated by zero

word (two bytes)

Table 1-1. Variable name prefix codes used in Hungarian 'Mtation

\

For eXample, the variable lpszBigName is a long pointer to a zero terminated string (l = long, p = pointer, sz =
zero terminated string). Also note the use of capital letters in the name to make tile word breaks clear without
wasting space. Extendingthis concept, Windows makes extensive use ofthe C langu~ge preprocessor to create and
use new data types. In many cases these data types are just another name for an integer or long "'llr~abl~. Using the
Windows name, rather than the underlyin; data type, helps keep your program clear and reduces the chances of
making a silly mistake. I .

All ofthese typedefs and defines are in a large header file called WINDOWS.H. You can see a reference to this file
at the top of GENERIC.C and GENERIC.H. Every program you write under Windows will need this header file at the
top, so that the compiler can keep track of all the preprocessor directives. Listing 1-6 provides a few examples from.
WINDOWS.H. .

'> Listing 1-6. WINDOWS.H Excerpt {l

typedef int BOOl;
typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned long DWORD;
typedef char near *PSTR;
typedef char far *lPSTR;

typedef WORD HANDLE;
typedef HANDLE HWNDi
typedef HANDLE HICON;
typedef HANDLE HOC;
typedef HANDLE HMENU;
typedef HANDLE HFONT;

typedef struct tagPOINT
{

i nt X;
int y;

} POINT;
typedef POINT *PPOINT;
typedef POINT NEAR *NPPOINT;
typedef POINT FAR *lPPOINT;

8

typedef struct tagRECT
{ '.

int left;
int top;
int right;
int bottom;

} RECT ;
typedef RECT
typedef RECT NEAR
typedcf RECT FAR

#define WM_CREATE
#define WH_OESTROY
#define WH_HOVE
#define WH_SIZE

Ox0003
Ox0004

*PRECT;
*NPRECT;
*LPRECT;

Ox0001
Ox0002

1. OVERVIEW OF WINDOWS PROGRAMMING ...

The first six lines in Listing 1-6 give shorthand names for common data types. This saves time by allowing you to
use the word "BYTE" in place of "unsigned char" any time you declare a variable name. Note that the shorthand names
follow the prefix rules. For example PSTR is a pointer to a string, while LPSTR is a long (far) pointer to a string. The
next group of typedefs define "HANDLE" and then define a bunch of different handles for icons, menus, etc. If you
trace the lineage oftypedefs, you will realize that all of these handles are just unsigned ints. Windows uses them to
keep track of all sorts of data in memory, inch~.ding bitmaps, memory blocks, icons, logical brushes, etc. Handles are
defmitely NOT addresses in memory.-Just think of a handle as an ID value for a data item.

The third group in the example, shows the creation of a new data types POINT and RECT for points and rectangles.
In this case, the typedefs include the creation of structures to hold thex andy coordinates. Three pointer data types
are then based on the data types. The handy thing about complex data types like these is that you can refer to all four
data points that define a rectangular area with a single variable name. The last group of defines in Listing 1-6 provides
names for the numeric values of a series of Windows messages. These names make it a lot easier to read the program.
A complete listing ofWINDOWS.H is inclu'ded at the end of this book. As you start programming in Windows, you will
probably fmd yourself referring to this listing frequently. '

Improving GENERIC
If you try to resize the GENERIC program's window, you will notice that the "Ok, I did it!" message disappears every
time you change the \\indow's size; That is because Windows repaints the center of the window (called the client

'area) every time a part of the window is changed or resized.
To keep some text on the client area, we can retype it every time the window is repainted. How do we know when

Windows wants to refresh the screen? Simple, we just lookfor the WM_PAINT message in our WinProcO function.
Listing 1-7 shows the WinProcO function for the modified GENERIC.C program. The changed portions areempha-
sized. '

.t:::> ~isting 1-7. GENERIC2.C-Changes to Process the WM_PAINT Message
long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ "

HOC
PAINTSTRUCT

hDC ;
ps i

1* device context handle *1

switch (iMessage)
{ '. "

1* process windows messages *1

-;.".

case W,,-PAINT:
~pC ~ BeginPaint(hWnd, &ps) ;
TextOut (hOC, 1, 1,

"I I m here becau~e of WM_PAINT.",' 29) ;
EndPaint (hWnd, &ps) ;

,:. brea~; . " "
cilse"WM_CO"MAND: !* pr,b.Cf:S~.,men~ ite!Rs *1

.', '$.'Ii tcf\ (.,par~m)
(.'

/case ID".,...DOIT: 1* User, hit the "Do it" menu ;.tem *1

9

WINDOWS API BIBLE

}

}

hOC = GetOC (hWnd) ;
TextOut (hOC, ,10, 20, "Ok, I did it!", 13)
ReleaseOC (hWnd, hOC) ;
break;

case 10M_QUIT:

}

OestroyWindow (hWnd)
break;

break;
case WM_OESTROY:

default:

PostQuitMessage (0)
break;

return OefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;

Now when you run the GENERIC.EXE program, the window always shows the message "I'm here because of
WM_PAINT." This message persists after resizing the window, as it is repainted every time a WM_PAINT message is
received. The result looks like Figure 1-3. The old message "Ok, I did it!" still appears if you click the "Do It!" menu
item, but continues to disappear if you resize the window.

Besides demonstrating how the WM_PAINT message is used, this example is typical of how Windows programs
are developed. You start with a simple outline such as GENERIC;C, then gradually add the functions you need for your
specific application. The end results can be as different as a spreadsheet and como'

, munications program. They all have their roots in th'e basic structure of
GENERIC.C. - . I:-"I!=-O~I"-=Q_uit _______ --" __ --I

I'm here because ofWM_PAlNT.

Instances and Message Loops,
We went over the code in GENERIC.C's WinMainO funCtion pretty fast. Although
all of the functions used in WinMainO are discussed in more detail in later chap-
ters"there are a few points worth noting here. You may have noticed that both Figure 1-3. The Improved
WinMainO and WndProc() are declared with the PASCAL statement. This saves a GENER/G.G Processing the,

, few bytes whEm the compiler pushes the function's parameters on the 'stack. The WM.:.,PAINT Messages.
trade-off is that the PASCAL convention does not allow functions to have a variable
number of parameters. Functions like printfO cannot use the PASCAL calling convention, as you do not know in
advance how many parameters will be passed to the function. Windows uses the PASCAL statement wherever possible
to make the code as small and fast as possible., '"
, ,. The WndProcO functi'on is also preceded by the FAR statements. This makes the address of the function a FAR

pointer. As Windows will use all available memory to hold programs, FAR pointers are needed for functions that
Windows calls directly. '

The first two parameters passed by Windows to WinMainO when the program starts are hInstance and
hPrevInstance. These are "instance handles." You can run more than one copy of a program at the same time under
Windows. Each vemion of the program is called a "program instance." Windows keeps only one copy of the program's
code in memory, but keeps separate data for each instance.

GENERIC.C's WiitMairiO function stores 'the instance handle in a gl.obal variableghInstance, defined in
GENERIC.H. This is done because the instance handle is frequently needed in calli.ng other functions, and it, saves a
little time if you keep a copy of the handle. If the program is starting for the first time (no other copy is running), the
hPrevInstance will be NULL (zero). If another copy is running, hPrevInstance will be an integer value. GENERIC.C
checks this and does not bother trying to register the Window class for the program if another instance exists. That is
because the first instance of the program will have already registered the class.

WinMainO passes two other parameters. nGmdLine is a pointer to a null-terminated character string containing
the command line that launched the program. You can set the command line from within the program manager using
the "FilelProperties" menu item., This is rarely used in Windows. Windows programs tend to use initialization files
such as WIN.INI to pass data to the application on startup. Support for initialization files is discussed in Chapter 20~ _
MS DOS and Disk File Access. , \

10

1. OVERVIEW OF WINDOWS PROGRAMMING V

The nCmdShow parameter is an integer. This value is passed to the ShowWindowO function later in WinMainO
to control the initial appearance of the window. You do not have to use this value with ShowWindowO. The
ShowWindowO function description in Chapter 3 discusses other options, such as starting the window in a minimized
(iconic) state. - \.

The WiildProcO function also has four parameters. hWnd is the handle of the window receiving messages from
Windows. Windows maintains a list of all window~ in memory, using the handle (an unsigned integer) as an index. We
will use this handle to refer to the window in many functions.

iMessage is the message from Windows. This is an unsigned integer, usually referred to by the symbolic name
defined in WINDOWS.H, such as WM_PAINT. The "WM" stands for Windows Message. The wParam and IParam
parameters are data that are passed along with each message. wPm'am is a WORD (two bytes), while IParam is a
LONG value (four bytes). Their meaning will depend on the message being sent. For example, if you change the size of
a' window, Windows will send a \V1CSIZE message. With this message, IParam will hold the new height and width of
the window after resizing. IParam and wParam have different meanings with every Windows message.

In the simple GENERIC example, only a few Windows messages are acted on by the WndProcO function. The rest
of the messages fall through to the bottom ofWndProcO and end up sent to DefWindowProcO. This function does the
default actions for all Windows messages. Default actions are things like·processing MCSIZE messages to change the
window's size. You can stop tIie default action from occurring by intercepting the message in the WndProcOfunction,
and then just returning zero from WndProcO, rather than passing the message on to DefWindowProcO. More on this
in Chapter 8, Message Processing Functions.

Program Listing Conventions In This Book
The GENERIC application describe~ above forms the basis for every example in this book. To save space, repeated
portions of the program listings are not shown unless some change must be made. In most cases, the only changes are
to the WndProcO function. If the example listing shows only the WndProcO function, you can assume that WinMainO
and the support files (GENERIC, GENERIC.H, GENERIC.DEF, GENERIC.RC) are all identical to those listed in this
chapter.

You will also note the use of two global variables in many of the examples. ghlnstance and gszAppName are
defined in GENERIC.H. They contain the program's instance handle and program name, respectively. The instance
handle and application name are used in many different function calls. You can easily write code that avoids the use
of these global variables. They are used in the examples to save space and improve clarity. _

One final space saving trick is used in simple examples where only the top few lines of WndProcO are used to
demonstrate a function. If the rest ofWndProcO is identical to the GENERIC.C, the bottom portion is replaced with:
/ Other program lines] .

11

Usually the word ''window'' brings to mind the application program's full client area, frame, menu, and caption bar. It
turns out that Windows uses the same low-level logic to control all sorts of similar objects, i~cIuding windows, buttons,
list boxes and scroll bars. All of these are forms of;'windows." They are all created using the CreateWindowO function.
The'main elements of a window are illustrated in Figure 2.1. .

CreateWindowO is the most complex function in Windows. It is so complex because this one function can cr~ate
a wide range of objects. Within each family of objects, such as scroll bars and buttons, there are a range of options.
These options give you control over what the object looks like, where the text goes, if lists are sorted, and so on. The
~ifferent options are given names in the WINDOWS.H file. In many cases, you can use several of the options at once,
combining their effects. For example, a list box control, where you want the contents sorted and the parent window
notified of any selections, would have the series of Windows styles

LBS_NOTIFY I LBS_SORT

The C language binary OR operator (/) combines
these binary values before they are passed to the
CreateWindowO function.

The other important control over a window is the
window class upon which it is based. There are two basic
choices here: Use an existing window class such as "BUT - (The Client Area)

TON" or the parent "'indow's base class, or create a new
'class from scratch. We will look at an example using both Frame

methods in the next two sections. Figure 2-1. Elements of a Window.

Using CreateWindow() Based on an Existing Class

Minimize
&
Maximize
Btns.

Let's modify the GENERIC.C application to show some window types in the program's client area (the work area
below the menu bar). The only changes will be in the WinPro90 function. We will put in four calls to CreateWindowO,
making button, static text, edit, and scroll bar ''windows'' when the user clicks the "Do It!" menu item;

C Listing 2-1. Creating Different Windows Using the Same Base Class
long FAR PASCAL WndProc. (HW~D hWnd, unsigned iMessage, WORD wParam, LONG l~aram)
{

HWND hButton,hStaticText, hEdit, hScroll ;

switch (iMessage)
{

case WM_COMMAND:

1* process wi ndows mes~Clges *1

swi tch (wParam)
{

1* p~oce~s ~e~~ items *1

case IDM_DOIT: 1* User hit the I~Do it" menu item *1
1* c~eat~ and show a button *1

hButton = CreateWindow ("BUTTON", "Button",
WS_CHILD / WS_VISIBLE / BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, CHILD1" Q~I!"\sta.nce, NULL)

Sho~~1ndow (h~ytton, SW_SHOW) ;
1* create and show static text *1

hStaticText = CreateWindo~ (IISTATIC", "Stati~ T(!~t",
WS_CHIL~ I ~~,:,:"VI~~BLE ! BS.,.,.PU~H!:!UTTQN,

/Otherprogram linesj

2. CREATING WINDOWS ...

150, 10, 100, 15, hWnd, CHILD2, ghInstance, NULL>
ShowWindow (hSta~icText, SW_SHOW),;

1* create and show an edi t control *1
hEdit = CreateWindow ("EDIT", "Edit Me",

WS_CHILD I WS_VISIBLE I WS_BORDER,
150, 40, 100, 25, hWnd, CHILD3, ghInstance, NULL>

ShowWindow (hEdit, SW_SHOW) ;
1* create and show a scroll bar *1

hScroll = CreateWindow ("SCROLLBAR", ,
WS_CHILD I WS_VISIBLE I SBS_HORZ,
10, 100, 200, 20, hWnd, CHILD4, ghlnstance, NULL)

ShowWindow (hScroll, SW_SHOW)
break;

The rest of the program is the same as GENERIC.C)
The button, scroll bar, static text, and edit controls are all called "child window controls." The word "control"

means that they were created with a predefined window class such as B"UTION, rather than registering a new window
class. They are child windows because each is related to the parent window and will only be shown if the parent is
visible. The WS_CHILD flag used in each call to CreateWindowO creates child windows. CreateWindowO was also passed
the parent window's handle hWnd. This allows CreateWindowO to make the correct linkup of child and parent.

Notice that the first parameter in each of the calls to CreateWindowO is a word that specifies the type of child
w!ndow control being created: BUTION, STATIC, EDIT, and SCROLLBAR. The second parameter is the text string
that will show up inside the control. Scroll bars do not have text, so a null string ('m) is included. The series of
numbers, such as "10,10,100,40", sets the size and location of the child window. The parameter third from the last is
the ID value for the window. In this case, the four controls have been numbered in sequence CHILD1, CHILD2,
CHILD3, CHILD4. These values are normally defined in the program's header file

/' d e fin e CHI L D 1
#define CHILD2
#define CHILD3

100
101
102

Also note that the program's instance handle (saved as the global variable ghlnstance) is passed to Create-
WindowO. \.',

Ilo It! quit

Static Text
('

IEdit Me

When you compile and run this program, clicking the
"Do Jt!" button results in a screen like that shown in Fig
ure 2-2. Experienced programmers will note that this ex
ample looks like a dialog box (the subject of Chapter 13).
However, this is a normal Window containing child win-
dow controls. I" '

When you resize this window, the child windows in
the client area are automatically redrawn. This is a big ,
improvement over our GENERIC.C program in Chapter
1, where We had to explicitly redraw the text every time a
\VM_P A1NT message was received. We have takenadvan
tage of Windows' built". in iogic for child windows. Win
dows keeps track of child windows and updates them
along with their parent. Figure 2-2. , Four Types of Child Window Controls.

If you click the "Edit Me" edit control with the
mouse, a beam cursor (caret) appears in the control, and you can type in new letters, backspace to delete, etc. There
is a lot of built-in logic in the edit control, which saves the programmer from doing a bunch of mundane code. You can
create a serviceable text editor with nothing more than a large edit control. Edit controls arf~ covered in more detail
in Chapter 9, Windows Messages.

The example in Lisitng 2-1 does not do anything when you click one of the four controls. If you want to use the
button coritrol in a real prog~am, you will need to process the messages Windows generates. If you click the button

13

WINDOWS API BIBLE

control with the mouse, Windows sends a MCCOMMANDwith wParam equal to the ID value of the control. A code
fragment for this type of processing might look like Listing 2-2.

C Listing 2-2. Example Code for Recognizing Button Controls
long FAR PASCAL WndProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

switch (iMessage) 1* process windows messages *1
{

case WM_COMMAND: .1* process menu items 1<1
switch (wParam)
{

case CHILD1: 1* control 1 pressed *1
1* do something here *1
break;

case CHILD2: 1* control 2 pressed *1
1* etc. *1

{Other program lines]

This simple interception of WM_COMMAND messages is typically used for buttons. For more complex controls
such as the scroll bar and edit controls, a number of messages are possible, depending on what the user does with the

. control. Scroll bars are the subject of Chapter 5. Edit controls are discussed in Chapter 9 under the EM and EN
message section (Edit Message and Edit Notify).

Creating New Window Classes with Separate Message Processing
The previous example used four ofthe predefined control classes to create child \vindow controls. We can also create
child windows that are complete windows, including menus, captions, minimize and maximize boxes, etc. The child
window becomes its own "little world" and can display information and process Windows messages independently
from its parent window. flle best way to deal with more complicated child windows is to give them their own message
processing function. This allows you to break up your program
logic into a set of similar message processing functions, each
·modeled after WinProcO.

To show how child windows can process their own mes- Q 0 It! 2 u it
sages, let's create a program that looks like Figure 2-3. The 1-----------------1
WINDEXM2 program's main window will be identical to the.
GENERIC.C program from Chapter 1. In the client area we will
put a child window. The child window will be built from a sepa
rate.windowclass, and have its own message processing func.- .
tion to deal with screen updates, etc. . ,

Creating this program will require modifications to sev: -i

eral parts of the GENERIC.Capplication. It is best to make a
copy of all the GENERIO.* files and then modify each ofthe,m.

WINDEXM2.C (ListIng 2-3) has an identical WinMai~O
function to GENERIC.C. In the WinProcO function, WIN
DEXM2 picks up the WM __ CREATE message that Windows
sends when a program. is started. When this message is re
ceived, WINDEXM2 creates a new window.Class called
"SecondClass." This class has several changes compared to the
base class we used to create the WINDEXM2 window. The fol-
lowing'line sets the message processing function equal to Figure 2·3. WINDEXM2-A Child Window with.
"ChildProc." / ,Separate Message Processing.

wndclass.lpfnWndProc = ChildProc ;

This function is shown at the bottom ofWINDEXM2.C. The class alsons..es a different cursor shape than the base
window class because we specified the predefined IDC_ CROSS-cursor shape. Similarly, a predefined "brus,h" us~~ to

14

2. CREATING WINDOWS ~

paint the background color LTGRAY_BRUSH is loaded using the GetStockObjectO function. Stock objects are pens
and brushes that are always available in Windows. Chapter 11, Painting the Screens, explores creating custom pens
and brushes. Chapter 6 covers cursors. '

wndclass.hCursor
wndclass.hbrBackground

= LoadCursor (NULL, 10C_CROSS) ;
= GetStockObject (LTGRAY_BRUSH) ;

The changes to the cursor and background brush mean that any time a window is created from the "SecondClass"
window class; the mouse will switch to a cross shape in the child window's area and the background will be painted
light gray.

o Listing 2-3. WINDEXM2.C
/* windexm2.c example of creating a child window with message processing */

#include <windows.h>
#include "windexm2.h"

1* window's header file - always included */
1* the application's header fi le *1

int PASCAL WinMain (HANDLE hln~tance, HANDLE hPrevlnstance, LPSTR lpszCmdLine,
int nCmdShow)

{

1* Exactly the same as WinMainO in generic.c - chapter 1 *1
)

long FAR PASCAL WndProc (HWNO' hWnd, 'unsigr,ed iMessage, WORD wParam,
{

LONG lParam)

HDC hDC ; 1* device context handle */
1* the wi ndow class *1 stat i c WNDCLASS wndc lass;

static HWND hListBox 1* the window handle *1

switch (iMessage)
{

1* p'ro'cess wi ndows messages * 1

case WM_CREATE: 1* bui ld chi ld window when program' starts *1,
wndclass.style = CS_HREORAW 1 CS_VREDRAW 1

CS_PARENTDC
wndclass.lpfnWndProc = ChildProc;
wndclass.cbClsExtra = 0 ;
wndc lass. cbWndExtra = 0 ;
wndclass.hlnstance = ghlnstance
wndclass.hlcon = NULL;'
wndclass.hCursor = LoadCursor (NULL, IDC_CROSS) ;
wndclass.hbrBackground = GetStockObject (LTGRAY_BRUSH)
wndclass .lpszMenuName = NULL;
wndclass.lpszClassName = "SecondClass" ;

1* register the window class *1
if(RegisterClass (&wndclass»
{ ,

}

hListBox = CreateWindow ("SecondClass", "Child Window",
WS_CHILO'I WS_VISIBLE 1 WS_BORDER 1 WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL) ;

ShowWindow (hListBox, SW_SHOW)

break
case WM_COMMAND: 1* process menu it.ems *1

swi tch (wParam)
{

case

case

}

IDM DOlT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ; 1* get device context *1
TextOut (hDC, 10, 20, "Ok', I did.it!',', 13);
ReleaseDC (hWnd,hDC); 1* release device context *1.
break;

10M QUIT: I*~top application *1
DestroyWindow (hWnd) ;
break;

15

WINDOWS API BIBLE

break;
case W"'_DESTROY:

PostQui~Message (0)
break;

default: 1* default windows message processing *1
, return DefWindowProc (hWnd, iMessage, wParam; lParam) ;

}

return (OL) ;
}

1* Here is a separate message processing procedure for the'child window *1

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WOR~ wParam,
LONG lParam)

{

HDC
PAINTSTRUCT

switch (iMessage)
{

hDC ;
ps ;

1* devi ce context handle *1
1* paint structure *1

1* process windows messages *1

case WM PAINT: 1* just write in the window *1
hDC = BeginPaint(hWnd, &ps) ;
TextOut (hDC, 1, 1, "WM_PAINT in Child.", 18) ;
EndPa i nt ChWnd, &ps) ;
break;

default: 1* default windows message processing *1
return De~WindowProc (hWnd, iMessage, wP~ram, lParam) ;

}

return (OL) ;
}

The function ChildProcO at the end of Listing 2-3 looks similar to the WinProc() function from GENERIC.C. Any
message processing for our child window will be handled in this function. In this example, all we do is put some text
into the window every time a WM_PAINT message is received. We have to make a couple of other changes to fIles to
get all of this to work. One simple thing is to add the function prototype for ChildProc() to our header file so that the

, \.': compiler can figure out ~hat data types are used. WINEXM2.H is shown in Listing 2-4.

o Listing 2~4. WINEXM2.J1 Header File
1* windexm2.h *1

#define IDMDOIT 1
#define IDM:QUIT 2

1* global variables *1
int ghInsta~ce ;
char gszAppName []= "windexm2" ;

1* function prototypes *1

1* menu item id values *1
...---".-..

long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
long FAR PASCAL ChildProc CHWND, unsigned, WORD, LONG)

The other change is to put a reference to ChildProc() in our defmition fIle, such as where shown in Listing 2-5.
This is needed only when the function will be accessed directly by Windows, processing Windows messages. That's
exactly what ChildProcO does, so it is important not to forget to add it to the .DEF file. Details on .DEF files are
covered in Chapter 13~ Dialog Boxes.

o Listing 2-5. WINDEXM2.DEF Definition File
NAME
DESCRIPTION
EXETYPE
STUB
CODE'
DATA
HEAPSIZE

WINDEXM2
'create windows example'
WINDOWS .
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
1024

I 16

STACKSlZE
EXPORTS

5120
UndProc
ChildProc

2. CREATING WINDOWS •

If you compile WINDEXM2.C and try it, you will notice that the child window is updated (painted) automatically
whenever the parent window is resized. The child window has a gray client area (from the class definition), and the
cursor changes from the normal arrow to a cross shape when it is within the child window's bounds.

Messages Generated by Create Window() .
In WINDEXM2.C, the WndProcO function processes the MvCCREATE message. It is at this point that WndProcO
creates-the child window. Where did WM_CREATE come from? It turns out that Windows sends five messages to
WndProcO when the program's main window is created by calling CreateWindowO in WinMainO. WINDEXM2.C
chooses to act on one of them, W~CCREATE, but just passes the other four on to DetwindowProcO. Windows knows
to send the messages to WndProcO, as that was the name of the window message processing function specified in the
class definition for the program's main window. We also included WndProcO in the EXPORTS section of the program's
.DEF definition file, so that Windows would have the full address.

The sequence of messages that are generated by CreateWindowO is shown in Table 2-1. The actions described for
each message are taken care of by the DeiWindowProcO function at the bottom ofWndProcO. You can get an idea of
how important DefWindowProcO is from the complexity of these actions. Fortunately, DetwindowProcO comes With
Windows, so we can take advantage of all of these built-in features without any extra coding.

Message

WM_GETMINMAXINFO

WM_NCCREATE

WM_NCCALCSIZE

WM_CREATE

WM_SHOWWINDOW

Meaning ,

Determines the size and position of the window.

Window nonclient area about to be created. Memory for the window is allocated intemally by
Windows. Scroll bars are initialized.

Calculation of the window's client area and scroll bar positions.

Notification that a window is about to be created.

Display the window.

Table 2-1. Messages Generated by CreateWindow().

An interesting point to mention hCfrl is the order of eXeCltH.Jli of. ;ilrui.m~ parts of the WINDEXM2 program. If you
get into the CodeView For Winrlmvs dobugger and set a few Lre:':"'llJlms, ~(hl will find that the five messages are
processed by WndProcO right after CreateWindow-o is ca\1ed and before the next line in WinMainO is executed.

This behavior is completely different from a C program running under DOS. Under DOS you can expect one
program line to be executed right after the previous one. Windows programs are different. Windows sends messages to
WndProcO when Windows feels like it, not necessarily when you might expect it. Function calls within WndProcO
may also generate messages that in turn are processed by WndProcO. Message processing functions such as
WndProcO are said to be "reentrant," as they may be called many times in a single logical activity. More on this in
Chapter 8, Message Processing Functions.

Other Uses for Windo\'v Controls
In the function description for CreateWindowO that follows, there is a long table of window styles. There are sO many
window styles available that it is difficult to keep track of them all. Here are a few unusual ones that might come in
handy.

The static class is normally used to display text on ~ window. Using the static class is more convenient than
repainting the text.every time a Wr.CPAINT message comes along because the static window class is automatically
redraWn. Some of the options for the static class allow items other than text. The SS_BLACKRECT style fIlls the region
with the system color for the edge af windows (usually black). Similarly, SS_GRAYRECT and SS_WHITERECT fill

17

rectangles with the screen (desktop) background ana window background colors (defaults are gray and white). You
can use a series of these controls to shade areas of your window's client area, again with automatic updating.

If you use an ampersand character (&) in a button class, the fetter after the & will be underlined. Windows then
uses this letter as an accelerator key. Pressing that letter on the keyboard is equivalent to moving to the button with
the mouse. If you need to display & characters in a window style, disable the accelerator functions by using the
SS_NOPREFIX style, or use a double && in the text string.

The scroll bar class has a couple of styles that are handy if you want to have the scroll bar along one of the sides of
the client area-typical for a word· processing· application. The SBS_BOTTOMALIGN, SBS_TOPALIGN,
SBS_RIGHTALIGN~ and SBS_LEFTALIGN styles all fit the scroll bar to the parent window's client area, using the
default scroll bar width. More on this in Chapter 5, Scroll Bars.

Jfyou want to have an icon on your parent window to pretty things up, there is an SS_ICON style for the static
class. This will ~'lve you from having to use DrawlconO on every WM_PAINT cycle .. You can also create your own
custom buttm:'i,I~~ling bitmaps or painting on the button's client area by using the BS_OWNERDHAWbutton s~e. You
will h".ve ti~ r;i ~ •• ~,; images for not only the button in its normal state, but also for an inverted image reflecting being
pressed 1ml ; !l11:ahled (no input focus) state. See the owner-drawn menu example in Chapter 4 for an example of
processin~ t 11(\ T,H'~;Sages for owner-drawn items.

Function ile:--, criptions
Table 2-2 sU'.iimarizes the three window creation functions. The detailed descriptions follow.

~~"~. _____ ·_.P_u_rp_o_se ___________________ ...;;;;;fg)=.J1

Cre;~\8'''t::il)wO Creates new windows and child window controls.

CreJleWindowExO Creates new windows with an extended style.

Rcai~;!f;IClassO . Creates new windOWS classes.

Table 2-2: FunctiunSfor Creating Windows and Controls.

CREATEWINDOW . fill Win 2.0 C Win 3.0 El Win 3.1

Purpose

Syntax

Description

Uses

Returns

See AlSo

Parameters
IpClassName

Creates new windows and child window controls.

lIWND CreateWmdow(LPSTR lpClassName, LPSTR lpWindowName, DWORO dwStyle, int X,
int Y, int n Width , int nHeigllt, HWND hWndParenl, HMENU hMenu, HANDLEhlnstance, LPSTR
lpParam)j

CreateWindow() builds a ,vindow based on a window class created with RegisterClass() or based
on a predefined control class. The location, size, and style of ,vindow are passed to CreatcWin
dow() as parameters. ShowWindow() is used after the window is created to display it on the
screen.
The CreateWindow function is used both in the WinMainO function to create the application's
main window and also within the program to create child windows and child window controls
such as buttons and scroll bars.
HWND, a handle to the window created. The handle is a unique identifier for the pa;rticular ,vin
dow or control created with each call to CreateWindowO.

RegisterClass(), ShowWindow(), DestroyWindow(), Cr~teWindowExO

. LPSTR: Pointer to a null-terminated stAng which contains the name of the window class. Classes
can either be created using RegisterClassO, or they can be chosen from one of the predefined
control classes described in "Table 2-3. The class names are case sensitive.

18

Class

'BUTTON

COMBO BOX

EDIT

LlSTBOX

MDICLIENT

SCROLLBAR

STATIC

Meaning

A rectangular push button control.

Combination of a list box, with an edit field on top.

Rectangular region where the user calJ enter and edit text.

2. CREATING WINDOWS. Y

~I

A list of character strings. If the Est length overflows the length of the box, a vertical scroll control will automati
cally appear on the right hand side. The list box can contain graphics items, if the LB_OWNERDRAWFIXED or
LBOWNERDRAVVVARIABLE styles are used. See Chapter 9, Windows Messages.

, A Multiple Document Interface window. This style is used for multiple overlapping child windows within the
parent window's client area. See Chapter 29, Multiple Document Interface.

A scroll bar control.

Static text. This style is used to place text on the parent window.

Table 2-3. Predefined Windows Control Classes.

IpWindowName LPSTR: Points to a null-terminated character string that contains the window's name. For BUT
TON styles this string becomes the button's text. For EDIT and STATIC styles the string is shown
in the center of the control. For popup windows it is used as the title.

dwStyle DWORD: Determines the style of window. The styles can be combined by using, the C language
binary OR operator. For example: WS_CHILD I WS_HSCROLL. Styles can be any of those listed in
Table 2-4.

x

•

Y

nWidth

nHeight

hWndParent .

hMen1£

int: The horizontal position of the upper left corner of the child window or)control. You can use
CW_USEDEFAULTto let Windows decide where to put a program's window. '

The X;Y location is from the upper left corner of the screen or parent window client area (for
child windows), measured in pixels (device units).

int: The vertical position of the upper left corner or the child window or ,control. You can use
CW_USEDEFAULT to let Windows decide where to put a program's window.

int: The horizontal size of the window or control. You can use CW_USEDEFAULT to let Windows
decide what size to make a program's window.

The width and height are measured i~ dp.Yice units (pixels).

int: The horizontal size of the \vindow or control. You can use CW_USEDEFAULT to let Windows
decide what size to make a program's window.

HWND: A handle to the window's parent. Specifv NULL if there is no parent window. In this case
the window will not be destroyed automatically when the main program window is destroyed. Use
DestroyWindowO to remove a window from memory.

HMENU: A handle to the window's menu. NULL if the class menu is to be used. Use the dwStyle
parameter to add or eliminate a menu from child windows.

\ '

For controls, hMenu is used to set an integer ID value. This value will be passed as the wParam
parameter of a WM_COMMAND message when the control is activated by a mouse click or key
press.

hlnstance HANDLE: The instance handle for the program module creating the windows.

lpParam LPSTR: A long pointer to a data structure passed to the window. For example the MDI (Multiple
Docu~ent Interface) style passes the CLIENTCREATESTRUCT data here. Normally set to NULL,
meaning that, no data is passed via CreateWindowO.

Related Messages M!_PARENTNOTIFY, WM_NCCREATE, WM_CREATE

. 19

YVINUUW~ API BIBLE

Example

f • . ,

This example shows the creatio~ of, a pushbutton control. The button will have the text "Press
Me" in the center. The upper I.eft corner of the button will be at 10,10 relative to the upper left
corner of the client area. The button will be 100 pixels wide and 40 high. The parent window's
handle is hWnd, and has an instance handle of hlnstance. The button has an ID value of 101.

Creating a window does not make it visible; the ShowWindowO does.

HWND hButton ;

hButton = CreateWi ndow ("BUTTON", "Press Me",
WS_CHILD I WS_VISIBLE I BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, 101, hlnstance, NULL> ;

ShowWindow (hButton, SW_SHOW) ;

Table 2-4 summarizes all of the values that can be used in the dwstyle parameter.

Button Styles

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_DEFPUSHBUTTON

BS_GROUPBOX

BS_LEffiEXT

BS_OWNERDRAW

BS_PUSHBUTTON

BS_RADIOBUTTON

BS_3STATE

Combo Box StYles
CBS_AUTOHSCROLL

CBS_DISABLENOSCROLl (Win 3.1)

. CBS_DROPDOWN

Meaning

Small. rectangular button with text to the right. The rectangle can either be open or
checked. This style toggles automatically between checked and open.

Small circular button with text tb the right. The circle can either be filled or open. This style
toggles automatically between checked and open.

Small rectangular button with text to the right. The button can either be filled, grayed, or
open. This style toggles automatically between checked, grayed, and open.

Small rectangular button with text to the right. The rectangle can either be open or
checked.

Button with text in the center and with a defined (dark) border. This is the button that is
pressed when the user presses the (ENTER) key. There can be only orm DEFPUSH
. BUTTON on a window.

A box outline with text at the upper left. Usep to group other controls.

Causes text to be on the left side of the button. Use'this with other button styles.

Designates a button that will be drawQ by the program. Windows sends messages to
request paint, invert, and disable. Use this style for custom button controls. See the ex-
ample in Chapter 4 on owner-drawn menu items.

A rectangular button with text in the center.

Small circular button with text to the right. The circle can either be filled or open.

Small rectangular button with text to the right. The button can either be filled, grayed, .
or open.

Combo box control. This is a list box with an edit control at the top to display the current
selection. Chapter 9, Window Messages, includes a combo box example and message
descriptions. With the CBS_AUTOHSCROLl style, the edit area at the top automatically
scrolls when typing fills the edit box.

The list box of the combo box control shows a disabled vertical scroll bar when the list box
does not contain enough items to fill the list box window. Without ~his style, the scroll bar
disappears when there are not enough items .

Combo box control with a drop down scroll area. This reduces the space taken by the
combo box when the list is not needed.

I

20

CBS_DROPDOWNLIST

CBS_OEMCONVERT

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

CBS_SIMPLE

CBS_SORT

Dialog Box Styles

DS_LOCALEDIT

DS_MODALFRAME

Edit Control Styles

ES_AUTOHSCROLL

ES_AUTOVSCROLL

ES_CENTER

ES_LEFT

ES_LOWERCASE

ES_MULTILINE

ES_NOHIDESEL

ES_OEMCONVERT

ES_READONL Y (\'Yin 3.1)

ES_RIGHT

ES_UPPERCASE

2. CREATING WiNDOWS ... ,

Combo box control with a drop down scroll area. The edit area at top is a static text item
,which only displays the current selection in the list box.

The combo box control maintains the list box strings in memory. Fetch them by sending a
CB_GETLBTEXT message.

Combo box edit text is converted to OEM character set and then back to ANSI. Useful for
lists of file names.

An owner-drawn combo box. The combo box items are of fixed height. See the combo
box example in Chapter 9, Window Messages, for an example owner-drawn combo box.

An owner-drawn combo box. The combo box items can be of different heights.

The combo box has a list box that is displayed at all times.

The combo box items are sorted automatically.

[gJ1
Forces all memory used by dialog boxes into the application's data, segment.

Creates a dialog box with a modal frame. Note that this can be combined with the
WS_CAPTION and WS_SYSMENU styles.

No WM_ENTERIDLE messages are sent from the dialog box if created with this style.
Normally, WM_ENTERIDLE messages are used to alert the application that the dialog box
is displayed, but no user activity has happened yet.

System modal dialog box. No other window can gain the input focus until this style dialog
box is closed. Used ,tor serious error messages. -

'tX11
Edit control with automatic horizontal scrolling if the text will not fit within the edit box.

Automatic vertical scrolling for an edit control. Used with ES_MULTIUNE. See the ex
ample in Chapter 9 of a multiline edit control with a vertical scroll bar.

Text is centered within the edit control.

Text is left -aligned within the edit control.

All characters within the edit control are converted to lowercase as they are entered.

Allows multiple lines of input within an edit control. This type of control provides basic text
processing functions. The discussion of edit control messages that work with this control
style is in Chapter 9.

~it control where the text is left unchanged when the control loses the input focus.

Edit control text is converted to OEM character set and then back to ANSI. Useful for file
names.

Displays typed-in letters as astersik characters .tn
• The actual typed letters are stored by

the edit control. See the EM_SETPASSWORDCHAR message description in Chapter 9.

The edit text can be viewed, but not changed by the user.

Right-aligned letters within the edit control.

All characters within the edit control are converted to uppercase as they are entered.
;

21

WINDOWS APrBIBLE \

Ust Box· Styies, " j i" [ZJI
LBS_DISABLENOSCROLL ('Nin ,3.1) The list box control shows a disabled vertical scroll bar when the list box does not contain

enough items to fill the list box window. Without this s~jle, the scroll bar disappears when
there are not enough items.

LBS_EXTENDEDSEL Ust box control where more than one item can be selected by using the mouse and the
~~ .

LBS_HASSTRING$ Ust box control containing lists of strings. Send the LB_GElTEXT message to retrieve the
strings ..

LBS_MULTICOLUMN List box with multiple columns. Can be scrolled horizontally and vertically. Send
LB_SETCOLUMNWIDTH to set the column widths.

LBS_MULTIPLESEL Any number of strings can be selected within the list box. Selection by mouse clicking,
deselertion by double-clicking.

LBS_NOINTEGRALHEIGHT .. A list box of fixed size. The list box height is not scaled to match an even number of items
(the default case).

LBS_NOREDRAW A list box which is not automatically redrawn. Convert the control back to normal by send
ing the WM~SETREDRAW message.

LBS_NOTIFY A list box that sends the parent window messages when the user selects one or more
items. The list box messages are discussed in Chapter 9.

LBS_OWNERDRAWFIXED A list box where the program is responsible for drawing all items. Items are of fixed vertical
size. There is a simiiar example using an owner-drawn combo box in Chapter 9, Windows
Messages.

LBS_OWNERDRAWVARIABLE A list box where the program is responsible for drawing all items. Items can be of different
vertical sizes.

LBS_SORT A list box where the items are maintained in sort order.

LBS_STANDARD A list box containing stings, automatically sorted, with messages sent to the parent wino.
dow when selections are made;

LBS_USETABSTOPS A list box that recognizes and expands tab characters. By default, tabs are every eight
spaces. See the EM_SElTABSTOPS message to change this value.

LBS_WANTKEYBOARDINPUT The parent window receives WM __ VKEYTOITEM and WM_CHARTOITEM messages from
the list box when it 'has the input focus and keys are pressed. Handy for setting key
combinations.

Scroll Bar Styles [8] I
SBS_BOnOMALIGN A scroll bar control, aligned with the bottom edge of the rectangle specified by the X, Y,

nWidth, and nHeight parameters used in calling CreateWindow() for the parent window.
The default scroll bar height is used.

SBS_HORZ A horizontal scroll bar control.

SBS_LEFT ALIGN A scroll bar control, aligned with the left edge of the rectangle specified by the X, Y, nWidth,
and nHaight parameters used in calling CreateWindow() for the parent window. The de
fault scroll bar width is used.

SBS_RIGHTALIGN A scroll bar control, aligned with the right edge of·the rectangle specified by the X, Y,
nWidth, and nHeight parameters used in calling CreateWindowO for the parent window.
The default scroll bar width is used. ..

SBS_SIZEBOX . A scroll bar size box control. This is a small box that allows sizing of a window from one,
location. .

22

2. CREATING WINDOWS"

S8S_SIZE80X80TTOMRIGHTALIGN Used with the S8S_SI.ZE80X style. A size box control, aligned with the lower right edge of
the rectangle 'specified by the X, Y, nWidth, and nHeight parameters used in calling
CreateWindow() for the parent window. The default size box size is used.

S8S_SIZE80XTOPLEFT ALIGN Used with the S8S_SIZE80X style. A size box control, aligned with the top left edge of the .
rectangle specified by the X, Y, nWidth, and nHeight parameters used in calling
CreateWindowO for the parent window. The default size box size is used.

S8S_ TOPALIGN Used with the S8S_HORZ style. Puts the scroll bar at the top of the parent window's client
area.

Static Control Sty:es

SS_8LACKFRAME

SS_BLACKRECT

SS_CENTER

SS_GRAYFRAME

SSJCON

SS_LEFT

SS_LEFTNOWORDWRAP

SS_NOPREFIX

SS_RIGHT

SS_SiMPlE

SS_USERITEM

SS_WHITEFRAME

SS_WHITERECT

Window Styles

WS_BORDER

WS_CAPTION

WS_CHILD

WS_CHILDWINDOW

WS_CUPCHILDREN

WS_ CUPSIBUNGS

WS_DISABlED

WS_DLGFRAME

WS_GROUP

A vertical scroll bar control.

cgJl
A static control with a black frame outline.

A static control with the entire center filled with the color used to draw the window frame.
This is black with the default Windows color scheme.

A static text control with the text centered.

A static control with the frame color equal to the Windows desktop background. This is
gray with the default Windows color scheme.

A static control with the entire center filled with the color used to draw the Windows
desktop background. Thi~ is gray with the default Windows color scheme.

A static control containing an icon. The text name specifies the name of the icon to use.

A static text control with the text left-aligned.

A static text control. Text is flush left and truncated to the size of the control.

A static control when it is desirable to display ampersands (&) in the text of the control.

A static text control with the-text string right-aligned.

A static text control.

A user-defined static control.

A static text control with a frame matching the Windows background color (default is white).

A static control with the entire center filled with the color used to draw the parent windows
oackground. This is white with the default Windows color scheme. ,. {

~I
Specifies a border on a window.

Specifies a caption (title) on a window. This cannot be used with the WS_DLGFRAME
style.

Creates a child window. This cannot be used with the w~tPOPLJP style.

Same as WS_CHILD.

Used when creating the parent window. Specifies that child windows will not extend past
the boundarY of the parent.

Use with WS_CHILD style. Keeps child windows from overlapping in painting operations.

Creates a window that is initially disabled (cannot receive the input focus).

A window with a double border.

This style marks a control that the user can reach by using the direction (arrow) keys. Used
in dialog boxes.

23

WINDOWS API BIBLE

,Window'Styles, ",'

WS~HSCROL4

WS-,CONIC

WS_MAXIMIZE

WS_MAXIMIZEBOX

WS_MINIMIZE

WS_MINIMIZEBOX

WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WSJABSTOP

WS_ THICKFRAME

WS_VISIBLE

WS_VSCROLL

Table 2-4. Window Styles.

CREATEWINDOwEx

A window with a horizontal scroll bar.

A window that is initially iconic. Use with the WS_OVERLAPPED style.

A window that is initially maximized.

A window with a maximize box in the upper right corner.

Same as WS-,CONIC.

A window with a minimize box in the upper right corner.

A window with a caption and a border.

~I

Combines the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, and WS3HICK
FRAME styles. This is a standard parent window.

A popup window. Cannot be used with the WS_CHILD style. The window can be dis
played outside of the parent's boundaries.

Combines the WS_POPUP, WS_BORDER, and WS_SYSMENU styles. This is a standard
popup window.

A window with a system menu. This is the square at the upper left corner of the window.
Clicking the system menu reveals menu items for "Restore," "Move," etc.

.Used in dialog boxes to specify at which control the tab key stops.

A window with a thick frame. The frame is used to size the window.

A window that is initially visible. Used with overlapped and popup windows.

A window with a vertical scroi! bar.

m Win 2.0 IE Win 3.0 ra Win 3.1
Purpose

Syntax

Creates new windows with an extended style.

Description

Returns

See Also
Parameters

,dwExStyle

HWND CreateW"mdowEx(DWORD dwE.1:Slyle,LPSTR lpClassNarne, LPSTR lpWindowNarne,
DWORD dwStyje, int X, int Y, int nWidth, int nHeight, HWND hWndParent, HMENU hMenu,

, HANDLE hlnstance, LPSTR IpPararn)j

The CreateWindowExO function is used to create child windows with a double border style and!
or with WM_PARENTNOTIFY messages disabled. Otherwise, It is identical to CreateWindowO.
This is an addition to the 3.0 version of Windows.

HWND, a handle to the window created.

, ,RegisterClassO, ShowWindowO, DestroyWindowO, CreateWindowO

DWORD: Specifies the extended style to use in creating the window. The only thr~e styles cur
rently defined are:
"',:.' ,Meaning ~I

WS_EX_DLGMODALFRAME A window with a double border. You can use the WS_CAPTION style in the dwStyle parameter to
add a title.

WS_EX_NOPARENTN9T1FY Prevents WM_PARENTNOTIFY messages from being sent to the parent window when a child
with this style is created.

WS_EX_ TOPMOST (Win 3.1) Windows created with this style remain above all other non-topmost windows, even when deac
tivated. The SetWindowPosO function can be used to change this status.

Table 2-5. Extended Window Styles.

24

2. CREATING WINDOWS V

lpClassName LPSTR: Pointer to a null-terminated string which contains the name of the window class. Classes
can be created using RegisterClassO.

lpWindowName LPSTR: Points to a null-terminated character string that contains the window's name. For BUT
TON stYle~, this string becomes the button'stext. For EDIT and STATIC styles, the string is shown
in the center of the control.

dwStyle

x

y

nWidth

nHeight

DWORD: Determines the style of window. The styles can be combined by using the C language
binary OR operator (I). For example: WS_CHILD I WS_HSCROLL. Styles can be any of those
listed in Table 2-4 of CreateWindowO.

int: The horizontal position of the upper left hand corner or the child window or control. You can
use CW_USEDEFAULT to let Windows decide JVhere to put a program's window.

The X and Y positions, as well as the nWdith and nHeight values, are given in device units
(pixels).

int: The vertical position of the upper left corner or the child window or control. You can use
CW_USEDEFAULT to let Windows decide where to put a program's window.

int: The horizontal size of the window or control. You can use CW _USED EFAULT to let Windows
decide what size to make a program's window.

int: The horizontal size ofthe window or control. You can use CW_USEDEFAULT to let Windows
decide what size to make a program's window.

hWndParent

hMenu

HWND: A handle to the window's parent. NULL if there is no parent window.

HMENU: A handle to the window's menu. NULL if the class menu is to be used. Use the window
styles to add or eliminate a menu line from child windows.

hlnstance HANDLE: The instance handle for the program module creating the windows.

lpParam LPSTR: A long pointer to a data structure passed to the window. Normally set to NULL, meaning
that no data is passed via Cre~teWindowO.

Related Messages.> WM_PARENTNOTIFY, W~~_NCREATE

Example The following code fragment shows the creation of a window with an ext;nded style as the main
program window.

WNDCLASS wndc lass;

wndclass. style
wndclass_lpfnWndProc
wndclass_cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstanee
wndc'lass. hleon
wndclass. hCursor
wndclass.hbrBaekground
wndclass.lpszMenuName
wndclass.lpszClassName

= CS_HREDRA~ CS_VREDRAW I CS_PARENTDC ;
= WndProc ;
= 0 ;
= 0 ;
= ghlnstance' ;
= NULL;
= LoadCursor (NULL, IDC_ARROW) ;
= GctStockObject (WHITE_BRUSH)
= NULL,
= "SecondC. ass" ;

",' 1* register the window class *1
if(RegisterClass <&wndelass»
{

}

hListBox = CreatcWindow ~x(WS_EX_DLGMODALFRAME
"SccondClass", "C"ild Window",
US_CHILD I WS_VISIRLE I WS_CAPTION,
10, 50, 200, 150, hWnd~ NULL, ghlnstance, ~ULL)

ShowWindow (hListBox, SW_SHOW) ;

WINDOWS API BIBLE

REGISTERCLASS I'J Win 2.0 f:I Win 3.0 C Win 3.1
Purpose
Syntax

Description

Uses

Returns
See Also

Parameters
IpWndClass

style

Style

Creates new Win~ows classes ..
ROOL RegisterClass(LPWNDCLASS IpWndClass)j

RegisterClassO creates a new Windows class that can be used to create any number of new win~
dows and child controls.
Used in the WinMainO function to create the base class for the parent window. Can be used in
the body of the program to create other Windows classes. '
Non-zero (TRUE) if the new class was registered. Zero (f'ALSE) if the function failed.

CreateWindowO, CreatcWindowExO, UnregisterClassO, GetClassinfoO, GetClassLongO, Get
ClassNameO, GetClassWor10, SetClassLongO,SetClassWordO

LPWNDCLASS: A long pointer to a WNDCLASS data structure. This is defined in W1NDOWS.H as:

typ~def struet tagWNDCLASS
{

WORD
LONG
int
int
HANDLE
HICON
HCURSOR
HBRUSH
LPSTR
LPSTR ,

) WNDCLASSi

stylei
(FAR PASCAL *lpfnWndProe}(}i
ebClsExtrai
ebWndExtrai
hInstaneei
hIeoni
hCursor;
hbrBaekgroundi
lpszMenuName;
lpszClassNamei

typedef WNDCLASS
typedef WNDCLASS NEAR
typedef WNDCLASS FAR

*PWNDCLASS;
*NPWNDCLASSi
*LPWNDCLASS;

The elements of the WNDCLASS structure are as follows:

WORD: The style parameter can be any ofthose listed in Table 2-6, combined as desired using the
C language binary OR operator (I).

Meaning [g]1
Aligns a window's client area on the byte boundaries horizontally. This makes a small savings in
memory con,sumed by Windows.

CS_BYfEALlGNWINDOW

CS_CLASSDC

Aligns a window on the byte boundaries hOrizontally.

Gives the window class its own device cQntext. Every window created from this class will share
the DC.

CS_DBLCLKS

CS_GLOBALCLASS

CS_HREDRAW

CS_NOCLOSE

CS_OWNDC

CS_PAREt'-I'TDC

CS_SAVEBITS

Mouse double-click messages are'sent to the window.

Makes an appli,cation global class. Available to all applications while the program that created the
class is running.

Redraws the window if the horizontal size Ghanges.

Stops the close option on the system menu.

Gives each ~indow instance its Qwn device context. Note that each device context requires 800....
bytes of memory.

The window class uses the parent window's device context.

Instructs window to save the bitmap of parts of the window that may be obscurred by overlapping
windows. .

Redraws the window when the vertical size changes.

, Table 2-6. RegisterClass() Window Styles

26

lpJn WndProc

cbClsExtra

cbWndExtra

hlnstanee

hleon

hCursor

hbrBackground

2. CREATING WINDOWS V

(FAR PASCAL *lpfnWndProc)O: Pointer to t.he window function. This is usually called
"WnnProc" for the default window function, or another name for a separate message processing
function that you create for a class of windows. These functio~s should be referenced in the
EXPORTS section of the program's .DEF dctinition file.

int: Sets the number of bytes to include at the end of the window class structure. These extra
bytes can be used to store information with the class. See the SetClassLongO function descrip
tion.

int: Sets the number o(bytes to include after each window instance. This allows data to be stored
with each window created. See the SetWindowWordO function description. Set this value to
DLGWINDOWEXTRA if you are using the CLASS directive in your resource (.RC) s.:ript file to
register a dialog box.

HANDLE: The instance handle of the module (application program) registering the class.

mCON: Handle for the class icon. If set to NULL, the program must draw the icon if the window
is minimized. Set to NULL for window classes that are never minimized.

HCURSOR: Handle to the class cursor. Usually set to the default arrow cursor, as shown in the
following example. May be set to NULL, if the application explicitly sets the cursor shape when
processing WM_MOUSEMOVE messages. This is typical of an application that uses one or more
custom cursor shapes.
HBRUSH: Handle to the brush used to paint the background. Besides any of the stock brushes
(see GetStockObject()), the brush can also be set to any of the syste~.colors:

COLOR_ACTIVEBORDER
COLOR_ACTIVE CAPTION
COLOR_APP\VORKSPACEI
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTEXT
COLOR_INACTlVEBORDER
COLOR_INACTlVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_\VINDO\VFRAME
COLOR_ WINDOWrEXT

Add 1 to these values in the class definition. Although unusual, you can set hbrBackground
to NULL. This requires that the application paint the background when a MCERASEBKGND
message is received.

lpszMenuName LPSTR: Points to .the class menu name string. If NULL, the class of windows has no defa~llt menu.

lpszClassName LPSTR: Points to the class menu name string. This is the name that will be used in the Create
WindowO function's lpClassName parameteywhen creating windows based on the·class.

27

WINDOWS API BIBLE

Example WNDCLASS wndclass

wndclass. style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass~cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= CS_HREDRAW CS_VREDRAW
= WndProc
= 0 ;
= 0 ;

hlnstance ;
Loadlcon (hlnstance, gszAppName)
LoadCursor (NULL, IDC_ARROW)
GetStockObject (WHITE_BRUSH)
"generi e" ;
"generi e" ;

1* register the window class *1
RegisterClass (&wndclass) ;

-28

The Windows programming environment provides a wide range of support functions for manipulating windows and
the data that controls the window's appearance and function. Essentially every aspect of a window's behavior can be
determined and changed as the program operates. This frees you from having to keep track of where windows are or
what they are doing.

Direct Changes to Window Attributes
The simplest support functions act directly on a window's behavior or appearance. For example, GetWindowTextO
retrieves the window's title, while SetWindowTextO changes the title to a new string constant.

You can check the status of a given window with the IsChildO, IsIconicO, IsWindowO, and IsWindowVisibleO
functions. Of these, the IsIconicO is the most frequently used. It is commonly put into the WinProcO function to
change how the client area is painted for windows that do not use a class icon (the icon listed in the RegisterClassO
call il). WinMainO). You can paint directly on the little bit of window shown when the program's window is iconized
with the normal painting and text functions. Use IsIconicO to find out if just the icon is showing or if the full window
is visible.

MoveWindowO can move and change the size of a window. This is handy if your program uses several child or
popup windows. You can use the'SetFocusO function to change which window or control gets the keyboard input. The'
window receiving keyboard input is said to have the "input focus." GetFocusO will tell you which window has the input
focus. The SetActiveWindowO and GetActiveWindowO functions are similar. The active window is the parent window
that has the highlighted title bar and currently receives messages from Windows for mouse movements, etc. Active
status applies only to parent windows. Focus can apply to a parent or child window.

Changing the Class Data
I

As we saw in Chapter 2, creating a window is a two-step process. You first need to create a window class using
. RegisterClassO. Then you create one or more \vindows based on this class using the CreateWindowO function. As the
program operates, you may want to change some of the data in either the class structure or in the parameters passed
to the CreateWindowO function. The several functions reading or changing a class data structure work on the differ
ent data types in the window class structure, WNDCLASS, as shown in Listing 3-l.

C Listing 3-1. WNDCLASS Definition in WINDOWS.H
typedef struct tagWNDCLASS

{

WORD
LONG
int
int
HANDLE
HICON
HCURSOR
HBRUSH
LPSTR
LPSTR

} WNDCLASS;

style;
(FAR PASCAL *lpfnWndProc)();
cbClsExtra;
cbWndExtra;
hlnstance;
hlcon;
hCursor;
hbrBackground;
lpszr~enuName;
lpszClassName;

GetClassWordO retrieves WORD long values, while GetClassLongO retrieves LONG values. 1'0 use these, you will
have to mentally convert bet~e{!n the Windows naming conventions defined in WINDOWS.H. For example,

29

WINDOWS API BIBLE

WORD:.: unsigned int, HANDLE, HICON, HCURSOR, HBRUSH = 2 Bytes

Changing a class value with SetClassWordO or SetClassLongO affects every window that was created from that class.
This is handy for globally changing the cursor shape or using a different color brush for every window's background.
Changes to an individual window are less drastic. SetWindowWordO and SetWindowLongO affect just one window,
not every one in the class. These modified windows are a "subclass." An interesting possibility here is to change the
window message function referenced by a window to a new function. This is called ''window subclassing." The ex
ample shown after the SetWindowLongO function description changes the default processing for a scroll bar to in
clude the handling of arrow keys and page-up/page-down keys. These logic items are added to the normal Windows
processing of scroll bar messages, providing a custom version for that one window control.

Data Attached to a Window or Class
. Windows has a powerful ability to associate data with a window or window class. A typical use would be in an applica
tion with several similar child windows. Each child window can-store its own data to work on, while making use of a
single message processing function. For small amounts of data, the data can be made a part of the class definition. The
cbClsExtra element in the WNDCLASS structure sets the amount of extra data stored "ith the window class. This is
common to all windows created from the class. The cb WndExtra element in WNDCLASS sets the amount of extra data
stored with each window. This is the more common use.

The problem with using extra bytes in the WNDCLASS definition is that the data is not structured. The program·
must keep track of the meaning and location of each byte. A good way to use this data is to simply store a handle to a
memory block with the window (memory allocation is discussed in Chapter 14). The memory block can then contain
a large amount of data, defined by a custom data structure. This technique is used in Chapter 29 for the child ,vindows
in the MDI (Multiple Document Interface) example. . .

A more elaborate way to store data with a window is provided with the "property" functions. Properties amount to
named data. Each property is given a name and a handle pointing to a memory area allocated to store the data. You
~ttach t~e property to the window with the SetPropO function. A typical call might be

Set Prop (hWnd, "Prop1");

Any time the window h Wnd wants to get the handle to the data" it uses GetPropO something like

hDataHandle = GetProp (MInd, "Prop1',,) ;

The data is then extracted from memory after locking the data (see Chapter 14 on memory functions for details).
You can also release the property from the window using ReleasePropO. There is also an EnumPropO function for
fmding all of the properties associated with a window. With well-designed structures for your data, the· property
facilitywill greatly improve the "object oriented" nature of your windows and reduce the need for global data structures ..

Notes: Enumeration FUnctions
The most powerful, but most difficult to use of the windows support functions are the enumeration functions. They are
used in a series of situations where you want to get a list of information, but you do not know how many items there will
be in the list. F~r example, asking for a list of child windows attached to a parent: EnumChildWindowsOi a list of property
data attached to a window's definition: EnumPropsOi a list of the program "tasks"
running on'the system EnumTasksOi or just a list, of windows on the screen: T

EnumWindowsO. (''Tasks'' are application programs running on the system. This 1-=--'---=-..c'----S-llIu-c-Te-xt---t

does not include dynamic link libraries (DLL's). "Modules" is the term Windows
uses for all rJInning programs, including DLLs.)

To deal with these problems, the enumeration functions require that you write
a short function in your program that the Windows enumeration function will call
every time it finds an item that needs to be remembered. You write the enumera
tion function to make an ever-expanding list of the items, adding one to the list

EnumChlldWIndowsO found:

Bullon
SIalic Text
EdilMe

each time the function is called. In general, these items will be of equal length. The Figure 3-1. Child Windows
following listings are provided to show an example. In this case, a list of all of the Enumerated

30

3. WINDOWS SUPPORT FUNCTIONS V

names of the child windows for a program are enumerated. When the user clicks the "Do It!" menu item, the names
are shown on the parent window's blient ar.ea. :The.result is shown in Figure 3-1.

Note in the header file that a new data type is created, called ENUMER. This contains a handle pointer to memory
and a count of the number of items which are stored in the memory location. Also note the declaration for the eim-
meration function at the bottom, as shown in Listing 3-2. .

o Listing 3-2. WINDENUM.H-Header File for Child Window Enumeration
1* windenum.h *1
1* menu item id values *1
#define 10M_DOlT 1
#define 10M_QUIT 2

1* definitions *1
#define TITLEWIDE 20

typedcf struct
{

GLOBALHANDLE
int

} EtlUHER ;

1* global variables *1
int ghlnstance ;

hGHem ;
nCount ;

char gszAppName [J = "WndEnum" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsi gned, WORD, LONG)
BOOL FAR PASCAL WndEnumFunc (HWtlD, ENUMER FAR *) ;

The enumeration function must be declared in the EXPORTS section of the program's .DEF definition file, as Win
dows. (See Listing 3-3.)

e Listing 3-3. lVINDENUM.DEF
NAME
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSlZE
EXPORTS

WINDENUM
'windows enumeration example'
WIt~DOWS .
'WINSTUB. EXE ,.
PRELOAD MOVEABLE
PRELOAD MOVEABLE "ULTIPLE
1024
5120
WndProc

.WndEnumFunc

Note in the C language Listing 3-4 that the enumeration function must be registered with Windows using the
MakeProclnstanceO function before it is used. Also note in the enumeration function that each new chunk of data is
added to the end of the last bit.

e Listing 3-4. WINDENUM.C WndProc() Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,
{

stati c HWND
static HWND
static HWND
stati c FARPROC
static ENunER
LPSTR··
HOC
int

hButton ;
hStaticText ;
hEdit ;
lpfEnumProc ;
enumer ;
lpUindName ;
hOC;
i ;

LONG lParam)

switch (iMessage)
(

1* process windows messages *1

hButton = CreateWindow ("BUTTON", "Button",

31

WINDOWS API BIBLE

}

.
~.

}

WS_ctULD I WS_VISIBLE I BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, NULL, ghlnstance, NULL) ;

ShowWindow (hButton, SW_SHOW) ;
1* create and show stati c text *1

hStaticText = CreateWindow ("STATIC", "Static Text",
WS_CHILD I WS_VISIBLE I as_PUSHBUTTON,
150, 10, 100, 15, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hStaticText .• SW_SHOW) ;
1* create and show an edit control *1

hEdi t = CreateWi ndow ("EDIT", "Edi t Me",
WS_CHILD I WS_VISIBLE I WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hEdit, SW_SHOW) ; \

lpfEnumProc = MakeProclnstance (WndEnumFunc,
ghlnstance)

break;
case WM COMMAND:

-switch (wParam)
{

1* process menu items *1

case 10M DOlT: 1* User hit the "Do it"menu item *1
if (enumer.hGMem) 1* if not first time tried *1

GlobalFree (enumer.hGMem); 1* free the memory *1
1* initialize storage area *1

enumer.hGMem = GlobalAlloc (GMEM_MOVEABLE I GMEM_ZEROINIT,
1L> ;

enumer.nCount = 0;
1* let Windows run callback func. *1

EnumChildWindows (hWnd, lpfEnumProc,
(DWORD) &enumer) ;

hOC = GetDC (hWnd) ; 1* get ready to output *1
lpWindName = GlobalLock (enumer.hGMem) ;1* lock memory *1
TextOut (hDC, 10, 100, "EnumChi ldWindows() found:", 25) ;
for (i = 0 ; i < enumer.nCount ; i++) 1* display window *1
{ 1* titles found *1
TextOut (hDC, '15, 125 + (15 * i>,

(LPSTR) (lpWindName + (i * TITLEWIDE»,
lstrlen (lpWindName + (i * TITLEWIDE»)

}

GlobalUnlock (enumer.hGMem)
ReleaseDC (hWnd, hDC) ;
break;

1* unlock memory *1

case IDM QUIT:

break

DestroYWindow (hWnd).;
break;

case WM_DESTROY: 1* stop application *1
GlobalFree (enumer.hGMem) 1* release all memory *1
PostQui tMessage (0) ;
break;

default: 1* default windowsmessage processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL>

1* this is the enumeration function, callcd once for each window *1

BOOL FAR PASCAL WndEnumFunc (HWND hWindow, ENUMER FAR *enumer)
{

LPSTR
char

l pW i ndName ;
cBuf [TITLEWIDE + 1]

if (!GlobalReAlloc (enumer->hGMem,
CDWORD) TITLEWIDE * (enumer->nCount + 1),
GMEM_MOVEABLE» 1* make room for 10 morc*1

return (0) ; 1* qui t if can I t make room * 1

32

3. WINDOWS SUPPORT FUNCTIONS V

GetWindowText (hWindow, (LPSTR) cBuf, TITLEWIDE) ; 1* get title *1
cBuf [GetWindowTextLength (hWindow)] = '\0' ; 1* add end null *1
lpWindName = GlobalLock (enumer->hGHem) ; 1* lock the memory al'ea *1

.- . 1* put next name at end *1
lstrcpy (lpWindName + «enumer->nCount) * TITLEWIDE), (LPSTR) cBuf) ;
GlobalUnlock (enumer->hGl1em) 1* unlock the memory area *1
enumer->nCount++ ; 1* keep track of how many *1
return (1) ;

}

All enumeration functions use this basic structure, although the parameters passed to "the callback function will
be different.

Cautions
It is fairly easy to create an infinite loop of Windows messages. This bombs the program in a hurry. For example, if you
decide to create a number of child windows in the WM_CREATE portion of your WinProcO funct\on, you will have
trouble. Each time you create a new window, a WM_ CREATE message is sent. Use a static BOOL variable to track if
this is the fIrst time the WltLCREATE message was issued. Be careful when changing the background color of a
window class. The change will not show up immediately if you do not force the window to be repainted using
UpdateWindow().

Function Descriptions
Table 3-1 summarizes the Windows support functions. The detailed function descriptions are immediately after the
table.

I. Funcrtion
AdjustWindowRect

AdjustWindowRectEx

AnyPopup

BeginDeferWindowPos

BringWindow T 0 Top

ChildWindowFromPoint

CloseWindow

DeferWindowPos

DestroyWindow

EnableWindow

EndDeferWindowPos

EnumChildWindows

EnumProps

EnumT askWindows

EnumWindows

RndWindow

AashWmdow

- GetActiveWindow

GetClassLong

Purpose ~I
Computes how big the entire window must be to produce a window with a given client area size.

Computes how big the entire window must be to produce a window with a given client area size
for a window with an extended style. I

Determines if any popup windows are on the screen.

Begins rapid movement of a window on the screen.

Makes a window visible, if it is undemeath other overlapping windows.

Determine which child window occupies a given point on the parent window.

Minimizes a window.

Causes rapid movement of a window on the screen.

Removes a window from the system.

Enables or disables mouse and keyboard input for the specified window.

Completes a rapid movement of a window on the screen. The movement occurs when this func
tion is called.

Calls an enumeration function for all of the child windows of a parent.

Retrieves all of the entries in the property list of a window.

Usts all of the top-level windows associated with a task:

Retrieves data on all of the parent windows running on the system.

Retrieves a handle to a window.

Highlights the window's caption bar.

Finds which parent or popup window is active.

Retrieves a long value from a class structure.

33

WINDOWS API BIBLE

Table 3.1 continued

Function

GetClassName

GetClassWord

GetClientRect

GetCurreritTask

GetDesktopWindow

Get Focus

~rpose .

Retrieves the class name upon which a window is based.

Retrieves information from a class.

Retrieves a window's cliert area size.

Retrieves a handle to the currently executing task.

Retrieves the handle of th~ background window that covers the entire screen.

Finds which window has the input focus.

GetLaStActivepopup'~ Finds which popup window was last ~ctive.
GetNextWindow . 'Rnds parent and child windows.

GetNumTasks Find~ number of tasks running in the system.

GetParent

GetProp

GetSysModallNindow

GetT opWindow

GetVersion

GetWindow

GetWindowLong

GetWindowRect

GetWindow Task

GetWindow Text

GetWindow T extLength

GetWindowWord

GetWinRags

IsChild

Islconic

IsWindow

IsWindowEnabled

IsWindowVisible

IsZoomed

,MoveWindow

RemoveProp

SetActiveWindow

SetClassLong

-SetClassWord

SetFocus

Set Parent

SetProp

SetSysModalWindow

.:.

Retrieves a handle to a parent window.

Retrieves a property (data) associated with a window.

Retrieves a handle to a system modal window.

Finds the child win'dow on top of any other child windows.

Retrieves the version- number of Windows running on the system.

Retrieves'a window's handle.

Retrieves f long value from a window's data.

Retrieve a ~indow's outer dimensions.

Retrieves',~ handle to a task.

RetrieJes a !window's title string.

Finds the number of characters in a window's title string.
\

Retrieves a two byte value from a window's data.

Determines what computer CPU and memory model are in operation.

Determines if a window is the child of a given parent window.

Checks if a window is minimized.

Checks if a window handle still points to a valid window.

Checks if a window is enabled for keyboard input.

Checks if a 'Nindow has been made visible.

Checks if a window is maximized.

Moves or resizes a window.

Removes a proyerty (data) which was associated with a window.

Makes a window visible,

Changes one of the LONG values in a window class.

Changes a WORD sized value in a window class.

Gives a window the input focus .

Changes the parent window of a child window,

Attaches named data to a window.

Makes a window system-modal.

34

~I

SetWindowLong

SetWindowPos

SetWindowText

SetWlndowWord

Sho~edPopups

ShowWlndow

3. WINDOWS SUPPORT FUNCTIONS ...

Ch~ges a LONG value associated with a window.

Simultaneou'sly changes the size, position, and ordering of windows.

Changes the title of a window.

Changes a WORD value associated with a window's class structure.

Shows or hides all popup windows associated with the parent window.

Displays, hides, or changes the size of a window.

System Parameters Info

UnreglsterClass

WindowFromPoint

Determines and/or changes system wide parameters.

Frees the memory holding an unneeded class desEription.

Rnds which window ~f any) is at a given poim on the screen.

Table 3-1. Windows Support Functions Summary.

AoJUSTWINDOwRECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose Computes how big the entire window must. be to produce a window with a given client area size.

Syntax void AdjustWmdowRect (LPRECT [pReet, LONG dwSlyle, BOOL bMenu)j
Deseripdon

Uses

Returns

See Also

Parameters
IpReet

dwStyle

bMenu

Example

Changes the contents of the IpRect from those of the client rectangle to that of the bounding
rectangle. The bounding rectangle encloses the caption, menu bar, and window frame.

Generally used with CreateWindowO to make a ne~ window of a given size.

No return value (void).

AdjustWindowRectExO, CreateWindowO,· MoveWiridowO.

LPRECT: A pointer to a RECT rectangle structure.

DWORD: The window style. This includes any of the window style values from the
CreateWindowO function (Chapter 2).

BOOL: Specifies if the window size calculated should include space for a menu. Set to TRUE to
include the menu space, FALSE to omit. ..

In this example the adjusted rectangle is used in the CreateWindowO function. The final window
in this case is converted from the client size of 50,50, 150, 150 to the total window dimensions 49,
30, 151, 151.

long FAR PASCAL WndProc (H~ND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
static WNDCLASS
static HWNO

I RECT

hDC ;
wndclass ;
hU stBox ;
rWi ndRec t ;

1* device context handle *1
1* the window class *1
1* the window handle *1

switch (iMessage)
(

1* process windows messages *1

case WM_CRE~ . .JE: 1* bui ld the chi ld window when prograll starts *1
rWfnlfRect. top = 50 ; 1* eli ent area s; ze desi red *1
rWindRect.left = 50 ;
rWindRect.bottom = 150 ;
rWindRect.right = 150 ;

AdjustWindowRect(&rWindRect,
WS_CHILDI WS_VISIBLE
FALSE) ;/

1* rectangle to convert *1
WS_BORDER I WS_CAPTION,

1* no menu *1

wndclass.style
wndclass.lpfnWndProc

=CS_HREORAW I CS_VREDRAW I CS_PARENTDC ;
= Ch; ldP~oc ;

35

WINDOWS API BIBLE

.wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndclass.hIcon
wndcLass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= 0 ;
= 0 ;
== ghInstance ;
= NULL;
= LoadCursor (NULL, IDC_CROSS) ;
= GetStockObject (LTGRAY_BRUSH) ;
= NULL;
= "SecondClass" ;
1* register the window class *1

ifCRegisterClass C&wndclass»
{

}

break;

hListBox = CreateWindow ("SecondClass", "Chi ld Window",
WS_CHILD I WS_VISIBLE I WS_BORDER I WS_CAPTION,
rWindRect.left, rWindRect.top,
rWindRect.right, rWindRect.bottom,
hWnd, NULL, ghlnstance, NULL) '"

ShowWindow (hListBox, SW_SHOW) ;

/Other program ·linesJ

AnJUSTWINDowRECTEx • Win 2.0 • Win 3.0 • Win 3.1
Pwpose

SyIita,x

Description

Uses
Returns

SeeAIso

Parameters
IpRect

dwStyle

bMenu

dwExStyle

Example

Computes how big the entire window must be to produce a window with a given client area size
for a window with an extended style.

void AdjustWindowRectEx(LPRECT lpRect, LONG dwStyle, BOOL bMe:nu, DWORD dwExStyle)j

Changes the contents of the IpRect from those of the client rectangle to those of the bounding
rectangle. The bounding rectangle encloses the caption, menu bar, and window frame.

Generally used with CreateWindowExO to make a new window of a given size.
No returned value (void);

AdjustWindowRectExO, CreateWind?wExO, MoveWindowO.

"LPRECT: A pointer to a rectangle structure.

DWORD: The window style. This includes any of the window style values from the
CreateWindowO function.

BOOL: Specifies if the window size calculated. should include space for a menu. Set to TRUE to
include menu space, FALSE to omit.

DWORD: The extended style values used in the CreateWindowEXO function.

Note that the adjusted rectangle is used in the CreateWindowExO function. The final window in
this case is converted from the client size of 50,50,100, 100 to the total window dimensions 45,
29, 155, 155. -

long FAR P~SCAL WndProc CHWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
stati c WNDCLASS
stati c HWND
RECT

hOC;
wndc lass;
hTextBox ;
rWi ndRec t ;

1* devi ce context handle *1
1* the wi ndow class *1
1* the window handle *1

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* bui ld the chi ld window when program starts *1
rWindRect.top = 50 ; 1* client area size desired *1
rWindRect.left = 50;
rW1ndRect.bottom = 150 i'.
rW1ndRect.r1ght = 150 ;

AdjustW1ndowRectEx(&rW1ndRect,

3. WINDOWS SUPPORT FUNCTIONS 'Y

WS_CHILD I WS_VISIBLE I WS_BORDER I WS_CAPTION,
FALSE, WS_EX_DLGMODALFRAME) ;

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass. hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= CS_HREDRAW I CS_VREDRAW CS_PARENTDC
= Chi ldProc ;
= a ;
= a ;
= ghlnstance ;
= NULL;
= LoadCursor (NULL, IDC_CROSS) ;
= GetStockObject (LTGRAY_BRUSH) ;
= NULL;
= "SecondC lass" •

1* regis~~r the window class *1
if(RegisterClass (&wndclass»
{

}

break;

hTextBox = CreateWindowEx (WS_EX_DLGMODALFRAME,
"SecondClass", "Child Window",
WS_CHILD I WS_VISIBLE I WS_BORDER I WS_CAPTION,
rWindRect.left, rWindRect.top,
rWindRect.right, rWindRect.bottom,
hWnd, NULL, ghlnstance, NULL)

ShowWindow (hTextBox, SW_SHOW)

IOther program li1fes}

ANYPOPUP

Purpose

Syn~

Uses

Returns

Parameters

Example

Determines if any popup windows are on the screen.

BOOL AnyPopup(void)j

• Win 2.0 • Win 3.0 La Win 3.1

Popup windows can overlap any portion of the parent's Window. This function will tell you if any
pop ups exist.

BOOL, TRUE, or FALSE.

None (void).

This fragment shows a WndProcO function checking ifthere is a popup window before starting to
refresh the screen. It may be desirable to close the popup wiridow before painting to eliminate
hidden areas.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
static BOOL

hDC ;
bPopupExist

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
if (AnyPopup ())

bPopupExist = TRUE
else

bPopupExi st = FALSE;
break;

IOtherprogram lines}

BEGINDEFERWINDOWPOS o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax "

Description

Begins rapid movement of a window on the screen.

HANDLE BeginDeferWmdowPos(int nNumWindows)j

This function is the first step in the sequence of functions BeginDeferWindowPosO, Defer
WindowPosO, and EndDeferWindowPosO, used to move one or more windows in a single screen
r.efresh cycle.

37

WINDOWS API BIBLE

Uses

Returns

See Also

Animation of windoWs by repeatedly
moving them, or just fast movement
of a single window to a new location.
A handle to the multiple-window
data structure used by DeferWin
dowPosQ.
BeginDeferWindowPosO, .
DeferWindowPosO,
, EndDeferWindowPosO,
MoveWindowO, SetWindowPosO

Do It! ,Quit

Parameters
nNumWindows int: Sets the number of windows

Figure 3-2~' BeginDejerWindowPos() Example.

Example

that will be affected.by the window movement. This initializes the data structure. Getting the,
correct value is not critical, as the data structure will be expanded (with some loss of speed) if
DeferWindowPosO requires more windows to be updated.
This example, -illustration Figure 3-2, creates two button child windows at the bottom of the
client area. When the user clicks the "Do It!" menu item, both buttons are relocated to the top of
the client area.

long FAR PASCAL WndProc (HWND hWnd, un~igned iMessage, WORD wParam, LONG lParam)
(

)

HWND hTestBox1, hTestBox2 ;
static HANDLE hDeferData ; 1* handle for,DeferWindowPos() *1

switch (1Message)
{

1* process windows messages *1

case WM_CREATE: 1* create a button when program starts *1
hTestBox1 = CreateWindow ("BUTTON", "Moving Button 1",

WS_CHILD I WS_VISIBLE ,
J ZOO, ZOO, 150, 50, hWnd, NULL, ghlnstance, NULL>

ShowWindow (hTestBox1, SW_SHOW).;
hTestBoxc = CreateWindow ("BUTTON", "Moving Button Z", .

WS_CHILD I WS_VISIBLE ,
0, ZOO, 150, 50, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hTestBoxZ, SW_SHOW) ;
hDeferData ~ Beg;noeferWindowPos (2) ;
hDeferData = DeferW1ndowPos (hDeferData, hTestBox1,

hTest8oxZ, 10, 10, 200, 50, SWP_NOSIZE) ; .
hDeferData = DeferWindowPos (hDeferData, hTestBox2,

break;
NULL, 180, 10~ ZOO, 50, SWP_NOSIZE) ;

.~ case WM_COMMAND:
switch (wParam)
(

1* process menu items *1

case 10M_DOlT: 1* move the button *1
EndDeferWindowPos (hDeferData) ;
InvalidateRect (hWnd, NULL, TRUE)
break;

case IDM_QUIT:

)

break;
c ••• WM_DESTROY:

DestroyW;ndow (hWnd)
break;

1* stop·application *1
PostQuitMessage (0) ;
br .. k;

1* move windows *1
1* force paint *1

default:
return DefWindowProc

1* default windows message procesl1ng *1
(hWnd, 1Message, wPar •• , lParam)

return (OL) ;

38

·3. WINDOWS SUPPORT FUNCTIONS 'Y

BRINGWINDowToTop II Win 2.0 D Win 3.0 1'1 Win 3.1
Purpose

Syntax
Description

Uses
Returns
See Also

Parameters
kWnd

Example

Makes a window visible and activates it (for a popup or top·level window) if the window is under
neath other overlapping windows.
void BringWmdowToTop(HWND hWnd)i

The window chosen is superimposed over any other overlapping windows on the screen. The
window is activated if it is a popup or top-level window.

Most often used with popup windows.

No return value (void).

SetFocusO, IsWindowVisibleO, SetActiveWindowO, EnableWindowO

HWND: Handle of the window to bring to the top.

This example swaps the superposition of the two button controls on the screen when the "Do It!"
menu item is clicked. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
(,

hTestBox1, hTestBox2 i ·1* the window handles *1

switch (iMessage)
{

1* process windows messages *1

case LIM_CREATE: 1* build the child windows when program starts *1
hTestDox1 = CreateWindow ("BUTTON", "BUTTON 1", .

WS_CHILD I WS_VISIBLE ,
10, 50,110, 100, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hTestBox1, SW_SHOW) i
hTestDox2 = CreateWindow ("BUTTON", "BUTTON 2",

WS_CHILD I WS_VISIBLE ,
30, 70, 130, 130, hWnd, NULL, ghlnstance,. NULL) ;

ShowWindow (hTestBox2, SW_SHOW)
break; 1/

case W'CCOMHAND: 1* process menu items *1
swi tl.:h (wParam)
<
case 10M DOlT: 1* User hit the "Do it" menu item *1

BringWindowToTop (hTestBox2) i 1* no 1 to top *1
- St.owUindow (hTestBox1, SW_HIDE) i 1* refresh :ocreen *1

ShowUindow (hTestBox1, SW_SHOWNORMAL)
break;

[Other program linesj .

CBlLDWINDOWFROMPOINT • Win 2.0 II Win 3.0 iii Win 3.1
PaIpo8e Determinp.:;,which child window occupies a given point on the parent window.

s,atu HWND ChlltIWmdowFromPoint(HWND hWndParent, POINT Point);

DescrIption

Uses

letums

See Also
Paraaeters
IIWndParent

Returns a handle to the child window at a given point.
Handy if the application uses several child windows, which may be obscuring data on the screen.
Typically used with the mouse cursor to determine which child the cursor is over, independent of
the mouse buttons being pressed.
A handle to the child window, NULL if no child window is at the point.

W'mdowFromPointO, ScreenToClientO

HWND: The parent window's handle.
Point POINT: The client area coordinates to check. .

Belated Messages WM_MOUSEMOVE.

39

WINDOWS API BIDLE

Cautions

Example

This function will not work properly over pushbutton controls.

This example, as shown in Figure 3-3, displays the name of the
window the mouse is pointing to as the cursor is moved over
the client area. Two static text windows are placed on the cli
ent area. The figure shows the mouse cursor over the lower
one. The handle of the child window is retrieved using
ChildWindowFromPointO. The name of the window (the cap
tion string) is determined with GetWindowTextO.

no It! .Q.uit
Child Window = Static Text 2

~tatjc Text 1
StaticT~2

Figure 3-3. ChildWindow
FromPo-int()Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage l WORD wParam, LONG lParam)
{

}

'}

HWND
HOC
POINT
char

hStatic1, hStatic2, hWndTest
hOC;
pMouse ;
cBuf [128], cBuf2 [256]

switch (iMessage)
{

1* process windows messages *1

case WM CREATE:
-hStatic1 = CreateWindow ("STATIC", "Static Text 1",

WS_CHILO I WS_VISIBLE I BS_PUSHBUTTON, ,
10, 40, 100, 20, hWnd, 100, ghlnstance, NULL)

ShowWindow (hStatic1, SW_SHOW) ;
hStatic2 = CreateWindow ("STATIC", "Static Text 2",

WS_CHllD I WS_VISIBLE I BS"":PUSHBUTTON,
10, 60,'100, 20, hWnd, 101, ghlnstance, NULL>

ShowWindow (hStatic2, SW_SHOW)
break;

case WM_MOUSEMOVE:
pMouse = MAKEPOINT (lPararn) ;
hOC = GetOC (hWnd) ;
hWndTest = ChildWindowFromPoint (hWnd, pMouse)
if (hWndTest)

GetWindowText (hWndTest, cBuf, 127)
else

lstrcpy (cBuf, "<none>") ;
TextOut (hOC, 0, 0, cBuf2, wsprintf (cBuf2,

"Ch i ld Wi ndow = %s", (LPSTR) cBuf»
ReleaseDC (hWnd, hOC) ;
break;

case WM_COMMANO: 1* process menu i terns * 1
swi tch (wParam)
{

case IDM_QUIT:

break;

OestroyWindow (hWnd)
break;

case WM_DESTROY:/* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows ,.iessage processing *1
return OefWindowProc (hWnd, iMessage~ wParam, lParam) ;

return (OL>

CLOSEWINDOW II Win 2.0 1.1 Win 3.0 gWin 3.1

Purpose. I

Syntax

Description

Minimizes a window.

. void CloseWindow(HWND hWnd);

If the window's class structure contains an icon, the minimized window will display the icon
image. Otherwise, the, minimized window will be a blank client area, which will receive
WM_PAINT messages and can be painted on using normal painting functions.

40

Uses

Returns

See Also

Parameters

3. WINDOWS SUPPORT FUNCTIONS ...

Used in applications with several child windows. The closed windows remain on the bottom ofthe
parent's client area. Double-clicking the minimized windows automatically restores them to their
previous size.

No return value (void).

IsIconicO, IsWindowVisibleO, IsZoomedO, OpenIconO

hWnd HWND: The window's handle.

Related Messages WM_SI~E, WfwCP AINT

Example In this example, clicking the "Do It!" menu item causes the button child window to be minimized
to the bottom of the parent window's client area. Double-clicking the minimized button restores it.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

stati c HWND hButton;

switch (iMessage)
{

1* process windows ~essages *1

case WH_CREATE:
hButton = CreateWindow ("BUTTON", "Button",
WS_CHILO I WS_VISIBLE I BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hButton, SW_SHOW)
break;

case WM_COMPIAND: 1* process .menu items *1
swi tch (wParam)
{

case 10M DOlT:
CloseWindow (hButton) ,.
break;

1* minimize button *1

IOther program lines}

DEFERWINDOWPOS o Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also
Parameters
hWindPosln/o

hWnd

hWndlnsert4{ter

x

y

Produces rapid movement of a window on the screen.

HANDLE DeferWmdowPos(HANDLE hWndPoslnjo, HWND hWnd, HWND hWndlnsertAjler, int
x, inty, int cx, int CU, WORD'wFlags)j

This is the second function in the series BeginDeferWindowPosO, DeferWindowPosO, EndDefer
WindowPosO that allows rapid movement of a window on the screen, all within one screen
refresh cycle. DeferWindowPosO sets values in an internal data structure created by BeginDefer
WindowPosO. These values are then used by EndDeferWindowPosO to do the actual movement
of the window on the screen.
Animation of windows by repeatedly moving them, or just fast movement of a single window to a
new location.
A handle to the data structure used by DeferWindowPosO.

BeginDeferWindowPosO, EijdDeferWindowPosO

HANDLE: The handle to the internal data structure returned by BegiilDcferWindowPosO.

HWND: The window handle of the Window to be moved.

HWND: The window handle of the previous window to be moved. NULL if hW1zd is the frrst one.

int: The X-coordinate of the upper left corner of the window after it has been moved in client
coordinates (pixels from the upper left corner of the client area).

int: The Y-coordinate of the upper left corner of the window after it has been moved in client
coordinates. .

41

WINDOWS API BIBLE --

c:e int: The new width of the window in pixels:
C1J int: The new height of the window in pixels.
wFlags WORD: One of the values in Table 3-2.

SWP _DRAWFRAME Draws the frame specified in the window's class description when redrawn.

SWP _HIDEWINDOW Hides the window when redrawn.

SWP _NOACTIVATE Does not activate the window.

SWP _NOMOVE Does not move the window, but the size can be changed with the cx,cy parameters.

SWP _NOREORAW Does not redraw the window at the new size/location.

SwP _NOSIZE Does not resize the window, but the position can be changed with the x,y parameters.

SWP _NOZORDER Retains the current ordering in the reposition list. If hWndlnsertAfter is NUll, hWnd is placed at
the top of the list. If hWndlnsertAfter is 1, hWnd is placed at the bottom of the list.

SWP _SHOWWlNDOW Displays ttie window when redrawn.

Table 3-2. DeferWindowPos() Flags. .

Example See the example under the BeginDeferWindowPosO function description. -.'

DESTROY WINDOW • Win 2.0 • Win 3.0 • Win 3.1
Purpose -

Syntax

Descriptio.

Uses

SeeAlso -

Parameters

Removes a window from the system.
BOOL DestroyWindow(HWND kWnd)i

The window referenced by kWnd is deleted. Any child windows of kWnd are deleted fll'St, fol
lowed by the parent. The window's class is not affected, unless this Is the last window on t~e
-system using the class. -

- • Removing popup and child windows from the screen when not needed. Also used to stop an appli-
cation by destroying the parent window.
BOOL. TRUE if the window was destroyed, FALSE if the function failed (normally meaning that
hWnd did not exist).

UnregisterClassO, CreafeWindowO
. ,

AWful HWND: Handle of the window to be destroyed;

Related Messages -MLDESTROY, M'-NCDESTROY~ W&LO~ERWlNDOWDESTROYED
Example In this example, clicking the "Do It!" menu item causes the popup window to be destroyed and its

class to be unregistered.
The ChildProcO function needs to, be listed in the EXPORTS section of the program's .DEF

file, and a function prototype needs to be added to the header file to use this example code. '

long FAR PASCAL WndProc (HWND hWnd, uns;gned ;Message, WORD wParam, LONG lParaM)
(

static WNDCLASS
static HWND

switch (1Message)

wndclass ;
hPopup ; -

1* the window class *1

1* process windows _essages *1
(

case WM_CREATE: 1* bui ld the chi ld wi~dow when program starts *1

42

.}

}

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
~ndclass.cbWndExtra
~ndclass.hInstance

wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuNa.e
whdclass.lpszClassName

3. WINDOWS SUPPORT FUNCTIONS •

= CS_HREDRAW I CS_VREDRAW I CS_PARENTDC;
= ChiJdProc ; = 0 ; ,
= 0 ;
:? ghlnstance ;
= NULL;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondClass" ;
1* register the window class *1

if(RegisterClass <&wndclass»
{

}

break;

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTlON,
10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hPopup, SW_SHOW) ;

case W',-COMMANO: 1* process menu items *1
swi tch CwParam)
{

cllSe 10M_DOlT: 1* User hit the "Do it" menu item *1
DestroyWindow (hPopup) ;
UnregisterClass ("SecondClass" ghinstance)
break;

case 10M_QUIT: 1* terminate this application *1
OestroyWindow (hWnd)

}

break;
case WM_DESTROY:

break;

PostQuitMessage (0) ;
break;

default: 1* de'faurt windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam~ lParam)

return COL;'

1* Here is a separate message processing procedure for the child window *1

long FAR PASCAL ChildProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lPara.)
(

)

)

switch (iMessage)
{

1* process windows messages *1

case WM_DESTROY:
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, ;Message, wParam, lPara.) ;

return COL) ;,

ENABLEWINDOW • Win 2.0 • Win 3.0 • WIn 3.1
Purpose Enables or disables mouse and keyboard input or the specified window.
8)1ltax BOOLEnab!eWlndow(HWNDhWnd, BOOLbEnable)j

Uses

Returas

, Handy for controlling where a user is allowed to input data. For example, an edit control may be
enabled to input a. file name only after a subdirectory has been chosen. A window must be en
abled before it can be activated. Windows are automatically enabled when created.

BOOL. TRUE ifsuccessfyl, FALSE if the function failed.

43

WINDOWS API BIBLE

See Also

Parameters
kWnd

bEnable

Example

SetFocusO, GetFocusO, SetActiveWindowO

HWND: The handle of the window to affect.

BOOL: TRUE to enable, FALSE to disable.

This example shows the creation of an edit,controI.'The control is initially disabled and shows
gray text inside the edit area. When the user clicks the "Do It!" menu item, the edit control is
enabled (can be edited), and dieplays normal color text inside the edit area.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG l~aram)
{

static HWND hEdit;

switch (iMessage)
{

1* process w~ndows messages *1

case WM_CREATE:

break;

hEdit = CreateWindow ("EDIT", "Edit Me",
WS_CHILD I WS_VISIBI..E I WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghInstance, NULL)' ;
ShowWindow (hEdit, SW_SHOW) ;
EnableWindow (hEdit, FALSE); 1* disable input *1

case WM_COMMAND:
switch (t.:Param)
(

1* process menu items *1

case 10M_DOlT: 1* User hit the "Do it" menu item *1
EnableWindow (hEdit, TRUE) ; 1* enable input *1
break;

IOther progra:n linesJ

ENDDEFERWINDOWPOS o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

, See Also ,

Parameters
kWindPosb~f()

Example

Completes a rapid movement of a \\indow on the screen. The movement occurs when this func
tion is called.

void EndDeferWmdowPos(HANDLE kWinPoslnfo)j

This is the last of the sequence of three functions BeginDeferWindowPosO, DeferWiIidowPosO.
and EndDeferWindowPosO. These functions work together to update the position and size of the
one or more windows in a single screen refresh cycle. The actual movement is done when
EndDeferWindowPosO is called.

Animation of windows by repeatedly moving them, or for fast movement. of a singie window to a
new location.

No returned value (void).

BeginDeferWindowPosO, DeferWindowPosO

HANDLE: Handle to the window position data structure created wi~4 BeginDeferWindowPosO.

See the example under the BeginDeferWindowPosO function description.

ENUMCUILDWINDOWS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Calls an enumeration function for all of the child windows of a parent.

BOOL EnumChildWmdows(HWND kWndParent, FARPROC IpEnumFunc, LONG IParam)j

Enumerates data from all child windows of the parent. You must supply an enumeration function.
The enumeration function is called once for each child window. The child window's handle and
the lParam value are passed to the enumeration fuqction each time it is called. Typically, the
enumeration function collects data for a child window, and stores it in a memory area.IParam

44

3. WINDOWS SUPPORT FUNCTIONS •

can be used to pass a handle to the memory area to the enumeration function. Note that although
the child window handle will be different ea.ch time the enumeration function is called, the
IParam value remains the same.

Uses Retrieving handles to all child windows, or other data associated with the child window. You do
not need to know how many child windows there are in advance.

Returns

See Also

Parameters
hWndParent

BOOL. TRUE if all child windows have been enumerated, FALSE if not.

See the description in the Notes section at the beginning of this chapter.

HANDLE: Handle to the parent window.
\' -

F ARPROC: Pointer to the enumeration function. IpEnumFunc

IParam DWORD: This is the value to be 'passed to each processing of the enumeration function.
The enumeration (callback) function must have the form

BOOL FAR PASCAL EnumFunc (HWND hWndCllild, DWORD lParam)

This function will be called for each child window. You must include the EnumFuncO in the
EXPORTS portion of the .DEF file. The EnumFuncO must also be registered with Make
ProclnstanceO prior to use. The enumeration function will return TRUE if enumeration contin
ues, FALSE if enumeration stops

hWndChild

lParam

The meaning of the parameters on each call is

HWND: The handle of a child window.

DWORD: This is the IParam value passed by EnumChild
WindowsO.1t can be used to pass any.data, including a handle
to a memory block that can be used by the enumeration func
tion to store or retrieve data about the child windows.

Stalic Text

IEditt.Ae

Example This example creates a window with three children, as shown
in Figure 3-4. When the user clicks the "Do It!" menu item, the
enumeration function, is called to store the names of each of

EnumChiidWIndowsO lound:

Button
Static Text
Edit Me

the children. The names are then displayed on the parent Figure 3-4. -EnumCMld-,_
Window's client area. Windows() Example.

Note that the enumeration function keeps expanding the
memory area allocated, and adds each new child window name to the end of the memory space~

C WINDENmI.H Header File
1* windenum.h *1

#define 10M_DOlT 1
#define IDM_QUIT 2

1* definitions *1
#define TITLEWIDE 20
typedef struct
{

GLOBALHANDLE hGMem ;
int nCount ;

} ENUMER ;
1* global variables *1

int ghlnstance ;
char gszAppName [J = "Wi ndEnum" ;

1* function prototypes *1

1* menu item id values *1

long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG)
BOOL FAR PASCAL WndEnumFunc (HWNO, ENUMER FAR *)

o WlndProc() Portion of C Program
long fAR PASCAL WndProc (HWND hWnd~' unsigned iMessage, WORD wParam, -LONG lParom)

45

WINDOWS API BIBLE

(

)

.tati c In'NO
stati c HWND
static HWND
stati c FARPROC
static ENUMER
LPSTR
HDC
int

hButton ;
hStaticText
hEdi t ;
lpfEnumProc
enumer ;
lpWi ndName ;
hD~:-
i ;

switch (iMessage)
(

1* process windows messages *1 '

)

case WM_CREATE: ,
hButton = CreateWindow ("BUTTON", "Button",

WS_CHILD' J WS_VISIBLE J BS_PUSHBUTTON,
10, 10,'100, 40, hWnd,NULL, ghInstance, NULL)

ShowWindow (hButton, SW_SHOW);
1* create and show static text *1

hStaHcText = CreateWindow ("STATIC", "Static Text",
WS_CHI LD J WS_VISIBLE I BS_PUSHBUTTON,

, 150, 10, 100, 15, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hStatichxt, SW_SHOW) ;

::'-', ~ 1* create a"nd show an edi t control *1
hEdit = CreateWindow ("EDIT;,', "Edit Me",

WS_CHILD I WS_VISIBLE J WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghlnstance, NULL) ;

ShowWindow ChEdH~ SW..sHOW) ;

lpfEnumProc = MakeProcInstance (WndEnumFunc,
, ghInstance) ;

break;
case WM_COMMAr~D: 1* process menu_ items *1

switch CwParam)
{

case IDM_DOIT: 1* User hi t the "Do it" menu item *1

if (enumer.hGMem) 1* if not first time tried *1
GlobalFree (enumer.hG~em); 1* free the memory *1

1* initialize storage area *1
enumer.hGMem = GlobalAlloc

(GMEr'LMOVEABLE J GMEM_ZEROIrHT, 1L) ;
enumer. nCount = 0 ;

1* (et Windows run callback func. *1
EnumChildWindows (hWnd, lpfEnumProc,

CDWORD) &enumer).;
hDC = GetDC ,ChWnd) ; 1* get ready to output *1
lpWindName = GlobalLock (enumer.lhGMem>'; 1* lock lIellory *1
TextOut (hDC, 10, 100, "EnumChi qJWindows() found:" ,25) ;
for (i = 0 ; i < enuAler.nCount ; i++) 1* display window *1
{ 1* titles found *1

TextOut (hDC,15, 125 + (15 * i),
(LPSTR) ClpWindName + Ci,* TITLEWIDE»,
lstrlen ClpW;ndName + (; * TITLEWIDE») ;

)

GlobalUnlock Cenumer.hGMem)
ReleaseDC ChWnd, hDC)
break;

1* unlockmellory *1

case IDM_QUIT:

)

break;

DestroyWindow (hWnd)
break

case WM_DESTROY: - 1* stop application *1
GlobalFree (enumer.hGMem) ; 1* release all memory *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc ChWnd, ;Message, wParam, lParam) j

return COL> ;

46

3. WINDOWS SUPPORT FUNCTIONS ~

BOOl FAR PASCAL WndEnumFunc (HWND hWindow, ENU"ER FAR *enumer)
(

)

LPSTR lpWindName;
char cBuf [TITlEWIDE + 1] ;

if (!GlobalReAlloc (enumer->hG"em, ~'
. CDWORD) TITLEWIDE * (enumer->nCount + 1),

G"E"_"OVEABLE» 1* make r~om for 10 more *1 .
return (0) ; 1* quit if can't make' room *1

1* get title *1 GetWindowText ChWindow, CLPSTR) cBuf, TITLEWIDE) ;
cBuf [GetWindowTextLength ChWindow)~ = '\0' ;
lpWindName = GlobalLock (enumer->hGMem) ;

1* add end null *1
1* lock the memory area *1

1* put next name at end *1
lstrcpy (lpWindName + CCenumer->nCount) * TITLEWIDE), (LPSTR) cBuf) J .
GlobalUnlock Cenumer->hG"em) ; 1* unlock the memory area *1
enumer->nCount++ ; 1* keep track of how many·'
return (1) ;

ENUMPRops II Win 2.0 • Win 3.0 .Win3.l
Purpose

s,ntax
Dest.ripdon

Uses

Returns

See Also

Parameters
hWnd
lpEnumPunc

kWnd
lpSting

kDATA
Example

Retrieves all of the entries in the property list of a window.
int EnwnProps(HWND kWnd, FARPROC lpEnumFunc)j

Uses a callback function to repeat
edly fetch properties (data) associ
ated by the window with the
SetProp() function.
Allows any amount of data to be as
sociated directly with the window.
into -Ion error. Otherwise returns
the last value returned by the call
back function.
EnumChildWindows(), SetPropO,
GetPropO

120 It! Quit

GetPropn found:
This data tied to Window

EnumPropO found:
Propl This data tied to Window
Prop2 This data also linked to Window

Figure 3-5. Properties Retrieved/rom a windO".D.

HWND: Handle of the window that has a property list to be enumerated. ,.
FARPROC: Pointer to the enumeration function. The enumeration function must be ofthe fonn: .
int FAR PASCAL EnwnFunc (HWND kWOO, LPSTR lpString, HANDLE hData)j
The enumeration function must be listed in the EXPORTS section of the program's .DEF definition
file. The enumeration function is called once for each property associated with the window. 'The
enumeration function should return zero to stop enumeration, or a non~zero value (l) to continue.

The parameters passed to the enumeration function have the following meanings:
HWND: The handle of the window that has a property list to be enumerated.
LPSTR: The character string that was used by SetProp{) to name the data. This can also be an
atom. In this case, the atom is the LOWORD, "'hile the HIWORD is set to zero. Atoms are dis-

. cussed in Chapter 22, Atom Functions.
HANDLE: Is a data handle, pointing to the memory where the data is stored.
In this case, two properties are associated with the window. Each of the properties (called
"Propl" and "P:op2") is associated with a handle to memory containing a string. The WinProc()
function demonstrates recovering the property data with both the GetProp() and EnumPropQ
functions. Note that the enumeration function WindPropFunc() must be referenced in the EX·
PORTS section of the program's .DEF file. When this program executes the "Do It!" menu item,
the program window appears as shown in Figure 3-5.

i . \ 47

WINDOWS API BIBLE

C Header- File
1* windprop.h *1

#define IDM_DOIT 1
#define IDM_QUIT 2

1* menu item id values *1

1* definitions *1
#define PROPSTRINGWIDE 10
#define MAXPRCP 30

1* global variables *1
typedef struct
{

HANDLE hPropData ,
char

} PROPERTY
cPropName [PROPSTRINGWIDEJ

PROPERTY
int

gPropertyList [MAXPROPJ
gnPropertyCount

int ghInstance ;
char gszAppName [J "windprop";.

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL Wi ndPropFunc (HWND hWi ndow, WORD nDummy,

PSTR pString, HANDLE hData) ;

C WindProc() Portion of C Program
long FAR PASCAL WndProc (HWND hWnd, un~igned iMessage, WORD wParam, LONG lParam)
<

static HANDLE
stati c FARPROC
LPSTR
HDC
int
char

hMemory ;
lpfEnumProc
lpName ;
hDC ;
i ;
cBuf [128J

switch (iMessage)
{

1* process windows messages *1

·case WM_CREATE:
strcpy (cBuf, "This data tied to Window") ;
hMemory = GlobalAlloc (GMEM_MOVEABLE I GMEM_ZEROINIT,

(LONG) strlen (cBuf» ;
lpName = GlobalLock (hMemory) ;
lstrcpy (lpName, cBuf) ;
GlobalUnlock (hMemory) ;
SetProp (hWnd, "Prop1", hHemory) 1* link data to window *1

strcpy(cBuf, "This data also linked to Window") ;
hHemory =.GlobalAlloc (GHEH_HOVEABLE I GMEH_ZEROINIT,

(LONG) strlen (cBuf» ;
lpName = GlobalLock (hMemory) ;
GlobalUnlock (hMemory) ;
lstrcpy (lpName, cBuf) ;
SetProp (hWnd, "Prop2", hHemory) ;
lpfEnumProc = HakeProcInstance (WindPropFunc, ghlnstance) ;
break;

case WM_COMHAND: 1* process menu items *1
switch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
hMemory = GetProp (hWnd, "Prop1") ;
lpName = GlobalLock (hMemory) ;
hOC = GetOC (hWnd) ; '1* get ready to output *1
TextOut (hDC, 10, 10, "GetP.ropO found:", 16) ;
TextOut (~DC, 15, 25, lpName, lstrlen (lpName» ;
GlobalUnlock (hHemory) ; . .
Rele~~eDC ChWnd, hDC)·;

48

}

3. WINDOWS SUPPORT FUNCTIONS ..

gnPropertyCount = 0 ;
1* let Wi ndows run callback func. *1

EnumProp~ (hWnd, lpfEnumProc) ;
hOC = GetOC (hWnd) ; 1* get ready to output *1
TextOut (hOC, 10, 50, "EnumPropO found:", 17> ;
for (i = 0 ; ; <: gnPropertyCount ; 1++) .
{ 1* display titles found *1

}

TextOut (hOC, 15, 70 + (15 * i),
(LPSTR) gPropertyList [iJ.cPropName,
strlen (gPropertyList [iJ.cPropNa.e» ;

lpName = GlobalLock (gPropertyList [il.hPropData) ;
TextOut (hOC, 100, 70 + (15 • i), lpName, .

lstrlen (lpName» ;
GlobalUnlock (gPropertyList [iJ.hPropData)

ReleaseDC (hWnd, hOC) ;
break;

case 10M_QUIT:

}

break;

OestroyWindow (~Wnd) ;
break;

case WM_OESTROY: 1* stop application *1
RemoveProp (hWnd, "User Prop") ;
PostQui tMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iHessage, wParam, lParam) ;

return (OL) ;
}

BOOl FAR PASCAL WindPropFunc (HWND hWindow, WORD nDummy, PSTR pString,
HANDLE hData)

{

gPropertylist [gnPropertyCountJ.hPropOata = hData ;
strcpy (gPropertyL;st [gnPropertyCountJ.cPropName, pString)
gnPropertyCount++ ;
return (1) ;

}

Er.nJMTASKWINDOWS . &I Win 2.0 .• Win 3.0 • Win 3.1
Purpose

. Syntax

Description

Returns

See Also

Parameters
hTask

lpEnumFunc

LParam

Lists all of the top-level windows associated with a task.

BOOL EnumTaskWmdows(HANDLE hTru;k, FARPROC lpEnumFunc, LONG LParam)i

Calls an enumeration function to collect the handle for every top-level window associated with a
task. Tasks are running applications in memory. Windows keeps track of all running tasks in the
"task handler." Note that dynamic link libraries (DLLs) are not tasks. Each instance of a program
is a separate task.

BOOL. TRUE if all tasks were successfully enumerated, FALSE if not.

EnumChildWindowsO, GetCurrentTaskO, GetWindovlI'askO
\

HANDLE: The handle to the task. Use GetCurrentTaskO to retrieve the handleofthe currently
running task, or GetWindowTaskO to retrieve the task handle of a specific window. .

FARPROC: Pointer to the enumeration function.

DWORD: The 32-bit value that is to be sent to the callback function each time a task is found· .. ,
This can be data or a handle to a memory block.

The enumeration function must be in the form:

49

WINDOWS API BIBLe.

hWnd

IParam

Example

BOOL FAR PASCAL EnumFunc (HWND hWnd; DWORD lPararn)j

i The function name must be listed in the EXPORTS section ofthe program's .DEF definiti9n
file. The enumeration function must return TRUE to continue enumeration, FALSE to stop enu
meration (such as if an error is detected). The meaning of the
parameters passed to the enumeration function are as follows:

~' . generic FF
no It I .Quit

HWND: Handle to the parent window for a task. This value will I=F::-o-un-d~--)--------I

be different each time the callback function is called. Found -) File Manager

DWORD: The data or pointer that is passed on each call to the
enumeration function. This is the lParam value set when
EnumTaskWindowsO was called. It will be the same each time
the callback function is called.

Here the enumeration function is used to determine the top-

Found -) File Manager

Figure 3-6. EnumTask
W,indows() Example.

level windows associated with the Windows File Manager application. There turn out to be three
tasks. The first is related to a hidden unnamed window, while the second two are related to a
window titled "File Manager." (See Figure 3-6.) .

c> GENERIC.H Header" File
1* generic.h *1

#define IOM~OOIT 1
#define 10M_QUIT 2

1* menu item id values *1

1* definitions *1
#define TITLEWIOE 20
typedef struct
{

GLOBALHANOLE hGMem ;
int nCount ;

} ENUMER ;
1* global variables *1

int ghInstance ;
char gszAppName I:J :: "generi c" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWNO, unsigned, WORD, LONG)
BOOL FAR PASCAL WindTaskFunc (HWND, ENUMER FAR *) ; .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

stati c FARPROC
stati c ENUMEP
HANDLE
int
HOC
LPHANOLE
char

lpfEnumProc ;
enumer ;
hTaskWind, hFileMgr ;
i ;
hOC;
lpTaskMem ;
cBuf 1:128J, cWindName 1:64J ;

switch (iMessage)
{

1* process windows messages *1

case WM CREATE: 1* tell windows about WindTaskFunc() *1
lpfEnumProc = MakeProclnstance (WindTaskFunc,

ghInstance) ;
break;

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{ \
case ~DM_OOIT: 1* User hit the "Do it" menu item *1

, \ if (enumer.hGMem) 1* if not first time tried *1
\ GlobalFree (enumer.hGHem) ; 1* free the memory *1
I 1* initialize storage area *1

enumer.hGMem = GlobalAlloc

50

}

}

3. WINDOWS SUPPORT FUNCTIONS ~

(GI1EH_M'OVEABLE I GMEM_lEROINIT, 1 L> ;
enumer.nCount = 0 ;

1* let Windows run callback func. *1
hFi leMgr = FindWindow (NULL, "Fi le Manager")
hTaskWind = GetWindowTask (hFileMgr) ;
EnumTaskWindows (hTaskWind, lpfEnumProc,

(DWORD) (LPSTR) &enumer) ;

hDC = GetDC (hWnd) ; 1* see which tasks were found *1
lpTaskMem = (LP~ANDLE) GlobalLock (enumer.hGl1em)
for (; = a ; ; < enumer. nCount ; i++)
{

}

hTaskWind = * (lpTaskMem +
(i. * sheof (HANDLE») ;

GetWindowText (hTaskWind, cWindName, 63) ;
TextOut (hDC, 0, 20*i, 'cBuf, wsprintf (cBuf,

"Found -> 7.s", (LPSTR) cW;ndName» ;

GlobalUnlock (enumer.hGMem)
ReleaseDC (hWnd, hDC)
break;

case IDM_QUIT:

}

break
case WM_DESTROY:

DestroyWindow (hWnd)
break;

GlobalFree (enumer.hGMem) ;
FreeProclnstance (lpfEnumProc)
PostQuitMessage (0) ;

1* stop appl i cation *1
1* relea~e memory *f

break;
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

1* here ;s the function to find all of the asks running *1
BOOl FAR PASCAL WindTaskFunC<HWND hWind, ENUMER FAR *enumer)

}

LPSTR lpMemo_ry, lpDest

if (!GlobalReAlloc (enumer->hGMem,
(DWORD) sizeof (HANDLE) * (enu~er->nCount + 1),
GMEM_MOVEABLE» 1* make room for 1 more *1

return (0) ;. 1* qui t if can I t make room *1
lpMemory = GlobalLock (enumer->hGMem); 1* lock the memory area *
lpDest = lpMemory + «enumer-~nCount) * sizeof (HANDLE» ;
(HANDLE) *lpDest = hWind ; 1* store handle to task window *1
GlobalUnlock (enumer->hGMem) 1* unlock the memory area *1
enumer->nCount++ ; 1* keep track of h'ow many *1
return (1) ;

ENUMWINDOWS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

\ Syntax

Description

Uses
Returns

See Also

Retrieves data on all of the parent windows running on the system.
BOOL EnumWmdows(FARPROC lpEnumFunc, LONG lParam)i

Calls an enumeration function for every parent window running on the system. The enumeration
function can collect whatever data is desired from each window as it is processed .

. Useful for determining what other applications are running.
TRUE if all parent windows were enumerated, FALSE if not.

EnumChildWindowsO, EnumTaskWindowsO
I

51

WINDOWS API BIBLE

. Parameters
IpEnumFunc FARPROC: The procedure instance address of the enumeration callback function. Use

MakeProcInst~nceO to create this pointer.

lParam DWORD: The 32-bit value to be passed °to the callback function. This can either be data or a

hWnd

lParam

pointer.
The enumeration callback function must be in the follow

ingformat:

BOOL FAR PASCAL EnumFunc (HWNDhWnd, DWORD
lParam)j

The function must be declared in the EXPORTS section of
the program's .DEF definition file. The function must return
TRUE to continue enumeration, FALSE to stop. The param-.
eters have the following meanings:

HWND: The window handle for each window enumerated.
DWORD: The IParam value passed in the call to Enum
WindowsO. This value will be the same each time the enu
meration function is called.

Figure 3-7. EnumWindows{)
Example.

Example This example, as shown in Figure·3-7, lists all of the windows active on the screen when the user
, clicks the "Do It!" menu item.

C WINDENVM.H Header File
1* windenum.h *1

#define IDM_DOIT 1
#define 10M_QUIT 2

1* definitions wI
#define TITlEWIOE
typedef struct
{

Gl08AlHANDlE
int

} ENUMER ;

20

f* global variables *1
int ghlnstance ';

hGMem ;
nCount ;

f* menu item id values *1

char gszAppName [J = "wfndenum"
1* function prototypes *1 .

long FAR PASCAL WndProc (HWND, un~igned,'WORD, lONG) ;
BOOl FAR PASCAlWndEnumFunc '(HWND; ENUMER FAR *) ;

C WINDENVM.C WindProc() Function and Enumeration Function from C Source File
long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{

static FARPROC
stati c ENUMER' .
lPSTR
HOC
int

switch (iMessage)
{

case W'CCREATE:

lpfEnumProc ;
enumer ;
lpWind~ame ;
hDC;
i ;

1* process windows messages *1

lpfEnumProc = MakeProclnstance (WndEnumFunc,
ghlnstance); .

break;

1* process menu items *1

52

3. WINDOWS SUPPORT· FUNCTIONS T

switch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1

if (enumer.hGMem) 1* if not first time tried *1
GlobalFree (enumer.hGMem); 1* free the memory *1

1* initialize storage area *1
enumer.hGM~m = GlobalAlloc (GMEM_HOVEABLE I GHEM_ZEROINIT,

1 L) ;

enumer.nCount = 0 ;
1* let Windows run callback func. *1

EnumWindows (lpfEnumProc, (DWORD) &enumer) ;
hOC = GetDC (hWnd) ; 1* get ready to output *1
lpWindName = Globallock (enumer.hGMem) ; 1* lock memory *1
TextOut (hDC, 10, 100, "EnumWindowsO found:", 20) ; . .
for (i = 0 ; i < enumer. nCount ; i ++) 1* di splay wi ndow *1

return OL
)

{ 1* titles found *1
TextOut (hOC, 15, 125 + (15 * i>,

(LPSTR) (lpWindName + (i * TITLEWIDE»,
lstrlen (lpWindName + (i * TITLEWIDE»)

GlobalUnlock (enumer.hGMem)
ReleaseDC (hWnd, hDC) ;
break;

1* unlock memory *1

case IDM_QUIT:

}

brecok ;

DestroyWindow (hWnd)
break;

case WM_DESTROY: 1* stop application *1
GlobalFree (enumer.hGMem)
PostQuitMessage (0) ;
break

1* release all memory *1

..
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iHessage, wParam, lParam) ;

'lOOL FAR PASCAL WndEnumFunc (HWND hWindow, ENUMER F~Ji*enumer>
{

}

lPSTR
char

lpwindName ;
cBut [TITLEWIOE + 1]

it (!GlobalReAlloc (enumer->hGHem,
(DWORD) TITLEWIDE * (enumer->nCount + 1),
GMEM_MOVEABLE» 1* make room for 10 more *1

return (0) ; 1* qui t if can't make room * 1

1* get title *1 GetWindowText (hWindow, (LPSTR) cBut, TITLEWIDE)
cBuf CGetWindowTextLength (hWindow}J = '\0' ;
lpWindName = GlobalLock (enumer->hGMem)

1* add end null *1
1* lock the memory area *1.
1* put next name at end *1

* TITLEWIDE), (LPSTR) cBut> ; lstrcpy (lpWindName + «enumer->nCount)
GlobalUnl~ck (enumer->hGMem)
enumer->nCount++
return (1) ;

1* unlock the memory area *1
1* keep track of how many *1

...

FINDWINDOW BWin2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Retrieves a handle to a window.

HWND FindWmdow (LPSTR lpClassName, LPSTR lpWindQwName);

Finds the window's handle given the class name and/or the window's title.

53

WINDOWS API BIBLE

Uses

Returns
See Also

Parameters
IpClassName

IpWindowName

Example

Useful to find specific applications in memory. For example, an application may need to load the
notepad application if it is not already in memory.

HWND, a handle to a window. Returns NULL if a match was not found.

ChildWindowFromPoint(), WinExecO, GetClassNameO, GetWindowTextO

LPSTR: Pointer to a null-terminated string eontaining the window's class name. If this param~
eter is NULL, all classes will be searched to find the window name.

LPSTR: Pointer to a null-terminated string containing the window's title. If this value is NULL,
all names will be searched to find the class name.

This example checks to see if the Windows file manager is running.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
HWND

hDC ;
hWindow ;

1* device contxt handle *1

switch (iMessage)
{

1* process wi ndows messa~es *1

case WM_COMMAND:
switch (wParam)
{

1* process menu item~, *1

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hWindow = FindWindow (NULL, "File Manager")
hDC = GetDC (hWnd) ;
if (hWindow)
c::: TextOut (hDC, 10, 20,

"I found the file manager!", 25) ;
else

TextOut (hDC, 10, 20,
• "Fi le manager not found_", 22)

ReleaseDC (hWnd, hDC) ;
break;

IOther program lines /

FLASHWINDOW III Win 2.0 • Win 3.0 • Win 3.1
Purpose

. Syntax

Uses

Returns
See Also

Parameters
hWnd

Highlights the window's caption bar if the window is not minimized, or flashes the window's icon
if minimized .

BOOL FlashWindow (HWND hWnd, BOOL bInvert)j

Informs the user that a window needs attention, even if it does not have the input focus.

TRUE if the window was active before the call, FALSE if not.

CetFocus(), SetActiveWindowO

HWND: Handle to the window to flash.

bInvert BOOL: If TRUE, the window is toggled between the active appearance and inactive on each call
to FlashWi ldowO. If FALSE, the window is returned to the same state it started (active or in
active).

Related Messages WM_SETFOCUS, WM_KILLFOCUS

Example
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPar~m, "LONG lParam) -
{ .

switch (iMessage)
{

case WM_CO~MAND:
swi tch (wParam)

1* process windows messages *1

1* process menu items *1

54

3. WINDOWS SUPPORT FUNCTIONS T

{

case 10M_DOlT: 1* User hit the "00 it" menu item *1
FlashWindow (hWnd, TRUE)
break;

/Otherprogram lines]

GETAcTIVEWINDOW . • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Example

Finds which parent or popup window is active.

HWND GetActiveWmdow(void)j

Retrieves a handle to the parent or popup window that is currently active. Active windows have
highlighted title bars. Windows are made active by the user selecting the window (the window
gets the input focus) or by calling SetFocusO.

In applications with multiple popup windows. Your program can use GetActiveWindowO-to find
which popup is active.

A handle to the active window.

SetActiveWindowO, SetFocusO

None (void).

This example changes the title of the currently active window to "I'm Active!" when the user
clicks the "Do It!" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HWND hActive ;

switch (iMessagc)
{

case WM_COMMAND:
swi tch (wParam)
{

1* process wi ndows messages * 1

1* process menu items *1

case 10M DOlT: 1* User hit the "Do it" menu item *1
hActive = GetActiveWindowO ;
SetWindowText (hActive, "I'm Active!") ;
break;

[Other program lines]

GETCLASsINFO q Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

Retrieves information about a window class.

BOOL GetClassInfo(HANDLE hInstance, LPSTR IpClassName, LPWNDCLASS lp WindClass);

Fills in the data in a WNDCLASS structure, based on the instance handle and class name.

Handy if you are modifying a class with SetClassWordO and SetClassLongO as the program oper
ates. Eliminates the need to keep track of what is in the operating version of the class ..

BOOL. Returns TRUE if a class was found and the data loaded, FALSE if not. The class data is
copied into WNDCLASS structure pointed to by the IpU'ndClass parameter. The IpszClassName,
lpszMenuName, andhInstance fields are not filled in by this function. "--

typedef struct tagWNDCLASS
{

WORD
LONG
int
int
HANDLE
HICON
HCURSOR
HBRUSH

style;
. (FAR PASCAL *lpfnWndProc)()i

cbClsExtrai
cbWndExtra;
hlnstance; 1* no *1
hlcon;
hCursori
hbrBackgroundi

55

WINDOWS API BIBLE

LPSTR lpszMenuName;
LPSTR lpszClassName;

) WNDCLASS;

1* no *1
1* no *1

typedef WNDCLASS
typedef WNDCLASS NEAR
typedef WNDCLASS FAR

*PWNDCLASS;
*NPWNDCLASS;
*LPWNDCLASS;

See Also

Parameters
hlnstance

IpClassName

IpWndCla3s

Example

SetClassWordO, SetClassLongO, GetClassLong(), GetClassWordO, RegisterClassO, Unregister
ClassO

HANDLE: The instance of the program that created the window class. Set to NULL if you would
like to retrieve information on classes defined by Windows (buttons, list boxes, etc.).

LPSTR: Point.s to a null-terminated string containing the dass name. If the high order word is
NULL, the function assumes that the low order word is a value returned by the MAKE-

< INTRESOURCE macro.

LPWNDCLASS: Points to the memoIY area reserved to hold the window class data.

This example determines the handle to the brush used to paint the background for the
application's window class. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, ~ORD wParam, LONG lPararn)
<

stati c WNDCLASS
static HBRUSH

WndClass ;
hbrWi ndBrush ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMA.ND:
swi tch (wParam)
{

1* process menu i terns * I

case 10M_DOLT: 1* get the class background brush ~I
GetClasslnfo (ghlnstance, gszAppName, &WndClass)
hbrWindBrush = WndClass.hbrBackground ;
break;

i Other program lines J

GETCLAssLONG II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Uses

Returns
See Also

Parameters
kWnd

nlndex

GCL'NNDPROC

Retrieves a long value from the class structure.

LONG GetClassLong(HWND hWnd, int nIndex)j

Used to retrieve a poi'fiter to the class message processing function. If the class was created
reserving space for extra four-byte data, GetClassLongO can be used to retrieve it.

The value requested, usually the message processing function address.

GetClasslnfoO, SetClassWordO, SetClassLongO, GetClassWordO

HWND: A handle to the window using the class.

int: Set to one of the values in Table 3-3.

Retrieve a far pointer to the window's message processing procedure.

GCL_MENUNAME Retrieve a far pointer to a character string containing the menu name.

Table 3-3. GetClassLong() Index Values.

56

Example

3. WINDOWS SUPPORT FUNCTIONS ~

These index values are defined as negative values in
WINDOWS.H. Alternatively, if you are retrieving the extra four
byte data from the window class; set nlndex equal to the byte
number to retrieve (0, 4, 8 ...). .

This example creates a'new window class and uses the class to
create a popup window. The class definition contains extra
space for four bytes (DWORD). These values are set to the inte
ger "123" as the popup is created.

In the popup's own message processing procedure
ChildProcO, the class value is recovered and displayed in the
popup's client area every time a ~CPAINT message is re
ceived. (See Figure 3-8.)

"
, .

, .
• • I ~

- . ,.'
II ,t. 4. 1

Figure 3-8. GetClassLong()
Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

}

WNDCLASS
HWND

wndclass
hPopup

1* the window class *1

switch (iHessage)
{

1* process windows messages *1

case WH_CREATE: 1* bui ld the chi ld. window when program starts *1
wndclass.style = CS_HREDRAW I CS_VREDRAW I CS_PARENTDC;
wndclass.lpfnWndProc = Chi ldProc ;
wndclass.cbClsExtra = sizeof (DWORD)
wndclass.cbWndExtra' = 0 ;
wndclass.hlnstance = ghlnstance ;
wndclass.hlcon = NULL;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = GetStockObject (LTGRAY_BRUSH)
wndclass.lpszMenuName = gszAppName ;
wndclass.lpszClassName = "SecondClass" ;

1* re~ister the window class *1
if(RegisterClass (&wndclass»
{

}

break;

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
10, 50, 150~ 150, hWnd, NULL, ghlnstance, NULL) ;

SetClassLong (hPopup, O~ 123) ;
ShowWindow (hPopup, SW_SHOW) ;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return D~fWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

1* H·ere is a separate message processing procedure for the chi ld window *1

l6ng FAR PASCAL ChildPro~ (HWND hWnd;unsigned iMessage, WORD wParam,

57

WINDOWS API BIBLE

{
LONG l Pa ram)

char
int
PAINTSTRUCT

cBuf [128J
n ;
ps ;

switch (iMessage)
{

1* pr~cess windows messages *1

)

case WM_PAINT:
BeginPaint (hWnd~ &ps) ;
n = (int) GetClassLong (hWnd, 0) ;
TextOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf,

"Class -value = Xd", n» ;
EndPaint (hWnd, &ps) ;
break;

. case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case 1DM_QUlT:

}

break;

DestroyWindow (hWnd)
break;

default: 1* default windows message p,..ocessing *1
return DefWindowProc (hWnd, iMessage, wParam'," lParam) ;

return (OL> ;

GETCLASSNAME • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

I

. Parameters
'hWnd

lpClassName

nMaxCount

Example

Retrieves the class name upon which a window is based.

int GetClassName(HWND hWnd, LPSTR lpClassName, int nMaxCount)j

Copies the class name to a memory area pointed to by lpClassName.

Generally used before GetClasslnfoO to load the class name into a string array.

The number of characters read. Zero if hWnd is not a valid window handle.

GetClasslnfoO

HWND: Handle to the window which was created based on the class.

LPSTR: Pointer to a memory area to hold the class name.

int: The maximum number of bytes to retrieve. This allows you to keep the class name from
overflowing the IpClassName area.
This example displays the class name when the user clicks the "Do It!" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

char cBuf[128J
i nt nLenStr ;
HDC hDC ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOlT: 1* User hit the "Do i til menu item *1
nLenStr = GetClassName (hWnd, cBuf, 127> ;
hDC = GetDCChWnd) ;
TextOut (hDC, 10, 10, "The class name is:", 17> ;
TextOut (hDC, 10, 25, cBuf, nLenStr) ;.

58

ReleaseDCChWnd, hDC) ;
break;

3. WINDOWS SUPPORT FUNCTIONS ...

[Other program lines /

GETCLASSWORD • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Retrieves information from a class.

WORD GetClassWord(HWND hWnd, int nIndex)j

Returns two-byte data from a class.

Generally used to retrieve the class cursor, icon, or back
ground brush. More efficient than GetClassInfoO if you are
only retrieving one value.

The two-byte data value requested.

GetClassWordO, GetClassLongO, GetClassNameO, SetClass
LongO, SetClassWordO, GetClassInfoO

HWND: The handle of the window that was created based on
the class.

- genericFF
Do It! Quit

Figure 3-9. GetClassWord()
Example.

nIndex int: The byte offset for the specific data item. It can be any of the values described in Table 3-4.

GCW_CBCLSEXTRA Retrieve the number of bytes of extra data associated with the class. A second call to
GetClassWordO can be used to retrieve a word of data. Use an rilndex value of 0,2,4 ... for the
first, second, third ... words of extra data.

GCW_CBWNDEXTRA Retrieve the number of bytes of extra data associated with the window. GetWindowWordO can be
used to retrieve a word of data. Use an nlndex value of 0, 2, 4 ... for the first, seCon9Jbird ... words
of extra data. ' ..

GCW_HBRBACKGROUND Retrieve a h?ndle to the class background brush.

GCW _HCURSOR Retrieve a handle to the class cursor.

GCW _HICON ' Retrieve a handle to the class icon.

GCW_HMODULE Retrieve a handle to the class module~

GCW-,STYLE Retrieve the window class style.

Table 3-4. GetClassWord() Index Values.

The GCW _ values are defined as negative values in WINDOWS.H. This is how the function differ
entiates between positive offsets you supply to retrieve extra data stored with the class and a
request for a predefined element of Class data.

Example This example retrieves the class icon, as shown in Figure 3-9, in order to display the icon in the
window's client area.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HICON
HDC

h I con ;
hDC ;

switch CiMessage)
<'

case WM_COMMAND:
swi tch (wParam)
{

1* process wi ndows messages *1

, 1*, process menu items *1

59

WINDOWS API BIBLE

case IDM_DOIT: 1* Paint the program's icon *1
hIcon = GetClassWord (hWnd, GCW_HICON)
hDC = GetDC (hWnd) ;
Drawlcon (hDC, 10, 10, hlcon)
ReleaseDC (hWnd, hDC)
break;

(Other program linesl

GETCLIENTRECT. • Win 2.0 • Win 3.0 • Wm 3.1

Purpose

Syntax

Description

Uses
Returns

See Also
Parameters
hWnd .

Retrieves a window's client area size.
void GetCIientRect(HWND hWnd, LPRECT IpRect); \
The client area dimensions are copied into the RECT structure pointed to by IpRect. As client
coordinates are used, the upper left corner is always 0,0. The bottom right corner gives the client
area dimensions in device units (pixels).

Use at the start ofWM_PAINT refresh cycles to find out how big an area is visible.
No returned value (void).

InvalidateRectO, UpdateWindowO, IsIconO, BeginPaintO, GetWindowExtO, GetWindowRectO •

HWND: Handle to the window.

IpRect LPRECT: Long pointer to a RECT rectangle data structure.

Related Me~ges \VM_P AINT
Example This example shows an explicit erasure of the client area rectangie. The client rectangle is passed

to InvalidateRectO. The same functionality can be achieved without using GetClientRectO, but
having the second parameter in the InvalidateRectO call set to NULL. This causes the entire
client area to be updated. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;
RECT rClient;
i nt i ;

o switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu; tems *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "DoH" menu Hem *1
hDC = GetDC (hWnd) ; 1* put text in client area *1
for (i = 0 ; i < 10 ; i++)
{

TextOut (hDC, 10, 10 + (i*15),
"Thi s text wi II be erased.", 25) ; ..

ReleaseDC (hWnd, hDC) ;
GetClientRect (hWnd, &rClient) ;
InvalidateRect (hWnd, &rClient, TRUE) ;
UpdateWi ndow (hWnd) 1* force WM_PAINT now *1
break;

IOther program lines /

GETCURRENTTASK
. Purpose

Syntax

Retrieves a handle to the currently executing task.

HANDLE GetCUlTentTask(void);

60

• Win 2.0 • Win 3.0 • Win 3.1

.---

Uses

Returns
See Also

Parameters
Example

3. WINDOWS SUPPORT FUNCTIONST

A task is an application program running on the system. Windows keeps track of all running tasks
in the "task handler." Each instance of a program is a separate task This function is used to
initialize a callback function made for EnumTaskWindowsO. Also used to return the task handle
for PostAppMessageO.
HANDLE, a handle to the task executing.

EnumTaskWindowsO, PostAppMessageO, GetWindowTaskO

None (void).

This example is similar to the example under EnumTaskWindowsO. In this case, the handle to
the currently executing task is passed to the enumeration function, rather than the task handle
for the f,ile manager. The remainder of the ~rogram is identical to the example under the
EnumTaSkWindowsO function description.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static FARPROC
static ENUMER
static HANDLE
int
HDC
LPHANDLE

lpfEnumProc ;
enumer ;
hTask, hFoundTask ;
i ;
hDC ;
lpTaskMem ;

switch {iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* tell windows about WindTaskFunc() *1
lpfEnumProc = HakeProc1nstance (WindTaskFunc, ghlnstance)
break;

case WM_COMMAND: 1* process menu items *1
switch (wPararn)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
if (enumer.hGMem) 1* if not first time tried *1

GlobalFree (enumer.hGMem) ;1* free the memory *1
. 1* initialize storage area *1

enumer.hGMem = GlobalAlloc
(GMEM_MOVEABLE I GMEM_ZER01NIT, 1 L) ;

enumer.nCount = 0 ;
hTask = GetCurrentTask () ;

1* let Windows run callback func. *1
EnumTaskWindows (hTask, lpfEnumProc, (DWORD) &enumer)

/Otherprogram lines/

GETDESKTOPWINDOW o Win 2.0 • Win 3.0 • Win 3.1
Purpose

S)ntax

Uses

Returns

Parameters '
Comments

Retrieves the handle of the background window that covers the entire screen.

HWND GetDesktop'!:mdow(void)j

Painting on the Windows desktop background. Some specialized utility programs paint on the
desktop window to provide utilitarian buttons, such as disk icons and button controls, to launch
applications.

A handle to the desktop background window.

None (void).

The background on which all windows are shown is another window. You can use all painting and
. text output functions on it, as yclu would the client area of any other window. This area should be
reserved for special purposes such as screen "saving" and printing programs, as painting on the
background violates the basic principle of sharing the screen resources between applications.

61

WINDOWS API BIBLE

Example This example prints the string "This text will be on the background." on the upper left corne.' of
the background. It is for demonstration purposes only. Printing text on the background is nota
good practice.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD-wParam, LONG lParam)
{

HDC hOC;
HWNO hOesktop;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1

. 'lOther program lines I

swi tch (wParam).
{

case 10M 001T: 1* User hi t the "00 it" menu item * I
hOesktop = GetOesktopWi ndow () ;
hOC = GetOC (hOesktop) ;
TextOut (hDC, 0, 0,

"This text will be on the background.", 36)
ReleaseDC (hDesktop, hOC)
breC!k .; ,

GETFocus • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Finds which window has the input focus.

HWND GetFocus(void);

Retrieves a handle to the window that has the input focus. The window with the input focus will
be the next one to receive keyboard input. .

Handy if you have multiple edit controls. Determines which one the user has selected to receive
text input.

HWND, a handle to the window with
the input focus.

SetFocusO
- generic' FP

Parameters None (void).
j!o It! Quit

Related Messages WM_SETFOCUS, W~CKILLFOCUS .

~ st;::ltic T P.xt
Example This example checks which window

has the input focus when the user
clicks the "Do It!" menu item. (See
Figure 3-10.) Note that this is as-

--.----.-.---~--~- I Fefit Mp.
he window with the focus is: Edit Me

sured to be either the parent win- Figure 3-10. GetForus(J Example.
dow or one of the children, as
clicking the menu will force the focus back to the application. In ojher circumstances, the focus
may be in an outside window when GetFocusO is called. Use SetActiveWindowO to make sure·
the application is active before calling GetFocusO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HWNO hButton ;
static HWND hStaticText ;
static HWND hEdi t ;
HWND hFocus ;
HOC hOC;
static char cBuf [25]

switch (iMessage)
{

1* process windows messages *1

62

3. WINDOWS SUPPORT FUNCTIONS ~

case WM_CREATE:

hButton = CreateWindow ("BUTTON", "Button",
WS_CHILD I WS_VISIBLE I BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, NULL, ghInstance, NULL) ;

ShowWindow (hButton, SW_SHOW) ;
1* create and show static text *1

hStati cText = CreateWindow ("STATIC", ,"Stati c Text",
WS_CHILD I WS_VISIBLE I BS_PUSHBUTTON,
150, 10, 100, 15, hWnd, NULL, ghInstance, NULL> ;

ShowWindow (hStaticText, SW_SHOW) ;
1* create and show an edi t control *1

hEdit = CreateWindow ("EDIT", "Edit Me",
WS_CHILD I WS_VISIBLE I WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghInstance, NULL> ;

ShowWindow (hEdit, SW_SHOW) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

cas e I D M_D 0 IT: 1 * Use r h ~ t the "D 0 it" men u it em * 1
:hFocus = GetFocus () ;
GetWindowText (hFocus, cBuf, 24) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 65, "The window with the focus is:", 29)
TextOut (hDC, 15, 80, cBuf, strlen (cBuf» ;
ReleaseDC (hWnd, hDC) ;
break;

IOtlterprogram lines]

GETLASTAcTIVEPOPUP o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Uses

Returns

Finds the popup window that was active last.

HWND GetLastActivePopup(HWND hwndOumer)j

In programs with multiple popup windows.

A handle to the popup window that was active last. Active win
dows have their title bars or outline borders highlighted. Will
return hwndOumer if hwndOwner does not own any popups or
hwndOwner was the last active window, or if hwndOwner is .
not a top-level window (if it is owned by another window).

See Also

Parameters
hwndOumer

GetActiveWindowO, SetActiveWindowO

HWND: The handle of the parent window that spawned the
popup windows.

Figure 3-11. GetLast- .
ActivePopup() Example.

Example This example creates a popup child window. When the user clicks the "Do It!" menu item on the
parent window, a handle to the last active popup window is retrieved. This handle is used to
change the popup window's caption to "I was Active!". (See Figure 3-11.)

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC; 1* device context handle *1
static WNDCLASS wndclass ; 1* the window class *1
static HWND hPopup, hActive ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* bui ld the chi ld window when program starts *1

wndclass.style
CS_HREDRAW CS_VREDRAW I CS_PARENTDC ;

63

WINDOWS API BIBLE

}

}

wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= PopupProc ;
= 0 ;
= a ;
= ghlnstance ;
= NULL;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondClass" ;
1* regi ster the window class *1

if(RegisterClass (&wndclass»
{

}

break;

hPopup = CreateWindow ("SecondClass", "Popup Window",
. WS_POPUP I WS_VISIBLE I WS_BOROER I WS_CAPTION,

10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hPopup, SW_SHOW)

case WM_COMMANO:
switch (wParam)
{

1* process menu items *1

case 10M_DOlT: 1* User hi t the "00 it" menu item *1
Set Focus (hPopup); .
hActive = GetLastActivePopup (hWnd) ;
SetWindowText (hActive, "I was Active!")
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;

_ break;
}

. break;

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0) ;
break

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL>

1* Here is a separate message pr.ocessing procedure for'the popup window *1

long FAR PASCAL PopupProc (HWNO hWnd, unsigned iMessage, WORD wParam,
LONG lParam)

{

}

HDC
PAINTSTRUCT
switch (iMessage)
{

hOC;
ps ;

1* device context handle *1
1* paint structure *1
1* process w~ndows messages *7

}

case WM_PAINT: 1* just write in the window *1
hDC = BeginPaint(hWnd, &ps) ;
TextOut (hDC, 1, 1, "WM_PAINT in Child.", 18) ;
EndPaint (hWnd, &ps)
break;

cast! W'CDESTROY: 1* stop the apPLIcation *1
PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL>

64

3. WINDOWS SUPPORT FUNCTIONS T

GETNEXTWINDOW • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

wFlag

Example

Finds parent and child windows.

HWND GetNextWmclow(HWND hWnd, WORD wFlag)j

Searches the window manager's list for the next or previous window. If hWnd points to a top-level
window, GetNextWindowO looks for other top-level windows. If hWnd points to a child window,
GetNextWindowO looks for other child wjndows.

To locate child windows in applications with only two or three child windows. EnumWindowsO
and EnumChildWindowsO are more efficient where there are many windows.

HWND, a handle to the next or previous window in the window manager's list.

EnumWindowsO, EnumChildWindowsO, GetWindowO

HWND: Handle to a window. If hWnd points to a top-level window, GetNextWindowO looks for
other top-level windows. If hWnd points to a child window, GetNextWindowO looks for other
child windows .

• WORD: Specifies if the handle returned is to be for the next or previous window. It can be either
GWJIWNDNEXT or GW_H\\'NDPREV.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;
HWNO hNextWi ndow ;
char cBuf[25] ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO: 1* process menu items *1

IOther program linesj

swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hNextWindow = GetNextWindow (hWnd, GW_HWNONEXT) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, "The next window is:", 19)
i toa (hNextWindow, cBuf, 10) ;
TextOut (hOC, 15, 30, cBuf, lstrlen (cBuf» ;
GetWindowText (hNextWindow, cBuf, 24) ;
TextOut (hOC, 15, 50, cBuf, lstrlen (cBuf» ;
ReleaseOC (hNextWindow, hOC) ;
break;

GETNuMTASKS • Win 2.0 • Win 3.0 .. Win 3.1
Purpose

Syntax

Description

Uses

Returns

SeeAIsO

Parameters

Finds the number of tasks running in the system.

int GetNumTasks(void)j

The number of tasks is the number of unique program instances in operation. If more t~an one
copy of the same program is operating, each will count as a separate task.

Used in s4eU applications such as the Program Manager. The shell can determine if it is the only
task running by seeing if the returned value from GetNumTasksOis one.

int, the number of running tasks.

EnumTaskWindowsO

None (void).

65

WINDOWS API BIBLE

Example This example displays the number of tasks running on the system in the example program's client
area. The example assumes that the C library STRING.H has been included.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

~DC hOC;
char cBuf(25J;
i nt nNumTasks ;

switch (iMessage)
{

1* process windows messages *1

case WM COMMAND: 1* process menu items *1
-swi tch (wParam)

{

case 1DM DOlT: 1* User hit the "Do it" menu item *1
-;:;NumTasks = GetNumTasks () ;
hDC = GetDC (hWnd) ;
TextOut (hOC, 10, 10,

"The number of tasks runni ng is:", 31)
i toa (nNumTasks, cBuf, 10) ;
TextOut (hOC, 15, 30, cBuf, strlen (cBuf» ;
ReleaseOC (hWnd, hDC) ;

/ Other program lines i
break;

GETP ARENT II Win 2.0 • Win 3.0 • Win 3.1 --
Purpose

Syntax

Description·· .

Uses

Returns

See Also

Parameters
hWnd

Example

Retrieves a handle to a parent window.

HWND GetP~ent(HWND hWnd)j

Windows maintains a table of window handles, and their linkages between parent and children,
in memory at all times. Any degree of nesting (children of children of children ...) is possible.
GetParentO looks for the parent of the wi~dow whose handle is hWnd.

Useful if a child or popup window has a separate message processing function. GetParentO al
lows the child window to retrieve its parent's handle for sending messages to the parent's mes-
sage function. .

HWND, a handle to the parent window. NULL if hWnd does not have a parent.

ChildWindowFromPointO, EnumWindowsO, GetWindowO.

HWND: The starting window's handle.

In this example, the parent window creates a popup window. The parent sends the popup window
a WM_USER message when the user clicks the "Do It!'; menu item. The MeUSER message has
the parent's window handle set as wParam, so that the popup window can print out the parent's
name. GetParentO could just as easily been used within the popup window's message processing
function to retrieve the parent window's handle.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
. static WNDCLASS
static HWND

hOC;
wndclass;
hPopup; hParent

switch '(iMe~sage)
(

1* process windows messages *1

case WM_CREATE: 1* build the child window when program starts *1
wndclass.style = CS_HREORAW I CS_VREDRAW I CS_PARENTDC;
wndclass.lpfnWndProc = ChildProc ; .
wndclass.cbClsExtra = 0)
wndclass.cbWndExtra = 0 ;
wndclass.h1nstance = gh1nstance ;

66

3. WINDOWS SUP'PORT FUNCTIONS ...

wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= NULL;
= LoadCursor (NULL, IOC_ARROW) ;
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondClass" ;
1* register the window class *1

if(RegisterClass (&wndclass»
{ ,

hPopup = CreateWindow (IISecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BOROER I WS_CAPTION,
10, 50, 200,150, hWnd, NULL, ghlnstance, NULL) ;

ShowWindow (hPopup, SW_SHOW)

}

}

}

break;
case WM_COMMAND:

switch (wParam)
{

1* process menu items * 1

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hParent = GetParent (hPopup) ;

1* Tell popup window its parentage *1
SendMessage (hPopup, WM_USER, hParent, OL) ;
break;

case 10M QUIT:

}

break

DestroYWindow (hWnd)
"break;

case WM_OESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

1* Here is a separate message processing procedure for the popup window *1

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

HDC
HWNO
char

hDC ;
hParent ;
cBuf [25]

switch (iMessage)
{

1* process windows messages *1

case WM USER: 1* message from parent - wParam is parent handle *1
hOC = GetOC (hWnd) ;
TextOut (hDC, 1, 1, "My Parent window is:", 21);
GetWindowText «HWNO) wParam, cBuf, 24);
TextOut (hDC, 1, 15, cBuf, strlen (cBuf» ;
ReleaseDC (hWnd, hDC) ;
break;

case WM_DESTROY: 1* stop the application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc(hWnd, iMessage, wParam, lParam) ;

return (OL)

GETPROP
Retrieves a property (data) associated with a window.

HANDLE GetProp(HWND hWnd, LPSTR lpString);

• Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Descripti,on Retrieves a handle to the memory area associated with the property named by lpString.

67

/

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hWnd

lpString

Example

The property functions allow data to be associated with a window. This is an excellent way to deal
with data that is specific to a certain window, avoiding the need for global data storage.

HANDLE, a handle to the memory area containing the data. The data must have been previously
stored with SetPropO

SetPropO, EnumProp, RemovePropO

HWND: Handle to the window which has property data associated with it.

LPSTR: Pointer to a null-terminated string that contains the name associated with the data. This
can also be an atom. In that case the high-order word must be set to zero, while the low-order
word should contain the ~tom value.

This example stores a handle to a global memory block as a
window property. The memory block contains the string "This
data tied to Window," as shown in Figure 3-12. When the user
clicks the "Do It!" menu item, the handle to the memory block
is retrieved and the string is displayed in the window's client
area. Real uses of property data are most frequent in applica
tions that have a number of similar child windows, such as MD I
applications (see Chapter 29). Note that deleting the property
does not remove the data pointed. to by the memory handle.
The memory block is deleted separately from the property
when processing the MCDESTROY message.

, .•.. ,. ',,'>' ""Rr;; \;,(.' generic ", . . \ ,"

Do It I ,2ult

The window styles for parent:

WS_CAPTION
WS_HSCROlL

Figure 3-12. GelProp{)
Example.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HANDLE
LPSTR
HOC
char

hMemory ;
lpName ;
hOC;
cBuf[] = "This data tied to Window";

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hMemory = GlobalAlloc (GMEM_MOVEABLE I GMEM_ZEROINIT,

(LONG) lstrlen (cBuf» ;
lpName = GlobalLock (hMemory) ;
lstrcpy <LpName, cBuf) ;
GlobalUnlock (hMemory) ;
SetProp (hWnd, "User Prop", hMemory)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IOM_DOIT: 1* User hit the "Do it" menu item *1
hMemory = GetProp (hWnd, "User Prop") ;
lpName = GlobalLock (hHemory) ;
hOC = GetDC (hWnd) ;
TextOut (hOC, 10, 10, "GetPropO found:", 16) ;
TextOut (hOC, 10, 30, lpName, lstrlen (lpName»
GlobalUnlock (hMemory) ;
ReleaseOC (hWnd, hOC) ;
break;

case IOM_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_OESTROY: 1* stop application *1
hMemory = GetProp (hWnd, "User Prop")
GtobalFree(hMemory) ;
RemoveProp (hWnd, "User Prop")

68

}

PostQuitMessage (0) ;
break;

3. WINDOWS SUPPORT FUNCTIONS .,.

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

GETSYsMODAL WINDOW

Retrieves a handle to a system modal window.

HWND GetSysModal\Vmdow(void)j

• Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description System modal windows take over the input focus from all other windows. GetSysModalWindowO
allows you to get a handle to this window and send it messages if desired.

Uses

Returns

See Also

Parameters

Example

C Header File
1* timer. h·

Passing messages to system modal windows.

HWND, a handle to the system modal window. NULL if none exists.

SetSysModalWindowO

None (void).

This example shows the creation of a system modal dialog box. A timer is set up in the parent
window's message function that checks every ten seconds if a system modal window exists. If so,
the timer is shut down and the system modal window is sent a \W.CDESTROY message. This saves
the user from having to hit the "OK" button to cancel the dialog box. Note that this example will
delete any system modal window. A more complete application would discriminate between the
window handle(s) of system modal \vindows created by the application and those belonging to
other programs. The GetParentO function is frequently useful in doing these checks.

*1

#define IDM Don 1* menu item id values *1
#define IDM-QUIT 2

1* global variables *1
int ghlnstarice ;
char gszAppName [] = "timer" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BO.OL FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG lParam) ;

Note that the resource file contains the dialog box definition. The style DS_SYSMODAL has
been added to the definition to force the dialog box to be a system modal window.

C Resource File
1* timer.rc *1

#include <windows.h>
#include "timer.h"
timer ICON generic.ico
timer MENU
BEGIN

MENUITEM "&Do It!" IDM_DOIT
MENU ITEM "&Qui t", IDM_QUIT

END
TimerDialog DIALOG 20, 20, 160, 80
CAPTION "SYSTEM MODAL"
STYLE DS_SYSMODAL
{

CTEXT
CTEXT

ICON
DEFPUSHBUTTON "OK"

"Timer Example" -1, 0, 12, 160, 10
"This window will go away if you wait.",

-1, 0, 30, 160, 10
"timer" -1, 10, 10, 0, 0

IDOK, 50, 50, 30, 14

69

WINDOWS API BIBLE

o C Listing for WindProc() and Dialog Box. Functions
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{

HWND hSysModal ;
static FARPROC lpfnDlgProc

switch (iMessage)
(

1* pr(lr.ess windows messages *1

case WM_TIMER: 1* ki ll. sys modal window - if any *1
hSysHodal = GetSysModalWindow() ;
if (hSysModa l)

SendMessage (hSysModa l, WM_DESTROY, 0, OU
KillTimer (hWnd, 1) ;

SetActiveWindow (hWnd) ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOIT:
1* set timer 1 to every 10 sec. *1

if (!SetTimer (hWnd, 1, 10000, NUlU)
{

MessageBox (hWnd, "Too many clocks or timers!",
"Warning",
MB_ICONEXClAMATION 1MB_OK> ;

else
{

1* Create a system modal dialog box *1

}

}

return Ol

break
case IDM_QUIT:

lpfnDlgProc = MakeProclnstance (DialogProc,
ghlnstance) ;

DialogBox (ghlnstance, "TimerDialog", hWnd,
lpfnDlgProc) ;

FreeProclnstaoce (lpfnDlgProc) ;

DestroyWindow (hWnd)
break;

}

break
case WM_DESTROY: 1* stop application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowPr~c (hWnd, iMessage,wParam, lParam) ;'

BOOl FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, lONG lParam)
{

swi tch (wMess)
{

case WM_INITDIAlOG:
return TRUE

case WM_COMMAND:
case WM DESTROY:

1* there is only one command - quits *1

}

Purpose

Syntax

}

-EndDialog (hDlg, 0)
return TRUE;

return FALSE

Finds the Host child window of a parent.

HWND GetTopWmdow(HWND h Wnd)j

70

lIWin 2.0 BWin3.0 .Win3.!

Description

Returns

See Also

Parameters
hWnd

Example

3. WINDOWS SUPPORT FUNCTIONS •

Windows maintains a list of window handles in memory, including the linkage from parent to
child. GetTopWindowO can be called repeatedly to find "children of children." This function
searches for the first child window in a parent window's internal list of linked child windows.

HWND, a handle to the top level child window. Returns NULL if the parent does not have child
windows.

ChildWindowFromPointO, GetWindowO

HWND: The handle to the parent window.

This example displa.ys the name to the first child window when the "Do It!" menu item is clicked.
In this case, there is only one child window: a pushbutton with the window text "Button."

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORn wParam, LONG lParam)
{

static HWND
HWND
HDC
char

hButton ;
hTopWindow ;
hOC;
cBuf [25] ;

switch (iMessage)
{

1* process wi ndows messages * 1

case WM_CREATE:
hButton = CreateWindow (IIBUTTON", "Button",

WS_CHILD I WS_VISIBLE I BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hButton, SW_SHOW) ; .
break;

case WM_COMMAND: . 1* process menu items *1
switch (wParam)
{

case IDM DOlT: 1* User hitthe liDo it" menu item *1
if (hTopWindow = GetTopWindow (hWnd»
{

break;

GetWindowText (hTopWindow, cBuf, 24)
hDC = GetOC (hWnd) ;
TextOut (hDC, 10, 60, "The top wi ndow i s~", 17)
TextOut (hDC, 15, 75; cBuf,· lstrlen (cBuf» ;
ReleaseDC (hWnd, hOC) ;

/ Other program lines /

. GETVERSION

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Note

Example

.. Win 2.0 • Win 3.0 • Win 3.1

Retrieves the version number of Windows and DOS running on the system.

DWORD GetVersion(void);

Both the major and minor version numbers (before and after the decimal point) are returned.

Disabling part of a program if an ol~er version of Windows is in operation.

DWORD. The high-order word contains the DOS version number. The low-order word contains
the Windows version number. In both cases, the high-order byte of the word contains the minor
version number, while the low-order byte contains the major version number. For example, Win
dows version 3.1 running under DOS 5.0 would be coded Ox 00050103 hexadecimal.

GetWinFlagsO

None (void).

This function was incorrectly documented in the Windows 2.0 and 3.0 SDK documents and
WINDOWS.H file.

This example displays the Window's version number when the user clicks the "Do It!" menu item.

71

WINDOWS API BIBLE

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage; WORO wParam, LONG lPara~)
{

HOC hOC;
chal" cBuf[25J;
int nWindVersion, nMajor, nMinor ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO:
switch (wParam)
{

1* process menu items *1

case IOM_DOIT: 1* User hit the "00 it" menu item *1 ;r-'

nWindVersion = (int) GetVersion ()
nMajor = LOBYTE (nWindVersion) ;
nMinor = HIBYTE (nWindVersion) ;
hOC = GetDC (hWnd) ;
TextOut (hOC, 10, 10,

liThe current version ot Windows:",;31)
itoa (nMajor, cBut, 10) ;
TextOut (hOC, 15, 30, cBut, lstrlen (cBut»
TextOut (hOC, 25, 30, ".", 1) ;
itoa (nMinor, cBut, 10) ;
TextOut (hOC, 35, 30, cBut, lstrlen (cBut»
neleasePC (hWnd, hOC>
break; \

IOther program lines I

GETWINDOW • Win 2.0 • Win 3.0 • Win 3.1

Purpose Retrieves a window's handle.

Syntax HWND GetWmdow(HWND hWnd, WORD wCmd)j

Description Searches the window manager's list of parent and child windows for the next entry matching the
search criteria specified inthe wCmd parameter.

Uses, An alternative to EnumWindowsO and EnumChildWindowsO. GetWindowO is simpler to use if
'"there are not very many windows involved in the search.

Returns HWND, a handle to th~ window retrieved from the search. NULL if the end of the window
man,ager's list was found, or if the function failed (wrongwCrnd parameter).

See Also EnumWindowsO, EnumChildWindowsO, EnumTasksO

Parameters
hWnd HWND: The handle of the window from which to base the search.

wCrnd WORD: The search criteria value. This can be any of the values in Table 3·5.

GW_CHILD Find the window's first child window.

GW _HWNDFIRST Find a child window's first sibling window. If none found, it returns the first top-level window in the
window manager's list.

GW_HWNDLAST Find a child window's last sibling window. If not found, it returns the last top-level window in the
window manager's list.

GW_HWNDNEXT Returns the next window in the window manager's list,

GW_HWNDPREV Returns the previous window in the window manager's list.

GW_OWNER Returns the owner of a window.

Table 3·5. GetWindow() Criteria.

72

Example

3. WINDOWS SUPPORT FUNCTIONS ..

This example creates a child window from the parent window's class when the MCCREATE
message is processed. Whlm the user clicks the "Do It!" menu item', the child window handle is
Ioundwith GetWindowO, and its caption string determined with GetWindowTextO. The child
name is displayed in the parent's client area.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
HWNO
char

hOC' ;
hChild, hGotWind ;
cBuf [25J ;

static BOOL bFi rstTime = TRUE;

switch (iMessage) 1* process windows messag<lS *1
{

case WH_CREATE: 1* bui Ld the chi Ld window when, program starts *1
if (bFirstTime)
{

}

break;

bFi rstTime = FALSE;
hChi ld = CreateWindow (gszAppName, "Chi ld Window",

WS_CHILD I WS_VISIBLE I WS_BORl>ER I WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;

ShowWindow (hChiLd, SW_SHOW) ;

case WM_COMMAND: 1* process menu items * I
switch (wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1
hGotWind = GetWindow (hWnd, GW_CHILD) ;
hDC = GetOC (hWnd) ; 1* get device context *1
TextOut (hDC, 10, 20, "My chi Ld is:", 12) ;
GetWindowText (hGotWind, cBuf, 24) ;
TextOut (hDC, 15, 40, cBuf, strlen (cBuf» ;
ReleaseOC (hWnd, hO'); 1* reLease device context *1
break;

/Otherprogram lines}

GETWINDOwLONG • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Uses

Returns

See Also

Parameters
hWnd

nlndex

GWL_EXSTYLE

GWL_STYLE

Retrieves a long value from a window's data.

LONG GetWmdowLong(HWND hWnd, int nlndex)j

Useful where one or more windows has been sub classed by modifying the basic class structure
with SetWindowLongO. Also used to retrieve 3~ bit values saved with SetWindowLongO.

The LONG value specified.

GetWindowWordO, SetWindowLongO, SetWindowWordO, GetClassLongO, GetClassWordO

HWND: The window's handle. - .~. '.'.

int: The index to the value to retrieve. This can be any of the values in Table 3-6.

Retrieve the extended window style.

Retrieve the window style.

GWL_WNDPROC _ Retrieve a long pOinter to the window's message processirlg funQtion.

Table 3-6. GelWindowLong() Index Values.

73

WINDOWS API BIBLE

Th~se GWL_ values are all defined as negative offsets in
WINDOWS.H. To retrieve extra four-byte data associated with
a window's class structure, use a positive byte offset for
nlndex. 0 for the first value, 4 for the second, etc.

- generic r:r=-
Qo It! .Quit

The Window styles for parent:

Related Messages GetWindowWordO, SetWindowLongO, SetWindowWordO WS_CAPTION
WS_HSCROLL

Example This example displays the style parameters of the main win
dow when the user clicks the "Do It!" menu item. (See Figure
3-13.) Figure 3-13. GetWindow

LongO Example.

long FAR PASCAL WhdProc (HWND hWnd, iunsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;
char cBuf[25J;
LONG lStyle;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case 1DM_DOlT: 1* User hi t the "Do it" menu item *1
lStyle ! GetWindowLong (hWnd, GWL STYLE) ;
hDC = G'etDC (hWnd) ; -
TextOut (hDC, 10, 10, ,

'''The window styles for parent:", 29)
if (lStyle & WS_CH1LD) .

TextOut (hDC, 15, 20, "WS_CH1LD", 8) ;
if (lStyle & WS_CAPT10N)

TextOut (hDC, 15, 30, "WS_CAPTION", 10)
if (lStyle & WS_HSCROLL)

TextOut (hDC, 15, 40, "WS_HSCROLL", 10)
1* etc *1
ReleaseDC (hWnd, hDC)
break ~

f Other program lines J

GETWINDOwRECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Retrieves a window's outer dimensions.

void GetWmdowRect(HWND hWnd, LPRECT lpRect)j

Copies the dimensions of the bounding rectangle that exactly encompasses the window into the
rectangle structure pointed to by lpRect. The dimensions are in screen coordinates (pixels mea
sured from the upper left corner of the screen).

Window movement and sizing.

No returned value (void).

GetClientRectO

HWND: A handle to the window.

lpRect LPRECT: 'A pointer to a RECT structure that will contain the window's bounding rectangle. The
points will be computed in screen coordinates, with 0,0 being the upper left corner of the screen.

Related Messages ~LSIZE

Example This example moves a window across the screen diagonally. GetWindowRectO is used to provide
the initial window position and size.

74

3. WINDOWS SUPPORT FUNCTIONS ..

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

RECT rWi ndow ;
i nt i ;

switch (iMessage)
{

case WM_COMMAND:
swi tch (wParam)
{

1* process windows messages *1

1* process menu items *1

case 10M_DOlT: 1* User hit the "Do it" menu item *1
GetWindowRect (hWnd, &rWindow) ;
for (i = 0 ; i < 10 ; i++)
{

}

break;

MoveWindow (hWnd, rWindow.left + i*10,
rWindow.top + i*10,
rWindow.right + i*10,
rWindow.bottom + i*10, TRUE) ;

/Otherprogram lines]

GETWINDOwTASK • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Example

Retrieves a handle to a task.

HANDLE GetWmdowTask(HWND hWnd)j

A task is any operating program. Each instance of a program
running is a separate task. This function finds the task handle
when given the window handle.

Used to determine the task handle, when given the Window
handle. This may be done before calling EnumTaskWindowsO
to provide the hTask parameter.

HANDLE to the task.

EnumTaskWindowsO

HWND: The window's handle.

Figure 3-14. GelWindow
Task() Example.

This example creates a parent window and a popup window. Both windows display their task
handle number. Figure 3-14 provides a graphical example illustrating that all of a top-level
window's child windows are part of the same task.

The popup window's message processing function ChildProcO must be listed in the EXPORTS
section of the program's .DEF definition file. A function prototype should also be placed in the
program's header file.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
WNDCLASS
HWND
HANDLE
char

switch (iMessage)
{

ps ;
wndclass ;
hPopup ;
hTask ;
cBuf [128]

1* process windows messages *1

case WM_CREATE: 1 * bui ld the chi ld wi ndow when prog ram starts *1
wndclass.style

= CS_HREDRAW I CS_VREDRAW I CS_PARENTDC ;
wndclass.lpfnWndProc = ChildProc
wndclass.cbClsExtra = 0;

75

WINDOWS API BIBLE

}

}

wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= 0 ;
= ghlnstance
= NULL;
= LoadCursor (NULL, IDC_ARROW);

GetStockObject (LTGRAY_BRUSH) ;
= NULL;
= "SecondClass" ;

1* register the window class *1
if (Regi sterC lass (&wndclass»
{

}

break
case WM_PAINT:

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS.;..CAPTION,
110, 50, 200, 150, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hPopup, SW_SHOW) ;

BeginPaint (hWnd, &ps) ;
hTask = GetWi ndowTask (hWnd) ;
TestOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf,

"My 'task number is: %d',I, hTask» ;
EndPaint"(hWnd, &ps); -,
break;

case WM_COMMAND: 1* process menu item:; *1
switch (wParam)
{

case 10M_QUIT:

}

break. ;

DestoryWindow (hWnd)
break; .

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0) ;
break ~

defaul t: 1* defaul t windows message processing *1
return befWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

1* Here is a separate message processing procedure for the popup window *

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam
LONG lParam

PAINTSTRUC
HANDL
cha

ps
hTask
cBuf r 128]

switch (iMessage 1* process windows messages *
case

case

WM_PAINT
BeginPaint (hWnd, &ps)
hTask = GetWindowTask (hWnd)
Te~tOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf

"My task number is: %d", hTask»
EndPaint (hWnd, &ps)
break

WM DESTROY 1* stop the appUcation *
- PostQui tMessage (0)

break
default 1* default windows message processing *

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL)

76

3. WINDOWS SUPPORT FUNCTIONS

GETWINDOwTEXT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Uses

Returns

See Also

Parameters
hWnd

lpString

nMaxCount

Retrieves a window's caption (title string)

int GetWmdowText(HWND hJVnd, LPSTR lpString, int nMaxCount);

For parent, popup, and child windows, the title string shows above the menu bar. For buttons, the
title string shows in the center of the button.

The number of characters copied. Zero if there is no caption.

SetWindowTextO, GetWindowTextLengthO

HWND: The handle to the window with a title.

LPSTR: A pointer to the memory area that will contain the title- string.

int: The maximum number of characters to copy. This helps avoid overrunning the end of the
character buffer set aside to hold the title string.

Example This example displays the title of the window in the window's client area.
. I

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lPararu)
{

HOC hOC;
char cBuf[25J;

switch (iMessage)
{

/* process windows messages */

case WM_COMMANO: /* process menu items */
swi tch (wParam)
{

case 10M_DOlT: /* User hit the "Do it" menu item */
GetWindowText (hWnd, cBuf, 24) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, "The window title for the parent:",

32) ; •
TextOut (hOC, 15, 25, cBuf, GetWindowTextLength (hWnd» ;
ReleaseOC (hWnd, hoc) ;
break;

fOther program lines}

GETWINDOwTEXTLENGTH • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Uses

Returns

See Also

Parameters
hWnd

Example

Finds the number of characters in a window's title string.

int GetWindowTextLength(HWND hWnd)j

Used prior to GetWindowTextO to set up a memory buffer big enough to hold the title string.

int, the number of characters in the window's title. This can be zero if the window does not have
a title.

GetWindowTextO, SetWindowTextO

H\VND: The handle of the window with the title.

See the previous example under the GetWindowTextO function description.

GETWINDOWWORD • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Retrieves a two-byte value from a window's data.

WORD GetWmdowWord(HWNDhWnd, intnlndex);

77

WINDOWS API BIBLE

Uses . Most commonly used to get the window's instance handle (hInstance). Can also be used to deter
mine the ID value of a child control, or retrieve I6-bit data stor~ with the window data. by
SetWindowWordO.

Returns
See Also

Parameters
hWnd

WORD, the value specified by the nIndex parameter.

GetWindowLongO, SetWindowWordO, SetWindowLongO

HWND: The handle to the window.

nIndex int: Specifies· which value to retrieve. This can be any of the values described in Table 3-7.

G'MV_HINSTANCE

G'MV_HWNDPARENT

G'MVJD

Retrieve the window's instance handle.

Retrieve the handle of the parent window.

Retrieve a child window's controllD value.

Table3-7. GetWindowWord() Index Values.

Example

The GWW _ index values are defined as negative numbers in WINDOWS.H. To retrieve extra
I6-bit data stored with the window's class definition, use a positive offset fornIndex. 0 for the
first entry, 2 for the second, etc. The amount of space available is set by the cbWndExtra element
of the WNDCLASS structure passed to RegisterClassO when the class was registered.I6-bit data
is added to the extra data area with SetWindowWordO.

long FAR PASCAL WndProc (HWNO hWnd,/unsigned iMessage, WORO wParam, LONG lParam)
{ I

HOC hOC; I,

char cBuf[25J ;1
HANOLE hlnstance ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO: 1* process menu items *1

/ Other program lines J

swi tch (wParam)
{

case 10M OOIT: 1* User hit the "00 it" menu item *1
hlnstance = GetWindowWord (hWnd, G~W_HINSTANCE) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10,

"The instance handle of the parent:", 35)
itoa (hlnstance, cBuf, 10);
TextOut (hOC, 15, 25, cBuf, strlen (cBuf»
ReleaseOC (hWnd, hOC)
break;

GETWINFLAGS • Win 2.0 • Win 3.0 • Win3.!
Purpose
Syntax

. Uses

Returns

/

Determines what computer CPU arid memory model are in operation.

DWORD GetWmFlags(void)j

Convenient for determining the approximate performance of the system.

DWORD value with the parameters encoded as bit values. They may be any of the values de
scribed in Table 3-8.

78

WF_80x87

WF_CPU086

WF_CPU186

WF_CPU286

WF_CPU386

WF_CPU486

WF _ENHANCED

WF _LARGEFRAME

WF_PMODE

WF _SMALLFRAME

WF_STANDARD

The system has a math coprocessor.

The system has an 8086 CPU.

The system has an 80186 CPU.

The system has an 80286 CPU.

The system has an 80386 CPU.

The system has an 80486 CPU.

Windows is running in Enhanced Mode.

3. WINDOWS SUPPORT FUNCTIONS ~

... , .. t.

Windows is running with the EMS large-frame memory configuration.

Windows is running in protected mode. This is always set if the mode is WF _ENHANCED or
WF _STANDARD.

Windows is running with the EMS small-frame mamory configuration.

Windows is running in standard mode.

Table 3-8. GetWinFlags() Flags.

See Also

Parameters

bxample

You can detect if Windows is running in Real Mode by verifying that neither WF _ENHANCED
nor WF _STANDARD has been set.

GetVersionO

None (void).

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
OWORO

hOC;
dwWinFlags ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO: 1* process menu items *1

IOther program lines]

switch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
dwWi nFlags = GetWi nFlags () ;
hOC = GetOC (hWnd) ; 1* get device context *1
TextOut (hOC, 10, 20, "GetWinFlags Found:", 18)
i1 (dwWinFlags & WF_CPU286)

TextOut (hOC, 10, 40, "80286 CPU", 9)
else if (dwWinFlags & WF_CPU386) .

TextOut (hOC, 10, 40, "80386 CPU", 9)
else if (dwWinFlags & WF_CPU486)

TextOut (hOC, 10, 40, "80486 CPU", 9)

if (dwWinFlags & WF_ENHANCEO)
TextOut (hOC, 10, 60, "Enhanced Mode", 13)

if (dwWinFlags & WF_80x87)
TextOut (hOC, 10, 80, "Math Coprocessor", 16)

ReleaseOC (hWnd, hOC); 1* release device context *1
break;

79

WINDOWS API BIBLE

ISCHILD

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWndParent

hWnd

Example

• \;Vin 2.0 • Win 3.0 • Win 3.1
Determines if a window is the ~~i1d of a given parent window.

BOOL IsChild(HWND hWndParent, HWND hWnd)j

Finds out if hWnd is the direct descendant of the hWndParent window. Windows maintains the
relationship of child windows to their parents in memory at all time. Descendents may also be
popup windows.

Useful in determining the relationship of a series of child windows located with
EnumChiidWindowsO
BOOL. TRUE ifhWnd is a chiJd ofhWndParent, FALSE if not.

EnumChiidWind(JwsO, ChiidWindowFromPointO, WindowFromPointO

HWND: A handle to the potential parent window.

HWND: A handle to the child window to be checked as a descendant of hWndParent.

The parentage ofthechiIdwindow is checked and displayed in the parent's client area when the
user types the "Do It!" me~u item. .

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
static HWNO
char
stati c BOOL
BOOL

hOC;
hChi ld ;
cBuf1 [25], cBuf2 [25] ;
bFi rstTime = TRUE;
blsChi ld ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* bui ld the ichi ld window when program starts *1
if (bFi rstTime)
{

bFi:-stTime = FALSE;
hChi ld = CreateWindow (gszAppName, "Chi ld Window",

WS_CHILO I WS_VISIBLE I WS_BOROER I WS_CAPTION,
100, 50, 200, 150, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hChild, SW_SHOW) ;

break;
case WM_COMMANO: 1* process,menu items *1

IOther program lines/

switch (wParam)
{

case 10M DOlT: 1* User hit the "Do it" menu item *1
blsChi ld = IsChi ld (hWnd, hChi ld) ;
GetWindowText (hWnd, cBuf1, 24) ;
GetWindowText (hChild, cBuf2, 24) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, cBuf2, strlen (cBuf2»
if (bIsChHd)

. TextOut (hOC, 10, 30, "Is a child of:", 14) ;.
else

TextOut (hOC, 10, 30, "Is NOT a child of:", 18)
TextOut {hOC, 15, 50, cBuf1, strlen (cBuf1» ;
ReleaseOC (hWnd, hOC); 1* release device context *1
break;

IsIcONIC • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Checks to see if a window is minimized

BOOL IsIcollic(HWND hWnd)j

80

3. WINDOWS SUPPORT FUNCTIONS •

DeserIptIOD Nonnally, windows that are to be minimized have an icon as part of their class definition. When
the window is minimized,the icon is:displayed. If the class defmition has NULL for the clisS iCon,
the program is expected to paint in the little bit of client area that is displayed when the window
is miIiimized.

Uses Handy in processing WM_P A1NT mesSages. If the window is minimized, a separate painting rou
tine can be used.
BOOL. TRUE if the window is minimized, FALSE if not:

Parameters
hWnd IIWND: The handle to the window which may be minimized.
IeIated Me&8IgeS WM_PAINT, WM_SIZE
BU.ple , In this example, the parent's window class does not have an icon. Instead the program detects if

the window is iconized and writes different text if it is during the WM_PAINT cycle.
,tnclude <wtndows.h>
'inelude "generie.h"

1* window's header fi le - always inc luded *1
1* the application's header file *1

1nt PASCAL Wtn"a1n (HANDLE hInstanee, HANDLE hPrevInstance, LPSTR lpszCmdLine,

(
1nt nCmdShow) , ,

HWND hWnd ;
"SG msg ;
WNDCLASS wndclass ;

ghInstanee = hlnstance ;

if (!hPrevlnstance)
(

wndela5s.style
wndelass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstanee
wndclass.hleon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpsz"enuNa.e
wndclass.lpszClassN~.e

1* a handle to a message *1
1* a message *1
1* the window class *1

1* store instance handle as global var.' *1
/

1* load data into window class struct. *1

= CS~HREDRAW I CS_VRED~AW;
= WndProc ;
= 0 ;
= 0 ;
= hlnstance ;
= NULL; . = LoadCursor (ftULL, IDC_ARROW) ;
= GetStoc~Oblect (WHITE_BRUSH) ;
= gszAppjU.e ;
= gszAppN •• e ;

,,' 1* register the window class *1
if (!RegisterClass (&¥ndclass»

return FALSE"';
) ,

hWnd = CreaceWindow (
gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL) ;

ShowWindow (hWnd, nCmdShow) ;

1* create the program's window here *1
1* class name *1
1* window name *1
1* window style *1
1* x position on screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null = none), *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr (null = not used) *1

UpdateW1ndow (hWnd) ; '1* send 11 rst W"_PAINT message *1

~h1 i. (&.tRessage (&.sg, NULL, 0, 0» 1*' the message loop' *1
(. , .

Tr~nslati"essa~e (&.s~);
Dispatch~~ssage (&~sg); ,

81
.i}l·

WINDOWS API BIBLE

}

return msg.wParam ;
}

long FAR PASCAL"WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, "LONG lParam)
{

}

HOC hOC;
. PAINTSTRUCT psPai ntStruct' ;

}

switch (iMessage)
{

case WM_PAINT:

1* process windows messages *1

hDC= BeginPaint (hWnd, &psPaintStruct) ;
if (lsIconic (hWnd»

TextOut (hOC, 1, 1, "Icon", 4) ;
else

TextOut(hDC, 10, 10, "Not iconized now~", 17)'
EndPaint (hWnd, &psPaintStruct) ; "
break; "

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M DOlT: 1* User hit the "Do it" menu item *1
CloseWindow (hWnd) ; 1* minimize window *1
break; "

case 10M_QUIT: . 1* send end of application message *1
DestroYWindow (hWnd)

}

break;
case WM_DESTROY:

break; "

PostQuitMessage (0)
break;

1* stop application *1

default: 1* default windows message processing*l
return DefWindowProc (hWnd; iMessage, wParam, lParam) ;

return (OL>

ISWINDOW • Win 2.0 • WtD 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

SeeA1so

Parameters
kWnd

EXample

Checks to see if a \\'indow handle still points to a valid window.
BOOL Is~mdo\\ (HWND kWnd)j

Wind~ws keeps a list of all active windows in the system. This function compares the handle to
the list of windows to see if the window exists.
Useful in applications where the user can destroy child windows or popups.

BOOL. TRUE ifkWnd refers to a valid window, FALSE if not.

IsWindowEnabledO, IsWindowVisibleO, DestroyWindowO

HWND: The window handle to check.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iM~ssage, WORD wParam, LONG lParam)
(

HDC
stati c HWWD
char.
static BOOL
BOOL

hDC ;
hchi ld ;
cBuf [25J ;
bfirstTime = TRUE;
bisWindow ;

switch CiMessage) (.
1* process wi ndows messag"es*./·

1* bui Ld the chi ld window when program 'starts *1
I

82

/

3. WINDOWS SUPPORT FUNCTIONS ~.

it (bFi rstTime)
{

}

break;
case WM_COMMANO:

bti rstTime = FASLE ;
hchi ld = CreateWindow (gszAppName, "Chi ld Window",

WS_CHILO I WS_VISIBLE I WS_BOROER I WS_CAPTION
100, 50, 200, 150, hWnd, NULL, ghlnstance, NULL);

ShowWindow (hChild, SW_SHOW) ;

1* process menu items *1
swi tch (wParam)
{

case 10M DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC· (hWnd) ;
bIsWindow = IsWindoH (hChild) ;
it (bIsWindow)
{"

}

GetWindowText (hChild, caut, 24) ;
TextOut (hOC, 15, 20, cBut, strlen (cBut» ;
TextOut (hOC, 10,40, "was created OK.", 15)

ReleaseOC (hWnd, hOC) ;
brea k ;

IOther program ~ines /

IsWlNDowENABLED Ell Win 2.0 B Win 3.0 II Win 3.1

Purpose Checks to see if a window is enabled for keyboard input.

Syntax BOOL IsWindowEnabled(HWND hWnd)j

Uses

Returns

See Also

Most often used with edit controls to see if the control is enabled for keyboard input.

BOOL. TRUE if the window is enabled, FALSE if not.

EnableWindowO, IsWindowVisibleO, IsWindowO

Parameters
hWnd HWND: A handle to a window (or child window control).

Related Messages WM_ENABLE

. Example Here the edit control is initially disabled. The text in the edit control shows up grayed and cannot
be edited. Mter the user clicks the "Do It!" menu item, the control is enabled and can be edited~

lo~g FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

stati c HWNO
static BOOL

hEdit ;
bFi rstTime = TRUE;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
if (bFi rstTime)
{

}

hEdit = CreateWindow ("EDIT", "This is edit text",
WS_CHILO I WS_VISIBLE,
10, 10, 100, 40, hWnd, NULL, ghInstance, NULL)

ShowWindow (hEdit, SW_SHOW)
EnableWindo~ (hEdit, FALSE) 1* starts disabled *1
bFi rstTime = FALSE;

" break;
case WM_COMMANO: 1* process menu items *1

swi tch (wParam)
{
case 10M_DOlT: 1* User hit the "Do it" menu item *1

it C!lsWindowEnabled (hEdit» 1* it disabled *1
" EnableWindow (hEdit, TRUE) ; 1* enable *1

break;

IOtherprogram lines/

83

'WINDOWS API BIBLE

ISWINDOWVISIBLE • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax
Description

Checks to see if a window has been made visible.

BOOL IsWindowVlSible(HWND hWnd)i

Windows are made visible by calling ShowWindowO. IsWindowVisibleO will return TRUE for any
window that has been activated with ShowWindowO, even if the window is completely obscured
on the screen by other windows.

Uses

Returns

Use if you want to reduce Window's overhead workload by not "showing" the window until it is
needed, or if you need to know if the 'Yindowwas hidden with a call to ShowWindowO.

BOOL. TRUE if ShowWindowO has displayed the window, FALSE if not or if the window does not '
exist. ' ,

ShowWindowO

Parameters
hWnd HWND: A handle to the window to check.

Related Messages WM_CREATE

_ Example , This example toggles a child window from hidden to visible each time the "Do It!"-menu item is
clicked.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage,WORD wParam, LONG lPara.)
(,

HDC
static HWND
char
static BOOl
BOOl'

hDC ;
'hChild;
cBuf [25] ;
bFi rstTime = TRUE;
blsVisible ;'

switch (iMessage)
{

1* process windows messages *1

caseWM_CREATE:. 1* bui ld the chi ld window when program starts *1
if (bFi rstTime)
{

)

break;

bFirstTime = FALSE;
hChild = CreateWindow (gszAppName, "Child Window"~

WS_CHIlD I WS_VISIBlE f, WS_BORDER I WS_CAPTION,
100, 50, 200, 150, hWnd, NUll, ghlnstance, NULL> ;

ShowWindow -(hChi ld,SW_SH~W) ; -,

case WM_COMMAND:
switch (wParam)
{

1* process menu items *1

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = Get DC (hWnd) ;
blsVisible = IsWindowVisiblp. (hChild);
if (blsVi sible)

, {

)

else

GetWindowText (hChild, cBuf, 24) ;
TextOut (hDC, 10, 20, cBuf, strlen (cBuf» ;
TextOut (hDC, 10, 40, "is now ~isible.", 15) ;
TextOut (hDC, 10, 60, "Now hiding Child ••• ", 19) ;
ShowWindow (hChild, SW_HIDE) ;

TextOut (hDC, 10, 20,
"Chi ld window not visible.", 25) ;

ReleaseDC (hWnd, hDC); 1* release device context *1
break;

IOther program lines}

, ;1

84

IsZoOMED

Retanls·

8eeAlao
Panuaeten

3. WINDOWS SUPPORT FUNCTIONS •

Checks to see if a window is maximized.

BOOL IsZoomed(HWND kWnd)j

• Win 2.0 • Win 3.0 • Win 3.1

Many programs do not show the full client region data if their window is not maximIZed. This
function checks to see if the window fills the screen.

BOOL. TRUE if the window is maximized, FALSE if not.

IslconieO, MoveWindowO, CloseWindowO, OpenlconO

hWnd HWND: A handle to the window to check.

Belated MeMage8 WltCSiZE

Esample The main window displays a text string indicating if the window is maximized or not when the
user clicks the "Do It!" menu item.

Long FAR PASCAL WndProc (HWHD hWnd, unsigned ;Message, WORD wParam, LONG lParam)
(

HDC hDC ;

switch ti"essage)
(

1* process windows messages *1

case WM_CO"MAND: 1* process menu items *1

IOther program lines/

sw; ich(wParam)
(

case IDM_DOlT: 1*/User hi t the "Do it" menu; tem *1

hDC = GetDC (hWnd) ;
if (lsZoom~d (hWnd»

TextOut (hDC~ 10, 10,'
"Window is now maximized.", 24) ;

else
TextOut (hOC, 10, io,

"Window is NOT maximized.", 24) ;
ReleaseDC (hWnd, hOC) ; .
break;

MOVEWINDOW .. Win 2.0 BWin3.0 llWin3.!

Uses
Returns
See Also

Parameters
IaWnd

X

Moves or resizes a window
void MoveWmdow(HWND hWnd, intX, int Y, int nWidth, int nHeight, BOOL bRepaint)j

Sends WM_SIZE and/or WltCMOVE messages to the window's message processing function. The
nWidth and nHeight parameters are passed with the WM_SIZE message. The X,Y values are
'passed with the WM_MOVE message. The default message processing logic in DefWindowProcO
will handle these messages if the program does not intercept them.

Moving, resizing, or repainting a window.
"No returned value (void).

ShowWindowO, GetClientRectO, GetWindowRectO, SetWindowSizeO

HWND: A handle to the window.
int: The new horizontal position of the window's upper left comer. For parent and popup win·
dows,X is in screen coordinaies. For chUd windows,X is in client coordinates.

85

" WINDOWS API BIBLE

y

nWidth.

int: The new vertical position of the window's upper left corner. For parent and popup windows,
Y is in screen coordinates. For child "windows, Y is in client coordinates.

int: The new client area width.

nHeight int: The new client area height.

bRepaint BOOL: Specifies if the window should be repainted. TRUE if yes, FALSE if not.

Related Messages \V!vCSIZE, M.CMOVE

Example "This program fragment shows a window being moved ten times, each time changing its size. Note
how GetWindowRectO is used to determine the window's initial size. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

stati c RECT
static int

rWindow ;
i . ,

switch (iMessage)
{

1* process windows messages *1

case WICCOMMAND: 1* process menu items *1

/Otherprogram lines]

swi tch (wParam)
.{

case IDr·CDOIT: 1* User hit the "Do it" menu item *1
GetWindowRect (hWnd, &rWindow) ;
for (i = 0 ; i < 10 ; i++)
{

}

break;

MoveWindow (hWnd, rWindow.Left + i*10,
rWindow.top + i*10,
rWindow.right + i*'10,
rWindow.bottom + i*10, TRUE) ;

REMOVEPROP II Win 2.0 .. Win 3.0 .• Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd .

lpString

Example

Removes a prop~rty (data) that was associated with a window.

HANDLE RemoveProp(HWND hWnd, LPSTR lpString)j

Frees the memory associated with the properties data.

Use when the property is no longer needed, or when shutting dO"l1 an application (processing a
WM_DESTROY message). " ,

- A handle. The handle points to the property name if the function was successful. Otherwise, the
function returns NULL.

SetPropO, GetPropO, EnumPropO.

HWND: A handle to the window which has property data.

LPSTR: A pointer to the string that contains the property name. If atoms are used to name the
~roperty, the high-order word will be zero, and the low·order word will be equal to the atom's
value.

This example uses a window property value to hold a handle for a global memory block containing
a character string. The property is removed when the program terminates. Note that the memory
block must be separately freed using GlobalFreeO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static HANDLE
LPSTR"
char

hMemory";
LpName ;
cBuHJ = "Thi s data ti ed to Window";

3. WINDOWS SUPPORT FUNCTIONS "Y

switch (iMessage)
{

1* process windows messages *1'

}

case WH_CREATE:
hMemory = Gl6balAlloc (GMEH_MOVEABLE I GMEM""",ZER01NIT,

.(LONG) strlen (cBuf» ;
lpName= GlobalLock (hMemory) ;
lstrcpy (lpName, cBuf) ;
Global~nlock (hMemory) ;
SetProp (hWna, "User Prop", hMemory)
break; , ..

case WM_COMMAND: 1* process menu ~ terns *1
swi tch (wParam)
{

case 1DM_QUIT:

}

break;

DestroyWindow (hWnd)
bre!'lk ;

case WM_DESTROY:. 1* stop application *1
GlobalFree (hMemory) ;
RemoveProp (hWnd, "User Prop") ;
PostQu;tMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

SETAcTIVEWINDOW • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

Comments

See Also

Parameters

Makes a window active.

HWND SetActiv~Wm~ow(HWND hUud)i

.. Sets the active window. The active window is the parent window with the input focus. The active
window can be iconic.

Used in applications that coordinate the actions of several independent windows. See Chapter 30
on dynamic data exchange (DDE) for how to exchange data and commands between running
applications.

HWND, a handle to the previously active window.

This function should not normally be used, as it risks violating one of the basic principles of
Windows programing: letting the user determine which window should be active at any time. You
may find it useful when a function key or key combination activates a window, as an alternative to
mouse control.

GetActiveWindowO, GetLastActivePopupO, EnableWindowO, BringWindowToTopO .

hWnd HWND: A handle to the window to activate.

Related Messages WM_ACTIVATE

Example This code example creates a window that refuses to be covered up. Ten seconds after the "Do It!"
menu item is clicked, this program will come back to the top, even if it has been covered. by
several other windows.

long FAR PASCAL WndProc (HWND hWnd, ~nsigned iHessage, WORD wParam, LONG lParam)
{

switch (iHessage)
{

case WM_TIMER:
Ki II Timer (hWnd, 1) ;

1* process windows messages ~I

SetActiveWindow (hWnd) ;1* make window reappear *1

87

WINDOWS API BIBLE

break· •
. case wM_coMMAND: -, .

. switch (wParam)
{ .

case 10M_DOlT:

1* ,proces~ menu items *1

1* set timer 1 to every 10 sec. *1
if (!SetTimer (hWnd, 1, .1qOO~, NULL» .

MessageBox (hWnd,"Too many clocks or timers!",·
""Warning", MB_ICONEXCLAMATION 1MB_OK) ;

break;

IOtlu!r program lines}

SETCLASSLONG • Win 2.0 • Win 3.0 • Win 3.1

PIarpose Changes one of the LONG values in a window class.
Sptax LQNG SetClassLong(HWND hWnd, int nlndex, LONG dwNewLong)j

Uses

Returns
See Also

Puameters
hWnd

nlruJex

AllowS you to change the window procedure or menu for an existing class. This allows you to make
use of an old class, with a new window procedure or menu applied to all subsequent windows
created from the class.

Also allows you to set the values of extra four~byte data that was allocated as part of the class
data when the class was registered. Room is made for these values as the cbClsExtra element of
the WNDCLASS data structure is passed to RegisterClassO. GetClassLongO can be used to re
trieve the values set .

. Retu~ the previous value held by the window class.

SetClassWordOrGetClassLongO, GetClassWordO, RegisterClass, SetWindowLongO

HWND: A handle to a window.
int: The index of the value to change. This can be either of the values in Table 3-0.

GCL..MENUNAME Set a new leng pointer to the menu name.

GCLWNDPROC Set a new long pointer to the window function.

Table 3·9. SetClassLong() Flags.

dwNewLong·

Notes

Rumple

The GCL_ flags are defined as negative values in WINDOWS.H. To change extra four·byte data in
the class definition, use a positive byte offset fornlndex. Zero for the first value, 4 for the second, .
etc.
LONG: The new four-byte data to insert into the class data.

. Using the GCL_ WNDPROC index to set a new window message processing function is called "win.
dow subclassing." All windows created from the class after the window function is changed will
use the new message processing function.

Do not change the class settings for predefined child window controls, such as buttons and
scroll bars, as the~e global classes are used by other applications. Instead, change the valueS for
the individual controls using SetWindowLo~gO.

This program modifies the existing window class by changing the window procedure name. All
subsequent calls to CreateWindowO create child windows referencing WindlJoc20. Note that
WlndProc2 must be added to the EXPORTS section ofthe program's .DEF definition file, and a.

. function prototype must be added to the header flle.
. .

long FAR PASCAL WndProc (HWND hWnd, unsigned i"essage~ WORD wPara., LONG lPara.) (.

HDC hOC ;.

. :

.. 88~··

}

}

PAINTSTRUCT
HWND .

PS ;
hChi I.d ;

3. WINDOWS SUPPORT FUNCtIONS •

switch (iMessage)
{

1* process windows ~essages *1

case WM_PAINT:
hDC = BeginPaint (hWnd, iPS) ;
TextOut (hDC~ 10, 10, "Now in primary VndProc.", 23)
EndPoint (hWnd, IPS)
break;

case WM~COM~AND: 1* process .enu items *1
switch (wParaCl)
{

case IDM_DOIT: 1* create a chi ld window - use sVindProc20 *1
SetClassLong (hVnd, GC~WNDPROC, (LONG) WndPr·oc:2) ;
hChild = CreateWindow (gszAppNa.e, "Child Window",

WS_CHILD I WS_VISIBLE I VS_BORDER I WS_CAPTlON,
100, 50, 200, 150, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hChild, SW_5HOV) .
. break;

case IDM_QUIT:

}

break ';

DestroyWindow (hVnd) ;
break;

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows lIIessage processing *1
return DefWindowProc (hWnd, iMessage, wParam,lParam) ;

return (OL> ;

1* This is the ne~ WindProcO ·referenced by the SetClassLongOfunction. *1
1* All new children created use this one. *1
long FAR PASCAL WndProc2 (HWND hWnd, unsigned i"essage, WO~D wParam, L~NG lPara.)
{ .

)

HDC
PAINTSTRUCT PS ;

hDC ;

)

switch (iMessage)
{

case W',-PAINT:
hDC = BeginPaint (hVnd, IPS) ;

1* process windows .essages *1

TextOut (hDC, 10, 10, "No.w in SECOND WndProc.", 22) ;
EndPaint (hWnd, IPS) ;
break;

case W"_DESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows ... sage processing .,
return DefWindowProc (hWnd, iMessage, wPara., lPara.) ;

return (OL) ;

SETCLASSWORD • Win 2.0 • Win 3.0 .Win3.l

. Returns.

Changes a WORD sized value in a window class .
. WORD SetCIassWord(HWND kWnd, int nlndex, WORD wNewWord)j

This function allows you to change the properties of every window created from an existing class.
It is often uSed to change t.he cursor shape, but can also be used to change any of the extra two-
byte wide data st9red with the window class structure. .

Ret~ the previous Value~

·89

.... ~..,"' ... ~ nrl·g,eLC

See Also' SetClassLong(), GetClassWordO, GetClassLong(j

Parameters .
h Wnd HWND: Handle to the window that was created based on the class.

nlndex int: The byte offset for the specific.data item. It can be any ofthe values in Table 3-10 .

. GCW_CBCLSEXfRA Retrieve the number of bytes of extra data associated with the class. A second call to
. GetClassWord() can be used to retrieve a word of data. Use an nlndex value of 0, 2, 4 ... for the
first, second, third ... words of extra data.

GCW_CBWNDEXfRA Retrieve the number of bytes of extra data ,associated with the window. A second call to
GetClassWord() can be used to retrieve a word of data. Use an nlndex value of 0, 2, 4 ... for the
first, second, third ... words of extra data.

GCW_HBRBACKGROUND Retrieve a handle to the class background brush.

GCW_HCURSOR Retrieve a handle to the class cursor.

GCW_HICON . Retrieve a handle to the class icon.

GCW_HMODULE Retrieve a handle to the class module.

GCW_STYLE Retrieve a handle to the window class style.

Table 3-10. SetClass",ord() Flags: ,
The GCW _ flags are defined as negative values in WINDOWS.H. To change extra word-sizeo data
associated with the window, use a positive offset for nlndex. Zero for the first byte, 2 for the
second, etc. . .

wNewWord

Note

WORD: The new word-sized value to insert into the class structure.
Do not change the class settings for predefined child window controls such as buttons and scroll
bars, as these global classes are used by other applications. Instead, change the values for the

Example
individual controls using SetWindowWordO. .

Here the "Do It!" menu item causes the window's class to be altered to a light gray background.
This affects all of the child windows created and also affects the parent window's client area on
the next refresh (WM_PAINT) cycle.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam~ LONG lParam)
{. .

HWND hChi ld ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
SetClassWord (hWnd, GCW_HBRBACKGROUND,

(WORD) GetStockObject (LTGRAY_BRUSH» ;
hChild = CreateWindow (gszAppName, "Child Window",

. WS_CHILD I WS_VISIBLE I WS_BORDER I WS_CAPTION,
100, 50, 200, 150, hWnd, NULL, ghlnsta~ce, NULL> ;

ShowWindow (hChild, SW_SHOW)
break;

case IDM_QUIT: .

l
break; .

.. case WM_DESTRO.Y:

DestroyWindow (hWnd)
break;

.1* stop appLication *1

90

)

PostQuitMessage (0) ;
break;

3. WINDOWS SUPPORT FUNCTIONS T

default: 1* default windows message processing.*1
return OefUindowProc (hWnd, iMessa.ge, wParam, lParam) ;

return (OL) ;
}

SETFocus
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Gives a window the input focus

HWND SetFocns(HWND hWnd)i

• Win 2.0 • Win 3.0 • Win 3.1

A window with the input focus gets all of the keyboard input.

Frequently used where there are multiple child windows. Controls which one has the input focus.
A handle to the window that previously had the input focus. NULL if hWnd is not a valid window
handle, or if the window is disabled ..

GetFocusO, EnableWindowO

hWnd HWND: A handle to the windowwhich is to receive the input focus.

Related Messages ~CSETFOCUS, MtCGETFOCUS

Exampl~ Here the "Do It!" menu item causes the keyboard input focus to be moved to the edit control. This
shows up in the changed appearance of the edit line in the edit box. The text in the edit control
goes from gray to black, and an edit cursor appears inside the control. This is the same effect that
clicking the edit control with the mouse would have.'

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static· ,HWNO
static BOOL

hEdi t ;
bFi rstTime = TRUE;

switch (iKessage)
{

1* process windows messages *'

case W',-CREATE: '* create and show an edit control *'
if (bFirstTime)
{

break;
case WM_COKMANO:

hEdit = CreateWindow (IIEOIT", "Edit Me",
WS_CHILO I WS_VISIBLE I WS_BOROER,
150, 40, 100, 25, hWnd, NULL, ghInstance,NULL)

ShowWindow (hEdit, SW_SHOW)
bFi rstTime = FALSE;

'* process menu items * I -
switch (wParam)
{

case 10M_DOlT: '* User hit the "Do it" menu item *1
Set Focus (hEdit) ;
break;

/Otherprogram lines!

SETPARENT
Purpose

Syntax
Uses

• Win 2.0 • Win 3.0 • Wm 3.l
Changes the parent window of a child window.
HWND SetParent(HWND hWndChild, HWND hWndNewParent)i

Child windows can be children of child windows, to any desired level of nesting. The advantage Is
. that child windows do not exceed the bounds of their parent's client area and are moved with the
parent.

91

WINDOWS API BIBLE \

letmns
8eeAl8o
Parameters
hWndCkild .

hWndNewParertt
BsaapIe'

HWND, a handle to the previous parent window of kWndCkild. '

GetParentO, GetNextWindow,O, IsWindow() .

HWND: A hand'l~ to the child Wiridowwhich is to receive. a new par
ent.
HWND: A handle to the new parent window of hWndCkild.

DoH' ~uJt

~". r::LJ
, 'hi'thls example, two chUd Windows are created. Initially, they overlap Figure 3-15. Child
each other on the screen, as both have the same parent window. When Windows 4fler . '.
the user click.-; the "Do It!" menu item, the second child window be- . Clicking "Do. It!". .

. comes ~hechlld of the first child window, f()rcing child2 to be visible
only within the client area of child!. Note that these child windows share the message processing
function WndProc() of their parent, as they are based on the parent's class. Real child windows
would have thei! own me~ge procesSing functions. (See Figure 3-15.)

'-
long FAR PASCAL WndPro~ (HWND hWnd, uns1~n~d iHes~age, WORD wParam, LO~G lParam)
(.

static HWND hChHd1, hChild2 ;
stat1 c. BOOL . bFi rstTime = TRUE;

switch (iMessage)
{

1* process windows messages *1

I,

case W'CCREATE: ·1* bui ld the chi ld window. wh~n program starts *1

if (bFirstTime)
{ .

}

'break ;

bFirstTime = FALSE;
hChild1 = CreateWindow (gs~AppName, "Child Window 1", .

WS_CHILD I WS_VISIBLE J WS_BORDER I WS_CAPTION,
10, 50, 300; 250; hWnd, NULL, ghlnstance, NULL);

. ShowWindow (hehi ld1, SW_SHOW) ; . . .
hCh1ld2 = C~eateWindow (gszAppName, "Child Wtndow2", .

WS_CHILD I 'WS_VISIBLE J WS_BORDER I WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL) ;

ShowWindow (hChi ld2, SW_SHOW) ; . ,

case WH_COMMAND: 1* process menu items *1
. switch (wParam)

{

case IDM_DOIT: 1* User hi t the "Do it" menu i tell */
,. SetParent (hCM ld2, hChi ld1) ;

break; ,.
100000progmm linesl

8ETPaOP .• Win 2.0 • Win 3.0 . • Win 3.1
Attaches named data to a window.
BOOL SetProp(HWND hWnd, LPSTR IpString, HANDLE kDatci)i .

SetPropO allows ally data to be associatediwith the window kWmi; The data is given a name,
pointed to by IpString, to make recall simple. Normally kData is a handle to a memory block
containing the actual data. hData can be a I6-bit value.
An excellent way to keep track of data that is specific to a given window. Avoids the use of global
variables in many cases.; ,.'

. BOOL. TRUE if the data was added to the window's property list,' F~E if not.

Ge~PropO, ReleasePropO, EnumPropO

.92

Parameters
hWnd

IpString

hData

Example

3. WINDOWS SUPPORT FUNCTIONS.. .

HWND: A handle to the window which is to re~eive the property ,data.
LPSTR: A pointer to a string containing the.name to be used for the data. This can also be an
atom. In-that case the high-order word of IpString should be zero, while the low-order word
contains the atom's I6-bit value.
HANDLE: . A I6-bit value. Normally a handle to a memory block allocated with either LocalAllocO
or GlobalAllocO.
See the example under the GetPropO function description.

SETSysMODALWINDOW • Win 2.0 • Win 3.0 .Win3.l

s,utu
Deserlptlon -

Ke~
See Also:

Parameters
:hWnd
Rumple

Makes a window system~modal.

HWND SetSysModalWlndow(HWND hWnd)i

System-modal \Yindows take over the screen, so only they can have the 'input focus. A typical
example is the' final message froin Windows' prograni manager, which confirms that the user
wants to exit Windows. If a system-modal window creates another system-modal child window,
the new window takes over the system. Control returns to the first system-modal window after
the se~ond one is destroyed.

/ ,

For critical messages and responses to/from the user. This function is seldom called directly, as
normally system-modal windows are created as dialog boxes, The window style DS_SYSMODAL
automatically creates ~ system-modal dialog box, eliminating the need to call SetSysModal
WindowO',

HWND, a handle to the previous system-modal window Of any).
GetSysModalWindowO

HWND: A handle to the window which is to become system-modal.
In'this example, the focus ,can be switched, back and forth between the parent and'client window
until the "Do It!" menu item is clicked: After that, the popup window becomes a system-modal
window and will not give up the focus. Hitting a key deletes the window, and stops the program.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMes.age, WORD wPara., LONGlPara.)
(

'HDC hDC ;
static WNDtLASS
static HWND

wndclass ;
hPopup, hParent ;

1* device context handle *1
I*. the window class *1

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* bui ld the chi ld window when program starts *1
wndclass.style

:: CS_HREDRAW I CS_VREDRAW, I CS_PARENTDC;
wndclas~.lpfnWndProc = ChildP~oc ; ,
wndclass.cbClsExt'ra = a ;
wndclass.cbWndExtra = a ;
wndclass_hlnstance= ghlnstance';
wndclass.hlcon = NULL;
wndclass.hCursor = LoadCursor (NULL, IOC_ARROW) ;

. wndclass.hbrBackground = GetStockO~ect (LTGRAY_BRUSH) ;
wndc lass _lpszMenuName = NULL; / ~
w~dclass.lpszClassName = "SecondClass" ;

1* register the window class *1
if(RegisterClass (&wndclass»:
(

hPopup = Crea~eWiridow ("SecondClass", "Pop~p Windo"'~,

93

WINDOWS API BIBLE

},

}

; }

break ;'

WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
10; 50, 200,,150, hWnd, NULL, ghlnstance, NULL)

',ShowWindow (hPopup, SW_SHOW) ;

case WM~COMMAND: 1* process menu items *1
swi tch (wParam)
<, '
:case IDM_DOIT:, 1* User hi t the "Do it" menu item *1

,SetSysModalWindow (hPopup) ; ,
break; , ,

caseIDM_QUIT: I~,sendend of' application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop appl i cation *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing ,*1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

, return (OL) ;

1* Here ;Sa separate message processing procedure for the popup window *1
long FAR PASCAL Chi ldProc (HWND hWnd, unsi gned i Message, WORD wParam,

, LONG lParam)'
{ :

}

HDC
PAINTSTRUCT

hDC ;
PS ;

switch (iMessage)
<

1* process windows messages *1

}

case WM_PAINT:
hDC = BeginPaint (hWnd, &PS) ;
TextOut (hDC, 5, 5, "Hit a key.", 10)
EndPaint (hWnd, &PS);
break;

c~se WM_KEYDOWN:
case WM_DESTROY: 1* stop the application *1 '

'PostQuitMessage (0);" ,
break; '.",,' '

default: 1* default windows message processing *1
return DefWindowPr~ (hWnd, i Message, wParain, lPars'm)';

return,. (OL) ;

SETWINDowLONG • Win 2.0 • Win 3.0
Purpose

Syntax

Description

Uses,

Returns
: see Also

Changes a LONG value associated with a window.

LONG SetWmdowLongCmvND hWnd, int nlndex, LONG dwNewLong)j, \ .

Used to change the style,'~(~'window, or to change the window's message processing function.
Can also set extra I6-bit aata stored with the window if the window's class defInition includes
space as the cb WndExtr~,element of the WNDCLASS data structure passed to RegisterClassQ.
Most often used to do window sub classing. It allows you to add to, or replace the existing window's
message processing logic by passing a new window message function to the specific window or

, control. Also used to associate extra data with the window. It can be us~d in place of setting
, ,window property data; if the amount of data stored with each window is small.
, The previous LONG value. '

SetWiildowWordO, GetWindowLongO, GetWindowWordO

94 .. . '

3. WINDOWS SUPPORT FUNCTIONS ~

Parameters
hWnd HWND: A handle to the window.

nlndex int: An integer offset, determining which value is to be changed. This can be any of the values in
Table 3-1l.

Sets a new extended window style. See CreateWindowExO in Chapter 2, Creating Windows: for a list of styles.

GWL_SlYLE Sets a new window style. See CreateWindowO in Chapter 2 for a list of styles.

GWL_WNDPROC Sets a new long pointer to the window procedure. \
Table 3-11. SetWindowLong() Flags.

The GWL_ values are defined as negative values in WINDOWS.H. To access any extra four
byte data defined in the window's class structure, use a positive nlndex value. Zero for the frrst
value, four for the second, etc.

dwNewLong DWORD: The new 32-bit value.

Problems

Example

FARPROC
int

Take care not to include functions in the new message processing function that cause Windows to
call the function again. This sets up an infinite loop and overflows the stack. For example, adding
the GetScrollPosO function into NewScroll~osO shown below will fail, as GetScrollPosO ends up
forcing another call to the sub classed NewScrollPos() function.

In this example, a scroll bar is placed at the bottom of the window's client area. After clicking the
"Do It!" menu item, the scroll bar has the input focus. The scroll bar window is subclassed, provid
ing additional message processing logic from the NewScrollPosO function listed at the bottom.
The scroll bar thumb responds to both the left and right arrow keys and the page-up and page
down keys. Note that the NewScrollPosO function must be added to the EXPORTS section of the
program's .DEF definition me. A function prototype must also be added to the program's header.
me.

lpfnOldScrollProc ;
nScrollPos ;

1* static to hold old proc pO:inter .*1
1* static to hold thumb position *1

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,· LONG lParam) { . .

static HWND
FARPROC
HDC
RECT

hScroll ;
lpfnNewScrollProc ;
hDC ;
rCli ent ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:

GetClientRect ,(hWnd, &rClient) ;
hScroll = CreateWindow ("SCROLLBAR", 1111,

WS_CHILD I WS_VISIBLE I SBS_BOTTOMALIGN I SBS.:..HORZ~
rClient.left~ rClient.top, rClierit.right,
rClient.bottom, hWnd, NULL, ghlnst'ance; NULL) i

ShowWindow (hScroll, SW_SHOW) ;
SetScrollRange (hScroll, SB_CTL, 0, 9; FALSE) ;
SetScrollPos (hScroll, S8_eTL, 0, TRUE) ;
nScrollPos = 0 ;

1* subclass the scroll barto a new procedure *1

lpfnNewScrollProc = MakeProclnstance.
«FARPROC) NewScrollProc, ghlnstance);

lpfnOldScrollProc =.CFARPROC) GetWindowLong ChScrolL,

95

WINDOWS API BIBLE

)

)

GWL_WNDPROC) ;
'SetWindo"Lol'Ig (hScroll, GWL_WNDPROC,

(LONG)'lpf'nNewScrollProc) -; ,
break;

case WM,;..,SETFOCUS:
Set Focus (hScrolL)
break;

case W"-COMMAND: /* process aenu hellS ./
swi tch (wParall)
(

case 10M_DOlT: /* Userhh the "00 it" aenu itea *1
. hDC = GetOC (hWnd);
TextOut (hOC, 10, 10, .

"Try left/right arrow and pg up/dn.", 34) ,;
ReLeaseDC (hWnd, hDC) ;
Set Focus (hScroll) ;
break;

, case IOM_QUIT: 1* send end of application .essage, *1
OestroyWindow (hWnd)
break; ,

}

break;
case WM_DESTROY: 1* stop application *1

PostQuitMessage (0)
br.eak ;

default: 1* default windows .essage proce •• ing *1
return DefWindowProc (hWnd, iMessage, "Para., lPara.) ;

return (OL) ;

long FAR PASCA~,NewScrollProc (HWND hWnd, WORD mess, WORD wPara., LONG lPara.)
(,

int nOldScrollPos ;

nOldScrollPos =nScrollPos ;

switch (mess)
(

cale W"_KEYDOWN:
switch (wParall)
,(

cale VIC.-RIGHT:
cue VK..NEXT:

1* process left and right arrow ke,. *1
1* and page-up, page-down key. *1

}

nScrollPos++ ;
break;

case VIC_LEFT:
. case VIC.-PRIOR:

~ nScrollPos-- ;
break;

)

if (nOldScrollPos. != nScrollPos) .
SetScrollPos (hWnd, S8_CTL, nScrollPos, TRUE) ;

return CallWindo"Proc (lpfnOldScrollProc, hWnd,.e~s, "Para., lPara.) ;
)

SETWINDOWPOS .Wln2.0 .Wln3.0
Purpose Sirn~ltaneously changes the size, position, and ordering of windows.

• Win 3.1

void SetWindowPos(HWND kWnd, H.WND kWndlnsert1/ler, intX, int Y, int c:r, int cg, WORD

. I

wFlags)j

Windows are orderecHn Windows' internal Ust based on their appearance on the scteen. 'Ihe
window on top of all the others is the highest ranked. 'Ibis function change&that orderiDg, allow-
Ing yo~ to bring a window to the top. . '

3. WINDOWS SUPPORT FUNCTIONS •

Uses Used with applications that have multiple child and popup windows that can become obscured.
Use GetTopWindowO to find the current top window.

Returns No returned value (void).

See Also GetTopWindowO, MoveWindowO

Parameters
hWnd HWND: A handle to the window that will be affected.

hWndlnsertJtfler HWND: The handle of the window after which the h Wnd window is to be inserted. Can be set'to
NULL, which placeshWnd at the top-most position. Set to one to placehWnd above all top-most
windows, even when deactivated.

X int: The new horizontal position of the hWnd's top left corner. For child windows this is in client.
coordinates. For popup windows, this is in screen coordinates. Can be zero ifthe SWP _NOMOVE
value is used for wFlags, meaning no change t.o the window's position aft~r reordering.

Y int: The new vertical position of the hWnd's top left corner. For child windows, this is in client
coordinates. For popup windows, this is in screen coordinates. Can be zero if the SWP _NOMOVE
value is used for wFlags, meaning no change to the window's position after reordering.

ex int: The new width ofthe h Wnd window. Can be zero if the SWP _NOSIZE value is used forwFlags,
meaning no change in the window's size after reordering.

cy int: The new height of the hWnd window. Can be zero if the SWP _NOSIZE value is used forwFlags,
meaning no change in the \\inrlow's size after reordering.
\

wFlags WORD: Can be' any combination of the flags shown in Table 3-12, combined using the C language

SWP _HIDEWINDOW

SWP _NOACTIVE

SWP_NOMOVE

SWP _NOREDRAW

SWP _NOZORDER

binary OR operator (I).

Draw the window's frame when redrawing. The frame style is defined in th~window's clasS de~·
nition. See RegisterClass().

Hide the window after reordering.

Do not make the window active after reordering.

Do not change the position of the window after reordering. The X and y.parameters are ignored ~
this flag is USed.

Do not change the size of the window after reordering. The cx and cy parameters are ignored if
this flag is used.

Do 110t redraw the window after reordering.

Do not change the window's order in the window list. This makes SetWindowPosO equivalent to
MoveWindow(). ,I

SWP _SHOWWINDOW Redraw the window after reordering.

Table 3·12. SetWindowPos() Flags.

Related Messages \VM_SIZE, MCMOVE, WM_PAINT
Example Two popup windows are created in the following WndProcO fragment. If the user clicks the "Do

It!" menu item, the first child window is positioned above the second. BecaUse ofthe three SWP _
parameters used in SetWindowPositionO, the-size and location of the window is not affected.
This is why the four size parameters are set to zero.

long FAR PASCAL WndProc (HWND hWnd, unsigried iMessage, WORD wParam, LONG lPara.)
{

". '

97

WINDOWS API BIBLE

HOC , hOC;
stati c HWNO
char

hChild1, hChild2 ;
cBuf [25J ;
bFirstTime = TRUE;
bIsV;sible ;

stati c BOOl
BOOl

switch (iMessage) 1* process windows messages *1
{

case WM_CREATE: 1* bui ld the chi ld window when program starts *1
if (bFirstTime)
{

}

bFirstTime = FALSE;
hChi ld1 = CreateWindow (gszAppName, "Chi ld Window 1",

WS_POPUP I WS_VISIBLE I WS_BOROER I WS_CAPTION,
10, 10, 300, 250, hWnd, NULL, ghInstance, NUll) ;

ShowWindow (hChild2, SW_SHOW) ;
hChi ld2 = CreateWindow (gszAppName, "Chi ld Window 2",

WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
20, 20, 200, 150, -hWnd, NULL, ghInstance, NULL> ;

ShowWindow (hChild2, SW_SHOW) ;

break;
caseWM_COMMAND: 1* process menu items * 1

~Wi tch (wpar//

case 10M_DOlT: 1* User hi t the "Do it" menu item * 1

SetWindowPos (hChild1, hChild2, 0, 0, 0, 0,
SWP_NOSIZE I SWP_DRAWFRAME I SWP_NOMOVE) ;

break;
IOther program lines}

SETWINDOWI'EXT B Win 2.0 II Win 3.0 a Win 3.1
Purpose.

Syntax

Description

Uses

Returns

SeeAIso

Parameters
hWnd

lpString

Example

Changes the caption (title) of a window.

void SetWmdowText(HWND hWnd, LPSTR lpString)j

For windows with a title bar, the title shows up in the center ofthe caption area. For buttons, the
. title is inside of the button.

Changes a window's title. Note that the title string is displayed at the bottom of the window icon
when the window is minimized. You can use this function to shorten the title when the window is
minimized so that the title string fits under the icon, rather than running into other icons' titles.

No returned value (void).

GetWindowTextO

HWND: A handle to the window.

LPSTR: A pointer to a null-terminated string containing the new title. Windows will truncate the
title if it does not fit within the title area of hWnd.

This example changes the caption of the main window when the user clicks the "Do It!" menu
item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{'

s~itch (iM~ssage) ,1* process windows messages *1
{ . , ", '

case WM_COMMAND:' 1* process menu items *1

IOther program linesj

I

switch (wParam)
(

case 10M_DOlT: 1* User hit the "Do it" menu item *1
SetWindowText (hWnd, "I'm the new title!") ;
break;

98

3. WINDOWS SUPPORT FUNCTIONS ...

SETWINDOWWORD • Win 2.0 • Win 3.0 II Win 3.1
Purpose Changes a WORD value associated with a \\'indow's class structure.

Syntax WORD SetWindowWord(HWND hWnd, int nlrulex, WORD wNewWord);

Uses Normally used to change the control ID of a child window control. Can also be used to set 16·bit
data associated with the window. This assumes that room for the data provided by the
cbWndExtra element of the WNDCLASS data structure was set large enough to hold the data
when the class was registered with. RegisterClassO.

Returns WORD, the previous value.

See Also GetWindowWordO, SetWindowLongO, GetWindowLongO

Parameters
kWnd HWND: A handle to the window.

nlndex int: An index to the value to be changed. This can be either of the values in Table 3·13.

GVvW_HINSTANCE Chan,ge the instance handle of the module that owns the window.

GVvWJO Change the control to of a child window control.

Table 3·13. SetWirulowWord() Flags.

wNewWord

Example

The GWW _ values are defined as negative integers in WINDOWS.H. To change extra WORD sized
data defined in the window's class structure, use a positive nlndex offset. Zero for the first value,
2 for the second, etc. .

WORD: The new Hi·bit value.

The button control's ID value is changed to 1000 when ~he user clicks the "Do It!" menu item.

long fAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

stati c HWND
HDC
int
char

hButton ;
hOC;
nID •.
cBUt' [25] ;

switch (iMessage)
{

1* process wi ndows messages * 1

case WM_CREATE: 1* initially created with ID = 99 *1
hButton = CreateWindow ("BUTTON", "Button",

WS_CHILD I WS_VISIBLE I BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, 99, ghlnstance, NUll)

ShowWindow (hButton, SW_SHOW) ;
break;

case \m_COMI~AND: 1* process menu items * 1

{Other program lines)

switch (wParam)
{

case 10M DOlT: 1* User hit the ·"00 it" menu. item *1
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 60, liThe button's ID was:", 20)
nID = GetWi ndowWord (hBu'tton, GWW_ID) ;
itoa'(nIO, tBuf, 10);
TextOut {hDC, 10, 80, cBuf, strlen (cBuf» ;
TextOut (hDC, 10, 100, "The new ID is:", 14)
SetWindowWord (hButton, GWW_IO, 1000) ;
nIO= GetWindowWord (hButton, ~WW_ID) ; .
itoa (nlD, cBuf, 10);
TextOut (hOC, 10, 120, cBuf, strlen (cBuf»
ReleaseOC (hWnd, hOC) ;
break;

99

WINDOWS API BIBLE

SHowOwNEDPOPUPS 1'1 Win 2.0 • Wm 3.0 BWm 3.1
Purpose Shows or hides ~ popup windows associated with the parent window.
Syntax void ShowOwnedPopups(HwND hWnd, BOOL bShow);

Uses

RetarDs

See Also

Allows a "one shot" update of all the popup windows, without needing to individually call .
ShowWlndowO for ~h one.
No returned value (void).

ShowWindowO
P~nuneters

htVnd HWND: A handle to the parent window which may own popups.
bSlww BooL: TRUE to show all owned popup windows, FALSE to hide all of them
Related Messa«es WM_SHOWWINDOW

Example Here the two popup windows created vanish and reappear when the user repeatedly clicks the
MDo IU" menu item. "

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lPara.)
(

stat i c HWND
static BOOL
static BOOL

hChild1, hChild2 ;
bFi rstTime = TRUE;
bPopupsShow; ng = TRUE ;

switch (iMessage)
{

1* process windows messages *1

case W"_CREATE: 1* build the child window when prog~a. starts *1

11 (, irstTime)
{

>
break;

bFi rstTime = FALSE;
hChild1 = CreateWindow (gszAppName, "Popup W1nd~w 1",

VS_POPUP I VS_VISIBLE I WS_BORDER I WS_CAPTlON,
10, 10, 300, 250, hWnd, NULL, ghInstance, NULL) ;

ShowWindow (hChild2, SW_SHOW) ;
hChild2 ~ CreateVindow (gszAppName, "Popup Window 2",

WS_POPUP I WS_VISIBLE I VS_BORDER I WS_CAPTION,
20, 20, 200, 150, hWnd, NULL, ghInstance, NULL) ;

Sh6wWindow.(hChild2, SW_SHOW) ;

c •• e WM_COMMAND: 1* pr.ocess menu i tells *1
svi tch (wPara.)
{

case IDM_DOIT: 1* User hit the "Do it" lIenu item *1
. . 1f (bPopupsShov1ng)

(

. }.

else
(

}

break;

bPopupsShowing = FALSE;
ShowOwnedPopups (hWnd, FALSE) ;

bPopupsShowing = TRUE;
ShowOwnedPopups <hWnd, TRUE)

100herprogram linesl:

SHOWWINQOW

Purpose

Syntax"
Description

Displays, hides, or changes the size of a window.

BOOL ShowWindow(HWND hWnd, int nCrndShow)i

BWin2.0 .\V'm3.0

ShowWindow() is normally called right after a window IS created to make it visible.

100

3. WiNDOWS SUPPORT FUNCTIONS •

Uses Minimizing and maximizing the window, as well as making the window visible. Note that calling
ShowWindowO does not guarantee that the window will not be obscured by other windows on the
screen. Use SetActiveWindowO or SetWindowPosO to bring windows to the top.

Returns
See Also
Parameters
hWnd

BOOL. TRUE if the window was visible, FALSE if the window was hidden.
CreateWindowO, SetActiveWindowO, SetWindowPosO

(II

HWN: The handle to the window.

nCmdSlww int: An integer value specifying the actioh to (,~ taken. It can be anyone of the values in Table 3-
14 (not a combination). '

f .: ,r" I

SW_HIDE

SW_MINIMIZE

SW_RESTORE

SW_SHOW

SW_SHOWMAXlMIZED

SW_SHOWMINIMIZED

SW_SHOWMINNOACTIVE

SW_SHOWNA

SW_SHOWNOACTIVE

SW_SHOWNORMAL

Hides the window. The top window on Window's list is activated.

Minimizes the window. The top window on Window's list is activated.

Activ~tes and displays the window (same as SW_SHOWNORMAl).

Activates and displays the window in its current size and position.

Activates and maximizes the window.

Activates and minimizes the window to an icon.

Displays and mi~imizes the window. The currently active window remains active.

Displays the wind~'w; b!!.t. does not change which window is active.

Displays the window, but does-not~ha~ge which wiridow is active.

Activates and displays the window. If the window was minimized or maximized, the window is
returned to its previous size and position.

Table 3-14. ShowWindow() Flags.

Related Messages MtLSnOWWINDOW

Example This example hides a child window when the user cli~ the "Do It!" menu item.

long FAR PASCAL WndProc (HWHD hWnd, unsigned i"essage~ WORD wParam, LONG lParam)
{

HDC
static HWND
char
static BOOL
BOOL

hDC ;
hChi ld ;
cBuf [25J ;
bFi rstTime = TRUE;
bIsVisible ;

switch (iMessage) 1* process windows messages *1
<

case "'M_CREATE: 1* bui ld the chi ld window when program starts *1
if (bFirs'tTime)
{

}

break;

bFirstTime= FALSE;
hChild = Create~indow (gszAppName, "Child Window",

WS_CHILD I WS_VISIBLE I WS_BORDER I WS_CAPTION,
100, 50, 200, 150, hWnd, NULL, ghlnstBnce, NULL) ;

ShowWindow (hChild, SW_SHOW) ;

case W"_COMMAND:
swi tch (wParalll)
{

case 10M DOlT: 1* User hit the "Do it" •• nu it •• *1
hOC = GetDC (hWnd) ;
bIsVisible = lsWindowVisible (hChild)
if (blsVisible>

101

WINDOWS API BIBLE

{

}

else

GetWindowText (hChild, cBuf, 24) ;
TextOut (hOC, 10, 20, cBuf, strlen (cBuf» ;
TextOut (hOC, 10, 40, "is now visible.", 15) ;
TextOut (hOC, 10, 60, "Now hiding Chi ld ••• ", 19) ;
ShowWindow (hChil~, SW_HIOE) ;

TextOut (hOC, 10_ 20,
"Child window not visible.", 25) ;

ReleaseDC (hWnd; hOC> ;
break- ;

[Otlwr program lines]

SYSTEN.UP~TERsINFO o Win 2.0 0 Win 3.0 II Win 3.1

PurPose
Syntax

• Determines and/or change ssystem wide parameters.

Description

Uses

Returns

See Also

Parameters
wA~tion

SPLGETBEEP

wParam

IpvParam

SPL GETBORDER

wParam

IpvParam

BOOL SystemParametersInfo (WORD wAction, WORD wParam, LPVOID IpvParam, WORD
jWin/ni);
This function allows a wide range of system parameters that control the way applications look
and behave to be checked and changed. The changes can optionally be written to the WIN.INI
file, making the.changes effective in subsequent Windows sessions.

Used in replacing the Windows Control Panel program.

BOOL. TRUE if successful, FALSE on error.

GetSystemMetricsO, WriteProfileStringO

WORD: Any of the following values. The wParam and lpvParam values are used differently for
each value of wAction, so their meanings are listed together.

Determine if the warning beeper is on or off.

Set toO.

A pointer to a BOOl variable that will receive TRUE if the beeper is on, FALSE if the beeper is
off.

Det.ermine tr.e width of window. sizing borders.

SettoO.

A pointer to an integer that will receive the border multiplying factor.

SPI_GETGRIDGRANULARIlY

wParam

Determine the spadng between items placed on the Windows desktop.

Set to O.

IpvParam

SPI_GETICONTITlELOGFONT

wParam

IpvParam

SPI_GETICONTITlEWRAP

wParam

IpvParam

A pointer to an integer that will receive the current spacing (granularity) factor.

Retrieve the logical font data for icon titles.

Set to the sizeof() a lOG FONT structure.

A pointer to a LOGFONT structure that will be filled in when the function retums. See the
CreateFontindirect(l function description for a description of the lOG FONT data structure. .

Determine if icon title wrapping is set on or off.

Set to 0 ..

A pointer to a BOOl variable that will receive TRUE if title wrapping is on, FALSE if title wrap
ping is off.

102

3. WINDOWS SUPPORT FUNCTIONS ~

SPLGETKEYBOARDDELAY Determine the current keyboard repeat speed.

wParam Set to O.

IpvParam A pointer to an integer that will receive the current keyboard repeat-delay.

SPI_GETKEYBOARDSPEED Determine the current keyboard auto-repeat speed.

wParam Set to O.

IpvParam A pointer to an integer that will receive the current keyboard auto-repeat speed.

SPI_GETMENUDROPAUGNMENT Determine if popup menus appear left-aligned or right-aligned relative to the top menu-bar
item.

wParam Set to 0;

IpvParam A pOinter to a BOOl variable that will receive TRUE if popup menus are right-aligned, FALSE
if popup menus are left-aligned.

wParam

IpvParam

SPI_GETSCREENSAVEACTIVE

wParam

Determine the mouse speed and the X and Y mouse threshold values. Movements smaller
than the threshold do not result in mouse activity.

Set to O.

A pointer to a three integer array (int value[3]) where:
value[O] = X direction mouse threshold;
value[1] = Y direction mouse threshold;
value[2] = The mouse speed value.

Determine if screen saving is on or off.

Set to O.
,

IpvParam A pointer to a BOOl variable that will receive TRUE if screen saving is on, FALSE if screen
saving is off.

SPI_GETSCREENSAVETIMEOUT Determine the screen save time period.

wParam Set to O.

IpvParam A pOinter to an integer that will receive the current screen save delay in seconds.

SPUCONHORIZONTAlSPACING Changes the horizontal icon spacing.

wParam

IpvParam

SPLICONVERTICALSPACING

wParam

IpvParam

SPI_LANGDRIVER

wParam

IpvParam

SPI_SETBEEP

wParam

IpvParam

SPI_SETBORDER

wParam

IpvParam

Set to the horizontal icon spacing in pixels.

Set to NULL.

Changes the vertical icon spacing.

Set to the vertical icon spacing in pixels.

Set to NULL.

Determine'the language driver.

Set to O.

A pointer to a character buffer that will contain the language driver file name.

Turnthe system beeper on or off.

Set to TRUE to turn the beeper on, FALSE to turn the beeper off.

Set to NULL.

Change the window sizing border width.

Set to the new border multiplier factor.

Set to NULL.

103

WINDOWS API B'"BlE"

Table 3-/5. continued

SPLSETQESKPATTERN

wParam

/pvParam

SPLSETDESKWAllPAPER

wParam

/pvParam

SPLSETDOUBLEClKHBGHT

wParam

, /pvParam

SPI_SETDOUBLECUCKTIME

wParam

IpvParam

wParam

IpvParam

SPI_SETGRIOGRANULARIlY

wParam

IpvParam

SPLSETICONTITlEWRAP

wParam

IpvParam

SPI_SETI<EYBOARDDELAY

wParam
. /pvParam

S~_SEnKEVBOARDSPEED

wParam

/pvParam

Sets the desktop background pattem by reading the ·Pattem=- parameter in the WIN.lNI file.
Use WriteProfileStringO to change the W1N.lNI file.

Set to O.

Set to NULL

Change the bitmap used for the desktop background.

Set to O.

A pointer to a character string that contains the name of the bitmap file.

Change the vertical distance within which a second mouse button click must occur to be
registered as a double-click.

Set to the double-click vertical height in pixels.

"Set to NULL

Change the maximum number of milliseconds between two mouse button cficks to have the
second click register as a double-click.

Set to double-click time in milliseconds.

Set to NULL.

Change the horizontal distance within which a second mouse button click must occur to be -
registered ~s a double-click.

Set to the double-click horizontal height in pixels.

Set to NULL.

Change the size (granularity) of the desktop sizing grid.

Set to the grid size.

Set to NULL.

Tum title wrapp:ng of icon title strings on or off.

Set to ~~E to tum title wrapping on, FALSE to tum title wrapping off.

Set to NULL.

Change the keyboard delay setting.

Set to the new delay value.

Set to NULL .

Change the keyboard auto-repeat speed.

Set to the new auto-repeat speed.

Set to NULL.

SPI_SETMENUDROPAUGNMENT Change the aiignment of popup menus relative to the corresponding item in the top menu bar.

wParam Set to TRUE for right alignment, FALSE for left alignment.

IpvParam Set to NULL.

SPLSETMOUSE Change the mouse speed and the X and Y mouse threshold values. Movements smaller than
the threshold do not resu~ in mouse actMty.

104

wParam

IpvParam

3. WINDOW.S SUPPORT FUNCTIONS ...

SettoO.

Set to a pointer to a thl ee integer array (int value[3]) where:
valuelO) = new X direction mouse threshold;
value[1) = new Y direction mouse threshold;
value[2) = new mouse speed value.

Table 3-15. SyslemParameterslnjo() wActionValues.

jWinlni WORD: This value determines if any changes made to system settings are recorded in the WIN.INI
file, and if the WM_WININICHANGE message is broadcast to all applications after the change is
made. Changing WIN.INI causes the new system settings to be. used in subsequent Windows ses
sions, as WIN.INI is read when Windows starts. ' Possible settings are shown in Table 3-16.

E.~~~-:~,:'l::~:;::t'./::~~~!·!::.;~:-::~X~:ty/~ea"i~g':::-\ir:~~:'tir:{:.;:,:;I::,);,,::::},'~;';:'~/:(:;{~~J,~\~\~' :',~~":~:i:;:~.~:;:;:-:,:'/.,:'\'): ", .·":';'~;)':::l::,!Z1i
NUll No change to WIN.IN!.

SPIF_UPDATEINIFILE Writes the new system parameters to the WIN.INI file.

SPIF _SENDWININICHANGE Writes the new system parameters to the WIN.INI file, and broadcasts the WM_ WININICHANGE
message to all applications running on the system.

Table 3-16. SyslemParameterslnjo() Flag Settings.

Related Messages WM_WININICHANGE\

Example This example increases the width of the border of every win
dow running on the system when the user clicks the "Do It!"
menu item. The borders are all restored to normal width when
the application exits. (See Figure 3-16.) Figure 3-16. SystemPara

meterslnfo() Example.
long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD
wParam, LONG lParam)
<

static int nOldBorderWide ;

switch (iMessage)
<

1* process windows messages *1

case WM_CREATE: 1* save original w'jndow border width *1
SystemParametersInfo (SPI_GETBORDER, 0, &nOldBorderWide,

NULL) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tC.h (wParam)
< 1* increase border width * 5 *1

)

break;

case IDM_DOIT:
. SystemParametersInfo (SPI_SETBORDER,

Q 5 * nOldBordel'Wi de, NULL, NULL)
break;

case IDM QUIT:
DestroYWindow (hWnd~
break;

case WM_DESTROY: 1* set border width back to normal *1
SystemParametersInfo (SPI_SETBORDER, nOldBorderWide,

NULL, NULL) ;
PostQuitMessage (0) ;
break;

105

'- WINDOWS API BIBLE

defilUlt:
return DetWindowProc (hWnd, iMessage~ wParam, lParam)

}

return (OL> ;
}

UNREGISTERCLASS o Win 2.0 0 Win3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpClassName

hlnstance

Example

Frees the memory holding an unneeded class description.

BOOL UnregisterClass(LPSTR IpClassName, HANDLE hlnslance)j

, This function completely removes the window class from the system. Make sure all windows based
on the class are destroyed before thecl2.ss is eliminated.

In applications with several modules. UnregisterClassO can be used to ftee memory space if the
new module does not need certain classes. Classes registered within an application are destroyed
automatically when the application terminates.

BOOL. TRUE if the class was removed, FALSE if the class could not be found, or if a window exists
that uses this class.

RegisterClassO

LPSTR: A pointer to a null-terminated character string containing the class n~ine. Do not at-
tempt to remove predefi~d window classes, such as buttons and edit controls. -

HANDLE: The handle to the program instance that created the class.

In this example, clicking the "Do It!" menu item causes the popup window to be destroyed, and its
class to be unregistered. Note that the child window's procedure does not issue a
PostQuitMessageO function call when it gets a WM_DESTROY message. If it did, removing the
popup would close the parent application program as well.

The ChildProcO function needs to be referenced in the EXPORTS section of the program's
.DEF definition file, and a function prototype added to the header file.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static WNDCLASS
static HWND

wndclass ;
hPopup ;

1* the window class *1

switch (iMessage)
{

1* process windows messages *1

ca se WM_CREATE: 1* build the child window when program starts */.
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hIcon
wndclass .hCursor
wndclass.hbrBackground
wndclass.lpszMenuNam~
wndclass.lpszClassNa~

= CS_HREDRAW I CS_VREDRAW , CS_PARENTDC;
= Chi ldProc ;
= 0 ;
= 0 ;
= ghlnstance ;
= NULL ;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondC lass" ;
1* register the window class *1

if(RegisterClass (&wndclass»
{

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hPopup, SW_SHOW) ;

{ break;
ca~e WM_COMMAND: 1* process menu items *1

swi tch (wParam)

106

3. WINDOWS SUPPORT FUNCTIONS 'Y

{

cas e I D M_D 0 IT: 1 * Use r h it the .. Do it.. men u i t em * 1
DestroyWindow (hPopup) i
Unreg i sterC lass ("SecondC lass", ghInstance) ;
break;

case 10M_QUIT:

}

break;

DestroyWindow (hWnd)
break ;0

case WM_DESTROY: 1* stop application *1
PostQuitMessagp. (0) i
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam).;

return (OL) i

1* Here is a separate message processing procedure for the chi ld window *1

long FAR PASCAL ChildProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

}

switch (iHessage)
{

c3se WH_DESTROY:
break 0;

1* process windows messages *1

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

o Win 2.0 0 Win 3.0
Finds which window (if any) is at a given point on the screen.

HWND WmdowFromPoint(POINT Point);

Finds a window based on the screen coordinates given in Point.

• Win
Purpose

Syntax

Description

Returns A handle to the window occupying the given point on the screen. NULL if no window is at that
point.

See Also

Parameters
Point

Example

ChildWindowFromPointO

POINT: A point structure holding the x and y coordinates of the screen coordinates to check.
POINT is defined in WlNDOWS.H as

typedef struct tagPOINT
{

int Xi
int y;

}POINTi •
typedef POINT *PPOINTi

This example shows the title of the window located at screen coordinates 100,100 (from the top
left comer) when the "Do It!" menu item is clicked.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
char
HWND
POINT

hDC ;
cBuf [25] ;
FoundWi ndow i
pScreen i

switch (iHessage)
{

1* process windows messages *1

107

WINDOWS API BIBLE

case Wr'LCOHMAND: 1* process menu items *1

tOther program lines]

switch (wParam) .. {
case lDM_DOlT: 1* User hit the "00 it" menu item *1

pScreen.x = 100 ;
pScreen.y = 100 ;
hFoundWindow = WindowFromPoint (pScreen) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10,

"At 100, 100 is the window:", 26) l
if (hFoundWindow)
{

GetWindowText (hFoundWindow, cauf, 24) ;
TextOut (hDC, 15, 25, cauf, strlen (cauf»

}

else
TextOut (hOC, 15, 25, "None found", 10)

ReleaseOC ~hWnd, hOC) ;
break;

/

108

Menus are used in essentially every Windows program to allow the user to select actions as the program is running.
The Windows Software Development Kit (SDK) provides a compre}lensive set of tools for building menus and modify
ing them as the program runs.

Main Menus and Popup Menus
Wmdows recognizes two basic types of menus: top-Icvel menus and popup menus. The top-level menu (also called the
"main" menu of a program is the series' of commands that are visible in the window's menu bar at all times, assuming
the program has a menu. For simple programs, the menu bar will contain all of the program's menu options. If there
is not enough room for all of the menu items on one line, Windows will automatically "break" the line, creating a two
line menu bar. For more complex programs, there is not enou&h space on the menu bar for all the commands you may
need. This is where popup menus (sometimes called submenus, "pull down," or "4rop down" menus come in. When
clicked, the top menu bar items can spawn popup menu items with many more options from which to choose. Figure
4-1 shows a typical example.

Building Menus in the Resource File
For most programs, defining a menu is simply a matter of writing a few lines in the resource .Re me. Here is an
example which produces the menu structure shown in Figure 4-1.

0. GENERIC.BC Resource Script File
1* gen.enu.rc 1 *1
'include <windows.h>
.include "gen.enu.h"

gen.enu
BEGIN

END

ICON generic.ico

"ENU

POPUP "&Top Item",
BEGIN

END

"ENUITE .. "Item &One",
RENUITE .. "Item &Two".

.. ENUITER "&Quit",
"ENUITER "\a&Help",

I DP,-POP1
1DM_POP2

1DM_QUIT
1DM_HELP

lop Item nult tlelp

Item MO. I

\
\

Top Level
Menu

Popup Menu

Figure 4-1. Top Level Menus
and Popup Menus. .

In this case there are three items on the top level menu bar, "Top Item," "Quit," and "Help." The first item is a
headline for a popup menu containing "Item One" and "Item 'l\vo." The values behind the menu item ID numbers
(IOM_POPl, etc.) are dermed in the program's header file as a series of integers~ They should be numbered between
o and 0x7FFF. The numbering sequence is not important.

There are a few extra things to notice about this menu definition. The ampersand (&) characters are used to
create keyboard alternatives to clicking menu items with the mouse. The lettcr following the ampersand is underlined
in the menu. Holding down the @ key and the key for the underlined letter causes that menu item to be selected.
This amounts to an almost instant keyboard interface. If you need to display the ampersand character, use a double
ampersand (&&). If more trum one'~enu item h~..the same letter preceded by an ampersand, the r~t one will be

109

WINDOWS API BIBLE

underlined and will respond to the @ key combination. A double quote ("") will insert a single quote mark in a
string. Within popup menus, you can also use it for a tab character. This will not work on top-level menus. Also note
that the "Help" item is preceded by "\a". This moves that item to the 'right side of the window's menu bar. This is
typically used for help information menus. ' ' ' ..

Menu definitions can also include commands for changing the way a menu item is displayed. "Graying" a menu
item causes Windows to display the menu letters with gray text, rather than the usual black. Graying is used to give a
visible indication that a menu item is not operating at a given time. Typically grayed items are also disabled, so that 'no
Windows' messages are sent if the user attempts to select the item. Menu items can also be checked, which means
that a small checkmark is displayed to the left of the menu item. This is handy when there are options that the user
can turn on or off, but not enough options to justifY a dialog box with radio buttons to make the selection. You can also
control where merius and submenus break, if you use multiline menus.

The control over graying, checking, etc. within the resource .Re file menu definition is achieved by adding the
control word to the end of a MENUITEM statement. For example, here is a menu definition with two levels of popup
menus, a grayed item, a checked item, and a specification of a break in a popup menu.

e Resource Script File with Menu Items Grayed and Checked
1* 9~nmenu.re ",
#include <\':indows.h>
#i nelude "ge~enu. h"
genmenu ICON generie.ic~
genmenu MENU
BEGIN

END

POPUP "&F; rs t Menu"
BEGIN

END

MENUITEM "~Top Item",
MENU ITEM "&1st Option",
MENU ITEM "&2nd Opt ion" ,
MENUITEM $EPARATOR
POPUP "&Popup"
BEGIN

END

MENUITEM "&Left One",
MENUITEM "&Ri ght One",

MENUITEM "&Quit",
MENU ITEM "\a&He lp",

The full list of menu item options is given in Table 4-1.

Option Meaning

The item has a checkmark next to it.

IDM_TOP1
IDM_OPT1, CHECKED
IDM_OPT2, GRAYED

IDM_POP1
IDM_POP2, M,ENUBREAK

I DM_QU IT
DM_HELP, HELP

CHECKED

GRAYED

HELP

The item's text is inactive and ~ppears in gray letters.

INACTIVE

The item has a vertical line to the left. You may also want to put the characters "\a" at the beginning of the
menu text to force this item to the menu bar's far right side.

The item name is displayed, but cannot be selected. No WM_COMMAND messages are sent from this
item until it is enabled.

MENUBARBREA.K For menus, places the item on a new line, creating a multiline menu. For popups, places the new item on a
new column, creating a multicolumn (rectangular) popup menu. A line is used to separate this ttem from the
previous one.

MENU BREAK Same as MENUBARBREA.K, except for popup menus. For menus, places the item on a new line, creatinga
multiine menu. For popups, places the new item on a new column, creating a multicolumn (rectangular)
popup menu without a dividing line. '

Table 4·1. Menu Item Options-Used to the Right oj the Menu Item.

110

4. MENUS T

Popup menu names (the line that says "POPUP" in the resource file) can also use all of these parameters, but do
not have a menu item lD value associated with them. Only the items within the popup menus have lD values for
selection. You can also place a line between any two menu items by using MENUITEM SEPAHATOR as a menu item.
The line cannot be selected, but can help it to clarify long popup menus by breaking the list into logical sections.

Adding a Menu to the Program's Window
Defining a menu in the resource .RC file does not automatically make it visible, or make it a part of the program's
window. Normally, you will attach the program's menu to the .. vindow's class definition in the WinMainO function.
rhis is done by setting the lpszMenuName element of the wndclass structure to point to the menu name.
RegisterClassO then associates this menu name wit~ any window created from the class.

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= CS_HREDRAW I CS_VREDRAW ;
= WndProc ;
= 0 ;
= 0 ;
= hlnstance ;
= Loadlcon (hlnstance, gszAppName)
= LoadCursor (NULL, IDC_ARROW) ;
= ~etStockObject (WHITE_BRUSH) ;
= "genmenu" ;
= "generi c" ;
1* register the window class *1

if (!RegisterClass (&wndclass»
return FALSE;

The menu name can be any valid name. The name in the class definition must match the one defined in the
resource file for the menu.

Changing Menus
Normally, you will use the resource .RC file to define the menu. If your program allows the user to add new menu
options (such as macro names), you may need to modify menu items or build entire new menus after the program
starts running. New menus are created with the CreateMenuO function. The new menu is initially empty. Menu items
are added to the menu using AppendMenuO and InsertMenuO. As soon as the menu is built, you can attach it to the
window using SetMenuO. The memory associated with an old, unneeded menu can be freed using DestroyMenuO.
You can also create new popup menus by using CreatePopupMenuO. Items are added to the popup menu using
AppendMenuO and InsertMenuO, just like a main menu. When the popup is built, it can be added to the menu using
AppendMenuO or InsertMenuO. If your program s\vitches between a few fairly constant menus, you will probably find
it simpler to define all of the menus in the resource .RC file. Each menu is given a different name. During the execu
tion ofthe program, you can switch between menus by calling LoadMenuO to make the menu available and SetMenuO
to attach it to the program's window. LoadMenuO only loads one copy of the menu into memory. You can call it
multiple times without wasting memory. If you use two or more predefined menus, only one will be attached to the
application's main window at anyone time. Only the attached menu will end up removed from memory when the
application terminates. Use DestroyMenuO to remove any other Il1enus as the program exits, to avoid tying up
memory.

Essentially, every aspect of a menu can be changed as the program is running. The most common changes are to
change a menu's character string, check and uncheck menu items, gray and disable them, and to delete items.
ModifyMenuO allows several of these operations to be carried out in one function call. There are also more specific
functions for single operations, such as DeleteMenuO to remove an item, CheckMenuItemO to add and remove·
checkmarks, and EnableMenuItemO to enable and disable items. If you change the top·level menu, be sure to call
DrawMenuBarO. This causes the menu bar to be redrawn. Otherwise, the changes will not become visible until the
user attempts to select a menu item. This is not necessary if the changes are made while processing the ~CCREATE
message, as that message is processed before the window is drawn for the first time.

111

WINDOWS API BIBLE

Bitmaps as Menu Items
Menu items are normally text strings. In some cases it may be far better to have a .
visual image for the menu items, rather than using words. Good examples are the
"tools" items for paint programs. A picture of a brush is more intuitive than the
word "Brush." Figure 4-2 shows a simple example with two menu items, a pen and a
p~ir of scissors.

You cannot define a bitmap menu item in the resource .RC file. Instead, you
add or insert the bitmap item into the menu using AppendMenuO and Insert
MenuO. Typically, the menu bitmaps are created using the SDKPaint program that
comes with tlie softwaredevelopment kit A 32 by 32 pixel bitmap is good for a small
menu item, while 64 by 64 pixels makes a big one. The bitmaps are referenced in
the top ofthe resource file. A typical series of AppendMenuO function calls to load
in a menu containing bitmaps is

Figure 4-2. Bitmaps As Menu
Itmns.

hMenu = CreateMenu () ;
hSubMenu = CreatePopupMenu () ;
hPenBm = LoadBitmap (ghInstance, (LPSTR) "pen")' ;
hCutBm = LoadBitmap (ghInstance, CLPSTR) "cut") ;
AppendMenu (hSubMenu, MF_BITMAP, IOM_POP1, (LPSTR)(LONG)hPenBm) ;
AppendMenu (hSubMenu, MF_BITMAP, IOM_POP2, (LPSTR)(LONG)hCutBm) ;
AppendMenu (hMenu, MF_POPUP, hSubMenu, (LPSTR) "&Tools") ;
AppendMenu (hMenu, MF _STRING, IOrCQUIT, (LPSTR) "&Qui t") ;
AppendMenu (hMellu, HF_STRING, 10M_HELP, (LPSTR) "&Help") ;
Set Menu (hWnd, hMenu) ; .

In this case, the bitmaps are loaded into a popup menu. The popup menu is then appended to the main menu with
the popup heading of "Tools." 1\vo normal menu items "Quit" and "Help" are then added, before the menu is attached

, to the program's window with SetMenuO. The resulting menu structure is shown in Figure 4-2. A more complete
listing of this program is given in the AppendMenuO function description.

Windows automatically sizes the popup menu to accommodate the largest bitmap loaded. Windows does not put
a border around the bitmaps, so you may want to draw the borders when you create the bitmaps in SDKPaint •.

The Checkmark Bitmap
A new addition with Windows version 3.0 is the ability to change the bitmap used to show a checkmark next to a
checked menu item. This gets a little involved, as the size of the checkmark depends on the video resolution of the
screen on which the program is displayed.

GetMenuCheckmarkDimensionsO retrieves the size of the menu item checkmarks, while SetMenultemBitmapsO
establishes a new bitmap for a menu item to use for checkmarks. You can go wild and have a different checkmark
bitmap for each menu item. Don't confuse these functions with loading bitmaps as
the menu items themselves.

Owner-Drawn'Menu Items
The most flexible, but most complex, ofthe menu options is the owner-drawn style.
In this case your program paints directly on a popup menu, which is a little win-

Help·

" dow. This allows you to scale graphics images to match the resolution of the screen
or the size of the parent'window. As an example, consider a program that has two
graphics images for the first two popup selections. For simplicity,we will use a
blue rectangle 'and a, red ellipse as the choices. The window will appear as shown in Figure 4-3. Owner-Drawn.
Figure 4-3 when the first top-level menu item is selected. Menu Itmns.

Like bitmaps, this type of menu cannot be created from within a resource
script file. The menu must be built from within the program. The key to creating owner-drawn menu items is.to use the
MF _OWNERDRAW flag when AppendMenuO is used to add the items. Listing 4-1 shows the code to create and use the
menu shown in Figure 4-3.

112

c::> Listing 4-1. WndProc() Function Creating Owner-Drawn Menu Items
long FAR PASCAL WndProc (HWND hUnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HMENU
LPMEASUREITEMSTRUCT
LPDRAWITE~STRUCT
static DWORD .
HBRUSH
static int

hMenu, hSubMenu ;
'US ;
DIS;
dwRColor, dwEColor
hBrush ;
nCheckWide ;

4. MENUS V

switch CiMessage}
{

1* process windows messages *1

case WM_CREATE:
hMenu = CreateHenu C} ;
hSubMenu = CreatePopupMenu C} ;
AppendMenu ChSubMenu, MF_OWNERDRAW, IDM_POP1,

(LPSTR) CDWORD} RGB (0, 0, Z55)} ;
AppendMenu (hSubMenu, MF_OWNERDRAW, IDM_POPZ,

CLPSTR) CDWORD} RGB (Z55, 0, a)} ;
AppendMenu (hMenu, MF_POPUP, hSubMenu, (LPSTR) "&Tools")
AppendPienu (hMenu, PlF_STRING, IDICQUIT, (LPSTR) "&Qui tit)
AppendMenu (hl1enu, HF_STRING, 10M_HELP, CLPSTR) "&Helplt)
SetMenu (hWnd, hMenu) ;
nCheckWide = LOWORD (GetMenuCheckMarkDimensions ()) ;
break;

case WM_MEASUREITEM:
MIS= CLPMEASUREITEMSTRUCT) lParam ;
if (MIS->itemID == IDM_POP1) 1* rectangle item *1
(

)

MIS->itemWidth = 64;
MIS->itemHeight = 64 ;
dwRColor = MIS->itemData

else if UlIS->itemID == IDM_POPZ)/* ellipse *1
(

)

MIS->itemWidth = 64;
MIS->itemHeight = 64 ;
dwEColor = MIS->itemData ;

return (aU ;
case WM_DRAWITEA:

DIS = (LPDRAWITEMSTRUCT) lParam ;
if (DIS->itemID == IDM_POP1) 1* rectangle *1
{

}

if (OIS->itemState == ODS_SELECTED)
hBrush = GetStockObject (BLACK-BRUSH)

else
hBrush = CreateSolidBrush (dwRColor)

SelectObject (DIS->hDC, hBrush) ;
Rectangle (DIS->hDC, nCheckWide, 0,

64 + nCheckWide, 64)

else if (DIS->itemID == IOICPOP2)
{

if (OIS->itemState == ODS_SELECTED)
hBrush = GetStockObject (BLACK_BRUSH) ;

else
hBrush = CreateSolidBrush (dwEColor) ;

SelectObject (DIS->hDC, hBrush) ;
Elli~8e CDIS->hnC, nCheckWide, 65, 64 + nCheekWide,

128} ;
)
SelectObject (DIS->hDC, GetStockObject (BLACK-BRUSH)) ;
DeleteObject (hBrush) ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wPara")
(

113

I

WINDOWS API BIBLE'

}

return (OL)

case IDM_POP1:
MessageBox (hWnd, "The rectangle was selected",

"Message", MB..;,OK) ;
break;

case IDM_POP2:
MessageBox (hWnd, "The ellipse was selected",

"Message", MB_OK)
break;

case 10M_QUIT:

)

break;

PostQuitMessage (NULL)
break;

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0)
break;
defauL t: . II: default windows lIessage processing *1
return DefWindowProc (hWnd, iMessage, wParall, lParall);

The menu is created when the WM_CREATE message is processed. Two of the menu items are set to
MF _OWNERDRAW. AppendMenuO has the ability to associate a 32-bit value with the menu item. ThIs abUltydoes not
have to be used, but it is a convenient way to pass the color of an owner-drawn menu item. This is done in the example

. code, using the RGBO macro to specify the desired color value. .
DrawinS the owner-drawn menu items is a matter of processing two Windows messages. WM_MEASUREITEM is

sent when a menu is activated that contains J)WI1er-drawn items. This is the· same message used for owner-drawn
buttons, list boxes, and combo boxes. ThelPiiram value passed with the message points to a MEASUREITEMSTRUCT
structure. This is defined in WINDOWS.H as

1* MEASUREITEMSTRUCT for ownerdraw *1

typedef struct tagMEASUREITEMSTRUCT
<

WORD CtLType;
WORD CtlID;
WORD itemID;
WORD itemWidth;
WORD itemHeight;
DWORD ituData;

1* ODT_MENU, ODT_L1STBOX, ODT_COMBOBOX~ODT_BUTTON *1
1* not used with menu items *1
1* the menu item's id number *1
1* the program fi LLs in these two values to set *1
1* the size of the menu item in pixels *1
1* the 32-bit data from AppendMenu ends up here *1

) MEASUREITEMSTRUCT;
typedef MEASUREITEMSTRUCT NEAR *PMEASUREITEMSTRUCT;
typedef MEASUREITEMSTRUCT FAR *LPMEA~UREITEMSTRUCT;

The program must set the itemWidtk and itemHeigkt values when it processes the MCMEASUREITEM mes
sage, and then it must return to Windows. This is how the program specifies how big the owner-clrawn mlmu ltem(s)
will be. This message is processed once for each owner-drawn menu item in the currently active menu. 1be actual
drawing of the menu items occurs when ~CDRAWITEM messages are sent from WINDOWS. This is a Uttle more
complex than you might expect, as the owner-drawn menu item can do graying, checking, changing shape or color on
selection, etc. The IParam value passed with ~CDRAWITEM is a pointer to a DRAWITEMSTRUCT data structure,
defined in WINDOWS.H as

1* DRAWITEMSTRUCT for ownerdraw *1
typedef struct tagDRAWITEMSTRUCT

<
WORD
WORD
WORD
WORD
WORD
HWND
HOC
RECT
DWORD

ttl Type;
CtlID;
itemID;
itemAction;
itemState;
hwndltem;
hOC;
rcltem;
itemData;

1* ODT_MENU, ODT_L1STBOX, ODT_COMBOBOX, DDT_BUTTON *1
1* not used wi th menu items *1
1* the menu item'sid number *1
1* ODA_DRAWITEM, ODA_SELECT, or ODA_FOCUS *1
1* ODS_SELECTED,ODS_GRAYED,ODS_DISABLED,ODS~CHECKED *1
1* the Hem's handle *1. 1* or ODS_FOCUS *1
1* the item's device context *1
1* the bounding rectangle of the ite. *1
1* here; s where the 32-bit data 90e$ *1

114

} DRAWITEMSTRUCTi
typedef DRAWITEMSTRUCT NEAR *PDRAWITEMSTRUCT;
typedef DRAWITEMSTRUCT FAR *LPDRAWITEMSTRUCTi

4. MENUS ..,

This is a convenient structure, as it contains both the menu window's handle (the menu is a window), bounding
rectangle, and device context. The 32-bit value set by AppendMenuO is also available. The program can modify the
painting operation depending on the state of the menu (grayed, selected, checked, etc.). In the simple example above,
the objects are painted black to show selection. One point of confusion here is that the entire popup menu is a single
window. The painting operations for separate items must determine the correct location to paint each item within the
menu. In the example, each menu item is 64 pixels high, so spacing is simple. Note that the items are offset to the right ~
by the width of a menu item chec~cl.rk, to be consistent with the n9rmal shape of menu Items.

Menu Messages
As mentioned above, Windows sends the. MCCOMMAND message every time a menu item is selected. This is nor
mally the only message that you will pro'cess from' a:menu. However, you may find use for the MCINITMENU and
WM_INITMENUPOPUP messages. They are sent right'before a main menu or popup menu is activated. They provide
some advance warning, in case the application ~eds·to·phange the status of items from enabled to disabled, re-create
bitmaps, etc. The WM_MENUCHAR message is sent Ii'the user attempts to use a keyboard shortcut key that does'not
.match any of the menu names preceded by an ampers~d character (&). This allows more than one keyboard shortcut
to be programmed per menu item, or it can be used to display an error message. The WM_MENUSELECT message is
also sent when a menu item is selected. This message is more versatile than the WM_ COMMAND message, as it is sent
even if the menu item is grayed. Normally, this message is used for warning messages. The messages are documented
in Chapter 9, Window Messages.

Menu Function Summary
Table 4-2 summarizes the menu support functions. The detailed function descriptions follow immediately after the
table.

Function

AppendMenu

CheckMenultem

CreatePopupMenu

CreateMenu

DeleteMenu

DestroyMenu

DrawMenuBar

EnableMenultem

.. Purpose

Adds a new menu item to the end of a menu.

Checks or unchecks a menu item.

Creates a popup menu

Create a new, empty menu.

Removes an item from a menu.

Removes a menu from memory.

Forces a window's menu bar to be repainted.

Changes a menu item to/from enabled and grayed.

GetMenu Retrieves a handle to a window's menu.

GetMenuCheckMarkDimensions Retrieves the size and width of the bitmap used to create checkmarks next to menu items.

GetMenultemCount Gets the number of menu items in a menu.

GetMenultemlD Retrieves the 10 value associated with a menu item.

GetMenuState

GetMenuString

GetSubMenu

GetSystemMenu

HiliteMenultem

InsertMenu

Rnds the number of items in a menu, or the status of an item.

Retrieves the label displayed in a menu item.

Retrieves a b~91e to a popup menu.

Retrieves a handle to the system menu.

Highlights a top-level menu item.

Inserts a new menu item into an existing menu. .

'115

WINDOWS API BIBLE

Table 4-2. continued

Function- .,

LoadMenu

ModifyMenu

-- RemoveMenu

SetMenu

SetMenultemBitmaps

T rackPopupMenu

! Purpose

Retrieves a handle to a menu defined in the resource .RC file.

Changes the properties of a menu item.

Removes a menu item from a menu.

Attaches a menu to a window.

Replaces the default menu checkmark bitmap with a custom bitmap.

Displays a submenu anywhere on the screen.

Table 4-2. Menu Function Summary.

[gJ1

APPENDl\iENU D Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hMenu

wFlags

Value

Adds a new menu item to the end of a menu.

BOOL AppendMenu(HMENU hMenu, WORD wFlags, WORD wIDNewltem, LPSTR I~Newltem)j

Similar to InsertMenuO, except that AppendMenuO only adds menu items to the end of the
menu.

Creating menus from within the body of the program, instead of building them in the resource
file. Also useful in modifying existing menus.

BOOL. TRUE if the new menu item was added successfully, FALSE if not.

InsertMenuO, CreateMenuO, SetMenuO, DrawMenuBarO

HMENU: A handle to the menu being changed. Use GetMenuO to retrieve a window's menu
handle. -------
WORD: Specifies how the wIDNewltem and IpNewltem parameters are to be interpreted. These
values can be combined using the C language binary OR operator (I)with any of the menu item
control flags in Table 4-3.

Meaning ~I
MF _BITMAP The menu item will be a bitmap. The low-order word of the IpNewltem parameter should contain a

handle to the bitmap.

MF _CHECKED Places a checkmark next to the menu item.

MF _DISABLED Makes it impossible to select the menu item. Does not gray the menu item.

MF _ENABLED Makes it possible to select the menu item. Tnis is the default.

MF_GRAYED Grays the menu item text and disables the menu item so that it cannot be selected.

MF _MENUBARBREAK In popup menus, it separates a new column of items and displays a separator bar between them. In
main menus, it starts a new line of menu items.

MF _MENUBREAK In popup menu, it separates a new column of items. No separator bar is displayed. In main menus, it
breaks the menu into a new line of menu items (two rows of menu items at the window's top).

MF _OWNERREDRAW Specifies that the parent window is to paint the menu item each time it is needed. This is not possible
for the top menu line, but can be done for drop-down and popup menu items. The parent window will
receive WM_MEASUREITEM and WM_DRAWITEM messages to update the drawing area,

MF _POPUP Specifies a popup menu, The wlDNewltem parameter will be a handle to the popup menu,

MF _SEPARATOR Draws a horizontal line in the menu, This line cannot be selected, checked, enabled, or grayed. The
IpNewltem and wlDNewltem parameters are ignored,

116 . i'
'I'

4. MENUS V

MF_STRING

MF _UNCHECKED

Specifies that the new item is a chilracter string./pNew/tem points to the string.

Does not place a checkmark next to the menu item. This is the default.

Table 4-3. AppendMenu() Flags.

lpNcwltem LPSTR: Points to the contents of the new menu item. The type of data depends on the wFlags
setting, as described in Table 4-4.

IpNewltem ~I
" Long pointer to a character string. MF_STRING

MF_BITMAP A bitmap handle. The bitmap handle is stored in the low-order word of /pNewltem. Use
LoadBitmap() to retrieve this value.

You specify to what the 32-bit value IpNe'yVltem points. Windows will send WM_MEASUREITEM
and WM_DRAWITEM messages to the window's message processing function when the menu
item needs to be redrawn. The value in the IpNewltem parameter will end up passed to the
window's function asan element of the structures pointed to by the IParam value. See the
example owner-drawn menu at the beginning of this chapter.

Table 4-4. AppendMenu() Data Types.

Related Messages WM_MEASUREITEM, ~CDRAWITEM

Example Here the program does not have a menu specified in the re
source .RC file. Instead, the menu is created when the pro
gram starts up. Figure 4-4 illustrates the following example.

C The Program Header File
1* genmenu.h *1
#define IOM_TOP1 1 1* menu item id values *1
#define 10M_QUIT 2
#define IOM_POP1 6
#define IOM_POP2 7
#define 10M_HELP 8

1* global variables *1
int ghlnstance ;
char gszAppName (J = "genmenu" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWNO, unsigned, WORO, LONG)

The Resource .Re File

Figure 4-4. ApperidMenu()
Example.

Note that the two bitmaps which will be used in the menu are named here. Also note that no menu is defined, as it will
be created within the program logic.

C Resource File
1* genmenu. rc *1
#include <windows.h>
#include "genmenu.h'-.',
genmenu ICON

pen
cut

generic.ico

BITMAP
BITMAP

The WinProc() Function

pen.bmp
cut.bmp

The menu is created when the program starts execution (WM_CREATE message received). The main menu, and the
popup menu containing the bitmaps, are created one item at atime. DrawMenuBarO is not required in this case, as
the WM_CREATE message is processed before the window and menu bar are painted the first time.

117

WINDOWS API BIBLE

long FAR P'SCAL WndProc (HWND hWnd, unsigned iMe~sage, WORD wPara., LONG lParam)
{

HMENU
stati c HBITMAP

hMenu, hSubMenu ;
hPenBm, hCutBm ;

switch (iMessage)
{

1* process windows messages *1

)

case WM CREATE: 1* bui ld the prograni's menu at startup *1
hMenu = CreateMenu () ; ,
hSubMenu = C rea t ePopupMenu () ; ,
hPenBm = LoadBitmap (ghlnstance, (LPSTR) "pen") ;
hCutBm = LoadBitmap (ghlnstance, (LPSTR) "cut")
AppendMenu (hSubMenu, MF_BITMAP, IDM_POP1,

(LPSTR)(LONG)hPenBm) ;
AppendMenu (hSubMenu, MF_BITMAP, IDM_POP2,

(LPSTR)(LONG)hCutBm) ;
AppendMenu (hMenu, MF_POPUP, hSubMenu,

. (LPSTR) "&Tools") ;
AppendMenu (hMenu, MF_STRING, IDM_QUIT,

(LPSTR) "&QuU") .
AppendMenu'(hMenu, MF_STRING, IDM_HELP,

(LPSTR) "&He lp") ;
SetMenu (hWnd, hMenu)
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_POP1: 1* Prove that bitmap menu item works! *1
MessageBox (hWnd, "The pen tool was selected",

"Message", MB_OK) ;
break;

case IDM_POP2:
MessageBox (hWnd, "The cut tool was seLected",

"Message", MB_OK)
break;

case ID''LQUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_DESTROY: 1* stop application *1
DeleteObject (hPenBm)
DeleteObject (hCutBm)
PostQuitMessage (0) ;
break;

defaul t: 1* defauL t wi ndows message processing *1
return DefWindowProc (hWnd, iMessage, wPara., LPara.> ;

return (OL) ;
}

CHEcKMENUITEM • Win 2.0 • WIn 3.0 • Win 3.1
Purpose
Syntax

Description
Uses

Returns
See Also

Parameters
kMenu

Checks or unchecks a menu item.
BOOL CheckMenultem(HMENU kMenu, WORD wIDCheckltem, WORD wCkeck)j

Works for both main menu items and popup menus.
Checkmarks . generally are used to signify that an option has been turned on or off. For lalge
numbers of options, use a dialog box with radio buttons for selections. .

Returns the previous value ofthe item, MF _CHECKED or MF _UNCHECKED. Returns-Ion error.
GetMenuStateO, EnableMenuItemO, Mod~Men~O

HMENU: A handle to the menu. Use GetMenuO to retrieve a windows menu.

118

wIDCheckltem

wCheck

,Value

MF _BYCOMMAND

MF _BYPOSmON

4. MENUS ...

WORD: The menu item number to be checked.or unchecked.

WORD: Specifies how the command is to be executed. Two of the following four po~ibilities, see
Table 4-5, are always combined with a C language binary OR operator (I) to make the wCheck
parameter.

Meaning ~I
The nlDCheckltem value is the menu item 10 value.

The nlDCheckltem value is interpreted relative sequential numbering of existing menu ~ems: 0
is the first item. 1 the second, etc.

Places a checkmark next to the menu item.

Does not place a checkmark next to the menu item.

·Table 4-5. CheckMenultem() Flags.

Related Messages WltCMENUSELECT
Example Here the menu item ID~COPrl toggles between being checked and unchecked each time it is

selected. Note that GetMenuStateO is used to find the current menu item status (checked or
unchec~ed).

long FAR PASCAL WndProc (HWNO hWnd,unsigned iMessage, WORD wParam, lONG lParam)
(

HMENU
BOOl

hr4e,nu ;
~,Ctiecked ;

switch (;Message)
<

1* process windows messages ,!,I

case WM_COMMAND: 1* process menu items *1
switch (wParam)
<
case 10M_OPT1:

hMenu = GetMenu (hWnd) ;
bChecked = GetMenuState (hMenu, IOM_OPT1,

MF _BYCOMMANO) ;
H (bChecked & MF_CHECKEO)' I

else

break;

CheckMenultem (hMenu, IOM_OPT1,
MF_BYCOHMANO I MF_UNCHECKED) ;

CheckMenultem ChMenu, IOM_OPT1,
MF_BYCOMHAND I MF_CHECKEO) ;

'\

IOther program lineal

CREATEPOpupMENU o Win 2.0 .Wm 3.0 • Wm 3.1
Purpose

Syntax
Description

Uses, I

Returns
'See Also

Parameters

Creates an empty popup menu.
HMENU CreatePopupMenu(void)j . " . \
Any menu other than the top menu bar is considered to be a popup menu. This function creates
an empty popup menu, ready to have items added using AppendMenuO and InsertMenuO.

Creating menus within the body of a program. Can be used with TrackPopupMenuO to create
floating popup menus (menus not attached to other .menus).

A handle to the m~nti creited. NULL if a menu cannot be created.

CreateMenuO, AppendMenuO, InsertMenuO

. ,None (void).

119

WINDOWS API BIBLE

Example Here the program creates its menu on startup. The popup menu is created with two items, a text
item "First Popup" and a bitmap "pen." The main menu is then created. The popup menu is added
as the second item in the main menu. Finally, the completed menu is attached to the window
with SetMenuO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HMENU hMenu, hPopup ;
HBITMAP hBi tmap ;
switch (iMessage) 1* process windows messages *1
{

case WM_CREATE:
hPopup = CreatePopupMenu () ;
hBitmap = LoadBitmap (ghInstance, "pen") ,
AppendMenu (hPopup, MF_STRING, IDM_OPT1, "First Popup")
AppendMenu (hPopup, MF_BITHAP, IDM_OPT2,

(LPSTR) (LONG) hBitmap) ;
hMenu = CreateMenu () ;
AppendMenu (hMenu, MF_STRING, IOM_TOP1, "nrst Main")
AppendMcnu (hMenu, MF _POPUP, hPopup, "Popup Item")
AppendMenu (hMenu, MF_STRING, 10M_QUIT, "Quit") ;
SetMenu (hWnd, hMenu) ;
break;

[Other program lines!

CREATEMENU II Win 2.0 III Win 3.0 III Win 3.1
Purpose

Syntax .

Description

Uses

Returns

See Also

Parameters

Example

Creates a new, empty menu.

HMENU CreateMenn(void)j

This is the first step in creating a menu within the body of an application program. Use
AppendMenuO to add items tothe menu, and use SetMenuO to attach the menu to a window.
Typically used to create menus for child windows. An alternative to definiIig all menus in the
program's resource .RC file. Menus created with this function cannot be floating menus. Use
CreatePopupMenuO to create floating menus.

HMENU, a handle to the menu created.

CreatePopupMenuO, AppendMenuO, SetMenuO, ModifyMenuO
None (void).

Here the program does not have a menu specified in the resource .RC file. Instead, the menu is
created when the program starts. In this case, there are only two menu items. The IDM_TOPI
and IDl\C QUIT values need to be defined in the header file for this example to function.

long FAR PASCAL WndProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HnENU hMenu ;
switch (iMessage) 1* process windows messages *1
{

case WM_CREATE:
hHenu = CreateMcnu() ;
AppendMenu (hMenu, MF_STRING, IOM.:..,TOP1, "First Menu Item")
AppendMenu (hMenu, MF _STRING, IDM_QUIT, "Q'bit") ;
SetMenu (hWnd, hMenu)
break;

case WM_COMMANO: 1* process menu items *1
switch (wParam)~
{

case IOM_TOP1: 1* U~cr hi t the "Help" menu item *1
HessageBox (hWnd, "The first menu item was clicked",

"Message", MB_OK I MB_ICONASTERISK) ;
break;

[Otherprogram lines!

120

DELETEMENU

~ose

Syntax
Description

Uses

Returns

See Also

Parameters
hMenu

nPosition

wFlags

. Value ,

MF _BYCOMMANO

MF _BYPOSmON

4. MENUS T

o Win 2.0 II Win 3.0 • Win 3.1 .
Removes an item from a menu.
BOOL DeleteMenu(HMENU hMenu, WORD nPosition, WORD wFlags)j

This function is poorly named, as it sounds like DestroyMenuO, which removes the entire menu
from memory. DeleteMenuO only deletes a single menu item. If the menu item is a popup menu,
the popup is destroyed, and its memory freed. Use DrawMenuBarO after this function to repaint
the menu bar.
Small changes to menus as a program runs. This is an alternative to having more than one menu
and switching between them.

BOOL. TRUE if the item was deleted, FALSE otherwise.
InsertMenuO, AppendMenuO, GetMenuO, DrawMenuBarO

HMENU: A handle to the menu. Use GetMenuO to retrieve a window's menu.
WORD: The menu item ID value.
WORD: Specifies how the nPosition parameter is to be interpreted, as shown in Table 4-6.

Meaning

The nPosition value is the menu item 10 value.

The nPosition value is interpreted relative sequential numbering of existing menu items: 0 is the
first item, 1 the second, etc.

Table 4-6. DeleteMenu() Flags.

Example Note that DrawMenuBarO is used immediately after DeleteMenuO to repaint the menu bar.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, ~ORpwParam, LONG lParam)
{

HMENU hMenu ;

switch (iMessage)
{

°1·' process windows messages *1

case WH_COHHM~D:
switch (wParam)
{

1* process menu items *1

case 1DM_TOP1: 1* Delete a menu item *1
hMenu = GetMenu (hWnd) ;
De leteHenu (hMenlt", I DM_TOP1, HF _BYCOHMAND) ;
DrawMenuBar (hWnd) ;
break;

IOther program lines J

DESTROyMENU • Win 2.0 • Win 3:0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

Removes a menu from memory.
BOOL DestroyMenu(HMENU hMenu)j

Removes menus created in the resource .RC file and those created within the body of a program
with the CreateMenuO function.
Used with applications that have more than one menu. Only the menu attached to the
application's. window will be deleted when the application teuninates. Any other menns will re
main in memory. Use DestroyMenuO before the application terminates to free the memory con
sumed by the unattached menus.
BOOL. Non-zero if the menu was destroyed, NULL otherwise.

121

WINDOWS API BIBLE' '

SeeAlao
Parameters
AMenu

CreateMenuQ, CreatePopupMenuO, GetMenuO

"MENU: A handle to the menu to remove. Use GetMenuO to find a window's menu.
EDmpIe The resource .RC fIle contains two menus that are loaded as resources into the program. The

"genmenu" menu is attached to the program's window in the WinMainQ function. The second
men'u "genmenu2" is held in reselVe until it is time to change menus.

1* genmenu. rc *1
'include <windows.h>
'include "genmenu.h"
genmenu ICON generic.ico
genmenu MENU
BEGIN

END

POPUP "&First Menu"
BEGIN

END

MENUITEM "&Top Item (Change Menu)",
MENUITEM "&1st Option",
MENU ITEM "&2nd Option",

MENUITEM "&Quit",
MENUITEM U\a&Help",

IOM_TOP1
IOM_OPT1, GRAYED
IOM_OPT2

10M_QUIT
10M_HELP, HELP

genmenu2 MENU
BEGIN

END

POPUP "&Second Menu"
BEGIN

END

MENUITEM "&Revised Items",
MENUITEM "&1st Option",
MENUITEM "&2nd Option",
MENUITEM "&3rd Opt ion",

MENUITEM "&Quit",
MENUITEM "\a&Help",

IOM_TOP1
IOM_OPT1
IOM_OPT2, GRAYED
IOM_OPT3

10M_QUIT
10M_HELP, HELP

Part of the WndProc() Function
Note that the old menu is destroyed only if the new menu is successfully added to the window with SetMenuO.
long FAR PASCAL VndPr~c (HVNO hVnd, unsigried iMessage, V~RO wPara., LONG lPara.)
(

HMENU hMenu1, hMenu2 ;
BOOl bStatus ;
switch (iM8ssage) 1* process windows .eslagel *1
(

case WM_COMMAND: " 1* process menu items *1
switch ("Param)
{ .

case IOM_TOP1: 1* swap .enus, destroy old one *1
hMenu1 = GetMenu (hVnd) ;
hMenu2 = LoadMenu (ghlnstance, Ugen.enu2") ;
bStatus = SetMenu (hWnd, hMenu2) ;
if (bStatus)

else

break;

OestroyMenu (hMenu1) ;

MessageBox (hWnd, "Could not change .enul ... r
"Warning", MB_OK I MB_ICONINFORMATION) ;

{OUter progmm lines}

Forces tepaintmgof the window's menu bar.' , '
vold,DrawMenuBar(HWND kWnd)j

122

DescripdOD

Uses

Returns

See Also

Parameters
hWnd

4.·MENUS ..

The menu bar is not part of the client region of the window and, therefore, is not updated when
you use UpdateWmdowQ. .

Use right after any change to the top-level menu.

No returned value (void).

DeleteMenuQ, GetMenuO

HWND: A handle to the window which has the menu. Use GetMenuO to retrieve the window's
menu handle. -

Related Messages MCNCPAINT
Example

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPara., LONG lPara.)
(

HMENU hMenu ;

switch (iMessage)
(

case WM_CO"MAND:
swi tch (wPara.)
(

case ID"_TOP1:

hMenu = GetMenu (hWnd) ;

1* process windows lIessages *1

. 1* process lIenu itells *1

1* Delete a lIenu it •• *1·

DeleteMenu (hMenu, IDM_TOP1, MF_BYCOM"AND) ; .

DrawMenuBar (hWnd) ;
break;

{Other program linesl

ENABLEMENUITEM---------- • Win 2.0 • Win 3.0 • Win 3.1
Purpose Changes a menu item toIfrom enabled and grayed. -----. - .---__ _

Syntax WORD EDableMenultem(HMENU hMenu, WORD wIDEnableltem, WORD wE~)i· ,
Description

Uses

Returu

See Also

Parameters
hMenu

wIDEnableltem

wEnable

Menu items are normally enabled, meaning that ·selecting a menu item causes a WM_COMM.AND
message to be sent to the window's message function. Menu items can be disabled, stopping the

. messages from being sent. Normally disabled menu items are shown in gray text 80 that the user
. can easily see which commands function.

Some menu actions may not be possible under all situations in a program. For example, it should
not be possible to paste data if no data has been cut or copied into the clipboard. In these situa
tions, it is best to disable and gray the menu items that have no function, 80 that the user intu
ittyely knows that certain actions are not possible.

WORP holding the previous state of the menu item (MF _GRAYED, etc.). -1 is returned if the
menu or menu item does not exist

GetMenuStateO, ModifyMenuO, GetMenuO

HMENU: A ~dle to the menu. Use GetMenuO to retrieve a window's menu.
WORD: The menu item number to change .
. WORD: The action to take~ and how wIDEnableltem is to be interpreted. The values shoWn in
Table 4-7 can be combined with the C language binary OR (I) operator.

123

WINDOWS API BIBLE

Value . 'Meaning /:~' ; . ··:·,;\:IZII .
MF _BYCOMMAND The nlDEnableltem value is tht:: menu item 10 value.

The nlDEnableltem value is interpreted relative sequential numbering of the menu items: 0 is the first item,
1 the second, etc.

MF _DISAoLED

MF_ENABLED

MF_GRAYED

The menu ijem is disabled.

The menu item is enabled (and not grayed).

The menu item is grayed.

Table 4-7. EnableMenultem() Flags.

Related Messages M.CCOMMAND

Example This example's window has a menu with one drop-down popup menu. The second item on the
drop-down menll (lDM_OPTl) alternately disables and enables the third menti item
(IDM_OPT2). When disabled, the menu item is also grayed. Here is the resource file. Note that
the menu items all start enabled, the default condition.

/* genmenu. rc */
#include <windows.h>
#include "genmenu.h"
genmenu ICON ·generic.ico

genmenu MENU
BEGIN

POPUP "&Fi rst Menu"
BEGIN

MENUITEM "&Top Item",
MENUITEM "&Disable 2nd",
MENUITEM SEPARATOR
MENUITEM "&2nd Option",

IDM_TOP1
IDM_OPT1

END
MENUITEM "&Quit",

END

The following code is the first part of the WndProcO function. GetMenuStateO is used to .
find out whether the IDM_OPT2 menu item is currently enabled. If so, EnableMenuitemO is
used to disable it. Also, the IDM_OPTl menu item text is ch~mged with ModifyMenuO to switch
between "Enable 2nd" and "Disable 2nd" as appropriate.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

. HMENU hMenu;
WORO wStatus;

switch (iMessage)
{

case WM_COMMAND:
swi tch (wParam)
{

/* process windows messages */

/* process menu items * /

case IDM_OPT1: /* Toggle menu item enable/disable */
hMenu = GetMenu (hWnd) ;
wStatus = GetMenuState (hMenu, IDM_OPT2,

MF _BYCOMMANO) ;
if (wStatus == MF_ENABLED)
{

}

EnableMenuItem (hMenu, IDM_OPT2,
MF_DISABLED I MF_GRAYED I
MF_BYCOMMAND) ;

ModifyMenu (hMenu, IOM_OPT1,
MF~BYCOMMAND I MF_STRING,
IOM_OPT1, "Enable 2nd") ;

124

else
{

break;

EnableMenu1tem (hMenu, 1DM_OPT2,
MF_ENAB-J-FD I MF_BYCOMMAND) ;

ModifyMenu (hMenu; 1DM_OPT1,
MF_BYCOMMAND I MF_STRING,
1DM_OPT1, "Di sable 2nd") ;

4. MENUS .."

IOther program linesJ

Purpose
Syntax .

Uses

. Returns

See Also

Parameters
. hWnd

Example

Retrieves a handle to a window's menu.

HMENU GetMenu(HWND hWnd)j .

• Win 2.0 • Win 3.0 • Win 3.1

Used prior to modifying or destroying the menu. This function will not return a valid handle for
child windows with menus.

HMENU, a handle to the menu. NULL if the window does not have a menu .

SetMenuO, AppendMenuO, DeleteMenuO, DestroyMenuO, InsertMenuO, ModifyMenuO,
RemoveMenu, .

HWND: A handle to the window that has the menu .

This example deletes the IDM_TOP1 menu item when it is selected.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

HMENU hMenu ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND:
switch (wParam)
{

1* process menu items *1

case 1DM_TOP1: 1* Delete a menu item *1
hHenu = GetMenu (hWnd) ;
DeleteMenu (hMenu, 1DM_TOP1, MF_BYCOMMAND)
DrawMcnuBar (hWnd) ;
break;

IOtherprogram linesJ

GETMENUCHECKMARKDIMENSIONS • Win 2.0· • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Retrieves the size and width of the bitmap used to create checkmarks next to menu items.

DWORD GetMenuCheckMarkDimensions(void)j

Windows uses a default checkmark bitmap to check menu items. This canbe replaced with cus
tom bitmaps using the SetMenuItemBitmapsO function. GetMenuCheckMarkDimensionsO is
used to find the size of the bitmap to use for custom checkmarks.

Custom .checkmarks can dress up an application program, with little penalty in memory con
sumption. As soon as the new bitmap is assigned to the menu item, the CheckMenultemO func
tion will automatically use this bitmap when checking or unchecking an item.

DWORD, the HIWORD contains the bitmap height in pixels, the LOWORD contains the bitmap
width in pixels.

SetMenultemBitmapsO, CheckMenultemO

125

WINDOWS API BIBLE

Panuneten
Bumple

None (void).
In this example, a bitmap called "pen" is to be tised as the checkmark for the IDM_Optl menu
item. As the program does not know in advance how big the menu checkmarks are going to be
(this depends on the video display resolution), the bitmap must be sized to fit the dimensions
found when the program starts running. Size the bitmap by copying the bitmap from one device
context to another using the StretchBltO function. The resource .RC fIle loads the "pen" bitmap.

*1

'include <windows.h>
'include Hgen.enu.h~
gen.enu ICO~ generic.ico

smallpen.bmp pen BITMAP
gen.enu MENU !

I
BEGIN

POPUP "IFi rst Menu"
BEGIN

MENUITEM "&Top Item",
MENU ITEM "&Check Me!",
MENUITEM SEPARATOR
MENUITEM "&2nd Option",

I

10"_TOP1
IO"_OPT1

EHD
REHUITER "&Quit",

ID"_OPT2

ID"_QUIT
END .

The new menu item bitmap is sized and loaded when the WM_CREATE message is received

~
at program startup. In this simple example, theIDM_OPrl menu itemjust toggles between being

. checked with the "pen" bitmap, and being unchecked.

long FA PASCAL WndProc ("WND hWnd, unsigned i"essage, WORD wParent, LONG lParall) (. .

H"EHU
OWORD
HDC'
static HBIT"AP
HBITMAP .
BITMAP
int
BOOl

hMenu ;
dwCheckSi ze ;
hDC, h~~urceOC, hDestOC ;
hPenBi tmap ;
h"e.Bi tmep ;
b. ;
nBx, nBy ;
bChecked ;

switch (i".ssage)
(

1* process windows messages *1

case W"_CREATE:
1* find out how big the checkmarks are *1

hMenu = GetMenu (hWnd) ; . . ,',
dwCheckSize = Get"enuCheck"arkDillensions () ;
nBx = LOWORO (dwCheckSize) ;
nBy = HIWORD (dwCheckSize) ;,:, .;' ;.' .

1* load a bitmap into a device context *1
hOC = GetOC (hWnd) ; , ..
hSourceOC = CreateCollpatibleOC (hOC) ;
hP~nBitntap = LoadBitmap (ghlnstance, "pen") ;.
SelectObject (hSourceDC, hPenBitmap) ;
GetObfect (hPenBitmap, s1zeof (BIT"AP), (LPSTR) &b.) ;

1* create 8 second DC for scaled bitmap *1
hD~J~OC = CreateCompatibleOC (hDC);

-- h"elDBi tmap = CreateCompatibleBi tmap (hOestDC, nBx, nBy) ;
SelectObjectChOestOC, h"emBitmap) ;

1* fi t the bitmap into the menu sized OC *1
StretchBlt (hOestDC, 0, 0, riBx, nBy, hSourc~DC,O,O,

bm~bmWidth, bm.bmHeight, SRCCOPY) ;
1* attach the sized bitmap to the menu ite. *1

Set"enuIiemBitmaps (h"enu, IO"_OPT1, "F_BYCO""AND, NULL,
h"emBitmap) .

1* release unneeded memory consumers *1

. --...

126

}

ReleaseDC (hWnd, hOC) ;
OeleteDC (hSourceOC) ;
DeleteDC (hDestOC) ;
OeleteObject (hPenBitma~) ;
break;

caseWM_COMMANO: 1* process menu items *1
swi tch (wParam)
(

4. MENUS.

·case IOM_OPT1: , 1* Toggle menu item checked/unchecked *1
hMenu = GetMenu (hWnd) ;
bChecked = GetMenuState (hMenu, IDM_OPT1,

MF_BYCOMMAND) ;
if (bChecked & MF_CHECKED)

CheckMenultem (hMenu, 10M_OPT1,
": 'MF_BYCOMMAND I MF_UNCHECKEO) ;

else
CheckMenulte. (hMenu, IOM_OPT1,

break;
. MF ~BYCOMMAN,D I MF _CHECKED) ;

case 10M_QUIT.: .

}

OestroyWindow (hWnd) ;
break;

break ; .
case ' .. '_DESTROY: 1* stop application *1

DeleteObject (hPenBitmap) ;
. PostQuitMessage (0) ;
break;

defaul t: ' 1* defaul t windows message processing *1
return OefWindowProc (hWnd, 1Message, wParam, lParam) ;

return (OL) ;
)

GETMENuITEMCoUNT • Win 2.0 • Win 3.0 • Win 3.1
Puipose Gets the number of menu items in a menu.

Uses

. RetarDs

See Also

Parameters
#&Menu

EumpJe.

WORD GetMenultenaCount(HMENU hMenU)j

GetMenultemCountO counts the number of menu items. This includes the top-level heading of
any popup menus, but does not include the popup items themselves.

Used to find out how many menu items there are, prior to retrieving data on the menu items such
as their ID numbers, strings, etc.

WORD, the number of menu items. Returns -Ion error .

GetMenuO, GetMenuItemIDO, GetMenuStateO, GetMenuStringO

"MENU: A handle to the menu. Use GetMenuO to find a win
dow's menu handle.

[lnt MCRU Dult
D Chcckcd String
-1 Unchcdced
2 Uachcdced.

IflntMc ...
IQult ru, example uses several menu functions to determine the

number, IDs, status, and menu strings associated with'the
program's main menu. Mer execution of the first popup menu I FioUte 4-5. GetMenu
selection under "First Menu," the window looks like Figure 4-5. ltemCount() Example.

Note that the string "First Menu" is a popup menu name,
so it does not have a selectable ID value (shown as -1). The "Quit" option is selectable, with an ID
value of 2. The popup menu items are not displayed and must be· separately examirled usirig·
GetSubMenuQ. Also note that the.ampersand characters used to derme t~e (AID-key combina-
tions are extracted with Ge~MenuStringO. . . .

127

WINDOWS API BIBLE

o The Resource File
1* genmenu.rc *1
#include <windows.h>
#include "genmenu.h"
genmenu ICON generic.ico
genmenu MENU
BEGIN

POPUP "&FirstMenu"
BEGI,~ I MENUITEM "&Display Items",

MENUITEM "&1st Option",
MENUITEM SEPARATOR
MENUITEM "&2nd Option",

END

IDM_TOP1
IDM_OPT1

MENUITEM "&Quit",
ENO . '

IOM_OPT2

I o "-QU IT

o The Top of the WndProc() Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HJIIENU
HOC
char
int

hMenu ;
hDC ;
cBuf [128], cNuliBuf [to] ;
i, nItems~ nValue, nChecked, nChars ;

switch (iMessage) 1* process windows .essages *1
{

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case IDM_TOP1: 1* Show menu item attributes *1
hDC = GetDC (hWnd);
hMenu = GetMenu (hWnd) ;
nItems = GetMenyItemCount (hMenu) ;
TextOut (hOC, 0, 0, "ID Checked String',', 19)
for (i = a ; i < nItems ; i++)
{

}

nValue = GetMe~uIte.ID (hMenu, 1) ;
nChecked = GetMenuState (hMenu, i,

'MF_BYPOSITION I MF_CHECKED) ;
nChars = GetMenuString (hMenu, i, cBuf, 127,

MF_BYPOSITION) ;

itoa (nValue, cNumBuf, 10) ;
TextOut (hOC, 10, 15 + (i ,* 15), cNu.Buf,

strlen (cNumBuf» ;
if (nChecked ==,MF_CHECKED)

else

TextOut (hOC, 30, 15 + (i * 15J,
"Checked", 7) ;

.TextOut (hOC, 30, 15 + (i * 15),
"Unchecked", 9) ;

TextOut (hOC, 150, 15 + (i * 15), cBuf, nChars)

ReleaseDC (hWnd, hDC)
'break;

{Other program linesJ

GETMENUITEMID II Win 2.0 II Win 3.0 11 Win 3.1
Purpose
Syntax
»emption

Retrieves the ID value associated with a menu item.
, WORD GetMenmtemID(HMENU hMenu, int nP08);

The menu ID values are associated with each item when the menu Is defined, either in the reo
source .RO file or when the menu items are added' during program execution with the
AppendMenu() and InsertMenuO functions.

128

Uses

Returns

See Also
Parameters
hMenu

Example

4. MENUS ~

ID values remain constant, even as other menu items are added and deleted. Retrieving the menu
item IDs can be useful in programs which allow the user to add and subtract custom menu items
such as macro names.

WORD, the ID v,alue for the menu item at position nPos. -Ion error.

GetMenuitemCountO, GetMenuStateO, GetMenuStringO.

HMENU: A handle to the menu. Use GetMenuO to retrieve a handle to a window's menu. Use
GetSubMenuO to retrieve a handle to a popup menu.

See the previous example under the GetMenuitemCountO function description.

GETMENUSTATE • Win 2.0 • Win 3.0 a Win 3.1
Purpose
Syntax

Uses

Returns

I, Value

MF_CHECKED

Finds the number of items in a menu or the status of an item.

WORD GetMenuState(HMENU hMenu, WORD wID, WORD wFlags)j

Most often used to determine if a menu item is checked, grayed, or disabled.

WORD. Returns -Ion error. IfwID identifies a pupup menu, the high-order byte contains the
number of items in the popup menu. The low-order byte contains a combination of the flags
shown in Table 4-8, logically ORed together.

Meaning

There is a checkmark next to the menu item,

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF_MENUBARBREAK

The menu item is disabled and cannot be selected.

The menu item is enabled, so it can be selected.

The menu item text is grayed and disabled so that it cannot be selected.

In popup menus, it separates a new column of items and displays a separator bar between
them. In normal menus, it starts a new line of menu items.

MF_SEPARATOR

MF _UNCHECKED

In popup menus, it separates a new column of items. No separator bar is displayed. In normal
menus, it breaks the menu into a new line of menu items (two rows of menu items at the
window's top).

A horizontal line in the menu:

No checkmark next to the menu item.

Table 4-8. GetMenuState() Return Flags.

See Also

Parameters
hMenu
wID

wFlags

1·',Va.lue.·.

MF _BYCOMMAND

MF _BYPOSITION

CheckMenuitemOi GetMenuO

HMENU: A handle to the menu. Use GetMenuO to obtain a window's menu.

WORD: The menu item ID value.

WORD: Specifies how the wID is to be interpreted, as sho\\n in Table 4-Q.

Mean,ing

The wiD value is the menu item ID value.

The wiD value is interpreted relative sequential numbering of existing menu items: 0 is the first
item, 1 the second, etc.

Table 4-9. GetMenuState() wFlags Settings.

129

WINDOWS API BIBLE

Example Here the menu item IDM_OPfl toggles betweeil belng checked and unchecked each time it is
. s~lected.\Note that GetMenuStateO is used to find the current menu item status (checked or

unchecked).

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{

HMENU
BOOl

hMenu ;
bChecked ;

switch (iMessage)
{

/*'process windows messages *1

\

case WM_COMMANO: /~process menu items *1
switch·{wPar,am)
{

case 10M_OPT1':
hMenL = GetMenu (hWnd) ;
bChecked = GetMenuState (hMenu, 10M_OPT1,

MF _BYCOMMANO) ;
if (bChecked & MF_CHECKEO)

else

break;

CheckMenu1tem (hMenu, 10M_OPT1,
MF_BYCOMMANO I MF_UNCHECKEO)

CheckMenu1tem (hMenu, 10M_OPT1,
MF_BYCOMMANO I MF_CHECKEO)

IOther program lines J

GETMENUSTRING • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hMenu

wIDItern

IpString

nMaxCount

wFlags

Varua

Retrieves the label displayed in a menu item.

int GetMenuString(HMENU hilfenu,"WORD wIDItern, LPSTR lpString, int nilfaxCollnt, WORD
wFlag);

The menu item's string, including the ampersand (&) character used to specify the accelerator
key, is retrieved into a character buffer.

Handy in pr0grams that allow the user to add and subtract menu items for user-defined functions
such as macros.

int, the number of characters retrieved.

GetMenuO, GetMenuItemCountO, GetMenultemIDO, GetMenuStateO, GetSubMenuO

HMENU: A handle to the menu. Use GetMenuO to obtain a window's menu.

WORD: . The menu item ID value.

LPSTRING: A pl)inter to the character buffer thafwill hold the menu item string.

int: The maximum number of characters to write to the buffer. Use this parameter to avoid
writing beyond the buffer's end.

WORD: Specifies how the wIDItern is to be interpreted, as shown in Table 4-10.

- Meaning ~I
MF _BYCOMMANO The nlDltem value is the menu item 10 value.

", MF _BYPOSITION The nlDltem value is interpreted relative to the sequential numbering of existing menu items: 0 is the first
item, 1 the second, etc.

Table 4-10. GetMenuString(J wFlags Settings.

Example See the example under the GetMenultemCountO function description.

130

GETSUBMENU

Purpose
Syntax
Description

Uses
Returns

See Also

Parameters
hAfenu

nPos

Example

4. MENUS ..

• Win 2.0 • Win 3.0 • Win 3.1
Retrieves a handle to a popup menu.
HMENU GetSubMenu(HMENU hMenu, int nPos);
A handle to a popup menu can only be found after the handle to the main menu is located, usually
with GetMenu(). When the' popup menu handle is obtained, all of the functions that allow read
ing and changing menu items can be applied to the popup menu.
In programs that change the elements of popup menus.

HMENU, a handle to the popup menu. Returns NULL on error, such as nPos not referring to a
popup menu.

GetMenuO, GetMenuItemCountO, GetMenuItemIDO, GetMenuItemStateO, GetMenultem
StringO, AppendMenuO, ModifyMenuO

HMENU: A handle to the parent menu of the popup menu.

int: The position of the popup menu in the main menu: 0 for the first, 1 for the second, etc.
Because popup menus do not have ID values associated with them, it is not possible to retrieve
the menu handle based on an ID.
Here the program examines the first popup menu, and shows
each of the popup menu items on the screen. Note that the
third item in the popup menu is a separator bar. This has an ID
of O. The MF _SEPARATOR status for this item could have been
detected using the GetMenuStateO function. Figure 4-6 illus
trates the example.

The following code represents the resource .RC file that
defines the menu structure, including the popup menu.

Elrst Menu Quit
o Checked String
1 Unchecked &Dlsplay Items
J Unchecked &lst Option
o Unchecked
4 Unchecked &2nd Option

Figure 4-6. GetSubMenu()
Example.

1* genmenu.rc *1
#include <windows.h>
#include "genmenu.h"
genmenu ICON generic.ico
genmenu MENU
BEGIN

POPUP "&Fi rst Menu"
BEGIN

MENU ITEM "&Oi sp lay Items",
MENUITEM "&1st Option",
MENUITEM,SEPARATOR
MENU ITEM "&2nd Opt ion" ..

END
MENUITEM "&Qui t",

END

IOM_TOP1
IOM_OPT1

IOM_OPT2

10M_QUIT

The following code represents the top of the WinMainO function. Note that the submenu is
retrieved 3.fter the main menu is found using GetMenuO.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

hMenu, hSubMenu ;
hOC;
cBut. [128], cNumBuf [10] ;

HMENU
HDC
char
int i, nItems, oVa lue, nChecked, nChars ;

switch (iMessage)
{

case WM_COMMAND:
swi tch (lo/Param)

1* process windows messages *1

1* process menu items *1

131

WINDOWS API BIBLE

{

case IOM_TOP1: 1* Show menu item attributes *1
hOC = GetOC (hWnd) ;
hMenu = GetMenu (hWnd) ;
hSubMenu = GetSubMenu (hMenu, 0) ;
nItems = GetMenuItemCount (hSubMenu) ;
TextOut (hOC, 0, 0, "10 Checked String", 19)
for (i = 0; ; < nItems ; i++)
{

}

nValue' = GetMenuItemIO (hSubMenu, ;) ;
nChecked = GetMenuState (hSubMenu, i,

MF_BYPOSITION I MF_CHECKEO) ;
nChars = GetMenuString (hSubMenu, i,

cBuf, 127, MF_BYPOSITION) ;
itoa (nVa lue, cNumBuf, 10) ;
TextOut (hOC, 10, 15 + (i * 15), cNumBuf,

strlcn (cNumBuf» ;
if (nChecked == MF_CHECKEO)

else

TextOut (hOC, 30, 15 + (; * 15),
"Checked", 7) ;

rextOut (hOC, 30, 15 + (i * 15),
"Unchecked", 9) ;

rextOut (hOC, 1501' 15+ (i * 15),
cBuf, nChars);

ReleaseOC (hWnd, hOC> ;
break;

/Otherprogram lines!

GETSYSTEMMENU II Win 2.0 .. Win 3.0 / II Win 3.1
Purpose
Syntax

Description

Retrieves a handle to the sy~tem menu.

HMENU GetSystemMenu(HWND hWnd, BOOL bRevert)j

The system menu is the popup menu that is displayed when you click the button at the top left
corner of the program's main window. The system menu generates W~CSYSCOM~iAND mes
sages, not WlICCOMMAND messages. When a menu item on the system menu is activated, the
WM_SYSCOMMAND messages have the wParam parameter set as shown in Table 4-11.

System Menu Item Sends WM_SYSCOMMAND with wParamSet To [gJ1
Restore

Move

Size

Minimize

Maximize

Close

Switch To

SC_RESTORE

SC_MOVE

SC_SIZE

SC_MINIMUM

SC_MAXIMUM

SC_CLOSE

SC_TASKLIST

Table 4"1!. WJCSYSCOMMAND Message wParam Values.

Uses

,Returns

You can also modify and add to the b'YStem menu using all of the menu modification com
mands, such as AppendMenuO and InsertMenuO. If you add menu items, their ID values should

, be below OxFOOO to avoid overlapping the definitions ofthe default ID values listed above.
"Modifying the system menu is appropriate for small utility programs that may be able to avoid
ha~ng a menu bar if a few commands are added to the system menu.

HMEN~ handle to the system menu.

132

See Also

Parameters
hWnd

AppendMenuO, InsertMenuO, ModifyMenuO

HWND: A handle to the window which contains the system menu.

4. MENUS ~

bRevert BOOL: If TRUE: the function destroys the current system menu and returns a handle to a new'
copy of the origi!11'!l system menu. If FALSE (zero), the function returns a handle to the current
system menu, retaining any changes.

Related Messages WM_SYSCOMMAND, ~CINITMENU

Comments

Example

In pro'cessing the WM_SYSCOMMAND messages for the default system menu items, it is critical
to pass the ~CSYSCOMMAND message on to the default window's message processing function
DefWindowProcO. Otherwise the, program will stop functioning. The example shows this mes
sage pass-through.

Here a single menu item is added to thc,bottom of the system menu, called "Added Item." When
this item is clicked, the wrvCSYSCOMMAND message is caught and some text written to the
window's client area. Note how the message logic passes any other W~CSYSCOMMAND message
straight through to DetwindowProcO, to avoid'hanging the program.

long FAR PASCAL WndProc (HWNO hWnd, unsi gned iHessage, WORD, wParam, LONG lParam)
{

HMENU
HOC

hSysHenu
hOC;

switch (iMessage)
{

1* process wi ndbws messages * 1

}

case WM_CREATE:
hSysHenu = GetSystemMenu (hWnd, 0) ; "
AppendMenu (hSysHenu, HF_STRING, 10H_SYSTYPE,'\~IAdded Item")
break;

case WH_COMMANO: 1* process menu items * 1
switch (wParam)
{

case 10M_QUIT:

break;
case WM_OESTROY:

OestroYWindow (hWnd)
break;

PostQu; tMessage (0) ;
break;

case WH SYSCOMMANO:

1* stop application *1

-if (wParam == IOM_SYSTYPE)/* added system menu item *1
{

hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10,

"The new system menu item was hit.", 33)
ReleaseOC (hWnd, hOC) ;
return (0) ;

1* no break statement here *1
default: 1* default windows message processing *1

return OefWindowPrQc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

HILITEMENUITEM • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Highlights a top-level menu item.

BOOL HiliteMenuItem(HWND hWnd, HMENU hMenu, WORD wIDHiliteltem, WORD wHilite);

Normally, the mouse and default keyboard accelerator key's automatic actions take care of high
lighting top-level menu items. Jfyou need to do this directly, you can use HiliteMenultemO.

133

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hWnd

hMenu
wIDHiliteltem

wHilite

[value
MF _BYCOMMANO

MF _BYPOSITION

MF_HILITE

MF _UNHILITE

Seldom used. Can be used to provide additional keyboard functionality for menu selections (see
example).

BOOL. TRUE if the item was highlighted, FALSE on error.

CheckMenuItemO, EnableMenuItemO

HWND: A handle to the program's window.

HMENU: A handle to the program's menu. Use GetMenuO to retrieve this handle.

WORD: The menu item number to change. Only top-level menu items may be changed.

WORD: Flags to set how the wIDHiliteltem parameter is interpreted and whether to highlight or
unhighlight the menu item. Combine two of the values in Table 4-12 with the C language OR
operator (I).

Meaning

The nlDHiliteltem value is the menu item 10 value.

The nlDHiliteltem value is interpreted relative to the sequential numbering of existing menu
items: a is the first item, 1 the second, etc.

Highlight the menu item.

Remove highlighting from the menu item.

Table 4-12. HiliteMenultem() Flags.

Example This example implements a simple keyboard interface fora two-item menu. If the user hits the
left or right arrow keys, one of the menu items is highlighted. Hitting the return key selects the
highlighted menu item. The only two actions in this case are to display a message box or to exit
the program.

o The Resource .Re rile
1* genmenu.rc jim conger 1991 *1
#include <windows.h>
#include "genmenu.h"
genmenu. ICON generic.ico
genmenu MENU
BEGIN

END

MENUITEM "&1st Option",
MENUITEM "&Quit",

I DfCTOP1
10M_QUIT

The following code represents the WndProcO function. Note that the return key action is
implemented by sending the same message that would have been received if a mouse click had
selected the item CWM_COMMAND). This allows the same logic to perform the functions, regard
less if a mouse or keyboard is used.

long FAR PASCAL WndPro~ (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HMENU
static int

hMenu ;
nSide=O;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)'
{

case IDM_TOP1: , '.
MessageBox (hWnd, "First menu item was hit",

"Message", MB_OK) ;

134

}

brea k ;

case IDM_QUIT:

break;
case WM_DESTROY:

DestroyWindow ChWnd}
break;

1* stop application *1
PostQuitMessage CO}
break;

case WM_KEYDOWN:
switch (wParam)
(

case VK LEFT: 1* left arrow key, so hilite "top1" *1
hMenu = GetMenu(hWnd) ;
HiliteMenultem (hWnd, hMenu, 0,

MF_BYPOSITION I MF_HILITE) ;
HiliteMenultem (hWnd, hMenu, 1,

MF_BYPOSITION I MF_UNHILITE)
DrawMenuBar (hWnd) ;
nSide=O
break;

case VK_RIGHT: 1* right arrow key, so hilite "Quit" *1
hMenu = GetMenu(hWnd} ;
HiliteMenultem (hWnd, hMenu, 0,

MF_BYPOSITION I MF_UNHILITE)
HiliteMenultem (hWnd, hMenu, 1,

MF_BYPOSITION I MF_HILITE) ;
DrawMenuBar (hWnd) ;
nSide=1;
break;

case VK RETURN: 1* simulate mouse select of menu item *1
- if (nSide)

SendMessage (hWnd, WrCCOMMAND, 10M_QUIT, au
else

SendMessage (hWnd, WM_COMMAND, IOM_TOP1, OL)
}

break;
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (aU
}

INSERTMENU
tJurpose

Syntax

Description

Uses
Returns

See Also

Parameters
kMenu

nPositicm

o Win 2.0 II Win 3.0 • Win 3.1
Inserts a new menu item into an existing menu.

BOOL InsertMenu(HMENU hMenu, WORD nPosition, WORD wFlags, WORD wIDNewltem,
LPSTR /pNewltem)j
Adds a new item into anylocation within a menu. This is more useful than'AppendMenuO, which
only adds items.io the end of the menu.
Ideal for adding bitmap menu items

BOOL. TRUE if the item was successfully added, FALSE if not.

AppendMenuO, ChangeMenuO, CreateMenuO, DrawMenuBarO

HMENU: A handle to the menu being changed. Use GetMenuO to retrieve a window's menu
handle.
WORD: The menu item number in front of which the new item will be inserted. The wFlags
parame~r will either contain the MF ~BYPOSITION or MF _BYCOMMAND flag, specifying how
the nPosition value is to be interpreted.

135

wFlags

Value

MF_BITMAP

MF_CHECKED

WORD: Specifies how the nPosition parameter is to be interpreted in positioning the new menu
item. Also set.s thp status of the new menu item. These values can be combined using the C
language binary OR operator (I) with any of the following menu item .control flags, as shown in
Table 4-13.' . '

Meaning

The menu item will be a bitmap. The low-order word of the IpNewltem parameter should
contain a handle to the bitmap.

[g]1

The nPosition value is interpreted as a menu item 10 value. The new item is inserted before the
exiting one.

The nPosition value is interpreted relative to the sequential numbering of existing menu items: 0
is the first item, 1 the second, etc. The new item is inserted before th£ exiting one. Use an
nPosition value of -1 for the end of the menu.

Places a checkmark next to the menu item.

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF_MENUBARBREAK

Makes it impossible to select the menu item. Does not gray the menu item.

Makes it possible to select the menu item. This is the default.

Grays the menu item text and disables the menu item so that it cannot be selected.

In popup menus, it separates a new column of items and displays a separator bar between
them. In normal menus, it starts a new line of menu items.

MF_POPUP

MF_SEPARATOR

MF_STRING

MF _UNCHECKED

In popup menus, it separates a new column of items. No separator bar is displayed. In normal
menus, it breaks the menu into a new line of menu items (two rows of menu items at the
window's top).

Specifies that the parent window is to paint the menu item each time it is needed. This is not
possible for the top menu line, but can be done for drop-down and popup menu items. The
parent window will receive WM_MEASUREITEM and WM_DRAWITEM messages to update the .
drawing area.

Specifies a popup menu. The wlDNe'wltem parameter will be a handle to the popup menu.

Draws a horizontal line in the menu, This line cannot be selected, checked, enabled, or grayed.
The IpNewltem and wlDNew/tem parameters are ignored.

Specifies that the new item is a character string. /pNewltem points to fhe string.

Does not place a checkmark next to the menu item. This is the default.

Table 4-13. InserlMenu(J wFlags Values.

wIDNmoltem

IpNewltem

WORD: Specifies the ID value ior the menu item. IfwFlags is set to MF _POPUP, wIDNewltem is
the menu handle of the new popup menu.
LPSTR: Points to the contents of the new menu item. The type of data depends on the wFlags
setting, as shown in Table 4-14.

wFlags IpNewltem ~I
MF _STRING Long pointer to a character string.

MF ,,-BITMAP A bitmap handle. The bitmap. handle is stored in the low-order word of fpNewltem.

MF _OWNERORAW You specify to what 32-bit value the fpNewftem points. Windows will send WM_MEASUREITEM and
WM_DRAWITEM messages to the window's message processing function when the menu item needs to
be redrawn. See the example owner-drawn menu program in the introductio~to this chapter.

Table 4-14. InsertMenu() Data Types.

136

4. MENUS T

Related Messages W~CMEASUREITEM, WM_DRAWITEM

Example This example adds a bitmap to the window's menu, right before the WM_TOPI menu item. The
new menu item has the ID value of ID _PF.N.

o Header File
1* genmenu.h *1

#define IOM_TOP1 1 1* menu item id values *1
#define 10M_QUIT 2
#define 10M_PEN 3

. # d e fin e I 0 M_H E L P 8
1* global variables *1

int ghlnstance ;
char gszAppName [] = "genrnenu"

1* function prototypes *1
long FAR PASCAL WndPro~ (HWNO, unsigned, WORO, LONG)

0. Resource File
1* genmenu. rc *1
#include <windows.h~
#include "genmenu.h"

genmenu
menubitmap

ICON generic.ico
BITMAP pen.bmp

genmenu
BEGIN

ENO

MENU

POPUP "&Fi rst Menu"
BEGIN

MENUITEM "&Top Item",
ENO
MENU ITEM "&Quit",
MENU ITEM "\a&Help",

o Part of the Program File

10M_QUIT
IOM_HEL~, HELP

lon~ FAR PASCAL WndProc (HW~O hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HMENU
HBITMAP

hMenu ;
hBi tmap ;

switch (iMessage)
{

1* process wi ndows messages * 1

case WM_CREATE: _
hMenu = GetMenu (hWnd) ;
hB; tmap = LoadB; tmap (ghlnstance, "menubi tmap") ;
InsertMenu (hMenu, 10M_TOP" MF_BITMAP I MF_BYCOMMANO,

10M_PEN, (LPSTR) (LONG) hBitmap);
break;

IOther program lines J .

LOADMENU

Purpose

Syntax

Uses

Returns

See Also

II Win 2.0 • Win 3.0 • Win 3.1
Retrieves a handle to a menu defined in the resource .Re file.

HMENU LoadMenu(HANDLE hlnstance, LPSTR lpMenuName)j
Used in the WinMainO function to load the program's main menu. Can be used in the body of a
program to load new menus to change menus as the program operates.

HMENU, a handle to the menu. NULL if no menu was found.

SetMenuO, DestroyMenuO

137

WINDOWS API BIBLE

Parameters
hlnstance
IpMenuName

Example

HANDLE: The handle of the program instance.

LPSTR: A pointer to a string containing the menu name. The menu name is defined in the re
source .RO file as the first word in the MENU statement.
See the 'example under the DestroyMenuO function description.

LOADMENUINDIRECT o Win 2.0 • Win 3.0 • Win 3.1
Purpose

SyIitax

Description

Uses
Returns

See Also
Parameters
IpMenuTemplate

typedef struct
{

Loads a new menu, defined in a memory block.

HMENU LoadMenuIndirect (L~STR lpMeT!uTemplate)j
This function reads a menu definition in a memory block and returns a handle to the menu cre
ated. The menu can then be attached to a window 'Vith SetMenuO. This function is used inter
nally by Windows, but can be called directly if you take the trouble to create the menu definition
template.

Provides an alternative to the normal menu creation and modification funct.ions.

HMENU, a handle to the menu created. Returns NULL on error.

LoadMenuO, ModifyMenuO, AppendMenuO, DrawMenuBarO

LPSTR: A pointer to a memory block containing the menu definition. The format of the memory
block must start with a MENUITEMTEMPLATEHEADER structure, followed by one or more
MENUITEMTEMPLATE structures defining each menu item.

The MENUITEMTEMPLATEHEADER structure is defined in WINDOWS.H as follows:

WORD versionNumber;
WORD offset;

1* set to 0 *1
1* byte offset to first menuitem *1

) MENUITEMTEMPLATEHEADER;

typedef struct
{

The versionNumber is a placeholder for future updates to Windows. For now, set this value
to zero. The offset is the number of bytes from the end of the header to the first
MENUITEMTEMPLATE data. This is normally zero, assuming that the menu item data follows
immediately in memory. Each menu item is defined in a MENUITEMTEMPLATE data structure.
This is a bit difficult to work with for two reasons. One is that the mtID field is P~!rt of the struc
ture for all template types' except MF _POPUP. In that case it is omitted. The other problem is
that the mtString is variable length. The end of the ~tring is detected by the ending zero byte.

WORD mtOpt ion;
WORl mtlD;

1* MF_CHECKED,MF_END, etc. *1
1* item 'ID - not for MF_POPUP *1
1* start of menu item string *1 char mtString[1 J;

} MENUITEMTEMPLATE;

The mtOption element can be a combination ofthe flags in Table 4-15, combined with the 0
language binary OR operator (I).

I Value

MF_CHECKED

MF_END

MF_GRAYED

MF_HELP

Meaning
• ~ , : < '. < "

Places a checkmark next to the menu item.

Specifies the end of a popup menu or static menu.

Grays the menu item text and disables the menu item so that it cannot be selected.

The menu item has a vertical bar to the left.

138

4. MENUS T

MF_MENUBARBREAK . In popup menus, it separates a new column of items and displays a separator bar between
them. In normal menus, it starts a new line of menu items.

In popup menus, it separates a new column of items. No separator bar is displayed. In normal
menus, it breaks the menu into a new line of menu items (two rows of menu items at the
window's top).

MF _OWNERREDRAW Specifies that the parent window is to paint the menu item each time it is needed. This is not
possible for the top menu line, but can be done for drop-down and popup menu items. The
parent window will receive WM_MEASUREITEM and WM_DRAWITEM messages to update the
drawing area.

Specifies a popup menu. The mtlD element of the MENUITEMTEMPLATE structure does not
exist for this type.

Table 4-15. MENUITEMTEMPLATE mtOption Flags.

Example· This example creates a new menu, as shown in Figure 4-7,
when the WM_CREATE message is processed. The menu is
defined in a global memory block. The AppendMemoryO func
tion at the bottom of the listing is used to simplify dealing with
the variable-length fields used to define menus. It adds con
secutive chunks of data to the end of a memory block.

C Header File
1* generic.h *1

#define IDM_FIRST
#define 1DM_SECOND

. #define IDM_QUIT

1
2
3

#define MAXMENULONG 20
1* global variables *1

int ghInstance ;
char gszAppName [] = "generic" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWND; unsigned, WORD, tONG) ;

- generiC FF
£opup .Quit

First J
Second

Figure 4-7. LoadMenu
Indirect() Example.

void AppendMemory (LPSTR lpDest, LPSTR lpSource;.int nBytes, BOOL bReset)

C WndProcO and AppendMemory() C Functions
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,
(:

LONG lParam)

HANDLE
LPSTR
WORD
HMENU

hMem ;
lpMem ;
wValue;
hMenu ;

switch (iMessage)
<

1* process windows messages *1

case WM_CREATE:
hMem = GlobalAlloc (GMEM_FIXED I GMEM_ZEROINIT,

sizeof (MENUITEMTEMPLATEHEADER) +
6 * ,(sizeof (MENUITEMTEMPLATE) + MAXMENULONG»

lpMem = GlobalLock (hMem) ;

wValue = 0 ;
(CPSTR) AppendMemory (lpMem, &wValue, sizeof (WORD),

wValue = 0;
AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD),

wVa lue = MF _POPUP;
AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD),

139

TRUE) ;

FALSE)

FALSE)

WINDOWS API BIBLE

}

AppendMemory (lpMem, "&POpUp", 7, FALSE) ;

wVa lue= a .;
AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE)
wValue = IDM_FIRST ;
AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE)
AppendMemory (lpMem, "&Fi rst", 7, FALSE> ;

wValue = MF_END ;
AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE)
wValue ~ IDM_SECOND ;
AppendMemory (lpMem, (LPSTR) &wValue, sjzeof (WORD), FALSE)
Appen~Memory (lpMem, "&Second"; 8, FALSE) ;

wValue = MF_END ;
AppendMemory (l"pMem,(LPSTR) &wValue, sizeof (WORD), FALSE)
wValue = 10M_QUIT ;
AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE)
AppendMemory (lpMem, "&Quit", 6, FALSE)

hMenu = LoadMenulndirect (lpMem)
SetMenu (hWnd, hMenu)
GlobalFree (hMem) ;
break;

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_FIRST: 1* User hit the first menu item *1
MessageBox (hWnd, "Fi rst Menu ftem Works!",

"Message", MB_OK) ;
break;

case 10M_SECOND: 1* User hit the second menu item *1
MessageBox (hWnd, "Second Menu Item Works!",

"Message", MB_OK);
break;

case 10M QUIT: 1* User hit the Quit menu item *1
DestroyWindow (hWnd) ;
break ";

}

break
case WM_OESTROY: 1* stop application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL> ;

void AppendMemory (LPSTR lpDest, LPSTR lpSource, int nBytes, BOOL bReset)
{

}

i nt
LPSTR
static int

lps = lpSource
lpd = lpDest ;
if (bReset>

; ;
lps, lpd ;
nLastEnd ;

nLastEnd = a
else
{

fore; = a ; i < nLastEnd i++)
lpd++ ;

}

for (i = a ; "i < nBytes i++)
{

}

nLastEnd++ ;
*lpd++ = *lps++

140

MODIFYMENU

Purpose

Syntax

Description

Uses
Returns

See Also
Parameters
hMenu
nPosition

wFlags

Value

MF _BYCOMMAND

MF _BYPOSITION

MF_CHECKED

4. MENUS Y

o Win 2.0 • Win 3.0 • Win 3.1
Changes the properties of a menu item.

BOOL ModifyMenu(HMENU hMenu, WORD nPosUion, WORD wFlags, WORD wlDNewltcm,
LPSTR lpNewltem)i
This is a powerful function for changing several attributes of a menu item at the same time. The
status (grayed, checked, etc.), the menu item's string or bitmap, and its ID value can all be
changed in one function call.
Modifying a menu while the program operates.
BOOL. TRUE if the changes were made, FALSE on error.
CheckMenuIternO, GetMenuO, DrawMenuBarO

HMENU: The handle to the menu. Use GetMenuO to retrieve a window's menu handle.
WORD: The menu item to change. If the wFlags parameter contains MF _BYCOMMAND,
nPosition refers to the menu item ID number. If wFlags contains MF _BYPOSITION, nPosition
refers to the absolute number of the menu item, 0 for the first, 1 for the second, etc.
WORD: The attributes of the menu item after the changes. This parameter is made up from the
list, in Table 4-16, using the C language binary OR (I) operator to combine effects.

Meaning

The menu item will be a bitmap. The low-order word of the IpNewltem parameter should
contain a handle to the bitmap.

nle nPosition value is interpreted as a menu item 10 value. This is the default.

rgJl

The nPosition value is interpreted relative to the sequential numbering of existing menu items: 0
is the first item, 1 the second, etc. The new item is inserted before the exiting one. Use an
nPosition value of -1 for the end of the menu.

Places a checkmark next to the menu item.

MF _D:SABLED

MF_ENABLED

MF:...GRAYED

MF_MENUBARBREAK

Makes it impossible to select the menu item. Does not gray the menu item.

Makes it possible to select the menu item. This is the default.

Grays the menu item text and disables the menu item so that it cannot be selected.

In popup menus, it separates a new column of items and displays a separator bar between
them. In normal menus, it stalts a new line of menu items.

MF _OWNERREDRAW

. MF_POPUP

MF_SEPARATOR

MF~STRING

MF _UNCHECKED

In popup menus, it separates a nev.J column of items. No separator bar is displayed. In normal
menus, it breaks the menu into a new line of menu items (two rows of menu items at the
window's top).

Specifies that the parent window is to paint the menu item each time it is needed. This is not
possible for the top menu liile, but can be done for drop-down and popup menu items. The .
parent window will receive WM_MEASUREITEM and WM_DRAWITEM messages to update the

. drawing area .

Specifies a pcpup menu. The wlDNewltem parameter will be a handle to the popup menu.

Draws a horizontal line in the menu. This line cannot be selected, Checked, enabled, or grayed.
The IpNewltem and wlDNewltem parameters are ignored.

Specifies that the new item is a character string. IpNewltem points to the string.

Does not place a checkmark next to the menu item. This is the default.

Table 4-16. ModijyMenu() Flags.

141

WINDOWS API BIBLE

wIDNewltem

IpNewltem

I' wFlags

MF_STRING

MF_BITMAP

MF_OWNERDRAW

WORD: Specifies the ID of the menu item.lfwFlags is set to MF _POPUP, wIDNewltem specifies
the menu handle for the popup menu.
LPSTR: Points to the contents of the changed menu item. The type of data depends on thewFlags
setting. (See Table 4-17.)

IpNewltem ' ' ,; '.' '.":" -,': :''',:

~I
Long pointer to a character string.

A bitmap handle. The bitmap handle is stored in the low-order word of IpNewltem.

You specify to which 32-bit value the IpNewltem points. Windows will send WM_MEASURE
ITEM and WM_DRAWITEM messages to the window's message processing function when the
menu item needs to be redrawn. The value in the IpNewltem parameter will end up passed to
the wi~dow's function as an, element of the structure pointed to by the IParam value. See the
example owner-drawn menu program in the introduction to this chapter.

Table 4-17. ModijyMenu() Data Types.

Related Messages mCMEASUREITEM, mCDRA WITEM

Example
.,.

This example uses ModifyMenuO to simultaneously change the IDM_OPT2 menu item from
grayed to normal text and change it's character string to read "Now not Gray~d."

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HMENU hMenu ;

switch (iMessage)
{

case WM_COMMAND:
switch (wParam)
{

ca se I DM_TOP1 :

1* process windows messages *1

1* process menu items *1

hMenu = GetMenu (hWnd) ;
ModifyMenu (hMenu, IDM_OPT2,

break;

MF _BYCOMMAND I MF _ENABLED I MF _STRING,
IDM_OPT2, (LPSTR) "Now not Grayed") ;

IOther program lines

REMOVEMENU o Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

. Removes a menu item from a main menu.

Uses

Returns
See Also
Parameters
hMenu

BOOL RemoveMenu(HMENU hMenu, WORD nPosition, WORD wFlags)j

The menu item is removed from the main menu. Any popup menus are removed, but are not
destroyed. Popups freed in this way can be reused. Be sure that all menus are either attached to
the application's main menu, or erased with DestroyMenuO bofore the application terminates to
avoid leaving unattached menus in memory.
Using RemoveMenuO is considerably simpler in these situations than DeleteMenuO, as
RemoveMenuO allows the popup menu to be reattached, rather than rebuilt from scratch. Call
GetSubMenuO to obtain the popup menu handle before using RemoveMenuO.
BOOL. TRUE if the menu item was removed, FALSE on error ..
GetSubMentiO, DeleteMenuO, AppendMenuO, InsertMenuO

HMENU: A handle to the menu. Use GetMenuO to obtain a handle to a window's menu.

142 I

nPosition

wFlags

Value

MF _BYCOMMANO

MF _BYPOSITION

4. MENUS 'f'

WORD: The menu item to be removed.
WORD: Sets how the nPostion value is interpreted (Refer to Table 4-18).

/

Meaning I ~I
The nPosition value is the menu item 10 value.

The nPosition value is interpreted relative to the sequential numbering of existing menu items: 0
is the first item, 1 the second, etc.

Table 4-18. RemoveMenu(J Flags. .

Comments

Example

Use DrawMenuBarO after changing the menu items to force Windows to redraw the menu line.

In this example, clicking the IDM_TOP1 menu item causes the first popup menu to be moved
from the left of the menu bar to the far right. All of the popup menu items remain intact.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG LParam)
{

HMENU
static BOOl

hMenu, hPopupMenu ;
bMovedMenu = FALSE;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND:
switch (wParam)
{

1* process menu items *1

case 1DM TOP1: 1* move first popup menu to menu end *1
if (!bMovedMenu)
{

break;

hMenu = GetMenu (hWnd) ;
hPopupMenu = GetSubMenu (hMenu, 0) ;
RemoveMenu (hMenu, 0, MF_BYPOS1T10N) ;
AppendMenu (hMenu, MF_POPUP, hPopupMenu,

(lPSTR) "New Position") ;
DrawMenuBar (hWnd) ; 1* redraw menu bar *1
bMovedM~nu = TR"UE ; 1* don't try it twice *1

[Other program lines]

SETMENU
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

hMenu

Example

• Win 2.0 • Win 3.0 • Win 3.1
Attaches a menu to a window.

BOOL SetMenu(HWND hWnd, HMENU hMenu)j

The menu attached can either be defined in a resource .RC file or created within the program
with the CreateMenuO function: Any existing menu is removed.

Changing to a new menu, or removing a menu from the window.

BOOL. TRUE if the menu has been changed, FALSE otherwise.

CreateMenuO, DestroyMenuO, LoadMenuO, DrawMenuBarO

. HWND: A handle to the window which will change menus.

HMENU: A handle to the menu to add. Use LoadMenuO to retrieve the handle to a menu defined
in the resource .RC file. Set hMenu equal to NULL to remove the menu from a window without
replacing it.

See the example under the DestroyMenuO function description.

143

WINDOWS API BIBLE

Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hMcnu
nPosition

wFlags

I., Value'

MF _BYCOMMANO

MF _BYPOSmON

o Win 2.0 • Win 3.0 • Win 3.1
Replaces the default menu checkmark hitmap with a custom bitmap.

BOOL SetMenu'ItemBitmaps(HMENU hMenu, WORD nPosition, WORD wFlags, HBITMAP
hBitmapUnchec~d, HBITMAP hBitmapC/tecked);
Windows uses a default checkmark bitmap for checking menu items. This can be replaced with
custom bitmaps using the SetMenuItemBitmapsO function. The size of the checkmark bitmaps
is dependant on the video resolution of the system the program is running OIl. GetMenu
CheckMarkDimensionsO is used to find this size for scaling the bitmap to fit.

Custom checkmarks can dress up an application program, with little penalty in memory con
sumption. When the new bitmap is assigned to the menu item, the CheckMenuItemO function
automatically will use this bitmap when checking or unchecking an Uem. .

, BOOL. TRUE if the bitmap was set properly, FALSE on error.

SetMenuItemBitmapsO, CheckMenuItemO, GetMenuCheckMarkDimensionsO

HMENU: A handle to a menu. Use GetMenuO to retrieve a window's menu.
WORD: The menu item number to change.

WORD: Specifies whether nPosition refers to the menu item ID number or the sequential num
bering of menu items. This can be either of the values shown in Table 4-19.

, Meaning. . ~.,.~ ~

The nPosition value is the menu item 10 value.

The nPosition value is interpreted relative sequential numbering of existing menu items: 0 is the
first item, 1 the second, etc.

Table 4-19. SetMcnultemBitmaps(J Flags.'

hBitmapUnchecked HBITMAP: A handle to the bitmap to display when the menu item is not checked. This can be
NULL, leaving the side ofthe menu bar blank when unchecked (the normal case).

hBitmapChecked HBITMAP: A handle to the bitmap to display when the menu item is checked. This can be l'{ULL,
leaving the side of the menu bar blank when checked. A NULL value is not recommended."

i

Example See the example under the GetMenuCheckMarkDimensionsO function description.

TRAcKPopupMENU o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns
SeeAIso

Displays a submenu anywhere on the screen.

BOOL TrackPopupMenu(HMENU hMenu, WORD wFlags, int x, int y, int nReserved, HWND
hWnd, LPRECT [pReserved);

This is a new option, added with the 3.0 version of Windows. The popup menu is displayed with its
upper left comer at x,y on the screen. Screen coordinates are used, so the menu cart b'e out of
your program's client area. Normal Windows menu item selection and WM_COMMAND messages· .
occur for the popup. The popup disappears after a selection is made, or after another screen area
is clicked.

Convenient if the normal drop-down submenu options obscure an important part ofthe window's
client area.

BOOL. TRUE if the function displayed the submenu, FALSE on error.
CreatePopupMenuO, AppendMenuO, GetSubMenuO

144

• 4. MENUS Y

Parameters
hMenu HMENU: A handle to the popup menu to be displayed. Use CreatePopupMenu() to make a new

floating popup menu, and add the desired menu items with AppendMenu().

wFlags

x
y

nReserved

hWnd

lpReserved

WORD: Not used. Always set to NULL.

int
int: The screen coordinates of the upper left comer. Use ClientToScreenO to convert from a
desired location on the window's client area to screen cQordinates.

int: Not used. Always set to NULL.
HWND: A handle to the window that owns the popup menu. This is the window that will receive
the WM_COMMAND messages from Windows as the submenu items are selected.

LPRECT: A pointer to a RECT data structure that contains the screen coordinates of a rectangle
within which the user can click the mouse button without dismissing the popup menu. If set to
NULL, the popup menu is dismissed if the mouse button is
clicked anywhere outside of the popup menu boundary. Prior
to Windows 3.1, NULL was the only value permitted.

Iop Item !lult Help

Related Messages WM_COMMAND

Example This example produces a window as shown in Figure 4-8. If the
"Top Item" menu item is clicked, a floating popup appears at
the lower left. Clicking the "Item one" menu item in the float
ing popup causes a simple message box to appear.

The resource .RC file does not include the defmition of
the floating popup.

Item two. I

1* genmenu. rc *1

Figure 4-8. Floating Popup
Menu.

#include <windows.h>
#include "genmenu.h"
genmenu ICON generic.ico

genmenu MENU
BEGIN

END

MENUITEM "&Top Item",
'MENUITEM "&Qui t",
MENUITEM "\a&Help",

ID',,-TOP1
IDM_QUIT
IDM_HELP, HELP

The floating popup menu is created when the program starts (WM_CREATE message re
ceived). It is displayed when the IDM_TOPI menu item is clicked. Note that TrackPopupMenuO
uses screen units for the X and Y position. The ClientToScreenO function converts the desired
coordinates in the window's client rectangle prior to calling TrackPopupMenuO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HMENU
stat; c HMENU
POINT

hMenu ;
hPopupMenu ;
pFloater ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hPopupMenu = CreatePopupMenu () ;
AppendMenu (hPopupMenu, MF_STRING, ID"LPOP1, "hem &one.") ;
AppendMenu (hPopupMenu, MF_STRING, IDM_POP2, "Item &two.")
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

145

WINDOWS API BIBLE

[Other program lines}

case IDM._TOP1: 1* Top menu item di sp. the float. popup *1
pFloater.x = 0 ; 1* put floating popup on left side *1
pFloater.y = 100' ; 1* down 100 units *1
ClientToScreen (hWnd, &pFloater) ; 1* pt to screen *1
TrackPopupMenu (hPopupMenu, NULL, pFloater.x,

pFloater.y, NULL, hWnd, NULL> ;
break;

case IDM_POP1: 1* The first item in floating popup hit *1
MessageBox (hWnd, "This floating menu works!",

"Message", MB_OK) ;
break;

case IDM_QUIT:

}

break

DestroyWindow (hWnd)
break;

146

Mechanical equipment designed for people to manipulate settings (stereos, aircraft instruments, etc.) generally make
use of buttons, knobs, and slide bars for changing values. These devices are much faster and more intuitive to use than
typing at a keyboard. With aircraft instruments, keyboard entry is generally reserved for data that requires great
precision, such as navigational settings. Buttons and slide bars (called "scroll bars" in Windows) are excellent ways to
get user input. Rotating knobs do not have an exact match on the computer screen (rotating the mouse does not work
well), so scroll bars are generally used in places where a machine might use a knob. In general, if your program
requires the user to enter data on the keyboard, look for a way to provide a mouse alternative: Scroll bars for numeri
cal values, buttons for choices, and list boxes for selections from a list. This does not mean that keyboard input should
be unsupported. Accelerator keys and other keyboard shortcuts find their way into most well-designed Windows pro
grams. The ideal program provides both keyboard and mouse alternatives for every action.

Scroll Bar Concepts
Scroll bar controls are child windows. They are initially created using the CreateWindowO function discussed in
Chapter 2, Creating Windows. Once created, scroll bars can either be placed on the program's client area, creating
windows, or added as part of the window's border, for scrolling the client area. Figure 5-1 illustrates three different
scroll bars.

Qo It! !luit Qo It! !luit Qo It I !luit

Figure 5-1A (left), B (middle), C (right). Three Examples of Scroll Bar Controls.

Figure 5-1A shows a horizontal scroll bar that is attached to the window's client area. It uses the SBS_HORZ style
in CreateWindowO. Moving the scroll bar changes the numeric value in the edit control above it. The control could
have been made into a vertical scroll bar by using the SBS_VERT style in CreateWindowO. This would also require
changing the dimensions, to make the control thin in the X direction, and tall in the Y direction. Figures 5-lB and C
show scroll bars that are attached to the window's border and are not part of the client area. They are generally used
as a 'Yay of scrolling the client area (moving the contents of the client area horizontally or vertically). If the scroll bar
type shown in Figure 5-1A were used to scroll the client area, the scroll bar itself would be moved during scrolling!

147

WINDOWS API BIBLE

The attachment of scroll bars to the window's border is done when the scroll bar control is made visible.
ShowScrollBarO is used for scroll bars the same way that ShowWindowO was used for other types of child windows.
The difference is that ShowScrollBarO will attach scroll bars to the window's border if the SB_HORZ or SB_ VERT
style is specified. Windows automatically subtra"cts the width Gf the scroll bar from the client area, so that painting on
the client area does not run over the scroll bars. The other way to get a scroll bar attached to a window's frame is to
create the window with one or two scroll bars specified when CreateWindowO is called. For example, to create a
wind()wwith a horizontal scroll bar at the bottom (Figure 5-1B), add the WS_HSCROLL window style, as shown in the

. following code.

hWnd = CreateWindow (

gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL) ;

ShowWfndow (hWnd, nCmdShow) ;

1* create the program's window here *1

1* class name *1
1* window name *1

WS_HSCROLL, I~ window style *1
1* x position on screen *1
1* y position on screen *1
I*. wi dth of wi ndow * 1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handle (null = use c lass menu) *1
1* instance handle *1
1* lpstr (null = not used) *1

The WS_VSCROLL adds a vertical scroll bar, which can be done with WS_HSCROLL or separately.
Defining the scroll bar as part of the parent window's CreateWlndowO call is a handy shortcut, as it saves you.

from having to create the window's scroll bars as separate child windows. The WndProcO function for the parent
window will receive WM_HSCROLL and/or WM_ VSCRQLL messages if the scroll bar is moved with the mouse. The
messages from the scroll bar will be sent using the parent window's handle.

Scroll bars are attached automatically to list boxes when the number of items exceeds the size of the list window.
List and combo boxes are discussed in Chapter 9, Windows Messages. Edit controls can also have scroll bars attached.
Single line edit controls can only take advantage of the horizontal scroll bar, but multiline edit controls can use both
vertical and horizontal scroll bars. As edit controls are simply small windows, add the WS_HSCROLL and/or
WS_ VSCROLL styles when creating the edit.control. An e~ample of a multiline edit control with a scroll bar is given
in Chapter 9 under Edit Control Messages.

Scroll Bar Position and Range
When a scroll bar is first created, the range of values reflected by the two ends of the control are 0 to 100. This is only
handy if you happen to be working with a parameter that varies over this range. In most cases, you will want to change
the scroll bar range to match the data you are changing. For scrolling text, the range is probably equal to the number
of lines of text. The SetScrollRan(L gefunction allows the scroll bar range to be reset at any time. The value reflected
by the scroll bar thumb (the rectangle in the center of the scroll bar that moves) depends on the scroll bar range. If
the range is from one to ten, a value of five will set the thumb in the center. Ifthe range is changed from one to twenty,
a value of five will fall only one quarter of the way along the scroll bar. One thing you cannot do is reverse the·top and
bottom of a scroll bar. This is unfortunate, as the vertical scroll bars are set up with low values at the top and high
values at the bottom. This is logical for scrolling text, but is reversed relative to what you would expect for entering a
number. You can get around this by subtracting the scroll bar position from the maximum position to get the value the
user meant when entering a number.

Scroll Bar Messages
When the user clicks part of a scroll bar, Windows sends either a WM_HSCROLL or WM_VSCROLL message, corre
sponding to the action on a horizontal or vertical scroll bar, respectively. The wParam parameter that gets passed to
your WinProcO function with the message will tell where on the scroll bar the mouse was located when the user,
clicked the mouse button. These wParam values have names in WINDOWS.H (like SB_LINEUP for the top or left side

148

I .. ~.

" «

arrow). Figure 5-2 shows the wParam values for each
part of the scroll bar. If you look in WINDOWS.H, you will
find two additional scroll bar messages, SB_TOP and
SB_BOTrOM. The author has been unable to get a scroll
bar to send one of these messages. When the mouse but
ton is released after an action on the scroll bar, Windows
sends an SB_ENDSCROLL message. The exception to
this is if the user was moving the scroll bar "thumb. In
this case, releasing the mouse generates the
SB_THUMBPOSITION message. The complete descrip
tion of each of these messages is given in Chapter 9, Win
dows Messages.

Scroll Bar Function Summary

00 III Quit

Figure 5-2. Scroll Bar Message.

5. SCROLL BARS 'Y

SB_THUMBTACK (Pressed)
SB_ THUMBPOSITION (Released)

SB_PAGEDOWN

The functions relating directly to scroll bars are summarized in Table 5-1. Most of them deal with the simple tasks of
setting and retrieving the scroll bar range and thumb position.

Function

EnableScrollBar

GetScroliPos

GetScroliRange

Scroll DC

ScroliWindow

SetScroliPos

SetScroliRange

. .
Purpose

Enable or disable a scroll bar control (Win 3.1).

Retrieve the current position of the scroll bar's thumb.

Retrieve the minimum and maximum value range of a scroll bar.

Scroll a region in a device context and compute the update areas.

Scroll a region in a window's client area.

Set the position of the scroll bar thumb.

Set the minimum and maximum values of a scroll bar.

~I

ShowScroliBar Disp!ay the scr~1 bar, optionally attaching it to the window's border.

Table 5-1. Scroll Bar Function Su.mmary.

The two functions that are more complex are ScrollWindowO and ScrollDCO. They both scroll an area horizon
tally and/or vertically. ScrollDCO is more sophisticated, as it computes the areas on the screen that need to be
updated after scrolling. Scrolling always uncovers areas on the screen that need to be repainted. Your program logic
can determine what action to take depending on the size and location of the areas that need to be updated.

ENABLESCROLLBAR o Win 2.0 0 Win 3.0 • Win 3.1
1'~Purpose

Syntax

Description

Uses

Returns

See Also

Enables or disables a scroll bar control.

BOOL EnableScrollBar (HWND hWnd, WORDwSBFlags, WORDwArrowFlags)j

When a scroll bar is disabled, the thumb disappears and the center portion is not shaded. No
action or messages occur if the user attempts to use the scroll bar. When activated, the thump
reappears, and the center portion is shaded.

The scroll bar can be disabled when the control it is attached to loses the input focus. See the
example below for an edit control.

BOOL. TRUE if the function was successful, FALSE on error.

SetFocusO

149

WINDOWS API BIBLE

Paraineters
hWnd

wSBFlags

(Value:
SB_BOTH

SB_CTL

SB_HORZ

SB_VERT

HWND: The scroll bar window handle. This can be either a stand-alone scroll bar or a scroll bar
attached to a~other window, depending on the wSBFtags value. If the scroll bar is created as part
of the window's style (WS_ VSCROLL or WS_HSCROLL), the created window's handle is used for
hWnd.

WORD: The type of scroll bar. This can be any of the types described in Table 5-2.

Both horizontal and vertical scroll bars attached to a window.

A scroll bar control. In this case, set hWnd equal to the scroll bar handle.

A horizontal scroll bar tied to the window. In this case, hWnd should be the Window's handle.

A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.

Table 5-2. Scroll Bar Types.

wArrowFlags WORD: Specifies whether the scroll bar is enabled or disabled. It can be any of the following
values described in Table 5-3.

Value ... Meaning ",--..
; '; - :. f " ' :" ~ "

ESB_ENABLE_BOTH

ESB_DISABLE_LTUP

ESB_DISABLE_RTDN

ESB_DISA~LE_BOTH

Enables both arrows of the scroll bar.

Disables the left arrow of a horizontal scroll bar, or the down arrow of a vertical scroll bar.

Disables the right arrow of a horizontal scroll bar, or the up arrow of a vertical scroll bar.

Disables both arrows of a scroll bar.

Table 5-3. Scroll Bar Types.

Example This example creates an edit control with an attached horizon
tal scroll bar. The scroll bar is only activated when the -~dit
control has the input focus. If the focus shifts to another win
dow, the scroll bar is deactivated. Windows sends a ~:
~CCOMMAND message with the edit control's ID value as
wParam when the scroll bar is activated. The scroll bar notifi
cation code is decoded by examining the high-order word of

120 It!. ,quit

Contents = Text In Edit Control

the IParam value passed with WM_COMMAND. EN_SETFOCUS Figure 5-3. EnableScroll
is the notification code sent when an edit control gains the Bar() Example.
input focus. EN_KILLFOCUS is the notification code when the
edit control loses the input focus. Figure 5-3 illustrates the use of EnableScrolIBarO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lPa~~~)
{

stat i c HWND hEdit;
HOC hOC;
char cEditBuf [64J, cBuf [128J ;

switch (iHessage)
{

1* process windows messages *1

hEdit = CreateWindow ("EDIT", "!',
WS_CHILD I WS_BORDER I WS_HSCROLL I ES_AUTOHSCROLL I

ES_HUl TILINE,

. 150

}

}

5. SCROLL BARS T

10, 10, 100, 50, hWnd, 101, ghInstance, NULL)
SetWindowText (hEdit, "Text In Edit Control")
ShowWindow (hEdit, SW_SHOW) ;
break;

case W"_COMMAND: 1* process menu items *1
switch (wParam)
{

case 101: 1* edit control notification *1
switch (HIWORD (lParam»
{

}

break;

case EN_SET FOCUS:
EnableScrollBar (hEdit, SB_HORZ,

ESB_ENABlE_BOTH) ;
break;

case EN_KILLFOCUS:
EnableScrollBar (hEdit, SB_HORZ,

ESB_DISABlE_BOTH) ;
break;

case 1DM_DOIT: 1* retrieve edit text and display *1
GetWindowText (hEdit, cEditBuf, 63) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 70, cBuf, wsprintf(cBuf,

"Contents = 7.s", (LPSTR) cEdi tBuf» ;
ReleaseDC (hWnd, hDC) ;
break;

case 1DM_QUIT:

}

PostQuitMessage (NULL) ;
break;

break;
case WH_DESTROY:

default:

PostQuitMessage (0) ;
break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL)

GETSCROLLPOS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Returns
SeeAIso
Parameters
hWnd

nEar

SB_CTL

SB_HORZ

SB_VERT

Finds the location of the scroll bar thumb.

int GetScrollPos(HWND hWnd, int nBar);

Reads the position of the scroll bar thumb. The number returned will depend on the scroll bar
range that was set with SetScrollRangeO.
int, the scroll bar position.

SetScrollPosO, SetScrollRange, GetScrollRangeO

HWND: The scroll bar control handle if nEar is SB_CTL, or the window handle if nBar is
SB_HORZ or SB_ VERT:

int: The type of scroll bar. This can be any of the types listed in Table 5-4.

A scroll bar control. In this case, set hWnd equal to the scroll bar handle.

,',:1
~ ,". ,.;;/ "',.

A horizontal scroll bar tied to the window. In this case, hWnd should be the window's handle.

A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.

Table 5-4. Scroll Bar Types.

-151

...... UVyy;;) "' tsU:SLt::

Related Messages WM_HSCROLL, WM_ VSCROLL ~ , generic G-r:-

Example Here the program creates a scroll bar control that sets the nu
meric value inside the edit control when the scroll bar is
moved. When the user ciicks the "Do U!" menu item, the cur
rent scroll bar position is retrieved by GetScrollPosO and dis
played in the client area, as illustrated in Figure 5-4.

Do It I .Quit

Scroll Position = ..

~

Figure 5-4. GetScrollPos()
Example.

long fAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
stat; c'
char
HDC
int

HWND hEdit, hScroll
nScrollVaLue
cBuf [128J
hDC
n ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* create edit control *1
hEdi t = CreateWi ndow ("EDIT", "0",

WS_CHILD I WS_VISIBLE I WS_BORDER,
20, 20, 40, 25, hWnd, NULL, ghInstance, NULL>

ShowWindow (hEdit, SW_SHOW) ;
1* create scroll bar control *1

hScroll = CreateWindow ("SCROLLBAR", ,.
WS_CHILD I WS_VISIBLE I SBS_HORZ,
10, 100, 200, 20, hWnd, NULL, ghInstance, NULL)

ShowScroll8ar (hScroll, SB_CTL, SW_SHOW) ;
SetScrollRange (hScroll, SB_CTL, 0, 10, FALSE) ;
nScroll Va lue = 0 ;
SetScrollPos (hScroll, SB~CTL, nScrollValue, TRUE)
break;

case WM_HSCROLL:
switch (wParam)
{

case SB_THUMBPOSITION: . 1* user has moved scroll thumb *1
nScrollValue = LOWORD (lParam) ;
SetScrollPos (hScroll, S8_CTL, nScrollValue, TRUE:)
wsprintf (cBuf, "Zd",.nScrollValue); ,
SetWindowText (hEdit, (LPSTR) cBuf) ;
break;

case SB_LINEDOWN: 1* user clicked scroll rt arrow *1
nScrollVa(ue++ ;'
nScrollValue = nScrollValue > 10 7·10 : nScrollValue ;
SetScrollPos (hScroll, S8_CTL, nScrollValue, TRUE) ;
wsprintf (cBuf, "Xd", nScrollValue);
SetWindowText (hEdit, (LPSTR) cBuf) ;
break;

case SB_LINEUP: 1* user clicked scroll If arrow *1

}

break;
case WM_COMMAND:

nScrollValue-- ;
nScrollValue = nScrollValue < 0 7 0 : nScrollValue ;
SetScrollPos (hScroll, SB_CTL, nScrollValue, TRUE) ;
wsprintf (cBuf, "Xd", nScrollValue) ;
SetWindowText (hEdit, (LPSTR) cBuf) ;
break

1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item "'I

152

}

n = GetScrollPos (hScroll, ,SB_CTL> ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 25, 0, cBuf, wsprintf (cBuf~

"Scroll Position = Xd", n»
ReleaseOC (hWnd, hOC) ;
break; ,

case 10M_QUIT:

}

break;

OestroyWindow (hWnd)
break;

case WM_OESTROY: 1* stop application *1
PostQui tMessage (0) ;
break;

5. SCROLL B~.RS ~

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
}

GETSCROLLRANGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hWnd

nBar

Value

S8_eTl

S8_HORZ

S8_VERT

Retrieves the minimum and maximum range values. for a scroll bar.

void GetScrollRange(HWND h Woo, int nBar, LPINT IpMinPos, LPINT IpMa.iPos)j

Sets the integer values pointed to by IpMinPos and IpMaxPos'to the scroll bar limits.
Avoids having to keep track of scroll bar limits in static variables. You can retrieve the scroll bar
limits when you use GetScrollPosO to retrieve the scroll bar position.

No returned value (void):

GetScrollPosO, SetScrollRange, SetScrollPosO

HWND: The scroll bar control handle if nBar is SB_CTL, or the window handle if nBar is
SB_HORZ or SB_ VERT.

, int: The type of scroll bar. This can be any of the types listed in Table 5-5.

> "

~ i " _ ~, '; .'. ~. ' • ': , Meaning'

A scroll bar control. In this case, set hWnd equal to the scroll bar handle.

A horizontal scroll bar tied to the window. In this case, hWnd should be the window's handle.

A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.

Table 5-5. Scroll Bar Types.

IpMinPos LPINT: A pointer to the integer variable that will receive the
minimum scroll bar value range.

IpMaxPos LPINT: A pointer to the integer variable that will receive the
maximum scroll bar value range.

Related Messages WM_HSCROLL, me VSCROLL

- <)PllI'lll.· r:-r:-
.120 It I .Quit

Scroll Min Range. == 0
Scroll Max Range = 10

Example This example (illustrated in Figure 5-5) demonstrates,' a win- Figure 5-5. GetScrollRange()
dow with an attached horizontal scroll bar. The scroll bar is Example.
created with the window during the CreateWindowO call in
WinMainO. The scroll bar range and initial position are set when the WndProcO function pro
cesses the WM_CREATE message. When the user clicks the "Do It!" menu item, the scroll bar
ranges are displayed in the client area.

153

WINDOWS API BIBLE

1* generic.c generic windows appUcation *1

#include <windows.h>
#include "generic.h"

1* window's header file - always included *1
1* the application's header file *1

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance, LPSTR lpszCmdLine,
int nCmdShow)

{

}

HWND hWnd ;
MSG msg ;
~NDCLASS wndclass
ghlnstance = hlnstance ;
if (!hPrevlnstance)
{

1* store. instance handle as global val'. *1
1* load data into window class struct. *1

wndclass.style = CS_HREDRAW I CS_VREDRAW ;

)

wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hlnstance = hlnstance ;
wndclass.hlcon = Loadlcon (hlnstance, gszAppName)
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground= GetStockObject (WHITE_BRUSH)
wndc lass .lpszMenuName = gszAppName ;
wndclass .lpszClassName = gszAppName ;

1* register the window class *1
if (!RegisterClass (&wndclass»

return FALSE;

hWnd = CreateWindow
gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,

1* create the program's window here *1
1* class name *1
1* window name *1

WS_HSCROLL, 1* window style *1
1* x position on scre~n *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1

NULL,
hlnstance,
NULL> ; 1* lpstr (null = not used) *1

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ; 1* send first WM_PAINT message *1

while (GetMessage (&msg, NULL, 0, 0»
{

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

return msg.wParam ;

1* the message loop *1.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,
{

LONG l Pa rani)

char
HDC
int

cBuf [128]
hDC ;
nMi n, nHax

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
SetScrollRange (hWnd, SB_HORZ, 0, 10, FALSE)
SetScrollPos (hWnd, SB_HORZ, 5, TRUE) ; ..
break;

154

5. SCROLL' BARS ~

case WM_COMMAND: /* process menu items */
swi tch (wParam)
{

case IDM_DOIT: /* User hit the "Do it" menu item *1
GetScrollRange (hWnd, SB_HORZ, &nMin, &nMax) ;
hOC = GetOC (hWnd) ; .
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Scroll Min Range. = %d", nMin» ;
TextOut (hDC, 0, 20, cBuf, wsprintf (cBuf,

"Scroll Max Range = 7.d", nMax»
ReleaseDC (hWnd, hDC) ;
break;

case 10M_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WH_DESTROY: /* stop "application */
PostQui tMessage (0) ;

- break;
default: 1* defa~lt windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
}

SCROLLDC

Purpose
Syntax

Description

Uses
Returns
See Also
Parameters
hDC

dy

lprcScroll

lprcClip

hrgnUpdate

• Win 2.0 • Win 3.0 • Win 3.1
Scrolls all or part of a device context vertically aIld/or horizontally.
BOOL ScrollDC(HDC hDC, int dx, int dy, LPRECT lprcScroll, LPRECT lprcClip, HRGN
hrgnUpdate, LPRECT lprcUpdate)j

This function is the most powerful method of moving a rectangular region of bits. The movement
can be both horizontal and vertical in one function call. A subregion within the scrolling recto
angle can be picked out, limiting the area scrolled. The function also computes the size of either
an update region or update rectangle, capturing the area that needs to be repainted after scroll·
ing to keep the image intact.
Scrolling a window's client area, or scrolling all or part of a bitmap in a memory device context.
BOOL. TRUE if the function executed correctly, FALSE on error.
ScrollWindowO

HDC: The device context that contains the image to be scrolled. Use GetDCO to obtain a
window's device context.
int: The number of units to scroll horizontally. Positive numbers scroll right, negative numbers
scroll left.
int: The number of units to scroll vertically. Positive numbers scroll down, negative numbers
scroll up.

LPRECT: Pointer to the rectangle structure that contains the coordinates of the scrolling rect-
angle. Use GetClientRectO to obtain a window's client area rectangle. -,

LPRECT: Pointer to the rectangle structure that contains the coordinates of the clipping rect
angle. If the lprcClip rectangle is smaller than lprcScroll, only the area inside the lprcClip rect
angle is scrolled.

HRGN: A handle to the update region uncovered by the scrolling process. If scrolling is in both
the X and Y directions simultaneously, the region will not be rectangular. If hrgnUpdate and
lprcUpdate are both NULL, Windows does not compute the update region.

155

WINDOWS API BIBLE

lprcUpdate LPRECT: A pointer to a rectangle structure that is fIlled with
the dimensions of the smallest rectangle that bounds the up
date region uncovered by the scrolling process. Set to NULL if
you do not want Windows to compute the update rectangle.

[=-1----yt:llcric--I-·-I ~
I!o It! ,Quit

I

Related Messages WM_HSCROLL, WM_ VSCROLL

Example This example uses ScrollDC to scroll the center part of the
window's client region, based on the window's horizontal scroll
bar position. The clipping region is set smaller than the client
area by 20 units, so that the outermost 20 units are not scrolled.
After the user clicks the "Do It!" menu item (drawing the lines)
and gives one mouse click of the right scroll bar arrow, the
window looks like Figure 5-6.

J

Figure 5-6. ScrollDC()
Example.

long FAR PASCAL WndProc (HWND.hWnd, unsig~ed iMessage, WORD wParam, LONG lParam)
(

static
static
HDC
int
RECT
HRGN
HANDLE

HWND
int

hScroll ;
nScrollValue, nOldValue ;
hDC ;
i i
rWind, rClip, rUpdate ;
hrgnUpdate i
hPen i

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
GetClientRect (hWnd, &rWind) i
hScroll = CreateWindow ("SCROLLBAR", ,

WS_CHILD I WS_VISIBLE I SBS_HORZ I SBS_BOTTOMALIGN,
rWind.left, rWind.to~, rWind.right, rWind.bottom,
hWnd, NULL, ghlnstance, NULL> i

Show.ScrollBar (hWnd, SB_HORZ, TRUE) ;
SetScrollRange (hWnd, SB_HORZ, 0, 10, FALSE)
nScrollValue = nOldValue = 0 i
SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
break i

case WM_HSCROLL:
hrgnUpdate = CreateRectRgn (0, 1, 2,.3) i
hDC = GetDC (hWnd) ;
GetClientRect (hWnd, &rWind) i 1* get client rectangle *1
rClip.left = rWind.left + 20 i 1* set clipping region *1
rClip.right = rWind.right - 20 i 1* inside of client rect *1
rClip.top = rWind.top + 20 i
rClip.bottom = rWind.bottom - 20 ;
switch (wParam)
{

case SB THUMBPOSITION: 1* user has moved scroll thumb *1
- nScroll Va lue = LOWORD (lParam) ;

if (nScrollValue != nOldValue)
{

SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
ScrollDC (hDC,

20 * (nScrollValue - nOldValue), 0,
(LPRECT) &rWind, (LPRECT) &rClip,
hrgnUpdate, (LPRECT)&rUpdate)

nOldValue = nScrollValue i
}

break i
case SB_LINEDOWN:

nScrollValue++ ;
1* user c licked scroll rt arrow *

.nScrollValue = nScrollValue > 10 ? 10 : nScrollValue i
if (nScrollValue != nOldValue)
{

156

}

break i

5. SCROLL BARS ~

SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
ScrollOC (hOC,

20 * (nScrollValue - nOldValue), 0,
(LPRECT) &rWind, (LPRECT) &rClip,
hrgnUpdate, (LPRECT) &rUpdate)

nOldValue = nScrollValue i

case SB_LINEUP: 1* us.er cUcked scroll If arrow *1

}

nScrollVa lUeN i
nScrollValue = nScrollValue < 0 ? 0 : nScrollValue i
if (nScrollValue != nOldValue)
{

}

break;

Set5crollPos (hWnd, SB_HORZ, nScrollValue, TRUE) ;
5crollOC (hOC,

20 * (nScrollValue - nOldValue), 0,
(LPRECT) &rWind, (LPRECT) &rClip,
hrgnUpdate, (LPRECT) &rUpdate)

nOldValue = nScrollValue ; .

ReleaseOC (hWnd, hOC) ;
OeleteObject (hrgnUpdate)
break i

.case WM_COMMANO: 1* process menu ~tems *1
swi tch (wParam)
{

case lOM_OOIT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
hPen = GetStockObject (BLACK_PEN) ;
for (i = 0 ; i< 20 ; i++) 1* paint 20 lines *1
{

}

MoveTo (hOC, i * 8, 0) ;
LineTo (hOC, i * 8, 400)

OeleteObject (hPen) ;
ReleaseOC (hWnd, hOC)
break;

case IDM_QUIT:

}

break i

DestroyWindow (hWnd)
break i

case WM_OESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) i

return (OL) ;

SCROLLWINDOW • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

Scrolls a window's client area in the X and Y directions.

void ScrollWindow(HWND hWnd, int XAmount, hit YAmount;LPRECT lpRect, LPRECT
lpClipRect)j

. This is a simpler scrolling function than ScrollDCO, but it lacks the ability to compute regions or
rectangles uncovered by the scrolling process. Instead the uncovered areas are automatically
placed into the window's update region for painting on the next WM_PAINT cycle.

Scrolling 'small windows where separate logic is applied to compute the uncovered regions.

No returned value (void).

157

WINDOWS API BIBLE

See Also·
Parameters
hWnd

XAmount

YAmount

lpRect

lpClipRect

ScrollDCO

HWND: The haJlole of the window that has the client area that
will be scrolled.
int: 'The amount to scroll the window in theX direction. Device
units are used. Positive values scroll right, negative values
scroll left. . -

110 I r quit
(0 number line is here.

1 number line is here.
'2 numbfr line i~ here.
3 number line is here.
1/ number line is here.
5 number I.ine is here.

int: The amount to scroll the window in the Y direction. Device' Figure 5-7. ScrollWindow()/
units are used. Positive values scroll down, negative values Example.
scroll up. . . .

LPRECT: A pointer to a rectangle structure containing the portion of the client area to be
scrolled. NULL lithe entire client area· is to be scrolled. Use GetClientRectO to determine the
bounding rectangle of the client area if:you will be scrolling a portion of it.

LPRECT: A pointer to a rectangle .structure that contains the clipping rectangle to be scrolled. If
the clipping rectangle is within tIle IpRect area, only points ",ithin lpClipRect will be scrolled. Set
equal to NULL if the entire windo\v is to be scrolled.

Related Messages m-CHSCROLL. WM VSCROLL

Example This example, illustrated in' Figure 5-7, scrolls some text iri the client area, based on the position
of the horizontaJ scroll bar at the window's bottom. The text is initially painted when the user
clicks the "Do It!" menu item. Beoause there is no automatic repainting of clipped text on the
right side, scrolling the text into the window's side causes the end of the text to be lost.

long FAR PASCAL WndProc (HWND hWhd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
static
char
HDC
int
RECT

HWND hScroll ;
int nScrollValue, nOldValue ;
cBuf [10]
hDC
i ;
rWi r:d ;

switch (iMessage)
{

1* process windows m~ssages *1

case WM_CREATE:
GetClientRect (hWnd, &rWind) ;
hScroll = CreateWindow ("SCROLLBAR", ,

. WS_CHILD I WS_VISIBLE I SBS_HORZ I SBS_BOTTOMALIGN,
rWind_left, rWind.top, rWind.right, rWind.bottom,
hWnd, NULL, ghlnstance, NULL) ;

ShowScrollBar (hWnd, SB_HORZ, TRUE) ;
SetScrollRange (hWnd, SB_HORZ, 0, 10, FALSE) ;
nScroLLValue = nOldValue = 0 ;
SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
break;

case WM_HSCROLL:
swi tch (wParam)
{

case SB THUMBPOSIT ION: 1* user has moved scroll thumb * I
nScrollValue = LOWORD (lParam) ;
if (nScrollValue != nOldValue)
{

SetScrollPos (hWnd, S8_HORZ, nScrollValue, TRUE)
ScrollWindow (hWnd,

20 * (nScrollValue - nOldValue), 0,
NULL, NULL) ;

nOldValue = nScrollValue ;

158 .

}

}

break;

5. SCROLL BARS Y

case SB_L1NEOOWN: 1* user clicked scroll rt arrow *1
nScroll Va lue++ ;
nScrollValue = nScrollValue > 10 ? 10 : nScrollV~lue ';
if (nScrollValue != nOldValue)
{

break;

SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
ScrollWindow (hWnd,

20 * (nScrollValue - nOldValue), 0,
NULL, NULL> ;.

nOldValue = nScrollValue ;

case SB_LINEUP: 1* user clicked scroll If arrow *1

}

break
case WM_COMMAND:

nScrollValueN;
nScro(lValue = nScrollValue < 0 ? 0 : nScrollValue ;
if (nScrollValue != nOldValue)
{

}

break;

SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
ScrollWindow (hWnd,

20 * (nScrollValue - nOldValue), 0,
NULL, NULL> ;

nOldValue = nScrollValue ;

1* process menu items *1
switch (wParam)
{ .

case 10M_DOIT: 1* User hit the "00 it" menu item *1
hOC = GetDC (hWnd) ;
for (i = 0 ; i < 20 ; i++) 1* draw some text *1
{

}

itoa (i, cBuf, 10)
TextOut (hOC, 0, i * 20, cBuf, strlen (cBuf»
TextOut (hDC, 20, i * 20,

"number line is here.", 20) ;

ReleaseDC (hWnd, hDC)
break;

case 1DM_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM':"'DESTROY:' 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
)

SETSCROLLPOS • Win 2;0 • Win 3.0 .• Win 3.1

Purpose

Syntax

Description

Sets the position of the scroll bar thumb.

intSetScrollPos(HWNDhWnd, intnBar, intnPos, BOOLbRedraw)i

The physical location after the thumb depends on the ranges set for the scroll bar's minimum and
maximum values. The thumb's position will be ratioed between these two extremes. Values be
yond the limits of the scroll bar range result in the thumb at an end of the scroll bar (rio danger of
going past limits).

159

WINDOWS API BIBLE

Uses

Returns

SeeAl80

Parameters
kWnd

nEar

SB_CTL

SB_HORZ

SB_VERT

Generally used when the scroll bar is fIrst created or shown, to make the thumb position match
the value represented. It can also be used for building keyboard interface functionality.
int, the previous position of the scroll bar thumb.
SetScrollRangeO, GetScrollPosO, GetScrollRangeO

HWND: The scroll bar control handle if nBar is SB_CTL, or the window handle if nEar is
SB_HORZ or SB_ VERT.
int: The type of scroll bar. This can be any of the types listed in Table 5-6.

A scroll bar contr61. In this case, set hWnd equal to the scroll bar handle.

A horizontal scroll bar tied to the window. In this case, hWnd should be the window's handle.

A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle;

Table 5-6. Scroll Bar Types.

nPos

bRedraw

int: The new scroll bar thumb position.

BOOL: TRUE if the scroll bar should be redrawn to show the new thumb position, FALSE if not.
Use it if you are going to call another scroll bar function, which will then redraw.

Related Messages WM_HSCROLL, WM_ VSCROLL
Example See the following example under the SetScrollRangeO function description.

SETSCROLLRANGE • Win 2.0 • Win 3.0 • Win '3.1
Purpose Establishes the upper and lower ranges of a scroll bar.

Syntax

Uses

Returns

See Also

Parameters
kWnd

nEar

I void SetScrollRange(HWND kWnd, int nEar, int nMinPos, int nMaxPos, BOOL bRedraw)j

Used when the scroll bar is created to establish the upper and lower limits of the scroll bar range.

No returned value (void).

SetScrollPosO, GetScrollRangeO, GetScrollPosO

HWND: The scroll bar control handle if nEar is SB_CTL, or the window handle if nBar is
SB_HORZ or SB_ VERT.

int: The type of scroll bar. This can be any of the types listed in Table 5-7.

SB_CTL A scroll bar control. In this case, set hWnd equal to the scroll bar handle.

A horizontal scroll bar tied to the window. In this case, hWnd should be the window's handle.

A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.

Table 5-7. Scroll Bar Types.

160

5. SCROLL BARS ..

nMillPos int: The scroll bar lower limit.

nMaxPos int: The scroll bar upper limit.

bRedraw BaaL: TRUE if the scroll bar should be redrawn to show the new thumb position, FALSE if not.
Use it if you are going to call another scroll bar function, which will then redraw.

Related Messages MtCHSCROLL, WM_ VSCROLL

Example This example creates a scroll bar control and attaches it to the main window. The scroll bar range
is set from 0 to 10, and the thumb moved to a value of zero. Note how ShowScrollBarO is used to
attach the scroll bar (a child window) to the application's main window.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
RECT

HWND hScroll
rWi nd ;

switch (iMessage)
J{

1* process wi ndows messages *1

case WM_CREATE:
GetClientRect (hWnd,&rWind) ;
hScroll = CreateWindow ("SCROLLBAR", ,

WS_CHILD I WS_VISIBLE I SBS_HORZ I SBS_BOTTOHALIGN,
rWind.left, rWind.top, rWind.right, rWind.bottom,
hWnd, NULL, ghlnstance, NULL) ;

ShowScrollBar (hWnd, SB_HORZ, TRUE) ;
SetScrollRange (hWnd, SB_HORZ, 0, 10, FALSE);
nScrollValue = nOldValue = 0 ;
SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE)
break;

IOther program lines I

SHOWSCROLLBAR • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

nEar

Makes a scroll b~r visible and establishes its links to the parent window (if any).

void ShowScrollBar(HWND hWnd, WORD wEar, BOOL bShow)j

Shows or hides a scroll bar. This function should be used rather than ShowWindowO to make
scroll bars visible. ShowScrollBarO allows a horizontal or vertical scroll bar to be linked to a
window's frame.. I

Used during the initial creation of a scroll bar, or later to hide or redisplay the scroll bar. Do not
call this function while processing a scroll bar message.

No returned value (void).

ShowWindowO

HWND: The scroll bar control handle if nEar is SB_CTL, or the window handle if nEal' is
SB_HORZ or SB_ VERT.

int: The type of scroll bar. This can be any of the types listed in Table 5-8.

161

WINDOWS. API BIBLE

Value

SB_BOTH

SB_CTL

SB_HORZ

SB_VERT

,Meaning

Both horizontal and vertical scroll bars attached to a window. -. ,

A scroll bar contrC?1. Inthis case, set hWnd equal to the scroll bar handle.
'.

A horizontal scroll bar tied to the window. In this case, hWnd should be the window's handle ..

A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.

Table 5·8.' 'Scroll Bar Types.

bShow

,Example

'BOOL: TRUE if the scroll bar is to be visible, FALSE if it is to be hidden.

See the previous example under the SetScrollRangeO function description.

162

[811

The mouse is used extensively in Windows programs for many purposes. Windows provides excellent built-in support
for controlling the mouse. Windows also supports a related concept, the "caret." This is a blinking line (or shape) that
can be positioned in the client area to highlight a position. Typically, it is used in word processing applications to show
where the next keyboard input will be as text is entered on the screen. Using the caret to fIx locations on the screen
allows the mouse cursor to be free for menu selections and other uses that take it off the ,vindow's client area.
Physically, the mouse cursor is a small bitmap that is displayed and erased at different locations on the screen to
produce the illusion of movement. This bitmap shape can be changed as the program runs. Many applications can be
improved by having the mouse cursor shape change from the usual arrow shape to sontething more appropriate for the
activity. "Pen" shapes for drawing, "hands" for pushing buttons, and even "little men" for playing games are possible.
The Windows versions 3.0 and higher support dynamicaliy changing the shape of the cursor as the program runs and
basing the cursor shape on bitmap images.

Mouse Message Overview
From the programmer's point of view, the mouse interacts with a program by sending a series of messages. A good way
to get a feeHor this message flow is to turn on the Windows Spy program that comes with the Software Development
Kit (SDK). Set Spy to receive messages from all windows. A typical Spy screen is shown in Figure 6-1.

In this example, Spy is tracking messages sent to a'
program called SNAP3. Here are the first three messages'
a!!d how to interpret them.
WM_SETCURSOR

WindowsiIses this message if it needs to change the
cursor shape.
WM_NCMOUSEMOVE

The mouse cursor has moved within a nonclient area
of the window.
WM_NCHITTEST

This message tests what type of object the cursor is
over (for example, border, caption, client area, etc.).

Spy Window Qptions!
200C WM SETCURSOR
200C WM-NCMOUSEMOVE
200C WM-NCHITTEST
200C WM-MOUSEACTIVATE
200C WM - NCPAINT
200C WM-NCACTIVATE
200C WM-SETCURSOR
200C WM - NClBUTTONDOWN
200C WM - SETCURSOR
200C WM-NCCAlCSIZE
200C WM-NCPAINT
200C WM-NCACTIVATE

200C 02000005
0005 01700137
0000 01700137
200C 02010005
OC42 00000000
0001 00002094
200C 02010005
0005 01700137
200C 00000002 ;
0000 06ED071A
OC42 00000000

, 0000 00202094

The values shown in hexadecimal on the right side Figure·6-J. Windows Spy Program Viewing Mouse
of the Spy window are the wParam and lParam data Messages.
that is sent with the message. wParam is a WORD, so it
only has 16 bits of information, but lParam contains 32 bits. These parameters are used to encode the mouse position
on the screen, and encode the data about what type of object the mouse cursor is above. We will examine these fields
in a moment.

Mter a little fooling around with Spy, you will realize that Windows sends a lot of messages to your program as you
move the mouse or use its buttons. Fortunately, most programs can ignore the majority of these messages and just
pass them to the default window's procedure. The messages that you are most likely to use are WM_MOUSEMOVE,
MCLBU'ITONDOWN, and its cousins (MtCRBU'ITONDOWN, etc.) for detecting the left, right, or center mouse but
ton being pressed or released.

163

WINDOWS API BIBLE

Common Mouse Messages
When you move the mouse, Windows sends a WM_MOUSEMOVE message. The message is not sent every time the
moOse cursor moves from one screen pixel to the next. How often the message is sent depends on how fast a computer
is running Windows. In general terms, you can expect to get this message about every tenth pixel as the user sweeps
the mouse cursor across the screen, more often if the cursor is moved slowly.

When your program receives a W1\CMOUSEMOVE message, the IParam value contains the cursor's X,Yposition
on the screen. The Yposition is the high-order 16 bits, while theXposition is in the low-order 16. Extracting the two
WORD-sized values from a LONG parameter is such a common task that the WINDOWS.II file provides the LOWORD
and HlWORD macros to automate the task. A typical program fragment for dealing with WM_MOUSEMOVE messages
in the WinProcO function is

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ -

int nXpos, nYpos

switch (iMessage)
'{

case WM_MOUSEMOVE:
nXpos = LOWORD (lParam);
nYpos = HIWORD (lParam) ;

1* process windows messages *1

. '. Note that the mouse cursor position is given relative to the upper left corner of the window's client area. Windows
provides two functions for converting back and forth between screen and client coordinates: ScreenToClientO and
ClientToScreenO. These functions are often used a~ partofthe mouse message processing logic. The other basic set
of messages have to do with pressing and releasil!,g the mouse button(s). Windows supports one, two, and three button
mice, but provides no method t.o determine which tyPe is in use. In practice, most programmers assume the conserva
tive ease and only use the left mouse button. The messages passed to your program from the mouse button active
inside the program's client area are summarized in Table 6-1.

j" Button.

~
. ·~;ddle

Bottom

Pressed'

WM_LBUTTONDOWN

WM_MBUTTONDOWN

WM_RBUTTONDOWN

Table 6-1. Client Area Mouse Button Messages.

Released ;

WM_LBUTTONUP

WM_MBUTTONUP

WM_RBU~ONUP

W_LBUTTONDBLCLK

WM_MBUTTONDBLCLK

WM_RBUTTONDBLCLK

You will not normally use them, but there is a parallel set of messages that are sent for mouse button activity
outside of the program's client area. These messages have the homolog names such as WM_NCLBUTrONDOWN, etc.,
where "NC" stands for "Nonclient." Double-clicking the mouse will not automatically generate a double-click mes
sage. You must specify that you want these messages in the window's class definition. This involves adding the
CS_DBLCLKS value to the class style as shown here.

wndclass.style = CS_HREDRAW I CS_VREDRAW I CS_DBLCLKS ;

This would be a typical setting prior to calling RegisterClassO. All of the mouse button messages return the X and
Y coordinates of the cursor in the IParam parameter, just like \VM_MOUSEMOVE. They also use wParam encodes if
one ofthe other mouse buttons, or the shift or control keys, are down when the specified mouse button is pressed. The
full descriptions of the messages are given in Chapter 9, Windows Messages.

You can find out if the system has 'a mouse by calling
bMouse = GetSystemMetrics (SM_MOUSEPRESENT> ;

The function will return TRUE if there is a mouse, FALSE if not. You can provide an imitation of mouse control by
converting from keyboard cursor keypresses to mouse movements. The SetCursorPosO function allows direct control
Jf the cursor location without reference to a mouse. There is no direct way to find out out how many buttons the
)Jstem mouse has.

164

6. MOUSE AND CURSOR FUNCTIONS ...

Caution: The mouse is a shared resource between all running programs under Windows. Some of the mouse
control functions, such as GetCaptureO and SetnnubleClickTimeO, will affect all of the programs running. Care must
be taken to free the mouse, and return the system parameters to their original state, as quickly as possible. '

Mouse Functions
The most frequently used mouse function is LoadCursor. It either loads one of the predefined cursor shapes or allows
you to load a custom cursor created with the SDKPaint program. Custom cursors have to be referenced in the
program's resource .RC file and given a name. For example, to load the cursor file HAl.~D.CUR created with SDKPaint
and give the resulting cursor shape the name "hand," add the following line to the resource file

hand CURSOR hand.cur

The cursor shape can be attached to a window's class definition. Windows then switches to that cursor shape any
time the mouse cursor is within the window's client area. The function LoadCursorO does the work of pulling the
cursor out of the resource dat.a so that it can be attached to the class definition. Use a statement like

wndcLass.hCursor :::; LoadCursor (ghlnstance, "hand") ;

prior to using RegisterClassO to create the class detinition. If you plan to switch between cursor shapes within the
bounds of one window, you are better off not assigning a cursor to the window's class. In this case, set the class cursor
to NULL, as shown here.

wndcLass.hCursor :::; NULL:

Then you can turn on the right cursor shape as the program receives W~CSETCURSOR . A typical code fragment
for a program that uses two cursors would be
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static
static

HCURSOR hHaridCursor, hArrowCursor ;
BaaL bUseHnnd:::; FALSE;

switch (iMessage)
{

1* process windows messages *1

case WM CREATE:
-hArrowCursor :::; LoadCursor (NULL, IDC_ARROW) ;

hHandCur'sor :::; LoadCursor (ghlnstance, (LPSTR) "hand")
break;

caseWM SETCURSOR:
- if (bUseHand)

SetCursor (hHandCursor) ;
eLse

S e,t Cu r sor (hAr rowC'u rso r) ;
break;

[Other program liileS!

The ultimate cursor shape control is the Cl'eateCursorO function, added with the 3.0 version of Windows. This
function allows you to change the shape of the cursor as the program runs, or as the. mouse moves. It can be used to
create a cursuI' that shows the numeric values of the cursor position as the mouse moves. Other creative uses are
possible. CreateCursorO defines a cursor with two memory areas that contain bitmaps of the cursor shape. The

. bitmaps are combined using logical A,ND and XOR operations to provide black, white, transparent, and inverse screen
coloring on every pLxel of the cursor.

Caret Functions
The caret is a blinking line or object that marks a temporary location on the screen. It is used in word processing
applications to mark where the next typed letter will be displayed. Similar uses appear in music score programs. The
caret automatically appears in edit controls (created with CreateWindowO). Carets inside edit controls do not have
to be controlled by your program, as the edit control has all of the built-in logic for moving the caret. The caret is a
system global resource. This means that there can only be one caret visible on the screen, no matter how many
windows or edit controls are visible. If you open a new window and it displays a caret, any other caret on the screen

165

WINDOWS API BIBLE

will vanish. This is I.ogical, as otherwise the user would not be able to tell where the next keyboard input would end up.
Carets are manipulated as static objects. They do not send messages back to windows. Generally, carets are defined
(using CreateCaretO) as vertical lines, although they can be bitmap images. Windows provides support for moving the
caret, changing its blinking speed, and hiding it when not needed. !fyou use a caret in an application, you will need to
process the \WtCSETFOCUS and WI\CKILLFOCUS messages. When the application gains the input focus, create and
show the caret using CreateCaretO and ShowCaretO. When it loses the input focus, call DestroyCaretO to eliminate
it. There is an example of this logic under the CreateCaretO function description.

Mouse and Cursor Function Summaries
Table 6-2 summarizes the mouse and cursor functions. The complete function descriptions are after the table.

ClientT oScreen

ClipCursor

CreateCaret

CreateCursor

DestroyCaret

DestroyCursor

GetCapture

GetCaretBlink TIme

GetCaretPos

GetClipCursor

GetCursorPos

GetDoubleClick Time

HideCaret

LoadCursor

ReleaseCapture

Screen T oClient

SetCapture

SetCaretBlink Time

SetCaretPos

SetCursor

SetCursorPos

SetDoubleClickTime

ShowCaret

ShowCursor

SwapMouseButton

Converts a point from client coordinates to screen coordinates.

Confines tile mouse cursor to an area on the screen.

Creates a caret shape.

Builds a cursor shape.

Removes a caret from a window.

Deletes a cursor created with CreateCursor().

Retrieves a handle to the window that has captured the mouse.

Finds the current rate at which the caret is flashing.

Determines the location of the caret in a window's client area.

Determines the rectangle that the mouse was last confined to by Clip8ursor(). (Win 3.1)

Retrieves the X, Y position of the mouse cursor.

Retrieves the double-click time value for the mouse.

Makes a caret invisible.

Loads a new cursor shape.

Releases capture of the mouse.

Converts from screen coordinates to client window coordinates.

Captures the mouse so that only the program with the mouse captured receives mouse messages.

Sets the rate at which· the caret shape flashes on the screen.

Sets the position of the caret.

Establishes which cursor shape to display.

Moves the mouse cursor to a new location.

Changes the mouse button double-click time.

Makes the caret visible at its current location.

Shows or hides the cursor shape.

Reverses the right and left mouse buttons.

Table 6-2. Mouse and Cursor Function Summaries.

CLIENTToSCREEN .• Win 2.0. f!I Win 3.0 II Win 3.1
Purpose

Syntax

Converts a point from client cool'dinates to screen coordinates.

void ClientToScreen(HWND hWnd, LPPOINT IpPoint)j

166

Description

Uses

Returns

See Also

Parameters
hWnd

ipPoint

6. MOUSE AND CURSOR FUNCTIONS T

The point structure pointed to by IpPoint is updated using screen coordinates. Screen coordi·
nates are pixels measured from the upper left corner of the screen. Client coordinates are pixels
measured from the upper left corner of the window's client area.

Use in programs that use the mouse to capture images off of the screen.

No returned value (void).

SetCaptureO, ScreenToClientO

HWND: The parent window's handle.

LPPOINT: A long pointer to a point structure. Initially, this point contains the client point COOl"

dinates.

Related Messages \\~CLBUTrONDOWN, WM_MOUSEMOVE
Example Here is a useful function which you can use in screen capture programs. The function takes two

points in client coordinates (as might be retrieved from the IParam data from a \VM_LBUITON·
DOWN message) and converts them to window coordinates. The function then draws a rectangle
onto the screen, outlining an area between the two points.

1* OutlineBlockO writes a rectangle on the screen given the two corner *1
1* points. The R2_NOT style is used, so drawing twice on the same location *1
1* erases the outline. *1

void OutlineBlock (HWNO hWnd, POINT beg; POINT end)
{

HOC hDC;

hOC::: CreateOC ("DISPLAY", NULL, NULL, NULL> ;
ClientToScrcen (hWnd, &beg); 1* convert to screen units *1
ClientToScreen (hWnd, &end) ;
SetROP2 (hOC, R2_NOr>;' 1* use logical NOT brush *1
MoveTo (hOC, beg.x, beg.y) 1* draw rectangle *1
LineTo (hOC, end.x, beg.y)
LineTo (hOC,'end.x, end.y)
LineTo (hOC, beg.x, end.y)
LineTo (hOC, beg.x, beg.y)
OeleteOC (hOC) ;

}

CUPCURSOR Il Win 2.0 II Win 3.0 II Win 3.1

Purpose
Syntax

Description

Uses

Returns

See Also

Parameters

Confines the mouse cursor to an area on the screen.

void ClipCursor(LPRECT IpRecl)j

Mter calling this function, the mouse pointer can only be moved within the bounds set by the
lpRecl rectangle.

Use sparingly, if at all. If the mouse bounds are set in a program, they will continue to be in effect
after the program terminates. This basically makes the mouse useless, forcing the user to reboot
the computer. A better way for a program to limit mouse's activities is with GetCaptureO.

No returned value (void).

GetCaptureO, SetCursorO, GetClipCursorO

lpRect LPRECT: A long pointer to a rectangle struc.ture. Use SetRectO to quickly fill in the rectangle's
dimensions. Set IpRect equal to NULL to free the mouse to move anywhere on the screen:

Related Messages ~CMOUSEMOVE

Example When the user clicks the "Do It!" menu item,. the mouse is confined to a region bounded by a

167

WINDOWS API BIBLE

rectangle with screen c'6ordinates 10,10 and 200,200. The program frees the mouse when the user
clicks the "Quit" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

RECT rMouseCage ;

switch (iMessage)
{

1* process windows messages *1

}

case WM_COMMAND:
swi tch (wParam)
{

1* process menu items *1

case 10M_DOlT: 1* User hit the "00 it" menu item *1
SetRect «LPRECT) &rMouseCage, 10, 10, 200, 200) ;
ClipCursor «LPRECT) &rMouseCage) ; 1* trap mouse *1
break;

case 10M_QUIT:
ClipCursor (NULL) ; 1* let the mouse loose again *1
OestroYWindow (hWnd) ;
break;

}

break;
case WM_OESTROY: 1* stop application *1

PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

CREATE CARET • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

hBitmap

nWidth -

nHeight

Creates a caret shape.

void CreateCaret(HWND hWnd, HBITMAP hBitmap, int n Width , int nHeight)i

Only one caret can exist for any window at a given time. This function creates a caret, removing
any existing caret. The caret can either be a bitmap or a vertical line of set size.

The first step in displaying a caret. This function is followed by SetCaretPosO and ShowCaretO.

No returned value (void).

Destroy-CaretO, SetCaretPosO, ShowCaretO, LoadBitmapO

HWND: A handle to the window that owns the caret.

HBITMAP: A handle to the bitmap to use as the caret. The handle is obtained using the
LoadBitmapO function. hBitmap can be NULL. In this case, a black caret nWidth wide by
nHeight tall is const.ructed. If hBitmap is 1, a gray caret is created.

int: The width of the caret in logical units. The size will depend on the mapping mode in effect.
Ignored if hBitmap is not NULL. Set to NULL to use the default width" equal to the window
border width.

int: The height of the caret in logical units. The size will depend on the mapping mode in effect.
Ignored if hBitmap is not NULL. Set to NULL to use the default height, a multiple of the window
border width.

Related Message \%CSETFOCUS, WM_KILLFOCUS
Example - This example shows the creation of two carets. The first is created when the program starts. This

is a black cursor, 3 pixels wide by 20 high. When the user clicks the "D~ It!" menu item, a bitmap
caret is loaded and displayed.

168

6. MOUSE AND CURSOR FUNCTIONS '"

o .The Resource .Re File
1* generic.rc *1
#include <windows.h>
#i nc lude Ugener i c. h"
generic ICON
ibeam BITMAP

generi c MENU
BEGIN

MENUITEM "&~~ It!"
MEH,UITEM "&Qui t";

END

generic.ico
ibeam.~mp

IDM_DOlT
IDM_QUIT

The program's WndProcO function uses a static variable bNewCaret to keep track of which caret to display. The
carrt shape is created when the application gains the input focus and is destroyed when the focus is lost. Note how the
caret is hidden before painting CWM_PAINTmessage) and then displayed again. This avoids having the caret bitmap
interfere with the painting of the client area.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

static
PAiNTSTRUCT
static

HBITMAP

BOOL

hbmCursor ;
ps ;
bNewCaret = FALSE;

switch (iMessage)
(

1* process windows messages *1

case WM_SETFOCUS:
if (bNewCaret)
(

hbmCursor = LoadBitmap (ghinstance, (LPSTR)"ibeam")
CreateCaret (hWnd, hbmCursor, NULL, NULL) ;

}

else
CreateCaret (hWnd, NULL, 3, 20) ;

SetCaretPos (10, 10)
ShowCaret (hWnd)
break;

case WM_KILLFOCUS:
DestroyCaret () ;
break;

case WM_PAINT:
HideCaret (hWnd) ;
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, "Text output.", 12)
EndPaint (hWnd, &ps)
ShowCaret (hWnd)
break;

case WM_COMMAND: 1* process menu items * I
swi tch (wParam)
(

case IDM_DOIT: 1* Change caret shapes *1
bNewCaret = TRUE; ;
PostMessage (hWnd, WH_SETFOCUS, 0, OL) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;

case WM_DESTROY: 1* stop application *1
DeleteObject (hbmCursor)
PostQuitHessage (0) ;
break;

default: 1* default windows message processing *1
·return DefWindowProc (hWnd, iMessage, wParam,lParam) ;

169

WINDOWS API BIBLE

}

return (OU ;
}

CREATE CURSOR o Win 2.0 II Win 3.0 • Win 3.1
Purpose

" Syntax

Description

o
o

Builds a cursor shape.

HCURSOR CreateCursor(HANDLE hlnstance, int nXhotspot, int nYhotspot, int nWidth, int
nHeight, LPSTR IpANDbitPlane, LPSTR IpXORbitPlane)j

This function allows you to create a mouse cursor shape while the program is running. The cursor
shape is controlled by two memory areas that contain masks for the cursor. The bits in these
memory blocks are compared to the screen pixels using a logical AND and logical exclusive OR
operations. The results are shown in Table 6-3.

o
1

o

Black

White

Transparent

Inverted color

Table 6-3. Cursor Boolean Masks.

-i1ses -

Returns
See Also

Parameters
hlnstance

nXhotspot

nYhotspot

nWidth

nHei.qht
IpANDbitPlane

Modifying a cursor shape as the program runs. The cursor can be made to change depending on
where it is on the screen, or what action is occurring.

A handle to the cursor created, NULL on error.

LoadCursorO, DestroyCursorO, SetCursorO

HANDLE: The instance handle for the running program.

int: The horizontal position on the cursor's rectangle that is logically the point with which the
cursor points.

int: The vertical position on the cursor's rectangle thl;l-t is logically the point with which the
cursor points.

int: The width of the cursor bitmap in pixels.

int: The. height of the cursor bitmap in pixels.

LPSTR: A pointer to the memory area containing the AND mask for the cursor. The Microsoft
mouse documentation calls this the "screen mask." See Table 6-3 for the meaning of the AND
mask bits.

IpXORbitPlane LPSTR: A pointer to the memory area containing the XOR mask for the cursor. The Microsoft
mouse documentation calls this the "cursor mask." See Table 6-3 for the meaning of the AND
mask bits.

Related Messages IDCMOUSEMOVE, WM_SETCURSOR

Example This example uses CreateCursorO to build a rectangular cursor shape filled with a gray pattern.
When the usp,r clicks the "Do It!" menu item, the cursor shape is modified by drawing anX on the
gray background. The cursor shape is only active in the window's client area. The normal arrow
cursor is displayed in the menu, title, and borders of the window, as well as outside of the
application's window area. The example takes a shortcut to fill in the background. The cursor
data is actually.loaded from a bitmap. The bitmap is painted with the stock object
"LTGRAY_BRUSW' to come up with the gray pattern. This saves having to figure out how to set

170

6. MOUSE AND CURSOR FUNCTIONS 'f'

each of the memory bits in the areas that CrcateCursorO looks to find the cursor shape data.
Similarly, the.X is drawn on the bitmap image and then loaded into the cursor memory area.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessagp., WORD wParam, LONG lParam)
{

static
static
static
HOC
static
static
LPSTR

HCUR.SOR hCursor
int
HBITMAP hBM ;

HOC
HANDLE

,
nCursX, nCursY, nByteArea

hOC;
hDCBi tmap ;
hmemAND, hmemXOR
lpAND, lpXOR ;

switch (iMessage)
{

1* process wi ndows messages *1

case WM_CREATE:
nCursX = GetSystemMetr'jcs (SM_CXCURSOR) ; 1* get curs size *1
nCursY = GetSyst~mMetrics (SM_CYCURSOR) ;
hBM = CreateBitmap (nCursX, nCursY, 1, 1, NULL)
hOC = GetDC (hWnd) ;
hDCBitmap = CreateCompatibleDC (hOC) 1* get bitmap DC *1
ReleaseDC (hWnd, hOC) ;
nByteArea = (nCursX/S) * nCursY ;
SelectObject (hDCBitmap, hBM) ;

1* reserve memory for cursor shape data *1
hmemAND = GlobalAlloc (GMEM_MOVEABLE, (DWORD) nByteArea) ;
hmemXOR. = GlobalAlloc (GMEM..;..MOVEABLE, (DWORD) nByteArea);

1* lock the memory areas to work with them *1
lpAND = GlobalLock (hmemAND) ;
lpXOR = GlobalLock (hmernXOR) ;

1* create a gray rectangle cursor *1
SelectObject (hDCBitmap, GetStockObject (LTGRAY_BRUSH»
PatBlt (hDCBitmap, 0, 0, nCursX, nCursY, PATCOPY) ;
GetBi tmapBi ts (hBM, (DWORD) nByteArea, lpAND); 1* in mem *1
_fmemset (lpXOR, 0, nByteArea) ; 1* XOR mem to all D's *1

GlobalUnlock (hmemAND) ;
GlobalUnlock (hmemXOR) ;
break;

case WM_MOUSEMOVE: 1* draw the custom cursor * 1
Set Cursor (NULL) ;
if (hCursor)

DestroyCursor (hCursor) ;1* ki II old cursor, if any *1
lpAND = GlobalLock (hmemAND) ;
lpXOR = GlobalLock (hmemXOR) ;
hCursor = CreateCursor (gh1nstance, 0, 0, nCursX,

nCursY, lpAND, lpXOR)
GlobalUnlock (hmemAND)
GlobalUnlock (hmemXOR)
SetCursor (hCursor) ;
break; .

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case 1DM_DOIT: 1* add an X to the cursor bitmap *1
lpAND = GlobalLock (hmemAND) ;
SelectObject (hDCBitmap, GetStockObject (BLACK_PEN»
MoveTo (hDCBitmap, 0, 0) ;
LineTo (hDCBitmap, nCursX, nCursY) ;
MoveTo (hDCBitmap, 0, nCursY) ;
LineTo (hDCBitmap, nCursX, 0) ;
GetBitmapBits (hBM, (DWORD) nByteArea, lpAND)
GlobalUnlock (hmemAND) ;
break;

case 1DM_QUIT:

}

DestroyWindow (hWnd) ;
break;

171

WINDOWS API BIBLE

break ';
case WM_DESTROY: 1* stop application *1

DestroyCursor (hCursor) ;
DeleteObject (hBM) ;
DeleteDC (hDCBitmap) ;
GlobalFree (hmemAND) ;
GlobalFree (hmemXOR) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc <hWnd, iMessage, wParam, lParam)

}

return (OL)
}

DESTROyCARET • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Removes a caret from a window.

void DestroyCaret(void);

Used to destroy cursors created with the CreateCaretO function. Frees any memory associated
with the caret, but does not eliminate a bitmap if it was used to create the caret.

Permanent removal of a caret. Use HideCaretO and ShowCaretO for temporary hiding and dis-
. playing of the caret. This function will only work if the current task (running application) owns
the caret.

No returned value (void).

ShowCaretO, HideCaretO, CreateCaretO, DeleteObjectO

Parameters None (void).
Related Messages ~CSETFOQUS, WM_KILLFOCUS
Example See the example under the CreateCaretO function description.

DESTROyCURSOR o Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

Returns

See Also

Parameters
hCursor

Example

GETCAPTURE

Purpose
Syntax

Description

Uses

Deletes a cursor created with CreateCursorO.

BOOL DestroyCursor(HCURSOR hCursor)j

Frees the memory associated with a cursor created with CreateCursorO. Do not use this with
cursors loaded from the program's resource .RC file. Also, do not forget to delete the i)t :-;'" objects
used to create the cursor (see the example under CreateCursorO).

BOOL. TRUE if the cursor was destroyed, FALSE on error.

CreateCursorO, DeleteObjectO

HCURSOR: A handle the cursor created with CreateCursorO.

See the example under the CreateCursorO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Retrieves a handle to the ¥lindow that has captured the mouse.
HWND GetCapture(void)j
Once a window captures the mouse, no other application will receive messages from the mouse.
GetCaptureO allows you to find out which window has captured the mouse.
Capturing the mouse is normally used in applications that use the mouse to outline or store
images off of the screen. GetCaptureO can be used to locate the window that has the mouse
captive, so that you can send that window a message to release the mouse.

172

6. MOUSE AND CURSOR FUNCTIONS "f'

Returns HWND, the handle of the window that has captured the mouse. NULL if no window has captured
the mouse. .

See Also SetCaptureO, ReleaseCaptureO
Parameters None (void).
Related Messages \w\CMOUSEMOVE

Example This example prints the hame of the window with the mouse captured on the window's client area
every time the window receives a \w\CMOUSEMOVE message. When the user clicks the "Do It!"
menl:! item, the program captures the mouse itself. Clicking the left mouse button releases the
mouse.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORu wParam, LONG lParam)
{

HOC
HWNO
char

hOC;
hwndCapture
cBuf [25] ;

switch (iMessage) 1* process windows messages *1
{

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case IDM_OOIT:/* User hit the "Do it" menu item *1
Set Capture (hWnd) ;
break;

ca se 10M_QUIT: 1* send enCl of app l i cat i on message *1
OestroyWindow (hWnd) ;
break;

break;
case WM_MOUSEMOVE:

hwndCapture ;;; GetCapture () ;
hOC;;; GetOC (hWnd) ;
TextOut (hOC, 10, 10,

"The window with the mouse captured is:", 38)
if (!hwndCaptur~)

else
{

TextOut (hOC,·10, 40, "<None>", 6) ;

GetWintlowText (hwndCapture, cBui, 24) ;
TextOut ~hOC, 10, 40, cBuf, strlen (cBuf)

ReleaseOC (hWnd, hOC)
break;

case WM_LBUTTONOOWN:
ReleaseCapture () ;
break;

case WM_OESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;
}

GETCARETBLINKTIME • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Returns

Finds the current rate at which the caret is flashing.

WORD GetCaretBlinkTime(void)j

Returns the time, in milliseconds, between flashes of the caret. The time is returned even if the
caret is not visible.

WORD, the time in milliseconds between flashes.

173

WINDOWS API BIBLE

See Also

Parameters
Example

SetCaretBlinkTime{), CreateCaretO
None (void).

Tn this example, the blink rate of the caret is slowed down by 0.1 sec every time the user clicks the
"Do Jt!" menu item. The blink rate is restored to 0.5 sec (500 milliseconds) when the user clicks
the "Quit" menu item and exits the program. This example is interesting if two instances of the
program are run at the same time. Starting a second copy steals the caret from the fIrst program's
client area. Clicking the "Do It!" menu item in either instance of the program slows the blink rate
in the window that displays it. The changed blinking rate remains in effect in any application that
gains the caret. This visually demonstrates that the caret is a shared resource between applica~
tions and instances. ..

lcng FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, lONG lParam)
{

}

PAINTSTRUCT
static Baal

ps ;
bNewCaret = FALSE;
nTime ; int

switch (iMessage)
{

1* process windows messages *1

}

CreateCaret (hWnd, NUll, 3, 20)
SetCaretPos (10, 10)
ShowCaret (hWnd) ;
break;

case WM_KIllFOCUS:
DestroyCaret ()

. break;
case WM_COMMAND: 1* proce:;s menu items *1

swi tch (wParam)
{

case IDM_DOIT: 1* Change caret blink time *1
nTime = GetCaretBlinkTime ()
nTime += 50 ;
SetCaretBlinkTime (nTime) ;
break i "-

case ID'CQUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break;

}

break;
case WM_DESTROY: 1* stop application *1

SetCaretBlinkTime (500) 1* normal blink time*1
PostQuitMessage (0) i

. break i
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage" wParam, lParam) ;

return (OL> ;

GETCARETPOS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Returns

See Also

Determines the location of the caret in a window's client area.

void GetCaretPos(LPPOINT lpPoint)j

The current X and Y positions are loaded into the POINT structure pointed to by lpPoint. The
program should be sure to use ShowCaretO before using this function. Otherwise, the location
returned will be in whatever window currently displays the caret.

No returned value (void).

SetCaretPosO, CreateCaretO

174

Parameters
IpPoint

Example

·6. MOUSE AND CURSOR FUNCTIONS .~

LPPOINT: A pointer to a point structure that will hold the caret'sX and Y client coordinates. The'
values are given in logical units. I

In this example, the caret is moved 10 units to the right every time the user clicks the "Do It!"
menu item. The current caret position is also displayed on the client area.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

POINT
char
HDC

ptCaretPos ;
cBuf [10J
hDC

switch (iMessage)
{

1* process windows messages *1

}

CreateCaret (hWnd, NULL, 3, 20) ;
SetCaretPos (10, 10) ;
ShowCaret (hWnd) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
GetCaretPos «LPPOINT) &ptCaretPos) ;-
SetCaretPos (ptCaretPos.x + 10, ptCaretPos.y)
itoa (ptCaretPos.x + 10, cBuf, 10) ;
hDC = GetOC (hWnd) ;
TextOut (hOC, 10, 50, cBuf, strLen (cBuf»
TextOut (hOC, 10, 80,

"= current caret X position.", 27)
ReLeaseDC (h~nd, hOC) ;
break;

case I DM_QU IT :

}

break;

DestroyWindow (hWnd)
break;

case WM_DESTROY:/* stop appLication *1
PostQuitMessage (0) ;
break;

defauLt: 1* defauLt windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (OU
}

GETCLIPCURSOR o Win 2.0 0 Win 3.0 .. Win 3.1
Purpose
Syntax

Description

. Uses

Returns
See Also

Parameters
lpRect

Determines the rectangle that the mouse was last confined to by ClipCursorO. ,.
void GetClipCursor (LPRECT IpRect)j

ClipCursorO is used to limit the mouse cursor to a rectangular area on the screen.
GetClipCursorO can be used to determine the current clipping rectangle .
Seldom used. The cursor is a shared resource between all applications running on the system.
Limiting the cursor to an area on the screen violates the Windows design principle of allowing
programs to behave independently.

No returned value (void).

ClipCursorO, GetWindowRectO

. LPRECT: A pointer to a RECT data structure. GetClipCursorO will fill in the four rectangle
coordinate values for the current mouse clipping rectangle. If the mduse is not confmed, the
screen dimensions are retrieved. . I

175

WINDOWS API BIBLE

Example This example, illustrated in Figure
6-2, confines the mouse cursor to
the limits of the application's win
dow. The rectangle is recalculated
when either a WM_MOVE or
WM_SIZE message is received. The
coordinates of the clipping rect
angle are displayed in the client
area. Clicking the "Do It!" menu
item temporarily removes the
mouse limits.

7" ' 'generic ,-FF
Do It! Quit

Mouse cage = (2211 22~ 26211 120)

Figure 6-2. GetClipCursor() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

RECT
PAINTSTRUCT
char

rCage ;
ps ;
cBuf [128) ;

switch (iMessage)
{

1* process windows messages *1

}

case WM_MOVE:
case wfiLSIZE:

GetWindowRect (hWnd, &rCag~) ;
ClipCursor «LPRECT) &rCage); 1* trap mouse in window *1
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
GetClipCursor (&rCage) ;
TextOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf,

"Mouse cage = [7.d, 7.d, 7.d,7.d)",
rCage.left, rCage.top, rCage.right, rCage.bottom»

EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM DOlT:
eli pCursor (NULL> ;
break;

case IDFoLQUlT:

} .
break;

DestroYWindow (hWnd)
break;

1* free mouse *1

case WM_DESTROY:
ClipCursor (NULL> ; 1* free mouse *1
PostQuitMessage (0)
break;

default:
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL> ;

GETCURSORPOS • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

. Retrieves theA'; Yposition of the mouse cursor.
void GetCursarPos(LPPOINT IpPoint)j

TheA';Yposition of the mouse cursor isloaded into the lpPoint structure. Screen coordinates are
used. To convert to client coordinates use, ScreenToClientO.

, ..
"',I

176

Uses

Returns

See Also

Any time you need to locate the
mouse cursor. This is seldom neces
sary, as moving the mouse generates
MLMOUSEMOVE messages, and
clicking the mouse buttons gener·
ates WM_LBUTTONDOWN, etc.
messages. These messages encode
the cursor position in the lParam
value (Chapter 9, Windows Mes
sages, includes all of the message
descriptions).

No returned value (void).

6. MOUSE AND CURSOR FUNCTIONS ~

- gen~ric FF
Do It I Quit

Cursor X = 482~ Y = 406

Figure 6-3. GetCursorPos() Example.

SetCursorPosO, ScreenToClientO, SetCaptureO, ReleaseCaptureO
Parameters
lpPoint LPPOINT: A pointer to a POINT structure.
Related Messages WM_MOUSEMOVE .

Example When the user clicks the "Do It!" menu item, a timer is set. WM_TIMER messages are sent every
second, causing the cursor position to be displayed on the screen at these time intervals. (See
Figure 6-3.) This updating continues even if the window loses the input focus to another applica
tion.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hOC;
POINT pCursor;'
char cBuf [128] ;

}

switch (iMessage)
(

case WM_TIMEK:

1* process windows messages *1

GetCursorPos (&pCursor) ;
hOC = GetDC (hWnd) ;
SetBkMode (hOC, OPAQUE) ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Cursor X.= Xd, Y = Xd .. , pCursor. x, pCursor .y» ;
ReLeaseOC (hWnd, hDC) ;
break;

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_DOIT: 1* set 1 sec timer *1
if (!SetTimer (hWnd, 1~·1aaa, NULL»

break;

MessageBox (hWnd, "Too many cLocks or timers!",
"Warning", MB_ICONEXCLAMATION 1MB_OK) ;

case IDM_QUIT: 1* send end of appLication message *1
OestroyWindow (hWnd)
break;

}

break;
case WM_DESTROY: 1* stop appLication *1

KiLLTimer (hWnd, 1) ;
PostQuitMessage (0) ;
break;

defauL t: 1* defaul t windows message processing *1
return OefWindow~roc (hWnd, iMessage, wParam, lParam) ;

return (aL) ;

WINDOWS API BIBLE

GETDoUBLECLICKTIME II Win 2.0 II Win 3.0 a Win 3.1
Purpose

Syntax,

Description

Uses

Returns

See Also

Retrieves the double-click time value for the mouse.

WORD GetDoubh~C1ickTime(void);

The double-click time is the number of milliseconds between two mouse clicks. Clicking faster than
this value generates a WM_LBUTrONDBLCLK, WM_MBUTrONDBLCLK, or WM_RBUT
TONDBLCLK message for the left, middle, or right mouse buttons, respectively. Note that the
WM_LBUTTONDOWN, etc. messages will always be received prior to getting the double-click
message.

Used in advance of SetDoubleClickTimeO to find the current double-click time~alue, prior to
changing it.

WORD, the double-click time in milliseconds.

SetDoubleClickTimeO·
Parameters None (void).

Related Messages MCLBUTTONDBLCLK, WM_MBUTrONDBLCLK, W~CRBvrrONDBLCLK

Note

Example.

The double-click messages will only be generated if the CS_DBLCLKS style is added to the
window's class definition (see the example).' ,

This program detects right button single- and double-clicks and prints messages in the client
area for each. The messages are erased by overwriting them with blanks when WM_MOUSEMOVE
messages are received. Clicking the "Do It!" menu item increases the double-click time by 100
milliseconds, after displaying the current double-click time. ReceIving double-clicks requires that
the CS_DBLCLKS style be added to the window's class definition in the WinMainO function

wndclass.style = CS_HREDRAW I CS_VREDRAW I CS_DBLCLKS ;

Note that the doube-click time is reset to the original timing when the program exits. Other
wise the slower double-dick time would continue to affect all of the other programs on the
system. '

long FAR PASCAL WndProc (HWND hWnd, unsig~ed iMessage~ WORD wParam, LONG lParam)
{

HDC
char
int

hDC ;

static int

cBuf' [25] ;'
nDoub leTi me ;
nOldDClic.k ;

switch (iMessage)
{

'case WM_CREATE:

1* process wi ndows messages * I

. nOldDClick = GetDoubleCtickHme () ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{ .

case IDM_DOIT:'
nDoubleTime = GetDoubleClickTime () ;
hDC = GetDC (hWnd) ;
TextOut (hOC, 10, 10, "The Double Click Time::", 23) ;
itoa (nOoubleTime, cBuf, 10) ;' '
TextOut (hDC, 200, 10, cBuf, strlen (cBuf»)
ReleaseDC (hWnd, hDC) ;
SetOoubleClickTime (nOou~leTime + 100) ;
break; ,

case 10M_QUIT: 1* send end of application message *1
OestroYWindow (hWnd)
break;

}

break;

178

}

6. MOUSE AND CURSOR FUNCTIONS '"

case WM_MOUSEMOVE: 1* writes over old messages.as ,mouse moves *1
hOC = GetOC (hWnd) ;
SetBkMode (hOC, OPAQUE)
TextOut (hOC, 10, 30, " ", 30) ;
TextOut (hOC, 10, 50, " ", 30) ;
ReleaseOC (hWnd, hOC) ;
break;

case WM_LBUTTONOOWN: 1* detected the left mouse button down *1
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 30, "Got a left button! ", 17> ;
ReleaseOC (hWnd, hOC) ;
brea k ;

case WM LBUTTONOBLCLK: 1* detected a double click of left button *1
-hOC = GetOC (hWnd) ;

TextOut (hOC, 10, 50, "Got a double click!", 18)
ReleaseOC (hWnd, hOC) ;
break;

case WM_OESTROY:I* stop application *1
SetOoubleClickTime (nOldOClick)
PostQuitMessage (a) ;

break;
default: 1* default windows message processing *1

return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

HIDE CARET

Purpose

Syntax

Description

Uses •

Returns

See Also

Parameters
hWnd

Example

LOAD CURSOR

Purpose

Syntax

Description

• Win 2.0 • Win 3.0 • Win 3.1
Makes a caret invisible.
void HideCaret(HWND hWnd)j

The caret must be created with CreateCaretO before it can be visible. As soon as ShowCaretO is
called"the caret starts blinking. The ,caret remains visible until HideCaretO or DestroyCaretO is
called. If HideCaretO has been called more than once, an equal number of ShowCaretO calls will
be needed before the caret becomes visible.

It is frequently desirable to hide the caret while the user is doing operations that take the focus
of activities away from the client area (menu selections, etc.), or during WM_PAINT processing.
As soon as the activity is done, the caret can be made visible again with ShowCaretO. The caret
is shared by all applications. If a caret is displayed on one program's window, a caret in another
running program's window will disappear automatically.

No returned value (void).

ShowCaretO, DestroyCaretO, SetCaretBlinkTimeO

HWND: A handle for the window that owns the caret. A window can only own one caret at one
time. Use CreateCaretO to add a caret shape to a window. Setting hWnd to NULL will hide the
caret if any window in the current task owns the caret.
See the example under the CreateCaretO function desc'ription.

, • Win 2;0 • Win 3.0 • Win 3.1

Loads a new cursor shape.
HCURSOR LoadCursor(HANDLE hlnstance, LPSTR IpCursorName)j

This function allows you to load predefmed cursors that Window's supplies, or a custom c,ursor
designed with the SDKPaint program. For the latter, the cursor name is included in the resource
.RC file. Cursors must be loaded prior to calling SetCursorO to make them visible.

179 .

WINDOWS API BIBLE

Uses

Returns

See Also
Parameters
hlnstance

lpCursorName

IDC-ARROW

I DC_CROSS

IDC.JBEAM

IDC-,CON

I DC_SIZE

IDC_SIZENESW

. I DC_SIZEWE

IDC_UPARROW

IDC_WAIT

If the cursor is loaded as part of the window's class definition, the mouse cursor will change to the
loaded cursor shape any ti~e the mouse is within the windows client area. If the goal is to have
different cursor shapes within the same window's client area at different times, then the window
class cursor shape should be set to NULL, and the cursor specified by calling SetCursorO every
time a WM_SETCURSOR message is received. See the SetCursorO example code to see this in
practice.

A hanGle to the new cursor. NULL if new cursor was found.

SetCursorO, CreateCursorO

INSTANCE: The instance handle for the executable file that contains the cursor. hlnstance
should be NULL if you are loading one of the predefined cursor shapes listed below.

LPSTR: A pointer to a string containing the cursor name. For custom cursors, this should be the
name used to reference the cursor in the resource .RC file. For predefined cursors, whe're
hlnstance has been set to NULL, lpCursorName should be one of the values described in Table 6-4.

The standard arrow shape.

A thin cross hair cursor.

Ani-beam cursor. Used for positioning text.

An empty icon.

A square with a smaller square in the lower right corner. Looks like a window being reduced in size.

The double-headed arrow Windows uses when adjusting the upper left and lower right sizing borders.
Points "NE by SW."

'The double-headed arrow Windows uses when adjusting the top and bottom sizing borders. Points
"North/South. "

The double-headed arrow Windows uses when adjusting the upper right ,and lower left sizing borders.
Points "NW by SE."

The double-headed arrow Windows uses wt ,en adjusting the right or left sizing borders. Points "West/East."

An arrow pointing up.

The hourglass cursor shape.

Table 6-4. Predefined Cursor Names.

Related Messages WM_MOUSEMOVE, WM_SETCURSOR

Example' In this example, a cursor was created using the SDKPaint program. The cursor is named in the
resource .RC file as "hand." The program creates a popup window when processing a
WM_CREATE message. The popup window has its own window class, which specifies the "hand"
icon. When the popup window is visible, the mouse shape will change to the "hand" icon anytime
the mouse position is within the popup window's client area.

C Resource File
/* generi c. rc

#include <windows.h>
#include "generic.h"
popup ICON
hand CURSOW

generic.ico
hand. cur

180

popup
BEGIN

MENU

6. MOUSE AND CURSOR FUNCTIONS T

MENUITEM "&00 It!"
MENUITEM "&Qui t",

END

10M_Don
IOM_QUn

o WndProc() Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMe~sage, WORD wParam, LONG lParam)
{

HOC
static WNDCLASS
static HWND

hOC; 1* device context handle *1
wndclass ; 1* the window class *1
hPopup, hParent

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE: 1* bui ld the chi ld window when program starts *1
wndclass.style

= CS_HREDRAW I
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndclass.hIcon
wndc l,ass. hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

CS_VREDRAW I CS_PARENTDC
= WndProc ;
= 0 ;
= 0 ;
= ghlnstance
= NULL;
= LoadCursor (ghInstance, "hand")
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondC lass" ;

if(RegisterClass (&wndclass»
{

1* register the window class *1

break;

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL> ;

ShowWindow (hPopup, SW_SHOW)

fOther program lines]

RELEASE CAPTURE • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Releases capture of the mouse.
void ReleaseCapture(void)j
The mouse is captured with the SetCaptureO function. When a window captures the mouse, no
other window receives mouse messages. ReleaseCaptureO returns the mouse to the,system, so
that all windows can receive messages from the mouse.
SetCaptureO is usually used with
programs that outline or copy areas
off the screen.

Returns No returned value (void).
See Also SetCaptureO, GetCaptureO
Parameters None (void).
Related Messages \VM_MOUSEMOVE Figure 6-4. ReleaseCapture(J Example.

Example This example, as illustrated in Fig-
ure 6-4, displays the name of the window under the mouse cursor when the left mouse button is
clicked. The mouse is captured when the user clicks the "Do It!" menu item. The mouse must be
captured for this type of activity to avoid having control pass to the other window. The mouse
remains captured until the right mouse button is clicked.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;

181

WINDOWS API BIBLE

HWNO
POINT
char

hWndUnder ;
pMouse ;
cBuf [128J, cWi nName [64J ;

switch (iMessage)
{

1* process windows messages *1

}

}

return OL ;

case WM_COMMAND:
switch (wParam)
{

1* process menu items *1

case IDM_DOIT: 1* User hit the "Do it" menu item *1
Set Capture (hWnd) ; 1* capture mouse *1
break;

case IDM_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_LBUTTONDOWN: 1* show window under cursor *1
pMouse = MAKEPOINT (lParam) ; ",'
ClientToScreen (hWnd, &pMouse) ;
hWndUnder = WindowFromPoint (pMouse) ;
GetWindowText (hWndUnder, cWinName, 63)
hOC = GetOC (hWnd) ;
SetBkMode (hOC, OPAQUE) ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Window under cursor = r.s ", (LPSTR) cWinName»
ReleaseDC (hWnd, hOC) ;
break;

case WM_RBUTTONOOWN: 1* right mouse button re~eases *1
ReleaseCapture () ; 1* mouse *1
break;

case WM_DESTROY:I* stop application *1
ReleaseCapture () ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

SCREENToCLIENT • Win 2.0 • Win 3.0 • Win 3.1
.Pnrpose
Syntax

Description

Uses

Returns
See Also
Parameters
hWnd

IpPoint

Converts from screen coordinates to client window coordinates .
. void ScieenToClient(HWND hWnd, LPPOINT IpPoint)j
The X and Yvalues in the lpPoint point structure are changed from screen coordinates (used by
the mouse cursor) to client coordinates (used by painting functions).
Frequently used in coI\iunction with GetCursorPosO to convert the mouse cursor's location to an
X,Y location in the window's client area. This is typically done when processing WM_MOUSE
MOVE messages while drawing lines or positioning text in the
client area.
No returned value (void).
Get~ursorPosO, ClientToScreenO

HWND: A handle to the window which specifies the client area

Qo It! .Q.uit

Screen X Y = 435~ 401
Client X Y = 195.58

to use in converting to client coordinates. . Figure 6-5. ScreenToClient()
LPPOINT: A pointer to a POINT data structure. Initially holds Example.
the screen coordinates. After ScreenToClientO is called, the
POINT data contains the equivalent client coordinates.

Related Messages WM_MOUSEMOVE, WM_LBUTTONDOWN, WM_NCMOUSEMOVE

182

Example

6. MOUSE AND CURSOR FUNCTIONS V

This example, as illustrated in Figure 6-5, shows the cursor's location in both screen and client
coordinates when the cursor passes over the nonclient area of the window. This includes the
borders, caption, and menu bars. The W~CNCMOUSEMOVE message passes the screen coordi
nates of the cursor location as the IParam value. This is converted to a POINT with the
MAKEPOINT macro. ScreenToClientO converts the screen coordinates to client coordinates.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC
POINT
char

hOC;
pMouse ;
cBuf [128]

switch (iMessage)
{

1* process windows messages *1

case WM~COMMANO:
swi tch (wParam)
{

1* process menu items *1

case IDM_QUIT: 1* send end of application message *1
OestroyWindow (hWnd) ;
break

break
case WM_NCMOUSEMOvE: 1* nonclient mouse movement *1

pMouse = MAKEPOINT (lParam) ;
hOC = Get DC (hWnd) ;
SetBkMode (hOC, OPAQUE) ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Screen X,Y = %d, %d ", pMouse.x, pMouse;y»
ScreenToClient (hWnd, &pMouse);
TextOut (hOC, 0, 20, cBuf, wsprintf (cBuf,

"Client X,Y = %d, i:d ", pMouse.x, pMouse.y»
ReleaseOC (hWnd, hOC) ;
break;

case WM_OESTROY: 1* stop application *1
PostQui tMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, i,Message, wParam, lParam) ;

return (OL) ;

SETCAPTURE

Purpose
Syntax
Description

Uses

Returns

See Also
Parameters

• Win 2.0 • Win 3.0 • Win 3.1

Captures the mouse so that only the program with the mouse captured receives mouse messages.
HWND SetCapture(HWND hWnd);
Normally, any active program running on the system can receive mouse messages. If a program
calls SetCaptureO, mouse messages are sent only to it. This makes it impossible to switch focus
to another; windQw until ReleaseCaptureO is called. .
Programs that grab screen images off of the screen. During the process of outlining an area to be
copied, the mouse must be captured to avoid activating a window that the program is trying to
copy.
A handle to the window that previously had the mouse captured. NULL ifno wmdow had captured
the mouse.
ReleaseCaptureO, GetCaptureO

.hWnd HWND: A handle to the window that will capture the mouse.'

Related Messages WM_MOUSEMOVE, ~CSETFOCUS

Example See the example under the ReleaseCaptureO function description.

183

WINDOWS API BIBLE

SETCARETBLINKTIME • Win 2.0 • Win 3.0 • Win 3.1
Purpose

SyntaX

Description

Uses

Returns

See Also

Parameters
wMSeconds

Example

SETCARETPOS

Purpose

Syntax

Description

Uses

Returns
See Also .

Parameters
X
y

Example

Sets the rate at which the caret shape flashes on the screen.
void SetCaretBlinkTime(WORD wMSeconds)j

Sets the time, in milliseconds, between caret flashes.
As the caret is a shared resource between all applications, changing the blink time in one appli
cation affects the blink time in all other programs running at that time.
No returned value (void).
GetCaretBlinkTimeO

WORD: The time in milliseconds between caret flashes. The default value is 500. This value can
be changed from the Control Panel application.

See the example under ~he GetCaretBlinkTimeO function description.

Sets the position of the caret.
void SetCaretPos(intX, int Y)j

• Win 2.0 • Win 3.0 • Win 3.1

The position is relative to the client region. The position ofthe cursor is changed even if the caret
is hidden.
This is the basic function for moving a car~t shape on the window's client area. A window can own
a maximum of one caret at anyone time. Use CreateCaretO to load or build a caret.
No returned value (void).
CreateCaretO, HideCaretO, ShowCaretO, DPtoLPO

int: The horizontal position in logical units in the window's client area.
int: The vertical position in logical units in the window's client area.

In the default mapping mode, the origin is the upper left comer and the x,y locations are
measured in pixels. Use SetMapModeO to change the coordinate system of the client area (see
Chapter 10,Device Contexts).

When the user clicks the left mouse button, the caret is relocated to that position in the client
area of the window. The mouse location has to be converted from screen coordinates to the client
location used by SetCaretPosO using the ScreenToC~ientO function. This example is simplified
by using the MM_TEXT mapping mode. In this mode, the logical units equal the client area pix
els, measured from the upper left comer of the client area. See Chapter 10, Device Contexts, for
a discussion of mapping modes and logical coordinates.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

POINT pCursPoint ;

switch (iHessage)
{

1* process windows messages *1

case WH_CREATE:
CreateCaret (hWnd, NULL, 3, 20) ;
SetCaretPos (10, 10) ;

. ShowCaret (hWnd) ;
break;

case WH_COHHAND: 1* process menu itecs *1
swi tch (wParam)
{

case IDH_QUIT: 1* send end of application message *1

184

}

}

break;

DestroyWindow (hWnd) ;
break;

case WM_LBUTTONDOWN:

6. MOUSE AND CURSOR FUNCTIONS ~

GetCursorPos (&pCursPoint) ; 1* get cursor x,y *1
ScreenToClient (hWnd, &pCursPoint) ; 1* to client coord *1
SetCaretPos (pCursPoint.x, pCursPoint.y> ;
break;

case WI',-DESTIJOY: 1* stop application *1
PostQuitMessage CO) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return COL> ;
}

SETCURSOR

Purpose

Syntax
Description

Uses

Returns

See Also

Parameters
hCursor

Establishes which cursor shape to display.

HCURSOR SetCursor(HCURSOR hCursor)i

• Win 2.0 • Win 3.0 • Win 3.1

Cursor shapes must first be loaded with LoadCursorO. SetCursorO is normally used to change
the shape of the cursor when processing MrCSETCURSOR or MrCMOUSEMOVE messages. This
function is fast if the cursor has already been used once, so it can be called repeatedly to change
a cursor shape without noticeably slowing the program.

Used to change the cursor shape in windows that do not have a cursor loaded as part of the
window class definition. If you attempt to use this function within the bounds of a"window that
has a cursor defined in its class definition, the cursor shape will flicker. This is because Windows
is switching back and forth between the class cursor and the cursor loaded with SetCursorO
every time a WM_MOUSEMOVE message is sent. Set the class cursor to NULL to avoid this prob-
lem. .

A handle to the previous cursor shape.

LoadCursorO

HCURSOR: A handle to the cursor to show. Use LoadCursorO to obtain this handle. You can
combine these functions into a single line:

SetCursor {LoadCursor (NULL, IDC_WAIT» ;

Related Messages WM_SETCURSOR, MCMOUSEMOVE

Example This example shows a program that switches between two different cursor shapes. The window's
class definiti~n in WinMainO does not load a cursor shape (NULL value). Two different cursors
are loaded when the program processes a WM_CREATE message. One is the predefined Windows
arrow, and the second is a custom cursor called "hand," which is referenced in the resource .RC
file. When the user clicks the "Do It!" menu item,· the program switches to showing the hand '
cursor shape.

C The Resource File
I*generic.rc *1
#include <windows.h>
#include ','generic.h Ol

generic ICON generic.ico
hand CURSOR

generic MENU
BEGIN

hand. cur

185

WINDOWS API BIBLE

MENUITEM "&00 It!"
MENUITEM "&Quit",

END

10M_DOlT
I OM_QUIT

One line of the WinMainO function is shown here because it is a little unusual. It has no
defined ,cursor shape in the class definition.

'> WinMainC) Function Excerpt
wndclass.hCursor = NULL;

WINCREATE message triggers loading of the cursor shapes. The ''word'' cursor is loaded
from the resource data.

o The WndProcO Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

static
static

HCURSOR hHandCursor, hArrowCursor ;
BOOL bUseHand = FALSE;

switch ,(iMessage),
{

f* process windows messages *1

case WM_CREATE:
hArrowCursor = LoadCursor (NULL, IDC_ARROW) ;
hHar.dCursor = LoadCursor (ghInstance, (LPSTR) "hand")
break; ,

case WM_SETCURSOR:
if (bUseHand)

Set Cursor (hHandCurso'r)
else

break
case WtCCOMMAND:

SetCursor (hArrowCu~sor) ;

swi tch (wParam)
{

1* process menu items * I

'case 10M_DOlT: 1* User hit the "Do it" menu item *1
bUseHand = TRUE ;1* switch to'a hand shaped i~rsor *1
break;

cas e 1 0 M_ QUI T : I * sen den d 0 f a p p l i cat ion me s sag e * I
PostQuitMessage(NULL) ;\
break;

}

break
case WM_DESTROY: 1* stop application *1

, ,PostQui tMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OU ;

SETCURSORPOS

Moves the mouse cursor to a new location.

void SetCursorPos(intX, int y); ,

III Win 2.0 It\1Win3.0 mWin 3.1

Purpose

Syntax

Description The location is given in screen coordinates. Use ClientToScreenO to convert from client window
coordinates to screen coordinates.

Uses

Returns

See Also

Not often used. SetCursorPosO could be used to provide keyboard support for mouse movements.
For example, the arrow keys might move the mouse cursor.

No returned v!llue (void).

GetCursorPosO, ClientToScreenO

186

Parameters
X

y

6. MOUSE AND CURSOR FUNCTIONS ~

int: The horizontal location for the mouse cursor, in screen coordinates. Zero is the left side of
the screen.

int: The vertical location for. the mouse cursor, in screen coordinates. Zero is the top of the
screen.

Related Messages W~CMOUSEMOVE

Example When the user clicks the "Do It!" menu item, the mouse cursor is moved to the upper left corner
of the window's client area. This location is computed by loading 0,0 into a point structure, and
then using ClientToScreenO to convert to screen coordinates. SetCursorPosO uses the screen
coordinates to relocate the mouse cursor.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

POINT pCursPoint ,.

switch (iHessage)
{

1* process wi ndows messages·* 1

case WH_COHHAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hi t the "Do it" menu item * 1
pCursPoint.x = a ;1* specify 0,0 - top left corner *1
pCursPoint.y = 0 ;
ClientToScreen (hWnd, &pCursPoint) ; 1* screen coord. *1
SetCursorPos (pCursPoint.x, pCursPoint.y) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;

break;
case WM_DESTROY:

break;

PostQui tMessage (0) ;
brea k ;

1* stop application *1

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iHessage, wParam, lParam) ;

return (OL) ;

SETDoUBLECLICKTIME II Win 2.0 II Win 3.0 1\1 Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Changes the mouse button double-click time. .

void SetDoubleClickTime(WORD wCount)j

The double-click time is the number of milliseconds between two mouse clicks. Clicking faster
than this value generates a WM_LBImONDBLCLK, WM_MBUTTONDBLCLK, or WM_RBUT
TONDBLCLK message for the left, middle, or right mouse buttons, respectively. Note that the
%CLBUTTONDOWN, etc. messages will always be received prior to getting the double-click
message.

Used to change the current double-click time value. The double-click time is only changed for the
duration of the Windows session. To permanently change the double-click time setting in
WIN.INI, use "the Control Pannel application or WriteProfileStringO (see Chapter 20, MS-DOS
and Disk Fill Access).

No returned value (void).

SetDoubleClickTimeO·

187

WINDOWS API BIBLE

Parameters
wCount WORD: -The new-double click time in milliseconds.

Related Messages WM_LBUTrONDBLCLK, Wl\CMBUTrONDBLCLK, ~CRBUTTONDBLCLK

Example

SHOWCARET

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
ItWnd

Example

SHOWCURSOR

Purpose

Syntax

Description

Uses

Returns

Parameters
bSllOW

. Example

Seethe example under the GetDoubleClickTimeO function description.

Makes the caret visible at its current location.

void ShowCaret(HWND hWnd)j

• Win 2.0 • Win 3.0 • Win 3.1

The caret must be created with CreateCaretO before it can be visible. As soon as ShowCaretO is
called, the caret immediately starts blinking. The caret remains visible until HideCaretO or
DestroyCaretO is called. If HideCaretO has been called more than once, an equal number of
ShowCaretO ~alls will be needed before the caret becomes visible.

It is frequently desirable to hide the caret while processing WM_PAlNT messages, or while the
user is doing operations that take the focus of activities away from the client area (menu selec
tions, etc.). When the user returns to the work area, the caret can be made visible again with
ShowCaretO. The caret is shared by all applications. If a caret is displayed on one program's
window, a caret in another running program's window will disappear.

No returned value (void).

HideCaretO, DestroyCaretO, SetCaretBlinkTimeO

HWND: A handle for the window that owns the caret. A window can only own one caret at one
time. Use CreateCaretO to add a caret shape to a window.
See the example under the CreateCaretO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Shows or hides the cursor.

int ShowCursor(BOOL bShow)j

If bShow is FALSE (zero), ShowCursorO hides the cursor. If bSltow is TRUE, the cursor is dis
played. Multiple calls to ShowCursorO to hide the cursor require an equal number of calls with
bShow TRUE to restore it.

Used t<.> show the cursor on systems that do not have a mouse.

int, the new display count. Each call with bShow TRUE increases the count. Each call with bShow
FALSE decreases it. The cursor is shown as long as the display count is zero or greater. On sys
tems without. a mouse, the display count is initially set to-I.

BOOL: 'fRUE to show the cursor, FALSE to hide it.

This example shows a crude emulation of the mouse for a program running on a machine that
does not have a mouse. The cursor shape is displayed in the upper left corner of the client area
when the program begins. Pressing the arrow keys moves the cursor. Activating the "Do It!" menu
item (with (!ill-D) hides the cursor.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

POINT pCursor;

switch (iMessage)
{

1*· process windows messages *1

188

'-

}

6. MOUSE AND CURSOR FUNCTIONS ~

case WM_CREATE:
pCursor.x = 10 ; 1* start with cursor in client area *1
pCursor.y = 10 ;
ClientToScreen (hWnd, &pCursor) ;
ShowCursor (TRUE) ;
SetCursorPos (pCursor.x, pCursor.y)
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOll:
ShowCursor (FALSE) ;
break;

case 1DM_QUll:

}

break;
case WM_KEYDOWN:

DestroyWindow (hWnd)
break;

switch (wParam)
{

1* erase the cursor shape *1

1* simple mouse emulation *1

case VK_LEFT: 1* left cursor key *1
pCursor.x -= 10 ;
break;

case VK_RIGHT: 1* right cursor key *1·
pCursor.x += 10 ;
break;

case VK_UP: 1* up cursor key * 1
pCursor.y -= 10 ;
break;

case VK_DOWN: 1* down cursor key *1
pCursor.y += 10 ;
break

SetCursorPos (pCursor.x, pCursor.y)
brea k ;

case WM_DESTROY: 1* stop application *1
PostQui tMessage (0) ;

. break
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

SWAPMOUSEBUTTON • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

. Returns

Parameters

Reverses the right and left mouse buttons.

BOOL SwapMouseButton(BOOL bSwap)j

If bSwap is TRUE, the right mouse button generates left mouse button messages (W~CLBurroNDOWN),
and the left button generates right mouse button messages (W~CRBurroNDOWN). IfbSwap is FALSE, the
nonnal mouse messages are sent.

Handy for adapting the mouse to left-handed users. Calling this function only changes the mouse
button orientation for the duration of the Windows session. Use the Control Pannel application to
make a permanent change in the WIN.INI file, or call WriteProfileStringO (see Chapter 20, MS
DOS and File Access).

BOOL. TRUE if the mouse buttons are reversed, FALSE if they are normal.

bSwap BOOL: TRUE if the mouse buttons are to be reversed, FALSE if they are to be normal.

Related Messages WM_LBUTTONDOWN, W~CRBU'ITONDOWN

189

WINDOWS API BIBLE

Example A message is printed on the client area when a WM_LBUTrONDOWN message is received. The
message is erased when a WM_MOUSEMOVE message appears. Clicking the "Do Itl" menu item
swaps the two mouse buttons, so the right button ends up generating the WM_LBUTTONDOWN
messages. Clicking the "Do W" menu item a second time (using the right mouse button) restores
the mouse to normal operation.

long FAR PASCAL WndProc (HWND hWnd, unsigned·iMessage, WORD wParam, lONG lParam)
{

HDC hDC ;
static BOOl bMouseSwap = FALSE;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items' * 1
swi tch (wParam)
{

case 1DM DOIT:
if (bMouseSwap)
{

}

else
{

}

break

bMouseSwap = FALSE;
SwapMouseButton (FALSE)

bMouseSwap = TRUE;
SwapMouseButton (TRUE)

. cas e I D M_ QUIT: 1 * sen den d 0 f a p p l i cat ion me s sag e * 1
DestroyWindow (hWnd) ; I

break;
}

break;
case WM_MOUSEMOVE: 1* wri tes over old messages as mouse moves *1

hDC = Get DC (hWnd) ;
SetBkMode (hOC, OPAQUE)
TextOut (hOC, 10, 3D,. .. " .. , 30) ;
ReleaseOC (hWnd, hOC)
break;

case WM_lBUTTONDOWN: 1* ;eft mouse button down *1
hOC = GetDC (hWnd) ;
TextOut (hDC, 10, 30, "Got a left button!", 17) ;
Re leaseOC (hWnd, hOC) ;
break;

case WM_OESTROY: 1* stop application *1
SwapMouseButton (TRUE) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

190

All Windows programs use the keyboard to some extent. In general you will find that much of the support for keyboard
input is built into predefined tools such as edit controls and menu accelerators. These tools free the programmer from
having to deal directly with the keyboard in many cases. Some programs, such as word processors, make heavy use of
the keyboard for input. Windows provides extensive support for the keyboard to satisfy these deinands.

Virtual Keys
PC keyboards have evolved to include more keys and several "standard" layouts. Realizing that no end to keyboard
changes was in sight, the designers of Windows came up with the concept of a ''virtual key." The idea is that no matter
what make or model of keyboard the user has, the virtual key code for the first function key would always be the same.
This frees the programmer from having to consider what type of keyboard is installed.

The definitions of all the virtual key codes are given in the WINDOWS.H header file. Table 7-1 gives all of the codes
and their meanings. The vitural code for the character and number keys is the same as their ASCII equivalents (in
uppercase) and are not included in the table. Chapter 19, Character Sets and Strings, includes a table of the ASCII
and ANSI character sets, which both have the same codes for unaccented letters and numbers. Note that the numeric
keypad numbers are given different codes from the numbers on the top row of the conventional keyboard. Also note
that there is only one virtual key code for the shift keys. Both shift keys generate the same VICSHIFT.

Be cautious in assuming that a given virtual key will be available on any keyboard. For example, many keyboards
only have ten function keys, even though Windows makes provision for 16. Also note that the ASCII value for the "*",
"I", "-", and "+" keys generally are sent from the numeric keypad, not VICMULTIPLY, etc. which are specific to certain
OEM keyboards.

Virtual Key Code Value (hex) Meaning ~I
VK_ACCEPT Ox1E Kanji only (.Japanese characters)

VK_ADD Ox6B Plus key

VK_BACK Ox08 Backspace

VK_CANCEL Ox03 Control-break

VK_CAP!TAL Ox14 Shift lock

VK_CLEAR OxOC Clear key (Numeric keypad 5)

VK_CONTROL Ox11 Control (CTRLJ key

VK_CONVERT Ox1C Kanji only (Japanese characters)

VK_DECIMAL Ox6E Decimal point

VK_DELETE Ox2E Delete

VK_DIVIDE Ox6F .Divide (I) key

VK_DOWN Ox28 Down arrow

VK_END Ox23 End

191

WINDOWS API BIBLE

Table 7-1. continued

VK_ESCAPE

YK-EXECUTE

VK_F1

VK-F2

VK_F3

VK_F4

VK_F5

VK_F6

VK_F7

VK_FB

VK_F9

VK_F1O

VK_F11

VK_F12

VK_F13

VK_F14

VK_F15

VK_F16

VK-HIRAGANA

VK_HOME

VK-,NSERT
"-

VK-'<ANA

VK-,<ANJI

VK_LBUlTON

YK-LEFT

VK_MBUlTON

VK_MENU

YK-MODECHANGE

VK_MUL T1PL Y

YK-NEXT

VK-NONCONVERT

VK_NUMLOCK

VK_NUMPADO

VK_NUMPAD1

VK-NUMPAD2

VK-NUMPAD3

YK-NUMPAD4

Ox18

0x28

Ox70

Ox71

Ox72

Ox73

Ox74

Ox75

Ox76

Ox77

Ox78

Ox79

Ox7A

Ox78

Ox7C

Ox7D

Ox7E

Ox7F

Ox18

Ox24

Ox2D

Ox15

Ox19

Ox01

Ox25

Ox04

Ox12

Ox1F

Ox6A

Ox22

Ox1D

Ox90

Ox60

Ox61

Ox62

Ox63

Ox64

Escape (Esc)

Execute key (If any)

Function keys

Enhanced keyboard only

Enhanced keyboard only .

Specialized keyboards only

Specialized keyboards only

Specialized keyboards only

Specialized keyboards only

Kanji only (Japanese characters)

Home

Insert

Kanji only (Japanese characters)

Kanji only (Japanese characters)

Left mouse button

Left arrow

Middle mouse button

Menu key Of any)

Kanji only (Japanese characters)

Multiply key

Next

Kanji only (Japanese characters)

Num Lock

Numeric keypad keys

192

/

7. KEYBOARD SUPPORT V

VK_NUMPAD5 Ox65

VK_NUMPAD6 Ox66

VK.;.NUMPAD7 Ox67 .

VK_NUMPAD8 Ox68

VK_NUMPAD9 Ox69

VK_PAUSE Ox13 Pause

VK_PRINT Ox2.A Print Screen ('Nindows versions below 3.0)

VK_PRIOR 0x2.1 Page up

VK_RBUTTON Ox02 Right mouse button

VK_RETURN Oxob Return

"K-RIGHT Ox27 Right arrow

VK_ROMAJI Ox16 Kanji only (Japanese characters)

VK_SELECT 0x2.9 Select key (if any)

VK_SEPARATOR Ox6C Separator key ~f any)

VK_SHIFf Ox10 Shift

V1(SNAPSHOT Ox2C Print Screen ('Nindows 3.0 and later)

VK_SPACE 0x2.0 Spacebar

VK_SUBTRACT Ox6D . Subtraction key

VK_TAB Ox09 Tab key

VK_UP 0x2.6 Up arrow

VK_ZENKAKU Ox17 Kanji only (Japanese characters) .

*(The v~ural key codes for the letters A to Z and the digits 0 to 9 are their ASCII values)

Table 7~ 1. Virtual Key Codes. *

Keyboard Messages
Windows lets your program know about keypresses by sending messages. The most common series of messages is the
following:

WM_KEYDOWN Notification that a key: has been depressed.
The ASCII code for the letter-if a character (not a function key, cursor arrow, etc.) was pr~ssed.

WM_KEYUP Notification that'{L key has been released.
The WM_ CHAR message is generated by the TranslateMessageO function in the message loop of the application's .

WinMainO function. This function is discussed in Chapter 9, Windows Messages. Generally you will use the
WM_KEYDOWN message to look for function keys, cursor keys, the numeric keypad, and the edit keys such as' (PGlJI);

(PGDN), etc. These are the keys which make the best use of Windows' virtual key code system. MCCHARis used to
retrieve ASCII keyboard inputs such as letters, numbers, and printable symbols. Using the WM_CHAR message is
.simpler for letters, as the upper and h)wercase letters have different ASCII values. With WM_KEYDOWN, you have to
check whether the (SHIFT) key is depressed and check the virtual key code for the letter, which is always the capital
letter's ASCII value. If the user depresses the @!) key while pressing another keY,Wmdows sends system key mes
sages. The sequence is WM_SYSKEYDOWN, WM_SYSCHAR, and WM_SYSKEYUP .. It is unusual to process these mes
sages directly, as they are nQrmally used for keyboard accelerators. Accelerators are explained in the Keyboard
Accelerators section. Like all,Windows messages, the keyboard messages pass information to your program's
WmProcO function(s) in the wParam and IParam parameters. The information you will use most often is in wParam.
(See Table 7-2.) .

193

WINDOWS API BIBLE

WMJ<EYDOWN

WM_CHAR,

WMJ<EYUP

WM.;..SYSKEYDOWN

~tSYSCHAR

mtSYSKEYUP

The virtual key code for the key pressed. ' -

The ASCII code for the character represented-by the key.

, The virtual key code for the key pressed.

The virtual key code for the key pressed (@keydepressedatthe-samelime).

The ASCII_ code for the character represented by the key (@ key depressed at the same
time).

The virtual key code for the key pressed (@ key depressed at the same time).

Table 7-2. wParam MeaninU in Keyboard Messages.

-There is a lot of other information encoded in the IParam parameter, such as the hardware (OEM) code for the
key pressed, how many times the key was pressed, etc. This information is fully explained in Chapter 9, Windows
Messriges. For the most part, you will not need this information, and can use the wParam data directly in your pro-

, ~. Listing 7-1 shows an example of how these messages are processed. In this case, a ,single line of text is created
on the program's client area. Typing adds to this line, hitting the backspace key removes text from the end. This is an
extremely simplified example, but it does provide an outline for how text messages are processed.

0> Ibting 7-1. Keyboard Input Message Processing*
'define BUFSIZE 256

long FAR P~SCAL WndProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
(/

I,

'/';/ '
, -

HOC hOC;
stati c char
static int

cCharBuf [BUFSIZEJ ;
nCharFos = 0 ;

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE: ,
cCharBuf [OJ = 0; 1* start with null string *1
break;

case WM_CHAR: 1* add and display char input frolt keyboard *1
if (wParam >= • • & nCharPos < BUFSIZE)
<

cCharBuf [nCharPos++J = wParall ; 1* add new l-t.tlt"*'
cCharBuf [nCharPosJ = 0; 1* new ter,M,na'l (lull *1

) ,

InvslidateRect (hWnd, NULL, TRUE) ;1* show-updated Lin- *1
UpdateWindow (hWnd) ; ,
hOC = Get DC (hWnd) ;'
TextOut (hOC, 0, 0, cCharBuf, strlen (cCharBuf»
ReleaseDC (hWnd, hOC)
break;

caseWM_KEYDOWN:
switch (wParam) 1* rudimentary editing com.ands *1
<

case VK_BACK: ,
if (nCharPos > 0)
{

nCharPos --;

1* backspace *1

cCharBuf [~CharPosJ = 0 ;
}

break; ','
case VK_RIGHT: 1* right arrow ,key *1

1* other edit procedures *1
break;

':}I \

, I ~nval idateRect (hWnd, NULL, TRUE) ';
UpdateW;~dow (hWnd) ; ,I

1* show updat~d line *1

hOC = GetDC (hWnd) ; -

'194

}

. ~ 7. KEYBOARD SUPPORT ...

TextOut (hOC, 0, 0, cCharBuf, strlen (cCharBuf»
ReleaseOC (hWnd; hOC) ;
break;

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT:
MessageBox (hWnd, "Type something!", "Message", Pts_OK) ;
break;

case 10M_QUIT: 1* send end of application message *1
OestroYWindow (hWnd) ;
break;

}

break;
·c a seW M_O EST ROY:. 1 * s top a p p l i cat ion * 1

PostQui tMessage (0) ; -

break;
default: 1* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
)

*Only the WndProcO function is shown. The remainder of the program is identical to the GENERIC application in
Chapter 1.

Messages with Non-English Keyboards
English uses a simple alphabet of 26 characters in two cases (upper- and lowercase). Many other languages also have
accent characters and other symbols. When you install Windows, you select the assumed language. This loads a me
which ends up named OEMANSI.BIN in the Windows directory. You can find out which language file is loaded by
calling the GetKBCodePageO function. The OEMANSI.BIN file contains all of the data Windows needs ~ adjust the
keyboard map for the different language's symbols and key layout.

To generate accented characters, users of non-English keyboards use key combinations that tell Windows that the
next key combination is to be accented. For example, a French accent circumflex (") over a character is set by (CTRLr[.

and then the letter key. This only works if you have the French OEMANSI.BIN file loaded as part of Windows' install.
You can track these extra keystrokes· through the WM_DEADCHAR message. For the creation of an accented letter,
your WinProcO function would see the following sequence of messages: .

WM_KEYDOWN . Pressing the accent key.
WM_DEADCHAR

WM_KEYUP
WM_KEYDOWN
WM_CHAR

WM_KEYUP

The character message for the accent.
. Releasing the accent key.

Pressing the letter key (that will end up accented).

The character code for the accented letter.
Releasing the letter key.

Normally you will not need to track all of this, as the accented character has a different character code than the
unaccented version. Tables of the character values are given in Chapter 19, Character Sets and Strings.

Keyboard Accelerators
. . . .

Another buUt-, in convenience provided by Windows is a direct way to proVide keyboard shortcuts for menu commands
and other commands. These are called "accelerators." You do not have to use accelerators in your program. The same
effect can be achieved by interpreting keyboard input messages. The main reastm to use accelerators is that they are
so simple. A few minutes of work will provide a complete set qf keyboard alternatives to your mouse driven menu·.
commands. This is in addition to the normal key alternatives for menu items with names that are proceeded by"&"
characters. See Chapter 4 on menus if this is not familiar.

An important difference when using keyboard accelerators is that Windows will translate the keystroke message
into the equivalent menu co~mand. ~n other words, pressing an @)-key combination will generate a wr.C COMMAND

195

WINDOWS API BIBLE

'message,not the WM_KEYDOWN sequence that follows a normal keyPress. Your application can process the menu
item MCCOMMAND message as ifthe menu ~t_ell.l we~e selected with a mouse cli~_k. The user will even see the menu
item flash -for selection as the accelerator keypress is acted on. The keyboard accelerators are defined in your
program~s resource .RC file. Listing 7-2 is an example of a complete .RC file, with both a menu and keyboard accelera
tors defined.

C . Listing 7-2. A Resource File with Keyboard Accelerators
1* generic.rc

#include <windows.h>
#include "generic.h"

*1

generic ICON generic.ico

generic
BEGIN

MENU

POPUP "&Fi rst Menu"
BEGIN

END

MENUITEM "&Oisplay Items (Ctrl-O)",
MENU ITEM "&1st Option <F1)",
MENUITEM SEPARATOR
MENUITEM "&2nd Option (F2)",

MENUITEM "&Qui t (End key)",
END

generic
BEGIN

ACCELERATORS

VIRTKEY, CONTROL
VIR"fKEY

IOM_TOP1
IOM_OPT1

IDM_OPT2.

"D",
VK_F1,
VK_F2,
VK_ENO,
VK_F1,

IOM_TOP1,
IDM_OPT1,
IDM_OPT2,
IDM_QUIT ,
NOTMENU,

VIRTK-EY, NOINVERT
VIRTKEY .
VIRTKEY, AL T

END

The accelerator table is structured like a menu definition, although there is no equivalent to a popup menu. The
table is given a name, in this case "generic." This is the name which your program will use to get the accelerator table
ready for use with LoadAcceleratorsO. You can have more than one table of accelerators in the .RC file, each with a
different name. The lines for each keyboard accelerator are between the BEGIN and END lines of the ACCELERATOR
definition. The format is -

tablcname
BEGIN
event,

END

ACCELERATORS

idvalue, [ASCII or VIRTKEYJ, [ALTJ, [CONTROLJ, [NOINVERTJ, [SHIFTJ

ASCII and VIRTKEY are "event types." The events can be any of the ones listed in Table 7-3.

Event Type Meaning ~I
"char" (No Event Type) A single ASCII character enclosed in double quotes. The character can also be preceded by a

"I\" to signify a control character.

ASCII An integer value_for an ASCII character. In this case, specify ASCII after the idvalwe.

Virtual key The uppercase letter.or single digit enclosed in double quotes (eg., "A" or "1 "). For non-ASCII
use the yK_ code for the key. Specify VIRTKEY after the idvalue. .

Table 7-3. Keyboard Accelerator Event Types.

The idvalue can be any integer. The idvalues are normally defined in the program's header file and, in most
cases, will-be the same as the corresponding mehu item ID value. This integer idvalue will be the wParam parameter
when the program receives a WM_COMMAND message f~om Windows after the user presses the accelerator. The ID

196

i

. '

7. KEYBOARD SUPPORT 'Y

values do not have to correspond to menu items. For example, you might have an accelerator key for scrolling the
window's client area. The scroll bar control is not part of the menu, so no equivalent menu ID value will exist. Create
separate ID values in the header file for these items, and then put the corresponding logic in your WM_COMMAND
message processing code to handle the scrolling. The last parameters in the definition of accelerator keys are ihe
options. They can be any of the values shown in Table 7-4. The AL T, CONTROL, and SHIFT options apply only to virtual
key (VIRTKEY) accelerators.

I "Accelerator Option Meaning' .,,;,

The keyboard accelerator is activated only if the @) key is depres~.ed. ALT

CONTROL The keyboard accelerator is activated only if the (CTRL) key is depressed. This has the same
effect as putting a "N in front of the accelerator character, but is more readable.

NOINVERT The corresponding menu item is not flashed when the accelerator is activated. Normally, the top
menu line flashes. '

SHiFf The keyboard accelerator is activated only if either of the (SHIFT) keys is depressed.

Table 7-4. Accelerator Options.

The only other changes necessary to include accelerators are two added lines in the WinMainO function. Without
accelerators, the window's message loop looks like:

while (GetHessage (&msg, NULL, 0, 0»
{

}

TranslateHessage (&msg) ;
DispatchHessage (&msg) ;

1* the message loop *1

. This functions simply to pull messages in from the message queue and send them on to the program's message
processing function (like WinProcO) to be handled. To have key~oard accelerators interpreted, change the message
loop to look like

hAccel = LoadAccelerators (hlnstance, gszAppName~ ;

while (GetMessage (&msg, NULL, 0, 0»
{

1* the message loop *1

if (!TranslateAccelerator (hWnd, hAccel, &msg»
{

}
}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

LoadAcceleratorsO reads the accelerator table in from the resource data and provides a handle to the table. The
TranslateAcceleratorO function checks incoming keystrokes for a match in the accelerator table. If a match is found,
a W~CCOMMAND message is sent directly to the program's message function. The wParam parameter passed with
WM_ COMMAND is set equal to the accelerator ID value. If no match is found, the character messages for the keypress
are sent. Notice that the modified message loop with TranslateAcceleratorO is set up so that messages that do not
match an entry in the accelerator table still get passed to the regular TranslateMessageO and DispatchMessageO
functions. If a match is found, TranslateAccelerator() returns a nonzero value, so the normal message functions are
bypassed. This stops your program from getting both the accelerator message and the untranslated keyboard mes
sages.

Note: You can create accelerators for the system menu commands (the commands that show up when you click
the button in the upper right corner of the program's main window). In this case, the SC_RESTORE, SC_MOVE,
SC_SIZE, SC_MINIMUM, SC_MAXIMUM, or SC_CLOSE values will be used for the ID values, and the message pro
cessing function will receive a WM_SYSKEYDOWN message instead ofWM_KEYDOWN.

Caution: Accelerator keys are' easy to program, but not necessarily easy for the user to remember. A good prac
tice is to include the accelerator equiva~ent t~ each menu item to the right of the menu name for each menu item that

WINDOWS API BIBLE

has an accelerator. Including the description in the program's help file is a good idea too! There are a few "standard"
keyboard accelerators defined in the eUA Advanced Interface Design Guide. Use the assignments in Table 7-5 if at all
possible. '

1)~eyS:,'>:i:'f;~'
, ,@-S

@ID ,

'(CTRL)-@ID

<SHiFT)-@!)

(SHIFT)-@ID

(ill

@

@

(SHIFTI-(f!)

<. c', ", .~;,,,,eaning'.;' {.:,.,,:.::(;\; <i·,.,: ";;;".:,~':;;<~ .~:, :,:},>;;: ;·)·;··.r;::'·'~,~;~~~.Ofi{;5'/; ~l,;'ltF(l;;f~r~i.tJ~,~rEJl
Undo previous action.

Clear selection (not saving the selection to the clipboard).

Copy '(put" selection i,nto clipboard).

Paste (insert clipboard contents at the current active location).

Cut (put selection into clipboard, and clear it from the screen).

~elp. See Chapter 27 for how to construct context-sensitive help files.

Rie. Activates a file dialog box is most cases.

Next window. .

Previous window.

Table 7-5. Recommended Keyboard Accelerators.

Keyboard Function Summary
Table 7-6 summarizes the keyboard functions. The detailed function descriptions follow the table.

f"'-FuncticH1"" . P' "., ":'.:',., ' \ .. .;., ';'" "',: '. :Y'>,:.' '.:,':",'.;,:::.','.~,;~,.',',.',,:~,', 2";";,,,,.·;·.:.·):;::711 ;~. '" .", urpose· ',.;' " .. ,' ", . L6J.

EnableHardwarelnput

GetAsyncKeyState

GetlnputState

GetKBCodePage

GetKeyboardState

GetKeyboardT ype

, . GetKeyName Text

GetKeyState

LoadAccelerators

MapVirtu81Key

OemKeySc3n

SetKeyboardState

TranslateAccelerator

,VkKeyScan

Enable or disable the mouse and keyboard.

Find out if a key has bedn pressed.

Determine if there are mouse button, keyboard. or timer events in the message queue.

Rnd out which OEM/ANSI keyboard driver table is loaded.

Rnd out the status of all of the keys in one function call.

Retrieve the type of keyboard or the number of function keys.

Retrieve the name of a key.

Determine if a key is currently down, or if a toggle key is active.

Load the accelerator key combinations from the resource file ..

Convert between virtual key codes, ASCII, and scan codes.

Convert from ASCII, to the keyboard's OEM scan code.

Set the keyboard status for all 256 virtual keys in one function call.

Translate keystrokes into commands using the accelerator table. ,

Translate an ANSI character to the corresponding virtual key code.

Table 7-6. Keyboard Function Summary.

Keyboard Function Descriptions

ENABLEllARnwAREINPUT
Enables or disables the mouse and keyboard.

BOOL EnableHardwareInput(BOOL bEnablelnput)i

198

• Win 2.0 • Win 3.0 • Wm 3.1

7. KEYBOARD SUPPORT ...

Description This function allows you to completely disable all input from the mouse and keyboard. The mouse
cursor is frozen on the screen, and the only key combination that has any effect is the ICTRLr@

Uses

Returns
See Also

@g combination for a warm boot of the computer. . I - - .

Use with great care. EnableHardwarelnput() may be useful in time-critical applications such as
real-time data acquisition. Be sure to set a system timer (see the eXample) so that the system will
restore itself at intenrals. Otherwise, the only way to revive t,he computer is with a warm or cold
boot. //

BOOL. TRUE tfthe system is enabled, FALSE if disabl4.

EnableWindo~O'

Parameters /
bEnablelnput BOOL: Set to TRUE to enable the system, FALSE to disable it ..

Rela.tedMessages W1.CTIMER . !
Example When the user hits thp "Dolt!" m~nu item, the mouse and keyboard are disabled for 10 seconds.

A timer reVives the S)lstem when aWM_TIMER message is received. -----. -

long FAR PASC~L WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

>

>

HDC hDC ;

switch (i"essage)
<

1* process windows messages *1

case Will_TIMER: 1* Restore mouse and keyboard operation *1
EnableHardwareInput (TRUE) ;
KillTimer (hWnd, 1) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10, "Should be enabled now.", 22) ;
ReleaseDC (hWnd, hDC)
break i

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
<
case IDM_DOIT:

if (!SetTimer (hWnd, 1, 10000, NULL»)
<

}

else
<

}

break;

MessageBox (hWnd, .
"Too many clocks or timers!", "Warning",
MB_ICONEXCLAMAT10N 1MB_OK) ;

1* Di sable mouse and keyboard for 10 ~ec *1

EnableHardware1nput (FALSE) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10,

I "Disabled for 10 sec.", 21)
-ReleaseDC (hWnd, hDC) ; .

case 1DM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break;

}

break;
case WM_DESTROY: 1* stop application *1

PostQuitMessag~ (0) ;
break;

default: 1* default windows lI\essage processing *1
return DefWindowProc (hWnd, iMessage, wPara., lPara.) ;

return (OL) ;

WINDOWS API BIBL.E

Syit1;u
Desaiption

Uses

• Win 2.0 II Wm 3.0 • Win 3.1
Finds out if a key is depressed.

. int GetAsyncKeyState{int vK~)j
This function will detennine if a key is currently pressed, or if it has been pressed after the last
call to GetAsyncKeyStateO.
Particularly useful for applications that use shifted keYs or function keys to change an operation.
For example, GetAsyncKeyStateO can determine if the user hit a function key prior to selecting
an item with the mouse.

,f

. Returns into 'l'he high-order byte is' 1 if the key is currently down, 0 if not. The low-order byte is 1 if the key
was pressed since the last call to GetAsyncKeyStateO, 0 if not. Use the LOBYrE and HIBYTE .•
macros to retrieve these values (see the example). '

See Also GetKeyboardStateO, GetKeyStateO

Parameters
vK~ int:The virtual key code for the key. See Table 7-1, Virtual K~ Codes, for a complete list.
Related Messages WM_KEYDOWN, WM_KEYUP

Example This example displays the current status of the shift keys when the "~o It!" menu item is clicked.

long FAR PASCAL WndProc (HWHD hWnd, unsigned iMessage, WO~D wParam, LONG lParam)
(-

)

HDC hDC ;
int nKeyState ;

switch (iMessage)
{

1* process wi ndews messages *1

}

case W'CCOMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOlT:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd); 1* clear client area *1
hDC = GetDC (hWnd) ;
nKeyState = GetAsyncKeyState (VK_SHIFT) ;
if (HIBYTE (nKeyState»

TextOut (hDC, 10, 10,

e'lse
"Shift is pressed.", 17) ;

TextOut (hDC, 10, 10,
OIShi ft is not now pressed.", 24) ;

if (LOBYTE (nKeyState»
TextOut (hDC, 10, 30,

"Shift was pressed.", 18) ;
else

TextOut (hDC, 10, 30,
"Shift was not pressed before.", 28)

ReleaseDC (hWnd, hDC) ;
break; ,

case IDH_QUIT: ' 1* send end of appl i cation message *1
DestroyWindo~ (hWnd)
break;

}

break;
case WH_DESTROY: 1* stop appl i cation *1

PostQuitMessage (0) ;-
, break;

default: 1* default windows message processing *1
return DefW;ndowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

200

7. KEYBOARD SUPPORT V

GETINPUTSTATE l:l Win 2.0 bJ Win 3.0 .. Win 3.1
Purpose

Syntax

Description

Uses

Returns

Determines if there are mouse button, keyboard, or timer events in the message queue.

BOOL GetInputState(void)j
Windows sends messages to the system n\~ssage queue when the mouse buttons are clicked or
released, when kays are pressed or rele3!'~d, and when a timer is activated. This function checks
if there are any pending messages from these events at the time the function is called.

Handy in lengthy calculations to check whether or not the user has pressed a key or the mouse
button. 1.'his may indicate that the user wants to abort the procedure. As GetInputStateO does
not pull the messages off of the input queue, they are still there to be processed by the program's
WindProcO function.
BOOL. TRUE if there are mouse button keyboard,or timer events on the system message queue,
FALSE if not.

See Also EnableHardwareInputO
Parameters None (void).
Related Messages W~CKEYDOWN, WM_KEYUP, WM_TIMER, mCLBUTrONDOWN

Example This example sets a one second timer when the user clicks the "Do It!" menu item. Every time
WM_TIMER message is sent, the GetInputStateO function checks for mouse button or keyboar
input pending in the system message queue. The WM_TIMER events are not detected, a
GetlnputStateO is called after the mCTIMER event is pulled off of the queue and processed.

long FAR PASCAL WndProc (HWNO hWnd, unsigned 1Message, WORO wParam, LONG lParam)
{

HOC hOC;

switch (iHessage)
{

1* process wi ndows messages * 1

case WM_TIMER: 1* Restore mouse and keyboard operation *!-
InvaLidateRect (hWnd, NULL, TRUE)
Updat~Window (hWnd) ;
hOC = GetOC (hWnd) ;
if (GetlnputState(»

TextOut (hOC, 10, 10,
"Keyboard or mouse messages ARE in the queue.", 44).;

eLse
TextOut (hOC, 10, 10,
"NO Keyboard or mouse messages in the queue.", 43) ;

ReLeaseOC (hWnd, hOC) ;
break;

case WH_COHHAND:
swi tch (wParam)
{

1* process menu items *1

case 10M OOIT: 1* set timer 1 to every sec. *1
if (!SetTimer (hWnd, 1, 1000, NULL»
{

}

break;

MessageBox (hWnd, "Too many clocks or timers!",
"Warning", HB_ICONEXCLAMATION I HB_OK)

case 10M_QUIT: 1* send end of appL i ca ti on message'" 1
OestroyWindow (hWnd) ;
break;

}

break;
case WM_OESTROY:/* stop application *1

KilLTimer (hWnd, 1) ;
PostQuitMessage (0) ;
break;

201

WINDOWS API BIBLE

. .

defaul t: 1* d~faul t windo~s message processi ng *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

)

return (OL) ;
)

GETKBCODEPAGE Ell Win 2.0 m Win 3.0 • Wm 3.1
Purpose
Syntax
Description

Uses

Returns

Finds out which OEM/ANSI keyboard driver table is loaded.
mt GetKBCodePage(void);
Returns a code for the type of keyboard driver table in use. These drivers are for the characters
used in different languages. If the file OEMANSI.BIN is in the windows 1lirectory when Wmdows
is started, the translation table is read and used to create the correct set of characters.
For international programs. Use this function to determine which language is in use. Then SWitch
to the correct .resource data to retrieve the correct text for menus, etc. '
int, the code page curr~ntly in use by Windows. This can be any of the codes in Table 7-7.

437 Default. USA settings. Implies that the OEMANSI,BIN file is not in the windows directory.

850 Intemational (OEMANSI.BIN was copied from XLAT850.BIN when Windows was installed).

860 Portugal (OEMANSI,BIN was copied from XLAT860.BIN when Windows was installed).

861 Iceland (OEMANSI.BIN was copied from XLAT861.BIN when Windows' was installed).

863 French Canadian (OEMANSI,BIN was copied from XLAT8~.BIN when Windows was installed).

865 Norway/Denmark (OEMANSI.BIN was copied from XLAT865.BIN when Windows was installed).

Table 7-7. Keyboard Code Page Values.

None (void). Parameters
Example This simple example just displays the code page value when the "Do It!" menu item is clicked.
long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hOC;
int KBCode ;
char cBuf 1:25J ;

switch (iMessage)
{

1* proC'ess windows messages *1

case WM_COMMAND: 1* process menu items *1

IOtkerprogram lines]

sw; tch (wParam)
(

case IDM_DOIT:
KBCode = GetKBCodePage () ;
;toa (KBCode, cBuf, 10) ;
hOC = GetDC (hWnd) ;
TextOut (hOC, 10, 10, cBuf, strlen (cBuf» ;
TextOut (hOC, 10, 40, "= Oem Code Table_", 17) ;
ReleaseOC (hWnd, hDP; .
break;

GETKEYBOARDSTATE • Win 2.0 .Win3.0· .Wm3.1
PurpoSe Finds out the status of all of the keys in one function call.
Syntax void GetKeyboardState(BYTE FAR *lpKeyState);

202

Description

Uses

Returns

See Also

Parameters
lpKeyState

7. KEYBOARD SUPPORT ~

Copies the status of all 256 virtual keyboard keys to an array of bytes.

Reading more than one key's status. For example, ISHIFTI-@ key combinations;

No returned y~lue (void).

GetinputState{), SetKeyboardStateO

BYTE FAR *: An array of 256 bytes. Use the virtual key codes listed at the beginning of the
chapter as indices into the array of key states. After the function is called, a given key's byte will
have the high bit set to 1 if the key is down, or 0 if the key is up. The low bit is set to 1 if the key
has been pressed an odd number of times, otherwise O. This is only useful for the keys that toggle
on and off, such as the (CAPS LOCI() and @[~ keys.

Related Messages MCKEYDOWN

Example This example checks whether or not the shift key is depressed when any keydown message is
received.

long FAR PASCAL WndProc (HWNO hWnd, urisigned iMessage, WORO wParam, LONG lParam)
(

HOC hDC ;
stati c char cKeyauf 1:256J ;

switch (iMessage) 1* process windows messages *1
(.

~se WM_KEYOOWN:
/ InvalidateRect (hWnd, NULL, TRUE) ;

UpdateWindow (hWnd) ;
hOC = GetDC (hWnd) ;
GetKeyboardState (cKeyBuf) ;
if (cKeyBuf [VK_SHIFTJ & Ox80)

TextOut (hOC, 10, 40, "Shift key pressed.", 18) ;
else

TextOut (hDC, 10, 10, "Shift key NOT pressed.", 22) ;
ReleaseOC (hWnd, hOC) ;
break;

{Other program linesJ

GETKErnOARDTYPE o Win 2.0 • Win 3.0 • WIn 3.1 .
Purpose

SJntax
Description

Uses

Returns

Retrieves the type of keyboard 01' the number of function keys.

int GetKeyboardType(int nTypeF/ag)j

Depending on the value of the nTypeFlag I this function will retrieve either a code to the type of
keyboard in use, or the number of function keys on the keyboard. The older PC type keyboards
had only ten function keys, and they were on the left side of the keyboard. These keyboards also
had the arrow and numeric keypads superimposed. This forces a few limits when designing a
keyboard interface, which are not a problem with the newer keyboards. Most programmers avoid
the issue by not using function keys 11 and 12, and by not creating situations that require simul
taneous use of the cursor keys and numeric keypad.

Determining how many function keys are on the keyboard, and if the direction keys are combined
on the numeric keypad.

int, the keyboard type of.number of function keys.
Ifn'1'ypeFlag == 0, the returned value is aslist~d in Table 7-8.

WINDOWS API BIBLE

Value

1

2

3

4

5,

6

Meaning

IBM PCIXT, or cornpatible 83 key keyboard.

Olivetti M24 "ICO" 102 key keyboard.

IBM AT 84 key keyboard (early ATs).

IBM Enhanced 101 or 102 key keyboards.

Nokia 1050 and compatible keyboards.

Nokia 9140 and compatible keyboards. /'
/'

Table 7-8. Keyboard Type Values.

If nTypeFlag = 1, the keyboard subtype is returned. This is not normally used.
If nTypeFlag = 2, the number of function keys is returned.

~I

Parameters
nTypeFlag int: Set to 0, 1, or 2. Controls if the returned value is the keyboard type, subtype, or number of

function keys. Normally set to zero to determine if an enhanced keyboard is in use ..

Example This example displays the type of keyboard and the number offunction keys when the user clicks
the ."Do It!" menu item.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC hOC;
int nKeyboard, nFuncKeys ;
char cBuf [5] ;

switch (iMessage)
{

1* process windows messages,*1

case WrCCOMMANO: 1* process menu items *1
switch (wParam)
{

case IOM_OOIT: .
hOC = GetOC (hWnd) ;
nKeyboard = GetKeyboardTyp~ (0)
nFuncKeys = GetKeyboardType (2)
switch (nKeyboard)
{

}

case 1:

case 3:

case 4:

TextOut (hOC, 10, 10,
"PC keyboard.", 12);

break;

TextOut (hOC, 10, 10,
"Old AT keyboard.", 16)

break;

TextOut (hOC, 10, 10,
"Enhanced keyboard.", 18)

break;
default:

TextOut (hOC, 10, 10,
"Unusual keyboard.", 17)

break;

itoa (nFuncKeys, cBuf, 10);
TextOut (hOC, 10, 30, cBuf, strlen (cBuf» ;
TextOut (hOC, 30, 30, "Function keys.", 14) ;
break; \

case 10M_QUIT: 1* send end of application message *'(,
OestroyWindow (hWnd) ;
break;

break;

204 /.

7. KEYBOARD SUPPORT ?

cas e W M_D EST ROY: 1 * s top a p p l i cat ion * 1
PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (Ol) ;
}

GETKEyNAMETEXT m Win 2.0 ~ Win 3.0 III Win 3.1
,Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IParam

lpBuffer

Retrieves the name of a key.

int GetKeyNameText(LONG IParam, LPSTR IpBuffer, int nSize);

Used in processing of W~LKEYDOWN and W~LKEYUP messages. The IParam parameter is
passed to GetKeyNameTextO. The function then puts the key description into a character buffer
pointed to by IpBu.f[er.

Handy for making error messages. The IpBuffer character string is a readable description of the
key that was pressed.

The length of the character string returned.

GetlnputStateO

DWORD: This is the 32-bit parameter passed when a WM_KEYDOWN or WM_KEYUP message is
received. See these message descriptions in Chapter 9, Windows Messages, for a description of
the meaning-of each bit.

LPSTR: Pointer to the buffer to receive the 'string name.

nSize WORD: Specifies the maximum length in bytes for the key name,
not including the terminating NULL character. 120 It! quit

Related Messages MLKEYDOWN, M1_KEYUP

Example This program excerpt shows the key name any time a key is
pressed. In most cases (the'letter and number keys), this is just
the letter itself. The function keys are returned as "Fl." The nu
meric keypad keys are preceded by "Num," as shown in Figure 7-1.

, Num Enter

Figure 7-1. GetKey
NameText() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC •
cBul (15J ; char

switch (iMessage)
{

1* process windows messages *1

ca s e WM_KEY DOWN:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
GetKeyNameText (lParam, cBuf, 14) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10, cBuf, strlen (cBuf»
ReleaseDC (hWnd, hDC) ;
break;

IOtherprogram lines/

GETKEySTATE lD Win 2.0 til Win 3.0 !l Win 3.1
Purpose '

Syntax

Description

,
Determines if a key was down when the current message was generated, or if a toggle key was
active.
int GetKeyState(intnVertKe1J);
GetKeyStateO allows a key's status to be determined.

205

WINDOWS API BIBLE

Uses

Returns

See Also

Normally used to check the status of the toggled keys: (CAPS LOCK I, (SCROLL LOCK I, and (NUM LOCK I.

into The status of the key is encoded in two bits. The high-order bit is set to 1 if the key was
depressed when the current message was sEmt, otherwise O. The low-order bit is set to 1 if the key
was pressed an odd number of times. This signifies a toggle key being active.

GetInputState(), G~tAsyncKeyState()

Parameters
nVertKey int: The virtual key code. See Table 7-1 for the complete list.

Related Messages WM_KEYDOWN, WM_KEYUP
Example, This example program fragment shows the name of the key pressed (retrieved by GetKey

NameText()). If the @PSJ@ key is toggled on, the text is printed in capital letters. Otherwise,
It is printed in lowercase letters. The C runtime library functions strupr() and strIwrO convert
the characters to upper- and lowercase respectively. AnsiLowerO and AnsiUpper() could have
been used (see Chapter 19, Character Sets and Strings).

long FAR 'PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

HOC hOC;
char cBuf [1 SJ ;

switch (iMessage)
{

1* process windows messages *1

case WM_KEYDOWN: -,
InvaLidateRect (hWnd, NULL, TRUE) ; 1* clear client area */
UpdateWindow (hWnd) ;
GetKeyNameText ClParam, cBuf, 14) ; 1* get key name *1
if (Ox0001 & GetKeyState (VK_CAPITAL» 1* caps lock on?*1

strupr (cBuf) ; 1* aLL caps *1
eLse

strlwr (cBuf) ; 1* all lower' case *1
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, cBuf, strLen (cBuf» ;
ReLeaseDC (hWnd, hOC) ;
break;

[Otkerprogram lines}

LoADACCELERATORS • Win 2.0 • Wm 3.0 • Win 3.1
Purpo8e Loads the accelerator key combinations from the resource flle.

Syntax HANDLE LoadAccelerators(HANDLE hlnstance, LPSTR lpTableName)j

Description

Uses

Returns

See Also

The accelerator key combinations are defined in the resource .Re rue. Before they can be used, I

you must use LoadAccelerators() to retrieve a handle to the accelerator table. This handle is
used in the TranslateAccelerator() function to decode incoming keystrokes that may be in the
accelerator table. Like menu items, accelerators generate WM_COMMAND messages where the
wParam value is set to the accelerator ID value. In most cases, this will be the same ID value as
a menu item, allowing the accelerator to duplicate exactly a menu command.

Accelerators are used for keystroke shortcuts ,to common functions that mi~t otherwise require
several mouse actions. Accelerators can be used to generate command messages that do not have
menu equivalents. The example program gives one case of this action.

HANDLE. Returns a handle to the accelerator table if the function was successful, NULL on error.
Multiple calld!t.LoadAcceleratorsO continue to return the handle to the accelerator table with
out reloading the data ..

. TfanslateAccelerator()

206

7. KEYBOARD SUPPORT ...

Parameters
hlnstance . HANDLE: The instance handle for the program containing the accelerator definitions in its re

source data.
IpTableName LPSTR: A pointer to a character string containing the name of the accelerator table. This is tile

same name given in the ACCELERATORS line of the .RC resource file.
Related Messages WM_COMMAND
Example This example defines a window with a small menu. The menu items are given keystroke equiva

lents in the accelerator table. In addition, a command with the ID value code of NOTMENU is .
defined that ca.n only be driven by the keyboard accelerator _here is no menu equivalent. In all
cases, the commands just generate message boxes. As shown in this example the header file
contains the define statements for all of the menu and accelerator ID values.

1* generic.h *1

#define 10M_DOlT 1 1* menu item id values *1
#define IOM_TOP1 2
#define IOM_OPT1 3
'define IOM_OPT2 4
'define 10M_QUIT 5
'deti ne NOTMENU 6 1 * a non-menu i d va l ue * 1

1* global variables *1
int ghlnstance ;
char gs~AppNa!'le [] = "generi e" ;

1* functlon prototypes *1
long FAR.PASCAL WndProc (HWNO, unsigned, WORD, LONG) ;

The resource .RC file defines both the menu and the accelerator table. The first accelerator
assigns (cTRLI-D to the ID value IDM_TOPI. The second and third definitions defme the function
keYs Fl and F2 to IDM_OPTl and IDM_OP1'2, respectively .. IDM_OPI'2 is set to not flash the
menu item when it is activated (NOINVERT). The END key is equated to the "Quit" menu item ID
of IDM_QillT. Finally, a non-menu command ID of NOTMENU is assigned to the @-Fl key
combination.

1* generic.rc *1
'include <windows.h>
'include "generic.h lt

generic ICON generic.ico

generic MENU
BEGIN

END

gener;c
BEGIN

,ENo

POPUP "&Fi rst Menu"
BEGIN

END
MENU ITEM

"0",
VICF1,
VICF2,
VK_ENO,
VICF1,

MENUITEM ~&Oisplay Items (Ctrl-D)", 10M TOP1
MENU ITEM "&1st Option (F1)", IOM_OPT1
MENU ITEM SEPARATOR .
MENU ITEM "&2nd Option (F2)", IOM_OPT2

"&Quit (End key)", 10M_QUIT

ACCELERATORS

10''-TOP1~ VIRTKEY, CONTROL
10ICOPT1, VIRTKEY
10M_OPT2, VIRTKEY; ..tiQINVERT
10M_QUIT , VIRTKEY
NOTMENU, VIRTKEY, ALT

LoadAcceleratorsO is used before the program's message loop in WinMainO to retrieve a
handle to the accelerator table. The message loop is also modified to include the Translate-

207

WINDOWS API BIBLE

AcceleratorO function. Note how the NOTMENU item is treated just like a menu ID in the mes"
sage processing logic, even though it is only defined in the accelerator table. '--

1* generic.c accelerator table demonstration *1
#include <windows.h>
#include "generic.h"

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance, LPSTR lpszCmdLine,
int nCmdShow)

{

}

HWND
MSG
WNDCLASS
HANDLE

hWnd ;
msg ;
wndclass
hAcce l ;

ghlnstance = hlnstance ;
if (!hPrevlnstance)

1* store instance handle as global var. *1

'{

}

hWnd

wndclass.style
wndclass~lpfnWndProc

wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= CS_HREDRAW I CS_VREDRAW ;
= WndProc ;
= 0 ;
= 0 ;
= hlnstance ;
= Loadlcon (hlnstance, gszAppName)
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;
= gszAppName ;
= gszAppName ;
1* register the window class *1

if (!RegisterClass (&wndclass»
return FALSE;

CreateWindow (
gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEOEFAULT,
CW_USEOEFAULT,
CW_USEOEFAULT,

I*'create the program's window here *1
1* class name *1

'1* window name *1
1* window style *1
1* x position on screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1

, 1* parent window handle (null = none) *1
1* menu handle (null = use class meriu) *1
1* instance handle *1 "

NULL,
NULL,
hlnstance,
NULL) ;

ShowWindow (hWnd, nCmdSh6w);~
1* lpstr (null = not used) *1

UpdateWindow (hWnd) ; 1* send first WM_PAINT message *1
hAccel = LoadAccete~ators (hlnstance, gszAppName) ;
whi le (GetMessage/-<&msg, NULL, 0, 0» 1* the message
{

}

if (!TranslateAccelerator (hWnd, hAccel, &msg»
{

}

TranslateMessag~ (&msg) ;
DispatchMessage (&msg) ;

return msg.wParam ;

loop *1

long FAR PASCAL UndProc (HWND hWnd, unsigned iMessage, WORDwParam, LONG lParam)
{

swit~h (iMessage) 1* process windows messages *1

{ /I,':;'/;case WM_COMMAND: 1* process menu items *1
ii,,', ! i switch (wParam)
/' {

. case IOM_TOP1:
MessageBox (hWnd;

"The top menu item was activated.",

208~

}

break .:
case 10M_OPT1:

7. KEYBOARD SUPPORT

MessageBox (hWnd,

break;
case 10M OPT2:

"The second menu item was activated.",
"Code 10M_OPT1", MB_OK)

MessageBox (hWnd,

break;
case NOT MENU :

"The third menu item was activated.",
"Code 1 OM_OPT2", MB_OK) ;

MessageBox (hWnd,

break;

"This command activated only via an accelerator.",
"Code NOTMENU", MB_OK) ;

case 10M_QUIT: 1* send end of application message *1
OestroyWindow (hWnd)
break;

break;
case WM_OESTROY: 1* stop appl1cacion *1

PostQui tMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWipdowProc (hWnd, iMessage, wParam, lPar~m) ;

I'eturn (OL) ;
}

, MAPVIRTUALKEy o Win 2.0 • Win 3.0 • Win 3.1
Purpose
. Syntax

Description

Uses

Returns

See Also

Parameters
wCode

wMapType

Converts between virtual key codes, ASCII, and scan codes.

WORD MapVIrtualKey(WORDwCode, WORDwMapType)j

This function performs three separate operations, depending on the value set for wMapTiJpe.
One is the conversion of a virtual key code used in Windows messages to the computer's OEM
scan code. (The OEM scan code is the numeric value assigned to each physical key that is re
turned at a low level through the computer's ROM BIOS functions.) The second mode does the
reverse: converts from OEM scan code to the virtual key code used by Windows. The third mode
converts virtual key codes to ASCII values.

The most common use is to convert the virtual key code used in Windows messages to ASCII
values that can be printed on the screen. You may find yourself dealing with the OEM scan codes
in rare cases, such as destinguishing between the left and right (SHIFT] keys (both generate the
same virtual key code).

WORD, the value returned depends on wMapType, explained below.

OemKeyScanO

WORD: The virtual key code to translate ifwMapType is 0 or 2.
This value is normally obtained from the wParam parameter
received when a WM_KEYDOWN or WM_KEYUP message is in
terpreted. If wMapType is 1, wCode is the OEM scan code to
translate. See Chapter 9, Windows Messages, for a description
of how the keyboard data is encoded with the messages .

.Qo It! Quit

30 = scan code.

65 = ASCII.

. WORD: Specifies the type of translation to do. The values are Figure 7,2. MapVirtualKey()
shown in Table 7-9. Example.

209

WINDOWS API BIBLE

I Value· Meaning

o wCode is a virtual key code. MapVirtualKey() returns the corresponding OEM scan code for the same key.

1 wCode is an OEM scan code. MapVirtualKeyO returns the corresponding virtual key. code for the same key.

2 wCode is a virtual key code. MapVirtualKey() returns the corresponding ASCII value.

Table 7-9. MapVirtualKey() Codes.

Related Messages WM_KEYDOWN, WM_KEYUP, W~CCHAR
Example This code fragment shows two uses of the MapVirtualKeyO function. The virtual key code is en

coded in the wParam parameter when the mCKEYDOWN message is received. MapVir
tualKeyO is used to convert the virtual key code to the OEM scan code and the ASCII value. The
picture below shows the window after the "A" key was pressed.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC
WORO
char

hOC;
wCode ;
cBuf [10J ;

switch (iHessage)
{

1* process windows messages *1

case WM_KEYOOWN:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
hOC = GetOC (hWnd) ;
wCode = MapVirtualKey (wParam, 0) ;
itoa (wCode, cBuf, 10); .
TextOut (hOC, 10, 10, cBuf, strlen (cBuf»
TextOut (hOC, 50, 10, "= scan code.", 12) ;
wCode = MapVirtualKey (wPararn, 2) ;
itoa (wCode, cBuf, 10) ;
TextOut (hOC, 10, 30, cBuf, strlen (cBuf»
TextOut (hOC, 50, 30, "= ASCII.", 8)
ReleaseOC (hWnd, hOC) ;
break;

fOther program lines}

Purpose
SyntaX

Description

Uses

Returns

See Also

Parameters

Converts from ASCII to the keyboard's OEM scan code.
DWORD OemKeyScan(WORD wOemChar)j

o Win 2.0 IJ Win 3.0 II Win 3.1

The OEM scan code is part of the lParam mesS~ge accompanying every WM_KEYDOWN and
WM_KEYUP message. OemKeyScanO allows you to get the OEM keyboard scan code that
matches an ASCII character.
Used in sending other Windows messages that simulate keypresses. This can be an efficient way
to pass information between windows that already have message processing logic to handle key
board input.
DWORD, the OEM scan code in the low-order WORD. The high-order WORD has bit 1 set to 1 if a
(SHIFT! key must be pressed to generate the letter, and bit 2 set to 1 if the (CTRL) key must be .
pressed. If there is no OEM equivalent towOemChar, -1 is returned in both the high-order and
low-order WORDS. .

VkKeyScan 0, MapVirtualKeyO

wOemChar WORD: The ASCII value to convert.
Related Messages WrrcKEYDOWN, WM_KEYUP

/
210

Example In this case, there is a popup window (illustrated in Figure 7-
3) which has its own message processing function. When the
popup has the input focus, any keypress results in the key's
ASCII letter being displayed in the popup's client area. If the
user clicks the "Do It!" menu item, the parent window sends
the popup a simulat.ed WrtCKEYDOWN message, with both
wParam and IParam set to match the letter "A" key. This is a
miniature example of how windows can communicate with
each other without necessarily adding extra program logic to

7. KEYBOARD SUPPORT •.

decode the messages. Figure 7-3. OemKeyScan()
Because the child window has its own message procedure, Example.

the procedure nam~'m~st be added to the EXPORTS section of
the program's .DEF definition file and declared in the header file.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
stati c WNDCLASS
static HWND
WORD

hDC ;
wndclass ;
hPopup ;
wVi rtKey ;
dwOemField

1* device context handle *1
I*.the window class *1

CWORD

switch (iMessage)
{

1* process wi ndows messages * I

case WM_CREATE:
wndclass.style

= CS_HREDRAW I
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

1* bui ld popup window as program starts *1

CS~VREDRAW I CS_PARENTDC
= Chi ldProc ;
= a ;
= a .
= gh'Instance ;
= NULL;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondClass" ;
1* register the window class *1

if(RegisterClass (&wndclass»
{

break;

hP.opup = CreateWindow (ISecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL)

ShowWindow (hPopup, SW_SHOW) ;

case.WIf_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* send popup window a fake keypress *1
wVi rtKey = .VkKeyS can « WORD) 'A') ;
dwOemField =

«OemKeyScan
«WORD) 'A') & OxOOFF)« 16) 11;

SendMessage.(hPopup, WM_KEYDOWN, wVirtKey, dwOemField)
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;

}

break;
case WM_DESTROY:

break

PostQuitMcssage
break;

1* stop application *1
(0) ;

default: 1* default windows message processing *1
return DefW.jndowProc (hWnd, iMessage, wParam, lParam) ;

211

WINDOWS API BIBLE

}

return (OL)
}

1* Here is a separate message processing procedur.: ~Ol' thp popup window *1
long FAR PASCAL Chi ldProc (HWND hWnd, unsigned iMe&sage, wORD wParam,

LONG lParam)
<

HDC
char

hOC;
cBuf [2J ;

switch (iMessage)
{

1* process wi ndows messages * I

}

case WM_KEYDOWN:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, "Keypress Received:", 18)
cBuf [OJ = (char) MapVirtualKey (wParam, 2)
TextOut (hDC, 10, 30, cBuf, 1) ;
ReleaseDC (hWnd, hDC) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

SETKEYBOARDSTATE • Win 2.0 .. Win 3.0 II Win 3.1

Purpo~

Syntax

Description

Uses

Returns

See Also

Parameters

Sets the keyboard status for all 256 virtual keys in one function ~all.
void SetKeyboardState(BYTE FAR *lpKeyState);

The status of all 256 virtual keys is held in an array of bytes pointed to by the lpKeyState param
eter. In each of th,ese bytes, the high-order bit is set to 1 if the key is down, and the low-order bit
is set to 1 if the key has been pressed an odd number of times. The latter is useful for the toggle
keys such as (Ci'iiSUiCK) and (NUMLOCKI. Generally this function is used after calling GetKey
boardStateO to retrieve the current keyboard status. Individual values can be changed in the 256
byte data array, and then sent back to Windows by calling SetKeyboardStateO.
Used to change the (SHIFT LOCK I, (NUMLOCKl, and (SCROLL LOCK) key states. These have the VIrtua! key
codes of VIC CAPITAL, VICNUMLOCKand VK_OEM_SCROLL, respectively. To set one of these
toggle keys on, use a value of Ox81 in the 256 byte array. To set a nontoggle (normal) key on, use
a value of Ox80. The virtual key code is the index to the item in the array. For example, to set the
shift lock item ON in a buffer called cVKBuf[256], use

cVKBuf [VK_CAPITALJ = Ox81 ;

No returned value (void).

GetKeyboardStateO

••

lpKeyState BYTE FAR *: A pointer to an array of 256 bytes. Generally, initialized to the current keylJoara
status by calling GetKeyboardStateO prior to changing values.

Related Messages \VM_KEYDOWN, W1vCKEYUP, WM_ CHAR
Example This WndProcO function toggles the (CAPS LOCK) key on and off when the user clicks the "Do It!"

menu item.

long FAR PASCAL WndProc (HWNDhW~d, unsigned iMessage, WORD wParam, LONG lParam)
<

HDC hDC ;

212

}

~KEYBOARDSUPPORT ~

char
static BOOL

cKeyBuf [256J
bCapsOn

switch (iMessage)
{

1* process wi ndows messages *1·

}

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOlT:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
hDC = GetDC (hWnd) ;
GetKeyboardState (cKeyBuf) ; 1* read all VK_ values *1
if «cKeyBuf eVK_CAPITALJ) & Ox01)
{

}

else
{

}

cKeyBuf [VK_CAPlTALJ = 0 ; 1* shi ft lock off *1
TextOut (hOC, 10, 40,

uShi ft key NOT pressed.", 22) ;

cKeyBuf [VK_CAPlTALJ = Ox81; 1* shHt lock on *1
TextOut (hQC, 10, 10,

"Shift key pressed.", 18) ;

SetKeyboardState (cKeyBuf)
ReleaseDC (hWnd, hDC) ;

1* set all VK_ values *1

break; .
case IOM_QUlT:

}

break;

DestroyWindow (hWnd)
break;

case WH.:.,.DESTROY: 1* stop application *1
PostQuitHessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

~SLATE~CCELERATOR ell Win 2.0 .. Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Translates keystrokes into commands using the accelerator table.

int TranslateAccelerator(H\VND hWnd, I~DLE hAccTable, LPMSG lpMsg)j

Accelerator key combinations are defined in the ACCELERATOR portion of the resource .RC file.
Prior to using the accelerator table, use LoadAcceleratorsO to retrieve the handle to the table.
TranslateAcceleratorO is used within the program's message loop to convert from the keystrokes
entered to the command specified in the accelerator table.

Accelerators are used to provide keystroke shortcuts for menu cOIllmands. They can also be used
to send command messages to the system that do not have keyboard equivalents.

If TranslateAcceleratorO returns a nonzero value, it has successfully translated the key
stroke and sent the command to the program's message processing function. The application
should not allow the normal TranslateMessageO and DispatchMessageO functions to process
the keystrokes again. To avoid this, use the following structure for the program's message loop in
WinMainO·

while (GetMessage (&msg, NULL, 0, 0»
{

1* the message loop *1

if (!Tran~lateAccelerator (hWnd, hAccel, &msg»
{

213

wrNDOWS API .BIBLE

Returns

See Also

Parameters
hWnd

hAccTable

IpMsg

}

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

When an accelerator is translated, the message is sent directly to the program's message
processing function, bypassing the message queue. The accelerator ID value is sent as the
wParam parameter of either a WM_ COMMAND message (normal case) or a WM_SYSCOMMAND
message (if the IDvalue IS one of the system menu ID values SC_RESTORE, SC~MOVE, SC_SIZE,
SC_MINIMUM, SC_MAXIMUM, SC_CLOSE).

int, rRUE if a keystroke entry was translated into an accelerator command, FALSE if not.

LoadAcceleratorsO

HWND: The handle of the window with a message processing function (WinProcO) which is to
receive the translated messages.

HANDLE: The handle to the accelerator table retrieved with LoadAcceleratorsO.

LPMSG: A pointer to a message structure. This structure holds the message data received when
GetMessageO was called.

Related Messages WM_COMMAND, WM_SYSCOMMAND

Comments

Example

Purpose

Syntax

Description

Uses

Returns

You can determine if a command message was sent \ia a menu selection or accelerator by exam
ining the IPamm parameter when the program receives a W:~CCOMMAND or WM_SYSCOM
MAND message. If the high-order word of IParam is one, the message came from an accelerator
table translation. Because of the hWnd ·parameter, TranslateAcceleratorO sends messages to
the message processing function of the main window (the window with the handle hW1ld), and
not to child windows that have separate message processing functions.

See the example under the LoadAcceleratorsO function description.

D Win 2.0 £! Win 3.0 19 Win 3.1
Translates an ANSI character to the corresponding virtual key code.

int VkKeyScan(WORD cChar)i

The returned value contains the VIC code in the low-order byte and (SHIFT) key information in the
high-order byte.

Sending WM_KEYDOWN and IDCKEYUP messages to other windows. This can be an efficient
. way to pass information between windows if the receiving window already has keyboard input
logic in its message processing (WinProcO) funCtion. .

int. The virtual key code is in the low-order byte returned. The shift state is encoded in the high
order byte as shown in Table 7-10.

~e_·~ ____ ~M_e_an_in_g~.~· ____ ~~ ____ ~~~ __ ~ __ ~ ____ ~ __ ~~ ____ ·~~==1
o No shifted keys.

1 The character is shifted with either of the (SHIFT l keys.

2 The character is a control character.

3,4,5 A (SHIFT! key combination that is not used for characters.

6 The (CTRLl-@) key combination.

7 The (SHIFTl-(CTRL J-@) key combination.

Table 7-10. VkKeyScan(J Codes.

214

7. KEYBOARD SUPPORT T

See Also Oem KeyScanO, MapVirtualKeyO

Parameters
. cehar char: The ANSI char value to be translated into a virtual key code.

Related Messages W~CKEYDOWN, W1wCKEYUP

Example See the example under the OemKeyScanO function description.

215

Message handling is the biggest difference between programming under Windows and programming under a more
conventional environment, such as DOS. There is no real equivalent to a message in the DOS world. Message process
ing is the basic concept behind Windows' ability to run several applications at the same time, and allow the user to
easily switch between them. Most programs only use the most basic message functions: a message loop in WinMainO
and a series of actions based on rec~ived messages in the WndProcO function. Significantly more control over mes
sage processing is possible. Messages can be intercepted and modified by hook functions, prior to being passed to the
program. Separate programs can also communicate with
each other by exchanging messages as they operate.

l\fessage If'Iow_
Figure 8-1 shows a simplified diagram of a message be

t ;m~ processed by a Windows program. Windows loads
,;;.""
low-level functions for dealing with the keyboard, mouse,
and screen when Windows starts. When a hardware
event such as a keystroke occurS, Windows sends a mes
sage to the active program's message queue. The mes
sage queue is just a memory location to hold message
data that has not yet been processed by the running pro
gram.

The "message" is actually a small data structure de
fined in the WlNDOWS.H header file.

1* Message structure *1
typedef struct tagMSG
{

} MSG;

HWND
WORD
WORD
LONG
DWORD
POINT

typedef MSG
typedef MSG NEAR
typedef MSG FAR

hwnd;
message;
wParam;
lParam;
time;
pt;

*PMSG;
*NPMSG;
*LPMSG;

Figure 8-1. Windows Messaging Flow Di~gram.

The message data contains the window handle (hwnd), the coded message type (message), the wParam and
IParam data that will be passed to the WndProcO function, the time the message was sent (in milliseconds after
Windows started), and a POINT structure containing theXand Ylocation of the mouse cursor when the message was
sent (pt). The cursor location is given in screen coordinates (pixels from the upper left corner of the screen). When
most programmers talk about a "message," they usually are referring just to the message element in the MSG struc
ture. This is a value, such as W~CPAINT or WM-:.KEYDOWN defined in WINDOWS.H. Keep in mind that the real
message stored in the application's message queue is in the form of the MSG data structure.

216

8. MESSAGE PROCESSING FUNCTIONS T

Processing Messages
An application program pulls messages off the message queue in the "message loop" at the bottom of the WinMainO
function. Message loops typically have the form

while (GetMessage (&msg, NULL, 0, 0»
{

1* pulls messages from message queue *1

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

1* translates keyboard messages to WM_CHAR *1
1* sends the message to WndProC<) function *1

The GetMessageO function fetches the message and can give control to other programs if there are no messages
to process. GetMessageO is followed by TranslateMessageO and DispatchMessageO. DispatchMessageO sends the
message data to the WndProcO function you write to handle the program's logic. DispatchMessageO knows which
function should receive the messages because you defined the message function in the window's class definition.

TranslateMessageO is a utility function that takes raw input from the keyboard and generates a new message
(W~CCHAR) that is placed on the message queue. The message with WM_CHAR contains the ASCII value for the key
pressed, which is easier to deal with than the raw keyboard scan codes and virtual key codes. You can leave
TranslateMessageO out if you will not be directly processing keystrokes.

The program's WndProcO function typically deals only with a few of the 250 Windows messages. Depending on
the program, messages for menu items, mouse movements, or keyboard input may be important, or ignored. Those
that are not processed by the WndProcO logic are passed to the default message handling function, DeiWindowProcO,
shown at the bottom of Figure 8-1.

Program Control
If you build a long calculation into the body of a Windows program, it will not be possible to switch to another program
while the program is calculating. The program is said to "have control" of the Windows environment. This is clearly not
how Windows programs should behave. Users expect to be able to switch between applications quickly. Perhaps the
single most critical concept to understand about a Windows program' is that Windows programs are not interrupted.
Windows programs must be designed to give up control frequently so that other programs have a chance to operate.
(There is one exception to the "no interrupts" statement. When Windows runs a DOS application in 386 mode, the
DOS application is handled via interrupts.)

There are only three functions that give up control: GetMessag~O, PeekMessageO, and WaitMcssageO. Of these,
GetMessageO is used most frequently. The difference between these three is in how actively they att~mpt to keep
control of the system. GetMessageO is the most active, and it will keep control until it empties out the application
program's message queue. PeekMessageO gives up control as soon as it is called, and it gets control back only if other
applications run out of messages to process. WaitMessageO gives up control as soon as it is called and will not recover
control until a message within a certain range is found on the program's message queue and all other applications
have run out of messages to process. Any program that will relltain running under Windows for a length of time must
call one of these three functions to allow Windows to pass control between applications.

One way to think about this situation is to imagine the opposite: a Windows program that never gives up control.
These are easy to create (too easy). Just pu~ all of the
program logic in the WinMainO function, and eliminate
the message loop. Once the program is started, no other
Windows application will be able to run until the pro
gram quits.

Sour~es of Messages
Figure 8-1 provides a simplified flow diagram for a single
message from the mouse or keyboard flowing through

. the messaging logic. There are a few more possibilities
for how a message might originate. Figure 8-2 shows
more detail surrounding the program's message loop. Figure 8-2. Messages Entering the Message Loop.

217

WINDOWS API BIBLE

Messages do not all start from hardware actions. You may find it convenient to send a program messages from
within the body of the program. This is frequently done in place of using a gpto: statement. The messages can be sent
either to the program's message queue with PostMessageO or directly to the WndProcO function with
SendMessageO. Experienced programmers use PostMessageO and SendMessageO within a program as an alterna
tive to go to: statements. Another reason to send a message from within a program is to request repainting of the
window's client area. This is such a common request that a shorthand version of SendMessageO is provided just for
this purpose. UpdateWindowO sends a WM_PAINT message directly to the program's WndProcO function, bypassing
the message queue. Whether or not a message is queued is not normally important to writing a Windows program
Your WndProcO function will deal with both types of messages in the same way.

Other programs can also send messages to running applications. These are often specialized messages, unique to
a group of programs. Windows provides RegisterWindowMessageO to generate unique message codes while the pro
grams are running. The codes are sequenced so as to not overlap other message numbers used by unrelated programs.
There is a standard protocol for exchanging messages between nmning programs called "dynamic data exchange"
(DDE), which is covererl in Chapter 30.

Reentrant Functions
Messages are not like interrupts. Windows will not jump in and halt the execution of a program to go to some more
critical task. For example, if a calculation is still running after a menu item is clicked, you do not have to worry about
calculation being stopped half way through because a new message is received. Windows will not be able to pass
another message to your program until the calculation is done and the execution returns to the message loop for
another call to GetMessageO. One situation that will start a message from within your function's calculation is if the
program uses a Windows function that sends a message, bypassing the message queue. For example, ifSendMessageO
is called from within the calculation, the message sent will go directly to the WndProcO function and will be acted
uponbejore the rest of the calculation has completed.

IfWndProcO generates messages to itself, WndProcO is said to be a "reentrant." Message handling functions,
such as WndProcO are reentrant. A key consideration is to avoid having two parts, of the function send each other
messages. This can set up an infinite loop of messages, hanging the systenl. This typically occurs in situations where a
scroll bar control changes an integer in an edit control, and changing the integer in the edit control adiusts the same
scroll bar. You can make this work, but it requires designing the functions so that messages are not sent after the first
a(ijustment.

Message Hook Functions
'/Windows provides an almost ultimately powerful set of functions that allow setting message "hooks." ijooks allow a

module (running program or DLL) to intercept messages going to other applications. The messages eim be acted on,
modified, or even stopped. A typical example of a use for a hook function would be to remap the keyboard. Every
keyboard message could be intercepted, and then modified to reflect a different keyboard layout. More sophisticated
uses are to modify the behavior of specific applications. For example, you could "\\Tite a hook function that intercepts
WM_SIZE and WM_MOVE messages for a program, forcing the application to always be located at one-spot and one
size on the screen. Still another use is to record and playback Windows messages, for recording repeated actions
(macros). There are seven different types of hook functions defined, each with its own special purpose. "The
SetWindowsHookO installs the hook function into Windows, while UnhookWindowsHookO removes it. The
DeffiookProcO function is provided to pass messages not acted on by the hook function back on to their next destina
tion. Hook functions can be chained in series. This allows a series of modifications to various messages to be carried

, out at one time.
Hook types require that the hook function be in a dynamic link library (DLL). DLLs are not covered in this book

until Chapter 28, Dynamic Link Libraries. However, they are simple to create, and the e..<amples in this chapter show
the changes need to be made in the C, NMAKE, and .DEF definition files to create DLLs.

When writing the DLL for a message hook, you will generalIywrite four functions. LibMainC) is the standard entry
point for a DLL,just like WinMainO for an application program. Write a "SetHookO" function to install the message
hook in Windows. Add a ""FreeHookO" function to remove the hook. It is inside these two functions that the Windows
SDK functions SetWindowsHookO and" UnhookWindowsHookO are called. Finally, write the actual message filter

218

8. MESSAGE PROCESSING FUNCTIONS ~

function that acts on the message, or just passes it on to DeflIookProcO. The example under the SetWindowsHookO
function description provides a complete listing. Hook functions are so powerful that extreme care must be taken in
using them. Use should be restricted to utiiity functions and custom modifications of existing applications where the
source code is not available. In normal Windows programming, you will have direct control of the message processing
logic and will have little need for message hooks.

Cautions
Any time GetMessageO, PeekMessageO, or WaitMessageO is called, Windows has the option of passing control to
another application. This will cause local variables and stored far memory addresses to become invalid. More on this
in Chapter 14 on memory management.

Message Function Summary
Table 8-1 summarizes the Windows message processing functions. The detailed function descriptions follow immedi
ately after the table.

Function

CallMsgFilter·

CallWindowProc

DefHookProc

DefWindowProc

DispatchMessage

ExitWindows

FreeProclnstance

GetMessage

GetMessagePos

GetMessage Time

InSendMessage

MakeProcinstance

PeekMessage

PostAppMessage

PostMessage

PostQuitMessage

RegisterWindowMessage

ReplyMessage

Send Message

SetMessageOueue

SetWindowsHook

T ranslateMessage

UnhookWindowsHook

WaitMessage

Purpose

Activate a message filter (hook) function.

Pass message parameters to a message processing function.

Provide default message processing for message hook functions.

Provide the default processing for Windows messages.

Send a Windows message to the program's WndProcO function.

Exit the Windows environment to DOS.

Decouple a procedure instance from a data segment.

Retrieve a message from Windows, or give control to another application if no messages are
waiting for the window currently receiving messages.

Retrieve the X, Y position of the cursor when a message was sent

Retrieves the time value when a message was sent.

Determine if the current message being processed was sent by SendMessage().

Provide a procedure-instance address for a function.

Check the message queue for a message.

Put a message in the application program's message queue.

Put a message on a windows message queue.

Shutdown an application.

Create a new, unique Windows message number.

Free the application sending a message to continue to execute.

Send a Windows message directly to a window's message function.

Change the size of an application's message queue.

Install a Window's message filter function. Installs a Window's message filter function.

~I

Generate WM_CHAR, WM_SYSCHAR, WM_DEADCHAR, and WM_SYSDEADCHAR messages
when a virtual key code is received.

Remove a message hook function from the system.

Yield control to any other application when a message is received.

Table 8-1. Message Processing Function Summary.

219

WINDOWS API BIBLE

. CALLMSGFILTER II Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpMsg

nCode

Related Messages

Example

1* generic.c *1

Activates a message filter function.

BOOL CallMsgFilter(LPMSG lpMsg, int nCode)j

This function passes a message to a message function. The message function must be of the type
WH_MSGFILTER, loaded with SetWindowsHookO. The nCode parameter allows the calling pro
gram to change the type of processing done within the filter depending on the value of neode.

Modifying the messages intercepted, or doing an operation from within the hook function as
messages are received.

BOOL. TRUE if the message should be processed further, FALSE otherwise.

SetWindowsHookO, UnhookWindowsHookO

LPMSG: A pointer to a MSG data structure. This is the message that will be filtered by the filter
function.

int: Specifies a code value to control what the filter does. The values between -2 and 8 are
defined in WINDOWS.H for special purposes. A good practice is to use values of WM_ USER and
integer values above it (MtCUSER + 1, etc.).

Only messages processed by a WH_MSGFILTER type of filter function will be passed. This in
cludes WM_P AINT messages and messages from menus, dialog boxes and message boxes. See
SetWindowsHookO for details on the hook function. .

This example sets a hook function from within WinMainO. The hook is activated only if the user
clicks the "Do It!" menu item. The hook function is called from within the program's message loop
using CallMsgFilterO. The hook function is defined below (in a DLL). The hook is coded so action
is taken only if the nCode parameter is set to WM_ USER. This assures that the hook only works
when the CallMsgFilterO requests it. The following code constitutes the main program.

#include <windows.h>
#include "generic.h lt

BOOL
BOOL

bFilterlt = FALSE;
bHooked = FALSE;

1* globa ls *1

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance, LPSTR lpszCmdLine, ini nCmdShow)
{

HWND
MSG
WNDCLASS

hWnd ;
msg ;
wndclass ;

ghlnstance = hlnstance ;

if (!hPrevlnstance)
{

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
Mndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

1* store instance handle as global var. *1

1* load data into window class struct. *1

= CS_HREDRAW I CS_VREDRAW ;
= WndProc ;
= 0 ; .
= 0 ;
= hlnstance ;
= Loadlcon (hlnstance, gszAppName) ;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;
= gszAppName ; .
= gszAppName ;
1* register the window class *1

if (!RegisterClass (&wndclass»
return FALSE;

}

220

}

hWnd = CreateWindow (
gszAppName,
gszAppName,
WS_OVERLAPPEOWINOOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USr:DEFAULT,
NULL,
NULL,
hlnstance,
NULL> ;

ShowWindow (hjnd, nCmdShow)
UpdateWindow (hWnd) ;

8. MESSAGE PROCESSING FUNCTIONS ...

1* create the program's window here *1
1* class name *1
1* window name *1
1* window style *1
1* x position on screen *1
1* Y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr ("Ill = not used) *1

1* send first WM_PAINT message *1

if (SetHook ("MsgFi lterFunc", WH_MSGFILTER»
bHooked = TRUE; .

while (GetMessage (&msg, NULL, 0, 0»
{

}

if (bHooked & bFilterlt)
CallMsgFilter (&msg, WM_USER)

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

FreeHook ("msgFilterFunc", WH_MSGFILTER)
return msg.wParam ;

1* the message loop *1

1* if desi red ••• *1
1* fi lter messages *1

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD w.Param, LONG lParam).
{

}

switch (iMessage)
{

1* process windows messages *1

}

case WM_COMMAND:
swi tch (wParaRl)
{

case 10M_DOIT:

1* process menu items *1

if (bFilterIt)
{

case

break

}

else
{

}

break;
101'1 QUIT:

bFi l terI t = FALSE;
MessageBox (hWnd, "Hooked function not active.",

"Message", MB_OK)

bFi l terI t = TRUE;
MessageBox ChWnd, "Hooked function Active.",

"Message", MB_OK) ;

DestroyWindow
break;

1* send end of application messdge *1
(hWnd) ;

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

Note that the hook function is created in a dynamic link library (DLL). Creation of DLLs
requires special compiler settings and changes to the .DEF definition files. See the Set
WindowsHookO example for a complete listing. Note in this case that the hook function simply

221

WINDOWS API BIBLE

makes the computer beep every time a W~CPAINT message is received. More complex opera
tions could be done in processing the message.

1* msgdll.c library of message filters *1
1* *1

#include <windows.h>

HANDLE· hlnstanceD II
FARPROC lpOldHook ;

int FAR PAS·CAL LibMain (HANDLE hlnstance, WORD wDataSeg, WORD wHeapSize,
LPSTR lpszCmdLine)

{

)

if (wHeapSi ze > 0)
UnlockData (0) ;

hlnstanceDll = hlnstance ;
return (1) ;

BOOL FAR PASCAL SetHook (LPSTR lpsHookNarne, int nHookType)
{

}

FARPROC lpHook ;

lpHook = GetProcAddress (hlnstanceDll, lpsHookName) ;
if (lpHook)
{

else

lpOldHook = SetWindowsHoO~(nHookType, lpHook)
return (TRUE) ;

return (FALSE) ;

BOOL FAR PASCAL FreeHook (LPSTR lpsHookName, int nHookType)
{

)

FARPROC lpHook ;

lpHook = GetProcAddress (hlnstanceDll, lpsHookName)
return (UnhookWindowsHook (nHookType, lpHookl' ;

int FAR PASCAL MsgFilterFunc (int nCode, WORD wParam, DWORD lParam)
{

}

LPMSG msg ;

if (nCode != WM_USER)
DefHookProc (nCode, wParam, lParam, &lpOldHook)

else
{

}

msg = (LPMSG) lParam; 1* lParam holds message address *1
if (msg->message == WM_PAINT)
{

MessageBeep (0)
return (TRUE) ;

return (FALSE)

. CALLWINDOWPROC • Win 2.0 • Win 3.0 • Win 3.1 :
Purpose

Syntax

Passes message parameters to a message processing function.

LONG CallWindowProc(FARPROC lpPrevWndFunc, HWND hWnd, WORD wMsg, WORD
wParam, LONG lParam)j

222

Description

Uses

Returns

See Also

Parameters
lpPrevWndFunc

hWnd

wMsg

wParam

lParam

8. MESSAGE PROCESSING FUNCTIONS "

This function is used commonly within a window subclassing function. Subclassing is used to add
new message processing logic to a given window, usually a predefined window type such as BUT
TON or SCROLLBAR. CallWindowProcO is called at the end of the new message processing func
tion to pass the message parameter data (wParam, etc.) on to the original message function for
normal processing.

Frequently used to add a keyboard interface to the predefined Windows styles. You also can cus
tomize the functioning of default styles such as buttons and scroll bars, as shown in the example
below.
LONG. The value depends on the message being processed. Return this value from within your
sub classing function.

SetWindowLongO, GetWindowLongO

FARPROC: A pointer to the original message processing function for the window. You can use
GetWindowLongO to retrieve this value. Store the value in a static or global variable, so that it is
accessible to your sub classing function.

HWND: The window handle for the window receiving the message.

WORD: The message (~CPAINT, etc.).

WORD: The wParam data that accompanies the message.

DWORD: The lParam data that accompanies the message.

Related Messages All messages potentially pass through this function. You can act on as many as you need, and then
let the original window message function (called \vith CallWindowProcO) handle the rest.

Comments

Example
Don't forget to add your subclass function to the EXPORTS part of the .DEF definition file.

This example subclasses a button window with a new procedure defined at the bottom of the
listing. NewButtonProcO changes the button's text if the button is pressed or released. After
that, the default Windows button operations are called with CallWindowProcO. A global variable
lpjnOldProc is used to save a pointer to the old window procedure.

FARPROC lpfnOldProc ; 1* global for old button procedure pointer *1

long FAR PASCAL WndProc (HWND hWn~, unsigned iMessage, WORD wParam, LONG lParam)
{

static
FARPROC

HWND hButton ;
lpfnNe~:Proc ;

switch (iMessage)
{

1* process wi ndows messages * 1

case WM_CREATE:
hButton = CreateWindow ("BUTTON", "Button",

WS_CH1LD I WS_V1S1BLE ,
10, 10, 100, 60, hWnd, NULL, gh1nstance, NULL)

ShowWindow (hButton, SW_SHOW) ;
1* subclass the scroll bar to a new procedure *1

lpfnNewProc = MakeProc1nstance « FARPROC) NewButtonPro,c,
gh1nstance) ; , I

lpfnOldProc = (FARPROC) GetWindowLong (hButton, GWL_WNDPROC)
SetWindowLong (hButton, GWL_WNDPROC, (LONG) lpfnNewProc)
break;

~ase WM_SETFOCUS:
Set Focus (hButton) 1* keep input focus on button *1
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 1DM_DOlT: 1* User hit the "Do it" menu item *1

223

WINDOWS API BIBLE

)

MessageBox (hWnd, "Press Return!", "Message", MB_OK)
Set Focus (hButton) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

)

break;
case WM_DESTROY: 1* stop application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return OL ;
)

~ong FAR PASCAL NewBu~n_pro~ (HWND hWnd, WORD mess, WORD wParam, LONG lParam)

swit ch(mess)
{

case WM_KEYDOWN:
SetWindowText (hWn~, "Pressed!") ;
break;

case WM_KEYUP:

)

)

SetWindowText (hWnd, "Released!") ;
break;

return CallWindowProc (lpfnOldProc, hWnd, mess, wParam, lParam) ;

DEFHooKPROC • Wm 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also
Parameters
nCode

wParam
IParam
IplpjnNextHook

Provides default message processing for message hook functions.
DWORD DemookProc(int nCode, WORD wParam, DWORD IParam, FARPROC FAR *
Iplpft!NextHook)j .

Used inside of the message hook function, installed with SetWindowsHookO. Used by Windows to
reset the pointer to the next hook ftmction pointed to by IplpjnNextHook.
Hook functions are used to change Windows messages before they are sent to applications. There
are several different types of hook fimctions, all of which are -explained in the section on the
SetWmdowsHookO function. In most cases, the hook function must reside in a dynamic link
library module (DLL).
DWORD. Returns the message being processed ifnCode == HC_ACTION (which equals 0). Re
turns a pointer to the next hook function ifnCode == HC_LP}<~EXT (which equals -1). The
latter is the case when UnhookWindowsHookO is called.
SetWindowsHookO, UnhookWindowsHookO

int: Specifies the action the hook function (message fIlter) should take. nCode will be 0 for
normal processing of messages. nCode will be HC_LPFNNEXT for the last call to the hook func
tion, after UnhookWindowsHookO has been called.
WORD: This is the wParam parameter of the message being processed.
DWORD: This is the IParam parameter of the message being processed.
FARPROC FAR *: A pointer to a memoryJocation to hold a FARPROC data. Save this in a static
variable. Windows will change this value on the last call to the hook procedure (when nCode ==
HC_LPFNNEXT after the program calls UnhookWindowsHookO).

224

8. MESSAGE PROCESSING FUNCTIONS .~

Related Messages All Windows messages.

Example This example (courtesy of Don Stegall of Playroom Software) shows a DLL that sets a keyboard.
hook. Only W~CKEYDOWN and WM_KEYUP messages are processed by this hook function. When
activated, the function improves the operation of the (SHIFT) and (CAPS LOCK) keys. If the (CAPS LOCK J

is on, and the user presses the shift key and an A-Z letter, the hook function shuts off thE
(CAPS L.OCK). This imitates the way most typewriters function. See the SetWmdowsHookO functiol
description for a full code listing including definition fIles for use of the dynamic link libral'3
(DLL) hook functions.

1* msgdll.c message filter *1
1* Courtesy of Don Stegall - Playroom Software *1

#include <windows.h>

HANDLE hlnstanceDll
FARPROC lpOldHook ;

int FAR PASCAL LibMain (HANDLE hlnstance, WORD wDataSeg, WORD wHeapSize,
LPSTR lpszCmdLine)

{

}

if (wHeapSi ze > 0)
UnlockData (0) ;

hlnstanceDll = hlnstance ;
return (1) ;

1* turns on hook function *1
void FAR PASCAL SetHook (LPSTR lpsHookName, int nHookType)
(

}

FARPROC lpHook ;

lpHook = GetProcAddress (hlnstanceDll, lpsHookName) ;
lpOldHook = SetWindowsHook (nHookType, lpHook) ;

1* turns off hook function *1
void FAR PASCAL FreeHook (LPSTR lpsHookName, int nHookType)
(

)

FARPROC lpHook ;

lpHook = GctProcAddress (hlnstanceDll, lpsHookName)
UnhookWindowsHook (nHookType, lpHook) ;

1* hook function *1
DWORD FAR PASCAL MsgKeyboardFunc (int nCode, WORD wParam, DWORD lParam)
{

)

char cKeys [256] ;

if (nCode ! = IIC_ACTION)
return (DefHookPr6c (nCode, wParam, lParam, &lpOldHook»

else
{ 1* check if caps-lock, caps and A-Z at once *1

if {wParam >= 'A' & wParam <= 'Z' &
«GetKeyState (VK_SHIFT) & Ox80) != 0) &
(GctKeyState (VK_CAPITAL) & Ox01) != 0)

{

GetKeyboardState (cKcys) ; 1* if so, shut off caps lock *1
cKeys [VK_CAPITAl'l.J = cKeys [VK_CAPITAL] & OxFE ;

}
_ SetKeyboardState (cKeys) ;

}

return (0) ;

2~5

WINDOWS API BIBLE ,.' . . "./.'"
>

DEFWlND()wPRoc' • Win 2.0 II Win 3.0 : _ Wm S.1

VIeS

- Parameters
hWnd

Provides thedefault processing for Windows messages.
LONG DefMndowProc(HWND kWnd, WORD wMsg, WORD wParam, LONG IParam)j

Programs typically only act ona fraction of the messages that Windows sends. The remainder are
passed on to the default message processing logic. The default logic handles all ofthe more mun
dane tasks, such as making sure that the cursor remains visible.
Your WndProcO function should always have this function as the default message handling 0p

eration.
LONG. The value depends-on the message being processed. Return this value from your
WndProcO function.
DeIDIgProcO. The source code for the default message processing logic is provided with the
Software Development Kit in a file called DEfWND.C. It is remarkably short and worth reviewing.

HWND: The handle to the window receiving the message.
WORD: The message (WM_SIZE, etc.). This value l and the follo\\ing three, will be received by
your WndProcO function when a message is sent fr~m Windows to your program .

.,Pam", -WORD: The wParam data passed with the ~ge.
lParam DWORD: The lpdram data passedwit~ message:-

/'

Belated Messages All messages can be handled by t~default message processing logic. In many cases, no action is
taken. '

lsample , This is a minimal WndProcO functionjshowing how messages that are not aCted on by the
program's logic default to DetW'mdowProc(}.

long FAR PASCAL WndProc (HWNO hWnd~ unsig~ed iMessage,'WORO ~Param, LONG lParam)
(,

switch (iMessage)
(

case WM_CREATE:
1* etc. *1
break;

case WM_OESTROY:

t*' process windows messages *1

1* stop application *1
PostQuitMessage (0) ; \
break; I

default: 1* default windows message processing *1
return DefWindowProc (hWnd, 1Message, wParam, lParam) ;

)

return (OL) ;
)

DISPATCaMESSAGE fill Win 2.0 Ii Win 3.0
"",0" ;

.WiI{S.l
......... Sends a Windows message to the windowtsWndProcO function.
Sptu LONG DispatchMessage(LPMSG lplrb;g)j

DeleriptiOD This function is used within the program's message loop. Messages are usually fetched from Wm
dows with the GetMessageO function. Arter any needed processing (TranslateMe~eO func
tion), the message is sent on to the program!s WndProcO function for action.
Used in e!ery program's WinMainO function message loop.
LONG. The value depends on the message processed, but is generally ignored.

GetMe~geO, TranslateMessageO ,

-226

8. MESSAGE PROCESSING FUNCTIONS '",

.Param~
lpMsg LPMSG: 'A pointer to a MSG structure. This is generally defmed at the top of Win MainO.
Related Messages All Wmdows messages pass through this function.
Example This is a typical WinMainO function, including the me~ge loop at the bottom. .. ,

1* ex .. ple WinMa;nO function *1

'include <windows.h>
HANDLE ghInstanee ;

int PASCAL W1nMain (HANDLE hInstanee, HANDLE hPrevlnstanee, LPSTR lpszCmdLine,

(

.)

i nt nC.dShow) .

HWND
"SG
WNDCLASS

hWnd ;
msg ;
wndelass ;

ghInstanee = hlnstance ;
if (! hPrevInstance) .
(

wndelass.style
wndelass.lpfnWndProc
wndelass.ebClsExtra
wndclass.ebWndExtra
wndelass.hInstanee
wndelass.hleon
wndclass.hCursor
wndelass.hbrBackground
wndelass.lpszMenuName
wndclass.lpszClassName

1* store installc;,.~ .. ~!indle as global var. *1

= CS_HREDRAW I CS_VREDRAW ;
= WndProe ;
= 0 ;
= 0; ..
= hInstance ;
= Loadlcon (~Instance, gszAppName) ;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStoekObject (WHITE_BRUSH) ;
= gszAppName ;
= gszAppName ;

1* register the window class *1

)

if (!Reg1sterClass (&wndelass»
return FALSE;

Mind = CreateWindow'(
gszAppNalDe,
gszAppNalDe,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
h~nstanee,
NULL) ;.

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ;

1* create the program's window here *1
1* class name *1
1* window name *1
1* window style *1
1* x position on scree~*1
1* y position on screen·
1* width of window *1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handle (null = use class .enu) *1
1* instance handle *1
1* lpstr (null = not used) *1

while (GetMessage (&IDSg, NULL, 0, 0» 1* the ~essage loop *1
(.

)

Translate"essage (&.sg) ; .
Dtspateh"essage (&lDsg) ;

return .sg.wPara. ;
\

ExrrWINDOWS DWm2.0 .WinS.O
Exits the Wmdows environment to DOS.
BOOL EDtWindows(DWORD dwReserved, WORD wReturnCode)j

•

IIWmS.l

Starts an orderly shutdown sequence--for Wmdows. First, the WM..:,.QUERYENDSESSION message
. is sent to all applications. If any application returns zero to this message, Wmdows continues to

I .(

. ' 227
· ~ .

WINDOWS APr BIBLE

Uses

Returns
Parameters
dwReserved

operate. If all windows agree to exit (all return a nonzero value), a WM_ENDSESSION message is
sent to each window. When all of the windows have stopped operations, Windows exits to DOS
with the DOS return code specified in wReturnCode. "
Used in creating new program manager applications, as a way to exit the Windows environment
at the end of a session.

BOOL. TRUE if all applications agree to quit, FALSE otherwise.

DWORD: A reserved value. Set equal to zero.
wReturnCode WORD: The DOS return code. Normal exits should return a 0 value. Can be set to

EW _RESTARTWlNDOWS under Windows versions 3.0 and above. This restarts Windows.
Related Messages WM_QUERYENDSESSION, \VM_ENDSESSION

Ex~ple If the user clicks the "Do It!" menu item, an attempt is made to exit Windows. However, as the
WM_QUERYENDSESSION message results in the program returning 0, this window refuses to
exit, so Windows continues to operate. If you change the return value after WM_QUERY.
ENDSESSION to 1, and no other applications refuse to exit (such as programs that have unsaved
data), Windows will exit to DOS.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{ ,

,

}

BOOl bExi tOK ;

switch (iMessage)
{

case WM_COMMAND:
swi tch (wParam)
{

1* process windows messages *1

1* process menu items *1

case 10M_DOlT: 1* User hit the "Do it" menu item *1

}

bExitOK = ExitWindows (NUll, 0) ;
if"(!bExitOK) "

MessageBox (hWnd,

break;

"An application refuses to Quit!",
"Message", 'MB_OK) ;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_QUERYENDSESSION:

return (0) ;
case WM_DESTROY:

PostQuitMessage.(O) ;
break; "

1* refuse to qui t! *1' "
1* stop appl; cat jon *1

defaul t: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

FREEPRocINSTANCE • Wm 2.0 • Wm 3.0 • Win 3.1
Purpose

Syntax

Description

Decouples a procedure instance from a data segment. '

void FreeProcInstance(FARPROC IpProc)j

MakeProcInstanceQ is used to bind a function to a data segment so that It can be called or
passed as a parameter to a function external to the program (such as a Wind0W8furi~tlon).
FreeProcInstanceQ" eliminates the binding of the data segment to tb:e function!

.:;...

228

Uses

Returns

See Also

Parameters
IpProc

Comments

Example

8. MESSAGE PROCESSING FUNCTIONS ...

. FreeProclnstance() should be used when the need to call the function is eliminated (such as the
end of a dialog box operation). A small amount of memory is consumed by each procedure in-
stance, but released when FreeProclnstanceO is called. .

No returned value (void).

MakeProclnstanceO

FARPROC: The procedure-instance address of the function to be freed. This address is created
by MakeProclnstanceO.
Don't forget to add the function name to the EXPORTS part of the program's .DEF definition file
if you are going to pass the function using MakeProclnstance().

This example displays a simple dialog box when the "Do It!" menu item is clicked. The dialog box
function is at the end of the listing; The dialog box function must be passed to the DialogBoxO
function, which is external to the program (part of Windows). MakeProclnstanceO is used to get
a procedure-instance address for the dialog box function. After the dialog box is finished, the
procedure-instance address is released with FreeProclnstanceO. Note that the procedure-in-·
stance address is stored in a static variable. The stack will be changed by the activities in the
dialog box function.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

}

}

stat; c FARPROC LpfnD LgProc ;

switch (iMessage) 1* process windows messages *1
{

.ca_se WM_COMMAND: , 1* process menui tems *1
swi tch (wParam)
{

case IDM_DOIT: 1* run diaLog box *1
lpfnDLgProc = MakeProcInstance

(DiaLogProc, ghInstance) ;
DiaLogBox (ghInstance, "ExampleDiaLog", hWnd,

lpfnDLgProc) ;
FreeProcInstance (lpfnDlgProc)
break;

case IDM_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_DESTROY: . 1* stop application *1
• PostQuitMessage (0) ;

break;
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

BOOL FAR PASCAL DialogProc (HWND hDl.g, WORD wMess, WORD wParam, LONG lParam)
{

}

switch (wMess)
{

case WM_INITDIALOG:
return TRUE;

case WM_COMMAND: 1* there is only one command - quHs *1
case WM_DESTROY:

}

return FALSE;

EndDialog (hDlg, O)
return TRUE;

229

·WINDO~IBIm:gi .. ~. " ..
"-....... ~~.---

NAME
DESCRIPTION
EXETYPE
STUB
CODE.
DATA
HEAPSIZE
STACKSIZE
EXPORTS

GETMESSAGE .

Purpose

Syntax

Description

Uses

Returns

Remember to add the exported function name to the .DEF fIle:

GENERIC
'generic windows program'
WINDOWS .
, W IN STU-a. EX E I
PRELOA~KOV£ABLE_ .. _.
?~~EABLE-~ULTIPLE
1024
4096
WndProc
Dh logProc /

• Win 2.0 DWm3.0
Retri~ves a message from Windows or gives control to another application if no messages are
waiting for the window currently receiving messages.
BOOL GetMessage(LPMSG lpMsg, HWND hWnd, WORD wMsgFilterMin, WORD wMsgFilter
Max);
GetMessageQ pulls the next waiting message from Windows into the MSG structure pointed to by
lpMsg. If no messages are waiting, control is given by Wmdows to another window if one has
waiting messages. _
Used in a program's message loop to retrieve messages. Only messages for the window are re
trieved. Windows programs must use either GetMessageQ, PeekMessageO, or WaitMe!iBageQ to
relinquish control from the running pro~ams. .
BOOL. TRUE if any message other than WM_QUIT is received, FALSE for WM_QUIT. This return
Vc1Iue-iS' important because the message loop will quit looping when GetMessageQ processes a

. /<mCQUIT, ending the program.. .

See Also
Parameters
lpMsg

PeekMessageQ, WaitMessageO

LPMSG: A pointer to a MSG message st~cture. The structure is loaded with the data from the
message. The MSG structure contains the following fields (defmed in WINDOWS.H):

typedef struct tagMSG
{

HWND
WORD
WORD
LONG
DWORD
POINT

> "5G; ._
typedef KSG
typedef MSG NEAR
typedef MSG FAR

hwnd;
message;
wParam;
LPa'ram;
time;
pt;

" *PKSG;
*NPMSG;
*LPMSG;

1* window handle *1
1* message 10 *1

·1* wParam va Lue *1
1* LParam value *1
1* msec since startup *1
1* mouse location, screen coord *1.

hWnd HWND: A handle to the window receiving the messages. Set to NULL to receive all messages for
a window and its chilo and popup windows (the normal case). Set to the window's handle (from
CreateWmdowQ) to receive only messages for the parent window.

wMsgFilterMin WORD: The lowest value message to receive. Normally set to O.
. . ,

wMsgFilterMax WORD: The highest value message to receive. If both wMsgFtlterMin and wMsgFilterMax are
set to 0, allinessages are processed. wMsgFilterMax can be set to WM_USER-l to process only
internally defined messages. Nonilally it is set to O.

Related Messages All Windows messages are processed.
Notes Anytime control is yielded to another program by GetMessageQ, PeekMessageQ, or Wait

MessageQ, local variables and-pointers to far memory may be inValid when control Is retumed to
the program. .

.230

Example

.8. MESSAGE PROCESSING FUNCnONS· y.

This is a typical message loop, at the end of the WinMainO function.

whiLe (GetMessage (&msg, NULL, 0, 0»
(

)

Tr~nsLateMeS5aQe (&m5g) ;
DispatchMes5age (&.sg) ;

GETMESSAGEPOS • Win 2.0 • WinS.O .WinS.l
Retrieves the X,Y position in screen coordinates of the cursor when a message was ~nt
DWORD GetMessageP08(void)j

DesaiptlOD .
, ,. '

EvelY message sent by Windows includes a point structure that contains the position of the mouse

u ..

See Also

cursor when the message was sent GetMessagePosQ extracts that ~ue.
If messages are staCking up on the message queue, the mouse may have moved since the message
being processed was sent. Use this function to retrieve the position where the mouse was when a
message was sent.
DWORD. The X position is in the low-orderword, and tlieYposition in thehigh-orderWord. Use
the MAKEPOINT macro to convert the DWORD value to.8 point structure.

Note that the X,Y position is in screen coordinates, as are all mouse cursor coordinates. uSe'
ScreenToClientO to convert to cUent coordinates (see example).. .
ScreenToClientO, GetCursorPosO

Parameters None (void).
Relatm Messages WM_MOUSEMOVE
Example Mer the user cUcks the "Do It!" menu item, the program starts drawing a small line in the client

area at the location eveIY message is received. This provides a visual indication as to how often
\Vmdows sends messages.

Long FAR PASCAL Wndproc (HWHo hWnd, unsigned 1Message, 'WORD wPara., LONG LPara.)
(

static BOOL
HOC

bTraceOn = FALSE;
hOC;

oWORD dwHesPos ;
POINT pPoi nt ;

if (bTraccOn)
(

1* .ark where the cursor was when .sg. recvd *1

)

hOC = GetoC (hWnd) ;
dwMesPo5 = GetMessagePos () ;
pPoint = MAKEPOINT (dwMesPo5) ;
ScreenToCLient (hWnd, &pPoint) i
MoveTo (hOC, pPoint.x, pPoint.y) ;
LineTo (hOC, pPoint.x + 2, pPoint.y)
ReLeaseDC (hWnd, hOC) ;

1* get pos;tion *1
1* convert to point struct. *1
1* convert· to client coord. *1
1* draw a smalL line there *j

switch (iMe5sage)
(

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
case lOM_DOIT: 1* toggLe message marking on/off *1

if (bTuceOn)
bTraceOn = FALSE;

eLse
bTuceOn = TRUE;

break;
case 10M_QUIT: 1* send end of application aessag. *1

DeltroyWindow (hWnd) i
break;

)

231

WINDOWS API BIBLE

}

}

. break;
case WM_DESTROY:

PostQuitMessage (0) ;
break;

1* stop application *1

default: 1* ,default windows message-processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return' (OL) ;

GETMESSAGETIME II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax
Description

Retrieves the time value when a message was sent.
DWORD GetMessageTime(void)j

All Windows messages include a time value, which is the number of milliseconds since Windows
. was started. This value ''wraps around" back to 0 when the long integer value exceeds the avail-
able bit precision. .

Uses Normally used to find out how}ong a message has been in the message queue. Compare the value
.. to that of GetCurrcntTimeO.

Returns
See AlsO

Parameters

DWORD, the time at which the message was sent, in milliseconds since Windows started up.

HetCurrentTimeO
None (void).

Related Messages All messages are time stamped.
Example This example displays the longest time between messages in the last 100 received. Messages are

received only when the mouse is in the program's client area, so moving the mouse outside for a
few seconds wiII result in a long delay between messages. Also, doing nothing (no· mouse:} move
ments, etc.) will result in no messages being sent to the wi,ndow until an action is taken.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam~
{

static BOOl
HDC '
DWORD

bTraceOn = FALSE;
hOC;
dwMesTime, dwCurrentT1me
nElapsed ; int

char cBuf [15J ;
static int nLargest = 0, nCount = 0 ;

if (bTraceOn)
{

1* show longest message wait in the last 100 msgs. *1

}

dwMesTime = GetHessageTime (); 1* get message time value *1
dwCurrentTime = GetCurrentTime () ; 1* get current time *1
nElapsed = (int) (dwCurreritTime - dwMesTime)
if (nEla~sed~ nlargest)
{

hDC = GetDC (hWnd) ;
SetBkMode (hOC, OPAQUE) ;1* number background opaque *1
nlargest = nElapsed ;
itoa (nElapsed, cBuf, 10) ;
strcat (cBuf, II ");

TextOut (hOC, 20, 50, cBuf, strlen (cBuf)) ;1* show diff *1
}

ReleaseOC (hWnd, hDC) ;
if (nCount++ > 100) 1* reset counter *1

nlargest = nCount == 0;,·

s~itch (iHessage)
{

1* process' windows messages *1

case WM_COMHANO: 1* process menu items *i
switch (wP~ram)

232

>

}

8. MESSAGE PROCESSING FUNCTIONS ~

{

case IDH_DOIT: 1* toggle message marking onloff *1
if (bTraceOn)

else
{

}

break; -

bTraceOn = FALSE;

bTraceOn = TRUE;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10,

"E lapsed ms. for message:", 24) ;
ReleaseDC (hWnd, hDC) ;

,case I D"'-QU IT : 1* send end of appl i cation message *1,
DestroyWindow (hWnd)
break;

}

break;
case WH_DESTROY: 1* stop application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iHessage, wParam, lParam) ;

return (01,.) ;

INSENDMESSAGE • Win 2.0 • Win 3.0 II Win 3.1
Purpose '

Syntax

Determines if the current message being processed was sent by SendMessage().
BOOL InSendMessage(void)j

Description This function distinguishes between messages'that originate from normal Wmdows delivery oJ
messages, and messages sent by other running programs. InSendMessageO will not detect mes
sages sent from within a program, or from a child or popup window's separate message function.
Only messages sent from other programs result in detection.

Uses Handy when you have separate programs which interact.

Returns BOOL. TRUE if the message was sent from another application, FALSE if not.

See Also SendMessageO, PostMessage(), PostAppMessageO, RegisterWindowMessage()
Parameters None (void).

Related Messages All messages are potentially transmittable via SendMessageO.

Example This example involves two programs. The first program looks for another running program with
the title "generic" when the user clicks the "Do It!" menu item. If fo'und, the program sends
generic a WM_USER message. If not found, a message box warning is placed on the screen. The
sec{)nd time the "Do It!" menu item is clicked, the input focus is shifted to generic, so that it is
active when the WM_USER message is received.

The second program has the title "generic." When it receives a WM_USER message, it checJcs
to see if the message was delivered with a SendMessageO call and if "generic" is the currently
active window. If these conditions are met, the window's title is changed to "Got a WM_USER
message." Ifthe conditions are not met (usually because the window is inactive), a message box
warning is placed on the screen. This example is for demonstration purposes only. See Chapter 30
on DDE for a description of how to correctly exchange data and commands between running
applications. Here is the WndProcO function for the message sending program.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

HWND
char

hW;;ldow ;
cBuf [25] ;

233

NINDOWS API BIBLE

)

st~t1c BOOl bFi rstTry = TRUE;

switch (iMessage)
(

1* process windows lIessages *1

)

case'WM_COMMAND: -1* process Menu itells *1

I

\

switch (wParalD)
{

case 10M_DOlT:' 1* send generi c 8 W,,-USER lIessage *1
hWindow = hWnd ; , 1* start looking with this window *1
while (hWindow = GetWindow (hW1ndow, GW_HWNDNEXT»
(

}

GetWindowText (hWindow, cBuf, 24) ;
if (strc.p1 (cBuf, "generic") == 0)

break; 1* quit HUtle = generic *1

if (hWindow)
(1* on .econd try, set focus to generic *1

if (!bFirstTry)

)

else

I Set Focus (hWindow) ;
SendMessage (hWindow, WM_USER, 0, Ol) ;

MessageBox (hWnd, "Did not find Generic.",
"Message" MB OK) ;

bFi rstTry = FALSE; ,-
break;

case IDM_QUIT:
DestroyUindow (hUnd) ;
break; -

)

break;
case UM_DESTROY: 1* stop application *1

. PostQui tMessage (0) ;

break;
default: 1* default windows lIessage processing *1

"return DefUindowProc (MInd, 1neuage, wParalD, lParail) ;

return (Ol) ;

The following listing is the WndProcO function for GENERIC.O, the program receiving the
message.

tong FAR PASCAL WndProc (HWND hWnd, unsigned 1Mes.age, WORD wPar •• , LONG lP.r ••)
(

\

switch (1Message)
(

case WM_USER:

1* process windows lIusages *1

if (InSendMessage (»
(,

)

break;

if (hWnd != GetAct1veWfndow(»
{

)

else

MessageBox (hWnd,
"Got .e •• age, but child not active.",
"Warning", MB_ICONHAND 1MB_Ole:> ;

SetUfndowText (hWnd, "Got a "M_USER ... sage") ;

case WM_COMMAND: 1* proce.s .enu ite •• *1
switch (wPara.)
<
case IDM_DOIT:

SetW1ndowText (hWnd, "Parent") ;
break ';

case 10M_QUIT: 1* send end of appliuUon lI.uage *1

234

)

'I I

8~ MESiSAGE -PROCESSING' FUNCTIONS •

DestroyWindow (hWnd) ;
break;

)

break;
case W',-DESTROY: 'I*' stop,applica'tion *1

PostQuitMessage CO) ; i I

break;
default: I*'default windbws message processing *1

return OefWindowProc (hWnd, iMessage, wP~ram, lParam) ;

return COL) ;
)

Note that the sending function uses GENERIC's window! title to determine which application
is called "generic." Fin~WindowO could also ~ave been1used. Because GENERIC changes its
window title after the first time it gets a WM_USER message and is active, the sendlngJunction
will not be able to find "GENERIC" a second time. A better way of locating another application 18-,:
with EnumWindowsO.

This example could be improved by using the RegisterWindowMessageO function to create a
new unique message number for both programs to exchange. WM_USER is safe only if messages
are kept within an application and its children.

DlAKEPaociNsTANCE • Win 2.0 • Win 3.0 • Win 3.1
Purpose
S)'Jltax

DestJiption

Uses

Retmts

SeeAllo

Paramete1'8
lpProc

hlnsl4nce

Provides a procedure-instance
FARPROC MakeProelnstance(F PROC lpProc, HANDLE hlm;tance)j

If you need to call or pass a function address outside of the program, you will need to use
MakeProclnstanceO to obtain a procedure-instance handle. This binds the function to the data
segment. Use FreeProcInstanceO to decouple the function and data segment after use. Windows
uses procedure-instance addresses so that Windows can move code and data in memory. Creating
a procedure-instance address sets up a small section of code that resets the registers to the
current address of the stack and local heap when the function is called.
Any time you need to pass a function address'within Windows. The pt:ocedtire-mstance is passed
instead of the function's address. This is commonly used in passing dialog box function names, in
enumeration functions, and in callback functions. '

FARPROC, the procedure-~tance handle for the functio~
FreeProcInstanceO

FARPROC: The function's real address when MakeProclnstanceO is called. This is the function name.
HANDLE: The program's instance handle. This handle is importrant, because each instance of

, the program will link a separate data segment to the function when MakeProclnstanceO is
called.
Don't forget to list the function name in the EXPORTS part of the program's .DEF definition file.

See the example under the FreeProcI~tanceO function description.

PEEiC.MESSAGE • Win 2.0
Checks the message queue for a message.
BOOL PeekM~(t'PMSG'lpMsg, HWND hWn4,)VORD wMsgFilterMin, WORD wMsgFilter
Max, WORD wRemoveMsg)j

PeekMessageQ is s~ilar to GetMessage(), but more passive. PeekMessageO does not wait for a
message to be placed in the application-queue before returning. PeekMessageO yieldS control to

235

. WINDOWS API BIBLE.

Uses

other applications. Unlike GetMessageO, PeekMessageO does not wait for a message to be placed
in the message queue before returning. .

PeekMessageO can be used within the body of a program to do background operations until it is
interrupted by a message. This;s commonly used in printing operations to allow.,. printing task to
be interrupted by a keypress or mouse click. PeekMessageO can also be used in place of Get
MessageO in the program's message loop to allow a window to execute some fllnction continu
ously, but still yield control to other applications. The structure of this special type of message
loop should be as follows:' .

while.(TRUE)
{

}

Returns

See Also

Parameters
lpMsg

hWnd

wMsgFilterMin

w},[sgFilterMax

wRemoveMsg

if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE»
{

}

else
{

if (msg.message == WM_QUIT)
break;

else
{

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

1* do some function, lHe draw on client area *1
}

BOOL. TRUE if ~ message is available, FALSE if not.
GetMessageO, WaitMessageO

LPMSG: A pointer to a message structure. PeekMessageO fills in the message data when a'mes-
sage is found. .

~D: A handle to the window receiving the ptessages. PeekMessageO will only find messages
In the program's message queue, not messages for other programs. If hWnd is. set to -I, only
messages posted by PostAppMessageO using a hWnd value of NULL will be retrieved.
WORD: The lowest value message to be retrieved. You can use the WM_MOUSEFIRST and
WM_KEYFIRST message numbers to specify the lower limit to all client area mouse messages
and keystrokes respectively. '

WORD: The lowest value message to be retrieved. You can use the WM_MOUSELAST and
WM_KEYFIRST message numbers to specify the upper limit to all client area mouse inessages
and keystrokes, respectively. If both wMsgFilterMin and wMsgFilterMax are both 0, all mes-
sages are retrieved. .

WORD: Specifies how the function responds to a message. The values may be any of the ones
listed in Table 8-2 .

. Meaning , , ,~ ,

PM_NOREMOVE Messages peeked by PeekMessageO are left in the application's message queue.

. PM_NOYIELD The current appiication does not stop and yield to other applications.

PM_REMOVE Messages are removed from the message queue. This value is typically used when PeekMessageO is used
in place of GetMessage{) in the program's message loop. Will not remove WM_PAINT messages, which are
removed with BeginPaint() and EndPaint() in the message processing function.

Table 8-2. PeekMessage() Flags.

236

8. MESSAGE PROCESSING FUNCTIONS ..

PM_NOYIELD can be combined with either PM_NOREMOVE or PM_REMOVE with the Clan
guage binary OR operator (I).

Related Messages All messages can be processed by PeekMessagcO.
Notes Any time control is yielded to another program by GetMessageO, PeekMessageO, or Wait

MessageO, local variables and far pointers to memory may be invalid when control is returned to
the program.

Example At the bottom ofthe listing is a function called NoMessagesO that paints randomly colored pages
of asterisk (~) characters on the client area. When the user clicks the "Do It!" menu item, a loop
is entered. The loop is exited when PeekMessageO finds a client area mouse message in the
window's message queue. If ther~ are no messages, PeekMessageO ~alls NoMessagesO to paint
another astersik and then loops back to check for messages again. Note that this example has
two message loops. The normal GetMessageO loop in WinMainO is not shown (identical to
GENERIC.C from Chapter 1). The PeekMessageO loop operates independently from the appli
cation's main message loop, allowing a separate process to go on.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

MSG msg ;

switch (;Message)
{

}

case WM_COMMAND: '* process menu items * ,.
switch (wParam)
{

case 1DM_DOIT:
while (! PeekMessage (&msg, hWnd, WM_MOUSEFlRST,

WM_MOUSELAST, PH_NOREMOVE» .
{

NoMes~ages (hWnd) ;
}

break;
case 1DM_QUIT: '* send end of application message'*'

}

break;
case WM_DESTROY:

DestroyWindow (hWnd)
break ';

PostQuitMessage (0) ;
return (0) ;

return (DefWindowProc (hWnd, iMessage~ wParam, lParam» ;

void NoMessages (HWND hWnd)
{

1* paint random ,.*,. chars in client area *'

hDC ; 'HDC -
static int ·nX = 0, nY = 0, nRed = 255, nBlue = 0, nGreen = a ;

hDC = GetDC (hWnd) ;
SetTextColor (hDC, RGB (nRed, nGreen, nBlue» ;
TextOut·(hDC, nX, nY, "*", 1) - '* show an ,.*,. *'
nX += 10 ;

. if (nX > 200)
(

)

nY += 10 ; ,
nX = 0 ;

if (nY > 200)
(

' ..
nV = a ;
nRed += 23·;
.if (nRed > 255)

1* alter colors when screen area is full *'

237

'WINDOWS API BIBLE

>

nRed = 0 ;
,nB~ue -= 37 ;
if .(nBlue < 0)

} ,
nBl~e = 25~ ; \

ReleaseDC (hWnd, hDC) ;
" \

POSTAPpMEssAGE .Wm 2.0 • Wm 3.0 • Win 3.1
hrpaBe . Puts a message ~ the application's message queue.. .

SJDtu BOOLPosiAppM~e(HANDLEhT~k, WORD wMsg, WORD ~Parami LONG lParam);
De8eriptiOD PostApp~essageO \~ similar to Post'MessageO except that the message is seJlt to a task instead

useS

RetarDs
. 8eeAlso

-.. P8I'8Bleten
ATask

wMsg
wParam

\ of a wiridow. A, task is\~ running apPIic~on (not ,a DLL). ,
Used for c'ommunication between different ~ks. This function is used less frequently than

\ \,' \ \

'\ PostM~ssageO.\ \, \' \, \", '
~OOL. TRUE if the message was posted, FALS~ on error •.

Serul,M~eo, Po$tMessage(j, GetCurreOlTask\OuniraskwmdOWSO \

HANDLE: A handle to the current task. Use GetCurrentTaskO and EnumTaskWindowsO to fetch
, tasl\~dles. \,.' \'
, \VOR~: rhe m~ge to send (such 'as W¥_MOVE).

WORD: The w aram value to be passed with the message. See Chapter 9, Windows Messages, for
a full list of me ges and their parameter values.

lParam DWORD: The lPaam value to be passed with the message.
\ . ,

Related M~es ~l Windows messag maybe passed with this function.

Note , \'rh"e message celved. GetMeSsageO 9rfeekMessageO will have a humd parameter value of
t:ruLLifthe me ge was ent using PostAppMessageO., . ' I

1* generic.c
1* *1

']~this case" *hen he user licks the "Do It!" 'menu item, a WPtLUSER message is sent, to the
application's messa~queue. PeekMessage() is used in the message loop to pull in the message .

. I(the detected m,essage.is found to be equal to WM_USER, the function StarMessagesQ listed at
th. ebo.t.to;n~.i~ c c.~ailed\topaint an astersikon the window's client are .. a. This is certainly.a round
about metho~f painting on the screen; The example was designed to illustrate how messages
c~ be l~nerate(} from within an application and end up being acted upon via the message loop.

example of creating a child window with message processing *1

'Ii nc lude<wi ndo~'s. h>
'lIinclude "generic.h" .

. "' ' .

int PASCAL\Win"ain (HANDLE hInstance, HAN~LE hPrevlnstance, LPSTR lpszCmdLine,
int~.dShow) ,

(.

HWND
, "SG

WNDCLASS

hWnd ;
msg ;
wndclass ;

ghlnstaryc .. ,f:= h'Instance ; . .• ' .. * store instariCe. handl~ as g'Cobal.var. *1
if (!hPr1eyInstance) 1* load data into window class struct. *1
(':: '1/,

wndclass.style := CS_HREDRAW I CS_VREDRAW ;
wndclass. lpfnWndProc :: WndProc ; ,,' . -"
wndclass.cbClsExtra" = 0';
wndcl8ss.cbW~dExtra =0 ;

..
238

wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

8. MESSAGE PROCESSING FUNCTIONS •

= hInstance ;
= LoadIcon (hInstance, gszAppName)
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;
= gszAppNallle ;
,= gszAppName ;
1* register the window class *1

if (!RegisterClass (&wndclass»
return FALSE

)

hWnd = CreateWindow (
gszAppNallle,
gszAppNallle,
VS_OVERLAPPEDUINDOW,
CV_USEDEFAULT,
CV_USEDEFA'UL T,
CV_USEDHAULT,
CV_USEtlEFAULT,
NULL,
NULL,
hlnstanc:e,
NULL> ;

ShowWindow (hUnd, nCllldShow)
UpdateWindow (hWnd) ;
while (TRUE)
(

1* create the progralll·s window here *1
1* class name *1
1* window name *1
1* window style *1
1* x position on Icreen *1
1* y position oQ screen *1
1* width of window *1
1* height of window *1
1* parent window'handle (null = none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr (null = not used) *1.

1* the progra s lIIessage loop trl

if CPeetRessage (&IIISg, NULL, 0, 0, P"~REMOVE»
{

)

if (msg.message == WM_QUIT>
break;

else if (msg.message == WM_US,ER)
StarMessages (hWnd) ;

else
(

)

TranslateMessage (&msg) ;
DispatchMessage (&lIIsg) ;

return msg.wParam ;

long FAR PASCAL VndProc (MVND hVnd;, unsigned 1R ge, W~RD wParam"LONG lP~ra.) \
(

)

switch (1Resl.ge)
(

)

case ti"_CO"MAND:" 1* process menu 1 tems' *1
switch (wParam)
{ .
case !D"_DOlT:, ',: I' 1* send a WM_USER message *1

PostAppMes~age,. ' .
((GetCurrentTask(), WM_USER, 0, OL)

break;
case ID,,:':"QUlT:

DestroyWindo,w (hWrid) ;
break;

)

br~ak ;
',' " \ '

~~se .. "_D,ESTROY:
--" PostQui t"essage (0) ;

return (0) ;

return (DefWindowProc (hWnd, 1"elSage, wParam, lParam» ;

void Star"essages (HWND hUnd) 1* paint "*" characters in client area *1
(,

239,,'

WINDOWS API BIBLE

}

HOC
static int

hOC = GetOC ChWnd) ;

hOC;
nX = 0, nY = 0, nRed = 255, nBlue = 0, nGreen = a ;

SetTextColor (hOC, RGB CnRed, nGreen, nBlue» j
TextOut (hI1C, nX, nY, u*u, 1) ; 1* show an u*" *1
nX += 10 ;
if (nX >200)
{

}

nY += 10 ;
nX = 0 ;

if (nY > 200) 1* alter colors when screen area is full *1
{

}

nY = a ;
nRed += 23 ;
; f (nRed > 255) I

nRed = 0 ;
nBlue -= 37;
if (nBlue < 0)

nBlue = 255 ;

ReleaseOC (hWnd, hOC) ;

POSTMESSAGE 1'1 Win 2.0 II Win 3.0 II Win 3.1
Purpose.
Syntax

Description

Uses

ReturnS
See Also

Parameters
kWnd

wMsg

wParam

lParam

Puts a message on a window's message queue.
BOOL PostMessage(HWND kWnd, WORD wMsg, WORD wParam, LONG lParam)i

. PostMessage() places a message on a window's message queue and then returns. The posted
message can be recovered by using either GetMessage() or PeekMessageO in the program's mes~
sage loop. PostMessage() returns immediately, without waiting for the message to be processed.
PostMessage() cannot be used to send a message to a control (such as a button or list box) where
a returned value is expected.
PostMessageO canbe used in place of go to: commands to cause another section of the program's
logic to be executed, but only after the current message has been processed. The function has the
ability to send a message to all running programs at one time.
BOOL. TRUE if the message was posted, FALSE on error.
SendMessageO, PostAppMessageO

HWND: A handle to the window receiving the posted message. If set to 0xFFFF (-1), all top-level
windows will receive this message. Child and popup windows do not receive the message.
WORD: The message to send (like WM_MOVE).
WORD: ThewParam value to be passed with 'the message. See Chapter 9, windoWs Messages, for
a full list ,of messages and their parameter values.
DWORD: .The LParam value to be passed with the message.

Related Messages All Windows messages ~an be posted with this function.
Example When the user cHcks the "Do It!" menu item, the program posts a WM_USER message to all

applications. The window's message function (WndProcO) responds toWM_USER mesSages by
printing a message on the client area. Ifmore than one instance oftbis program is run, all of them
will print the message if anyone of the instances posts the WM_USER message. This eXample
could. be improved by using ReglsterWindowMessageO to create a new, unique message.
WM_USER is safe only if messages are confined to within.one application program and its
chlIdren. .

\
240 ~ ..

8. MESSAGE PROCESSING FUNCTIONS T

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG LParam)
{

}

}

HDC hDC ;

swi tch (iMessage) '1* process windows me·, ;es *1
{

case WM_USER:
hDC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, "Got WM_USER message.", 20) ;
ReLeaseDC (hWnd, hOC)
break;

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M DOlT: 1* send popup window a fake keypress *1
Post~essage (OxFFFF, WM_USER, 0, Oll.;
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break;

}

break;
case WM_OESTROY: 1* stop appLication *1

PostQuitMessage (0)
break;

defauLt: 1* defauLt windows message processing *1
return'DefWindowProc (hWnd, iMessage, wP~ram, LParam)

return OL ;

POSTQUITMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Terminates an application.

void PostQuitMessage(int nExilCode)j

PostQuitMessageO posts a WM_QUIT message to the application. The program's message loop\,
should be constructed so that .when this message is received, the program exits.
Normally used to process WM_DESTROY messages and menu items that force exiting the pro
gram. Use DestroyWmdowO elsewhere in the application to start the application shutdown process.

No returned value (void).

PostMessageO. PostQuitMessage() is functionally equivalent to PostMessage (hWn~ WM_QUIT,
nExitCode, OL) " .,-

nExitCode int: This code will be passed as the wParam parameter when the WM_ QUIT message is pulled off
the message queue. -~

Related Messages WM_DESTROY, \%CQUIT

Example This WndProcO example shows the typical plac~~ent of Destr~YWiridowO and PostQuit
MessageO. The DestroyWindowO is in response to the user clicking the "Quit" menu item. Wm
dows responds by sending a ~CDESTROY message. This is alsO-sent in respom~~to the'user
double-clicking the system message button (at the upper'left-curner of the application window), "-__
or clicking the system message button and then selecting "Close" from the system menu.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORO wParam, lONG LParam)
{

switch (iMessage)
{

case WPILCOMHANO:
switch (wParam)
{

'1* process windows messages *1

I*'proces~ menu items *1

241

;

WINDOWS API BIBLE

case 10',-00IT: 1* send popup wi ndow a fake keypress *1
1* some action done here *1
break;

case 10M_QUIT: 1* send end of application message ~I
Oest'royWi ndow (hWnd); .
break;

}

break;
case W',-OESTROY: 1* stop ,application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage~ wParam, lParam) ;

>
return (OL> ;

)

REGISTER WINDOWMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax
Description

Uses
Returns
See Also ,"
Parameters
lpString

Example

Creates a new, unique Windows message number.
WORD RegisterWmdowMessage(LPSTR lpString)j

When two s~parate pr~gra:rns communicate by sending and receiving meSsages, it is not safe to'
use the normal WM.:..USER, WM_USER + 1, etc. message numbers fOl: special messages. This is
because another, unrelated application might use the same message for a 'different purpose.
Communication between different applications.

WORD, the new message value. It will be between OxCOOO and OxFFFF. Returns NULL on error ..
SendMessag~O, PostMessageO, FindWindowO

LPSTR: A pointer to the string name to be registered. If the same string name is used by two
different applications calling RegisterWindowMessageO, the'same message value will be re
turnedJor both applications;

, This example shows two program WndPiocO functions. The first is a message sender. A unique
messageJs created using RegisterWindowMessageO when the program is started .. If the user
clicks the uDo It!" menu item, the program gets a handle to the program called "GENERIC" and
sendsit the unique message. The second time "Do,It!" is cli<:ked, "GENERIC" is made the active
window before the unique message is sent by <.!alling SetFocusO. See Chapter 30, Dynamic Data

. Exchange,'on DDE, for better ways to exchange data betWeen applications.

long FAR PAStA~ WndProc (HWND hWnd, unsignediMessage, WORD wParam, lONG lParam)
{ ::.'"

HWND' '. hWi ndow ;~, '
static
static

BOOl
WOR!).

bFi rstTry = TRUE;
wNewMessage = WM_NUll ;,

, switch (iMessage)
'. {.

1* proces~ windows messages *1

,~Se: WPL,CREATE:

',. ,\ ,wNewMessa,~e=Reg i.s terWi ndowMessage (",NEWONE") ;
br~ik.;,' " '." .' "

'caseWM...;,COMMANQ :'. ' '1* process menu items *1
,,;,.:.. switch (wParam)

{ "

"case IDM_DOlT:' j* send generic a n~w message *1
hWindow = FindWindow (llgener.ic", '~ge"-eric") ;
if (hWindow)
{

if <!bFirstTry) 1* on sec'ond try, set-i~cus to *1
, Set Focus (hWindowr ;1* generic, 'so awake.*1

242

}

}

}

else

8. MESSAGE PROCESSING FUNCTIONS ..

Se~dMessage (hWindow, wNewMessage, 0, Ol)

MessageBox (hWnd, "Did not find Generic.",
"Message", MB_OK)

bFi rstTry = FALSE;
break;

case IDM_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_DESTROY: 1* stop application *1
PostQu;tMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

The listing below shows the WndProc() function for the second program. This prognun ·re
ceives a message sent by the program shown on the previous listing. On startup (W~CCREATE),
the same unique message is created in this application. The message number will correspond to
the number retrieved from RegisterWindowMessageO in the sending program (above) as both
calls to RegisterWindowMessageO use 'the same string const.ant "NEWONE." If the window re
ceives the unique message, a response is generated. If the Window is active when it gets the
message, the window's title is changed to "Got a unique message." Otherwise, the window is not
active, and a message box is generated.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPara., LONG lParam)
(

stati c WORD wNewMessage = WM_NULL ';

if (iMessage ==,wNewMessage)
{

}

ReplyMessage (NULL);
if (hWnd != GetActiveWindow(»
(

}

else

MessageBox (hWnd, "Got message, but child not active.",
"Warni ng", MB_ICONHAND 1MB_OK) ;

SetWindowText (hWrid, "Got a unique message")

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE:
wNewMessage = Regi sterWi ndowMessage ("N~W.ONE") ;
break; ";,"

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
("

case I DM_DOn:
SetWindowText (hWnd, "Parent")
break;

case IDM_QUn:

}

break;

DestroyWindow (hWnd)
break;

case W'CDESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

243

,WINDOWS API,BIBLE', ' "

default: " ,,' ."* detault:windows message processing *'
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

)

return (OL) ; '\' I

) (",I

REPLyMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Descriptio1'

Uses

Returns', ' ,
, See Also
'Par~eterS,,; :
lRepl~" ,

Frees the application sending a message to contiriue~o execute.

void ReplyMessage(LONG lReply);

This function is used to respond to messages sent from an~therwindow or application calling
SendMessageO. The lReply value ultimately becomes the returned value from SendMessageO in

" the sending application. It is not ,necessary (or possible) to respond with ,ReplyMessageO if the
:, message was posted with PostMessageO. '

Used to return a value to another window which sent the messa~e. Returns control to the sending
window.
No returned value, (void). ,I

SendMessageO, ~egisterWiildowMessage()
I

, ~ " . '. : I '. ' . '. ' .. I . '.. • \ • ~
',LONG:.'fhe return value for the message sent. The application which sent the message will re-

"ceive this v~i,iie; as the returned valueTrom SendMessageO., '

R~lated:~essages ,User ~efin~dmessagesl created withRegisterWindowMes~ageO.
Note In situations where an application receiving a message calls a dialog box or message box, the

Example

, ' system can become, frozen while both the sending and, receiving applications wait for action.
"ReplyMessag~O frees the sending application to continue execution, even if the receiving appli-
cation has not completed processing the message: " " ' I".' , ,

The example illustrated in Figure 8-3 shows the WndProcO functions for both a message sending
application, and a message receiving application. Both appli~ations obtain the same unique mes-
sage number by calling ,"

FiUure 8~3. 'ReplyMessage() Example.

RegisterWindowMess
agee). The' first 'sending
application transmits this
message to the applica
tion titled "GENERIC" us
ing SendMessageO. The
message is sent With the wParam value set to 11, and the LParam value ''set 'to' 22. When the
second (GENERIC) application receives the messag~, it replies with a value of 77. The receiving
application displays the lParam and 'wParam values it obtained from the message, while the
sending ,application displays,t,~e reply value. ' ,',

C WndProcO Function for the Sending Application (SENDER.C)
long FAit PASCAL WndProc (HWNO hWnd, unsigned iMessage, W'ORD wParam, LONG lParam)
{ ," " ,

static
HWNO
int'
HOC
char

, WORD

switch (iMessage)
{

case WM_CREATE:

wNewMessage ;
hWindow ;
nReturned ;
hOC;
cBuf [128J ;

1*, process wind'ows messages' *1
,j .' •

wNewMessage = RegisterWindowMessage C"NEWONE") ;

'244

)

),

8. MESSAGE PROCESSING FUNCTIONS ...

break
case WM_COMMAND: 1* process menu items *1

swi tch (wParam)
{

case 10M_DOlT: '1* User hit'the "Do it" menu item *1
hWi ndow Fi ndWi ndow ("generi c", "gener,i c")
if (hWindow)
{

}

break;

nReturned = SendMessage (hWindow,
wNewMe~sage, 11,'22L) ;

hOC = GetDC (hWnd) ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Sender got rod bacL", nReturned»
Relea~eDC (hWnd, hOC) ; "

case IDH QUIT: 1*' send end of appl i,cation message *1
iestroyWindow (hWnd) ,;
break ;,

}

break;
case WH_OESTROY: 1* stop application *1

PostQuitMessage (0) ;
break;

default: I~ default windows message processing *1
return OefWindowProc (hWnd, iMessage, ~Param, (Param)

return ('OL>

CWndProc().Function for the ReceiVing Application (GENERIC.C)
long FAR PASCAL WndProc (HWNO hWnd, unsigned iHessage, WORD wParam~ LONG lParam)
{

static
HOC, ,
char

WORD

H (iMessage
{

wNewMessage ::: W''LNULL ;
hOC •
cBut'1:128J';

wNewMessage)

ReplyMessage (77L> ;
hOC = GetDC (hWnd) ;
TextOut (hOC, 0, 0; cBuf, wsprintf (cBuf,

. "Receiver got message, wParam.= You, lParam = "lu",
wParam, lParam» ;

Relea~eDC (hWnd, hOC) ;

switch (iMessage)
{

case WM_CREATE:

1* process windows' messages '*1

wNewMessage Regi s terWi ndowMessage ("NEWON'E") ;
break;

case WM_COMMAND:
swi tch (wParam)

,{

1* process menu items *1

case 10M QUIT:

}

break;

i~stroyWindow (hWnd) ;
break;

case WM_DESTROY: 1* stop application *1
PostQuitHessage (0) ;
break;

it'.

default: 1* default windows message processing *1
return DefWindowPrpc (hWnd, iMessage, wParam, lParam) ;

return (OL>

245 '

WINDOWS API BIBLE

SENDMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose Sends a Windows message directly to a window's message function.
Syntax , DWORD SendMessage(HWND hWnd, WORDwMsg, WORD wParam, LONG lParam)j

Description Can be uSed to send any window a· message. The message is acted on immediately, as it bypasses

Uses

Returns

the receiving window's message queue. '

Used most often to communicate with control windows, such as
buttons and list boxes. Used in cases where a program has a
series of child windows that each have separate message pro
cessing functions. Any window can send any other window a
message. The sending window does not restart processing until
the message is processed by the receiving window. Reply
MessageO is used to return control and a value back to the
sender. SendMessageO can also be used within one window to
reduce duplicate code. SendMessageO provides an alternative

120 hI Dult

Pupup W\II,low

~

to goto: statements in message-based programming. Figure 8-4. SendMessage()
DWORD. Normally the returned value is not used. The 'returned Example.
value depends on which of the Windows messages was sent.
ReplyMessageO, PostMessageO, SendDlgltemMessageO, RegisterWindowl'rJessageO, InSend
Message 0

Parameters
hWnd HWND: The handle of the window to receive the message. Set to OxFFFF (-1) to pass a message,

, to all parent and popup windows (not child windows).
wMsg WORD: The message to be sent (such as WACPAINT).
wParam WORD: The wParam data to be sent with the message. See Chapt'er 9, Windows Messages, for a

full list of the Windows messages and the related wParam and lParam values.
lParam DWORD: The lParam data to be sent with the message.
Related Messages All Windows messages can be sent using this' function. A useful trick here is to create special

, messages, specific to your program. Windows defines W~LUSER as the lowest message value that
you can safely use. You can define your own custom messages as WM_USER + 1, WM_USER + 2,
etc. This is an elegant way to allow separate message functions for child and popup windows to
communicate.

Example See the pr~vious example under ReplyMessageO for an example of communication between two
applications. In this example, the parent window creates a child popup window. The parent sends
the child window a WM_USER message when the user clicks the "Do It!" menu item. The
WM_USER message has the parent's window handle set as wParam, so that the popup \\indow
can print out th~ parent's name.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WOROwParam, LONG lParam)
(

HOC hDC ;
stat i c WNDCLASS
stati c HWND

wndc lass;
hPopup, hParent ;

switch (iMessage)'
(

1* process windows messages *1

case WM_CREATE: 1* bui ld the chi ld window when program starts *1

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra

, :: CS_HREDRAW I CS_VREDRAW I CS_PARENTOC;
= Chi ldProc ;
='0 ;

246

)

)

wndclass.cbWndExtra
wndclass.hInstance
wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

8. MESSAGE PROCESSING FUNCTIONS' •

= 0 ;
= ghInstance
= NULL; .
= LoadCufsor (NULL, IDC_ARROW) ;
= GetStockObject (LTGRAY_BRUSH)
= NULL;
= "SecondC lass" ;
1* register the window class *1

if(RegisterClass (&wndclass»
{

)

break;

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP I WS_VISIBLE I WS_BORDER I WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;

ShowWindow (hPopup, SW_SHOW)

case WM_COMMAND: 1* process menu Hems *1
swi tch (wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1,
hParent = GetParent (hPopup) ;

1* Tell popup window its parentage *1
SendMessage (hPopup, WM_USER, hParent, OL) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

)

break

case WM_DESTROY: 1* stop application .*1
PostQuitMessage (0) ;
break

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL)

1* Here is a separate message processing procedure for the child window *1

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

)

HDC
HWND
char

hDC, ;
hParent ;
cBuf [25J

switch (iMessage)
{

1* process wi ndows messages *1

)

case WM_USER: 1* message from parent - wParam is parent
hDC = GetDC (hWnd) ;
TextOut (hDC, 1, 1, "My Parent. window is:", 21) ;
GetWindowText«HWND) wParam, cBut, 24) ;
TextOut (hDC, 1, 15, cBut, strlen (cBuf» ;
ReleaseDC (hWnd, hDC) .

handle *1

break;
case WM_DESTROY: ,* stop the application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;

247

WINDOWS API BIBLE

SETMESSAGEQUEUE • Win 2.0 • Win 3.0 • Win 3.1

Syntax
'/ Deseription

Uses

Returns

Parameters
nMsg

Changes the size of an application's message queue. '
, , BOOL SetMeSsageQueue(int,nMsg)j

Windows defaults to a message 'queue size of eightm~ssages .. This is adequate for most applica
tions, but it may be too small for an application that needs to track a series of mouse movements,
or other repetitive activities involving messages.
Used in the program's WinMainO function to set the message queue size before any windows are
created and before any messages are sent.
BOOL. TRUE if the message queue size was set, FALSE if not. If FALSE is returned, the program
should try setting the queue size again with a smallernMsg value. Otherwise ,the program will
not have a message queue.

int: The new queue size. This is the maximum number of messages the application's queue can
contain.

Related Messages Most messages go through the application's message queue. Exceptions are messages transmit
ted with SendMessageO and UpdateWindowO.

Example This is an example WinMainO function that sets the message queue size for the application equal
to 256 messages (avery large value). If this proves too large for the available memory space,
SetMessageQueueO is continually tried with message queue sizes repeatedly divided by 2 (right
shift by one digit is the same as division by two).

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance, LPSTR lpszCmdLine,
int nCmdShow)

(

HWND
MSG
WNDCLASS
int

hWnd;
msg ;
wndclass ;
nMsgNumber ;

1* a handle to a message *1
1* a message *1
1* the window class *1
1* message queue si ze *1

ghlnstance = hlnstance ; 1* store instance handle as global var. *1

nMsgNumber = 512 ; 1* twice desired # messages in queue size*1
do
(

nMsgNumber »= 1 ; 1* divided by 2 *1
>while (!SetMessageQueue (nMsgNumber»

/Other program linesJ

SETWINDOwsHOOK II Win 2.0 II Win 3.0 • Win 3.1
'Purpose

Syntax
,Description

Uses

Returns

Installs a Windows message filter function.
FARPROC SetWindowsHook(int nFilterType, FARPROC IpFilterPunc)j

There are several different types of filter functions, specified with the nFilterType parameter.
Multiple filters can be installed at the same time, forming a chain of message processing func
tions. In all but one filter type, the filtering function must reside in a dynamic link library (DLL).
Hook functions can monitor, act on, or change Windows' messages before they are sent to appli
cation programs. Hook functions can be used to customize Windows' behavior on a system-wide
basis. For example, keyboard messages can be remapped for all \W.CKEYDOWN and MrCKEYUP
messages to specify an alternate keybo~rd layout when th~ hook function is set.
F ARPROC, the procedure-instance address of the previously installed filter function. NULL if this
is the flrSt filter installed. The calling program should save this value 'in a static variable. This
value is passed to the DeffiookProcO function as the fourth argument.

248, '

See Also·

Parameters
nFilter'l'ype

. 8. MESSAGE PROCESSING FUNCTIONS·'~

UnhookWindowsHookO,DefllookProcO

int: Specifies the type of filtering function and what type of messages will be. diverted to the filter
before being sent to an application. The choices ~e listed in Table 8-3.

h·Val~': ',~ ',:":.' '.; ':.' 'Meaning'· '. ':,' .,,; , ", ~::,>:',""::;~,;:;:';:',:.~.::::'''~'':::'~'<~::''.;~·:.':!.':','~::\:::f£:·:~;\;:~:'.·:f8l1

WH_CALLWNDPROC Filter processes only messages sent by SendMessage{). The hook function must be in a DLL.
Primarily for debugging purposes.

Filter processes messages immediately after the GetMessage{) or PeekMessage{) function is
called in a program's message loop. All messages are passed to the filter. The hook function
must be in a DLL.

WH_JOURNALPLAYBACK Used with WH_JOURNALRECORD. The filter function plays back an event message recorded
with WH_JOURNALRECORD when an event is requested by the system message queue. nie
hook function must be in a DLL.

WH_JOURNALRECORD Used with WH_JOURNALPLAYBACK. The filter functi~n records all messages processed in the
system message queue. The stored messages can be played back by a WH_JOURNAL
PLAYBACK hook. The hook function must be in a DLL.

Filter processes WM_KEYOOWN and WM-,<EYUP messages received by GetMessageO or
PeekMessage{). The hook function must be in a DLL. .

Filter processes messages for an application's menu, message boxes,;:md dialog boxes. This is
the only application-specific hook. The hook function does not have to be in a DLL, and can it
be part of the program ..

Filter processes messages for all menus, message boxes, and dialog boxes. Similar to
WH_MSGFIL TER, but applies system-wide. The hook function must be in a DLL.

Table 8-3. Hook Function Types.

lpFilterFunc . FARPROC: The procedure-instance address of the filter function.

Related Messages All messages processed by the hook function.

Hook Function
Prototypes . Each type of message hook expects a different kind of filter function. Each of the function types

is described below. With the exception of WICMSGFILTER, all filter functions must be in dy
namic link libraries (DLLs). The filter function can have any name. "FilterFunc" is shown in the
examples. The calling program must use MakeProclnstanc:eO to get the procedure-instance ad
dress of the function before it is passed to SetWindowsHookO. The hook function must also be
referenced in the EXPORTS section of the library's .DEF definition file.

WH_CALLWNDPROC "'" ,
void FAR PASCAL FllterFunc(intnGbde, WORDwPar~m, DWORD l~aram) i

nCode

wParam

lParam

int: A code that the filter function should examine before processing a message. If nCode is le~s
than zero, the function should pass the message to DefllookProcO without further actions.

WORD: TRUE (nonzero) if the message was sent by the current task. FALSE if not.
DWORD: A pointer to five WORDs of data containing the following information. (The data struc
ture is not defined in WINDOWS.H, so no default parnes are available for references. You can use
the names provided in parentheses for a cons~tent set of structure item names if you want to
create your own structure.)

249

WINDOWS API BIBLE

Returns'

WORDl (hlParam) -The high-order word of the lParam message received by the filter function.

WORD2 (llParam) -The low-order word of the lParam message received by the filter function ..

WORD3 (wParam) - The wParam parameter passed with the message.

WORD4 (wMsg) - The message received by the filter.

WORD5 (hWnd) - The window handle of the window that will receive the message.

This filter processes only messages sent by SendMessage().

No returned value (void). This type of filter processes only messages sent by SendMessage(). The
hook function must be in a DLL.

W1CGETMESSAGE

nCode

wParam

lParam

Returns

void FAR PASCAL FilterFunc(int nCode, WORD wParam, DWORD lParam) ;

int: Acode that the filter function should examine before processing a message. IfnCode is less
than zero, the function should pass the message to DetHookProc() without further actions.

WORD: Always NULL.
DWORD: A pointer to a message structure.

No returned value (void). This filter processes messages immediately after the GetMessageO
function is called in a program's message loop. All messages are passed to the filter~ The message
is returned to GetMessage() after any changes made by the hook function. .

WH_JOURNALPLAYBACK

nCode

wParam

lParam

Returns

DWORD FAR PASCAL FilterFunc(int nCode, WORD wParam, DWORD lParam) ;

int: A code that the filter function should examine before processing a message. IfnCode is less
than zero, the function should pass the message to DetHookProc() without further actions. If
nCode equals HC_SKIP, the function should wait until the next call to return its next recorded

. message data.

WORD: Always NULL.

DWORD: A pointer to a message structure. This function copies the event data saved by the
WH_JOURNALRECORD message filter back to the location pointed to by the lParam parameter.
The data should not be modified. The function should return the amount of time (in clock ticks)
that Windows should wait before processing the message. Return OL for immediate processing.

The amount of time (in clock ticks) the system should wait before processing the message. This
type of hook is used with WICJOURNALRECORD. The filter function plays back an event mes
sage recorded with WICJOURNALRECORD when an event is requested by the system message
queue. The hook function must be in a DLL.

~_JOURNALRECORD

nCode

wParam

lParam

RetUrns

void FAR PASCAL FilterFunc(int nCode, WORD wParam, DWORD lParam) i

int: A code that the filter function should examine before processing a message. IfnCode is less
than zero, the function should pass the message to DetHookProcO without further actions

WORD: Always NULL.

DWORD: A pointer to a message structure.lfnCode is greater or equal to zero, the filter function
should save a copy of the message data pointed to by lParam. This message will then be sent on
to the program's message function (after the specified delay) when 'the WM_JOURNAL
PLAYBACK filter function is· called.

No' returned value (void). This filter type is used to record messages, for future playback by a
WM_JOURNALPLAYBACK hook. This type of hook is used with WICJOURNALPLAYBACK. The

250

8. MESSAGE PROCESSING FUNCTIONS ...

filter function records all messages processed in the system message queue. The stored messages
can be played back by a WH_JOURNALPLAYBACK hook. The hook function must be in a DLL.

WH_KEYBOARD DWORD FAR PASCAL FilterFunc(int nCoM, WORD wParam, DWORD IParam) j

nCoM

wParam

lParam

Returns

Comments

int: A code that the fllter function should examine before processing a message. If nCode is less
than ze:oo, the function should pass the message to DefilookProcO without further actions. If the
value is HC_NOREMOVE, the application used PeekMessageQ with the PM_NOREMOVE option.

. The message will not be pulled from the system message queue.
WORD: The virtual key code exactly like wParam in WM_KEYDOWN and WM_KEYUP messages.
DWORD: The key scan code, repeat count, etc. Exactly like IParam in .WM_KEYDOWN and
WM_KEYUP messages. The filter processes only MCKEYDOWN and WM_KEYUP messages re-
ceived by either GetMessageO or PeekMessageQ. The function should return 0 if Windows is to
process the message, 1 if the message should be discarded. This can be a rapid way of removing
specified keyboard messages.
Should return the value returned by DefilookProcO if nCode == HC_LPFNNEXT (== -1). Other
wise return NULL.
An example of a keyboard hook function is shown in the example code under DefilookProcO in
this chapter. Although the wParam and lParam values received by this type of hook match those
received by your program on a WM_KEYDOWN or WM_KEYUP message, changing wParam or
lParam within the hook function will not Affect the values passed to the main program's message
loop and message processing ftmction. To modify these parameters within the hook function, use
th~ WH_GETMESSAGE type of hook, and change the wParam and lParam values within the msg
structure pointed to by the hook function's lParam value. The changes within the hook will hap
pen before the message is sent to the program's message processing function.

WB_MSGFILTER int FAR PASCAL FilterFnnc(intnCode, WORDwParam, DWORD IParam) j

nCode int: Must be one oUhe values listed in Table 8-4.

IValue.·.·
MSGF _DIALOGBOX

MSGF _MESSAGEBOX

MSGF_MENU

MSGF_MOVE

MSGF_SIZE

MSGF _SCROLlBAR

MSGF _NEXTWlNDOW

Meaning'., :

The message being processed is from a dialog box.

The message being processed is from a message box.

The message being processed is mouse or keyboard input from a menu.

A MOVE message is being processed.

A SIZE message is being processed.

A SCROLlBAR message is being processed.

A window is gaining the input focus.

Table 8-4. Wlf..J[SGFILTER nCode Values.

wParam

IParam

Returns

WORD: Always NULL.
. DWORD: A pointer to a message structure.

The function should return TRUE (nonzero) if the hook function processed the message, FALSE
if no action was taken. This is the only application specific hook function. The hook function can
be within the program, and does not have to be in a DLL.

~'-SYSMSGFILTER
int FAR PASCAL FilterFune(intnCode, WORDwParam, DWORD lParam) j

nCode int: Must be one of the values listed in Table 8-5. .

251

WINDOWS API ,BIBLE '.' .',

MSGF _DIALOGBOX The message being processed is from a dialog box. ,
\" - . "

M~GF _MENU, The message being proce~ed is mouse or keyboard input from ~ menu. :

MSGF _MESSAGEf?OX:, _ The message being processed is from a message box.

Table 8-5. WM_SYSMSGFILTER nCode Values.

wParam

lParam

Returns

Example

LIBRARY
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
EXPORTS

WORD: Always NUL~."
DWORD: A pointer to a message structure. Filter processes messages for all menus, message
boxes, and dialog boxes. Similar to WH_MSGFILTER, but applies system-wide. The hook function
must be in a DLL. " '

The filter function should return TRUE (nonzero) if the message was processed, FALSE (zero)
otherwise.

, This type offllter processes messages for all menus, message boxes, and dialog boxes. Similar
to WH_MSGFILTER,but appiies system-wide. The hook function muSt be in a DLL.

This example sets a hook function when the user clicks the "Do It!" menu item. The hook function
intercep'ts Windows' IDtCPAINTmessages to every application ruiming on the system. Any win
dow receiving a WM_PAINT message has its client area outlined with a red line by the hook
function. This is usually repainted by the window's own painting logic, although the outline may
persist'in windows that do not repaint the entire client area every' time a WM_P AINT message is

, received. The outlining will continue until the "Do It!" menu item 'is clicked a second time and the
hook function is removed. The hook function is placed in a dynamic link library (DLL) called
MSGDLL.DLL. The, defmltion file specifies "LIBRARY" rather than ,"NAME." No stack size is
'given, as DLLs uSe the calling program's stack. The DATA segment is set as "SINGLE" as there
will ,never be multiple instances of a DLL.' Finally, the hook function is listed as an exported
function.The following code is the DLL Definition file, MSGD~L.DEF

MSGDLL
I dll of message hooks I

WINDOWS
'WINSTUB.EXE '
PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE SINGLE
1024
SetHook
FreeHook
MsgFilterFunc

: ..

To compile the DLL, a separate NMAKE flle is created. The' key difference is that the com
piler switch -ASw is set to check that the stack segment and data segments to be assumed differ
ent. This example also shows the debugging switches set. The CodeView for WindoWs application

, will allow DLLs to be viewed and debugged in the same manner as conventional Windo~s pro-
grams. .

II make file for msgdll library
ALL: msgdl Udll
CFLAGS=-c -D LINT_ARGS -ASw -Zip -Od -Gsw -W2 '
LFLAGS=/NOD Ico lalign:16 . ,

~~gdll.obj: ~~gdll.e
, SeCC) S(CFLAGS) msgdll.c··>

msgdll.dll: msgdll.obj msgdll.def
link S(LFLAGS) msgdll libentry, msgdll.dll, NUL, libw sdllcew, msgdll,
rc msgdll.dll _.... ..' ., ," _.' .. ,----

252

8. MESSAGE PROCESSING FUNCTIONS 'Y

The hook function is defined in the MSGDLL.C file. The mandatory DLL LibMainO function
just unlocks the data segment of the library and returns. The hook function called
MsgFilterfuncO waits until" a \VM_P AINT message is intercepted, and then paints the client area.
The window handle for the window to receive the WM_P AINT message is retrieved from the msg
structure. A pointer to this message structure data is passed in the LParam parameter when the
hook "function is called. .. .

1* msgdll.c message filter dll *1

#incLude <windows.h>

HANDLE
FARPROC

hinstanceOll
LpOldHook ;

int FAR PASCAL LibMain (HANDLE hinstance, WORD wOataSeg, WORD wHeapSize,
LPSTR lpszCmdLine)

}

if (wHeapSize > 0)
UnlockData (0) ;

hinstanceDLL = hinstance ;
. return (1) ;

void FAR PASCAL SetHook (LPSTR lpsHookName, int nHookType) -
{

)

FARPROC lpHook ;

lpHook = GetProcAddress (hinstanceDll, lpsHookName)
lpOldHook = SetWindowsHook (nHookType, lpHook> ;

void FAR PASCAL FreeHook (LPSTR lpsHookName, int nHookType)
{

}

FARPROC lpHook ;

lpHook = GetProcAddress (hlnstanceOlL, LpsHookName)
UnhookWindowsHook (nHookType, LpHook) ;

void FAR PASCAL MsgFilterFunc (int nCode, WORD wParam, DWORD LParam)
{

LPMSG
HOC
HPEN
RECT
static
OWORO

msg ;
hOC;
hRedPen ;
rClient;

FARPROC lpHook ;
dwTest ;

if (nCode != HC_ACTION)
OefHookProc (nCode, wParam, lParam,&lpOldHook) ; ,

else if (nCode >= 0) 1* nCode negative, then·no action *1
{

msg = (LPMSG) lParam; .1* LParam holds message address *1
if (msg->message ==. WM_PAINT> .
{

hDC = GetOC (msg->hwnd) ; 1* Out line the" eli e'n·t a~ea *1
GetClientkect (msg->hwnd, &rClient) ; ,
hRedPen = CreatePen (PS_SOLIO, 3, RGB (255, 0, 0» j
SeLectObject (hOC, hRedP~n) ;
MoveTo (hOC, 0, 0) ;.' .
LineTo (hDC, rClient.right - 2, 0) ; ,
UneTo (hDC, rCLient.right - 2, rCli'ent.bottom - 2)
LineTo (hOC, 0, rClient.bottom - 2) , .
LineTo (hOC, 0, 0) ;
DeLeteObject (hRedPen) ; .

. ' ReLeaseDC (msg';'»hwnd; hDC)

'253

WINDOWS API BIBLE

}

}

return;
} ,

The C program callbtg the hook function must reference the function's name iit the defini
tion fIle as "imported" from the DLL. The hooking and unhooking functions are also referenced .

. NAME
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS
IMPORTS

GENERIC
'generic windows program'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
1024
4096
WndProc
MSGDLL.MsgFilterFunc
MSGDLL.SetHook
MSGDLL.FreeHook

The C program's make fIle, header fIle, and resource fIle are all standard. No reference to the
DLL containing the hook function is needed tit these ~es:The folloWing code is the Make file f()f'

. the C program.' . '. . .

ALL: generic.exe
CFLAGS=-c -D LINT ARGS -Zi -ad -Gsw -W2
LFLAGS=/NOD Ico -

generic.obj : generic.c generic.h
S(CC) S(CFLAGS) generic.c

generic.res: generic.rc generic.ico
rc -r generic.rc

generic.exe : generic.objgeneric.def generic.res
link S(LFLAGS) generic, , ,libw.slibcew, generic
rc generic.res

The following code is the resource file.
1* generic.rc *1
Hinclude <windows~h>
Hinc.lude "generic.h"
generic ICON generic.ico
generic MENU
BEGIN

MENUITEM "'Do It!" . IDM.;..DOIT
MENUITEM "'Qui t", IDM_QUIT

END

The following code is the header fIle.

1* ge.neric.h'-',*?
Hdefine IDM_DOIT': 1* menu hem'id values *1
Hdefine IDM_QUIT 2

1* global variables *1
int ghInstance ;
char gszAppName [J = "generic"';

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

The C program sets the message hook function when the "Do It!" menu item is clicked. The
hook function is unhooked the second time the mEmu item is selected, or when the program exits,
if it is still active. Note that no changes are required to the message loop to pass messages to the
hook function. Windows takes care of thls ' reference when the SetWmdowsHookO function is
called, and removes it when the UnhookWmdowsHookO function is called.

254

8. MESSAGE PROCESSING FUNCTIONS ..,

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{ .

}

static BOOl bHooked = FALSE;

switch (iMessage)
<

1* process windows messages *1

}

case WM_COMMAND:
switch (wParam)
<
case IDM_DOlT:

1* process menu items *1

if (bHooked)
<

}

else
{

}

break;
case ID'CQUIT:

FreeHook ("msgFilterFunc", WH_GETMESSAGE)
bHooked = FALSE ;
MessageBox (hWnd, "No hook function now.",

"Unhooked", MB_OK) ;

SetHook (."MsgFi l terFunc", WH_GETMESSAGE) ;
bHooked = TRUE ;
MessageBox (hWnd, "A hook functi on i nsta lled.",

. "Hooked", MB_OK) ;

DestroyWindow (hWnd) ;
'break ;

}

break;
case WM_DESTROY: 1* stop application *1

if (bHooked)
FreeHook ("msgKeyboardFunc", WH_KEYBOARD) ;

PostQuitMessage (0) ;
break ';

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL>;

~SLATEDIESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose .

Syntax

Description

Uses

Parameters

Generates WM_eHAR,WM_SYSCHAR, WM_DEADCHAR,'and MtCSYSDEADCHAR messages'
when a virtual key code is received.
BOOL TranslateMessage(LPMSG lpMsg)j

The low-level Windows drivers generate virtual key messages (VK_TAB, etc.) when a key is
pressed. TranslateMessageO posts the corresponding WM_CHAR code on the applications mes
sage queue when a virtual key code is received.
Normally, part of the program's message loop. If you do not use the MtCCHAR messages, you can
leave this function out of the message loop.
BOOL. TRUE if the message was translated. FALSE if not.
DispatchMessageO, GetMessageO, PeekMessageO

lpMsg LPMSG: A pointer to a MSG message structure. This is the message data fetched from the
application's message queue by GetMessageO or PeekMessage. The message data is not altered
by TranslateMessageO. The 'new WM_CHAR messages are placed on the message queue for sepa-
rate processing. '

Related Messages The virtual key codes, WM_C~, WM_SYSCHAR, WM_DEADCHAR, and WM_SYSDEADCHAR.

Example This is a typical message loop from the end of a program's WinMainO function.

255

WINDOWS API BIBLE

while (GetMessage (&msg, NULL, 0, 0»
< •

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

, UNHOOKWINDOWSHOOK • Win 2.0' • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns
See Also

Parameters

Removes a message hook function from the system.
BOOL UnhookWindowsHook(int nHook, FARPROC IpjnHook)j
There can be any, number of message hook functions installed of anyone type.
Unh~okWindowsHookO removes one message from the chain.
Used within the DLL (dynamic link library) that sets the hook function.

BOOL. TRUE if the function was removed, FALSE on error.
SetWindowsHookO has the complete descriptions of the different types of hook functions and a
complete program example. .

iIJIook int: Specifies the type of fIltering function, and what type of messages will be diverted to the
filter before being sent to an application. The choices are lsited in Table 8-6.

WH_CALLWNDPROC

WH_GETMESSAGE

WH_JOURNAlPLA YBACK'

WH_JOURNALRECORD

WH_SYSMSGALTER, :

I

Fi~er processes only messages s.ent by SendMessageO. The hook function must be in a DLL

Filter processes messages immediately after the' GetMessage() or Peekfy1essage() function
is called in a program's message loop. All messages are passed to the filter. The hook function
must be in a DLL.

, .',' ,f" \

Used with WH_JbURNALRECORD. The fi~er function plays back an event message recorded
with WH_JOURNALRECORD when an event is requested by the system message queue. The
hook function must be in a DLL.

Used with WH_JOURNALPLA YBACK. The filter function records all messages processed in the
system message queue. The stored messages can be played back by a WH_JOURNAL
PLAYBACK hook. The hook function must be in a m.
Riter processes WM_KEYDOWN and WM_KEYUP messages received by GetMessageO or
PeekMessageO. The hook function must be in a DLL.

Riter processes messages for an application's menu, message boxes, and dialog boxes. This is '
the only application-specific hook. The hook function does not have to be, in a DLL and can be
part of the program.

Filter processes messages for all menus, message boxes, and dialog boxes. Similar to
WH_MSGFILTER, but applies system-wide. The hook function must be in a DLL.

Table 8-6. UnhookWindowsHook() Hook Types.
! '

IpjnHook FARPROC: The procedure-instance address of the hook function.
Related Messages, All Windows messages.

',Example - See the examples under the DefllookProcO and SetWindowsItookO n{nction descriptions.
~", ' . , '; " ! .' • . ' ;'. ., J. ,

:256

8. MESSAGE PROCESSING FUNCTIONS ~
,

WAITMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax
Description

Uses

Returns

SeeAl80
Parameters

Yields control to any other application.

void WaitMessage(void)j
WaitMessageO tells Windows to switch control to another application. Messages to other appli
cations are then processed. This is the most passive of the three functions Windows provides to
switch control between running programs. The other two are GetMessageO and PeekMessageO.

Useful in small utility programs where it is d~sirable to give up control as often as possible to
minimize the slowdown of the system due to having the utility program running. You can also use
the function to wait for a specific message, such as a mouse movement.

No returned value" (void).

GetMessageO, PeekMessageO.
None (void).

Related Messages Any message received by the application calling WaitMessageO will resume message processing.

Notes Any time control is yielded to another program by GetMessageO, PeekMessageO, or

Example

WaitMessageO, the" stack and memory segments are subject to being moved in memory. Local
variables and pointers to memory may be invalid \vhen control is returned to the program.

When the user clicks the "Do It!" menu item, PeekMessageO is used to clear any waiting mes
sages from the application's message queue. The applicationthenjust sits there, waiting for any
message (WaitMessageO call). If any key is pressed, or the mouse is moved, the text "Got a "
message!" appears in the window's client area and execution continues.

long FAR PAscAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

static
MSG
char

HOC hDC ;
msg ;
cBuf n 28] ;

switch (iMessage)
{

1* process windows messages *1

}

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 1DM DOlT: 1* User hit the "Do it" menuitelll *1
~hile (PeekMessage (&msg, hWnd, 0, 0, PM_REMOVE»

; 1* clear any waiting messages *1
WaitMessage () ; 1* now wait for one *1
hDC = GetOC (hWnd) ;
TextOut (hDC, 0, 0, "Got a message!", 14) ;
ReleaseOC (hWnd, hOC) ;
break;

case 10M_QUIT:

}

break;

DestroyWindow (hWnd)
break;

case WM_DESTROY: 1* stop application *1
PostGuitMessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

257

I" t .• "

"

"",

I., .;

Windows uses a lot of messages. These messages range from common ones, like W~CCREATE that are used in most
applications, to obscure messages that you may never use. This chapter documents all of them (except for the DDE
messages explained in Chapter 30) with example programs at the start of each group of related messages. If you are
beginning to learn Windows, you may want to spend some time just reading the Purpose sections for each of the
messages. They will give you an idea of what the different types of messages can do. Later, when you need a message,
you can look up the right one and its exact syntax.

Transmitted Messages
Windows messages are categorized into ten groups. Each group has a diffe'rent prefIX, such as BM_ for button mes
sage. Table 9-1 gives each of the message prefIXes and the message type that corresponds.

Button message. Sent to a child window button control to do some act.ion, such as change the
button's text string.

Button notification code. Received by the application's WndProcO function from a child window button
control. An example is BN_CLlCKED, which means the button was clicked.

Combo box message. Sent to a combo box control to cause some action, such as adding an item.

Combo box notification code. Received by the application's WndProcO function from a combo box
control as notification that some action occurred, such as the selection was changed.'

Dialog box message. There are 'Only two of these, both dealing with the default pushbutton control.
Dialog boxes and their child windows send and receive normal window messages for most actions.

Edit control message. S~nt to a child window edit control to cause some action, such as changing the
text string.

Edit control notification code. Received by the application's WndprocO function as notification that some
action occurred to an edit control (for example, if the edit con~rol was scrolled or text was added).

Ust box message. Sent to a list box control to cause some action, such as deleting an item.

Ust box notification code. Received by the application's WndProcO function as notification that some
action occurred to the list box control, such as the user selected an item.

All other Windows messages. This includes the WM_DDE messages for dynamic data exchange
(Chapter 30, defined in DDE.t1) and the WM_MDI messages for the multiple document interface. The
MOl messages are documented in this chapter, but discussed more fully in Chapter 29.

Table 9-1. Windows Message Types.

Messages can be either sent or received. Most messages tend to be either sent in a SendMessageO function call or
received in a message processing function, such as WndProcO. The message descriptions that follow show the most
common situations. You can choose either to send the message to the application's message queue with Post-

259

•

WINDOWS API BIBLE

Message() or send it directly to the application's message processing function with SendMessageO. SendMessageO is
required if you send a message to a control, such as a button.

Transmitted Button Message Summary
Windows provides five messages that yon can send to a button control either to change the button's status (checked,
unchecked, etc.) or to find the current status. Table 9-2 gives a summary of the messages.

BM_GETCHECK

BM_GETSTATE

• BM_SETCHECK

BM_SETSTATE

BM_SETSlYLE

Find out if a radio button or check box is checked.

Find out if a button is highlighted (by a mouse click or spacebar action).

Change a radio button or check box to/from checked/unchecked.

Highlight or remove highlighting from a button.

Change the style of a button control.

Table 9-2. Transmitted Button Messages.

A button's text string is usually changed with the SetWindowTextO function, not by transmitting a ~CSETrEXT
message to the button control. Listing 9-1 gives an example WndProcO function that uses three of the BM_ messages
to change a button's style, set the button to a checked state, and confirm that the button is checked using.
BM_GETSTATE. SendMessage() is used to transmit the messages to the button control.

c::> Listing 9-1. Example Using Transmitted Button Messages
long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, lONG lParam'
{

static HWNO
HOC

hButton ;
hDC ;
nButtonState ; int

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hButton = CreateWindow ("BUrTON", "Button Text",

WS_CHIlD f WS_VISIBlE I BS_RADIOBUTTON,
10, 10, 100, 40, hWnd, 101, ghlnstance, NUll)

ShowWindow (hButton, SW_SHOW) ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
SendMessage (hButton,·BM_SETSTYlE,

(WORD) BS_CHECKBOX, 1l) ;
SendMessage (hButton, BM_SETCHECK, 1, Ol)
nButtonState = SendMessage (hBut~on,

BM_GETSTATE, 0, Ol) ;
hDC = GetDC (hWnd) ;
if (nButtonState)

TextOut (hDC, 10, 120,
"Button is highlighted.", 22) ;

else
TextOut (hOC, 10, 120,

"Button is Not highlighted.", 26)
ReleaseDC (hWnd, hDC) ;
break;

case 10M_QUIT:

}

break;
case ~'M_DESTROY:

DestroyWindow (hWnd)
break; .

1* stop appl i cation *1

260

}

PostQuitHessage (0) ;
break;

9. WINDOWS MESSAGES T

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iHessage, ~Param, lParam) ;

return (OL> ;
}

Figure 9-1 shows the example program after the user clicked the "Do It!" menu
item. Note that the radio button has been changed to a check box style, showing a
square check box in pJace of the radio button circle. The check box has an "X" in the
center, because a BM_SETCHECK message was sent.

F~FF
110 It! .Quit

181 Button Text
BM_GETCHECK • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters

Determines if a radio button or check box control is checked.

dwReturned = SendMessage (HWND hControl, BM_GET
CHECK, WORD wParam, DWORD lParam)j

DWORD. Nonzero if the control is checked, zero if checked.
Button is highlighted.

/ Always returns zero if a pushbutton control is tested (no check Figure 9-1. 8mding a
box). Message to a Child Window

CantroL

hControl HWND: The window handle of the button control.

wParam WORD: Not used. Set equal to O.

lParam DWORD: Not used. Set equal to OL.

Related Messages BM_SETCHECK

BM GETSTATE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

SyntaX

Returns

Parameters
hControl

wParam

lParam

Determines if a button control has been highlighted. Highlighting occurs when the user clicks
the button with the mouse, or presses the spacebar when a button has the input focus.

dwReturned = SendMessage (HWND hControl, BM_GETSTATE, WORD wParam, DWORD
lParam)

DWORD, nonzero if the button is highlighted, zero if not.

HWND: The window handle of the button control.

WORD: Not used., Set equal to O.

DWORD: Not used. Set equal to OL.

BM SETCHECK • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hCantrol

wParam

lParam

Checks or removes a checkmark from a radio button or check box control. Has no effect on pUsh
buttons.

SendMessage (HWND hControl, BM_SETCHECK, WORD wParam, DWORD lParam)

DWORD. Is not used.

HWND: The window handle of the button control.
(.

WORD: 0 to remove a checkmark. 1 to place a checkmark. 2 to gray a button control created with
the BS_AUT03STATE or BS_3STATE style.

DWORD: Not used. Set equal to OL.

261

WINDOWS ApI BIBLE

BM SETSTATE • Win 2.0 II Win 3.0 .R Win 3.1
Purp()se

Syntax

Returns
Parameters
hControl

wPara.m

lParam

Purpose

Syntax

Returns
Parameters
hControl

wParam

Changes a button control to/from the highlighted state.

SendMessage (HWND hControl, BM_SETSTATE, WORD wParam, DWORD IParam)

DWORD. Not used.

HWND: The window handle of the button control.

WQRD: 0 t.o remove highlighting. 1 to highlight the button control.

DWORD: Not used. Set equal to OL.

II Win 2.0 • Win 3.0 • Win 3.1
Changes the style of a button control.

SendMessage (HWND hControl, BM_SETSffiE, WORD wParam, DWORD IParam)

DWORD. Not used.

HWND: The window handle of the button control.

WO RD: The button control style to use. wParam can be set to any of the values listed in Table 9-3.

BS_AUTOCHECKBOX Small rectangular button with text to the right. The rectangle can be either open or checked.
This style tOggles automatically between checked and open.

BS_AUTORADIOBUlTON

BS_CHECKBOX

BS_DEFPUSHBUlTON

BS_GROUPBOX

BS_LEFTTEXT

BS_OWNERDRAW

BS_PUSHBUTION

BS_RAOIOBUlTON

BS_3STATE

TaUep-3. Button Styles.

Small circular button with text to the right. The circle can be either filled or open. This style
toggles automatically between checked and open.

Small rectangular button with text to the right. The button can be filled, grayed, or open. This
style toggles automatically between checked, grayed, and open.

Small rectangular button with text to the right. The rectangle can either be open or checked.

Button with text in the center and with a defined (dark) border.

A box with text at the upper left. Used to group other buttons.

Causes text to be on the left side of the button using the language library OR operator?

Designates a button that will be drawn by the program. Windows sends messages to request
paint, invert, and disable. Use this style for custom button controls.

Button with text in the center.

Small circular button with tE::xt to the right. The circle can be either filled or open.

Small rectangular button with text to the right. The button can be filled, .grayed, or open.

lParam DWORD: Specifies whether or not the button control should be redrawn. Set to lL to redraw the
control (normal case), or set to OL to not redraw until the next WftCPAINT cycle.

Button Notification Codes
When a button sends a W~CCOMMAND message to its parent, it places the button ID value in the wParam value of
the message. The ID value of the button is initially set in the CreateWindowO call by setting the hMenu parameter
equal to the control's ID value. Note that hMenu is poorly named. Only parent and popup windows use this parameter
to refer to a menu. The button ID values are usually defined in the program's' header file: The numbers should be
different from any of the menu item ID values because both buttons and menu items interact with the program via

262

9. WINDOWS MESSAGES ~

W~CCOMMAND messages. When the user clicks a button control, Windows sends a
WM_COMMAND message. The button's ID value is passed as the wParam param

, eter, while IParam contains the button control's window handle in the low-order
word and a notification'code like BN_DOUBLECLICKED in the high-order word.

110 It! Q.ult

Listing 9-2 shows the WndProcO fun~tion of a program with two controls, a
pushbutton, and a radio button. The text in the controls is changed when they are
clicked with the mouse. The result, after double-clicking both controls, is shown in
Figure 9-2. Windows also sends WM_COMMAND messages for button controls when
they are enabled, about to be painted, highlighted, or loose highlighting. You can
intercept these messages for painting custom button images in place of the usual
text and highlighting defaults.

o Double Clicked 2 ---

. Figure 9-2. Window Controls
Responding to Mouse Clicks.

C Listing 9-2. Button Notification Codes
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

}

HWND hButton, hRadi oButton, hPi ckedButton i

}

switch (iMessage)
<

case WM_CREATE:

1* process windows messages *1

hButton = CreateWindow ("BUTTON", "Button Text",
WS_CHILD I WS_VISIBLE I BS_PUSHBUTTON, .
10, 10, 150, 40, hWnd, 100, ghlnstance, NULL)

ShowWindow (hButton, SW_SHOW) i
hRadioButton = CreateWindow ("BUTTON", "Button Text",

WS_CHILD I WS_VISIBLE I BS_RADIOBUTTON,
10, 60, 150, 40, hWnd, 101, ghlnstance, NULL) ;

ShowWindow (hRadioButton, SW_SHOW) i
, break i

case WH_COHHAND: 1* proc~ss menu ite~s and buttons *1
switch (wParam)
<
case 100: 1* push button's id value *1

hPickedButton = LOWORD (lParam) i
if (HIWORD (lParam) == BN_CLICKED).

SetWindowText (hPickedButton, "Clicked 1").
break i

case 101: 1* radio button's id value *1
hPickedButton = LOWORO (lParam) ;
if (HIWORD (lParam) == B'N_CLICKED)

SetWindowText (hPickedButton, "CUcked 2")
else if (HIWORD (lParam) == BN_DOUBLECLICKED)

SetWindowText (hPickedButton,
"Double Clicked 2")

break;
case lDM_QUIT:

}

break i
case WM_DESTROY =

DestroyWindow (hWnd)
brea k ;

PostQuitMessage (0) i
break i

1* stop application *1 _

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

Button Notification Code Summary
Table 9-4 summarizes the button notification codes. These are transmitted with WM_COMMAND messages. The noti
fication code is sent as the high-order word of the lParam value sent with ~L COMMAND. The detailed descriptions
of the notification codes follow immediately after the table. .

263

WINDOWS API BIBLE

Notification that a button control was clicked by the mouse, or the spacebar was pressed when
the control had the input focus.

BN_DISABLE

BN_OOUBLECLICKED

BN_HILITE

Notification that a button control was disabled.

Notification that a button control was double-clicked with the mouse.

Notification that a button control will be highlighted.

BN_PAlNT

BN_UNHIUTE

Notification that a button control is about to be painted.

Notification that a button control will loose its highlighting.

Table!J-II. Button Notification Codes.

Button Notification Code Descriptions

BN CLICKED II Win 2.0 III Win 3.0 ~ Win 3.1
Purpose

Syntax

Parameters
wParam

IParam

Purpose . '

Syntax

Parameters
wParam·

IParam

Notification that a button control was clicked by the mouse, or the spacebar was pressed when
the control had the input focus.
Returned as part ofa W~CCOMMAND message, processed by the program's message processing
function (\VndProcO).

WORD: Contains the ID value for the control. This is the integer value set for the hMenu pa
rameter when CreateWindowO was called.
DWORD: The low-order word contains the handle of the button control. The high-order word

, contains BN_CLICKED.

II Win 2.0 II Win 3.0 • Win 3.1
Notification that a button control was disabled. Button controls 'can be enahled and disabled with

, the EnableWindowO function .
Returned as part of a ~CCOMMAND me~sage, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the control. This is the integer value set for the hlrfenu pa
rameter when CreateWindowO was called.
DWORD: The low-order word contains the handle of the button control. The high-order word
contains BN_DISABLE.

BN DOUBLE CLICKED • Win 2.0 I! Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
wParam

lParam

Notification that a button control was double-clicked with the mouse.
Returned as part of a WM_COMMAND message, processed by the program's message processing
function (\VndProcO).

WORD: Contains the ID value for the control. This is the integervalue set for the hMcnu param
eter when CreateWindowO was called.
DWORD:' The low-order word contains the handle of the button control. The high-order word
contains BN_DOUBLF;CLlCKED. .

264

BN HILITE
Purpose

Syntax

Parameters
wParam

lParam

BN PAINT
Purpose

Syntax

Parameters
wParam

lParam

Purpose

Syntax

Parameters
wParam

lParam

9. WINDOWS MESSAGES T

• Win 2.0 • Win 3.0 • Win 3.1
Notification that a button control \\111 be highlighted. 'This can be used for custom buttons to
allow painting of a highlight image or bitmap. Custom buttons are created with the BS_ OWNER- .
DRAW style when calling CreateWindow().

Returned as part of a WM_ COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the lD value for the control. This is the integer value set for the hMenu param
eter when CreateWindowO was called.
DWORD: The low-order word contains the handle of the button control. The high-order word
contains BN_HILITE.

• Win 2.0 • Win 3.0 • Win 3.1
Notification that a button control is about to be painted. Custom buttons are created with the
BS_OWNERDRAW style when calling CreateWindowO. See the example of owner-drawn menu
items at the begining of Chapter 4, Menus, for the similar e~mple.
Returned as part of a WM_COMMAND message, processed by the program's,message processing
function (WndProcO).

WORD: Contains the ,ID value for the control. This is the integer value set for the hMenu param
eter when CreateWindow() was called.
DWORD: The low-order word contains the handle of the button control. The high-order word
contains BN_PAINT.

• Win 2.0 • Win 3.0 • Win 3.1
Notification that a button control will lose its highlighting. This can be used by custom button
controls to signal repainting of the button's client area with the normal image. Custom buttons
lire created with the BS_OWNERDRAW style when calling CreateWindowO.

Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProc()).

.
WORD: Contains the ID value for the control. This is the integer value set for the hMenu param
eter when CreateWindow() was called.

,DWORD: The low-order word contains the handle of the button control. The high-order word
contains BN_UNHILITE.

Combo Box Messages
Combo boxes were added with the 3.0 version of Windows. Combo boxes combine an edit control at the top with a list
box underneath it. The list box can be either visible all of the time (CBS_SIMPLE style) or visible only when the user
clicks a button on the right side of the edit control (CBS_DROPDOWN style). A full description of all of the style
possibilities is given in the CreateWindow() function description in Chapter 2, Creating Windows.

Once created, a program communicates with a combo box by sending and receiving messages. Most of these
messages parallel similar messages for list boxes. The additional messages deal with the edit control at the top, which
is used to display the most recent selection or allow editing of an entry in the list. Listing 9-3 provides a rudimentary
example of creating and dealing with a combo box. When the user clicks the "Do It!" menu item, the list box is fllied'

265

WINDOWS APt BIBLE

with four text items. Han item from the list is selected, it is displayed in the combo box
edit field at the top (this is automatic), $d is also displayed at the bottom of the
window. Figure 9-3 shows what the program's window looks like after the second item

I!o It! ,Quit

I Second String -in the list box is selected. '
Note in the listing that the combo box style includes the WS_VSCROLL style,

which adds a vertical scroll bar to the right side of the list box area. Also note that
the combo box is given an ID value of 100, which is used in processingWM_COMMAND
messages to identify which control sent the message. Normally, these IDvalues are
defined in the program's header me and have separate numbers from any menu item.

I First String lEI

/Inserted III

The selecte:t text is:
Second String

C Listing 9-3. Sending and Receiving Messages from a Combo Figure 9-3. A Combo Box
Control. Box Control .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HWND hComboBox ;
HDC hDC ;
int nSel ;
cha r cBut (30J
switch (iMessage) 1* process w~ndows messages *1
{

case WM_CREATE:
hComboBox = CreateWindow ("COMBOBOX", "Combo Text",

WS_CHILD I WS_VISIBLE I CBS_SIMPLE I CBS_HASSTRINGS
I WS_VSCROLL,

10, 10, 1S0, SO, hWnd, 100, ghInstanr.e, NULL) ;
ShowWindow (hComboBox, SW_SHOW) ;
break; .

case WM_COMMAND: 1* process menu items and buttons *1
switch (wParam)
{

case 100: 1* Combo box id value *1
it (HIWORD (lParam) == CBN~SELCHANGE)
{

hDC = GetDC (hWnd) ;
nSel = (WO~D) ~endMessage (hComboBox,

CB_GETCURSEL, O,'O~) ;
SendMessage (hComboBox, CB_GETLBTEXT,

nSel, (DWORD) (LPSTR) cBut) ;
TextOut (hDC, 10, 120,

"The selected text is:", 21> ;
TextOut (hDC, 10, 140, cBut, lstrlen (cBut»
ReleaseDC (hWnd; hDC) ;

}

break;
case IDM_DOIT:

SendMessage (hComboBox, CB_RESETCONTENT, 0, OL)
SendMessage (hComboBox, CB_ADDSTRING, 0,

(DWORD) (LPSTR) "First String") ;,
SendMessage (hComboBox, CB_ADDSTRING, 0,

(DWORD) (LPSTR) "Second String") ;
SendMessage (hComboBox, CB_ADDSTRING, O~

(DWORD) (LPSTR) "Last String") ;
SendMessage (hComboBox,CB_INSERTSTRING, 2,

(DWORD) (LPSTR} "Inserted") ;
SendMessage (hComboBci'x, CB_SHOWDROPDOWN, TRUE, OU
break; ,

case IDM_QUIT: ' 1* send end ot application message *1
DestroyWindow (hWnd) , ,
break;

}

266

9. WINDOWS MESSAGES ...

break;
case WH_DESTROY: 1* l!top application *1

PostQuitHessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, 1Hessage, wParam, lParam) ;

}

return (OL) ;

Owner-Redrawn Combo Boxes
Most combo boxes keep their own copies of the strings used in the list box if the CBS_HASSTRINGS style is used in
creating the combo box. If this style is not selected, the combo box has the OWNERREDRAW style, which means that
the calling program is responsible for painting every item in the combo box. This is ideal for selecting colors from a
palette (showing color bars for the entries in the combo box's list box) or graphic object selection. Combo boxes that
are OWNERREDRAW store only a 32-bit value for each element of the combo box. This value can have any meaning
desired by the programmer, Common uses are RGB color varues and handles to bitmaps. When Windows needs to
paint one ofthe owner-redrawn items, Windows sends a WM_DRAWITEM message. The lParam value passed with the
message contains a pointer to a DRAWITEMSTRUCT structure. The 32-bit value for the combo box item ends up in the
itemData element of the structure. '

1* DRAWITEMSTRUCT for ownerdraw *1
typedef struct tagDRAWITEMSTRUCT

{

WORD CtlType;
WORD CtlID;
WORD itemID;
WORD itemAction;
WORD itemS tate;
HWND hwndItem;
HDC hDC;

1* ODT_MENU, ODT_LISTBOX, ODT_COHBOBOX, or ODT_BUTTON *1
1* the control id for the list box, combo box, button *1
1* the item's id number in the list or combo box *1
1* ODA_DRAWITEM, ODA_SELECT, or ODA_FOCUS *1
1* ODS_SELECTED, ODS_GRAYED, ODS_DISABLED, ODS_CHECKED *1
1* the item's handle *1 1* or ODS FOCUS *1
1* the Hem's devi ce context *1 -

RECT rcItem; !* the bounding rectangle of the item *1
DWORD itemDatai 1* 32-bH data goes here *1

} DRAWITEHSTRUCTi
typedef DRAWITEMSTRUCT NEAR *PDRAWITEMSTRUCTi
typedef DRAWITEMSTRUCT FAR *LPDRAWITEMSTRUCT;

The structure also contains the size of the item as a rectangle, the device context, and coded information as to
what type of paint op~ration to do. These options are in the itemAction and itemState elements of the structure.
There are other similar structures defined in WINDOWS.H for passing information on sizing items, deleting items,
and sorting them in the list box. These structures are used less frequently. The other structures are shown \vith their
corresponding messages later in this section.

Windows sends ~CDRA WITEM messages for each combo box item that needs to be updated. If the items are to
be sorted, 'VM_COMPAREITEM messages will be sent to add a new item, as simple ASCII sort order cannot be used.
~CDELETEITEM messages are sent to the program if items are to be removed. Finally,.if the CBS_OWNER
DRA\wARIABLE style is used, the items in the combo box do not have to be all the same height. WM_MEASURE
ITEM messages will be sent when an item is inserted to set the item's size. Figure 9-4 shows an owner-redrawn combo
box that allows the selection of one offour colors. This is a drop down combo box, so
that only the selected color is normally visible. The list box showing all of the colors
is hidden until the down arrow on the right side of the selection box is clicked.

The trick behind this application is that the color of each of the selection items
can be stored as a 32-bit value. When Windows needs to paint one of the list box
items, or the top selection box, it sends a WM_D RA WITEM message. The WndProcQ
function intercepts these and finds the pointer to a DRAWITEMSTRUCT as the
lParam value. The 32-bit coded value for the RGB color is found in the itemData

Qo It! Quit

element. All the WndProcO funclI(); has to do is paint the given rectangle with the Figure 9-4. An Owner-
color specified by the RGB value. Redrawn Combo Box.

267

WINDOWS API BIBLE

Listing 9-4 shows the WndProcO function that creates and updates the owner-redrawn combo box: As an added
example, when the user clicks the "Do It!" menu item, one ofthe color values is changed to a new RGB value, matching
yellow. Note that WM_MEASUREITEM messages are also processed. This is Windows' way of.tinding out the vertical
size of an item, measured in pixels. In processing either WM_DRAWITEM or WM_MEASUREITEM messages,'an item
number of -1 refers to the top edit control of the combo box.

C Listing 9-4. Combo Box Example
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HWND
LPDRAWITEHSTRUCT
LPHEASUREITEMSTRUCT
HBRUSH

hComboBox ;
lpDIS ;
lpMIS ;
hBrush ;
rcSma ller ; RECT

switch (iHessage)
{

1* prbcesswindows messages *1 .

case WH_CREATE:
hComboBox = CreateWindow ("COMBOBOX", "Combo Text",

WS_CHILD I WS_VISIBLE I CBS_OWNERDRAWFIXED I
CBS_DROPDOWNLIST I WS_VSCROLL,
10, 10, 180, 80, hWnd, 100, ghlnstance, NULL) ,

ShowWindow (hComboBox, SW_SHOW) ;
1* add in all of the items, setting the 32 values = RGB color *1

SendMessage (hComboBox, CB_RESETCONTENT, 0, OL)
SendHessage (hComboBox, CB_ADDSTRING, 0,

RGB (0, 0, 0» ;
SendMessage ~hComboBox, CB_ADDSTRING, 0,

RGB (255, 0, 0» ;
SendHessage (hComboBox, CB_ADDSTRING, 0,

RGB (0, 255, 0» ;
SendHessage (hComboBox, CB_INSERTSTRING, 2,

RGB (0, 0, 255» ;
SendHessage (hComboBox, CB_SETCURSEL, 2, OU
break;

case WM_COMMAND: 1* process menu items and buttons *1
switch (wParam)
{

case IDM_DOlT: 1* change an item's 32 bit value (color)*1
SendHessage (hComboBox, CB_SETITEHDATA, 2,
. RGB(255, 255, 0» ;
break;

case lDH_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DRAWITEH:

1* get pointe~ to DIS *1 lpDIS = (LPDRAWITEMSTRUCT> lParam ;
switch (lpDIS->itemAction)
{

case ODA_DRAWENTIRE: 1* get RGB value *1
hBrush = CreateSolidBrush (lpDIS->itemData)
CopyRect «LPRECT) &rcSmaller,

(LPRECT) &lpDIS->rcltem) ;
1* leave room for border *1

Infla~eRect «LPRECT) &rcSmaller, -2, -2) ;
1* paint the item *1

FillRect (lpDIS->hDC, (LPRECT) &rcSmaller,
hBrush) ;

DeleteObject (hBrush) ;
break;

case ODA_SELECT:
if (lpDIS->itemState & ODS_SELECTED)

hBrush = GetStockObject (BLACK_BRUSH) ;
else 1* eraser *1

hBrush = GetStockObject (WHITE_BRUSH) ;
FrameRec~ (lpDIS~>hDC, (LPRECT) &lpDIS->rcltem,

268

break;

hBrush) ;
DeleteObject (hBrush)
break;

9. WINDOWS MESSAGES ~

case WM_MEASUREITEM:
lpMIS = (LPMEASUREITEMSTRUCT) lParam ;
if (lpMIS->itemID == -1) 1* if the top edit control *1

lpMIS->itemHeight = 25 ;
else 1* item in the list box *1

lpHIS->itemHeight = 20 ;
break;

case WM_DESTROY: 1* stop application *1
PostQuitHessage (0) ;
break;

default: 1* default windows message processing *1
return DefWi~dowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL> ;

Combo Box Message Summary
Table 9-5 summarizes the coinbo box messages. The detailed message descriptions follow immediately after th~ table.

CB_ADDSTRING

CB_DELETESTRING

CB_DIR'

CB_FINDSTRING

CB_GETCOUNT

CB_GETCURSEL

CB_GETDROPPED
CONTROLRECT

CB_GETEDITSEL

CB_GETEXTENDEDUI

CB_GETITEMDATA

CB_GETITEMHEIGHT

CB_G~LBTEXT

CB_GETLBTEXTLEN

CBJNSERTSTRING

CB_UMITIEXT

CB_RESETCONTENT

CB_SELECTSTRING "

CB_SEfCURSEL

CB_SETEDITSEL

CB_SETEXTENDEDUI

CB_SETITEMDATA

CB_SETlTEMHEIGHT

Adds a string to a combo box.

Deletes a string from the combo box.

Rlls the combo box with file names from a directory search.

Locates the first string in the list box of the combo bqx that matdles a givro set of starting dlafficters.

Returns the number of items in the list box of a combo box.

Finds the index number of the currently selected item in the list box of a combo box.

Retrieves the screen coordinates of the list box of a combo box in dropped-down position.
(VVin 3.1)

Retums the range of characters selected within the edit control of the combo box.

Determines if a combo box has the default or extended user interface. (Win 3.1)

Retrieves the 32"-bit value associated with an item in an owner-redrawn combo box.

Determines the height of an item in a combo box control. (Win 3.1)

Retrieves the string held in an item in the list box of a combo box.

Finds the number of characters in a string in the list box of a combo box.

Adds a new string or 32-bit item to the list box of a combo box.

Sets the maximum number of characters that a user can enter in the edit control of the combo box.

Removes all elements from the list box of a combo box and frees memory associated with the items.

Finds a matching string in the combo box list, and displays it in the edit control of the combo box.

Selects and highlights an item in the list box of a combo box .

• Se!ects a range of characters in the edit control of a combo box.

Selects either the default or extended user interface for a combo box. (Win 3.1)

Changes the 32-bit value associated with a list box item of a combo box created with the owner
redrawn style.

Sets the height of either the top edit control or list box items in a combo box control. (VVin 3.1)

Table 9-5. Combo Box Message Summary.

269

WINDOWS API BIBLE

One other message worth knowing about is MrCSETREDRAW, which allows the combo box to be temporarily
inhibited from redrawing the contents as additions and subtractions are made. MrCSETREDRAW speeds up the
redrawing of the contents and reduces the distracting "flicker" of different items showirig up one at a time.
WM_SETREDRAWis documented at the end of this chapter, due to the WM prefIx.

Combo Box Message Descriptions

CB ADD STRING o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Adds a string to a combo box. If the combo box has the CBS_SORT style, the string is placed in the
list and the list is re-sorted. Otherwise, the string is added to the end of the list.
dwReturned = SendMessage (HWND hControl, CB_ADDSTRING, WORD wParam, DWORD"
lParam) " ,"I

DWORD. The returned value is the index of the new entry in the combo box. Returns
CB_ERRSPACE if there is not enough memory to store the value. Returns CB_ERR on any other
error.

HWND: The window handle of the combo box control.

WORD: Not used. Set to O.

DWORD: For combo boxes with the CBS_HAS STRING style, lParam contains a pointer to a null
terminated string for a text item. For other styles, LParam encodes a 32-bit value for the item.
This can be retrieved when processing WM_DRAWITEM messages as the itemData element of
the DRAWITEMSTRUCT structure passed with the message.

CB DELETESTRING o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

CB DIR
Purpose

Syntax

Returns

Parameters
hControl

wParam

Deletes an item from the combo box.

dwReturned = SendMessage (HWNDhControl, CB_DELETESTRING, WORDwParam, DWORD :
lParam)

DWORD. The number ofitems remaining in the list. Returns CB_ERR ifwParam is not a valid list
element index.

HWND: The window handle of the combo box control.

WORD: Contains the index to the list element. 0 for the fIrst item.
DWORD: Not used. Set to OL.

,For combo boxes with the CBS_HASSTRINGS style, this message will free memory associated
with the deleted item.

o Win 2.0 • Win 3.0 • Win 3.1
Fills the combo box with fIle..namesffoIO a directory search.

dwReturned = SendMessage (HWND hControl, CB_DIR, WORD wParam, DWORD lParam)

DWORD. The number ofitems displayed minus 1. Returns CB_ERRSPACE if there is not enough
memory for the list. Returns CB_ERR for any other error ..

HWND: The window handle of the combo box control.
WORD: "Contains the DOS fde attribute value: The vaIues can be combined by "using the" C lan
gUage binary OR operator (I). The attributes are listed in Table 9-6.
I' ' ~ .•

270

OxOOOO
OxOOO1
0x0002 , ,
OxOOO4
OxOO10
OxOO20
Ox2000

Ox4000
Ox8000

Read/write data files with no other attributes set (nonnal files).

Read only files.

Hidden files.

System files.

Subdirectories.

Archived files.

9. WINDOWS MESSAGES T

LB_DIR flag. Piaces messages associated with filling the list box on the applications message queue, rather
than sending them directly.

Drives.

Exclusive bit. If this is set, only the specified file attribute type is recovered. If not set, nonnal files are
displayed in addition to the types listed.

Table 9-6. File Attribute Flags.

IParam DWORD: A pointer to a file search specification string (like "*.*" or "*.m"). This can be a full
directory specification. See the example under the DlgDirListComboBoxO function description
in Chapter 20, MS-DOS and Disk File Access.

CB_FINDSTRING o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

IvParam

IParam

Locates the flrst string in the list box that matches a given set of starting characters.

dwReturned = SendMessage (HWND hControl",CB_FINDSTRING, WORD wParam, DWORD
IParam) .

DWORD. The index of the flrst string in the list box that starts with the characters in the string
pointed to by IParam. 0 for the flrst item, 1 for the second, etc. Returns CB_ERR (-1) if the
search die{ not flnd a match. For owner-drawn combo boxes without the CBS_HASSTRINGS style,
the message returns the index of the item that has a matching 32-bit value to the one specified in
lParam. . ,I

HWND: The window handle of the combo box control.

WORD: The index of the list box item before the flrst item to start the search. The search will
wrap around if the end of the list is passed without a match. Set wPm'am = -1 to search the
entire list. You can,flnd multiple occurrences of a matching string by repeatedly sending tpis
message, each time starting from the previous match. The search will loop from the bottom to the
top of the list until the entire list has been searched ..

DWORD: A pointer to a nllll-terminated string. In order to have a match, the characters in this
string must all be matched by the beginning characters of an item in the list.

CB GETCOUNT o Win 2.0 • Win 3.0 II Win 3.1

Purpose
Syntax

Returns

Parameters
hControl

Returns the number of items in the list box of a combo box.
,dwReturned == SendMessage (HWND hControl, CB_GETCOUNT, WORD wParam, DWORD
IParam)

DWORD. The number of items in the list box. Returns CB_EHR on error.

HWND: The window handle of the combo box control;

271

WINDOWS API BIBLE

wParam

IParam

WORD: Not used; Set equal to O.

DWORD: Not used. Set equal to OL.

CB GETCURSEL o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

IParam

Finds the index number of the currently selected item in the list box of a combo box.
dwReturned = SendMessage (HWNDhControl, CB_GETCURSEL, WORD wParam, DWORD
~~. .

DWORD. The index of the currently selected item in the list box. Returns CB_ERR if no item is
selected.

HWND: The window handle of the combo box control.
WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

CD GETDROPPEDCONTROLRECT o Win 2.0 0 Win 3.0 • Win 3.1
Purpose
Syntax

Returns
Parameters
hControl

wParam

IParam

Retrieves the screen coordinates of the list box of a combo box in the dropped-d~wn position.
dwReturned = SendMessage (HWND hControl, CB_GETDROPPEDCONTROLRECT, WORD
wParam, DWORD IParam) .

DWORD, always equal to CB_OKAY.

HWND: The window handle of the combo box control.
WORD: Not used. Set equal to O.

i

DWORD: A pointer to a RECT data structure that will hold the screen coordinates of the com~o
box drop-down list box when SendMessageO returns.

Related Messages CB_GETITEMHEIGHT

CD..;.GETEDITSEL o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

IParam

Returns the range of characters selected within the edit control of the combo box.

dwReturned = SendMessage (HWND hControl, CB_GETEDITSEL, WORD wParam, DWORD
IParam)

DWORD. The low-order word contains the starting position and the high-order word has the end
ing position of the characters selected. Returns CB_ERR on error.

HWND: The window handle of the combo box control.
WORD:· Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

CD GETEXTENDEDUI o Win 2.0 0 Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Determines if a combo box has the default or e~ended user interface.

dwReturned = SendMessage (HWND hControl, CB_GETEXTENDEDUI, WORD wParam,
DWORD lParam)

DWORD. TRUE if the combo box has an extended user interface, FALSE if not.

272

Parameters
hControl
wParam

HWND: The window handle of the combo box contr91.
WORD: Not used. Set equal to O.

)

9. WINDOWS MESSAGES V

LParam DWORD: Not used. Set equal to OL.
Related Messages CB_SETEXfENDEDUI
Comments The extended user interface for a combo box is set by sending the CB_SETEXTENDEDUI mes

sage to the combo box control. The control must have either the CBS_DROPDOWN or
CBS_DROPDOWNLIST style. The extended style has the following effects:
Clicking the static text field at the top causes the list box to be displayed (CBS_DROPDOWNLIST
style only) ..
Pressing the (PGDN] key displays the list box. .
The top static text field cannot be scrolled if the list box is not visible.

CB_GETITEMDATA o Win 2.0 a Win 3.0 II Win 3.1
Purpose
Syntax

Returns
Parameters
hControl

wParam
LParam

Retrieves the 32-bit value associated with an item in an owner-redrawn combo box.
dwReturned= SendMessage (HWND hControl, CB_GETITEMDATA, WORD wParam, DWORD
IParam)
DWORD, the 32 bit value. Returns CB_ERR on error.

HWND: The window handle of the combo box controL

WORD: The index of the item. The first item is O.
DWORD: Not used. Set equal to OL.

CB_GETITEMHEIGHT o Win 2.0 0 Win 3.0 • Win 3.1
Purpose
Syntax

Returns
Parameters
hControl'

wParam

Determines the height of an item in a combo box control.
dwReturned = SendMessage (HWND hControl, CB_GETITEMHEIGHT, WORD wParam,
DWORD lParam)

DWORD, the height of the item in pixels.

HWND: The window handle of the combo box control.

WORD: Set to -1 to determine the height of the top edit (or static text) control at the top of the
combo box. Set to 0 if the combo box does not have the CBS_o\VNEUDRA\wARIABLEstyle. The
height of items in the list box will be returned. .

If the list box has the CBS_ OWNERD RA \W ARIABLE style, set wParam to the index of the
item for which the height should be determined. This will normally be repeated for several items
in the list box. .

IParam DWORD: Not used. Set equal to OL.

Related Messages CB_SETITEMHEIGHT, WM_DRAWITEM

CB GETLBTEXT o Win 2.0 Ii Win 3.0 II Win 3.1

Pwyose
Syntax

Returns

Retrieves the string held in an item in the list box of a combo box.

dwReturned = SendMessage (HWND hControl, CB_GETLBTEXT, WORD wParam, DWORD
IParam)

DWORD, the length of the string in bytes. Returns CB_ERR on error.

273

WINDOWS API BIBLE

Parameters
hControl
wParam

LParam

If the combo box is owner-redrawn, but it does not have the CBS_HASSTRINGS style, the
buffer pointed to by IParam will receive the 32- bit value associated with the item.

HWND: The window handle of the combo box control.
WORD: Contains the index of the list box item. The first item is O.
DWORD: A pointer to a character buffer to hold the string retrieved. Use CB_GETLBTEX'TLEN to
retrieve the length of the string. Be sure to include an extra character in the buffer for the tenni
nating NULL character.

CB GETLBTEXTLEN o Win 2.0 • Win 3.0 • Win 3.l
Purpose

Syntax

Returns
Parameters
hControl

wParam
IParam

Finds the number of characters in a string in the list box of a combo box.
dwReturned = SendMessage (HWNDhControl, CB_GETLBTEXTLEN, WORDwParam, DWORD
IParam)
DWORD, the length of the string in bytes. Returns CB_ERR on error.

HWND: The window handle of the combo box control.
WORD: Contains the index of the string. The first item is O.
DWORD: Not used. Set equal to OL.

CB_INSERTSTRING o Win 2.0 .. Wm 3.0 1'1 Win 3.1
Purpose

Syntax

Returns

Parameters
hCcmtrol

wParam

lParam

Purpose

Syntax

Returns
Parameters
hControl
wParam

lParam

Adds ~ new string or 32-bit item to the list box of a combo box.
dwReturned = SendMessage (HWND hControl, CB_INSERTSTRING, WORD wParam, DWORD
IParam)

DWORD, the index of the inserted item. Returns CB_ERRSPACE if there is not enough memory
for the item. Returns CB_ERR for all other errors.

HWND: The window handle of the combo box control.
WORD: Contains the index position to insert the string. 0 for the first item, 1 for the second, etc.
Use -1 for the last. All items below the insertion point will have new index values, one greater
than their index prior to the iriserti~n. .

. DWORD: A pointer to a null-tenninated character string to be added. If the combo box has the
owner-redrawn style, lParam holds the 32-bit val~e to set for the item.

o Win 2.0 iii Win 3.0 • Win 3.1
Sets the maximum number of characters that a user can enter in the edit controi of the combo box. .
dwReturned = SendMessage (HWND hControl, CB_LIMITTEXT, WORD wParam, DWORD
IParam)

DWORD, nonzero if the limit was set, zero if not.

HWND: The window handle of the combo box control.
WORD: The maximum number of characters for the edit control.
DWORD: Not.used. Set equal to OL.

274

Purpose

Syntax

Returns

Parameters
hControl

wParam

IParam

9. WINDOWS MESSAGES V

o Win 2.0 m Win 3.0 m Win 3.1
Removes all elements from the list box of a combo box, and frees memory associated with the
items.

dwReturned = SendMessage (HWND hControl, CB_RESETCONTENT, WORD wParam,
DWPRD lParam)

DWORD, not used.

HWND: The window handle of the combo box control.

WORD: Not Used. Set equal to O.

DWORD: Not Used. Set equal to OL.
If the combo boxis owner-redrawn, but does not have the CBS_HASSTRINGS style, the owner

of the combo box will receive a m'eD ELETEITEM message for each item in the combo b~x. .

CB_SELECTSTRING o Win 2.0 a Win 3.0 II Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

LParam

Finds a matching string in the combo box list and displays it in the edit control of the combo box.
If the combo box has the owner-redrawn style, the match is based on comparing 32-bit values.

dwReturned = SendMessage (HWND hControl, CB_SELECTSTRING, WORD wParam, DWORD
IParam)

DWORD, the index of the string found. Returns CB_ERR if no match was found. In this case, the
edit control is not changed.

HWND: The window handle of the combo box control.

WORD: The list box item number before the first item to be searched. The search wraps around to
the beginning if no match is found between the starting point and the end of the list.

You can find duplicate entries in the list by repeatedly using the last index as the starting
point for the next search.

DWORD: A pointer to the character string to match. The string in the list box of the combo box
can be longer, as long as the first characters match the string pointed to by lParam. If the combo
box has the owner-redra~ style, lParam contains the 32-bit value to match.

CB_SETCURSEL o Win 2.0 a Win 3.0 III Wm 3.1
Purpose

Syntax

Returns

Parameters
hControl

-wParam

LParam

Selects and highlights an item in the list box of a combo box. If the item i') not visible, the list is
scrolled into view. The edit control of the combo box is changed to reflect the selection. Any
highlighting of the previous selection is removed.

dwReturned = SendMessage (HWND hControl, CB_SETCURSEL, WORD wParam, DWORD
IParam)

DWORD. Normally not used. Set to CB_ERR on error, such as an out ofrangewParam value.

HWND: The window handle of the combo box control.

WORD: The index of the item to select. Set wParam to -1 to deselect all items.

DWORD: Not used. Set equal to OL.

275

WINDOWS API BIBLE

Purpose
. Syntax

Returns
Parameters
kC(mtrol--

wParam

lParam

Purpose

Syntax

Returns
Parameters
kControl

wParam

o Win 2.0 • Win 3.0 • "in 3.1
Selects a range of characters in the edit control of a combo box.

dwReturned = SendMessage (HWND hControl, CB_SETEDITSEL, WORD wParam, DWORD
IParam)

DWORD, TRUE if successful, FALSE if not.

HWND: The window handle of the combo box control.
WORD: Not used. Set equal to O.

, DWORD: The low-order word contains the starting character position. The high-order word con
tains the ending position.

o Win 2.0 0 Win 3.0 • Win 3.1
Selects either the default or extended user interface for a combo box.
dwReturned = SendMessage (HWND hControl, CB_SETEXTENDEDUI, WORD wParam,
DWORD IParam)

DWORD, CB_OKJfsuccessful, CB_~RR on ~rror.

HWND: The Window handle of the combo box control.
WORD: Set to TRUE to use the extended user interface. Set to FALSE to use the default user
interface.

lParam DWORD: Not used. Set equal to OL.
Related Messages CB_GETEXTENDEDUI
Comments The extended user interface for a combo box is set by sending the CB_SETEXTENDEDUI mes

sage to the combo box control. The control must have either the CBS_DROPDOWN or
CBS_DROPDOWNLIST style. The extended style has the following effects:
Clicking the static text field at the top causes the list box to be displayed (CBS_DROPDOWNLIST
style only).

Pressing the (PG[)N) key displays the Ust box.

The top static text field cannot be scrolled if the list box is not visible.

CD SETITEMDATA o Win 2.0 .. Win 3.0 II Wm 3.1
Purpose

Returns
Parameters

. kControl

. wParam

lParam

Changes the 32-bit value associated with a list box item of a combo box created with the owner
redrawn style.

dwReturned = SendMessage (HWND hControl, CB_SETITEMDATA, WORD wParam, DWORQ
lParam) .

DWORD. Normally not used. CB_ERR on error.

HWND: The window handle of the combo box control.
WORD: . The index number of the item in the list box.
DWORD: The new 32-bit value to set.

276

9. WINDOWS MESSAG~S ~

CB_SETITEMHEIGHT o Win 2.0 0 Win 3.0 • Win 3:i
Purpose'
Syntax

Returns

Parameters
hControl

wParam

Sets the height .of either the tQP edit contrQI .or list bQX items in a cQmbQ bQX cQntrQI.

dwReturned = SendMessage (HWND hControl, CB_SETITEMHEIGHT, WORD wParam,
DWORD lParam) ,

DWORD, CB_ERR .on errQr.

HWND: The windQw handle .of the cQmbQ bQX cQntrQI.

WORD: Set tQ -1 tQ change the height .of the tQP edit (.or static text) cQntrQI at the tQP .of the
cQmbQ bQx. Set tQ 0 if the cQmbQ bQX dQes nQt have the CBS_OWNERDRAWVARIABLE style. The
height .of eveIY item in the list boxwill be changed. If the list box has the CBS_ OWNERDRA WV ARIABLE
style, set wParam tQ the index .of the item fQr which the height shQuld be changed. The fIrst item
has an index .of zerQ.

lParam DWORD: Set equal tQ the height in pixels fQr the item tQ be changed.

Related Messages CB_GETITEMHEIGHT, CB_SETITEMDATA, WM_DRAWITEM

CB_SHOWDROPDOWN o Win 2.0 m Win 3.0 • Win 3.1
, PurpQse

Syntax

Parameters
hControl

wParam

lParam

ShQWS .or hides the drQP-dQwn list bQX .of a cQmbQ bQX created with the CBS_DROPDOWN .or
CBS_DROPDOWNLIST style.

SendMessage (HWND hControl, CB_SHOWDROPDOWN, WORD wParam, DWORD lParam)

HWND: The windQW handle .of the cQmbQ bQX cQntrQI.

WORD: TRUE tQ display the list bQx, FALSE tQ hide it.
t

DWORD: NQt used. Set equal tQ OL.

Combo Box Notification Codes Summary
When the user ,makes a selectiQn within a cQmbQ bQX .or edits the tQP edit windQw, WindQws nQtifies the parent
windQwwith a WM_COMMAND message. The cQmbQ bQX ID is passed aswParam, while the cQmbQ bQxhandle is the
IQw-Qrder wQrd .of [Paramo The specific nQtificatiQn cQde, such as CBN_DBLCLK, is the high-Qrder wQrd .of lParam.

, Table 9·7 summarizes the nQtificatiQn codes.

CBN_DBLCLK

CBN_DROPDOWN

CBN_EDITCHANGE

CBN_EDITUPDATE

CBN_ERRSPACE

CBN_KILLFOCUS

CBN_SELCHANGE

CBN_SETFOCUS

Notification that the user has double-clicked an item in the list box of the combo box.

Notification that the list box portion of a combo box is about to be made visible.

The string in the edit control of the combo box has been changed.

Notification that Windows is about to change the text in the edit control of a combo box.

Notification that Windows has run out of memory room to add another item to a combo box.

Notification that the combo box has lost the input focus.

Notification that the current'selection in the list box part of the combo box has changed.

Notification that a combo box has the input focus.

Table 9· 7. Combo Box Noti/ication Codes.

277

WINDOWS API BIBLE

Combo Box ,Notification Codes Descriptions

CBN,DBLCLK m Win 2.0 t1 Win 3.0 m Win 3.1
Purpose

Syntax

Parameters -
wParam

IParam

,Notifi~ation that the user has double-clicked an item in the list box of the combo box. Use
CB_GETCURSEL to determine which item was selected. This message will only be sent if the list
box of the combo box is always visible(CBS_SIMPLE style). For drop-down list boxes, the fIrst
mouse click causes the selection to be made and causes the list box to be pulled up.

lleturned as part of a WM_ COMMAND message, processed by the program's meS38.ge processing
function (WndProcO).

WORD: Contains the ID value for the combo box. This is the integer value set for the hMenu
parameter when CreateWindowO was called.

DWORD: The low-order word contains the window handle of the combo box. The high~order word
contains CBN_DBLCLK.

CBN DROPDOWN a Win 2.0 mWin3.0 IIJWin3.l
Purpose

Syntax

Paramewrs'
wParam

lParam

Notification that the list box portion of a combo box is about to be made visible. This will not
occur if the combo boxwas created with the CBS,..;.SIMPLE style which always shows the list box.
Returned as part of a WM_ COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the combo box. This is the integer value set for the hMenu
parameter when CreateWindowO was called.
DWORD: The low-order word contains the window handle of the combo box. The high-order word
contains CBN_DROPDOWN. '

" CBN EDITCHANGE II Win 2.0 III Win 3.0 II Win 3.1

Parameters ,
wParam

lParam

Notification that the string in the edit control of the combo box has been changed. This message
is received after the change has been made. '

Returned as part of a WM_ COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the combo box. This is the integer value set for the kMenu
parameter when CreateWindowO was called.
DWORD: The low-order word contains the window handle ofthe combo box. The high-orderword
contains CBN_EDITCHANGE.

CBN EDITUPDATE II Win 2.0 mWin3.0
Purpose

Syntax

Parameters
wParam

Notification that Windows is about to change the text in the edit control of a combo box. \

Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the combo box. This is the integer value set for the hMenu
parameter when CreateWindowO was called.

278

LParam

9. WINDOWS MESSAGES V

DWORD: The low-order word contains the window handle of the combo box. The high-order word
contains CBN_EDlTUPDATE.

CBN ERRSPACE c Win 2.0 [J Win 3.0 Em Win 3.1
Purpose

Syntax

Parameters
wParam

LParam

Purpose

Syntax

Parameters
wParam

LParam·

Purpose

Syntax

Parameters
wParam

lParam

Notification that Windows has run out of memory to add another item to a combo box.

Retume<vas part of a ~C COMMAND message, processed by the program's message processing
function (WndProc()). ,

WORD: Contains the ID value for the combo box. This is the integer value set for the hMcnu
parameter when CreateWindowO was called.

DWORD: The low-order word contains the window handle of the combo box. The high-order word
contains CBN_ERRSPACE.

C Win 2.0 IJ Win 3.0 m Win 3.1
Notification that the combo box has lost the input focus.

Returned as part of a WlICCOMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the combo box. This is the integer value set for the hMcnu
parameter when CreateWindowO was called.

DWORD: The low-order word contains the window handle of the combo box. The high-order word
contains CBN_KlLLFOCUS. .

(] Win 2.0 tJ Win 3.0 III Win 3.1
/ Notification that the current selection in the list box part of the combo box has changed. This can

be due to either selecting a new item in the list box or through typing text in the edit control.

Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProc()).

WORD: Contains the ID value for the combo box. This is the integer value set for the ItMcnu
parameter when CreateWindowO was called.

DWORD: The low-order word contains the window handle of the combo box. The high-order word
contains CBN_SEIJCHANGE.

CBN SETFOCUS o Win 2.0 t!l Win 3.0 l'Zi Win 3.1
Purpose

Syntax

Parameters
wParam

LParam

Notification that a combo box has the input focus. Keyboard input will show up in the edit control.

.Returned as part of a ~CCOMMAND message, processed by the program's message processing
function (WndProc()). .

WORD: Contains the ID value for the combo box. This is the integer value set for the hMcnu
parameter when CreateWindow() was called.· "

DWORD: The low-order word contains the window handle of the combo box. The high-order word
contains CBN_SETFOCUS.

279

WINDOWS API BIBLE

Dialog Bo~ Window Messag~s_ .
The only two messages that are specific to the dialog box window itself are DM_GETDEFID and DM_SETDEFID.
These functions get and change the push button ID number for the default pushbutt9n. This is the pushbutton that
will be activated if the user hits the (ENTER) key. The ~CNEXTDLGcrfL message allows the default pushbutton con
trol to be changed. This message is sent with PostMessageO, not SendMessageO, to avoid having the change occur
while other messages are being processed. (~LNExTDLGCTL is documented in the last section of this chapter, due
to the WM prefIX.)

The controls in a dialog box, such as buttons and list boxes, are all 'child window controls. They can be manipu
lated by sending the control messages. The SendDlgltemMessageO function is usually more convenient than
SendMessageO for dealing with dialog box controls. Chapter 13, Dialog Boxes, has a full discussion of dialog box
controls. .

Purpose

Syntax

Returns

ParameterS
hControl

wParam

IParam

-9 Win 2.0 lID Win 3.0 II Win 3.1
Retrievesthe ID value of the default pushbutton in a dialog box. The default pushbutton is the
button that will be pressed if the user hits the (ENTER) key right after the dialog box appears.

dwRetunied = SendMessage (HWND hControl, DM_GETDEFID, WORD wParam, DWORD
IParam)

DWORD. The low-order word contains the button's ID value. The high-order word contains
DM_GETDEFID. Returns NULL on error.

HWND: The window handle of the dialog box.

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

DM SETDEFID r.J Win 2.0 FJ Win 3.0 m Win 3.1
Purpose/

Syntax

Returns

Parameters
hControl

wParam

lParam

Changes the ID value of the default pushbutton control in a dialog box. The default pushbutton is
the button that will be pressed if the user hits the (ENTER) key right after the dialog box appears.

dwReturned = SendMessage (HWND hControl, DM_SETDEFID, WORD wParam, DWORD
IParam)

DWORD, not used.

HWND: The window handle of the dialog box.

'WORD: The ID value of the default pushbutton.

DWORD: Not used. Set equal to OL.

Edit Control Messages
Edit controls are most frequently used for single lines of input. Typically, the user is given a place to enter a file name,
or some other short character string. These uses just scratch the surface as to what is possible with edit controls.
Windows has a lot of basic word processing functionf' built into edit controls. Any time your program uses an edit
control, you automatically get editing functions such as the ability to select ~~xt using the mouse, delete selected text
with the CQID key, use the cursor keys and the (BACKSPACE) key, etc. Edit controls can be as big as the entire client area
of a window, and they can be combined with scroll bars to produce scrollable editing areas.

You will probably find that edit controls give you all the power you need for text input in your programs. Edit controls
do not allow text formatting, as is needed in word processing, and they can become cumbersome if you need to add a lot of
new functionality. However, you may find that the edit controls allow you to prototype a program quickly.

280

Figure 9-5 shows a multiline edit control placed as a
child window in an application. The edit control style in
cludes the WS_ VSCROLL style, which adds a vertical
scroll bar to the edit control. After several lines of text
are typed, the user can scroll through the text using the
scroll bar. Typing in the edit area automatically wraps to
the next liue when a word exceeds the width of the edit
area, and automatically scrolls up when the bottom is
reached.

In this example, whE!n the user clicks the "Do It!"
menu item, the program logic recovers the string data

;:~;~~
!lo It! Quit

9. WINDOWS MESSAGES ~

This is a bunch of
lines in an edit
controt

entered and shows it at the bottom of the screen. This is This is a bunch of lines in an edit control.
a bit more complex than it might be, as Windows does not
automatically keep the entered text as a null-terminated Figure 9-5. A Multiline Edit Control ..
string (no null at the end is maintained). The program
must add the length of each of the lines to find the end of the string. This is a small nuisance, considering how much
"instant word processing" the program gains by just using an edit control.

Listing 9-5 shows the WndProcO function of the program that creates the edit control. The edit control is built
when the program receives the \VM_CREATE message. The example allocates a separate local memory area to store
the string data. Windows automatically enlarges this area to make room for added text. Note that PostMessageO is
used with the E"twCSETHANDLE message to establish the link between the string memory area and the edit control.
SendMessageO also could have been used to transmit the message to Windows.

Allocating a separate memory area for the edit control's string data is not always necessary. Windows will main
tain a default text area if the edit control is inside a dialog box created with the DS_LOCALEDIT style. This is
convenient with dialog boxes, as the program can also use the SetDlgItemTextO, SetDlgItemlntO, GetDlgItemTextO,
and GetDlgItemlntO functions for quick ways to fetch and set the. text string inside of edit controls. These functions
are explained in Chapter 13, Dialog Boxes. This technique is not used in the example in Listing 9-5, as the edit control
is a child window and is not in a dialog box.

. Retrieving the text from the memory buffer is simply a matter of obtaining the handle to the memory area. The
program must determine the length of the complete string, including all of the lines in the multiline edit control. This
require~ adding the length of each line's string. When the total length is known, the program adds the terminating
. NULL character and displays the string at the bottom of the screen.

C Listing 9-5. Creating a Multiline Edit Control
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HWND
HDC
static HANDLE
PSTR
int

hEdi t ;
hDC ;
hEdi tText ;
ptzText ;
i, nTextLen, nTotalLen, nLines, nIndex ;

switch (iMessage)
{

f* process wi ndows messages *f

case WM_CREATE:
hEdi t = CreateWindow ("EDIT", ,

WS_CHILD I WS_VISIBLE I ES_AUTOVSCROLL I ES_MULTILINE
I ES_LEFT I ES_NOHIDESEL I WS_BORDER I WS_VSCROLL,
10, 10, 150, 100, hWnd, NULL, ghInstance, NULL) ;.

ShowWindow (hEdit, SW_SHOW) ;
hEditText = LocalAlloc (LMEM_MOVEABLE, 30) ; f* edit buffer *f
ptzText = LocalLock (hEditText) ;f* null byte for first char *f
ptzText = 0 ; . f in edit buffer to begin *f
Loc.lFree (hEditText) ;

f* attach edit buffer to edit control *f
PostMessage (hEdit, EM_SETHANDLE, hEditText, OU ;

281

WINDOWS API BIBLE

)

}

break
case WM_COMMAND 1* process menu items * 1

switch U;Param)
{

case IDM_DOIT: 1* pull the text out and display it *1
ptzText = LocalLock (hEditText) ;
nLines = Send~'essage (hEdit, EM_GETLINECOUNT'1' 0, OL> ;
nTota lLen = 0 ;
for (i = 0 ; i < nLines ; i++) 1* find string length *1
{

}

nlndex = SendMessage (hEdit, EM_LINEINDEX,
i, OL> ;

nTextLen = Send~lessage (hEdi t, E~LLINELENGTH,
nlndex, OU ;

nTotalLen +=.nTextLen ;

(ptzText + nTotalLen) = 0 ; 1 null terminate string *1
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 130, ptzText, lstrlen (ptzText» ;
ReleaseDC (hWnd, hDC) ;
LocalUnlock (hEditText) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY:

LocalFree (hEditText)
PostQui tMessage (0) ;
break;

1* stop application *1

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;

Windows lias several undocumented messages, including E~LGE'ITHUMB and EM_SETFRONT, that are defined
in the WINDOWS.H file that deal with edit controls. The adventurous reader can experiment with these at his or her
own risk. There is no guarantee that undocumented messages will be continued in future versions of Windows.

Edit Control Message Summary
Table 9-8 summarizes the edit control messages. The detailed message descriptions are in the next section.

EM_EMPTYUNDOBUFFER

EM_FMTLINES

EM~GEfHANDLE

EM_GEfUNE

EM_GEfUNECOUNT

EM_GETMODIFY

EM_GETRECT ..

EM_GEfSEL

EM_UMITIEXT

Determines if an edit control can correctly process EM_UNDO messages to undo the effect of a
change.

Clears the undo buffer that Windows installs for an edit control to handle WM_UNDO messages.

Used with multiline edit controls to add or remove CR LF character sequences at the end of
each line.

Returns a handle to the memory area the edit control is using to store the string data.

Copies a line from the edit control into a memory buffer. This message is only processed by
multiline edit controls.

Determines the number of text lines in a multiline edit control.

Determines if the text in the edit control has been changed by the user.

Returns the bounding rectangle for the formatting area of an edit control.

Returns the starting and ending character positions of the edit text selected by the user.

Restricts the length of the text string a user may enter into an edit control.

282

9. WINDOWS MESSAGES Y

EM_UNEFROMCHAR

EM_UNEINDEX

Returns the line number of the selected text or of a given character position in an edit control.

Retums the character position in the complete string contained in a multiline edit control for the
start of a line.

EM_UNELENGTH

EM_UNESCROLL

EM_REPu\CESEL

EtvtSETHANDLE

Retums the number of characters in a line of a multiine edit control.

Scrolls an edit control horizontally crvertically.

Replaces the currently selected text with new text.

EM_SETMODIFY

EM_SETPASSWORDCHAR

Unks the edit control to a memory buffer to hold the edit text.

Sets the modify flag for the edit control.

Allows you to change from an asterisk (t) to any desired character placeholder for the password
style.

Sets the inner formatting rectangle of the edit control. The text is repainted.

Sets the irmer formatting rectangle of the edit control. The text is not repainted.

Selects all of the characters in a given range.

EM_SElTABSTOPS

EM_SETWORDBREAK

Sets the positions of the tab stops in a multiline edit control.

This message sets a new word break function.

Copies the text from the delete buffer back into the edit control at the insertion point (the caret
location).

Table 9-8. Edit Control Message SummarlJ.

In addition to the EM edit control messages, there are four messages that deal with cut and paste operations for
selected text within the edit control area. The messages allow to be copied the selected text between the edit control
and the clipboard. These messages are summarized in Table 9-9. The full documentation of these messages is in the
last part of this chapter in the Windows messages section, as these messages start with the WM rreflX.

WM_CLEAR

WM_COPY

WM_CUT

WM_PASTE

Deletes the selected text in an edit control without copying it to the clipboard.

~pies selected text within an edit control to the clipboard.

Copies the current selected text from an edit control to the clipboard.

Copies the text from the clipboard into an edit control.

Table 9-9. Additional Edit Control Messages.

Edit Control Message Descriptions

EM_CANUNDO· II Win 2.0 II Win 3.0 II Wm 3.1

Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Determines if an edit control can correctly process EM_UNDO messages to undo the effect of a·
change. If the undo buffer size was exceeded, the change cannot be correctly undone.

dwReturned = SendMessage (HWND hControl, E~CCANUNDO, WORD wParam, DWORD
IParam)

DWORD. TRUE if the edit control can undo changcs,FALSE if not.

HWND: The window handle of the child window edit control

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

283

WINDOWS API BIBLE

Purpose

Syntax

Parameters
hControl

wParam

lParam

Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Comments

o Win 2.0 mWin 3.0 .Wm3.1
Clears the undo buffer that Windo\vs installs for an edit control to handle MCUNDO messages.
The edit buffer is automatically emptied if the edit control receives a ·WM_SETI'EXT or
EM_SETHANDLE message.
SendMessage (HWND hControl, EM_EMPTYUNDOBUFFER, WORD wParam,DWORD
lParam) .

HWND: The window handle of the child window edit control.
WORD: Not used. Set equal to O.
DWORD: Not used. Set equal to OL.

m Win 2.0 • Win 3.0 a Win 3.1
Used with multiine edit controls to add or remove' CR CR LF character sequences a the end of
each line (OxOD, OxOD, OxOA hexadecimal). The line ends where the string word wraps can be
marked with these three bytes, which is different from a "hard return/' when the user has pressed
the {ENTER} key. Normally, multiline edit controls are stored as one long string, without control
characters where the string wordwraps. An exception is text in which the user has hit the (ENTER)

key. This will add two bytes, CR and LF, to the string. These CR LF pairs are not affected by the
EM_FMTLINES message. Note that the string size will change. Use EM_LINELENGTH to fmd the
new length of each line.

dwReturned = SendMessage (HWND hControl, EM_FMTIJNES, WORD wParam, DWORD
lParam) ,

DWORD. Nonzero if formatting occurs, otherwise zero.

HWND: The window handle of the child window edit control.
WORD: Nonzero to place CR CR LF character sequences at the end of each wordwrapped line.
Zero to remove them.
DWORD: Not used. Set equal to OL.

IIi1 Win 2.0 '. Win 3.0 • Win 3.1
Returns a handle to the memory area the edit control is using to store the string data. Use
EM_SETHANDLE to link a memory handle to an edit control.
dwReturned = SendMessage (HWND hControl, EM_GETHANDLE, WORD wParaJn, DWORD
lParam)

DWORD, the data handle -of the memory buffer that holds the edit string.

HWND: The window handle of the child \\indow edit control.
WORD: Not used. Set equal to O.
DWORD: Not used. Set equal to OL.

Allocating a separate memory area for the edit control's string data is not always necessary.
Windows will maintain a default text area if the edit control is inside a dialog box created ,with
the DS_LOCALEDIT style. This is convenient with dialog boxes, as the program can also use th~
SetDlgItemTextO, SetDlgItemlntO, GetDlgItemTextO, and GetDlgItemIntO functions lor quick
ways to fetch and set the text string inside of edit controls. These functions are exPlained in
yhapter 13, Dialog Boxes.

284

9. WINDOWS MESSAGES

EM_GETLlNE _ fl Win 2.0 Ei Win 3.0 fl Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Copies a line from the edit control into a memory buffer. This message is only processed by
multiline edit controls. Use EM_GETHANDLE to retrieve a handle to the memory area used to
store the string of a single line edit control, or for the entire contents of a multiline edit control.

dwReturned = SendMessage (HWND hControl, EM_GETUNE, WORD wParam, DWORD
lParam)

DWORD, the number of characters copied.

HWND: The window handle of the child window edit control.

WO~D: The line number to copy~ 0 is the first line.

DWORD: A pointer to the memory buffer that will contain the copied string. Set the first WORD
of the buffer equal to the maximum number of characters to copy (as an integer). This value will
be read before the copy operation begins to ensure that the buffer size is not exceeded. The
copied line is not null-terminated. The text copied to the buffer pointed to by lParam will not
automatically be null-terminated.

EM_GETLlNECOUNT Ii Win 2.0 ED Win 3.0 • Win 3.1
Purpose

Syntax

Returns

. Parameters
hControl

wParam

LParam

Purpose

Syntax

Returns

Parameters
hControl

wParam

LParam

Purpose

Syntax

Parameters
hControl

wParam

Finds out the number of text lines in a multiline edit control. Single line edit controls do not
respond to this message.

dwReturned = SendMessage (HWND hControl, EM_GETLINECOUNT, WORD wParam,
DWORD lParam)

DWORD. The number of lines in the multiline ~dit control.

HWND: The window handle of the child window edit control.

WORD: Not used. Set equal to O.

DWORD: N{;t used. Set equal to OL.

II Win 2.0 • Win 3.0 • Win 3.1
Determines whether or not the text in the edit control has been changed by the user ..

dwReturned = SendMessage (HWND hControl, EM_GETMODIFY, WORD wParam, DWORD
lParam)

DWORD, nonzero if the edit text has been changed, zero if not.

HWND: The window handle of the child edit window control.

WORD: Not used. Set equal tb O.

DWORD: Not used. Set equal to OL.

o Win 2.0 m Win 3.0 m Win 3.1
Returns the bounding rectangle for the formatting area of an edit control. The size of this rect
angle can be changed with the EM_SETRECT comIl1and;

SendMessage (HWND hContml, El\CGETRECT, WORD wParam, DWORD lParam)

HWND: The window handle of the child window edit control.

WORD: Not used. Set equal to O.

285

WINDOWS API BIBLE

lParam DWORD: A pointer to a RECT data structure. The four elements ofthis structure will be set after
the message has been processed. Client coordinates are used.

EM GETSEL m Win 2.0 a Win 3.0 II Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

..

Returns the starting and ending character positions of the edit text selected by the user. Text is
selected within the edit control by dragging the mouse pointer over one or more characters. The
selected text is highlighted automatically.

dwReturned = SendMessage (HWND hControl, EM_GETSEL, WORD wParam, DWORD
lParam)

DWORD. The low-order w~rd contains the first selected character position. The high-order word
contains the position of the first character after the selection.

HWND: The window handle of the child window edit control.
WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

EM LIMITIEXT D Win 2.0 iii Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
hControl

wParam

lParam

Restricts the length of the text string a user may enter into an edit control. If the ~er attempts to
exceed this limit, the system beep and no additional characters can be added to the edit area until
some are deleted. EM_LIMI'ITEXT does not limit the length of text that can be inserted using
EM_SETHANDLE. It does not affect the size of the memory buffer used to store the characters.

SendMessage (HWND hControl, EM_LIMl'ITEXT, WORD wParam, DWORD lParam)

HWND: The window handle of the child window edit control.

WORD: The maximum number of characters to allow in the edit control. Set to 0 to remove any
limit (other than available memDry).

DWORD: Not used. Set equal to OL.

EM LINEFROMCHAR E1 Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Returns the line number of the selected text or of a given character position in an edit control.

dwReturned = SendMessage (HWND hControl, EM_LINEFROMCHAR, WORD wParam,
DWORD lParam)

DWORD, the line number.

HWND: '!'.he window handle of the child window edit control.
WORD: Set either to -1 to retrieve the line number of the start of the text block the user has
selected, or set to a positive integer to specify a character position in the complete edit st~

DWORD: Not used. Set equal to OL.

EM LINE INDEX B Win 2.0 II Win 3.0 II Win 3.1
Purpose Returns the character position in the complete string contained in a multiline edit control for the

start of a line. This is the number of characters in the edit control's memoIY buffer before the
start of the line .. This value is used in processing EM~LINELENGTH messages. The message can
also be used to find the location of the edit caret within the edit control. The edit caret is acti-

286

Syntax

Returns

Parameters
hCantrol

wParam

LParam

Purpose

Synw

Returns

Parameters
hCantrol

wParam

LParam

Syntax
Parameters
hControl

·wParam

LParam

9. WINDOWS MESSAGES 'Y

vated when the user clicks the mouse within the edit area. It can be moved using the ·mouse,
arrow keys, or (BACKSPACE) key.

dwReturned = SendMessage (HWND hControl, BM_LINEINDEX, WORD wParam, DWORD
~~ .
DWORD, the number of characters in the edit control's memory buffer before .the start of the
given line.

HWND: The window handle of the child window edit control.

WORD: The line number. Alternatively, if set equal to -1, the message returns the index of the
character position of the edit caret within the edit control.

DWORD: Not used. Set equal to OL.

r.I Win 2.0 • \Vm 3.0 • Win 3.1
Returns the number of characters (bytes) in a line of a multiline edit control.

dwReturned = SendMessage (HWND hControl, EM_LINELENGTH, WORD wParam, DWORD
LParam)

DWORD, the length of the line.

HWND: The window handle of the child window edit control.

WORD: Specifies the character position of the start of the line. Use EM_LINEINDEX to fmd this
value for a given line number. If wParam is set equal to -1, the position of the edit caret is
returned. If wParam is set equal to -1 and a group of characters has been selected (highlighted
in the edit control); the returned value is the character number of the fIrSt character in the flrst
line of the selection.

DWORD: Not used. Set equal toJ)L.

II Win 2.0 mWin3.0 .Wm3.1
Scrolls an edit control horizontally or vertically. None of the text is lost, even though a portion
may be obscured ruter the scrolling oper~tion.
SendMessage (HWND hControl, ErtCLINESCROLL, WORD wParam, DWORD LParam)

HWND: The window handle of the child window e.!lit control.

WORD: Not used. Set equal to O.

DWORD: Set the low-order word equal to the number of lines to scroll vertically, and set the high
order word equal to the number of character positions to scroll horizontally. Positive values scroll
down and right, negative values scroll up and left.

EM REPLACESEL CI Win 2.0 m Win 3.0 IS Wm 3.1
Purpose

Syntax
Parameters
hCantrol

wPardm

Replaces the currently selected text with new text. The selected text is highlighted in the edit
area by dragging the mouse cursor over a range of characters

SendMessage (HWND hControl, EM_REPLACESEL, WORD wParam, DWORD lParam)

HWND: The window handle of the child window edit control.

WORD: Not used. Set equal to O.

287

.WINDOWS API BIBLE

IParam DWORD: A pointer to a null-terminated string containing the new string to replace the selected
text. The edit control string length may change after this replacement.

EM SETHANDLE m Win 2.0 S Win 3.0 I.?l Win 3.1

Purpose

Syntax

Parameters
hControl.

wParam

- IParam

Notes: .

Purpose

Syntax

Parameters
hControl

wParam

lParam

Links the edit control to a memory buffer to bold the edit te>..i. The buffer must be a local handle
(data in the application's data segment). This buffer is automatically resized as needed to hold
new input text.
SendMessage (HWND hControl, EM_SETHANDLE, WORD wParam, DWORD IParam)

HWND: The window handle of the child window edit control.

WORD: Contains the handle to the memory buffer. Use LocalAllocO to create the memory area.

DWORp: Not used. Set equal to OL.

More than one buffer can be linked to one edit control at different times. This is a way to switch
between different default strings, without destroying either buffer when the switch is made. If the
edit control is in a dialog box, this message can only be accepted if the dialog box was created with
the DS_LOCALEDIT style. Otherwise, the dialog box uses its own memory area for the edit string.

J1J Win 2.0 m Win 3.0 lii1 Win 3.1
Sets the modify flag for the edit control. This message is handy if you need to repaint the text, and
the program uses the EM_GETMODIFY message to check if painting is necessary.
SendMessage (HWND hControl, El\CSETMODIFY, WORD wParam, DWORD LParam)

HWND: The window handle of the child window control.

WORD: TRUE for modified, FALSE for not.

DWORD: Not used. Set equal to OL.

EM SETPASSWORDCHAR o Win 2.0 fJ Win 3.0. II Win 3.1
Purpose

Syntax

Parameters
hControl

wParam

LParam

The abilities to have an edit control with the ES_PASSWORD style is new with the 3.0 version of
Windows. By default, a password edit control shows every typed letter as an a.<;terisk (*), even
though the edit control's buffer contains the characters as typed. E~CSETPASSWORDCHAR al
lows you to change from the asterisk to any desired character placeholder.
SendMessage (HWND hControl, EM_SETPASSWORDCHAR, WORD wParam, DWORD IParam)

HWND: The window handle of the child window edit control.

WORD: The character to be displayed in place of the input letters. IfhControl is NULL, the typed
letters are displayed as is, removing the password style effects.

DWORD: Not used. Set equal to OL.

EM SETRECT m Win 2.0 E'l Win 3.0. i!! Win a.1
Purpose

! IIi.

J~tax
Parameters
hControl

Sets the inner formatting rectangle of the edit control. Any text in the edit control is reformatted
and repainted to fit within the bounds of the rectangle. This message will not work for single line
edit controls.
SendMessage (HWND hControl, EM_SETRECT, WORD wParam, DWORD lParam)

HWND: The window handle of the child window edit control.

288

wParam

lParam

9. WINDOWS, MESSAGES T

WORD: Not used. Set equal to O.

DWORD: A pointer to a RECT data structure holding th~ dimensions of the formatting rectangle
in client coordinates.

EM SETRECTNP • Win 2.0 • Win 3.0 . II Win 3.1
Purpose

Syntax

Parameters
hControl

wParam

lParam

Purpose

-Syntax

Parameters
hControl

wParam

lParam

Sets the inner formatting rectangle of the edit control. Any text in the edit control is reformatted
to fit within the bounds of the rectangle. The text is not automatically repainted. Otherwise, it is
the same as EI\CSETRECT. This message will not work for single line edit controls.

SendMessage (HWND hControl, BM_SETRECTNP, WORD wParam, DWOHD IParam)

HWND: The window handle of the child window control.

WORD: Not used .. Set equal to O.

DWORD: A pointer to a RECT data structure holding the dimensions of the formatting rectangle
in client coordinates.

II Win 2.0 . II Win 3.0 &I Win 3.1
Selects all of the characters in a given range. The selected characters are highlighted in reverse
video.

SendMessage (HWND hControl, EM_SETSEL, WORD wParam, DWORD lParam)

HWND: The window handle of the child window edit control.

WORD: Not used. Set equal to O. .

DWORD: The starting character position in the low-order word and the ending character position
in the high~order word. These positions are in the complete edit string, not in an individual line.
Selecting a position beyond the end of the string selects the character up to, and including the
last character in the string. You can use the MAKELONG macro to specify a range for lParam. For
example, MAKELONG(20,3) would specify the characters from position 3 to 20 in the edit string.

EM_SETTABSTOPS o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

IParam

Notes

Sets the positions of the tab stops in a multiline edit control.

dwReturned = SendMessage (HWND hControl, EM_SETTABSTOPS, WORD wParam, DWOHD
IParam)

DWORD. Nonzero if the tabs were set, zero on error.

HWND: The window handle of the child window control.

WORD: The number of tab stops that will be set.

DWORD: A pointer to an integer array containing the tab stops. The tab stops are measured in dialog
units (1/4 of a character width). The tab stops must be in ascending order, as illustrated here.

; nt nTab [3J = {20, 40, 68} ;

If wParam is zero and IParam is NULL, the tab stops default to every 32 dialog units (8 charac
ters). IfwParam is one, then the tab stops will be uniformly spaced at a distance specified in the
lParam value. . ..

289

WINDOWS API BIBLE

EM_SETWORDBREAK • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
hControl

wParam'\1 I

IParam I

IpchEditText

ichCurrentWord

cchEditText

Returns

EM UNDO
Purpose

Syntax

Returns

Sets a new word break function. Word break functions determine how a string should be split
when it does not fit on one line of a multiline edit control. The default word break function breaka
lines at space characters.

SendMessage (HWND hControl, EM~SE'lWORDBREAK, WORD wParam, DWORD lPar'.Lm)

HWND: The window handle of the child window control.
WORD: Not used. Set equal to O.
DWORD: The procedure-instance address ofthe word break function. Use MakeProclnstancf'O
to create the procedure-instance. The word break function must be listed in the EXPORTS sec
tion of the program's .DEF definition file. The callback function for doing word breaks shojJld
have the following format:

LPSTR FAR PASCAL WordBreakFunc (LPSTR lpchEditText, short ichCurrentWord, short
cchEditText) j

LPSTR: A pointer to the text in the edit control.

,short: The point at which the function should start checking for needed word wrapping.

"short: The number of character positions in the edit text.
The function should return' a pointer to the first letter of the next word in the edit buffer. It the
current word is the last word in the text, the return value should point to the first byte after the
last word. .

• Win 2.0 '. Win 3.0 • Wih 3.1
Windows maintains a character buffer to hold the laSt group of characters selected, deletedi, and
changed. The buffer expands to hold the selection, limited only by the capacity of the local seg
ment storage. This command copies the text from the delete buffer back into the edit control at
the insertion point (the caret location).

dwReturned = SendMessage (HWND hControl, BM_UNDO, WORD wParam, DWORD lPar-am)
DWORD. Nonzero if successful, zero on error.
. \

Parametel'!'l
hControl , HWND: The window handle 9f the child window edit control.
wParam ! WORD: Not used. Set equal to O.
LParam ,! \i' DWORD: Not used. Set equal to OL.

Edit Control Notification Messages
Normally, you will not need to process EN_ notification messages (see the list in Table 9-10) in your program. The
editing functions in the edit control are so complete that little intervention is needed. If you want to change the
default behavior of the edit control, you can intercept the notification messages. For example, you might want to
increase the size of an edit control to fit added text. The EN_CHANGE and EN_UPDATE messages provide warning
that text has beer. or will be modified. Edit notification messages are sent to the parent window of the edit control as

, W~CCOMMAND messages. The edit control's III value is passed as the wParam value with WM_COMMAND The edit
control's window handle is the low-order word of IParam, while the specific notification code is the high-order word.
>~""" •• ' • • • '. .' •••• ~

EN_CHANGE

EN_ERRS PACE

\

No~ification that the user has changed text within the editc6ritrol.

Notification that the edit control has run ,out of memory space in the local memory area.

290

EN_HSCROLL

EN_KILLFOCUS

EN_MAXTEXT

EN_SETFOCUS

EN_UPDATE

EN_VSCROLL

9. WINDOWS M,ESSAGES 'If

Notification that the user has clicked an edit control's horizontal scroll bar.

Notification that the edit control has lost the input focus.

Notification that the user has attempted to insert more characters than will fit in an edit control.

Notification that an edit control has obtained the input focus.

Notification that an edit control is about to display text changed by the user.

Notification that the user has clicked the vertical scroll bar of a multiline edit control.

Table 9-10. Edit Control Notijzcation Message Summary.

Edit Control Message Descriptions

EN CHANGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
wParam

lParam

Notification that the user has changed text within the edit control. This message is sent after the
display is updated. Use EN_UPDATE to receive notification before the change is shown on the
display.

Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the hMcnu
parameter when CreateWindowO was called.

DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_CHANGE in'the high-order word.

EN ERRSPACE • Win 2.0 • Win 3.0 • Wm 3.1
Purpose

Syntax

Parameters
wParam

lParam

Notification that the edit control has run out of memory space in the local memory area.
Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the hMcnu
parameter when CreateWindowO was called.

DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_ERRSPACE in the high-o.rder word.

EN HSCROLL • Win 2.0 • Win 3.0 • Wm 3.1
Purpose

Syntax

Parameters
wParam

lParam

Notification that the user has clicked the edit control's horizontal scroll bar. This is only possible
if the edit control was created with the WS_HSCROLL style.
Returned as part of a WM_COMMAND message, processed by the program's message processing
.function CW~dProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the hMcnu
parameter whenCreateWindowO was called.

DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_HSCROLL in the high-order word.

291

I

WINDOWS API BIBLE

EN KILLFOCUS I! Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
wParam

[Param

Notification that the edit control has lost the input focus. If some input is necessary before con
tinuing, you may want to intercept this code, show a warning, and then use SetFocusO to return
the focus to the edit control. If you use this type of logic, always provide the user an escape route,
such as hitting the (@ key.
Returned as part of a W~CCOMMAND message, processed hy the program's message processing
function (WndProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the h},fenu
parameter when CreateWindowO was called.
DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_KILLFOCUS in the high-order word.

EN MAXTEXT o Win 2.0 m Win 3.0 II Win 3.1
Purpose

Syntax

Parameters
wParam

lParam'

Purpose

Syntax

Parameters
wParam'

[Param'

Purpose

Syntax

\,

Parameters
wParam

Notification that the user attempted to insert more characters than will fit in an edit control. Notifi
'. cation code will only be sent if the edit control was created without the ES_AUTOHSCROLL style.
Returned as part of a W1CCOMMAND message, processed by the program's message processing

- -function (WndProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the hAfenu
parameter when CreateWindowO was called. .
DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_MAXTEXT in the high-order word.

B Win 2.0 • Win 3.0 11 Win 3.1
Notification that an edit control has obtained the input focus. Keyboard input will then show up
inside the edit control.

Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the hMenu
parameter when CreateWindowO was called.
DWORD: Contains the window handle for the edit control in the low"order word. Contains
EN_SETFOCUS in the high-order word.

11 Win 2.0 • Win 3.0 1.1 Win 3.1
Notification that an edit control is about to display text changed by the user. This is sent after the
changes have been made to the character data in the edit control's memory buffer, but before the
changes are displayed. A common use of this message is to allow resizing of an edit control if
necessary to fit added text.
Returned as part of a \%CCOMMAND message, processed by the program's message processing
function (WndProcO).

WORD: Contains the ID value for the edit control. This is the integer value set for the hMenu
parameter when CreateWindowO was called.

292

9.;" WINDOWS MESSAGES 'Y

IParam DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_UPDATE in the high-order word.

a Win 2.0 • Win 3.0 • Win 3.1
Purpose Notification that the user has clicked the vertical scroll bar of an edit control. This will only occur

if the edit control was created with the WS_ VSCROLL . style. An example of this style of edit
control is given in this chapter at the beginning of the discussion on edit control messages.

Syntax Return~d as part of a \V1CCOMMAND message, processed by the program's message processing
function (WndProcO).

Parameters
wPatam WORD: Contains the ID value for the edit control. This is the integer value set for the hMenu

parameter when CreateWindowO was called.

IParam DWORD: Contains the window handle for the edit control in the low-order word. Contains
EN_ VSCROLL in the high-order word.

List Box Messages
List boxes can be thought of as a subset of combo boxes. Most of the functions are
the same, although list boxes have a few more formatting options. List boxes lack
the edit control at the top and do not "drop down." That is, list boxes are always
visible. When designing an application, you will want to use list boxes in situations
where the user will usually select an item. If the user will most often leave the
selection as is, but needs to be reminded of which item is selected, a combo box is
more appropriate. Combo boxes take up less space in their "rolled up" form, so you
can make a complex dialog box or child window look less cluttered with combo
boxes.

Figure 9-6 shows an example of a list box. This one is unusual, as it was created

The selected text Is:
More Inserted Text

with a title bar using the WS_CAPTION style. This means that the list box can be Figure 9-6. A List Box
moved around on the screen like a typical child window. If you want a title, but do Control.
not want a moveable list box, surround il normal list box (without the WS_CAPrION
style) with a button group control. Group controls have titles, but are not moveable.

Note that the list box includes a Rcroll bar on the right side. The standard list ~ox style LBS_STANDARD is the
combination of LBS_NOTIFY I LBS_SORT I WS_ VSCROLL I WS_BORDER. The vertical scroll bar is visible only if the
number of items in the scroll bar exceeds the size of the formatting area. The notify style is critical, as it instructs the
list box to send a \%C COMMAND message when the user selects an item. Another interesting thing about the list box
in Figure 9-6 is that the text inside includes tab characters. List boxes can have tab stops set at any location, accurate
to within a quarter of a character width. 'I'his can be a convenient way to display small database tables.

Listing 9-6 shows the WndProcO function that creates the list box in Figure 9-6. Note that the LBS_HASSTRINGS
style is used, so that the control uses its default near memory buffer to hold the strings. The LBS_USETABSTOPS style
is also specified. The list box has the text items added to it when the user clicks the "Do It!" menu item. Three tab
stops are set using the LB_SETTABSTOPS message. LB_SETTABS STOPS transmits a pointer to the arraynTabsfj
that contains the tab positions as integers. The tab positions arc computed based on dialog box units, one quarter of
a character width per unit.

Because the LBS_NOTIFY style was set (as part of LBS_STANDARD), the scroll bar sends a WM_COMMAND
message, with wParam set to the list box ID value, when the user selects a list item with the mouse. In this example,
the program retrieves the text from the list box and displays it below the list box using the TabbedTextOutO function.
TabbedTextOutO has the nice feature of using the same convention for tab stops as the list box, so the output text
looks right.

293

WINDOWS API BIBLE

o Listing 9-6. List Box Control
long FAR PASCAL WndPl"oc (HWNO M/n"d, unsigned iMessage, WORO wP8I"am, LONG lParam)
{

static HWNO
HWNO

hUstBox ;
hPi cked ;
hOC; HOC

int
chal"
static
switch

{

nSel ;
cBuf [30J

i nt nTabs [3J {32, 56, 72} ,
(iMessage) 1* pl"ocess windows messages *1

case WM_CREATE:
hUstBox = CreateWindow ("LISTBOX", "Ust Box",

WS_CHILD I WS_VISIBLE I LBS_HASSTRINGS I LBS_STANOARD
I LBS_USETABSTOPS I WS_CAPTION,

10, 10, 1S0, SO, hWnd, 100, ghlnstance, NULL) ;
ShowWindow (hListBox, SW_SHOW) ;
break;

case WM_COMMAND: "1* process menu items and controls *1

switch (wParam)
{

case 100: 1* Ust box id value *1
hPicked = LOWORO(lParam) ;
if (HIWORO (lParam) == LBN_SELCHANGE)
{

hDC = GetDC (hWnd) ;
nSel = (WORD) SendMessage (hListBox,

LB_GETCURSEL, 0, OL) ;
SendMessage (hListBox, LB_GETTEXT, nSel,

. (DWORO) (LPSTR) cBuf) ;
TextOut (hOC, 10, 120,

"The selected text is:", 21) ;
TabbedTextOut (hDC, 10, 140, cBuf,

strlen (cBuf), 3, (LPINT) nTabs, 0)
ReleaseDC (hWnd, hOC) ;

}

break;
case IDM_DOIT:

SendMessage (hListBox, LB_RESETCONTENT, 0, OL)
SendMessage (hLi stBox, LB_SETTABSTOPS, 3,

(DWORD)(LPINT) nTabs) ;
SendMessage (hListBox, LB_ADDSTRING, 0,

(DWORD) (LPSTR) "First \tString")
SendMessage (hLi stBox, LB_ADDSTRING, 0,

(OWORD) (LPSTR) "Second \tString")
SendMessage (hListBox, LB_ADDSTRING, 0,

(OWORD) (LPSTR) "Last \tString") ;
SendMessage (hListBox, LB_INSERTSTRING, 2,

(DWORD) (LPSTR) "Inserted \tText")
SendMessage (hListBox, LB_INSERTSTRING, 2,

(DWORD) (LPSTR) "Mol"e \tInserted \tText")
break;

case IDM_QUIT: 1* send end of application message *1

}
break;

case WM_DESTROY:

DestroyWindow (hWnd) ;
bl"eak ;

1* stop application *1
PostQuitMessage (0)

break
default: 1* det'ault windows message"processing *1

294

9. WINDOWS MESSAGES T

return DefWindo/Proc (hWnd, iMessage, wParam, lParam) ;
}

return (OL) ;
}

List boxes can also use owner-redrawn list entries. Using them is handy for sel,eing a color or bitmap pattem
from alist. The methods and messages used exactly match those used for owner-redra combo box items. Review the
section on combo boxes for an example that uses these powerful features. .

Table 9-11 summarizes the list box messages. The detailed message descriptions are in the following section.

LBJ\DDSTRING

LB_DELETESTRING

LB_DIR

LB_FINDSTRING

LB_GETCARETINDEX

LB_GETCOUNT

LB_GETCURSEL

Adds an item to a list box.

Deletes an item from the list box.

Rlls the list box with file names from a directory search.

Locates the first string in the list box that matches a given set of starting characters.

Determines which item in a list box has the focus. (Win 3; 1)

Retums the number of items in the list box.

Rnds the index number of the currently selected item in the list box.

LB_GETHORIZONTALEXTENT Finds the width in pixels that a scroll bar can be scrolled horizontally.

LB_GETITEMDATA

LB_ GETITEMHEIGHT

LB_GETITEMRECT

LB_GETSEL

LB_GETSELCOUNT

LB_GETSELITEMS

LB_GETTEXf

LB_GETTEXfLEN

LB_GETTOPINDEX

LB-,NSERTSTRING

LB_RESETCONTENT

LB_SELECTSTRING

LB_SELITEMRANGE

LB_SETCARETINDEX

LB_SETCOLUMNWIDTH

LB_SETCURSEL

Retrieves the 32-bit value associated with an item in an owner-redrawn list box.

Determines the height of an item in a list box. (Win 3.1)

Retrieves the dimensions of the rectangle that bounds an item as currently displayed in a list box.

Finds out if an item in a list box has been selected.

Retums the total number of items selected in multiple-selection list box.

Rlls an array of integers with the item numbers of the selections in a multiple-selection list box.

Retrieves the string held in an item in the list box.

Rnds the num.ber of characters in a string in the list box.

Returns the index number of the t~p visible item in a list box.

Adds a new.string or 32-bit item to the Ust box.

Removes all elements from the list box and frees memory associated with the items.

Finds a matching string in the list box and highlights it.

Selects or deselects one or more consecutive items from a multiple selection list box.

Sets which item in a multiple~selection list box has the focus rectangle. (Win 3.1)

Sets the width in pixels for the columns in a multi-column list box.

Selects and highlights an item in a list box.

LB_SETHORIZONTALEXTENT Sets the width in pixels that a list box can be scrolled horizontally.

LB_SETlTEMDATA

LB_SETITEMHEIGHT

LB_SETSEL

LB_SETTABSTOPS

LB_SETTOPINDEX

Changes the 32-bit value associated with a list box created with the owner-redrawn style.

Changes the height of items in an owner-redrawn list box. (Win 3.1)

Selects an item in a multiple-selection list box.

Sets the position of the tab stops to use when displaying items inside of the list box.

Scrolls a list box so as tD"make a specified item the top visible item.

Table 9-11. List Box Message Summary.

295

WINDOWS API BIBLE

List Box Message.Summarjr -
One other message worth knowing about is Wf\CSETREDRAW. This message allows the list box to be temporarily
inhibited from redrawing the contents as additions and subtractions are made. WM_SETREDRAW speeds ilp the
redrawing of the contents and reduces the distractirig.''flicker'' of different items being displayed one at a time.
(W1CSETREDRA W is documented at the end of this chapter because of its WM prefIx.)

List Box Message Descriptions

Purpose

Syntax -

Returns

Parameters
hControl

wParam

lParam

II Win 2.0 II Win 3.0 III Win 3.1
Adds an item (usually a character string) to a list box. If the list box has the LBS_SORT style, the
string is placed in the list and the list re-sorted. Otherwise, the string is added to the end of the
list. If the list box is owner-redrawn, but it was created without the LBS_HASSTRINGS style, the
inserted item is a 32-bit value.

dwReturned = SendMessage (HWND hControl, LB_ADDSTRING, WORD wParam, DWORD
IParam)

DWORD. The returned value is the index of the new entry in the list box. Returns LB_ERRSPACE
if there is not enough memory to store the value. Returns LB_ERR on any other error.

HWND: The window handle of the list box control.
WORD: Not used. Set to O.

DWORD: For list boxes with the LBS_HASSTRING style, lParam contains a pointer to a null
terminated string for a text item. For other styles, lParam encodes a 32-bit value for the item.
This value can be retrieved when processing MCDRA WITEM messages as the itemData element
of the DRA WITEMSTRUCT structure passed with the message. See the example in the section on
owner-redrawn combo boxes for more details.

LB_DELETESTRING f]J Win 2.0 a Win 3.0 B Win 3.1
Purpose

~-SYiita.x

Returns

Parameters
hControl

wParam

lParam

Purpose

Syntax

Returns

Parameters
hControl

Deletes an item from the list box.

dwReturned = SendMessage (HWND hControl, LB_DELETESTRING, WORD wParam, DWORD
lParam)

DWORD. The number ofitems remaining in the list. Returns LB_ERR ifwParam is not a valid list
element index.

HWND: The window handle of the list box control.

WORD: Contains the index to the list element. 0 for the fIrst item.

DWORD: Not used. Set to OL.

\ 1m Win 2.0 m Win 3.0 • Win 3.1
Fills the list box with file names from a directory search.

dwReturned = SendMessage (HWND hControl, LB_DIR, WORD wParam, DWORD lParam) I

DWORD. The number of items displayed_minus 1. Returns LB_ERRSPACE if there is not enough
memory for the list. Returns LB_ERR for any other error.

HWND: The window handle of the list box control.

296

wParam

OxOOOO
OxOOO1
Ox0002

_ OxOOO4

OxOO10

Ox0020
0x2000

Ox4000
Ox8000

9. WINDOWS MESSAGES ..

WORD: Contains the DOS me attribute value. The values can be combined by using the C lan
guage binary OR operator (I). The attributes are listed in Table 9-12.

Read/write data files with no other attributes set (normal files).

Read-only files.

Hidden files.

System files.

Subdirectories.

Archived files.

LB_DIR flag. Places messages associated with filling the list bux on the applications message queue, rather
than sending them directly.

Drives.

Exclusive bit. If this is set, only the specified file attribute type is recovered. If not set, normal files are
displayed in addition to the types listed.

Table 9-12. File Attribute Flags.

lParmn DWORD: A pointer to a file search specification string (like "*.*" or "*.TXl"'). The string can
contain a full pathname specification.

LB FINDSTRING o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Note:

Locates the first string in the list box that matches a given set of starting characters. Alterna
tively, finds the list box item matching a 32-bit value for an owner-drawn list box.

dwReturned = SendMessage (HWND hControl, LB_FINDSTRING, WORD wParam, DWORD
lParam)

DWORD. The index of the first string in the list box that starts with the characters in the string
point~d to by lParam. Returns LB_ERR (-1) if the search did not find a match.

HWND: The window handle of the list box control.

WORD: The index of the list box item before the first item to start the search. The search will
wrap around if the end of the list is passed without a match. Set wParam = -1 to search the
entire list. You can fmd multiple occurrences of a matching string by repeatedly using this mes
sage and each time starting from the previous match.

DWORD: A pointer to a null-terminated string. The characters in this string must all be matched
by the beginning of an item in the list to have a match.

This message will also match 32-bit values if the list box is an owner-drawn control, created
without the LBS_HASSTRINGS style. In this case,lParam holds the 32-bit value to match.

LB_GETCARETINDEX o Win 2.0 0 Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Determines which item in a list box has the focus.

dwReturned = SendMessage (HWND hControl, LB_GETCARETINDEX, WORD wParam,
DWORD lParam)

DWORD, the index of the item that has the focus. In a single-selection list box, this is the selected
item. In a multiple-selection list box, this is the selection that has the focus rectangle.

297

WINDOWS API BIBLE

Parameters
hControl HWND: The window handle of the list box control.

wParam WORD: Not used. Set equal to O.
lParam DWORD: Not used. Set equal to OL.
Related Messages LB_SETCARETINDEX, LB_GETCURSEL

Purpose

Syntax

Returns
Parameters
hControl

wParam

IParam

Purpose

Syntax

Returns

Parameters
hControl

wParam

IParam

• Win 2.0 • Win 3.0 • Win 3.1
Returns the number of items in the list box.
dwReturned = SendMessage (HWND hControl, LB_GETCOUNT, WORD wParam, DWORD
IParam)

DWORD. The number of items in the list box. Returns LB_ERR on error.

HWND: The window handle of the list box control.
WORD: Not used. Set equal to O.
DWORD: Not used. Set equal to OL.

• Win 2.0 • Win 3.0 • Win 3.1
Finds the index number of the currently selected item in the list box.

dwReturned = SendMessage (HWND hControl, LB_GETCURSEL, WORD wParam, DWORD
IParam)

DWORD. The index of the currently selected item in the list box. Returns LB_ERR if no item is
selected.

HWND: The window handle of the list box control.

WORD: Not used. Set equal to O.
DWORD: Not used. Set equal to OL.

LB_GETHORIZONTALEXTENT o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns
Parameters
hControl

wParam

lParam

Finds the width in pixels that a scroll bar can be scrolled horizontally. The list box must have
been defined with the WS_HSCROLL style to respond to this message.
dwReturned = SendMessage (HWND hControl, LB_GETHORIZONTALEXTENT, WORD
wParam, DWORD lParam)

DWORD. The scrollable width of the list box, measured in pixels.

HWND: The window handle of the list box control.
WORD: Not used. Set equal to O.
DWORD:Not used. Set equal to OL.

LB GETlTEMDATA o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Retrieves the 32-bit value associated with an item in an owner-redrawn list box.
dwReturned = SendMessage (HWND hControl, LB_GETITEMDATA, WORD wParam, DWORD
lParam)

DWORD, the 32-bit value. Returns LB_ERR on error.

298

Parameters
hControl

wParam

lParam

HWND: The window handle of the list box control.

WORD: The index of the item. The flrst item is O.

DWORD: Not used. Set equal to OLe

9. WINDOWS MESSAGES ... -

LB_GETlTEMHEIGHT o Win 2.0 0 Win 3.0 • Win 3.1
Purpose
Syntax

Returns
Parameters
hControl

wParam

Determines the height of an item in a list box.
dwReturned = SendMessage (HWND hControl, LB_GETITEMHEIGHT, WORD wParam,
DWORD lParam)
.DWORD, the item's height in pixels. Returns LB_ERR on error.

HWND: The window handle of the list box control.
WORD: Set equal to the index of an element in the list box if the list box has the LBS_OWNER
DRA\wARlABLE style. The flrst item has an index of zero. Otherwise set it equal to zero, as all
elements will have the same height.

lParam DWORD: Not used. Set equal to OLe
Related Messages LB_SETlTEMHEIGHT, LB_SETITEMDATA, WM_DRAWITEM

LB_GETITEMRECT o Win 2.0 • Win 3.0 ill Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Retrieves the dimensions of the rectangle that bounds an item currently displayed in a list box.
This is used with owner-redrawn list boxes with the LBS_OWNERDRAWVARIABLE style.

dwReturned = SendMessage (HWND hControl, LB_GETITEMRECT, WORD wParam, DWORD
lParam)

DWORD, normally ignored. Returns LB_ERR on error.

HWND: The window handle of the list box control.

WORD: The index of the item. The first item is O.
DWORD: Contains a far pointer to a RECT structure. The structure receives the bounding rect
angle data after the message is processed. Client coordinates are used.

LB GETSEL • Win 2.0 • Win 3.0 • Wm 3.1
Purpose
Syntax

Returns
Parameters
hControl

wParam

LParam

Finds out if an item in a list box has been selected.
dwReturned = SeI.1dMessage (HWNDhControl, LB_GETSEL, WORDwParam, DWORDLParam)
DWORD, greater than zero if selected, zero if not selected. Returns LB_ERR on error.

HWND: The window handle of the list box control.

WORD: The index olthe item. The flrst item is O.

DWORD: Not used. S~qual to OLe

LB GETSELCOUNT o Win 2.0 • Win 3.0 • Win 3.1

Purpose .

Syntax

Returns the total number of items selected in a multiple-selection list box. The list box must have
been created with the LBS_MUTIPLESEL style to have more than one item selected.

dwReturned = SendMessage (HWND hControl, LB_GETSELCOUNT, WORD wParam, DWORD
IParam)

299

WINDOWS API-BIBLE

Returns

Parameters
hControl

wParam

IParam

DWORD, the number of selected items. Returns LB_ERR on error (for example, sending this
message to a list box without the LBS_MULTIPLESEL style).

HWND: The window handle of the list box control.

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

LB GETSELITEMS o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

.Param

Fills an array of integers with the item numbers of the selections in a multiple-selection list box.
The list box must have been created with the LBS_MUTIPLESEL style to have more than one
item selected.

dwReturned = SendMessage (HWND hContrul, LB_GETSELITEMS, WORD wParam, DWORD
IParam)

DWORD, the number of items put in the array. Returns LB_ERR on error, (for example sending
this message to a list box without the LBS_MULTIPLESEL style).

HWND: The window handle of the list box control.

WORD: The maximum number of selection items that will fit into the integer array.

DWORD: A far pointer to an array of integers. Make sure that there are at least as many elements
in the array as the maximum specified bywParam to avoid overwriting past the end of the array ,

, memory area.

LB GETTEXT • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Note:

Retrieves the str~ng held in an item inthe list box.,

dwReturned = SendMessage (HWND hControl, LB_GETTEXT, WORD wParam, DWORD
lParam)

DWORD, the length of the string in bytes. Returns LB_ERR on error.

HWND: The window handle of the list box control.

WORD: Contains the index of the list box item. The first item is O.

DWORD: A pointer to a character buffer that holds the string retrieved. Use LB _ GETTEXTLEN to
retrieve the length of the string. Add one to this value for the terminating NULL character.

-This message will also retrieve the 32-bit value associated with an item in an owner-redrawn list
box.

LB GETTEXTLEN • Win 2.0 III Win 3.0 • Win 3.1
Purpose

Syntax

Returns

. Parameters
hControl

Finds the number of characters in a string in the list box.,

dwReturned = SendMessage (HWND hControl, LB_GETTEXTLEN, WORD wParam, DWORD
lParam)

DWORD, the length of the string in bytes, excluding the terminating NULL character. Returns
LB_ERR on error.'

HWND: The window handle of the list box controL

300

wParam

IParam

WORD: Contains the index-of the string. The first item is O.

DWORD: Not used. Set equal to OL.

9. WINDOWS MESSAGES T

LB GETTOPINDEX o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

IParam

Returns the index number of the top visible item in a list box. This will be greater than 0 ifth~ list
box has been scrolled.

dwReturned = SendMessage (HWND hControl, LB_GETIOPINDEX, WORD wParam, DWORD
IParam)

DWORD, normally ignored. Returns LB_ERR on error.

HWND: The window handle of the list box control.

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

LB_INSERTSTRING • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wPara'ln

lParam

Adds a·new string or 32-bit item to the list box. "

dwReturned = SendMessage (HWND hControl, LB_INSERTSTRING, WORD wParam, DWORD
lParam)

DWORD, the index of the inserted item. Returns LB_ERRSPACE if there is not enough memory
for the item. Returns LB_ERR for all other errors.

HWND: The window handle of the list box control.

WORD: Contains the index position of the location to insert the string. 0 for the first item, 1 for
the second, etc. Use -1 for the last. All items below the insertion point will have new index values.

DWORD: A pointer to a null-terminated character string to be added. If the list box has the
owner-redrawn style, IParam holds the 32-bit value to set for the item.

LB_RESETCONTENT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
hControl

wParam

IParam

Removes all elements from the list box and frees· the memory associated with the items.

dwReturned = SendMessage (HWND hControl, LB_RESETCONTENT, WORD wParam,
DWORD IParam)

HWND: The window handle of the list box control.

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

LB SELECTSTRING • Win 2.0 • Win 3.0 • Win 3.1

Syntax I
Returns

Finds a matching string in the list box and highlights it. If the list box has the owner- redrawn
style, the match is based on comparing 32-bit values.

dwReturned = SendMessage (HWND hControl, LB_SELECTSTRING, WORD wParam, DWORD.
IParam)

DWORD, the index of the string found. Returns LB_ERR if no match was found.

301

WINDOWS API BIBLE

Parameters
hControl

wPar~m

lParam

HWND: The window handle of the list box control.
WORD: The list box item number before the first item to be searched. The search wraps around to
the beginning if no match is found between the starting point and the end of the list. You can find
duplicate .entries in the list by repeatedly using the last index as the starting point for the next
search.
DWORD: A pointer to the character string to match. The string in the list box can be longer, as
long as the first characters match the string pointed to by lParam. If the list box has the owner
redrawn style, but it does not have the LBS_HASSTRINGS style, lParam contains the 32-bit value
to match.

LB SELITEMRANGE o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
hControl

wParam

lParam

Selects or deselects one or more consecutive items from a multiple-selection list box. The list box
must have been created with the LBS_MUTIPLESEL style to have more than on e item selected.
dwReturned = SendMessage (HWND hControl, LB_SELITEMRANGE, WORD wParam, DWORD
lParam)

.HWND: The window handle of the list box control.
WORD: TRUE to select items, FALSE to deselect them.
DWORD: The low-order word contains the index of the first item to select. The high-order word
contains the index of the last item to select. If both values are the same, only one item is selecte~.

LB SETCARETINDEX o Win 2.0 0 Wm 3.0 • Wm 3.1
Purpose

Syntax

Returns
Parameters
hControl

Sets which item in a multiple-selection list box has the focus rectangle. If the item is not visible,
it is scrolled into view.
dwReturned = SendMessage (HWND hControl,.LB_SETCARETINDEX, WORD wParam,
DWORDlParam) . \ .

DWORD, returns LB_ERR on error.

HWND: The window handle of the list box control.
wParam WORD: The index of the list bo"lC item which should receive the focus. Zero for tnb first item.
lParam DWORD: Not used. Set equalto OL.
Related Messages LB.:...GETCARETINDEX, LB_SETCURSEL

LB~SETCOL~DTH o Win 2.0 0 Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
hControl

wParam

lParam

Sets the width, in pixels, for the columns in a muIticolumn list box. The list box must have been
i!. created with the LBS_MULTICOLUMN style to use this message.
! i dwReturned = SendMessage (HWND ·hControl, LB_SETCOLUMNWIDTB., WORD wParam,

DWORD lParam)

HWND: The window handle of the list box control.
WORD: The width, in pixels, to set every column. All columns must have the same width.
DWORD: Not used. Set equal to OL ..

302

9. WINDOWS MESSAGES Y

LB_SETCURSEL o Win 2.0 '. • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wPararn

lPararn

Selects and highlights an item in a list box. If the item is not visible, the list is scrolled into view.
Any highlighting of the previous selection is removed. This message should be used with single
selection list boxes (the standard style), not multiple-selection ones. For the latter, use'
LB_SELITEMRANGE.

dwReturned = SendMessage (HWND hControl, LB_SETCURSEL, WORD wPararn, DWORD
lPararn)

DWORD. Normally not used. Set to LB_ERR on error (for example, an out of range wParam
value).

HWND: The window handle of the list box control.

WORD: The index of the item to select. Set wPararn to -1 to deselect all items.

. DWORD: Not used. Set equal to OL.

LB_SETHORIZONTALEXTENT o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Parameters
"Control

wPararn

IPararn

Sets the width, in pixels, that a list box can be scrolled horizontally. If this value is smaller than
the list box horizontal size, scrolling is disabled. The list box must have been created with the
WS_HSCROLL style to apply this message.

SendMessage (HWND hControl, LB_SETHORIZONTALEXTENT, WORD wParam, DWORD
lPararn)

HWND: The window handle of the list box control.

WORD: The width in pixels that the list box can be scrolled horizontally.

DWORD: Not used. Set equal to OL.

LB_SETITEMDATA o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns
Parameters
hControl

wPararn

IPararn

Changes the 32-bit value associated with a list box created with the owner-redrawn style.

dwReturned = SendMessage (HWND hControl, LB_SETITEMDATA, WORD wPararn, DWORD
lParam)

. DWORD. Normally not used. LB_ERR on error.

HWND: The window handle of the list box control.

WORD: The index number of the item in the list box.

DWORD: The new 32-bit value to set.

LB SETITEMHEIGHT o Win 2.0 0 Win 3.0 • Win 3.1
. Purpose

Syntax

Returns
Parameters
hControl

Cha11.ges the height of itbms in an owner-redrawn list box .

dwReturned = SendMessage (HWND hControl, LB_SETITEMHEIGHT, WORD wParam,
DWORD lParam)

DWORD. Returns LB_ERR on error.

HWND: The window handle of the list box control.

303

WINDOWS API BIBLE

wParam WORD: For a list box with the LBS_OWNERDRAWVARIABLE style, set wParam equal to the
index of the element which will change height. Otheiwise, set wParam equal to zero. All ele
ments of the list box will have their height changed.

lParam DWORD: Set equal to the new height in pixels.

Related Messages LB_GETITEMHEIGHT, LB_SETITEMDATA, WM_DRAWITEM

LB SETSEL
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

• Win 2.0 • Win 3.0 .. Win 3.1
Selects a string in a multiple-selection list box. The list box must hare been created with the
LBS_MUTIPLESEL style.

dwReturned = SendMessage (HWND hControl, LB_SETSEL, WORD wParam, DWORD lParam)

DWORD, normally not used. Returns LB_ERR on error.

HWND: The window handle of the list box control.

WORD: TRUE to select and highlight the selection. FALSE to deselect and remove highlighting.

DWORD: The index of the list box item to be set is put in the low-order word. 0 is the index of the
first item. If LParam is equal to -1, all of the items in the list box are affected. This allows you to
select or deselect every item in one operation.

,

LB SETTABSTOPS D Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Sets the position of the tab stops to use when displaying items inside of the list box. The unit of
measurement is the dialog unit, one quarter of the width of a character. The list box must have
been created using the LBS_USETABSTOPS style'to respond to this message.

dwReturned = SendMessage (HWND hControl, LB_SETrABSTOPS, WORD wParam, DWORD
lParam)

DWORD. TRUE if all tab stops were set, FALSE if not:

HWND: The window handle of the list box control.
WORD: The number of tab stops to set. If wParam is set to zero and IParam is set to NULL, tab
stops are set every two dialog units. If wParam is 1, the tab stops are set evenly at a distance
specified by a single value in lParam.

DWORD: A pointer to an integer array containing the tab stop position measured in dialog units
(one-quarter of a character width). The tab stops must be listed in ascending order. Use
GetDialogBaseUnitsO to find out the width of a dialog unit in pixels.

".

LB_SETTOPINDEX o Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Returns

Parameters
hControl

wParam

lParam

Scrolls a list box sO.that a specified item becomes the top visible item.

dwReturned = SendMessage (HWND hControl, LB_SETrOPINDEX, WORD wParam, DWORD
lParam)

DWORD, normally not used. Returns LB_ERR on error.

HWND: The window handle of the list box control.

WORD: The index of the item to be shown at the top of the list box. 0 for the first item.

DWORD: Not used. Set equal to OL .. __

304-

9. WINDOWS MESSAGES 'f'

LIst Box Notification Codes
If the user interacts with a list box, Windows sends a WM_COMMAND message to the parent window of the list box
control. The wParam value passed with WM_ COMMAND will be the ID value of the list box control. The window
handle of the list box is passed as the low-order word in the LParam value. The notification code (see Table 9-13) is in
the high-order word.

LBN_DBLCLK

LBNJ<ILLFOCUS

lBN_SaCHANGE

lBN_SETFOCUS

Notification that the user double-clicked an item in a list box.

Notification that a list box has lost the input focus.

Notification that the user has selected or deselected an item in a list box.

Notification that a list box has received the input focus.

Table 9-13. List Box Notij~ation Code Summary.

In addition to the LBN messages, Windows will also send a WM_CHARTOITEM message to the owner of the list
box if the user presses a key while the list box is active. This will happen only if the LBS_ WANTKEYBOARDINPUT
style was used to create the list box. The W~'-CHARTOITEM mesSage allows the application to provide a shortcut,
Jumping straight to the first entry in the list box that begins with the given character. WM_CHARTOJTEM is docu
mented in the !ast part of this chapter, as the name starts with the WM prefix. .

List Box Notification Code Descriptions

LBN DBLCLK .~. .Wm2.0 .Wm3.0

Parameters
wParam

lParam

.Notification that the user double-clicked an item in a list box.

RetUrned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProc()).

WORD: Contains the ID value for the list box control. This is the integer value set for the Wen"
parameter when CreateWmdow() was called.
DWORD: Contains the window handle of the list box in the low-order word. Contains
LBN_DBLCLK in the hJgh-order word.

LBN KlLLFOCUS o Win 2.0 • WID 3.0 • Win 3.1

Puuaeten
IOParum

lParam

Notification that a list box has lost the input focus.
Returned as part of a WM_COMMAND message, processed by the program's message processing
function (WndProc()).

WORD: Contains the ID value for the list box controL ThiS is the integer value set for the IIMenu
parameter when CreateWmdowQ was called.

DWORD: Contains the window handle of the list box in the low-order word. Contains LBN_KlLL- _
FOCUS in the high-Order word.

LBN SELCIiANGE • Wm 2.0 .• W'm 3.0 ilWm3.l
Notification that the user has selected or deselected an item in a list box. 'The list bOx must have
been created with the LBS_NOTIFY style for these messages to be received. LBS_NOTIFY is part
of.the F_STANDARD style.

305

WINDOWS API BIBLE

. "

Syntax

Parameters
wParam

lParam

Returned ~ Part'of a W~C COM~lAND"'i'nf'~"S~H!.A~ processed by the program's message processing
function (WndPi:Qc(}).< . ""

WORD: Contains the ID value for the list box control. This is the integer value set for the hMenu
parameter when CreateWindowO was called.
DWORD: Contains the window handle of the list box in the low-order word. Contains
LBN_SELCHANGE in the high-order word.

LBN SETFOCUS o Win 2.0 • Win 3.0 • Win 3.1
PUrpOse

SyntaX
J

Parameters
wParam

LParam

Notification that a list box has received the input focus.
',,~turned as part of a WM_ COM~D message, processed by the program's message processing

funct!~n (WndProc()). .

WORD: 'Contains the ID value for the list box control. This is the integer value set for the hMenu
parameter when CreateWindowO was called.
DWORD: Contains the window handle of the list box in the low-order word. Contains
LBN_SETFOCUS in the high-order word.

Static Control Messages
W'mdows 3.1 has two new messages for working with static controls within a dialog box. STM_GETICON retrieves the
handle· of the icon in an icon control. STM_SETICON changes the icon control to a new icon.

~GETICON o Win 2.0 0 Win 3.0 • Win 3.1

Returns

Parameters
. kControl

Retrieves the handle of an icon control.
'dUJReturned = SendDigItemMessage (HWNDhControl, WORDwIdlcon, STM_GETICON, WORD
wParam, DWORD lParam)j .

DWORD. The handle ofthe icon is in the low-order word of the returned value. Returns NlJLL on
. error.

HWND: The window handle of the dialog box.
wIdIcon . -"'--WORD: The control ID number of the icon control.
wParam WORD: Not used. Set equal toO.
lParam DWORD: Not used. Set equal to OL.
Related Messages SThCSETICON

Purpose

''-''SYntax, .~
':::'.''- "

"''- Retums

o Win 2.0 0 Win 3.0 • Win 3.1
Changes the icon shown in an icon control of a dialog box.
dwReturned = SendDlgItemMessage (HWND ItControl, WORD wIdIcon, STM_ GETICON, WORD
wParam, DWORD lParam)j

DWORD. The previous icon's handle is in the low-order word of the returned value. Returns zero
\ on error. .

306

9. WINDOWS MESSAGES V

Parameters
hControl HWND: The window handle of the dialog box.

WORD: The control In number of the icon control. wIdIcon

wParam WORD: The handle of the icon to show in the control. Use LoadlconO to retrieve this value.

IParam DWORD: Not used. Set equal to OLe
Related Messages STM_GETICON

Window Messages
All Windows messages are retrieved by GetMessageO or PeekMessageO in the program's message loop, and they are
ultimately sent to the program's message processing function, WndProcO. These messages control the operation of
your program. You can think of a Windows program as ~m obedient slave. The program just sits there waiting for a
message: When it receives a message, the program does some task and then goes back to just sitting there. This is
completely different from a DOS program. DOS programs have an active "mentality." "First I will do this, then I will do
that, etc."

When GetMessageO sends a message to the program's WndProcO function, four of the elements of the MSG
structure are turned into parameters. These end up being the hWnd, iMessage, wParam, and lParam parameters
that WndProcO processes. The other elements of the MSG structure, the message time and mouse cursor location, are
not sent. They can be retrieved if need~d by using GetMessageTime() and GetMessagePosO, described in the previ
ous chapter. The iMessage parameter holds the message number. Messages all have coded numbers defined in the
WINDOWS.H header file. Depending on the message, the wParam and IParam values will have different meanings.
Listing 9-7 shows an outline of a typical WndProc() function. The function uses the iAfessage parameter to switch to
the right set of program logic.

o Listing 9-7. Outline of a WindProc() Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

/

}

switch (iHessage)
{

1* process windows messages *1

case WH_CREATE:
1* program initialization activities here *1
break;

case WH_COMHAND: 1* process menu items and chi ld controls *1
swi t,::h (wParam)
{

case ITEM_ONE: I

1* program logic for action based"on a menu item or child window control *1
break; ,

case WH_ •• Other window messages ••••

case WM DESTROY: 1*' stop application *1
DestroyWindow (hWnd) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iHessage, 'wParam, lParam) ;

}

return (OL) ;

There are about 120 different window messages. Fortunately, you normally will use only a handful of these in most
programs. The most common ones are shown with an ast,erisk following the message name in Table 9-14.

307

WINDOWS API BIBLE

WM_ACTIVATE

WM_ACT\VATEAPP

WM.J\SKCBFORMATNAME

WM_CANCELMODE

WM_CHANGECBCHAIN

WM_CHAR *

WM_CHARTOITEM

WM_CHILDACT\VATE .

WM_ClEAR

WM_ClOSE •

W~tCOMMAND·

WM_COMPACllNG

WM_COMPAREfTEM

WM_COPY

WM_CREATE*

WM_CTlCOLOR

WM_Clff

WM_DEADCHAR

WM_DESTROY *

WM_DESTROYCUPBOARD

WM_DEVMOOECHANGE

WM_DRAWCUPBOARD

WM_ERASEBK~ND

MttFONTCHANGE

WM_GETDlGCOOE

Notification that a window has become active or inactive.

Notification that the window being activated belongs to another appr.'C8tion program.

Windows is requesting that the name of a custom clipboard format be copied into a character
string buffer.

Notification that the system has cancelled a moden was in.

Notification that a window in the clipboard-viewer chain of appl'tcations is being removed from
the chain.

Transmns the ASCII value of a character key pressed on the keyboard.

Sends the message when the list box receives a WM_CHAR message.
Sent to a child window's parent when a child window is moved.

Deletes the selection in an edit Control without copying it to the clipboard.

Notification that a window will be closed.

Notification that the user has selected a menu nem or child window control.

Notification that the system ~ ,running low on memory.
Notification that a new item is being added: an owner-redrawn list box or ambo box.

Copies selected text within an edIt control to the c6pboard.

Notification that a window is ~ng created.

Notification that a chUd window control is about to be drawn.

Copies the current selected text from an edit control to the clipboard.

Notification that the user has selected a non-English language accent or special character that
will change the value of the next character typed.

Notification to the parent of an owner-redrawn combo or list box that an n~ has been
removed.

Notification that a window is being destroyed.

Notification to tlJe cI'!pboard owner that the clipboard has been emptied by a can to
EmptyClipboard().

Sent to all top-level windows when the user Changes the name of a device in the WlN.1N1 file.

Sent automatically by Windows to the first window of the clipboard viewer chain when the
contents of the clipboard change.

Notification to the owner of a owner-drawn button, list box, or combo boX; that one of the nems
in the list has changed.

Sent when the left mouse button is released over an application which is registered as a
recipient of dropped files. (W'1fl 3.1) ,

Notification that a window has been enabled or disabled.

FmaJ notification that the Windows session is being stopped.

Notification that a modal elalog box or menu has been activated, but has no messages to
process.

Notification that the background of a window's client area needs to be repainted.

No!!fication that the number of fonts availcible to appl'lcations has changed.

Notiffcation that!he·~ is using the erection arrow keys or the @i) key from withinadalog ,
box.

I r 308

WM3"ETFONT

WM_GETMINMAXINFO

WM_GEITEXT

WM_GETlEXTLENGTIi

WM_HSCROll •
WM_HSCROllCUPBOARO

WMJCONERASEBKGND

WMJNITDIALOO

WMJNITMENU

WMJNITMENUPOPUP

WM-,<EYOOWN *

WMJ<EYUP

WM-'<JLLFOCUS

WM_LBUTTONDBLCLK

WM_LBUTTONDOWN •

WM_LBUTTONUP

WM_MBUTIONDBLCLK

WM_MBUTfONOOWN

WM_MBUTTONUP

WM_MDIACTlVATE

WM_MOICASCADE

~tMDlCREATE

W~tMOIDESTROY

WM_MOIGETACTIVE

WM_MOIlCONARRANGE

WfwtMOIMAXlMIZE

W~tMOINEXT

WM_MOIREST~RE
WM_MOISETMENU

WM_MOmLE
. WM_MEASURBTEM
WM_MENUCHAR

WM_MENUSELECT

WM_MOUSEACTIVA1E

. WM_MOUSEMOVE

WM_MOVE *.

WM_NCACTIVATE

9. WINDOWS MESSAGES ..

Retrieves the font currently being used by a child window control.

Notifies the application that Windows is checking the size for the wiridow when minimized or
maximized. .

Used to copy text from a child window control into a character buffer.

Used to determine the number of characters in a child window control ..

Notification that the user has adjusted a horizontal scroll bar.

I~icates that tho clipboard viewer horizontal scroll bar has been used.

Notification that a minimized Oconic) window needs to have the background painted.

Notification that a dialog box is about to be displayed.

Notification that the user has clicked a main menu item.

Notification that the window is abo~t to display a popup menu.

Notification that a key was pressed.

Notification that a key was released.

Notification that a window is about to loose the input focus.

Notification that the user has double-clicked the left mouse button.

Notification that the user has pressed the left mouse button.

Notification that the user has released the left mouse button.

Notification that the user has double-clicked the center mouse button.

Notification that the user has pressed the center mouse button.

Notification that the user has released the center mouse button.

Used to activate and deactivate child windows within a Multiple Document Interface (MOl)
window. .

ArrangeS all of the child windows within the MOl client window in -cascade- foonat.

Creates an MOl child window.

Destroys (removes) an MOl child window.

Obtains the handie of the currently active MOl child window.

Causes the MOl client window to arrange all minimized MOl child windows at the bottom of the
client area.
Causes an MOl child window to be maximized.

Activates the next MOl child window.

Restores a MOl child window to its previous size.

Unks a menu to the MOl frame window.

Causes an MOl client window to arrange all of its children in tile format.

Allows owner-drawn buttons, tist boxes. and combo boxes to be sized •
Informs the application that the user attempted to use a keyboard shortcut for a menu selection
that did not match any menu item.

Notification that the user has selected a menu item.

Notification that the cursor is in an inactive window and the user clicked a mouse button. .
Notification that the user has moved the mouse.

Notification that a window has been moved.

Notification that the noncIient area of a window needs to be changed to reflect an active or
inactive state.

309

WINDOWS API BIBLE

Table 9-14. continued

WM_NCCALCSIZE

WM_NCLBUTTONDBLCLK

. WM_NCLBUTTONDOWN

WM_NCLBUTTONUP

Sent when the size of a window, including the title, border, and caption areas, needs to be
recalculated.

Notification that Windows is about to create the nonclient area of the window.

Informs a window that its nonclient area is being destroyed. This message is sent after
WM_DESTROY.

Sent to the window that has the mouse, or that used GetCaptureO to capture all mouse input.

Notification that the user double-clicked the left mouse button while the mouse cursor was in
the nonclient area of the window. _

Notification that the user pressed the left mouse button while the mouse cursor was in the
nonclient area of the window.

Notification that the user released the left mouse button while the mouse cursor was in the
nonclient area of the window .

. WM_NCMBUTTONDBLCLK Notification that the user double-clicked the center mouse button while the mouse cursor was

W~ ... tNCMBUTTONDOWN

WM_NCMOUSEMOVE

WM_NCPAINT

WM.:NCR8UTTONDBLCLK

WM_NCRBUTTONDOWN

WM_NEXTDLGCTL \

WM_OTHERWINDOW
CREATED

WM_OT.HERWINDOW
DESTROYED

WM_NULL

WM PAINT •
\-

WM_PAINTCLIPBOARD

WM_PAINTICON .
WM_PALETTECHANGED

WM_PARENTNOTIFY

WM_PASTE

WM_QUERYDRAGICON

in the nonclient area of the window.

Notification that the user has pressed the center mouse button while the mouse cursor was in
the nonclient area of the window.

Notification that the user released the center mouse button while the mouse cursor was in the
non client area of the window.

Notification that the mouse has been moved in the nonclient area of the window.

Notification that the non client area of a window (leeds to be repainted.

Notification that the user double-clicked the right mouse button while the mouse cursor was in
the nonclient area of the window.

Notification that the user pressed the right mouse button while the mouse cursor was in the
nonclient area of the window.

Notification that the user released the right mouse button while the mouse cursor was in the'
nonclient area of the window.

Moves the input focus to another child window control within a dialog box.

Sent to a/l overlaJ':)ped and popup windows running in the system when a new top-level window
is created. rNin 3.1)

Sent to all overlapped and popup windows running in the system when a new top-level window
is destroyed. rNin 3.1)

No action is taken.

Notification that, the client area of a window needs to be repainted.

Used by clipboard viewer applications as notificat!on that the viewer data should be repainted.

Notification that a minimized Oconic) window needs to be'repainted.

Notification that the system color palette has changed.

Notification to the parent window that a child window is being created, destroyed, or is being
clicked with the mouse.

Copies the text from the clipboard into an e~it control.

Noti~cation that the user is about to move a minimized window.

310

WM_QUERYENDSESSION

WM_QUERYNEWPALEITE

WM_QUERYOPEN

WM_QUIT

WM_RBUlTONDBLCLK

WM_RBUlTONDOWN

WM_RBUlTONUP

WM_RENDERALLFORMATS

WM_RENDERFORMAT

WM_SETCURSOR

WM~SETFOCUS *

WM_SETFONT

WM_SETREDRAW

WM_SEITEXT *

WM_SHOWWINDOW

WM_SIZE*

WM_SIZECUPBOARD

WM_SPOOLERSTATUS

. WM_SYSCOLORCHANGE

WM_SYSCOMMAND

WM_SYSDEADCHAR

WM_SYSKEYDOWN

WM_SYSKEYUP

WM_llMECHANGE

, - WM_llMER •

WM_UNDO

WM_USER

WM_VKEYTOITEM

WM_ VSCROLL *

WM_ VSCROLLCUPBOARD

W~WININICHANGE

9. WINDOWS MESSAGES 'Y

Notification that the Windows session is about to ~ ended.

Notification that an application is about to receive the input focus.

Notification that a minimized window is about to be restored.".

This is the final message processed by an application.

Notification that the user double-clicked the right mouse button.

Notification that the user pressed the right mouse button.

Notification that the user released the right mouse button.

Notification to the owner of one or more clipboard formats that the application program is
exiting.

Notification to the owner of the clipboard that data should be put into the clipboard in the
specified format.

Notification that the mouse cursor is moving within a window.

Notification that a window has gained the input focus.

Used to change the font used in dialog box controls.

Sent to list box and combo box controls prior to adding or dele~ing a number of items.

Used to change the title or text of a window.

Notification that a window is to be hidden or shown.

Not!fication that the size of a window has changed.

Notification that the clipboard viewer application has changed size.

Notification from the Print Manager that a ipb has been add~ or subtracted from the printer
queue.

Generated by TranslateMessageO 'in the application's message loop when a WM_SYSKEYUP
orWM_SYSKEYDOWN message is proceSsed.

Notification that one or more of the system colors has changed.

Notification that the user selected a system menu command.

Notification of a system dead character.

Notification that the user pressed a key while holding down the @ key.

Notification that the user released a key while holding down the @ key.

Notification that the system clock has been changed.

Noti~cation that one of the ~imers set with the SetTimer() function has passed its time interval.

Copies the text from the clipboard to the edit control's client area. ,

Programmer-defined messages are fromwWM_USER to Ox7FFF.

Notification that the user pressed a key while a list box. ~ad the input focus.

Notification that the user adjusted a vertical scroll bar.

Indicates that the Clipboard viewer vertical scroll bar has been used.

Notification that the WIN.lNI file has been cDanged.

• Most frequently used messages.

'Table 9-14. Window Message Summary.

.311

WINDOWS API BIBLE

Window Message Descriptions

Purpose

Parameters
wParam

lParam

• Win 2.0· • Win 3.0 • W'm 3.1
. Notification that a window has become active or inactive. The active window receives all key

. board input and will have a highlighted caption area or dialog frame (for dialog boxes).

WORD: 0 if the window is inactive. 1 if the window became active via keyboard input or a Set
ActivcWindow() function call. 2 if the window became active via mouse. input. Usually, it is not
important how a window becomes active, so the program can just check for wParam to be non
zero for ac.tive status.
DWORD: The high:.order word is nonzero if the window is minimized, zero if not. The low-order
word is a handle to the window becoming active if wParam is 0, or a handle to the window
becoming inactive if wParam is nonzero. In the latter case, the low-order word may be NULL, if .
no prior window was active.

WM_ACTIVATEAPP' • Win 2.0 • Win 3.0 • Win 3.1
Pmpose

Parameters
wParam
lParam

Notification that the window being activated belongs to another application prograIn. This mes
sage is sent to both the window becoming active and the window becoming inactive.

WORD: Nonzero if the window is becoming active, zero if the window will become inactive.
DWORD: The task handle for the application program. If u'Param is zero, the low-order word of
lParam contains the task handle of the application that owns the window being deactivated. If
wParam is nonzero, the low-order word of lParam contains the task handle of the application
. that owns the window being activated. The task handles for all running programs can be found
using the EnumTasks() function. .

WM_ASKCBFORMATNAME • Win 2.0 . • Wm 3.0 .Win3.!

Parameters
wParam
lParam

Requests that the name of a custom clipboard format be copied into a character string butTer.
This message is used with the CF OWNERDISPLAY format of clipboard data.

WORD: Specifies the maximum number of bytes to copy.
DWORD: A far pointer to the buffer which will hold the clipboard data format name. Your pro
gram should save the clipboard format name in this buffer when the WM ASKCBFORMATNAME
message is received.

WM_CANCELMODE • Win 2.0 .Wm3.0 • Win S.1
Purpose

Parameters
wPamm
lParam

Notification that the system has cancelle«1 a mode it was in. For example, this message Is sent
when a message ~x or system modal dialog box is displayed, or when a scroll ~r is used, or when
a window is moved.

WORD:· Not used.
DWORD: Not used.

WM_CIlANGECBCIIAIN • Win 2.0 .Wirt 8.0 • Wln8.!
Pupoee No.tlflcation that a window In the clipboard viewer chain of applications Is belngremoved tom

the chain. Each window receiving this message should use SendMessageO ~ pasS the mesSage
on to the next window in the chain. See Chapter 17 for details. . .

312

Parameters
wPamm

lPamm

WM CHAR

Parameters
wParam

.~LParam

9. WINDOWS MESSAGES ~

WORD: The handle of the window being removed from the clipboard viewer chain.

DWORD: Contains the handle of the next window in the clipboard viewer chain. If the window
being removed is the next window in the chain, clipboard messages will be passed to the window
who's handle is specified in LParam.

• Win 2.0 fI wm 3.0 iI Win 3.1
Transmits the ASCII value of a character key pressed on the keyboard. This message is generated
by the TranslateMessageO function in the program's message loop.

WORD: The ASCII value of the key pressed.

DWORD: Contains coded data about the key pressed, as shown in Table 9-15. Usually, this data is
ignored. -

0-15 Qow order word) The repeat count. This is the number of times the CRaracter was repeated because the user
held down a key.

·16-23

24

25-28

29
30

31

The keyboard scan code.

1 n an extended key, sUch as a function key or a key on the numeric keypad.

Not available.

1 if the C!ID key was held down when the key was pressed, 0 if not.

1 if the key is down bef~e message was sent, q if not.

1 if the key is being.re(eased, 0 if the key is being pressed.

Table 9-15. WM_CHAR lParam Coding.

WM CHARTOITEM o Win 2.0 tl1 Win 3.0 II Win 3.1
This message is sent by a child window list box control to its parent. The list box must have been
created with the LBS_ WANTKEYBOARDINPUT style to generate this message. The message is
sent when the list box receives a WPtCCHAR message. The message allows a keyboard shortcut to
be added for quick selection of the first list box item that starts with the given character. The
window processing function should return a value in response to receiving this message. A re
turned value of zero or greater specifies the index of a selected item in the list box. A returned
value of ~ 1 specifies that'the list box should do its default processing of keyboard input (usually
ignored). A retUrned value of -2 specifies that no action should be ~en by th~ list box.

WORD: The ASCII value of the key the user pressed.
DWORD: Contains the current caret position in the high-order word and the window handle of
the list box in the low-order word.

WM_CHILDACTIVATE • Win 2.0 • Win 3.0 .wiIi 3.1
Sent to a chlld window's parent when a child window'is moved or activated. For example, after
SetWlndowPosO is used to move a child window.

WORD: Not used.

DWORD: Not used. '

.313

WINDOWS API BIBLE

WM CLEAR
Purpose

Syntax

Parameters
hControl

wParam

IParam

WM CLOSE
Purpose

Parameters
wParam

lParam

• Win 2.0 • Win 3.0 • Win 3.1
Notification that the user is deleting the current selection in an edit control without copying it to
the clipboard. '

SendMessage (HWND hCcmtrol, WM_ CLEAR, WORD wParam, DWORD IParam)

HWND: The edit control's window handle.

WORD: Not used. Set to O.

DWORD: Not used. Set to OL.

• Win 2.0 • Win 3.0 • Win 3.1
Notification that a window will be closed in response to the user pressing @-@ or selecting
"close" from t.he- system menu. Passing this message to DefWindowProcO calls the Destroy
WindowO function. Intercepting the message prevents the window from being destroyed
(closed).

WORD: Not used.

DWORD: Not used.

WM COMMAND • Win 2.0 • Win 3.0 ,II Win 3.1
llurposc

11aramcters
wParam

lParam

NotiGcation that the user has selected a menu item or child window control, or has used an
accelerator key.

wanD: Contains the menu item or child window control ID value. For child window controls, the
ID value is specified as the hlr/enu parameter when CreateWindowO is called.
DWORD: The Jow-order word is zero if the message is from a menu item selection. The high-order
word is one if the message is from an accelerator keystroke. If the meSsage is from a child window
control, the high-order word is the notification code (such as BN_CLICKED), and the low-order
word is the window handle of the control.

~~_C0.MP.t~~JING __ .____ o Win 2.0 .WinS.n • Win 3.1
Purpose Notification that the system is running low on memory. Windows determines when to ~end this

message by calculating how much time is spent compacting memory. When more than 12.5% of
the processing time is going into memory compacting, WM_COMPACTING is sent to aU active
applications. Applications receiving this message should free as much memory as possible.

Pararnetl~rs

wPararn

IParam

WORD: Specifies how much CPU time is going into compacting memory. OxFli'FF is 100%, OxOOOO
is OJ~.

DWOHD: Not used.

m'lCOl\ip ARE ITEM • Win 2.0 • Win 3.0 • Win 3.1
Purpose Notification that a new item is being added into an owner-redrawn list box or combo box created

with the LBS_SORT or CBS_SORT styles; WindoWs iIses theCOMPAREITEMSTRUCT data struc
ture to facilitate comparison of}tems. This structure is defined in WINDOWS.H as follows:

1* COMPAREITEM~TRUCT for owne~draw sorting ~I
typcdef struct tagCOMPAREITEMSTRUCT

314

9. WINDOWS MESSAGES ...

{

WORD CtlTypei 1* ODT_LISTBOX, or ODT_COHBOBOX*I
WORD CtlIDi 1* control id number for the list box, or combo box *1

1* control window handle *1 HWND hwndltemi
WORD itemID1i 1* item id 1 *1
DWORD itemData1i 1* item 1s 32-bit value *1

1* item id 2 *1 WORD itemlD2i
DWORD itemData2i 1* item 2s 32-bit value *1

) COMPAREITEMSTRUCTi
typedef COMPAREITEMSTRUCT NEAR *PCOMPAREITEMSTRUCTi
typedef COMPAREITEMSTRUCT FAR *LPCOMPAREITEMSTRUCTi

Parameters
wParam

[Param

WM_COPY
Purpose

Syntax

Parameters
hControl

wParam

lParam

Whe!l the program owning the list or combo box receives this message, it should return a
value specifying the relative ordering of the two items referenced in the COMP AREITEMSTRUCT
as follows:

-1 Item 1 comes before item 2.

o Item 1 and 2 'sort the same.

'1 Item 2 comes pefore item 1.'

Typically, 'the program owning the list or combo box will receive this message a number of
times, until the position of the new item can be completely determined. See the example O\mer
redrawn combo box, in the combo box section of this chapter.

WORD: Not used.

DWORD: Contains a far pointer to a COMP AREITEMSTRUCT.

• Win 2.0 • Win 3.0 BI Win a.l
Copies selected text within an edit control to the clipboard. The text is stored in CF.-'l'EXT format
in the clipboard.

SendMessage (HWND hGontrol, WM_COPY, WORD wPamm, DWORD [Pa-ram)

HWND: The edit control's window handle.

WORD: Not used. Set to O.

DWORD: Not used. Set to OLe

WM CREATE • Win 2.0 II Win a.o II Win 8.1
Purpose N1>tification that a window is being created. This is a good placc t.o do program data initialization

and startup routines. This message is processed heforc CreateWindowO returns and before the
window is made Visible.

WORD: Not used .

. DWOR.D~· A. far pointer to' a CREATESTHUC'l' data. strudul"C. This stl'lwture is defiil~~l:in'
WINDOWS.H as follows: . . .

typedef struct tagCREATESTRUCT
{ ,

LPSTR
HANDLE
HANDLE
HWND
int
int
int
int

lpCreateParamsi
hlnstancei
hHenui
hwndParenti
eYi
ex;
Yi
x' I

315

WINDOWS API BIBLE

LONG
LPSTR
LPSTR
DWORD

) CREATESTRUCT;
typedef CREATESTRUCT FAR

style;
lpszName;
lpszClassj
dwExStyle;

" : ... '.

*LPCREATESTRUCT;

• Win 2.0 " • \V"m 3.0 • Win 3.1"
Purpose Notification that a child window controlls about to be drawn. This gives the parent program a

chance to change the default colors for the text and background used. The WndProcO function
receiving this message can load a brush to paint the background and return the handle to the
brush. If the brush uses a pattern, call UnrealizeObjectO to align the hrush with the upper left
comer ofthe object before returning the handle to the brush.

IJarameters
wParam WORD: The display context for the child window control. Equivalent to the returned value from

GetDCO.
lParam DWORD: The low-order word contains a handle to the child window control. The higb-order word

contains one of the values listed in Table 9-16.

CTL90l0R_BTN Button control.

CTLCOLOR_DLG A dialog box.

CTLCOlOR_EDIT

CTLCOlOR_USTBOX

CTLCOLOR_MSGBOX

An ed~ control.

A list box control.

A message box.

CTLCOlOR_SCROLlBAA A scroll bar control.

CTlCOLOR_STATIC A static text control.

Table 9-/6. WM_CTLCqLOR Val~.

If the application program processes the Wl.LCTLCOLOR message, it must retunl a handle to
the brush to use in painting the background of the window. Otherwise, the system will crash.

WMCUT

Parameters

• Win 2.0 • Win 3.0 • Win 3.1
Copies the current selected text from an edit control to the clipboard, and then deletes the text
from the edit control's client area.
SendMessage (HWND hControl, WM_CUI', WORD wParam, DWORD lParam)

hCimtrol HWND: The window handle of the edit control.
wParam WORD: Not used.
lParam DWORD: Not used.
WM_DDE_ACK to W&CDDE_UNADVISE

These messages are covered in Chapter 30, J)gnamic Data Exchange, and are defined in the
DDE." header file. .

• Win 2.0 II Win 3.0" • Win 3.1
Notification that the user sel~ted a non-English language accent or speciaicharacter that will
change the value of the next character typed. This occurs when WM_KEYUP and WM_KEYDOWN

316

Parameten
wParam

lhJram

9. WINDOWS MESSAGES •

messages for special characters are sent. The charactet following the dead character is the ac
cent or special character. For example, if the system is using German as the default language
(determine~ by the Setup program during installation ~fWindoW8), the sequence dead' key, um-.
laut, and the 0 key will be sent to create an umlauted O. .

WORD: The repeat count (the number of times the key was repeated as a result of the key being
held down).
DWORD: Contains coded data about the key pressed. Usually this data is ignored. (See Table 9-17
for information.) .

0-15 (1ow order word) The repeat count. This is the number of times the character was repeated because the user
held down a key. .

·16-23 The keyboard scan code.

24 1 if an extended key, suCh as a function key or a key on the numeric keypad.

25-28 Not aVailable.

29 1 if the @) key was held down when the key was pressed, 0 if not.

30 1 if the key was down before the message was sent, 0 if not.

31 1 if the key is being released, 0 if the key is being pressed.

Table 9-1'l. WMJJEADCOAR lParam Coding.

DWm2.0 .Wm3.0 .WinS.l
Notification to the parent of an owner-redrawn combo or list box that an item has been removed.
This is Sent when a single item is removed or the entire box has had its contents reset, or when
the list or combo box is destroyed. The message includes a pointer to a DELm-EITEMSTRUCT
structure, dermed in WINDOWS.H as

1* DELETEITEI.sTRUCT for ownerdrew *1
typ,def struct tlgDELETEITE"STRUCT
(

WORD CtlType;
WORD CtllD;

. WORD ite.ID;
MW.D hwndlte.;
DWORD ite.Data;

> DELETEITE"STRUCT;

;* ODT_LlST80X, or ODT_CO"80801 *1
1* control id nuaber for the list box, or combo box *1
1* the it •• 's id nu.ber in the list or co.bo box *1
1* control window handle *1
1* itell's 32-bit data *1

typedef DELETEITE"STRUCT NEAR *PDELETElTE"STRUCT;
typedef DELETEITE"STRUCT FAR *LPDELETEITE"STRUCT;

tou can use this m~e to free any memory ~tated with bitmapped images or similar
objects if they are no longer needed by the list or combo box. The message may be received more
than once if several items are being deleted.

WORD: Not used

DWORD: A far pointer to a DEOOEITEMSTRUar structure for the item being deleted.

WM DESTROY .Wm2.0 .WmS.O BWm3.1
Notification that a window is being destroyed after it has been removed from the screen. This
message is sent to the window after the window image· is removed from the screen.
WM_DESTROY is sent to the parent, window before any of the children are destroyed. H the

317

WINDOWS API BIBLE

Parameters
wParam

IParam

window being destroyed is part of the clipboard viewer chain, the window must remove itself
from the,chain by calling ChangeClipboardChainO. If the window being destroyed is the last ap
plication window, without a parent, it should call PostQuitMessageO in response to this message.

WORD: Not used.
DWORD: Not used.

WM DESTROYCLIPBOARD, • Win 2.0 • Win 3.0 ". Win 3.1
Purpose

Parameters
wParam

IParam

Notification to the clipboard owner that the clipboard has been emptied by a call to
EmptyCJipboardO·

WORD: Not used.
DWORD: Not used.

WM DEVMODECHANGE Ii Win 2.0 • Win 3.0 • Win 3.1
Purpose

Para..'1leters
wParam

IParam

Sent to all top-level windows when the user changes thelname ~f a device in the WIN.INI file.

WORD: Not used.
DWORD: A pointer to a character string containing the name of the device changed in WIN.INI.

WM DRAWCI.lIPBOARD • Wm 2.0 II Win 3.0 .. Wm 3.1
Purpose

Parameters
wParam

IParam

Windows automatically sends this message to the first window of the clipboard viewer chain
when the contents of the clipboard change. Each window in the chain should send the meSsage
on,to the next window in the viewer chain. A handle to the next window in the chain can'be .

, obtained with SetClipboardViewerO.

WORD: Not used.
DWORD: Not used.

WM DRAWITEM o Win 2.0 • Win 3.0 • Wm 3.1
Purpose Notification to the owner of an owner-drawn button, list bo'4 or combo box that one of the items

in theJj~t has changed. The message passes a pointer to a DRAWITEMSTRUCT structure, defined
in Windows as

1* DRAWITEHSTRUCT for ownerdraw *1
typedef struct tagDRAWITEMSTRUCT{

WORD CtlType; 1* ODT_MENU, ODT_lISTBOX, ODT_COMBOBOX, or ODT_BUTTON *1
WORD CtlID; 1* control id number for the list box, combo box or button *1
WORD HamID; 1* the Hem's id number in the list or combo' box *1 '
WORD i temAction; 1* ODA_DRAWENTIRE, ODA_SELECT, or ODA_FOCUS *1
WORD itemState; 1* ODS_SELECTED, ODS_GRAYED, ODS_DISABLED, ODS_CHECKED *1
HWND hwndItem; 1* the item's handle *1' 1* or ODS_FOCUS *1
HDC hDC; 1* the item's device context *1 .
RECT rcItem; 1* the bounding rectangle of _the item *1
DWORD i temDa ta; 1* he re is where the 32-bit da ta goes *1

} DRAWITEMSTRUCT; ,
typedef DRAWITEMSTRUCT NEAR *PDRAWITEMSTRUCT; ,
typedef DRAWITEMSTRUCT FAR *LPDRAWITEMSTRUCT;

... . The itemAction ele~ent of the structure determines if the element Lc; to be drawn, shoWn as
selected" or shown as having the focus. Be sure to release any objects used. to draw the item

318

Parameters
wParam

lParam

9. WINDOWS MESSAGES v

before returning from processing this message: An example of an owner-drawn combo box ap
pears in the combo box section of this chapter.

WORD: Not used.
DWORD: A far pointer to the DRAWITEMSTRUCT structure for the item.

WM DROPFILES o Win 2.0 0 Win 3.0 . Ell Win 3.1
Purpose

Parameters
wParam

lParam

Purpose

Parameters
wParam

lParam

Sent when the left mouse button is released over an application which is registered as a recipient
of dropped tiles.

WORD: Contains a handle to an internal data structure describing the dropped files. The new
Windows 3.1 registration functions are used to create these data structures.

DWORD: Not used.

• Win 2.0 II Win 3.0 ElWin 3.1
Notification that a window has been enabled or disabled. Disabling is used to stop a child window
button control from functioning. The text inside of the button is grayed. The EnableWindowO
function is used to chaltge a window's status to/from enabled or disabled.

WORD: Nonzero if enabled, zero if disabled.

DWORD: Not used.

WM_ENDSESSION II Win 2.0 • Win 3.0 m Win 3.1

PurPose

Parameters
wParam

lParam

Final notification that the Windows session is being stopped. This message follows WM_QUERY
ENDSESSION, if all windows returned a nonzero response to that message.

WORD: Nonzero if the Windows session is being ended, zero if not. If a nonzero value is sent,
Windows can terminate at any time. The application should save any data in preparation for
termination.
DWORf)' ~ot used.

WM ENTERIDLE II Win 2.0 Ii Win 3.0 II Win 3.1 .
Purpose

Parameters
wParam

lParam

Notification that a modal dialog box or menu has been activated, but has no messages to process.
This is a good point to set a timer if the dialog or message block should be removed automatically.

/: :/;
WORD: Contains MSGF _DIALOGBOX or MSGF _MENU if the system is idle due to a':d1alog box or
menu, respectively.
DWORD: The low-order word contains the handle ofthe dialog box or the window containing the
menu. The high-order word is not used.

WM ERASEBKGND • Win 2.0 DWin3.0 mWin 3.1
Purpose Notification that the background of a window's client area needs to be repainted. Normally, the

background is repainted using the brush specified in the window's class definition. If no back
ground brush was specified in the class definition (hbrbackground = NULL), the application
should process WM_ERASE~KGND messages. If the background brush contains a pattern, use

319

WINDOWS API BIBLE

Parameters
wParam

lParam

Returns

Utlre~izeObject() to align the brush with' the window's top left comer. Be sure the window's
device context is in the default MM_TEXT mapping mode before using this function to avoid
painting only a portion of the client area. '

WORD: Contains the device context handle for the background.
DWORD: Not used.
The function processing this message should return nonzerO',ifthe background was erased, zero if
not.

,WM FONTCIIANGE BWin2:0 .WmS.O .WinS.l •
Purpose Notification that the number of fonts available to applications has changed, probably because an

application used the AddFontResource() or RemoveFontResourceO function. Any application
, ,that cha.nges the fonts on the system should send this message to all running applications. (Using
, PostMessageO with hWnd set equal to .0xFFFF, sends a message to all applications.)

Parameters
",Param

lParam

WORD: !\lot used.

DWORD: Not used.

WM_GETDLGCODE " • Win 2.0 .WinS.O
Wmdows sends this message to a control's input procedure. This allows the control to specify to
what type of keyboard input the control will respond. Generally used in creating custom controls.

Parameters
wParam WORD: Not used.

DWORD: Not used. lParam

Returns The application receiving this message should return one or more of the following values, com
bined using the C language binary OR operator (I). This will establish which types of messages
are, as listed in Table 9-18, processed by the program, skipping Windows' defaUlt keyboard han-
dling. '

The direction keys.

Default pushbutton.

EM_SETSEl messages.

All push buttons.

All radio buttons.

All keyboard input.

WM_CHAR messages . .'

DlGC_ARROWS

DlGC_DEFPUSHBUTTON

DlGC_HASSETSEl

DlGC_PUSHBUTTON

DlGC_RADIOBUTTON

DLGC_WANTALLKEYS

DlGC_WANTCHARS

DlGC_WANTIMESSAGE

DlGC_WANlTAB

All keyboard input (the application passes this mesSage to the controQ.

The tab ke~:,

Table 9·18. WM _GETDLGCODE Return Flags.

,WM GETFONT ('! OWm2.0 aWmS.O .WmS.l

Retrieves ~i,f~nt currently being used by a child window control (edit, s~tic text, list box, etc.). ,

320
,.'

Syntax

Returns
Parameters
hControl

wParam

lParam

Parameters
wParam

, lParam

rgpt[O]

rgpt[l]

rgpt[2]

rgptl3]

, rgptl4]

9. WINDOWS MESSAGES ..

dwFcptt = SendMessage (HWNDhConirol, WM_GETFONT, WORDwPara..1I't. DWORDlParam)

DWORD, the handle to the font. NULL is the system font. .
'1/'
;'

HWND: The window handle of the child window control.
WORD: .Not used.

DWORD: Not used.

E'J Win 2.0 IIWm3.0 .Wm3.1
Notifies the application that Windows is checking the size of the window when minimized.or
maximized, giving the application a chance to change the default values. This message is sent by
C~eateWindowO before CreateWindowO returns. Use the GetSystemMetrics() function to re
trieve the size of the screen, window borders, menu bar, etc. as needed to calculate the size of
window your application needs.

WORD: Not Used.

DWORD: A far pointer to an array of five pot~ structures. Each point holds the X and Y di
mensions in pixels for the window in one of several states. The point array values arEtlisted in
Table 9-19.

Used intemally by Windows.

The maximized size. Defaults to the screen size.

The position of the upper left comer when the window is maximized. The default values are SM_CXFRAME,
SM_CYFRAME for X,V.

The smallest tracking size. The minimum tracking size is the smallest size obtainable by using the borders
to adjust the window size. The default minimum is equal to the icon size.

The maximum tracking size. Defaults to the screen size. The maximum tracking size is the largest size
obtainable by using the borders to adjust the window size.

'. 'Table 9-19., WM_GETMINMAXINFO Point Array Values.

Returns

Parameters
kControl

The array of five points is initialized to the default values when the message is transmitted by
Wmdows. The application can change any of the values in the array before returning control to
Windows. The modified values are then used by Windows to size the application's window.

II Win 2.0 II Win 3.0 II Win 3.1

Used to copy text from a child window control into a character buffer. For edit and combo box
controls, the text to be copied is the conten~ ofthe edit box. For buttons, it is the button text. For.
list boxes, the text is the currently selected item. For other windows (child windows, popups), the
text is the window's caption. Sending this message is equivalent to calling the GetWmdowTextQ

r function. " I "
"

dwReturned = SendMessage (HWND hControl, BM_GETrEXT, WORD wParam, DWORD
lParam) ,

DWORD, the number of characters copied. It is LB_ERR or CB_ERR if the control is a list or
combo box, but no selection has been made.

HWND: The wiridow handle of the child window control. .

321

wParam

IParam

'--

WORD: The maximum number of characters_tQcoPY.
DWORD: A far pointer to a character buffer that will receive the strmg.

WM GETTEXTLENGTH II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns
Parameters
hControl

wParam

LParam

Used to determine the number of characters in a child window control. For edit and combo box
controls, the text is the contents of the edit box. For buttons, it is the button text. For list boxes,
the text is the currently selected item. For other windows (child windows, poptips), the text is the
window's caption. Sending this message is equivalent to calling the GetWindowTextLengthO
function.
dwReturned = SendMessage (HWND hControl, BM_GE'ITEXTLENGTH, WORD wParam,
DWORD lParam)

DWORD, the number of characters in the control.

HWND: The window handle of the child window control.
WORD: Not used.

DWORD: Not used.

WM HSCROLL m Win 2.0 It Win 3.0 • Win 3.1
Purpose

Parameters
Notification that the user has adjusted a horizontal scroll bar.

wParam WORD: One of the codes in Table 9-20.

SB_BonOM Generated if the scroll bar has the input focus and the @@ key is pressed. Not generated by
mouse actions. .

SB_ENDSCROLL Sent when the scroll activity,stops.

SB_LlNEOOWN Clicked the arrow on the left.

SB_LlNEUP Clicked the arrow on the right.

, SB_PAGEDOWN Clicked the area of the scroll bar between the left arrow and the thumb.

SB_PAGEUP Clicked the area of the scr~1I bar between the right arrow and the thumb.

SBJHUMBPOSITION

SB_ THUMBTRACK

SB_TOP

The message passes the position of the thumb as the low-order word of IParam.

The thumb is being dragged. The current position is passed as the low-order word of IParam.

Generated if the scroll bar has the input focus and the (HOME) key is pressed. Not generated by
mouse actions.

Table 9-20. Scroll Bar Code$.

IParam DWORD: The high-order word contains the window handle of the scroll bar:. If the scroll bar is
attached to a the boundary of a popup window, the high-order value is not used. The low-order
word contains the thumb position if eith~r the SB_THUMBPOSITIONor SB_THUMBTRACK value
'for wParam is passed. '

WM",HSCROLLCLIPBOARD II Win 2.0 II Win 3.0 • Win 3.1
Used With the CF _ OWNERDISPLAY format of data type for the clipboard used by clipboard ,viewer
programs. The message indicatesihat the clipboard viewer horizontal scroll bar has been used:

322

Parameters
wParam

lParam

9. WINDOWS, MESSAGES ~

WORD: Contains a handle to the clipbOard viewer program.

DWORD: The low-order word contains one of the scroll bar codes shown in Table 9~20, used in
WM_SCROLL messages. The high-order word contains the thumb position if the SB_THUMB
POSITION or SB_THUMBTRACK value is passed in the low-order word. Otherwise, the high
order word is not used.

WM_ICONERASEBKGND o Win 2.0 • Win 3.0 • Wm 3.1
,'Purpose

Parameters
wParam

lParam

Notification that a minimized (iconic) window needs to have the background painted. This mes
sage is received if a class icon is defmed for the window. If there is no class icon defmed (see
RegisterClassO), WM_ERASEBKGND is sent instead. If this message is processed by the default
Windows message processing logic in DetwindowProcO, the background of the minimized win
dow is painted with the desktop window's class background brush.

WORD: Contains the iconic window's device context.

DWORD: tfot used.

WM_INITDIALOG II Win 2.0 • Win 3.0 • ,Wm 3.1
Purpose

Parameters
wParam

lParam

Notification that a dialog box is about to be displayed. This is similar to WM_CREATE messages in
the mainWndProcO function. MCINITDIALOG is sent every time the dialog is displayed, not
just when the program starts. WM_INITQIALOG messages offer a good opportunity to initialize
any data associated with the dialog bo~ , ,I, '_

\ '

"

WORD: The ID value of the fIrstcontro~ to hav~ the input focus when the dialog box starts. This
is usually the fIrst item_with the WS_TABSTOP style. '

DWORD: If the diili~g-~ox 'Yas created witheith~rCreateDialogIndirectParamO, CreateDialog
ParamO, DialogBoxindirectP~ram(~ or DialogB<?xParamO, this value will hold the dwlnit
Param data passed when the dialo~boX-.was create~~ Otherwise (with the nonnal dialog box
defInition in the resource .RC fIle), tli~~aram value is,not used.

WM INITMENU " " '\ • Win 2.0 • Win 3.0 '. Wm 3.1
Purpose Notification that the user has cliclcedirrtain menaltem. This message is sent before the menu is

" :--..... """ \

Parameters
wParam

lParam

accessed. Only one \VM_INITMENUmessage isgerter.ated per access to the menu, no matter how
many itemS _tIlt mous~ may click. It:c.~he~se,d~ a reminder t<;> change menu items (grayed,
ch~cked, etc.) before the menu selectiQnS are'ac,tivated. '

/"-_ _-::- ___ ... -----............. ''\, I '~\:.:

WORD: Contains the menu handle.
DWORD: Not used.

....

WM_INITMENUPOPUP • Win 2.0 • Wm 3.0 • Wm 3.1
Purpose

Parameters
wParam

lParam

Notification that the window is about to display a popup menu. This can be used as a reminder to
change popup menu items (grayed, checked, etc.) before the menu selections are activated.

WORD: The handle of the popup menu.

DWORD: The low-order word contains the index''ofthe popup menu in the main menu. The high-
order word is nonzero if the popup menu is the system menu, zero otherwise. '

,' .. f

323

"

WINDOWS API BIBLE

Parameters
wParam

lPamm

\
EWin2.0 .Win3.n • Win 3.1

Notification that a key was pressed. This notification is senno the window with the input focus as
long as the @ key was not depressed at the time ofthe keypress. MrCSYSKEYDOWN messages
are sent if the @ key is down; or if TlO window has the input focus. SYSKEY messages also cover
the system functions such as switcltiiig between Wind~ws (@-@), @-(lli), etc).

WORD: The virtual key code ofthe key. See Chapter 7, Keyboard Suppor~ for a list of virtual key
codes. '

DWORD: The contents are encoded as shown in Table 9-21.

0-15 (low order word) The repeat count. This is the number of times the character was repeated becau~ the user
held down a key •

. 16-23

24
25-28

29

30

31

The keyboard scan code.

1 if an extended key, such as a function key or a key on the numeric keypad.

Not available

1 if the @ key was held down when the key was pressed, 0 if not. ftJways 0 in this case.

1 if the key is down before the message was sent, 0 if not.

1 if the key is being released, 0 if the key is being pressed.

f Table 9-21. The 32-Bit Key~oard Data For WMj(EYUp, WMj(EYDOWN.

WM KEYUP • Win 2.0 • Win 3.0 .Wrn3.1

Purpose -

Parameters
wParam

LParam

Notification that a key was released. This notification is sent to the window with the input focus.
as long as the @ key was not depressed at the time of the keypress. WM_SYSKEYUP messages

-are sent if the @ key is down, or if no window has the input focus. SYSKEY messages also cover
the system functions such as switching between windows (@-@!), @-(lli), etc).

\ .' /

WORD: The virtual key code ofthe key. See Chapter 7, Keyboard Support, for a list. of virtual key
cOdes.
DWORD:The contents are encoded, as shown in Table 9-21 in the WM_KEYDOWN description.

WM IHLLFOCUS • Win·2.0 • Win 3.0 • Win 3.1
Purpose Notification that a window is about to lose the inp~t focus. If the application is displaying a caret,

it should be destroyed at this point.

Parameters
wParam

LParam
WORD:· Contains the handle of the window that'is about to receive the input focus'. Mav be NULL.
DWORD: Not used.

~_LBUTTONDBLCLK mWin2.0 El Win 3.0 __ Ii! Wrn 3.1

Parameters
. wParam

Notification that the user has double-clicked the left mouse button. Only windows that-have a
class structure that includes the CS_DBLCLKS style will receive these messages. Note that the
single mouse click message always precedes a double-click message.

WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can by any combination of the binary flags listed in Table 9-22.

324 .

9. WINDOWS MESSAGES ~

MK_CONTROL . The CONTROL key is down.
-

MK_LBUlTON The left mouse button is down.

MK..,MSUlTON The center mouse button Of any) is doWn.

MK-RSUTION The right mouse button (if any) is down.

MK_SHIFT The SHIFT key is down".

Table 9-22. Mouse Key Flags.

LParam DWORD: The low-order word contains the X position ofthe cursor when the button was pressed.
The 'Y position is in the high-order word. The coordinates are in pixels, relative to the upper left
corner of the window.

WM_LBUTfONDOWN • Win 2.0 .Wm.3.0 .Win3.l

Purpose

Parameters
wParam

Notification that the user has pressed the left mouse button.

WORD: Contains a value reflecting whether several keys were down at the" time the message was
sent. This can by any combination of the binary flags listed in Table 9-23.'

MK_CONTROL

MK_LBUTTON

MK_MSUlTON

MK_RSUTION

MK_SHIFT

The CONTROL key is down.

The left mouse button is down.

The .center mouse button Of any) is down.
"",'-

The right mouse button (if any) is down.

The SHIFT key is down.

Table 9-23. Mouse Key Flags.

lParam DWORD: The low-order word contains the X position of the cursor when the button was pressed.
The Y position is in the high-order word. The coordinates are in pixels, relative to the upper left
corner of the window.

WM LBUTTONUP II Win 2.0 • Win 3.0 • Wm 3.1
Purpose

Parameters

Notification that the USE}r has released the left mouse button.

wParam WORD: Contains a value reflecting.whether or not several keys were down at thb time the mes
sage was sent. This can by any combination of the binary flags listed in Table 9-24.

MK_CONTROL . The CONTROL key is down.

MK_LBUTION The left mouse butto!) is down.

MK_MSUITON The center mouse button (if any) is doWn.

MK-RSUITON The right mouse button Of any) is down.

MK_SHIFT The ~HIFT key is down.
~--

Table 9-24. Mouse Key Flags.

325

..... __ •• ..., ,.,r. UICLE:

lParam DWORD:The low-order word contains the X position of the cursor when the button was pressed.'
The Yposition is in the high-order word. The coordinates are in pixels, relative to the upper left
comer of the window.

. --\

WM MBU'ITONDBLCLK EJ Win 2.0 aWfu 3.0 II Wm 3.1
-Purpose

Parameters
wParam

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK-RBUTTON

MK_SHIFT

- Notification that the user double-clicked the center.mouse button. Only Windows that have a
class structure thatJncludes the CS_DBLCLKS style will receive these messages. Note that the..
single mouse click message always precedes a double-click message.

WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can by any combination of the binary flags in Table 9-25.

The CONTROL key is down.

The left mouse button is down.

The center mouse button (if any) is down.

The right mouse ,button (If any) is down.

The SHiFf key is down.

Table 9-25. -Mouse Key Flags.

lParam . DWORD: The low-order word contains theX position of the cursor when the button was pressed,
The Yposition is in the ~gh-order word. The coordinates are in pixels, relative to the upper left
comer of the window. '

WM_MBU'ITONDOWN
'" '",

mJ Win 2.0 " IJ Will 3.0 II Win 3.1
Purpose

Parameters
wParam

MK_CONTROL

MK_LBUTfON

MK_MBUlTON

MK_RBUlTON

MK_SHIFf

Notification that the user has pressed the center mouse button.

WORD: Contains a value reflecting whether or not several keys were down at the time the me~
sage was sent. This can by any combination of the binary flags listed in Table 9-26.

The CONTROL key isdown.

The left mouse button is down.

The center mouse button (if any) is down.

The right mouse button (If any) is down.

The SHIFT key is down.

Table 9-26. Mouse Key Fiags.
lParam

Purpose

DWORD: The low-order word contains the X position of the cursor when the button was pressed.
The Yposition is in the high-order word. The coordinates are in pixels, relative to the upper left
comer of the window. .

II Win 2.0 l! Win 3.0 II Wm 3.1
Notification that the user has released the center mouse button.

326

Parameters
wParam

MK_CONTROL

MK_LBUTION

MI(·MSUTION

Mt<~RSUTION

MK_SHIFT

9. WINDOWS MESSAGES Y

WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can by any combination of the binary flags listed in Table 9-27.

The CONTROL key is down.

The left mouse button is down.

The center mouse button (if any) is down.

The right mouse button (if any) is down.

.The SHIFT key is down.

Table 9-27. Mouse Key Flags.

lParam DWORD: The low-order word contains theXposition ofthe cursor when the button was pressed.
The Y position is in the high-order word. The coordinates are in pixels, relative to the upper left
corner of the window.

WM_MDIACTIVATE D Win 2.0 m Win 3.0 II Wm 3.1
Purpose

sylitax

Parameters
hClient'

wParam

lParam

Used to activate and deactivate child windows within a Multiple Document Interface (MDI) win
dow. Activation of a MDI child window is similar to a window gaining the input focus. Once acti
vated, the child window's border is highlighted, and all keyboard input is directed to the child ..
When receiVing this message, an MDI child frequently changes the franie window menu using the '
W~CMDISETMENU message.
SendMessage (HWND hClient, IDCMDIACTIVATE, WORD,wParam, DWORD lParam)

HWND: The window handle of the MDI client or child window.

WORD: If the application is sending the message to the MDI client window, wParam contains
the handle of the child window to activate. If the MDI client window is sending this to an MDI
child window, wParam contains nonzero to activate the child window and zero to deactivate it.

DWORD: NULL if the application is sending the message to the MDI client window. If the MDI
client window message processing function is sending the message to an MDI child window, the
high-order word contains the handle of the child window being deactivated, and the low-order
word contains the handle of the child. being activated.

"WM MDICASCADE D Win 2.0 II Win 3.0 iii Wm 3.1

Purpose

Syntax

Parameters
hClient

wParam

lParam

Arranges all of the child windows within the MDI client window in "cascade" format. ThiS ar- '
rangement makes all of the window titles visible. If the frame window is too small, some of the
child windows may not be visible after cascading. ,

SendMessage (HWND hClient, WM_MDICASCADE, WORD wParam, DWORD lParam)

HWND: The window handle of the MDI client window.

WORD: The cascade flag. No flags are defined under Windows 3.0. Under Windows 3.1, the
MDITILE_SKIPDISABLED flag prevents disabled MDI child Windows from being tiled. Other
wise, set to O.

DWORD: Not used. Set equal to OL.

327

WINDOWS API BiBLE

WM..:;,.MDICREATE
• o Win 2.0 ,£IWin3.0 .Wm3.1

Purpose

~-"
Parameters
hClicnt

wParam

lParam ,

Creates an MDI child window. This message is sent fo the c1ient windoW to create a new child
window. The title of the child window name is added to,the Window menu of the frame window.

• dioReturned ::: SendMessage (HWND hClient, WM_MDICREATE, WORD wParam, DWORD
LParam)

DWORD. The·MDI child window handle is in the,Iow-order word. The high-order word is NULL.

HWND: The window handle of the MDI client window.
WORD: Not used. Set equal to O.

DWORD: A far pointer to a MDICREATESTRUCT structure. This is defined in WINDOWS.H as

~ struct tagHDICREATESTRUCT
'C

LPSTR szClaSSi 1* class previously registered with RegisterClass() *1
1* title string *1 LPSTR szTitlei

HANDLE hOwneri
int x,y;
int cx,cy;
LONG style;
LONG lParam;

} HDICREATESTRUCT;

1* instance handle of the owner *1
1* the X,Y position of the upper left corner *1
1* the X, Y win(jow size *1
1* the style; usua lly 0 for MDI chi ld windows *1
1* app-defined stuff *1

typedef M,DICREATESTRUCT FAR * LPMDICREATESTRUCT;

If another MDI child window is maximized, it will be restored before the new child window is
created. The child window receives aWM_CREATE message, with the lpCreatePararns field of
the CREATESTRUCT containing a pointe~ to the MDICREATESTRUCT data structure data.

WM_MDIDESTROY ,0 Win 2.0 II Win 3.0 .Wm3.1
, ,Pmpose

Syntax
'Parameters
hClient

wParam

lParam ' '

Destroys (removes) an MDf child window: The child window title is removed from the window
menu of the frame window.

\ '

SendMessage (HWND hClient, WM_MDIDESTROY, WORD wParam, DWORD IParam)

HWND: The window handle of the MDI client window.

WORD: The window handle of the MDI child window to destroy.

DWORD: Not used. Set equal to OL.

wM M»IGETACTIVE o Win 2.0 IIWm3.0 • Win 3.1
Purpose

Syntax

Returns

Parameters
hClient
wparam.

lPamm

Obtains the handle of the currently active MDI child window.

dwReturned = SendMessage (HWND hClient, WM_MDIGETACTIVE, WORD wParam, DWORD
lParam) \

DWORD. The low-order word contains the handle to the active MDI child window. The high-order
word contains 1 if the MDI child is maximized, otherwise it contains O.

HWND: The window handle of the MDI client window.
WORD: Not used. Set equal to 0 .. ,

DWORD: Not used. Set equal to OL.

328

9. WINDOWS MESSAGES 'Y

WM MDIICONARRANGE o Win 2.0 CI Win 3.0 II Win 3.1,

Syntax

Parameters
hClimt

wParam

LParam ..

Causes the MDI client window to arrange all minimized MDI child windows at the bottom of the
client area. This message has no effect on MDI child windows that are not minimized.

SendMessage (HWND hClient, Wr.CMDIICONARRANGE, WORD wParam, DWORD LParam)

HWND: The window handle of the MDI client window.

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

WM_MDIMAXIMIZE o Win 2.0 Ii1 Win 3.0 • Win 3.1
Purpose

Syntax
Parameters .
hClient

wParam

lParam

Causes an MDI child·window to be maximized. This makes the child window exactly fill the client
area of the client (frame) window. Windows automatically places the child window's system menu ..
in the frame's menu bar and adds the child window's title to the frame window.title.

. If a child window hidden behind the maximized window is activated, the maximized window
is restored to its previous size, and the newly active window is maximized in its place.

SendMessage (HWND hClient, WACMDIMAXIMIZE, WORD wParam, DWORD lParam)

HWND: The window handle of the MDI client window.

WORD: The MDI child window handle to be maximized.

DWORD: Not used. Set equal to OL.

WM·MDINEXT o Win 2.0 mWin3.0 aWin3.l

Syntax

Parameters
hClient

wParam

LParam

. Purpose

Syntax.

Parameters
hClient

wParam

lPaf'am

Activates the next MDI child window. The next window is the one immediately behind the cur
rently active window. The currently active window is placed behind all other MDI child windows
after this message is processed. If the active MDI child window is maximized, the previously
active window is restored in size, and the newli active window is maximized in its place.

SendMessage (HWNDhClient, WftCl'rIDINEXT, WORDwParam, DWORDLParam)

HWND: The window handle of the MDI client window.

WORD: Not used. Set equal to O. . .

DWORD: Not used. Set equal to OL.

[::J Win 2.0 • Win 3.0 a Win 3.1
Restores an MDI child \vindow to its previous size. This message is used after a child window has
been either minimized or maximized.

SendMessage (HWND hClient, MCMDIRESTORE, WORD wParam, DWORD lParn.m)

HWND: The window handle of the MDI client window.
1

WORD: The handle of the MDI child window to restore.

DWORD: Not used. Set equal to OL.

329 .

· WINDOWS API BIBLE

WM_MDISETMENU o Win 2.0 D Win 3.0 • Wm 3,1
Purpose

Syntax

Returns

Parameters
hClient

wParam

lParam

Note

Links a menu to the MDI frame window. The MDI child window list is maintained after the new
menu is installed. (The MDI child window list is a popup menu, maintained by the MDICLIENT
window as child windows are created and destroyed.)

dwReturned = SendMessage (HWND hClient, W~CMDISETMENU, WORD wParam, DWORD
IParam)' .

DWORD, contains a handle (HMENU) to the previous client window menu that was replaced.

llVND: The window handle of the MDI client window.

WORD: Not used. Set equal to O.

DWORD: The low-order word contains the handle to the new client window menu, or NULL if
there is to be no change in the client menu. The high-order word contains the handle to the new
Windows popup menu, or NULL if there is to be no change in that menu.

If more than one menu is in use, the MDI application will need to destroy menus before exiting to
avoid having the menu resource data remain in memory after the application tenninates. The
application should call DrawMenuBarO after any change to a menu.

WM MDITILE o Win 2.0 II Win 3.0 • Wm 3.1
Purpose

Syntax

Parameters
hClient

wParam

Causes an MDI client \vindow to arrange all of its children in tile format~ For two or three child
windows, this is side-by-gide, for four child windows, each child occupies one corner of the client
area, etc.

SendMessage (HWND hClient, IDCMDITILE, WORD wParam, DWORD IParam)

HWND: The window handle of the MDI client window.

WORD: The cascade flag. This is composed of o!le or two of tue '1alues in Table 9-28.

MOITILE_HORIZONTAL Arranges the MOl child windows in a horizontal sequence.

MDITILE_SKIPDISABLEO \#in 3.1} Disabled MOl child windows are noftiled.

MOITILE_ VERTICAL Arranges the MOl child windows in a vertical sequence.

Table 9-28. WM_MDITILE Flags.

IParam

MDITILE_SKIPDISABLED can be combined with either of the other flags using the Clan
guage binary OR operator (I).

DWORD: Not used. Set equal to OL.

WM_MEASUREITEM o Win 2.0 • Win 3.0 .Wm~.1
Purpose

wParam

IParam

Sent to the owner of an owner-redrawn button, list box, combo box, or menu item when the item
is' created. The owner function should fill in the MEASUREITEM data structure pointed to by'
IParam and return. For list boxes and combo boxes, the message is sent once for each item in the
list.
WORD: . Not used.

DWORD: A pointer to a MEASUREITEMSTRUCT structure. This is defined in WlNDOWS. H'as

330

9. WINDOWS MESSAGES T

1* MEASUREITEMSTRUCT for ownerdraw *1
typedef struct tagMEASUREITEMSTnUCT

{

WORD CtlType; 1* ODT_MENU, ODT_LISTBOX, ODT_COMBOBOX, or ODT_BUTTON *1
1* control id number for list box, combo box or button *1
1* the item's id number in the list or combo box *1

WORD CtlID;
WORD itemID;
WORD itemWidth; 1* these are the values that need to *1
WORD itemHeight; 1* be set to speci fy the si ze of the control *1

1* the 32-bit data goes here *1 DWORD itemData;
} MEASUREITEMSTRUCT;

typedef MEASUREITEMSTRUCT NEAR *PMEASUREITEMSTRUCT;
typedef MEASUREITEMSTRUCT FAR *LPMEASUREITEMSTRUCT;

The item Width and itemHeight elements should be set by the owner function before re
turning.

WM MENUCHAR m Win 2.0 II Win 3.0 • Win 3.1

Purpose

Parameters
wParam

lParam

Returns

Informs the application that the user attempted to use a keyboard shortcut for a menu selection
that did not match any menu item. This provides a way to give more than one keyboard shortcut
to a single menu item.

WORD: The ASCII character that the user pressed.

DWORD: The high-order word contains the menu handle. The low-order word contains either
MF _POPUP if the menu is a popup menu, or MF _SYSMENU if the menu is the system menu.

The WndProcO processing this message can return a value to specify what action Windows should
take. The value is returned in the high-order word of the value returned by WndPror(). This can
be 0 to ignore the keystroke (default), 1 to tell Windows to close the menu, or 2 to make a differ
ent selection. In the last case, the low-order word of the return value should be the menu item
number to select.

WM MENUSELECT EI Win 2.0 II Win 3.0 • Win 3.1

Purpose

Parameters
wParmn

lParam

MF_BITMAP

MF_CHECKED

MF _DISABLED

MF_GRAYED

MF _MOUSESELECT

MF _OWNERDRAW

MF_POPUP

MF_SYSMENU

Notification that the user has selected a menu item.

WORD: The menu item ID for the selection. If the user selected the caption of a popup menu,
wParam contains the popup menu ID. The latter is normally ignored.

DWORD: The low-order word contains a combination of the binary flags listed in Table 9-29.

>' .,';:' , •••• <

The item is a bitmap.

The item is checked.

The item is disabled.

The item is grayed.

The item was selected with the mouse.

The item is an owner-redrawn menu item .

. The item contains a popup submenu.

The item is in the System menu. In this case~ the high-order word is the handle of the menu.

Table 9-29. WM_MENUSELECT Flags.

331

WINDOWS API BIBLE

'WM.=;;MOUSEACTIVATE Ell Win 2.0 II Win 3.0 G Win 3.1
Purpose

Parameters
wParam

LParam'

Returns

MA ... ACTIVATE

Notification that the cursor is in~ an inactive window and the user clicked a mouse button. A
parent window will receive this message unless the child Window intercepts the message. Nor
mally, the child window will pass the message on to DefWindowProcO, which in turn sends it to
the parent window. The parent window can stop the message-processing by returning TRUE when
the message is received, rather than sending it on via DefWindowprocO. This will stop the child
.from being activated. ,The default action is to activate the child window that W?S clicked.

WORD: Contains a handle to the parent window.
DWORD: The mouse message (such as WM_LBUTTONDOWN) is in the high-order word. The low-
order word contains the mouse hit test. See Appendix B, Useful Macros/rom Windows, for a list ___ _
of all the hit test codes.

The receiving application can pass this message on to the DefWindowProcO function, or return a
specific value. The returned value must be one of the codes in Table 9-30.

Activate the window.

MA_NOACTIVATE

MA_ACTIVATEANDEA T

MA_NOACnVATEANDEAT (Win 3.1)

Do not activate the window.

Activate the window, and discard the mouse event.

Do not activate the window, and discard the mouse event.

Table 9-30. WM_MOUSEACTIVATE Return Codes.

If a child window passes the message on to DefWindowProcO, the message is sent on to the
child's parent window without action or modification.

WM_MOUSEMOVE ra Win 2.0 Ii Win 3.0 II Win 3J
Purpose

Parameters
wParam

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

Notification that the user moved the mouse.

WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can be any combination of the binary flags in Table 9-31'. '

The CONTROL key is down.

The left mouse buf.on is down.

The center mouse button (if any) is down.

The right mouse button (if any) is down.

The SHIFT key as down.

Table 9-31. Mouse Key Flags.

IParam DWORD: The low-order word contains theX position of the cursor when the button was pressed.
The Y position is in the high-9rder word. The positions arE: measured in pixels, from the upper left I

corner of the window.

332

Purpose

Parameters
wParam
lParam

9. WINDOWS MESSAGES ..

I .

g Win 2.0 • Win 3.0 ". Win 3.1
Notification that a window haS been moved.

WORD: Not used.
DWORD: The low-order word contains theX position of the upper left corner of the client area of
the window. The Yposition is in the high-order word. The location is given in screen coordinates,
relative to the upper left corner of the screen.

WM NCACTIVATE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

lParam

Notification that the noncHent area of a window need~ 'to be changed to reflect an active or
inactive state. The default actions (performed by the DetWindowProcO function) draw a gray
caption bar for an inactive window and "a black caption bar for an active one.

WORD: Nonzero if the icon or caption is active, zero if inadive.

DWORD: Not used.

WM NCCALCSIZE III Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

lParam

Sent when the size of a window, including the title, border, amI caption areas, needs to be recal
culated. Normally, this message is passed to DetWindowProcO, which fills in the needed data in
the RECT data structure. The application program can intercept the message and fill in different
values. This message is used in applications "that draw their own noncHent areas or applications
that control the sizing of the main window.

WORD: Not used.

DWORD: A far pointer to a RECT data structure. The RECT data contains the screen coordinates
of the window's outer rectangle. The application can fill in different values to- control the
nonclient area sizing.

I

WM_NCCREATE II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam
LParam

Notification that Windows is about to create the nonclient area of the window. This message is
sent prior to ~CCREATE. The default actions of allocating internal memory, initializing scroll
bars, and setting the window's text are almost always desirable, so this message is usually passed
to DetWindowProcO.

WORD: The window handle of the window being created. '
DWORD: A far pointer to a CREATESTRUCT data structure. S~e WM_CREATE for the structure
details.

WM_NCDESTROY m Win 2.0 CI Win 3.0 • Win 3.1
. Purpose

Parameters
wParam
lParam

Informs a window that its nonclient area is being destroyed. This message is sent after
WM_DESTROY. The message triggers the release of memory allocated internally for the window
when it is passed to DetWindowProcO. .

WORD: . Not uSed.
DWORD: ~Not used.

333 .\
\
\

WINDOWS API BIBLE

WM NCHITT~ST c Win 2.0 II Win 3.0 II Win 3.1

Purpose

Parameters
wParam

lParam

Note:

Sent to the window that used GetCaptureO to capture all mouse input. The message is sent every
time the mouse is moved.

WORD: Not used.
DWORD: The low-order word contains theX position of the cursor. The Yposition is in the high
order word. Screen coordinates are used.
DeiWindowProcO returns the mouse hit test code when processing this message. The hit test
codes are listed in AppendiX 2, Mouse Hit Test Codes.

WM NCLBUTTONDBLCLK m Win 2.0 II Win 3.0 II Win 3.1

Purpose

Parameters
wParam

lParam

Notification that the user double-clicked the left mouse button while the mouse cursor was in the
nonclient area of the window.

WORD: Contains the hit test code. See Appendix 2, Mouse Hit Test Codes,for a list.
DWORD: Contains a POINT da~a structure, which gives the mouse cursor position when the
mouse button was double-clicked. Mouse cursor locations ~re always in screen coordinates, with;

I --
0,0 in the upper left corner. ,I - .- ~--::--

i '
WM_NCLBUTTONDOWN D Win 2.0 t3 Win 3.0' '[:) Win 3.1

Purpose

Parameters
wParam

lParam

Notification that the user pressed the left mouse button while the mouse cursor was in the non
client area of the window.

WORD: Contains the hit test code. See Appendix 2, Mouse Hit Test Codes, for the list
DWORD: Contains a POINT data structure, which gives the mouse cursor position when the
mouse button was pressed. Mouse cursor locations are always in" screen coordinates, with 0,0
being in the upper left corner.

\

\VM NCLBUTTONUP m Win 2.0 B Win 3.0 a Win 3.1

Purpose

Parameters
wParam

lParam'--

Notification that the user released the left mouse button while the mouse cursor was in the
, nonclient area of the window.

WORD: Contains the hit test code. See Appendix 2, Mouse Hit Test Codes, for the list
DWORD: Con.tains a POINT data structure, which gives the mouse cursor position when the
mouse button was released. Mouse cursor locations are always in screen coordinates, with 0,0
being in the upper ieft corner.

WM NCMBUTTONDBLCLK C Win 2.0 [] Win 3.0 II Win 3.1

"',Purpose

Parameters
wParam

lParam

Notification that the user double-clicked the center mouse button while the mouse cursor was in
the non client area of the window.

WORD: Contains the hit test, code. See Appendix 2, Mouse Hit Test Codes, for the list
DWORD: Contains a POINT data structure, which gives the mouse cursor position whe'nihe
mouse button was double-clicked. Mouse cursor locations are always in screen coordinates, with
0,0 in the upper left corner.

334 .\

9~ WINDOWS MESSAGES ...

WM_NCMBUTTONDOWN t'.J Win 2.0 m Win 3.0 II Win 3.1

Purpose

Parameters
wParam

lParam

Notification that the user has pressed the center mouse button while the mouse cursor was in the
nonclient area of the window.

WORD: Contains the hit test code. See Appendix 2, Mouse H?t Test Codes, for the list

DWORD: Contains a POINT data structure, which gives the mouse cursor position when the
mouse button was pressed. Mouse cursor locations are always in screen coordinates, with 0,0 in
the upper left corner .

. WM_NCMBUTTONUP fJ Win 2.0 ~ Win 3.0 11 Win 3.1
Purpose

Parameters
wParam

IParam

Notification that the user released the center mouse button while the mouse cursor was in the
nonclient area of the window.

WORD: Contains the hit test code. See Appendix 2, Mouse Hit Test Codes, for a list.

DWORD: Contains a POINT data structure, which gives the mouse cursor position when the
mouse button was released. Mouse cursor locations are always in screen coordinates, with 0,0 in
the upper left corner.

WM NCMOUSEMOVE rl Win 2.0 fJ Win 3.0 [J Win 3.1
Purpose

Parameters
wParam

IParaw

Notification that the mouse has been moved in the nonclient area of the window.

WORD: Contains the hit test code. See Appendix 2, Mouse Hit Test Codes, for the list.

DWORD: Contains a POINT data structure, which gives the mouse cursor position. Mouse cursor
locations are always in screen coordinates, with 0,0 in the upper left cornel'.

WM NCPAINT [3 Win 2.0 !J Win 3.0 m Win 3.1

Purpose

Parameters
wParam

··IParam

Notification that the nonclient area of a window needs to be repainted. Most applications just
pass this on to the DefWindowProcO function, which paints the nonclient area. Custom frames
and caption areas can be created by intercepting this message and painting the area from within
the application code.

WORD: Not used.

DWORD: Not used.

WM NCRBUTTONDBLCLK ill Win 2.0 tl Win 3.0 m Win 3.1

Parameters
wParam

. LParam

Notification that the user double-clicked the right mouse button while the mouse cursor was in
the nonclient area of the window.

WO~D: Contains the hit test code .. See Appendix 2, Mouse /lit Test Codes, for the list

DWORD: Contains a POINT data structure, which gives the mouse cursor position when the
mouse button was double-clicked. Mouse cursor locations are always in screen coordinates, with
0,0 in the upper left corner.

335

WINDOWS API BIBLE

WM_NCRBUTTONDOWN II Win 2.0 • Wm 3.0 • Win 3.1
Purpose

Parameters
wParam

lParam

Notification that the user pressed the right mouse button while the mouse cursor was in the
nonclient area of the window. "~ "

WORD: Contains the hit tesfcode. See Appendix 2,Mouse Hit Test Codes, for the list

DWORD: Contains a POINT data structure, giving the mouse cursor position when the mouse
button was pressed. Mouse cursor locations are always in screen coordinates, with 0,0 in the

. upper left corner.

WM NCRBUTTONUP 113 Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
'llParam

'Param

Notification that the user released the right mouse button while the mouse cursor was in the
nonclient area of the window.

WORD: Contains the hit test code. See Appendix 2,MouseHit Test Codes, for the list

DWORD: Contains a POINT data structure, which gives the mouse cursor position when the
"mouse button was released. Mouse cursor locations are always in screen coordinates, with 0,0 in
the upper left corner. -.

WM_NEXTDLGCTL m Win 2.0 ra Win 3.0 II Wm 3.1
Purpose

Syntax

Parameters
hDlg

wParam

lParam

hControl

FALSE

TRUE

Moves the input focus to another child window control within a dialog box. This message should
be sent with PostMessageO, rather than SendMessageO, to avoid having the input focus shift
while the dialog box processes other messages.

PostMessage (HWNDhDlg, ~CNEXTDLGCTL, WORDwParam, DWORDIParam)

HWND: The handle of the dialog box.

WORD

DWORD: The lParam and wParam values work together to specify the action, as shown in Table
9-32.

TRUE
FALSF

rALSE

hContro/ (handle to a child window controij gets the input focus and gets a dark border.

Next control with the WS_TABSTOP style gets the input focus and gets a dark border.

Previous control with the WS_TABSTOP style gets the input focus and gets a dark border.

Table 9-32. WM_NEXTDLGCTL Settings.

Purpose

Parameters
wParam

IParam

r;] Win 2.0 II Win 3.0 • Win 3.1
No action is taken if this is sent or processed by DeiWindowProcO. WM_NULL can be used in

.. hook Juncti~ns to eliminate the action of a message without eliminating the message itself.

./

WORD: Not used;

DWORD: Not used.

336

9. WINDOWS MESSAGES •

WM OTHERWINDOWCREATED 0 Win 2.0 [l Win 3.0 • Win 3.1
Purpose Sent to all overlapped and popup windows running in the system when a new top-level window (a

. window unowned by any other window) is created·.

Parameters
wPararn WORD: The handle of the window being created.

IParam DWORD: Not used.

Related Messages WM_OTHERWlNDOWDESTROYED, MCCREATE

WM_OTHERWINDOWDESTROYED o Win 2.0 • Win 3.0 .Win3.l

Purpose Sent to all overlapped and popup windows running in the system when a top-level window (a
window unowned by any other window) is destroyed.

Parameters
wParam WORD: The handle of the window being destroyed.

lParam DWORD: Not used.

Related Messages WM_OTHER\\1NDOWCREATED, \\1\CDESTROY

WM PAINT • Win 2.0 • Win 3.0 II Win 3.1
Purpose Notification that the client area of a window needs to be repainted. This message can be forced by

calling the UpdateWindowO function. It is automatically generated by Windows if the applica
tion window is resized or uncovered from beneath other ~indows. The update region is reset by
calling BeginPaintO. .

Parameters
wParam

LPararn

WORD: Not used.

DWORD: Not used.

WM_P AINTCLIPBOARD • Win 2.0 • Win 3.0 • Win 3.1
Purpose This message is used by clipboard viewer applications to notify that the viewer data should be

repainted. The clipboard data must be in the CF _OWNERDlSPLAY format for this to occur.

Parameters
wParam WORD: Contains the window handle of the clipboard viewer window.

lParam DWORD: Contains a pointer to a P AlNTSTRUCT data structure. This is defined in WINDOWS.II as

typedef struct tagPAINTSTRUCT
{ . .

HDC hdc;
BeOl fErase;
REeT rcPaint;
BOOl fRestore;
BeOl flncUpdate;
BYTE rgbReserved(16J;

} PAINTSTRUCT;
typedef PAINTSTRUCT
typedef PAINTSTRUCT·NEAR
typedef PAINTSTRUCT FAR

1* dey; ce context * 1

1* repaint rectangle *J

*PPAINTSTRUCT;
*NPPAINTSTRUCT;
*lPPAINTSTRUCT;

The rePaint element contains a RECT data structure that holds the dimensions of the area
that needs to be repainted. This can be compared with the most resent dimensions obtained

337

WINDOWS API BIBLE

when processing a ~CSIZECLIPBOARD message. The application processing this message will
need to use GlobalLockO to fix the location of the PAINTSTRUCT data while reading the data
and will need to use GlobalUnlockO to release the data.

WM PAINTICON o Win 2.0 • Win 3.0 Q Win 3.1
Purpose

Parameters'
wParam

lParam

Notification that a minimized (iconic) window needs to be repainted. This message will only be
received if the window was created based on a window class containing a class icon. If no class
icon is defined, the minimized window receives WT\CPAINT messages. DeiWindowProcO paints
the icon with the class icon. By intercepting this message, the application program can paint
directly on the iconized "indow client area.

WORD: Not used.

DWORD: Not used.

WM P ALETTECHANGED o Win 2.0 II Win 3.0 Ii Win. 3.1
Purpose

Parameters
wParam

IParam

Notification that t.he system color palette has changed. This message is sent to all applications
when the active window calls the RealizePaletteO function. Inactive windows should call
RealizePaletteO when they receive this message. ReaIizePaletteO minimizes the number of
color changes shown on inactive windows when ,the system palette changes.

WORD: The window handle of the application that changed the system palette. The function
. calling RealizePaletteO can compare this value with its own window handle to avoid an infinite

loop of RcalizePaletteO and WM_PALETTECHANGED messages.

DWORD: Not used.

WM_P ARENTNOTIFY o Win 2.0 • Win 3,0 n Win 3.1
Purpose

Parameters
wParam

Notification to the parent window that a child window is being created, destroyed, or clicked with
the mouse. This message is received only if the child window was created with the
WM_PARENTNOTIFY'style. If the application has children of children, etc., all ofthe predeces~
sor windows receive this message if all children have the W1\CPARENINOTIFY style. By default,
child window controls inside dialog boxes do riot.notify their parent windows.

WORD: The type of notification may be anyone of the codes in Table '9-33.

WM_CREATE

WM_DESTROY

WM_LBunONDOWN

WM_MBUTTONDOWN

WM_RBUnONDOWN

The child window is about to be created.

The child window is about to be destroyed.

The user clicked the left mouse button over the child window.

The user Clicked the center mouse button over the child window.

The user click~d the right mouse button over the child window.

Table 9-33. JVJCPARENTNOTIFY Codes.

IPararn DWORD: The low-orde~ word contains the handle. of the child window. The high-order word
contains the child window ID value, which was specified as the hMenu parameter when
CreateWindowO was called.

338

Purpose

Syntax

Parameters
heol/fro!

wParmn

IParam

9. WINDOWS MESSAGES V

/I Win 2.0 II Win 3.0 • Win 3.1

Copies the text from the clipboard into an edit control. The text is inserted at the current caret
position within the edit cqntl'ol. The text in the clipboard is assumed to be in CF _TEXT format.

SendMessage (HWND ItColltrol, MI_PASTE, WORD wParam, DWORD (Para1//,)

HWNU: The window handle of the edit control.

WORD: Not used.

DWORD: Not llsed.

WM_QUERYDRAGICON ~; Win 2.0 II Win 3.0 .Win3.l

Purpose Notifitation that the user is about to drag (move) a minimized (iconic) window. This message is
sent only if the window was created with a class structure that does not have a default icon
defined. Windows will display the default icon cursor when moving a minimized window that does
not have a class icon. This display has the effect of suddenly changing the icon image, which may
not be desir·able. The application can intercept this message and return a handle to a mono
chrome cursor to specify the cursor shape to display. Use LoadCursorO to obtain the cursor
handle. Return the handle in the low-order word. Return NULL to use the default icon cursor.

Parameters
wParam

IParam

WOHD: Not used.

DWORD: Not used.

WM_ QUERYENDSESSION • Win 2.0 m Win 3.0 • Win 3.1

Purpose

Parameters
wParam

IParam

Notification that the Windows session is about to be ended. This gives applications a chance to
save data files before the Windows session is over. The application should return a nonzero value
if the application can be shut down, zero if not. The DeiWindowProcO returns a nonzero value,
allowing shutdown to continue.

WORD: Not used.

DWORD: Not used.

WM QIJERYNEWP ALETTE [-, Win 2.0 Ia Win 3.0 • Win 3.1

Purpose

Parameters
u'Param

{Paraw

Notification that an application is about to receive the input focus. If the application needs to
realize its logical eolor palette when it receives the input focus, the window should 1'etu1'l1 a
nonzero value to thjs message. The default return value from DefWindowProcO is zero.

WORD: Not used.

DWOIW: Not. used.

WM_QUERYOPEN II Win 2.0 e Wil. J.O • Win a.!
Purpose Notification that a minimized (iconic) windO\v is about to be restored. This provides a chance for

the application to refuse to restore the window. This may be appropriate for a small utility, such
as a clock program, tllat should always be minimized. The application should return a nonzero
value if the winctow can be restored, zero if not.. The default returned value from
DefWindowProcO is nonzero.

339

WINDOWS API BIBLE

Parameters .
wParam

IParam

WM QUIT
Purpose

Parameters
wParam

IParam

WORD: Not used.

DWORD: Not used.

• Win 2.0 • Win 3.0 .• Win 3.1
This is the final message processed by an application. It is generated when the application calls
PostQuitMessageO. When GetMessageO receives this value in the program's message loop, it
returns zero, causing the message loop to be exited and the l'rogram to exit.

WORD: Contains the exit code given in the PostQuitMessageO function call.

DWORD: Not used.

WM_RBUTTONDBLCLK • Win 2~'0 • Win 3.0 • Win 3.1

Purpose

Parameters

Notification that the user has double-clicked the right mouse button. Only windows that have a
: class structure, that includes the. CS_DBLCLKS style will receive these messages. Not~ that the·
single mouse.click messages always precede a double-click message. .

wParam WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can by any combination of the binary flags in Table 9-34.

MK_CONTROL The CONTROL key is down.

MK_LBUTTON The left mouse button is down.

MK_MBUTION The center mouse button Of any) is down.

MK_RBUnON . The right mouse button is down.

MK_SHIFf The SHiff key is down.

Table 9-34. Mouse Flags.

IParam , DWORD: The low-order word contains theX position of the cursor when the button was pressed.
The Yposition is in the high-order word. The positions are in pixels, from the upper left corner of

jhewindow.

WM RBUTTONDOWN • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

MK_CONTROL

MK_LBUTION

'MK~MBUTION

MK_SHIFf

Notification that the user pressed the right mouse button ..

WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can by any combination of the binary flags in Table 9-35.

The CONTROL key is down.

The left mouse button is down. .

The center mouse button Of any) is down:

:119 SHIFT key is down.

Table 9-35. Mouse Flags.

340

IParam

Purpose

Parameters
wParam

MK_CONTROL

MK_LBUlTON

MK .. MSUTION

MK_SHIFT

9. WINDOWS MESSAGES Y

DWORD: The low-or~erword contains tl'teXposition of the cursor when the button was pressed.
The Yposition is in the high-order word~ The positions are in pixe'ls, from the upper left corner of
the window. .

• Win 2.0 • Win 3.0 • Win 3.1
Notificat!on that the user released the right mouse button.

WORD: Contains a value reflecting whether several keys were down at the time the message was
sent. This can by any combination of the binary flags listed in Table 9-36.

The CONTROL key is down.

The left mouse button is down.

The center mouse button (if any) is down.

The SHIFT key is down.'

Table 9-36. Mouse Flags.

lParam DWORD: The low-order word contains theX position of the cursor when the button was pressed.
The Yposition is in the high-order word. The positions are in pixels, from the upper left corner of
the window.

WM_RENDERALLFORMATS • Win 2.0 • Win 3.0 • Win 3.1 .
Purpose

Parameters
wParam

IParam

, Notification to the owner of one or more clipboard formats that the application program is exit
ing. This message is received if the application uses delayed rendering of clipboara data (waiting
until the data is needed to add it to the clipboard). The application receiving this message should
put the appropriate data in allocated global memory blocks and call SetClipboardDataO for each
format of clipboard. See Chapter 17, The Clipboard, for details.

WORD: Not used.

DWORD: Not used.

WM_RENDERFORMAT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

IParam

Notification to the owner ofthe clipboard that data should be put in the clipboard in the specified
format. This message is received if the application uses delayed rendering of clipboard data
(waiting until the data is needed to add it to the clipboard). See Chapter 17, The Clipboard, for
details.

WORD: The format of the clipboard requesting data. The clipboard formats are listed in Chapter
17, The Cl~pboard,and in the SetClipboardDataO function description.

DWORD: Not used.

WM SETCURSOR • Win 2.0 • Win 3.0 • Win 3.1
Purpose Notification that the mouse cursor is moving within a window. This message provides a chance to

change the mouse shape depending on where it is. If the cursor is over a child window, Def
WindowProcO passes the W1CSETCURSOR message on to the parent window's message pro-

341

WINDOWS API BIBLE

Parameters
wParam

[Param

cessing function before acting on it. This gives the parent window's message processing function
a chance to determine all the cursor shapes for the application. If the parent also passes the
message to DefWindowProcO,' the default actions are to change the cursor shape back to the
normal arrow cursor when the cursor leaves the client area of the window. This causes a change
in cursor shape if the window was created based on a r.lass structure with a cursor shape other

. than the standard arrow.

WORD: The handle of the window that contains the cursor.

DWORD: The moue hit test code is in the low-order word, and the mouse message (such as
W~CLBUTI'ONDOWN) is in the high-order word. See Appendix 2, MOllse Hit Test Codes, for the
list of all mouse hit test codes. .

WM_SETFOCUS B Win 2.0 • Win 3.0 II Win 3.1

Purpose

Parameters
wParam

[Param

Notification that a window has gained the input focus. At this point, all keyboard input wiII start
going to the window. If the window uses a caret, this is a good point to display the caret so that the
user will know where the next keyboard input will show up.

WORD: Not used.

DWORD: Not used.

WM_SETFONT D Win 2.0 Ill'I Win :3.0 m Win 3.1

Purpose

Syntax
Parameters
hControl

10Param

lParam

Comments

Used to change the font used in dialog box controls, This message should be sent to each control
that changes fonts when the dialog box function receives a Wtl'CINITDIALOG message.

SendMessage (HWND hControl, WM_SETFONT, WORD wParam, DWORD lParam)

HWND: The window handle of the child window control (button, list box, etc.).

WORD: A handle to the font. NULL for the system (default) font.

DWORD: TRUE if the control should be redrawn immediately, FALSE if not. Use lParam equal to
TRUE if you are changing the font during the execution of the dialog box. Settifl~ the lParam
value FALSE (zero) saves time if the dialog box function is processing a WM_INITDIALOG mes
sage.

Windows will send the W~CSETFONT message to the dialog box message function if the dialog
box was created with the DS_SETFONT style. This is only possible if the CreateDialogIndirectO,
CreateDialoglndirectParamO, DialogBoxIndirectO, or DialogBoxIndirectParamO functions
were used to create the dialog box.

WM_SETREDRAW m Win 2.0 II Win 3.0 II Win 3.1
Purpose

Syntax

Parameters
hControl

Sent to a list box and to combo box controls prior to adding or deleting a number of items. By
turning redrawing off during the changes, the changes occur faster and without a lot of distract
ing action within the list box area of the control. The redraw status is then set back to the normal

. ON state at the end of the changes.

SendMessage (HWND hControl, W~CSETREDRAW, WORD wParam, DWORD lParam)

HWND: The window handle of the child window control (list box, combo box).

342

wParam

IParam

9. WINDOWS MESSAGES ...

WORD: Nonzero to turn on redrawing in the control. Zero to turn off redrawing in the control.

DWOHD: Not used. . ~

WM_SETTEXT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Returns

Parameter!)
hControl

wParam

IParam

Used to change the title or text of a window. For button controls, this changes the button's text.
For edit controls and combo boxes, it changes the edit control text. For parent, child, and popup
windows, the window caption is changed. Sending this message is equivalent to calling the
SetWindowTextO function.

dwRclurned == SendMessage (HWND hColilrol, Wl\CSETTEXT, WORD l()Paralll~ DWOHD
[Param)

DWORD, normally ignored. Hetul'l1s CB_ERHSPACE if there is not enough room in the edit con
trol of the combo box to hold the string. Returns CB_ERR if the combo box does not have an edit
control.

H\VND: The window handle of the child window control (button, combo box, etc.).

WORD: Not used.

DWORD: A pointpr to a null-terminated string containing the new text.

WM_SHOw\VINDOW 13 Win 2.0 Ell Win a.o D Win :3.1,

Purpose

Parameters
wParam

IPamm

Purpose

Parameters
wParam

Notifieation that a willelow is to Le either hidden or shown. This message occurs when the
ShowWindowO funetion is ealled, or when an overlapped or popup window is nlaximized, re
stored, minimized, or opened. The DefWindowProcO function hides or sho~\'s the window when it
processes this mess:.lge.

WORD: Nonzero if the window is being shown, zero if it is being hidden.

DWOHD: Zero if a call to ShowWindowO ,vas the reason for the message. SW_PAHENTCLOSING
if a parent window is closing, or a popup window is beillg hidden. SW_PAHENTOPENING if a
parent window is being displayed, or a popup wir- :ow is being shown.

m Win 2.0 m Win :3.0 II Win 3.1

Notification that the size of a window has changed. Applications usually process this message to
keep track of how big the elienta area of the window is.

WORD: Contains one of the values in Table H-37.

~I
SIZEFULLSCREEN The window has been maximized.

SIZE1CONIC

SIZENORMAL

SIZEZOOMHIDE

SIZEzOOMSHOW

The window has been minimized (made iconic).

The Window has been resized.

Sent to all popup windows when another window has been maximized.

Sent to all popup windows when another window has been restored to its previous size.

Table 9-37. WACSIZE Codes.

343

WINDOWS API BIBLE,

IParam DWORD: The IQw-order wQrd cQntains the width Qf the windQw's client area. The high-Qrder wQrd
contains the height. BQth are in pixels.

WM SIZE CLIPBOARD • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

IParam

NQtific8tiQn that the. clipbQard viewer applicatiQn has changed. size.· This wIll Qccur Qnly if the,
clipbQard cQntains a data handle fQr the CF _OWNERDISPLAY fQrmat. This message will be sent
with a null rectangle (values 0,,0,0,0) when the clipbQ~rd viewer is abQut to. be destrQyed.

WORD: ,The \\IindQw handle Qf the clipboard yiewer.

DWORD: A pointer to. a RECT data structure that cQntains the area the clipbQard viewer shQuld
paint.

WM_SPOOLERSTATUS o Win 2.0 II Win 3.0 • Win 3.1
Purpose

Parameters
wParam

IParam

NQtificatiQn from the Print Manager that a jQb has been added or subtracted frQm the printer
queue.

WORD: Equal to. SP _JOBSTATUS.

DWORD: The IQw-QrderwQrd cQntains the number QfjQbs in the printer queue. The high-Qrder
wQrd is nQt used.

WM'SYSCHAR • Win 2.0 • Win 3.0 • Win 3.1

~ose

Parameters' ,
wParam

IPamm

This is the equivalent Qf a \VM_CHARmessage, except that it is generated by TranslateMessageO
in the application's message IQQP when a MtLSYSKEYUP Qr \VM_SYSKEYDOWN message is
prQcessed. SYSKEY messages are sent if the @ key is dQwn Qr if no. window has the input
focus. SYSKEY messages also. CQver the system functiQns such as switching between WindQws
(@-@), @-Cill), etc). '

\VO RD: The ASCII value Qf the key pressed.
DWORD: The 32-bit keybQard data fQr the key, coded as shown in Table '0-38.

, 0-15 (low order word) The repeat count. This is the number of times the character was repeated because the user'
held a key down.

16-23

24

:25-28

29

30

31

The keyboard scan code.

1 if an extended key, such as a function key or a key on the numeric keypad.

Not available.

1 if the @ key was held down when the key was pressed, 0 if not. This is called thtl "context
code." .

1 if the key is down before the message was sent, 0 if not.

1 if the key is being released, 0 if the key is being pressed.

Table 9-38. 32-Bit Coded Ke1Jboard Data.

Note If bit 29 is zero., the message can be passed to. TranslateAcceleratorO within the applicatiQn's
message IQQP. This allQws the acceleratQr keys to. be used with the active windQw even if it does
nQt have the input fQcus.

344

9. WINDOWS MESSAGES ..,

WM_SYSCOLORCHANGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

lParam

Purpose

Parameters
wParam

Notification that one or more of the system colors has changed. This message is sent to all top·
level windows when a system color is changed. Applications that use the system colors to create
objects (pens, brushes, etc.) should delete those items and create new ones using the current
system colors. This message is followed by a WM_PAlNT message.

WORD: Not used.

DWORD: Not used.

• Win 2.0 • Win 3.0 • Win 3.1
Notification tnat the user has selected a system menu command (the menu that appear5 if the
button at the top left corner of a window is clicked), OJ,' that the minimize or maximize buttons in
the upper right corner of the window are pressed. Note that the system menu can be modified by
the application. Menu items added to the system menu generate W~CSYSCOMMAND messages,
ilOt WM_COMMAND. Do not pass added menu options on the system menu to DetWindowProcO.
Just return after the processing of the message is complete.

WORD: One of the values listed in Table 9·39.

SC_CLOSE Close the window.

SC_HOTKEY (Win 3.1) Activates a window associated with the application·specified hot key. The low-order word of
IParam contains the window handle of the window to activate.

SC_HSCROLL

SC_KEYMENU

Scroll horizontally.

Menu retrieved via a keystroke.

SC_MAXIMIZE (or SC_ZOOM) Maximize the window.

SC_MINIMIZE (or SCJCON)

SC_MOUSEMENU

SC_MOVE

SC_NEXTWINDOW .

SC_PREVWINDOW

SC_RESTORE

?C_SCREENSAVE (Win 3.1)

SC_SIZE

SC_TASKLIST (Win 3.1)

SC_VSCROLL

Minimize the window.

Menu retrieved via a mouse click.

Move the window.

Move to the next window.

Move to the previous window.

Restore the window to its previous size.

Executes the screen-save application specified in the desktop section of the Windows 3.1
Control Panel.

Resize the window.

Executes or activates the Windows task manager application.

Scroll the window vertically.

Table 9-39. WACSYSGOMMAND Value.Ii..

lParam

Notes

DWORD: If the mouse was used to select a system menu cOIllmand, the low-order word contains
the mouse X position, and the high-order word contains the Ypositi.on. Otherwise, IParam is not
used.

All the SC_ values are defined in WINDOWS.H all be above OxOOOF in value. This is because Windows
uses the lower four bits internally. Be sure to AND (&) the wParam value with OxFFFO befor~
testing the value to see which SC_ option was selected.

345

WINDOWS API BIBLE

WM SYSDEADCHAR • Win 2.0· .. Win 3.0 EI Win 3.1

Purpose

Parameters
wParam

lPamm

Notification of a system dead character. This occurs when a WM_SYSKEYDOWN or
WM_SYSKEYUP message is processed by TranslateMessageO in the window message loop, for a
system keystroke on a non-English keyboard that is using an accented character.

WORD: Contains the dead-key value, per the keyboard language definition in use.

DWORD: The low-order word contains the repeat count. The high-order word contains the auto
repeat count.. These values usually can be ignored.

WM_SYSKEYDOWN II Win 2.0 II Win 3.0 IJ Win 3.1

Purpose

Parameters
wParam

lParam

Note

Notification that the user pressed a key while holding down the @ key. It also occurs when no
window has the input focus. WM_SYSKEYDOWN is then sent to the active \vindow. Bit 29 of
[Para11/. can be used to distinguish between these two cases. This message is processed by
Translah~MessageO in the application's message loop, which generates a WM_SYSCHAR mes
sage.

WORD: ThE' virtual key code of the key pressed ..

DWOHD: The 32-bit encoded data for the keypress. See Table U-38 under W1CSYSCHAR for the
meaning of each bit.

If bit 29 is zero, the message can be passed to TranslateAcceleratorO within the application's
message loop. This allows accelerator keys to be used with the active window even if it does not
have the input focus.

WM __ SYSKEYUP II Win 2.0 Itt Win 3.0 • Win 3.1

.Purpose

Parameters
wParam

lParam

Note t

Notification that the user released a key while holding down the @ key. It also occurs when no
window has the input. focus. W~CSYSKEYDOWN is then sent to the active window. Bit 29 of
IParamcan be used to distinguish between these two cases. This message is processed by
TranshiteMessageO in the application's message loop, which generatE's a WM_SYSCHAR mes
sage.

WORD: The virtual key code of the key pressed.

DWOHD: The 32-bit encoded data for the keypress. See Table 9-38 under WM_SYSCHAR for the
meaning of each bit.

If bit 29 is zero, the message can be passed to TranslateAcceleratorO within the application's
message loop. This allows accelerator keys to be used with the active window even if it does not
have the input focus. _

WM TIME CHANGE • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Parameters

--
Notification that the system clock has been changed. This message should be sent to all top-level
windows if the application changes the clock.

dwRetumed = SendMessage (OxFFFF, W~CTIMECHANGE, 0, OL) ;

The parameters should be set as shown, so that the message is sent to all top-level windows
(hWnd == OxFFFF does this).

346

WM_TIMER
Purpose

ParamcterE
wParam

IParam.

WM_LJNDO
Purpose

Syntax

Parameters
li Can trol

wPm'am

IPamm

\VM_USER
Purpose

9. WINDOWS MESSAGES V

m Win 2.0 • Win 3.0 m Win 3.1

Notification that one of the timers set with the SetTimerO function has passed its time interval.

WORD: The timer ID yalue, used as the nIDEvent parameter when Set'l'imerO was called.

DWORD: Normally NULL. If the value is nonzero, IParam is a procedure-instance handle to a
function Ret as the lpTimel'Func parameter when SetTimerO was called. In this case, Windows
executes the timer function directly, rather than sending the WM_TIMER message to the
window's message processing function.

fl Win 2.0 a Win 3.0 1.1 Win 3.1
Copies the text from the clipboard to the edit control's client area. This eliminates the effect of
a W~CCUT message. The clipboard contents are assumed to be in CF _TEXT format.

SendMessage (HWND hControl, wrtCUNDO, WORD wPm'am, DWORD IParam)

HWND: The window handle of the edit control.

WORD: Not used. Set equal to O.

DWORD: Not used. Set equal to OL.

ID Win 2.0 IIiJ Win 3.0 III Win 3.1

Values ofW~CUSER and above, up to Ox7FFF, can be used by an application for messages defined
by the application. This is a convenient way for the independent window processing functions of
the different child and popup windows to communicate. Most programmers deli no till! IImv nw:;
sages for their application in the application's header file:

#define NEWMESSAGE
#de~inecSECONDMESSAGE

(WM_USER + 1)
(WM_USER + 2)

Parameters
wParam

lParam

Purpose

Parameters
wParam

If messages are being sent between different applications, W1CUSER message coding is not
saved, as different programs can use the same code. for different meanings. Instead, generate a
system-wide unique message using RegisterWindowMessageO. Note that Windows defines a
number of child window control messages as WivCUSER + a value. If you need to use W~CUSER
+ messages with a child window control (perhaps a subclassed control), be sure the added value
is large enough that it does not overlap those defined in WINDOWS.H. W~CUSER + 200, etc.
should be fine.

WORn: Can have any meaning useful to the application, limited to 16-bits.

DWORD: Can have any meaning useful to the application, limited to 32-bits.

Ell Win 2.0 0 Win 3.0 g Win 3.1
N·otification that the user pressed a key while a list box had the input focus. The list box must
have been created with the LBS_WANTKEYBOARDINPUT style to receive this message. This
message allows the application to provide keyboard shortcuts to select list box items.

WORD: Contains the virtual key code for the key pressed. See Chapter 7, Keyboard Support, for
a list of all virtual key codes;

347

WINDOWS API BIBLE

IParam

Returns

DWORD: The low-order window contains the window handle of the list box. The high-order word
contains the current selection index.

The message processing function should return the index of the item to select. Return 0 for the
first item. To let the list box process the keystroke in the default manner, return -1. To stop all
processing of the keyboard input to the list box, return -2.

WM VSCROLL • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters

Notification that the user has adjusted a vertical scroll bar.

wParam WORD: One of the codes jn Table 9-40.

SB_BOTIOM Generated if the scroll bar has the input focus and the @ key is pressed. Not generated by
mouse actions.

SB_ENDSCROLL Sent when the scroll activity stops.

SB_LlNEDOWN Clicked the arrow on the left.

SB_LlNEUP Clicked the arrow on the right.

SB_PAGEDOWN Clicked the area of the scroll bar bel\veen the left arrow cind the thumb.

SB_PAGEUP Clicked the area of the scroll bar between the right arrow and the thumb.

SB_ THUMBPOSITION

SB_ THUMBTRACK

SB30P

The message passes the position of the thumb as the low-order word of IParam.

The thumb is being dragged. The current position is passed as the low-order word of IParam.

Generated if the scroll bar has the input focus and the (HOME) key is pressed. Not generated by
mouse actions.

Table 9-40. Scroll Bar Codes.

IParam

Windows documentation suggests that S~_BOTTOM and SB_TOP values are- also sent. These
values are not detected With child window scroll bar controls.

DWORD: The high-order word contains the window handle of the scroll bar. If the scroIi bar is ',.
attached to the boundary of a popup window, the high-order value is not used. The k;':',,'-order word
contains the thumb position if either the SB~THUMBPOSITION or SB_THUMB'Hu\'CK value for
wParam is passed.

WM VSCROLLCLIPBOARD • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Parameters
wParam

IParam

Used with.the CF_OWNERDISPLAY format of data type for the clipboard, used by clipboard
viewer programs. The message indicates that the clipboard viewer vertical scroll bar has been
us~d.

WORD: Contains a handle to the clipboard viewer program.

DWORD: The low-order word contains one of the scroll bar codes shown in Table 9-40, as used in
WM_ VSCROLL messages. The high-order word contains the thumb position if the SB_THUMB
POSITION or SB_THUMBTRACK value is passed in the low-order word. Othenyise, the high-
order word is not used. .

348

Purpose

Syntax

Psrameters
wParam

lParam

9. WINDOWS MESSAGES 'Y

• Win 2.0 • Win 3.0 • Win 3.1
Notification that the WIN.INI file has been changed. Any program that modifies WIN.INI should
send this message to all top-level windows, per the syntax: example. The hWnd parameter is set
equal to OxFFFF to send a message to all top-level windows. Any program receiving this message
can check whether the section changed (lParam value) applies to the operation of the program.
If so, the application can re-initialize after reading that section from WIN.INI.

SendMessage (OxFFFF, WM_ WININICHANGE, WORD wParam, DWORD lParam)

WORD: Not used. Set equal to O.

DWORD: A pointer to a null-terminatedcharacter string that contains the WIN.INI section name
that has been changed. The square brackets used in WIN.INI to show section names should NOT
be included in this string. Although not officially supported, some applications will send this
message with lParam set equal to NULL. In this case, the receiving application has no choice but
to check every relevant section of\VIN.INI and re-initialize.

349

In the past, programmers had to continually modify and add to their programs as new printers, video displays, and
other hardware entered the market. In most cases, these updates distracted from the goal of improving the real
functionality of the software. One of the major advantages to using the Windows environment is that Windows deals
with the hardware for you. A well-designed Windows program will continue to function exactly as intended when new
computer and printer hardware are introduced.

The Device Context
The basic tool that Windmvs uses to insulate your program from the "real-world" hardware is called a device context,
or DC. 'fhe DC amounts to about 800 bytes of'information that Windows maintains about an output device, such as a
video screen or a printer. Instead of sending output directly to the hardware, your program sends it to the DC, and
then Windows sends it to the hardware. As an example, consider the steps necessary to output a string to the client
area of a window. First, declare a variable to hold a handle to the device context. This is just an unsigned integer that
Windows uses to keep track of which DC is active. (The HDC data type is defined in WINDOWS.H.)

HOC hOC; 1* a handle to the device context *1

Second, retrieve a handle to the client area's device context with the GetDC() function.

hOC = GetOC (hWnd) ; 1* get a handle to the window's client area OC *1

Finally, output the text to the device conte>..i, and release the device context. Releasing the DC is important, as
~indows will not allow access to the device context by another program until it is released.

TextOut (hOC, 0, 0, "Text Output To Client Area.", 25) ;
ReleaseOC (hWnd, hOC) ;

This is not too complicated, but t.here is more going on here than you might expect. We did not specify the charac
ter font to use, what color to draw the text, how big to make the letters, etc. All of these parameters were based on the
default values stored in the device context. To expand on this example, let's output the same string again. This time
we ,vill pick a different font and make the color of the text bright red. The code now looks like

HOC hOC;

hOC = GetOC (hWnd) ;
SelectObject (hOC, GetStockObject (ANSI_VAR_FONT» ;
SetTextColor (hOC, RhB (255, 0, 0» ;
TextOut (hOC, 0, 0, "Text Output To Client Area.", 25)
ReleaseOC (hWnd, hOC) ;

Two new lines were added. SelectObjectO was used to select a new font into the device context. In this case, one
of the sL"{ stock fonts was loaded. The SetTextColorO function modified one of the device context settings, changing
the text color to red. A handy macro RGBO defined in WINDOWS.H was used to create the 32-bit color value needed
for SetTextColorO by specifying the red, green, and blue elements of the color. The result of these changes is that this
time TextOutO writes the output with red letters, using the ANSCVAR_FONT character font. A wide range of other

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

changes are possible for a device conteXt. You can select different pens, brushes, fonts, and colors. You can also scale
the device cont.ext in different ways to increase the hardware independence of your program.

Ilandling WM_P AINT Messages
You will not use the GetDCO and HeleaseDCO functions to retrieve and release the window's client area DC when
you process M1CPAINT messages. Windows provides two specialized functions to handle this situation: BeginPaintO
and EndPaintO. Windows assumes that you will want to speed up your program's screen refresh logic by only painting
the areas that need repainting. Windows updates a PAINTSTRUCT data structure when the \%CPAINT message is
sent. The PAINTSTRUCT structure is defined in WlNDOWS.H as follows:

typedef struct tagPAINTSTRUCT.i.PAINTSTRUCT;
{

HDC hdc;
Baal fErase;
RECT rcPaint;
Baal fRestore;
Baal fIncUpdate;
BYTE rgbReserved[16J;

} PAINTSTRUCT;
typedef PAINTSTRUCT
typedef PAINTSTRUCT NEAR
typedef PAINTSTRUCT FAR

*PPAIN:rSTRUCT;
*NPPAINTSTRUCT;
*lPPAINTSTRUCT;

The rcPaint element of the structure contains the rectangle that defines the smallest rectangle that covers all of
the client area that needs to be repainted. You can also use the hdc element of the PAINTSTRUCTas a quick way to
get the client area DC. You do not have to be efficient in repainting just the rectangle that needs updating. You can
repaint the whole client area when you get a WM_PAINT message. Most programs do this to simplify their painting
logic. Only the parts of the client area that are in the refresh rectangle ,vill actually be repainted, even though the
output functions may specify painting in the entire area. If the screen updates become too slow, put some more logic
into the processing of\VM_PAINT messages to reduce the amount of repainting that needs to be done. This subject
will be covered in the next Chapter, Painting the Screen. .

Selecting Objects into a Device Context
At any given time, a device context will have one pen to draw line. nth, one brush to fill areas with, one font to type
letters in, and a series of other values to control how the device context behaves. If you want to use a different font,
you need to select it into the device context. This makes it available the next time you want to do some text output.
Selecting a new font does not redraw text on the \vindow's client area. New text appears only' if you select the new font,
and then use it to output text vnth a function like TextOutO. The following example switches from one font to another
for the output of two separate lines.

HOC hOC;

hOC = GetOC (hWnd) ;
SelectObject (hOC, GetStockObject (OEM_FIXED_FONT» ;
TextOut (hOC, 0, 0, "Text Output With OEM Font.", 24) ;
SelectObject (hOC, GetStockObject (ANSI_VAR_FONT» ;
TextOut (hOC, 0, 20, "Text Output Wi th ANSI Font" .26) ;
Re leaseOC (hWnd, hOC> ;

The first line is typed using the OE~CFlXED_FONT, while the second one is typed with the ANSCVAR_FONT.
Both lines will be visible in the client area when this code fragment is executed. So far, we have used only stock
objects, that are always available in Windows. Stock objects are not deleted after use. Most of the time you will need
to create new pens, brushes, and fonts. These objects take up memory and need to be deleted when not needed. .

Here are a few rules in dealing with device contexts: .

1. Only five device contexts can be open at anyone time.

2. Do not attempt to delete stock objects. They are the objects listed under the GetStockObjectO function, such
as OEl\LFlXED_FONT.

351

•

WINDOWS API BIBLE

3. Do not delete objects that are selected into the device context. Always select a new object, or a stOLl' object,
into the device context to displace the object you created. Then delete it, when the object is no longer tied to
the device context, delete it.·

Another way to assure that you do not delete an object that. is selected into the device context is to release the
device context before deleting the objects it has been using. '

Private Device Contexts
In the previous examples, the handle to the window's client' area device context was retrieved right before it was
needed and released right after its use. This is the normal case. Using this type of logic makes the program as memory
efficient as possible, by only tying up the deyice context during the periods when the program is generating output.
The cost of this memory efficiency is program speed. Every time the program wants to output, it must fetch the device
context handle, modify the defaalt DC settings as needed, do the output, and finally release the DC. All of this takes
time. .

An alternative way for a program to deal with the client area device context is to keep its own private copy. This is
done by specifying the CS_OWNDC class style in the class definition for the \vindow. The top of the WinMainO func-
tion Will include a line like '

wndclass.style = CS_HREDRAW I CS':"'VREDRAW I CS_OWNDC;

With this cla..~s style, the device conte>.i exists for the life of the window. The program still uses GetDCO to
retrieve a handle to the de\ice context. There is no need to call ReleaseDCO after the device context is used
(ReleaseDCO will not do anything in this case.) Having a private device context is also convenient for programs that
make changes to the device context settings. Changes such as new text colors, pens, and brushes, remain in effect
until they are changed again or the program exits.

You should choose between private and public device contexts based on the type of application you are writing. If
the program only makes limited use of the device contex or seldom changes the default settings, use a public device
context to save memory. If the program makes heavy use of the device context, use a private DC to speed up execution
and simplify the program. '

Saving a Device Context
In some applications, you may find yourself repeatedly switching between two or three common sets of device context
settings. For example, you may be using a combination of one font, color, background mode, etc. to paint the fixed part
of the client area and using another combination of font and colors for the parts the user can change. A convenient
way to code applications like this is to create separate device contexts and save them,with the SaveDCO function.
SaveDCO saves the settings in a "context stack," where they ~an be recovered at any time by calling RestoreDCO.
Calling RestoreDCO does not remove the saved copy of the DC from the stack, so you can switch to these settings any

• number of times. The saved device contexts will be removed with the stack when the application terminates. '

Mapping Modes
One of the default assumptions a device context starts with is the coordinate system for mapping points on the device.
The default coordinates pu(the origin (the point with X = 0 and Y = 0) at the top left corner. X values increase to the
right, and Yvalues increase downward. The measurement units are pixels. A pixel is one dot on the screen, or one dot
on the printer.

The default coordinates are acceptable if you only write to the screen. If you also want to write to the printer, you
have problems. One pixel on a laser printer is a lot smaller than one pixel on the'screen. The result is that theoutput
that fills up the window on the screen ends up the size of a postage stamp when printed. We want Windows to take
care of hardware dependem~ies, so something better has to be done. The answer lies in using a better coordinate
system thanjust pixels. Windows calls changing the coordinate system "setting a mapping mode." The SetMapModeO
function does the work. The default mapping mode is called MM_TEXT. There are five other mapping modes that
scale output. Size can be measured in' English; metric, or printer's units' (twips). Table 'I O-llists the fIxed': size map
ping modes.

352

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING V

Mapping Mode . Meaning

MM_HIENGLISH Each logical unit is 0.001 inch. X increases to the right. Y increases upward.

MM_HIMETRIC Each logical unit is 0.01 millimeter. X increases to the right. Y increases upward.

MM_LOENGLISH Each log~cal unit is 0.01 inch. X increases to the right. Y increases upward.

MM_LOMETRIC Each logical unit is 0.1 millimeter. X increases to the right. Y increases upward.

MM3EXT This is the default mapping mode. Each unit equals one pixel. X increases to the right. Y increases
downward.

MMJNIPS Each logical unit is 1/20 point. or 1/1440 of an inch. X increases to the right. Yincreases upward.

Table 10-1. Fixed Size Mappin.q Modes.

~I

The coordinate system units are referred to as "logical units," as they have meaning only with respect to the
mapping mode in usc. Mter you have changed the mapping mode, measurements within the device context are based
on the new system of units. Forexample, calling TC}"tOutO with the coordinates 10,10 puts the string at the top left
corner of the client area using the default MM_TEXT mapping mode. If you switch to M~CLOMETRIC, the 10, 10 point
is 1 mm to the right and 1 mm above the bottom left corner. The teAt will end up hidden under the windo~v's border!
Windows does its best to niake·the logical units match real measurements in inches and millimeteres. It does a good
job with printers, but can be significantly off with video displays. This discrepancy is because Windows has no way of
knowing what size monitor you are using.

Another use of a coordinate system is to allow you to shrink or expand graphics by changing the coordinate
system, rather than by changing the graphics logic. Windows provides two mapping modes for this purpose, Ml\CISa
TROPIC and Ml\CANISOTROPIC. Table 10-2 lists the modes that can be scaled.

I· Mapping Mode M~aning ~I
MMJSOTROPIC . Arbitrary scaling of the axes, but the X and Y scaling must be the same. Use SetWindowExt()

and SetViewportExt() to set the orientation and scaling.

MM_ANISOTROPIC This is the most flexible system of units. Either axis can have any scaling factor. Use
SetWindowExt() and SetViewportExt() to set the orientation and scaling.

Table 10-2. AJapping Modes that Can Be Scaled.

The M~'-AN1SOTROPIC mode generally is used for programs that want to distort the graphics displayed in the
client area to always match the size oithe window. MM_ISOTROPIC is used to shrink and expand graphics, without
distorting the image. Windows uses a rather obscure method to scale these two coordinate systems. Rather than use
floating point numbers to describe how much to ratio the logical units to the device's pixels,Windows uses two sets of
integers. One set is called the "window extent," and the other set is called the "viewport extent." For example, to scale
the logical coordinates to be twice the pixel (or "device") units, you would use the following two function calls:

SetWindowExt (hOC, 1, 1);
SetViewportExt (hOC, 2, 2) ;

You can also reverse the direction of either of the axes by making the signs of the scaling integers different. For
example, to scale the logical coordinates to be 1/10 pixel and have the Yaxis increase upward; use

SetWindowExt (hOC, 10, 10) ;.
SetViewportExt (hOC, 1, _1)/;

You can use scaleable coordinates in programs that output to the printer. You will need to adjust the scaling of the
printer's device context depending on the resolution of the pi:inter. The function GetDeviceCapsO is handy here, as
you can use it to find out the horizontal and vertical resolution of the printer. One final bit of flexibility with logical
coordinate systems is the ability to move the origin. This is a good way to implement scrolling of a graphics display.
Instead of recalculating where everything should be after the image is scrolled, just change the location of the origin
and repaint. Windows overkills on this, by giving you two different ways to move the origin. Normally, you will use

353

WINDOWS API BIBLE

either SetViewportOrgO or SetWindowOrgO. If you use
both,be aware that the ''viewport'' origin is an offset from
the ''window'' origin. You can end up with some complex
offsets-from-offsets if you use both functions to move the
origin.

Fonts
Windows provides six stock fonts that are always avail
able. Figure 10-1 shows what they look like on a VGA dis
play. The stock fonts can be fetched at any time using
the GetStockObjectO function, and then SelectObjectO
to add the font to the device context.

Windows also supports importing new fonts. Fonts
are defined 'in files with the .FON extension. Some are
provided with Windows, and additional fonts can be pur-

Qo It! Quit

Font = ANSI_FIXED FONT
Font = ANS'_ VAR_FONT

Font = DEVICE_DEFAULT_FONT
Font ~ OEM-FIHED-FOHT

Font = SYSTEM_FONT
Font = SYSTEM_FIXED_FONT

Figure 10-1. Stock Fonts.

chased from third parties. The .FON files typically define a font at certain sizes and with a limited number of styles
(italics, bold, underline, etc.). A problem you may run into is that the printer supports a particular font, but it is not
defined for the screen device context. Windows provides the powerful CreateFontO function to interpolate new fonts
based on the information in a font file. These estimated fonts are called "logical fonts." Windows will synthesize a new
font size or an italic style, evenlf the size or style is not included in the .F0N file. These synthesized fonts tend to be
lower quality than fonts explicitly defined in the font file.

When scaling fonts, you will need to understand the system of measurements used to describe a character. Figure
10-2 shows the names of each measurement. The GetTextMetricsO function returns a pointer to a structure that
contains all of these values for the current font of a device context.

Figure 10-2. Text Dimension
(Metrics). .

It should be no surprise that Windows provides a wide range of related support
for formatting text. Justification oftext to fit a space, adding space between charac
ters, changing the background color, and graying the characters are all directly
supported.

Pri~ter Support
Sending output to the printer is almost identical to sending it to the screen. The
program must get a handle to the printer's device context. Output is then sent to
that DC, rather than to the screen's DC. All of the normal output functions, such as
TextOutO and LineToO, work for output to a printer, assuming that the printer
supports graphics. Of cours,;, the mappingp10de needs to be considered if you want
to avoid having all of the graphics squished into the upper left corner of the page.
There are a few differences between printer output and screen output. To get the

handle to the printer's device context, use the CreateDCO function instead of GetDCO. Before you can use
CreateDCO, you will need to find the name of the printer driver currently active in Windows. Windows writes a line in
the WIN.INI file something like

device=PCL.' HP LaserJet,HPPCL,LPT1:

when a printer is selected with'the Install or Control Panel applications. The GetProfileStringO function provides a
quick way to read in this string and pass the parameters to CreateDCO.

When you have the printer's device context, there are a few extra commands (such as form feeds) for printers that
have nO., equivalent with video displays. Windows provides the EscapeO function to send these specialized messages.
A minimal program fragment for sending a text string to the printer is shown in Listing 10-1.

o Li.sting 10-1. Minimal Printer Support
HDC hDC ;
char sZPrinter [64J, *szDriver, *szDevice, *szOutput ;

354

-..-0. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING 'Y

GetProfileString ("Windows i
., "device", "", sZPrinter, 64)

szDevice = strtok (szPr;nter, ",") ;
szDriver = strtok (NU'LL, ",") ;
szOutput = strtok (NULL, ",") ;
hDC = CreateDC (szDr;ver, szDevice, szOutput, NULL) ;
if (Escape (hDC, STARTDOC, 4, "Test", NULL) > 0)
{

}

TextOut (hDC, 10, 10, "Output is on the printer.", 25)
Escape (hDC, NEW FRAME, NULL, NULL, NULL)
Escape (hDC, ENDDOC, NULL, NULL, NULL)

DeleteDC (hDC) ;

The handy C compiler library function strtokO (string token) is used to divide the device data found in WIN.INI
to match the fields expected by CreateDCO. The EscapeO function sends the STARTDOC message to start printing
and the ENDDOC message to end printing. The NEWFRAME message causes the page to be ejected. Printer output
automatically invokes the printer spooler application if the spooler has been selected when the printer was installed.
If the user has chosen not to use the spooler, the commands and data are sent directly to the printer.

The simple example shown in Listing 10-1 is suitable only for small print jobs. For larger jobs, you will want to
provide a way for the user to stop a print job that is in progress. It is also nice to put a dialog box up on the screen to
show that printing is going on and to provide the "cancel" button. These fairly basic printer support items can belJome
a little involved. Remember that Windows programs take. control of the system until they choose to release control,
usually via the GetMessageO function. For our printer abort function, we want Windows to simultaneously send data
to the printer and monitor a dialog box to see if the user has clicked the cancel button. As you may have guessed, this
takes some working with Windows message processing logic.

The heart of the printer "abort" logic is a special call to the EscapeO function called SETABORTPROC. This
function informs Windows of the procedure-instance address of a little message processing function that you build
into the program. Windows periodically sends messages to the "abort" procedure during printing. This gives the pro
gram a chance to stop printing when one of these messages is being processed. To give you an example of how this is
done, we will expand the previous printing example to include a dialog box with a button for cancelling the print job,
and an "abort" procedure for processing messages during printing and possibly cancelling the print job. The program's
definition file (see Listing 10-2) includes two extra exported functions, the "abort" procedure name and the dialog box
procedure. -'

I:> Listing 10-2. Printir).g Example Including an Abort Procedure
NAME generic
DESCRIPTION 'windows printing example'
EXETYPE WINDOWS
STUB
CODE

'WINSTUB.EXE'
PRELOAD MOVEABLE

DATA
HEAPSIZE

PRELOAD MOVEABLE MULTIPLE
1024

STACKSIZE
EXPORTS

5010
WndProc
PrintStopDlg
PrintAbort

The header-file contains the function prototypes for these functions.

1* generie.h *1
#define IDM_DOlT 1* menu item id values *1
#define IDM_QUIT 2

1* global variables *1
int ghlnstance ;
char gszAppName [] = "generi e" ;

1* function prototypes *1
long FAR PASCAL WndProe (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL PrintStopDlg (HWND hDlg, unsigned iMessage, WORD wParam,

LONG lParam) ;
BOOL FAR PASCAL PrintAbort (HDC hdcPrinter, int nCode) ;

355

WINDOWS API BIBLE

The resource .Re file includes the definition of the dialog box that will be displayed while printing is occurring.

1* generic.r
#include <windows.h>
#include "generic.h"

*1

generic ICON generic.ico
generic MENU
BEGIN

MENUITEM "&00 It!"
MENU ITEM "&Qui t",

ENO

IDM_oon
IOM_QUn

Pr i nt Stop OIALO'G 50, 50, 110, 50
,STYLE WS_POPUP I WS_VISIBLE WS_CAPTION
FONT 10, "Helv"
CAPTION "Pri nter 'Acti ve"
BEGIN ,

ENO

CTEXT
OEFPUSHBUTTON

"Click Button To Stop", -1, 0,10,110,12
"Cancel", IOCANCEL, 30, 30, 40, 12, WS_GROUP

The WinMainO function for this example is identical to 'the GENERIC application in Chapter 1, and is not re-
printed. The rest of the C program is as follows: '

HWNO
BOOL

ghOlgPrintAbort ;
gbP,ri ntAbort ;

1* global variables *1

long FAR PASCAL WndProc (HWNO hWnd, unsigred iMessage, WOROw~aram~
{

LONG lParani) ,

HOC
char
FARPROC
int

hOC •
sZPr" nter [64J, *szOri ver, *szOevi ce, *szOutput
lpfnPrintOlg, lpfnAbortPrint ;
i ;

switch '(iMessage)
{

1* process windows messages */

case WM_COMMANO: 1* process menu items,*/
swi tch (wParam)
{

.:ase 10M_OOIT: 1* User hit the "00 it" menu item *1
GetProfileString ("Windows", "device"/' "",

sZPri nter, 64) ;
szOevice = strtok (szPrinter, ",") ;
s z 0 r i ve r = s t r t 0 k (N U L L, ";. n); ,
szOutput = strtok ,(NULL, ",") ;
hOC = CreateOC (szOriver, szOevice, szOutput, NULL) ;

EnableWindow (hWnd, FALSE) ;
gbPri ntAbort = FALSE;

1* disable main window *1

1* show the dialog box *1
lpfnPrintOlg = MakeProclnstance'(PrintStopOlg,

ghlnstance) ;
ghOlgPrintAbort = CreateOialog (ghlnstance,

"PrintStop", h~/nd, lpfnPrintOlg);
/* turn on the abort proc *1

lpfnAbortPrint= MakeProclnstance (PrintAbort, ,
ghlnstance) ;

Escape (hOC, SETABORTPROC, 0,
(LPSTR) lpfnAbortPrint, NULL) ;

if (Escape (hOC', STARTOOC, 4, "Test", NULL> > 0)
{

}

else

TextOut (hOC, 10~ 10,
"Output is on the pri nter.", 25)

Escape (hOC,NEWFRAME, NULL, NULl~ NULL) "
Escape (hOC, ENODOC, NULL, NULL, NULL) ,

1* pri'nt error of some sort *1

356

)

) .

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING Y

Escape (hOC, ENOOOC, NULL, NULL, NULL) ;
HessageBox (hWnd, "Could not activate printer",

. "Printer Error", HB_ICONHANO I HB_OK) ;

OestroyWindow (ghOlgPrintAbort) ;1* kill dialog box *1
EnableWindow (hWnd, TRUE) ; 1* enable main window *1
Set Focus (hWnd) ;
FreeProclnstance (lpfnPrintOlg) ;
FreeProclnstance (lpfnAbortPrint) ;
OeleteOC (hOC) ;
break

case IOI1_QUIT: 1* send end of. application message *1
OestroyWindow (hWnd) ;

i break;

break;
case WM_OESTROY: 1* stop application *1

PostQuitHessage (0)
, break; .

default: . 1* default uindows message processing *1
return OefWindowProc (hWnd, iHessage, wParam, lParam) ;

return (OL> ;

BOOl FAR PASCAL PrintSto~~lg (HUNO hO~g, unsig~ed iHessage~.WORO wParam,
LONG lParam)

)

if (iHessage == WH_COMHANO)
{

)

else

gbPrintAbort = TRUE;
return (TRUE) ;

return (FALSE) ;

BOOl FAR PASCAL PdntAbort (HOC hdcPrinter, int nCode)
{

)

MSG msg ;

whi le (! gbPri ntAbort && PeekMessage (emsg, NULL, 0, 0, PrLREHOVE»
{

)

if (!IsOialogMessage (ghOlgPrintAbort, &msg»
{

TranslateHessage (&rnsg) ;
OispatchH~ssage (&rnsg) ;

return (!gbPrintAbort) ;

Note that the "abort" procedure is ba.'3ically a message loop. Messages from an~ window, including the dialog box
window displayed while printing is going on, pass through this loop. The key to aborting the printing job is the global
variable gbPrintAbort. It is set to FALSE before printing starts. If the button in-the_dialog box is activated,
gbPrintAbort is set to TRUE. This setting is detected the next time a message passes through the "abort" procedure, .
and the printingjob is cancelled.

The Printer Device Driver
Although Windows shields you from needing to deal directly with the printer hardware, there are a few situations
where it is necessary. For example, you may need to determine the size of the paper or the number of paper bins, the
printer is usi~g to ~itch from portrait mode to landscape mode.

357

WINDOWS API BIBLE

When you install a printer under the Windows Control Panel application, a fIle with the extension .DRV is added
to the Windows system directory. This fIle is called a "driver." Drivers are actually small DLLs (dynamic link libraries,
explained in Chapter 28). The printer supplier generally writes the driver program, based on the guidelines provided
by Microsoft. The driver contains all of the code needed to translate the Windows output data into printer-specific
commands. The driver will also contain t~e code needed to generate a printer setup dialog box. This is where those

. dialog boxes come from that allow you to change from portrait to landscape mode, pick paper sizes, etc.
Prior to Windows 3.1, the primary way to deal with the device driver was via the EscapeO function. A long series

of commands were supported using Escape 0 to change and determine printer information. With Windows 3.1, most of~~
the EscapeO functions are no longer supported, or are at least discouraged. Several more elegant functions that make
dealing with the device driver considerably simpler replaced them.

The key function for working with a printer device driver under Windows 3.1 is ExtDeviceModeO. This function is
not defined in WINDOWS.H, although a prototype is included in the DRMNIT.H fIle which is included with the Win
dows SDK. ExtDeviceModeO does not show up in WINDOWS.H because it is not part of Windows-it is part of the
printer driver. To access ExtDeviceModeO you must load the driver file using LoadLibraryO, and obtain the
ExtDeviceModeO function's address using GetProcAddressO. These are DLL functions, and they are explained more
fully in Chapter 28, Dynamic Link Libraries. ExtDeviceModeO is the function-th~t an application calls to cause the
driver to produce the printer setup dialog box.i.printer setup dialog box. -_. . .' \.,

. ExtDeViceModeO uses a specialized data ,structure called DEVMODE to store printer-specific data. This struc
ture is also defined in the DRMNIT.H fIle. ExtDeviceModeO Will determine the current printetsettings and write the
data to the DEVMODE structure. This data can be modified to change the printer device context during a print job.
The ResetDCO function passes the changes in the DEvMODE structure to the driver. The DC\iceCapabilitiesO func
tion is also provided as a quick way to determine which features a printer supports'.

Text and·Device Context Function Summary \.,
\ . ,

Table 10-3 summarizes the device context and text output functions.\The detailed function descriptions are in the -
next section. \' \ '

.Function

AddFontResource

CreateDC

CreateFont

CreateFontlndirect

CreatelC

DeleteDC

DeviceCapabilities

DPtoLP

DrawText

EnumFonts

Escape

ExtDeviceMode

ExtTextOut

GetBkColor

Purpose

Loads a font resource from ~ file into the system. . . \ '

Create~ a device context t,o a ph~ical device, s,uch as a prirtter.

Creates_aJQ.gicaUont, ready to be 'used in text output. .. \.

. Id.enti~ to CreateFont(), excep~ that the paramet~atais ~d to the function via a
LOGFONT data structure. , '. '\ \ \ \" .

. - -Retrieves1t1fevice context for\~ physic~ device, but only foHnformation purposes.

Deletes a device context created with CreateDC(), CompaijbleDC(), or CreatelC().

Determines the capabiliti~ of a device, suchasa~t~{.rMn3.1)
Converts from1dev!ce.points to_logical poirits.: '\ \' \' .- ,

Formats a text string to fit within the bounds of a rectangle.

Rnds (enumerates) all of the fonts available on a given device.

Sends special information to a device, such as a printer.

Determines or modifies the initialization data for a printer. Displays a dialog box for modifying the
printer settings. (Win 3.1)

Output .of, text within a rectangular area, with separate control over the spacing between each
character. . .

Determines the current background color for a device context.

358

GetBkMode

GetCharWidth

GetDC

GetDCOrg

GetOeviceCaps

GetMapMode

GetSystemMetncs

GetT abbedT extExtent

GetT extAlign

GetT extCharacterExtra

GetTextColor

GetT extExtent

GetTextFace

GetT extMetrics

GetViewportExt

GetViewportOrg

GetWindowDC

GetWindowExt

GetWindowOrg

GrayString

LPtoDP •

OffsetViewportOrg

ReleaseDC

RemoveFontResource

ResetDC

RestoreDC

SaveDC

_ ScaleViewportExt

ScaleWindowExt

SetBkColor

SetBkMode

SetMapMode

SetMapperAags

SetT extAlign

SetTextCharacterExtra

SetTextColor

SetTextJustification

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING "

Determines the current background pain~ng ~ode for a device context.

Determines the width of one or more characters in a font.

Retrieves a handle to the device context for the client area of a window.

Determines the screen coordinates for the logical origin of the device context.

Determines the capabilities of a device.

Determines the mapping mode in use by a device context.

Retrieves "the dimensions of different window items on the video display.

Determines the logical dimensions of a string containing tab characters.

Determines the text alignment settings of a device context.

Determines the amount of extra character spacing defined for a device context.

Retrieves the text color setting for a device context.

Determines the length ofa string when output to a device context.

Retrieves the name of the current typeface.

Retrieves basic data about the font currently selected for a device context.

Used with GetWindowExt() to determine the scaling of the device context.

Used with GetWindowOrg() to determine the location of the origin of the logical coordinate
system of a device context.

Retrieves the device context for the entire window.

Used INith GetViewportExt() to determine the scaling of the device context.

Used with GetViewportOrg() to determine the location of the origin of the logical coordinate
system of a device context.

Draws grayed text or a grayed bitmap at the given location.

Converts a point from logical coordinates to device coordinates.

Changes the X, Y offset of the logical coordinate system origin.

Frees the device context.

Removes a font from the syste~ and frees all memory associated with the font.

Upd?.tes a printer device context. (VVin 3.1)

Restores an old device context saved with SaveDC().

Saves a device context for future use.

Changes the scaling of the logical coordinate system for a device context."

Changes the scaling of the logical coordinate system for a device context.

Sets the color of the background surrounding each character, dashed line, or hatched brush .•

Changes the background painting mode.

Changes the mapping mode for a device context.

Adjusts how CreateFont() and CreateFontlndirect() adjust for font dimensions outside of those
specified in the font data.

Changes the text alignment for a device context.

Adds additional space between characters of a device context.

Changes the text color for a device context.

Justifies a string prior to using T extOut() for output.

359

WINDOWS API BIBLE

Table 10-3. continued

Function

SetViewportExt

SetViewportOrg

SetWindowExt

SetWindowOrg

TabbedT extOut

TextOut

wsprintf

ywsprintf

,Purpos~'

Used with SetWindowExt() to set the scaling of the logical coordinate system with the
MMJSOTROPIC and MM_ANISOTROPIC mapping modes.

Changes the origin of the coordinate system used for text and graphics locations on a device.

Used with SetViewportExt() to set the scaling of the logical coordinate system with the
MMJSOTROPIC and MM_ANISOTROPIC mapping modes.

Changes the location of the origin of the device context.

Outputs a text string, expanding all tab characters.

Outputs a character string at a location on the salected device context.

Formats text output to a charaqter buffer.

Formats text output to a character buffer.

Table 10-3. Text and Device Context Function Summary.

Text and Device Context Function Descriptions
t

AnnFoNTREsOURCE m Win 2.0 £!} Win 3.0 rl Win 3.1

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpFilename

Loads a font resource from a file into the system.

int AddFontResource(LPSTR IpFilename)i

The function normally is used to load a font directly from a disk file. It can also be used to load a
font referenc~d in the program's resource .RC file.

Once loaded, the font is available to all. applications. It is not neceSSaIY to use this function to
load the system fonts provided with Windows, unless they have been moved to a directory that
Windows does not search on startup.

rrhe number of fonts loaded. Returns zero if no fonts were loaded, usually meaning that the font
me or resource was not found. •

RcmoveFontResourceO, FindResourceO

LPSTR: A far pointer to a null-terminated character string containing the font me name. This
should be a complete DOS file name including the directory path and the ":FON" file e>.lension.
Alternatively, IpFilename can contain a handle to a font resource loaded as part of the resource
.RC file. The resource file should include a line like

number FONT script.fon

The FindResourceO function is then used to obtain the handle to the font. The handle becomes
the low-order word of IpFilename. The high-order word must be zero.

Related Messages WflCFONTCHANGE should be sent to all top-level windows after a font is loaded or removed. This
makes the new font's availability known to all programs running on the system.

Example This example shows a font file called "scriptJon" being loaded at the start of the program and
removed at the end. SendMessageO is used to notify all other top-level programs of the font's
presence. By setting the first parameter in SendMessageO equal to -1, all top-level windows re-
ceive the message. -

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

int nFontLoad ;

switch (iMessage)
{

1* process windows messages *1

360

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING V

case WM CREATE: j-+t bring in the font fi le*1
nFontLoad = AddFontResource «LPSTR) "script.fon") ;
if (!nFonti..oad)

MessageBox .(hWnd, "Could not load font-", "Warning",
I1B_ICONHAND 1MB_OK) ;

else 1* tell other apps *1
SendMessage (-1, WM_FONTCHANGE, 0, OU ;

brea k ;
case WM_COMMAND: 1* process menu items *1

1* other program lines here *1
break;

case WH_OESTROY:. 1* stop application *1,
RemoveFontResource «LPSTR) "script.fon") 1* remove font *1

SendMessage (-1, WM_FONTCHANGE, 0, OU ; 1* tell apps *1
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

)

return (OL)
)

CREATEDC

Purpose

Iilclude File
Syntax

Description

Uses

Returns

See Also

Parameters
lpDriverName

IpDeviceName

IpOutput

IpinitData

13 Win 2.0 a Win 3.0 m Win 3.1
Creates a device context to a physical device, such as a printer.

<drivinit.h>

HDC CreateDC(LPSTR lpDriverNanw, LPSTR lpDeviceName, LPSTR lpOutput, LPSTR
IplnitData)j

This is the first step in preparing to send the device graphics data such as text or graphics ob·
jects.

Normally used to create a device context for a printer. In this case, the parameters for the printcr
are fetched from the WIN.INI file using GetProfileStringO. The function is also used to get the
device context of the screen (the hardware screcn, not a window's client area). To do this, set
IpDriverName equal to "DISPLAY," and the other parameters equal to NULL. This function
should be used carefully, as it allows an application to draw anywhere on. the screen, not just
within the window's boundaries. Normally, you will use GetDCO and BeginPaintO to get a device
context to a window on the screen.

HDC, a device context for the device. Returns NULL on error.

DeleteDCO, GetProtileStringO, ExtDeviceModeO,' DeviceCapabilitiesO

LPSTR: A pointer to a null-terminated string containing the DOS file name of the printer driver.
The driver file is loaded when a new printer is installed under Windows. Example: "PCL / HP
LaserJ~t." This is the first parameter on the WIN.INI line that starts with "device=."

LPSTR: A pointer to a null-terminated string containing the device name. Example: "HPPCL."
This is the second parameter on the WIN.INI line that starts with "device=." The parameters are
separated by commas. .

LPSTR: A pointer to a null-terminated string containing the output file or device. Example:
"LPTl:." This is the third parameter on the WIN.INI line that starts with "device=." The param
eters are separated by commas.

LPDEVMODE: A pointer to a DEVMODE data structure. This structure can be initialized by call
ing the ExtDeviceModeO function. Set to NULL to use the default initialization data for the de-

_ vice specified by the user in the Control Panel application. The DEVMODE structure is defined in
DRMNIT.H as follows:

1* size of a device name string *1

361

WINDOWS API BIBLE

#define CCHDEVICENAME 32

typedef struct _devicemode {
char dmDeviceNameI:CCHDEVICENAME];
WORD dmSpecVersion;

1* device name string '*1
1* driver specification ver. ego Ox300 *1
1* OEM dirver vers'ion number *1 WORD dmDriverVersion;

WORD dmSize; 1* size of OEVMOOE structure *1
WORD dmOriverExtra;
OWORO dmFi elds;

1* number of bytes following DEVMODE data -*1
1* bitfield for which of the follow.,ing dm *1
1* values are supported. Bit 0 is one if *1
1* dmOrientation is supported, etc. *1

short dmOrientation~ 1* OMORIENT_PORTRAIT or OMORIENT_LANOSCAPE *1
short dmPaperSize; 1* OMPAPER_LETTER, OM~PAPER_LEGAL, DM_PAPER_A4 *1

1* DMPAPER_CSCHEET, DMPAPER_DSCHEET, DMPAPER~ESHEET, DMPAPER_ENV_9 *1
1* DMPAPER_ENV_10, DMPAPER_ENV_11, DMPAPER_ENV_12, DMPAPER_ENV_14 *1

short dmPaperLength; '1* overrides dmPaperSize, in mm/10 *1
short dmPaperWidth; 1* overrides dmPaperSize, in mm/10 *1
short dmScaLe; 1* page is scaled by dmScale/100 *1
short dmCopies; 1* number of copies supported *1
short dmDefaultSource; 1* Default paper bin *1
short dmPrintQuaLity; 1* DMRES_HIGH, DMRES_MEDIUM, DMRES_LOW, *1

short dmColor;
short dmDuplex;

1* or DMRES_DRAFT *1
1* DMCOLOR_COLOR or DMCOLOR_MONOCHRCME *1
1* DMDUP_SIMPLEX, DMDUP_HORIZONTAL, *1
1* or DMDUP _VERTI CAL *1

BYTE dmDriverData I:dmDriverExtra]; 1* 0 or more bytes of extra data *1
} DEVMODE;

typedef OEVMOOE,* PDEVMOOE, NEAR * NPOEVMOOE, FAR * LPDEVMOOE;

Example Here the program writes a single line of text to the printer when the user clicks the "Do It!" menu
item. The printer information is, pulled from WIN.INI using GetProfIleStringO. The string is
parsed with the compiler library function strtokO, to break out the device name, driver name,
and output device name. Crt!ateDCO is used to create the device context for the printer. The
EscapeO function is 1lsed to send the minimal printer codes necessary to start and stop a print
job.

long FAR PASCAL WodProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hDC ;
char sZPrinter 1:64], *szD'river, *szOevice, *szOutput ;

switch (iMessage) 1* process windows messages *1
<

case WM_COMMAND: 1* process menu items *1
swi tcll (wParam)
{

case 10M_DOlT: ,1* User hit the "Do it" menu item *1
GetProfiLeString ("Windows", "device", "",

sZPri nter, 64) ;
szDevice = strtok (szPrinter, ",") ;
szOriver = strtok (NULL, ",") ;
szOutput = strtok (NULL, ",") I
hOC = CreateDC (szDriver, szOevice,

szOutput, NULL) ;
if (Escape (hOC, STARTDOC, 4, "Test", NULL»
<

)

TextOut (hOC, 10, 10, ,
"Output is on the printer.", 25)

Escape (hDC, NEW FRAME, NULL, NULL, NULL)
Escape (hDC, ENOOOC, NULL, NULL, NULL) ;

OeleteDC (hOC) ; /
break;

case IDM_QUIT: 1* send end of 'application message *1
DestroyWindow (hWnd) ; .
break;

362

)

)

break;

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING"

case WM_DESTROY: 1* stop application *1
PostQuitHessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
)

CREATEFoNT

Purpose

Syntax

Descx:tption

Uses

Returns

See Also

Parameters
nHeight

nWidth

nEseapement

nOrientation

nWeight

cItalic

• Win 2.0 • Win 3.0 • Win 3.1
Creates a logical font, ready to be used in text output. The font is the closest match to the given
parameters and the font data available. <

HFONT CreateFont(int nHeight, int nWidth, int nEscapernent, int nOrientation, int nWeight,
BITE cltalic, BITE cUnderline, BITE cStrikeOut, .BYTE cCharSet, BYTE c(}utputPrecision,
BITE cClipPrecision, BITE eQuality, BYTE cPitchAndFamily, LPSTR IpFacename)j
Logical fonts are interpolations between existing font data to create new fonts that approximate

. the font requested. This allows a font to be displayed on the screen with sizes and bold or italic
characteristics that may be supported by the printer, but not defined in a .FON file. CreateFontO
makes the best use it can of loaded font resources before creating a logical font. Any missing data
is interpolated between existing fonts. Because of this, you can create fonts with sizes and styles .
that do not exist as font resources. The quality ofthe font will deteriorate as you get farther from
the resource da~;?

Generally used when a program has only one font to create. CreateFontO has more parameters
than any other function in Windows. In many cases, the CreateFontIndirectO function is easier
to use because you load the data ahead of time in a LOGFONT structure and have only the pointer
to the structure to pass to the function. Both CreateFontO and CreateFontlndirectO can be used
to do "tricks" with fonts, such as upside-down characters, characters that print upwards or to the
left, etc.

HFONT, a handle to the font created. This is the handle you use with SelectObjectO to make the
font available for output onto the device context with functions such as TextOutO.

CreateFontlndirectO, SelectObjectO, TextOutO, AddFontResourceO

int: The desired height of the characters, including internal leading and excluding external lead
ing. Set equal to zero for the default size. To set the ascent size, rather than the total height,
make this value negative. The absolute value will then be used to set the ascent size. See Figure
10-2 for a diagram of the ascent size of a character.

int: The desired width of the characters. Normally set to 0, which allows Windows to m~tch the
width to the height. Positive values force a width, changing the character's aspect ratio.

int: Specifies the orientation of the next character output relative to the previous one in tenths of
a degree. Normally, set to O. Set to 900 to have all the characters go upward from the first charac
ter, 1800 to write backwards, or 2700 to write each character from the top ~own.

int: Specifies how much the character should be rotated when output in tenths of a degree. Set to
900 to have all the characters lying on their backs, 1800 for upside-down writing, etc.

int: Sets the line thickness of each character. Only two values are supported in Windows 3.0.
FW_NORMAL == 400 for normal characters and FW_BOLD == 700 for boldface. WINDOWS.1f
has eight other sizes defined, but these end up rounded to either the 400 or 700 weight.

BYTE: TR~E to specify italic characters, FALSE (zero) for normal.

363

WINDOWS API BIBLE

eUnderline
eStri!JOut
eCharSet

eOutputPrecision

eClipPrecision

eQuality'

ePitchAndFamily

IpFacename

Example

BYTE: TRUE to specify underlined characters, FALSE (zero) for noma!.

BYTE: TRUE to specify characters with a line through the center, FALSE (zero) for normal.

BYTE: The character set of the font. This can be either ANSCCHARSET, SYMBOL_CHARSET,
OEM_CHARSET, or (with Japanese versions of Windows) SHIITJiS_CHARSET.
BYTE: This field is not yet implemented in the 3.0 version of Windows. Set equal to
OUT_DEFAULT_PRECIS for now to be compatible with future releases of Windows. ,

BYTE: This field is not yet implemented in the 3.0 version of Windows. Set equal to
CLIP _DEFAULT_PRECIS for now to be compatible with future releases of Windows.
BYTE: Can be either DRAFT_QUALITY, PROOF_QUALITY, or DEFAULT QUALITY.
PROOF_QUALITY forces the closest match to the loaded font data, which may change the font
size if the specified size is not available.
BYTE: Two values combined with the C language binary OR operator (I). The two low-order bytes
specify the font pitch. This min be' .

DEFAULT_PITCH, FIXED_PITCH or VARIABLE_PITCH

The four high-order bytes specify the font family. This can be any of the following:

FF _DECORATIVE, FF_DONTCARE', FF _MODERN, FF _SCRIPT, or FF _SWISS.

LPSTR: A pointer to a null-terminated string that specifies the name of the typeface. The maxi
mum length of the name is LF _FACESIZE, which is defmed in WINDOWS.H as 32. EnumFontsO
can be used within the program to
find the names of all available fonts.

This example, which is illustrated in
Figure 1O~3, creates a script font 24 d~ l6. ~ ~~!
by 16 units in size and uses it to
print some text on the window's
client area. Figure 10-3. CreateFont() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessagc, WORD wParam~ LONG lParam)
{ ,

HOC
HFONT'

hOC;
hFont ;

• I .,

switch (iMess~ge)
{

1* ~rcicess windows m~~sag~s*1

case WM_COMMANO: 1* ~rocess menuitems;*1
, swit~h (wParam)

{

case IDM [\OIT: 1* User hit the "Do it~1 menu item *1
hOC = GetDC (hWnd) ;
hfont = Create Font (24, 16, 0, 0, 400, 0, 0, 0,

OEPLCHARSET, . OUT_DEFAULT_PRECIS,
CLIP _DEFAUL T_PRECIS, OE FAULT_QUALITY;
DEFAULT_PITCH I FF_SCRIPT, "script"):;

SelectObject(hOC, hFont) ;
TextOut (hOC, 10, 10, "This is the script font!", 24);
ReleaseDC (hWnd, hOC) ;
OeleteObject (hFont)
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

b rea k ;
caseWM_DESTROY: 1* stopapptication *1

PostQuitMessage (0) ;
break;

default: .,< .•.. 1* default ·windows message processing *1

364

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ."

return DefWindowProc (hWnd, iMessage, wParam, lParam)
}

return {OU

CREATEFoNTINDIRECT

Purpose

Synta..x

D~scription

Creates a logical font.

HFONT CreateFontIndirect(LOGFONT FAR *lpLogFont)j

The LOG FONT structure is defined in WINDOWS.H as

#define LF~FACESILE 32

typedef struct tagLOGFONT
{

int lfHeight;
int lflHdth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfItal'ic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE lfFaceName[LF_FACESIZEJ;

} LOG FONT;
typedef LOG FONT
typedef LOG FONT NEAR
typedef LOG FONT FAR

*PLOG FONT; .
*NPLOGFONT;
*LPLOGFONT;

m Win 2.0 III Win 3.0 11 Win 3.1

Each of the elements of the LOGFONT structure has the meaning described in the CreateFontO
, function description. .

Uses

Returns

See Also

Parameters
lpLogFont

Example

CreateFontO is convenient if one font is being used. For more than one, CreateFontIndirectO is
more convenient as many of the parameters are rep~ated for all fonts.

HFONT, a handle to the font created. This is the handle you use with SelectObjectO to make the
font available for output onto the device context with functions such as TextOutO. Returns NULL
on error.

CreateFontIndirectO, SelectObjectO, TextOutO, AddFontResourceO

LPLOGFON1'; A pointer to a LOGFONT structure.

long FAR PASCAL WndProc (HWND hWnd, unsi gned i Message, WORD wParam, LONG lPa~am)
{

HDC
HFONT
LOG FONT

hOC;
hFont
l f ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND~ 1* process menu items *1
swi tch (wParam)
{

case-IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
If.lfHeight = 20 ;
If.lfWidth = If.lfEscapement = If.lfOrient~tion = 0 ;

365

WINDOWS API BIBLE

}

If.lfWeight= FW_NORMAL ;
If.lfItalic = If.lfUnderline = If.lfStrikeOut ~ 0 ;
If.lfCharSet = OEM_CHARSET ;
If.lfOutPrecision = OUT_DEFAULT_PRECIS ;
If.lfClipPrecision = CLIP_DEFAULT_PRECIS ;
If.lfQuality = DEFAULT_QUALlTY ;
l f.l fPitchAndFamily = DEFAUL,'t;_PITCH I FF _DONTCAR~ ;
strcpy (If.lfFaceName, "Helv"\) ;
hFont = CreateFontIndirect (&lf~ ;
SelectObject (hOC, hFont) ;
TextOut (hOC, 10, 10, "This is the font!", 17) ;
ReleaseDC (hWnd, hOC) ;
DeleteObject (hFont) ;
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

break;
case WM_DESTROY: . 1* stop application *1

PostQuitMessage CO) ;
break;

default: \' 1* default windows message processing *1
return DefWi~dowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

Purpose

Syntax

Description

Uses

Returns
See Also
Parameters
IpDriverName

IpDeviceNarne

lpOutput

lplnitData

• Win 2.0 • Win 3.0 • Win 3.1
Retrieves a device context for a physical device, but only for information purposes. Output cannot I

be sent to the device.
HDC CreateIC(~PSTR lpDriverName, LPSTR lpDeviceName, LPSTR lpOutput, LPSTR
lplnitData)j -

This function is identical to CreateDCO, except that the device context is not set up for output.
Frequently used with GetDeviceCapsO to retrieve information about a printer or screen device.
Also used in setting up memory areas to be compatible with the device context of the screen wlth
CreateCompatibleDCO·
HDC, a device context for the device. Returns NULL on error.

DeleteDCO, GetProfileStl'ingO, GetDeviceCapsO, CreateCompatibleDCO

LPSTR: A pointer to a null-terminated string containing the DOS fIle name of the printer driver.
The driver file is loaded when a new printer is installed under Windows. Example: "PCUHP

". LaserJet." This is' the first parameter on the WIN.lNI line that starts with "device=."
LPSTR: A pointer to a null-terminated string containing the device name. Example: "HPPCL."
This is the second parameter on the WIN .INI line that starts with "device=." The parameters are
separated by commas. Set to NULL for a screen device.
LPSTR: A pointer to a null-terminated string containing the output file or device. Example:
"LPTl:." This is the third parameter on the WIN.INI line that starts with "device=."The param
eters are separated by commas. Set to NULL for a screen device.
LPDEVMODE: A pointer to a DEYMODE data structur~. This structure can be initialized by call
ing the ExtDeviceMode() function. Set to NULL to use the default initialization data for the de
vice specified by the user in the Control Panel application. The DEVMODE structure is defined in
DRMNIT.H as follows: -

1* size of a device name string *1
HdefineCCHDEVICENAME 32

366

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING, ~

typedef struct _devicemode t
char dmDeviceName[CCHDEVICENAMEJ;
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize; .
WORO dmOriverExtra;
DWORD dmFields;

1* device name string *1
1* driver speciiication ver. ego Ox300 *1
1*' OEM dirver version number *1
1* size of DEVMODE structure *1
1* number of bytes follo:.ling DEVMODE data *1
1* bitfield for which of the following dm *1
1* values are sUpported. Bit 0 is one if *1
1* dmOrientation is supported, etc. *1

short dmOrientation; 1* DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE *1
short dmPaperSize; 1* DMPAPER_LETTER, DM_PAPER_LEGAL, DM_PAPER_A4 *1

1* DMPAPER_CSCHEET, DMPAPER_DSCHEET, DMPAPER_ESHEET, DMPAPER_ENV_9,*1
1* DMPAPER_ENV_10, DMPAPER_ENV_11, DMPAPER_ENV_12, DMPAPER_ENV_14 *1

short dmPaperLength; 1* overrides dmPaperSize, in mm/10 *1
short dmPaperWidth; 1* overrides dmPaperSize, in mlli/10 *1
short dmScale; 1* page is scaled by dmScale/100 *1
short dmCopies; 1* number of copies supported .*1
short dmDefaul tSource; 1* Defaul t paper bin *1
short dmPrintQuality; 1* DMRES_HIGH, DMRES_MEDIUM, DMRES_LOW, *1

short dmColor;
short dmOuplex;

BYTE dmDriverOata [dmOriverExtraJ
OEVMOOE;

1* or DMRES_DRAFT *1
1* DMCOLOR_COLOR or DMCOLOR_MONOCHROME *1
1* DMDUP_SIMPLEX, DMDUP_HORIZONTAL, *1
1* or DMDUP _VERTICAL *1
1* 0 or more bytes of extra data *1

typedef DEVMODE * POEVMOOE, NEAR * NPOEVMOOE, FAR * LPOEVMOOE;

Example This is a fragment of a WndProcO function that uses CreateICO to get an information context for
the screen. Using the context, the program fiIlds' the number of bits per pixel and the number of
color planes for the display. For a VGA screen, this will show 1 bit and 4 color planes.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
char
int

hOC;
cBuf [10J ;
nBits, nColorPlanes

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO: 1* process menu items *1

IOther program lines}

DELETEDC

swi tch (wParam)
{

case 10M DOlT: 1* User hi t the "Do it" menu item *1
hOC = CreateIC ("DISPLAY", NULL, NULL, NULL)
nBits = GetDeviceCaps (hOC, BITSPIXEL) ;
nColorPlanes = GetOeviceCaps (hOC, PLANES) ;
OeleteDC (hOC) ; .
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, "Color per pixel =", 17,)
itoa (nBits, cBuf, 10);
TextOut (hOC, 10, 30, cBuf, strlen (cBuf» ;
TextOut (hOC, 10, 50, "Color planes =", 14) ;
itoa (nColorPlanes, cBuf, 10) ;
TextOut (hOC, 10, 70, cBuf, strlen (cBuf» ,;
ReleaseDC (hWnd, hOC) ;
break;

• Win 2.0 • Win 3.0 .Win3.l
Purpose

Syntax

Description

Deletes a device context created with CreateDCO, CreateCompatibleDCO, or CreatelCO.

BOOL DeleteDC(HDC hD(J)j

Device contexts take up memory in the system. Use this function to free the device context as
soon as possible after use.

367

WINDOWS 'API BIBLE',

Uses

Returns
See Also

Parameters
hDC

Example

Used any time CreateDCO, CreateCompatibleDCO, or CreateIC() was used to create a device
context. Do not use it if GetDCO was used to create a device context for a window. In'that case,

, use ReleaseDC().

BOOL. ~RUE if the device context was deleted, FALSE on error.

CreateDCO, CreateICO, CreateCompatibleDCO

, HDC:' A handle to the device context created with CreateDCO, CreateCompatibleDCO, or
CreateICO.' , '

The previous exampie, shown under CreateICO, shows the device context being deleted after
use. Note how GetDC() is used afterwards to obtain a separate device context for output to the
windo~v's cUent area. '

DEVICE CAP ABILITIES o Win 2.0' m Win 3.0 Iii Win 3.1
Purpose
Syntax

Include File

Des<:ription

Determines the capabilities of a device, such as a printer.

DWORD DcviceCapabilities (LPSTR lpDeviceName, LPSTR lpPort, WORD nlndex, LPSTn
lpOutput, LPDEVMODE lpDevJl1ode)j

<drivinit.h>

Physical devices, such,as printers, are accessed by calling functions within a device driver file.
The file, with the extension .DRV, will reside in the Wiridows system directory. Drivers are spe-
cialized DLLs (dynamic link Hbraries):Functions within these DLLs can be accessed to deter
mine the capabilities of the physical device. See Chapter 28 for more details on DLLs.

DeviceCapabilitiesO is a function that is expected to.be supported within the driver file. The
function is call ed indirectly by flrst loading the driver file ,vith LoadLibraryO, and then obtaining
the DeviceCapabiIitiesO function address within the driver with GetProcAddressO. The
DRIVINIT.H header file includes the following two typedef statements for use with
GetProcAddressO to reference the DeviceCapabilitiesO function within the driver fIle.

typedef DWORD FAR PASCAL FNDEVCAPS(LPSTR, LPSTR, WORD, LPSTR, LPDEVMODE);
typedef FNDEVCAPS FAR * LPFNDEVCAPS;

Uses

Returns
See Also

Parameters
lpDeviceName

lpPort

nlndex

Determining the paper sizes, paper bins, etc. that a printer supports.

DWORD. The returned value depends on the nlndex value specified. Returns I on error.

CreateDCO, ExtDeviceModeO, LoadLibraryO, GetProcAddressO, GetPro1ileStringO,
GetSystemDirectoryO ' .

LPSTR: A pointer to a null-terminated character string containing the printer device name, such
as "PCIJHP LaserJet." Use GetProfileStringO to obtain this string from the WJN.INI me.

LPSTR: A pointer to a null-terminated character string containing the name of the port to which
the device is connected, such as "LPrI:." This string can also be obtained from WIN.INI.

WORD: Specifies which value to obtain from the device. It can be any of the indices listArl in
Table 10-4 and defined in DRMNIT.H.

If the printer driver does not support multiple bins, DeviceCapabilities() retums O. If multiple bins
are supported, DeviceCapabilities() retums the number of bins./pOutput should then paint to a
memory buffer to hold data on the bins. The data consists of an array of integers, each
containing the bin ID number (one 'for each bin). This is followed by the bin names, each' 24
characters long.

368

DC_COPIES (Win 3.1)

',,--DC_DRIVER

DC_DUPLEX

DC_ENUMRESOLUTIONS
(Win 3.1)

DCJIELDS

DC_FILEDEPENDENCIES
(Win 3.1)

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING •

Set IpOutput to NULL to simply return the number of bins supported. This is usually done
to determine the number of bytes to allocate for the bin numbers and names (26 bytes per bin,

If IpOutput is set to NULL, DeviceCapabilities() retums the number of paper bins the printer
supports. If IpOuput is not NULL, it should contain a pointer to a memory buffer. The buffer will
receive an array of WORD values, each containing a bin number.

DeviceCapabilities() retums the maximum number of copi~s that the printer can produce.

DeviceCapabilities() retums the printer driver version number.

Retums 1 if the printer supports duplex ~rinting, 0 if not.

!f IpOutput is set to NULL, DeviceCapabilities() retums the number output resolutions the printer
supports. If IpOuput is not NULL, it should contain a pointer to a memory buffer. The buffer will
receive an array of groups of two LONG integer values, each containing the horizontal and
vertical resolution supported.

Returns the number of bytes of device specific data at the end of the DEVMODE structure for
the printer driver. . .

Returns the bit-field value which specifies which features are supported by the printer driver.
This is the same as the dmRelds element of the DEVMODE structure.

If IpOutput is set to NULL, DeviceCapabilities() returns the number of files which need to be
loaded to make the printer work. If IpOuput is not NULL, it should contain a pointer to a memory
buffer. The buffer will receive an array of 64 character long file names, each containing the file
name of a file that must be loaded to support the printer.

Returns a POINT structure containing the maximum paper size that the printer can support.
These are the largest values that can be placed in the dmPaperLength and dmPaperWJdth
elements of the DEVMODE structure.

Returns a POINT structure containing the minimum paper size that the printer can support.
These are the smallest valu'es that can be placed in the dmPaperLength and dmPaperlNidth
elements of the DEVMODE structure.

If IpOutput is set to NULL, DeviceCapa~ilities() returns the number of supported paper sizes.
This'is the normal use of this flag. If IpOuput is not NULL, it should contain a pointer to a
memory buffer. The buffer will receive an array of WORD values, each containing a supported
paper size.

IpOutput should contain a pointer to a memory buffer. The buffer ~II receive an array of POINT _
values, each containing the horizontal and vertical size in 1/10 mm for supported paper sizes.
Use DC_PAPERS first to determine the size of the data buffer needed to contain the POINT
data.

DeviceCapabilities() returns the size of the DEVMODE data structure, not including any driver
specific data following the structure. This is the same as the dmSize element of the DEVMODE
data structure.

, "---
DeviceCapabilities() returns the Microsoft driver specification numbe'r to which the driver
conforms.

Table lO-4..DeviceCapabilities() Index Values.'-,,_
" '

lpOutput

lpD~~-.

LPSTR: A pointer to a memory buffer. The data received in the buffer will depend on the nlndex
value, as described above.

LPDEVMODE: Normally, set to NULL. In this case, DeviceCapabilitiesO'returns the current
initialization values for the specified driver. If lpDevMode is not NULL, it should contain a

369

-WINDOWS,API BIBLE -:, - : '" -

',' r ,point~r toa DEVMODE data structure containing the values to be read by DeviceCapabilitiesO.
I"~ :,:' ;:::-,:1 ,-:: ,DEVMODEJs defined in DRIVINIT.H as follows:

1* s i ie"of "ci ,'de''; ce ~ame s t;'; "'9 :*/
#define CCHDEVICENAM~32

" typedef struct _devicemode {
char.,dmDeviceName[CCHDEVICENAMEJ;
WORD d~Sp~cVersio~; , " -

, 1* device name string *1

WORD dmDriverVersion; ,
1* driver specification ver. ego Ox300 *1
1* OEM di rver version number *1

WORD dmSize;: , 1* size of DEVMODE structure *1
WORD dmDriverExtra;

,DWORD d,mF,ietds;
1* number of bytes following DEVMODE data *1
1* bit-field for which of the following dm *1
I*.values are supported. Bit 0 is one if *1

,.: " ~I 1* dmOr; entat i on is supported, etc. *1
short dmOr;entation;" I*DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE *1
short dmpaperSize;' 1* DMPAPER_LETTER, DM_PAPER_LEGAL, DM_PAPER_A4 *1

1* DMPAPER_CSCHEET, DMPAPER_DSCHEET, DMPAPER_ESHEET, DMPAPER_ENV_9 *1
"-- ,: _ ,', ,:I*DMPAP,ER,...ENV_1 0, _ DHPAPER_ENV_11 ,DMPAPER_ENV_12, DMPAPER_ENV_14 * 1

short dmPaperLength; '1* overrides dmPaperSize, in mm/10 *1
short dmPaperWidth; 1* overrides dmPaperSize, in mm/10 *1
shor.t dmScale; 1* page is scaled by dmScale/100 *1
shod dmCopi eis;' 1* number of copi es supported * I
short dmDefau l tSour"ce t "j' 1* Def au l t paper bi n * I
s,hort dm~rintQual,ity;_ 1* DMRES_HIGH, DMRES_MEDIUM, DMRES..;,LOW, *1 -

l*or'DMRES DRAFT *1
shor,tdmCo lor ;-,'
short dmDup~ex;

1* DMCOLOR..;,COLOR or DMCOLOR_MONOCHROME *1
, 1*- DMDUP _SIMPLEX, DMDUP _HORIZONTAL, *1

, , /*.or DMDUP _VERTI CAL * I
BYTE dmDriverData [dmDriverExtraJ 1* 0 or more bytes of extra data *1

} DE~~O~~; ,

typedef'DEVMoDE-* PDEVMODE/'NEAR*NPDEVMODE, FAR * LPDEVMOD,E;

Example
.: I,.

1,"1, "

(';

This example,which is illustrated in Figure 10-4, displays the
, printer driver name, OEM driver number, and the paper sizes

, "supportedwhenthe user clicks the "Do It!" menu item. The
driver name is determined by parsing the WIN.lNI file entry
"device=."The driver file is in the Windows system directory.
_The directOlY name is detennined by calling GetSystemDirectoryO.
'When the full directory/file name string for the dirver file has
been assembled, the driver is loaded with LoadLibraryO.

Qolt! ,Quit

Driver = HPPCL

Driver No. 816. Pape,r sizes:

1] 301 mm X 389mm

2) 301 mm X 496mm

3] 256mm X 372mm
..... " , ' GetProcAddressO is used to obtain the address of the De

vlceCapabilitIesOfunctionwithin the driver file. This is ex
ecuted tWice to determine the driver number and supported

4) 292mm X 414mm

paper sizes.
Figure 10-4. Device
Capabilities() Example.

long FAR PASCA.L W~dProc (HWND hWnd, unsigned,iMessage, WORD wParam, LONG lParam)
{

char,

HANDLE
LPFNDEVCAPS
DWORD
POINT

'HDC
int

-~zPrinf~r[64J, szSysDi~ [128J, szFullDriver [256J,
*szDriver, *szDevice, *szOutput, cBuf [128J

hDriver ;
lpDevi ceCaps ;
dwVersion, dwNumPapersize
Poi ntArray [20J
hOC -

switch (iMessage) 1* process wi ndews messages * I
{ ;_ I,;,,:, ,::. __

case WM_COMMAND:
swi tch (wParam)

, i: {

':'. "
.~' j' • I I , I

:'of

1* process menu items * I

, .. , .'. .

1* get ~river name from'WIN.INI *1

,,370

10. DEVICE CONTEXTS, TEXT gUT~UT, AND PRINTING 'Y

'GetProfileStri'ng ("windows", "device", '"', szPrinter, 64)
szDevi ceo = strtok (szPri nter, ",") ';
szDri vl!r = strtok (NULL,",") ;
szOutput = strtok (NULL, ",");

1* build full driver path/file spec *1
GetSystemDirectory (szSysDir, 128)
lstrcpy (szFullDriver~ szSysDir)
lstrcat (szFullDriver, """):;
lstrcat (szFul(Driver,'szDriver)
lstrcat (szFullDriver, ".DRV") ;

1* get handle to driver *1
hDriver = LoadLibrary (szFullDriv~r)
if (hDriver > 31)
{ 1* get address of Devi ceCaps func. *1

lpDevi ceCaps =

}

else

break;

(LPFNDEVCAPS) GetProcAddress (hDriver,
"Devi ceCapabil i ti es") ; .

if (lpDeviceCaps) 1* use DeviceCaps func. *1
{

dwVersion = (* lpDeviceCaps) (szPrinter,
szOutput, DC_DRIVER, NULL, NULL)

dwNumPapersize =
(* lpDev;ceCaps) (szPrinter,
szOutput, DC_PAPERSIZE,
(LPSTR) PointArray, NULL) ;

, 1* outP~t results *1
hDC = GetDC (hWnd) ;
TextOut (hDC, 0, 0, cBuf, wsprintf (cBut,

"Driver = Xs", (LPSTR) szDriver»
TextOut ~hDC; 0, 20, cBuf, wsprintt (cBut,

. "Driver No. Xd, Paper si zes:",
dwVersion» ;

for (i = 0 ; i < dwNumPapersize ; i++)
TextOut (hDC, 0, 40 + (i * 20), cBut,
wsprintf (cBut, "Xd) Xdmm X Xdmm",

i + 1, PointArray~iJ.x I 10,
PointArrayl:iJ.y 1 10»

ReleaseDC (hWnd, hDC) ;

MessageBox (hWnd, "Could not load driver tile.",
"Message", MB_OK)

[Other program linesj

DPTOLP
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

• Win 2.0 • Win 3.0 • Win 3.1
Converts from device. points to logical points.
BOOL DPtoLP(HOC hDC, LPPOINT lpPoints, int nCount)j

when a window's client area device context is first captured, the MM_TEXT mapping mode is set.
This means that the measurement units for locations in the client area are in pixels, measured
from the top left corner. As soon as a different mapping mode is set, or the origin is moved, the
measurements of a point's location switch to logical units. OPtoLPO allows you to convert one or
more points from device coordinates to logical coordinates.
Used after the mapping mode or origin has been changed, usually to plot items relative to the
boundary of the window. ' ' i .

BOOL~,TRUE if the points were converted, FALSE on error.
~etViewportOrgO, ,setWindowOrgO, SetMapModeO,LPtoOPO

HOC: The device context.

371

WINDOWS API BIBLE

IpPoints LPPOINT: A pointer to an array ofonc--Ormore POINT struc
tures.

nCount int: The number of P9INTs iri:the IpPoints array.'"

Related Messages MtCSIZE
Example This example, as shown in Figure 10~5, draws an X from corner

to corner of the client area after. the mapping mode has been
changed. This requires converting the coordinates of the cor
ners of the client area into logical coordinates before the lines
are drawn. .

Figure 10-5. DPtoLP()
Example.

long FAR PASCAL WndPr6~ (HWND hWnd, unsig~ed iMessage, WORD wParam, LONG lParam)
(

HDC
static
POINT

. . ~.'
hDC ;
POINT ptClientS;ze, ptCenter ;
pt'Corners [4J ;

switch (iMess~ge)
{

1* process windows messages *1

case WM_SIZE:
ptClientSize.x = LOWORD
ptClieritSize.y = HIWORD
break;

1* get client area size *1
(lParam) ;
(lParam) ;

case WM_COMHAND: .
switch (wParam)
,{ , ,

1* process menu items *1

case 10M_DOlT: , 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
S,etMapMode (hDC, MM_LOMETRIC) ;
pt'Center.x = ptClientSize.x 1 2 ;1* calc center in *1

. ptCenter.y = ptClientSize.y 1 2 ;1* device units *1
.e~ViewportOrg (hOC, ptCenter.x, ptCenter.y) ;
ptCorners [OJ.x = 0 ; 1* window corners in *1
ptCorners [OJ.y = 0 ; 1* device units *1
ptCorners [1J.x = ptClientSize.x ;
ptCorners [1J.y = 0 ;
ptCorners [2J.x = ptCl·ientSize.x ;
ptCorners [2J.y = ptClientSize.y ;
ptCorners [3J.x = 0 ;
ptCorners [3J.y= ptClientSize.y ;

1* now convert to logical coordinates *1
OPtoLP (hDC, (LPPOINT) &ptCorners, 4) ;
MoveTo (hDC, ptCorners [OJ.x, ptCorners [OJ.y)
LineTo (hDC, ptCorners [2J.x, ptCorners [2J.y)
MoveTo (hDC, ptCorners [1J.x, ptCoiners [1J.y)
LineTo (hDC, ptCorners [3J.x, ptCorners [3J.y)
ReleaseOC (hWn'd, hOC) ;
break;

IOther program lines /

Purpose

Syntax

Description

Uses

, • Win 2.0 .. Win 3.0 • Win 3.1
Formats a text string to fit within the bounds of a rectangle.
int DrawText(HDC hDC, LPSTR IpString, int nCount, LPRECT

. IpRect, WORD wForrriat)j

DrawText() uses the currently selected text font, color, and
background to draw the text: Lines are wrapped to fit within
the bounds of the rectangle.

Used in place of TextOutO when the output string may be too
long to fit in one line. Unless the DT_NOCLIP format is used, the
text will be clipped if the line(s) cannot be fit into the rectangle.

372

120 It! Quit

This Is a long string of text
without any CR/lf pairs '0
break the line. DrawTextO Is
used to format the line.

Figure 10-6. DrawText()
Example.

Returns

SeeAIso
Parameters
hDC

ipString

nCount

ipRect

wFormat

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING.

int, the height of the output text in device units.

TextOutO

HDC: The handle to the device context. Use GetDCO to retrieve a device context for the window,
or BeginPaint() if pro~essing a WM_P AINT message.
LPSTR: A pointer to a string. If the string is null·terminated, the nCount parameter can be set to
-1. Otherwise, the string length will need to.~e specified.
int: The number of characters to output. Set to -1 if the string is null-terminated and you wish to
output the entire string.
LPRECT: A pointer to the rectangle that will contain the text. Logical coordinates are used. Use
GetClientRectO to obtain the client area rectangle. Use DPtoLPO to convert from device units to
logical units if the mapping mode has been changed.

WORD: One of the valu~s listed in Table 10-5. These values can be combined with the C language
binary OR operator (I).

Calculates the size of the rectangle necessary to hold the text. If the DT_SINGLELINE style is
used, the width is adjusted to fit the text. Otherwise, the width is specified in the IpRect
parameter and the bottom is extended to fit the text.

Centers the text horizontally.

Expands tab characters. The default tab stops 'are set at eight character widths. See
DT_TABSTOP.

~I

DT _EXTERNALLEADING Includes the font's external leading size in computing line spacing. Normally, the extemalleading
dimension is not added to the character height in computing line spacing.

DT_SINGLELINE

DT_TABSTOP

DT_VCENTER

DT _WORDBREAK

" Left justification.

Draws the text without clipping. This is faster, but does not assure that the text will be within the
bounds of the rectangle.

Normally, "&" characters are used to underline the following letter, and "&&" is used to print a
single "&." By specifying DT_NOPREFIX,."&" characters have no special meaning and are
printed as is. .

, Right justification.

Specifies a single line of text.

Sets the tab stops. The high-order byte of wFormat should be used to set the number of
characters per, tab stop.

Top justification. Must be used with DT_SINGLELINE.

Vertically centered justification. Must be used with DT _SINGLELINE.

Specifies that spaces between words will be used to break lines that would otherwise exceed
the size of the rectangle. CRiLF pairs also break the line.

Table 10-5. DrawText() Flags.

Example This is aWndProcO program fragment showing DrawText() being used to format a long line of
text. The result is as shown in Figure 10-6. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;

WINDOWS API BIBLE

RECT
stat; c char

..
rTextRect ; . ',' ,..... " '
cBuf [J = "This is'a long strin'g of text' without any CR/LF \\

pairs to break the Une. DrawTextO;s used to,,\\ ..
format the line." ;

s~;tch (iMessage) 1* process wi ndows messages *1

'.process m~riu ite~~~1

, ".,

{ .; ,

case WM_COMMAND: "
swi tch (wParam),
{ ,

case IDftDOIT: i,. J* U'ser hit the "Do it" menu item *1
SetRect, (&rTextRect, 10, 10, 200, 400) ;
hDC :: 'GetDC (hWnd);" " ,
DrawText (hDC, cBuf, -1, &rTextRect,

DT_LEFT I DT_WORDBREAK) ;
Rele.seDC (hWnd,hDC) ;

/Otherprogram'linesi
. break ;

ENUMFONTS

Purpose

Syntax

Description

Uses
Returns

See Also

Parameters
hDC
lpFacename

ipFontFunc

, \ • Win 2.0, .• wma.o .Win3.!
Finds (enumerates) all of the fonts available on 'a given device. All of the 'data in the LOGFONT
and TEXTMETRIC structure types is available for examination ~ll each font enumerated.
int EnumFonts(HDC hDC, LPSTR lpFacename, FARpROC lpFontFunc, LPSTR lpData)i
EnumFontsO works by using a callback function. You derme the callback function in your pro
gram, and pass it to the enumeration function as a procedure-instance address lpFontFunc. The
eimmeration function is called once for every font found. This gives the enumeration function a
chance to examine and store dataJrom eachfonf as desired. Both the LOGFONT and
TEXTMETRIC data associated with a font is available on each pass afthe enumeration function.
Ideal for fillirig a lis~ box with the fonts available on the system when the program is started.
The last returned value by the callback function. This is determined by how you program the
callback function. Normally, the returned value is not used.,
AddFontResourceO, CreateFont(), CreateFoDtIndirectO, GetDCO

HDC: The device context of the device that contains the fonts.
LPSTR: A long p~inter to a typeface name. Set to NULL to enumerate each type of font;: Set
lpFacename pointing to a character buffer containing a typeface name to enumerate each size or
type for a given typeface. '

FARPROC: The procedure-instance a<ldress of the enumeration function. Use
MakeProcInstanceO to create this value. The function name mUst also be listed in the EXPORTS
section of the .DEF definition fIle.' .

lpData . LPSTR: A 32-bit value passed to, the enumeration function~ This is usually a memory handle to
the beginning of a memory buffer that will hold the data captured by the enumeration function.
The enumeration function should enlarge the memorv huffer each tinie it needs to add a new
item.

Enumeration (Callback) Function .
int FAR PASCAL FontFunc (LPLOGFONT lpLOgFont, LPTEXTMETRICS .lpTextMetrics, shor ..
nFontTgpe, LPSTR lpData)

The enumeration function will be called once for each font found. The enumeration functio~
should return a nonzero value 'to continue enumeration; zero to stop enumeration. Zero is typi-.
cally returned on error, such as not being able to allocate more memory. '

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING

Parameters
/pLogFont

lpTextMetrics

nFontType

LPLOGFONT: A pointer to a logical font structure. The ele
ments of the structure ~ll be set to a different font's values on .
each call to the enumeration function. See· the CreateFont
IndirectO function description for a listing of this structure.

LPTEXTMETRICS: A pointer to a TEXTMETRIC structure. The
. elements of the 'structure will be set to a different font's values .
on each call to the enumeration function. See the GetText
MetricsO function description for a listing of this structure. ,

short: Specifies the type offont found. This is a combination of
RASTER_FONTTYPE or DEVICE_FONITYPE .. If nFontType
I RASTER_FONTrYPE is TRUE, then the font is a raster font.
Otherwise, it is a vector font. If nFontType I DEVICE_FONT
TYPE is TRUE the font is a device font. Otherwise,. it is a GDI
font.

F~FF
no It! .!luit
EnumFontO found:
System ...
Terminal
Helv
Courier
Tms Rmn
Symbol
Roman
Script

\ Modern
\Preview

Example This example, illustrated in Figure 10-7, lists the names of every Figure 10-7. EnumfontsO
font type available to the system. In this case, only the font Example.
name is extracted from the logical font structure.

The program's header.file includes the structure definition for the ENUMER type. This is a
handy structure to use in enumeration functions, as it keeps the number of items found and the
memory handle together in one structure. The emime~ation function prototype is at the end of
the header file.

1* generic.h *1

#define 10M_DOlT 1
#define 10M_QUIT 2

1* definitions *1
#define TITLEWIOE 20

typedef struct
{

1* menu item id values *1

GLOBALHANOLE hGMem ;
int nCount ;

} ENUMER ;
1* global variables *1

i nt ghInstance ;
char gszAppName [] = "generi c" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWNO, unsigned, WORD, LONG) ;

;" .\'1

BOOL FAR PASCAL FontEnumFunc (LPLOGFONT If, LPTEXTMETRIC tm, short nFontType,
ENUMER FAR *enumer) ; .

The enumeration function name must also be listed in the EXPO RTf :ection of the program's
.DEF definition file. The WndProcO function of the program is shown il, the following program.
The enumeration function is called when the user hits' the "Do I t!" menu item. The font names are
then shown on the screen. Note that the font names end up one-after-the-next in the ENUMER
data structure's data pointed to by GMem. ..

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORDwParim, LONGlP~ram)
{ . . .

static FARPROC lpfnEnumProc ;
static ENUMER enumer·;
LPSTR lpFontName ;
HOC hOC;
i nt i ;

375

WINDOWS API BIBLE ,
'1

switch (iMessage)
{

1* 'process windows messages *1

case WM_CREATE:
lpfnEnumProc = MakeProclnstance (FontEnumFunc, ghlnstance)
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDPLDOIT: 1* User hit the "Do it" menu item *1
if (enumer.hGMem) 1* if not first time tried *1

GlobalFree (enumer.hGMem) ;1* free the memory *1
enumer.hGMem = GlobalAlloc (GMEM_MOVEABLE I

GMEM_ZEROINIT, 1 L>
enumer~nCount = 0 ;
hDC = GetDC (hWnd) ;

1* let Wi ndows run ca llback func. *1
EnumFonts (hDC, NULL, lpfnEnumProc,

(LPSTR) &enumer) ;
lpFontName = GlobalLock (enumer.hGMem) ; 1* lock mem *1
TextOut (hDC, 10, 0, "EnumFont() found:", 17);
for (i = 0 ; ; < enumer.nCount ; i++)/* disp font names *1
{

TextOut (hDC, 15, 20 + {15 * 1>,
(LPSTR) (lpFontName + (i * LF_FACESIZE»,
lstrlen (lpFontName + (; * LF_FACESIZE»)

GlobalUnlock (enumer.hGMem)
ReleaseoC (hWnd, hDC)
break;

1* unlock memory *1

case IDM_QUIT:
DestroyWindow (hWnd)~;
break;

}

break;
case WM_DESTROY: 1* stop application *1

GlobalFree (enumer.hGMem) ; 1* release aLL memory *1
FreeProcInstance (lpfnEnumProc)
PostQu; tMessage (0) ;

break;
defauLt: 1* defauLt windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam~ lParam) ;

return (OL>

int FAR PASCAL FontEnumFunc (LPLOGFONT If, LPiEXTMETRIC tm, short nFontTYpe,
ENUMER FAR *enumer)

{

}

LPSTR lpFo.ntFace

if (!GlobalReAlloc (enumer->hGMem,
(oWORD) LF_FACESIZE * (enumer->nCount + 1),
GMEM_MOVEABLE» 1* make room for 1 more *1

return (0) ; 1* quit if can't make room *1

lpFontFace = GlobalLock (enumer->hGMem)

lstrcpy (lpFontFace + «enumer->nCount)
(LPSTR) If->lfFaceName)

GlobalUnlock (enumer->hGMem) .;
enumer->nCount++
returr:e (1) ;

376

1* lock the memory area *1
1* put next name at end *1

* L F _F ACE S I Z E) ,

1* unlock the memory area * 1
1* keep track of how many *1

10. DEVICE CONTEXTS, TEXT OUTPUT; AND PRINTING ...

EXTDEVICEMoDE o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Include File

Syntax

Description

Determines or modifies the initialization data for a printer driver .. Displays a dialog box for modi
fying the driver settings.

<drivinit.h>

int ExtDevice:.Iode (HWND hWnd, HANDLE hDriver, LPDEVMODE IpDevModeOutpu~ LPSTR
IpDeviceName, LPSTR IpPort, LPDEVMODE IpDevModelnput, LPSTR lpProfile, WORD wMode)j

Physical devices, such as printers, are accessed by calling functions within a device driver file.
The file, with the extension .DRV, will reside in the Windows system directory. Drivers are spe
cialized DLL (dynamic link library) files. Functions within these DLLs can be accessed to deter
mine the capabilities of the physical device. See Chapter 28 for more details on DLLs.

ExtDeviceModeO is a function that is expected to be supported within the driver file. The
function is called indirectly by first loading the driver file with LoadLibraryO, and then obtaining
the DeviceCapabilitiesO function address within the driver with GetProcAddressO. The driver
file contains the dialog box definition for modifying the driver settings. The DRMNIT.H header
file includes the following two typedef statements for use with GetProcAddressO to reference
the DeviceCapabilitiesO function within the driver file.

typedef WORD FAR PASCAL FNDEVMODE(HWND, HANDLE, LPDEVMODE, LPSTR,
LPSTR, LPDEVMODE, LPSTR, WORD);

typedef FNDEVMJDE FAR * LPFNDEVMODEi

Uses

Returns

See Also

Parameters
hWnd

hDriver

Used to display the printer dialog box so that the user can modli'y the printer settings. Also used
to fill a DEVMODE structure for use by the CreateDCO and DeviceCapabilitiesO functions.

into Returns the size of the DEVMODE data structure for the printer driver if wMode is NULL.
Returns IDOK or IDCANCEL if a dialog box was presented to the user. Returns a negative value if
an error occurred.

CreateDCO, DeviceCapabilitiesO, GetProfileStringO, LoadLibraryO, GetProcAddressO

HWND: A window handle. If a printer setup dialog box is displayed, hWnd will be the parent
window.

HANDLE: The handle of the device-driver module. This value is obtained by calling LoadLibrary()
or GetModuleHandleO.

IpDevModeOutput LPDEVMODE: A pointer to a DEVMODE data structure. The data structure will be filled when
ExtDeviceModeO returns. If initialization data is supplied in lp DevModelnput, this will be cop
ied to the structure pointed to by IpDevModeOutput before any chan~es are made.

IpDeviceName LPSTR: A pointer to a null-terminated character string containing the name of the printer device
such as "PCIJHP LaserJet." This value can be obtained by reading the WIN.lNI file .using
GetProfileStringO. See the following example.

IpPort LPSTR: A pointer to a null-terminated character string containing the name of the port to which
the printer is attached. Thls value can also be obtained by reading the WIN.lNI file using
GetProfileStringO·

IpDevModelnput LPDEVMODE: A pomter to a DEVMODE data structure that contains initialization data for the
printer device. The data will be copied to the buffer pointed to by IpDevModeOutput before any
modification occurs. Set to NULL to use the default initialization data based on the Windows
Control Panel application.

wMode WORD: Specifies the action ExtDeviceModeO should take. It should be one or more ofthe follow
ing values, ~ombined with the C language binary OR operator (I).

377

WINDOWS API BIBLE -

~Value rgJl
Zera(O) ExtDevICeMode() returns the size of the memory buffer in bytes needed to hold the DEVMODE data for the

printer./This includes the printer-specific data at the end of the DEVMODE structure.lpDevModeOutput
can be set to NUlL for this use of ExtDeviceMode().

Writes the current printer initialization data to the DEVMODE data structure pointed to by
IpDevModeOutput. This is done in advance of calling CreateDC(). ,- '

The data in the IpDevModelnput DEVMODE structure is copied to IpQevModeOutput befJre any modifica
tions to the setup data begin. This is useful if application-specific printer setups are stored, preferably in a
private initialization file. If this flag is notused, IpDevModeOutputcan beset to NULL

Presents the printer driver Printer S~tup dialog box, and allows the user to change values. The dialog box is
defined in the driver file. .

The printer driver settings are copied to [he WIN.INI file when ExtDeviceMode() exits.

Table 10~6. ExtDeviceMode() Flags.

The DEVMODE data structure is defined in DRMNIT.H as follows:

,,-/* size of a device name string */
If/define CCHDEVICENAME 32

typedef struct _devicemode {
char dmDeviceName[CCHDE~CENAMEJ;
WORD dm$pecVersion;
WORDdmDriverVersion;

/* device name string */
/* driver specificationver. ego Ox300 */
/*OEMdirver ~ersio~ nu~ber */

WORDdmSize; - /* size of DEVMODE structure*/
_ WORD dmDriverExtra; ,
'DWORD dmFieldsj

/* number of bytes following DEVMODE data */
/* bit-field for which of the following dm */
/* va lues are supported. Bit 0 is one; f * /
/* dmOrientation is supported, etc •. */

short dmOrientation;' /* DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE */
short dmPaperSize; /* DMPAPER_LETTER, DM_PAPER_LEGAL, DM_PAPER_A4*/

/* DMPAPER_CSCHEET, DMPAPER_DSCHEET, DMPAPER_ESHEET, DMPAPER_ENV_9 */
/* DMPAPER~ENV_10, DMPAPER_ENV_11, DMPAPER_ENV_12, DMPAPER_ENV_14 */

short dmPaperLength; /* overrides dmPaperSize, in mm/10*/
short dmPaperWidth; * overrides dmPaperSize, in mm/10. */
'shortdmScale; /*pageis scaled by dmScale/100*/-
short dmCopi eSi /* number of copi es- supported * /
short dmDefaultSource; /* Default paper bin */
short :dmPri ntciua l ity; /* DMRES_HIGH, DMRES_MEDIUM, DMRES~LOW; *1

short drriColor;'
short dmDup'le,x;

/* or DMRES DRAFT. .*/ , . , ,
i* DMCOLOR..sOLOR or DMCOLOR_MONOCHROME *1
/* DMDUP_SIMPLEX, DMDUP_HORIZONTAL; */
/* or DMDUP _VERTICAL */. , ,

BYTE dm-DriverData [dinDriverExtraJ; /* 0 or morebytes of extra data~/
} DEVMODEi-

typedef ~EVMODE * PDEVMODE, NEAR * NPDEVMODE, FAR * LPDEVMODEi

Example This example demonstrates a typical call to the Printer
Setup dialog. box. The printer driver file name is re
trieved from the WINJNI file using GetProfileStringO.
The ExtDeviceModeO function is accessed indirectly
from within the driver file by loading the diver, and ob
taining the procedure-instance address of the ExtDe
viceModeO function withIn thedriver:The dialog box
will depend on the driver installed. Figure'l 0-8 shows a
typical example for the HP LaserJet printer driver.

378

Figure 10-8. ExtDeviceMode()
Example.

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING Y

long FAR PASCAL WndProc (HWND hWnd, unsignediMessage, WORD wParam, LONG lParam)
{

}

char

HANDLE
DEVMODE
LPFNOEVMOOE

sZPrinter [64], szSysOir [128], szFullOriver [256],
*szOriver, *szOevice, *szOutput ;

hOriver ;
DevMode ;
'.pOevi ceMode ;

switch (;Message) 1* process windows messages *1
{

}

case WH_COHMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_00IT: 1* get driver name from WIN.INl *1
GetProfileString ("windows", "device", "",

szPrinter, 64) ;
szDevice = strtok (szPrinter, ",") ;
szOriver = strtok (NULL, ",") ;
szOutput = strtok (NULL, ",") ;

1* bui ld full driver path/fi le spec *1
GetSystemOirectory (szSysOir, .128)
lstrcpy (szFullDriver, szSysOir)
lstrcat (szFullOriver, "\\") ;
lstrcat (szFullOriver, sZOriver)

·lstrcat (szFullOriver, ".ORV") ;
1* get handle to driver *1

hOriver = LoadLibrary (szFullOriver)
H (hOriver >.31>
{ .~.I* call ExtOeviceHodeO indirectly *1

~lpOeviceMode = (LPFNOEVMODE)

}

else

GetProcAddress (hOri ver, "Ex t Oevi ceMode")
_ if (lpOeviceMode)

(* lpOeviceMode) (hWnd, hOriver, &OevMode,
szOevice, szOutput, NULL, NULL,
OM_PROMPT) ;

HessageBox (hWnd, "Could not load driver file.",
"Hessage", MB_OK)

break;
case 10M_QUIT:

}

OestroyWindow (hWnd)
break;

break;
case WM_OESTROY:

default:

PostQu;tMessage (0);
break;

return OefWind6wProc (hWnd, ~Message, wParam, lPiram)

return (OL)

ESCAPE • Win 2~0 • Win 3.0 • Win 3.1.1
Purpose

Syntax

Description

S~nds special inforinationto a device, such as aprinter.

. int Escape(HDC hDC, int nEscape, intnCount, LPSTR lplnData, LPSTR lpOutData)j

The name "Escape" comes from the fact that many printers accept special sequences of data
starting with the ASCII ESe character to signal special functions like form feeds and boldface
printing. Windows has made this a general function, which can send a wide variety of messages to
a device. Many of the EscapeO functions supported under Windows versions 2.0 and 3.0 are not
supported under versions 3.1 and later. Instead, the DeviceCapabilitiesO, GetDeviceCapsO, and
ResetDCO functions have been added to provide a better way to deal with the printer driver.

37~

WINDOWS API BIBLE

Uses
Returns

Most commonly used to communicate with a printer.
into The meaning depends on the nEscape message sent to the device. The value will be positive
if the function was successful. The most common negative (error) values are listed in Table 10-7.

t :.Va,lu~.·':~.;;·;, :.:L··:;,: ;··i~/~ {;;:';Fi:,;> >; ~ejJn.~rig}<)~:r:"!:{;;\:i':'~·<:;0;·~2W0;~~:,g~/D~.~ljr:~i~:;'{t~i:::;~~:~~Mii~;~,:·:;?i.f.iiJ£~;t~E:~Mdi}*;~:i·~;::i?{·~~: t811
SP _ERROR General error.

SP _OUTOFOISK The print spooler ran out of disk space.

SP _OUTOFMEMORY

SP _USERABORT

The print spooler ran out of memory.

The user killed the print job from the Print Manager window.

Table 10-7. Escape() Return Codes.

See Also

Parameters
hDC

nEscape

nCount
lplnData
lpOutData

GetDeviceCapsO, GetProfileStringO, DeviceCapabilitiesO, GeiDeviceCapsO, ResetDCO

HDC: The device context handle for the device to receive the message.
int: One of the escape messages. See Table 10-8.
int: The number of bytes of data in the buffer pointed to by lplnData.

LPSTR: A pointer to the data buffer containing the information to send to the device.
LPSTR: A pointer to the data structure to receive data returned by the EscapeO function call.
Set to NULL if no data is returned.

Common Escape Commands

Note

Escape (hDC, STARTDOC, nCount, lpDocName, NULL) ;
This starts a printing job. lpDocName is a pointer to a string that contains the name that will
show up in the Print Manager window for the job. The length of the string pointed to by lpDoc
Name is given in nCount.

Escape (hDC, NEWFRAME, NULL, NULL, NULL) ;
&jects a page.
Escape (hDC, ENDDOC, NULL, NULL, NULL) j

Ends a print job.
Escape (hDC, ABORTDOC, NULL, NULL, NULL) ;
Aborts the current printing job, erasing all pending data.
Escape (hDC, SETABORTPROC, NULL, lpAbortFunc, NULL) ;
Sets an abort procedure. lpAbortFunc is the procedure-instance address ofthe abort procedure.
An example abort procedure is given in the introductory part of this chapter.
Windows version 3.1 provides enhanced versions of these common escape functions. The equiva
lent functions under Windows versions 2.0 and 3.0 are listed in Table 10-8.

Wind~W8 Versions 2.0 and 3.0

ABORTDOC

ENDOOC

NEWFRAME

SETABORTPROC

STARTDOC

AbortDoc

End Doc

EndPage

SetAbortProc

StartDoc

Table 10-8. Escapei'unction Version Reference.

380

Example

\

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING

The Windows 3.1 functions are used in the same manner as their predecessors.
This example shows the minimum code necessary to output a line of text to the printer. A more
complete example, including an abort procedure to stop printing, is included at the beginning of
this chapter. The printer driver information is retrieved from the WlN.INI file using Get-
ProflleStringO. This information is used to create the printer device context. The EscapeO func~
tion is used to start the print job, eject a page, and end the print job. TextOutO is used to output
the text string to the printer device context.

long FAR PASCAL WndProc. (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;
char· sZPrinter [64], *szOriver, *szOevice, *szOutput ;

switch (iMessage)
{

1* process windows messages *1

case W',-COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
GetProfileString ("Windows", "device", ,

szPrinter, 64) ;
szOev;ce = strtok (sz?r;nter, .. , ..) ;
szOr;ver = strtok (NULL, ",") ;
szOutput = strtok (NULL, ",") ;
hOC = CreateOC (szOriver, szOevice, szOutput, NULL)
;f (Escape (hOC, STARTOOC, 4, "Test", NULL)

{

)

> 0)

TextOut (hOC, 10, 10,
"Output I s on the pr; nter.", 25)

Escape (hOC, NEW FRAME, NULL, NULL, NULL)
Escape (hOC, ENOOOC, NULL, NULL, NULL)

OeleteOC (hOC) ;
break;

[Other program lines J

ExTTExTOUT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See.Also

Parameters
hDC
.(
Y

/

Controls text output within a rectangular area, with separate control over the spacing between
each character. ;

BOOL ExtTextOut(HDC hDC, intX, int Y, WORD wOptions, LPRECT lpRect, LPSTR IpString,
WORD nCount, LPINT lpDx)j·

Similar to DrawTextO, except that the character spacing can be set individually for the space
between each character.

Most often used with large titles or typefaces. If used with the SetTextAlignO function with
wFlags set to TA_UPDATECP, theX and Yparameters will be ignored. Instead, Windows will keep
track of the ending location (current position) for each call to ExtTextOutO and start the next
output there.
BOOL. TRUE if the function outputs the string, FALSE on error.

TextOutO, DrawTextO, SetTextAlignO

HDC: The output device context. Retrieved with GetDCO or BeginPaintO.
/lnt: The logical X coordinate of the first character in the string.

/ ,

int: The logical Y coordinate of the first character in the string.

381 ·

WINDOWS API BIBLE

wOptions

ETa_CLIPPED

ETa_OPAQUE

WORD: A combination of zero and one or two of the options in Tablc""10-9, combined with the C
language binary OR operator (I):

.. \', "!";'" ",i:." [gJ1
The text is clipped to fit within the specified rectangle:

The background of each character is opaque, covering up any graphics data u~demeath the character. , ; .

Table 10-9. ExtTextOut() Flags.

IpRect

IpString

nCount

IpDx

Example

L~RECT:A pointer to a rectangle RECT structure. The rect
angle contains the dimensions ofthe clipping rectangle. Set to
NULL if the ETO_CLlPPED style is not used.

LPSTR: A pointer to a: string, containing the characte'rs that"
will be output.

int: The number of characters in the string.

-I generic I" I·
0.0 It! quit

1est 1 e X

Figure 10-9. ExtTextOut()
Example.

LPINT; A pointer to an array ofintegers. Ea~helement of the ~rray sets the amount of space
between successive characters in the string.lpDx is the space between the i and i+l characters.

This example, as shown in Figure 10-9, shows the use of ExtTextOutO to print a series of charac
ters with increasing amounts of space between each character. The character spacing is defined
in an array of integers, nSpacefJ.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
HFONT
RECT
int

hDC ";
hFont; .
rTextRect ;

static char
nSpace[] = {10, 12, 14, 16, 18, 20, 22, 24, 26, 28} ;
cBuf [] = "Test Text" ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOlT: "1* User hit the "Do it" menu i tern-*I
SetRect (&rTextRect, 10, 10,200,400) ;
hDC = GetDC (hWnd) ;
hFont= CreateFont (24, 0, 0, 0, 400, '0, 0, 0, OEM_CHARSET,
. OUT_DEFAULT~PRECIS, CLIP_DEFAULT_PRECIS,
DE FAULT_QUALITY, DEFAULT~PlTCH IFF_MODERN,
"modern") ; "

SelectObject (hDC, hFont) ;
ExtTextOut (hDC, 10, 10, ETO_CLIPPED I ETO_OPAQUE,

&rTextRect, cBuf, strlen (cBuf), ,
(LPINT> &nSpace)

ReleaseDC (hWnd, hDC) ;
DeleteObject (hFont)

{Other program lines}
break;

GETBKCOLOR

Purpose

Syntax

Description ,

• Win 2.0. ,a. Win ~.O • Win 3.1
, Determines the current background color for a device context.

DWORD GetBkColor(HDC hDC)j,

Windows can change the background color using SetBkColorO. GetBkColorO allows you to find
out the current backgr?und color. '

"382

Uses

Returns

See Also

Parameters
hDC

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING T

Most often used with windows using the CS_OWNDC class style.

DWORD, a 32-bit color value. Use the GetRValueO, GetG
ValueO and GetBValueO mac·ros to find the individual colors.

GetBkModeO, SetBkColorO, SetBkModeO

HDC: The device context handle.

The example shown in Figure 10-10 creates a window with its

Un It! ,Quit.

[":t.nul,
[!] Pm

own, private device context. The device context character Figure 10-10. GetBkColor()
color, background mode, and background color are all set when Example.
the program starts running (mCCREATE received). When the
user clicks the "Do It!" menu item, the current background mode and Red, Green, and Blue color
values are displayed.

The class definition in the WinMainO function specifies a private device context. for the
window with the line

wndc lass. style = CS_HREORAW I CS_VREORAW I CS_OWNOC;

Here is the top part of the WndProcO function. Because the window has a private device
context, the device context settings are "remembered." The changes made when processing the
\~CCREATE messages will apply until another change is made, or until the application ter
minates.

long FAR F"SCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
int
OWORO
char

hOC;
nBkMode ;
dwBkCo lor ;
cBuf [10] ;

switch CiMessage) .
{

1* process windows. messages *1

case WM_CREATE:
hOC = GetOC (hWnd) ; 1* owns DC - no need to release *1
SetBkMode (hDC, OPAQUE) ; 1* opaque background *1
SetBkCoLor (hDC, RGB (0, 255, 0» ; 1* green background *1
SetTextColor (hOC, RGB (255, 255, 255» ; 1* white letters *1
brea k ;

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
nBkMode = GetBkMode (hOC) ;
if (nBkMode == TRANSPARENT)

TextOut (hOC, 10, 10, "TRANSPARENT", 11)
else

TextOut (hOC, 10, 10, "OPAQUE", 6)
dwBkColor = GetBkColor (hOC) ;
i toa (GetRVa Lue (dwBkColor):, cBuf ,10) ;
TextOut (hOC, 10, 30, cBuf, strLen(cBuf»
itoa (GetGValue (dwBkColor), cBuf, 10);
TextOut (hOC, 60, 30, cBuf, strlen (cBuf»
itoa (GetBValue (dwBkColor), cBuf, 10) ;
TextOut (hOC, 110, 30, cBuf, strlen (cBuf» ;
break;

{Other program lines]

GETBKMODE

Purpose

Syntax

• Win 2.0 • Win 3.0 • Win 3.1
Determines the current background painting mode for a device context.

int GetBkMode(HDC hDC)j

383

WINDOWS API BIBLE

Description

Uses

Returns
See Also
Parameters
hDC

Example

Purpose
Syntax

Description

Uses

Returns
See Also

Parameters
hDC

wFirslChar

wLastChar

lpBuJTer

Example

The background between characters, dashed lines, or hatched brushes can be either transparent
or opaque. The default mode for a device context is transparent. The background painting'mode

. is changed with SetBkModeO. Windows that have their own private device context can change
the backgfound painting mode anywhere in the program. This function allows you to find out the
current background mode.

Most often used with windows using the OS~OWNDC class style.

int, either OPAQUE or TRANSPARENT.

SetBkColorO, SetBkModeO, GetBkColorO

HDC: The device context.

See the previous example under GetBkColorO.

• Win 2.0 .Win 3.0 • Win 3.1
Determines the width of one or more characters in a font.

BOOL GetCharWidth(HDC hDC, WORD wFir.(;tChar, WORD wLastChar, LPINT lpBuJTer)j

This function finds the \vidth of characters in the font currently selected into the device context.
Normally, a range of characters is written at one time into an array, so that the furiction only has
to be called once. ," .

, Not often used. The GetTextExtentO function is more useful in determining the size of strings.

BOOL. TRUE if the character widths were determined, FALSE on error.

GetTextExtentO

HDC: The device context handle for the DC containing the current font. Use SelectObjectO to
add a font to the device context prior to calling GetCharWidthO. . .

WORD: The ASCII value of the first character. in the font sequence.

WORD: The ASCII value of the last character in the font sequence.
LPINT: A pointer to an array of integers that will contain the character widths of all of the
characters betWeen wFirstChar and wL~tChar, inclusively. Be sure the array is large enough to
hold all of the elements.

This example creates a Modern font 24·logical units high. The size of all of the capital letters is
placed in an array of integers nSpacell by using the GetCharWidthO function. In this example an
"I" is eight units wide, while an "M" is 12 units wide.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMe.sage, WORD wParam, LONG lParam)
- { /

HDC hDC ;
HFONT hFont ;
i nt . nSpace (26J ;
char cBuf (10J ;

switch (iMessage) 1* process window~ messages *1
{

case WM~COMMAND: 1* process menu· items *1
swi tch (wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hW!),,2) l .
hFont = CreateFon~(24, 0,,0, 0, 400, 0, 0, 0,

OEM_CHARSET, OUT~DEFAULT_PRECIS,

CLIP"':'DEFAULT~PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH IFF_MODERN, .

384

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING.

"modern") ;
SelectObject (hOC, hFont) ;
GetCharWidth (hOC, 'A', IZI, (LPINT) &nSpace) ;
TextOut (hOC, 10, 10, "I width'= ", 9) ;
itoa (III - IAI, cBuf, 10) ;
TextOut (hOC, 80, 10, cBuf, strlen (cBuf» ;
TextOut (hOC, 10, 30,("M width = .. , 9) ;
itoa (1M' - IAI, cBuf, 10);
TextOut (hOC, 80, 30, cBuf, strlen (cBuf»
ReleaseOC (hWnd, hOC) ;
DeleteObject (hFont) ;
break;

fOther program lines}

GETDC
Purpose
Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Note
Example

• Win 2.0 • Win 3.0 . • Win 3.1
Retrieves a handle to the device context for the client area of a window.
HDC GetDC(HWND hWnd)i

The attributes of the device context retrieved depend on the class upon which the window was
based. For the common display context, GetDC() will use default values for the fonts, colors, etc.
each time GetDCO is called. For class and private device contexts, the previous settings for the
device context are not changed.
Used prior to calling a ODI output function. GetDC() is used anywhere within a program except
in processing WM_P AJNT messages. Use BeginPaint() to retrieve the device context when paint
ing. When the GDI output is fmished, use ReleaseDC() to free the device context so that it can be
retrieved again by another part of the program. This is not necessary for class or private device
contexts.
HDC, a handle to the device context of the window's client area.
BeginPaintO, ReleaseDC(), RegisterClassO

HWND: A handle to the window containing the client area.
A maximum of fIve device contexts can be open at one time.
This program fragment uses GetDCQ to retrieve the client area device context prior to printing
text. A new font is created and selected into the device context, rather than using the default
font. After the output is complete, both the font and device context are released.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
HFONT

hOC;
hFont ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
switch (wParam)
(

case 10M DOlT: 1* User hit the "Do it" menu item *1
hOC = GetDC ChWnd) ;
hFont = Create Font (48, 0, 0, 0, 400, 0, 0, 0,

OEM_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH IFF_ROMAN,
"roman") ;

SelectObject (hOC, hFont) ;
TextOut (hOC, 10, 10, "Text Output", 11) ;
ReleaseDC (hWnd, hOC) ;
DeleteObject (hFont)
break;

IOther program lines}

385

WINDOWS API BIBLE

GETDCORG

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

ttl Win 2.0 Ell Win 3.0 m Win 3.1
Determines the screen coordinates for the logical o!igin of the device context.

DWORD GetDCOrg(HDC hDC)j

GetDCOrgO determines the screen coordinates of the origin (0,0 point) of a device context. This
function is equivalent to calling LPtoDPO for point 0,0 followed by ClientToScreenO.

Mouse coordinates are frequently given in screen coordinates.
This function allows you to compute where the mouse is rela
tive to a window.

DWORD. The low-order word contains theX position. 'I'he high
. order word contains the Yposition.

LPtoDPO, ClientToScreenO, GetCursorPosO

120 It! .Quit

Origin = 154. 208

Figure 10-11. GetDCOrg()
HDC: A handle t.o the window client area device context. Use Example ..
GetDCO to retrieve this value, unless the program is process-
ing a W~LPAINT messag~. If so, use BeginPaintO to retrieve the hDC value.

Related Messages WM_MOUSEMOVE, \VM_LBU'I'TONDOWN, etc.,
Example The example shown in Figure 10-11 outputs theX,Yposition of the origin of the window's client

, area when the user clicks the "Do It!" menu item. The origin of the window's device context is
. displaced by 20 units in both directions prior to getting the location oUhe origin in screen coor
. dinates. The offset of the origin results in the TextOutO function's output to logical coordfnates
0,0 to show up in client coordinates 20,20.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
DWORO
char

hOC;
dwOffset ;
cBuf [128] ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO: 1*. process menu i terns *1
swi tch (wParam)
{

case IDM_DOlT:. 1* User hit the "Do it"menu item *1
hDC = GetDC (hWnd) ;
SetWindowOrg (hDC, -20, -20) ;
dwOffset = GetDCOrg (hDC) ;
TextOut (hDC, 0, 0, cBuf, wsprintf (cBuf,

"Origin = %d, %d", LOWORD (dwOffset),
·HIWORD (dwOffset»)

ReleaseDC (hWnd, hOC) ;
break;

/ Other program lines J

GETDEVICECAPS m1 Win 2.0 !l Win 3.0 m Win 3.1
Purpose

Syntax

Description

Uses

Determines, the capabilities of a device.

int GetDeviceCaps(HDC hDC, int nlndex)i

Although Windows provides a good deal of device independence, it is sometimes necessary to
. determine the capabilities of the hardware Windows is using. GetDeviceCapsO can provide a
wide range of information for any device that has a device context handle assigned to it.

Determining if a printer can display graphics, if the scre~n is monochrome or color, etc.

386

ReilrrIlS

See Also

Parameters
hDC

nlndex

Index

DRIVERVERSION

TECHNOLOGY

HORZSIZE

VERTSIZE

HORZRES

VERTRES

LOGPIXELSX

LOGPIXELSY

BITSPIXEL

PLANES

NUMBRUSHES

NUMPENS

NUMFONTS

NUMCOLORS

ASPECTX

ASPEClY

ASPECTXY

PDEVICESIZE

CLiPCAPS

SIZEPALETTE

NUMRESERVED

COLORRES

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ~

int, the value of the device parameter specified by nlude.x.

CreateDCO, GetProfileStringO, DeleteDCO

HDC: The device context handle. This can be to a print.er, plotter, video, or memory device con
text. Retrieve this value with GetDCO, CreateICO, CrcateDCO, etc.

int: Specifies which value GetDcviceCaps is to obtain for the device. It can be any of the values
listed in Table 10-10.

Meaning

The driver version number, Ox100 for version 1.0, Ox101 for version 1.01, etc.

Returns one of the following values:

DT _PLOnER Vector plotter.

DT _RASDISPLA Y Raster display.

DT _RASPRINTER Raster printer.

DT _RASCAMERA Raster camera.

DT _CHARSTREAM Character stream.

DT_METAFILE Metafile.

DT _DISPFILE Display file.

The approximate width of ttle display in millimeters.

The approximate height of the display in millimeters

The number of pixels horizontally.

The number of pixels vertically.

The number of pixels per logical inch horizontally.

The number of pixels per logical inch vertically.

The number of color bits per pixel.

The number of color planes per pixel.

The number of device brushes.

The number of device pens.

The number of device fonts.

The number of colors the device supports.

The relative width of a pixel as used for line drawing.

The relative height of a pixel as used for line drawing.

The diagonal widtll of a pixel as used for line drawing.

The size of the PDEVICE internal data structure.

Determines if the device can dp to a rectangular region. Retums 1 if clipping can be done, 0 if not.

The number of entries in the system palette.

The number of reserved entries in the system palette.

The number of bits of color information per pixel.

387.

[gJ1

WINDOWS API BIBLE

Table 10-10. continued

1~);tCtex;:~;::};:;';;;:;'.·:), ;:'.~;:\::;.:>':. :;~. ftteanin9;.:2;;:.:··?:::;< Yi.~:,r;·;Vf(·::i:'::}··~~{:'·{~;V};:/ :1:?;:::.}·g~?;:X;:i·i~::<:::~i;;·:;·.~rr}!:·~(~~1;:;;~ I

RASTERCAPS The raster capabilities of the device. The returned value may contain any of the following binary
values:

CURVECAPS

. LIN ECAPS

POLYGONALCAPS

RC_BANDING

RC_BITBLT

RC_BITMAP64

RC_DLBITMAP

RC_DIBTODEV .

Requires that the output be banded (!ar example: dot matrix printers).

Can transfer bitmaps.

Can transfer bitmaps larger than 64K bytes.

Can support SetDIBits() and GetDiBits() functions.

Can support SetDIBitsToDevice() function.

RC_FLOODFILL Can do flood fills.

RC_GD120..:f)UTPUT Can support Windows 2.0.

RC_PALETTE Palette-based device.

\ RC_SCALING Can do scaling.

RC_STRETCHBLT Can do StretchBlt(). function.

RC_STRETCHDIB Can do StretchDIBits() function.

Returns a bit-coded value. Each bit is 1 if TRUE, 0 if FALSE. The bits have the following
meanings:

Bit 0 Can do circles.

~it 1 Can do pie wedges.

~it2 Can do chord arcs.

Bit 3 Can do ellipses.

Bit 4 Can do wide borders.

Bit 5 Can do styled borders.

Bit 6 Can do wide/styled borders.

Bit? Can do interiors;

Returns a bit -coded value. Each bit is 1 if TRUE, 0 if FALSE. The bits have the following
meanings:

Bit 0 Reserved.

Bit 1 Can do polyline.

Bit 2 Reserved.

Bit 3 Reserved.

Bit 4 Can do wide lines.

Bit 5 Can do styled lines.

Bit 6 Can do wide + styled lines.

Bit? Can do interiors.

Returns a bit -coded value. Each bit is 1 if TRUE, 0 if FALSE. The bits have the following
meanings:

Bit 0

Bit 1

Bit 2

Can do alternate fill polygons.

Can do a rectangle.

Can do winding number filled polygons.

388

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING 'Y

Can do scan lines.

Can do wide borders.

Can do styled borders.

Can do wide + styled borders.

Can do interiors.

TEXTCAPS Returns a bit-coded value. Each bit is 1 if TRUE, 0 if FALSE. The bits have the following
meanings:

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

BitS

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Can do character output precision.

Can do a stroke output precision.

Can do stroke clip precision.

Can do gO-degree character rotation.

Can do any character rotation.

Can do scaling independent of X and Y.

Can do doubled character for scaling.

Can do integer multiples of scaling.

can do any multiples for exact scaling.

Can do double-weight characters.

Can do italiCizing.

Can do underlining.

Can do strikeouts.

Can do raster fonts. ,
Can do vector fonts.

Reserved. Must be returned zero.

Table 10-10. GetDeviceCaps() Index Values.

Example This example, shown in Figure 10-
12, determines the number of fonts
and the horizontal resolution of the
printer. The printer device name is
determined with GetProfile
StringO, which reads the WIN.INI
file. A device context for the printer
is created, and then GetDevice
CapsO determines the printer's ca
pabilities.

Do It! Quit

pel I HP laserJet
Number of fonts'· 4
Number of dots per line 2400

Figure 10-12. GetD(Jl)iceCaps() Example.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;
char sZPrinter [64J, *szOriver, *szOevice, *szOutput, cBuf [10J ;
int nFonts, nXPixels ;

switch (iMessage) 1* process windows messages *1
{

case WM_COMM~NO: ·1* process menu items *1
switch (wParam)
{

389

VYI UUW5 API BIBLE

case IOr"LOOIT: 1* User hit the "Do it" menu item *1
GetProfilcString ("Windows", "device",

"", szPrinter, 64);
szOevice = strtok (szPrinter, ",") ;
szOriver = strtok (NULL, ",") ;
szOutput = strtok (NULL, ",") ;
hOC: CreateOC (szOriver, szOevice, szOutput, NULL)
nFonts = GetOeviceCaps (hOC, NUMFONTS) ;
nXPixels : GetOeviceCaps (hOC, HORZRES) ;
OeleteOC (hOC) ;
hOC = GctOC (hWnd) ;
TextOut (hOC, 10, 10, sZPrinter, lstrlen (szPrinter»
Hoa (nfonts, cBuf, 10); .
TextOut (hOC, 10, 30, "Number of fonts =", 16) ;
TextOut (hOC, 150, 30, cBuf, lstrlen (cBuf»
itoa (nXPixels, cBuf, 10) ;
TextOut (hOC, 10, 50,

"Number of dots per line =", 24) ;
TextOut (hOC, 170, 50, cBuf, lstrlen (cBuf»
ReleaseOC (hYnd, hOC) ;
break;

/Otherprograrn lines]

GETMAPMoDE rn Win 2.0 rl Win 3.0 I! Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

Example

Determines the mapping mode being used by a device context.

int GctMapMode(HDC ltDC)j

This function finds out which of the mapping modes is in effect for the given device context.
Mapping modes are changed by Setl\JapModeO.

Normally used v,ith \vindows including the CS_OWNDC style. This allows the window to keep
track of changes to the deviee context in its own private storage area for the DC.

The mapping mode. This can be: M~CANISOTROPIC, M~CHIENGLISH, M~CHIMETRIC,
M~CISOTROPIC, M~CLOENGLISH, M~CLOMETRIC, Ml\CTEXT, or MM_TWIPS.

SetMapModeO contains explanations of the meaning of the different mapping modes.

nDC: The device context.

This example checks th'e mapping mode of the device context every time a Wl\CP AINT me~sage is
received. The window's class style must include the CS_OWNDC flag, so that changes to the de
vice context are not forgotten every time the DC is released. In WinMainO,

wndclass.style = CS_HREDRAW I CS_VREORAW I CS_OWNOC;

In this simple example, clicking the "Do It!" menu item switches the device context to the
MM_LOMETRIC mode, but does nothing else.

long FAR PASCAL WndProc (HUNO hWnd, unsigned iMe~sage, WORD wParam, LONG lParam)
{

HOC
PAINTSTRUCT
int
POINT

hOC;
ps ;
nMapMode ;
ptTextLoc

suitch (iMessagc)
{

case WM_PAHIT:
BeginPaint (hWnd, &ps) ;
nMapMode : GetMapMode (ps.hdc)
if (nMapModc == nM_TEXT)

1* process uindows mes~age~ *1

TextOut (ps.hdc, 10, 10, "HM_TEXT mode.", 13)
else if (nMapMode == M~'_LOMET~Ic)
{

390

}

}

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ~

ptTextLoc.x = 10 ;
ptTextLoc.y = 10 ;
DPtoLP (ps.hdc, (LPPOINT) &ptTextLoc, 1) ;
TextOut (ps.hdc, ptTextLoc.x, ptTextLoc.y,

"11H_LOHETRIC mode.", 17>

EndPaint (hWnd, &ps)
break;

case wn COMMAND:
-switch (wParam)

{

1* process menu items *1

case !oM_DOlT: 1* User hit the "Do it" menu iti!m *1
hOC::: GetDC (hWnd) ;

,SctMapHode (hDC, HH_LOHETRIC) ;
ReleaseDC (hWnd, hOC) ;
InvalidateRect (hWnd, NULL, TRUE) 1* force WM_PAINT *1
UpdateWindow'(hWnd) ;
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break;

break;
case WM_DESTROY: 1* stop application *1

PostQuitHessage (0)
break;

default: 1* default windows message processing *1
return DcfWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

GETSYSTEMMETRICS rr.t Win 2.0 II Win 3.0 a Win 3.1
Purpose

Synta.x

Description

Uses

Returns

Parameters
nlndex

I Value\

Retrieves the dimensions of different window items on the video display.

int GetSystemMetricsCint nlndex)j

Depending on the type of computer and video hardware Windows is running on, different objects
will have different sizes and capabilities. GetSystemMetricsO allows your application program to
find out the values currently in use on the system.

In many cases, you can base the sizing of objects you will add to the client area in proportion to a
value retrieved by GetSystemMetricsO. For example, if you are adding a scroll bar control, it will
look best if the size matches the system metrics scroll bar dimensions. Window borders
(S~CCXBORDER) also provide a good basis for the minimum line thiclmess that will be easily
visible. .

int, the value requested.

int: Specifies which value GetSystemMetricsO is to retrieve. It can be anyone of the values listed
in Table 10-11. An screen-related sizes are given in device units (pb::els).

.' {Vlaanino ' ':','"

SM_CXDOUBLECLK ('Nin-3.1) The second mouse dck of a doub!e-click sequence must fall within this range horizontally. The
width is measured in pixels around the location of the first mouse click.

SM_CYOQl)RLECLK ('Nin'3.1) The second mouse click of a double-click sequence must fall withi[l this range vertically. The
width is measured in pixels around the location of the first mouse click.

SM_CXICONSPACING ('Nin 3.1) The width of the rectangles that Windows uses to position tiled icons.

SM_CYJCONSPACING (Win 3.1) The height of the rectangles that Windows uses to position tiled icpns.

SM_CXSCREEN The width of the screen.

391

'WINDOWS API BIBLE

Table 10-li. continued

I, Value.,' .,'/:,-.

SM_CYSCREEN

SM_CXFRAME

SM_CYFRAME

SM_CXVSCROLL

SM_CYVSCROLL

SM_CXHSCROLL

SM_CYHSCROLL

SM_CYCAPTION

SM_CXBORDER

SM_CYBORDER

SM_CXDLGFRAME

SM_CYDLGFRAME

SM_CXHTHUMB

SM_CYVfHUMB

SM_CXICON

SM_CYfCON

SM_CXCURSOR

SM_CYCURSOR

SM_CYMENU

SM_CXFULLSCREEN

SM_CYFULLSCREEN

SM_CYKANJIWINDOW

SM_CXMINTRACK

SM_CYMINTRACK

SM_CXMIN

SM_CYMIN

SM_CXSIZE

SM_CYSIZE

SM_MENUDROPAUGNMENT
(Win 3.1)

SM_MOUSEPRESENT

SM_DEBUG

SM_SWAPBUTTON

The height of the screen.

The width of a window frame that can be sized.

The height of a window frame that can be sized.

The width of the arrow bitmap on a vertical scroll bar.

The height of the arrow bitmap ona vertical scroll bar.

The width of the arrow bitmap on a horizontal scroll bar.

The height of the arrow bitmap on a horzontal scroll bar.

The height of the window caption.

The width of a window border that cannot be sized.

The height of a window border that cannot be sized.

The width of a window frame for a window that has the WS_DLGFRAME style.

The height of a window frame for a window that has the WS_DLGFRAME style.

The width of the thumb bitmap on a horizontal scroll bar.

The height of the thumb bitmap on a vertical scroll bar.

The width of an icon.

The height of an icon.

The width of a cursor.

The height of a cursor.

The height of a single-line menu bar.

The width of a window client area when the window is maximized.

The height of a window client area when the window is maximized.

The height of a Kanji window (Japanese character set).

The minimum tracking width of a window.

The minimum tracking height of a window.

The minimum width of a window.

The minimum height of a window.

The width of the bitmaps in the window title bar (minimize, etc.).

The height of the bitmaps in the window title bar (minimize, etc.).

The alignment of popup menus. A value of zero means that the left side of a popup menu is
aligned with the left side of the menU-bar item. A nonzero value means that the left side of the
popup menu is aligned with the right side of the corresponding menu-bar item

TRUE if a mouse is present, FALSE (zero) if not.

TRUE if the debug version of Windows is running, FALSE if not.

TRUE if theleft and right mouse buttons have been switched, FALSE if riot.

Table 10-11. GetSystemMetrics() nlndex Values.

Example This example puts a red border (line) in the center of the client area every time a WM_P AIN'f'
message is received. The size of the line is computed equal to the width of a window border. This
assures that the size will be reasonable on a wide range of video equipment.

392

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING 't'

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ -

PAINTSTRUCT
HPEN
int
RECT

ps ;
hPen ;
nFrameWide ;
rClient ;

switch (iMessage)
{

1* process wi ndows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
nFrameWide = GetSystemMetrics (SM_CXFRAME) ;
hPen = CreatePen (PS_SOLID, nFrameWide, RGB (255, 0, 0» ;
SelectObject (ps.hdc, hPen) ;
GetWindowRect (hWnd, &rClient) ;
MoveTo (ps.hdc, 0, nFrameWide/2) ;
LineTo (p$.hdc, rClient.right, nFrameWide/2) ;
DeleteObject (hPen) ;
EndPaint (hWnd, &ps)
break;

IOther program lines J

GETTABBEDTEXTExTENT o Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also
'J ,Parameters

hDC

IpString

nCount

nTabPositions

Determines the logical dimensions of a string contain!.lg tab characters.

DWORD GetTabbedTextExtent(HDC hDC, LPSTR lpString, int nCount, int nTabPositions,
LrINT lpnTabStopPositions) j

Similar to GetTextExtentO, except that it will correctly expand tab stops.

Sizing objects on the s\~reen to match a tabbed text string. Used in coI\iunction with Tabbed
TextOutO. Some devices do not put characters in regular sized character cells. These devices do
"kerning" to optimize character spacing. GetTabbedTextExtentO will not return the correct text
extend on devices that do kerning.

DWORD. The low-order word contains the width of the string in logical units. The high-order
word contains the height of the string in logical units.

TabbedTextOutO, GetTextExtentO

HDC: The device context.

LPSTR: A pointer to a character string that will be output.

int: The number of characters, including tab characters, in the string.

int: The number of tab positions specified in IpnTabStopPositions. If set to 0 an(!)pnTab
StopPositions is NULL, tabs are expanded to an even eight average character widths. If set to l,
tabs are expanded to an even spacing specified by the first element of the IpnTabStopPositions
array.

lpnTabStopPo.ritiuns LPINT: A pointer to an array of integers, holding the tab stop positions. The tab positions are
measured in device units (pixels) and must be in ascending order.

Example This example WndProcO fragment outputs a tabbed text string, and then underlines the string
with a red line. The dimensions and location of the line are calculated based on the text dimen
sions. GetTabbedTcxtExtentO is not strictly necessary in this example, as TabbedTextOutO re
turns the same height and width values.

I
long FAR PASCAL WndProc (HW~D hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
stati c char
static int

hDC ;
cBut (] = {"First - Field 1\tField 2\tLast Field"} ;
nTabs [] = {30, 45, 60) ;

393

(

WINDOWS API BIBLE. i '.

ht>WORO
¥.HPEN

dwTextSi ze ;
hPen ;

switch (iHessage)
{

1* process windows messages *1

case W~jLCOHHAND: 1* process menu items-*I
switch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
TabbedTextOut (hOC, 10, 10, cBut, strlen (cBut), 3,

(LPINT) &nTabs, 10) ;
dwTextSize = GetTabbedTextExtent (hDC, cBut,

strlen (cBut), 3, (LPINT) &nTabs) ;
hPen = CreatePen (PS_SOLID,HIWORD (dwTextSize) 1 2,

RGB (255, 0, 0» ;
SelectObject (hOC, hPen) ;
MoveTo (hOC, 10, 10 + (2 * HIWORD (dwTcxtSize») ;
LineTo (hOC, 10 + LOWORO (dwTextSizc),

10 + (2 * HI WORD (dwTextSize»)
OeleteObject (hPen) ;
ReleaseOC (hWnd, hOC) ;

{Ot~er program lines J
\

GETTExTALIGN

break;

\ " Win 2.0 a Win 3.0 II Win 3.1
Pnrpo~e

\
Sydtax \,

ne~p~ri\n

Uses

Returns

TA..8ASEUNE

TA..80TIOM

TA_CENTER

TA_LEFT

Determines the text alignment settings of a device context: '
WORD GetTextAlign(HDC kD(J)j

The text alignment settings are set with the SetTextAlignO function. These settings determine
how the X, Y parameters passed with the TextOutO and ExtTextOutO functions are interpreted.
Used with windows created with a private deVice context. The text alignment settings are then
"remembered" by the device context.
One or more of the flags in Table 10-12.

The baseline of the first character is used to specify the string position.

The bottom of the first character is used to specify the string position.

The center of the first character is used to specify the string position.

The left side of the first character is used to specify the string position.

TA_NOOPDATECP The. location at the "end of the last text output is not saved.

T A..RIGHT_ The right side of the first character is used to specify the string position.

TA..UPDATECP

The top of the first character is used to specify the string position.

The position at the end of the last text output is saved. The next call to TextOut() or ExtTextOut() will start
from this location, ignoring the X, Y data in the output function parameters.

Table 10-12. GetTextAlign() Flags.

Note

See Also

The default values for a device context are TA_LEFr, TA_TOP, and TA_NOUPDATECP. The TA_
flags are not defined in WINDOWS.H as unique binary values. It is necessary to break the three
types of flags into groups, and then compare each group with the flag values. The example shows
how this is done.

'setTextAlignO, TextOutO, ExtTextOutO

394

10. DEVICE CONTEXTS, TEXl OUTPUT, AND PRINTING ...
I :,

Parameters
hDG HDC: The device context.
Example This example shows how to process the returned value from GetTextAlignO. This function is

useful only when a window is created With its own private device context. This means that. the
class definition will include the cs~oWN'6c style in the WinMainO function. I'

wndclass.style = CS_HRE~RAW I CS_VREORAW I CS_OWNOC ;

In this excerpt from a W~dProcO function, the text alignment is set when the p~ogram first
starts (WM_CREATE message received). When the user clicks the "Do It!" menu item, the text
alignment values are determiAed via a series of switch statements and output to the device con
text.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;
WORD wAlign;

switch (iMessage) 1* process windows messages *1
{

case WM_CREATE:
hOC = GetOC (hWnd) ; i* owns DC, no need to release *1
SetTextAlign (hOC, TA_BOTTOM TA_LEFT);
break;

case WM_COMMANO: 1* process menu items * I
switch (wParam)
{

cas e I 0 M_O 0 IT : I * Use r h it the "00 it" men u i t em * I
hOC = GetOC (hWnd) ;
wAlign = GetTextAlign (hOC> ;
switch (wAlign & (TA_LEFT I TA_CENTER ITA_RIGHT»
{

case TA_LEFT:
TextOut (hOC, 10, 20, "LEFT", 4) ;
break;

case T A_C ENTE R:
TextOut (hOC, 10, 20, "CENTER", 6)
break;

default:
TextOut (hOC, 10, 20, "RIGHT", 5)
break;

} ,
switch (wAlign & (TA_TOP I TA_BOTTOM ITA_BASELINE»
{

case TA_TOP:
TextOut (hOC, 10, 40, "TOP", 3)
break;

case TA_CENTER:
TextOut (hOC, 10, 40, "BOTTOM", 6)
break;

default:
TextOut (hOC, 10, 40, "BASELINE", 8)
break;

}

switch (wAlign & TA_UPOATECP)
{

}

break;

case TA_UPOATECP:

default:

TextOut (hOC, 10, 60, "UPOATECP", 8)
break;

TextOut (hOC, 10, 60, "NO UPOATECP", 11>
break;

f Other program lines /

395

WINDOWS API BIBLE

GETTEXTCHARACTEREXTRA • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hDC

Example

Determines the amount of extra character spacing defined for a device context.
\

int Gefl'extCharacterExtra(HDC hD(J)j

I The SetTextCharacterExtraO function is used to add extra space between letters output by
TextOutO and ExtTextOutO. GetTextCharacterExtraO is used to find out how much extra space
is defined for a device context.

Use with windows that have a private device context defined as part of their class definition.

int, the amount of extra space between characters, measured in logical units.
SetTextCharacterExtraO, TextOutO, ExtTextOutO, GetMapModeO

HDC: The device context handle.

This function is· useful only if the window has its own private device contex't. This means that the
CS_ OWNDC style will be part of the window's class definition in the WinMainO function.

wndclass.style = CS_HREDRAW I CS_VREDRAW I CS_OWNDC ;

This example sets 10 extra units of space between characters when the program starts (re
ceives a WM_ CREATE message). Because the default mapping mode MM_TEXT is used, the space
equates to 10 pixel widths. When the user clicks the "Do It!" menu item, the program checks
whether the extra space is still defined. Because this window has its own private device context,
the response will always be "Extra spacing."

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
i nt

hDC ;
nSpaceExtra ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hDC = GetDC (hWnd) ; 1* owns DC, no need to release *1
SetTextCharacterExtra (hDC, 10) ;
break;

case WM_COMMAND: 1* process menu' items *1
swi tch(wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
nSpaceExtra = GetTextCharacterExtra (hDC) ;
if (nSpaceExtra == 0)

TextOut (hDC, 10, 10, "Normal spacing.", 15) ;
else

TextOut (hDC, 10, 10, "Extra spacing.", 14) ;
break;

IOther program lines J

GETTEXTCOLOR • Win 2.0 • Win 3.0 • Wm 3.1
Purpose

Syntax

Description

Uses

Returns

Retrieves the text color setting for a device context.

DWORD Gefl'extColor(HDC hD(J)j

The default text color for a device context is black. This can be changed with SetTextColorO. The
color remains effective until a call to SetTextColorO changes the value. GetTextColorO allows"
the progranito determine the current text color.

Use with windows that have their own private device cont~xt.

The 32 ·bit color value for the current text color.

396

See Also

Parameters
hDC

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING T

. SetTextCoiorO, SetBkColorO, GetBkColorO, SetBkModeO, GetRValueO, GetGValueO,
GetBValueO

HDC: The device context handle. no It! quit

The example in Figure 10-13 has a window with a private de- My Text Color = . ffOOOO
vice context. When the program starts ~CCREATE message
received), the text color is set to blue. When the user clicks the Figure 10-18. SetTe.xtColorO
"Do It!". menu item, the current color value is output in hexa- and GetTextCo107'O Example.
decimal.

The window's class definition in WinMainO includes the CS_OWNDC style, giving the win
dow its own private device context:

wndclass.style = CS_HREORAW I CS_VREORAW I CS_OWNOC ;

Note that the RGB macro parameters are in the opposite order of the storage order inside the
32-bit coded color value (compare RGB (0,0,255) with the output value of OxFFOOOO).

long FAR PASCAL WndProc (HWNO hWnd, unsigried iMessage, WORD wParam,~LONG lParam) ('.

HOC
OWORO
char

hOC;
dwTextColor ;
cBuf (10] ;

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE:
hOC = GetOC (hWnd) ; 1* owns DC, no need to release *1
SetTextColor (hOC, RGB (0, 0, 255» ; 1* blue 'etters *1
break;

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
(

case 10M DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
dwTextColor = GetTextColor (hOC) ;
ltoa (dwTextColor, cBuf, 16); 1* convert to hex *1
TextOut (hOC, 10, 10, "My Text Color =", 15) ;
TextOut (hOC, 150, 10, cBuf, lstrlen (cBuf» ;
break; .

IOther program lines}

GET'I'EXTEXTENT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

Determines the length of a string when it is output to a device context.

DWORD Get1'extExtent(HDC hDC, LPSTR lpString, int nCount)j

The text extent is the width of a string. The width is computed using the currently selected font.
In th~ default MM_TEXT mapping mode, the width is in device units (pixels). If another mapping
mode has been set with SetMapModeO, the width will be determined in logical units. Some de
vices do not put characters in regular sized character cells. These devic'T'do "kerning" to opti
mize character spacing. GetTabbedTextExtentO will not return the correct'text extend on
devices that do kerning. .

This function is a direct way to calculate the size of a string prior to output. It also works directly
With SetTextJustificationO to justify string output (see example).
DWORD. The low-order word contains the width. The high-order word contains the length.

SetTextJustification(), GetTabbedTextExtentO

HDC: The device context handle.

397

WINDOWS API BIBLE

IpString
nCount

Example

/

LPSTRING: A pointer to a character string.
int: The number of characters in the string pointed to by
lpString.
This example justifies a three-word string to fit exactly within
the bounds of a 200 pixel wide rectangle, see Figure 10-14. '

0.0 It! Quit

To

GetTextExtentO is used to calculate the size of the string prior Figure 10-14. Text
to justification. SetTextJustificationO taen adds enough space Justification Example.

, ,to' expand the string to the full 200 unit size. The next call to
! TextOutO uses the justification during output to space the words.

With this,simple example, the number Qfspaces in the string (two) is known. Normally, you
would have to check the number of spaces (break characters) in the string before calling
SetTextJustificationO· /

long FAR PASCAL WndProc (HWNO hWnd, unsigned 'iMessage, WORD wParam, LONG lParam)
{

HOC
HPEN
OWORO
char

hOC;
hPen ;
dwExtent ;
cBut [J = {"String To Fit"} ;

switch (iMessage) 1* process windows messages *1
{

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
SetBkMode (hOC, TRANSPARENT) ;
hPen = GetStockObject (BLACK_PEN) ;
SelectObject (hOC, hPen) ;
Rectangle (hOC, 10, 10, 210, 50)';
dwExtent = GetTextExtent (hOC, cBut,

lstrlen (cBut» ;
SetTextJustification (hOC, 200 -

, LOWORO(dwExtent), 2) ;
TextOut (hOC, 10, 20,cBut, lstrlen (cBut»;
ReleaseOC (hWnd, hOC)
break;

fOther program lines}

Purpose

Syntax

Descpption

Returns

See Also
Parameters
hDC
nCount
IpFacename
Example

II Win 2.0 II Win 3.0 \ • Win 3.1

Retrieves the name of the current typeface.
, I

;.int,GetTextFace(HDChDC, intnCount, LPSTR lpFacename);
,,~~, default typeface for a device context is the' system font. If another font is selected,
GetTextFaceO will retrieve its name as a null-terminated string.

/'

into The number of characters copied to the IpFacename buff'er'

EnumFontsO, CreateFontO, CreateFontIndirectO

HDC: The device context handle.

int: The maximum number of characters to copy to thtHpFacename buffer.

LPSTR: A pointer to a character buffer to hold the typeface n~me.
This example outputs the name of the current typeface to the window's client area when the user
clicks the "Do It!" menu item. Because no other font has been selected, the program will display'
"system," for the default system font. I."

398

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ""

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;
char cBuf [30] i

switch (iMessage) 1* process windows messages *1
{

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

ca·se IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
GetTextFace (hDC, 29, cBuf) ;
TextOut (hDC, 10, 10, cBuf, lstrlen (cBuf» i
ReleaseDC (hWnd, hDC) i
break;

[Otlzerprogmm lines}

GETTEXTMETRICS II Win 2.0 II Win 3.0 11 Win 3.1

Purpose

Syntax

Description

Retrieves basic data about the font currently selected for a device context.

BOOL GetTextMeUics(HDC hDC, LPTEXTMETRIC lpMetrics)j .

Retrieves data on a font by filling a TEXTMETRIC data structure. WINDOWS.H includes the fol
lowing definition of the TEXTMETRIC data structure

typedef struct tagTEXTMETRIC
{

int tmHeighti
int tmAscent;
int tmDescenti
int tmlnternalLeading;
int tmExternalLeadingi
int tmAveCharWidthi
int tmMaxCharWidthi
int tmWeighti
BYTE tmltalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChari
BYTE·tmLastChar;
BYTE tmDefaultChari
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSeti
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;

} TEXTMETRICi
typedef TEXTMETRIC
typedef TEXTMETRIC NEAR
typedef TEXTMETRIC FAR

*PTEXTMETRICi
*NPTEXTMETRIC;

*LPTEXTMETRIC;

Uses

Returns

See Also
I)arameters
hDC

lpJ.}[etrics

GetTextMetricsO fills in all of these values into a memory area pointed to by lpMetrics.

Most commonly used to determine the height of the font. Sum the tmHeight and tmExternal
leading elements to determine the total height of a fOIit. .

. BOOL. Nonzero if the function was successful, zero on error.

GetText.ExtentO.

HDC: The device context handle.

LPTEA"TMETRIC: A pointer to a TEXTMETRIC data structure.

399

WINDOWS API BIBLE

Example 'This example shows the most common use of GetTextMetricsO. ThetmHeight and tmExUrinal
leading elements total to the height of the font. The font height is used to set the line spacing.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

HDC
TEXTMETRIC
HFONT
int

hDC ;
tm ;
hFont i
nLineSpace ;

switch (iMessage)
{

1* process wi ndows messages *1

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
hFont = Create Font (24, 16, 0, 0, 700, 0, 0, 0,

OEM_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH I. FF_MODERN, "modern") ;

SelectObject(hDC, hFont) i
GetTextMet ri cs (hDC,&tm);
nLineSpace = tm.tmHeight +

. tm.tmExternalLeading ;
TextOut (hDC, 0, nLineSpace,

"These lines are", 15) ;
TextOut (hDC, 0, 2 * nLineSpace,

"evenly spaced.", 14) i
DeleteObject (hFont) ;
ReleaseDC' (hWnd, hDC) i'
break;

{Other program lines/

GETVmWPORTEXT • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also

Parameters
kDC

Example

Used with GetWindowExtO to determine ~e scale of the de~ce context.
DWORD GetViewportExt(HDC hDC)j

The MM_ISOTROPIC and MM_ANISOTROPIC mapping modes allow the logical coordinate sys
tem of a device context to be any arbitrary scaled ratio to the physical device. GetViewportExtO
and GetWir,dowExtO are used together to determine the current scaling. The scaling factor is
the ratio of the viewport extent divided by the window extent. For example, if the viewport X
extent is three, and the window X extent is one, the logical coordinate system expands all hori
zontal dimensions by a factor of three. If the signs of the viewport and window extents match, the
coordinate orientation is unchanged. If one of the signs is negative and the other positive, the
orientation is reversed. Reversing one sign is commonly used to make the Yvalues increase up
ward, rather than the default system where Yvalues increase downward.
Used with windows created with the CS_OWNDC class style that maintain a private copy of their
device context.
DWORD, the viewport extent. The low-order word contains the X value. The high-order word
contains the Yvalue.
GetWindowExtO, SetViewportExtO, SetMapModeO, SetViewportOrgO

i
I

HDC: The device context handle.
This example creates a window with its own private device context. This means that the class
style CS_OWNDC is specified in the WinMainO function.

wndc lass. style = CS_HREDRAW I: CS_VREDRAW 1 CS_OWNDC ;

400

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ~

The program sets up the MM_ISOTROPIC mapping mode during startup (when the
WM_CREATE message is received). The scaling is fIXed at two logical units to one device unit by
the SetWindowExtO and SetViewportExtO function calls. The Yaxis orientation is reversed, so
that Yvalues increase upwards by specifying a negative Yvalue in SetViewportExtO, while the Y
value in SetWindowExtO is positive. When the user clicks the "Do It!" menu item, the current Y
axis scaling is determined by comparing the values returned by GetViewportExtO and
GetW'mdowExtO. The settings are displayed on the window's client area using TextOutO. Note
that the Y values for TextOutO are set negative to make the text visible. This is because the
logical origin has not been changed from the default upper left comer of the client area, and Y
values now increase upward.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPara., LONG lParam)
{ -

HDC
DWORD

hOC;
dwViewExt, dwWindExt ;

switch (1Me.sage)
{

'* process windows messages *'

case WM_CREATE:
hDC = GetDC (hWnd) ;
SetMapMode (hOC, MM_ISOTROPIC)
SetW1ndowExt (hOC, 1, 1) ;
SetViewportExt (hDC, 2, -2) ;
break;

cI.e WM_COMMAND: '* process menu items'*,

(Other program li'Msj

switch (wPara.)
(

case IDM DOlT: '* User hit the "Do it" menu ite .. *'
hOC = GetDC (hWnd) ; .
dwViewExt = GetViewportExt (hOC) ;
dwWindExt = GetWindowExt (hDC) ;
if (abs (HIWORD (dwViewExt» ==

~bs (HtWORD (dwWindExt»)
(

TextOut (hDC, 10, -10,
"Device Y = Logical Y she", 25) ;

)

else if (abs (HIWORD (dwViewExt» <
abs (HIWORD (dwWindExt»)

(

)

else
(

}

'TextO~t (hOC, 10, -10,
"Logical Y < Device Y size", 25)

TextOut (hOC, 10, -10,
"logical Y> Device Y size", 25) ;

if «(int) HIWORD (dwViewExt) < 0 &&

(

}

else
(

}

break;

(int) HIWORD (dwWindExt) > 0) I I
«int) HIWORD (dwViewExt) > 0 &&

(int) HIWORD (dwWindExt) < 0»

TextOut (hOC, 10, -30,
"Y axis increases upward.", 24) ;

TextOut (hDC, 10, -30,. .
"' axis increases downward.", 26) ;

401·

WINDOWS API BIBLE'

GETVIEWPORTORG • Win 2.0 • Win 3.0 • Win 3.1
Purpose,

S~tax

Description

Uses
Retoms
See Also

Parameters
hDe
Note

Example ..

Used with GetWindowOrgO to determine the locat'ion of the origiILof the logical coordinate sys-
tem of a device context. '
DWORD GetViewportOrg(HDC hDC)j

Windows allows two offsets to be applied to the origin (0,0 location) of the logical coordinate
system. SetWindowOrgO' sets up the first offset, called the "window origin." SetViewportOrgO
sets up the second offset, called the "viewport origin." The viewport origin is relative to the
window origin, so you can think of the viewport origin as an offset from another offset.
Used with windows that maintain their own private device context.
DWORD. The low-order word contains theX offset. The high-order word contains the Yoffset.

... GetWindowOrgO, SetViewportOrgO, SetWindowOrgO,' SetMapModeO, SetViewportExtO,
SetWindowExtO

HDC: The device context handle.
The scaling (GetViewportExtO, GetWindowExtO) and origin (GetViewportOrgO, Get
WindowOrgO) of a device context determine the difference between device coordinates and
logical coordinates. The following formulas relate device points (DP) and logical points (LP):
DP = Scale * (LP -Win~Org) + ViewOrg j
LP = (lIScale)* (DP- ViewOrg) + WindOrg;
Where:

Scale = ViewportExtent / WindowExtent j
The example shown in Figure 10-15 creates a Window with its
own private device context. Every time a WM~SIZE message is
received';' the program resets the logical device scaling and ori

Do It! Quit

WindowOrg =
ViewPort Org =

-10, -10
o , 98

gins. The MM_ISOTROPIC mapping mode is used. The scaling Figure 10-15. GetWindow
doubles the logical vertical size and reverses the Y direction so argO and GetViewportOrg
that Y values increase upward on the client area. The Example.
viewport origin is set equal to the lower left corner of the wiit- ,
dow. The size of the client area is found by looking at the HIWORD octile lParamvalue passed
with the WM_SIZE message. Because the window origin is always offs~t'by 10 unitS'ln both theX
and Y directions using SetWindowOrgO, the viewport origin appears at a location 10 units above
and to the right of the lower left corner. (The viewport origin is always relative to the window
origin.)

The upper left corner of the letter Von the bottom line is the logical location 0,0 in the device
context coordinate system. The upper left corner of the capital W on the upper text line is at
logical location 0,10. The private device context for the .window is established in the WinMainO
function as part of the class definition.

wndclass.stYle = CS_HREORAWI CS_VREORAW I CS_OWNOC ;

The output of the window and viewport offset values occurs when the user clic~ thp. "Do It!"
menu item.

long FAR PASCAL WndPr.oc (HWNO hWnd, uns;gned ;Message, WORD wParam, LONG lParam)
<

HOC
DWORD
char'

hOC •
~wVi~wOrg, dwWindOrg';
cBuf (10J ;

switch (iMessage)

402

1* process windows messages *1

< .

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

case WM_SIZE:
hOC = GetOC (hWnd) ; 1* owns DC, no need to release *1
SetMapModeChDC, M"_ISOTROPIC)
SetWindowExt (hOC, 1, 1) ;
SetViewportExt (hOC, 2, -2); .
SetWindowOrg (hOC, -10, -10) ;
SetViewportOrg (hOC, 0; HIWORO (lParam»
break;

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_DOlT: . 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
dwViewOrg = GetVieWPQrtOrg (hOC) ;
dwWindOrg = GetWindowOrg (hOC) ;
TextOut (hOC, 0, 0, "ViewPort Org =", 14)
itoa (LOWORO (dwViewOrg), cBuf, 10)';
TextOut (hOC, 60, 0, cBuf, lstrlen (cBuf» ; ,
TextOut (hOC, 70, 0, ",", 1) ;
itoa (HIWORO (dwViewOrg), cBuf, 10);
TextOut (hOC, 80, 0, cBuf, lstrlen (cBuf» ;
TextOut (hOC, 0, 10, "Window Org =", 12) ;
itoa (LOWORO (dwWindbrg), cBuf, 10) ;
TextOut (hOC, 60, 10, cBuf, lstrlen (cBuf» ;

. TextOut (hOC, 70, 10, ",", 1) ;
itoa (HIWORO (dwWindOrg), cBut, 10) ;

. TextOut (hOC, 80, 10, cBut, lstrlen (cBuf» ;
break;

IOther program lines 1

GETWINDowDC • Win 2.0 • Win 3.0 .Win 3.1
Purpose

Syntax

Description

Uses

R~tnrns

See Also

Parameters

Retrieves the device context for the entire window, including the nonclient areas like the caption
bar, scroll bars, borders, system menu button, etc.

HDC GetWmdowDC(HWND hWnd)j

This function allows a program to paint on the nonclient areas of a window. This is normally not
necessary or desirable, as Windows automatically maintains the client area as part· of the
DeiWindowProcO function operations.
Use of this function is generally discouraged. You can use it to create custom window types, but
they will not conform to normal Windows conventions. .

HDC, the device context for the window.

GetDCO, BeginPaintO

hWnd HWND: The window handle.
RelatedMessages MCNCPAINT, WM_PAINT, WM_NCACTIVATE
Example The example shown.in Figure' 10-16 is one of the most complex

. in the book. The main window creates a new popup window
which has a separate class and a separate message processing
function. The popup window intercepts WM_NCPAINT mes
sages in order to paint its own frame. The frame is drawn in Figure 10-16.
red, with a fIxed caption "Custom Frame." MCNCACTIV ATE GetWindowDC(J E~ample.
and WM_P AINT messages must also be processed to avoid in-
terference with the custom frame during the default windows processing.

The ChildProcO message processing function must be listed in the EXPORTS section of the
program's .DEF defInition file. A function prototype must also be included in the program's
header file. / ".

403

WINDOWS API BIBLE
. I

long FAR PASCAL WndProc (HWHD hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC / .
static WHIlcLASS
stati c tUIHD

hDC ;

/

1* the window class *1 wndclass ;
hPopup, hParent ;

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE: : 1* bui ld the chi ld window when program starts *1
wndclass.style , = CS_HREDRAW I CS_VREDRAW I.

wndclass.lpfnWndPr6c = thfldProc ;
CS_PARENTOC ;

,wndelass.cbClsExtra = 0,;
wndelass.ebWndExtra = 0 ;
wndclass.hInstanee = ghInstance ;
wndclass.hIcon = NULL;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH)
wndclass.lpszMenuName = NULL i
wndclass.lpszClassName = "SeeondClass" ;

. 1* register the window class *1
if(RegisterClass (&wndelass»
(

}

break;

hPopup;:: CreateWindow (IISecondClass", ,
WS_POPUP I WS_VISIBLE I WS_BOROER I

WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;

ShowWindow (hPopup, SW_SHOW) ;

case WM_COMMAND: 1* process menu items *1
switch (wParall)
(

case 10M_DOlT: 1* User hi t the "Do it" menu item *1
hParent= GetParent (hPopup) ;
SendMessage (hPopup, WM_USER"hParent, OL) ;
break;

case 10M_QUIT: 1* send end of application'message*1
OestroyWindow (hWnd) ;

}

break;
case WM_DESTROY:

break

PostQuitMessage
break;

1* stop application *1
(0) ;

default: 1* defaul t windows message proeessi og *1
return De1WindowProc (hWnd, iMessage, ~Param, lParam) ;

1* Here is a separate message processing procedure for the popup window *1

long FAR PASCAL ChildProc (HWND hPopup, unsigned iMessage, WORD ~Param, LONG lParam)
(

HOC
HPEN
RECT

hDC ;
hPen ;
rBorder, rClient ,

switch (iMessage)
(

1* process' windows messages *1

case WfCNCPAINT: 1* nonclient area needs painting *1
hOC = GetWindowDC (hPopup) ;
GetWindowRect (hPopup, (LPRECT) &rBorder) ;
Sel~ctObject (hDC, GetStockObject (WHITE_BRUSH» ;
Rectangle (hOC, 0, 0, rBorder.right - rBorder.left,

404 .

>

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING Y

reorder.bottom - reorder.top) i
hPen = CreatePen (PS_SOLIO, 5, RGB (255, 0, 0»
SelectObject (hOC, hPen) i
MoveTo (hOC, 0, 0) i
LineTo (hOC, reorder.right - rBorder.left - 2, 0)
LineTo (hOC, rBorder.right - rBorder.left - 2,

reorder.bottom - rBorder.top - 2) i
LineTo (hOC, 0, rBorder.bottom -,rBorder.top - 2)
LineTo (hOC, 0, 0) ;
MoveTo (hOC, 0, 15) ;
LineTo (hOC, rBorder.right - rBorder.left, 15) ;
SetBkMode (hOC, TRANSPARENT) :
TextOut (hOC, 1, 1, "Custom Frame", 12)
OeleteObject (hPen)-;
ReleaseOC (hPopup, hOC) ;
return (OL> ;

case WM_PAINT: 1* bypass client area painting *1
GetClientRect (hPopup, (LPRECT) &rClient) ;
ValidateRect (hPopup, (LPRECT) &rClient) ;
return (OL> ;

case WM_USER: 1* mesfage fron! parent - just beep *1
. MessageBeep (0) ;

break;
case WM_OESTROY: 1* stop the popup window *1

PostQuitMessage (0) ;
break;

case WM_NCACTIVATE: 1* falls through to OefWindowProcO *1
PostMessage (hPopup, WM_NCPAINT, 0, OL) ; -

default: 1* default windows message processing *1
return OefWindowProc (hPopup, iMessage, wParam, lParam) ;

return (OL> ;
>

GETWINDOWEXT .• Win 2.0 • Win 3.0 - • Win 3.1

Purpose Used With GetViewportExtO to determine the scale the device context.

_ Syntax DWORD GetWindowExt(HDC hDC);

Description

Uses

Returns

See Also

. Parameters
hDC

Example

The MM_ISOTROPIC and MM_ANISOTROPIC mapping modes allow the logical coordinate sys
tem of a device context to be scaled to any arbitrary ratio to the physical device. GetViewportExtO
and GetWindowExtO are used together to determine the current scaling. The scaling factor is
the ratio of the viewport extent divided by the window extent. For example, if the viewPort X
extent is three and the window X extent is one, the logical coordinate system expands all hori
zontal dimensions by a factor of three. If the signs of the viewport and window extents match, the
coordinate orientation is unchanged. If one of the signs is negative and the other positive, the
orientation is reversed. This is commonly used to make the Y values increase upward, rather than
the default system where Y values increase downward.

Used with windows created with the CS_OWNDC class style, that maintain a private copy of their
device context ..

DWORD, the window extent. The low-order word contains the X value. The high-order word con·
tains the Y value.

GetViewportExt(), SetWindowExtO, SetMapModeO, SetWindowOrgO

HDC: The device context handle.

See the example under the GeWiewportExtO function description.

405

WINDOWS API BIBLE

GETWINDOWORG • Win 2.0 • Win 3.0 • Wm 3.l
Purpose , Used with GetViewportOrgO to determine the location of the origin of the logical coordinate

system of a device context. .

Syntax DWORD GetWmdowOrg(HDC hDC)j

Description

Uses
Returns

See Also

Parameters
hDC'

Example

GRAySTRING
Purpow

Syntax

Description,

Uses

Returns

See Also

Parameters
hDC
hBrush

lpOutputFunc

lpData "

nCmint

x

Windows allows two offsets to be applied to the origin (0,0 location) of the logical coordinate
system. SetWindowOrgO sets up the first offset, called the "window origin." SetViewportOrgO
sets up tpe second offset, called the ''viewport origin." The viewport origin is relative to the win
dow origin, so you can think of the viewport origin as an offset from another offset.

Used with windows that maintain their own p~ivate device context.

DWORD. The low-order word contains ~he X offset. The high-order word contains the Yoffset.

GetViewportOrgO, SetViewportOrgO, SetWindowOrgO, SetMapModeO, SetViewportExtO,
SetWindowExtO

HDC: The device context~ndle.

See the example under the GetViewportOrgO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Draws grayed text or a grayed bitmap at the given location.

BOOL GrayString(HDGhDC, HBRUSH hBrush, FARPROC lpOutputPunc, DWORD lpData, int
nCount, intX, int Y, int nWidth, int nHeight)j

The graying is accomplished by combining the selected brush and the text string or bitmap. For
black text characters, this has the effect of eliminating pLxels where the brush bitmap is white
and changing the. remaining pixels to the brush color. This function is a holdover from the 2.0
version of ~indows, which used this technique to gray menu items. .

Can be used to provide different degrees of "graying" of a string or to gray a bitmap.

BOOL. TRUE is the function was successful, FALSE on error.

GetStockObjectO.SetTextColorO can be used to paint characters with a gray color, but without
the elimination of selected pixels.

HDC: The d~vice context handle.

HBRUSH: A handle to the brush to use for gra~ing. Normally, GetStockObjectO is used to retrieve
one of the three stock gray brushes (see the following example).

FARPROC: NULL ifTextOutO is to be used for output.lpOutputFunc can also be the procedure
instance address of a special output function tHat you add as part df the program. Use
MakeProcInstanceO to' create a procedure-instance address for the function. The function for
mat is shown below.

DWORD: If lpOutputFunc is NULL, lpData is a pointer to the character string to' be output.
Otherwise, lpData is a long pointer to the data to be passed to the output function described
below.

int: The amount of data to be output. If nCount is NULL, lpData is assumed to be a null-termi-
nated character string." "

int: The ~ogicalXposition to start output.

406

10. DEVICE CONTEXTS,TEXT OUTPUT, AND PRINTING ..

y, int: The logical Yposition to start output.

n Width int: The width of the output rectangle in logical units. Set to NULL if lpData Points to a character
string.

nHeigkt int: The height of the output rectangle in logicai units. Set to NULL if lpData points to,a char
acter string.

Custom Output Function

Example

The program can provide its own specialized output function. The function must have the follow
ingformat:

BOOL FAR PASCAL OutputFunc (HDC hDC, DWORD lpData, intnCount)

Where:

hDC is a memory device context containing a bitmap n Width wide and nHeight tall. The output
function writes to this device context.
lpData is the pointer to the data passed by GrayStringO.

nCount is the number of data bytes passed by GrayStringO.
Like all callback functions, the output function must be de
clared in the EXPORTS section of the program's .DEF defini
tion file. The output function should return nonzero on
success, zero on error. The MM_TEXT mapping mode must be
in effect prior to calling GrayStringO.

This example outputs the same text with four different levels '

F~Fr'-
o.oltl Quit

Thb ~)1rin~J to tit! ~JraYI~d.

This string to be grayed.

of graying. The image on a VGA screen is significantly better Figure 1 O~ 17. GrayString()
. than that of the illustration in Figure 10-17, as the graying logic Example.
changes both the bitmap and the gray color used to display the
letters. Only the bitmap effects are visible in this black and white illustration.

Note that the last text string is created using TextOutO, so no graying of the text occurs.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
HBRUSH
char

hDC ;
hBrush ; .
cBuf [] = {"This string to be grayed."} ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1

/Otherprogram lines}

switch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
hBrush = GetStockObject (LTGRAY_BRUSH) ;
GrayString (hDC, hBrush, NULL, (DWORD)(LPSTR) cBuf,

NULL, 10, 10, NULL, ~ULL) ;
hBrush = GetStockObject (GRAY_BRUSH) ;
GrayString (hOC, hBrush, NULL, (OWORD)(LPSTR) cBuf,

NULL, 10, 30, NULL, NULL> ;
hBrush = GetStockObject (DKGRAY_BRUSH) ;
GrayString (hDC, hBrush, NULL, (DWORD)(LPSTR) cBuf,

NULL, 10, 50, NULL, NU,LL> ;
TextOut (hDC, 10, 70, cBuf, lstrlen (cBuf» i
ReleaseDC (hWnd, hDC)
break i . .

407

WINDOWS API BIBLE

LPToDP
Purpose

Sfntax·

Description

Uses

Returns
See Also

Parameters
kDC
IpPoints

nCOf£nt

Note

Example

• Win 2.0 • W'm 3.0 • Win 3.1
Converts a point from logical coordinates to device coo~es.
BOOL LPtoDP(HDC kDC, LPPOINT IpPoints, int nCount)j

One or more points in an array pointed to by IpPoints can be converted in one call to this func
tion.
Used with the alternate mapping modes when there is a need to relate a point in the client area
to an external'element such.as the mouSe position.
BOOL. TRUE if all points were converted, FALSE on error.
DptoLPO, SetMapModeO

HDC: The device context handle. .
LPPOINT: A pointer to a point, or the first element in an array of POINT structures.
int: The number of points to convert.
The scaling of a device context determines the difference between device coordinates and logical
coordinates. The following formulas relate device points (DP) and logical points (LP):

DP = Scale * (LP -WindOrg) + ViewOrg ;

LP = (l/Scale) * (DP -ViewOrg) + WmdOrg;
Where:
Scale = Viewport Extent / WindowExtent ;
This example sets an alternative mapping mode, MM_LOMETRIC. The cursor arrow is moved to
the origin of the logical coordinates. This example requires two transformations: LPtoDPO to
convert from the logical coordinates to the device coordinates and ClientToScreenO to convert
mm the device coordinates to the screen coordinates used in positioning the mouse cursor. The
cursor moves to the upper left comer of the client area, as changing the mapping mode do.;,s not
automatically change the origin.

long FAR PASCAL WndProc (HWND hWnd, unsigned ;Hessage, WORD wParam, LONG lParam>
{

HDC
paIN'"

hDC ; .
ptPoint ;

switch (;H855a98)
{

1* process windows messages:*'

case WH_COMMAND: '* process menu' items *'

/Otkerprogram lines)

swi tch (wParam)
{

case 10M_DOlT: '* User hit the "Do it" menu item *1
hOC = GetDC (hWnd) ;
SetHapHode (hDC, HH_LOMETRIC) ;
ptPoint.x = ptPoint.y = 0 ;
LPtoDP (hOC, &ptPoint, 1) ;
ClientToScreen (hWnd, &ptPoint) ;
SetCursorPos CptPoint.x, ptPoint.y) ;
ReleaseDC (hWnd, h~C) :
break;

OFFSETVIEWPOR1'ORG • Win 2.0 • Win 3.0 • Win 3.1
Purpose Changes the X; Y offSet of the logical coordinate system origin.
Syntax DWORD Oft'setViewportOrg(HDC-kDC, intX, int Y)j

408

Description

Uses

Returns

See Also

ParuaeteJS
hDC

X

Y

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

SetViewportOrgO is used to establish the offset in both theX and Y directions of the origin ofthe
logical coordinate system. OffsetViewportOrg'O allows the offset to be changed by increments. ,
Calling OffsetViewportOrgO is equivalent to calling SetViewportOrgO withX and Yvalues equal '
to the old values plus the offsets.
Used with windows that have their own private device context. Offsetting the origin can be a
convenient way to scroll a graphics image.
DWORD, the previous viewport offset. The low-order word contains the X coordinate offset. The
high-order word contains the Y coordinate offset. '

The function descriptions for SetViewportOrgO and GetViewportOrgO contain more complete
descriptions of offsets.

HDC: The device context handle.
int: The number of device units (pixels) to add to the horizontal offset.

int: The number of device uriits (pixels) to add to the vertical offset.

This example creates a window with its own private device context. When the program starts or is
resized (WM_SIZE message received), the mapping mode is set to MM_ISOTROPIC and the ver
tical scale expanded by a factor of two. The vertical scale is reversed (negative Y value with
SetViewportExtO), so that increasing Yvalues point upward on the windows client area. The
viewport origin is set equal to the bottom left comer of the screen using SetViewportOrgO. This
offset is in tum affected by offsetting the window origin by 10
units in both the X and Y directions uSing SetWindowOrgO. Qo It! .Quit
The result of these transformations is that the logical 0,0 point "":;~-=';';"""-----I

Fr.--.-ycllelic------ -. r.-

on the screen is 10 pixels to therigbt and 20 pixels above the
bottom left comer of the window's client area. Window Org =, D. -10'

When the user clicks the "Do It!" menu item, the window X ViewPort Or!l = 5. 07

offset is eliminated (10 added to the old offset of -10). The Figure 10-18. OffsetView
viewport origin is also offset by five in both the X and Y di- portOrg() and Offset Window
rections. The combined effect of these two offsets shiftS the Org() Example.
origin to the right 15 pixels and down 5. Repeatedly clicking
the "Do It!" menu item will continue to shift the image to the left and down by 15 pixels horizon
tally and 5 pixels vertically. The origin is reset if the window is sized. /

The WinMainO function includes the CS_OWNDC class style as part of the window's class
, definition. This provides the window with its own private device context .

. wndclass.style = CS_HREORAW I CS_VREORAW I CS_OWNOC ;

Note in processing the WM_SIZE message that the client area vertical size is passed as the
high-order word in the lParam parameter. This is convenient for setting the viewport origin at
the bottom of the client area.

long FAR PASCAL WndProc (HWNOhWnd, unsigned iMessage, WORD wParam, LONG lParam) { . . ,

HOC
DWORD
char

hOC;
dwV1ewOrg, dwWindOrg ;
cBuf[101.' ;

switch (;Message)
{

'* process windows messages *1

case WM_SlZE:
hOC = GetDC (hWnd) ; /* owns DC, no need to release *1
SetMapMode (hOC, MM_ISOTROPIC) ;
SetWindowExt (hOC, 1, 1)-';

409

WINDOWS API BIBLE

SetViewportExt (hOC, 2, -2) ;
SetWindowOrg (hOC, -10, -10) ;,
SetViewportOrg (hOC, 0, HIWORO (lParam»
break;

case WM_COMMANO: I*-Dr-ocess menu items *1
switch (wParam)
{ -

case 10M_DOlT: i* User hit the "Do it" menu item *1
. hOC = GetOC (hWnd) ;
OffsetWindowOrg (hOC, 10, 0) ;
OffsetViewportO~g (hOC, 5, 5) ;
dwVi ewOrg = GetVi ewportOrg(hOC>
dwWindOrg = GetWindowOrg (hOC) ;
TextOut (hOC, 0, 0, "ViewPort Org =", 14) ;

.itoa (LOWORO (dwViewOrg):, cBuf, 10) ;
TextOut (hOC, 60, 0, cBuf; lstrlen (cBuf»
TextOut (hOC, 70, 0, ",", 1) ;
itoa (HIWORO (dwViewOrg), cBuf, 10) ;
TextOut (hOC, 80; 0, cBuf, lstrlen (cBuf»
TextOut (hOC, 0, 10, "Window Org =", 12) ;
itoa (LOWORO (dwWindOrg), cBuf, 10) ;
TextOut (hOC, 60, 10; cBuf, lstrlen (cBuf»
TextOut (hOC, 70, 10, ",", 1) ;

itoa (HIWORO (dwWindOrg), cBuf, 10);
TextOut (hOC, 80, 10, cBuf, lstrlen (cBuf»
break;

IOther program lines /

O}'FSETWINDOWORG • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

X

Y

Example

RELEASEDC

Purpose

Syntax

Description

Changes the X, Y offset of the logical coordinate system origin.

DWORD OffsetWmdowOrg(HDC hDC, intX, int Y)j

SetWindoworg(i is used to establish the offset in both theX and Y directions oUhe origin of the '
logical coordinate system. OffsetWindowOrgO allows the offset to be changed by increments.
Calling OffsetWindowOrgO is equivalent to calling SetWindowOrgO with X and Yvalues equal to
the old values plus the offSets.

Used with windoWs that have their own private device' context. Offsetting the· origin can be a
convenient way to scroll a,graphics image.
DWORD, the previous window offset. The low-order word contains the X coordinate offset. The
high-order word contains the Y coordinate offset;

The function descriptions for SetWindowOrgO and GetWindowOrgO contain more complete de
scriptions of offsets.

HDC:The device context handle.
int: The number of device units (pixels) to add to the horizontal offset.

int: The number of device units (pixels) to add to the vertical offset.

See the previous example under OffsetViewportOrgO.

• Win 2.0 • Win 3.0 • Win 3.1
Frees the device context.

int ReleaseDC(HWND hWnd, HDC hDC)j

This function is used to free the device context after output is completed. Windows allows a
maximum oftive device contexts to be open at one time, but only one for a given device: Releasing
the DC is necessary unless the window class was created with the CS_OWNDC style.

410

Uses

Returns.

See Also

Parameters
hWnd

hDC

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

It is good practice to use ReleaseDCO immediately alter output is completed. Use EndPaintO to
release the device context retrieved by BeginPaintO in processing a MCPAINT message.

into Returns nonzero if the device context was released, zero on error.

GetDCO

HWND: The handle of the window.

HDC: The device context to be released. This is the value returned by GetDCO before ou tput was
started.

This example outputs the string "This is a character string." when the user hits the "Do It!" menu
item. The device context is released immediately after use. '

long FAR PASCAL WndPrQc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;
char cBuf [J = {"Thi sis a character' stri n9. "} ;

switch (iMessage)
{

case WH_COMMANO:
switch (wParam)
{

1* process windows messages *1

1* process menu items *1

case IDM_OOlT: 1* User hit the liDo it" menu item *1
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, cBuf, lstrlen (cBuf» ;
ReleaseOC (hWnd, hOC) ;
break;

/Otherprogram lines]

REMOVEFoNTRESOURCE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
lpFilename

Removes a font from the system and frees all memory associated with the font.

BOOL'RemoveFontResource(LPSTR lpFilename)j

Fonts take up memory space. It is good practice to remove custom fonts loaded by an application
when the application is terminated. Other top-level windows should be notified that the font has
been removed from the system by sending a WftCFONTCHANGE message.

Usually used when processing the WM_DESTROY message to remove added font resources. Do
not remove, the normal Windows system fonts, or any other font that was not loaded by the ap
plication.

BOOL. TRUE if the font was removed, FALSE on error.

AddFontResourceO, FindResourceO

LPSTR: A far pointer to a null-terminated character string containing the font file name. This
should be a complete DOS file name including the directory path and the ".FON" file extension.
Alternatively, lpFilename can contain a handle to a font resource loaded as part of the resource
.RC file. The resource file should include a line like

FONT script.fon

The FindResourceO function is then used to obtain the handle to the font. The handle be
comes the low-order word of IpFilename. The high-order word must be zero.

Related Messages MCFONTCHANGE should be sent to all top-level windows after a font is loaded or removed. This
makes the new font's availability known to all programs running on the system.

411

WINDOWS API BIBLE

Example This example shows a font me called "scripUon" being loaded at the start of the program and
removed at the end. SendMessageO is used to notify all other top-level programs of the font's
presence. By setting the fllSt parameter in SendMessageO equal to -I, all top-level windows re
ceive the message. .

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, .WORD wParam, LONG LParam)
<

int nFontLoad ;

switch (iMeSSage) 1* process windows messages *1
<

case WM_CREATE: 1* bring in the font fi Le *i
nFontLoad = AddFontResource «LPSTR) "script.fon") ;
if (! nFontL9ad)

else

break -;

MessageBox (hWnd, "Could not load font.", "Warning",
MB..:,.I CONHAND 1MB_OK) ;

SendMessage (-1, WM_FONT~HANGE, 0, OL)

case WM_COMMAND: 1* process menu items *1
1* other program lines here *1

>

break;
case WM_DESTROY: 1* s.top application *1

RemoveFontResource «LPSTR) "script.fon") ;
SendMessage (-1, WM_FONTCHANGE, 0, OL) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd,iMessage, wParam, lParam) ;

return (OL> ;
>

RESETDC
Purpose

Include File
Syntax
Description

Uses

Returns

See Also

Parameters
hDC

lplnitData

Updates a printer device context.

<drivinit.h>
HDC ResetDC (HDC hDC, LPDEVMODE lplnitData);

o Win 2.0 0 Wm 3.0 • Win 3.1

The printer device context, created by CreateDCQ, can be updated at any time using ResetDCO.
The update is based on data in a DEVMODE data structure, passed to the function. The DEVMODE
data is typically initialized using ExtDeviceModeO. Changes to the DEVMODE data can include
any value except the driver name, device name, or output port. .

ResetDCO can be used in the middle 'Of a printing job to change printer settings, such as paper
orientation or printing resolution. This supersedes a number of Escape 0 function calls that were
used to c~ge printer settmgs under Windows versions 2.0 to 3.0.
HDC, the original device context handle. Returns NULL on error.

CreateDCO, ExtDeviceModeQ, Escape().

HDC:. The handle to the printer device context. This is the value returned ·by CreateDCO.

LPDEVMOOE: A pointer to a DEVMODE data structure· containing the new settings for the
printer. This data structure typically is initialized using ExtDeviceModeO prior to making
changes tothe data. The DEVMODE data structure is defmed in DRMNIT.H as follows:

1* size of a device name string *1
IIdefine CCHDEVICENAME 32 .

typedef struct _devi cemode <
char dmDeviceName[CCHDEVICENAMEJ;
WORD dmSpecVersion;

1* device ~ame string *1
1* driver specification ver.eg. Ox300 *1

412

WORD dmoriverVersioni
WORD dmSizei
WORD dmDriverExtrai
DWORD dmFieldsi

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

1* OEM dirver version number *1
1* size of DEVMODE structure *1
1* number of bytes following DEVMODE data *1
1* bit-field for which of the following dm *1
1* values are supported. Bit 0 is one if *1
1*'dmOrientation is supported, etc. *1

short dmOrientationi 1* DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE *1
short dmPa~erSizei 1* DMPAPER_LETTER, DM_PAPER_LEGAL, DM_PAPER_A4 *1

1* DMPAPER_CSCHEET, DMPAPER_DSCHEET, DMPAPER_ESHEET, DMPAPER_ENV_9 *1
1* DMPAPER_ENV_10, DMPAPER_ENV_11, DMPAPER_ENV_12, DMPAPER_ENV_14 *1

short dmPaperLengthi 1* overrides dmPaperSize, in mm/10 *1
short dmPaperWidthi 1* overrides dmPaperSize, in mm/10 *1
short dmScalei 1* page is scaled by dmScale/100 *1
short dmCopiesi 1* number of copies supported *1
short dmDefaultSourcei 1* Default paper bin *1 -
short dmPrintQualitYi 1* DMRES_HIGH, DMRES_MEDIUM, DMRES:LOW, *1

, short dmColor i
short dmDuplexi

1* or DMRES_DRAFT *1
1* DMCOLOR_COLOR or DMCOLOR_MONOCHROME *1
1* DMDUP_SIMPLEX, DMDUP_HORIZONTAL, *1
1* or DMDUP_VERTICAL *1

BYTE dmDriverData I:dmDriverExtraJ i 1* 0 or more bytes of extra data *1
} DEVMODEi

typedef DEVMODE * PDEVMODE, NEAR * NPDEVMODE, FAR. * LPDEVMODEi

Related Messages W?tCDEVMODECHANGE
Example This example illustrates several advanced techniques in dealing with a printer device driver.

When the user clicks the "Do It!" menu item, WIN.iNI is parsed to obtain the driver name and
output port name. The driver is then loaded, and the address of the driver's ExtDeviceModeO
function is determined. ExtDeviceModeO is called three times. The first call determines the size
of the memory block needed to contain the driver's DEVMODE data structure. A global memory
block ofthis size is then allocated. The second call to ExtDeviceModeO, with the DM_COPY flag
set, copies the device data to the global memory block. The third call to ExtDeviceModeO, with
the DM_PROMPT flag set, executes the driver's setup dialog box. If the user docs not click the
cancel button within the dialog box, the W?tCDEVMODECHANGE message is sent to all running
applications to alert them that the printer settings may have been altered.

Next, the program outputs two lines of texUo the printer. The first is output in the printer's
default paper orientation mode, assumed to be portrait. ResetDCO is then called to change the
printer device. context to landscape mode. The second line of text is then output. Rese~DCO is
called a final time to return the printer to portrait mode. Note that error checking on the memory
allocation functions was omitted in this example for clarity. See the example under the
GlobalAllocO function description for a more complete example of memory allocation.

tong FAR PASCAL WndProc (HWNo hWnd, unsigned iMessage, WORD wParam,-LONG lParam)
<

char

HANDLE
LPFNDEVMODE
LPDEVMODE
HDC
int
HANDLE

switch (iMessage)
<

case WM_COMMAND:

sZPrinter 1:64], szSysoir 1:128J, szFullDriver [256J,
*szDriver, *szDev;ce, *szOutput

hDriver i
lpfnDeviceMode ;
lpoevMode i

,hDCPrinter ;
'nReturned, nBytes ;
hMem i

1* process windows messages *1

1* process menu items *1
swi tcl\ (wParam)
<
case 10M_DOlT: '* get driver name from WIN.INI*I

GetProfi leString ("windows", "devi ce", 'It',
sZPrinter, 64) i

413

WINDOWS API BIBLE

\ \

'-

szDevice= strtok (szP~inter, ",H)
szDriver = strtok (NULL, ",H) ;
szOutput = strtok (NULL, ",H) ;

1* build full driver path/fi le spec *1
GetSystemDirectory (szSysDir, 128)
lstrcpy (szFullD~iver, szSysDir)
l s t rca t (s z· Full D r i ve r, "\ \ ") ;
lstrcat (szFullDriver, szDriver)
lstrcat (szFullDriver, ".DRV") ;

1* get handle to driver *1
hDriver = LoadLibrary (~~FullDriver); .
if (hDriver > 31)
{

}

else

lpfnDeviceMode = (LPFNDEVMODE) GetProcAddress
(hDriver, "ExtDeviceMode") ;

if (lpfnDeviceMode)
{ 1* find size of DEVMODE structure *1

nBytes = (* lpfnDeviceMode) (hWnd, hDriver,
lpDevMode, szDevice, szOutput,
NULL, NULL, NULL> ;

hMem = GlobalAlloc
(GMEM_MOVEABLE I GMEM_ZEROINIT, nBytes) ;
lpDevMode = (LPDEVMODE) GlobalLock (hMem)

1* initialize DEVMODE data *1
(* lpfnDeviceMode)
(hWnd, hDriver, lpDevMode,

szDevice, szOutput, NULL, NULL, DM_COPY)
1* call printer dialog box *1

nReturned = (* lpfnDeviceMode) (hWnd, hDriver,
lpDevMode, szDevice, szOutput, NULL,

NULL, DM_PROMPT> ; .
if (n~eturn~d != IDCANCEL)
PostMessage (-1, WM_DEVMODECHANGE, 0,

(DWORD) (LPSTR) szDevice)

hDCPrinter·= CreateDC (szDriver, szDevice,
szOutput, (LPSTR) lpDevMode) ;

1* output in default mode *1
Escape (hDCPrtnter, STARTDOC, 4, "Test", NULL> ;

TextOut (hDCPrinter, 10, 10,
~'Text Output Appears Portrait Mode.", 34)

Escape (hDCPrinter, NEWFRAME, NULL, NULL, NULL) ;
Escape (hDCPrinter, ENDDOC, NULL, NULL, NULL))

1* switch printer to landscape *1
lpDevMode->dmOrientation = DMORIENT_LANDSCAPE ;

if (ResetDC (hDCPrinter, lpDevMode»
{ . .""

1* output in landscape mode *1
Escape (hDCPrinter, STARTDOC, 5, "Tes.t2",

NULL> ;
TextOut (hDCPrinter, 10, 10,
Text Output Appears Landscape Mode."~

35) ;
Escape (hDCPrinter, ~EWFRAME,

414

NULL, NULL, NULL)

lpDevMode->dmOrientation =
DMORIENT_PORTRAIT ;

ResetDC (hDCPrinter, lp~~vMode)
}

else
MessageBox (hWnd,
"Could not change printer DC.",

"Message", MB_OK)
GlobalUnlock (hMem) /
GlobalFree (hMem) ;

break;
case 10M_QUIT:

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING "

MessageBox (hWnd, "Could not load driver file.",
"Message", MB_OK)

OestroyWindow (hWnd)
break;

}

break;
case WM_OEVMOOECHANGE:

MessageBox (hWnd,
"Notification that printer settings were altered.",
(LPSTR) lParam, MB_OK)

break;
case WM_OESTROY:

default:

PostQuitMessage (0) ;
break;

return OefWindowProc (hWnd, iMessage, wParam, lParam)
}

return (OL) ;

RESTOREDC

'Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hDC

• Win 2.0 • Win 3.0 • Win 3.1
Restores'lln old device context saved with SaveDCO.
BOOL RestoreDC(HDC hDC, int nSavedDC)j

The current device context can be saved at any' time with
SaveDCO. Each call to SaveDCO places a copy of the current
device context settings in a stack, above the last saved DC.

.0.0 It I quit

Output with new DC settings.

Output with old DC settings.

Calling RestoreDCO returns the device context to the state Figure 10-19. RestoreDC() .
when it was saved. If more than one device context is saved Example.
before RestoreDCO is called, the RestoreDCO calls are nor-
mally done in the reverse order to the order of the SaveDCO calls. If a DC below the last saved DC
is restored, the ones above it in the stack are destroyed, as shown in Figure 10-19.

Handy if you are changing pen colors, fonts, etc. within a graphics intensive part of the program.
Avoids having to continually reload old pens, fonts, etc. to keep the device context current.

BOOL. TRUE if the device context was restored, FALSE on error.

SaveDCO, GetDCO, BeginPaintO

HDC: The device context handle.

nSavedDC int: The value returned by SaveDCO when the device context was saved. Set to -1 to return the
most recently saved DC.

Related Messages W~CP AlNT
Example This example saves the device context before changing to a new font. After the font is used, the

old device context is restored to output the bottom line using the system font. /
;'

long FAR PASCAL WndProc (HWNO hWnd, unsignediMessage, WORO wParam, LONG lParam)
{

HOC
HFONT
int

hOC;
hFont ;
nOldOC ;

switch (iMessage)
{

case WM_COMMANO:
swi tch(wParam)
{

case 10M_OOrT:

1* process windows messages *1

1* process menu items *1

1* User hit the "00 it" menu item *1

415

WINDOWS API BIBLE

hDC = GetDC (hWnd) ;
nOldDC = Save DC (hDC) ;
hFont = CreateFont (18, 0, 0, 0, 400, 0, 0, 0,

OEM_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH I FF_ROMAN, "roman") ;

SelectObject (hot, hFont) ;
TextOut (hOC,.10, 10,

"Output with new DC settings.", 28) ;
RestoreOC (hOC~ nOldOC) ;
TextOut (hOC, 10, 40,

"Output with old DC settings.", 28) ;
ReleaseOC (hWnd, hDC) ;
break;

{Other program linesJ

SAVEDC
Purpose

Syntax

Descriptio",

~turns

See Also
Parameters

Saves a device context for future use.
int SaveDC(HDChDC)j

• Win 2.0 • Win 3.0 • Win 3.1

The current device context can be saved at any time with SaveDCO. Each call to SaveDCO places
a copy of the current device context settings in a stack, above the last saved DC. Calling
RestoreDCO returns the device context to the state when it was saved. The saved DC will be
removed from memory when the program terminates.
Handy if you are changing pen colors, fonts, etc. within a graphics intensive part of the program.
Avoids having to continually reload old pens, fonts,~tc. to keep the device context current.
int, the number of the saved device context. Zero on error.
RestoreDCO, ReleaseDCO, EndPaintO

hDC HDC: The device context handle.
Related Messages WM_PAlNT

Example See the previous example under RestoreDCO.

SCALEVIE~ORTEXT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax
·~ption

Uses

Returns

See Also

Parameters
hDC

Xnum·

Changes the scale of the logical coordinate system for a device context.
DWORD ScaleViewportExt(HDC hDe, intXnum, intXdenom, int Ynum, int"rdenom);

The existing viewportlxtents (scaling) is a ratio based on the following formulas to come up with
the new scaling:
xNewVE = (xOIdVE * num) / Xderwm ;.. .

yNewVE = (yOldVE * Ynum) / Ydenom j

This is a convenient way to change the scaling of the a coordinate system. Only the
MM_ISOTOPIC and MM_ANISOTROPIC mapping modes can be scaled. "
The'previous viewport extents (scaling). The low-order word contains the X value, while the
high-order word contains the Y value.
ScaleW"mdowExtO, SetMapModeO, GetViewportExtO, SetViewportExtO

HDC: The device context handle.
int: The multiplier for the current X extent.

416

Xdenom

Ynum
Ydenom

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING

int: The divisor for the current X extent.

int: The multiplier for the current Yextent.
int: The divisor for the current Yextent.
In the example shown in Figure 10·20, three circles, 20 logical units
in diameter, are drawn at the logical coordinates 40,40. The three
circles end up in different places, and different sizes, due to the
scaling of the logical coordinates. To begin, the MM_ISOTROPIC
mapping mode is set up with one logical unit equal to one device
unit (pixcl) in both theX and Y direction. Because the origin is not
changed, the default origin at the upper left corner remains in effect.
Circle 1 is drawn at 40,40 and ends up being 20 pixels in diameter.

Before circle 2 is drawn, both the X and Yextents are scaled up
by a factor of two. This results in circle two being drawn twice as far
away from the origin, and twice as big (measured in pixels). For
circle 3, the scaling is returned to one logical unit equals one pixel,
but the origin is relocated to the lower right corner. The Yaxis is also
inverted, so that increasing Y values refer to higher positions on the

Qo It I Quit

o

o
o
3

Figure 10·20.
/Scale ViewportExt() and

/ ScaleWindowExt()
Examples.

client area. These changes result in circle 3 being drawn at location 40,40 relative to the bottom
left corner, instead of relative to the top left corner.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
RECT

hDC ;
rCUent

swHch (iMessage) 1* process windows messages *1
{

tase WM_COMMAND: 1* process menu Hems *1

{Other program lines 1

swi tch (wParam)
{

case IDM_DOIT: 1* User hH the "Do it" menu Hem *1
hDC = GetDC (hWnd) ;
SelectObject (hOC, GetStockObject (BLACK_PEN»
SetBkMode (hDC, TRANSPARENT) ;
SetMapMode (hOC, MM_ISOTROPIC) ;
SetWindowExt (hOC, 1, 1) ;
1* first create a map mode where logical unit = pixel *1
SetViewportExt (hOC, 1, 1) ;
Ellipse (hOC, 40, 40, 60, 60) ;
TextOut (hOC, 40, 40, "1", 1) ;
1* now create a map mode where logical unH = 2 pjxels *1

1* map mode = 2 * default *1
ScaleViewportExt (hOC, 2, 1, 2, 1) ;
Ellipse (hOC, 40, 40, 60, 60) ;
TextOut (hOC, 40, 40, "2", 1) ;

1* undo the last scaling *1
Sca leVi ewportExt (hOC, 1, 2, 1, 2) ;
1* now create a map mode where the origin is at the *1
1* lower left corner, and Y values increase upwards. *1
ScaleWindowExt (hOC, 1, 1, 1, -1) ; •

GetClientRect <hWnd, (LPRECT) &rClient) ;
SetViewportOrg (hOC, rClient.left, rClient.bottom) ;
Ellipse (hOC, 40, 40, 60, 60) ;
TextOut (hOC, 40, 40, "3", 1) ;
ReleaseOC (hWnd, hOC)
break;

417

WINDQWS API BIBLE

,SCAI.EWIND owE XT • Win 2.0 • Win 3.0 • Win 3.1

~PDrpose .. ".:~,
, ~Syntax'-'" ,

;Description
;,

:Uses'

Changes the scale of the logical coordinate system for a device context.

DWORD ScaleWmdowExt(HDChDC, intXnum, intXdenom, int Ynum, int Ydenom);

The existing window extents (scaling) is a ratio based on the, following formulas to come up with
the new scaling: '

xNewWE = (xOldWE * Xnum) / Xdenom ;

yNewWE = (yOldWE * Ynum) / Ydenom ;

This is a convenient way to change the scaling of a coordinate system. Only the MM_ISOTOPIC
and MM_ANISOTROPIC mapping modes can be scaled.

Returns The previous window extents (scaling). The low-order word contains the X value, while the high-
,"., ",,>C."" or~e.rword contains the Yvalue.
See Also .\::'~,,\:,\ "',ScaleViewportExtO, SetMapMode(); GetWindowExtO, SetWindowExtO
Parliffiet~rs i"" ,. "":;', . 'I:.,'

hDC ~'i':~,':',,~, "'~".";; lIDO: Th~ldevicec~ntext handh~·>~»i
,:, ,~. '~~~\:\ > 1:.··.:,:.' <.,' \: ",."!",' ',:. : :fJ:'. .::;'::'" ,: -·,."r·~ ::

Xnum ' mt: The ~ultiplier for the ;currentX extent.
X~()m.r;: i.' .;;i, ;.,.~.int;,ThQ:dj~~or f~~;ith~'~~,~~~tX e~~~t:; i" :,

Ynum int: The multiplier for tIle "current yeXte'nt.' : ,
Ydenom

0: i:,!l!~:r;'1;h~~~f,?s?rl~1.' tl~e,~vr!le~t re~~n~. ;', .. ," I; ',,::

Example The the previous example under ScaleViewportE>.i;O.

SETBKCOLOR • Win 2.0 " .• Win3.0 ", • Win 3.1
Purpose
Syntax

Description

Sets the color of the background surrounding each character, dashed line,pr hatched brush.
',.- ;- '::' '.:.'~ ~ " • "', ~) ,.:, ~:. :," -, ".; ,'.' • ',',;'. '. . ,'" " '" i , ' . .' • ,

DWORD SetBkColor(HDC hDC, DWORD erCo[or);,' I, ,;": ,

The background 'color is usedto:fill inthe spaces around characters, dashed lines, and between
, the lin~s of hatched brushes. The:~ef~tllt background color is white. SetBkColorO allows you to

, ' (change ihe~ background cQlor'~used:by the':deVlcecontext. _
r,' \ , •.••• ! ••• ,.',., , ••. " .•.

Uses Necessary when teXt; 'Une$'9i"Qfusllcs'are painted against a c.olor other than white.
Returns :0,\ i r; ,: Theprevioushackgroun~ ~olo~,'as an RGB ·col~~~al~~. Returns Ox80000000 on error. See Chapter

11, Painting the Scrfll{ri, rror:a dlscussion:,ofthe'RGB color model. .

See Also _ SetBkModeO, Cre~t~'H~t~hBr~shc),'Cr~~t~P~~(),: T~xtOu~O, GetBkColorO, GetBkModeO
Parame

" t"er"sj .;:~ :~"i '::, .!. j nl1 ; <, ',' i ,,.'~)j ;; '; ':, .i." (', ' " ,"" , ',,',

'\ .:, ~'.' ,:J /. ~ :' .• '

hDC HDC: The devicecontext'handle:'" J-.'
~ {(;! .1,',: .~~'~" t:· ... ~~j>~~' ":.'I·l i r •• ;~~

erColar DWORD: A 32-hit.,polor yalue.,,use the RGBO macro to create a new color value.
Related Messages WM PAINT \~. ,i!': '. ; ': ' ,"'~;':,),:'1 . ,

. - '~ (~.; ,; "'. \.. ., i .. f, ~ ~.' 0 OJ : '

Example '. 'I, '.;; ~ This program fragment' dernonstratesoutput of a character string with a fIxed color background.
'I" • "il'l: ';cln thiscase/th~',t~xtis(rriagen:ta and ih~ ba~kground is green (an awful color combination!).

~ .' ".' '. I .' A,, .,. . ' •• ' ..•.•.. . •

• ~ 1:'~'; i::-'~::' .: '1"~~i'J;:: :.) .. ':::(',.;r;.: :.':' :· .. ·.i~·.:,: ";.~ .. '.-:

long FAR PASCAL,WndPr,oc, (HWNO hWnd/unsi gne~:Li Message, WOR~ ,wPa ram, LONG l Pa ram)
{ " '" .', .J,' •. ,., ... ' , ,'" , . , '. , ' ',", ,","" .'):~

HOC hOC; :;' ;:/ :-:'~ <:'::~ ',I;:: ... '", '.".' ". .
char cBuf [] ~. {UThi s:"i ~a:cha'rac.ter;,str~ng. "} ;

switch (iMessage)
,{

case WM_COMMANO:

418

1* process menu items *1
....

swi tch (wParam)
{

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ."

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
SetBkMode (hOC, OPAQUE) ;
SetBkColor (hOC, RGB (0, 255, 0» ;
SetTextColor (hOC, RGB (255, 0, 255» ;
TextOut (hOC, 10, 10, cBuf, strlen (cBuf»
ReleaseOC (hWnd, hOC)
break;

IOther program lines}

SETBKMODE
Purpose

Syntax

Description

Uses

Returns

See~o

Parameters
hDC

nBkMode

Changes the background painting mode.

int SetBkMode(HDC hDC, int nBkMode)j

• Win 2.0 • Win 3..0 • Win 3..1

Sets the background painting mode. OPAQUE means that the spaces around the characters,
dashed lines, and hatched brushes will be filled in with the background color. Selecting a TRANS
PARENT mode keeps the rectangular area around each character from "blocking out" the back
ground.

Frequently used to make the new text "blot out" the old text.

intI the previous background mode.

SetBkColorO, TextOutO, GetBkColorO, GetBkModeO

HDC: The device context handle.

int: The background painting mode. It can be either OPAQUE or TRANSPARENT.
Related Messages WM_P AINT

Example See the previous example with SetBkColorO.

SETMAPMoDE .' , • Win 2.0 • Win 3..0 • Win 3.1 .
Purpose
Syntax

Description

Uses

Returns

See Also

Parameters
hDC

nMapMode

Changes the mapping mode for a device context.

int SetMapMode(HDC hDO, int nMqpMode)j

When a device context is first created, it uses the default set of units for measuring locations on
the client area. The default units are in pixels, measured from the top left corner of the screen.
These units are used to locate characters and graphics for functions like TextOutO and LineToO.

The alternate mapping modes allow you to use inches or millime teres to measure locations.
These are not exact sizes, as Windows does not know the precise size of the equipment being
used:These modes will provide much more consistent sizing in converting between devices than
if the default MM_TEXT mapping mode is used. Two of the mapping modes allow the creation of
custom systems of units. These mapping'modes are typically used to scale graphics to fit a de
fined area without having to recalculate the positions of each location.

The inch and millimeter mapping modes assure you that the output will continue to be reason
ably sized on different video and printer systems.

intI the previous mapping mode.

SetWindowExtO, SetViewportExtO, SetViewportOrgO

HDC: The device context handle.

int: One of the mapping modes in Table-IO-I3..

419

WINDOWS API BIBLE

Value Meaning· [gJ1
MM_ANISOTROPIC This is the most flexible system of units. Either axis can have any scaling factor. Use SetWindowExt() and

SetViewportExt() to set the ,scaling .

. MM_HIENGLISH Each logical unit is 0.001· inch. X increases to the right. Y increases upward .

. MM_HIMETRIC Each logical unit is 0.01 millimeter. X increases to the right. Y i:1crea~es upward. :

, MM-,SOTROPIC Arbitrary scaling of the axes, but the X and Y scaling must be the s~me. Use SetWindowE1() and
SetViewportExt() to set the orientation and scaling.

MM_LOENGLISH Each logical unit is 0.01 inch. X increases to the right. Y increases upward.

MM_LOMETRIC Each logical unit is 0.1 millimeter. X increases to the right. Yincreases upward.

MM_TEXT This is the default mapping mode. Each unit equals one pixel. X increases to the right. Yincreases
downward.

MM_TWIPS Each logical unit is 1/20 point, or 1/1440 of an inch. X increases to the right. Yincreases upward.

Table 10-18. Device Context Mapping Modes.

Example The example shown in Figure 10-21 shows how to change both
the mapping mode and the viewport origin. When the device
context is created, it has the default MM_TEXT mapping mode.
0,0 is in the upper left corner. Following the first text output,

. the mapping mode is switched to Ml\CLOMETRIC and the ori
gin moved to 50,50. The MM_LOMETRIC system has Yvalues
increasing upward, so the 100,100 location is above and to the
right of the new origin.

Do m Quit
0,0 MM_TEXT

100.100 MM_lOt.CETRIC

0,0 MM_LOMETRIC

Figure 10-21. SetMapMode()
Example.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC hOC;

switch (iMessage) 1* process win'dows messages *1
{ '.-

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_OOlT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
Tex tOut (hOC, 0, 0, "0,0 MM_TEXT", 11)
SetMapMode (hOC, MM_LOMETRlC) ;
SetViewportOrg (hOC~ 50, 50) ;
TextOut (hOC, 0, 0, "0,0 MM_LOMETRIC", 15) ;
TextOut (hOC, 100, 100, "100, 100 MM_LOMETRIC", 19)
ReleaseOC (hWnd, hOC)
break;

IOther program lines /

SETMAPPERFLAGS .. Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Returns

. Acljusts the way CreateFontO and CreateFontlndirectO acljust for font dimensions outside of
those specified in the font data;

DWORD SetMapperFlags(HDC hDC, DWORD dwFlag);

CreateFontO and CreateFontmdirectO will normally interpolate to achieve specified font sizes
and aspect ratios not described in the font data. Use SetMapperFlagsO to force the use of the
nearest matching font or tv allow interpolation.

The previous mapper flag value; 1 for exact matching, 0 if interpolation was allowed.

420

See Also

Parameters
hDG

dwFlag

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

CreateFontO, CreateFontIndirectO

HDC: The device context handle.
DWORD: If the low-order bit is 1, exact matching is forced. If the low-order bit is 0, interpolation
is allowed.

long FAR PASCAL WndProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
HFONT

hOC;
hFont ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hDC = Get DC (hWnd) ;
SetMapperFlags (hDC, OL) ;
hFont = Create Font (30, 8, 0, 0, 400, 0, 0, 0,

OEM_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
OEFAULT,]ITCH I FF_SWISS, "swiss") ;

SelectObject (hDC, hFont) ;
TextOut (hDC, 10, 10, "Mapper flag not now set.", 24)
SetMapperFlags (hDC, 1U ;
hFont = Create Font (30, 8, 0, 0, 400, 0, 0, 0,

OEM_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH I FF_SWISS, "swiss") ;

SelectObject (hOC, hFont) ;
TextOut (hOC, 10, 50, "Mapper flag now set to 1", 24)
ReleaseDC (hWnd, hOC) ;
OeleteObject (hFont) ;
break;

IOther program lines}

SETTEXTALIGN • Win 2.0 • Win 3.0 '. Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

Changes the text alignment for a device context.

WORD SetTmdAlign(HDC hDG, WORD wFlags)j

Both Tm. .. iOutO and RxtTc}..iOutO 3pecifywhere the output string should start based on a logical
X, Yposition. By default, the device context uses the upper left corner of the first character as the
X,Y location. SetTexWignO allows you to change this alignment location to other locations on
the first character. -

There is also a special flag labeled TA_UPDATECP which allows TextOutO and ExtTextOutO
to keep track of where the end of the output string ended up on the device context. This allows
you to usc multiple calls to the output functions, with each successive string ending up at the end
of the last one.

Frequently used to center text if you use the TA_CENTER style.

int, the previous text alignment. The low-order word contains the horizontal alignment. The high
order word contains the vertical alignment.

TextOutO, ExtTextOutO, GetTexWignO

HDC: The device context handle.

421

WINDOWS API BIBLE

wFlags

Value

TA_BASELINE

TA_BOTTOM

TA_CENTER

TA_LEFT

WORD: One or more of the flags listed in Table 10-14. A vertical, horizontal, and update flag can
all be combined using the C language binary OR operator (I).

Meaning

The baseline of the first character is used to specify the string position.

The bottom of the first character is used to specify the string position.

The center of the first character is used to specify the string position.

The left side of the first character is used to specify the string position.

TA_NOUPDATECP The location at the end of the last text output is not saved.

TA-RIGHT

TA_TOP

TA_UPDATECP

The right side of the first character is used to specify the string position.

The top of the first character is used to specify the string position.

The position at the end of the last text output is saved. The next call to TextOut() or ExtTextOut() will start
from this location, ignoring the X, Y data in the output function parameters.

Table 10-14. SetTextAlign() Flags.

Note

Example
The default values for a device context are TA_LEFr, TA_TOP, and T~_NOUPDATECP.

The example shown in Figure 10-22 demonstrates several uses
of SetTeAiAlignO. The character strings "Top" and "Bottom"
are both output with a vertical position (1') value of 50. The
second string ends up above the first as the text alignment is
changed so that the Yvalue refers to the bottom ofthe charac
ter, instead of the top~ The character string "Second Line In
Two Parts" is output using two calls to TextOutO. As the text
·alignment is set to TA_UPDATECP before calling TextOutO,
the character position data is ignored. Each character location
follows the end of the last call to TextOutO.

Qo It! .Quit
Second line In Two Parts

Bottom
Top

Figure 10-22. SetTextAlign()
E.ramples.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC hOC;

switch (iMessage) 1* process windows messages *1
{

case WM_COMMANO: . 1* p·rocess menu items *1
switch (wParam)
{

case IOM_OOIT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
SetTextAlign (hOC, TA_TOP> ;
TextOut (hOC, 10, 50, "Top", 3) ;
SetTextAlign (hOC, TA_BOTTOM> ;
TextOut (hOC, 60, 50, "Bottom", 6) ;
SetTextAlign (hOC, TA_TOP I TA_UPOATECP)
TextOut (hOC, 10, 0, "Second Line", 11) ;
TextOut (hOC, 0, 0, II In Two Parts", 13) ;
Relea.eOC (hWnd, hOC) ;
break;

I Other program lines J

SETTEXTCHARACTEREXTRA • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Adds additional space between characters of a device context.

int SetTextCharacterExtra(HDC hDC, int nCharExtra);

422

- Description

Uses

Returns

See Also

Parameters
hDG

nGharExtra

Example

;!\ :'; I :" .• ~,'):-;! 'f 1\ II:"

10. DEVICE CONTEXTS, TEXT OUTPUT, ANDPRINTING'-~-'Y

Uo It 1 .Quit

This is normal spacing.

This function allows you to add extra space between
the letters of the currently selected font of a device
context. The extra space is added between the
ch~racters output by TextOutO and ExtTextOutO.
There is no way to reduce character spacing below
the amount specified in the font description.

Extra Spaces.

Handy for making text "fit" in predefined areas. Figure 10-23.
SetTextGharacterExtra() Example. Jllt, the previous extra character spacing (usually

zero) ..

GetTextCharacterExtraO, SetMapModeO, TextOutO, ExtTextOutO

HDC: The device context handle.
~ , {: .: .'

int: The number of extra logical units of space to add between characters. For the default
MM_TEXT mode, this is the extra number of pixels. For the other mapping m()de,S, the extra
logical units are rounded to the nearest pixel.
Figure 10-23 shows the effect of adding extra spaces between char~~t~~s:" :- <'

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC hOC;

switch (iMessage) 1* process windows'~essages *1
{

case WM_COMMANO: 1* process menu items *1;:
swi tch (wParam)
{

case 10M DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
TextOut (hOC, 10, 10, "This is normal spacing.", 23)
S-etTextCharacterExtra (hOC, 10) ;

'TextOut (hOC, 10, 30, "Extra Spaces.", 13) ;' "., 1'1\':-"- --"",',,\'-)'.

ReleaseOC (hWnd, hOC) ;
break;

IOther program lines}
. >:"; ~ "~'r

- --

SETTEXTCOLOR

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDG

crGolor

Changes the text colorfor a device context. ' !'1 :L

DWORD SeITe>..iColor(HDC hDG, DWORD creolor);' ',',
;.1,:, 1

The default text color for a device context is black This functjon_allowsany RGB color to be set
for text output with TextOutO, ExtTe}.i;OutO, etc.,Th!3colol' stays in effect until the device con-
text is released, or another text color is set. See Gh,apter 1l,Paintil~g the Screen, for an expla-
nationofUGBcolorvalues. ,::C,';,";: . ":,'

Colored text output. , :":l;'" "':.',,

The 32-bit color value for the previous text color. :
: \.)' ~ . '; .. ~ 'L1';":,·'

GetTextColorO, SetBkColorO J'" :: -::"--'

HDC: The device context handle.

COLOR REF: The 32-bit color value for thetext.;This can be set With.the,RGB macro (see the
example). . _;,>.;;:" :::,;

423

WINDOWS API BIBLE

~xample The example in' Figure 10-24 has a window with a private de
vice context. When the program starts (WM_CREATE message
received), the text color is set to blue. When the user clicks the
"Do It!" menu item, the current color value is output in hexa
decimal.

The window's class definition in WinMainO includes the
CS_OWNDC style, giving the window its own private device
context.

Qo It! Quit

My Text Color = ffOOOO

Figure 10-24. SetTextColor()
and GetTextColor() Example.

wndclass.style = CS_HREORAW I CS_VREORAW I CS_OWNOC ; ~

Note that the RGB macro parameters are in'the opposite order of the storage order inside the
32-bit coded color vallie (compare RGB (0,0,255) with the output value of OxFFOOOO).

long FAR PASCAL WndProc (HWNO hWnd, ~nsigned iMessage, WORD wParam, LONG lParam)
{

HOC
OWORO
char

hOC;
dwTextColor ;
cBuf [10J ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
, hOC = GetOC (hWnd) ; 1* owns DC, no need to re lease *1

SetTextColor (hOC, RGB (0, 0, 255» ; 1* blue letters *1
,break;

case WM_COMMANO: 1* process menu items *1
, swi tch (wParam)

{

case IOM DOlT: 1* User hi t the "00 i til menu item *1
hOC= GetOC (hWnd) ; --
dWTextColor = GetTextColor (hOC) ;
ltoa (dwTe'xtColor, CBlIf, 16); 1* convert to hex *1
TextOut (hDC, 10, 10, liMy Text Color =", 15) ;
TextOut (hDC, 150, 10, cBuf, lstrlen (cBuf» ;
break;

/Other program linesJ

SETTEXTJUSTIFICATION • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax '

Description

Uses

Returns

See Also

Justifies a string prior to using TextOutO for'output.

int SetTextJustification(HDC hDC, int nBreakExtra, int nBreakCount)j

Justification is the process of adding spaces between words to make a text string exactly fit a
given space. SetTextJustificationO works with the GetTextExtentO and TextOutO function,s to
accomplish this. GetTextExtentO is used to compute the length ofthe string before justification.
SetTextJustificationO then computes the amount of added space needed to match the space
available. The next call to TextOutO uses this value to add' spaces between words during output.

Normally, the ASCII space character (number 32) is the break character. The break charac
ters are where the extra spaces \vill be added. Some fonts may use another character as a break
character. Use GetTextMetricsO to determine the font's break character. If a line contains mul
tiple fO}Jts, justify and output each group of characters, one font-type at a time.
SetTextJustificationO accumulates the round-off errors on each call in order to average the er
rors over the length of a line. Call SetTextJl,lstificationO with an nBreakExtra value of zero to
clear the round-off error at the start of each new line.

Justification of text.

into TRUE (1) if successful, FALSE (0) on error.

GetTextExtent() , TextOutO, ExtTextOutO, TabbedTextOutO

424

Parameters
hDC

nBreakExtra

nBreakCount

Example

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ~,

HDC: The device context handle. ~

int: The total amount of extra space (in logical units) to be added to the line of text when output.
In the default MM_TEXT mapping mode, the extra space is
measured in pixels.

int: The total number of break characters in the string. For
most fonts, this is the number of space characters (" ", or ASCII
32). SetTextJustificationO will add additional room at each of

F~--,FP
Qo It! .Quit

To

these locations to expand the text. Figure 10-25. Text
The example in rigure 10-25 justifies a three word string to fit Justification Example.
exactly within the bounds of a 200 pixel wide rectangle.
GetTextExtentO is used to calculate the size of the string prior to justification. SetText
JustificationO then adds enough space to exp'and the string to the full 200 unit size. The next call
to TextOutO uses the justification during output to space the words.

With this simple example, the number of spaces in the string (two) is known. Normally, you
would have to check the number of spaces (break characters) in t.he string before calling
SetTextJustificationO· '

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WOROwParam, LONG lParam)
{

HOC
HPEN
OWORO
char

hOC;
hPen ;
dwExtent ;
cBuf [J = {"String To Fit"} ;

switch (iMessage) 1* process windows messages *1
{

case WM_COI'II'IANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_OOIT: 1* User hi t the "00 ,i t" menu item *1
hOC = GetOC (hWnd) ;
SetBkMode (hOC, TRANSPARENT) ;
hPen = GetStockObject (BLACK_PEN) ;
SelectObject (hOC, hPen) ;
Rectangle (hOC, 10, 10, 210, 50) ;
dwExtent = GetTextExtent (hOC, cBuf,

strlen (cBuf» ;
SetTextJustification (hOC,

200 - LOWORO(dwExtent), 2) ;
TextOut (hOC, 10, 20,cBuf, strlen (cBuf»";
ReleaseOC (hWnd, hOC)
break;

IOther program lines)

SETVIEWPORTExT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Used with SetWiIidowExtO to set the scale of the logical coordinate system with the
MM_ISOTROPIC and MM_ANISOTROPIC mapping modes.

DWORD SetViewportExt(HDC hDC, intX, int 1');

The MM_ISOTROPIC and Ml\CANISOTROPIC mapping modes allow you to scale the logical co
ordinates system for a device context with ratio to the pfiysical device coordinates (pixel based).
MM_ISOTROPIC keeps both axes scaled equally, and MM_ANISOTROPIC allows both axes to be
scaled independently.

In order to allow fractional scaling without using floating point numbers, Windows uses two
functions with two sets of integer values to scale the coordinates. SetWindowExtO can be thought

425

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hDe
X

y

Example

of as setting the physical coordinates, and SetViewportExtO sets the logical coordinates. It is the /
ratio of the two sets of values that determines the scaling. If the signs for theX and Y values are
opposite, the orientation of the axes is reversed. This is usually used to make the Yaxis increase
upward, instead of the default system where Y values increase downward.

The MM_ISOTROPIC system is ideal for scaling drawings, without having to change any of the
dimensions used in the GDI function calls. The MM_ANISOTROPIC system can be used to scale
the graphics in the client area to always fit within a sized window. The image will be distorted if
theX and Y sizes are not changed equally (MM_ISOTROPIC preserves the image proportions).
DWORD, the previous viewport extents. The low-order word contains the X extent. The high
order word contains the Yextent. Returns zero on error.

SetWindowExtO, SetMapMode(), SetVimyportOrg(), SetWindowOrgO

HDC: The device context handle.

int: TheX axis extent. The X axis scaiing is the ratio of this value divided by theXparameter in
SetWindowExt().lfthe signs of the X parameters in SetWindowExt() and SetViewportExt() are
opposite, X values will increase to the left. lithe signs match,Xvalues will increase to the right.

int: The Yaxis extent. The Yaxis scaling is the ratio of this value divided by the Y parameter in
SetWindowExt(). If the signs of the Yparameters in SetWindowExt() and SetViewportExt() are
opposite, Yvalues will increase upward. If the signs match, Yvalues will increase downward.

See the example under the ScaleViewportExt() function description.

SETVIEWPORTORG • Win 2.0 • Win' 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDe
X

Changes the origin of the coordinate system used for text and graphics locations on a device.
DWORD SetViewportOrg(HDC hDe, intX, int 1');

The origin of the' coordinate system is the point that has location 0,0 for X and Y.
SetViewportOrg() allows you to place the origin anywhere in the client area. Note that the lo~a
tion of the origin is measured in device units. This is number of pixels measured from the upper -,
left comer of the device's client area.

In graphics routines, it is frequently more convenient to have the origin at the middle or bottom
left of the client area's rectangle. You can also move graphics on the screen by relocating the
origin and then repainting. This is a way to scroll graphics images without recalculating where
the· points will be after scrolling. '

DWORD, the previous origin measured in device units. The X coordinate is in the low-order word,
the Y coordinate is in the high-order word.

SetWindowOrg(), SetMapMode()

HDC: The device context handle.
int: The new X location of the origin, measured in device units
(pixels from the right side).

no It! .Quit

Y int: The new Y location of the origin, measured in device units
(pixels from the top, increasing downward).

, 150.150 MM ,LOMETRIC

50.50 MM LOMETRIC

Related Messages WM_SIZE
. Example In Figure 10-26 a mapping mode is set with the origin at the

lower left comer of the window's client area. The WM_SIZE
messages are intercepted to find the size of the client area to

426

rY

L-+x
Figure 10-26. SetViewport
OrgO Example:

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING T

set the Yaxis origin equal to the bottom of the client area. Because of the MM_LOMETRIC map
ping mode, Y increases upward. Note that by default the text locations are measured from the
upper left corner of the first character of the string. That is why 50 logical units (5 mm) of vertical
offset are needed to make the bottom line appear above the border.

Long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

HOC
static POINT

hOC;
ptCLientSize ;

switch (;Message)
{

1* process windows messages *1

case WM_SIZE: ./* get client area size *1
ptCLientSize.x = LOWOR~ (LParam) ;
ptC L i entSize. y = HI WORD (LParam) ;
break;

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_OOlT: 1* User hit the "00 it" menu item *1
hbc = GetOC (hWnd) ;
SetMapMode (hOC, MM_LOMETRlC) ;
SetViewportOrg (hOC, 0, ptCLientSize.y) ;
TextOut (hOC, 50, 50; "50,50 MM_LOMETRIC"; 17> ;
TextOut (hOC, 150, 150, "150,150 MM_LOMETRIC", 19)
ReLeaseOC (hWnd, hOC) ;
break;

IOtherprogram lines)

SETWINDOwEXT • Win 2.0 • Win 3.0' • Win 3.1
Purpose

. Syntax

Description

Uses

Returns

See Also

Parameters
hDG

Used with SetViewportExtO to set the scale of the logical coordinate system with the
MM.JSOTROPIC and MM_ANISOTROPIC mapping modes .

DWORD SetWmdowExt(HDC hDG, intX, int Y)j

The M~CISOTROPIC and MM_ANISOTROPIC mapping modes allow you to scale the logical coor
dinates system for a device context with ratio to the physical device coordinates (pixel based).
MM_ISOTROPIC keeps both axes scaled equally, and MM_ANISOTROPIC allows both axes to be
scaled independently.

In order to allow fractional scaling without using floating point numbers, Windows uses two
functions with two sets of integer values, to scale the coordinates. SetWindowExtO can be
thought of as setting the physical coordinates, while SetViewportExtO sets the logical coordi
nates. It is just the ratio of the two sets of values that determines the scaling. If the signs for t):l.e
X and Y values are opposite, the orientation of the axes is reversed. Reversing one axis is usually
used to make the Yaxis increase upward, instead of the default system where Y values increase
downward.

The MM_ISOTROPIC system is ideal for scaling drawings, without having to change any of the
dimensions used in the GDI function calls. The MM_ANISOTROPIC system can be used to scale
the graphics in the client area to always fit within a sized window. The image will be distorted if
the X and Y sizes are not changed equally (MM_ISOTROPIc" preserves the image proportions).

DWORD, the previous window extents. The low-order word contains theX extent. The high-order
word contains the Yextent. Returns zero on error.

SetViewportExtO, SetMapModeO, SetViewportOrgO, SetWindowOrgO

HDC: rfhe device context handle.

427

WINDOWS API BIBLE

Y

Example

int: TheX axis extent. The X axis scaling is the ratio oftheXparamete~ in SetWindowExtO di
vided by this value. If the signs oftheXparameters in SetWindowExtO arid SetViewportExtO are
opposite, X values will increase to the left. If the signs match,Xvalues will increase to the right.

int: The Yaxis extent. The Yaxis scaling is the ratio of the Yparameter in SetWindowExtO di
vided by this value. If the signs of the Yparameters in SetWindowExtO and SetViewportExtO are
opposite, Yvalues will increase upward. If the signs match, Yvalues will increase downward.

See the example under ScaleViewportExtO.

SETWINDOWORG • Win 2.0 • Win 3.0 II Win 3.i
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters "
hDO

X

Y

Example

Changes the location of the origin of the device context.

DWORD SetWmdowOrg(HDC hDG, intX,int y);

This is similar to SetViewportOrgO, except that logical units (not device units or pixels) are used.
The point set is the logical offset of the upper left corner of the window's client area, measured in
logical units.

Not used as often as SetViewportOrgO.

DWORD, the previous origin of the window. The low-order word contains the X value, the high
-order word contains the Yvalue.

SetMapModeO, SetViewportOrgO

HDC: The device context handle.

int: The new X location of the origin, measured in logical units.

int: The new Ylocation of the origin, measured in logical units.
This example sets the logical origin in the center of the window's client area. This is complicated
slightly because SetWindowOrgO uses logical units to set the origin, not device units (pixels).
The size of the client area returned when a W~CSIZE message is processed in device units, which
are converted to logical units using the DPtoLPO function. Finally, the window originis set using
SetWindowOrgO. The origin dimensions are both negative because we are setting the logical
value of the upper left .comer of the window, measured in the MM_LOMETRIC units of.1 mm.

long FAR PAS~AL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;
stat i c POINT ptClientSize, ptCenter ;

switch (iMessage)
{

1* process windows m"es"sages *1

case WM_SIZE: 1* get client area size *1
ptClientSize.x = LOWORD (lParam) ;
ptClientSize.y = HIWORD (lParam) ;
break; .

case WM_COMMAND: 1* process menu items *1

IOther program lines I

swi tch (wParam)
C

-case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
SetMapMode (hDC, MM_LOMETRIC) ;
ptCenter.x = ptClientSize.x 1 2 ;1* calc center in'*1
ptCenter.y = ptClientS;ze.y 1 2 ;1* device units *1
DPtoLP (hDC, &ptCenter, 1) ; 1* convert to log units *1
SetWindowOrg (hDC, -ptCenter.x, -ptCenter.y) ;
TextOut, (hDC, 0, 0, "0,0 MM_LOMETRIC", 15) ;
TextOut (hDC, 150, 150, "150,150 MH_LOMETRIC", 19)
ReleaseDC (hWnd, hDC)
break: ;

428

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING 'Y

T ABBEDTEXTOUT D Win 2.0 .• Win 3.0 • Win 3.1

Outputs a text string, expanding all tab characters. Purpose

Syntax long TabbedTextOut(HDC hDC, int X, int Y, LPSTR lpString, int nCount, int nTabPositions,
LPINT lpnTabStopPositions, int nTabOrigin)j

Description T~is is an extension of the TextOutO function that adds the ability to expand tab characters to
any set of tab positions.

Uses

Returns

Text output when the text string contains tab characters. Tabs are used to align text in columns.

long, the logical dimensions of the string output. The low-order word contains the width, t.he
high-order word contains the height.

See Also

P!l:rameters
hDC

TextOutO, GetTabbedTextExtentO, SetTextAlignO, SetBkModeO, SetTextColorO

X

Y

lpSlring

nCount

HDC: The device context handle.

int: The logical X coordinate to start the string.

int: The logical Y coordinate to start the string.

LPSTR: A pointer to a character string that will be output.

int: The number of characters, including tab characters, in the s~ring.

nTabPositions int: The number of tab positions specified in lpnTabSlopPositions.

l1rnTahStapPositions LPINT: A pointer to an array of integers that holds
the tab stop positions. The tab positions are mea
sured in device units (pixels), and must be in as-
cending order. .

nTabOrigin

Qo It! .Quit

First - Field 1
Second - Field 1

Field 2
Field 2

Last Field

The End int: The logical X coordinate to start tab expan
sions. You can use TabbedTextOutO several times
on one line by changing the nTabOrigin parameter
to start the tab expansion from differentX locations.

Figure 10-27. TabbedTextOut()
Example.

WM_PAINT Related Messages
Example The example in Figure 10-27 outputs two lines of text and expands the tab characters in the

strings.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC
static char
static char
static int

hOC;
cBuf1 [J = {"First - Field 1\tField 2\tLast Field"};
cBuf2 [J = {"Second - Field 1\tField 2\tThe End"} ;
nTabs [J = {30, 45, 60} ;

switch (iMessage)
{

1* process windows messages *1

case WM_COMMANO: 1* process menu items *1

IOther program linesj

switch (wParam)
{

case IOM_OOIT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
TabbedTextOut (hOC, 10, 10, cBuf1,

lstrlen (cBuf1), 3,
(LPINT) &nTabs, 10) ;

TabbedTextOut (hOC, 10, 30, cBuf2,
lstrlen (cBuf2), 3,

-(LPINT) &nTabs, 10) ;
ReleaseOC (hWnd, hOC)
break;

429

WINDOWS API BIBLE

TEXTOUT

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

X

Y

lpSt,.ing

• Win 2.0 • Win 3.0 • Win 3.1
Outputs a character string at a location on the selected device context.

BOOL TextOut(HDC hDC, intX, int Y, LPSTR lpString, int nCount);

This is the standard text output function. The text is output with the currently selected font, pen
color, and background color.

Used for text output where the character string does not contain tab characters. Use
TabbedTextOutO if the tabs need to be expanded.

BOOL. TRUE if the string was output, FALSE on error.

SetTextAlignO, TabbedTextOutO, SetBkModeO, SetTextColorO, SetTextCharacterExtraO
SetTextJustificationO

HDC: The de\<ice context handle.

int: The logical X coordinate to start the string.

int: The logical Y coordinate to start the string.

LPSTR: A pointer to a character string that will be output.

nCount int: The number of characters in the string. Use the IstrlenO function to determine this value for
null-terminated strings.

Related Messages WM_PAINT

Example This example outputs the string "This is a character string." when the user hits the "Do It!" menu
item.'

long FAR PASCAL WndProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;
char cBuf [] = {"Thi sis a character stri ng. "} ;

swi tch (i Message) 1* process wi ndows messages * 1
{

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M DOlT: 1* User hit the liDo it" menu item *1
hOC = Get DC (hWnd) ;
TextOut (hOC, 10, 10, cBuf, lstrLen (cBuf))
ReleaseDC (hWnd, hOC)
break;

IOther program lines 1

WSPRINTF
Purpose

Syntax

Description

Uses

Returns
. See Also

o Win 2.0 • Win 3.0 • Win 3.1
Formats text output to a character buffer.

int wsprintf(LPSTR lpOutput, LPSTR lpFonnat[, argument] ...);

This is the Windows version of the standard C library sprintfO function. The format string defines
what the output should look like, and includes special characters as placehol.ders for numbers
and characters that are passed to the function as arguments. Because wsprintfO will accept a
variable number of arguments, it does not use the standard Windows function calling convention

.. of PASCAL.

Formatting text output, especially te}.1 containing numbers.

int, the number of characters output to lpOlitput.

wvsprintfO, TextOutO, TabbedTextOutO, ExtTextOutO

430

Parameters
lpOutput

lpFormat

argument

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING ...

LPS'fR: A pointer to a character buffer to hold the output.

LPS'fR: A pointer to a null-terminated character string that contains the format. This can in
clude the special characters listed below.

(variable type): One or more optional arguments. The number and type of these arguments is
specified by the special characters used in IpFormat.

Fonnat Characters A typical format string is

Value

%s

%c

%d,%i

%ld,%1i

%u

%Iu

%x,%X

%lx,%IX

A number = %d, a name %s.
The %d is a code for decimal integer, the %s for string. The arguments following the format string
would then include the number and a pointer to a character. These values would be inserted into
the format string in place of the %d and %s as the string is formatted into the IpOutput character
buffer. The list of character codes appears in Table 10-15.

Meaning ~I
Insert a character string at the location. The argument corresponding to this location must be passed as a
long pointer to a string (LPSTR). Be sure to cast strings as LPSTR when using this type.

I~sert a signed character al the location.

Insert a signed integer at the location.

Insert a signed long integer at the location.

Insert an unsigned integer at the location.

Insert an unsigned long integer at the location.

Insert an unsigned hexadecimal integer at the location. The uppercase X results in uppercase A-F digits as
part of the hexadecimal output.

Insert a long unsigned hexadecimal integer at the location. The uppercase X results in uppercase A-F digits
as part of the hexadecimal output. r

Table 10-15. wsprinif() Format Codes. \

:Value··

o
A number

Additional formatting information can be included between the % and the format letter(s).
For example, the format code "%06d" specifies that the field is to have six digits and leading zeros
are to be added to fill up the six spaces. The list of these extra formatting characters appears in

.. Table 10-16 ..

:Meaning:" ., >". : ~I
., .,' ,

Justify to the left. Norm~IIY1' !ustificatio~Is to ~h:e right side.

Put 0)(or OX in front of hexadecimal numbers.
~ "', " ~.' ~.:t~~: "f·:" ::..

Pad the output with zeros instead of blanks.

ll1e~umber of digits o~characters to display, Jf no value is given, the f1e1d.is expp,nded tomake room for
the number or string passecf as' an argument. . . '. ,.'. '., .

Table 10-16. wsprinl/O Extra Formatting Codes. .

... Example
" t; "

This example uses wsprintfO to format a string containing two integers: the height arid width of
the client region when the user clicked the "Do It!" menu: item:. The formatted text'isstored in the
cBuf[] buffer, andtheRoutputtothe screen with TextOutO. • i ,! .. "

long FAR PASCAL WndProc (HWND hWnd, unsign.ed JMessage, WORD wPar.am,:l;ONG lParam)
{ •• ' . .• . '" .' •••. , ,c. ". . •

HDC hOC;

431

WINDOWS API BIBLE

RECT
char

rClient;
cBuf [128]

switch (iMessage) 1* process windows messages *1
{

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
hOC = GetOC (hWnd) ;
GetClientRect (hWnd, (LPRECT) &rClient) ;
wspri ntf (cBuf,

"The client rectangle is %d wide by %d tall.",
rClient.right - rClient.left,
rClient.bottom - rClient.top) ;

TextOut (hOC, 10, 10, cBuf, lstrlen (cBuf»;
ReleaseOC (hWna, hOC> ;
break;

I Other program lines /

WVSPRINTF o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
lpOutput

lpFormat

Formats text output to a character buffer.

int wvsprintf(LPSTR IpOutput, LPSTR IpFormat, LPSTR lpArglis!);

This is the Windows version of the standard C library vsprintfO function. The format string de·
fines what the output should look like, and includes special characters as placeholders for num·
bers and characters that are passed to the function as arguments. vwsprintfO uses a pointer to an
argument list to avoid having a variable number of arguments. It uses the standard Windows
function calling convention of PASCAL.

Formatting text output, espechilly text containing numbers.

int, the number of characters output to lpOu~put.

wsprintfO, TextOutO, TabbedTextOutO, ExtTeXtOutO

LPSTR: A pointer to a character buffer to hold the output.

LPSTR: A pointer to a null·terminated character string that contains the format. This can in
clude the special characters listed previously under the wsprintfO function description.

ipAr,qlist LPSTR: A pointer to an array of WORD values. Each WORD either specifies a numeric value or
contains a pointer to a character string. Long values and character pointers require two words of
storage. For long values, the low-order word is first' in the array, followed by the high-order word.
For character pointers, the segment is first in the arraYi followed by the offset.

Fonnat Characters See the list under the function description for wsprintfO.

Example This example uses wvsprintfO to format a string with two arguments, an integer and a character
string.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
static int
static char
WORD
char

hOC;
nData = 666 ;
cString [] = "Argument Data" ;
wArgs [3];
cBuf [128] ;

switch (iMessage) 1* process windows messages */~
{

case WM_COMMANO: 1* process menu items.*/.
swi tch (wParam)
{

432

IOlller program lines}

10. DEVICE CONTEXTS, TEXT OUTPUT, AND PRINTING V

case 10M OOIT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
wArgs [0] = nOata ;
wArgs [1] = (WORD) cString ;
wArgs [2] = HIWORD «LPSTR) cString)
wvsprintf (cBuf,

"The number = %d, the stri ng %s",
(LPSTR) wArgs) ;

TextOut (hOC, 10, 10, cBuf, lstrlen (cBuf»
ReleaseOC (hWnd, hOC) ;
break;

433

Windows provides a wide range of functions to simplify the task of painting objects on a device context. In the last
chapter, we examined the functions for creating and displaying text characters and fonts. This chapter includes the
remaining painting functions for rectangles, lines, ellipses, polygons, and regions, which are all elements of the Wm
dows GDI (Graphics Device Interface). Windows provides a rich collection of functions for painting shapes. In many
cases, there is more than one way to paint a given shape. This can be a little confusing when you start programming in
Windows. Don't be intimidated by all of these functions. In most cases, you will need only a handful of them for any one
application. Only graphics-intensive programs, such as CAD/CAM and paint programs, will put a m~ority of these
functions to work.

The WM_P AINT Message
We briefly looked at the W~CP AINT message in the last chapter under the discussion of device contexts. This section
goes into more details on handling this important message. When any part of a window's client area needs to be
repainted, Windows sends the application a WM_PAINT message. The program logic for paintingihe window's client
area normally will be in response to WM_PAINT.

Unlike most Windows messages, WM_P AIN'l' messages do not encode any information in the lParam or wParam
parameters that are passed with the message. Instead, Windows provides two functions that are always used in pro
cessing wrwcP AINT messages, BeginPaintO and EndPaintO. All programs processing WM_P AINT messages will use
these two functions in sequence, as shown in Listing 11 ~ 1.

e Listing 11-1. Typical WM_PAINT Logic
long FAR PASCAL WndProc (HWNO hWnd, unsigned ~Hessage, WORD wP~ram, lONG lPara.)
{

}

PAINTSTRueT ps ;

switch (iMessage)
{

case WM_PAINT:

1* process windows messages *1

BeginPaint (hWnd, &ps) ;
1* the painting logic goes in here *1
EndPaint (hWnd, &ps) ;
break;

1* the rest of the WndProc() function *1

BeginPaintO fills the values in a PAIt-I'TSTRlJCT data structure, which is defined in WINDOWS.H as

typedef struct tagPAINTSTRUeT
{

HOC hdc;
BOOl fErase;
RECT rcPaint;
BOOl fRestore;
BOOL flncUpdate;
BYTE rgbReserved[16J;

} PAINTSTRUCT;
typedef PAINTSTRueT

1* device context handle *1
1* background redrawn? TRUE/FAlSE *1
1* REeT of client area update recto *1
1* reserved *1
1* reserved *1
1* reserved *1

*PPAINTSTRUCT;

434

typedef PAINTSTRUCT NEAR *NPPAINTSTRUCT;
typedef PAINTSTRUCT FAR *LPPAINTSTRUCT;

11. PAINTING THE SCREEN 'V

Only the first three elements in the PAINTSTRUCT data structure are used by the application program. The
remainder are reserved by Windows. The hde element is the device context for the window's client area. ThejErase
element is a flag which is TRUE if the background of the window has been redrawn, FALSE if it has not been. The
rePaint element is a pointer to a rectangle that contains the part of the client area that will be repainted, which is
called the "invalid" area of the window.

Invalid Rectangle
The invalid part of a window is an important concept. Consider a case where the application scrolls the client area of
the window upward by 10 pixels. Only the bottom ten pixels need to be painted to keep the client area up-to-date. The
rest afthe client area is the same,just repositioned upward ..

For efficiency in repainting, Windows keeps track of the size of the smallest rectangle on the client area that
includes all ofthe area that must be repainted. That rectangle's size is put into the rePaint rectangle passed with the
PAINTSTRUCT element. The BeginPaintO function fills in the rePaint values. When an application processes
WM_PAINT messages and paints in the client area, only the invalid part of the client area is repainted. This is true
even if the painting commands for lines, rectangles, etc. have areas outside of the invalid region. Windows just ignores

• the parts of the lines, etc. that fall outside of the invalid rectangle.
You do not have to concern yourself with the size of the invalid rectangle when writing your application. Most

programs have logic that repaints the entire client area every time a mCPAINT message is received. The fact that
only the invalid part of the client area is physically changed is of little consequence. However, you might want to
evalu~te the invalid rectangle if painting the client area is taking too much time. In this case, you can repaint portions
of the client area separately, painting only the parts that are invalidated. This is a good way to speed up scrolling
operations. Other situations will not be improved by evaluating the invalid rectangle. For example, when a window is
resized, the WM_P AINT message is passed with the entire client area invalidated.

Another way to speed up a program is to inhibit Windows from sending W~CPAINT messages when they are not
needed. For example, if you scroll the client area, the area will become invalid. Windows will put a \WtCPAINT mes
sage on the application's message queue to update the invalid region. To stop this from happening, use ValidateRectO
or ValidateRgnO to validate the area. This technique only works outside of the W~CP~JNT part of the application's
logic. BeginPaintO automatically validates the invalid rectangle.

The opposite situation occurs when you want to force Windows to send a ~CPAINT message. InvalidateRectO
and InvalidateRgnO can be used to invalidate some or all of the client area. Used alone, these functions result in a
WM_PAINT message being placed on the application's message queue. You can force an immediate WM_PAINT mes
sage by following the functions with a call to UpdateWindowO. UpdateWindowO sends the W~CPAINT message di
rectly to the application, bypassing the message queue.

The Device Context
All painting to a device context requires the device context handle. We have been using GetDCO and ReleaseDCO to
retrieve the handle outside of the mCPAINT logic. BeginPaintO and EndPaintO do the same function inside the
WM_PAINT processing part of the program. There are two ways to get the device context handle when processing
WM_PAINTmessages. One way is to make use ofthehdc element of the PAINTSTRUCT data structure that is updated
by BeginPaintO. This typically looks something like Listing 11-2.

o Listing 11-2. Using the BeginPaint() Device Context Handle
long FAR PASCAL WndProc (HWND hWnd, uns;gned ;Hessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
I

swHch (; Message) .
{

case W'CPAINT:

1* proce~s windows messages *1

BeginPaint (hWnd, &ps) ;
TextOut (ps _ hdc, 10, 1;p, "Hi There!", 9)

435
I:

WINDOWS API BIBLE

EndPaint (hWnd, &ps) ;
break;

1* the rest of the WndProc() function *1
)

This style is used iri the examples in this chapter. The Dther way toget the device cDntext handle is to. take
advantage Dfthe fact that BeginPaintO returns this value. That style DfprDgramming IDDks like the CD de in Listing
11-3.

o Listing 11-3. Using the BeginPaint() Device Context Handle
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

PAINTSTRUCT ps ;
HOC hOC;

switch (iMessage)
{

case 101M_PAINT: _

1* process wi ndows messages * I

hOC = BeginPaint (hWnd, &ps) ;
TextOut (hOC, 10, 10, "Hi There!", 9)
EndPaint (hWnd, &ps);
break;

1* the rest of the WndProc() function *1

BDth methDds have the same effect. NDte that YDU do. nDt call ReleaseDCO after BeginPaintO. EndPaintO takes
care Df releasing the device cDntext.

Selecting Objects into the Device Context
Up to. this PQint, we have used the device cDntext as a means to. draw text Dn the screen. It turns DUt that the device
co.ntext can hDld much mDre infDrmatiDn than just text attributes. At any Dne time, a device cDnte}.i; will cDntain a
fo.nt, pen, and brush. It may also. cDntain a regiDn and a cDIDr palette. When YDU draw a line llsing a device cDntext, the
Co.lDr, size, and type Df line are all determined by what
type o.f line YDU have "selected intb" the device cDntext.
Selecting an Dbject, such as a pen, makes that pen avail
able to. every drawing functiDn that uses a pen; The se
lected pen will be used fDr lines and fDr the bDrders Dn
rectangles, ellipses, and pDlygDns.

At any o.ne time, a device cDntext can have Dnly Dne
type o.f each o.bject (pen, brush, fDnt, regiDn, palette) se
lected. Ifyo.u select a new object, the DId Dne Df the same
type is bumped QUt. YDU must aVDid deleting Dbjects in
an active device context. Always keep Dne Df each Dbject
selected at all times. The o.bjects do. nDt physically reside
in the device cDntext. Objects are created and stDred in

~
~

Brush

Figure 11-1. Objects Selected into a Device Context.

separate memDry areas. Selecting an Dbject passes the pDinter to' the device cDntext sO. that Windo.ws' GDI functio.ns
can make use o.fthe Qbject. (See Figure 11-1). ;.

To. use an o.bject with a device co.ntext, yo.u must create the o.bject and then select it. For example, to. draw a
rectangle with a blue bQrder (pen) and a red hatched pattern interiQr, the prDgram logic would IQDk sDmething like
Listing 11-4, which is illustrated in Figure 11-2.

o Listing 11-4 .. Selecting a Pen and a Brush into the Device Context
long FAR PASCAL WndProc (HWND hWnd, unsigned iMes.sage, WORD wParam, LONG lParam)

.{

PAINTSTRUCl'
HPEN
HBRUSH

ps ;
hPen, hOldPen;
hBrush, hOldBrush ;

436

11. PAINTING THE SCREEN V

switch CiMessage)
<

/* process windows messages */

case WH_PAINT:
BeginPaint ChWnd, &ps) ;
hPen = CreatePen CPS_SOLID, 3, RGB CO, 0, 255»
hBrush = CreateHatchBrush CHS_DIAGCROSS,

RGB C255, 0, 0» ;
hOldPen = SelectObject (ps.hdc, hPen) ;
hOldBrush = SelectObject (ps.hdc, hBrush)
Rectangle Cps.hdc, 20, 20, 100, 70) ;
SelectObject (ps.hdc, hOldPen) ;
SelectObject (ps.hdc, hOldBrush)
DeleteObject (hPen) ;
DeleteObject (hBrush) ;
EndPaint ChWnd, &ps) ;
break;

Note that the pen and brush are deleted after use to avoid filling up system
memory. The memory associated with GDI objects will continue to be occupied even
if the application program is terminated, so always be sure to delete pens, brushes,
fonts, regions, and palettes after use. Objects cannot be deleted if they are attached
to a device context. Either delete them after the device context is released
(EndPaintO called) or select a stock object into the device context first to displace
the object you wish to delete.

Do It! Quit

The example in Listing 11-4 demonstrates a foolproof way to make sure that
objects are not deleted from an active device context. When an object is selected
into the device context, SelectObjectO returns a handle to the object that is being
displaced. This "old" object handle can be saved, and then selected back into the
device context when you are through ,vith the "new" object. Selecting the "old"
object again makes it safe to delete the "new" object. This type of logic is usually
used when the window maintains its own private device context.

Figure 11-2. Example Use of
a Pen and Brush Object.

Default and Stocl{ Objects
When you first get a handle to a device contextt-itwillcontain handles to predefined objects that are always available,
which are called "stock objects." The default pen is a solid black line, one pixel wide. The default brush is a solid white
b~sh. The default font is a black system font. These default objects have allowed us to use the TextOutO function
without specifying the color or font to use. The default values for the device context were applied. You can also use
GDI functions, such as Rectangle 0 , without selecting a line or brush style. By default, the rectangle will be painted
with a thin black outline and filled on the interior with the default white brush. You can get a handle to the stock
objects by using GetStockObjectO. Don't try to delete these objects after use-they are part of the Windows GDI.

A good reason for selecting a stock object is to displace another similar object out of the device context. Remem
ber that a device context will contain at most one of each type of object. If you want to get rid of a special pen, but still
use the device context, use a function call such as

hOldPen = SelectObject Cps.hdc, GetStockObject (BLACK_PEN» ;

Selecting the stock black pen displaces whatever pen was in the device context before. The vahie returned by
SelectObjectO is a handle to the previous object, in this case the previously selected pen. This returned value can be
used to delete the object (pen), if it is no longer needed and is not a stock object. Remember that once an object is
selected, it is used by every painting function that uses the device context. For example, selecting a brush will result
in that brush being used to fill all rectangles, ellipses, polygons, and regions until a new brush is selected.
. The device context "forgets" which objects were selected after the device context is released. You will have to

select pens, etc. every time a device context handle is obtained with either BeginPaintO or GetDeO. Alternatively,
you can salT:} one or more device dmtexts with SaveDCO in a "context stack." This technique is described in Chapter

437

WINDOWS API" BIBLE

10, Device Contexts, Text Output, and Printing. You can also maintain a private device context for the window or
window class by deti,ning either the CS_OWNDC or CS_CLASSDC styles in the RegisterClassO function call. This is
described in Chapter'2, Creating Windows. '

Colors
Blue Green Red

Windows encodes colors using three values. The values
, correspond to the intensity of the Rcf.i, Green, and Blue Figure 11-3. COLORREF RGB Color Values.
el~ments that make up any color. This coding is called
"RGB" color. Windows limits the color values to between 0 and 255 for each of the three colors. RGB colors are

, encoded into a 32-bit value, called a COLOR REF. The red, green, and blue values are stored in the lower three bytes of
the 32 bits as Sh0\\11 in Figure 11-3. The most significant byte is used only with palette colors, which are discussed in,
the subject of the next chapter:

Windows provides several macros for manipulating these 32-bit color values. The RGB macro is the most fre
quently used. It takes the three color values for red, green, and blue intensity as parameters and combines them into
a single 32-bit value. For example, to create a pure blue pen, use '

COlORREF crColor ;
crColor = RGB (255, 0, 0) ;

The opposite conversion extracts a single color value from the combined 32-bit color by using the GetBColorQ,
GetGColorO, and GetRColorO macros for the blue, green, and red color elements, respectively. These macros are
included in the function descriptions in this chapter.

In practice, most displays can show a limited number of pure colors. A typical VGA display can show only 16 pure
colors at one time. Windows partially gets around this limit by "dithering", the process of mixing the pixels to get an
average color close to the pure color requested. For example, the creation of a brush with the following function call
will result in a dithered brush pattern with a blue-green average color.

HBRUSH hBrush ;
hBrush = CreateSolidBrush (RGB'(20, 117, 55» ;

If you will be supporting more advanced video equipment, such as the IBM 8514 or a Super VGA adapter ,Windows
provides support for specifying pure colors. This support is implemented by selecting a palette into the device context
and using the colors defined by the program for the palette. This subject is covered in the next chapter, Color Pallete
Control.

Regions
A powerful element of the Windows GDI is the concept of a "region." Regions are
areas on the device ,that can be used as boundaries to painting. Regions can have 0.0 It! Q.uit
any shape. Complex regions can be built by combining small areas made of ellipti
cal regions, rectangular regions, and polygon regions. A single, logical region can
contain several areas that do not touch. Consider the task of creating a picture like
the one shown in Figure 11-4. The brute force method of painting this type of figure
would be to calculate the length of a series of black lines that would be used to build
up the shapes. This would end up being a slow process. Figure 11-4. A Complex

The elegant way of creating this shape is to create a region, called a "clipping Region.
region," that defines the areas that will be painted and excludes the rest of the
client area. All painting operations are "clipped" so that only the part of the painted
object within the clipping region is painted.

In this case, the region is created by logically combining an elliptical region and a rectangular region. The
CombineRgnO function does the work. Once the region is created, it is set up as the clipping region for the dmice
context with SelectClipRgnO. All painting after that is restricted to the interior of the region. For more details on
regions, look at the explanations for the CreateRectRgnO, CreateEllipticRgnO, CombineRgnO, amfSelectClipRgnQ ./

. functions,

\
438

,
11. PAINTING THE SCREEN V

IPainting Function Sumniary

Arc

BeginPaint

Chord

CombineRgn

CopyRect

CreateBrushlndirect

CreateBlipticRgn

CreateEllipticRgnlndirect

CreateHatchBrush

CreatePattemBrush

CreatePen.

CreatePenlndirect

CreatePolygonRgn

CreatePolyPolygonRgn

CreateRectRgn

CreateRectRgnlndirect

CreateRoundRectRgn

CreateSolidBrush

DeleteObject

DrawFocusRect

Blipse

~d.Paint

EnumObjects

EquaiRect

EquaiRgn

ExdudeClipRect

ExcludeUpdateRgn

ExtRoodFiIl

FiIlRect

FiIlRgn

RoodFiIl

FrameRect

FrameAgn

GetBrushOrg

GetRvalue '

GetCIipBox

. ,

Draws an elliptical arc using the selected pen.

Prepares the window's client area for painting.

Draws a chord segment with the selected pen, and fills the interior wittlthe selected brush.

Logically combines two regions into one region.

Copies the coordinates of one rectangle into another.

Creates a brush from a bitmap or stock brush shape.

Creates an elliptically shaped region.

Creates an elliptical region ba~ed on the bounding rectangle described in a RECT data
structure.

Creates a brush based on a predefined pattern.

Creates a brush based on a bitmap.

Creates a custom pen.

Creates a pen based ol)t.OGPEN data.

Creates an aroitrary shaped polygonal region.

Creates a region composed of multiple polygons in a single function call.

Creates a rectangular region.

Creates a rectangular region based on the data in a RECT data structure.

Creates a rectangular reglon with rounded corners.

Creates a brush with a solid color.

Removes pens, brushes, fonts, bitmaps, regions, and palettes fr,om memory.

Draws or removes a dashed line around a rectangle.

Draws an ellipse ..

Ends the painting cycle started by BeginPaintO.

Enumerate:> all of the pens or brushes available on a device context.

Checks if two rectangles are equal.

Checks if two regions are equally sized.

Removes a rectangular area from a clipping region.

Prevents drawing in invalid areas of the client area.

Fills an area by replacing acolor with the currently selected brush .

Fills a rectangular area with a brush pattern and color.

Fills a region with a brush color and p~~~m.

Fills an area with the currently selected brush.

Draws a frame around a rectangle using a brush.

Draws a frame around a region using a brush pattem.

Finds the brush origin of a device context.

Retrieves~the red color value from a 32-bit color value.

Gets the ~imens)ons of the sm~lest rectangle that will e~close the clipping region.

439

WINDOWS API BIBLE

Table 11-1. continlled

I; Function

GetCurrentPosition

GetNearestColor

GetObject

GetPixel

GetPolyFiliMode

GetRgnBox

GetROP2

GetStockObject

GetSysColor

GetUpdateRect

GetUpdateRgn

InflateRect

IntersectClipRect

IntersectRect

InvalidateRect

InvalidateRgn

InvertRect

InvertRgn

IsRectEmpty

LineDDA

LineTo

MAKEPOINT

MoveTo

OffsetClipRgn

OffsetRect

OffsetRgn

PaintRgn .

Pie

Polygon

Polyline

PolyPolygon

PtlnRect

PtlnRegion

PtVisible

Rectangle

RectinRegion

,

Purpose

Determines the current logical position in a device context.

Determines ttle closest solid color a device can display.

Retrieves information about an object.

Determines ttle color of a pixel.

Determines the current polygon filling mode for a device context.

Determines the bounding rectangle of a region.

Determines the current raster drawing mode for a device context.

Retrieves a handle to one of the predefined objects that are always available to Windows
applications.

Retrieves one of the system colors.

Retrieves the dimensions of the invalid rectangle in the window's client area.

Copies the update region of a window's client area to another region.

Increases or decreases the size of a rectangle.

Creates a new clipping region by combining the existing rectangle and a rectangular region.

Computes ttle rectangle of the intersection of two other rectangles.

Adds a rectangular area to a window's update region.

Adds a region to a window's update region.

Inverts the color of every pixel within a rectangular area.

Inverts the color of every pixel within a region.

Determines if a rectangle has a height or width of zero.

Draws a line with a custom drawing procedure.

Draws a line from the current location to a new point.

Converts from a DWORD value to a POINT structure.

Moves the current position to a new location, ready to draw a line.

Moves the clipping region.

Shifts a rectangle in the X and Y directions.

Moves a region.

Paints a region with the currelltly selected brush.

Draws a pie-shaped wedge.

Draws a polygon.

Draws a line with mulfiple segments.

Dra'Ns one or more polygons.

Determines if a point is within a rectangular area.

Determines if a point is within a region.

Checks if a pOint is within the clipping region.

Draws a rectangie. .

Checks if a rectangle is within a region.

440

RectVisible

RGB

RoundRect

SelectClipRgn

SelectObject

SetBrushOrg

SetPixel

SetPolyFiliMode

SetRect

SetRectEmpty

SetRectRgn

SetROP2

SetSysColors

UnionRect

UnrealizeObject

UpdateWindow

ValidateRect

ValidateRgn

11. PAINTING THE SCREEN 'Y

Checks if a rectangle has points within the current clipping region.

Creates a 32-bit color value given the three primary color elements.

Draws a rectangle with rounded corners.

Uses a region to clip output to a device context.

Selects an object into a device context.

Changes the origin used by the device context to line up pattern brushes.

Changes to color of a single point on the device context.

Changes the polygon filling mode of a device context.

Enters all four values for a RECT data structure.

Sets all of the elements of a RECT data structure to zero.

Changes the bounds of a rectangular region.

Changes the raster drawing mode of a device context.

Changes the color values Windows uses to paint background and nonclient areas of the screen
and windows. -

Sets the size of a rectangle equal to the smallest rectangle that will enclose two other
rectangles.

Resets a brush origin, or a palette.

Forces an immediate WM_PAINT message, updating the window.

Remove~ a rectangular area from the window's update region.

Removes a region from the window's update region ..

Table 11-1. Painting Function Summary.

Painting Function Descriptions
This section contains th,e detailed function descriptions of functions used in painting a device context.

ARc
Purpose

3yntax

Description

Uses

Returns

See Also

Parameters
hDC

Xl
YI

• Win 2.0 • Win 3.0 • Win 3.1

Draws an elliptical arc using the selected pen.

BOOL Arc(HDC hDC, intXl, int Yl, intX2, int Y2, intX3, int Y3, intX4 , int Y4);

An elliptical arc is a section from an ellipse. The ArcO function specifies the X; Y coordinates of
the bounding rectangle and two other points that define the start and end points of the arc. The
start and end points (X3,Y3 andX4,Y4) do not have to fall on the arc. Windo\vs computes the start
of the arc by calculating a line from the specified start point to the cent.er of the bounding recto
angle. The intercept of this calculated line and the arc's li.ne is used for the start point. The same
logic is used to calculate the end point of the arc. .

Sections of an ellipse can be used as a general way to draw lines with changing curvature.

BOOL. TRUE if the arc was drawn, FALSE on error.

SelectObjectO, DeleteObject, CreatePenO, BeginPaintO, EndPaintO

HDC: The device context handle.

int: The logical X coordinate of the upper left corner of the bounding rectangle.

int: The logical Y coordinate of the upper left corner of the bounding rectangle.

441

WINDOWS API SiSlE

X2 int: The logical Xcoordinate of the lower right comer of the
bounding rectangle.

int: The logical Y coordinate of the lower right corner of the
bounding rectangle.

X3 int: The logicalXcoordinate of the starting point of the arc.

Y3 int: The logical Y coordinate of the starting point of the arc.

X4 int: The logicalXcoordinate of the ending point of the arc.

Y4 int: The logical Y coordinate of the ending point of the arc.

Related Messages WM_PAINT
\

Example This example, as shown in Figure 11-5, paints the client area
with a red arc. The bounding rectangle is also shown as a thin

Do It! Quit

line, just to clarify how the Arc() function works. The start and Figure 11-5. Arc() Example.
end points of the arc are specified as the lower left comer of
the rectangle and the top center. Note that the lower left comer does not fall on the arc's line.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
<

PAINTSTRUCT
HPEN

'ps ;
hPen ;

switch (iMessage)
<

1* process windows messages *1

case WM_PAHtT:
BeginPaint (hWnd, &ps) ;
SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
Rectangle (ps.hdc, 10, 10, 110, 110) ; 1* bounding rect *1
hPen = CreatePen (PS_SOlID, 4, RGB (255, 0, 0» ; .
SelectObject (ps.hdc, hPen) ; 1* select a thick red pen 1<1
Arc (ps_hdc, 10, 10, 110, 110, 10, 110, 60, 10)
EndPaint (hWnd, &ps) ;
DeleteObject (hPen)
break;

[Other program lines)

BEGINPAINT

Purpose

Syntax

• Win 2.0 • Win 3.0
Prepares the window's client area for painting.

HDC BeginPaint(HWND kWnd, LPPAINTSTRUCT lpPaint);

.Win3.!

Description BeginPaint() is used 'to retrieve the device context handle for the window's client area when
processing a WM_PAINT message. This is the only time BeginPaint() is used for this ~urpose.
GetDC() is used anywhere else in the program to get the kDC device context handle. Begin
PaintO fills in the data in a PAINTSTRUCT data structure. This is defined in WINDOwS.H as
~~ ,

/

typedef struct tagPAINTSTRUCT
<

HOC - hdc;
BOOl fErase;
R£CT rcPaint;
dOOl fRestore;
BOOl fIncUpdate;
BYTE rgbReserved[16J;

} PAINTSTRUCT;
typedef PAINTSTRUCT
typedef PAINTSTRUCT NEAR
typedef PAINTSTRUCT FAR

1* device context to paint *1
1* TRUE if background has been redrawn *1
1* update rectangle *1
1* reserved * 1
1* reserved *1
1* reserved *1

*PPAINTSTRUCT;
*NPPAINTSTRUCT;
*lPPAINTSTRUCT;

442

Uses
Returns
See Also
Parameters

11. PAINTING THE SCREEN V

You can either use the returned value fro~ BeginPaintO as the client area device context
handle, or use the hde element of the paint structure. Both handles are the same. ThejErase
element is TRUE if the window has redrawn the client· area background with the class brush,
FALSE if the window does not redraw the background. The rePaint element is a pointer to a
RECT rectangle data structure, holding the bounds of the smallest rectangle that ~nCIoses the
update region of the client area.

Used anytime a program processes WM_PAINT messages.

HDC, a· handle to the wiIulow's client area device context.

EndPaintO, GetDCo., GetWindowDCO

hWnd HWND: The window's handle.

IpPaint LPPAINTSTRUCT: A pointer to a PAINTSTRUCT data structure that BeginPaint() will fill.

Related Messages ~CPAINT

Example This example paints the update region of the client area gray when a W~CP AINT message is
received. This only occurs if the "Do It!" menu item has been clicked. The simplest way to gener
ate a WM_PAINT message is to resize the window, which results in the entire client area being
the update region.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, lONG lParam)
(

PAINTSTRUCT
static BOOl

ps ;
bDoPaint = FALSE;

switch (iMessage)
(

1* process windows messages *1

case WM_PAINT:
if (bDoPaint)
(

else

BeginPaint (hWnd, &ps) ;
SelectObject (ps.hdc, GetStockObject (lTGRAY_BRUSH» ;
Rectangle (ps.hdc, ps.rcPaint.left, ps.rcPaint.top,

ps.rcPaint.right, ps.rcPaint.bottom) ;
EndPaint (hWnd, &ps) ;

ValidateRect (hWnd, NULL) ;
bDoPa;nt = FALSE;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
bDoPaint = TRUE;
break;

{Other program lines}

CHORD

Pmpose

Syn\U
Description

• Win 2.0 • Win 3.0 • Win 3.1
Draws a chord segment with the selected pen, and fills the interior with the selected brush.

BOOL Chord(HDC hDO, intXI, int YI, intX2, int Y2, intX3, int Y3, intX4 , int Y4)i

A chord is an elliptical curve, bounded by a line through the ellipse. The elliptical curve is defined
by the bounding rectangle XI,YI to X2,Y2. The line through the ellipse is defined by X3,Y3 to
X4,Y4. The currently selected pen and brush for the device context are used to draw the chord's
exterior lines and fill the interior. The line segment defined by X3,Y3 toX4,Y4 can be outside of
the bounds of the ellipse. Only the portion within the ellipse will be drawn.

443

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hDC

Xl

Y1

X2

Y2

X3

Y3

%4
I

Y4
Example

This is the filled equivalent to using the ArcO function.

BOOL. TRUE if the chord was drawn, FALSE on error.

ArcO, BeginPaintO, Se]ectObjectO

HDC: The device context handle.

int: The logical X coordinate of the upper left corner of the
bounding rectangle.

_ int: The logical Y coordinate of the upper left corner of the
bounding rectangle.

Do It! Quit

~!III ..

•

..
~t..

• ~
~

".
~, int: The logical X coordinate of the lower right corner of the

bounding rectangle. I ..0lIl,..
•

int: The logical Y coordinate of the lower right corner of the
bounding rectangle.
int: The logical X coordinate of the starting point of the line
segment of the chord.

Figure 11-6. Chord() '
Example.

int: The logical Y coordinate of the starting point of the line segment of the chord.
int: The logical X coordinate of the ending point of the line segment of the chord.
int: The logical Y coordinate of the ending point of the line segment of the chord.
This example, illustrated in Figure 11-6, draws a red chord outline filled with a blue crossed
interior. The bounding rectangle is also shown for reference.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
HPEN hPen ;
HBRUSH hBrush ;
switch (iMessage) 1* process windows messages *1
{ .

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
Rectangle (ps.hdc, 10, 10, 110, 110); 1* show bounding rect *1
hPen = CreatePen (PS~SOLID, 4, RGB (255, 0, 0» ;
SelectObject (ps.hdc, hPen) ; . 1* select a thick red pen *,
hBrush = CreateHatchBrush (HS_CROSS, RGB (0, 0, 255» ;
SelectObject (ps.hdc, hBrush) ; 1* select a blue' brush *1
Chord (ps.hdc, 10, 10, 110, 110, 0, 200, 60, 10) ;
EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;
DeleteObject (hBrush) ;
break;

IOther program lines}

COMBINERGN

Purpose

Syntax

Description

o Win 2.0 • Win 3.0 • Win 3.1
Logically combines two regions into one region.

int CombineRgn(HRGN hDestRgn, HRGN hSrcRgnl, HRGN hSrcRgn2, intnCombineMode)~

CombineRgnO builds a new region by joining two other regions. The regions do not have to be
touching. If they are touching, several logical operations can be used to combine areas that over
lap, do not overlap, etc. The destination region must be allocated before the function is started.
This can be done by creating a region of arbitrary size (using CreateRectRgnO for example).

444

Uses

Returns

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

11. PAINTING THE SCREEN y

CombineRgnO can be used many times to build up complex regions made of more basic shapes.
The combined region can then be used as a mask (clipping region) to limit where painting opera-
tions are visible. '

int, the result of the function. This can be any of the values listed in Table 11-2.

Meaning

The new region has overlapping borders.

No new region was created.

The new region is empty.

The new region does not have overlapping borders.

Table 11-2 Region TiJpes.

See Also

Parameters
hDestRgn

hSrcRgn1

hSrcRgn2

riCombineMode

kvalue·
RGN_AND

RGN_COPY

RGN_DIFF

SelectClipRgnO, CreateRectRgnO, CreateEllipticRgnO

HRGN: A handle to an existing region that will be replaced by the
new, combined region.

HRGN: A handle to an existing region.

HRGN: A handle to another existing region.

int: Specifies how hSrcRg1l1 and hSrcRgn2 are to be combined.
This can he any of the values listed in Table iI-a.

Meaning

Uses the intersection of the two regions (overlapping area).

Creates a copy of the region pointed to by hSrcRgn 1.

Qo It! Quit

Figure 11-7. Combine
BgnO Example.

Copies all of, the region pointed to by hSrcRgn 1 except for that overlapped by the region pointed to by
hSrcRgn2.

Combines the two regions.

Combines the two regions, but eliminates the area that overlaps.

Table 11-3. CombineRgll() Modes.

Example This example, which is illustrated in Figure 11-7, creates two regions, an elliptical one and a
rectangular one. The two regions are then combined into one logical region. The combined region
is used as a clipping region for painting a large grayarea. Only the areas within the region are
painted. Note that the "combined" region still consists of ~vo distinct areas that do not connect.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN

ps ;
hRgn1, hRgn2, hRgnComb ; i /

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hRgn1 = CreateEllipticRgn (10, 10, 60, 30)
hRgn2 = CreateRectRgn (70, 10, 100, 40) ;
hRgnComb= CreateRectRgn (1, 1,2, 2) ;1* initialize *1
CombineRgn (hRgnComb, hRgn1, hRgn2, RGN_OR)

445

WINDOWS API BIBLE

DeleteObject (hRgn1) ;
DeleteObject (hRgn2) ;

SelectCl;pRgn (ps.hdc, hRgnComb) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH»
Rectangle (ps.hdc, 5, 5, 500, 500)
EndPa;nt (hWnd, &ps) ;
DeleteObject (hRgnComb)
break;

{Other program lines}

COPyRECT

Purpose

Syntax
Description

Uses
Returns
See Also

Parameters
lpDestRect

lpSourceRect
Example

.Wm2.0 .Wm3.0 .Wm3.l
Copies the coordinates of one rectangle into another.
int CopyRect(LPRECT lpDestRect, LPRECT lpSourceRect)j

RECT data structures hold the coordinates of the upper left
and lower right comers of a rectangle. This function copies the
coordinates from lpSouceRect to lpDestRect.

Commonly used prior to OffsetRect() or InflateRectO.

Do It! Quit

int, the value has no meaning.

OffsetRect(), InflateRectO
Figure 11-8. CopyRect()

LPRECT: A pointer to a RECT data structure that will contain Example.
the copied coordinates.
LPRECT: A pointer to a RECT data structure that contains the source data to copy.
In the example in Figure 11-8, a complex region is created by combining two regions using the
logical RGN_XOR operation. The two regions are both based on the same rectangular size. In the
first step, elliptical region hRgnJ is made from the rectangle's dimensions. A second rectangle is
created by copying the first, and then offsetting the rectangle's coordinates to the right 25 logical
units. The two regions are combined using CombineRgnO and then used as the clipping region.
Only the areas within the clipping region end up painted when a large, gray rectangle is drawn.

long FAR PASCAL WndProc (HWND hWnd, unsigned ;Message, WORD wParam, LONG lParam)
(

PAINTSTRUCT ps ;
HRGN hRgn1, hRgn2, hRgnComb ;
RECT rRect1, rRect2 ;

swit~h /It;\MeSSage) 1* process windows messages *1
{' I

I case WM_PAINT:
, BeginPaint (hWnd, &ps) ;

{Other program l~nes} .

SetRect (&rRect1, 10, 10, 60, 40) ;
CopyRect (&rRect2, &rRect1) ;
OffsetRect (&rRect2, 25, 0) ;
hRgn1 = CreateEllipticRgnlndirect (&rRect1)
hRgn2 = CreateRectRgnlndirect (&rRect2) ;
hRgnComb = CreateRectRgn (1, 1, 2, 2) ;1* initialize *1
CombineRgn (hRgnComb, hRgn1, hRgn2, RGN_XOR) ;
DeleteObject (hRgn1) ;
DeleteObject (hRgn2) ;

SelectClipRgn (ps.hdc, hR~nComb) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, 5, 5, 500, 500)
EndPaint (hWnd, &ps) ;
DeleteObject (hRgnComb) ;
break;

446

11. PAINTING THE SCREEN ...

CREATBRUSmNDIRECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax
Description

Creates a brush from a ~itmap or stock brush shape.

HBRUSH CreateBrushIndirect(LOGBRUSH FAR *lpLogBrush)j

. The LOGBRUSH data type is defmed in WINDOWS.H as

typedef struct taglOGBRUSH
(

WORD lbStyle; 1* BS_DIBPATTERN, BS_HATCHED, BS_HOllOW *1
1* BS_PATTERN, or BS_SOlID *1

DWORD lbColor; 1* DIB_PAl_COlORS, or DIB_RGB_COLORS
int lbHatch; 1* HS_BDIAGONAl, HS_CROSS, HS_DIAGCROSS *1

1* HS_FDIAGONAl, HS_HORIZONTAl, or HS_VERTICAL *1
.) LOGBRUSH;

typedef LOGBRUSH
typedef lOGBRUSH NEAR
typedef LOGBRUSH FAR

*PLOGBRUSH;
*NPLOGBRUSH;
*lPLOGBRUSH;

typedef LOGBRUSH PATTERN;

Uses
Returns

See Also

Parameters
lpLogBrush

lbStyle

The three data elements of the LOGBRUSH structure are filled to defme the brush. Logical
brushes, like logical fonts, provide a degree of device independence. If an exact match is not
found with the physical device being used, Windows will approximate the brush.

Used to create specialized brush patterns for ftIling regions.
HBRUSH, a handle to the brush created. Returns NULL on error ..

SelectObjectO, DeleteObjectO, CreateHatchBrushO, CreateSolidBrush(), CreatePattem
BrushO, UnrealizeObjectO

LOGBRUSH FAR *: A pointer to a LOGBRUSH data structure. The elements of the data structure
are defined as follows:

WORD: The style ofthe brush to be created, can be any ofthe ones listed in Table 11-4.

BS_DISPATIERN The brush will be defined by a DIS (device independent bitmap).

BS_HATCHED

BS_HOLLOW

BS_PATIERN

BS_SOUD

The brush will be a hatched brush based on one of the standard hatch patterns listed in Table 11-6.

The brush will be hollow(not visible).

The brush will be based on a bitmap.

The brush will be a solid color.

Table 11-4. Logical Brush Types.

lbColor . COLORREF: Specifies the color of the brush for the BS_HATCHED or BS_SOLID styles. Use the
RGB macro to set a specific color.lbColor is ignored for the BS_HOLLOW or BS_PATTERN style.
For the BS_DIBPATTERN style, the lbColor parameter can have one of the two values listed in
Table 11-5.

DIS_PAl_COLORS

DIS_RGS_COLORS

Th.J13lB colors are based on the currently realized logical palette.

The DIS colors are literal RGS values.

Table 11-5. LOgical Brush Color Types.

447

WINDOWS API BIBLE

lbHatch int: For the BS_HATCHED style, lbHatch contains one of the values listed in Table 11-6.

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

\

45-degree lines climbing from left to right.

A horizontal and vertical crosshatch.

A 45-degree crosshatch.

45-degree lines climbing from right to left ..

HS_HORIZONTAL Horizontal lines.

Vertical lines.

Table 11-6. Hatch Brush Patterns.

Example

If the style is BS_SOLID or BS_HOLLOW, lbHatch is ignored. If the style
is BS_PATIERN, lbHatch contains a handle to a bitmap. If the style is
BS_DIBPATIERN, lbHatclt contains a handle to a DIB bitmap.

This example uses CreateBrushIndirectO twice to create two different
brushes. (See Figure 11-9.) The first is a hatched brush that uses the
standard HS_CROSS pattern to paint the top rectangle. The second is a
custom brush, based on an 8 hy 8 bitmap pattern. The bitmap is refer
enced with the line

brushmap BITMAP brush.bmp

in the program's .RC resource file. In this case, the bitmap was created
using the SDKPaint application.

D.o It! quit

III
II

Figure 11-9.
Create Brush
Indirect() Rxample.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH

.; LOGBRUSH
HBITMAP

ps ;
hBrush, hOldBrush ;
lbBrush ;
hBi tmap ;

switch (iMessage)
{

1* process wi ndows messages * 1

case WM_PAINT:

IOtherprogram lines}

BeginPaint (hWnd, &ps) ;
lbBrush.lbStyle = BS_HATCHED ;
lbBrush .lbColor = RGB (0, 255, 0)
lbBrush .lbHatch = HS_CROSS ;
hBrush = CreateBrushlndirect (&lbBrush) ;
hOldBrush = SelectObject (ps~hdc, hBrush) ,
Rectangle (ps.hdc, 5, 5, 100, 80) ;
SelectObject (ps.hdc, hOldBrush) ;
DeleteObject (hBrush) ;
hBi tmap = LoadB; tll}1lP (ghlnstance, "brushmap")·

. lbBrush.lbStyle = BS_PATTERN ;
lbBrush .lbeolor = NULL;
lbBrush.lbHatch = hB;tmap ;
hBrush = CreateBrushlnd; rect (&lbBrush) ;
hOldBrush = SelectObject (ps.hdc, hBrush)
RectangLe (ps.hdc, 5, 100, 100, 180)
SelectObject (ps.hdc, hOldBrush)
DeleteObject (hBrush);
DeleteObject (hBitmap)
EndPaint (hWnd, &ps) ;
break;

448

11. PAINTING THE SCREEN ...

I
CREATEELLIPTIcRGN 1'1 Win 2.0 BWin3.0 _Win 3.1
Purpose Creates an elliptically shaped region.
Syntax HRGN CreateElllpticRgn(intXl, int Yl, intX2, int 1'2)i

Description

Uses

- Returns

See Also

Parameters
Xl

Yl

X2

1'2
Example

The region is an ellipse, bounded by the rectangle described by the.¥, Ypositions of the upper left
and lower right comers.
Used to create clipping regions.
HRGN, the handle to the region created. NULL on error.
SelectObjectO, DeleteObjectO, SelectClipRgnO, CreateRect
RgnO, Create Elliptic RgnIndirectO

int: The logical Xcoordinate of the upper left comer of the
bounding rectangle.
int: The logical Y coordinate of the upper left comer of the

Do It! Quit

bounding rectangle. Figure 11-10. Create
int: The logical X coordinate of the lower right comer of the EllipticRgn() Example.
bounding rectangle.
int: The logical Y coordinate of the lower right corner of the bounding rectangle.
The example in Figure 11-10 sets a small elliptical clipping region, and then paints a large rect
angle with a gray brush. Only the part of the rectangle that falls within the clipping region is
painted. This results in drawing a fllied ellipse .

. Long FAR PASCAL WndProc (HWND hWnd,unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN

ps ;
hRgn ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, ips) ;
h~gn = CreateEllipticRgn (10, 10, 60, 30) ;
SelectClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, 5, 5, 500, 500) ;
EndPaint (hWnd, ips) ;
DeleteObject (hRgn) ;
break;

IOther program lines J

CREATEELLIPTICRGNINDlRECT • Win 2.0 • Win 3.0 • Win 3.1

Purpose
Syntax

Description

Uses

Returns

SeeAlso

Creates an elliptical region based on the bounding rectangle described in a RECT data structure.

HRGN CreateElIipticRgnIiulirect(LPRECT lpRect)i
Identical to CreateEllipticRgnO, exc~pt that a RECT data structure is used to hold the bounding
rectangle for the ellipse. \\\ .'\
A RECT data structure is\m-O~)~bnvenient if you will be doing operations on the rectangle to
create new regions. The foI1o~ng example uses InflateRectO to create anothel' region, smaller
than the flrst.
HRGN, a handle to the region created. NULL on error.

CreateEllipticRgnO

449

WINDOWS API BIBLE

I Parameters
IpRect

Example

LPREC1: A pointer to a BECT data structure holding the bounding
~tangle for the ellipse.

The example shown in Figure ·11·11 creates two elUptical regions,
one inside the other~ The regions are combined using the logical
RGN_DIFF operator to create a new region consisting of the parts of
the larger ellipse that are not in the smaller one. A large area in the
client area is then grayed, but only the logical region is painted.

l10ftl guft

o
Figure 11·11. Create·
EUipticRgnlndirect()
Ezmnple.

long FAR PASCAL WndProc (HWND· hWnd, unsigned i"e .. age, WORD .. Paraa, LONG lParaa)
(

PAINTSTRUCT
HRGN
RECT

pS ;
hRgn1, hRgn2, hRgnComb ;
rRectangle ;

s .. itch (f"elsage)
(

1* proce •• wfndo essage. *1

case .,"_PAlNT:
BeginPaint (hWnd, Ips) ;
SetRect (IrRectangle, 30, 30, 100,80) ;
hRgn1 = CreateEllipticRgnlndirect (IrRectangle);
InfLateRe~t(lrRect8ngle, -10, -10);
hRgn2 = CreateEHfptfcRgnlndirect (&rRectangle) ;
hRgnComb ~ CreateRectRgn <1, 1, 2, 2) ;1* inftialize *1
CombineRgn (hRgnCo.b, hRgn1, hRgnZ, RGN_DIFF) ;
DeleteObject (hRgn1) ;
DeleteObject (hRgn2) ;

SeLectClipRgn (ps.hdc, hRgnComb) ; ,
SelectObject (ps.hdc, GetStockObject (LT6RAY_8RUSH» ;
Rectangle (ps.hdc, 5, 5, 500, 500) ;
EndPafnt (hWnd, Ips) ; .
DeleteObject (hRgnCo.b) ;
break;

{Other program lines]

CREATEllATCnBau8H •• 2.0· • Win 3.0 • Win 3.1
Pupose Crea~s a logical brush based on ~ predefined pattern.

Syntax HBRUSH CreateBatchBrush(int nIndez,DWORD ~lor);

Description.

Uses

Retams

, SeeAlso

Parameters
nIndez

. This function is used to create brushes with standard patterns. For creating custom brushes, use
GreateBrushIndirectO or CreatePattemBms~Q. . ,

Creating brushes to Use for filling rectangles, chords, ellipses, etc. . .
HBBUSH; a handle to the bmsh created. ·NUL~on error. ,

CreateBrushIndirectQ, Cre~tePatten$rushO, C~lidBrushQ, ,UnrealizeO*tO
. ---- ..

; .

int: Spec~es the hatch style. This can be-any of Ate patterns listed in Table 11·7.

'.

" .. 450

HS_BDIAG9NAL

HS_CROSS

HS_DIAGCROSS

45-degree lines climbing from left to right.

A horizontal and vertical crosshatch.

A 45-degree crosshatch.

11. PAINTING THE SCREEN •

. '. -: . ~,

HS_FDIAGONAL 45-degree lines climbing from right to left.
Qo It! !luit

HS_H-ORIZONTAL Horizontal lines.

Vertical lines.

Table 11-7. HatchBntshPatterns.

crColor

Example

COLORREF: Specifies the color of the hatch lines. Use the RGB macro
to specify a color.
The example in Figure 11-12 creates a blue diagonal brush and a red figure 11-12.
pen and selects both into the device context. The RectangleO func- CreateHatchBntsh{)
tion is then used to draw a filled rectangular region with a red border. Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,'LONG lParam)
{

PAINTSTRUCT
HBRUSH
HPEN

ps ;
hBrush ;
hPen ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hBrush = CreateHatchBrush (HS_FDIAGONAL,

. RGB(O, 0, 255», ; '.
SelectObject (ps\hdc, hBrush); '--1. ___
hPen = CreateP~~ (PS_SOLID, 5, RGB (255, 0, 0» ;
SelectObject ('ps.hdc, hPen) ;

- Rectangle'(p,s.,hdc, 5, 5, 100, 80) ;
'EndPaint (hWnd; &ps) ;
Dt~!.ete.Obj.ect (hBrush) .;
Dele:te'Object-(hPen) ;
break ;

IOtherprogram lines} ~

CREATEP ATTERNBRUSH • Win 2.0 • Win 3.0' • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Creates a brush based on a bitmap.

HBRUSH CreatePattemBrush(HBITMAP hBitmap)j

This is a handy way to create a custom brush for filling objects like rectangles, ellipses~ and
chords.

Used aloIlg with LoadBitmapO, CreateBitmapO, CreateBitmaplndirectO or CreateCompa
tibleBitmapO· .

HBRUSH, the handlE\ of the brus~_ created. NULL on error.

LoadBitmapO, SelectObjectO, DeleteObjectO, CreateBrushlndirectO, CreateHatchBrushO,
CreateSolidBrushO, UnrealizeObjectO

.451

WINDOWS API BIBLE

Parameters
hBitmap

Example

HBITMAP: The handle of the bitmap to use as a brush. This should be
an 8 by 8 bitmap. If the bitmap is larger, only the upper left, 8 by 8
pixel area will be used.

In this case, both a pen and pattern brush are selected into the device
context before drawing the rectangle. (See Figure 11-13). The custom
brush pattern is an 8 by 8 pixel bitmap created with the Windows
SDKPaint application. The program's .RC resource file contains the
line

brushbitmap BITMAP brush.bmp

Here is the top of the WndProcO function:

Qo It! quit

II
Figure 11-13.
GreatePattern Brush()
Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH
HPEN
HBITMAP

ps ;
hBrush ;
hPen ;
hBi tmap ;

switch (iMessage)
{

1* process windows messages *1

BeginPaint (hWnd, &ps) ;
hBitmap = LoadBitmap (ghInstance, "brushbitmap")
hBrush = CreatePatternBrush (hBitmap) ;
SelectObject (ps.hdc, hBrush) ;
hPen = CreatePen (PS_SOLID, 5, RGB (255, 0, 0»
SelectObject (ps.hdc, hPen) ;
Rectangle (ps.hdc, 5, 5, 100, 80)
EndPaint (hWnd, &ps) ;-
DeleteObject (hBitmap) ;
DeleteObject (hBrush) ;
DeleteObject (hPen) ; ,
break;

I Other program lines J

CREATEPEN

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nPenStyle

nWidlh

crGolor

• Win 2.0 • Win 3.0 • Win 3.1

Creates a logical pen.

HPEN CreatePen(int nPenSlyle, int nWidth, DWORD erGolor);

The only two stock pens are a black line and a white line, both one
pixel thick. Use CreatePenO to create all other line types.

Creating a pen prior to selecting the pen into the device context.

HPEN, the handle of the pen produced.

CreatePenIndirectO, SelectObjectO, DeleteObjectO

int: The pen style. This can be either PS_SOLID, PS_DASH, PS_DOT,
PS_DASHDOT, PS_DASHDOTDOT, PS_NULL, or PS_INSIDEFRAME.
The latter is used to draw the border of all objects -other than poly
gons and polylines.

int:, The pen's width in logical units.

Qo It! quit

D
Figure 11-14.
GreatePen() Example.

COLORREF: The color of the line. Use the ROB macro to specify an exact color.

452

11. PAINTING THE SCREEN V

Example The rectangle, shown in Figure 11-14, is drawn with a red pen, created five units wide. Because no
brush was selected, the default white brush is used to fill the rectangle.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HPEN

ps ;
hPen ;

switch (iMessage)
{

1* process windows messages *1

/ Other program lines J

BeginPaint (hWnd, &ps) ;
hPen = CreatePen (PS_SOLID,5, RGB (255, 0, 0»
SelectObject (tls.hdc, hPen) ;
Rectangle (ps.hdc, 5, 5, 100, 80) ;
EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;
break;

CREATEPENINDIRECT • Win 2.0 • Win 3.0 • Win 3.1
Creates a logical pen based on LOGPEN data.

HPEN CreatePenIndirect(LOGPEN FAR * lpLogPen)j

Purpose

Syntax

Description This function is identical to CreatePenO, except the d~ta for the pen is passed in a LOGPEN data
structure rather than as parameters. LOG PEN is defined in WINDOWS.H as follows:

typedef struct tagLOGPEN
{

WORD
POINT

\ DWORD
} LOGPEN;

lopnStyle;
lopnWidth;
lopnColor; ---------------

typedef LOG PEN
typedef LOGPEN NEAR
typedef LOG PEN FAR

*PLO!iPEN;
*NPLOGPEN;
*LPLOGPEN;

Uses

Returns

See Also

Parameters
lpLogPen

lopnStyle

More convenient than CreatePenO if you have a number of similar pens
to create.

HPEN, a handle to the pen created. NULL on error.

CreatePenO, SelectObjectO, DeleteObjectO

LOGPEN FAR *: A pointer to a LOGPEN data structure. The elements
of the data structure are as follows.

WORD: The pen style. This can be either f.S_SOLID, PS_DASH,
PS_DOT, PS_DASHDOT, PS_DASHDOTDOT, PS_NULL, or PS_IN
SIDEFRAME. The latter is used for drawing the border of all objects
other than polygons and polylines.

Figure 11-15. Create
Penlndirect()
Example.

lopnWidth POINT: A POINT structure. The x element of the POINT structure defines the pen's width. Only
the x element of the structure is used.

lopnColor

Example

COLORREF: The 32-bit color value to use for the pen. Use the RGB macro to specify a color ..

Here a polygon is drawn, see Figure 11-15, usin~ a pen created with CreatePenlndirectO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HPEN

ps ;
hPen ;

453

WINDOWS API BIBLE

LOGP.EN
POINT
POINT

lp ;
pPenWidth ;
pArray [J = {10, 100, 15, 5, 50, 50, 90, 0, 60, 110} ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
pPenWidth.x ='2 ;
lp.lopnStyle = PS_DASH ;
lp.lopnWidth = pPenWidth ;
lp.lopnColor = RGB (0, 40, 50) ;
hPen = CreatePenIndi rect (Up) ;
SelectObject (ps.hdc, hPen) ;
Polygon (ps.hdc, pArray, 5) ;'
EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;
break;

IOther program linesJ,

CREATEPOLYGONRGN • Win 2.0 II Win 3.0 ,'. Win 3.1
Purpose

Syntax

Description

Uses

Returns

SeeAiso
Parameters
~"

nCount·

nPolyFiILMode

ALTERNATE .~

WINDING

t

Creates an arbitrary, shaped polygonal region.

HRGN Cre.atePolygonRgn(LPPOINT IpPoints, int nCount, int nPolyFilLMode)i

This function is ideal for creating clipping modes that have complex shapes. Any number of points
can be specified. '

, Complex clipping modes.
, HRGN, a handle to the region created. NULL on error.

CreatePolyPoly~onRgnO

/'

LPPOINT: A bOinter to an array of POINT structures contain
ing at least npount points.

int: The nu~ber of points to use in drawing the polygon.
filling mode. This is important only if the lines

PUl,YliUJIl/\;l.U.,.,each other, creatirig areas. The mode can
two modes listed in Table 11-8.

The GDI fills in areas between sides 1 &2, sides 3&4, etc.

The GDI fills in the complete area_defined by the outermost lines.

Do It! Quit

Figure 11-16. CreatePoly
~onRgn() Example.

Table 11-8. Polygon Filling Modes.

See GetPolyFillModeO or SetPolyFillModeO for more details on the polygon filling modes.

Example Here a five sided polygon, see Figure 11-16, is use'a as a clipping region.

long FAR PASCAL WndProc (HWNn hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ ,

PAINTSTRUCT
HRGN

ps ;
hRgn ; .

POINT pArray [5j"i:: {10, 10, 50, 40, 90, 20, 60, 0, 40, 20} ;

switeh(iMessage)
{

ease WM_PAINT:
BeginPaint (hWnd, &ps) ;

1* process windows messages *1

hRgn = CreatePolygonRgn (pArray, 5, WINDING) ;

454

.
SeLectClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps~hdc, O~ 0, 500, 500) ; 1* paint gray *1
EndPoint· (hWnd, Spsl.. ; ,
DeleteObJect (hRgn) ;~-

'" break;
IOlher pivgram ·Iines} ,

CIlEATEPoLYPOLYGONRGN o Win 2.0 • Win 3.0 a Win 3.1
PuJpose.
Syntax. '

DesaiptiOIl

Uses

ReUirns
See-Also

Parameters
IpPoints

IpPolyCounts

nCount

nPolyFillMode

ALTERNATE

WINDING

Creates a region composed of multiple polygons in a single function call.

HRON CreatePolyPo.lygonRgn(LPPOINT IpPoints, LPINT IpPolyCounts, int nCount, int
nPolyFiUMode);" , ';

This function can save time in making and combining regions,~ providing the ability to create a
region of any complexity in a single function call. This is accomplished by passing two arrays to
the function, an arraY of aU of the points, and a 'second arraY ~ontaining an array of integers: The
integer array defmes how the points are to be grol!ped. For example, the fll'St four points might
define the first shape, the second six 'the second shape; etc.
Creating complex clipping regionS without having to combine multiple small regions. The indio
vidual regions defmed in the array of points do not have to be touching.

HRON, a handle to the region created. NULL on error.

CreatePolygonRgnO, CombineRgnO

LPPOINT: A pointer to 8llarray of POINT structures containing the
location of evelY point in evelY polygon that will bedefmed. The
points must be sorted so that all of the points defming the first poly·
gon are toge.ther, followed by the points defming the second poly·
gon,etc.

. LPINT:.A pointer to an array of integers. The elements of the array
deScribe how many points belong to each of the polygons.

int: The number of integers in the IpPolyCounts array. This is also
the number of polygons that will be defmed.
int: The polygon filling mode. This is important only if the lines of
the polygon cross each other, creating areas. The mode can be ei·
ther of the modes listed in Table 11·9. I

The GDI fills in areas between sides 1&2, sides 3&4, etc.

The GDI fills in the complete area defined by the outermost lines .

Ilo It! Quit

. Figure 11·17. Create·
PolyPolygonRgn() -
Example.

. Table 11·9. Polygon Filling Modes.

EUDlple The clipping region shown iil ~ 11·17 is created by defining a triangular and a four·sided
polygon in the same call to CreatePolyPoIygonRgnO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPara~, LONG lParam)
(

PAlNTSTRUCT
HRGH
POINT

int

ps ;
hRgn ; .
pArr~y [71 = (10, 10, 50, 40, 90, 20, 60, 0, 80, 80,

" . 100, 110, 120, 30} ;
nPolyCouR..t [] = <3,'4) ;

455

yyl....,UUyy~ AI"" tSltsLt:

.. switch (iMessage) 1* process windows messages *1
,

case WM_PAINT:
BeginPaint (hWnd, &ps)
hRgn = CreatePolyPolygonRgn (pArray, nPolyCount, 2,

WINDING) ;
SelectClipRgn (ps.hdc, hRgn) ;
Selec'tObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, 0, 0, 500, 500) 1* paint gray *1
EndPaint (hWnd, &ps) j
DeleteObject (hRgn) ;
break;

I Other program lines J

CREATERECTREGN • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also
Parameters
Xl

YI

X2

Y2

Example

Creates a rectangular region.

HRGN CreateRectRgn(intXl, int Yl, intX2, int Y2)j

The region created is a rectangle, bounded by theXl,Yl at the upper left andX2,Y2 at the lower·
right.

Used to create clipping regions or regions to be filled.

HRGN, the handle to the region created. NULL on error.

SelectObjectO, DeleteObjectO, SelectClipRgnO, FillRgnO

int: The logical X coordinate of the upper left corner of the
rectangle.

int: The logical Y coordinate of the upper left corner of the
rectangle.
int: The logical X coordinate of the lower right corner of the
rectangle.

int: The logical Y coordinate of the lower right corner of the
rectangle. .

This example creates a rectangular region, and uses it as a clip
ping region. When a much larger rectangle is drawn, only the
part within the region ends up visible. (See Figure 11-18.)

Do It! Quit

Figure 11-18. Create
RectRgn() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN

ps ;
hRgn ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:

IOther progra'f!JJines J

'/

BeginPaint (hWnd, &ps) ;
hRgn = CreateRectRgn(10,'10, 90, 70) ,
SelectClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc,5, 5, 500, 500) ;1* paint gray *1
EndPaint (hWnd, &ps) ; ,
DeleteObject (hRgn)
break;

·456

11. PAINTING THE SCREEN •

CREATERECTRGNINDIRECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Ketoms

See Also
Parameters
lpRect

Example

Creates a rectangular region based on t.he data in a RECT data
structure.
HRGN CreateRectRgnIndirect(LPRECT IpRect)j

This is identical to CreateRectRgnO, except the rectangle data
is passed as the elements of a RECT data structure.
Convenient if the rectangle data will be manipulated. The fol
lowing example shows the RECT data being used to create a
new region, offset from the first.
HRGN, a handle to the region created. NULL on error.
CreateRectRgnO

LPRECT: A pointer to a RECT data structure holding the di
mensions of the rectangle.

Do It! Quit

This example creates two rectangular regions, one offset from
the other. The regions are combined with the logical
RGN_XOR operation. When the entire area is grayed (see Fig
ure 11-19), only the parts of the regions not overlapping end up
painted.

Figure 11-19. CreateRect
Rgnlndirect() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN
RECT

ps ;
hRgn1, hRgn2, hRgnComb ;
rRectangle1, rRectangle2 ;

switch (iMessage)
{

1* process windows messages *1

case WM' PAINT:
-BeginPaint (hWnd, &ps) ;

SetRect (&rRectangle1, 30, 30, 60, 80) ;
hRgn1 = CreateRectRgnIndirect <&rRectangle1) ;
CopyRect (&rRectangle2, &rRectangle1) ;
OffsetRect (&rRectangle2, 20, 20) ;
hRgn2 = CreateRectRgnIndirect <&rRectangle2) ;
hRgnComb = CreateRectRgn (1, 1, 2, 2) ;1* initialize *1
CombineRgn (hRgnComb, hRgn1, hRgn2, RGN_XOR)
DeleteObject (hRgn1) ;
DeleteObject (hRgn2) ;

SelectClipRgn (ps.hdc, hRgnComb) ;
SelcctObject (ps.hdc, GetStockObject (LTGRAY_BRUSH»
Rectangle (ps.hdc, 5, 5, 500, 500)
EndPaint (hWnd, &ps) ; ~
DeleteObject (hRgnComb) ;
break;

{Other program lines}

CR;EATERoUNDRECTRGN o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Creates a rectangular region with rounded corners.

HRGN CreateRoundRectRgn(intXI, int YI, intX2, int Y2, intX3, int Y3)j

The region' created is a rectangle, bounded by XI, Yl at the upper left andX2, Y2 at the lower right.
X3 and Y3 provide the width and height of the ellipses used to round the corners.

457

YVINUUYVti API BIBLE

IJses

Retums

SeeAlso

Parameters
Xl

YI

X9

fa
Example

Used to create clipp~ngregions .. .,.
~GN, the handle to the region created. NULL on error.
SelectOojectO ,DeleteObjectO, SelectClipRgnO

int: The logical X coordinate of the upper left corner of the
bounding rectangle. .

. int: The logical Y coordinate of the upper left corner of the
bounding rectangle. '-:

int: The logical X coordinate of the lower right corner of the
bounding rectangle.

Do It! Quit

-: . ~. '. ':;, ~~ ~ ~ '. ~

, .,

., ;, _~ ,.1 ,. "

int: The logical Y coordinate of the lower right corner of the Figure 11-20. Create-
bounding rectangle. RoundRectRgn() Example:

int: The logical width of the ellipse used to round the corners.
int: The logical height of the ellipse used to round the corners.
This example creates a rectangular region with rounded corners and uses it as a clipping region.
When a much larger rectangle is drawn with a gray brush, only the interior of the region ends up
painted, as shown in Figure 11-20.

long FAR PASCAL WndProc (HWND hWnd,unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
HRGN

ps ;
hRgn ;

Jwitch (1Message)
(

1* process window. messages *1

case WM_PAlNT:
BeginPaint (hWnd, ips) ;
hRgn = CreateRoundRectRgn (10, 10, 90, 70, 20, 20) ;
Sel'ectClipRgn (ps .hdc, hRgn) ;
Se lectObject(ps. hdc, GetStockObj ect (L TGRAY_BRUSH» ;
Rectangle (p·s.hdc, 5, 5, 500, 500) ;1* paint gray *1 ""
EndPaint'(~Wnd, &ps) ; ,
DeleteObject (hRgn) ;
break;

{Other program linesl

CREATESOLmBauSB • Win 2.0 • Win 3.0 • W'rn 3.1

Syntax
De8erlptiOD

Uses

Ieturu
8eeAlao.

Creates a brush with a solid color.
HBRUSH CreateSolldBrush(DWORD crColar);

CreateSolidBrushO allows you to create a solid color brush for I Dolt! Quit
filling areas. Before an object like a-.rectangie or ellipse can
have its interior painted, the program must select a brush of
the desired color into the device context using SelectObjectO.
Call DeleteObjectO to free the created brush from memory af
ter it is used.
Solid color brushes. UseCreateHatchBrushO, CreatePattern-Figure 11~21. CreateSolid-
B rush 0 , and CreateBrushIndirectO to create pattern brushes. Brush() Example.

HBRUSH, a·handle for the brush created. NULL on error.
SelectObjectO, DeleteObjectO, CreateHatchBrushO, CreatePaitemBrushO, CreateBrushln-
dlfectO,Unrealize ObjectO ' .

458

Parameters
crColor

Example

11. PAINTING TH~ SCREEN ~

- .

DWORD: The 32-bit color value to use for the bmsh color. Use the RGBmacro to specify this
value.
This example creates a blue/red brush and uses it to fill a rectangle, as shown in Figure 11-21. The
brush is deleted immediately after the rectangle is painted. I .

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH

ps ;
hBrush ;

switch (iHessage)
{

1* p~ocess windows messages~ *1

case WH_PAINT:

IOther program lines J

BeginPaint (hWnd, &ps) ;
hBrush = CreateSolidBrush (RGB (10, 0, 50» ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 10, 10, 90, 40) ;
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

DELETEOBJECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns ,.,
See Also
Parameters
hObject

Example

Removes pens, brushes, fonts, bitmaps, regions, and palettes from memory.

BOOL DeleteObject(HANDLE hObject)i

GDI objects must be deleted to free the memory t.hey occupy. Otherwiie, they will continue to
exist in memory after the program exits. Use DeleteObjectO to free the memory-and elllninate
the object: Do not delete stock objects (obtained with GetStockObjectO). If a bitmap is used to
create a brush, you will have to delete the brush and the bitmap separately. DO -not attempt to

. delete an object that is selected to a device context. Either delete the object after the device
context is released (after ReleaseDCO or EndPaintO is called), or displace the object out oUhe
device context by selecting another object of the same type, such as a stock object.
Generally used immediately after the object is used. Some programs create a series of GDI ob
jects when the program starts (MCCREATE), and then delete them all right before the program
exits (WM_DESTROy).
BOOL. TRUE if the object was deleted, FALSE on error. Normally, a FALSE return value means
that the handle was not valid.
CreatePenO, CreateSolidBrushO, CreateRectRgnQ, LoadBitmapO,

HANDLE: The handle of the pen, bitmap, brush, font, region, or palette to be deleted.

The previous example under Crp,ateSolidBrush() shows a typical cycle of creating a brush, using
it, and then deleting it. Also see the discussion at the beginning of this chapter.

])RAwFocusRECT o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Draws ~r removes a dashed line around a rectangle.

void DrawFocusRect(HDC hDC, LPRECT lpRect)i

The dashed line is drawn with the XOR style, so drawing the focus rectangle a second time at the·
same location erases the line.

To highlight an area temporarily.

459

WINQOWS APJ BIBLE

Returns

See Also

Parameters
hDO

No returned value (void).

~ RectangleO, InflateRectO

HDC: The device context handle.'
Do It! Quit

. . ,

lpRect

Example

LPRECT: A pointer to a RECT structure holding the size of the
rectangle to paint.

This example creates a pseudo button, shown in Figure 11-22.
The button background and text are created with RoundRectO
and DrawTextO. The exterior is outlined in a dashed line, or
has the dashed line removed, when the user clicks the "Do It!"
menu item.

Fake- Button
- ~ I f ~" ,H I ..." ""~ •

Figure 11-22. Draw
FocusRect() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH
static RECT
HDC

ps ;
h8rush ;
rRect ;
hDC ;

switch (iMes$age)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hBrush = CreateSolidBrush (RGB (120, 120, 120»
SelectObject (ps.hdc, hBrush) ;
SetRect (&rRect, 10~ 10, 90, 40) ;
RoundRect (ps.hdc, 10, 10, 90, 40, 10, 10) ;
SetBkMode (ps.hdc, TRANSPARENT) ;
SetTextColor (ps.hdc, RGB (255, 255, 255» ;
DrawText (ps.hdc, "Fake Button", 11, &rRect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE)
EndPa;nt (hWnd, &ps) ;
DeleteObject (hBrush)
break; ,

caseWM_COMMAND: 1* proces~ menu items *1
switch (wParam)
{

case IDM DOlT: 1* User hit the liDo it" menu item *1
hDc = GetDC (hWnd) ;
~rawFocusRect (hDC, &rRect)
ReleaseDC (hWnd, hDC)
break;

{Otlter program lines]

ELLIPSE

Purpose
Syntax .

Description

Uses

Returns

See Also

Parameters
Xl

Yl

X2

II Win 2.0 • Win 3.0 • Win 3.1

Draws an ellipse.

BOOL Elllpse(HDC hDO, intXl, int Yl, intX2, int Y2)j

The ellipse is drawn with the currently selected pen and filled with the current brush.

A circle can be drawn by defining the bounding rectangle to be a square.

BOOL. TRUE if the ellipse was drawn, FALSE on error.

Rectangle 0

int: The logical X coordinate of the upper left corner of the bounding rectangle.

int: The logical Y coordinate of the upper left corner of the bounding rectangle.

int: The logical X coordinate of the lower right corner of the bounding rectangle.
. ,

460

Y2

Example

11. PAINTING THE SCREEN T

int: The logical Y coordinate of the lower right comer of the
bounding rectangle.

The example shown in Figurell~23 draws two overlapping el
lipses in the window's client area. Note that the specification
of the TRANSPA...qENT drawing style allows both of the ellipse
lines to be visible in the overlapping region. This does not af
fect the hatched brush pattern. Only one brush pattern is vis
ible in the overlapping region. Only lines and "text are affected
by the setting of TRANSPARENT or OPAQUE drawing modes.

Qo It! ,Quit

Figure 11-23. ELHpse()
Example. -

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH

ps ;
hBrush ;
hPen i HPEN

switch (iMessage)
{

1* process windows messages *1

BeginPaint (hWnd, &ps) ;
hBrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (120, 0, 120» ;
SelectObject (ps.hdc, hBrush) ;
hPen = CreatePen (PS_SOLID, 3, RGB (10, 50, 255» ;
SelectObject (ps.hdc, hPen) ;
SetBkMode (ps.hdc, TRANSPARENT) ;
Ellipse (ps.hdc, 10, 10, 90, 40) ;
Ellipse (ps.hdc, 62, 10, 142, 40)
EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;
DeleteObject (hBrush)
break;

/Otherprogram lines}

ENDPAINT

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
ItWnd

lpPaint

CI Win 2.0 III Win 3.0 II Win 3.1
Ends the painting cycle started by BeginPaintO.

void EndPaint(HWND It lVnd, LPPAINTSTRUCT /pPaint)j

When processing \\r~CPAINT messages, BeginPaintO is used to get the device context and load
the PAINTSTRUCT data. EndPaintO is used at the end of the painting cycle to release the device
context. Use ReleaseDCO to free a device context created with GetDCO, for doing output outside
of the mCPAINT processing section of the program. EndPaintO \\'ill restore a caret if the caret
was hidden by a call to BeginPaintO.

Client area updates while processing W1CPAINT messages.

No returned value (void).

BeginPaintO, ReleaseDCO, GetDCO

HWND: The handle of the window to be repainted.

LPPAINTSTRUCT: A pointer to a PAINTSTRUCT data structure that was used by the Begin
PaintO function. See-the I3eginPaintO function description for the structure d~finition.

Related Messages mCPAINT

Example The previous example under Ellipse 0 shows a typical cycle of using BeginPaintO, ODI functions,
and EndPaintO while processing a WM_PAINT message.

461

WINDOWS API BIBLE

ENUMOBJECTS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax
Description

Uses

~tums

8eeAlso

Parameters
kDC

nObject7'gpe

lpObjectFunct

lpData

Example

Enumerates all of the physical pens or brushes available on a device context.
int EnumObjects(HDC hDC, int nObjectType, FARPROC IpObjectFunct, LPSTR IpData);

EnumObjectsO calls a callback function for every pen or brush possible on the device context.
The callback function can store this tiata for later use.
Determines the number and type of physical pensor brushes that can be attached to the device
context. You can use the data to create one or more logical pens that match the exact physical.
penslbrushes .available. Logical penslbrushes that do not have an exact match will el1:d up using
the closest physical item.

int, the last value returned by the callback function. Normally, not used .
. EnumFontsO

HDC: The device context handle.
int: The type of object to enumerate. This can be either
OBJ_BRUSH or OBJ_PEN.

FARPROC: The procedure-instance address of the callback
function. This function name must be listed in the EXPORTS
seciion of the program's .DEF definition file. The procedure
instance address should be obtained with MakeProc
InstanceO·

DollI gull

EnumObjet-tsO found 80,
Style = O. Width = O. Color = FffFOOOO
Style = O. Width = O. Color = FFOOOOOO
Style = O. Width = O. Color = FFOOOO
Style = O. Width = O. Color = 0
Style = O. Width = O. Color = FffFOOOO
Style = O. Width = O. Color = FFnnnnnn
Style = O. Width = O. Color =

Figure 11-2~. EnumObjects()
Example.

LPSTR: A pointer to the data structure that the callback function should use. Normally the call
back function will reallocate this memory block to enlarge it every time a new piece of data is to
be stored. .

This program lists all of the pens possible with the client area's device context, as shown in
Figure 11-24. The list goes past the end ofthe screen. Note that awidth ofzero draws a one pixel
wide line regardless of the mapping mode.

The program's header file includes the definition ofthe ENUMER data type used in the enu
meration of the pens. The enumeration function prototype is also in the header fIle.

'* generic.h *1
'define 10M_DOlT
'define 10M_QUIT 2

1* menu item id values *'

'* defi nHi ons * 1
typedef struct
(

. GLOBALHANOlE
int

) ENUMER ;

'* global variables *1
int ghlnstance ;

hGMem ;
nCount ;

char gszAppName [J = "generi c" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOl F~R ~ASCAL PenEnu~Func (char FAR *lplogObject,

ENUMER FAR *enumer)·; .

. The enumeration function name must also be listed in the EXPORTS section of the program's
.DEF defmition fIle.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam l
(. .1, \ -

static FARPROC lp£nEnumProc ;
stati c: E.N~"ER .-\ enumer ;

462 ..

>

LPLOGPEN
char
HOC
int
char

FAR *fp ;
hOC;
i ;

lpLogPen

cBuf [128]

11. PAINTING THE SCREEN Y

switch (iMessage)
{

1* process windows messages *1

}

case W',-CREATE:
lpfnEnumProc =

MakeProclnstance (PenEnumFunc, ghlnstance) ;
break;

case WM_COMMAND: 1* process menu items * 1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" Menu itell *1
if (enumer.hGMem) 1* if not first time tried *1

GlobalFree (enumer.hGMem) ;
1* initialize storage area *1

enumer.hGMem = GlobalAlloc (GMEM_MOVEABLE I
GMEM_ZEROINIT, 1L) ;

enumer.nCount = 0 ;
hOC = GetOC (hWnd) ;

1* let Windows run callback func. *1
EnumObjects (hDC,OBJ_PEN~ lpfnEnumProc,

,(LPSTR) &enumer) ;
lpLogPen = (LPLOGPEN) GlobalLock (enumer.hGMem)
TextOut {hDC,10, 10, cBuf, wsprintf (cBuf,

"EnumObjects() found Xd:",
enumer.nCount» ;

fp = (char far *) lpLogPen ;
for ('i = 0 ; i < enumer.nCount ; i-t-t)
{ 1* di splay each pen found *1

}

TextOut {hOC, 15, 30 -t (15 * i),
cBuf, wsprintf (cBuf,
"Style = Xd, Width = Xd, Co.lor = XOlX",
lpLogPen->lopnStyle,
lpLogPen->lopnWidth,
lpLogPen->lopnColor » ;

fp += si zeof (LOGPEN) ;
lpLogPen = (LPLOGPEN) fp ;

GlobalUnlock (enumer.hGMem) ; 1* unlock memory *1
ReleaseOC (hWnd, hOC) ;
break;

case 10M_QUIT: 1* send end of application message *1

}

break;

OestroyWindow (hWnd) ;
bre!lk

case WM_OESTROY: 1* stop application *1
GlobalFree (enumer.hGMem) ; 1* release all memory *1
FreeProclnstance (lpfnEnumProc)
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lPara.) ;

return COL)

BOOL FAR PASCAL PenEnumFunc (char fAR *lpLogObject, ENUMER FAR*enumer) < .
LPLOGPEN

int
FAR

lpLogPeo
i ; ..

'*fp ; ..

. . ~ .
if {~GlobalReAlloc (enumer->hGMem,

(OWORD) sizeof (LOGPEN) * (enumer->nCount + 11,

463. . \ ~ ..

WINDOWS API BIBLE

GMEM_MOVEABLE»
return (0) ; 1* quit if can't make room *1

lpLogPen = (LPLOGPEN) GlobalLock (enumer->hGMem) ;
fp = (char far *) lpLogPen ;
fp += enumer->nCount * sizeof (LOGPEN) ;
for (i = 0 ; i < si zeof (LOGPEN); i++) 1* copy pen to buffer *1

*fp++ = *lpLogObject++ ;
GlobalUnlock (enumer->hGMem) 1* unlock the memory area *1
enumer->nCount++ ; 1* keep track of how many *1
return (1) ;

EQUALRECT II Win 2.0 II Win 3.0 II Win 3.1
Purpose

Syntax

Uses

Returns

See Also

Pariuneters
lpRectl '

IpRect2

Example

Checks whether two iectangles are equal.

BaaL EqualRect(LPRECT IpRectl, LPRECT IpRect2)i

Normally used to avoid unnecessary painting.
BaaL. TRUE 'if the rectangles are equal, FALSE if not.

EqualRgnO

LPRECT: A pointer to the first RECT data structure.

Do It!· Quit

Figure 11-25. EqualRect()
LPRECT: A pointer to the second RECT ~ata structure. Example after Several
This example creates two rectangles every time a WM_PAlNT WM_PAlNT Messages.

-message is received. If the two are not equal, ~oth are drawn. '"
The second rectangle is offset to the right every time a WM_PAlNT message is processed. (See
Figure 11-25.)

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
RECT
static int

ps ;
rRect1, rRect2 ;
nPaintCount = 0 ;

switch (iMessage)
{

,1* process windows messages *1

case WM_PAINT:

/ Other program lines I

BeginPaint (hWnd, &ps) ;
SetRect (&rRect1, 10, 10, 60, 30) ;
SetRect (&rRect2, 10 + nPaintCount, 10,

60 +' nPaintCount++, 30) ;
SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
Rectangle (ps.hdc, rRect1.left, rRect1.top, rRect1.right,

rRect1.bottom) ;
if (!EqualRect (&rRect1, &rRect2»

Rectangle (ps.hdc, rRect2.left, rRect2.top,
rRect2.right, rRect2.bottom) ;

EndPaint (hWnd,&ps) ;
break;

EQUALRGN II Win 2.0 m Win 3.0 II Win 3.1
Purpose
Syntax

Uses

Returns

\CheckS to see if two regions are equaUysized.

, BOOL EqualRgn(HRGN hSrcRgn1, HRGN hSrcRgn2)j

If/two regions are equally sized, there is no reason to combine them.
BOOL. TRUE if the regions are equal, FALSE if not.

464

See Also

Parameters
hSrcRgn1

hSrcRgn2 .

Example

11. PAINTING, THE SCREEN ...

EqualRectO

HRGN: The first region's handle.

HRGN: The second region's handle.

Here two elliptical regions are created. If they are not identi
cal, they are combined to create a clipping region. Every time a.
W1CPAINT message is received, one of the bounding rect
angles is offset to the right one logical unit (pixel). (See Figure
11-26.)

Do It! Quit

Figure 11-26. EqualRgn(J
Example ojler Several
MCPAINT Messages.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN
static int

ps ;
hRgn1, hRgn2, hRgnComb ;
nPai ntCount = 0 ;

switch (iMessage)
{

1* process wi ndows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hRgn1 = CreateEllipt'icRgn (10, 10, 60, 30) ;
hRgn2 = CreateEllipticRgn (10 + nPaintCount, 10,

60 + nPaintCount++, 30) ;
hRgnComb = CreateRectRgn (1, 1, 2, 2) ;
if (!EqualRgn (hRgn1, hRgn2»

CombineRgn (hRgnComb, hRgn1, hRgn2, RGN~OR) ;
else

CombineRgn (hRgnComb, hRgn1, NULL, RGN~COPY)
DeleteObject (hRgn1) ;
DeleteObject (hRgn2) ;

SelectClipRgn (ps.hdc, hRgnComb) ;
SelectObject (ps.hdc, GetStockObject
Rectangle (ps.hdc, 5, 5, 500, 500)
EndPaint (hWnd, &ps) ;
DeleteObject (hRgnComb) ;
break;

(LTGRAY_BRUSH»

fOther program lines}

EXCLUDECLIPRECT • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses
Returns

COMPLEXREGION

ERROR

NULLREG"ION

SIMPLEREGION

Removes a rectangular area from a clipping region.

int ExcludeClipRect(HDC hDC, intX1, int Y1, intX2, int Y2);

Hollow clipping regions can b~ created by first creating a clipping region, and then excluding a
central portion with this function. '
Creating clipping regions that limit where on the device context painting will occur.
int, the type of region created. This can be any of the types listed in Table 11-10.

The new region has overlapping borders.

. No new region was created.

The new region is empty.

The new region does not have overlapping borders.

Table 11-10. Region Types.

465

WINDOWS API BIBLE

See Also ExcludeUpdateRgnO, SelectClipRgnO
Qo It! Quit . Parameters

. hDC . HDC:, The device context handle .

lJ Xl

YI

X2

Example

int: . The logical X coordinate of the upper left corner of the bounding
rectangle.
int: The logical Y coordinate of the upper left corner of the bounding

. rectangle.

int: The logical X coordinate of the lower right corner of the bounding
rectangle.
int: The logical Y coordinate of the iower right corner of the bounding
rectangle.

Figure 11-27.
ExcludeCUpRect()
Example.

As shown in Figure 11-27, a rectangular clipping region is created. The center of the clipping
region is eliminated using ExcludeClipRectO. A large area is painted with a gray brush, but only
the clipping area is affected.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
HRGN

ps ;
hRgn ;

switch (iMessage)
{

1* process windows messages *1

case W',-PAINT:
BeginPaint (hWnd, &ps) ;
hRgn = CreateRectRgn (10, 10, 100, 100) ;
SelectClipRgn (ps.hdc, hRgn) ;
ExcludeClipRect (ps.hdc, 30, 30~ 80, 80) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, 0,'0, 500, 500) ; 1* paint area *1
EndPaint (hWnd, &ps) ;
DeleteObject (hRgn)
break;

{Other program lines}

EXCLUDEUPDATERGN • Win 2.0 • Win 3.0 • Win 3.1

Syntax

Destription

Prevents drawing in invalid areas of the client area.

int ExcludeUpdateRgn(HDC hDC, HWND hWnd);

If program lQi!c outside of the processing of MtCPAINT messages causes parts of the client area
. to become invalid (need repainting), these areas will be repainted on the next WM_PAlNT cycle.

uSes
Retums

COMPLEXREGION .

ERROR

NULLREGION

SIMPLEREGION

ExcludeUpdateRgnO keeps GDI operations from painting in the invalidated areas.

Commonly used with programs that scroll the window's client area.

int, the type of region created. This can be any of the types listed in Table 11-11.

The new region has overlapping borders,

No new region was created,

The new region is empty,

The new region does not have overlapping borders.

Table 11-11. Region Types.

See Also ExcludeClipRectO

466

Parameters
hDC HDC: The device context handle for the window.

11. PAINTING THE SCREEN Y

hWnd HWND: The window's handle. Ilo It! Quit
~~. Related Messages' .~CPAINT

Example This example scrolls down the client area of the window when
the user clicks the "Do It!" menu item. This invalidates the up
per 10 pixel rows. (See Figure 11-28.) Before the WM_PAINT
message is processed, the program paints a dark rectangle. The
ExcludeUpdateRgnO function keeps the rectangle from being Figure 11-28. Exclude
painted in the update region (the region uncovered by scroll- UpdateRgn() Example.
ing the window's client area down 10 pixels). The WM_PAINT
logic is set up to paint alternating gray and white bands as the window's client area is scrolled
down.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
(

PAINTSTRUCT
HOC
static BOOl

ps ;
hOC;
bToggle = FALSE;

switch.(iMessage)
{

1* process wi ndows messages *1

BeginPaint (hWnd, &ps) ;
if (bTogg le)
{

)

else
{

SelectObject (ps.hdc,
GetStockObject (lTGRAY_BRUSH»

bToggle = FALSE;

SelectObject (ps.hdc,
GetStockObject (WHITE_BRUSH» ;

bToggl~ = TRUE;

Rectangle (ps.hdc, 0, 0, 500, 500) ; 1* paint area *1
EndPaint(hWnd, &ps) ,
break;

case WM_COMMAND: 1* process menu items *1
sw; tch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
ScrollWindow (hWnd, 0, 10, NUll, NULL) ;
hDC = Get DC (hWnd) ;
Exc'ludeUpdateRgn (hOC, hWnd) ;
SelectObject (hDC, GetStockObject (OKGRAY_BRUSH»
Rectangle (hDC, 10, 0, 50, 60)
ReleaseDC (hWnd, hDC>
break;

IOtherprogram lines/

EXTFLOODFILL m Win 2.0 II Win 3.0 • Win 3.1
Purpose
Syntax

Descriptio~

Fills an area by replacing a color \vith the currently selected brush.

BOOL ExtFloodFill(HDC hDC, intX, int Y, DWORD crCoior, WORD wFillType);

This function is similar to FloqdFillO. Both functions fill in an area with a color. ExtFloodFillO
has the ability to fill in an area based on replacing one color with the currently selected brush of
the device context.

"

467

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hDC

Used in painting programs.

BOOL. TRUE if the function was successful, FALSE on error.
FALSE will be returned if the point is outside the clipping re
gion, falls on a point that has the border color, or falls on a
point that does not have the color specified by crColor if the

. FLOODFILLSURFACE style is used. The painting expands from
the selected point in all directions until either the boundary
color is found (FLOODFILLBORDER style), or until no other
touching areas containing the specified color 'are located
(FLOODFILLSURFACE style).

FloodFillO

HDC: The device context handle.

Do It! Quit

Figure 11-29. ExtFloodFillO
Example.

X int: The 10gicalX coordinate to start the painting process.

Y int: The logical Y coordinate to start the painting process.

crColor COLORREF: The 32-bit color value specifying either the boundary color or the color of the area to
replace. .

wPillType WORD: Specifies which type of filling operation is to be performed. It can. be one of the types
listed in Table 11-12.

FLOODFILLBORDER Fill an area bounded by one color. The erG%r value specifies the boundary color. This is only
useful if the area is completely bounded by one color. In this case, ExtFloodRilO is exactly the
same as FloodFiII().

FLOQDFILLSURFACE RII an area by replacing one color. This is useful for areas that do not have a boundary
conSisting of only one color.

Table j1-1~. Flood Fill Types.

Example This example paints a blue rectangle in the client area. When the user clicks the "Do It!" men?
item, the square is filled with a solid red brush. (See Figure 11"29.) . .

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

PAINTSlRUCT
HOC
HBRUSH

ps ;
hOC;
hBrush ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ; .
hBrush = CreateSolidBrush (RGB (0, 0, 255» ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 10, 10, 50, 50) ; 1* paint area *1
EndPaint (hWnd,.&ps) ;
DeleteObject (hBrush) ;
break;

case WM_COHMAND: 1* process menu items *1
swi tch (wParam)
{

case IDfCDOIT:' 1* u~.er hi t the "Do it" menu i fem *1
hDC = GetOC (hWnd) ;
hBrush = CreateSolidBrush (RGB (255, 0, 0» ;
SelectObject (hOC, hBrush) ; .
ExtFloodFi II (hDC, 20, 20, RGB (0, 0, 255),

FLOOOFILLSURFAC~.? -;

468

ReleaseDC (hWnd, hOC) ;
DeleteObject (hBrush) ;
brea k ;

11. PAINTING THE SCREEN ...

IOther program lines J

FILLRECT

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

IpRect

hBrush

Example

11 Win 2.0 • Win 3.0 • Win 3.1
Fills a rectangular area with a brush pattern and color.

int FillRect(HDC hDC, LPRECT IpRect, HBRUSH hBrnsh)j

This function is similar to RectangleO, except the borders of
the rectangle are not drawn and the brush does not have to be
selected into the device context before use.

Coloring rectangular areas.

int, not used.

RectangleO, FillRgnO

Do It! Quit

HDC: The device context handle. Figure 11-30. FillRect()
LPRECT: A pointer to a RECT data structure that holds the Example.
dimensions of. the rectangle to paint.
HBRUSH: A handle to the brush to use in painting the rectangular area.

The example shown in Figure 11-30 uses FillRectO to draw a square area without a border.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
REO
HBRUSH

ps ;
rRect ;
hBrush ;

switch (iMessage)
{

1* process w,indows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hBrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (0, 0, 255» ;
SetRect (&rRect, 10, 10, 50, 50) ;
FillRect (ps.hdc, &rRect, hBrush)
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

IOther program l~nes J

FILLRGN
. Purpose

"Syntax

Description

Uses
Returns
See Also
Parameters
hDC

hRgn

II Win 2.0· 19 Win 3.0 II Win 3.1
Fills a region with a brush color and pattern.
BOOL FillRgn(HDC hDC, HRGN hRgn, HBRUSH hBntsh)j

This is a powerful function for filling areas. Regions of any complexity can be created by combin~
ing smaller regions using CombineRgnO. Once constructed, these regions can be filled with any
pattern or brush using FillRgnO.
Filling areas with a color or pattern.
BOOL. TRUE if the region was filled, FALSE on error.
FillRectO, CombineRgnO, CreatePatternBrushO, CreateSolidBrushO, CreateHatchBrushO

HDC: The device context handle.

HRGN: The region handle.

469

WINDOWS API BIBLE

hBrush

Example

HBRUSH: The handle of the brush to use in filling the region.

The examp~e ,in Figure 11-31 creates an elliptical region and fills it with a hatched brush.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ -

PAINTSTRUCT
HRGN

ps ;
hRgn ;
rRect ;
hBrush ;

RECT
HBRUSH

switch (iMessage)
{

1* process windows messages *1

case WM PAINT:
-BeginPaint (hWnd, &ps) ;

hBrush = CreateHatchBrush (HS_DIAGCROSS,
RGB (0, 0, 255» ;

SetRect (&rRect, 10, 10, 80, 60) ;
hRgn = CreateEllipticRgnlndirect (&rRect)
FillRgn (ps.hdc, hRgn, hBrush)
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
DeleteObject (hRgn) ;
break;

{Other program linesJ

FLoonFILL
Purpose '

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

X
y

crColor

11 Win 2.0 II Win 3.0 • Win 3.1
Fills an area with the currently selected brush.

BOOL FloodFill(HDC hDC, intX, int Y, DWORD crColor); ,
Flood£illO demands that the area to be filled be bounded by one color. The area is filled with the
currently selected brush, starting from X; Y and expanding in all directions until the crColor is
encountered.

Used in painting applications for filling irregular shapes with color.

BOOL. TRUE if the area was filled, FALSE on error. An error will occur ifX;Y specifies a point
-outside ~f the clipping region, or a point that has the same color as crColor.
ExtFloodFillO

HDC: The device context handle.

int: The logical X coordinate to start thepaiI:tting process.

int: The logical Y coordinate to start the painting process.

COLOR REF: The 32-bit color value of the boundary color. Use the ROB macro to specify a color.

Dolt! Quit Do It!, Quit Do It! Quit

Figure 11-31. FillRgn()
Example.

Figure 11-32. FloodFill()
Example.

470

Figure 11·33. FrameRect()
E.-rample.

11. PAINTING THE SCREEN Y

Example The program illustrated in Figure 11-32 paint;s a blue rectangle in the client area. When the user
clicks the "Do It!" menu item, the square is filled with red. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HOC
HBRUSH
HPEN

ps ;
hOC i
hBrush i
hPen i

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) i
hBrush = CreateSolidBrush (RGB (0, 0, 255»
SelectObject (ps.hdc, hBrush) ;
hPen = CreatePen (PS_SOLID, 2, RGB (0, 0, 0» ;
SelectObject (ps.hdc, hPen) ;
Rectangle (ps.hdc, 10, 10, 50, 50)
EndPaint (hWnd, &ps) i
DeleteObject (hPen) ;
DeleteObject (hBrush) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 10M_OO:::T: 1* User hit the "Do it" menu; tern *1
hOC = GetOC (hWnd) i
hBrush = CreateSoLidBrush (RGB (255, 0, 0» ;
SeLectObject (hOC, hBrush) ;
FLoodFiLL (hOC, 20, 20, RGB (0, 0, 0»
ReLeaseDC (hWnd, hOC) ;
OeLeteObject (hBrush) ;
break;

IOther program lines}

FRAMERECT
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

lpRect

hBrush

Example

• Win 2.0 • Win 3.0 • Win 3.1

Draws a frame around a rectangle by using a brush.

int FrameRect(HDC hDC, LPRECT lpRect, HBRUSH hBrush);

This function draws a frame I pixel wide around a rectangle. The brush pattern is used to do the
painting.

Not often used. Multiple calls to FrameRectO and InflateRectO can be used to create borders
with a visible pattern (see the example).

int, not used.

FrameRgnO

HDC: The device context handle.

LPRECT: A pointer to a RECT data structure that contains the dimensions of the rectangle to
frame.

HBRUSH: A handle to a brush to use in painting the border.

This example, illustrated in Figure 11-33, creates an extended frame for a rectangle by repeatedly
painting and then expanding the rectangle. This gets around FrarneRectO's limitation of only
painting borders one pixel wide.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPara., LONG lParam)
<

PAINTSTRUCT
_ RECT

ps ;
rRect ;

471

WINDOWS API BIBLE

HBRUSH
. i nt

hBrush ;
i ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hBrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (0, 0, 255»;
SetRect (&rRect, 10, 10, 80, 60) ;
for (i = 0 ; i < 5 ; i ++)
{ .

FrameRect (ps.hdc, &rRect, hBrush)
InflateRect (&rRect, 1, 1)

EndPaint (hWn"d, &ps) ;
DeleteObject (hBrush)
break;

IOther program lines/

FRAMERGN
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDG

hRgn

hBrush

nWidth

nHeight

Example

e Win 2.0 a Win 3.0 fI2 Win 3.1
Draws a frame around a region using a brush pattern.

BOOL FrameRgn(HDC hDG, HRGN hRgn, HBRUSH hBrush,
int nWidth, int nHeight)j

This function allows you to outline the border of a region using
a brush pattern.

Used with FillRgnO to paint regions.

BOOL. TRUE if the region was painted, FALSE on error.

FiIlRgnO, CreateSolidBrushO, CreatePatternBrushO,
C~eateHatchBrushO, CombineRgnO

HDC: The device context handle.

HANDLE: The handle of the region to be painted.

Do It! Quit

PigU7 I" 11-34. FrarneRgn()
Example.

HBRUSH: The handle of the brush to use in painting the border. Use CreateSolidBrushO,
CreatePatternBrushO, etc to create this object.

int: The width of the border in logical units.

int: The height of the border in logical units.

The example shown in Figure 11-34 frames an elliptical region using a hatched brush. The frame
is set to a width of 8 pixels.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMpssage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN
RECT
HBRUSH

. ps ;
hRgn ;
rRect ;
hBrush ;

switch (i~essage)
{

1* process windows messages *1

case WM PAINT:
-BeginPaint (hWnd, &ps) ;

hBrush = CreateHatchBrush (HS_DIAGCROSS,
RGB (0, 0, 255» ;

SetRect (&rRect, 10,10; 110, 80) ;
hRgn = CreateEllipticRgnlndirect (&rRect)
FrameRgn (ps.hdc, hRgn, hBrush, 8, 8)
EndPaint (hWnd, &ps) ;

472

DeleteObject (hBrush)
DeleteObject (hRgn) ;
break;

11. PAINTING THE SCREEN ~

IOther program lines/

GETBRUSHORG c Win 2.0 m Win 3.0 II Win 3.]

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDG

Example

Finds the brush origin of a device context.

DWORD GetBrushOrg(HDC hDG)j

In order to smoothly match brush pattenls, Windows maintains
a logical origin as the basis for each brush painting. This origin
can be moved using SetBrushOrgO and retrieved with
GetBrushOrgO. The origin only affects brushes that are being
created. Changing the origin after a brush has been created
does not affect how the pattern is positioned, unless Un
realizeObjectO is called first.

Setting brush patterns so that they do not exactly overlap ar
eas next to each other.

DWORD. The low-order word contains the X coordinate. The
high-order word contains the Y coordinate. Both use device
coordinates.

CreateHatchBrushO, SetBrushOrgO, UnrealizeObjectO

HDC: The device context handle.

rst Brush Origin = O. 0

econd Brush Origin = 3. 3

Figure 11-35. GetBrushOrg()
and SetBrushOrg() Example.

Thisexample paints two rectangles \vith hatched brushes. The first brush is created with 0,0 as
the brush origin. The second with 3,3 as the brush origin. This results in the two patterns bein~
offset by three pixels. (See Figure 11-35.) This type of offset can be desirable when it is importan1
to show a separation between two areas, such as to bars on a black and white bar chart.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH
char
DWORD

ps ;
, hBrush ;

cBuf [128] ;
dwBrushOrg ;

switch (iMessage)
{,

1* process wi ndows messages * 1

case WM PAINT:
- Begi nPa; nt (hWnd, &ps) ;

SetBrushOrg (ps _ hdc, 0, 0) ;
hBrush = CreateHatchBrush (HS_CROSS, RGB (0, 0, 255»
SelectObject (ps.hdc, hBrush);
Rectangle (ps.hdc, 0, 0, 40, 100);
dwBrushOrg = GetBrushOrg (ps.hdc) ;
TextOut (ps. hdc, 0, 110, cBuf, wspri ntf (cBuf,

"First Brush Origin = %d, %d",
LOWORD (dwBrushOrg), HIWORD (dwBrushOrg»)

SelectObject (ps.hdc, GetStockObject (WHITE_BRUSH» ;
DeleteObject (hBrush) ;
SetBrushOrg (ps. hdc, 3, 3) ;
hBrush = CreateHatchBrush (HS_CROSS~ RGB (0, 0, 255»
SelectObject (ps.hdc, hBrush);
R e c tan 9 l e (p s • h dc, 41, 0, 8D, 1 DO) ;
dwBrushOrg = GetBrushOrg (ps.hdc) ;
TextOut (ps.hdc, 0, 140, cBuf, wsprintf (cBuf,

"Second Brush Ori gi n = %d, %d",
LOWORD (dwBrushOrg), HIWORD (dwBrushOrg»)

473

WINDOWS API BIBlE

EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

{Other program lines}

GETBVALUE - GETGVALUE - GETRVALUE r.;] Win 2.0 IS Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
rgbColor

Example

Retrieves a single color value from a 32-bit color value.

. BYTE GetBValue(DWORD rgbColor)

Windows uses 32-bit values for colors. The 32-bit value consists of three bytes of information,
corresponding to the intensity of the Blue, Green, and Red elements of color. Windows uses this'
color coding scheme even when the physical device can display only a limited number of colors.
Missing colors are approximated on most video displays by mixing different colored pixels in the
same area (dithering).

Retrieving an individual color value
is frequently useful when creating
matching colors.

BYTE, the color value specified.

RGBO, GetSysColorO,
SetSysColorsO

DWORD: The 32-bit color value.

Qo It! quit

The caption color values are: r = D. 9 = D. b = 128

ro$i~i'W~$mE~£J

. Figure 11-36. GeIBValue(), GetGValue(), GetRValue()
Example.

The example (shown in Figure 11-36) displays the blue, green and red color values ofthe captioh
bar, and also uses the caption color to draw a small rectangle. In this example the caption color is
the default focus color of medium blue. '

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
char
DWORD
HBRUSH

cBuf [128J
dwColor ;
hBrush ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
dwColor = GetSysColor (COLOR_ACTIVECAPTION) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,
"The caption color values are: r = i.d, g = i.d, b = %d",

GetRValue (dwColor), GetGValue (dwColor),
GetBValue (dwColor») ;

hBrush = CreateSolidBrush (dwColor) ; 1* same color *1
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 10, 30, 100, 50)
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break; ,

{Other program lines}

GETCLIPBox
Purpose

Syntax

Description

II Win 2.0 • Win 3.0 • Win 3.1

Gets the dimensions of the smallest rectangle that will enclose the clipping region.

int GetClipBox(HDC hDC, LPRECT lpReet);

Clipping regions can have any shape. This function determines the smallest rectangle that ~ill
fully enclose the clipping area.

474

/

Uses

Returns

PV8hI$,;.'
COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

11. PAINTING THE SCREEN ~

Used when clipping regions are created. There is no need to call this function to find the update
region when processing W~CPAINT messages, as the update rectangle is stored in the
PAINTSTRUCTURE initialized by BeginPaintO.

int, the type of clipping region. This can be any of the region types in Table 11-13.

, Meaning

The new region has overlapping borders.

No new regior't was created.

The new region is empty.

The new region does not have overlapping borders.

,', ' ~':,. : I'V'Ij ,LC:::J

Table 11-13. Region Types.

Parameters
hDC

Example

HDC: The device context handle.

LPRECT: A pointer to the RECT data stmcture that will hold
the dimensions of the bounding rectangle.

This example fills in an, irregular clipping region with a gray
brush. The dimensions of the bounding rectangle of the clip
ping region are retrieved with GetClipBoxO before the area is
painted. (See Figure 11-37.) This results in the smallest pos
sible painting area to completely fill the clipping region when
painted. '

F~FF
Do It! Quit

~.
Figure 11-37. GetCUplJox(}
Example.

l~ng FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
(,

PAINTSTRUCT
HRGN
POINT

RECT'

ps ;
hRgn ;
pAr ray [5) = {10, 10, 50, 40, 90, 20, 60, 0,

40, 20} ;
rRect ;

switch (iHessage)
{ ,

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hRgn = CreatePolygonRgn (pArray, 5, WINDING)
SelectClipRgn (ps.hdc, hRgn) ;
SelectObject <p.s.hdc, GetStockObject (LTGRAY_BRUSH»
GetCtipBox (ps.hdc, &rRect> ;
Rectangle (ps.hdc, rRect.left, rRect.top, rRect.right,

rRect.bottom) ; 1* paint gray *1
EndPaint (hWnd, &ps) ;
DeleteObject (hRgn);
break;

IOther program lines /

GETCURRENTPOSITION • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Determines the ~urrent logical position in a device context<..

DWORD GetCurrentPosition(HDC hDC)j

Windows keeps track of the location of a logical point set by calls to MoveToO and LineToO so
, that connected lines can be drawn by specifying only the next point. GetCurrentPositionO deter

mines the current location, which will be the starting point for the next line drawn with LineToO.

Useful if the user can reposition a line end in a pai,nt program using the mouse cursor.

475

WINDOWS API BIBLE

Returns

See Also

Parameters
hDC
Example

DWORD, the current position in logical coordinates. The low
order word contains the X coordinate. The high-order word
contains the Y coordinate.

MoveToO, LineToO, MAKEPOINTO

HDC: The device context handle.

The example shown in Figure 11-38 draws a line with three
segments, and then displays the current logical position. This
is the position of the last call to MoveToO or LineToO.

120 It! .Q.uit

Current p~ition = 5, 35]

Figure 11-38. GetCurrent
Position(J Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
DWORD
POINT
char

ps ;
dwCurPos ;
pCurPos ;
cBuf [128J ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps)
MoveTe> (ps.hdc, 5,5);
LineTo (ps.hdc, 200, 5) ;
LineTo (ps.hdc, 200, 35) ;
LineTo (ps.hdc, 5, 35) ;
dwCurPos = GetCurrentPosition (ps.hdc)
~CurPos = MAKEPOINT (dwCurPos) ;
TextOut (ps.hdc, ~O, 10, cBuf, wsprintf (cBuf,

"Current position = i.d, i.d", pCurPos.x, pCurPos.y»
EndPaint (hWnd, &ps) ;
break;

f Other program lines J

GETGV ALUE (See the GetBValue description in this chapter.) II Win 2.0 • Win 3.0 • Win 3.1

GETNEARESTCOLOR 11 Win 2.0 • Win 3.0 1/ Win 3.1
PurpOSI;!

Syntax

Description

Uses

Returns

Determines the most approximate solid color a device can display.

DWORD GetNearestColor(HDC IIDC, DWORD crCotor);

The 32-bit color values thaI. Windows IlSCS to specify display colors can generally encode more
colors (256 * 256:;: 256 combinations) than a physical device ca,n display. Windows approximates
colors that cannot be displayed as
pure colors by dithering, a pl'Oeess
of blending different colored pixels Qo It! ,Quit
to achieve the desired average color I--"CO------'----------------t
when viewed at a distance. Get- The color closest to RGB 12. 210. 32 = O. 255. 0
NearestColorO allows the applica-
tion to determine the nearest. pure Figure 11-39. GetNearestColor() on a 16-Color VGA
color that a device can display. In S,lJste'ln.
some cases, it may he desirable to
use the nearest pure color instead of the dithered approximation.

The nearest pure color can be used to create solid colored borders, which avoids having
FloodFillO color filling "leak" through the borders.

DWOHD, the nearest 32-bit eolol' value to creolor that the device can display.

476

See Also

Parameters
hDC

crColor

Example

11. PAINTING THE SCREEN V

GetNearestPaletteIndexO, RGBO

HDC: The device context handle.

COLORREF: The 32-bit color value to check. Normally the RGB macro is used to specify this
value.

The example illustrated in Figure 11-39 shows how Windows matches a requested RGB color on a
device with limited capabilities. In this case, a 16-color VGA card was in use. The requested color
is displayed as a dithered area if used in creating a brush or pen. The nearest pure color the
display can produce is pure green.

long FAR PASCAL WndProc (HWND hWnd, unsigneo iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
DWORD

ps ;
dwCo lor;
cBuf [128] ; char

switch (iMessage)
{

1* process wi ndows messages * 1

BeginPaint (hWnd, &ps) ;
dwColor = GetNearestColor (ps.hdc, RGB (12, 210, 32» ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The .color closest to RGB 12, 210, 32 = %d, I.d, %d",
GetRValue (dwColor), GetGValue (dwColor),
GetBValue (dwColor»)

EndPaint (hWnd, &ps)
break;

[Other program lines J

GETOBJECT

Purpose

Syntax

Description

typedef struct
{

WORD
POINT
DWORD

} LOGPEN;

m Win 2.0 11 Win 3.0 III Win 3.1

Retrieves information about a logical object.

int GetObject(HANDLE hObject, int nCount, LPSTR lpObject)j

This function retrieves information about logical pens, brushes, fonts, bitmaps, and palettes. The
information is stored in a data structure pointed to by lpObject. This can either be a LOGPEN,
LOGBRUSH, LOGFONT, BITMAP, or LOGPALETfE data structure. These structures are defined
in WINDOWS.H as follows:

tagLOGPEN

lopnStyle
lopnWidth
lopnColor

•

typedef struct tagLOGBRUSH
{

WORD
DWORD
int

} LOGBRUSH;

lbStyle;
lbColor;
lbHatch;

typedef struct tagLOGFONT
{

int
int
int
int
int
BYTE
BYTE

lfHeight;
lfWidth;
lfEscapement;
lfOrientation;
lfWeight;
lfItalici
lfUnderlinei

477

WINDOWS API BIBLE

BYTE
BYTE
BYTE (
BYTE
BYTE
BYTE
BYTE

> LOG FONT ;

lfStrikeOu't;
lfCharSet;
lfOutPrecision;
lfClipPrecision;
lfQuality;
lfPitchAndFamiLy;
LfFaceName[LF_FACESIZE];

typedef struct tagBITMAP
{

int
int
int
int
BYTE
BYTE
LPSTR

) BIT"AP;

bmType;
bmWidth;
bmHeight;
bmWidthBytes;
bmPlanes;
bmBitsPixeL;
bmBits;

typedef struct tagLOGPALETTE {
WORD palVersion;

palNumEntriesi
palPalEntry[1J;

WORD
PALETTEENTRY

> LOGPALETTE;

Uses
Returns

See Also

Parameters
hObject

nCount

Commonly us~d to determine the size of bitmaps and the attributes of stock drawing objects.
int, the number of bytes retrieved. NULL on error.

GetStockObject(}

HANDLE:' The pen, brush, font, bit
map, or palette handle.

int: The number of bytes to retrieve. Figure 11-40. GetObject() Example.
Use the size of 0 operator to specify
this for each of the data structures involved (see the following example),

IpObject LPSTR: A pointer to the memory area that will contain the desired data., Be sure that this area is
at least nCount bytes in size.

Example In the example shown in Figure 11·40, the color of the stock LTGRAY brush is retrieved and
displayed in the window's client area . .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

PAINTSTRUCT
char
HBRUSH
LOGBRUSH

ps ;
cBuf [128]
hBrush i
lbBrush i

switch (iMessage)
{

1* process windows messages *1

case WM.,;..PAINT:

IOther program lines/

BeginPaint (hWnd, &ps) ;
hBrush = GetStockObject (LTGRAY_BRUSH) i
GetObject (hBrush, sizeof (LOGBRUSH), (LPSTR) &lbBrush)
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,
"The color of the stock LTGRAY brush = RGB i.d, i.d, i.d",

GetRValue (lbBrush.lbColor),
GetGValue ~lbBrush.lbColor),
GetBValue (lbBrush.lbColor»)

EndPaint (hWnd, &ps) ;
break;

478

\

GETPIXEL

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDG

X

Y

Example

•
11. PAINTING THE SCREEN V

ra Win 2.0 • Win 3.0 • Win 3.1

Determines the color of a pixel.

DWORD GetPixel(HDC hDG, int X, int Y)j

This function determines the RGB color value of a point on the devi.ce context.

Used in painting programs to determine existing colors on the client area. Also used to determine
if a point is within the clipping region.

DWORD, the 32-bit color value of the pixel. Returns -1 if the point is outside of the current
cApping region.

SetPixelO, SelectClipRgnO ..
HDC: The device context handle.

int: The logical coordinate of the X position to check.

int: The logical coordinate of the Y position to check.

This example shows a shaded rectangle being painted, one pixel at a time. The starting pixel
color is first retrieved using GetPixelO. This color is then incremented and used to set the new
color ofth~ pixel with SetPixelO. This method of drawing is unacceptably slow. '

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
DWORD
int

ps ;
dwColor ;
nRed, nBlue, nGreen, i,

switch (iMessage)
{

1* process windows message~ *1

Beg;nPa;nt (hWnd, &ps) ;
for (i = 0 ; i < 10 ; i++)
{

for (-j = 0 ; j < 256 ; j ++)
{

}

dwColor = GetPixel (ps.hdc, j, i) ;

nRed = (GetRValue (dwColor) + j) 7. 256 ;
nBlue = (GetBValue (dwColor) + j) 7.·256 ;
nGreen = (GetGValue (dwColor) + j) 7. 256 ;
SetPixel (ps.hdc, j, i,

RGB (nRed, nGreen, nBlue»

EndPaint (hWnd, &ps)
break;

IOtherprogram lines}

GETPOLyFILLMODE m Win 2.0 19 Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

Determines the current polygon filling ~de for a device context.

int GetPolyFillMode(HDC hDC)j

The polygon filling mode determines how areas of intersection within the polygon are paintl'd.
This is only a factor if the lines defining the polygon intersect. '

Used with SetPolyFillModeO to determine and change the filling mode.

int, the current polygon filling mode. This can be either mode listed in Table 11-14.

479

•
WINDOWS API BIBLE

ALTERNATE

WINDING

The GDI fills in areas between sides 1&2, sides 3&4, etc.

The GDI fills in the complete area defined by the outermost lines. This will normally fill the entire interior of
the polygon, except in cases where more than one intersection of area§ defined by the polygon's lines
occurs (see the example).

Table 11-14. Polygon Filling Modes.

See Also

Parameters
hDC

Example

SetPolyFilIModeO, CreatePolygonRgnO

,HDC: The device context handle.

This example draws the same complex polygon twice, but with
two different polygon filling modes. (See Figure 11-41.) More
of the intersected areas are painted with the WINDING mode,
but some areas will still be missed. Use clipping regions to as
sure that all internal areas inside complex areas are painted.

Figure 11-41. GetPoly
FillMode() and SetPolyFill-

• Mode() Example.
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

• I"

PAINTSTRUCT
POINT

ps ;
pArray [] = {10, 10, 50, 40, 90, 20, 5, 110,

60, 0, 80, 90, 0, 70, 110, 60} ;
i, nPolyMode ;

switch (iMessage)
{

1* process windows messages *1

BeginPaint (hWnd, &ps) ;
Se lectObj ect (ps. hdc,Ge tStockObject (LTGRAY_BRUSH»
Polygon (ps.hdc, pArray, 8) ;
for (i = 0; i < 8; i++)

pArray [i].x += 80 ; 1* offset polygon *1

nPolyMode = GetPolyFi llMode (ps. hdc) ;
if (nPolyMode == ALTERNATE)-
{

else
{

}

TextOut (ps.hdc, 0, 120, "ALTERNATE", 9)
TextOut (ps.hdc, 100, 120, "WINDING", 7)

SetPolyFillMode (ps.hdc, WINDING)

Text<hJt (ps.hdc, 100, 120, "ALTERNA"TE", 9)
TextOut (ps.hdc, 0, 120, "WINDING", 7)
SetPolyFillMode (ps.hdc, ALTERNATE)

Polygon (ps.hdc, pArray, 8)
EndPaint (hWnd, &ps) ; .
break;

IOther program, lines]
,

Purpose

Syntax
Description

Determines the bounding rectangle of a region.

int GetRgnBox(HRGN hRgn, LPRECT IpRect)j

D Win 2.0 C Win 3.0 m Win 3.1

Hegions can have any arbitrary shape. This function calculates the minimum size rectangle that
will fully enclose a region. "

480

Uses

Returns

11. PAINTING THE SCREEN ..

Handy for computing the minimum size rectangle to paint in order to entirely fill a region. Also
handy for computing the rectangle size to invalidate in order to force painting of part of the
window's client area.

int, the region's type. This can be any of the types listed in Table 11-15.

COMPLEXREGION The region has overlapping borders.

\ ERROR No new region was created.

NULLREGION The region is empty.

SIMPLER EGlON The region does not have overlapping borders.

Table 11-15. Reg(on Types.

SeeAiso

Parameters
hHgn

lpHect

Example

Returns NULL if kHgn is not a handle of a valid region.

GetClipBoxO, InvalidateRgnO

HRGN: The region's handle.

LPRECT: A pointer to a RECT data structure that will hold the
dimensions of the bounding rectangle.

The polygonal area shown in Figure 11-42 is painted by setting
the region as a clipping area and painting the minimum sized
rectangle that encloses the region with a gray brush.

00 It! Quit

Figure 11-42. GetRgnBox()
Exmnple.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN
POINT

RECT

ps ;
hRgn ;
pArray [5J = {10, 10, 50, 40,"90, 20, 60, 0,

40, 20} ;
rRect ;

switch (iMessage)
{

1* process wi ndows messages * 1

case WH PAINT:
-BeginPaint (hWnd, &ps) ;

hRgn = CreatePolygonRgn (pArray, 5, WINDING) ;
SelcctClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStoekObject (LTGRAY_BRUSH»
GetRgnBox (hRgn, &rReet) i
Rectangle (ps.hdc, rReet.left, rReet.top, rReet.right,

rRect.bottom) ; 1* paint area *1
EndPaint (hWnd, &ps) ;
DeleteObject (hRgn)
break;

IOther program lines 1

GETROP2
Purpose

Syntax

De~ription

r:3 Win 2.0 fJ Win 3.0 m Win 3.1

Determines the current raster drawing mode for a device context.

int GetROP2(HDC hDC)j

The default R2_COPYPEN paints the pen color regardless of the underlying colors. With the other
drawing modes, the pen is drawn on the device context after comparing the pen color to the
existing color at each X;Yposition" being drawn. With color devices, each of the three primary
colors is dealt with separately, using the same binary logic. The blue element of the pen color is
compared to the blue element of the pixel, etc.

481

WINDOWS API BIBLE

Uses Only a few of the ROP2 operations are typicaUy used. The common ones are R2_NOT, which'
makes the pen always visible, and R2_XORPEN, which makes the pen line disappear if the same
line is drawn twice.

Returns int, the current drawing mode. This value is one of thc 16 values shown in Table ll-I6.ln the
Boolean Operation column, the "P" stands for the pen color value, and the "D" stands for the
display color value. For simplicity, the explanations are in terms of a black and white display. For

R2_BLACK

R2_WHITE

R2_NOP

R2_NOT

R2_COPYPEN

R2_NOTCOPYPEN

R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2~M~SKNOTPEN

R2_MERGEPEN

R2_NOTMERGEPEN

R2_MASKPEN

R2_NOTMASKPEN

R2_XORPEN

color displays, the same logic is applied to each color element (red, blue, green).

, " Boolean Operatiol1·~·<~:,;~"::';i~'i:~;;'){:i:~:!g~<~;:t1~~.'.: , ~.,;'
o Always black.
1 ;

o
-0

P

-P
PI-D

P&-D

-PID

-P&D

PID

-(PI D)

P&D

-(P&D)

PAD

Always white

No affect on display.

Invert display under line.

Pen color painted regardless of display.

Pen color inverted regardless of display.

A black pen inverts the devfce pixels. Drawing
twice at the sarne location erases the line.

Table 11-16. Rasler Operation Codes.

See Also

Parameters
hDC

Example

The SetROP20 example shows all 16 modes contrasted on a black
and white background.

HDC: The device context handle.

This example, as shown in Figure 11-43, paints the client area
with a blue hatched brush. When the user clicks the "Do It!" menu
item, the HOP drawing mode is checked. lfthe device context for
the client area is not already set to the R2_XORPEN mode, that
mode is selected and a line drawn diagonally. Repeatcdly click
ing the "Do It!" menu item draws and then erases the line, leavnlg
the background intact. Figure 11-43. GetROP2()

Example.
long FAR PASCAL WndProc (HWND hUnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PA I N;rSTRUCT
HPEN
HBRUSH
HOC

ps ;
hPen/;
hBrush ;
hOC;

482

11. PAINTING THE SCREEN •

RECT rClient ;

switch (iMessage)
{

1* process ~indows messages *1

case WH_PAINT:
BeginPaint (hWnd, &ps) ;
.SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
hBrush = Cre~teHatchBrush (HS_CROSS, RGB (0, 0; 255» ;
SelectObject (ps.hdc, hBrush); 1* select blue brush *1
GetClientRect (hWnd, &rClient) ;
Rectangle (ps.hdc, rClient.left, rClient.top,

rClient.right, rClient.bottom)
EndPaint (hWnd, &ps) ;
OeleteObject (hBrush)
break;

case W,,-.cOMMAND: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: . 1* User hit the "Do it" menu item *1
hOC = GetDC (hWnd) ;
hPen = CreatePen (PS_SOLIO, 4, RGB (255, 0, 0»
SelectObject (hOC, hPen);
if (GetROP2 (hOC) != R2_XORPEN)

SetROP2 (hOC, R2_XORPEN) ;
MoveTo (hOC, 0, 0) ;
LineTo (hOC, 100, 100) ;
ReleaseDC (hWnd, hOC) ;
OeleteObjec~ (hPen) ;
break;

rOth.erprogram linesj

GETRV ALUE (See the GetBValue section in this chapter.) • Win 2.0 • Win 3.0 • Wip 3.1

GETSTOCKOBJECT • Win 2.0 • Win 3.0 • Win 3.1

Purpose

SyilfBx:
Description

Uses

Returns

See Also

Parameters

Retrieves a Kandle to one of the predefined objects that are always available to Windows applica- .
tions. '. .

HANDLE GetStockObject(intnlndex)j

Windows maintains a small set of stock drawing objects, which can be used without creating the
object by just retrieving a handle to the stock object with GetStockObjectO. The default objects
are the BLACK_PEN,.WHlTE_BRUSH, and SYSTEM_FONT.

Using stock objects saves time and memory.

HANDLE, the object handle. NULL on error.

GetSysColorO, GetSystemMetricsO, SelectObjectO

nlndex int: An index to one of the stock objects, which can be any 'oUhe values listed in Table 11-17.

~_::~~WfU;,'·:/?@·~>:~::::r:1~_'~::"l::'\";)"'\'>;::~:::·:·:l:;'Y:~:·i~···r;+:.~·:':';:··;::-;\~~:.··.;·::·:t .. ::;;:;~;;~.:,:'.>\ :':~~::;~'~;::':'f;~i:;'!i:~:~~jDI8B '.
BLACK_BRUSH

DKGRAY _BRUSH .

GRAY_BRUSH

HOLLOW_BRUSH

LfGRAY _BRUSH

NULL_BRUSH

A solid black brush.

A dark gray brush. .

A gray brush.

No painting is done inside of an object,' such as a rectangle, if this style is chosen. I:fandy for
creating borders. .

A light gray brush.

Same as HOLLOW_BRUSH.

WINDOWS API BIBLE

Table 11-17.c01itinued

A white brush. This paints solid white, instead of not painting the interior with a
HOLLOW_BRUSH. This is the default brush.

A single pixel wide black pen. Tilis is the default pen.

No pen drawing is done. This is a way to eliminate borders drawn with objects such as
rectangles.

WHITE_PEN

ANSI_FIXED_FONT

ANSI_ VAR_FONT

DEVICE_DEFAULT _FONT

A white pen one pixel wide.

ANSI fixed pitch font.

ANSI variable pitch font.

The default font for a device. This is important for some printers that have a built-in font that is
faster than graphics fonts.

OEM_FIXED_FONT

SYSTEM FONT

A device supplied font.

The system font. This is the default font used by Windows for captions and menus.

The old Windows 2.0 fixed font.
, -

SYSTEM_FIXED_FONT

DEFAULT_PALETTE The default color palette.

Table 11-17. Stock Objects.

Cautions

Example

Do not attempt to delete stock objects. Be sure the CS_HRE
DRAW and CS_ VREDRAW class styles are specified in the
window's class definition before using stock brushes. Stock
brush origins cannot be changed (see SetBrushOrgO for de
tails on brush origins).

This example, shown in Figure 11-44, uses three stock objects
to paint the client area: a stock pen, a stock brush, and a stock
font. All of them are selected into the client area device con
text. The text color is changed to equal the window caption
color. The transparent drawing mode is also selected.

Figure 11 JJ4. GetStock
Object() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(. .

PAINTSTRUCT ps ;
RECT rClient ;

switch (iMessage)
(

1* process windows messages *1

case WM_PAINT:

IOther program linesJ

BeginPaint (hWnd, &ps) ;
SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
SelectObject (ps.hdc, GetStockObject (ANSI_VAR_FONT» ;
SetTe'xtColor (ps.hdc, GetSysColor (COLOR_CAPTIONTEXT» ;
SetBkMode (ps.hdc, TRANSPARENT) ;
GetClientRect, (hWnd, &rClient) ;
Rectangle (ps.hdc, rClient.left, rClient.top,

rClient.right, rClient.bottom) ;
TextOut (ps.hdc, 10, 10, "1\NSI VAR FONT", 13)
EndPaint (hWnd, &ps)
break;

484

GETSYSCOLOR

Retrieves one of the system colors.
DWORD GetSysColor(intnlndex)j

11. PAINTING THE SCREEN· 'Y

• Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description The system colors are the colors of the objects Windows paints, such as window caption bars,
scroll bars and the desktop surface. These colors can be modified by the user using the Windows
Control Panel application. The system colors are shared by all applications running on the
system.

Uses The system colors are frequently good choices for use
in painting a window's client are1. Their choice as- Dolt! a u it
sures that the colors are consistent with the way the --------------.
user has set up his or her color choices.

Returns
See Also

Parameters
nlndex

DWORD, the 32-bit color value extracted.
SetSysColorsO Figure 11-45. GetSysColor() Example.

int: One of the values in Table 11-18.

COLOR_ACTIVEBORDER

COLOR_ACTIVECAPTION

COLOR_APPWORKSPACE

COLOR_BACKGROUND

COLOR_BTNFACE

COLOR_BTNSHADOW

COLOR_BTNTEXT

COLOR_CAPTIONTEXT

. COLOR_GRA YTEXT

COLOR_HIGHLIGHT

COLOR_HIGHLIGHTEXT

COLORJNACTIVEBORDER

COLOR_INACTIVECApTION

COLOR_MENU

COLOR_MENUTEXT

COLOR_SCROLLBAR

COLOR_WINDOW

COLOR_WINDOWFRAME

COLOR_ WI NOOWTEXT

Table 11-18. System Colors.

The active window border. .

The active window caption.

The background color for MOl (multiple document interface) applications.

The desktop (background on which all programs and icons are painted).

Button face...color.

Button edge color.

Button text color.

The caption text color.

Grayed (disabled) menu item text color. The retumed color is set to zero if the display does not
support a solid gray color.

Selected item color in a control.

Text color in a selected control.

Color of an inactive window border.

Color of an inactive window caption.

The menu background color.

The menu text color.

The scroll-bar gray area.

The window background color.

The window frame color.

The color of text in a window.

Example
/

This program, illustrated in Figure 11-45, writes text in a colored rectangle. The rectangle brush _
color and the text color are both set to match that of the caption, assuring that the color combi-

.. 485

WINDOWS API BIBLE

nation will have visible letterS. Note how GetTextExtent() is used to s~e the rectangle to match
the length of the text string.

long FAR PA'SCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
char
DWORD
HBRUSH

ps ;
cBuf [] = {"Mimics Caption Colors"} ;
dwColor ;
hBrush ;

switth (i"essage)
(

1* process windows messages */

case WM_PAINT:
. BeginPaint (hWnd, &ps) ;

dwColor = GetSysColor (COLOR_ACTIVECAPTION) ;
,hBrush = CreateSolidBrush (dwColor) ; 1* same color *1
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 10, 10,

20 + (int) GetTextExtent (ps'.hdc, cBuf,
strlen (cBut», 30) ;

SetTextColor (ps.hdc, GetSysColor (COLOR_CAPTIONTEXT» ;
SetBkMode (ps.hdc, TRANSPARENT) ;
TextOut (ps.hdc, 15, 12, cBut, strlen (cBuf» ;
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

[Other program lines]

GETUPDATERECT • Win 2~0 • Win 3.0 • Win 3.1

Purpose, Retrieves the dimensions of the invalid r~ctangle in the window's client area.

Syatu, BOOL GetUpdateReCt(HWND hWnd, LPRECT lpRect, BOOL bErase)i

Uses

/

letums

See Also

Parametei's
kWrul
lpRect

The invalid rectangle is the area that will be painted the next time a \V?tCPAINT message is
processed.

This function is used outside of the MCP AINT message processing logic of the program. Within
the WM_PAINT logic, the PAINTSTRUCT data structure filled by BeginPaintO provides the di
mensions of the update rectangle. (BeginPaint()validates the ".
update region, so GetUpdateRectO will always return an
empty rectangle if used after BeginPaintO). The usual reason ~1!;....o_It_!..,....· .;;;;;.Q~ut_t--= ____ ..
for retrieving the update region is to validate it, so that Win- Text In Update Region
dows does not paint the region. This technique can be useful if
a number of separated graphics operations are to be per-
formed. The entire painting operation can-be-done at the end
by invalidating the client area with InvalidateRectO.
BOOL. TRUE if the update rectangle is not empty, FALSE if it Figure 11-46. GetUpdate-
is empty, meaning that none of the client area is invalid. RectO Example.

ValidateRectO, GetUpdateRgnO, ValidateRgnO, BeginPaintO

HWND: The window's handle.

LPRECT: A pointer to a RECT data structure that will hold the invalid rectangle dimensions. If
the window,was created with the CS_OWNDC style, the units are logical coordinates. Otherwise,
'the units are device coordinates.

BOOL: Set to TRUE to erase the background of theinvalld rectangle, FALSE to not erase the
background. Erase the background by sending a WM_ERASEBKGND message. '

486

11. PAINTING THE SCREEN "

Related Messages \VM_PAINT, W~CERASEBKGND

Example This example, illustrated in Figure 11-46, scrolls the window down and paints text in the update
region at the top of the client area when the user clicks the "Do It!" menu item. Scrolling adds the
exposed region to the update region, which would normally mean that the text would be painted
over immediately by the next processing of a ~CPAINT message. However, the update rect
angle is retrieved and validated. This keeps Windows from sending a W~CPAINT message, so the
text remains visible.

long FAR PASCAL WndProc (HWHO hWnd, unsigned iMessage, WOR~ wParam, LONG lParam)
{

HOC
REel

hOC;
rUpdate ;

switch (iMessage)
{

1* process windows messages *1

case W",-COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
ScrollWindow (hWnd, 0, 20, NULL, NULL) ;
hOC = GetOC (hWnd) ;
TextOut (hOC, 0, 0, "Tt!xt In Update Regi on", 21)
GetUpdateRect (hWnd, &rUpdate, FALSE)
ValidateRect (hWnd, &rUpdate)
ReleaseOC (hWnd, hOC) ;
break;

{Other program linesj

G~TUPDATERGN [] Win 2.0 m Win 3.0 g Win 3.1
Purpose

Syntax

DesCription

Returns

COMPLEXREGION

ERROR

NULlREGION

SIMPLEREG!ON

Copies the update region of a window's client area to hRgn.

int GetUpdateRgn(HWND hWnd, HRGN hRgn, BOOL bErase)j

'fhis function is,.similar to GetUpdateRectO, except the invalid area of the window's client area is
passed as a region instead of a rectangle. Invalid parts of the client area are caused by scrolling,
resizing, or uncovering parts of the window that were under other windows or dialog boxes.

The update/reg!on can be passed to ValidateRgnO to avoid having the regi~n repainted. This only
works outside .of the WM_PAINT logic section of the program, as BeginPaintO automatically
validates the client area in preparation for repainting.

int, the type of region returned. This can be any of the region types listed in Table 11-19.

The region has overlapping borders.

No region was created.
" The region is empty.

The region does not have overlapping borders.

Table 11-19. Region TJJpes.

See Also ValidateRgnO, GetUpdateRectO, ValidateRectO

Parameters
hWnd

hRgn

HWND: The window handle.

HRGN: The handle of the region that will hold the update region. The region must exist prior to
calling GetUpdateRgnO. Use CreateRectRgnO to create a region prior to calling this function
(see the example).

487

WINDOWS API BIBLE

bErase BOOL: TRUE if the background should be erased, FALSE if
not.

Related Me~sagcs W~CPAINT no It! Quit
IText In Update Region

Example This example, which is shown in Figure 11-47, scrolls the client
area down, and then writes in the client area when the user
clicks the "Do It!" menu item. Normally, the text would be
erased immediately by repainting the invalidated region,
which was uncovered by scrolling. In this case, the invalid re
gion is validated before a W~CPAINT message is generated,
which keeps the text from being erased.

Figure 11-47. GetUpdate
BgnO and ValidateBgn()
Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
HRGN

hOC;
hRgn ;

switch (iMessage)
{

1* process windows messages *1

case WM COMMAND: 1* process menu items *1
- swi tch (wParam)

{

case IDr1 DOlT: 1* User hit the "Do it" menu item *1
ScrollWindow(hWnd, 0, 20, NULL, NULL> ;
hOC =- GetDC (hWnd) ;
TextOut (hOC, 0, 0, "Text In Update Region", 21) ;
hRgn = CreateRectRgn (0, 0,1,·1); I*·initialize *1
GetUpdateRgn (hWnd, hRgn, FALSE)
ValidateRgn (hWnd, hRgn)
ReleaseDC (hWnd, hOC)
break;

/Other program lines!.

INFLATERECT

Purpose

Syntax

Description

Uses

!II Win 2.0 11 Win 3.0 II Win 3.1
Increases or decreases the size of a rectangle.

void InflatcRect(LPRECT IpRect, ~ntX, int Y);

Rectangles are used not only as drawing objects, but also to
define the borders of ellipses, chords, arcs, etc. InflateRectO
allows expansion or contraction of a rectangle in a single func
tion call.

A fairly common need in graphics programs is to create a bor
der containing multiple lines. InflateRectO allows consistent
changes to the dimensions of a rectangle without needing to

Do It! Quit

. deal with each of the rectangle's four elements. D Returns

See Also

Parameters
lpRect

No returned value (void).

SetRectO, RectangleO -

LPRECT: A pointer to a RECT data structure that holds the
rectangle that is to have its size changed.

488

Figure 11-48. lriflateRect()
Example.

x

y

Example

11. PAINTING THE SCREEN ~

int: The amount to change the horizontal size. Positive values increase, negative values decrease.
The size is changed by this amount on both the left and right sides.

int: The amount to change the vertical size. Positive values increase, negative values decrease.
-The size is changed by this amount on both the top and bottom dimensions.

As shown in Figure 11-48, five concentric rectangles are drawn by repeatedly calling Inflate
RectO to enlarge the rectangle. Note that the stock object NULL_BRUSH is used for the rect
angle filling brush to avoid painting over the internal rectangles.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
RECT

ps ;
rRect ;
i . i nt ,

switch (iMessage) 1* process windows messages *1
{ .

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SelectObject (ps.hdc, GetStockObject (NULL_BRUSH» ;
SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
SetRect (&rRect, 30, 30, 90, 90) ;
for (i = 0 ; i < 5 ; i ++)
{

}

Rectangle (ps.hdc, rRect.left, rRect.top,
rRect.right, rRect.bottom)

InflateRect (&rRect, 4, 4)

EndPaint (hWnd, &ps) ;
break;

/Otherprogram linesJ

INTERSECTCLIPRECT • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax .

Description

Uses

Returns

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Creates a new clipping region by combining the existing rectangle and a rectangular region. Only
the overlapping region common to the two areas remains within the clipping region.

int IntersectCllpRect(HDC hDC, intXl, int Yl, intX2, int Y2)j

This is identical to using CombineRgn() with the RGN_AND clipping style, with one of the re~
gions being rectangular. Limiting a clipping region to a rectangular portion of the client area is
such a common need, that this specialized function is provided.

Restricting painting to a rectangular area on the screen, in addition to the restrictions of the
existing clipping region.

int, the result of the function. This can be any of the region types in Table 11-20.

The new region has overlapping borders.

No new region was created. .

The new region is empty.

The new region does not have overlapping borders.

Table 11-20. Region Types.

See Also CombineRgn(), CreateRectRgnO

489

WINDOWS API BIBLE

Parameters
hDC

Xl

Yl

"DC: The device context handle.
int: The 10gicalX coordinate ofthe upper left corner of the bound-
i!tg rectangle. .

int: The logical Y coordinate ofthe upper left c.orner 91 the bound
ing rectangle.

int: The logical X coordinate of the lower right corner of the
bounding rectangle. -

int: The logical Y coordinate of the lower right corner of the
bounding rectangle.

Do It! Quit

Figure 11-49. Intcrsect
ClipRect() Example. .

Example The eXample, which is shown in Figure 11-49, creates a clipping region from the intersection of
an elliptical region and a slightly smaller rectangle. A larger area is painted with a gray brush, but
only the area within the clipping region is painted.

long FAR PASCAL WndProc (HWND hWnd, uns~~ned iMessage, WORD wParam, LONG lParam)
{ .

PAINTSTRUCT
HRGN

ps ;
hRgn ;

switch (iMessage)
(

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, Ips) ;
hRgn = CreateEll i pt i cRgn (10, 10, 100, 40) ;
SelectClipRgn Cps.hdc, hRgn) ;
IntersectClipRect (ps.hdc, 20, 10, 90, 40) ;
SelectObject (ps.hdc, GetStockObject (LTG~AY_BRUSH» ;

. Rectangle Cps .hdc, 5, 5, 500, 500) ;
EndPai nt (hWnd, Ips) ;
DeleteObject (hRgn) ;

10Uaer program linesj
break; .

INTERSECTRECT • Win 2.0 • Win 3.0 • Win 3.1

Uses
letaras

See Also
Parameters
Ip~tRect

Computes the rectangle of intersection of two other rectangles.
int IntersectRect(LPRECT IpDestRect, LPRECT lpSrc1Rect,
LPRECT IpSrc2Rect)i

When two rectangles overlap, the area of overlap is always rectan
gular. IntersectRectO computes the rectangle of the overlap area.
Useful for clipping rectangles, and for shading.
into TRUE if there is an area of intersection, FALSE if the two
rectangles do not overlap.

CombineRgnO

LPRECT: A pointer to the RECT data structure that will hold the
dimensions of the rectangle of overlap. If there is no overlap, the
rectangle will be empty (all zeros).

490 .

Do It! Quit

Figure II-50.
IntersectRect{} Example.

lpSrcIRect .

lpSrc2Rect

Example

·11. PAINTING THE SCREEN ..

LPRECT: A pointer to a RECT data structure holding the dimensions of a source rectangle.

LPRECT: A pointer to a RECT data structure holding the dimensions of the second source root-
~e. .

This example creates a third rectangle from the intersection of two others. The third rectangJe is
painted with a hatched brush, as shown in Figure 11-50.

long FAR PASCAL WndProc (HWNO hWnd, unsigned i"essage, WORD wPara., LONG lPara.) { . . .

PAINTSTRUCT
RECT
HBRUSH

ps ;
r1, r2, r3
hBrush ;

switch (iMessage)
{

.1* process windows .essages *1

case WM_PAINT:
BeginPaint (hWnd, ips) ;
SetRect (&r1, 10, 10, 70, 80) ;.
SetRect (&r2, 50, 50, 100, 100) ;
IntersectRect (&r3, &r1, &r2) ;
SelectObject (ps.hdc, GetStockObject (GRAY_BRUSH» ;
SelectObject (ps.hdc,GetStockObject (BLACK_PEN» ;
Rectangle (ps.hdc, r1.left, r1.top, r1.right,

r1 • bottom) ;
Rectangle (ps.hdc, r2.left, r2.top, r2.right,

r2.bottolll) ;
hBrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (0, 0, 255» ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, r3.left, r3.top, r3.right.

r3. bottoll);
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush)
break;

IOther program lines J

INvALIDATERECT • Win 2.0 .WlnS.O .WlnS.l
Purpose

Syntax

. Desaiption

Uses

Returns

See Also

Panuaeters
hWntI

Adds a rectangular area. to a window's update region, 80 that it is repainted on the next
MCPAINT cycle.

void InvalldateRect(HWND hWnd, LPRECT lpRect, BOOL bErase) j

Invalidating a rectangular region forces Windows to send a Wt.CPAlNT message to the appUca
tion. The invalidated area is the only part painted

Frequently used to force a repainting of the entire client area. Also useful in programs Which
have "smart" Wt.CP AINT processing logic, which only repaints areas that are invalid InValidat
ing all or part of the client area is a quibk way to activate the painting logic from another part of
the program.

No returned value (void).

InvalldateRgnO. UpdateWindowO can be used to force an immediate WM_PAINT message,
rather than waiting for the. message to be processed via the system message queue.

HWND: The window handle.

491

WINDOWS API BIBLE

IpRect

bErase

LPRECT: A pointer to a RECT data structure containing the
dimensions of the rectangle to invalidate. Set to NULL to in
validate the entire client area.
BOOL: TRUE if the background should be erased during re
painting, FALSE if not. This becomes thejErase element of the
PAINTSTRUCT data structure filled by BeginPaintO.

Do It! Quit

Related Messages MCPAINT
Example This example shows graphically, see Figure 11-51, that only the

update region gets painted when a WM_P AINT message is pro- Figure 11-51. Invalidate
cessed. When the user clicks the "Do It!" menu item, a rectan- RectO Example.
gular region at the top left of the client area is invalidated,
forcing a WM_PAINT message. The logic for handling WM_PAINT messages alternately paints a
large area gray or white. Only the update rectangle ends up painted .

. long FAR ·PASCAl WndProc (HWNIl hWnd, unsi gned iMessage, WORD wParam, lONG lParam)
{

PAINTSTRUCT
HDC
static
RECT

HRGN

BOOl

ps ;
hDC ;'
bToggle = FALSE;
rUpdate ;

hRgn ;

,

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps)
if (bToggle)
{

)

else
{

)

SelectObject (ps_hdc,
GetStockObject (lTGRAY_BRUSH» ;

bToggle = FALSE;

SelectObject (ps.hdc,
GetStockObject (WHITE_BRUSH» ;

bToggle = TRUE;

Rectangle (ps.hdc, 0, 0, 500, 500) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hRgn = CreateRectRgn (0, 30, 50, 60)
InvalidateRgn (hWnd, hRgn, TRUE)
DeleteObject (hRgn)
break;

{Other program lines}

INVALIDATERGN • Win 2.0 • Win 3.0 • Win' 3.1 .

Purpose
Syntax

Description

Uses.

Adds a region to a window's update region, so that it is repainted on the next WM_PAINT cycle.

void InvalldateRgn(HWND hWnd, HRGN hRgn, BOOL bErase)j
Invalidating a rectangular region forces Windows to send a WM":'PAINT message to the applica
tion. The invalidated area is the only part pamted.
Similar to InvalidateRectO, except that a region is, used to pass the dimensions of the invalid
area rather than a rectangle. Regions can be of any' arbitrary shape and complexity. When the

492 '

Returns
See Also

Parameters
hWnd

hRgn

11. PAINTING THE SCREEN ...

~CP AINT message is processed, the invalid area will be the smallest rectangle that encom
passes the region.

No returned value (void).

ValidateRgnO, InvalidateRectO

HWND: The window handle.

HRGN: The handle of the region to pass as the invalid part of the client area.

bErase BOOL: TRUE if the background should be erased during repainting, FALSE if not. This becomes
thejErase element of the PAINTSTRUCT data structure filled by BeginPaintO.

Related Messages Mep AINT

Example When the user clicks the "Do It!" menu item, a small rectangular region is invalidated on the
client area. Windows, therefore, sends a WM_P AINT message to the application's message queue.
The WM_P AINT logic is set to paint a large area alternately gray or white, switching each time
the message is received. Only the invalidated area is ultimately painted.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, lONG lParam)
{ .

PAINTSTRUCT
HDC
static

ps ;
hDC ;

BOOl bToggle = FALSE;
Rectangle (ps.hdc, r3.left, r3.top, r3.right,
r3.bottom) ;

EndPaint (hWnd, &ps) ;
DeleteObject (hBrush)
break;

{Other program lines)

INVERTRECT

Purpose
Syntax

Description

Uses
Returns
See Also
Parameters
hDO

IpRect

Example

Inverts the color of every pixel within a rectangular area.
void InvertRect(HDC hDO, LPRECT IpRect)j

• Win 2.0 • Win 3.0 • Win 3.1

The colors are inverted by applying a logical NOT operation to each RGB element of each pixel
within the rectangle. For example, white becomes black and black becomes white. This inversion
makes the rectangle visible over the background, including colored backgrounds. Inverting a
second time restores the area.' -

Inverting an area is a way to show a mouse selection.
No returned value (void).
InvertRgnO

HDC: The device context handle
LPRECT: A pointer to a RECT data structure containing the
dimensions of the rectangle to invert, in logical coordinates.
When the user clicks the "Do It!" menu item, a rectangular re
gion is inverted, as shown in Figure 11-52. Clicking a second Figure 11-52. InvertRect()
time restores the client area to its previous state. Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HDC
RECl
HBRUSH

switch (iHessage)

ps ;
hDC ;
rClient, rlnv ;
hBrush ;

493

1* process windows messages *1

WINDOWS API BIBLE .

. (
case WM_PAINT:

BeginPaint (hWnd, Ips) ;
hBrush = CreateHat~hBrush (HS_DIAGCROSS, RGB (0, 0, 0»
SelectObject (ps.hdc, hBrush) ; .
GetClientReet ChWnd, &rClient) ;
Rectangle (ps.hdc, rClient.le1t, rClient.top,

rClient.right, rClient.bottom)
EndPaint ChWnd, &ps) ;
DeleteObject (hBrush)
break;

case W',-COMMAND: . 1* process menu items *1
swi tchCwParam)
{

case ID',-DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC ChWnd) ;
SetRect (&rInv, 20, 20, 70,-50) ;
InvertRect (hDC, &rlnv)
ReleaseDC ChWnd, hDC) ;
break;

IOther program lines)

INVERTRGN • Win 2.0 • Win 3.0 • Win 3.1

Sptu
Deseripdon

Uses
1 • .'

;tetums
--;..

See Also

Parameters
kJ)(J

hRun

~Ie

Inverts the color of every pixel within a region.

BOOL InvertRgn(HDC kDe, HRGN hRgn);

The colors are inverted by applying a logical NOT operation to each RGB element of each pixel
within the region. For example, white becomes black and black becomes white. This inversion
makes the region visible over the background, including colored backgrounds. Inverting a secoJId
time restores the area.

Makes ~r gion visible on the screen in a way that is easy to
undo. . '

BOOL. DE ~the re~ion was inverted, FALSE on error.
InvertRectO '

HDC: The device context handle.

HRGN: The handle of the region to be inverted.
. The example shown in Figure 11·53 inverts an elliptical region
when the user clicks the "Do It!" menu item. Clicking the menu
item a second time restores the client area. .

Figure 11-53. InvertRgn()
Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
t·

PAINTSTRUCT ..
HDC

ps ;
hDC ;
rClient ;
hRgn ;
hBrush ;

RECT
HRGN
HBRUSH

\\ switch CiMessage)
{

1* process windows messages *1
'\ I," ,i. \11, case WM PAINT: \ \

BeginPaint (hWnd, &ps) ; \ \
hBrush = CreateHatchBrush (HS_DIAGCROSS, RGB (0, 0, 0» ; \
SelectObject (ps.hdc, hBrush) ; ,
GetClientRect (hWnd, &rClient) ;
Rectangle (ps.hdc, rClient.le1t~ rClient.top,

rClient.right, rClient.bottom)
EndPaint ChWnd, &ps); .
DeleteObject ChBrush) .
break;

case WM_COHMAND:

494

1* process menu items *1

swi tch (wParam)
{

11. PAINTING THE SCREEN.

case IDM_DOIT: 1* User hit the "Do it" me·nu item *1
hDC = GetDC (hWnd) ;
hRgn = CreateEllipticRgn (20, 30, 80, 50)
InvertRgn (hDC, hRgn) ;
ReleaseDC (hWn~, hDC) ;
DeleteObject (hRgn) ;
break;

{Oilier program lines)

IsRECTEMPTY
Purpose

Syntax

Description

Uses

ReturnS

See Also

Parameters
IpRecl

Example

• Win 2.0 ~ • Win 3.0 • Win 3.1

Determines if a rectangle has a height or width of zero.

BOOL IsRectEmpty(LPRECT IpRecl)j

A rectangle is empty if either the height or the width is zero.

Useful in determining if the intersection of two rectangles defines a
rectangle (if they· overlap), or if the current update rectangle is
empty. .

BOOL. TRUE if the rectangle is empty, FALSE if not.

GetUpdateRectO, IntersectRectO

LPRECT: A pointer to a RECT data structure.

Each time the "Do It!" menu item is clicked, an elliptical region is
drawn on the screen, decreasing in size with each repetition. When
either dimension of the rectangle defining the elliptical region
becomes zero, the size is reset back to the initial state. (See Fig
ure 11-54.)

Do It! Quit·

Figure 11·54. IsRecl
Emp1u(J Rmmpie.

long FAR PASCAL WndPro~ (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

HDC
stati eRECT
static int
HRGN

hDC ;
rRec t ;
nSize ;
hRgn

switch (iMessage)
{

1* process windows lIIessages *1

case WM_CREATE:
nSize = 50 ;
SetRect (&rRect, 10, 10, 10 + nSize, 10 + nSize * 2)
break;

case WH_COHHAND: 1* process menu items *1
swi tch .(wParam)
{

case IDM_DOlT: .,; 1* User hi t· the liDo it" menu i teia *'
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow(hWnd) ; 1* erase client area *1
hDC = GetDC (hWnd) ;
hRgn = CreateEllipticRgnindirect (&rRect).;
Fi llRgn (hOt, hRgn, GetStockObject (BLACK_BRUSH»
ReleaseOC (hWnd, hDC) .
DeleteObject (hRgn) ;

riSize -= 10 ; 1* shrink rectangle *1
SetRect (&rRect,10, 10 p 10 + nSiZe,

10 + nSize * 2) ;.
if (IsRectEmpty (&rR~ct»
{

nSi ze :: 50 ; \
SetRect (&rRect, 10, 10, 10 + nSize,

495

. WINDOWS API BIBLE

)

break;

10 + nSize * 2) ;

IOther program lines I

LINEDDA
.Purpose

Syntax

Description

Uses

Returns

See Also
Parameters

'XI

Yl

II Win 2.0 II Win 3.0 • Win 3.1
Draws a line with a custom drawing procedure.

void LineDDA(intXI, int Y1, intX2, int Y2, FARPROC IpLineFunc, LPSTR IpData)j

LineDDAO calls a user-defined callback function for every point on a line betweenXI,YI and
X2,f$. The callback function can perform any calculation for each of these points. Normally, the
calculation is performed to define the color of each point on the line.

Custom line styles.

No returned value.

MoveToO, LineToO

int: The starting X position 1n logical coordinates.

int: The starting Y position in logical coordinates.

Do It! Quit

X2 int: The endingX position in logical coordinates.

n int: The ending Yposition in logical coordinates.

IpLineFunc FARPROC: A procedure-instance address for'the callback
function. This value is obtained with MakeProclnstanceO. The
callback function name must also be listed in the EXPORTS Figure 11-55. LineDDA()
. section of the program's .DEF definition file. Example.

ipData LPSTR: A pointer to any data that should 'be passed to the
callback function. This pointer is usually used to pass-the device context handle:

Callback Function

Example

The callback function must be defined in the following format:

void FAR PASCAL LineFunc (intX, int Y, LPSTR IpData) j

The callback function is called for every point on the line each time theX and Yposition on the.
line and the IpData value are. passed to the callback function. No line is drawn unless points are
drawn from within the callback function:

This program draws a line when the user clicks the "Do It!" menu item, as shown in Figure 11-55.
~ The line is drawn with a custom DDA function that changes the color of the line as a function of

the coordinates of each point. Although not visible in the figure, this line changes from blue to
brown from top left to bottom right when it is viewed on screen.

The example code only shows the WndProc() and DDA functions. In addition, the program
must include a function declaration in the header file, and list the "LineProc" function name in
the EXPORTS section of the .DEF definition fIle.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
FARPROC

hDC .
lpfn'L i ne ;

switch (iMessage)
{

1* process windows messages *1

case WM~COMMAND: 1* process menu items *1
switch (wParam)
{

case 10M_DOlT: 1* User hi t the "Do it" menu item *1
InvalidateRect (hWnd, NULL, TRUE) ;

I UpdateWindow (hWnd) ; 1* erase client area *1
hDC = GetDC (hWnd) ;

496

11. PAINTING THE SCREEN ~

lpfnLine = MakeProclnstance (LineProc, ghlnstance)
LineDDA (10, 10, 150, 150, lpfnLine,

(LPSTR) (DWORD) hDC) ;
FreeProclrstance (lpfnLine) ;
ReleaseDC (hWnd, hDC) ;
break;

case IDM_QUIT:

}

break;

DestroyWindow (hWnd) ;
break;

case WM_DESTROY: 1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows message·processing *1
return DefWindowProc (~Wnd, iMessa~~, wParam, lParam) ;

>
return (OL) ;

>
1* callback function *1

void FAR PASCAL LineProc (int X, int Y, LPSTR lpData)
(

}

SetPixel «HANDLE) (DWORD) lpData, X, Y,
RGB (X X 255, Y X 255, (X + Y) X 255»

SetPixel «HANDLE) (DWORD) {pData, X, Y + 1,
RGB (X % 255, Y X 255, (X + Y) X 255»

SetPixel «HANDLE) (DWORD) lpData, X, Y + 2,
RGB (X % 255, Y %.255, (X + Y) % 255» ;

LINETo • Win 2.0 II Win 3.0 • Win 3.1
Purpose

8J1ltax

DesaiptiOD

Uses

" ,,'

Parameters
kDC
X

Draws a line from the current location to a new point.

BOOL LineTo(HDC hDC, intX, int Y)j

Used with MoveToO to draw lines. MoveToO moves the start
ing point for the next line to a new location without drawing.
LineToO draws a line to X, fusing the currently selected pen.

LineToO is convenient when a series of connected lines are to
be drawn. Windows does not provide a single function for draw
ing isolated lines such as Line (hDG, Xl, fl, X2, Y2). You can
create such a function by combining MoveToO and LineToO.
See the example under MoveToO.

BOOL. TRUE if the line was drawn, FAlJSE on error.

MoveToO, GetCurrentPositionO, CreatePenO,
SelectObjectO, PolylineO

"DC: The device context handle.
int: The logical X coordinate for the end of the line. The start of
the line is either the end position from the last LineToO call or
the position obtained by calling MoveToO.
int: The logical Y coordinate for the end of the line:

Do It! Quit

Figure 11·56. LineTo()
Example ..

f

Example This example paints two connected blue lines in the client area, as shown in Fi~ 11-56.

long FAR PASCAL W~d~roc (HWND hWnd, unsigned iMessage, WOROwParam, LONG lParam)
{

PAINTSTRUCT
HPEN

switch (iMessage)
- <.. .

ps ;
hPen ;

497

1* process windows messages */

WINDOWS API BIBLE

case WM_PAINT:

/Otherprogram lines}

BeginPaint (hWnd, &ps) ;
hPen = CreatePen (PS_DASHDOT, 2, RGB (0, 0, 255}) ;
SelectObject (ps.hdc, hPen)
MoveTo (ps.hdc, 10, 100) ;
LineTo (ps.hdc, 40, 10) ;
LineTo (ps.hdc, 70, 100)
EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;
break i

MAKEPOINT • Win 2.0 II Win 3.0 • Win 3.1
Purpose
Syntax
Description

, Converts from a DWORD value to a POINT structure.
POINT MAKEPOINT(DWORD dwlnteger);
Windows functions frequently encode position values in 32-bit mYORDs. MAKEPOINTO is a
macro that converts from the DWORD format to a POINT structure. The macro and point struc
ture are defined in WlNDOWS.H as follows:

#define MAKEPOINT(l)

typedef struct tagPOINT
{

(*«POINT FAR *)&(l}»

int x;
int Yi

} POINT;
typedef POINT
typedef POINT NEAR
typedef POINT 'FAR

*PPOINT;
*NPPOINT;
*LPPOINT;

Uses

Returns
See Also
Parameters
dwlnteger

Example

MOVETo
Purpose .

Syntax
Description

Uses

Returns

See Also
Parameters
hDC
X

The point structure is simpler to work with if you need to extract either the X or Y ~alue sepa-
rately. '

A pointer to a POINT data structure.
MoveToO, LineToO, MAKEPOINTO

'DWORD: A 32-bit value with the low-order word containing theX coordinate value, and the high
order word containing the Y coordinate value.
'See the example under the GetCurrentPositionO function description.

II Win 2.0 • Win 3.0 II Win 3.1

Moves the current position to a. new iocation, ready t2 draw a line ..
DWORD MoveTo(HDC hDC, intX, int Y);

Used with LineToO to draw lines. MoveToO moves the starting point for thenext line to a new
location without drawing. LineToO draws a line to X, Y using the currently selected pe~.
In order to position the start ofthe next line, MoveToO is used

. before line drawing begins. The following example shows the
creation of a typical line drawing function that combines
MoveToO and LineTIJ.
DWORD, the previous logical position. The low-orderword con-
tains the X position. The high-order word contains the Y posi-
tion.

LineToO, CreatePenO, SelectObjectO, PolylineO

HDC: The device context handle.
int: The logical X coordinate.

498

Do It! Quit

Figure 11-57. MoveTo()
Example.

y

Example

11. PAINTING THE SCREEN V

int: The logical Y coordinate.
This example, which is illustrated in Figure 11-57, creates a a function called LineO that draws
lines using the currently selected pen and allows both the starting point and ending point of the
line to be specified in one ~~nction call. The function is called twice to draw two blue lines on the
client area. I '

The header file must also include the function declaration for the LineO function.
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HPEN

ps ;
hPen ;

switch (iMessage)
{

1* process windows messages *1

case W~CPAINT:
BeginPaint (hWnd, &ps) ;
hPen = CreatePen (PS_DASHDOT, 2, RGB (0',0, 255»
SelectObject (ps.hdc, hPen) ;
Line (ps.hdc, 10, 10, 60, 10) ;
Line (ps.hdc, 10, 50, 60, 50) ;
EndPaint (hWnd, &ps) ;
DeleteObject (hPen)
break; .

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_QUIT: 1* send end of application messag~ *1
OestroyWindow (hWnd); :
break;

break;
cas e W M_O EST ROY: 1 * s top a p p l ; cat; 0 n * 1

PostQui tMessage (0) ;
break;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
} .,
void Line (H~C ~~C, int X1, int Y1, int X2, int Y2)
{

MoveTo (hDC, X1, Y1) ;
LineTo (hOC, X2, Y2) ;

}

OFF'SETCLIPRGN

Purpose
Syntax

'Moves the elipping region.
int OffsetClipRgn(HDC hDC, intX, int Y)j

• Win 2.0 • Win 3.0 II Win 3.1

Descriptior The clipping region limits the area on the device that will be painted by GDI function calls, such
as LineToO and RectangleO. OffsetCHpRgnO allows an existing clipping region to be moved to a
new location on the device context.

USes
Returns

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Useful in scrolling operations with graphics images.
int, the type of region created. This can be any of the region types in Table 11-21.

The new region has overlapping borders.

No new region was created.

The new region is empty.

The new region does not have overlapping borders.

Table 11·21. Region TlJpes.

499

WINDOWS API'BIBLE .

See Also
Parameters
hDC
X

y

Example

SelectClipRgnO

HDC: The device context handle.
int: The amount to offset the region in the X direction, mea-
sured in logical units. , '
int: The ~mount to offset the region in the Y direction, mea
sured in logical units. '
This example creates a rectangular clipping region, as shown

[' ~ ,',

Do. It I Quit

in Figure 11-59. The clipping region limits the area that is Figure11-59. OffsetClip
painted when the RectangleO function is called. OffsetClip- Rgn() Example. '
RgnO is used to move the clipping region down and to the
right. The second call to RectangleO is limited by this new, repositioned clipping region.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN

ps ;
hRgn ;

switch (iMessage)
{

1* process windows messages *1

case WM PAINT:
-BeginPaint (hWnd, &ps) ;

hRgn = CreateRectRgn (10, 10, 60, 40) ;
SelectClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStockObject (BLACK_BRUSH» ;
Rectangle (ps.hdc, 5~ 5, 500, 500) ;
OffsetClipRgn (ps.hdc, 20, 20) ;
Rectangle (ps.hdc, 5, 5, 500, 500> ;
EndPaint (hWnd, &ps) ;
DeleteObject (hRgn) ;
break;

/Other program linesl

OFFSE'l'RECT
, "

• Win 2.0 • W'm3.Q • WIn 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
lpRecl

X
y

Example

, '1'.

Shifts a rectangle in theX and Y directions.
void OtTsetRect(LPRECT lpRect, intX, int Y)j

This is a convenient function for changing the location of a rect..:
, angIe without changing its size. InflateRectO changes the size
without changing the location.
Frequently used in creating clipping regions. '

No returned value (void).

SelectClipRgnO, CreateRectRgnO, CreateEllipticRgnO,
InflateRectO '

Do It! Quit

Figure 11-60. OffsetRect()
Example.

LPRECT: A pointer to a RECT data structure holding the dimensifJns of the rectangle to offset.
int: The amount to offset the rectangie's position horizontally.

int: The amount to pffset the rectangle's position vertically.

In the example shown in Figure 11-60, a complex region is created by combining two regions
using the logical RGN_XOR operation. The two regions are both based on the same rectangular
size. In the first case, an elliptical region hRgnl is made from the rectangle's dimerisions. A '
second rectangle is created by copying the first, and then offsetting the rectangle's coordinates
to the right 25 logical units. The two regions are combined using CombineRgnO, and then used as
the clipping region. Only the areas within the clipping region are painted when a large, gray,
rectangle is drawn. '

,5.0.0

•• T .. ,

11. PAINTING THE SCREEN 'If

long FAR PASCAL WndProc (HWND.hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
HRGN

ps ;
hRgn1, hRgn2, hRgnComb ;
rRect1" rRect2,;. RECT

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SetRect (&rRect1, 10, 10, 60, 40)
CopyRect (&rRect2, &rRect1) ;
OffsetRcct (&rRect2, 25, 0) ; ,
hRgn1 = CreateEllipticRgnlndirect{&rRect1)
hRgn2 = CreateRectRgnlndirect (&rRect2) ;
hRgnComb = CreateRectRgn (1, 1, 2, 2) (1* initialize *1
CombineRgn (hRgnComb, hRgn1, hRgn2, RGN_XOR) ;
DeleteObject (hRgn1) ;
DeleteObject (hRgn2) ;

SelectClipRgn (ps.hdc, hRgnComb) ;
SelectObject <ps.hdc, GetStockObject (LTGRAY_BRUSH»
Rectangle (ps.hdc, 5, 5, 500, 500)
EndPaint (hWnd, &ps) ;
DeleteObject (hRgnComb) ;

'[Other program lines}
break;

OFFSETRGN .

Purpose

Syntn.-<

Description

Uses

Returns

COMPLEXREGION

ERROR

NULlREGION

SIMPLEREGION

II Win 2.0 • Win 3.0 III Win 3.1
Moves a region.

int OfJsetRgn(HRGN hRgn, intX, int 1');

This is identical to OffsetRectO, except a region is offset instead of a rectangle.

Used in creating clipping regions composed of similar shaped objects at different locations.

int, the type of region created. This can be any of the region types listed in Table 11-22.

The new region has overlapping borders.

No new region was created.

The new region is empty.

The new region does not have overlapping borders.

Table 11-22. Region Types.

See AlsO

Parameters
hRgn

X

Y
Example

CreateEllipticRgnO, Cr.eateRectRgnO, CombineRgnO

HRGN:The handle of the region to offset.
int: The amount to offset the region's position horizontally.

int: The amount to offset the region's position vertically.

This example creates a complex clipping region by combining
two elliptical regions using the logical RGN_XOR operation.
(See Figure 11-61.) The second region is created by copying
~he first, and then offsetting it to the right by 25 logical units.

Do It! Quit

Figure 11-61. OffsetRgn()
Example.

long FAR PASCAL WndProc (HWND hWnd,uns;gned iMessage, WORD wParam, LONGlParam)
(

PAINTSTRUCT ps ;

501 "/

WINDOWS API BIBLE

HRGN
RECT

switch (iMessage)
{

case WM_PAINT:

hRgn1 ,hRgn2, hRgnComb ;
rRect ;

/* process wi ndows messages * /

BeginPaint (hWnd, &ps) ;
SetRect (&rRect, 10, 10, 60, 40) ;
hRgn1 = CreateEllipticRgnlndirect (&rRect);
hRgn2 = CreateRectRgn (1, 1, 2, 2) ; 1* initialize *1
CombineRgn (hRgn2, hRgn1, NULL, 'RGN_COPY> ; 1* copy */

/ Otller program lines /

OffsetRgn (hRgn2, 25, 0) ; /* move rgn 2 to right */
hRgnComb = CreateRectRgn (1, 1, 2, 2) ;/* initialize *1
CombineRgn (hRgnComb, hRgn1, hRgn2, RGN_XOR) ;
Deletebbject (hRgn1) ;
DeleteObject (hRgn2) ;

SelectClipRgn (ps.hdc, h~gnComb) ;
SelectObject (ps.hdc, GetStockObjcct (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, 5, 5, 500, 500) ;
EndPaint (hWnd, &ps) ;
DeleteObject (hRgnComb) ;
break;

PAINTRGN m Win 2.0 .. Win 3.0 II Win 3.1

Purpose

Syntax

Description

uSes
Returns

See Also

Parameters
hDC

Paints a region with the currently selected brush.

BOOL PaintRgn(HDC hDC, HRGN llRgn);

This function is similar to Fil1RgnO, except the currently se
lected brush of the device context is used to paint the region,
rather than specifying the brush handle in the function call.

Painting irregular areas.

BOOL. TRUE if the region is painted, FALSE 011 error.

Fill~gnO

HDC: The device context handle. The currently selected brush
of the device context is used to paint the region.

Do It! Quit

hRffn

Example

HRGN: The region to paint.

This example creates a region by combining two elliptical re
gions. The region is then' painted with a hatched brush, as

Figure 11-62. PaintRgnO'
Example.

ShO\\l1 in Figure 11-62.
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lPararn)
{

PAINTSTRUCT
HRGN
HBRUSH

ps ;
hRgn1, hRgn2, hRgnComb ;

,hBrush ;

switch (iMessage)
{

/* process windows messages */

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hRgn1 = CreateEllipticRgn (10, 40, 90, 70) ;
hRgn2 = CreateEllipticRgn (40, 0, 70, 100) ;
hRgnComb.= CreateRectRgn (1, 1, 2, 2) ;/* initialize *1
CombineRgn (hRgnComb, hRgn1, hRgn2, RGN_OR)
DeleteObject (hRgn1) ;
DeleteObject (hRgri2) ;

SeLectClipRgn (ps.hdc, hRgnComb) ;
hBrush = CreateHatchBrush {HS_DIAGCROSS,

RGB (0, 0, 255» ;
SelectObject (ps.hdc, hBrush)

502

11. PAINTING THE SCREEN V

{Other program lines}

PaintRgn (ps.hdc, hRgnComb)
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
DeleteObject (hRgnComb) ;
break;

PIE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

S~tax

Description

Draws a pie·shaped wedge.

BOOL Pie(HDC hDC, intX1, int Y1, intX2, int Y2, intX3, int Y3,
intX4, int Y4)j

The pie-shaped wedge is drawn with the currently selected pen
and filled with the currently selected brush. The outer circle of
the pie is defined by the bounding rectangle of an ellipse. The
starting and ending points are defined by lines from points
X3,Y3 andX4,Y4, to the center to the bounding rectangle.

The height and width must be smaller than 32,767 logical
units.

Making pie charts.

BOOL. TRUE if the shape was drawn, FALSE on error.

ChordO, ArcO

Do It! Quit

" ~ ,~

-3 \9:
2

Uses

Returns

See Also

Parameters
hDC

Figure 11·63. Pie() Example.

Xl
Y1

X2

Y2

X3

Y3

X4

Y4

Example

HDC: The device context handle.

int: The logical X coordinate of the upper left corner of the bounding rectangle.

int: The logical Y coordinate of the upper left corner of the bounding rectangle.

int: The logical X coordinate of the lower right corner of the bounding rectangle.

int: The logical Y coordinate of the lower right corner of the bounding rectangle.

int: The logical X coordinate of the starting point of the pie slice.

int: The logical Y coordinate of the starting point of the pie slice.

int: 1'he logical X coordinate of the ending point of the pie slice.

int: The logical Y coordinate of the ending point of the slice.

This example, which is shown in Figure 11-63, paints a pie-shaped slice with the PieO function.
In addition, the bounding rectangle is painted, and the locations of the four points that define the
pie are numbered.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH
HPEN

ps ;
hBrush ;
hPen ;

switch (iHessage)
{

1* process windows messages *1

case WH_PAINT:
BeginPaint (hWnd, &ps) ;
hBrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (0, 0, 255» ;
SelectObject (ps.hdc, hBrush) ;
hPen = CreatePen (PS_SOLID, 3, RGB (255, 0, 0»
SelectObject (ps.hdc, hPen) ;
SetBkMode (ps.hdc, TRANSPARENT) ; ,
?ie (ps.hdc, 10, 10, 100, 100, 0, 70, 70, 0)
TextOut (ps.hdc, 10, 10, "1",1);
TextOut (ps. hdc, 100, 100, "2", 1)
TextOut (ps. hdc, 0, 70, "3", n

503

WINDOWS API BIBLE

TextOut (ps.hdc, 70, 0, "4", 1) ;
SelectObject (ps.hdc~ GetStockObject (NULL_BRUSH» ;"
Se lectObject (ps. hdc,GetStockObje.e-t.~:<BLACI'-PEN» ;
DeleteObject (hBrush) ; -"
DeleteObject (hPen) ;
Rectangle (ps.hd~, 10, 10, 100, 100) ;
EndPaint ChWnd, &ps) ;
break;

/Otherprogram lines}"

POLYGON • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Draws a polygon.
BOOL Polygon(HDC hDC, LPPOINT lpPoints, int nCount)j

Description A polygon is a closed figure composed of three or more straight lines. The polygon is drawn on the
device context u~ing the currently selected pen and brush and the current polygon filling mode.

Uses
Returns
See Also

Creating complex drawings.
" BOOL. TRUE if the function drew the polygon, FALSE on error.

Poly~olygonO, SelectObjectO, DeleteObjectO, Do It! Quit
SetPolyFillModeO

Parameters
hDC HDC: The device context "handle.
IpPoints

nCount
Example

LPPOINT: A pointer to an array of nCount or more points that
Will define the polygon. If the first and last pointS do not coin
cide, the function will draw a line between them to close the
polygon. The polygon lines may cross, creating a complex poly- "
gon. See SetPolyFillModeO to define how these objects are
fill~d.

" int: The number of points in the IpPotnts array to read.
In this example, shown in Figure 11-64', a polygon il) drawn us
.ing a pen created with CreatePenlndirectO. .

Figure 11-64. PolygfY!t{)
Exampte.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HPEN
LOG PEN
POINT
POINT

ps ;
hPen ;
LP ;
pPenWidth ; . . ~
pArray [J = (10, 106;15, 5, 50, 50, 90, 0,

60, 110) ;

switch (iMessage)
<

1* process windows messages *1

case W,,-PA"INT: "
BeginPaint (hWnd, &ps) ;
pPenVidth.x = 2 ;
LP.lopnStyle = PS_DASH ;
LP.lopnVidth = pPenWidth ;
LP.lopnColor = RGB (0, 40, 50) ;
hPen = CreatePenIndirect (&LP) ;
SelectObject (ps.hdc, hPen) ;
Polygon (ps.hdc, pArray, 5)
EndPaint (hVnd, Ips) ;
DeleteObject (hPen) ;
break;

IOther proijram linesJ

POLYLINE • Win 2.0" • Win 3.0 ". Win 3.(
Purpose

Syntax

" . Draws a line with multiple segments.

BOOL PolyJine(HDC hDC, LPPOINT IpPoints, int nCount)j

504

Description

Uses

Returns

SeeAko

Parameters
hDC

IpPoints

nCount

Example

11. PAINTING THE SCREEN 'Y

This function is equivalent to calling MoveToO, followed by a
series of one or more calls to LineToO. Each of the line seg
ments drawn is connected to the last. The line is drawn with
the currently selected pen;.
Drawing irregular lines·~hl~h are connect~d.
BOOL. TRUE if thellit~~as drawn, FALSE on error.

MoveTo(), LineToQ(CreatePenO, SelectObjectO

HDC: The device context handle.

LPPOINT: An array of at least nCount POINT data structures
defining the line to be drawn.

int: The number of points in the lpPoints array. Must he two or
more points.
This example, which is shown in Figure 11-65, uses PolylineO
to efficiently draw a line with three segments on the client
area.

Figure 11-65. Polyline()
Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
POINT
HPEN

ps ;
pLine [] = {10, 10, 30, 90, 50, 30, 70, 100} ;
hPen ;

switch (iHessage)
{

1* process windows messages *1

case WH_PAINT:
BeginPaint (hWnd, &ps) ;
hPen = CreatcPen (PS_SOLID, 3, RGB (0, 0, 255» ;
SelectObject (ps.hdc, hPen) ;
Polylfne (ps.hdc, pLine, 4) ;
EndPai.nt.(hWnd, &ps) ;
DeleteObject (hPen)
break;

IOther program lines J

POLyPOLYGON o Win 2.0 • Win 3.0 II Win 3.1

Purp~
Syntax

Description

Uses

Returns
See Also

Parameters
hDC

IpPoints

IpPolyCounls

nCount

Draws one or more polygons.

BOOL PolyPolygon(HDC hDC, LPPOINT lpPoinls, LPINT lpPolyCount.1) , int nCount)i

This function allows any number of polygons to he drawn with one function call. The polygons are
drawn with the currently selected pen and brush. If the lines of the polygons cross, interior re
gions are drawn based on the current polygon filling mode.

An efficient way to draw a series of enclosed areas.

BOOL. TRUE if the polygons were drawn, FALSE on error.

. Polygon ° , SetPolyFillModeO

nnc: The device context handle.

LPPOINT: A pointer to an array of POINT data structures that contain the vertices of the pol.Y-
. gons. There must be at least as many points as specified by the lpPol.1JCounls array. The points for
each independent polygon must be together in the array.

LPINT: An array of integers that contains the number of points in ipPoints to assign to each
successive polygon. .

int: The number of elements in the lpPolyCounts array (not the number of total points).

. 505

WINDOWS API BIBLE

Example This example, as shown in Figure 11-66, paints two polygons in one call to PolyPolygonO. The first
is a triangle, defined by four points. The first and last points of the four are the same, so the region
is closed. The second polygon is defined by five points, but the first and last points are notthe
same. PolyPolygonO does not close the region automatically.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
POINT

int
HPEN
HBRUSH

ps ;
pLine [] = {1o, 10, 30, 90, 50, 30, 10, 10,

70, O. 60, 50, 100, 100, 90, 25, 70, 12o} ;
pPolygons [] = {4, 5}
hPen ;
hBrush ;

switch (iMessage)
{

/* pr6cess windows messages */

cas e W M_P A I NT:
DeginPaint (hWnd, &ps) ; , :'" \
hPen = CreatePen CPS_SOLID, 3, RGB (i~o, 255»
hBrush = CreateHatchBrush {HS_DIAGCR~SS,

RGB (255, 0, 0»; .
SelectObject (ps.hdc, hPen) ;
SelectObject (ps.hdc, hBrush) ;
Poly?olygon (ps.hdc, pLine, pPolygons, 2) ;

,EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;

. DeleteObject (hOrush) ;

{OtlWI']Jl'Olll,(Wllilll!s/
br~ak ;

PTINRECT III Win 2.0 II Win 3.0 a Win 3.1 ---------------- ---_._------_._----.- .----------------------
l)urpose

Syntax

Description

Uses

Returns

See Also

DdermillPs if a {Ioint is within a rectangular area.
BOOL l)tInl{ect(Lrm~CT [pRect, POINT Point);

This function typically is used to determine jf the mouse cursor is within a <;ertain area on the
cliellt l'egion. .

Used in paint programs, and other programs that track the mouse location.

BOOL. THUI': if We point is within the rectangle, FALS~~ if not.

PtinHegionO, PtVisihleO

Do It! Quit

In Region

PillUt'e J 1-£i6. l'oly/lrJl!I[lon()
/J':rallljJll'.

Pi,qut'e 1/-67: PtInltect()·
Knnnpie.

Figure 11-68. -PtlnRegion()
Example.

506

Parameters
lpRect

Point

Example

11. PAINTING THE SCREEN T

LPRECT: A pointer to a RECT data structure holding the dimensions of the rectangle to check.
POINT: A POINT data structure.

This example paints a rectangle in the client area, see Figure 11-67. If the user clicks the left
. mouse button within the rectangle, "In Rect" is flashed. Clicking outside of the rectangle results
in "Not Inside" being flashed. The screen is painted when the user releases the mouse button,
erasing the message as the rectangle is repainted.'

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ \

PAINTSTRUCT
HOC
static RECT
POINT

ps ;
hOC;
rRect ;
pCursor ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE :
SetRect (&rRect, 10, 10, 100, 100) ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, rRect.left, rRect.top, rRect.right,

rRect. bot tom) ;
EndPaint (hWnd, &ps) ;
break;

case WM_LBUTTONOOWN:
pCursor = MAKEPOINT (lParam) ;
hOC = GetOC (hWnd) ;
if (PtInRect (&rRect, pCursor»

TextOut (hOC, 10, 50, "In Rect", 7)
else

TextOut (hOC, 10, 50, "Not Inside",. 10) ;
ReleaseOC (hWnd, hOC) ;
break;

case WM_LBUTTONUP:
InvalidateRect ChWnd, NULL, TRUE)
UpdateWindow (hWnd)
break;

/ Other program lines J

PTINREGION

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hRgn

X
y

Example

Determines if a point is within a region.

BOOL PtInRegion(HRGN hl?gn, intX, int 1');

• Win 2.0 • Win 3.0 • Win :1.1

This function is similar to PtlnRectO, except a region is used in place of a rectangle. It is typically
used in conjunction with the mouse cursor to determine if the location of the cursor is within a
region.

Used in painting programs. For example, if the cursor is within a region, a flood fill operation may
be possible.

BOOL. TRUE if the point is within the region, FALSE if not.

PtlnRectO, PtVisibleO

HRGN: A handle to a region.

int: The logical X coordinate ofthe point.

int: The logical Y coordinate of the point.
This example paints an irregular shape using a clipping region, as illustrated in Figure 11-68.

507

WINDOWS API BIBLE

When the user clicks the left mouse button inside the client region (MtCLBUTTONDOWN mes
sage), the program checks whether the mouse cursor is Within the region. If so, it shows the
message "In Region" until the mouse button is released.

long FAR PASCAL VndProc (HVND hVnd, unsigned i"essage, WORD wParam, LONG lParam)
(.

)

PAINTSTRUCT
HDC

ps ;
hOC;
hRgn ; static HRGN

POINT pArray [SJ = (10, 10, 50, 40, 90, 20, 60, 0,
40, 20) ; .

POINT pCursor ;

switch (i"essage)
{

1* process windows messages *1

)

caseW"_CREATE :
hRgn = CreatePolygonRgn (pArray, 5, WINDING) ;
break; .

case W"_PAINT: .
BeginPaint (hWnd, Ips) ;
SelectClipRgn (ps.hdc, hRgn); .
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH» ;
Rectangle (ps.hdc, 0, 0, 500, 500) ; 1* paint gray *1
EndPa;nt (hWnd, Ips) ;
break;

case W"_LBUTTONDOWN:
pCursor= "AKEPOINT(lParam)
hDC = GetOC (hWnd) ; ,
if (PtInRegion (hRgn, pCursor.x,~Cursor.y})

TextOut (hDC, 10,50, "In Region", 9) ;
eLse

TextOut (hDC, 10, SO, "No~ Tnside", 10) ;
ReLeaseDC (hWnd, hDC) ;
break;

case W"_LBUTTONUP:
InvaLidateRect (hWnd, NULL, TRUE)
UpdateWindow (hWnd) ;
break;

case W"_CO""AND: 1* proce-ss ~enu ite.s *1
switch ("Para.)
{

case ID"_QUIT: 1* send end of application message *1
OestroYWindow (hVnd)
break;

>
break;

case W"_DESTROY: 1* stop appl i cation *1
. DeleteObject (hRgn)

PostQuit"essage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hW'nd, i"essage, WParalll, lParam) ; .

return (OL) ;

PrVISIBLE
Purpose

S)'atu

Deseiiptioa

Checks whether.a point is within the clipping region.
BOOL PtVlslhle(HDChDC, intX, inlY); .

• Win 2.0 • Win 3.0 • Win 3.1 .

This function checks whether the given point is within the clipping region set for the device
context.

VIM

letuns
See Also

, Used most frequently io check if the mouse pointer or ~ret position is within the area that will
'. ultimately become painted.. -:

BOOL; TRUE if the point is within the clipping region,FALSE if not
PtlnReglonO,PtlnR~ctO, SelectClipRgriO'"' .

508

11. PAINTING THE SCREEN •

Parameters
ItDC nne: The device context handle that has a clipping region

x
y

Example

selected. '

int: The logical X coordinate of the point to check.
Int: The logical Y coord~te of the point to check.
This example, which is illustrated in Figure 11-69, paints an
elliptical area by setting an elliptical clipping region, and then
painting over it with a gray brush. If the user clicks the left
mouse button within the clipping region, the word' "Visible"
appears inside the ellipse. Othenvise "Not Visiblen appears.

110 hi Q.ult

The printing must be within the ellipse, as this is the clipping Figure 11·69, PtVisible()
area and text outside of it would not be printed. Example,

Note that the clipping area must be specified every time
the device context handle is fetched, In this example, setting the clipping region within the
WM_PAlNT logic is effective only until the EndPaintO function is called.

long FAR PASCAL YndProc (HWND hUnd, unsigned iMessage,'WORD wPara.; LONG lPar~.)
(.

)

PAINTSTAUCT
HDC

ps ;
hDC;
hRgn;
pCursor ;

static NR6.
POINT

switch (iRessage)
(

1* process windows lIessages .,

~, ,

case W"_CREATE :
hRgn = CreateEllipticRgn (20, 20, 100, 60) ;
break;

case W"_PAlNT:
BeginPaint (hYnd, Ips) ;
SelectClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStockObject (LTGAAY_BRUSH» ;
Rectangle (ps.hdc, 0, 0, 100, 100) ;
EndPaint (hYnd, Ips) ; ,
break ';

case W"'_LBUTTONDOWN: ;
pCursor = "AKEPOINT (lParam) ;
hDC = GetDC (hYnd); ,
SelectClipRgn (hDC, hRgn) ;
if (PtVisible (hDC, pCursor.x, pCursor.y»

TextOut (hDC, 30, 30, "Visible", 7) ;
else

, TextOut (hDC, 30, 30, "Not Visible", 11) ;
I Rele~seDC (hYnd, hDC) J

break ; ,
case ""_LBUJ',lONUP:

InvalidateRect (hUnd, NULL, TRUE) ;
~pdateWindow (hWnd) ;
,break;

case W,,-CO,""AND: 1* process aenu i teas *1
switch (wPara.)
(. .
case IDR_QUIT: 1* send end of application aeasage */

)

break;

DestroyWindow (hWnd) ;
break;

case W,,-DESTROY: 1* stop application *1
DeleteObject (hRgn) ;
PostQuitMessage (O},;
break;

d~fault: '1* default windows aeslage proces.ing .,
return DefWindowProc (hWnd, iMessage, wPara., lPara.);

",e'tur,n (00 ;

509

WINDOWS API BIBLE

RECTANGLE

Purpose
Syntax

Description

Uses

Returns
See Also
Parameters

hDC
Xl
YI
X2
1'2
Example

• Win 2.0 121 Win 3.0 • Win 3.1
Draws a rectangle.

'BOOL RectangIe(HDChDC, intXI, int YI, intX2, int Y2)j
The rectangle is dr,awn with the currently selected pen for the border, and filled with the current

. brush. The width and height must not exceed 32,7ij7 units.
Painting rectangular areas. To draw the outline, select the stock object NULL_BRUSH. To fill the
area, but not draw the border, select the stock NULL_PEN.

o BOOL. TRUE if the rectangle was drawn, FALSE on error.
SelectObjectO

Hnc: The device context handle.
int: The logical X coordinate of the upper left corner of the rectangle.
int: The logical Y coordinate of the upper left corner of the rectangle.
int: The logical X coordinate of the lower right corner of the rectangle.
int: The logical Y coordinate of the lower right corner of the rectangle.
This example paints a rectangle in the client area with a hatched brush, as shown ~n Figure 11-70.

long FAR PASCAL WndProc (HWND·hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HPEN

ps ;
hPen ;
hBrush ; HBRUSH

s~itch (iMessage)
{

1* process windows messages *1.

case WM_PAINT:

I Other program lines 1

BeginPaint (hWnd, &ps) ;
hPen = CreatePen (PS_SOLID, 3, RGB (0,0,255»
hBrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (255, 0, 0» ;
SelectObject (ps_hdc, hPen) ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 20, 20, 100, 70) ;
EndPa i nt (hWnd, &ps) to, '
DeleteObject (hPen); .
DeleteObject (hBrush) ;
break;

RECTINREGION o Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns
See Also
Parameters
hOon
lpOect
Example

Checks whether a rectangle is within a region.
BOOL RectlnRegion(HRGN hRgn, LPRECT lpRect)i
The rectangle is considered to be within tht\region if any point falls within the boundS of the
region.
Used to determine if there is any reason to draw a rectangle, as it may fall outside of the clipping
region.
BOOL. TRUE if any part of the rectangle falls inside of the region, FALSE if not.
RectVisibleO

\, .'

HRGN: A llarldle for a region.
LPREc:r: A pointer to a RECT data structure holding the dimensions of the rectangle.
This eiample checks to see if the rectangle is\vithin the clipping region before drawing it. The
clipping region is elliptical and ultimately eliminates all but the upper left corner of the rect
angle. (See Figure 11-71.)

510

• J

11. PAINTING THE SCREEN V

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessagc, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HRGN
RECT

ps ;
hRgn ;
rRec t ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hRgn = CreateEllipticRgn (10, 10, 100, 80)
SelectClipRgn (ps.hdc, hRgn) ;
SelectObject (ps.hdc, GetStockObject (LTGRAY_BRUSH»
SetRect (&rRect, 50, 50, 100, 100) ;
if (RectlnRegion (hRgn, &rRect»

Rectangle (ps.hdc, rRect.left, rRect.top,
rRect.right, rRect.bottom) ;

EndPaint (hWnd, &ps) ;
DeleteObject (hRgn) ;
break;

{Other program lines)

RECTVISIBLE

Purpose

Syntax

Description

Uses

Returns

See Also

Parametel'S
hDC

lpRect

Example

Il Win 2.0 m Win 3.0 IiJ Win 3.1
Checks to see if a rectangle has points within the current clipping region.

BOOL RectVlSible(HDC hDC, LPRECT lpRect)j

Clipping regions are created with SelectClipRgnO. Once set, only points within the clipping re
gion are painted. RectVisibleO checks that at least one point on a rectangle falls within the
clipping region.

Checking whether the rectangle is visible can save time on screen refresh cycles where the clip
ping region or rectangle change location. There is no point in painting the rectangle, or shape
bounded by a rectangle (are, chord, pie, ellipse), if all of the shape falls outside of the current
clipping region.

BOOL. TRUE if part of the rectangle falls within the clipping region, FALSE if not.

RectlnRegionO, SelectClipRgnO"

HDC: The device context handle.

LPRECT: A pointer to a RECT data structure containing the dimensions of the rectangle. This
can also be the bounding rectangle used to paint a chord, arc, pie, or ellipse.

This example, which is shown in Figure 11-72, creates a rectangular clipping region. Before paint
ing a filled ellipse, the program checks that the bounding rectangle of the ellipse will be visible
(within the clipping region).

Do It I Quit Do It! Quit Do It I Quit

•
Figure 11-70. Rectangle()
Example.

Figure 11-71. RectInRegion()
Example.

511

I
Figure 11-72. RectVisible()
Example.

WINDOWS API BIBLE

long FAn PASCAL WndProc (HWND hWnd, unsignediMessage, WORD wParam, LONG lParam) < .
PAINTSTIlUCT

'HRGN '
ps i
hRgn i
rRect ;
hBrush i

RECT
HBRUSH

switch (iHes50ge)
<

1* process windows messages *1

--

case Wr'LPAINT:
BeginPaint (hWnd, &ps) ; ,
hRgn = CreateRectRgn (10, 10, 100, 80) i
SelectClipRgn (ps.hdc, hRgn) i
hDrush = CreateHatchBrush (HS_DIAGCROSS,

RGB (0, 0, 255» i
SelectObject (ps.hdc, hBrush) ;
SetRect (&rRect, 30, 0, 80, 90) i
if (RectVisible (ps.hdc, &rRect»

Ellipse (ps.hdc, rRect.left, rRect.top,
. rRect.right, rRect.bottom) i

EndPaint (hWnd, &ps) i
DeleteObject (hBrush)
DeleteObject (hRgn) ;
break i .

IOlkerprogram linesJ

RGB
Purpose,

Syntax

Description

iii Win 2.0 g Win 3.0 II Wm 3.1
Creates a 32-bit color value when given the three primary color elements.

COLORREF RGD (BYTE cRed, BITE cGreen, BYI'E cBlue) ;

Windows uses 32-bit values to specify colors when creating pens and brushes. The 32·bit values
encode three primary-color contributions, the red, green, and blue elements tl18t make up a
color. If all of the elements are
zero, the color is black (no in·
tensity). If all of the elements
are equal to 255, the maximum
value for a color element, the
color is white. Other combina·
tions give colors which are de· Figure 11·73. RG!J()Example.
termined by the mixing of the
primary values. Windows achieves colors which are not on the system palette by dithering, the
process of mixing pixels of different colors to achieve an area average color similar to the pure
color specified. Systems with advanced displays (better than 16-color VGA) can use th~ palette'
functions to achieve other pure colors. The RGBO macro will always result in the dithered color
being used. ROBO and the Oet_ColorO macros are defined in WINDOWS." as

#de~ineRGB(r,g,b) «OWORO)«(BYTE)(r)I«WORD)(g)«8»I«(DWORD)(BYTE)(b))«t6»)

~defino GetRValue(rgb)
Udefine GetGValueCrgb)
IIdefine.GetOllaluo(rgb)

«BYTE)(rgb»
«BYTE)«(WOP.D)(rgb» » 8»
«BYTE)«rgb»>16»

Uoos .

Returns

Sec Also
Parameters
cOed

cGreen
cBlue

Specifying a color of a pen or brush.

',PqtORREF, the 32-bit (DWORD) color value.

. <,JreatePaletteO, PALE'FfEROBO, PALETrEINDEXO

BYfE: The red component of the color, 0 to 255.

BYI'E: The green component of the color} 0 to 255.
/ '

BITE: The blue component of the color, 0 to 255.

512.

Example

11. PAINTING THE SCREEN ~

This example uses a series of sixteen brushes to paint sixteen rectangles on the screen. They
show a smooth gradation in gray scale from the left to the right when displayed on the screen. The
reproduction in Figure 11-73 does not fully capture the gray tones. Intermediate colors are repre
sented by dithered patterns if the colors are not available on the system palette.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH
int

ps ;
hBrush ;
i ;

switch (iMessage)
{

1* process windows messages *1

cas e W M_P A I NT:

{Other prograln lines}

BeginPaint (hWnd, &ps) ;
for (i = 0 ; i < 16 ; i++)
{

hBrush = CreateSolidBrush (
RGB (i * 16, i * 16, i * 16» ;

SelectObject (ps.hdc, hBrush) ;
RectangLe (ps. hdc, ; * 30, 0, (; + 1) * 30, 50) ;
SeLectObject (ps.hdc, GetStockObject (WHITE_BRUSH»
DeLeteObject (hBrush)

EndPaint (hWnd, &ps) ;.
break;

ROUNDRECT • Win 2.0 • Win 3.0 • Win 3.1·

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

Xl

YI

X2

Y2

X3

Y3
Example

Draws a rectangle with rounded corners.

BOOL RoundRect(HDC Tinc, int Xl, int Yi, int X2, int Y3, int
X3, intY3);

The rectangle is drawn with the selected pen and filled with
the selected brush.

This shape can be used to draw custom buttons.

BOOL. TRUE if th~ shape was drawn, FALSE'on error.

CreateRoundRectRgnO

HDC: The device conte)..'i handle.

Do It I Quit

• Figure 11-74. RoundRect()
}}rample.

int: The logical X coordinate of the upper left corner of the bounding rectangle.

int: The logical Y coordinate of the upper left corner of the bounding rectangle.

int: The logical X coordinate of the lower right corner of the bounding rectangle.

int: The logical Y coordinate of the lower right corner of the bounding rectangle.

int: The logical width of the ellipse used to round the corners.

int: The logical height of the ellipse used to round the corners.

This example paints a rounded rectangle using a hatched brush and the default black pen, as
shown in Figure 11-74.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

PAINTSTRUCT
HBRUSH

switch (iMessage)
{

ps ;
hBrush ;

BeginPaint (hWnd, &ps) ;

513

1* process windows messages *1

.\

WINDOWS API BIBLE

hBrush = CreateHatchBrush CHS_CROSS, RGB (0, 0, 255}) ;)
SelectObject Cps.hdc, hBrush) ;
RoundRect (ps.hdc, 1D, 10, 80, 60, 25, 20) ;
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

IOther program lines}

SELECTCLIPRGN • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

COMPLEXREGION

ERROR

NULLAEGION

SIMPLEREGION

Uses a region to clip output to a device context.

int SelectCIipRgn(HDC hDC, HRON hRgn)i

Before this function can be used, a region must be created. The
region is then selected into the device context as the clipping
boundary with SelectClipRgn(). All subsequent output to the
device context is only painted if it falls within the clipping re-
gion.

Clipping regions are frequently efficient ways to draw complex
shapes. For example, consider the example in Figure 11-75. A
direct algorithm dra\\ing all of the lines that make up the inner
circle to the right length would be slow and difficult to code.
Using a clipping region allows the area to be filled with a simple

;-' '. generic FP
Do It I .Quit

call to RectangleO. Figure 11-75. SelectClip-
int, the type of region selected. This can be any of the region Rrrn() Example.
types in Table 11-23.

The new region has overlapping borders.

No new region was created.

The new region is empty.

The new region does not have overlapping borders.

Table 11-23. Regient Types.

See Also CreateEllipticRgn(), CreateRectRgnO, CombineRgnO
Parameters
hDC
kRgn

Example

HDC: The device context handle.
HRGN: The handle of the region to use as the clipping region.
In thi~ example, the same rectangle is drawn twice. The first time, there is no selected clipping
region.IThe rectangle- is drawn with a NULL brush, so only the border is displayed. An elliptical
clipping region is then set up with the same bounding rectangle dimensions. The second time the
rectangle is drawn, a hatched brush is used. Only the portion of the rectangle within the elliptical
clipping region is drawn. (See Figure 11-75.)

"
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wp~~am, LONG lParam)
(

PAINTSTRUCT
HBRUSH
HRGN

switch (iMessage)
{

case Will_PAINT:

ps ;
hBrush, hOldBrush ;
hRgn ;

1* process windows,messages *1

BeginPaint ChWnd, &ps) ;
SelectObject Cps.hdc, GetStockObject-(NULL_BRUSH)} ;

514 -,,'

. 11. PAINTING THE SCREEN ~

SelectObject (ps.hdc, GetStockObject (BLACK_PEN» ;
Rectangle (ps.hdc, 10, 10, 100, 1QO) ;

hBrush = CreateHatchBrush (HS_DIAGCROSS,
RGB (0, 0, 255» ;

hOldBrush = SelectObject (ps.hdc~ hBrush) ;
hRgn = CreateEllipticRgn (10, 10, 100, 100) ;
SelectClipRgn (ps.hdc, hRgn) ; .
Rectang,le Cp~.hdC, 10,10, 100, 100) ;
SelectObject (ps.hdc, hOldBrush) ;
DeleteObject (hBrush) ;
EndPaint (hWnd, &ps) ;

,'.i,
{Otkerprogram lines}

DeleteObject (hRgn) ;
break;

SELECTOBJECT • Win 2.0 • Wm 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

hObject

Eumple

Selects an object into a device context.

HANDLE SelectObject(HDC hDC, HANDLE hObject)j

Before an object like a pen, font, brush, or region can be used in painting operations, it must be
selected into the device context. If the same type of object was already selected, it is displaced by
the new object selected. . ,

Selecting pens, fonts, brushes, and regions into a device context. Bitmaps can be selected into
memory device contexts only. Logical color palettes are selected using the SelectPaletteO func
tion, not SelectObjectO. Use DeleteObjectO to delete every object created after it is no longer
needed. Do not delete stock objects. Do not delete objects currently selected into a device con
text.

The handle ofthe object being replaced. This is convenient, as it is frequently desirable to delete
the previous object once it is displaced from the device context.

DeleteObjectO, CreatePenO,. CreateSolidBrushO, CreateHatchBrushO, CreateRectRgnO,
CreateEllipticRgnO, CombineRgnO, CreateFontO

HDC: The device context handle.

HANDLE: The handle of the brush, font, pen, or region to select into the device conte~. It can be
the handle of a bitmap if hDC is the handle of a memory device context (see Chapter 15,
Bitmaps).

The previous example under SelectClipRgnO shows SelectObjectO initially being used to select
two stock objects. They are used to paint a rectangle's border. Later the function is used again to
select a hatched brush, prior to painting a second rectangle which is clipped by an elliptical
region. The previous brush handle is saved as hOldBrush, allowing the old brush to be selected
again into the device context prior to deleting the custom brush. Objects that are selected into a
device context should not be deleted until they are displaced by another call to SelectObjectO.

SETBRUSBORG • Win 2.0 • Win 3.0 • Win 3.1

Purpose Changes the, origin used by the device context to line up pattern brushes.
/ Syntax DWORD SetBrushOrg(HDC hDC, intX, int Y)j

Description'

Uses

Windows maintains a logical origin in order to calculate how to align pattern and hatched
brushes. SetBrushOrgO allows you to change this value. Setting the origin only affects a brush if
the origin is changed before the brush is created, or after a call to UnrealizeObjectO.
Used to keep patterns from merging into nearby objects, such as with neighboring bars on a bar
chart.

WINDOWS API BIBLE

Returns

See Also

Parameters
hDG
X
Y

Example

DWORD, the brush origin. The low-order word contains the X
position. The high-order word contains the Y position.

GetBrushOrgO, CreateHatchBrushO, CreatePatternBrushO,
UnrealizeObjectO '

HDC: The device context handle.
int: The new brush X origin. Its value must be between 0 and 7.
int: The new brush Yorigin. Its value must be between 0 and 7. Brush Origin = O. 0

This example paints two rectangles with hatched brushes. (See cond Brush Origin = 3. 3
Figure 11-76.) The first brush is created with 0,0 as the brush
origin. The second with 3,3 as the brush origin. The result is Figure 11-76. GetBrushOrg(J
that the two patterns are offset by three pixels. This type of and SetBrushOrg(} Example.
offset can be desirable when it is important to show a separa-
tion between two areas, such as bars on a black and white bar chart.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iHessage, WORO wParam, LONG lParam)
{

PAINTSTRUCT
HBRUSH

ps ;
hBrush ;
cBuf [128J ;
dwBrushOrg ;

char
OWORO

switch (iMessage)
{

/*'process windows messages */

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SetBrushOrg (ps.hdc, 0, 0) ;
hBrush = CreateHatchBrush (HS_CROSS, RGB (0, 0, 255»
SelectObject (ps .hdc, hBrush) ; •
Rectangle (ps.hdc, 0, 0, 40, 100) ;
dwBrushOrg = GetBrushOrg (ps.hdc) ;
TextOut {ps.hdc, 0, 110, cBuf, wsprintf (cBuf,

"First Brush Origin = .Xd, 7.d",
LOWORO (dwBrushOrg), HIWORO-{dwBroshOrg») ;

SelectObject (ps .hdc; GetStockObject (WHITE_BRUSH).) ;
OeleteObject (hBrush) ;
SetBrushOrg (ps.hdc, 3, 3) ;
hBrush = CreateHatchBrush {HS_CROSS, RGB (0, 0, 25~),?
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 41, 0, 80, 100) ;
dwBrushOrg = GetBrushOrg (ps.hdc) ;
TextOut (ps.hdc, 0, 140, cBuf, wsprintf (cBuf,

"Second Brush Origin = Xd, 7.d",
LOWORO (dwBrushOrg), HIWORO (dwBrushOrg») ;

EndPaint (hWnd, &ps) ; -
OeleteObject (hBrush) ;
break;

IOther program lines J

SETPIXEL

Purpose
Syntax

Description

Uses

Returns.

• Win 2.0 • Win 3.0 • Win 3.1
Changes to the color of a single point on the device context.
DWORD SetPixel(HDC hDe, intX, int Y, DWORD creolor);
This function sets the color of one point on the device context. The color will be the closest color
to that specified by creolor possible within the limitations of the device.
Only used in specialized point-by-point drawing operations such as drawing fractal images. Nor
mally, this function is avoided because the time needed to fill a r~gion on the device is -unaccept
ably long.
DWORD, the 32-bit color value that actually was painted. This valu~ will only be equal to crColor '
if the device can display the exact color.

516

See Also
Parameters
hDC
X
Y
crColor
Example

GetPixelO

HDC: The device context handle.
int: The logical X coordinate of the point to change color.
int: The logical Y coordinate of the point to change color.

11. PAINTING THE SCREEN ~

DWORD: The 32-bit color value desired. Use the RGB macro to create a color value.
This example shows a shaded rectangle behg painted, one pixel at a time. The starting pixel
color is first retrieved using GetPixelO. This color is then incremented and used to set the new
color ofthe pixel with SetPixelO. This method of drawing is unacceptably slow.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
DWORD
int

ps ;
dwColor ;
nRed, nBlue, nGreen, i, j ;

switch (iMessage)
{

1* process windows messages */

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
for (i = 0 ; i < 1 0 ; i ++)
{

}

for (j = 0 ; j < 256 ; j++)
{

}

dwColor = GetPixel (ps.hdc, j, 1) ;
nRed = (GetRValue (dwColor) + j) % 256 ;
nBlue = (GetBValue (dwColor) + j) X 256 ;
nGre~n 7 (GetGValue (dwColor) + j) X 256 ;
SetPixel (ps.hdc, j, i,

RGB (nRed, nGreen, nBlue» ;

EndPaint (hWnd, &ps)
break;

{Other program lines J

SETPOLyFILLMODE \I Win 2.0 • Win 3.0 II Win 3.1
Purpose
Syntax

Description

Uses
Returns

SeeAl§o
Parameters
hDC
nPolyFillMode

ALTERNATE

WINDING

Changes the polygon filling mode of a device context.
int SetPolyFillMode(HDC hDC, int nfolyFillMode)j
The polygon filling mode determines how areas of intersection within the polygon are painted.
This is only a faCtor if the lines defining the polygon cross.
Used with GetPolyFillModeO to determine' and change the fIlling mode.
int, the previous fIlling mode. NULL on error.
GetPolyFillModeO

HDC: The device context handle.
int: The desired polygon fllling mode. This can be either ofthe modes in Table 11-24.

The GDI fills in areas between sides 1 &2, sides 3&4, etc.

The GDI fills in the total area defined by the outermost lines. This will normally fill the entire interior of the
polygon, except in cases where more than one intersection of areas defined by the polygon's lines occurs
(see the example).

Table 11-24. Polygon Filling Modes.

Example See the example under GetPolyFillModeO.

517

WINDOWS API BIBLE

SETRECT' • Wm 2.0' • Wm 3.0 • Win 3.1
Purpose

Syntax
Descripti.on

Enters all four values for a RECT data structure.
, void SetRect(LPRECT lpRect, intX}, int Yl. intX2, int n!)j

'l'he'RECT ~ata structure is defined in WINDOWS.H as follows:
typedef struct tagRECT

<
\ int left;

int top;
int, right;
int bottom;

} RECT;

Returns
Parameters '
lpRece.
Xl
YI

X2

n!

SetRectO allows all four 'elements of the structure to be set
'with one function call. '

No returned value (void).

LPRECT: A pointer to a RECT data structure.
int: The X coordinate of the upper left corner of the rectangle.
int: The Y coordinate of the upper left corner of the rectangle;
int: The X coordinate of the lower right corner of the rectangle.
int: The Y coordinate of the lower right corner of the rectangle.

Do It I Quit

Figure 11-77. SetRect()
Exampk> '

Example In this example, SetRectO is used to fill in the values for a rectangle that is then used to define
the bounding rectangle of an elliptical region. (See Figure 11-77.)

long "FAR PASCAL WndProc (HWND hWnd, unsigned ;Message, WORD wParam, LONG lParam)
(~

PAINTSTRUCT
HBRUSH
HRGN
RECT

ps ;
hBrush ;
hRgn ;
rRect ;

switch (iMessage)
<

1* process windows messages *1

case WM_PAINT: '
BeginPaint (hWnd, &ps) ;
hBrush ~ CreateHatchBrush (HS_DIAGCROSS,

RGB ~O, 0, 255» ;
SetRect (&rRect, 10, 10, 100, 80) ;
hRgn = CreateEllipt;cRgnIndirect C&rRectl, ;
FillRgn (ps.hdc, hRgn, hBrus_hl ;
EndPa;nt (hWnd, &ps) ;
DeleteObject (hBrush) ;
DeleteObject (hRgn) ;
break;

{Other program lines}

SETRECTEMPTY • Win 2.0 • Wm 3.0 • Win 3.1
Purpose Sets all the elements of a RECT data 'structure to zero.
Syntax void SetRectEmpty(LPRECT lpRect);
Description

Returns
See Also
Parameters
lpRect

This is a shortcut method to zero all of the values in a RECT data structure. See SetRectO for the
definition of RECT.
No returned Value (void).

IsRectEmptyO, SetRectO

LPRECT: A pointer to a RECT data structure.

" 518

Example

11. PAINTING THE SCREEN V

In this case, a rectangle is defined when the program starts ~CCREATE message received).
The rectangle is used to define a clipping region, which is used to paint an ellipse on the client
area. When the user clicks the "Do It!" menu item, the rectangle is set to empty. The next
WM_PAINT message clears the client area.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUeT
HBRUSH

ps ; -
hBrush ;
hRgn ;
rRect ;

HRGN
stati e REeT

switch (iMessage)
{

1* 'process windows messages *1

case U"_CREATE:
SetReet (SrReet, 10, 10, 80, 120)
break;

case W"_PAINT:
DeginPaint (hWnd, &ps) ;
if (!IsRcctErnpty (SrReet»
{

}

hBrush = CreateHatchBrush (HS_OIAGCROSS,
RGB (0, 0, 255» ;

hRgn = CreateElliptieRgnlndirect (SrRect) ;
FillRgn (ps.hdc, hRgn, hBrush) ;
SelectObject (ps.hde, GetStockObjeet (WIHTE_BRUSH»
DeleteObjeet (hBrush)
OeleteObjeet (hRgn) ;

EndPu;nt (h'Wnd, ips) ;
break;

case W',-COMMANO: 1* process menu Hems *1
switch (wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1
SetRectEmpty (&rReet) ;
InvaLidateRect (hWnd, NULL, TRUE> ;
break;

{Other program lines}

PIupose
Syntax
Description

Uses

Retaras
See Also
ParametBs
I&Rgn

Xl

Yl

Xl
fJ

II Win 2.0 a Win 3.0 Ea Win 3.1

Changes the bounds of a rectangular region.
void SctRectRgn(HUGN hRgn, intXl, int Yl, intX2, int Y2)j
This is an efficient way to change the size of a rectangular re
gion. The region must already exist, with memory allocated in
tbe local heap by a previous call to CreateRectRgnO.

Do It I Quit

Handy, when there is a series of rectangular regions used in
sequence: See the following example. The application must
delete the region before the program exits to return all memory
to the system.
No returned value (void).
CreateRectRgnO

;' Figure 11-78:SetRectRgn()
HRON: A handle to the rectangular region to resize. The region Example.
must have been allocated by a previous call to CreateRectRgnO.
int: The logical X coordinate of the upper left comer of the rectangle.
int: The logical Y coordinate of the upper left comer of the rectangle.
int: The logical X coordinate of the lower right comer of the r~ctangle .

. i~t: The logical Y coofdinate of the lower right,eorner of the rectangle.

519

WINDOWS API BIBLE

Example This example efficiently draws a series of progressively smaller regions. The same region is re
used (not destroyed and then created) each time. SetRectRgnO establishes the region's size
before each painting. (See Figure 11-78.) Note that memory for the region is allocated when the
program starts (W1-CCREATE message received). The region is destroyed as the program exits,
freeing the memory associated with the region.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

PAINTSTRUCT
HBRUSH
static HRGN
int
RECT

ps ;
hBrush ;
hRgn ;
i . ,
rRect ;

switch (iMessage)
{

1* process windows messages *1

}

case WI'CCREATE:
hRgn = CreateRectRgn (0, 1, 2, 3) ;
break;

case WM PAINT:
-Beginpaint (hWnd, &ps) ;

SetRect (&rRect, 10, 10, 100, 100)
for (i = 0 ; i < 8 ; i ++)
{

SelectObject (ps.hdc,

1* arbitrary size *1

GetStockObject (BLACK_BRUSH» ;
SetRectRgn (hRgn,rRect.left, rRect.top,

}

rRect.right, rRect.bottom)
PaintRgn (ps.hdc, hRgn) ;
InflateRect C&rRect, -5, -5) ;
SelectObject (ps.hdc,

GetStockObject (WHITE_BRUSH» ;
SetRectRgn (hRgn,rRect.left, rRect.top,

rRect.right, rRect.bottom)
PaintRgn (ps.hdc, hRgn);
InflateRect C&rRect, -5, -5)

EndPaint (hWnd, &ps) ;
brea k ;

case WM COMMAND: 1* process menu i terns *1
- swi tch (wParam)

{

case 10M_DOlT: 1* User hit the "00 it" menu item *1
InvalidateRect (hWnd, NULL, TRUE) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
'break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hRgn) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

SETROP2 II Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

,.-Description

Changes the raster drawing mode of a device context.

int SetROP2(HDC kDC, int nDrawMode)j

The default, R2_COPYPEN, paints the pen color regardless of the underlying colors. With the
other drawing modes, the pen is dra,m on the device context after comparing the pen color to
the existing color at eachX,Yposition being dra~. With color devices, each of the three primary

520

Uses

Returns

See Also

Parameters
hDC

nDrawMode

I

colors is dealt with separately, using the
same binary logic. The blue element of the
pen color is compared to the blue element
of the pixel, etc.
Only a few of the ROP2 operations typi
cally are used. The common ones are
R2_NOT, which makes the pen always vis
ible and R2_XORPEN which makes the
pen line disappear if the same line is
drawn twice.
int, the previous drawing mode. This is
one of the 16 values shown in Table 11-25.
GetROP2

HDC: The device context handle.

int: One of the following drawing modes.

11. PAINTING THE SCREEN' 'Y

R2 BLACK
R2 WHITE
R2 NOP

--'--~-'" R2 NOT
R2 COPYPEN
R2 NOTCOPYPEN
R2 MERGEPENNOT

_.-;--,---.1 R2 MASKPENNOT
R2 MERGENOTPEN
R2 MASKNOTPEN
R2 MERGEPEN
R2 NOTMERGEPEN
R2 MASKPEN

~~-,---. R2 NOTMASKPEN
------" R2 XORPEN

R2_NOTXORPEN

In the Boolean operation column, the "P" Figure 11-79. SetROP2() Example.
stands for the pen color value and the "D"
stands for the display color value. For simplicity, the explanations are in terms of a black and
white display. For color displays, the same logic is applied to each color element (red; blue,
green).

t ~"",V, ',a,l, u,',e,',':;':,:" ,. ~ '," ,: ' . B '!'Op' 'tion _ ' "; ".: <.' ,'->,,', :':' 00 Ian , era ", : I'V'Ij
.. ".~

R2_BLACK

R2_WHITE

R2_NOP

R2_NOT

R2_COPYPEN

R2_NOTCOPYPEN

R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_MERGEPEN

R2_NOTMERGEPEN

R2_MASKPEN

R2_NOTMASKPEN

R2_XORPEN

R2_NOTXORPEN

0

1

0

-0

P

-P

Pl-D

P&-D

-PID

-P&D

PID

-(PI D)

P&D

-(P&D)

PAD

(PAD)

Always black.

Always white

No effect on display.

Invert display under line.

Pen color painted regardless of display.

Pen color inverted regardless of display.

A black pen inverts the device pixels. Drawing twice at the
same location erases the line.

Table 11-25. Raster Drawing Modes.

Example This example (see Figure 11-79) demonstrates all 16 ROP modes by painting a black and white
line against black and white backgrounds with each of the ROP2 modes. (Credit should be given
to Peter Norton and Paul Yau for this clever way of displaying the drawing modes.)

521

WINDOWS APLBIBLE

long FAR'PASCAL WndProc ~HWND hWnd, unsigned iM~~, WORD wPara.; LONG lPara.)
(.. ,- '.

PAINTSTRUCT
HPEN

ps ;
hPcnWhite, hPenBlack ;
i . int

int nROPfilodes [16] = (RZ_BLACK, RZ_WHITE, RZ_HOP;
R2_NOT, R2_COPYPEN, R2_NOTCOPYPEN, RZ_MERGEPENNOT,
R2_MASKPENNOT, R2_MERGENOTPEN, R2_MASKNOTPEN, R2_MERGEPEN,
P.2_NOTMERGEPEN, R2~"ASKPEN, R2_NOTMASKPEN, R2_XORPEN,
R2_NOTXORFEN) ;

char *cROPModeNames [16] = ("R2_BLACK", "RZ_WHITE",
"R2_NOP", "R2_NOT", "R2_COPYPEN"; "R2_NOTCOPYPEN",
IR2_MERGEPENNOT", "R2_MASKPENNOT", "R2.:..MERGENOTPEN",
"R2_MASKNOTPEN", "R2_MERGEPEN", "R2_NOTMERGEPEN",
"R2_MASKPEN", "R2_NOTMASKPEN", "R2_XORPEN",
"R2_NOTXORPEN") ;

switch (iMessage)
(

1* process windows messages *1

case WM_PAINT:

{Other program lines]

SETSYSCOLORS

BeginPaint (hWnd, Ips) ;
TextOut Cps'. hdc, 0, 0, "BLACK PEN", 9) ;
TextOut (ps. hdc, 80, 0,. "WHITE PEN", 9) ;
SelectObject (ps.hdc, GetStockObject (BLAC~BRUSH» ;
Rectangle (ps.hdc, 0, ZO, 40, 270) ;
SelectObject (ps.hdc, GetStockObject (WHITE_BRUSH» ;
Rectangle (ps.hdc, 40, 20, 80, 270) ;
SelectObject (ps.hdc, GetStockObject (BLACK_BRUSH» ;

. Rectangle (ps.hdc, 80, 20, 120, (70) ;
SelectObject (ps.hdc, GetStockObject (WHITE_BRUSH» ;
Rectanyle (ps.hdc, 120, 20, 160, 270) ;
hPenWhite = CreatePen (PS_SOLID, 3,

RGB (255, 255, (55» ;
hPenBlack = CreatePen (PS_SOLID, 3, OL)
for (1 = 0 ; i < 16 ; ;++)
(

)

SetROP2(ps.hdc, nROPModes [i]) ;
SelectObject (ps.hdc, hPenBlack) ;
MoveTo (ps.hdc, 0, (1 * 15) + 27) ;
LineTo (ps.hdc, 77, (1 * 15) + (7) ;
SelectObject (ps.hdc, hPenWhite) ;
MoveTo (ps.hdc, 80, (1 * 15) + (7) ;
LineTo (ps.hdc, 157, (i * 15) + 27) ;
TextOut (ps.hdc, 165, (i * 15) + 20,

- cROPModeNames til,
strlen (cROPModeNames [1]» ;

EndPa1nt (hWnd, Ips) ;
DeleteObject (hPenBlack)
DeleteObject (hPenWhite)
break;

• Win 2.0 • Win 3.0 .Win3.l
Changes the color values that Wmdows uses to paint background and noncllent areas of the
screen and windows.

s,ntax
Description

. Uses

Returns
See AlSo

void SetSysColors(int nChanges, LPINT IpSysColor, DWORD FAR *lpColorValues);

Windows maintains a table of 20-color values that are used to specify what color to paint the
borders, buttons, etc. This function allows you to change those values temporariJy. The changes
remain in effect for the duration of the Wmdows session. The changes'are not permanent, as the
WIN.lNI me is not modified .
Temporary changes to the system colors.
No returned value (v.old).
GetSysColorO

522

Parameters
nChanges int: The number of system color values that will be changed.

11. PAINTING THE SCREEN ~

lpSysColor LPINT: A pointer to an array of at least nCkanges integers. The value in each array element
determines which color will be changed. This value can be any of the colors listed in Table 11-26.

COLOR_ACTN£BOROER

COLOR~CTNECAPTION

COLOR_APPWORKSPACE

COLOR_BACKGROUND

COLOR_BTNFACE

COLOR_BTNSHADOW

COLOR_BTNTEXT

COLOR_CAPTIONTEXT

COLOR_GRAYTEXT

COLOR_HIGHUGHT

COLOR_HIGHUGHTEXf

COLORJNACTIVEBOROER

COLORJNACTIVECAPTION

COLOR_MENU

COLOR_MENUTEXT

COLOR_SCROUBAR

COLOR_WINDOW

COLOR_WlNDOWFRAME

COLOA_WlNDOWTEXT

Tablil1-26. System Colors.

The active window border.

The active window caption.

The background color for MOl (mu~iple docume~t interface) applications.

The desktop (background on which all programs and icons are painted).

Button face color.

Button edge color.

Button text color.

The caption text color.

Grayed (disabled) menu item text color. The returned color is set to zero if the display does not
support a solid gray color.

Selected item color in a control.

Text color in a selected con601.

Color of an inactive window border.

Color of an inactive window caption.

The menu background color.

The menu text color.

The scroll bar gray area.

The window background color.

The window frame color.

The color of text in a window.

lpColorValues DWORD FAR *: A pointer to an array of m,yORD valuesJhat contain the 32-bit color values to use
for each color specified by the IpSysColor' el,ements. There must be at least nChanges elements
in the array. ' '

BeJ8ted Messages WM_SYSCOLORCHANGE should be sent after the function is called. This message notifies all
applications that the system colors have been modified.

Example When the user clicks the "Do It!" menu item, the system color for the active caption is changed to
bright red, and the system color for button text is changed to blue. Windows automatically re

, paints the nonclient areas of the windows to accommodate these changes. The changes remain in
effect until the Wmdows session is ended. No change is made to the WIN.INI me settings, so the
changes do not appear the next time Windows is,started.

long FAR PASCAL WndProc (HWND hWnd,unsigned iMessage, WORD wParam, LONG lParam)
(.

int nColorlndex [2] ;
DVORD • nColorValue [2] ;

Iwitch (1Melsage)
(

1* proc~ windows messages *1

case WM_COMMAND: 1* process· menu. t~~ms *1
switch (wPara.)
(

523

WINDOWS API BIBLE

case 10M_DOlT: 1* User .hi t the "Do it" menu item *1
nColorlndex [OJ = COLOR_ACTIVE CAPTION ;
nColorValue [OJ = RGB (255, 0, 0) ;
nColorlndex [1J = COlOR_BTNTEXT ;
nColorValue [1J = RGB (0, 0, 255) ;
SetSysColors (2, nColorlndex, nColorValue) ;
PostMessage (-1, WM_SYSCOlORCHANGE, 0, Ol) ;
break; -

IOther program lines J

UNIONRECT

Purpose

Syntax

Description

Uses

Returns

Sec Also

Parameters
lpDestRect

lpSrc1Rect
lpSrc2Rect
Example

• Win 2.0 • Win 3.0 • Win 3.1
Sets the size of a rectangle equal to the smallest rectangle that will enclose two other rectangles.

int UnionRect(LPRECT lpDestRect, LPRECT lpSrcJRect,
CPRECT lpSrc2Rect)j

The union of two rectangles is a third rectangle that encloses
the other two. The source rectangles can be either separate or
overlapping.

The union is the smallest area that can be painted to cover the
two source rectangles.

into Zero if the union is empty, nonzero if the union is not an
empty rectangle.

RectangleO, IntersectRectO, IsRectEmptyO

-', . generic FF
Do It 1 Quit

Figure 11-80. UnionRect()
LPRECT: A pointer to a RECT data structure that will hold the Example.
union rectangle.
LPRECT: A pointer to a RECT data structure containing the first source rectangle.
LPRECT: A pointer to a RECT data structure containing the second source rectangle.
This example creates two rectangles of fIXed size, and then creates a third which is the union of
the first two. The union is shown as the hatched area, the smallest rectangle that encloses both of
the other two. (See Figure 11-80.)

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPnram, lONG lParam)
{

PAINTSTRUCT
RECT
HBRUSH
HPEN

,

ps ;
r1, r2, r3 ;
hBrush
hPen ;

switch (iHessage)
{

1* process windows messages *1

case WM PAINT:

{Other program lines]

-BeginPaint (hWnd, &ps) ;
SetRect (&r1, 10, 10, 100, 100) ;
SetRect (&r2, 50, 50, 140, 90) ;
UnionRect (&r3, &r1, &r2) ;
hBrush = CreateHatchBrush (HS_CROSS, RGB (0, 0, 255»
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, r3.left, r3.top, r3.right, r3.bottom)
SelectObject (ps.hdc, GetStockObject (NUll_BRUSH»
DeleteObject (hBrush) ;
hPen = CreatePen (PS_SOlID, 3, RGB (255, 0, 0» ;

~:~~~~~~~e~:s~~~~~d~{.~:~~~ ~1.top, r1.right, ·r1.bottom)
Rectangle (ps.hdc, r2.left, r2.top, r2.right, r2.bottom)
EndPaint (hWnd, &ps) ;
DeleteObject (hPen) ;

524

11. PAINTING THE SCREEN "Y

UNREALIZEOBJECT II Win 2.0 II Win 3.0 EI Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hObject

Used to reset a brush origin or a palette.

BOOL UnrealizeObject(HBRUSH hObject)j

This function resets a device context so that it does not "realize" the brush origin or palette,
which allows a new brush origin or palette to be selected into the device context. Do not attempt
to reset the origin of a stock brush.

Used to make sure rectangles filled with hatched brush pat
terns do not "run into" each other.

BOOL. TRUE if the function unrealized the object, FALSE on
error.

SetBrushOrgO

HBRt TBH: A handle to a brush or a logical palette. If hObject is
a hrusn handle, it cannot be currently selected into a display
comext.

Do It! Q4,it

Related Messages WM ,CTLCOLOR

III

-Example This example shows two cases where rectangles are drawn ,vith
a hatched brush pattern. In the uppercase, both are drawn Figure 11-81. Unrealize
with the same brush and the patterns align. In the lowercase, Object(J Example.
the same brush is used, but the origin of the brush is reset be-
fore painting. Resetting the origin allows the brush origin to be moved, resulting in mismatched
patterns. Note that it is necessary to remove the brush from the device context to change the
brush origin. Selecting a stock object does this without creating additional memory demands.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
RECT
HBRUSH

ps ;
r1, r2 ;
hBrush ;

switch (iMessage)
{

1* process windows messages *1

case WH_PAINT:

IOther program lines}

BeginPaint (hWnd, &ps) ;
SetRect (&r1, 10, 10, 50, 50);
SetRect (&r2, 50, 10, 90, 50) ;
hBrush = CreateHatchBrush (HS_CROSS, RGB (0, 0, 255» ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, r1.left, r1.top, r1.right, r1.bottom)
Rectangle (ps.hdc, r2.left, r2.top, r2.right, r2.bottom)
OffsetRect (&r1, 0, 60) ;
OffsetRect (&r2, 0, 60) ;
SelectObject (ps.hdc, GetStockObject (WHITE_BRUSH»
UnrealizeObject (hBrush) ;
SetBrushOrg (ps. hdc, 0, 0) ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, r1.left, r1.top, r1.right, r1.bottom)
Se lec tObj ec t (ps. hdc, GetStoc kObj ect (WHITE_BRUSH» ';
UnrealizeObject (hBrush) ;
SetBrushOrg (ps.hdc, 5, 3) ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, r2.left, r2.top, r2.right, r2.bottom)
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

525

WINDOWS API BIBLE

UPDATEWINDOW • Win 2.0 .Wm3.0 .Win3.l
Purpose Forces an immediate WM_PAINT message, which updates the window.

Syntax vo~d UpdateWmdow(HWND kWnd)j.

Description: The WM_P AINT message is sent directly to the window's message processing function, bypassing
the message queue. This allows a program to repaint the client area before other messages
(mouse movements, etc.) are processed. WM_P AINT is sent on1y if there is an update region' for
the window that requires repainting. Use InvalidateRectO to create an update region if none
exists. To put a WM_PAINT message on the application's message queue, simply call Invall
dateRectO·

Uses

Returns
See Also

Rapid repainting of a window after some change to the client area was made.
No returned value (void).
InvalidateRectO, InvalidateRgnO, BeginPaintO, EndPaintO

Parameters
- kWnd HWND: The HANDLE to the window needing repainting.

Related Messages WM_PAINT
Example In this example, ten lines of text are written to the client area. To erase them, the client area is

invalidated, and UpdateWindowO called. This repaints the client area background, erasing the

j
~ .

~ong FAR ~SCAL WndProc.(HWND hWnd,.unsigned.iMessage, WORD wParam, LONG LParam)

DC hDC ;
RECT rCLient ;
int ;

switch (iMessage)
{

case WM_COMMAND:

1* process wi ndows messages *1

1* process menu items *1
switch (wParam)
{

case IDM DOlT: 1* User hi t the "Do i til menu 1 tem *1
hOC = Get DC (hWnd) ;
for (i = 0 ; ; < 10 ; i++)
{

TextOut (hOC, 10, 10 + (1*15),
hThis text will be erased. ", 25) ;

}

ReLeaseDC (hWnd, hOC) ;
GetCLientRect (hWnd, &rCL1ent) ;
InvalidateRect (hWnd, &rClient, TRUE) ;
UpdateWindow (hWnd) ;
break;

IOtker program lines]

V ALIDATERECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax I

Description
I I

Removes a rectangular area from the window's update region. This is done to avoid having
WM_P AINT messages generated to repaint invalid parts of the client area.
void ValldateRect(HWND hWnd, LPRECT lpRect)j. ,-

Windows keeps track of parts of a window's client area that have become invalid due to scrolling,
resizing, or uncovering parts of the client area from beneath other Windows.' These areas are
called "invalid." Windows will send a WM_PAINT message to a window that contains invalid re.: -
gions to allow repainting. To temporarily avoid repainting, an application can validate regions.
Use GetUpdateRectO to determine the size of the invalid rectangle, and use ValidateRectO to
validate it. Once validated, the region will not cause WM_PAINT messages.

526

Um:s.

Returns
See Also

Parameters
hWnd

11. PAINTING THE SCREEN Y

/
Most often uSed with windows that scroll the client area. It may be more efficient to repaint the

. a~a uncovered by scrolling in the part of the program that scrolls the window, rather than paSS
ing the job to the ~CPAINT handling logic. In processing WM_PAINT messages, the update·
recta~e is part of the PAINTSTRUCT data structure filled by BeginPaint() at the start of the
WM_IWNT logic.

No returned value (void).

GetUpdateRect(), BeiinPaint()

HWND: The window handle.
IpReeI ' LPRECT: A pointer to a RECT data structure that contains the rectangle to validate on the client

area. Use GetUpdateRectO to retrieve this value. If the value is within the WM_PAINT processing
.. ... logic, the update rectangle is part of the PAINTSTRUCT data filled by BeginPaintO.
Ite~ ~·WM_PAINT '

Example See the example under the ~tUpdateRectO function description.

VALIDATERGN

Syntax

Description

P8ra8aeters

• Win 2.0 • Win 3.0 • Wm'3.l
Removes a region from the window's update region. This is done to avoid having WM_PAINT
messages generated to repaint invalid parts of the client area.

void ValidateRgn(HWND hWnd, HRGN hRgn)i

This is similar to ValidateRectO, except the areato be validated is passed as a region instead of
a rectangle. Windows keeps track of parts of a window's client area that have become invalid due .
to scrolling, resizing, or uncovering parts of the client area from beneath other windows. These
areas are called "invalid." Windows will send a WM_PAINT message to a window that contains
invalid regions to allow repainting. To temporarily-avoid repainting, an application can validate
regions. Use GetUpdateRgnO to detennine the size of the invalid rectangle, and use Validate
RgnO to validate it. Once validated, the region will not prompt MCPAINT messages.

Most often used with windows that scroll the client area. It may be more efficient to repaint the
area uncovered by scrolling in the part of the program that scrolls the window, rather than pass
ing the job to the MCPAINT handling logic.

No returned value (void).

GetUpdateRgnO, Validate RectO, GetUpdateRectO "
.. -' ...

hWnd HWND: The window lwldle.
kRgn HRQN~ The handle of the region containing the update area to validate.

Related Messages WM_PAINT

haIIlple See the example under the GetUpdateRgnO function description.

527

In the last chapter, the standard Windows RGB color model was used to create colored brushes and pens. Except for
20 pure tones (less on some systems), most colors that are displayed using objects created from RGB colors are
painted with a "dithered" brush. This technique mixes the different colored pixels that average to the desired color.
With the versions of Windows prior to 3.0, the RGB color model was the only tool available. Windows 3.0 has the added
ability to work with color displays and other devices which can display more than 16 colors at one time. The IBM 85141 A
aIuJ Super VGA video boards are becoming increasingly common, and many displays are now able to show 256 colors
from a selection of many million. Windows uses color palettes to control these powerful display systems.

Hardware Palettes
Only high-cost video systems are able to simultaneously display every possible color at every location on the screen.
Most video boards display a limited number of colors. The EGA standard was limited to eight simultaneous colors; VGA
started with 16; and Super VGA and IBM 85141A boards show between 64 and 256 colors at once. About a megabyte of .
video memcry is needed to support 256 colors ori a VGA or Super VGA resolution screen. With the limited number of
colors that can be shown at one time, video boards must keep track of which colors to use. Using a Super VGA board as
an example, the 256 colors that can be shown at one time are selected from a range of 256 * 256 * 256 = 16,777,216
possibilities. That range of colors is determined by the video board's use of three bytes of information to specify the
red, green, and blue elements of a color.

To show a color on the screen, the video board first sets the RGB (Red, Green, Blue) values for all of the colors
that can be shown at one time. These settings are called the "hardware color palette."· When a pixel is to be displayed,
the color of the pixel is set to the RGB value of one of the hardware color palette values. Changing the color of a pixel
only requires that a different hardware palette entry be referenced. If the RGB value of a palette entry is changed,
then every pixel displaying that palette color ,vill be immediately changed on the screen. Figure 12-1 shows the
mapping of the hardware palette to the screen.

Hardware palettes are used on video systems for speed and memory conservation. The ablility to specify every
pixel's RGB value individually would take about three megabytes of memory. Limiting the choices to 256 colors in the
palette at one time cuts the memory needed down to one megabyte. In addition, the color of a pixel can be changed by
just specifying one byte of information, the new palette entry number. This is faster than specifying three bytes for the
RGB value of each pixel. Speed is a big issue on video equipment, especially with the video resolution expanding to the
1,024 wide by 768 high pixel resolution and beyo~d.

Color Palettes in Windows
,Windows runs into problems when trying to support
hardware color palettes. If Windows were to allow any
program to change the RGB color settings in the video
display hardware palette, every application running on
the system would be affected. For example, if the hard
ware palette color for black were changed to blue, then
every black pixel in every visible window would instantly
change to blue. This \iolates the basic principle that

Hardware Palette
Red Green Blue

o 0 0
128 0 0
o 128 0
o 0 128
128 128 0 ...

All 256 Values

Video Display
Individual Pixels

Figure 12-1. A 256-Color Super VGA Hardware Palette.

528

12. COLOR PALETTE CONTROL Y

Windows applications run as separate windows that do not interfer with each other. Another problem is that Windows
programs can run on any system, many of which will not display as many colors as a Super VGA system.

Windows gets around these problems with two concepts: the "system default palette" and the "logical palette."
They are both ways to deal with the actual display equipment's "hardware palette." The system default palette is a
group of 20 reserved colors that Windows uses to paint menus, buttons, the screen desktop background, and dithered
brushes. If the display equipment supports less than 20 simultaneous 'colors, some of the 20 entries will be the same.
This is normally not a problem, as the text color inside a button can be the same as the text color for menu items, etc.
Normally, application programs will not change the system colors. If you have a burning desire to change the system
default palette, there are support functions, such as SetSysColorsO. With modern display adapters there are usually
plenty of extra color choices to use without modifying the system default palette.

The Logical Palette
The logical palette (Sp-e Figure 12-2) is a memory area that mimics the hardware palette in the video board. Each
entry in the logical palette contains an RGB value that Windows applications can tise for creating colored pens, fonts,
brushes, and bitmaps. The logical palette can contain more entries than the hardware device actually supports. In
this case, the "extra" logical pal
ette entries are mapped to th~
closest hardware palette color. If
the logical palette contains
fewer entries than the hardware
palette, some of the hardware
colors are not used.

The logical palette gets
around the problem of how to
deal with systems with small
hardware palettes. This still

LogicalPalette

Red Green Blue

o
128
o
o

111

o
o
128
o

o

o
o
o
128

o

Hardware Palette

R~d Green Blue

o
128
o
o
128

o
o
128
o
128

o
o
o
128
o ...

All 256 Values

leaves the issue of different ap- Figure 12-2. The Logical Palette.
plications running at the same

Video Display

Individual Pixels

time, demanding different colors. There is no escaping the fact that Windows runs on real hardware with only one
video card and only one hardware palette. If two different applications are running at the same time and both want to
use extended color palettes, the programs will interfere with each other.

Windows minimizes the damage caused when several programs use the logical palette by giving the active window
priority in specifying colors for the logical palette. Inactive windows make due with whatever colors are left. Inactive
windows use any remaining unused entries in the logical palette, and then use the closest matching colors for any
remaining requests on the palette. This is not as much of a problem as it might seem because most programs use only
the system colors, which are normally reserved. Windows will allow you to play dangerously, by letting'the logical
palette change the system palette. The SetSystemPaletteUseO function is provided for this purpose.

Creating a Logical Palette
Activating a logical palette is a three step process.

1. The color settings for every entry in the palette that the application will use are written to an array, and then
turned into a palette using the CreatePaletteO function. CreatePaletteO returns a handle to the palette, which
is normally stored as a static variable for use later in the program.

2. The palette is selected into the device context using SelectPaletteO, which is similar to the SelectObjectO func
tion described in the last chapter for selecting pens, brushes, and fonts. The difference is that selecting a palette
does not iinmediately change the colors because the video hardware paiette entries are not changed until the
palette is "realized."

3. The palette is "realized" using RealizePaletteO, which writes the logical palette settings to the hardware palette,
changing the color settings in use. As mentioned previously, the a,ctive window is given priority for the hardware

529

WINDOWS API:BIBLE'/i :;:~«;:, '.

,:.1, ,color. settings. Any leftover hardware palette 'entries can be used by inactive windows. Palette .entries beyond the
limits Of the, vid~o hardware are mapped to the closest color available. ' . :,0 ':.:.' ;':

", '.' In processing WM~PAnfr messages, it is 'necessary to select' and realizethel6gical palette evert time the mes
sag~ is processed;Whertthe program 'eXits,:the logicill palette is freed from memory With DeleteObjectO. The logical:
pillette' can,'be iresizedand'have entries 'changed without 'makin:g 'a new palette by using the ResizePaletteOand .
SetPaletteEntriesOfunctions. You can use 'rapid changes'iii 'the palette colors to create the illusion that ari 'object is
moVingonthescreen byusirig AniiriatePaletteO; To use palette'entries for animation; a number bf the logical palette ,
entrieswilrneed to be th(fslune: color,' but uSed topaintdiffererit parts'ofthe screen'.' . ; .
\"i~J:~·;·J:: '" '~~;,".'.'!~' '."' ," 't".

Windows Color Palette Messages;"
Because of the interactions between active and inactive windows using color palettes, communication between appli~ '.
cations is needed. Windows ~ends a WM_QUERYNEWPALEITE message to an application that i'ealizesa logicai pal
ettewhen 'itkliboilt to get the ;iriptit foctisl This rrte~sage MferS the chance to 'again' realize the palette, 'regaining
colors that Ih'ay have be;en'lost to othe'r applications while the Window'was'in~ctive;:: . , ... ". ,.
;:; ,The \%CpALEITECHANGED message is sent to all windows when any application realizes its logical·palette. For'

inactive windows, this is notification that colors may be lost to the window with the input focils~ The UpdateColorsO
function is pI'ovided to efficiently respond to the new palette choices. The example in: this' chapter with
UpdateColorso' shows normal processing logicfor handling WM_P ALEITECHANGED and WM_ QUERYNEWPALEITE
messages. Windows 'sends a WM~SYSCOLORCHANGE message to allwiitdows if an appliCation changes 'the system
palette. The]est approach for an application receiving this message is to delete any static brushes and pens and'
redraw them using'the newsystem colors. ' ; " . ..' :

, . Caution: '. The array used in CreatePaletteO to 'define all of the colors'for the logical palette can exceed the stack
space if it is stored as a local variable. It is best to allocate memory for the array. : ,:

The colors displayed with the 'palette functions 'do not match those produced by the dithering process used by the
RGB color model. In genera:i,ihe palette 'enj;ries are much darker. Simply converting an application'that u~ed RGB
colors to comparable palette colors may not result in an acceptable image. : , :' ' . .' . . ." '

Check the capabilities of the physical hardware before using the palette functions. The GetDeviceCapsO function'
provides considerable information about what the hardware deVice can and cannot do; In particuUtr,checkthe
RASTERCAPSirtdeivaHie'RC~PALEITEtosee ifpah~tte changes are' supported::TheNUMCOLORS indh allows the
numbefof'colors'thafCah'simultaneotislybe displayed:" ~ .. ' ',' ",..,.

Palette Function'Summary: :; .
TafHe 'l2-1"~u~niariz'~~ theWindoW~ 'functions that pro~desupport for colo~ p~iettes.:

",)1 ", '~,d ·<;~.~i::\ ~·:i:,i"':<j,';.; :. '-.'<.~ 'II: \ .f •. ':'· t.···;·;: '.< ",:;"- ':.,; .": ~'.-

GetPaletteEntries

GetNearestPalettelndex

; G,et~Y~i~.mpaietteE~t~i~S' :
GetSystemPaletteUse

PALEITEINDEX :1. '

'PALElTERGB'
~ /' . i ~ !; \ : ~ '. ";. :' \, .
RealizePalette

Resi~e~alette

. ~electr?alette:; ,:

Rapidly,changes the color, of objects painted with colors from a logical palettel: .

Creates a logical palette.

Determines the color values for a range of entries in a·log·icalpaleUe ..
• ~'. • • , ~ . " J •

Finds the palette entry number that most closely rT1at~hes agivenRGB value.
, ' ,D~termi~~~ thi ~~I~rs '~f each ~f th~ '~yste~ p~lett~ i~~m:s·. , .. :'::', ' , .,' .

Determines if an application can change the system palette.

Specifies a logical palette. color directly.: '

Retfievesthe color whlch'i~; closest to the 'desired RGB 'color, froin'the~ logical palette.'
':1 >:,". '"';",'i :;~:".':'I,::i ,;,~,>: .. '.'; .,.;","":::.,: .")1 • :~;..;~ I .:~. ~:. ',.\ ...• '. :;;'" '

. Maps the logical palette seleCted into a device conteXt to the hardware p~lett~:

, • : Change~ the, size ~f ~ .loQi9~\ ~ale~te:; ,

, Selects a color palette i8tO a device conteXt. ,",: ,:;" , .

530

12. COLOR PAI.,.ETTE CONTROL. ~y.

SetPaletteEntries

SetSysColors

S~tSystemPaletteUse

JpdateColors

Changes the color values in a logical 'palette.

Changes the system colors used to paint window objects.

Allows modifications to t~e system color palette.

,', :,', -': .

: .:'I;'r,; ',._ .' "

Redraws the client area when the application does. not rave the input focus, but has realized a
logical palette .• : " '" 'J ' ' " ,

Table 12-1. Palette Function Summary.

Palette Function Descriptions
This section contains the detailed descriptions of the color palette functions. '

ANlMATEP ALETTE . 0 Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description '

Uses

Returns

See Also

Parameters
hPalette

wStartIndex

wNumEntries

lpPaletteColors

Example

Rapidly changes the color of.obje~ts painted with colors frOll1a lo'gical palette.

void AnimatePalette(HPALE'j'TE hfalette, WORD wStartlndex, WORD wNumEntries,
LPP ALETfEENTRY ipPaletteColors);, "

Colors can be. switched rapidly on the screen, by, changing the hardware color palette.
AnimatePaletteO does this for items in a logical palette that have the PC_RESERVED flag (see
CreatePaletteO for the description of the LOGPALE'ITE data stmcture).

. - 1". •... ",

Moving objects on the screen can be simulated by prepainting the objects in the background
color (usually white), and then cycling through each object from~hite,to color, to white.

No returned value (void).

CreatePaletteO

HPALETfE: A handle to the logical palette returned by CreatePaletteO.
• • . • ., -,' • '. ~ I

'WORD: The number ofthe first entry in the logical palette to change.

WORD: . Thenumber of entries in the logical paiette to change.

LPP ALETfEENTRY: A pointer to an array of P ALE'ITEENTRY data structures containing the
new color values to use. See CreatePaletteO for the structure definition of P ALE'ITEENTRY.

This example creates a rapidly moving red bar. The bar starts aith~ left side of the client area
(see Figure 12-3). When the user clicks the "Do It!" menu item, the'bar appears to move from the
right to the left of the client area in
less than :()ne seco~d. Thi~ example
will only work on a system that sup
ports over 128 simultaneous colors. "
The mb~enu~nt 'is caused by'rapidly,
changing the color of a series of 128

, ::Jj~: gen~ric

rectangle~ placed ahea~ of time in Figure 12-3. AnimatePalette() Example.
, . ,the client. ar~a: 'To. begin; . only the

leftmost rectangle is colored red. The rest are colored white, so they are not visible. The color of
each successive rectangle is changed to red using AnimatePaletteO. This is much faster than
painting each rectangle using the'RectangleO function.
. , In the sour(:e code, the' W~C CREATE section creates the logical palette. The 128 colors are
all initialized tO,white, except for the first one, which is red. The WM_PAINT section paints all

-128 rectangles on the client area, even though only the first one is initially visible. This technique
allows AnimatePaletteO to change th~ color of each, reCtangle without the delay of painting. '

531.

WINDOWS API BIBLE

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
static
HOC

'HBRUSH
static
static
int
static

HPALETTE

LOCALHANDLE
PLOGPALETTE

hPa l ;
hOC;
hBrush ;
hLocPa l ;
pLogPal ;,
i . ,
nNumColor

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
nNumColor = 128 ;
hLocPal = LocalAlloc (LMEM_MOVEABLE, sizeof (LOGPALETTE) *

nNumColor * sizeof (PALETTEENTRY» ;
pLogPal = (PLOGPALETTE) LocalLock (hLocPal) ;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 *1
pLogPal->palNumEntries = nNumColor ;
for (i = 0 ; i < nNumColor ; i++)
{

}

pLogPal->palPalEntry [iJ.peRed = 255 ;
pLogPal->palPalEntry [iJ.peGreen = (i == 0 ? 0 : 255);
pLogPal->palPalEntry [iJ.peBlue = (i == 0 ? 0 : 255)
pLogPal->palPalEntry.[iJ.peFlags = PC_RESERVED

hPal CreatePalette (pLogPaL> ,
LocalUnlock (hLocPal) ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SelectPalette (ps.hdc, hPal, FALSE) ;
RealizePalette (ps.hdc) ;
SelectObject (ps.hdc, GetStockObject (NULL_PEN»

for (i = 0 ; i < nNumColor ; i++)
{

}

hBrush ~ CreateSolidBrush (PALETTEINDEX (i»
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, ; * 4, 0, (i * 4) +25, 50) ;
SelectObject (ps.hdc, GetStockObject (WHITE_BRUSH»
DeleteObject (hBrush)

EndPaint (hWnd, 'ps) ;
break;

case WM_COMHAND:
swi tch (wParam)
{

1* process menu items *1

case 10M_DOlT: 1* User hit the "Do it" menu item *1
pLogPal (PLOGPALETTE> LocalLock (hLocPaL> ;
for (i = 0 ; i < nNumColor ; i++)

,\ {

pLogPal->palPalEntry [iJ.peGreen = 255 ;
pLogPal->palPalEntry [iJ.peBlue = 255 ;
if (i < nNumCo lor - 1)
{

pLogPal->palPalEntry [i + 1J.peGreen = 0 ;
pLogPal->palPalEntry [i + 1J.peBlue = 0 ;

}.

else
{

pLogPal->palPalEntry [OJ.peGreen = 0 ;
pLogPal->palPalEntry [OJ.peBlue = 0

} \'
AnimateF\a lette <'tiPa l, 0, .. nNumColor,

pLogPal->palPalEntry) ; _

LocalUnlock (hLocPal) ;

532

"

12. COLOR PALETTE CONTROL ...

break;
case 10M_QUIT: 1* send end of application message *'1

DestroyWindow (hWnd),;
break;

break;
case WM_DESTROY: '1* stop application *1

LocalUnlock (hLocPal)
LocalFree (hLocPal)
DeleteObject (hPal)
PostQuitMessage(O)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL)

CREATEP ALETrE o Win 2.0 .. Win 3.0 II Win 3.1
Purpose

Syntax

Description

Creates a logical palette.

HPALETIE CreatePalette (LPLOGPALE'ITE lpLogPalette);

This function reads the data in the lpLogPalette data structure and creates a color palette based
on those values. The LOGPALE'ITE data structure is defined in WINDOWS.H as

1* Logical ,Palette *1
typedef struct tagLOGPALETTE_XE "LOGPALETTE"_ {

WORD palVersion;
WORD palNumEntries;
PALETTE ENTRY palPalEntry[1J;

} LOGPALETTE;
typedef LOGPALETTE
typedef LOGPALETTE NEAR
typedef LOGPALETTE FAR

*PLOGPALETTE;
*NPLOGPALETTE;
*LPLOGPALETTE;

typedef struct
BYTE
BYTE
BYTE
BYTE

} PALETTEENTRY;

The paLVersion element specifies the Windows version number. Ox300 is used for version 3.0.
palNumEntries specifies how many entries there are in the palette. Each entry is a
PALE1"EENTRY data structure, also defined in WINDOWS.H.

tagPALETTEENTRY_XE "PALETTEENTRY"_ {
peRed;
peGreen;
peBlue;
peFlags;

typedef PALETTEENTRY FAR *LPPALETTEENTRY;

PC_EXPLICIT

PC_NOCOLLAPSE

The color name elements are allowed to range from 0 to 255. The peFlags element is normally set
to zero, but can contain one of the values listed in 1'able 12-2.

Specifies that the low-order word is a direct index to the hardware palette.

The color will be placed in available system pa!stte locations, but not matched to an existing
color in the system default palette. If the system default palette is full, the color is matched
normally.

Specifies that the palette element will be used for palette animation. This prevents other
windows from matching colors using this entry. Only unused.palette entries will be filled with this
flag set. If ail palette entries are taken, the entry will not be available for animation.

Table12-2. PALEITEENTRY Flags.

533

Uses

Returns

See Also

....

. ' Used to create. color .palettes. Before the palette ,can b~ used, it must be selected into the device
.. conteXt With'SelectPalE~tieO 'andmappedtotheha'rdware palette using RealizePaletteO.

HPALETI'E, a handle to the palette created.·Thereturned value normally is stored as a static
variable.

DeleteObject(), Sel~~thliett~O,' RealizefaletteO!

Parameters
lpLogPalette LPLOGP ALETI'E: ~ pointer to a LOGP ALEITE. data structure defining the palette. A memory

"', : " .. area large enough to hold the LOGPALETI'E data structure and·all of the PALETI'EENTRY struc-
. :' .. "'; turesfor~·e,ach·~ol?r,inu.st :b,~' ~llpcate~ and)nitializ~f:l before .Cfe:atePaletteO is called. Once

CreatePaletteO has been used to register the new palette, the memory for the LOGPALE'ITE
data structure and P ALE~EENTRY items can be freed to the system. .

Related Messages W~CQUERYNEWPALETI'E, WM_PALETI'ECHANGED

':Example .. .;This example shows the creation of a logical palette. Tile number of avaHable:c~lorsis"det~r
mined with two calls to GetDeviceCapsO. Temporary locatmemory is.allocated to holdthepal
ette during creationu~ing ~oca1Al~?~O~ The~oIor yalues for eachp~lette entry are distribute~ to
cover the size of the palette. The handle to the palette created is stored in a static variablehPal.

, :()nc'~:the pah~tte\is created',' the ,IiierrlorYused to buiid thepaieit~ bait be ~eleased.····'·' "
'. '" . Wh~n aWM~PAiNT' message is re'ceived, 'the" program displays all of the colors by using the

palette to create colored brushes that fill the rectangles drawn. Note that I;lacq brush.created
must be removed from the device context before it can 'be .deleted.:It is removed by selecting a
stock brush into the device context, displacing the coioi'ed' brush out of the device context. The
palette is deleted.when the program exits. .~ ; 'J "" : • ,; , ...

long FAR PASCAL WndProc (HWNO hWnd, unsigned iM~~~~ge~<WORO'wParam, LONG lPar •• >'
{ .',", ~ .. ' r. J" 'f

PAINTSTRUCT
HOC

ps ;

,',:,," static' : HPALETH"
. hOC;
·~"hPa l '; ",

hBr.u,sh;
.hLocPa l ;
pLogP~'l' ;

HBRUSH~:, ,:., .'.
1.0CALHANOLE'
PLOGPALETTE
int
static int

i, j, k, nNumCol, nNumRes, nBlue, n~reen, nRed ;
nFreeCol'; .. '''~.'''' .. '. ,"" . .J' ;

\. :

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hOC = GetOC (hWnd) ;
nNumCol = GetOevi ceCaps (hOC', SIZEf;JALETTE) , ..
nNumRes = GetOeviceCaps (hOC, NUMRESERVEO)
nrr~eCol = nNumCo.l·~ nNumRes ;', ", ' ' ,
Release.O~ '<hWnd"hOc); :: .,
if (nFr'eeCol'>=)216) ... 1*'216= 6cub'ed*/

nRed = nGreen·=.nBlue = 6 ;"
else if (nFreeCol >= 16)
{ .

nRed= nGreen = 2 •
nBlue =4' ;" .. '

;,"

nRed ~. nGreen = nBlue =2;' ,

hLocPal = LocalAlloc (LMEM_MOVE~BLE, sizeof (LOG,PALETTE) * .
. ":nFreeCol' * 'si zeof '(PALET'rEENTRy» ;'

. ~LogPal~ (PLOGPALETT~),Locallock(hLocPal) ;
pLogPal->palVersion= Ox30b; 1* for windo~s 3_0 *1
pLogPal->palt,iumEntries = nFreeCol ; _

'for (i= O;i :.: nRed ; i++) ,
{ '., :', ,' .. \

for(j = 0; j< nGreen,; j++)
{ ,

12. COLOR PALETTE CONTROL.

for (k= 0;, k<nBlue,; k++)
{

}
,} . . ~ .

}

pLogPal->palPalEntry [;].peRed = ,
; * (256 1 nRed);

pLogPal->palPalEntry [i]~peGreen =
" j * (256 ,I nGreen);

pLogPal->palPal~ntry [;J,peBlue =
'!" • k'* (256 1 nBlue);
pCogPal->paLPalE~try [ij.peFLags = 0

hPal'= CreatePaLette (pL~g~al)
LocalUnlock (hLocPal)
LocaLFree (hLocPal) ;

, break; ," " '
ca se WM_PAI NT:

BeginPaint (hWnd, &ps) ;
SelectPalet,te (ps'.hdc, hPal, FALSE)
ReaLizePalette (ps.hdc) ;
fo'r'(i ='0 ; i < nFreeCol; i++)
{

hBrush = CreateSolldB'rush (PALE+TEH~DEX CO) ;
SelectObject (ps.hdc;hBrush); ,:' ,;i'
Rectangle (ps.hdc, i * 5,0; (i * 5) +5, 100) ;
Se l'ectOb je ~ t '(ps. hd c:,' Ge t S toe kOt) j ec t (BLACK_BRUSH»
DeleteObject (hBrush) ", .. '

,,} , " "

EndPaint, (hWrid,.&ps)
, break;"

caseWM COMMAND:
, - swi tcll (wParam)

1*. ,p,rocess menu items, *1

" . {
'case IDM'QUIT::

'"OestroyWindow (hWnd)
'" .;break;

},

b~eak ; , ,
cas'e,WM_DESTROY;i*:stop appLicatio'n *1'

DeleteObject (hpal) ;
PostQuitMes~age(O) ;
break;' "

defauLt: I*default,windows'message processing *1
return DefWindowProc (hWnd, Vlessage"wPar~m, lParam)

return (OL)
}

GETNEARESTP ALETTEINDEX : ElWin 2.0 ,. Win'3.0' II Win 3.1

Purpose

Syntax

Description

Uses

Returns
See Also

Parameters
hPalette

Finds the palette entry number that most closely matches a given RGB. vaJve. ,; ;,
WORD GetNearestPaletteIndex(H~ AL~TTE hPalette, DWORD creolar}j" " :,;"" ,

In many cases, the system palette will not have an exact match to a given RGB color. This func
tion returns the palette item which most closely matches the color. Thispalette it~Ijl may be far
removed from the desired cQIQryalue, if the palette was created with a narrQW range Qf cQlors.

Determining if cQIQrs in the IQgic~lp~lette:need to. be changed.'" ' "

WOR~, the palette item number ,that is the clQsest match to. the ~esi.red RGBval~e.
GetNearestCQIQrO, PALETIEINDEXO, PALETrERGBO, SetPaletteEntriesO

, '.' '''':,'.

HPALETrE: The'h~ndletQt.helogical palette returned by CreatePaletteO.

:535

WINDOWS API BIBLE

crColor
Example

/

COLORREF: The desired 32-bit color value. Use the RGBO macro to specify this value.

See the example under PALETTEINDEXO.

GETP AL~'ITEENTRIES o Win 2.0 II Win 3.0 • Win 3.1
Purpose
Syntax >

Determines the color values for a range of entries in a logical palette.

WORD GetPaletteEntries(HPALETTE hPaiette, WORD wStartIndex, WORD wNurnEntries,
LPPALETTEENTRY lpPaletteEntries)j

Description

Uses

Returns

This function will retrieve the RGB color values and flag value for each entry in a color palette.

Determining the color of a specific index value in the color palette.

WORD, the number of entries retrieved.

See Also

Parameters
hPalette

PALETTEINDEXO, PALETTERGBO, GetSystemPaletteEntriesO >

HPALETTE: The handle to the palette, returned by CreatePaletteO.

WORD: The number of the first palette entry to start with, 0 for the first. wStartIndex

wNumEtttries WORD: The number of entries to read.

LPPALETTEENTRY: The address of lpPaletteEntries

:.

an array of at least wNumEntries
. PALETTE ENTRY data structures.
See CreatePaletteO for the struc-

. ture definition of P ALETTEENTRY.
If you use a local variable array to
hold this data, make sure the stack
is sized large enough to hold the
data.

120 It I .Q,uit

Related Messages W1\C QUERYNEWPALETTE,
~_PALETTECHANGED

Entrv 0 = Red O. Green O. Blue 0
Entrv 1 = Red 1. Green 4, Blue B
Entrv 2 = Red 2. Green B. Blue 16
Entrv 3 = Red 3. Green 12. Blue 24
Entrv 4 = Red 4. Green 16. Blue 32
Entrv 5 = Red 5. Green 20. Blue 40
Entrv 6 = Red 6. Green 24, Blue 4B
Entrv 7 = Red 7. Green 2B. Blue 56
Entrv B = Red B. Green 32. Blue 64
Entrv 9 = Red 9. Green 36. Blue 72
Entrv 10 = Red to, Green 40. Blue BO Example This example creates a palette with

216 entries,and then displays both Figure12-4. GetPaletteEntries(j Example.
the numerical values and a colored
rectangle for each. (See Figure 12-
4.) Painting occurs well beyond the end of the client area, so only part of the palette is visible. On
the screen, the rectangles to the right of the numeric values show the specified colors.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMes~age, WORD wParam~ LONG lParam)
{

PAINTSTRUCT
static HPALETTE
HBRUSH
LOCALHANDLE
PLOGPALETTE
int ,
static int
static PALETTEENTRY
char

switch (iMessage)
{

case WM_CREATE:
nFreeCol = 216 -;

ps ;
hPa l ;
hBrush ;
hLocPa l ;
pLogPa l ;
i, j ;
nFreeCol ;
peEntry [256J ;
cBuf [128] ;

1* process windows messages *1

hLocPal = LocalAlloc (LMEM_MOVEABLE, sizeof (LOGPALETTE) *
nFreeCol * sizeof (PALETTEENTRY»

536

12. COLOR PALETIE CONTROL T

.pLogPal = (PLOGPALETTE) LocalLock (hLocPaL> ;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 *1
pLogPal->palNumEntries = nFreeCol ;
fpr (; = 0 ; ; < nFreeCol ; i++)
{

pLogPal->palPalEntry [iJ.peRed = ; ;
pLogPal->palPalEntry [;J.peGreen = (i * 4) 7. 256 ;
pLogPal->palPalEntry [;J.peBlue = (; * 8) ~ 256 ;
pLogPaL->palPalEntry [iJ.peFlags = 0 ;

}

hPal = CreatePalette (pLogPal)
LocalUnlock (hLocPal)
LocalFree (hLocPal) ;
brea k ;

ca se WM_PA1NT:
BeginPaint (hWnd, &ps) ;
SelectPalette (ps.hdc, hPal, FALSE) ;
RealizePaiette (ps.hdc) ;
j = GetPaletteEntries (hPal, 0, nFreeCol,
for (i :. 0 ; i < j ; i ++)
(

peEntry) ;

TextOut (ps.hdc, 10, 17 * i, cBuf, wsprintf (cBuf,
"Entry 7.d = Red 7.d, Green 7.d, Blue 7.d",

}

i, peEntry[iJ.peRed, peEntry[iJ.peGreen,
peEntry[iJ.peBlue» ;

hBrush = CreateSolidBrush (PALETTE1NDEX (i»
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 330, (i * 17) + 1, 360,

(i * 17> + 16) ;
SelectObject (ps.hdc, GetStockCbject (WH1TE_9RUSH»
DeleteObject (hBrush)

EndPaint (hWnd, &ps) ;
b.reak ;

case WM_COMMAND:
switch (wParam)
{

1* process menu items *1

case 1DM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hPal) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

GETSYSTEMP ALETTEENTRIES o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

- Description

Uses

Determines the colors of each of the system palette items.

WORD GetSystemPaletteEntries(HDC hDC, WORD wStartlndex, W6RD wNumEntries,
LPP ALE'ITEENTRY lpPaletteEntries)j

The system' palette is a group of 20 colors that Windows uses for the default color scheme. All
applications share the system palette. Entries in the system palette can be changed by calling
SetSysColorsO. All applications are notified of the change by a W1\CSYSCOLORCHANGE mes
sage. They can then use GetSystemPaletteEntriesO to determine the new system palette colors.

Processing MtCSYSCOLORCHANGE messages, and determining the system palette entries for
painting with pure colors.

537

WINDOWS'API BIBLE: :"".,

Returns

See Also

Param~ters
hDO

wStartIndex

wNumEntries
lpPaletteEntries

WORD, the'nllInber ofgystem palette en- '.:
tries l'etrievecI.' ;,:. '~., .. ,';.",' ",' ." Dp It!. Quit.

GetPaletteEntriesO, SetSysColotsO " I-'"::E:'-nt:""'rv-70 -:;: -:::R-e-:"d "'="O.Ir:G=-r-e-en--=-O.-=B:-:"lu-e-=O:-O---....... ~;;;;-I

- '. 'gene~ic FF

" . \~ .' Entrv1:;: Red 128. Green O. Blue 0 _

,. HD'c:.The,device:context handle:. , ~,

WORD: The first p~lette entry to read; Zero;'
for the first one.

WORD: The number of entries to read.
,I{

LPP ALE'ITEENTRY: A pointer to an array .
of at least wNumEntries PALE'ITEENTRY
structures that will hold the data read from, :
the system palette. See CreatePaletteJ) for
the str'u'cture' defihition for" PALETTE-; ,
ENTRY. . ,

Entrv 2 :;: Red O. Green 128. Blue 0 _
,Entrv 3 :;: Red 128. Green 12B. Blue 0 _
Entrv.4:;: Red O. Green O.-Blue 12B _
Entrv 5 :;: Red 12B. Green O. Blue 12B _

· Entrv 6 = Red O. Green 12B. Blue 12B _
· Entrv 7 ~. Red ,192. Green 192. Blue 192 _
· ,Entrv B = Red ·192. Green 220. Blue 192 _
Entrv 9 :;: Red 166. Green 202. Blue 240 _
Entrv 10 ~Red 24. Green 96. Blue 192 _

· Entrv.ll :;: Red 25; Green 100. Blue 200 _
Entrv 12= Red 26. Green 104. Blue 20B _

,Entrv13 =.' Red 27. Green lOB. Blue 216 _
· Entrv14 :;:Red 2B. Green 112. Blue 224 ..
'. Entrv15 =:Red 29. Green 116. Blue 232 .
Entrv'16 =Red30. Green 120. Blue 240 _
Entrv 17 = Red 31. Green 124. Blue 24B _
EntrY 1 B :;: Red 32. Green 128. Blue 0 _
Entry 19 = Red 33. Green 132. Blue B D

Related Messages· .Mv(SYSCOLORCHANGE : ,",'
Example '. " .. '. Thisexiutip'Ie~;which'is shown iriFigurti'12-.i

, 5; demonstrates how to dump the RGB con.',' .Figure 12-5. GetSystemPaletteEntries()
tent qf each co,Ior in ·the system palette;' ,Example.
These c·olors are the same' ones that show::' ;.' ". ",.'~

". ~ ,; '.', up as purecolors·in the Windows (Jontrol Panel Color application.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ ,!.); t,: .

I". ;, "

PAINTSTRUCT
HBRUSH,· "·1

int

ps
hBrush ;
i, j ; • ! ~.

static PALETTEENTRY peEntry [20J ;
cBuf [128]; :;., 'char', " ' , ,.; I'

switch (iMessage)
{

1* proc~~~:windows messages *1

,'"
: ~,~,; (

case WM_PAINT:, ... ' .. .' .: .'
BeginPaint '(hWnd, &ps)'; _.':
j = GetSystemPaletteEntries (ps.hdc,O, 20,peEntry) ;
for (i =0· i <j. i++) ". ,', .. \"
{ " ,

'';'' 'TextOut (ps:hdc~ 10; 17 * i, cBuf, wspr:intf{cBut,

}

"Entry' %d= Red%d,iGr'eeri%d, Blue' %d",
i, peEMtry[i].peRed, peEntry[i]~~eGreen,
peE n try [i] • p e B l u e »- -; .. . , ,,'

.. h!3rush = CreateSolidBrush'(PAL'ETTEINDEX (i» ; ~
. . s e l e c t 0 b j e ct. (]l'S • h dc, h B r u s h) ; .

Rectang le (ps. hdc, 330; <.i * 17> + 1, 360,
(i * 17> +'16) ; '. .''

_ SeLectOb j ect (ps. hdc, Get Stac kObj ect' (WH ITE~B'RUSH >'> ,;' ,
.:;DeleteObject·(hBrush) ; .

{(Jther ftogram lines}

"EndPaint (hWnd,,&ps) , .. ,,"
break;

·GETSVs.fEMP.t\LEmUSE ' : ", '.' '::0 Win 2'.0 • Win 3.0 .. Win 3.1

}»p~9se, ~.! I, Det.epllin~~ .~,~n ,·a~plicatio~,9~n:change. th~S~~~eI~t'I)'~~et~e'jl;:
.~yn~';'! :, WO~D;~e~r~Wm~~ett~~se(HPG,~D,O,WW~I>~f!~d.oc~;, i, .

;'/ •. j,;\

-538

Description

Uses'·

Returns

.. _ 12 .. COLOR PALETTE CONTROL""

The system palette contains 20 color entries that Windows uses to draw objects, including dith
:. ereocolor brushes. Normally, these entrh~s:are not 'changed ira logical palette is realized .

.• GetSystemPaletteFseO wiil determirie if the values can be chimged.
'Used: prior to 'changing the sYstem p~lette; '. ~ "

WO~D, o~e of the values in Table 12-3.

1~':~va_lu_,e_'~ ___________ M_e~an_i_ng ____________ ~,,~,~ ______ ~ _____ '~l,.~:~.,~,~"~,,.~,~:,~.~.~.:~
SYSPAL_NOSTATIC

SYSPAL_STATIC

The system palette contains no static colors.

The system palette contains static colors which w~'11 not change when an.application calls
RealizePaletteO· .' "

Table12-3., GetSystemPaletteUse() Flags.

See Also SetSystemPalette Use 0
Parameters
hDC HDC: The device context handle.

wUndoc WORD: An undocumented word value. Set this vahie to SYSPAL NOSTATIC.
, '~". " . .-

Related Messages W1CSYSCOLORCHANGE.,
,;'

P ALETTEINDEX , OWin 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Directly specifies a logical pa(ette coi?r.

COLORREFP ALETTEINDEX (int riPo,letlelndei)j . ,' '.
This macro returns the 32-bit color: value for a specific entry in the logical palette. The macro is
defined in WINDOWS.H as follows: , .'

#de f; ne PALET,TE INDE~-' ;) « DWO~(j) < Ox01 000000: 1,<WORv)(i)}')

Uses

Returns

See Also

Parameters
nP.alettelndex

Example

Note that 'the '32:bit color value for iridexed colors includes a 1 in the high-order byte.

Directly specifying the use of a palette color in creating ,a brush; pen, or text color.
COLORREF, the 32-bit color value. . , i :

PALETI'ERGBO, RGBO

int:, The. nU}llber of the entry "in ~he '
logical palett~. Zero for the first.
item; et.c. . .

This example (see Figure 12-6)' cre-: ~,
ates a custom palette when theprc,

. PALETTEINDEX (62)-
,PI;-oLElTERGE3,(200, 200. 255) ~> 248. 240. 224

, J~GB(200.200'-255)

gram starts; WhenaWM_pAINT' Pigure12-6.,PALETfEINDEX() andPALETfERGB()
message is received, three' color'ed' '-'Examples.
rectangles are drawn using three, . , .
different ways to specify' a color; The first one is drawn by specifying a palette index using P ALET
TEINDEXO.ThesecondoIle is draWn ~thPALE'ITEIWB(),'vhieh picks the closest palette color
to the requested RGB value. in this case, there is not a good 'match. The actual RGB value for the

. palette sele~tion is extracted with GetNe~lfestPalettelndexO and displayed to the far right in the
figure. ~he l~t rect~ngl~ isctrawn,'\yith) c91o{value speciU'ed with the RGBO macro, which
creates a hatched brush tha~ :.simulat~s the desired color by dithering.

539

WINDOWS API BIBLE

Note in the example code that the previous brush is deleted by deleting the returned value
from SelectObjectO. SelectObjectO returns a handle to the last similar object selected. This is a
convenient technique because it is not possible to remove the object from memory until it is
selected out of the device context. Selecting the new object pushes the old one out, ready to be
deleted.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
static HPALETTE
HDC
HBRUSH
LOCALHANDLE
PLOGPALETTE
int
stati c int
DWORD
char

ps ;
hPal ;
hDC ;
hBrush ;
hLocPa l ;
pLogPa l ;
i, nNumCol, nNumRes, nColor
nFreeCol ;
dwColor ;
cBuf [128J

switch (iMessage)
{

1* process windows me~sages *1

case WM_CREATE:
hDC = GetDC'(hWnd) ;
nNumCol = GetDeviceCaps (hDC, SIZEPALETTE) ;
nNumRes = GetDeviceCaps (hDC, NUMRESERVED)
nFreeCol = nNumCol - nNumRes ;
ReleaseDC (hWnd, hDC) ;

hLocPal = LocalAlloc <LMEM_MOVEABLE, sizeof (LOGPALETTE) *
nFr~eCol * sizeof (PA(ETTEENTRY» ;

pLogPal = (PLOGPALETTE) LocalLock (hLocPal) ;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 *1
pLogPal->palNumEntries = nFreeCol ;
for (i = 0 ; i < nFreeCol ; i++)
{

}

pLogPal->palPalEntry [iJ.peRed = (i * 4) % 256 ;
pLogPal->palPaLCntry [iJ.peGreen = (i * 8) % 256 ;
pLogPal->palPalEntry [iJ.peBlue = (i* 16) %256 ;
pLogPal->palPalEntry'[iJ.peFlags = 0 ;

hPal = CreatePalette (pLogPal)
LocalUnlock (hLocPal)
LocalFree {hLocPal> ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
S e l e c t Pal e t t e (p s • h dc, h p'a l, FA L S E)
Reali~ePalette (ps.hdc) ;

i = GetNearestPalettelndex (hPaC,
RGB (200, 200, 255» ;

hBrush= CreateSolidBrush (PALETTEINDEX (i»;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 0, 0, 30, 17) ;
TextOut (ps.hdc, 40, 0, cBuf, wsprintf (cBuf,

"PALETTEINDEX Ud)", i» ;

hBrush = CreateSol i dB rush (
PALETTERGB (200, 200, 255» ,

DeleteObject (SelectObject (ps.hdc, hBrush»
Rectangle (ps.hdc, 0, 20, 30, 37) ;
dwColor = GetNearestColor (ps.hdc,'

PALETTERGB (200, 200, 255» ;
TextOut (ps.hdc, 40, 20, cBuf"wsprintf (cBuf,

"PALETTERGB (200, 200, 255) -> %d, %d, %d",
GetRValue (dwColor), GetGVal4e (dwColor),
GetBValue (dwColor») ;

540

12. COLOR PALETTE CONTROL ~

/

hBrush = CreateSolidBrush {RGB (200, 200, 255»
DeleteObject (SelectObject (ps.hdc, hBrush» ;
Rectangle (ps.ndc, 0, 40, 30, 56) ;
TextOut (ps.hdc, 40, 40, uRGB (200; 200, 255)", 19)
EndPaint (hWnd, &ps) ;
DeleteObject (hBrush) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
InvalidateRect (hWnd, NULL, TRUE) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hPaL>: ;
PostQuitMessage (0) ;
break; ..

detault: 1* default windows message pr~cessing *1
return DefWindowProc (hWnd, iMessage, wParam, lPararn) ;

return (OL) ;

PALETTERGB o Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Retrieves the color closest to the desired ROB color from the logical palette.

COLORREF PALETI'ERGB (BYTEcRed, BYl'EcGreen, BYTEcBlue)j
This macro retrieves the logical palette color closest to the desired RGB color. The macro is
defined in WINDOWS.H as follows:

#define PALETTERGB(r,g,b) (Ox02000000 I RGB(r,g,b»

Uses

Re~

See Also

Parameters
cRed

cGreen

cBlue
Example

Note that the high-order byte is set to a value of two.

Used with devices that support a large number of colors. In thp.s J cases, it becomes difficult to
keep track of the individual palette index values. PALETTERGBO also has the advantage of be
having similarly to the RGBO macro that defines dithered colors.

COLORREF, the 32-bit color value.

PALETTEINDEXO, RGBO

BYTE: The red element of the color, 0 to 255.

BYTE: The green element of the color, 0 to 255.

BYTE: . The blue element of the color, 0 to 255.

See the previous example under PALETTEINDEXO.

REALIZEP ALETTE o Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Maps the logical palette selected into a device context to the hardware palette.

int RealizePalette (HDC hDC) ;

Before palette colors can be used, the palette must be created with CreatePaletteO, selected
into the device context with SelectPaletteO, and "realized" using RealizePaletteO.
RealizePaletteO sets the hardware palette entties to the values specified in the palette selected

541

WINDOWS API BIBLE .::; ,:' ."

into the.device,conte~.:Realizing a palette has system-wide effects, as all windows are painted
using the pa.lette' erttries.Prioi'ityis'giventbthe active window for use of the palette colors.
Inactiye windows can use'rein:l.'i~ing free pal~tte (mt'ries:Any a~'ditional colors that are needed
wiu be mat~hed to the close~t p'alette entryav'ailabh~:, ' ';' , .'

Windows sends all applications rimnirigon the' system: aW~CPALETrECHANGED message
after R,eaIizePaletteO is c,aIled., This allows applications that do 'riot.have. the input focus to real
ize their logical palettes using the new system palette values. . .

Uses ,:This function must be used;before attempting to:paintwith the palette colors. The function also
is called when tIui"application receives a WM..::.QUERYNEWPALETrE message.

Returns

See Also

Parameters

#! • "

int,:the number. of entries in the logical palette 'tha:twere changed.

CreatePaletteO, SelectPaletteO,DeleteObje6t(), UnreaIizeObjectO

hDC HDC: The device context handle.

Related Messages WM_ QUERYNEWP ALETIE, WM_P ALETIECHANGED.

Example ",.: ' See~~eexamplell~d~r;Create~aletteO.

RESIZEP ALETTE o Win 2.0 • Win 3.0, • Win 3.1
Changes the size of a logical palette.

BOpL llesiz~Palette(HPALETIE hPalette, WORD nNumEntries)j ". '
Purpose

Syn~~
Description This function allows the size ofa logical palette to be changed after the palette has been created~

If the palette is reduced in si~e, 't'lle remaining entries iu'e' not infected. If th~ palette is i~cre~ed
in size,·the new entries are all 'set to zero; ; .';; . , . ' : ,,;' i "

Uses'" ! . ,. 'Elintlnate:s the need tbcreate a new' palettEdnhe nuinber of entries changes as the: prografu
runs. .' ::." " ,., ", :,: ;

BOOL. ~UE if the palette was resized, FALSE on error,

SetPaletteEntriesO, CreatePaletteO.

'I ,", i·, d~:<~~,"

Returns

See Also

Parameters
hPalette ': ; HPA.LETrE:. ;' Th~palettehandle returned:by CreatePaletteQ. ':;,
nNumEntries WORD: The new numb'erof elements in the palette) ",': ; " ;'
Related Messages WM_PALETrECHANGED ". , ., .

~ : . . .

" <. ;,",::.

Example In this example, the starting palette is as large as possible. Evefytime the 'tiser clicks the "Do 'It!"
'menu item, the palette is reduced in size by 50%.

long FAR PASCAL WndPro,c (HWNO hWnd, unsig~~d iM~S'~~g~,';WORO wpa'~:a'm'~ 'L~~G lP~~'~m)
{ , ::: ,! i :. ' ;. .", .' ,

PAINTSTRUCT
HOC
static HPALETTE
HBRUSH

:. H·~~~~~~;~.~\.:
'statiC:;.in:t .,.' ': .

,ps; ,
.' hOC"; ." , ,.; .

,hPa l,; ,
.: 'hBrush ';

hLocPa l ;
pLogPa l ;

, . ~ ,~.;

I • ~ , • '

,', i,,_nNu,mCo l, J)NumRes ;
':lF~eeCol;;

'J' .. ,

switch (iMessage)
{

!*; process;windows messages,:*!

casEi' WM...;:,CREATE: ' '.
hOC:: GetDC (hWnd»)· ,', ,
nNumCol ~GetOe'yiceCaps (hOC~ SIZEPALETTE)

'nNlimies =:' GetOev'i ceCa'ps·'.(hOC ~ NUMRES ERVEO)

542

}

12. COLOR PALETTE CONTROL Y"

" nFre,eCol,=;nNumCol - nNul!'Res;
ReleaseDC (hWnd, hDC);

hLocPal = LocalAlloc (LMEM_MOVEABLE, sizeof (LOGPALETTE) *
nFreeCol * sizeof (PALETTEENTRY» ;

pLogPal = (PLOGPALETTE) LocalLock(hLocPa~)i; ':;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 */
pLogPal->palNumEntries = n'freeCol ; "
for (i = 0 ; i < nFreeCol ; ,i++)
{ ,

pLogPal->palPalEntry [i).peRed = 0;
pLogPal->palPalEntry [iJ.peGreen = 0 ;
pLogPal->palp'alEntry Cil.peBlue = i* (256 -, nFreeCol)
pLogP~l->palPalEntry [iJ.p~Flags = 0

}

hPal = CreatePalette (pLogPal)
LoculUnlock (hLocPal)
Lo~~lFree (hLocPal) ;
break;

case WM_PAINT:
BeginPaint' (hWnd, &psr ; ,
SelectPalette (ps.hdc, hPal, FALSE) "
RealizePalette (ps.hdc) ;
for (i = 0; ;, < nFreeCol ; i++)
{ "

hB~~sh'~ ~~~ateSolidBr~sh (PALETTEINDEX(i» ;
SelectObject,(ps.hdc~ hBru~h);
Rectangle (ps.hdc, i * 5, 0, (i* 5) + 5, 100);

, Se l ec tObj ec t ,(ps .hdc, Get Stoc kob j e c t (BLACK_BRUSH»
Delete?bject (hBru,sh)

} .
EndPaint(hWnd,,&ps)
break;

case WM_COMMAND: 1* process menu items *1
~w,itch, (wParam),

case 1 DM_DOIT:

,j"

1* User hi t the '~~Do. i til menu item *1
nFre'eCol 1= 2; 1* cut num colors in half, *1
ResizePalette (hPal, nF~eeCol) ;
InvalidateRect (hWnd, NULL, TRUE) '"
'break;' '", ,

'case 'IDM' QUIT:' 1* send end of application message *1
DestroyWindow (hWnd)
break

} :.~ ,j.

break
i case WM DIiSTROY:;

-DeleteObject (hPal> ;
PostQuitMessage(O) ;
br'eak ;;' "

:,"

1* stop apptication *1

:,default:,·, ", ":I*'default windows message:processing*1
return DefWindowProc (hWnd, iMessage, w~aram, lParam~ ;

return (OP

":,

SELECTPALETTE o Win 2.0 ". Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Selects a color palette into a device context. , '

HPALE'ITE SelectPalette (HDC hDC,HPALE'ITE hPaiette, BOOL bForceBackgro~'nd) 'j
This function is the analog to SelectObjectO; ~xcept that it only works for palettes .. The hPalette
parameter is the handle returned when the palette was created with CreatePaletteO.: Selecting a
palette into the device context does not immediately make the colors available. RealizePaletteO
must be 'called to map the selected palette to the hardware so that the coiors are avaIlable.

Used in WM_P AINT logic that uses the color palette to. defiJ:\~ colors. '

543

WINDOWS API BIBLE

Returns

See Also

Parameters
ItDC
hPalette

HPALETTE, the old logical palette displaced from the device context. NULL on error.

CreatePaletteO, RealizePaletteO, DeleteObjectO, UnrealizeObjectO

HDC: The device context handle.

HPALETTE: The handle of the logical palette returned by CreatePaletteO.

bForceBackground BOOL: Specifies if the logical palette is to be in effect if the window does not have the input
focus. TRUE if it is to be in effect, FALSE (the normal case) ifnot.

Related Messages WM_QUERYNEWPALETTE, \VM_PALETTECHAN~ED
Example See the example under CreatePaletteO.

/.

SETP ALETTEENTRIES o Win 2.0 • Win 3.0· • Win 3.1
Purpose

Syntax

Changes the color values in a logical palette.

WORD SetPaletteEntries(HPALETTE hPalette, WORD wStartIndex, WORD wNumEntries,
LPPALETTEENTRY lpPaletteEntries);

Description This function is useful after a palette has been created. It allows the palette colors and flag values
for entries in the palette to be changed without creating a new palette. The changes take effect
once the palette is realized with ReaUzePaletteO. .

Uses

Returns

SeeAIso

Parameters
ItPaletle

This is the most efficient way to change a color palette while an application is running.

WORD, the number of entries set in the logical. p~lette, zero on error.

CreatePaletteO, RealizePaletteO, SelectPaletteO, DeleteObjectO

HPALETTE: The handle to the palette returned by CreatePaletteO.

WORD: The number of the first palette entry to change. wS/tzrtIndex ,
wNumEntries WORD: The number of entries to change.

IpPaletteEntries LPPALETTEENTRY: A· pointer to an ·array· of PALETTEENTRY data structures. See
CreatePaletteO for the structure definition for PALETTE ENTRY. There must be at least
wNumEntries array elements. ' I '\ .

Rr.lated Messages WM_QUERYNEWPALETTE, WM_PALETTECHANGED

Example This program initially <!reates a palette of blue shades and paints them across the top of the client
area. The number of colors is set to use every free color, excluding those dedicated to the sYstem
palette. When the user clicks the "Do It!" menu item, the palette is changed to shades of red. This
change is not instantly visible because the palette is not realized until the next WM_P AINT mes
sage is processed.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iHessage, WORD wParam, LONG lParam)
<

PAINTSTRUCT
HOC
static HPALETTE
HBRUSH
LOCALHANOLE
PLOGPALETTE
int
static ·int
static PALETTEENTRY

·switch (iHessage)
<

case WH_CREATE:

ps ;
hOC;
hPa l ;
hBrush ;
hLocPal ;
pLogPa l ;
i, nNumCol, nNumRes ;
nFreeCol ;
pePalEnt [256J ;

1* process windows messages *1

hDC = GetDC (hWnd) ;

544

}

12. COLOR PALETTE CONTROL .,.

nNumCol = GetDeviceCaps (hDC, SIZEPALETTE)
nNumRes = GetDeviceCaps (hDC, NUMRESERVED)
nFreeCol = nNumCol - nNumRes ;
ReleaseDC (hWnd, hDC) ;

I

hLocPal = LocalAlloc (LHEH_HOVEABLE, sizeof (LOGPALETTE) *
nFreeCol * sizeof (PALETTEENTRY» ;

pLogPal = (PLOGPALETTE) LocalLock (hLocPal) ;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 *1
pLogPal->palNumEntries = nFreeCol ;
for (i = 0 ; i < nFreeCol ; i++)
{

}

pLogPal->polPalEntry [iJ.peRed = 0 ;
pLogPal->palPalEntry [iJ.peGreen = 0 ;
pLogPal->palPalEntry [iJ.peBlue = i * (256 1 nFreeCol)
pLogPal->palPalEntry [iJ.peFlags = 0 ;

hPal CreatePc:lette (pLogPal)
LocalUnlock (hLocPal)
LocalFree (hLocPal> ;
break;

case WM PAINT:
-BeginPaint (hWnd, &ps) ;

SelectPalette (ps.hdc, hPal, FALSE)
RealizePalette (ps.hdc) ;
for (i = 0 ; i < nFreeCol ; i++)
{

hBrush = CreateSolidBrush (PALETTEINDEX (i»
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, i * 5, 0, (i.* 5) + 5, 100) ;
SelectObject (ps.hdc, GetStockObject (BLACK_BRUSH»
DeteteObject (hBrush)

EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
(

case IDM DOlT: 1* User hit the "Do it" menu item *1

case

}

for(i = 0 ; i < nFreeCot ; i++)
{

}

pePalEnt [iLpeRed = i * (256 1 nFreeCol>
pePalEnt [iJ.peGreen = 0 ;
pePalEnt [iJ.peBlue = 0;
pePalEnt [iJ.peFlags = 0;

SetPaletteEntries (hPal, 0, nFreeCol, pePatEnt) ;
InvalidateRect (hWnd, NULL, TRUE) ;
break;

IDM_QUIT: 1* send end of application message *1
DeleteObject (hPaL> ;
DestroyWindow (hWnd) ;
break;

break;
case WH_DESTROY: 1* stop. application *1

default:

PostQuitMessage (0)
break;

return DefWindowProc
1* default windows message processing *1

(hWnd, iMessage, wParam, lParam) ;

return (OL)

SETSYSCOLORS • Win 2.0 • Win 3.0 a Win 3.1
Purpose

Syntax

Changes the system colors used to paint window objects.

void SetSysColors (intnChanges, LPINT lpSysColol', DWORD FAR *lpColorValues)j

545

WINDOWS API BIBLE

Description The system colors define what colors Windows uses to paint objects like borders and buttons.
Windows reads these values from the WIN.lNI file on startup. The values can be changed using,
the Windows Control Panel Color application. The values can be temporarily changed during ~
Windows session by calling SetSysColors(). Use WriteProfileStringO for permanent changes to
the WIN .INI file. '

Uses Not often used. Allows an application to change the colors of various Windows objects during the
session, without changing the default values. This affects every running application.

No returned value. Returns

See Also

Parameters
nChanges

GetSysColorsO, GetProfllelnto., GetProfileStringO, WriteProfileStringO

int: The number of color items to change.

IpSysColor LPINT: A pointer to an array of at least nChanges int values. Each element of the array should be
one of the values in Table 12"4.

COLOR...ACTIVEBORDER The active window border.

COLOR;ACTIVECAPTION The active window caption.

COLOFLAPPWORKSPACE The background color for MOl windows.

COLOR_BACKGROUND The desktop color .

. COLOR_BTNFACE The button face.

CO~OR_BTNSHADOW -'The edge of a button.

COLOR~BTNTEXT The button text.

COLOR_ CAPTIONTEXT The text inside the caption bar.

COLOR_ GRA YTEXT The color. of grayed text, as used in disabled menu items. Set to 0 if the display does not
support pure gray colors.'

COLOR_HIGHLIGHT ~e highlighted control color.

COLOR_HIGHLlGHT}Exr . The text color of a highlighted item in a control. '

COLORJNACTIVEB,ORDER The color of an inactive window border.

COLORJNACTIVECAPTION ,:The color of an inactive window caption.

COLORJNACTIVECAPTION 'Color of the text in an inactive caption.
TEXT~n3.1)

COLOR_MENU' The background color for window menus.

COLOR_MENUTEXT The text color for menus.

'COLOR_SCROLLBAR The scroll bar gray area.

COLOR_WINDOW The background color for windows. .

. COLOR_WINDOWFRAME The window frame.

COLOR_WINDOWTEXT The color of text in windows.·

Table 12-4. System Colors.

IpColorValues , DWORD FAR *: A pointer to an array of DWORD .values containing the RGB values used to set'
each of the items specified inthe IpSysColor array. .

Related Messages WM_SYSCOLORCHANGE

546

Example

12. COLOR PALETTE CONTROL ~

, When the user clicks the "Do It!" menu item, two of the system colors are changed, the window
background and the work space background colors. The changes are immediately shown on the
screen when Windows updates all applications.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ -

HDC
int
DWORD

hDC ;
nSysIndex [2] = {COLOR_WINDOW, COLOR_BACKGROUND} ;
dwCoLors [2] = {RGB (240, 240, 255),

RGB (200, 210, 255)} ;
/

switch (iMes$age)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu 'item *1
hDC = GetDC (hWnd) ;
SetSysCoLors (2, nSyslndex, dwCoLors) ;
ReLeaseDC (hWnd, hDC) ;
break;

{Other program lines]

SETSYSTEMP ALETI'EUSE o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses'

Allows modifications to the system color palette.

WORD SetSystemPaletteUse(HDC hDC, WORD wUsage)j

Normally, Windows reserves 20 color values for use by all \Vindo~s. This is called the system
palette. SetSystemPa,etteUseO allows an application program to change the system palette, or
set the status back to the normal, flxed status. ' .'
Changing the system palette may be a desirable way to extend color optioltswhen using a device
that has between 16 and 64 colors. Above 64 colors, there are enough free colors that it is simpler
to leave the system colors unchanged and add other colors as needed.

Returns ,WORD, the previous system palette state, either PAL_NO STATIC or PAL_STATUj; Seethe defini-

See Also
Parameters '
hDC

wUsage

SYSPAL_NOSTATIC

SYSPAL_STATIC

tion of these values in Table 12-5. . ,

SetSysColorsO

HDC: The device context handle.
WORD: One of the two values in Table '12-5.

The system palette is not static and will change when the program realizes a logical palette with
ReaJizePaletteQ. A pure black and pure white value are always retained.

The system palette is static and will not be affected by realizing a.logical palette with
RealizePaletteQ.

Table 12-5. SetSystemPaletteUse() Flags.

Related Messages MtCSYSCOLORCHANGE
Example This example changes the system palette when the user clicks the "Do It!" menu item. Before the

changes are made, the existing palette is saved into an array dwOldCoiorslJ. When the user
clicks the "Quit" menu item, the old palette is restored. Note that UnrealizeObjectO is used to
make sure that the palette changes are processed as if it were the first palette read into the

547

WINDOWS API BIBLE

system. Also note that M.CSYSCOLORCHANGE messages are sent to'all applications for both
changes as notification that the system palette has cnanged.

#define NUMPALCOL 20

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

PAINTSTRUCT
HOC
static HPALETTE
LOCALHANOLE
PLOGPALETTE

ps ;
hOC;
hPa l ;
hLocPal
pLogPal.
i ; int

static int , " nColor1ndex [NUMPALCOLJ ;
dwOldColors [NUMPALCOLJ ; static OWORO

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hLocPal = LocalAlloc (LMEM_MOVEABLE, sizeof (LOGPALETTE) ~

NUMPALCOL * sizeof (PALETTEENTRY» ;
pLogPal = (PLOGPALETTE) LocalLock (hLocPal) ;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 *1
pLogPal->palNumEntries = NUMPALCOL ;

,for (i ':: 0 ; i < NU~1P.ALCOL; i++)
{

}

pLogPal->palPalEntry [iJ.peRed = (i * 128) r. 256;
pLogPal->palPalEntry [iJ.peGreen = (i * 64) r. 256
pLogPal->palPalE'ntry [iJ.peBLlie =(i * 32) r. 256;
pLog~al->palPalEntry[iJ.peFlags = a

hPal = CreatePalette (pLogPal)
LocalUnlock (hLocPal)
LocalFree (hLocPal)
break;

case WM_COMMANO: 1* process menu items *1
switch (wParam)
{

case 10M_OOlT: 1* User hit the "00 it" menu item *1
, hOC = GetOC (hWnd) ;

for (i = 0 ; i < NUMPALCOL ; i++)
{

nColorlndex [i J = i ;
dwOldColors [iJ = GetSysColor (i) ~

}

SetSystemPaletteUse (hOC, SYSPAL_NOSTAJ;lC)
UnrealizeObject (hPal) ;
SelectPalette (HOC, hPal,FALSE) i
RealizePalette (hOC) ;
PostMessage (-1, WM_SYSCOLORCHANGE, 0, aL) ;
ReleaseOC (hWnd, hOC) ;
break;

'case 10M_QUIT: 1* send end of application message *1
OestroyWindow (hWnd) ;
break

}

break;
case WM_OESTROY: 1* stop application:1

hOC = GetOC (hWnd) ;
UnrealizeObject (hPal) ;
SelectPalette (hOC, hPal, FALSE) ;
Rea l i zePa lette (hOC) ;
SetSysColors (NUMPALCOL, nColorlndex, dwOldColors)
SetSystemPaletteUse,(hOC, SYSPAL_STATIC) ;
PostMessage (-1, WM_SYSCOLORCHANGE, 0, aL)
OeleteObject (hPal) ;
ReleaseOC (hWnd, hOC)
PostQuitMessage (0) ;
return (aL) ;

548

12. COLOR PALETTE CONTROL V

default: 1* default windows message processing *1
return DafWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL)
}

•
UPDATECOLORS o Win 2.0 • Win 3.0 • Win 3.l
Purpose

Syntax

Description

Uses

Returns

See Also

Pa.rameters
hDC

Redraws the client area when the application does not have the input focus, but has realized a
logical palette.

int UpdateColors (HDC hDC) j

Windows gives preference to the active window when assigning colors from the logical palette. An
active window realizing its logical palette may take previously used colors to draw in the client
area of an inactive window.

UpdateColorsO is provided for rapid updating of colors in windows that do not have the input
focus. The function is only useful if the application has already realized its logical palette.

Processing W~CPALETIECHANGED messages (see example below).

int, not used.

. CreatePaletteO, SelectPaletteO, RealizePaletteO, DeleteObjectO

HDC: The device context handle for
the window.

QD It! Quit
Related Messages W~CPALETIECHANGED

I 1111111111

Example This example is most effective if two
instances of the same program are
run at the same time. The program
is set to display a series of narrow
rectangles, each with a different
palette co!or. Figure 12-7 gives a Figure 12-7. UpdateColors() Bxample.
rough idea of the appearance of the
program's window, when viewing in black and w~·!te. Clicking the "Do It!" menu item changes the
color palette and causes the screen to be redra"m with the new colors. With two or more versions
running on a system that supports 256 colors or less, changing the color palette on one copy orthe
program will rob colors from the other. The program handles this by processing
WM_PALETIECHANGED messages. When a Wl\CPALETIE-CHANGED message is received, the
program calls UpdateColorsO to make the best use possible of the remaining colors available.

The program also processes WrvCQUERYNEWPALE'I'l'E messages. They are received right
before the application receives the input focus, giving the program a chance to realize the logical
palette and regain colors lost to other applications when the program was inactive. This example
shows a standard response to ~CQUERYNEWPALETIE. This is a little redundant, as the pro
gram realizes the palette every time a W1vCPAINT message is received. The response to
W~CQUERYNEWPALETIE could be cut down to just doing the ~CPAINT logic.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,.LONG lParam)
{

PAINTSTRUCT
HOC
static HPALETTE
HBRUSH
LOCALHANDLE
PLOGPALETTE
int
static int

ps ;
hOC;
hPa l ;
hBrush ;
hLocPa l ;
pLogPa l ; ,
i, nNumCol, nNumRes ;
nFreeCol, nColorChange = a ;

549

WINDOWS API BIBLE

static PALETTEENTRY pePalEnt [256J ;

switch (iMessage)
{

case 101M_CREATE:

1* process windows messages *1

hDC = GetDC (hWnd) >
nNumCol = GetDeviceCaps (hD~, SIZEPALETTE)
nNumRes = GetDeviceCaps (hDC, NUMRESERVED)
nFreeCol = nNumCol - nNumRes ;
ReleaseDC (hWnd, hDC) ;

hLocPal = LocalAlloc (LMEM_MOVEABLE, sizeof (LOGPALETTE) *,
nFreeCol * sizeof (PALETTEENTRY» ;

pLogPal = (PLOGPALETTE) LocalLock (hLocPal) ;
pLogPal->palVersion = Ox300 ; 1* for windows 3.0 *1
pLogPal->palNumEntries = nFreeCol;
for (i = 0 ; i < nFreeCol ; i++)
{

}

pLogPal->palPalEntry [iJ.peRed = 0 ;
, pLogPal->palPalEntry [iJ.peGreen = 0 ;

pLogPal->palPalEntry [n.peBlue = i * (256./ nFreeCol)
pLogPal->palPalEntry [iJ.peFlags = 0

hPal CreatePalette (pLogPal)
LocalUnlock (hLocPal)
LocalFree (hLocPal) ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SelectPalette (ps.hdc, hPal, FALSE) ;
RealizePalette <ps.hdc) ;
SeLectObjectCps.hdc, GetStockObject (WHITE_PEN» ;
for (i = 0 ; i < nFreeCol ; i++)
{

)

hBrush = CreateSolidBrush (PALETTEINDEX (i»
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, i * 5, 0, (i * 5) + 5, 100) ;
SelectObject (ps.hdc, GetStockObject (BLACK_BRUSH»
DeleteObject (hBrush)

EndPaint (hWnd, &ps) ;
break;

ca,se WH_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
nColorChange++ ;
for (i = 0 ; i < nFreeCol ; i++)
{

}

pePalEnt [iJ.peRed = i * (256 1 nFreeCol)
pePalEnt [iJ.peGreen = nColorChange
pePalEnt [iJ.peBlue =

(nColorChange & 1 ? 0 : 255)
pePalEnt [iJ.peFlags = 0 ;

SetPaletteEntries (hPal, 0, nFreeCol, pePalEnt)
InvalidateRect (hWnd, NULL, TRUE) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;

}

break;

break;

case WM_QUE~YNEWPALETTE: 1* about to get focus *1
hDC = GetDC (hWnd) ;
SelectPalette (hDC,' hPal, 0) ;

550

. }

}

12. COLOR PALETTE CONTROL ...

if (RealizePalette (hOC»
InvalidateRect (hWnd, NULL, TRUE) ;

ReleaseDC (hWnd, hOC)
break;

case W"'_PALETTECHANGED: 1* anothe.r application changed pal *1
if (wParam != hWnd)
{

}

break;

hOC = GetOC (hWnd) ;
SelectPalette (hOC, hPal, 0) ;
if (RealizePalette (hOC»

UpdateColors (hOC)
ReleaseDC (hWnd, hDC) ;

case WM_DESTROY: 1* stop application *1
OeleteObject (hPal)
PostQuitHessage (0)
break;

default:
return De~WindowProc (hWnd, iHessage, wParam, lParam)

return (OL)

r \

551

Diaiog boxes are similar to popup windows. They are frequently used to get input from the user for some specific task,
such asio obtain a file name or to obtain a character string for a search activity. The main difference between dialog
boxes and popup windows is that the Windows Software Development Kit (SDK) provides a dialog box editor that
simplifies the task of positioning the buttons and other controls that make up a dialog box. The dialog box editor does
not provide the program logic to process the messages from the dialog box. That task remains up to the programmer.

There are functional differences between the behavior of a popup window and a dialog box. Dialog box functions
use a special default message processing function. This function interprets keystrokes such as the arrow keys, @ID

and (SHIFT I-@) to allow selection of controls in the dialog box using the keyboard. Any activity that can be performed
in a dialog box can also be performed in a child or popup window. Dialog boxes are more convenient for simple popup
windows that make use of normal control items like buttons and list boxes. Popup and child windows are better if you
will be doing extensive painting on the window, or will be modi1}ing the standard behavior of the window.

An Example Dialog Box
To get started, let's modify the GENERIC application we created in Chap
ter 1 to show a dialog box window. The dialog box will appear as shown in
Figure 13-1. It is similar to the dialog box style used by most programs for

'. an "About Box," although this one has two pushbuttons to illustrate how
control messages are processed.

The first step is to run the SDK Dialog Box Editor application to cre

generic Example

This dialog box does not=.ing.

1-"-
ate the rough dialog box template. The DBEditor'will generate two files, Figure 13-1. A Dialog Box.
a dialog box template file and a header file. It is best to use a separate
header file to store the ID values for the dialog box controls. The DBEditor will allow you to update and add to this file
for new controls and new dialog boxes as they are added to the application: The DBEditor generates a dialog box
template file like the one shown in Listing 13-1. Most people give their dialog box template files the extension ".DLG."
In this case, the dialog box is given the name "EXAMPLEDIALOG." We ,vill discuss the meaning of all of the items in
the dialog box definition later in this chapter.

C> Listing 13-1. GENERIC.DLG The Dialog Box Template File Created with the DBEditor
EXAMPLEDIALOG DIALOG LOADONCALL MOVEABLE DISCARDABLE 20, 34, 160, 67
CAPTION "Example Dialog Box"
FONT 10 "Helv"
STYLE WS_BORDER 1 WS_CAPTION 1 WS_DLGFRAME 1 DS_MODALFRAME 1 WS_POPUP
BEGIN

CONTROL "generi cExample", -1, "stati c",
SS_CENTER 1 WS_GROUP 1 WS_CHILD, 42, 12, 81, 10

CONTROL "This dialog box does nothing.", -1, "static",
SS_CENTER 1 WS_GROUP 1 WS_CHILD, 28, 30, 115, 10

CONTROL "gener; c", -1, "stat; c",
SS_ICON 1 WS_CHILD, 10, 10, 0, 0

CONTROL "OK" DLI OK "button"
, BS_DEFPUSHBUTTON'I WS_TABSTOP 1 WS_CHILD, 30, 50', 40, 14

CONTROL "Not OK", DLI_NOTOK, "but ton",
BS_PUSHBUTTON 1 WS_TABSTOP 1 WS_CHILD, 100, 50, 40, 14

552

13. DIALOG BOXES 'Y

CONTROL "generi c", -1, "stati c",
SS_ICON I WS_CHILD, 5, 13, 16, 16

END

The dialog box template file is a normal ASCII file and can be edited. With the Windows 2.0 version of t.he
DB Editor, it was frequently necessary to go in and edit the dialog box template to add captions, change fonts, etc.
These features have all been added to the Windows 3.0 version of the DBEditor, so there is seldom a reason to manu
ally change values. The header file that contains the ID values for all of the controls in every dialog box the application
uses can be maintained completely from within the DB Editor. For the simple example shown in Listing 13-2, there are
only the two pushbutton controls that need ID values. All of the static items, such as the text strings and the icon, are
given ID values of -1. ~ese items are never selected.

e Listing 13-2. GENERICD.H. The Dialog Box ID Header File
IIdefine DLI OK
#define DLI:NOTOK

101
102

It is best to use a numbering convention to keep menu item IDs, dialog box control IDs, and child window control
IDs separate. A good system is to number menu items between 1 and 99, dialog box IDs between 100 and 999, and child
window control IDs above 1000. The DBEditorwill create ID values starting at 100 by default, so this is convenient.
. The dialog box template must be compiled to make a binary resource me (.RES) by the resource compiler

(RC.EXE) to make the data useful to the application program. The dialog box template file can be either separately
compiled or included in the program's resource file, as shown in Listing 13-3. Don't forget to include the header file
containing the dialog box ID values.

e Listing 13-3. GENERIC.RC The Resource Script File
1* generic.rc *1

lIinclude <windows.h>
#include "generic.h"
#include "genericd.h"
lIinclude "generic.dlg"

generic ICON generic.ico

generic MENU
BEGIN

MENUlTEH "&Do It!"
MENUlTEM "&Qui t",

END

IDM_DOlT
IDM_QUlT

Note that the resource script file includes the ICON statement. The "generic" icon is also used in the dialog box.
Windows does not provide an automated way to procesS messages from the controls in a dialog box. You will ha~e to
create a message processing function for every dialog box in the program. These functions are called "Dialog Box
Functions." They are similar to the separate message processing functions we explored in Chapter 3, Windows Sup
port Functions, for child and popup windows. Listing 13-4 is a typical example, which processes messages for the
simple dialog box previously defined.

e Listing 13-4. A Dialog Box Function
BOOL FAR PASCAL DialogProc (HWND hDlg, WORD wMesr, WORD wParam, LONG lParam)
{

switch (wMess)
{

case WM_INITDIALOG:
1* initialization functions go here *1

return TRUE;
case WM_COMMAND: 1* One of the controls was activated *1

switch (wParam)
{

case DLI_OK:
EndDialog (hDlg, 0) ;
return TRUE;

case DLI_NOTOK:

553

WINDOWS API BIBLE

HessageBeep (0) ;
return TRUE;

)

} ,

return TRUE;
. case W'CDESTROY:

return FALSE;

EndDialog.(hDlg, 0) ;
return TRUE;

In this case, the dialog box quits if the user clicks the "OK" button, andjust beeps if the "Not OK" button is clicked.
Although the dialog box function looks a lot like a child window message processing function, there are differences.

1. Windows sends a WM_INITDIALOG message to the function before the dialog box is made visible. This message
replaces the WM_ CREATE message that is sent to child windows.

2. Dialog box functions do not pass messages on to DefWindowProcO. Instead, Windows automatically passes mes
sages to a special default message processing logic used only for the dialog boxes. Normally, this is done automati
cally, so you will not reference the DefDlgProcO function at the bottom of the dialog box function. The only
exception is a special case where the dialog box has its own window class. See the DeIDIgProcO function descrip-
tion for an example. .

3. Dialog box functions should return TRUE if the message was processed within the function, and return FALSE if
the message was not processed.

4. Dialog box functions end the dialog box's existence by calling EndDialogO.
The dialog box function must be included in the EXPORTS section of the program's .DEF defmition file, as shown

in Listing 13-5.

o Listing 13-5. GENERIC.DEF Definition File
NAME
DESCRIPTION
EXETYPE WINDOWS
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS WndProc

GENERIC
'generic windows program'

'WtNSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
1024
4096

DialogProc

The dialog box function prototype, as shown in Listing 13-6, must also be included in the program's header file for
the source code to c;ompile properly.

o Listing 13-6. GENERIC.H Header File
1* generic.h *1
#define :DM_DOIT 1* menu item id values *1
#define 10M_QUIT 2

1* global variables *1
int ghInstance ;
char gszAppName [J = "generi C" ;

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsigned, WORD, lONG) ;
BOOl FAR PASCAL DialogProc (HWND, WORD, WORD, LONG) ;

Finally we get to the point that we can actually call the dialog box from within the program. Listing 13-7 shows a
typical calling sequence. I

o Listing 13-7. GENERIC.C Excerpt
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

FARPROC lpfnDlgProc ;

554

switch (iMessage)
{

13. DIALOG BOXES 'Y

1* process windows messages *1

case WM_COMMANO: / 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT: 1* run dialog box *1
lpfnOlgProc = MakeProclnstance (OialogProc, ghlnstance) ;
Oi a logBox (ghlnstclOce, "ExampleOi a log", hWnd,

lpfnO 19Proc) ;
FreeProclnstance (lpfnOlgProc)
break; .

/Otherprogram lines]

The DialogBoxO function creates and runs the dialog box. DialogBoxO requires the procedure-instance address
ofthe dialog box function. MakeProclnstanceO is used to obtain this value, and FreeProclnstanceO is used to release
it from memory. This probably looks like a lot of work for so simple a task. The saving grace is that, like WndProcO
functions, dialog box functions all tend to be similar. Once you have created one, all of the rest are a matter of
modification. The DBEditor is a big help in taking the guesswork out of creating nice looking dialog boxes.

Types of Dialog Boxes
The most common type of dialog box is a "modal dialog box." When a modal dialog box is on the screen, the user cannot
switch to another part of the 'program. By default, they limit access to the other visible windows of the program that
called the dialog box. The user can still switch to other programs while the modal dialog box is displayed.

You can make a system modal dialog box by specifying the WS_SYSMODAL style in the dialog box template.
System modal dialog boxes can also be created by calling the SetSysModalWindowO function: System modal dialog
boxes take over the whole screen. They are only appropriate if there is a serious prqblem that the user cannot ignore,
such as having the system run out of memory.

Modal dialog boxes and system modal dialog boxes are created with the DialogBoxO function. (Actually, there are
several versions of DialogBoxO that we will discuss in a moment.) When you use DialogBoxO, all of the window's
messages are sent to the dialog bo~ function while the dialog box is on the screen. The rest of the program just sits
there until EndDialogO is called from within the dialog box function to close the dialog box.

, Less common, but sometimes handy, are "modeless" dialog boxes. They are basically popup windows. Modeless
dialog boxes hang around on the screen, and they can obtain and lose the input focus. They are frequently used for
small windows containing lists of tools, or for popup windows that display a_continually updated set of values like the
cursor X,Y position. Modeless dialog boxes are created with CreateDialogO. Again, there are several versions of
CreateDialogO, but they all accomplish the same basic task of displaying and initializing a modeless dialog box.
Because the mode less dialog box remains on the screen, it must share messages with the application's WndProcO
function. This requires a modification to the program's message loop if the modeless dialog box is to respond to
keyboard selections using the @) and arrow keys. A typical message loop for an application containing one or more
modeless dialog boxes is as follows:

while (GetMessage (&msg, NULL, 0, 0»
{

1* the message loop *1

if (hOlgModeless == NULL II !lsOialogMessage (hOlgModeless, &msg»
{

}

}

TranslateMessage (&msg) ;
OispatchMessage (&msg) ;

hDlgModeless is a HWND handle for the dialog box. This global variable is set to NULL if the modeless dialog box
is not displayed, and set to the dialog box handle if the modeless dialog box is currently on the screen.

The IsDialogMessageO function determines if a message from Windows is meant for the dialog box. If so, the
message is sent to the dialog box function and should not be processed by the normal TranslateMessageO and
DispatchMessageO functions.

555

WINDOWS API BIBLE

Indirect and Parameter· Oialog Box Functions
DialogBox() and CreateDialogO are the basic functions for creating modal and modeless dialog boxes, respectively.
There are actually five versions of each of these functions. I'll use the modal dialog box functions as an example,but
the same comments apply to the modeless dialog box functions related to CreateDialogO. As previously mentioned,
the dialog box template file is compiled using the resource compiler to make a binary .RES resource file. The compiled
resource information is linked into the program when RC.EXE is called a second time at the end of the compile/link
cycle. When you .call DialogBoxO, the resource data is loaded into I memory and executed. This is how Windows knows
how to display the dialog box image. When the dialog box is closed (EndDialogO is called to do this), the resource data
is released. Sometimes it is desirable to control when the dialog box template data is loaded or unloaded from memory.
To do this, load and lock the resource data for the dialog box in advance, and then call DialogRoxIndirectO.
DialogBoxIndirectO takes a handle to the locked resource data in memory and runs the dialog box. The dialog box
resource data is not removed from memory when the dialog box exits. Do this manually by using UnlockResourceO
and FreeResourceO. Examples of using these functions are included with the DialogBoxIndirectO function descrip-
tion. More detail is included in Chapter 25,Resources. .

Indirect loading of dialog box template data also makes it possible to modify the dialog box definition as the
application runs. (This subject is discussed later in this chapter under the heading Dynamic Dialog Boxes.)

The DialogBoxO function has another limitation. There is no clean way to pass dialog box information, such as
variable names and constants. Prior to Windows 3.0, programmers were forced to pass data by using global variables.
This is not a good practice, as it makes the dialog box functions less portable. With Windows 3.0, several new functions
have been added that include data passing between the calling function and the dialog box function. These are the
"Payam" versions of DialogBoxO and CreateDialogO. DialogBoxParamO is a typical example. This function allows a
32-bit value to be passed to the dialog box function. Normally, 32 bits is not enough room to pass all of the data the
dialog box function will need. In this case, the 32-bit value can be used to pass a handle to a memory area that contains
the data. The memory block is allocated outside of the dialog box function. The dialog box function uses the handle to
lock the memory area, read and change values, and then unlock the memory block. See the example under Dialog
BoxParamO for a typical application.

Communicating with Dialog Box Controls
The controls within a dialog box, such as buttons; list boxes, and static text, are
all child windows. The dialog box receives WM_COMMAND messages from the
controls when they are activated, and it can send messages to the controls using
SendMessageO. Usually, it is easier to use the specialized SendDlgItemMess
ageO function from within a dialog box, as it uses the control's ID value rather
than the control's window handle.

generic

110111 ~uJj

The curreot selection Is number I. Fourth str,ng

FirstStrin

Second Strir.g
Third SIring

Typical Ii., bllX
in a dialog box.

'------.~ -
To see how messages are handled from within a dialog box function, we will Figure J 3-2. A List Bo.'); Control

use a list box control. List boxes are child window controls that allow the user to in: a Dialog Box.
select an item from among a number of choices. Although list box controls can
be attached to any window or child window, they are most often part of dialog boxes. Common uses are to select a file
from a group of files in a subdirectory, to select a tool from a list of tools, etc.

The Windows SDK does not provide a series of specialized functions to deal with list boxes. Instead, the applica
tion communicates with the list box with a series of Windows messages. The list box communicates with the applica
tion by sending \\,'M_COMMAND messages, with the specific message encoded in the wParam and IParam
parameters. The messages are described in Chapter 9, Windows Messages. To see how this works in a dialog box,
consider the simple example shown in Figure 13-2. The dialog box contains one list box, which contains four character
strings. The user selects one of the items using the mouse, and then clicks the "OK" button. The selected value is then
displayed on the application's client area.

The dialog box was defined using the SDK DB Editor application. The resulting dialog box template file is as
follows:

556

13. DIALOG BOXES ~

c:> Listing 13-8. Dialog Box Definition Containing a List Box
EXAMPLEDIALOG DIALOG LOADONCALL MOVEABLE DISCARDABLE 20, 36, 162, 75
CAPTION "Example Dialog Box"
FONT 10, "Helv"
STYLE WS_BORDER I WS_CAPTIO~ I WS_DLGFRAME I DS_MODALFRAME I WS_POPUP
BEGIN

END

CONTROL "OK", DLI_OK, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 102, 48, 40, 14

CONTROL "", DLI_LISTBOX, "l i stbox",
LBS_NOTIFY I LBS_SORT J LBS_STANDARD I LBS_HASSTRINGS
I WS_BORDER I WS_VSCROLL I WS._CHILD, 6, 15, 87, 49

CONTROL "Typical Ust box in a dialog b(\x.", -1, "static",
SS_LFFT I WS_CHILD, 102, 15, 54, 27

Thelist box control definition contains several flags. The key ones are LBS_SORT, which causes the items to be
sorted in ASCII sequence, and LBS_HASSTRINGS, which tells the list box control to store theJist box items in its own
memory area. The LBS_NOTIFY style is also critical, as without it the list box will not s~nd WM_COMMAND messages
to the application when the user clicks or double-clicks an item.

The processing logic for the dialog box function is fairly simple. The list box items are added to the list box when
the dialog box is first created. Once the dialog box is displayed, clicking an item in the list box results in a
\VM_COMMAND message being sent to the dialog box function. The dialog box function logic extracts the current
selection number and the string that selection contains, and stores the values in the global variables nSelection and
cSelection.

c:> Listing 13-9. Dialog Box Procedure for the List Box Example
BOOL FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG lParam)
{

swi tch (wMess)
{

case WM_INITOIALOG:
SendDlgltemMessage {hDlg, DLI_LISTBOX, WM_SETRECRAW,

FALSE, OU ;
SendDlgltemMessage (hPlg, DLI_LISTBOX, LB_ADDSTRING, 0,

(DWORD)(LPSTR) "Fi rst String") ;
SendDlgItemMessage (hDlg, DLI_LISTBOX, LB_ADDSTRING, 0,

(DWORD)(LPSTR) "Second String") ;
SendDlgltemMessage (hDlg, DLI_LISTBOX, LB_ADDSTRING, 0,

(DWORD)(LPSTR) "Third String") ;
SendDlgltemMessage (hDlg, DLI_LISTBOX, LB~ADDSTRING, 0,

(DWORD)(L~STR) "Fourth String") ;
SendD 19 I temMes sage {hD 19, DLI_L.~STBOX,. WM_SETREDRAW,

TRUE, OU ; ';1,
return TRUE; " .

case WM_COMMAND: 1* One of the controls was activated *1
sHi tch (wParam)
{

case DLI_OK:
EndDialog (hDlg, 0)
return TRUE;

case DLI_LISTBOX: .

}

return TRUE;
case WM_DESTROY:

if (HIWORD (lParam) == LBN_SELCHAN~E)
{

}

557

nSelection = SendDlgltem Message (hDlg,
DLI_LISTBOX, LB_GETCURSEL, 0, OL)

SendDlgltemMessage (hDlg, DLI_LISTBOX,
LB_GETTEXT, nSelection,
(LONG){LPSTR) cSel~ction)

WINDOWS API BIBLE

}

}

return FALSE;

EndDialog (hDlg, 0) ;
return TRUE;

Review Chapter 9, Windows Messages, fo.r the full list o.f messages co.ncerning dialo.g bo.xes and co.mbo. bo.xes.
There are o.ther examples in tho.se sectio.ns, including creating list bo.xes with the o.wner-redrawn style. ,Owner
redrawn list boxes and co.mbo. bo.xes allow selectio.n fro.m groups o.f bitmaps, co.lo.rs, etc. Windo.ws includes direct
suppo.rt fo.r filling a list with a selected gro.up o.f file names.

The Dialog Box Keyboard Interface
The built-in lo.gic Windo.ws pro.vides fo.r dialo.g bo.xes includes pro.visio.ns fo.r a keybo.ard alternative to. selecting items
with the mo.use. Three sets o.fkeyboard lo.gic can be provided: keybo.ard "ho.t keys" fo.r selecting items using@-letter
key co.mbinatio.ns; respo.nse to. the @ID key fo.r big mo.vements; and respo.nse to. the keybo.ard arro.w keys fo.r smaller
mo.vements.

The @}-letter key selectio.n Io.gic is do.ne the same way fo.r dialo.g bo.xes as fo.r menu items. If yo.u pro.cede a letter
in the contro.l's text string with an ampersand (&), the letter fo.llo.wing the & is underlined. The & characters are no.t
displayed. Fo.r example, the fo.llo.wing definitio.n fo.r a DEFPUSHBUTrON co.ntro.l wo.uld use @-D fo.r a ho.t key to.
activate the "Do.ne" button. .

CONTROL "&Done", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 45, 66, 48, 12

Using the @) and arro.w keys is so.metimes a convenient alternative to. the mouse, and critical for users who. are
not using a mo.use. To. take advantage. of this logic, you set certain elements in the dialo.g box template with the
WS_TABS'!'OP and/o.r WS_GROUP style. Here is an example

EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 10, 18, 145, 80
STYLE WS_DLGFRAME I WS_VISIBLE I WS_POPUP
BEGIN

END

CONTROL "", DLI_CHECK1, ,"button",
BS_CHECKBOX I WS_TABSTOP , WS_GROUP , WS_CHILD, 12, 20, 48, 12

CONTROL , DLI_CHECK2, "button",
BS_CHECKBOX , WS_CHILD, 12, 39, 48, 12

CONTROL , DLI_CHECK3, "button",
BS_CHECKBOX , WS_TABSTOP I WS_GROUP I WS_CHILD, 84, 21, 45, 12

CONTROL·... DLI CHECK4 "button" .
BS_CHECKBOX I WS_CHILD, 84,'39, 45, 12

CONTROL "Done", DLI_DONE, "button",
BS_DEFPUSHBUTTON" WS_TABSTOPI WS_CHILD, 45, 66, 48, 12

. The WS.:.,.TABS'l'OP style marks each item that will receive the input focus when the user presseS @ID or (SHI~Tl
@ID. In this case, three items have this style. TheWS3mOUp style-marks the beginning o.f a gro.up. All o.fthe items up
until the next WS_GROUP item are part of the same gro.up. The user can use the arrow keys-to."J.tmve betWeen Uems in
a group, but not outside of the group. The (ENTER) key will select or deselect a pushbutton, check box, Dr raaio' button
item that has the input focus. This procedure has the same effect as selectio.n with the left mo.use button.

The default keybo.ard interface wo.rks fine ifyo.ur dialo.g bo.x template is in a lo.gical o.rder. Yo.u will pro.bably find
that this ~s no.fthe case when yo.u first create the dialo.g bo.x template using the DBEditor. Go in with a text edito.r and
edit the template as soon as it is do.ne, moving the items until they are in the right order for th~ WS_TABSTOP and
WS_GROUP style markers to. wo.rk pro.perly. The o.rder o.f t~e lines in the dialo.g bo.x template also.:determines the·
o.rder in which the items are displayed o.n the screen as the' dialog bo.x is painted. Having the screen painted ina
reasonable order is mo.re aesthetic than having the co.nt~,ls appear rando.mly o.ver the screen.

Dynamic Dialog Boxes
So.me applications require that the dialo.g bo.x be altered as the program o.perates. Fo.r example, a database applica
tio.n would need to. add and subtract fields fro.m a data-entry dialo.g box to. match the structure o.f the underlying

558

13. DIALOG BOXES ~ ,

database. This is a complex subject, so you 'may wish to skip to the next section if you do not need this information
right away. For simple changes, the child window controls in the dialog box can be manipulated dir\!ctly. For example,
MoveWindowO can be called to relocate a control. For complete control over a dialog box during run time, the appli
cation can modify the dialog box definition in memory. This is not a simple matter, as the definition of a dialog box
contains three separate data structures, each with variable length fields. , -

The CreateDialoglndirectO, CreateDialoglndirectParamO, DialogBoxIndirectO, and DialogBoxIndirectParamO
functions read the data in memory in a specified format and create a dialog box. The simplest way to create data in the
right forl!!at is to define the dialog box "ith the DBEditor, add it to the application's resources, and load it into
memory with LoadResourceO and LockResourceO. The data will be in the format defined below. You will have to
create the data format from scratch in an allocated memory block if your dialog box is to be truly "dynamic. II

The overall structure of a dialog box definition in memory is as follows:

DLGTEMPLATE The header information for the dialog box.

FONTINFO The data structure for the font data.

DLGITEMTEMPLATE The data structure for each control in the dialog box.

These data structures are placed one after the other in memory. The data structures are not defined in
WINDOWS.H. Here are their definitions:

C Listing 13-10. Dialog Box Data Structures
typedef struct { 1* only one of these structs per dial. box *1

long dtStyle ; 1* Any of the DS_ styles (CreateWindow(» *1
BYTE dtItemCount 1* number of controls, 255 max *1
i nt dtX ; 1* X pos _ of -upper left of the di a log box * 1
int dtY ; 1* Y pos. of upper left of the dialog box *1
int dtCX ; 1* width of the dialog box *1
int dtCY; 1* height of the dialog box *1
char dtMenuName [1] ; 1* menu name, null term_ string, NULL=none *1
char dtClassName [1] ; 1* class, null term_ string, NULL=standard *1
char dtCaptionText [1]; 1* dialog box caption, null term. string'*1

} DL~TEMPLATE ;

typedef struct { 1* only one of these strtJcs per dial. box *1
short int PointSize ; 1* point size of font *1
char szTypeFace [1] ; 1* typeface name, null,term. string *1 -

} FONTINFO;

typedef struct {
int dtilX;
int dtilY;
int dtilCX;
int dti lCY ;
int dtilID;
long dti lStyle ;
char dti lClass [1] ;
char dtilText [1]
BYTE dti lInfo ;
PTR dtilData;

}DLGITEMTEMPLATE ;

1* one of these for each control *1
1* X pos. of upper left of the control *1
1* Y pos. of upper left of the control *1
1* wi dth of the control * 1
1* Y pos. of upper left of the control *1
1* control id value *1
1* control chi ld window syle *1
1* null term. string "BUTTON", "EDIT", etc. *1
1* control text, null term. string *1
1* number of bytes of data that follow *1
1* the extra data'bytes go here *1

The size and location of the dialog box and all controls are given in dialog box base units. These are relative to the
size of the font in use. Vertical dimensions are in eighths of the font height, and horizontal dimensions are in fourths
of the font width.

All of the character elements in the structures are variable-length arrays. The minimum size will be one byte, for
a NULL character. Normally, there will be a series of ASCII characters, followed by a terminating NULL. Windows
parses the memory block, using the terminating NULL character to mark the end of the field.

A full demonstration of the use of dynamic dialog boxes is beyond the scope of this book. If you are interested in
more information, refer to Chapter 3 of Jeffrey Richter's excellent book WindoVJs 3: A Developer's Guide (1991, M&T
Books) for a complete example.

559

WINDOWS API BIBLE·

Dialog Template Statement Description
This section contains a full list of the statements that you can include in the dialog box template. Normally, you will
use the SDK DBEditor to do all ofthe additions and changes to the dialog box template file. Sometimes it is easier to
just go in and edit a specific value in the resource script file for small changes. One of the peculiarities of dialog box
templates is the system of units. Instead of measuring locations in terms of pixels, or logical units, dialog boxes use
"dialog base units." These units are fractions of the dialog box character font size. The horizontal direction is mea
sured in fourths of a character width, and the vertical direction is measured in eighths of a character height. The
effect of this system of units is to properly scale the dialog box, regardless of the screen resolution in use. Typically

, high-resolution monitors will use more pixels per character, so the character size remains about the same as oil a low
resolution monitor. A side effect of this system is that you can change the size of a dialog box by simply picking a
different font. The FONT statement is provided for this purpose.

DIALOG
Purpose

Syntax

Example

Description

STYLE
Purpose

Syntax

Example

Description

II) Win 2.0 • Win 3.0 • Win 3.1
Starts the dialog box template definition.

nameID DIALOG [loa¢-option J [rilem-option I x,y, width, he(qht, [option-statement.~]
EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 10, 18, 145,80
BEGIN .

(dialog box items defined here)
END

This statement starts the dialog box template definition. All statements from BEGIN until the
END statement is reached are part of the dialog box template.

The nameID string is the name ofthe dialog box. This is the character string that is used with
DialogBoxO to specify which dialog box should be loaded and executed.

The load-option can be either PRELOAD or LOADONCALL. PRELOAD specifies that the
dialog box resource data be loaded when the application starts. Doing so takes up memory, but
makes the dialog box appear quickly. LOADONCALL is the normal (default) option, where the
dialog box resourcedata is not loaded into memory until needed.

The mem-optiim is a combination of FIXED, MOVEABLE, and DISCARDABLE. Normally,
both the MOVEABLE and DISCARDABLE styles are chosen. FIXED should be avoided, as this
freezes the dialog box resource data in memory, making it much more difficult for Windows to
optimize memory use. .

x,y, width, height specifies the position and size of the dialog box. Dialog base units are used
for all dimensions. Thex;y location is relative to the upper left corner of the window which called
the dialog box.

The option-statements include STYLE, CAPl'ION, MENU, CLASS, and FONT. AlJ.statements
after DIALOG, up to the' BEGIN statement in the dialog box definition, are assumed to be option
statements.

Specifies the window style to use for the dialog box.

STYLE style
STYLE WS_DLGFRAME I WS~ VISIBLE I WS_POPUP

II Win 2.0 • Win 3.0 • Win 3.1

All of the styles described in Chapter 2, Creating Windows, under CreateWindowO that start
with WS_ or DS_ can be used in tlie :Oi~log box style. If you are c~ating a modeless dialog box
with CreateDialogO, be sure to.include the WS_VISIBLE style in order to avoid using Show
WindowO to make the dialog box visible. Dialog boxes cannot use the WM_MINIMIZEBOX and

, mCMAXIMIZEBOX styles.

560

CAPTION
Purpose

Syntax

Example

Description

CLASS
Purpose

Syntax

Example

j)escription

FONT
Purpose

Syntax

Example

Description

•

13. DIALOG BOXES V

• Win 2.0 • Win 3.0 • Win 3.1
Specifies the text used in the dialog box caption bar.

CAPTION caplionlext

CAPTION "Dialog Box Title Here"

Used with dialog boxes that have the WS_CAPTION style. This is a good idea, as it allows the user
to move the dialog box on the screen. The caption is also a visual reminder of what activity is
taking place.

• Win 2.0 • Win 3.0 • Win 3.1
Specifies that the dialog box is to have its own window class.

CLASS classname

CLASS "separate"

Normally, a dialog box shares the \vindow class of the parent. ThIs statement causes a separate
class to be used for the dialog box. The class must be registered in advance with RegisterClassO.
The class must be registered with the cb WndExtra element set to DLGWlNDOWEXTRA. Dialog
box functions for windows with their own class must specify a separate default message process
ing function. See the example under DeffilgProcO to see how this is done.

• Win 2.0 • Win 3.0 • Win 3.1
Specifies the font to use inside the dialog box for all controls.

FONT pointsize, typeface

FONT lO, "Helv"

As previously mentioned, the font determines not only the typeface, but also the sizing of every
control and the dialog box itself. This is because dialog box dimensions use dialog base units,
computed as fractions of the font character size. The lO-point "'lJ:elv" font is a good choice for
most dialog boxes, as it matches the font used in the dialog boxes of the applications supplied
with Windows 3.0.

Dialog Box Control Statements
Windows provides two equivalent ways to specify a child window control in a dialog box template. One way is to use an
explicit statement like COMBOBOX. The other way is to use the CONTROL statement, which will then include the
"combobox" style as a parameter. The DBEditor always uses the CONTROL statement. The ~xplicit statements are
leftovers from the days before the DB Editor was available, when programmers coded dialog boxes by hand. As an
example, the following two examples produce the same control.

CONTROL "Push Me", DLI_BUTTON1, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 45, 66, 48, 12

DEFPUSHBUTTON "Push Me", DLI_BUTTON1, 45, 66, 48, 12, WS_TABSTOP

A number of the statements include the position and size of the control. In the descriptions that follow, they will
be labeled ''x, y, width, height." Keep in mind that all values are integers, and all use dialog base units.

The ID values for each control are normally defined in a separate header file. By convention, dialog box control
items are normally given names sta~ting with "DLC" for "DiaLog Item." For the controls with the optional style
parameter, the choices include the WS~TABSTOP and/or WS_GROUP styles. These control the default keyboard in-
terface, as described abov~. The two styles can be combined with the C language binary OR operator (I). '

561

WINDOWS API BIBLE

CHECKBOX
Purpose

,Syntax

Example

Description

• Win 2.0 • Win 3.0 • Win 3.1
Defines a check box control.'

CHECKBOX text, id, X, y, width, height [style]
CHECKBOX "Autosave On/Off', DLCCHECKBOX, 3, 10,35, 15

Check boxes belong to the "button" window class. They are ideal for specifying binary choices,
such as if an autosave feature is on or off.

COMBOBOX • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Example

Description

CONTROL
Purpose

Syntax

Example

Description

CTEXT
. Purpose

Syntax

Example

Description

Defines a combo box control.

COMBOBOXid,x, y, width,heigh~ [style]
COMBOBOX DLC COMBO, 40, 10, 60, 90, WS_ VSCROLL

Combo boxes are a new: addition with Windows 3.0. They include an edit control at the top, com
bined with a drop-down list bbx at the bottom for making a selection. The optional style param
eter can include any combination of WS_TABSTOP, WS_GROUP, WS_DISABLED, and
WS_VSCROLL.Examples using combo boxes are included in Chapter 9, Windows Messages, in
the combo box message section.

• Win 2.0 • Win 3.0 II Win 3J
Specifies all forms of child window control within a dialog box.

CONTROL text, id, class, style, x, y, width, height
CONTROL "Push Me", DLCBUTTONI, "button",BS_DEFPUSHBUTTON I WS_TABSTOP I
WS_CHILD, 45,66,48,12

This is the general-purpose statement for specifying all types of controls used in dialog box tem
plates. TheDBEditor uses this form when it creates a template file. The text field specifies the
character string thatwill appear in the ,Qontrol. This is not always displayed. For example, list box
controls do not display a string until the string is added to the body of the list box using the
LB_ADDTEXT message.

The class parameter can be either BUTION, COMBOBOX, EDIT, LISTBOX, SCROLLBAR, or
STATIC. See the ~escriptions in Chapter 2, Table 2-2 under CreateWindowO for the full details~
The child window style is also identical to the styles used in CreateWindowO. Table 2-3 contains
a complete list of these ~alues. '

Defines a centered static text control.

CTEXT text, id, x, y, width, height, [style]
CTEXT "Centered Text," -1, 10, 10, 100, 15

• Win 2.0 • Win 3.0 • Win 3.1

This control places static text in a dialog box. The text, is centered within the bounds of the
rectangle specified byx, y, width, height. Normally, static text controls are given'an ID value of
-1, as they are never selected. An exception is where the dialog box function changes the text
content as the dialog box operates.

DEFPUSHBU'ITON .• Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Defines the default pushbutton for a dialog box.

DEFPUSHBUTrON text, id, X, y, width, height, [style]

562

Example

Description

EDITTEXT
Purpose

Syntax

Example

Description

GROUPBOX
Purpose

Syntax

Example

Description

ICON
Purpose

Syntax

Description

Example

LISTBOX
Purpose

Syntax

Example

13. DIALOG BOXES ~

DEFPUSHBUTION "Cancel",DLCCANCEL, 40, 10, 40, 15, WS~TABSTOP

The default pushbutton is the button that will be activated if the user presses {ENTER} when the
dialog box first starts operation. There can be only one DEFPUSHBU'rrON control in a dialog box
definition. It will be displayed on the screen with a bold border. The other buttons should have
the PUSHBUTION style.

Defines a~ editable text control in a dialog box.

EDITIEXT id, x, y, width, height, [style]

EDITfEXT DLCEDIT, 10,20,45, 15, WS_HSCROLL

• Win 2.0 • Win 3.0 • Win 3.1

Edit controls are the standard method for getting user input for typed text or numbers. Windows
includes a lot of built-in logic in edit controls, including selection of groups of characters by
clicking and dragging the mouse cursor, deletion and insertion of characters, cursor (arrow) key
support, etc. Edit controls can be one line of text, or multiple lines, including both horizontal and
vertical scrolling of the client area of the edit control. Chapter 9, Windows Messages, includes an
example of a multiline edit control in the section on Edit Control Messages.

The style parameter can include any combination of the following styles:WS_TABSTOP,
WS_GROUP, WS_ VSCROLL (vertical scroll bar); WS_HSCROLL (horizontal scroll bar),
WS_BORDER, and WS_DISABLED. Text is aligned based on ES_LEFT, ES_RIGHT, or
ES_CENTER. See Table 2-3 for additional details on edit styles.

• Win 2.0 • Win 3.0 • Win 3.1
Draws a rectangle with a title at the top left around a group of other controls.

GROUPBOXte.rt, id, .r, y, width, height, [style]

GROUPBOX "Filetype Choices:", -1,10,10,65,100

Check boxes or radio buttons frequently deal with related options, or choices from a narrow set of
possibilities. Surrounding the related options with a group box makes it clear that the controls
belong to related functions. The WS_TABSTOP and WS_GROUP styles can be applied to the group
control, but normally it is better to have the first item within the group receive the input focus.

Places an icon within a dialog box.

ICON text, id, x, y, [style]

ICON "generic", DLCICON, 46:' 40

• Win 2.0 • Win 3.0 • Win 3.l

Icons belong to the "static" class of controls. The text parameter is the name of the icon, specified
elsewhere in the program's resource .RC file with an ICON statement such as

generic ICON generic.ico

The x,y parameters specify the upper left corner of the icon in dialog units. The size of the icon is
fIXed, so there are no height or width parameters. The 9nlyallowed style is SS_ICON.

Defines a list box control. within a dialog box.

LISTBOX id, x, y, width, hei.qht, [style]

. , • Win 2.0 • Win 3.0 • Win 3.1

LISTBOX DLI_LIST, 10, 10,50, ioo, LBS_NOTIFY, WS_ VSCROLL, WS_BORDER

563

WINDOWS API BIBLE

Description

LTEXT
Purpose

Syntax

Example

Description

MENU
Purpose

, Syntax

Example

Description

List box controls are the most common means of allowing users to select an item from a list of
possibilities. More than one selection is possible if the list box includes the LBS_MULTIPLESEL
style. The complete list of style possibilities is given in Table 2-3 under the CreateWindowO func
tion description. An example program with a list box control is included at the beginning of this
chapter. Additional examples are given in Chapter 8,Message Processing Functions, in the list
box messages section. .

Defines a left-justified static text control.

LTEXT text, id, ~ y, width, height, [style]

LTEXT "Left Justified Text", -1, 10, 10, 150, 15

• Win 2.0 • Win 3.0 • Win 3.1

This control places static text in a dialog box. The text is justified to the left border within the
bounds of the rectangle specified by x, y, width, height. Normally, static text controls are given
an ID value of -1 because they are never selected. An exception is when the dialog box function
changes the te~. content as the dialog box operates.

Specifies a menu to be attached to the dialog'box.

MENU numuname
MENU testmenu

• Win 2.0 • Win 3.0 • Win 3.1

Used with dialog boxes that have menus. This is unusual, but possible. The menu must be defined
elsewhere, such as in the program's .RC resource script file.

PUSHBUTTON • Win 2.0 • Win 3.0 • Win 3.1
Purpose'
Syntax

Example

'Description ,

Defines a pushbutton for a dialog box.

PUSHBUTTON text, id, x, y, width, height, [style]

, PUSHBUTI'ON "Done", DLCDONE, 40, 10,40, 15, WS_TABSTOP

Dialog boxes usually have 'at least one PUSHBUTI'ON (or DEFPUSHBUTTON) control to allow the
user to exit the dialog box. The allowed·.styles are WS_TABSTOP, WS_DISABLED, and
WS_GROUP.

RADIOBUTTON • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Example

Description

RTEXT
Syntax

Example

Defines a radio button control in a dialog bpx.

RADIO BUTTON text, id, x, y, width, height, [style]

RADIOBUTTON "Select Option ON", DLCRADI01, 1~, 10,40,15
Radio buttons are usually used in groups to specify selection of one out of a limited number of
choices. Radio buttons belong to the "button" window class. See the CheckRadioButtonO func-
tion description later in this .chapter for an example. •

RTEXT tex~ id, x, y, width, height, [style]

RTEXT "Right Justified ~ext", -1,10,10,150,15

564

- • Win 2.0 • Win 3.0 • Win 3.1

13. DIALOG BOXES .~

Description This control places static text in a dialog box. The text is justified to the right border within the
bounds of the rectangle specified by x, y, width, height. Normally, static text controls are given
an ID value of -1, as they are never selected. An exception is when the dialog box function
changes the text content as the dialog box operates.

SCROLLBAR • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Example

Description

Defines a scroll bar control within a dialog bol'.

SCROLLBAR id, x, y width, height, [style]

SCROLLBAR DLCSCROLL, 50, 10, 8, 50, SBS_ VERT
Scroll bar-controls are excellent ways of getting user input for scaleable items, such as integers.
Scroll bars can also be used to scroll the client area of a window, but this is unlikely with a dialog
box. The most common styles are SBS_ VERT for vertical scroll bars, and SBS_HORZ for horizon
tal ones. See Table 2·3 under the CreateWindowO function description for a full list of scroll bar
styles.

Dialog Box Function Summaries
Table 13-1 summarizes the dialog box functions. The detailed function descriptions are in the next section.

CheckDlgButton

CheckRadioButton

CreateDialog

CreateDialoglndirect

CreateDialoglndirectParam

CreateDialogParam

DefDlgProc

DialogBox

DialOg~\{ndirect
'\ '

DialogB'oxlndirectParam

DialogB~xParam
EndDialog

GetDialogBaseUnits

GetDlgCtrllD

GetDlgltem

GetDlgltemlnt

GetDlgltem Text

GetNextDlgGroupltem

Checks or removes a check from a dialog box control.

Changes the selected item from a group of radio buttons.

Creates a modeless dialog box.

Cmates a modeless dialog box.

Creates a modeless dialog box, and passes a 32·bit value to the dialog box function when it
starts processing messages.

Creates a modeless dialog box, and passes a 32·bit value to the dialog box function when it
starts processing messages.

Provides default message proce~sing logic for dialog boxes created with their own, separate
window class. , " ' ~

Creates a modal dialog box.

Creates a modal dialog box.

Creates a modal dialog box, and passes a 32-bit data item to the dialog box as it is created.

Creates a modal dialog box, and passes a 32-bit data item to the dialog box as it is created.

Closes a modal dialog box, and retums control to the caliing function.

Determines the size of the dialog base units used to create dialog boxes and position controls.

Retrieves a dialog box control's 10 values given the control's window handle.

Retrieves the window handle for a dialog box control, given the control's 10 number.

Retrieves an integer value from a control in a dialog box.

Retrieves a character string from an edit control in a dialog box.

Finds the next (or previous) window handle of the dialog box control that will receive the input
focus if the user presses the arrow keys.

565

WINDOWS API BIBLE

Table 13-1. continued

GetNextDlgTabltem' the next (or previous) window handle of the dialog box control that will receive the input
focus if the user presses the @ID key.

IsDialogMessage

IsDlgButtonChecked

MapDialogRect

MessageBox

SendDlgltemMessage

SetDlgltemlnt

SetDlgltem Text '

Determines if a message is meant for a dialog box.

Determines if a check box or radio button control is checked.

Converts from dialog base units to screen units (pixels).

Creates and displays a small window containing a message.

Sends a dialog box control a message.

Changes the text in a dialog box control to an integer value.

Changes the text in a dialog box control.

Table 13-1. Dialog Box Function Summaries.

Dialog Box Function Descriptions
This section combines the detailed descriptions for the dialog box functions.

CHECKDLGBU'ITON • Win 2.0 • Win 3.0 iii Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDlg

nldButton

wCheck

Checks or removes a check from a dialog box control.

void CheckDlgButton(HWND hDlg, int nldButton, WORD wCheck);

This is a shortcut method for inserting and removing checks from dialog box controls. It is used
with the BS_CHECKBOX and BS_3STATE types of buttons. Using CheckDlgButtonO is,equiva
lent to sending a BM_SETCHECK message to the dialog box control.

Used with check boxes and three-state buttons to insert and remove the checkmark from the
control.

No returned value (void).

CheckRadioButtonO, CheckMEmultemO

HWND: The dialog box window's handle.

int: The control ID for the check box or three-state button.
,Control ID values are normally defined in a header file.
WORD: Set to 0 to remove the checkmark. Set to 1 to set the
checkmark. For three-state buttons, set to 2 to gray the check
box. Settings of 0 and 1 have the same effect on check boxes
and three-state buttons.

'II'

generic

Qo III .Quit

The current values are: 1.0

. ,'<c. ' Example 013log Box >' ' ..
Titl .. SIring Here

Related Messages BM_SETCHECK Ch .. ck box control.

Example This example, which is illustrated in Figure 13-3, displays a
modal dialog box when the user clicks the "Do It!" menu item.
The dialog box contains a check box and a set of two radio but-

{~'Fi-i-st

O'Secnnd

Radio buttons.

tons. Both controls provide a way to show a selection. The Figure 13-3. CheckDlg
che'ck box is best used for an on/off choice. Groups of radio Button() and CheckRadio
buttons are better for selections from a set of mutually exclu- Button() Example.' ,
sive choices.

The dialog box is defined in a .DLG file created with the SDK Dialog Box Editor.

566 .

o GENERIC.DLG Dialog Box Definition File
EXMPDLG DIALOG LOADONCALL MOVEABLE ~ISCARDABLE 10, 18, 139, 75
CAPTION "Example Dialog Box" •
FONT 10, "Helv"
STYLE WS_BORDE~ I WS_CAPTION I WS_DLGFRAME I WS_POPUP
BEGIN

END

CONTROL "Title String Here", -1, "static",
S5_CENTER I WS_CHILD, 27, 6, 78, 9

CONTROL "Check box control.", -1, "static",
SS_LEFT I WS_CHILD, 60, 22, 67, 9

CONTROL "Radio bu'tto,ns.", -1, "static",
SS_LEFT I WS_CHILD, 60, 39, 73, 10

CONTROL "DONE", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 72, 59, 36, 12

CONTROL "", DLI_CHECKBOX, "button",
BS_CHECKBOX I WS_TABSTOP I WS_CHILD, 7, 24, 16, 9

CONTROL" Firs t" DLI RAD 101 "but ton"
BS~RADiOBUTTON I WS_TABSTOP WS_CHILD, 6, 36, 28, 12

CONTROL '~Second", DLI_RADI02, "button",
BS_RADIOBUTTON I WS"':"TABSTOP WS_CHILD, 6, 47, 44, 12

13. DIALOG BOXES -y

In addition to the .DLG file, a header file containing the definitions of the dialog control IDs
(DLCDONE, etc.) and a standard header file containing the function declarations are needed.
This file can be created from within the Dialog Box Editor.

o GENERIC.HD Dialog Box Item Define~\
#define DLI CHECKBOX 101
#define DLI-DONE 102
#define DLI-RADI01 103
#define DLI:RADI02 104

The program's resource file includes the dialog box definition file (.DLG file) and the header
file containing the dialog box ID value (.HD file). '

o GENERIC.RC Resource Definition File
1* generic.rc *1

#include <windows.h>
#include "generic.h"
#include "generic.hd"
#include "generic.dlg"

generic ICON gener;c~ico

generic
BEGIN

MENU

MENUITEM "&00 It! II
MENU ITEM "&Qui til,

END

10M_DOlT
IDM_QUIT

The dialog box function DialogProcedureO at the end of the listing shows typical program
logic for handling check boxes and radio buttons. The current status of each of the button groups
is held in two global variables, nCheckOne and nRadioOne. Use of global variables allows the
WndProcO function to keep track of the button status. A function prototype for
DialogProcedureO must be included in the program's header file and listed in the EXPORTS
section of the program's .DEF definition file.

int nCheckOne = 0 ;
int nRadioOne = 0 ;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

567

WINDOWS API BIBLE

}

PAINTSTRUCT
static
static

FARPROC
char

ps ;
lpfnDialogProc
cBuf [256] ;

switch (;Message)
{

1* process windows messages *1

}

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current va lues are: %d, %d",
nCheckOne, nRadioOne»

EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
lpfnDialogProc = HakeProcInstance

(DialogProcedure, ghInstance)
DialogBox (ghInstance, "exmpdlg", hWnd,

lpfnDialogProc) ;
FreeProclnstance (lpfnDialogProc);
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break; .

case IDM_QUIT:

}

break
case WM_DESTROY:

DestroyWindow (hWnd)
break;

1* stop application *1
PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

BOOL FAR PASCAL DialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam, LONG lParam)
{

BOOL bBool ;

switch (iMessage)
{

case WM_INITDIALOG:
if (nCheckOne)

else
CheckDlgButton (hDlg, DLI_CHECKBOX, MF;rCHECKED) ; .

CheckDlgButton (hDlg, DLCCHECKBOX, MF_UNCHECKED)

if (nRadioO'ne)

else

break;
ca se WM_COMMAND:

CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,
DLI_RADI02 >-;

CheckRadioButton(hDlg, DLI_RADI01, DLI_RADI02,
DLCRADI01)

swi tch (wParam)
{

case DLI_CHECKBOX:
if (nCheckOne)
{

nChcckOne = 0 ; ,

}

else

CheckDlgButton (hDlg, DLI_CHECKBOX,
MF":'UNCHECKED)

568

{

}

nCheckOne = 1 ;
CheckDlgButton (hDlg, DLI_CHECKBOX,

HF _CHECKED) ;

return (TRUE) ;
case DLI_RADI01:

nRadioOne = 0 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLI_RADI01) ;
return (TRUE) ;

case DLI_RADI02:
nRadioOne = 1 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLI_RADI02) ;
return (TRUE) ;

case DLI DONE:

}

EndDialog (hDlg, NULL>
return (TRUE) ;

13. DIALOG BOXES ...

break;
default:

return (FALSE)
}

return (FALSE) ;
}

CHEcKRADIoBUTTON • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDlg

nIDFirstButton

nIDLastButton

Changes the selected item from a group of radio buttons.

void CheckRadioButton(HWND hDlg, int nIDFirstButton, int nIDLastBu,tton, hit
nIDCheckButton)j

Radio buttons are used in groups to show a selection from a group of mutually exclusive choices.
CheckRadioButtonO works best if all of the related radi() buttons are given ID values in sequential
order. CheckRadioButtonO will update the group of buttons in one function call to show a new
selection. This function is equivalent to sending each of the buttons a BM_SETCHECK message.

Changing a group of radio buttons to reflect a selection.

No returned value (void).

CheckDlgButtonO, CheckMenultemO

HWND: The dialog box window's handle.

int: The ID value for the first radio button control of the group. The group of related radio buttons
is assumed to be numberd in sequential order.

int: The ID value for the last radio button control of the group.

nIDCheckButton int: The ID value for the radio button control that should show a checkmark. All of the other
radio buttons in the group will have their ch~ckmarks removed.

Related Messages WM_SETCHECK

Example See the previous example under CheckDlgButtonO.

CREATEDIALOG • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Creates a mode less dialog box.

HWND CreateDialog(HANDLE hInstance, LPSTR lpTemplateName, HWND hWndParent,
FARPROC lpDialogFunc)j

~69

WINDOWS API BIBLE

Description

Uses

Returns

See Also

Parameters

A modeless dialog box behaves like a popup window. The user can switch the focus to the parent
window, or another application, while the modeless dialog box is still visible. The dialog box
template file should contain the WS_ VISIBLE style. If not, the ShowWindowO function will be
needed to make the modeless dialog box visible. Unlike DialogBoxO, CreateDialogO returns im
mediately, returning the handle of the dialog hox window created. Modeless dialog boxes are
ended by calling DestroyWindowO within the dialog box function. The application's message
loop needs to be modified for modeless dialog boxes, so that keyboard input to the dialog box is
properly proc.essed. See the example below for the proper use of the IsDialogMessageO function.

Modeless dialog boxes are convenient for tool windows that .nay remain on the screen for an
extended period of time.

HWND, the handle to the modeless dialog box created.

CreateDialogIndirectO, CreateDialogParamO, DestroyWindowO, IsDialogMessageO, Set
FocusO, DialogBoxO

hInstance HANDLE: The program's instance handle.

lpTemplateName LPSTR: A pointer to a character string containing the name of the dialog box template in the
application's resource file. Dialog box templates are normally created with the SDK Dialog Box
Editor.

hWndParent

lpDialogFunc

hDlg

wMsg

wParam

lParam

HWND: The parent window's handle. Destroying the parent \vindow will automatically destroy
the modeless dialog box.

FARPROC: The procedure-instance address of the dialog box function. This address is created
with MakeProcInstanceO. The dialog box function processes messages for the dialog box. This
function must be declared in the EXPORTS section of the program's .DEF definition file, and it
inust have the following format:

BOOL FAR PASCAL DialogFunc(HWND hDlg, WORD wMsg, WORD wParam, DWORD lParam)j
I

The parameters passed to the dialog box function have the following meanings.

HWND: This is the \vindow handle for the modeless dialog box window. This handle can be used
just like any other window handle for setting colors, changing the caption, etc.

WORD: The message being passed to the dialog function. For example, W~CINITDIALOG is sent
to the dialog function right before the window is made visible.

WORD: The WORD data associated with the message.

DWORD: The 32-bit data as~ociated with the message.
The dialog box function should return TRUE if the function processes the message, and

FALSE if the message is not acted on. The exception is processing a WM_INITDIALOG message.
In this case, the function should return TRUE only if the SetFocusO function is not called, FALSE
if SetFocusO is called. SetFocusO is used to establish which control will have the input focus
when the dialog box is first made,visible. If SetFocusO is not used, the first control in the dialog
box definition receives the input focus.

Related Messages WM_INITDIALOG

Example This example creates the same dialog box shown in the example under CheckDlgButtonO, ex
cept that the dialog box is a mode less dialog box. This means that the dialog box behaves like a
popup window. The focus can be switched from the dialog box to the main window or other win
dows on the screen. The dialog box definition is identical to the one for a normal (modal) dialog
box, except that the window style includes WS_ VISIBLE. This avoids having to call the
ShowWindowO function to make the modeless dIalog box visible. '

570

EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 0, 0, 139, 75
FONT 10, "Helv"
CAPTION "Mode less Dialog box"
STYLE WS_BORDER '·WS_DLGFRAME I WS_CAPTION I WS_POPUP WS_VISIBLE
BEGIN

END

CONTROL "Title String Here", -1, "static",
SS_CENTER I WS_CHILD, 27, 6, 78, 9

CONTROL "Check box control.", -1, "static",
SS_LEFT I WS_CHILD, 60, 22, 67, 9

CONTROL "Radio buttons.", -1, "static",
SS_LEFT I WS_CHILD, 60, 39, 73, 10

CONTROL "DONE", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 72, 59, 36, 12

CONTROL "", DLI_CHECKBOX, "button",
BS_CHECKBOX I WS_TABSTOP I WS_CHILD, 7, 24, 16, 9

CONTROL "First", DLI_RADI01, "button",
BS_RADIOBUTTON I WS_TABSTOP WS_CHILD, 6, 36, 28, 12

CONTROL "Second", DLI_RADI02, "button",
BS_RADIOBUTTON I WS_TABSTOP WS_CHILD, 6, 47, 44, 12

13. DIALOG BOXES 'Y

The C program uses CreateDialogO to start the modeless dialog box when the user clicks the "Do It!" menu item.
The logic shown is incomplete, as this program allows any number of modeless dialog boxes to be created by repeat
edly clicking the menu item. Note that the handle for the dialog boxhDlgModeless is defined as a global variable at the
top of the listing. This handle is used in the window's message loop to check whether the dialog box is present. If it is,
IsDialogMessageO is used to screen keyboard input and translate it as necessary for the dialog box to process. Dialog
box messages are not sent to the window's WndProcO function with DispatchMessageO.

In the dialog box function at the bottom of the listing, note that DestroyWindowO is used to end the dialog box.
Also note that the hDlgModeless handle is set back to zero, shutting down the dialog box message interception in the
application's message loop.

1* generi c. c *1

#include <windows.h>
#include "generic.h"
#include "generic.hd"

1* window's header file - always included *1
1* the application's header file ~I

int
int
HWND

nCheckOne = 0 ;
nRadi oOne = 0 ;
hDlgModeless = 0

1* globals *1

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
{ 1* variable types defined in windows.h *1

HWND
MSG
WNDCLASS

hWnd ;
msg ;
wndclass

ghlnstance = hlnstance ;
if (!hPrevlnstance)
{

wndclass. style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

\

1* a handle to a message * 1
1* a message *1
1* the window class *1

1* store instance handle as global var. *1
1* load data into window class struct. *1

= CS_HREDRAW CS_VREDRAW;
= WndProc ;
= 0 ;
= 0 ;
= hInstance-;
= Loadlcon (hlnstance, gszAppName) ;

= LoadCursor (NULL, IDC_ARROW)
= GetStockObject (WHITE~BRUSH) ;
= gszAppName
= gszAppName

1* register the window class *1
if (!RegisterClass (&wndclass»

return FALSE;
}

571

WINDOWS API BIBLE

)-

hWnd CreateWindow (
gszAppName,
gszAppName,
WS_OVERLAPPEDW1NDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEfAULT,
CW_USEOEFAULT,
NULL,
NULL,
h1nstance,
NULL) ;

ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd) ;

while (GetMessage (&msg, NULL, a, 0»
{

if (hDlgModeless == NULL I I

1* create the program's window here *1
1* c lass name * 1
1* window name *1
1* window style *1
1* x position on screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handleCnull = use class menu) *1
1* instance handle'*1
1* lpstr (null = not used) *1

1* send first WM_PAINT message,*1

1* the message loop *1

!IsDialogMessage (hDlgModeless, &msg»
{

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

)-
)-

return msg.wParam

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{

)

PA1NTSTRUCT ps ;
FARPROC lpfnOialogProc ; static

static char cBuf (256J

switch (iMessage) 1* process windows messages *1

)-

case WM_PAINT:
BeginPaint ,(hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, cBut, wsprintf (cBut,

"The current values are: "d', "d",
nCheckOne, nRadioOne»

EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1 '
switch (wParam)
{

case 1DM_DOIT: 1* User hit the "Do it" menu item *1
lpfnDialogProc = MakeProcInstan~ (DialogProcedure,

ghInstance) ; ,
hOlgModeless = CreateDialog (ghInstance, "exmpdlg",

hWnd, lptnDialogProc);
break;

case IDM_QUIT:

)

break

DestroyWindow (hWnd) ;
break;

case WM_DESTROY: 1* stop application *1
FreeProcInstance (lptnOialogProc)
PostQui tMessage (0) ; ,
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

BOOl FAR PASCAL DialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam; lONG lParam)
{

572

}

BOOL bBool ;

switch (iMessage)
{

case WM_INITDIALOG:
; f (nCheckOne)

13. DIALOG BOXES T

CheckDlgButton (hDlg, DLI_CHECKBOX, MF_CHEC~ED) ;
else

CheckDlgButton (hDlg, DLI_CHECKBOX, MF_UNCHECKED)

if (nRadioOne)

else

CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,
DLI_RADI02) ;

CheckRadioButton (hDlg,DLI_RADI01, DLI_RADI02,
DLI_RADI01)

return <TRUE) ;
case WH_COMMAND:

swi tch (wParam)
{

case DLI_CHECKBOX:
if (nCheckOne)
{ .

else
{

}

nCheckOne = 0 ; ,
CheckDlgButton (hDlg, DLI_CHECKBOX, MF_UNCHECKED)

nCheckOne = 1 ;
CheckDlgButton (hDlg, DLI_CHECKBOX, HF_CHECKED)

reJurn <TRUE) ;
case DLI_RADI01:

nRadioOne = 0 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLI_RADI01)
return <TRUE) ;

case DLI_RADI02:
nRadi oOne = 1 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLCRADI02) ;
return <TRUE> ;

case DLl_DONE:

}

DestroyWindow (hDlg)
hDlgModeless = 0 ;
return <TRUE> ;

break;
default:

return (F~LSE)
}

return (FALSE) ;

CREATEDIALOGINDIRECT • Win 2.0 • Win 3.0 • Win ~.1
Purpose

Syntax

Description

Creates a modeless dialog box.

HWND CreateDialogIndirect(HANDLE hInstance, LPSTR lpDialogTemplate, HWND hWnd
Parent, FARPROC lpDialogFunc)j

This function is identical to CreateDialogO, except that the dialog template is specified with a
pointer to memory containing a dialog box template. The dialog box template can be either cre
ated from scratch in memory, or loaded into memory from a dialog box resource. The structure of
the dialog box definition in memory is discussed at the beginning of this chapter under the head
ingDynamic Dialog Boxes.

573

WINDOWS API BIBLE

Uses

Returns

SeeAls<>

Parameters

This function can be used to create modal dialog boxes that can be modified as thp. program runs
(called "dynamic dialog boxes"). Typical applications are database programs, with which the
user can add o'r subtract fields from the database. Using this function provides greater control
over when the program loads and discards the resource data that defines the dialog box. This can
be important in applications that use a large number of resources and need to control which ones
are preloaded, and which are discarded.

Modeless dialog boxes are convenient for tool windows that may remain on the screen for an
extended period of time.

CreateDialogO,. CreateDialogParamO, DestroyWindowO, IsDialogMessageO, SetFocusO,
DialogBoxO

hlnstance HANDLE: The program's instance handle.

lpDiaiogTemplate LPSTR: A pointer to a memory area containing the dialog definition. The definition can be cre
ated in a global memory block, and then locked with GlobalLockO. Alternatively, the dialog defi
nition can be loaded from a resource with LoadResourceO and locked with LockResourceO prior
to calling CreateDialoglndirectO.

hWndParent HWND: The parent window's handle. Destroying the parent window will automatically destroy
the modeless dialog box.

lpDialogFunc FARPROC: The procedure-instance address of the dialog box function. This address is created
wIth MakeProclnstanceO. The dialog box function processes messages for the dialog box. This
function must be declared in the EXPORTS section of the program's .DEF definition file, and
must have the following format:

hDlg

wMsg

wParam

IParam

Related Messages

Example

BOOL FAR PASCAL DialogFunc(HWND hDlg, WORD wMsg, WORD wParam, DWORD IParam);

The parameters passed to the dialog box function have the following meanings.

HWND: This is the window handle for the mode less dialog box window. This handle can be used
just like any other window handle for setting colors, changing the caption, etc.

WORD: The message being passed to the dialog function. For example, WM_INITDIALOG is sent
to the dialog function right before the window is f13de visible.

WORD: The WORD data associated with the meSsage.

DWORD: The 32-bit data associated with the message.
The dialog box function should return TRUE if the function processes the message, and

FALSE if the message is not acted on. The exception is processing a WM_INITDIALOG message.
In this case, the function should return TRUE only ifthe SetFocusO function is not called, FALSE
if SetFocusO is called. SetFocusO is used to establish which control will have the input focus
when the dialog box is first made visible. If SetFocusO is not used, the first control in the dialog
box definition receives the input focus.

W~CINITDIALOG

This example creates the dialog box definition in memory by loading a dialog box resource. The
result is identical to the one shown in more detail under CreateDialogO. The only differences are
in the processing oftne IDM_DOIT menu item. Because CreateDialoglndirectO is used to create
the modeless dialog box, some preparation is required. First, the dialog box information is loaded'
into memory with LoadResourceO. Second, the meinory block containing the dialog box i.nforma
tion is locked in memory using LockResourceO. LockResQurceO returns a handle to the memory
area, needed to call CreateDialoglndirectO. As the dialog box is created, the memory area can be

-------unlocked.~----~------------------~---------------------,---- -,------~----.------ -- ---~-------

long FAR PASCAL WndProc 'CHWND hWnd, unsigned iMessage._ WORD wParam, LONG lParam)
{ .

574

13. DIALOG BOXES .,.

PAINTSTRUCT ps ;
st"ati c
char
static
LPSTR

FARPROC

HANDLE

lpfnDi a logProc ;
cBuf [256J ;
hDialog = NULL;
lpResource ;

switch (iMessage)
{

1* process windows messages *1

case WH_PAINT:
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current values are: %d, %d", nCheckOne, nRadioOne»
EndPaint (hWnd, &ps)
break;

case WH_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
lpfnDialogProc = MakeProclnstance (DialogProcedure,

ghlnstance) ;
hDialog = LoadResource (ghlnstance, "

FindResource (ghlnstance, "exmpdlg", RT_DIALOG»
lpResource = LockResource (hDialog) ;
hDlgModeless = CreateDialoglndirect (ghlnstance,

lpResource, hWnd, lpfnDialogProc) ;
UnlockResource (hDialog) ;
break;

case 10M_QUIT: 1* send end of application message *1
FreeResource (hDialog) ;
FreePr~clnstance (lpfnDialogProc)
DestroyWindow (hWnd)
break;

break;
i Other program lines /

CREATEDIALoGlNDIRECTP ARAM • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns
See Also

Parameters
hInstanee

lpDialogTemplate

;Creates a modeless dialog box, and passes a 32-bit value to the dialog box function when it starts
.--proC"essing messages.

"HWND CreateDialogIndirectParam(HANDLE !tInstanee, LPSTR lpDialogTemplate, HWND
hWndParent, FARPROC IpDialogFunc, LONG dwInitParam);

This function is identical to CreateDialogParamO, except that the dialog box definition is passed
as a pointer to a memory area. Like CreateDialogParamO. This function has the added feature of
allowing a 32-bit item (usually a pointer to a data structure) to be passed to the dialog box func-

_ tion on startup.

This is the most sophisticated of the modeless dialog box functions. The function can be used to
create dynamic dialog boxes that can be changed as the progra~ executes. Using a memory
pointer for the dialog resource information, instead of just the dialog box template name, gives
more control over when the resource data is loaded and discarded. The 32-bit data element al
lows the dialog box to avoid global variables as a means of communication between the dialog box
function and the rest of the application program.

" HWND, the handle to the modeless dialog box created.

CreateDialogO, CreateDialogIndirectO, DestroyWindowO, IsDialogMessageO, SetFocusO

HANDLE: The program's.instance handle. ,
LPSTR: A pointer to a memory area containing the dialog definition. The definition can be cre
ated in a global memory block, and then locked with"GlobaILockO. Alternatively, the dialog defi
nition can be loaded from a resource with LoadResourceO and locked with LockResourceO prior
to calling CreateDialoglndirectO.

575

. WINDOWS API BIBLE

hWndParent

IpDialogFunc

dwlnitParam

hDlg

wMsg

wParam

lParam

HWND: The parent window's handle. Destroying the parent window will autom~tically destroy
the modeless-dialog box.

FARPROC: The procedure-instance address of the dialog box function,'This address is created
\\1th MakeProcInstanceO .

. LONG: The 32-bit V'alue passed to the DialogFuncO. Normally this value is used to pass a handle
to a memory block containing data that the dialog box will use or modify.

The dialog box function processes messages for the dialog box. This function must be de
clared in the EXPORTS section of the program's .DEF definition file, and must have the following
format:

BOOLFARPASCALDialogFunc(HWNDhDlg, WORDwMsg, WORDwParam, DWORD1Param)j

The parameters passed to the dialog box function have the following meanings.

HWND: This is the window handle for the modeless dialog box window. This handle can be used
just like any other window handle for setting colors, changing the caption, etc.

WORD: The message being passed to the dialog function. For example, WM_INITDIALOG is sent
to the dialog function right before the window is made visible.

WORD: The WORD data associated with the message.
DWORD: The 32-bit data associated with the message. The value will be sent as dwlnitParam
when the WM_JNITDIALOG message is processed by the dialog box function.

The dialog box function should return TRUE if the function processes the message, and
FALSE if the message is not acted on. The exception is processing a WM_INITDIALOG message.
In this case, the function should return TRUE only if the SetFocusO function is not called, FALSE
if SetFocusO is called. SetFocusO is used to establish which control will have the input focus.
when the dialog box is first made visible. If SetFocusO is not used, the first control in the dialog
box definition receives the input focus.

Related Messages WM_INITDIALOG

Example This example is identical to the one under CreateDialogParamO, except for the changes needed
for CreateDialogIndirectParamO. In both cases the 32-bit value is used to pass the handle to a
custom data structure TWO DATA that contains the settings for the dialog box buttons. See the
example un~er CreateDialogParamO for further details.

typedef struct tagTwoData
{

int
int

} TWODAT~ ;

nOne;
nTwo ;

long FAR PASCAL WndPror. (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
static
static
TWODATA
static
LPSTR

FARPROC
HANDLE

HANDLE

ps ;
lpfnDi a logProc;

,hMem ;
*ptd ;
hDialog = NULL;
l pRe source;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hMem = LocalAlloc (LMEM_MOVEABLE I LMEM_DISCARDABLE,

sizeof (TWODATA» ;
ptd = (TWODATA *) LocalLock(hMem) ;
ptd->nOne = 1 ; .
ptd->nTwo = 1 ;

_. _.l:.<>.~!I!",_~o_~_~_Shfo1_~mJ ; __

576

l3. DIALOG BOXES •

break;
case WM_COMMAND: 1* process menu items */

switch (wParam)
{ ,

case IDM DOlT: 1* User hit the "Do it" menu item *1
lpfnDialogProc = MakeProcInstance (DialogProcedure,

ghInstance) ;
hDialog = LoadResource (ghInstance,

FindResource (ghInstance, "exmpdlg", RT_DIALOG»
lpResource = LockResource (hDialog) ;
hDlgModeless = CreateDialogIndirectParam

. (ghInstance, . lpResource, hWnd,
lpfnDialogProc, CDWORD) hMem) ;

UnlockResource (hDialog) ;
break;

case 10M_QUIT: 1* send end of application message *1
FreeResource (hDialog) ;
FrecProcInstance (lpfnDialogProc)
LocalFree (hMem) ;
DestroYWindow ChWnd)
break;

break;
, /Otherprogram lines]

CREATEDIALOGP ARAM: • Win 2.0 • Win 3.0 • Win 3.1'
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Creates a modeless dialog box, and passes a 32-bit value to the dialog box function when it starts
processing messages .

. HWND CreateDiaiogParam(HANDLE hInstanee, LPSTR lpTemplateName, HWND h WndParent,
F ARPROC lpDialogFunc, LONG dwlnitParam)j
A modeless dialog box behaves like a popup window. The user can switch the focus to the parent
window, or another application, while the modeless dialog box is still visible. This function is
identical to CreateDialogO, except that an additional 32-bit value dwlnitParam has been added.
This value is passed to the dialog box function when the WM_INITDIALOG message is processed.
The 32-bit value ends up as the lParam value when WM_INITDIALOG is received. The advantage
of this function is that the 32-bit 'value can be used to pass a handle to memory containing values
that the dialog box will change. This avoids having to use global variables for all values changed
,vithin the dialog box. The dialog box template file should contain the WS_ VISIBLE style. If not,
the ShowWindowO function will be needed to make the modeless dialog box visible.

Modeless dialog boxes are ended by calling DestroyWindowO within the dialog box function.
The application's message loop needs to be modified for modeless dialog boxes, so that keyboard
input to the dialog box is properly processed. See the example under CreateDialogO for the
proper use of the IsDialogMessageO function.

Modeless dialog boxes are convenient for tool windows that may remain on the screen for an
extended period of time.

HWND, the handle to the modeless dialog box created.

CreateDialogO, CreateDialoglndirectO, DestroyWindowO, IsDialogMessageO, SetFocusO,
DialogBoxO

hlnstanee HANDLE: The program's instance handle.

lpTemplateName LPSTR: A pointer to a character string containing the name of the dialog box template in the
application's resource file. Dialog box templates are normally created with the SDK Dil\log Box
Editor.

577

WINDOWS API BIBLE

hWndParent

,
IpDialogFunc

dwlnitParam

hDlg

wMsg

wParam

HWND: The parent window's handle. Destroying the parent window v.ill automatically destroy
the modeless dialog box.

FARPROC: The procedure-instance address of the dialog box function. This address is created
with MakeProclnstanceO.
LONG: Tl'iC 32-bit value passed to the DialogFuncO. Normally, this value is used to pass a handle
to a memory'block containing data that the dialog box will use or modify.

The dialog box function processes mesSages for the dialog box. This function must be de
clared in the EXPORTS section of the program's .DEF definition me, and it must have the follow
ingformat:

BOOL FAR PASCAL DialogFunc(HWND hlJlg, WORD wMsg, WORD wParam, DWORD IParam)j

The parameters passed to the dialog box function have the following meanings.

HWND: This is the window handle for the modeless dialog box window. This handle can be used
just like any other window handle for setting colors, changing the caption, etc.
WORD: The message being passed to the dialog function. For example, WM_INITDIALOG is sent
to the dialog function right before the window is made visible.

WORD: The WORD data associated with the message.

lParam ,DWORD: The 32·bit data associated with the message. The value will be the same as
dwlnitParamwith then WM_INITDIALOG message is processed by the dialog box function.

. The dialog box function should return TRUE if the function processes the message, and
FALSE if the, message is not acted on. The exception is processing a WM_INITDIALOG message.
In th~ case, the function should return TRUE only if the SetFocusO function is not called, FALSE
if SetFocusO is called. SetFocusOis used to establish which control will have the input focus
when the dialog box is first made visible. If SetFocusO is not used, the first control in the dialog
box defmition receives the input focus.

Related Messages WM_INITDIALOG
Example

'.,

This example is similar to the one under CreateDialogO, except that CreateDialogfaramO has
been used to avoid global variables. A custom structure called TWO DATA is defined to hold the
two integers needed by the dialog box to control the check box and radio button status. A handle
to memory containing this data structure is passed to the dialog box function when
CreateDialoglndfrectO is called. The handle ends up as the IParam value passed to
DialogProcedureO when that function receives the W~LINITDIALOG message. .

In this case, the data passed in the TWODATA structure is so small that all of the information
,could be passed in the one 32-bit value (dwlnitParam) passed with CreateDialogParamO. The
reservation of a local memory area for the TWODATA structure is shown as the more general
case, as usually a dialog box wilhrequire a number of fields of data, including character strings.
See the CheckDlgButtonO function description for a figure showing the appearance of the dialog
box and other related program meso

typedef struct tagTwoData
{ ,

int
int

} TWODATA ;

nOne;
nTwo ;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMess8ge, WORD wParam, LONG lParam)
{

PAINTSTRUCT
static
static
TWODATA

FARPROC
HANDLE

--------s-.litc:/l-(; Mess-age)
<

ps ;
lpfnDialogProc ;
hMem;
*ptd ;

1*. process w;ndows messages *1

578

)

}

13. DIALOG BOXES "

case WM_CREATE:
hMem = LocalAlloc (LMEM_MOVEABLE I LMEM_DISCARDABLE,
. sizeof (TWODATA» ;
ptd = (TWODATA *) Loc~lLock (hMem) ;
ptd->nOne = 1 ;
ptd->nTwo = 1 ;
LocalUnlock (hMem) :
break;

case WM_COHMAND: 1* process menu items *1
switch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item' *1
lpfnDiatogProc = MakeProclnstance (DialogProcedure,

ghlnstance) ;
hDlgModeless = CreateDialogParam (ghlnstance,

"exmpdlg", hWnd, lpfnDialogProc,
(DWORD) hMem) ;

brea~ ;
case 10M_QUIT: 1* send end of applicatio".message *

OestroyWindow (hWnd) ;
brea'k ;

}

break;
case WM_DESTROY: 1* stop appU cat ion *1

FreeProcInsfance (lpfnDialogProc)
LocalFree (hMem); I

PostQuitMessage (0) ;
break;

default: 1* default windows messageiprocessing *1
return DefWindowProc (hWnd, iMessage, w~aram, lPara'm) ;

return (OL>

BOOL FAR PASCAL OialogProcedure (HWNO nDlg, unsigned iMessage, WORD wParam, LONG lPara.)
{

BOOL
static
TWOOATA

HANDLE
bBool ;
hMem ;
*ptd ;

switch (iMessage)
{

case WM_INITDIALOG:
hMem = LOWORD (lParam)' ;
ptd = (TWODATA *) Loca,Lock (hMe~)
H (ptd->nOne)

CheckDlgButtonChDlg, DLI_CHECKBOX, MF_CHECKED) ;
else

CheckDlgButton(hDlg, DLI_CHECKBOX, MF_UNCHECKED)

i f(ptd->nTwo)

else

CheckRadioButtoll (hDlg, DLI_RADI01, DLI_RADI02,
DLI_RADI02) ;

CheckRadioButton ChDlg, DLI_RADI01, DLI_RADI02,
DLCRADI01)

LocalUnlock (hMem) ; .-
return <TRUE) ;

case WM_COMMAND:
. ptd = (TWODATA *) LocalLock ChMem)

swi tch (wParam)
{

case.DLI_CHECKBOX:
. if (ptd->nOne)

{

ptd->nOne = 0 ;
CheckDlgButton (hDlg, DLI_CHECKBOX,

MF_UNCHECKED). ;
}

else

579 .
"1.

,

WINDOWS API BIBLE

{

}

ptd->nOne = 1 ;
CheckDlgButton (hDlg, DLI_CHECKBOX,

MF_CHECKED)

LocalUnlock (hMem) ;
return (TRUE) ;

case DLI_RADI01:
ptd->nTwo = 0 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLI_RADI01) ;
LocalUnlock (hMem) ;

. return (TRUE) ;
case DLI_RADI02:

, ptd->nTwo = 1 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLI_RADI02) ;
LocalUnlock (hMem) ;
return (TRUE) ;

case DLI_~ONE:

}

DestroyWindow (hDlg) ;
hDlgModeless = 0 ;
LocalUnlock (hMem) ;
return <TRUE)

break;
default:

return (FALSE) ;
}

return (FALSE) ;
}

DEFDLGPROC

Purpose

Syntax ._

-Description

Uses

Returns

Parameters
hDlg

wMsg

wParam

lParam

• Win 2.0 • Win 3.0 II Win 3.1
Provides default message processing logic for dialog boxes created with their own separate win
dow class.

LONG DeIDlgProc(HWND hDlg, WORD wAfsg, WORD wParam, LONG lParam)j

Normally, Windows takes care of processing messages that the ~Jalog box function does not
handle. An exception is when a separate window class is used for the dialog box window. To do
this, include the CLASS statement in the dialog box definition in the program's resource fiie.

The window class must be registered with RegisterClassO before the dialog box is called.
The dialog window cJass must include the DLGWINDOWEXTRA value for the cbWndExtra ele
ment of the class structure. This provides extra data space in the class definition. Because the
class definition includes a' pointer to the dialog box function, it is not necessary to specify the
procedure-instance address of the dialog box function when calling DialogBoxO or the other
related functions.

Only used with dialog boxes that include the CLASS statement to specify a separate window class.
This is unusual, and is not encouraged in the Windows SDK documentation.

LONG, the value returned by DefDIgProcO is returned to Windows after the message is processed
(see the usage at the bottom of the example listing).

~D: The dialog box window handle.

WORD: The message In value, such as MtCINITDIALOG. Messages that are not processed by the .
dialog box function logic are passed to DefDIgProc().

WORD: The WORD parameter passed to the dialog box function.

. DWORD: The DWORD parameter passed to the dialog box function.

580

13. DIALOG BOXES ...

Related Messages All Windows messages that are not processed by the dialog box function should be passed to
DeIDlgProcO if the dialog box has i~s own window class.

Example The dialog box resource definition has had the CLASS statement added. In this case, the dialog
box will use the "separate" class when the dialog box is created and shown. Otherwise, the dialog
box is identical to the one shown in Figure 13-3, under the CheckDlgButtonO function descrip
tion. That description also includes listings of the header files and .DEF definition file.--

EXMPDLG DIALOG LOADONCALL'MOVEABLE DI5CARDABLE 10, 18, 139, 75
CAPTION "Example Dialog Box"
FONT 10, "Helv"
STYLE WS_BORDER I WS_CAPTION I WS_DLGFRAME I W,S_POPUP W5_VISIBLE
CLASS "separate"
BEGIN

END

CONTROL "Title String Here", -1, "static",
5S_CENTER I 'W5_CHILD, 27, 6, 78, 9

CONTROL "Check box control.", -1, "static",
5S_LEFT I W5_CHILO, 60, 22, 67, 9

CONTROL "Radio buttons.", -1, "static",
5S_LEFT I WS_CHILD, 60, 39, 73, 10

CONTROL "DONE", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP 1 WS_CHILD, 72, 59, 36, 12

CONTROL "" DLI CHECKBOX "button"
, B~CHECKBOx' 1 WS_TABSTOP I W5_CHILD, 7, 24, '16, 9

CONTROL "Fi rst", DLI_RADI01, "button",
BS_RADIOBUTTON 1 WS_TABSTOP WS_CHILD, 6, 36, 28, 12

CONTROL "Second", DLI_RADI02, "button".,
BS_RADIOBUTTON I WS_TABSTOP WS_CHILD, 6, 47, 44, 12

Note that the separate class for the dialog box is created in WndProcOwhen the
\WtCCREATE message is processed. The class definition specifies the IDC_CROSS cursor shape
instead of the normal IDC_ARROW. Note that this change only applies to the dialog box window
class, not to the class upon which the dialog box controls are based. The result is that the cursor
shape is a cross when the mouse points to an area on the dialog box window, but it switches to an
arrow when the mouse points to one of the dialog box contrQls.

1* generic.c *1

#include <windows.h>
#i nc lude "generi c. hOI
#i nc lude "generi c. hd"

int
int
HWND

nCheckOne = 0 ;
nRadioOne = 0 ;
ht>lgModeless = 0 ;

1* window's header file - always included *1
1* the application's header file *1

1* globals *1

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevlnstance, LP5TR lpszCmdLine, int nCmdShow)
{ 1* variable types defined in windows.h *1

HWND
MSG
WNDCLASS

hWnd ;
msg ;
wndclass

ghlnstance = hlnstance ;
if (!hPrevlnstance)
{

wndclass. style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass. hlcon

1* a handle to a message *1
1* a message *1
1* the window class *1

1* store instance handle as global var. *1
1* load data into window class struct. *1

= CS_~REDRAW·I CS_VREDRAW ;
= WndProc ;
= 0 ;
= 0 ;
= hlnstance ;
= Loadlcon (hlnstance, gszAppName)

581

WINDOWS API BIBLE

}

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszHenuName
wndclass.lpszClassName

= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;
:: gszAppName ;
= gszAppName';
1* register the window class *1

if (!RegisterClass {&wndclass»
return FALSE;

)

hWnd = CreateWindow (
gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,

'CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL) ;

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ;

1* create the program's window here *1
1* class name *1
1* wi ndow name * 1
1* window style *1
1* x pO$ition on screen *1
1* Y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle enull = none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr (null = not used) *1

1* send first WH_PAINT message *1

while (Get Message (&msg, NULL, 0, 0»
{

1* the message loop".1

}

if (hDlgModeless == NULL II

{.

}

!IsDialogMessage (hDlgModeless, &msg»

Translate~essage (&msg) ;
DispatchMessage (&msg) ;

return msg.wParam ;

long FAR PASCAL·WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
<

PAINTSTRUCT ps ;
char
WNDCLASS

cBuf 1:256J
dlgclass ;

swit~h (iMessage)
{

1* process windows messages *1

case WfCCREATE:
dlgclass.style
dlgclass.lpfnWndProc
dlgclass.cbClsExtra
dlgclass.cbWndExtra
dlgclass.hlnstance
dlgclass.hIcon
dlgclass.hCursor
dlgclass.hbrBackground
dlgclass.lpszHenuName
dlgclass.lpszCLassName

= CS_HREDRAW I CS_VREDRA~
= DiaLogProcedure ;
= 0 ;
= DLGWINDOWEXTRA ;
= ghlnstance ;
= NULL;
= LoadCursor (NULL, IDC_CROSS) ;
= GetStockObject (WHITE_BRUS~) ;
= NULL;
= "separate"

RegisterClass (&dlgclass)
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current va lues are: ?ed, Xd",
nCheckOne, nRadioOne» ; .

EndPaint (hWnd, &ps) ;
break;

case WM_COMHAND:· 1* process menu items *1
swi tch (wParam)
<
case IDM_DOIT: 1* User.hit the "Do it" menu item *1 .

. 582

)

}

Di alogBox (ghlnstance, "exmpdlg", hWnd,
NULL> ;

break;

13. DIALOG BOXES •

case IDM_QUIT: 1* send end of appUcation message *1
DestroyWindow (hWnd) ;
break; .

)

break;
case WM_DESTROY: 1* stop application *1

PostQuitHessage (0) ;
break i

default: 1* default windows message processing·*1
return DefWindowProc (hWnd, iHessage, wParam, lParam)

return (OL> ;

long FAR PASCAu DialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam, LONG lParam)
(

BOOL bBool ;

switch (iMessage)
(

case WM_INITDIALOG:
if (nCheckOne)

CheckDlgButton (hDlg, DLI_CHECKBOX, HF_CHECKED) ;
else

CheckOlgButton (hOlg, DLI_CHECKBOX, MF_UNCHECKED) i

if (nRadioOne)

else

CheckRadioButton (hDlg, DLI_RADI01, DL1_RADI02, ~
DLI_RADI02) ;

CheckRadioButton (hDlg, DL1_RADI01, DLI_RADI02,
DLI_RADI01) ;

return (TRUE) i
case "'H_COMMAND:

swi tch (wParam)
(

case DLI_CHECKBOX:
if (nCheckOne)
{

}

else
{

}

nCheckOne = 0 i
CheckDlgButton (hDlg, DLI_CHECKBOX, MF_UNCHECKED)

nCheckOne = 1 ;
CheckDlgButton .(hDlg, DLI_CHECKBOX, MF_CHECKED)

return (TRUE) i
case DLI_RADI01:

nRad; oOne = 0 ;
CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,

DLI_RADI01) ;
return (TRUE) ;

case DLI_RADI02:
nRad; oOne = 1 i

CheckRadioButton (hDlg, DLI_RADI01, DL1_RADI02,
DLI_RADI02)

return (TRUE) ;
case DLI_DONE:

}

break;
default:

EndDila log (hDlg, 0) ;
hDlgModeless = 0 ;

return <TRUE) ;

583

WINDOWS API BIBLE

. return (DefDlgProc (hDlg, iM~ssage, ~Param, lParam»
}

return (FALSE) ;
}

DIALOGBox
Purpose

Syntax

Description

E3 Win 2.0 II Win 3.0. II Win 3.1

Creates a modal dialog box.

int DialogBox(HANDLE hlnstance, LPSTR lpTemplateName, HWND hWndParent, FARPROC
.lpDialogFunc)j

The dialog box created is application-modal, meaning that the dialog box window retains the
input focus for the application until the dialog box is closed. The user can switch to another
application, but' not to another window of the application that called DialogBoxO.

This function is the most common way to create a dialog box. The dialog box template is
defined in the p'rogram's .RC resource file. A dialog box function must be defined to process
messages while the dialog box is in operation. Messages pass through this diaiog procedure until
the procedure calls EndDialogO. The dialog box function must be listed in the EXPORTS section
of the program's .DEF definition file. Before DialogBoxO can be called, the program must obtain
a procedure-instance address for the dialog box function. A typical set of program lines to run a
dialog box is as follows:

static FARPROC lpfnDialogProc ;

lpfnDialogProc.= MakeProclnstance (OialogProcedure, ghlnstance)
DialogBox (ghlnstance, "exmpdlg", hWnd, lpfnDialogProc) ;

..... FreeProclnstance clpfnDialogProc) ; .

Uses

Returns

See Also

Parameters
hlnstance

lpTemplateName

hWlldParent

lpDialogFunc

hDlg

wMsg

wParam

Running a dialog box. The dialog box can be made system-modal by calling SetSysModalWindowO .
during the processing of the \Yr\CINITDIALOG message.
The returned value is equal to the nResult parameter passed when EndDialogO was called. Using
returnO inside the dialog function does not result in the value being returned to the application.
These values are used by Windows. The function returns -1 ifthe dialog box could not be created.

DialogBoxIndirectO, DiaJogBoxIndirectParamO, DialogBoxParamO,

HANDLE: The application's procedure-instance handle.

LPSTU: This is the name of the dialog box template in the program's .RC resource file.

HWND: The parent window's handle.

FARPROC: The procedure-instance. address of the dialog box function. Use MakeProclnstanceO
to create this value. The dialog box function must have the following style:

int FAR PASCAL DialogFunc (HWND hDlg, WORDwMsg, WORD wParam, DWORD lParam)j

The name "DialogFunc" is replaced by the name of the message processing function to use for a
dialog box. Each dialog box will have a separate "DialogFunc" with a different name. The mean
ings of the parameters are as follows.

HWND: The handle to th~ dialog box window. This handle can be used just like any other window
handle: to obtain the device context, to change the caption, etc. .

WORD: This is the Windows message being passed to the function. For example, wMsg will equal
~CINITDIALOG when the dialog box is first started and the first message is sent to the dialog
box function.

WORD: This is the WORD parameter passed with the message. See Chapter 9, Windows Mes
sages, forthe meaning of the wParam and lPat'am values for each message.

584

I". UII-\L.VU ~v"'...... "

IParam DWORD: This is the DWORD parameter passed with the
message.

The dialog box function should return TRUE if the func
tion processes the message, and FALSE if the message is not
acted on. The exception is Jrocessing a WM_INITDIALOG mes
sage. In this case, the function should return TRUE only if the
SetFocusO function is not called, FALSE if SetFocusO is
called. SetFocusO is used to establish which control will have
the input focus when the dialog box is first made visible. If

generic

The current values are: 44. ·245

TIlle String Here

Input lield one.

Input field two.

SetFocusO is not used, the first control in the dialog box defi- Figure13-4. DialogBox()
nition receives the input focus. Example.

Related Messages Most Windows messages can be processed by a dialog box.
WM_CREATE is replaced with MrCINITDIALOG for dialog boxes ..

Example This example, shown in Figure 13-4, creates a dialog box for entering two integer values. The
values are also displayed on the main window's client area~ The dialog box style has been changed
to include a caption bar. This allows the dialog box to be moved on the screen. The dialog box font
has also been changed to "Relv," to match the dialog box style used by the dialog boxes in the
standard Windows applications, such as Paint and Write.

The dialog resource script that creates the dialog box was originally created with the SDK
Dialog Box Editor. The .DLG file must be included as part of the program's .RC file.

'> GENERIC.DLG
EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 10, 18, 139, 75
STYLE WS_DLGFRAME I WS_POPUP I WS_CAPTION
'CAPTION "Example Dialog Box"
FONT 10, "Helv"
BEGIN

END

CONTROL "Title-String Here", -1, "static",
SS_CENTER I WS_CHILD, 27, 6, 78, 9

CONTROL "", DLI_EDIT1, "edi t",
ES_LEFT I WS_BORDER I WS_TABSTOP I WS_CHIL,', 12, 22, 26, 12

CONTROL "Input field one.", -1, "static",
SS_LEFT I WS_CHILD, 60, 24, 67, 9

CONTROL "", DLI_ED!T2, "edit",
ES_LEFT I WS_BORDER I WS_TABSTOP I WS_CHILD, 12, 37, 26, 12

CONTROL "Input field two.", -1, "static",
SS_LEFT I WS_CHILD, 60, 39, 73, 10

CONTROL "DONE", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 45, 60, 36, 12

The dialog box item numbers for the controls are defined in a separate neader file l created during
the SDK Dialog Box Editor session. This file must be included at the top of the resource script .RC
file and at the top of the C program source file.

'> GENERIC.HD
#def i ne DLI_ED IT1 100
#define DLI_EDIT2 101
#define DLI_DONE 102

The program's header file includes both the dialog box definition file and the dialog box 10 value
file GENERIC.HD. The latter must also be included at the tpp of the C program file. Note that the
dialog box function prototype is included at the end of the header file.

r:> GENERIC.H.
1* generic.h 1 *1
#define IDM_DOIT 1* menu item id values *1

585

nmluuvy~ 1\ tUtsLt:

#define IDM_QUIT 2 ,
1* gLobaL variabLes *1

int ghInstance ;
char gszAppName [] = "generi c" ;

1* function prototypes *1
Long FAR PASCAL WndProc (HWND, unsignedjWORD, lONG) ; .
BOOl FAR PASCAL DiaLogProcedure (HWND hD~g, unsi~ned iMessage, WORD wParam, lONG LParam) ;

NAME
DESCRIPTION
EXETYPE WINDOWS
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS WndProc

The program's .DEF definition fIle must list the dialog box function in the EXPORTS section.

generic
'windows eriumeration exampLe'

'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
1024 -
4096'

DiaLogProcedure

The WndProcO and DialogProcedure() functions of the C program are shown in the follow·
ing example. The WinMain() function is identical to the GENERIC.C function in Chapter 1, Over
view oj Windows Programming. Note that the two integer values, which can be changed from
within the dialog box, are defmed as global variables. This makes their values available to both
the:WndProcO function and the DialogProcedureO function.

o GENERIC.C Excerpt
i nt nEditOne = 0 ;. 1* gLobaL variabLes *1
i nt nE'di tTwo = 0 ;

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG LParam)
{

PAINTSTRUCT
static FARPROC
char

ps ;
LpfnDiaLogProc ;
cBuf [128] ;

switch (iMessage)
<

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10"cBuf, wsprintf (cBuf,

"The current vaLues are: rod, rod", nEditOne, nEditTwo»
EndPaint ~hWnd, &ps)
break; ""'(;.:-I

case WM_C.OMMAND: 1* process menu items *1
switch (wParam)"
<
case ID~_DOIT: 1* User hit the "Do it" menu item *1

LpfnDiaLogProc = MakeProcInstance (DiaLogProcedure,
ghInstance) ;

DiaLogBox ~~hinstance, lexmpdLg", hWnd,
LpfnDiaLogProc) ;

FreeProcInstance (LpfnDiaLogProc); /
InvaLidateRect (hWnd, NUll, TRUE) ; 1* force paint *1
break; .

case 10M_QUIT: 1* send end of appLi cation message *1
DestroyWindow (hWnd)

}

break;
case WM_DESTROY:

break;

PostQuitMessage (0)
1* stop application *1

586

13. DIALOG tsU~t:~ ...

break;
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
>
return (OL) ;

}

BOOL FAR PASCAL DialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam, LONG lParam) < .

}

BOOL bDool ;

switch (iHessage)
<
case WH_INITDIALOG:

. SetDlgltemlnt (hDlg, DLI_EDIT1, nEditOne, TRUE) ,.
SetDlgltemlnt (hDlg, DLI_EDIT2, nEditTwo, TRUE)
break;

case WH_COHHAND:
switch (wParam)
{

-case DLl_EDIT1:
nEditOne = GetDlgltemlnt (hDlg, DLI_EDIT1, &bBool, TRUE)
return (TRUE) ;

case DLI_EDIT2:
nEditTwo = GetDlgltemlnt (hDlg, DLI_EDIT2, &bBool, TRUE)
return (TRUE) ;

case DLl_DONE:
EndDialog (hDlg, NULL)
retur~ (TRUE) .

,break;
default:

return (FALSE)
}

r,~turn (FALSE) ;

DIALOGBoxINDIRECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Creates a modal dialog box.

int DialogBoxIndirect(HANDLE hlnstance, HANDLE hDialogTemplate, HWND hWndParent,
FARPROC IpDialogPunc)i .

This function is identical to DialogBoxO, except that the dialog box resource data is specified by
a memory handle instead of the resource name. In both cases, the dialog box created is applica
tion-modal, meaning that the dialog box window keeps the input focus until it is closed. The focus
can be switched to another application, but not to another window of the application that called
DialogBoxindirectO·
The dialog box template in memory can be modified to change the dialog box as ~he application
runs (called a "dynamic dialog box"). Typical applications are database programs. See the dis
cussion at the beginning of this chapter. Specifying the dialog box resource data indirectly allows
the program to have more control over when the resource data is loaded and discarded. This can
be important in applications that use a large number of resources, or in applications when
memory or efficiency is critical.
int, the wResult parameter passed within the dialog box function when EndDialogO was called.
This value- is not normally used. Windows returns'~ 1 if the dialog box could not be created.
DialogBoxO, for a full description of.the dialog box function and the related fIles. See also Dia
logBoxParamO and DialogBoxIndirectParamO . .

587

...... _ "" ",r. ""1;11..':;

Parameters
hlnstance

hDialogTemplate

hWn4!'arent

lpDialogFunc

HANDLE: The application's procedure-instance handle.

HANDLE: The handle to the dialog box resource data. The dialog box template can be created in
a global memory block and locked with GlobalLockO. Alternatively, the dialog box can be defmed

. as a resource and loaded into memory. This handle to the resource data is obtained with Load
ResourceO. The LockResourceO function must also be called before using DialogBoxIndirectO.
LockResourceO physically causes the resource data to be loaded into memory.

HWND: The parent window's handle.
FARPROC: The procedure-instance address of the dialog box function. Use MakeProcInstance()
to create this value. The dialog box function must have the following style:
int FAR PASCAL DialogFunc (HWND hDlg, WORD wMsg, WORD wParam, DWORD lParam)j

The name "DialogFunc" is replaced by the name of the message processing function to use for a
dialog box. Each dialog box will have a separate "DialogFunc" with a different name. The mean
ings of the parameters are as follows. .

hDlg HWND: The handle to the dialog box window. This handle can be used just like any other window
handle: to obtain the device context, to change the caption, etc.

wMsg WORD: This is the Windows message being passed to the function. For example, wMsg will equal
WM_INITDIALOG when the dialog box is first started and the first message is sent to the dialog
box function.

wParam WORD: This is the WORD parameter passed with the message. See Chapter 9, Windows Mes
sages, for the meaning of the wParam and IParam values for ea~h message.

lParam DWORD: This is the DWORD parameter passed with the message.
The dialog box function should return TRUE if the function processes the message, and

. FALSE if the message is not acted on. The exception is processing a WM_INITDIALOG message.
In this case, the function should return TRUE only if the SetFocusO function is not called, FALSE
if SetFocus() is called. SetFocusO is used to establish which control will have the input focus
when the dialog box is first made visible. If SetFocus() is not used, the first control in the dialog
box definition receives the input focus.

Related Messages Most Windows messages ·can be processed by a dialog box. \VM_CREATE is replaced with
WM_INITDIALOG for dialog boxes.

Example This example is identical to the example under the DialogBoxO function description, except for
the changes needed to use the DialogBoxIndirectO function. Note that LockResourceO J1lust be

I called before using the dialog box resource handle hDialog because the resource is not loaded
into memory unt~l LockResourceO is called.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

PAINTSTRUCT ps ;
sta.t i c
static
static

FARPROC
char
HANDLE

lpfnDi a logProc ;
cBuf [256J ;
hDialog;

switch (iMessage)
{

1* process windows messages */

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current va lues are: %d, %s", nEdi tOne,
(LPSTR) cEditBuf» ;

EndPaint (hWnd, &ps)
break;

case WH_COHHAND: 1* process menu items ~I

588

swi tch (wParam)
{

13. DIALOG BOXES 'Y

case IDM DOlT: 1* User hi t the "Do i til menu item *
lpfnDialogProc = MakeProcInstance (DialogProcedure,

ghInstance) ;
hDialog = LoadResource (ghInstance,

FindResource (ghInstance, "exmpdlg",
RT_DIALOG» ;

LockResource (hDialog) ;
DialogBoxlndirect (ghInstance, hDialog, hWnd,

lpfnDialogProc) ; .
UnlockResource (hDialog) ;
FreeResource (hDialog) ;
FreeProcInstance (lpfnDialogProc) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break; ,

/Otherprogram lines}

DIALOGBoxINDIRECTP ARA • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

SeeAIso

Parameters
hlnstance

hDialogTemplate

Creates a modal dialog box, and passes a 32-bit data item to the dialog box as it is created.

int DialogBoxlndirectParam(HANDLE hlnstance, HA..~DLE hDialogTemplate, HWND
hWndParent, FARPROC lpDialogFunc, DWORD dwlnitParam)j

This function is identical to DialogBoxO, except that the dialog box resource data is specified by
a memory handle instead of the resource name, and the function passes a 32-bit data item to the .
dialog procedure when the dialog box is created.

The dialog box created is application-modal, meaning that the dialog box retains the input
focus until the dialog box is closed. The focus can be shifted to another application, but no other
window of the application that called DialogBoxlndirec'tParamO can gain the focus while the
dialog box is active.

The 32-bit data item specified by the dwlnitParam parameter is ultimately passed to the
dialog box function as lParam when the dialog box function receives the WM_INITDIALOG mes
sage. Normally, this value is used to pass a memory handle to the data that the dialog box will use
for edit controls, list boxes, and other controls that the user will be changing.

'Because the dialog box definition is ioaded from agIo bal memory block, the application can
change the dialog box definition at run time (called a "dynamic dialog box"). See the discussion
at the beginning of this chapter on dY~lamic dialog boxes for details.

\

This is the most sophisticated of the dialog box functions. Indirect loading of the dialog resource
data provides the opportunity to control when resource data is loaded and discarded. The dialog
box template data in memory can be created or modified as the application runs, ~mowing the
dialog box to b~ dynamic. The 32-bit parameter data allows data to be passed to and from the
dialog function without resorting to global variables.

int, the wResult paranwter passed within the dialog box function when EndDialogO was called.
This value is not normally used. Windows returns -1 if the dialog box could not be created.

DialogBoxO for a full description of the dialog box function and the related files. See also
DialogBoxParamO and DialogBoxIndirectO.

HANDLE: The application's procedure-instance handle. '1,1' ,

HANDLE: The handle to the dialog box resource data. The dialog box definition c'~n be created in
a global memory block and locked with GlobalLockO. Alternatively, this handle is obtained with
wadResourceO. The LockResourceO function must also be called before using DialogBoxJndirectO.

I LockResourceO physically causes the resource data to be loaded into memory. ,

589

WINDOWS API BIBLE

hWndParent

IpDialogFunc

dwlnitParam

HWND: The parent window's handle.

FARPROC: The procedure-instance address ofthe dialog box function. Use MakeProclnstanceO
to create this value. '
DWORD: This is a 32-bit data item that is passed to the dialog box function as the lParam value
when the WM~INITDIALOG message is processed. Frequently used to pass a handle to a memory
block containing data that the dialog box function will use and/or modify. The dialog box function
must have the following style:

int FAR PASCAL DialogFunc (HWND hDlg, WORD wMsg, WORD wParam, DWOR~ IParam)j

The name "DialogFunc" is replaced by the name of the message processing function to use for a
dialog box. Each dialog box will have a separate "DialogFunc" with a different name. The mean
ings of the parameters are as follows.

hDlg HWND: The handle to the dialog box window. This handle can be used just like any other window
handle: to obtain the device context, to change the caption, etc.

wMsg WORD: This is the Windows message being passed to the function. For example, wMsg will equal
.. WM.JNITDIALOG when t~e dialog box is first started and the first message is sent to the dialog

box function.

wParam WORD: This is the WORD parameter passed with the message. See Chapter 9, Windows Mes
sages, for the meaning of the wParam and IParam values for each message .

. JParam DWORD: This is the DWORD parameter passed with the message. This Value will be the same as
, dwlnitParam 'when the dialog box function processes the mCINITDIALOG message.

The dialog box function should return TRUE if the function processes the message, and
FALSE if the message is not acted on. The exception is processing a WM_INITDIALOG message.
In this case, the function should return TRUE only if the S,etFocusO function is not called, FALSE
if SetFocusO is called. SetFocusO is used to establish which control will have the input focus
when the dialog box is first made visible. If SetFocusO is not used, the first control in the dialog
box definition receives the input focus.

Related Messages Most Windows messages can be processed by a dialog box. WM_CREATE is replaced with

Example

WM_INITDIALOG for dialog boxes. .

This example runs the same dialog box shown in the DialogBoxO function e~ple. In this case,
the more sophisticated DialogBoxIndirectParam() function is used. This allows the data for the'
dialog box to be passed in a custom data structure called TWODATA. Because the function uses
"indirect" loading of the dialog box resource, the resource datals specified by a memory handle
@btained with LoadResourceO· I

Note in the dialog box procedure that the memory for the '!WODATA structuJe is locked and
unlocked before and after each call to SetDlgItemlntO and SetDlgItemTextO. This is neceSsary,
as the address of the TWODATA structure may become invalid when Windows processes mes
sages for the dialog box. The dialog box function name "DialogProcedure" must be included in the
EXPORTS section of the program's .DEF definition HIe. The function prototype must also be in-

, eluded in the program's header file.

typedef struct tagTwoData
<

1* this could be, de,fin~d in the, header fi le *1

int
char

} TWO DATA ;

nOne;
cBuf (128J ;

long FAR PASCAL WndProc (HWND hWnd,uns; gned ; HeSsag'e, WOR·D wParam, LONG lParam) < ' , .
PAINTSTRUCT
static FARPROC

ps ;
lpfnDialogProc ;

590

static
static
static
TWODATA

char
HANDLE
HANDLE

cBuf [256] ;
hDialog ;
hMem ;
*ptd ;

13. DIALOG .BOXES ...

switch (iMessage)
<

1* process windows messages *1

}

case WM_CREATE: 1* allocate memory for TWODATA data *1
hMem = LocalAlloc-(LMEM_"OVEABLE I LMEM_DISCARDABLE,

sizeof (TWODATA» ;
ptd = (TWODATA *) LocalLock (hMem)
ptd->nOne = 1 ;
lstrcpy (ptd->cBuf, "Hi Mom!")
LocalUnlock (hMem) ;
break;

case WM_PAINT: 1* display current TWO DATA contents *1
BeginPaint (hWnd, &ps) ;
ptd = (TWODATA *) LocalLock (hMem) ;
TextOut {ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current values are: Xd, Xs", ptd->nOne,
(LPSTR) ptd->cBuf»

LocalUnlock (hMem) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
<
case 10M_DOlT: 1* run dialog box to edit TWODATA data *1

lpfnOialogProc = MakeProclnstance (OialogProcedure,
ghlnstance) ;

hOialog = LoadResource (ghln~tance,
FindResource (ghlnstance, "exmpdlg", RT_DIALOG»

LockResource (hDialog) ;
DialogBoxlndirectParam (ghlnstance, hDialog,

hWnd, lpfnDialogProc, (DWORD) h"em)
UnlockResource (hDialog) ;
FreeProclnstance (lpfnDialogProc) ;
FreeResource (hDialog); ,
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case ID"_QUlT:

break;

OestroyWindow (hWnd) ;
break;

case W"_DESTROY: 1* stop application *1
LocalFree (hMem) ;
PostQuitMessage (0) ;
bredl«:i

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

BOOL FAR PASCAL OialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam, LONG lParam)
{

BOOL
static
TWODATA

HANDLE

switch (iMessage)
<
case WM_INITDIALOG:

bBool ;
hMem
*ptd

hMem = LOWORD (lParam) i 1* get mem handle from 32 bit data *1
ptd = (TWODATA *) LocalLock (hMem) i

, SetDlgltemlnt (hDlg, DLI_EDIT1, ptd->nOne, TRUE) i

591

WINDOWS API BIBLE

}

SetDlgltemText (hDlg, DLI_EDIT2, ptd->cBuf)
LocalUnlock (h~em)' ;
return (TRUE) ;

case WM_COMMAND:
swi.tch (wParam)
{

case DLI_EDIT1: :. 1* get edited integer data *1
ptd = (TWODATA *) LocalLock (hMem) ;
ptd->nOne = Ge'tDlgItemlnt (hDlg, DLI_EDIT1, &bBool, TRUE) ;
LocalUnlock (hHem) ;
return (TRUE) ;

case DLI_EDIT2: 1* get edited string data *1
ptd = (TWO DATA *) LocalLock (hHem) ;
GetDlgltemText (hDJg, DL~_EDIT2, ptd->cBuf, 127) ;
LocalUnlock (hMem) ;
return (TRUE) ;

case DLI_DONE:

}

EndDialog (hDlg, NULL)
return (TRUE) ';

break;
default:

return (FALSE) ;.
}

return (FALSE) ;

I,.

DIALOGBoxP ARAM • Win 2.0 • Win 3.0 .Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Creates a modal dialog box, and passes a 32-bit data item to the dialog box as it is created.

int DialogBoxParam(HANDLE hlnstance, LPSTR lpTemplateName, HWND hWndParent,
FARPROC lpDialogFunc,'DWORD dwlnitParam)j

This function is identical to DialogBoxO, except that the function passes a 32-bit data item to the
dialog procedure when the dialog box is created. The dialog box created is application-modal,
meaning that the dialog box retains the input focus until the dialog box is closed. The focus can
be shifted to another application, but no other window of the application that called
DialogBoxIndirectParamO can gain the focus while the dialog box is active.

The 32-bit data item specified by the dwlnitParam parameter ends up being passed to the
dialog box function as lParam when the dialog box function receives the WM_INITD IALOG mes
sage. Normally, this value is used to pass a memory handle to the data that the dialog box will be
using for edit controls, list boxes, and other controls t~e user will be changing.

This is probably the best of the DiaIogBoxO functions for normal dialog boxes. The 32-bit data
item allows data to be exchanged between the program's WndProcO function and the dialog box
function, without using global v!lriables. DialogBoxParamO is simpler to use than Dialog
BoxIndirectParamO, in that only the dialog definition name is needed. This function avoids the
complexity of separately loading the dialog box resource data, but at the expense of not being
able to modify the dialog box template in memory while the application runs.

int, the wResult parameter passed within the dialog box function when EndDialogO was called.
This value is not normally used. Wi,ndows returns -1 if the dialog box could not be created. -

DialogBoxO for a full description of the dialog box function and the related files. See also
DialogBoxIndirectParamO and DialogBoxIndirectO.

hlnstance HANDLE: The application's procedure-instance handle.

lpTemplateName LPSTR: A pointer to a character string containing the name of the dialog box definition in the
resource script file.

592

hWndParent

lpDialogFunc

dw/nitParam

hDlg

13. DIALOG BOXES ..

HWND: The parent window's handle.

FARPROC: The procedure-instanc.e address of the dialog box function. Use MakeProclnstanceO
to create this value.

DWORD: This is a 32-bit data item that is passed to the dialog box function as the lParam value
when the WM_INITDIALOG message is processed. The dialog box function must have the follow-
ing style:

int FAR P~CAL DialogFunc (HWND hDlg, WORD wMsg, WORD wParam, DWORD lParam)j

The name "DialogFunc" is replaced by the name of the message processing function to use for a
dialog box. Each dialog box will have a separate "DialogFunc" with a different name. The mean
ings of the parameters are as follows.

HWND: The handle to the dialog box window. This handle can be used just like any other window
handle: to obtain the device context, to change the caption, etc.

wMsg WORD: This is the Windows message being passed to the function. For example, wMsg will equal
WM_INITDIALOG when the dialog box is first started and the first message is sent to the dialog
box function.

wParam WORD: This is the WORD parameter passed with the message. See Chapter 9, Windows Mes
sages, for the meaning of the wParam and lParam values for each message.

IParam DWORD: This is the DWORD parameter passed with the message. This value will be equal to
dw/nitParam when the ~CINITDIALOG message is processed.

The dialog box function should return TRUE if the function processes the message, and
FALSE if the message is not acted on. The exception is processing a \VM_INITDIALOG message.
In this case, the function should return TRUE only if the SetFocusO function is not called, FALSE
if SetFocusO is called. SetFocusO is used to establish which control will have the input focus
when the dialog box is first made visible. If SetFocusO is not used, the first control in the dialog
box definition receives the input focus.

Related Messages. Most Windows messages can be processed by a dialog box. WM_CREATE is replaced with
WM_INITDIALOG for dialog boxes.

Example This example runs the same dialog box shown in the DialogBoxO function example. In this case,
the more sophisticated DialogBoxParamO function is used. This example allows the data for the
dialog box to be passed in a custom data structure called TWODATA. The dialog box function
name "DialogProeedure" must be included in the EXPORTS section ofthe program's .DEF defini-.
tion file. The function prototype must also be included in the program's header file.

typedef struct tagTwoData
{

1* this definition can go in header fi le *1

int
char

nOne;
cBuf [128] ;
TWODATA ;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG·lParam)
{

PAINTSTRUCT
static
static
static
static
TWODATA

FARPROC
char
HANDLE
HANDLE

switch (iMessage)
{

ps ;
lpfnDialogProc ;
cBuf [256] ;

. hDialog ;
hMem ;
*ptd ;

1* process windows messages *1

case WM_CREATE: 1* allocate memory for the TWODATA data *1
hMem = LocalAlloc (LMEM_MOVEABLE I LMEM_DISCARDABLE,

593

WINDOWS API BIBLE

sizeof (TWODATA» ;
ptd = (TWODATA *) LocalLock (hMem)
ptd->nOne = 1 ;
lstrcpy (ptd->cBuf, "Hi Mom! ") ;
LocalUnlock (hMem) ;
break;

case WM PAINT: 1* display the current TWO DATA contents *1
, -BeginPaint (hWnd, &ps) ;

ptd = (TWODATA *) LocalLock (hMem) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current values are: "d, "s", ptd->nOne,
(LPSTR) ptd->cBuf» ;

LocalUnlock (hMem) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1
lpfnDialogProc = MakeProclnstance (DialogProcedure,

ghlnstance) ;
DialogBoxParam (ghInstance, "exmpdlg"" hWnd,

lpfnDialogProc, (DWORD) hMem) ;
FreeProclnstance (lpfnDialogProc) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* fo~ce paint *1
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break
case WM_DESTROY: 1* stop application *1

LocalFree (hMem) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (O!.:)

100L FAR PASCAL' DialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam, LONG lParam)

BOOL
__ ~.stati c

.TWODATA
HANDLE

bBoot ;
hMem ; -.
*ptd ;

switch (iMessage)
(

........... -

case WM_INITDIALOG: . .
hMem = LOWORD (lParam); 1* get mem handle from 32 bit data *1
ptd = (TWODATA *) LocalLock (hMem) ;
SetDlgItemlnt (hDlg, DLI_EDIT1, ptd->nOne, TRUE)
SetDlgltemText (hDlg, DLI_EDIT2, ptd->cBuf) ;
LocalUnlock (hMem)
return <TRUE) ;

case WM...;,COMMAND:.
swi tch (wParam)
{

case DLI_EDIT1: 1* edit integer data.*1
ptd = (TWODATA *) LocalLock ChMem) ;
ptd->nOne ~ GetDlgItemInt (hDlg, DLI_EDIT1,

&bBool, TRUE) ;
LocalUnLock (hMem) ;
return (TRUE) ;

case DLI_EDIT2:' '1* edit string data *1
..... ptd = (TWODATA*).LocalLockChMem) ;

GetDlgItemText (hDlg, DLI_EDIT2, ptd->cBuf; 127)

i
594

LocalUnlock (hHem) ;
return (TRUE) ;

case DLI_DONE:
EndDialog (hDlg, NULL> ;
return (TRUE) ;

13 .. DIALOG BOXES Y

break;
default:

return (FALSE) ;

return (FALSE) ;

ENDDIALOG

Purpose

Syntax

Description

Uses

Returns

See Also
Parameters .
hDlg

nResult
/

Example

• Win 2.0 • Win 3.0 • Win 3.1
Closes a modal dialog box and returns control to the calling function.

void EndDialog(HWND hDlg, int nResult)j

This function stops and erases modal dialog boxes displayed with the Dialog~ox() function.
EndDialogO can be called at any point in the dialog box function.

This is the only way to properly exit a modal dialog box and return control to the calling function.
If a dialog box is created from within another dialog box function, calling EndDialogO o~y de
letes the dialog box associated with the active dialog box and dialog box function.

No returned value (void).

DialogBoxO

HWND: The handle of the dialog box window.

int: The value to be returned when DialogBoxO returns the calling function.

See the example under DialogBoxO.

GETDIALoriBASE UNITS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Determines the size of the dialog base units used to create dialog boxes and position controls.

LONG GetDialogBaseUnits(void)j

Dialog boxes use measurements based on the size ofthe font characters. These are called "dialQg
base unitsJ' The X direction is measured in units of one-fourth of the font width. The Y direction

, Js measured in units of one-eighth of the font height. This function allows you to determine the
size of the font width in use. Note that the returned values are for the entire font bounding
rectangle measured in pixels, not for one-fourth or one-eighth of the size.

Useful if you want to paint on the dialog box window, but you only know the location of controls as
measured with dialog box units. The location of the controls measj!red in pixels will change on
different displays with different resolutions.

LONG. The low-order word contains the width of the dialog box font, measured in pixels. The
high-order word contains the height of the dialog box font, measured in pixels.

See the discussion of the FONT statement at the beginning of .. O-Ilre-ct r-ext--o--ut-----
this chapter.

Parameters None (void).

Related Messages WM_P AINT

Example This example, as shown in Figure l3-5,-creates a dialog box. -with only one control. The dialog box function processes Figure13-5. GetDialog-
W1\CP AlNT messages and outputs text directly. to the dialog BaseUnits() Example.

595

,:

WINDOWS API BIBLE '

box window. It also draws a line under the text. The line length is computed to be the number of
characters times the width of a character. Note that the line ends up longer than the text string,
as the system font does not use fIxed character spacing. To compute the actual length of the'
string, the program would need to use GetTextExtentO.

The dialog box defInition for the resource fIle is simple. Because the font is not specified with
a·FONT statemeht, the system font is used in the dialog box. The dialog control ID DLLDONE is

I I '

defIn~d in the p~ogram's header fIle.

EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 10, 18, 128, 66
STYLE WS_DLGFRAME I WS_POPUP
BEGIN

CONTROL "Done" DLI DONE "button"
BS_DEFPUSHBUTToN I WS:"TABSTOP I WS_CHILD, 75, 50, 48, 14

END

Here is the d~~log box function. This function would be called using the DialogBoxO function
and listed in the ExPORTS section of the program's .DEF defInition fIle.

I
BOOl FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG lParam)
{

}

PAINTSTRUCT
stati c
LONG

switch (wMess)
{

I ps ;
fnt' nBaseX, nBaseY ;'

lBaseUni ts ;

case WM_INITDIALOG:

}

lBaseUnits = GetDialogBaseUnits ()
nBaseX = lOWORD (lBaseUnits)
nBaseY = HIWORD (lBaseUnits)
return TRUE;

case WM PAINT:
-BeginPaint (hDlg, &ps) ;

TextOut (ps.hdc, 0, 0, "Direct,Text Out.", 16)
MoveTo (ps.hdc, 0, nBaseY) ;
LineTo (ps.hdc, nBaseX * 16, nBaseY)
EndPaint ChDlg, &ps)
break;

case WM_COMMAND:
switch (wParam)
{

}

case DLI DONE:
EndDi a log (hD 19, 0)
return TRUE;

default:
return FALSE';

return FALSE;

GETDLGCTRLID • Win 2.0 • Win 3.0 • Win 3.1
Retrieves a dialog box control's ID value, given the control's window handle.

l'
Purpose

, Syntax int GetDIgCtrlID(HWND hWnd);

Description

Uses

Returns,

This is the opposite of GetDlgltemO. Given that the program has the window handle of a control,
this function will retrieve the control's ID value.

Not often used. Normally, you will defIne all of the ID values in a header fIle, and use them to send
messages to the child window controls.

iIit l the control ID number for the dialog box control that has a hWnd as a window handle:Re
'turns NULL if hWndis not a valid window handle. The reiurn value is undefined if hWnd is not a

--. 'diaiog-box ~dntrofwindow. '

596

See Also

Parameters
hWnd

Example

13. DIALOG BOXES ...

GetDlgltemO, SendDlgltemMessageO.

HWND: The control ID's window handle.

This example, which is shown in Figure 13-6, shows several equivalent ways of sending messages
to dialog box controls. When the ~CINITDIALOG message is received, the dialog box control
sets the edit control's text to "First Text." The handle to the
edit control's window is also retrieved. When the DLCSECOND
button is pr~ssed, the edit text is changed directly by sending a
message to the edit control window. This technique is equiva
lent to using SetDlgltemTextO. When the DLCTHIRD button
is pressed, the dialog box ID value for the edit control is ob

Te~ Changes

I Second Text

•
I. ,-

tained from the edit control's window handle using GetDlg- Figurf! 13-6. GetDlgCtrlID()
CtrlIDO. The ID is then used to change the edit control's text, And GetDlgltem() Example. '
again using SetDlgItemTextO.

This example only shows the dialog box procedure for the program. See the example under
the DialogBoxO function description for related program files. '

Baal FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, lONG lParam)
{

static
int

HWND hControl ;
nEdi tID ;

switch (wMess)
{

case WM_INITDIAlOG:
SetDlgItemText (hDlg,· DLI_EDIT, "Fi rst Text")
hControl = GetDlgltem (hDlg, DlI_EDIT)
return TRUE;

case WM_COMMAND:
swi tch (wParam)
{

}

case DLI_SECOND:
SendMessage (hControl, WM_SETTEXT, 0,

(DWORD) (lPSTR) "Second Text")
return TRUE;

case DLI_THIRD:
nEditID = GetDlgCtrlID (hControl) ;
SetDlgItemText (hDlg, nEditID, "Third Text")
return TRUE;

case DLI_DONE:
-EndDialog (hDlg, 0) ;
return TRUE;

defaul't:
return FALSE;

return FALSE;

GETDLGITEM

Purpose

Syntax

Description

Uses

• Win 2.0 • Win 3.0 • Win 3.1
Retrieves the window handle for a dialog box control, given the control's ID number.

HWND GetDlgItem(HWNDhWnd, intnIDDlgltem)j

All dialog box controls, such as buttons and list boxes, are child windows. Normally, they are dealt
with indirectly using a function like SendDlgItemMessageO, which uses the dialog box control
10. An alternative is to deal wjth the child windows directly by obtaining the window's handle.

The handle o~ the dialog box control window can pe used to change the behavior of the child
window by sub classing. After the window handle is obtained with GetDlgltemO, the application
uses SetWindowLongO and CallWindowProcO to subclass the control.

597

WINDOWS API BIBLE

Returns
See Also

Parameters
hWnd

nIDDlgltem

Example

H\WfD, the window handle for the dialog box control: .

GetDIgCtrlIDO, SetWindowLongO. The CallWindowProcO function description in Chapter 8,
. Message Processing Functions, has an example of subclassing a button control.

HWND: ,The dialog box handle, usually named hDlg.

int: The dialog box control ID value.

See the previous example under the GetDlgCtrlIDO function description.

GETDLGITEMINT (II Win 2.0 II Win 3.0 • Win 3.l

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDlg

nIDDlgltem

IpTranslated

bSigned

Retrieves an integer value from a control in a dialog box.

WORD GetDlgItemInt(HWND hDlg, int nIDDlgltem, BOOL FAR *lpTranslated, BOOL bSigned)j

This is a shortcut method of retrieving an integer value from a control in a dialog box. The func
tion is equivalent to using the WM_GETTEXT message to retrieve the character string from the
control, and then using the atoiO C library function to convert the string to an integer. The text
characters in the edit control are converted to an integer value starting with the leftmost charac
ter. The first nonnumeric character halts the reading process.

This is the standard way to retrieve an integer value from an edit control.

The integer value of the text in the edit control. Because zero is a valid integer vame, errors are
reported with the IpTranslated parameter.

SetDlgltemlntO, GetDlgltemTextO, SetDlgItemTextO

HWND: The dialog box handle.

int: The dialog box edit control ID. Normally, these values are
defined in a separate header file.

. BOOL FAR *: The location pointed to by lpTranslated is set to
TRUE if the edit control was properly converted to an integer ..
It is set to FALSE if the value overflowed (unsigned greater
than 65,535 or signed greater than 32,767), or if nonnumeric
characters preceded any digits.

BOOL: TRUE if the value to be retrieved is to be a signed inte
ger (int), FALSE if unsigned.

generic

.120111 5lult

The current values are: O. HI T~~el

Title String Here

, Integer Input field.

I Hi Th~re! I String Input field.

Related Messages' WM_GETTEXT

Figure 13-7.
GetDlglternlnt(),
GetDlgltemText(),
SetDlgltemlnt(), and
SetDlgJtemText() Example. Example This example, which is shown in Figure 13-7, uses a dialog box

to allow editing of two global variables, an integer and a char-
acter string. The dialog box pops up when the user clicks the "Do It!" menu item. The current
values are updated into the e~lit fields of the dialog box with SetDlgltemIntO and SetDlg
ltemTextO. When the user does any activity involving selection or editing of either edit field, the
current value is retrieved using GetDlgltemIntO and GetDlgltemTextO. See the example under
DialogBoxO for details of the other files associated with this example. Only the C source code for
the WndProcO and d.ialog functions are shown in this example.

i nt nEdi tOne = 0 ;
char cEditBuf [128J = {"Hi There! "} ';

long FAR PASCAL WndPfoc (HWND hWnd,unsigned iMessage, WORD wParam, LONG lParam)
{

598

.}

13. DIALOG BOXES ...

PAINTSTRUCT
static FARPROC

ps ;
lpfnDialogProc
cBuf [256J char

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, ~ps) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The current values are: 7od, 70s", nEditOne,
(LPSTR) cEditBuf» ;

EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu; tems *1
swi tch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
1pfnDialogProc = MakeProclnstance (DialogP~ocedurer

ghlnstance) ;
DialogBox (ghlnstance, "exmpdlg", hWnd, lpfnDialogProc) ;
FreeProclnstance (lpfnDialogProc) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop application *1

PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL)

BOOL FAR PASCAL DialogProcedure (HWND hDlg, unsigned iMessage, WORD wParam, LONG lParam)
{

}

BOOL bBoo l ;

switch (iMessage)
{

case WM_INITDIALOG: .
SetDlgltemlnt (hDlg, DLI_EDIT1, nEditOne, TRUE)
SetDlgltemText (hDlg, DLI_EDIT2, cEditBuf)
break;

case WM_COMMAND:
switch (wParam)
{

case DLI_EDIT1:
nEditOne = GetDlgltemlnt (hDlg, DLI_EDIT1,

&bBool, TRUE) ;
return <TRUE) ;

case DLI_EDIT2:
GetDlgltemText (hDlg, DLI_EDIT2, cEditBuf, 127)
return <TRUE) ;

case DLI_DONE:

}

EndDialog (hDlg, NULL)
return <TRUE) ;

break
default:

return (FALSE)
}

return (FALSE) ;

599

WINDOWS API BIBLE

GETDLGlTEMTEXT II Win 2.0 • Win 3.011 Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDlg

Retrieves a character string from an edit cO,ntrol in a dialog box.

int GetDlgItemText(HWND hDlg, int nIDDlgltem, LPSTR IpString, int nMaxCount)j

This is a shortcut method of retrieving the text string from a control in a dialog box. It is equiva
lent to sending a Wl\CGETTEXT message to the control.

Normally used with edit controls to retrieve the current edited value.

int, the number of characters copied.

GetDlgltemlntO, SetDlgItemTextO, SetDlgltemlntO

HWND: The dialog box handle.

nIDDlgltem int: The dialog box edit control ID. Normally, these values are defined in a separate header file.

IpString LPSTR: A pointer to a buffer that holds the character string. It must be at least nMaxCount
characters wide.

nMaxCou,nt int: The maximum number of characters to copy into the buffer pointed to by IpString.

Related Messages WM_GETTEXT
Example See the previous example under the GetDlgltemlntO function description.

GETNEXTDLGGRoupITEM: I!!I Win 2.0 II Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDlg

hCll

bPrevious

Example

Finds the next (or previous) window handle of the dialog box control, within a group of controls,
that will receive the input focus if the user presses one of the arrow keys.

HWND GetNextDIgGroupItem(HWND hDlg, HWND hCtZ, BOOL bPrevious)j

Dialog box controls can be placed in groups by starting each group with an item with the
WS_GROUP style. The group continues until the next WS_GROUP styled item is encountered.
The user can move between items of a group by pressing the arrow keys. The GetNextDlg
GroupItemO returns the handle of the control that will be highlighted next within the group.

Used in building keyboard interfaces for dialog boxes.

HWND, the handle of the next or previous dialog box control of the group.

GetDlglternO, GetNextDlgTabItemO

HWND: The handle of the dialog box windows.

HWND: The handle of the dialog box control to start from. Retrieve this handle with GetDlg
ltemO.

BOOL: Set to TRUE to fmd the previous control in the group. This is the item that will have the input
focus if the user presses the left or down arrow key. Set to FALSE to find the next control in the
group. This is the item that will have the input focus if the user presses the right or up arrow key.

The example illustrated in Figure 13-8 shows a dialog box with
four check boxes and a pushbutton. When the dialog box starts,
the check box in the upper left has the input focus. The dialog
box function processes the WM_INITDIALOG message and
changes the names of the controls for the button with the in
put focus, the next group button (the button that will receive

o Next Tab

o Next Group

the input focus if the right arrow key is pressed), and the next FigureJ3-B. GetNextDlg-
. tab button (the button that will receive the input focus if the Groupltem() and GetNext-
tab key is pressed). DlgTab/tem() E:mmple.

600

13. DIALOG BOXES V

Note in the dialog box definition that t:he WS_TABSTOr flags an: placed at each location
where the cursor should jump to if the tab key is pressed. The WS_GROUP flags are placed at the
start of each group, and continue until the next WS_GROUP flag. These control the reaction to
pressing the arrow keys.

EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 10, 18, 145, 80
STYLE WS_DLGFRAME I WS_VISIBLE I WS_POPUP
BEGIN

END

CONTROL "", DLI_CHECK1, "but ton",
BS_CHECKBOX I WS_TABSTOP I WS_GROUP I WS_CHILD, 12, 20, 48,-12

CONTROL '"', DLI_CHECK2, "I::.ut ton",
BS_CHECKBOX I WS_CHILD, 12, 39, 48, 12

CONTROL "", OLI_CHECK3, "button",
BS_CHECKBOX I WS_TABSTOP I WS_GROUP I WS_CHILD, 84, 21, 45, 12

CONTROL '"', DLI_CHECK4, "button",
BS_CHECKBOX I WS_CHILD, 84, 39, 45, 12

CONTROL "Done" ,DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 45, 66, 48, 12

This listing only shows the dialog box function for the program. The remainder of the pro·
gram is identical to the CreateDialogO example.

BOOL FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG lParam)
{

HWND hControl, hFirstGroup ;

swi tch (wMess)
{

case WM_INITDIALOG:
SetD 19I temText (hD 19, DLI_CIlECK1, "1")
SetDlgItemText (hDlg, DLI_CHECK2, "2")
SetDlgItemText (hDlg, DLI_CHECK3, "3")
SetDlgItemText (hDlg, DLI_CHECK4, "4") ;
hFirstGroup = GetDLgItem (hDlg, DLI_CHECK1)
SendMessage (hFirstGroup, WM_SETTEXT, 0,

(DWORD)(LPSTR) "Focus here") ;
hControl = GetNextDlgGroupItem (hDlg, hFirstGroup,

FALSE) ;
SendMessage (hControl, WM_SETTEXT, 0,

(DWORD)(LPSTR) "Next Group") ;
hControl = GetNextDlgTabltem (hDlg, hFirstGroup,

FALSE) ;
SendMessage (hControl, WM_SETTEXT, 0,

(DWORD)(LPSTR) "Next Tab");
return TRUE;

case WM_COMMAND: 1* there is only one command - quits *1
swi tch (wParam)
{

return FALSE;

EndDialog (hDlg, 0)
hDlgBox = NULl. ;
return TRUE ;,

GETNEXTDLGTABITEM II Win 2.0 II Win 3.0 • Win 3.1

Purpose

Syntax

Description

Finds the next (or previous) window handle of the dialog box control that will receive the input
focus if the user presses the @[) key.
HWND GetNextDlgTabltem(HWND hDlg, HWND hetZ, BOOL bPrevious)j

A keyboard shortcut for moving between dialog box controls can be obtained by placing
WS_TABSTOP styles in the definition of each item that the tab key should stop on. Pressing the

601

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hDlg

hetl

bPremous

Example

I

,@) key moves to the next item with the'WS_TABSTOP style. Pressing (SHIFTl-@) moves in the
opposite direction. GetNextDlgTabltemO' returns the handle of the control that will be high
lighted next if the @) key is used.

Used in building keyboard interfaces for dialog boxes.
HWND, the handle of the next or previous dialog box control that will be selected if the @ID key
is used.

GetDlgltemj), GetNextDlgGroupltemO

HWND: The handle of the dialog box windows.
HWND: The handle of the dialog box control from which to start. Retrieve this handle with
GetDlgltemO·
BOOL: Set to TRUE to find the previous WS_TABSTOP control in the dialog box. This is the item
that will have the input focus if the user presses (SHIFTl-@ID. Set to FALSE to find the next'
WS_TABSTOP control. This is the item that will have the input focus if the user presses @ID.

See the previous example under GetNextDlgGroupltemO.

IsDIALOGMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hDlg

lpMsg

Example

Determines whether a message is meant for a dialog box. If so, keyboard translations are per
formed, and the message is passed to the dialog box function.

BOOL IsDialogMessage(HWND hDlg, LPMSG lpMsg)j

Modeless dialog boxes can remain on the screen for the duration of the program. During this
period, the message loop must determine whether to send the message to the WndProcO func
tion, or to the dialog boxfunction(s). In addition to diverting messages to the dialog boxfunctidn,
IsDialogMessageO converts some keypress messages. For example, the @) key is interpreted to
move the input focus to the next control with the WS_TABSTOP message. DispatchMessageO
will also send messages to the dialog box function, but without the character translations.
Necessary in the message loop for all applications containing modeless dialog boxes that use a
keyboard interface.
BOOL. TRUE if the message was processed and sent to the dialog box function, FALSE if not. If
FALSE is returned, the message should be passed to the TranslateMessageQ and Dispatch-
MessageO functions. '

GetMessageO, CreateDialogO

HWND: The dialog box handle. This value is returned by CreateDialogO and the other
CreateDialog functions. The value should be stored in a global variable to make it available to the
message loop within WinMainO. Set hDlg to zero before and after the modeless dialog box is
active.
LPMSG: A pointer to the MSG structure retrieved from Windows by GetMessageO or Peek
MessageO·
This listing shows a typical message loop for an application with one or motemodeless dialog
boxes. The TranslateMessageO and DispatchMessageO functions only process the message if the
dialog box is not currently active or if the message is not for a dialog box. See CreateDialogO for

, a more complete listing. '

while (GetMessage (&msg, NULL, 0, 0»
{

,,', if (hDlgHodeless ==: NULL II

602

}
}

!IsDialogMessage (hDlgModeless, &msg»

TranslateMessage (&msg) ;
DispatchMessage (&msg)

return msg.wParam ;

13. DIALOG BOXES ~

IsDLGBUTTONCHECKED • Win 2.0 • Win 3.0 • Win 3.1
Purpose Determines whether a check box or radio button control is checked, or whether a three-state

button control is checked or grayed.

WORD IsDlgButtonChecked(HWND hDlg, int nIDButton)j Syntax

Description Radio buttons and check boxes can be checked or unchecked. Three-state buttons can be
checked or grayed. IsDlgButtonCheckedO determines the current state of a dialog box control.

Uses Normally used with the AUTO button styles that automatically change from unchecked to
checked, etc.

Returns WORD, the current checked state. 0 for unchecked, 1 for checked, 2 for grayed (if the control is a
three-state radio button or c~eck box).

See Also

Parameters
hDlg

CheckDlgButtonO, CheckRadioButtonO

HWND: The dialog box window handle.

nIDButton int: The dialog box control ID number for the check box or radio button.

Related Messages BM_SETCHECK, BM_GETCHECK

Example This example uses AUTO button styles to accomplish the same logic as demonstrated in the ex
ample under the CreateDialogO function description. The dialog box template is modified to use
the AUTO button styles. .

EXMPDlG DIAlOG·LOADONCALl MOVEABLE DISCARDABLE 10, 18, 139, 75
CAPTION "Example Di a log Box"
FONT 10, "He lv"
STYLE WS_BORDER I WS_CAPTlON I WS_DLGFRAME I WS_POPUP WS_VISIBLE
BEGIN

END

CONTROL "Title String Here", -1, "static",
SS_CENTER I WS_CHILD, 27, 6, 78, 9

CONTROL "Check box control.", -1, "static",
SS_LEFT I WS_CHILD, 60, 22, 67, 9

CONTROL "Radio buttons.", -1, "static",
SS_LEFT I WS_CHILD, 60, 39, 73, 10

CONTROL "DONE", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 72, 59, 36, 12

CONTROL "", DLI_CHECKBOX, "button",
BS_AUTOCHECKBOX I WS_TABSTOP I WS_CHILD, 7, 24,16, 9

CONTROL "Fi rst", DLI_RADI01, "button",
BS_AUTORADIOBUTTON I WS_TABSTOP WS3HILD, 6, 36, 28, 12

CONTROL "Second" DLi RADI02 "button"
BS~UTORADIOBUTTON I WS_TABSTOP WS_CHILD, 6, 47, 44, 12

\

The dialog box function is modified to take advantage of the automatic checking of both the
check box and radio buttons. The global variables are updated when the dialog box is closed. The
remainder()f the program files are identical to the example shown under CreateDialogO.

BOOL FAR PASCAL DialogProcedure (HWND hD~g, unsigned iMessa~e,WORD wParam, LONG lParam)
{

BOOl· bBoo l ;

603

WINDOWS API BIBLE

switch (iMessage)
{

case WM_INITDIALOG:
if (nCheckOne)

CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,
DLI_RADI01) ;

if (nRadi oOne)

else'

CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,
DLI_RADI02) ;

CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,
DLCRADI01)

return (TRUE) ;
case WM_COMMAND:

swi tch (wParam)
{

case DLI CHECKBOX:
1f (IsDlgBu~tonihecked (hDlg, DLI_CHECKBOX»

'CheckDlgButton (hDlg, DLI_CHECKBOX, MF_CHECKED) ;
else

CheckDlgButton (hDlg, DLI_CHECKBOX, MF_UNCHECKED)
return (TRUE) ;

case DLI_RADI01:
case DLI_RADI02: 0#

if (IsDlgButtonChecked (hDtg, DLI_RADI01»
CheckRadioButton (hDlg,DLI_RADI01, DLI_RADI02,

DLCRADI01) ;
else

CheckRadioButton (hDlg, DLI_RADI01, DLI_RADI02,
... DLI_RADI02);

return (TRUE) ;
case DLI_DONE:

I }
break;

default:

nCheckOne = IsDlgButtonChecked (hDlg,
DLI_CHECKBOX) ;

nRadioOne = IsDlgButtonChecked (hDlg,
. DLI_RADI02) ;

DestroyWindow (hDlg)
hD 19Mode less = 0 ;
return (TRUE) ;

return (FALSE) ;

return (FALSE) ;

MAP DIALOGRECT &I Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hDlg

Converts from dialog base units to screen units (pixels).

void MapDialogRect(HWND hDIg, LPRECT lpRect);

In the dialog box template file, dimensions are given in dialog base units. These are one-fourth of
a character width for X coordinates and one-eighth of a character height for Y coordinates.
MapDialogRectO converts a rectangle from these units to screen units. The screen dimensions
are relative to the upper left corner of the dialog box windows.

This is a convenientwayto determine the size of a dialog box control. All controls are rectangular
child windows. .

No returned value (void).

ScreenToCIientO, CIientToScreenO

HWND: The dialog box window handle.

604

13. DIALOG BOXES T

lpRect LPRECT: A pointer to a RECT data structure containing the
rectangle's dimensions in dialog base units. After MapDialog
RectO is called, the RECT data will contain the same rectangle
converted to screen units.

Related Messages MtCSIZE ,M".!!!_
Example This example, which is shown in Figure 13-9, moves a child win

dow control when either the "I Move" or "Move It" pushbutton
controls are clicked \\'ith the mouse.

Figure13-9. MapDialog
RectO Example.

The dialog box template defines three pushbuttons. The third pushbutton is the one that will
be moved. Note that the sizes ar~ given in dialog units.

EXMPDLG DIALOG LOADONCALL MOVEABLE DISCARDABlE 10, 18, 128, 66
STYLE WS_DLGFRAME I Ws_poPUP
BEGIN

END

CONTROL "Done", DLI_DONE, "button",
BS_DEFPUSHBUTTON I WS_TABSTOP I WS_CHILD, 75, 50, 48, 14

CONTROL "Move It", DLI_MOVEIT, "button",
BS_PUSHBUTTON I WS_TABSTOP WS_CHILD, 75, 9, 48, 12

CONTROL "I Move", DlI_MOVED, "button",
BS_PUSHBUTTON I WS_TABSTOP I WS_CHILD, 9, 9, 45, 12

The dialog box function takes the size of the third pushbutton and converts it to a RECT data
structure. MapDialogRectO then converts the RECT data from dialog units to screen units (pix
els). This is an ideal way to move the pushbutton using the MoveWindowO function.

BOOl FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, lONG lParam)
{

RECT
HWND
static

switch (wMess)
{

BOOl

rRect ;
hControl ;
bToggle = 1

case WM_COMMAND:

}

return FALSE;

switch (wParam)
{

}

case DLI_MOVED:
case DLI_MOVEIT:

SetRect (&rRect, 9, 9, 45 + 9, 12 + 9)
MapDialogRect (hDlg; &rRect> ;
if (b:rogg le)
{

else

OffsetRect (&rRect, 35, 35)
bToggle = 0 ;

bToggle = 1 ;
hControl = GetDlgltem (hDlg, DLI_MOVED) ;
MoveWindow (hControl, rRect.left, rRect.top,

rRect.right - rRect.left,
rRect.bottom - rRect.top, TRUE)

return TRUE;
case DLI_DONE:

EndDialog (hDlg, 0)
return TRUE;

default:
return FALSE;

60~

WINDOWS API BIBLE

MESSAGEBox

Purpose

S)'Rtax .

Description

Uses

Returns

IDABORT

IDCANCEL

IDIGNORE

IDNO

lOOK

IDRETRY

I DYES

• Win 2.0 • Win 3.0 • Win 3.1
Creates and displays a small window containing a message.

int MessageBox(HWND hWndParent, LPSTR IpText, LPSTR IpCaption, WORD wType)j

MessageBoxO is one of the most useful functions in Windows. A simple function call provides a
complete dialog box, including a limited selection of buttons and icons. The window is automati
cally sized.

Most often used for error and warning messages. Also useful as a placeholder in program develop
ment. You can put message boxes in for menu items that have not yet been developed, etc.
int, the button that was pressed to exit the message box. This can be any of the values listed in
Table 13-2.

An "Abort" button was pressed.

A "Cancel" button was pressed.

An "~gnore" button was pressed.

A "No" button was pressed.

An "OK" button was pressed.

A "Retry" button was pressed.

A "Yes" button was pressed.

Table 13-2. Message Box Returned Values.

See Also MessageBeepO, DialogBoxO

Parameters
hWndParent

IpText

lpCaption

wTgpe

HWND: The handle of the parent window. This can be a main window, child window, or dialog box
handle.

LPSTR: A pointer to a character string to be placed in the center of the message box.

LPSTR: A pointer to a character string to be placed in the caption bar at the top of the message
box.' .

WORD: One or more ,of the values in Table 13-3, combined with the C language OR operator (I).

The message box contains three buttons: (Abort,) (Retry,) and (Ignore).

The message box is application-modal. The user must click one of the message box buttons
before any other part of the application will respond. The user can switch to another program,
and then retum.

The first pushbutton is the default. The default button is the one that will be activated if the user
presses the return key. The first button is the default button, unless one of the following two
styles is used.

BM_DEFBUTTON2

BM_DEFBUTTON3

MBJCONASTERISK

MBJCONEXCLAMATION

MBJCONHAND

The second button is the default button.

The third button is the default button.

An icon with a lowercase "i" in a circle is displayed in thernessage box.

An icon containing an .exclamation point is displayed in the message box.

An icon with a hand (stop symbol) is displayed in the message box.

606

13. DIALOG BOXES 'Y

MB-,CONINFORMATION

MB-,CONQUESTION

MB-,CONSTOP

An icon with a lowercase "i" in a circle is displayed in the message box.

An icon containing a question mark is displayed in the message box.

An icon containing a stop sign is displayed in the message box. This is normally reserved for
drastic situations.

MB_OK

MB_OKCANCEL

MB_RETRYCANCEL

MB_SYSTEMMODAL

The message box contains one pushbutton: "OK".

The message box contains two pushbuttons: "OK" and "CanceL"

The message box contains two pushbuttons: "Retry" and "CanceL"

The message box is system-modal. No other program can gain the input focus until a button in
the message box is clicked. If the MB-,CONHAND style is used with this style, Windows
messages are immediately stopp'ed to all applications.

Similar to MB_APPLMODAL. With this style, hWndParent can be set to NULL. This causes all
child windows of the parent to be disabled until a pushbutton on the message box window is
clicked.

MB_YESNO The message box contains two buttons: "Yes" and "No."

MB_ YESNOCANCEL The message box contains three buttons: "Yes," "No," and "Cancel."

Table 13-3. Message Box Flags.

Example This example displays a message box when the user clicks the
"Do It!" menu item. The appearance of the message box is
shown in Figure 13-10. The MessageBoxO returns an integer
value that specifies which button was clicked to exit the mes
sage box. In this case, the result is displayed on the main
window's client area after the message box disappears.

-----.....---
- Message Box

(!) This Message Of Uttle Value --Figure 13-10. MessageBoxO
Example.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
(

i nt nReturned ;
HOC hOC;

swi tch (i'Message)
{

case WM_COMMANO:

1* process windows messages *1

1* process menu items *1
switch (wParam)
{

cas e I 0 M_O 0 IT: 1 * Use r hit the "00 it" men u i t em * 1
nReturned = MessageBox (hWnd,

"This Message is Of Little Value",
. "Message Box",

MB_ICONEXCLAMATION I MB_OKCANCEL) ;
hOC = GetOC (hWnd) ;
if (nReturned == IOCANCEL)

TextOut (hOC, 10, 10, "Returned Cancel.", 16)
else

TextOut (hOC, 10, 10, "Returned OK.", 12)
Releas.OC (hWnd, hOC) ;
break;

IOther program lines I

SENDDLGITEMMESSAGE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Sends a message to a dialog box control.

DWORD SendDlgItemMessage(HWND hDlg, int nIDDlgltem, WORD wMsg, WORD wParam,
LONG IParam)j

607

WINDOWS API BIBLE

Description

Uses

Returns

See Also

Parameters
hDlg

nIDDIgItem

wMsg

This IS a shortcut method for sending a message to a dialog box control. It is equivalent to calling
GetDlgItemO to obtain the control's handle, and then using SendMessageO to send the message.
Like SendMessageO, SendDlgItemMessageO sends the message directly to the dialog box func
tion, bypassing the message queue.

Used to send nonroutine messages to dialog box controls. The normal 3.ctivities, such as setting
the text in a control, are covered by functions like SetDlgltemTextO. Less common activities,
such as adding items to a list box control, are best handled with SendDlgItemMessageO.

DWORD, the value returned after the control processed the message. See the message descrip
tion in Chapter 8, Message Processing Functions,' to determine the meaning of this value for a
specific message.

SendMessageO, GetDlgItemO

HWND: The dialog box window handle (not the handle of the control).

WORD: The ID value of the control that will receive the message.

WORD: The message that the control will receive.

wParam WORD: The WORD length data sent with the message. See Chapter 9, Windows Messages, for the
meaning of wPararn and lPararn for a specific message.

lParam DWORD: The DWORD length (32-bit) data sent with the message.

Related Messages All messages can be sent with this function.

Example This example shows a dialog box with an edit control and scroll
bar. (See Figure 13-11.) SendDlgItemMessageO is used to send
an EM_LIMI'ITEXT message to the edit control when the dia
log box starts, limiting input to three digits. The example is
interesting in that the edit control and scroll bar interact.

Integer Value 0 - 100

E t#l,1. T
Changing the scroll bar position changes the number in the Figure13-11. SendDlg-
edit control. Manually editing the number in the edit control ItemMessage() Example.
changes tl e scroll bar position. This is an excellent way to pro-
vide user input for integers. Note in the program logic that no action is taken if the number has
not changed. This is critiCal to avoid having infinite loops of messages sent to the dialog box
function.

EX~PDLG DIALOG LOADONCALL MOVEABLE DISCARDABLE 9, 18, 126, 57
STYLE WS_DLGFRAME I WS_POPUP
BEGIN

END

CONTROL "", DLI~SCROLL, "scr'ollbar",
SBS_VERT I WS_CHILD, 102, 6, 9, 45,

CONTROL "", DLI_EDIT, "edi t",
ES_LEFT I WS_BORDER I WS_TABSTOP I WS_CHILD, 9, 18, 36, 12

CONTROL "Integer VaLue 0 - 100", -1, "static",
SS_LEFT I WS_CHILD, 9, 6, 75, 12

CONTROL "Done", DLI_DONE, "button",
BS_PUSHBUTTON I WS_TABSTOP I WS_CHILD, 9, 39, 60, 12

Only the dialog box function is shown in the listing. See DialogBoxO for other related files
and commands.

BOOL FAR,PASCAL DiaLogProc (HWND hDLg, WORD wMess, WORD wParam, LONG LParam)
{

static HWND hScroll ;
int nInt ;
static int nOLdInt = 0 ;
BOOL bBoo l ; i'

608

13. 9'ALOG BOXES V

5wi tch (wMess)
{

}

hScroll = GetDlgltem (hDlg, DlI_SCROll) ;
SetScrollRange (hScroll, SB_CTl, 0, 100, FALSE)
SetScrollPos (hScroll, SB_eTl, 100, TRUE) ;
SetDlgltemlnt (hDlg, DlI_EDIT, 0, TRUE) ;
SendDlgItemMessage (hDlg, DLI_EDIT, EfCLIMIHEXT,

3, ,OU
return ,TRUE;

case WfCVSCROll: ':»
nlnt = nOldlnt ;
swi tch (wParam)
{

nlnt += 1 ;
break ';

case SB_PAGEUP:
nlnt += 10 ;
break ;'

case SB_lINEDOWN:
nlnt -= 1 ;
break;

case, ,SB_PAGEDOWN:
nlnt -= 10 ;
break;

case SB_THUf4BPOSITION:
nlnt = 100 - lOWORD (lParam)
break;

nlnt = m';n (100, max (0, nInO)
; f (nInt ! = nOldlnt)
{

nOldlnt = nlnt ;
SetScrollfos (hScrolb, SB_CTl, 100 - nOldInt, TRUE)
~SetDlgItemlnt (hDlg, DLI'_E1HT, nOldInt, TRUE) ;

}

return TRUE ;
case WM_COMMAND:

switch (wParam)
{

1* there ;s only one command - quits *1

case DLI_EDIT:
nInt = GetDlgltemlnt (hDlg, DlI_EDIT~ &bBool,

TRUE) ;
if (nlnt ! = nOldlnt)
{

nO~dlnt = min (100, max (0, nInt»
Se'tScro'.lPos (hScroll, S8_CTl,

100 - nOldlnt, TRUE)

return TRUE;
case DLI_DONE: .

}

return TRUE
case WrCDESTROY:

EndDialog (hDlg, 0)
return TRUE ;' -

EndD;alog (hDlg, 0)
return TRUE;

return FALSE;

SETDLGlTEMINT EI Win 2.0 Ell Win 3.0 '- [] Win 3.1
Purpose . (Changes the text in a dialog box control to an intege~ value.

8yntax void SetDlgltemlnt(HWND hDlg, int nIDDlgltem, WORD wValue, BOOL bSigned)j

609

WINDOWS API BIBLE

Description

Uses

Returns

See Also

Parameters
hDlg

nIDDlgltem

wValue

bSigned

This is a shortcut method of changing the text in a control (usually an edit control) to an integer
value. It is equivalent to sending the W~CSETIEXT message to the control.

Normally used to change edit control values.

No returned value (void).

GetDlgltemlntO, SetDlgltemTextO, GetDlgItemTextO

HWND: The dialog box handle.
~.

int: The dialog box control ID. Normally, these values are defined in a separate header file.

WORD: The integer value to be set as text in the control.

BOOL: TRUE if the integer is a signed value (int), FALSE if unsigned.

Related Messages MvLSETIEXT

Example See the example under GetDlgJtemlntO.

SETDLGITEMTEXT EI Win 2.0 m Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDlg

nIDDlgltem

Changes the text in a dialog box control. .

void SetDlgItemText(HWND hDlg, int nIDDlgltem, LPSTR lpString)j

This is a shortcut function for setting the text in one of the controls of a dialog box. It is equiva
lent to sending the WM_SETTEXT message.

Normally used to change the text in edit controls.

No returned value (void).

GetDlgltemTextO, SetDlgltemlntO, GetDlgJtemlntO

HWND: The dialog box handle.

int: The dialog box control ID. Normally, these values are defined in a separate header file.

lpString LPSTR: A pointer to a nl.IlI-terminated string containing the characters to be inserted into the
dialog box control.

Related Messages WM_SETI'EXT //

Example See the exampleunder'GetDlgItemlntO.

610

Most programmers are apprehensive when they first find out that Windows moves objects around in memory while
programs are running. This is completely different from programming in a conventional environment like MS-DOS,
where memory objects stay fixed until deleted.

Windows provides ample support for managing moveable memory. Using memory block') under Windows boils
down to following a few simple rules. Once these rules are understood, memory management becomes no more com
plex under Windows, than in environments like MS-DOS Windows provides the programmer with complete control
over the way memory is used. Most applications do not take advantage of all of these features, but they are worth,
knowing about. This chapter discusses

• Memory organizaton under Windows.

• Allocating memory blocks.

• Using automatic variables.

• Controlling the program's use o{memorywith the .DEF definition file.

• How C compiler memory models affect memory use.

• Starting and stopping other programs from within an application.

Local and Global Memory Task Header
There are two basic kinds of memory under Windows: local memory and global
memory. A program can take advantage of either type of memory, depending on its Figure 14-1. The Automatic
needs. Every program has a private local memory block called the "automatic data Data Segment Organi£ation.

1.,-- segment." The starting size of this area is defined in the program's .DEF definition
file, although it can be changed as the program runs; The organization of an application's automatic data segment is
shown in Figure 14-1. The maximum size of the segment is limited to 64K..The first section is. the task header, a fIXed
16 bytes of information that Windows uses. Above that is any static data. Static data is the collection of data, such as
strings you define in the program.

char cBuf(] = "This is a static data string_" ; 1* static data *1

Other examples of static data are global variables declared outside of a function definition, and variables within
a function whose declarations are prefixed by the word "static."

stat; c ;nt ;, j ; 1* stat; c variables *1

Above the static data is the program's stack. The C language stores autofifatic variables (variables declared within
a function and without the "static" prefIX) in the stack. The stack she is. also set in the program's .DEF file, with a
minimum size of 5,120 bytes. The local heap is at the top of the automatic data segment.

The local heap is the area where programs can allocate blocks of local memory for their own purposes, and then
free the blocks when they are no longer needed. If you are familiar with programming under MS-DOS, you can think of
the local heap as similar to the memory area allocated using the C function mallocO. This analogy does not go too far,
as we will soon see~ -

611
;'

WINDOWS API BIBLE_

-j
The other kind of memory available to Windows applications is the global heap. This is ine rest of the memory on

the sySte~. Windows programs typically use the' global heap for large blocks of memory (over 256 bytes as a rule of
thumb). The local heap is used for smaller blocks, -or blocks that will only be used for a short period of time.AwUn
making an analogy to MS-DOS programming, the global memory area is something li,ke the area accessea by
_fmallocO.

Segments and Offsets
Windows uses two types of memory allocation. The two Figure 14-2. Windows 32-Bit Address (LPSJ'R) Values.
types relate to the architecture of the CPUs (Central
Processing Unit) on the computers on which Windows programs run. The 8086 through 80486 chips access memory
using two IS-bit values. These values are called the "segment" and the "offset." Windows stores full addresses as 32-bit '
values consisting of both the segment and offset, as shown in Figure 14-2. These are "long pointers. "Atypicallong
pointer is the memory address of a string. Using conventional C notation, this would be a far pointer to a chalacter

char !ar_*cp ; ,

These data types are so common that Windows defines an abbreviation in WINDOWS.H as LPSTR (long poblter to
a string). In some functions, you will also pass a long address as a double-word (32-bit) value, abbreViated DWORD. '
Both values are 32 bits long. ' , ,

o DWORD and LPSTR-Definitions in WINDOWS.H
typedef unsigned long
typedef char far

DWORD;
*LPSTR;

In p.itber case, the segment and offset are stored within the 32-bit value as a far address. _ _ '
ii'or accessing values within an memory area limited to 641\, the segment value does not have to change. All oUhe

memory locations within the 64K region can be addressed by changing the effset. This ability makes It possible to
access memory mole qUickiy, as only 1,6 bits have to be changed, not the full 32 bits. These are called NEAR addreSses.
The typdefs \\ithin WINDOWS.H for these IS-bit data types are as follows. '

o PSTR and :WORD Definitions in WINDOWS.H
typedef char near
typedef unsignedint

"

*PSTR; ,
WORD;

Wben YOU use automatic varia1>les, their values are on the stack. The stack is part of the automatic data segment, .
, so they are near memory values with IS-bit addresses~ When you allocate memory in the local heap, the _addresaes are

also IS-bit values. Only global memory objects use the full 32-bit memory addressing.

Allocating Memory in the Local Heap
As an example, let's set aside some memory in the local heap (the top part of the automatic data segment) for Storing
up to 128 characte~ We will put the string "Hi there!" into the block using the C library function strcpyO. The bare-
bones Wmdo:ws code for this is " \

static HANDLE
PSTR

hMem;
pStr ;

hRe. = LocalAlloc (LMEM_MOVEABLE, 128) ;
pStr = LocalLock (hMem) ;
strcpy (pStr, "Hi there!") ;
LocalUnlock (hMem) ;

(Note that Wmdows has a version of strepyO called "lstrcpyO." It is preferable tousing-strcpyQ, as it is stored in
a DLL and does not add to the size of the application. lstrcpyO and related functions are covered in Chapter 19,
Cllaracter Sets and Strings.) -

The LocalAllocO function reserves 128 bytes of memory in the local heap. The memory is allocated with the
LMEM_MOVEABLE attribute, meaning that Windows can move this block _when it needs to ~e, rOOm for other
~emOlY objects. Note that the returned value is saved in a static varia~le, hMcm: This is the handle to ~_memory

612

14. MEMORY MANAGEMENT V

block. It is not an addre~,just a handle. Windows programs use the memory handles to keep track of memory blocks.
Before we can copy the string to the memorY block, we need to lock the block in memory by using LocalLockO. This
function returns the current address of the memory block we allocated. The block is fIXed in memory at this point
Windows will not be able to move the block unless LocalUnlockO is called. When the memory block is locked, it isJust
like flxed memory allocated in an MS-DOS progrnm. The strcpyO function copies a string into the memory area. Once
the string is loaded, there is no reason to leave the memory block locked. LocalUnlockO is used to free the block so
that Windows can move it if necessary. If the block is moved, it will still contain too same character string, but at a
new address. The handle hMem remains valid and still refers to the same memory block no matter where it is moved.
The pSlr pointer to the. old address is invalid as soon as LocalUnlockO is called.

Later in the program, we might want to output the text string using the TextOutO function. If this is the last time
we will need the data, we can free the memory block, returning it to Windows to use for the next memory need. Here
. is an example .

pStr = LocalL,ock (hNe.) ;
TextOut (hOC, 10, 10, pStr, strlen (pStr» ;
LocalUnlock (hMe.) ;
LocalFree (h"e.) ;

Again, the block is locked only for the period of time when the string value in memory is being used. As soon as
that activity is over, LocalUnlockO is called to allow the block to be moved. In this case, the memory block was no
longer needed. LocalFreeO was called to return the memory block to Windows, for use by any other application.

If ~parate parts of an application can lock the same block of memory, the block can be locked more than once.
Wmdows keeps track of the number of times a block is locked as the "lock count." Calling LocalLockO increases the
lock count by one. Calling LocalUnlockO reduces the lock count by one. An equal, number of LocalLockO and
LocalUnlockO calls is needed before the memory block is free to be moved in memory. These examples have omitted
the logic for dealing with situations where Windows did not have room to allocate the needed memory. See the ex
ample program under the Loc'aWlocO function description for a more complete listing.

Allocating Memory in the Global Heap
& mentioned previously, the local heap is limited to the size ,of the 64K automatic data segment. For large memory
blocks, the global heap provides much larger areas from which to work. Global memory objects use the full 32·bit
segmented memory addresses.

The following example below again shows a 128-character buffer being allocated and used to store a string. In this
case, the memory is allocated on the global heap.

stat i c HANDLE hNea ;
LPSTR lpStr ;

hR •• = GlobalAlloc CGNEM_MOVEABLE, 128) ;
lpStr = GlobalLock (hNu) ;
lstrcpy (lpStr, "Hi there!") ;
GlobalUnloek (hRe.) ;

Note that the ipStr address pointer is now a long pointer to a string (LPSTR), a 32·bit value. A string copy function
Capable of handling the far pointers like lstrcpy() is also required. Otherwise, the allocation of the global memory
block exactly parallels the same activities for a block in the local heap. -

A side elYect of segmented memory addressing for global memory is that the miilimum size of a global memory
block is 32 bytes. Windows will round up requests for "uneven" sizes of memory to the nearest 32 bytes. For example,
a request for a global memory block of 33 bytes will result in 64 bytes being allocated. Using the global memory block
is similar to local memory. We will assume that this is the last time the block is needed, so it is freed after use. If the
block will be used again, the GlobaiFree() function will not be called until after the last use.

_ lpStr = GlobalLock (hNea) ;
TextOut (hOC, 10, 10, lpStr, lstrlen (lpStr» i
GlobalUn~ock (hNe.) ;
GlobalFree (hRe.) ;

613

, WINDOWS API BIBLE

One thing to notice inthese examples is that--the
handle to the memory object is of the same data type
(HANDLE) for both giobal and iocal memory objects.
Somewhere internal to the system, Windows maintains
tables that keep track of where the actual memory ob
jects are located. Some of them may be in the local
heap, and some in the global heap. The only time the
physicaI.address of the data is known to the program is
when LocalLockO or GlobalLockO is called. The rest of
the time you just trust Windows to keep track of the
data.

Figure 14-3. Three Memory Blocks Allocated.

_!!~nL:~'~FW:;iiiJOCkJ;"flQd;;I"'Fne--'

Figure 14-4. After Block2IsFreed, butBlock3IsFixed.

_eWm~~liIl~:~V:;;'><'i;'''''~ •
Figure 14-6. After Block 2 Is Freed, Block 3 Is Moveable.

Moveable, Fixed, and Discardable Memory Blocks
The m~ority of the time you will use moveable memory objects to store data in your programs. Windows provides two
other types of memory for both the local and global heaps, ("fIxed" and "discardable"). Fixed memory is just what it·
sounds like, fIxed in a certain location in memory. Fixed blocks are allocated with the LMEl\CFIXEDtlag when using
LocalAllocO, or the GMEM_FIXED flag when using GlobaWlocO. .

FiXed memory should be thought oflike taxes: sometimes necessary, but best avoided. To illustrate why, consider
the case where three memory blocks have been allocated in a limited space. Memory Block 3 is fIxed, as shown In
Figure 14-3. If block 2 is freed (deleted), the free memory is split into two paps, separated by Block a. The fIXed block
limits the maximum size ofthe next block allocated. (See Figure 14-4.)

Now consider the case where all three of the blocks are allocated as moveable. In this case, Windows will be able
to move Block a to make room the next time memory is requested. This makes a larger IJIemory area available. (See
Figure 14-5.) These savings multiply as the number of blocks increases. Conversely, one poorly written application
that fIXes a few blocks in the global memory area can reduce the performance of every'other application running on
the system.
, The opposite extreme from a flXed memory block is a discardable one. Discardable blocks are allocated with the
moveable and discarrlable flags set, which allows Windows to move the block to make room. If the available_room is
still not big enough, discardable blocks are reduced in size to zero bytes to make more room. The most recently Used
discardable blocks are the last to be discarded. '.

'fo visualize how this works, consider a case, as illustrated in Figure 14-6, where two discardable and one move
able block are allocated. If a large memory block is requested, Blocks 1 and 2 can be discarded, and Block a·moved.
This makes the maximum amount of space available.

This type of compression can be forced by calling the LocalCompactO and GlobalCompactO functions. Moveable
memory blocks are moved before any blocks are discarded. The minimum number of blocks are discarded to make th~
required memory space available.

Discardable memory blocks are typically used to store data that can be retrieved from disk. Program response is
much faster if the data stays in memory. If the system demands it, the data can be shed, and then reloaded when
needed. Some typical examples include saving graphics images which are only displayed in certain parts of the appli
cation, and database applications. The memory handle for the discarded block remains valid even after the block has
been discarded. Memory blocks will not be discarded if they have been locked. Memory blocks can be resiz~d at any
time. The LocalReAllocO and GlobalReAllocO functions do the work. The existing data is not destroyed if the block
size is increased. You can check the size of a block at any time by calling LocalSizeO or GlobalSizeO. You can also
check the status of a block (locked, unlocked, discarded, discardable) using LocalFlagsO or GlobalFlagsO.

Figure 14-6. Three Memory Blocks Allocated,
Two Discardable.

Figure 14-7. Memory after a Request/or a Large
Allocation.

614--

14. MEMORY MANAGEMENT V

Traps to Avoid
If your program hasjust finished processing a Windows message and control passes back to Windows via the program's
message loop, Windows has control. If your program is actively. processing a message in the WndProcO function, or is
in a program function called from within WndProcO, your application has control. Windows will not 'Jump in" and
move memory around. Remember that Windows is a "nonpreemptive multitasking"· system. This means that your
program has to give Windows control, Windows cannot take control by itself.

The impact of giving Windows control is that the stack will be changed, because an application only has one shick,
and it is used by different functions. Listing 14-Hs a simple example showing correct and incorrect uses of automatic
(stack) variables.

C Listing 14-1. Automatic Variables
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

int
static i nt

switch (iMessage)
{

case WM_CREATE:

i, n ;
m ;

1* automatic (stack) variables *1
1* static variable *1

1* process windows messages *1

n = 20 ; 1* n initialize here to 20 *1
for (i = 0; < n ; i ++)

break;
case WM_KEYDOWN:

1* do something *1

for (i = 0; < n ; i++) 1* WRONG!, n is *1
1* do something *1 1* no longer 20 *1

break;
1* rest of program here *1

This example shows a classic Windows programming error under the WI\CKEYDOWN case. The automatic vari
able n cannot be assumed to be equal to 20, as Windows must have gained control between processing WM_CREATE
and processing WM_KEYDOWN. The correct practice here would be to use the static variable m in place of n in both
locations. Statics retain their value, even if Windows moves objects in memory. Note that the automatic variable i is .
used correctly in these examples, as it is initialized to zero within the forO loop for each message processed.

The other situation to be careful of is storing far pointers to moveable memory instead of storing the handle to a
memory'block. When more memory is allocated, old memory blocks may be Illoved to make room. The handle to the
memory block will remain valid, but not the old point,er to an absolute address. Avoid this problem by using the
memory handle to keep track of memory blocks. Only determine the absolute address of the memory block for the
short period of time that the block is locked for reading or writing.

Windows Memory Configurations
With Windows versions 3.0 and 3.1, there are three possible memory configurations: Real, Standard, and Enhanced.
Real mode is like the old 2.0 version of Windows. Memory is limited to a 640K block. Standard mode allows access to
up to 16 megabytes of memory. Enhanced mode allows access to 16 megabytes of memory and automatically swaps
data off to the disk if memory runs short. Swapping data makes the ''virtual memory" limited only to the size of the
hard disk.

For 99% of all applications, you can forget about what kind of computer and/or memory model your end user has.
Programs run faster on 386 and 486 machines with a lot of memory. Your program will run on more limited hardware
if you follow basic Windows programing practices. '

• Keep memory blocks reasonably sized, ideally less than 32K each.

• Use moveable and discardable memory blocks wherever possible.

• Avoid fixed memory blocks if at all possible. ,
• Keep code segments small, ideally less than 8K each.

615

'WINDOWS API BIBLE

You can check the type of memory model and memory hardware in use. GetWinFlagsO will determine the CPU
type, memory configuration, and Windows operating mode the system is using.

Moveable Program Code
Data is not the only thing being moved around in memory. Windowsis also busy moving pieces of your program around.
Back in Chapter 1, we saw that a .DEF module definition file was needed to compile the GENERIC.C application. Here
is what GENERIC.DEF looks like.

NAME
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

GENERIC
'generic windows program'
WIN:>OWS
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD HOVEABLE MULTIPLE
1024
5120
WndProc

A couple of these terms may start to look familiar. The HEAPSIZE statement sets the minimum size of the
program's local heap at 1,024 bytes. It will grow if the program uses LocaWlocO and LocalReAllocO to demand more
than 1,024. STACKSIZE specifies the size of the stack. In this case, the minimum stack size of 5,120 bytes is specified .

. Two other critical lines are the CODE and DATA statements. The CODE is specified as PRELOAD MOVEABLE,
which means that all of the program is loaded into memorywheh the program begins. All of the parts ofthe program's
code will be moveable in memory. Similarly, the DATA statement specifies PRELOAD MOVEABLE MULTIPLE. MUL- .
TIPLE means that more than one. instance of the program can be run, each instance with its own data.

You can get more specific with a program's segments, and set up separate attributes for different segments by
using the SEGMENTS statement in the .DEF file. This statement is describ~d later in this chapter in the section on
module-defmition statements. An example that uses different segment attributes is given under the GetCodeHandleO
function description.

. .~e .choices for the program's code segments are

FIXED The program code is fixed in memory. This configuraton should only be used for critical appli
cations, such as interrupt processing functions, that must be located in fIXed memory. Keep.
these parts of the program as small as possible, and load them early.

MOVEABLE The normal case. The code segments can be moved in memory to make room. The movement
has no effect on the way you program most applications.

DISCARDABLE Always combined with MOVEABLE. This configuration allows Windows to discard segments of
the program that have not recently been used if space is needed. The segments will be re
loaded if functions within the segment are called. Use this setting for as much of the program
as possible, particularly portions containing seldom-used functions. In most cases, you will
not make the central WndProcO function DISCARDABLE, as too much time will be taken

. loading it back from the. (ii~!~ ..

In addition, you can specify either PRELOAD or LOADONCALL. LOADONCALL works best for parts of the pro
gram that are not needed when' the program first starts.

Compiler Memory IViodels
When you compile a Windows program using the Microsoft C compiler's default small memory model, all of the code
ends up in one segment. Windows had 110 choice but to treat the entire segment as a single block. The CODE state-

. ment in the.DEF file determines itthe code segment is ~OVEABLE, PRELOAD, etc. .
Whenyollcompile a Windows program using th().medium memory model, each source code file ends up compiled

into a separate segment. The startup code an~nY1ibrary functions that are used end up in a segment named TEXT .
. Othe; files 'are compiled into segments given the file name followed by _TEXT. For example, if two files GENERIC.C
and HELPERS.C are compiled and linked to make one application, the application will end up with three segments:

616

14. MEMORY MANAGEMENT.

_TEXT, GENERIC_TEXT, and HELPERS_TEXT. Windows keeps each of t.hese parts of the program's code separate,
and it can move each segment independently if needed to make room. As you can see, the medium memory model is
the model of choice for all but the smallest Windows programs.

The other memory models, compact and large, are seldom used in Windows programs because they require that
all data segments be fIxed in memory. There is no reason to use the compact or large model. Windows provides

... excellent support for allocating blocks of memory in the global heap using GlobalAllocO and the related functions.

Locked, Fixed, and Page~Locked Memory Blocks
In'most situations, you can consider a locked memory.block to be stationary in memory. Pointers to locked memory
blocks remain valid between messages, memory allocation of other blocks, etc. Normally, this is all you have to worry
about. In a few situations, such as when writing device drivers, you may need to know exactly where a memory block
is located. You may be in for a shock, as it turns out that locked memory blocks can be moved, without invalidating
pointers to the block. There are a couple of reasons for this.
1. In enhanced mode, memory blocks can be temporarily copied, off onto the system's hard disk. This technique,is

, called "virtual memory." If data or code within the portions copied to the hard disk is needed, it is' copied back
into the physical memory. Pointers to the memory block remain valid, regardless of whether the data is in "real
memory" or on the disk. '

2. The built-in memory management logic in the 80386 and 80486 chips is sophisticated. In the protected-mode
memory management scheme that Windows uses, the 8Ox86 chip maintains tables that translate a logical address
called a "selector" into a physical address in memory using lookup tables. The tables (called the Local Descriptor
Table and Global Descriptor Table) are maintained by Windows. Because of this translation,-it is possible for a
logical Windows address (pointer) to point to different physical locations in· memory if one of the descriptor
tables is changed to make better use of available memory.
As mentioned above, you will normally not have to worry about this low-level management of memory. In fact, the

transparency of Windows' handling of real and virtual memgry is a major advantage to the developer. If you do need to
control the physical memory location of one or mor~ blocks, you can use the GlobalFixO or GlobalPageLockO func
tions. GlobalFixO assures that a memory block is not,Jriove~ in linear memory. The block can still be copied off onto
the hard disk. GlobalPageLockO really locks the block down. Not only is a pag~-locked block stationary in physiC3l
memory, but it cannot be copied off to the hard disk. Normally, GlobalPageLockO is used with GlobalDosAllocO to
page-lock a memory block that can be accessed by both Windows and DOS applications. This is useful if a DOS device
dr1yer or interrupt handler is being used under Windows. Fixed and page-locked memory blocks will limit Windows'
ability to cptimize memory use. Only use these features when necessary.

RUIlDing Other Modules
In Windows, the term "module" is used to des~ribe a running program, including all its associated data and code
segments. W'mdows has a number of functions for working with modules. The most frequently used is LoadModuleO

I which loads and runs :nother program. A similar function, WinExecO, also loads, and runs programs. . . ' .
Some modules,such as the graphics and sound modules that Windows loads, are used by m~ applications. Each

application that calls the module increases the module's "reference count" by one. In order to remove a module from
memory, the FreeModuleO function must be called as many times as the current reference count. The reference
count can be determined with GetModuleUsageO. You may also find it useful to determine the name and path name
of Ute file that was loaded to create the module. GetModuleFileNameO doe~ this. Direct support of loading and
running other programs from within your Windows program opens up a lot of possibilities. If you do not like the
standard program manager, write your own version! . .

M.CNl~~-Definition Statements
There are twelve statements that can be used in an application's .DEF module defmition file. The LINK.EXE linker
applteatlon uses the .DEF statements to control the final linking of the application's code, data, and resources .. DEF
files are standard ASCII text fIles. The statement names must be capitalized, as shown in the followi~ exampl~.

617

WINDOWS API BIBLE

t::> GENERIC.DEF Definition File
NAME
DESCRIPTION
EXETYPE WINDOWS
STUD
CODE
DATA
SEGMENTS

HEAPSIZE
STACKSIZE
EXPORTS

GENERIC
'generic windows program'

'WINSTUB. EXE'.
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
MAINSEG MOVEABLE
SECOND' LOADONCALL FIXED DISCARDABLE
1024
5120
WndProc
nStr~,oPY

In the statement descriptions, option choices are surrounded by square brackets. The possible choices are sepa
rated ~y a vertical line (I).

Module-Definiton Statement Descriptions

CODE
Purpose

Syntax

Example

Description

DATA
Purpose

Syntax

Example

Description

• Win 2.0' • Win 3.0 • Win 3.1
Defines ~he attributes of the application's code segment.

CODE [FIXED I MOVEABLE] [DISCARDABLE] [PRELOAD I LOADONCALL]

CODE PRELOAD MOVEABLE

This statement is required. The' FIXED option makes the application's code fIXed in memory .. ,
MOVEABLE i~ preferred, as it allows Windows to move code segments to make better use of
memory. DISC~DABLE is ideal for seldom-used portions of the program, as the discarded por
tions will be reloaded if a function within the segment is called. Dynamic Link Libraries must use
the DISCARDABLE option if the code is to be MOVEABLE.

Specifying PRELOAD causes all of the program's code to be loaded at startup. LOADONCALL
allows windows to wait until a portion of the application is needed before loading it bito memory.
If there are conflicting options on the CODE line, MOVEABLE overridas FIXED, and PRELOAD
overrides LOADONCALL. ' ,

Individual portions of the application's' code can be given different attributes by using the
SEGMENTS statement. See ,its description below. .-

• Win 2.0 • Win 3.0 • Wm 3.1
Defines the attributes of the application's data segment.

J?ATA [NONE I SINGLE I MULTIPLE]-[FIXED I MOVEABLE]

DATA PRELOAD MOVEABLE MULTIPLE

The NONE option causes the application to be linked without a data segro~nt. This must be the
only option on the line. This is only applicable to Dynamic Link Libraries (DLL). The SINGLE
option also applies to DLLs only. This means that there is only one data segment for the applica
tion. MULTIPLE is the standard option for .EXE programs, as eachJnstance of the application
has a separate data segment. The FIXED option causes the data segment to stay at a fIXed memory
location. MOVEABLE. is preferable, as it allows Windows to make maximum use of available
memory.

DESCRIPTION • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Example

Embeds a text string in the beginning of the application's code. .

DESCRIPTION 'text'

DESCRIPTION 'Property of XYZ Co: All Rights Reserved'.

618

14. MEMORY MANAGEMENT ~

JJescriPtion ._.--.This-is-useful-for putting copyright notices into code. The text ends up about 735 bytes from the
._ . __ b~gjJ!nlng_ofjhe file, as the Windows stub ends up in front of the beginning of the application's
. :-'~coi:ie(see-STUB below).

EXETYPE o Win 2.0 iii Win 3.0 III Win 3.1
Purpose

Syntax

Example

Description

Tells the linker if the application is a Windows 01' an OS/2 program.

. ___ EXE~~HVINDOWS I OS/2]

EXETYPE WINDOWS

This is a requirement with the 3. x versions of Windows.

EXPORTS' • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

exportname

, ordinal

Defines the names of functions that will be exported to other applications or passed to Windows
functions. Also defines the callback functions used by such functions as EnumWindowsO.
EXPORTSexportname [@ordinal] [RESIDENTNAME] [NODATA] [parameter]
The function name of the functions to be exported. YOllcan give the functions an alias to be used
by other applications by following the exportname with an equal sign and a second name. For
example, ..

ChangeFileName=FileName

allows other applications to use the function name FileNameO, even though the source code
defines the function as ChangeFileNameO.

Defines an optional ordinal number value. The number must be preceded by an @ character.
Ordinal numbers are used by Dynamic Link Libraries as a shortcut way to refer to the functions
inside of the DLL. For example, -

EXPORTS FileNameFunc @l

--setstneFileNameFuncO function as the number 1 function in the library. See Chapter 28,Dy
namic Link Libraries, for a complete example.

RESIDENTNAME Specifies that the function's name must be resident at all times (not just the ordinal value).

NODATA An option that specifies that the function is not bound to a specific data segment. The function
uses the current data segment when the function is called.

Parameter

Example

Description

HEAPSIZE
Purpose

Syntax

An optional integer that specifies the num~er of words the function expects to be passed as pa
rameters. Che(1king that the number of parameters inately is a crude form of type checking.

EXPORTS
FunctionFirst @l
FunctionSecond @2
FunctionThird';AliasThird @3

See the examples under the GetCodeHandleO function description for more complete ex
amples including DLLs.

Specifying the function name in the EXPORTS section of the program's .DEF definition file is an
easy thing to forget, and doing so causes unpredictable program crashes. Dialog box functions
and callback functions must be exported. DLL functions must be exported if they are to be called
from other applications.

Specifies the size of an application's local memory heap.

HEAPSIZE bytes

619

• Win 2.0 - • Win 3.0 • Win 3.1

WINDOWS API BIBLE

bytes

.EDmple
IeseripUon

IMPORTS

An integer between 0 and 65,536. The minimum size "above zero is 256 bytes.

HEAPSIZE 1024
The default heapsize is zero, so HEAPSIZE must be specified for applications. Some DUs may
not need a heap. The heap will be automatically expanded if the application calls LocaIAIlocO or
LocaIReAllocQ, requesting space larger than the current heap. The heap will stay expanded niltU
LocaIShrinkO is called.

• Wm 2.0 • WIn 3.0 • Win 3.1
PUrpose Specifies the names of the functions that will be imported from Dynamic Link Libraries (DUs).

Srntax IMPORTS [internal-name] modulename [entry)

intmuzl-name An optional alias that the application will use for the function. The alias must be followed by an "
equal sign and the function's name as defined in the~LL. For example,

tiuJduierUJme

Eumple

Descrlpdon

LmRARY

IMPORTS Reader=Samlib.FlleRead

specifies that the function name ReaderO will be used by the application for a function in
SAMLIB.DLL called FileReadO.

The name of the DLL module. This will be the same as the file name of the .DLL file. For example,
SAMLIB.DLL will create a module SAMLIB when loaded into memory. "

The function to be imported. This can either be the function's Dame, or the function's ordinal
number as specified in the DLL's deftnition rue in the EXPORTS section (see EXPORTS abow).
The function name or ordinal number must be preceded by a period to separate it from the mod----
ulename.

IMPORTS FileLib . .tleadFile
FileLib.1
MyName:FileLib.FuncName

IMPORTS is an optional statement. It is used only if the application uses functions tb8t are de
fined in a Dynamic Link Library. See Chapter 28,Dynamic Link Libraries, for a full description.

• Win 2.0 • WIn 3.0 • Win 3.1
/ Pupose N~es a Dynamic Link Library (DLL).

Srntax
Example

DescrIption

NAME
Pupose

8Jntax
Example

DeseripUon

. LIBRARY libraryno,me
LIBRARY MyDLL

This statement is similar to the NAME statement, except that LIBRARY is used for DUs. If
librarvn,ame is left blank, LINK will use the library file name without the extension.

Defines the name of an application's module.

NAME modulfmame

NAME generic

• Win 2.0 • Win 3.0 • Wm 3.1

The fnodulename must match the executable file name. For example~ GENERIC.EXE must have
a module name GENERIC.lfmodulename is left blank, LINK will use the me name without the
extension. If both NAME and LIBRARY are missing from the .DEF me, LINK will assume that .
NAME wa.q implied and use the file name to create an executable file.

620

14. MEMORY MANAGEMENT ..

•
SEGMENTS lSI Wm 2.0 • Win 3.0 • Win 3.1 ---

class-1UJme .

Ry

STACKSIZE

. STUB

Specifics the attributes ~r code and data segments.

SEGMENTS segmentname [CLASS 'class-name'] [minalloc] {FIXED I MOVEABLE]"
(DISCARDABLE] [PRELOAD I LOADONCALL]
The name of the segment. If default names are used, _TEXT will be the code segment name, and
_DATA will be the data segment name. Use the Microsoft C compiler -NT switch to name code
segments.
An optional character string, surrounded in single quotes, specifies the class name. If no class
name is specified, LINK uses the name 'CODE' by default.
An optional integer that specifies the minimum size to allocate for the segment.

FIXED specifies that the segment must remain at on~ location in rttemory. MOVEABLE is
preferred, as it allows Windows to make maximum use of available memory.

DlSCARDABLE specifies that the segment. can be discarded if memory space is needed for
another use.

The PRELOAD option causes the segment to be loaded when the application is started.
WADONCALL allows the segment to be left on disk until a function within the segment is called.
See the example under the GetCodeHandle() function description. I

The SEGMENTS statement allows individual control over how each segment of the program is set
up during linking. Common uses are to set the less frequently us~d code segments to
DlSCARDABLE and LOADONCALL. This speeds program startup, and minimizes memory con- .
sumption by the remote parts of the program.

Specifies the size of the program's stack.

STACKSIZE bytes

An integer value. The minimum size is 5,120.
STACKSIZE 6144

• Win 2.0 a Win 3.0 .Wm3.1

The local stack is where automatic variables are stored. Because Wmdows programs are reen
trant (different parts of the same program rilay be executed in parallel), a large stack is needed.
Dynamic Link Libraries use the calling application's stack. Do not use the STACKSIZE statement
wlthDLLs .

a Win 2.0 • Wm 3.0 • Wm 3.1
Specifies which "stub" file to append to the front of the application.

STlJB :filename'
.. S'I1JB 'WINSTUB.EXE'

If you try to run a Windows program from MS-DOS, the program wilHerminate with a)V3l'lling
message that the application needs Wmdows to run. This action takes place becaUse Wbidows .
applications have a small "stub" file placed on their front. The stub file shows tile message on the
screen, and then terminates the program. The stub file is nothing more than a smaIl MS-DOS
application. You can substitute your own stub fIle if desired.

. \

Memory Function Summary
Table 14-i summarizes Wmdows memory manangement functions. Thedetailed functio~ descriptions are in the next ..
seetion. ' . .

621

WINDOWS API BIBLE

FreeModule

GetCodeHanJle

GetCodelnfo

GetCurrentPDB

GlobalDosAlloc

GlobalDosFree

GlobalFix

GetFreeSpace

GetModuleRleName

GetModuleHandle

GetModuleUsage

GlobaIAIloc

GlobaiCompact

GlobaiDiscard

GlobalRags

GlobaiFree

GlobalHandle

GlobalL9Ck
,

GlobalLRUNewest

GlobalLRUOldest

GlobaiNotify

G!obalPageLock

GlobalPageUnlock

GlobalReAlloc

GlobalSize

GlobalUnfix

GlobalUnlock

GlobaiUnWire

GlobalWire

limitEmsPages

LoadModule

LocalAlloc

LocalCompact

Local Discard

LocalFlags

Removes a module from m9mory.

Determines the code segment of a function, and/or loads a code segment into memory.

Determines information about a code segment.

Returns the segment address of the DOS PDB (PSP).

Allocates a memory block that can be accessed by both DOS and Windows.

Releases a block of memory allocated with GlobalDosAlloc().

Stops a memory block from being moved in memory.

Determines the amount of memory left in the global heap.

Determines the full file and pathname for the executable file from which a module was loaded.

Retrieves the handle of a module given the module's name.

Retums the reference count of the given module.

Allocates a block of memory in the global heap.

Compacts memory in the global heap, and determines the size of the largest available memory
area.

Discards a memory block from the global heap.

Determines if a memory block in the global heap is locked, discarded, or potentially discardable.

Frees a block of memory allocated in the global heap. - -~--".-------

Retums tlie handle of a global memory block, given its address.

Locks an allocated memory block in the global heap.

Marks a memory block to be the last one to be discarded in the global heap.

. Marks a memory block to be the first one to be discarded in the global heap.

Installs a notification function, which is called if global memory objects are about to be discarded.

Stops a memory block from being moved in linear memory, or from being written to disk (virtual .
memory inhibited).

Unlocks a memory block locked with GlobaIPageLock().

Changes the size and/or attributes of a global memory block.

Determines the size of a memory block allocated in the global heap.

Frees a memory block fixed by GlobalFix().

Unlocks a locked memory block in the global heap.

Unwires a wired (locked) block in the global heap.

Locks a global memory block in low memory.

limits the amount of expanded memory that Windows will assign to an application.

Loads and executes a Windows program, or creates a new instance of the program if one or more
instances are already running. ----

Allocates a block of memory in the local heap.

Determines the amount of available memory in the lOCal. heap, compactingmemoryif necessaryto-
increase space.

Discards a memory block from the local heap.

. Determines if a memory block in the local heap is locked;-dise~detf;-6r potentially discardable.

622

LocaIFree

LocalHandle

LocaiLock

LocaIReAlloc

LocaIShrink

LocaISize

LocaIUnlock

LockSegment

Mu!Div

UnlockSegment

WinExec

Frees a block of memory allocated in the local heap.

Retrieves the handle of a memory block, given the address.

Locks an allocated memory block in the local heap.

Changes the size and/or attributes of a local memory block.

Reduces the size of the local heap.

14. MEMORY MANAGEMENT Y

Determines the size of a memory block allocated in the local heap.

Unlocks a locked memory block in the local heap.

Locks a segment in memory.

Computes the result of (a * b) I c, where a, b, and c are s_hort integers.

Unlocks a memory segment locked with LockSegmentO.

Loads and executes a Windows program.

Table 14-1. Memory Function Summary.

Memory Function Descriptions
Tnis section contains detailed descriptions of the memory management functions.

FREEMoDULE II Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hModule

----Example

Removes a module from memory.

void FreeModule(HANDLE hModule)j

A module is a running application. Every time a module is loaded by another program, the
module's usage count is increased by one. FreeModuleO reduces the usage count by one. It re
moves the module from memory if the module's usage count is reduced to zero.

Used to remove modules that do not have visible windows from memory. To remove a module that '
has a visible window, send the window a WM_DESTROY message with SendMessageO. To remove
a DLL (Dynamic Link Library), use FreeLibraryO. '

No returned value (void).

FreeLibraryO, LoadModuleO, GetModuleHandleO, GetModuleUsageO

HANDLE: The handle of the module to free. This value can be obtained by calling Get
ModuleHandleO· -

This example, as illustrated in Fig
ure 14-8, checks for the "SOUND"

- module in the global memory area
. every time a WM_P AlNT message is
'received. The full file name of the

),l.,f,'~:;"·,'~' '., ,""r, '.. " .. ' -' "~FG
1::':..><' .'l, .. " . • genenc. ,', t.
" 1';1(1(........ ~ • • r. ,"" _ • 1. ..

.12.0 It! '.Q.u:t

File C:\WINDOWS\SVSTEM\SOUND.DRV. Useage = 6

file from which the sound driver was Figure 14-8. FreeModule() Example.
loaded is displayed, as well as the
number of times the driver has been called by running applications. The usage count will equal
the number of running applications on the system, as Windows loads the SOUND driver for all
applications. If the user clicks the "Do It!" menu item, the sound driver is freed. FreeModuleO is "
called once for every usage count. The HEAPWALK application that ,comes with the Microsoft

'Windows SDK can be used to verify that the SOUND module has ~een removed from ,memory.
~:" -' "', .,.' ,

·623

WINDOWS' API BIBLE

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(.

PAINTSTRUCT
static
char

HANDLE
ps ;
hModule ;

. int
cBuf [256J, cWindName [64J ;
nCount, i ;

switch (i"essage)
(

1* process windows messages *1

)

case W',-PAINT:
BeginPaint (hWnd, &~s) ;
hModule = GetModuleHandle ("sound") ;
nCount = GetModuleUsage (hModule) ;
GetModuleFileName (hModule, cWindName, 64) ;
TextOut (ps.hdc, 10, 10" cBuf, wsprintf (cBuf,

, -'"File %s, Useage = %d", (lPSTR) cWindName, nCount»;
EndPaint (hWnd, Ips) ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
(

case IDM_DOIT: 1* User hi t the "Do it" menu itelD *1
nCount = GetModulcUsage (hModule) ;

. for(i=O;i<nCount;i++)
FreeModule (hHodule) ;

break;
case UM_QUIT: 1* send end of application message *1

DestroyWindow (hWnd) ;

}

break;
case WM_DESTROY:

break;

PostQuitMessage (0) ;
break;

1* stop appU caHon *1

.: k.i,.'

default: 1* default windows message processing *1
ret~rn DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
)

GETConEilANDLE • Wm 2.0 • Win 3.0 • Wm 3.1

IetuDs
8eeAl8o
Paraaeters "
lphoc

Example

Determines the code segment of a function, and/or loads a code segment into memory.
HANDLE GetCodeHandle(FARPROC IpProc);

'Normally, applications let Windows load code segments either on'startup (PRELOAD attribute hi
the .DEF fIle), or when frrst needed (LOADONCALL attribute).-GetCodeHandleO allows an ap
plication to control when a segment containing a functiOIl is loaded;
Can be used to load a series of segments in advance, during an
idle period: Doing so avoids the delay of waiting for LOAD
ONCALL segments to be loaded.
HANDLE, the eode segment containing the function.
GetCode~nfoO, GetModuleHandleO
"/,' .'.. ,

'~M.PROC: The procedure-instance address of the function 00
load. Retrieve this value with MakeProclnstanceO.
This example, whIch is illustrated in Figure 14-9, demonstrates
named code segments,using GetCodeHandleO 00 load a code
segment inOO memory and using GetCodelnfoO 00 deteimine
information about the code segment. .

624

Do Itl .Quit

Block move~le .
. Segment = 0><4
Size.==.,8~ (0 = 64-K)

. Moveable· .

Figure 14-9. GetCode
Handle() arul'GetCodelfffo()
:}Jirunple.: <

14. MEMORY MANAGEME~T •

The application's mak~file specifies the medium memory model and debugging options, ahd
it also uses the Microsoft C·compiler.NT switch to name two code segments as "MAINSEG" and
"SECOND." .

o GENERIC.NMAKE File
ALL: generic.exe

CFLAGS=-c -D LINT ARGS -AM -Zi -Od -Gsw -W2
LFLAGS=/NOD Ico -

generic.obj : generic.c generic.h
S(CC) S(CFLAGS) -NT MAINSEG generic.c

second.obj : second.c
S(CC) $(CFLAGS) -NT SECOND second.c

genedc.res: generic.rc generic.ico
rc -r generic.rc

generic.exe : generic.obj second.obj generic.def generic.res
link $(LFLAGS) generic+second, , ,libw mlibcew, generic
rc generi c. res

The d~finition file specifies separate memory attributes for the two named segments. The
segment named SECOND is fixed not loaded until needed, and set as DISCARDABLE, as the
nStrCopyO function in this segment will only be used once.

o GENERIC.DEF Deimition File
NAME
DESCRIPTION
EXETYPE
STUB
CODE
DATA
SEGMENTS

HEAPSIZE
STACKSIZE
EXPORTS

GENERIC
'generic windows program'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE HUL TIPLE
MAINSEG MOVEABLE .
SECOND LOADONCALL FIXED DISCARDABLE
1024
5120
WndProc
nStrCopy

A small function will be in the fixed memory segment. In this case, the function is just a
string copy function. This example is purelyfor demonstration. This simple function does not
'need to be in a fLxed data segment.

o SECOND.C Listing
1* second.c a second c program fi le with a separate segment *1
#include <windows.h>

int FAR PASCAL nStrCopy (char *pDest, char *pSource, int nMax)
{

}

i nt i ;

for (i = 0; < nMax ; i ++)
{

}

if (! (*pDest++ = *pSource++»
break;

return (i)

When ~CCREATE is received, the application loads the code f9r the nStrCopyO function
by calling GetCodeHandleO. The returned segment value hCode is no~ used ~this example. The
loaded function is used to copy a string to a local memory block.

jl/I
It·

WINDOWS API BIBLE

When the "Do It!" menu item is clicked, the application uses GetCodelnfoO to retrieve in(or
mation about the code segment containing the nStrCopyQ function. Some of this information is

. displayed on the application's client area, as shown in Figure 14-9.

c:> GENERIC.C Listing
long FAR PASCAL WndProc (HWNOhWnd, unsigned iMessage, WORD wPara., LONG lParam)
(

PAINTSTRUCT
static

--char-
---.char

FARPROC
_HANDLE
WORD

-~HOC

HANDLE
pSi
hMe. ;
*pMell ;
cBuf [128] ;
fpProc ;
hCode ;
wValue [8] ;
hOC;

,.-- 'Switch (i"e55age)
"1:

1* process windows messages *1

}

case ''''_CREATE:

'-
fpProc = "akeProclnstance (nStrCopy, ghlnstance)
hCode = GetCodeHandle (fpProc) ;
hRem = LocalAlloc (L"EM_MOVEABLE, 128) ;
pRem = LocalLock (hMem) ;
nStrCopy(pRem, "BLock moveable", 14)
LocalUnlock (hRe.) ;
FreeProclnstance (fpProc) ;
break;

case WM_PAINT:
BeginPaint (hWnd, Ips) ; 1* note no locking of hMem *1
pMem = LocalLock (hMem) ;
TextOut (ps.hdc, 10, 10, pMem, strlen (pMem» ;
LocalUnlock (hMe.) ;
EndPaint (hWnd, Ips) ;
break;

case W',-COM"ANO:
\ switch (wParam)

(

1* process menu items *1

case lO"_OOIT: 1* User hit the· "Do it" menu
Geteodelnfo (nStrCopy, (LPVOID) wValue) .;
hDC = 6etDC (hWnd) ;
iextOut (hOC, 10, 30, cBuf, wspr;ntf (cBuf,

"Seg.ent = OxXx",wVaLue [0]» ;
le.tOut (hOC, 10, 50, cBuf, wsprintf (cBuf,

"Size = Xi (0 = 64K)", "Value [1]» ;
11 (wValue [2J I Ox10)

lextOut (hOC, 10,70, "Moveable"~ 8)
else

lextOut (hDC, 10, 70, "Fixed", 5) ;
ReleaseDC (hYnd, hDC) ;
break;

item *1

case 10M_QUIT: '/* send end of application message *1
LocalFree (hMell) ;
DestroyWindow (hYnd)
break;

>
break;

case W"_DESTROY: > 1* stop appli cation *1
PostQuitRessage(O) ;
break;

default: " 1* default windows message processing *1
return DefWindo"Proc (hYnd, iMessage, wParam, tParam) ;

return (OL> ;

626 "

14. MEMORY MANAGEMENT Y

GETCoDEINFO • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses
Returns
See Also

Parameters
lpProc

lpSeg/nj'o

o
2

4

6

,

Determines information about a code segment.

void GetCodeInfo(FARPROC lpProc, LPVOID lpSeg/njo)j

This function copies information about a code segment into an array pointed to by lpSeglnj'o.

Determining the status of a code segment, such as if it is fIXed in memory or moveable.

No returned \'alue (void).

GetCodeHandleO, GetModuleHandleO

FARPROC: The address of the function in the segment. This is the function name, not the proce- .
dure-instance address. The-value is passed as segment:offset. The parameter can also be passed
as module handle:segment. Use GetModuleHandleO to retrieve the module handle.
LPVOID: A pointer to a I6-byte wide array. Information about the code segment is copied to this
array when the function is called. The information is coded as shown in Table 14-2.

The offset within the sector of the specified function or data, relative to the beginning of the sector.

The size of the segment in the sector in bytes. Zero = 64K.

Contains flags which specify the attributes of the segment. These are set as follows:

0-2

3

4

5-6

7

8

9

10-15

Bit 0 is 1 if the segment is a data segment. Otherwise, it is a code s~ment.

Set to 1 if the segment is iterated, such as multiple data segments.

Set to 1 if the segment is moveable; otherwise, the segment is fixed.

Not used.

If the segment is a code segment and bit 7 is 1, the segment is an execute-only segment. If
the segment is a code segment and bit 7 is 1, the segment is a read-only segment.,

If bit 8 is 1, the segment has relocation information.

If bit 9is 1, t"e segment contains debugging information.

Not used.

The amount of memory allocated for the segment. Zero =,64K. ,

Table 14-2. GetCode/njo() Data Array.

EDmple See the previous example under GetCodeHandleO.

GETCUUENTPDB • Wm 2.0 • Win 3.0 • Win 3.1
Purpose Returns the segment address of the DOS PDB (PSP).
Syntax WORD GetCurrentPDB(void)j
Description Windows is a descendant of the MS-DOS opera~ing system, which is a descendant of the CP/M

operating system. Because of the desire to retalfl CP/M compatibility in the early days of MS-DOS,
MS-DOS retained the Program Segment Prefix (PSP) data structure used by CP/M and added to
it. The PSP is now referred to as the Program Data Base (PDB).

62:1 ..

WINDOWS API BIBLE

- . ,', generfc . . .' f7f7.
Do It I .Quit Do It I .Quit

cd 20 3d 1 a 0 9a fO fe 1 d to 1 c02 fO 9c .. The current free space = 13059872 bytes

Figure 14-:10. 'GetCurrentPDB() Example. Figure 14-11. GetFreeSpace() Example.

Uses
Returns

See Also

Parameters
Example

I
I

The PDB contains basic ifl:rormation about an application, such as the address to call for MS-
DOS fIle handling, and the address to call for a critical error. These fields are seldom needed from
Within a Windows program. f'or more information on this data, refer to the MS-DOS Ency{{lope
dia (1988, Microsoft Press).
Rarely used.
WORD, the paragraph address (selector) for the current PDB.

GetCod~Info(), GetCurrentTaskO
None (void).
This example, illustrated in Figure 14-10, prints the first 16 bytes ofthe program segment prefIX
(PSP) when the user clicks the "Do It!" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wPararn, LONG lPararn) < .
WORD

/LPSTR
char
int

wPSP ; .
lpStr ;
cBuf[16J ;
i ;.

BYTE FAR
HDC

*pcVal ;
hDC ;

switch iiMessage)
<

case WM_COMMAND:

1* process windows messages *1

1* process menu i terns *1
swi tch (wParam)
<
case IDM DOIT: 1* User hit the "Do it" menu item *1

-;;PSP = GetCurrentPDB () ;
lpStr = (LPSTR) MAKE LONG (0, wPSP) ;
hDC = GetDC(hWnd) ;
for (i = 0 ; i < 16 ; i++) < ' ..

}

pcVal = (BYTE FAR *) (lpStr + i) ;
TextOut {hDC, i * 25~ 10, cBuf, wsprintf (cBuf,

" Xx", (int) *pcVal» ;

ReleaseDC (hWnd,hDC) ;
break;

.... /Otlwrprogram linesl

GETFREESPACE II Win 2.0 II Win 3.0 • Win s.l'
Purpose

Syntax

Description.

'Determines the amount of memory left in the global heap.
DWORD GetFreeSpace(WORD wFlags)j

This function adds all of ~he unused memory in the global heap. The value reported m~y not be
the size of the largest contiguous block of memory, as fIXed memory blocks Will break the memory
area into smaller pieces. Use GlobalCompactO to find the size of the largest available contiguous

. piece of memory in the global heap.

. f

628

\

Uses

Returns
See Also
Parameters

14. MEMORY MANAGEMENT ~

Determining how much memory is left. If the value is getting low, the application may want to
shed unneeded data or resources.
DWORD, the number of free bytes.
GlobalCompactO

wFlags WORD: Normally set to zero. For systems running with extended (banked) memory systems, the
value can be set to GMEM_NOT_BANKED to specify that only the amount of memory below the
EMS bank line is returned.

Related Messages WM_COMPACTING
Example This example, which is shown in Figure 14-11, displays the number of free bytes of memory when

the user clicks the "Do Itl" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(.

WORD
char
DWORD
HDC

wPSP ;
cBuf [128] ;
dwFree;
hOC;

switch (iMessage)
(

1* process windows messages *1

case WH_COMMAND: 1* process menu items *1
switch (wParam)
(

case IDM_DOIT: 1* User hit the "Do it" menu item *1
dwFree = GetFreeSpace (0) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10, cBuf, wsprintf (cBuf,

. (LPSTR) "The current free space = Xl i bytes",
dwFree» ;

ReleaseDC (hWnd,hDC) ;
break;

IOther program.lines J

GETMODULEFILENAME II Win 2.0 D Win 3.0 a Win 3.1
Purpose

Syntax

Description

Uses
Returiis·

See Also

Parameters
hModule

lpFilename

nSize

Example

Determines the full file name and 'path name for the executable file fro~ which a module was
loaded.

intGetModuleFileName(HANDLE hModule, LPSTR lpFilename, int nSize)j

A module is a running application. This function determines the name of the file that was loaded
to start the application. The file name will be preceded by the path name, such as "C:\WIN
DOWS\PBRUSH.EXE."

The returned string can be parsed to find out which application amodule handle represents.

int, the number of characters copied to lpFilename.

GetModuleHandleO

HANDLE: The handle of the module. This is the value returned by LoadModuleO.
LPSTR: A pointer to a character buffer that will contain the file and path name. The buffer must
be at least nSize characters wide.
int: The maximum number of characters to copy.
See the example under LoadModuleO. .

629

: WINDOWS API BIBLE

GETMoDULEIlANDLE • Win 2.0 • Win 3.0 II Win 3.1
Purpose. Retrieves the handle of a module, given the module's name.
Syntax HANDLE GetModuleHandle(LPSTR lpModuleName)j ,

Description

Uses

Returns
'SeeAlso '

. Parameters
lpModuleName

Example

A module is a running application. This function returns the handle of a module. , . .

The handle is needed to call FreeModuleO. . .

. HANDLE, the module's handle. NULL on error.

LoadModuleO, GetModuleUsageO, GetModuleFileNameO

LPSTR: A null-terminated character string containing the name of the module. This is the same .
as the program name, but without the extension.

See the example under LoadModuleO ..

GETMoDULEUSAGE \ II Win 2.0 . II Win 3.0 • Win 3.11
Purpose

Syntax

Description

Returns

SceAlso

Parameters
kModule

Example.

Returns the reference count of the given module.

int GetModuleUsag~(HANDLE hModule)j

A module is a running application.

int, the reference count. This is the numb~r of other applications ihat have caused the module to
be loaded. Modules are loaded by either calling functions in the module, or by explicitly loading
th.e module with LoadModuleO.

GetModuleHandleO, LoadModuleO

HANDLE: The handle of the module.

See the example under LoadModuleO.

GLoBALALLOC II Win 2.0 a Win 3.0 .Win3.l
Purpose

Syntax

Description

Uses

Returns .
. SeeAlso

Parameters .
wFlags

Allocates a block of memory in the global heap.

HANDLE GlobalAlloc(WORD wFlags, DWORD dwBytes)j

This is the first step in allocating and using mem,ory in the global heap. The global heap size is
,1.i!Dited only by the si~ of the system's memory, less the room ~ken up by DOS, Windows, and the
currently running applications. Global memory is allocated in blocks of 32 bytes. If the amount
requested is not a multiple of 32, the block size ~ll be rounded upward to the nearest 32 bytes.

Global memory is ideal for large memory blocks .. Access is slightly slower than with memory on
the local heap, as the full 32-bit address is used to specify the memory location.

HANDLE, the handle to the memory block allocated. Returns NULL on error.

GlobalLockO, GlobalReAllocO, "6lobaIFreeO, GlobalCompactO

WORD: One or more of the flags, listed in Table 14-3, combined with the C language binary OR
operator (i). Choose either GMEM_FIXED or GMEM_MOVEABLE, and then combine the choice .'
with other options. . . .

\

630

I

14. MEMORY MANAGEMENT Y

Allocates memory that can be shared by applications exchanging data using dynamic data
.. exchange (DOE). See Chapter 30 for an explanation of DDE. This type of memory is .
automatically discarded when the application that allocated the block terminates.

Allocates memory that can be discarded n WUldows needs to make room. Used only with -
GMEM_MOVEABLE.

Allocates fixed memory. Do not use this flag unless necessary. FIXed memory limits Windows'
ability to optimize memory use.

GMEM_MOVEABLE

GMEM_NOCOMPACT

Allocates moveable memory. ./

Memory in the global heap is not compacted or discarded to make room for the new memory
block.

GMEM_NODISCARD

GMEM_NOT _BANKED

GMEM_NOTIFY

GMEM_ZERdINIT

Memory in the global heap is not discarded to make room for the new memory block.

Allocates memory that cannot: be banked (EMS systems only).

The notification routine, set by GlobalNotifyO, is called if the memory object is to be discarded.

Initializes the new allocated memory block contents to zero.

Table 14-3. GwbaLAlloc{) Flags:

tldef i ne GHND
IIdeHne GPTR

dwBytes

Caution

Example

Whenever possible, use GMEM_MOVEABLE. WINDOWS.H includes two common combinations:

(GMEH_MOVEABLE I GMEM_ZEROINIT)
(GMEM_FIXED I GMEM_ZEROINIT)

DWORD: The number of bytes to allocate. The actual nqrnber of bytes allocated may be a larger
number in order to end the boundary on an address which is a multiple of 32.

If GlobalCompactO was used to determine the maximum dwBytes value, GMEM_NO
COMPACT and GMEM.;,..NODISCARD should not be used.

If the program's data segment is defined as moveable in the .DEF file, calling GlobalAllocO may
cause the data segment to move, which will invalidate stored far pointers.
This example shows the allocation of memory in the global heap used to store a string. When the
program first starts (WM_CREATE '
receiyed), room for 27 characters is
allocated. GlobalAllocO actuallyal
locates 32. A string is stored in the
memory block. This string, along
with the block size and several
memory status bytes, is displayed on

'Doltl guil

The meinofy block Is 64 bytn In size. .
Contains: ABCOEFGHIJKlt.lNOPQRSTlJVWXYZabc:defghljldmnopqrstwwltyz _
flags: Dlscardable: O. lock CoIrIt 0

the window's client area every time Figure 14-12. GlobaLAlloc() Example ..
a.WM_PAlNT message is received.

/ When the user clicks the "Do It!" menu item, the memory block is reallocated to make room for
another 27 characters. The additional characters are written to the buffer and are displayed
when WM_P AlNT messages are processed. Repeatedly clicking the "Do It!" menu itell! does not
allocate more room in this case. The block is simply reallocated to the same size,. resulting in no
change. Figure 14-12 shows the windows appearance after the "Do It!h menu item was clicke'd,.

I·

631

nlniUVVY~ 1\1"'" tsltsLI:

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT'
static HANDLE

fAR

ps ;
hMem ;
*p"em ; char

char cBuf [128J ;
int i, nSize,nFlags

switch (iMessage)
{

1* process windows messages *1

case W"_CREATE:
if (hMem= GlobalAlloc (GME .. _ .. OVEABLE, 27»
{

}

else
{

}

break;
case WM_PAINT:

if (pMem = GlobalLock (hAem»
{

}

else

for (i = 0 ; i < 26 ; i++)
*pMem++ = 'A' + ;

*p"em = 0 ;
GlobalUnlock (hMem) ;

"essage80x (hWnd, "Could not lock memory block.",
"Memory Error", M8_ICONHAND 1MB_OK) ;

"essageBox (hWnd, "Could not allocate memory",
.... emory Error", MB_ICONHAND 1MB_OK)

DestroyWindow (hWnd) ;

8eginPaint (hWnd, ips) ;
if (pMem = GlobalLock (hMem})
{

}

nSize = GlobalSize (hMem) ;
nFlags = GlobalFlags (hMem) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"The memory block is Xd bytes in size.",
nSi ze» ; ,

TextOut (ps.hdc, 10, 30, cBuf, wsprintf (cBuf,
"Contains: Xs", (LPSTR) pMem» ;

TextOut (ps.hdc, 10, 50, c8uf, wsprintf (cBuf,
"Flags: Discardable: Xd, Lock Count: %d"
nFlags & GMEM_DISCARDABLE, nFlags &
GMEM_LOCKCOUNT})

GlobalUnlock (hMem)

EndPa;nt (hWnd,,&ps) ;
break;

case WM_COMMAND:
swi tch (wParam)
{

1* process menu items *1

case 10M_DOlT: 1* User hit the "Do it" menu item *1
if (hMem = GlobalReAlloc (hMem,

{
(26 * 2) + 1, GMEM_MOVEABLE»

if (pMem = GlobalLock (hMem»
{

)

else

632

for (i = 0 ; i < 26 ; i++)
p"em++ ; 1 ~ki~ old stuff *1

for (i =0 ; i < 26 ; i++) .
*pMem++ = 'a' + i ;

*pMem = 0 ;
GlobalUnlock (hMem) ;

MessageBox (hWnd,
"Could not loc~, memory block.',!,

}

}

else

14. MEMORY MANAGEMENT.

"Memory Error",
MB_ICONHAND I HB_OK)

HessageBox (hWnd,
"CouLd not re-alLocate memory",
"Memory Error", HB_ICONHANO 1MB_OK) ;

InvaLidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break;

}

break;
case IJM_DESTROY: 1* stop appLication *1

GlobalFree (hHem) ;
PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam,'lParam) ;

return (OL) ;
}

GLOBALCOMPACT II Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
dwMinFree

Caution

Compacts memory in the global heap, and determines the size of the largest available memory
area.

DWORD GlobalCompact(DWORD dwMinFrcJe)j

GlobalCompactO first compacts the global memory heap by moving all moveable blocks together.
If dwMinFree bytes of contiguous memory are not available after compacting, GlobalCompactO
discards blocks. This continues until either the requested memory space is available, or until no
further discardable memory blocks can be found.

. Use this function any time a series of memory blocks is allocated and freed. Use of GlobalCompact
assures that the largest possible memory block is made available if needed.

DWORD, the numbcr of bytes in the largest available block of free memory in the global heap.

GlobaWlocO, GlobalReAllocO, GlobalFree()

DWORD: The number of bytes of contiguous memory desired in the global heap. If dwMinFree is
zero, GlobalCompactO returnc:; the size of the largest block of global memory that can be re-
turned if all discard able segments are removed. .

If the returned value is used as the dwBytes parameter for GlobaWloc(), do not use t.he
GMEM_NOCOMPACT or GMEM_NODISCARD flags.

Related Messages MCCOMPACTING ,Uo It I ~uit

Example This example, which is illustrated in Figure 14-13, allocates
four blocks of global memory, each 1,024 bytes in size. Block 0
is moveable, block 1 is moveable and. discardable, block 2 is
moveablc, and block 3 is fixed. When the user clicks the "Do
It!" menu· item, the application discards block 1. This does not
increase the size of the largest available block of memory be
cause the fixed block number 3 gets in the way.

BlockO's address Is Ox188dOOOO.
Block 1 's address is Ox18adOOOO.
Block 2's address is f)x18850000.
Block 3's address Is Ox181dOOOO.
Free Memory = 851934

Fi.qure 14-13. Global
Compact() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
static HANDLE hMem [4J ;

633'

WINDOWS API BIBLE

)

ctt{Jr
LPSTR
int
DWORD

cBuf [128J ;
pH em [4J
i ;
dwFree ;

sw.tch (iHessageJ
{

1* process windows messages *1

)

case WM_CREATE:
hMem [OJ = GlobalAlloc (GMEM_HOVEABLE, 1024)
hHem[1J = GlobalAlloc (GMEH_HOVEABLE I

GHEM_DlSCARDABLE, 1024) ;
hHem [2J = GlobalAlloc (GMEH_MOVEABLE, 1024)
hHem [3J = GlobalAlloc (GHEH_FIXED, 1024) ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
for (i = 0 ; i < 4 ; i ++)
{

}

pM em [iJ = GlobalLock (hHem [iJ) ;
TextOut (ps.hdc, 10, 20 * i, cBuf, wsprintf (cBuf,

"Block rod's address is Ox%lx.", i, pMem [iJ»
GlobalUnlock (hMem [iJ) ;

dwFree = GlobalCompact (0) ; 1* find free space *1
TextOut (ps.hdc, 10, 80, cBuf, wsprintf (cBuf,

"Free Memory = %li", dwFree» ;
EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDH_DOIT: 1.* User hit the "Do it" menu item *1
GlobalDiscard (hMem [1J) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break; -,

case IDM_QUIT: 1* send end of application message *1
for (i = 0 ; i < 4 ,; i ++)

GlobalFree (hHem [ill
DestroyW1ndow (hWnd)
break; .

}

break;
case WM_DESTROY: 1* stop application *1

PostQuitMessage (0)
break;

default: 1* default windows message processing *.1
return DefWindowProc (hWnd, iMessage, wParam, 'lParam) ;

return (OL) ;

GLOBALDosALLOC B Win 2.0 II Win 3.0 • Win 3.1
Purpose Allocates. a memory block that can be accessed by both DOS and Windows.

Syntax ' DWORD GlobalDosAlloc (DWORD-dwBytes)j

Description,

Uses.

Returns

8eeAlso
Parameters
d~Bytes

The memory block allocated will be in the first megabyte of linear address space. \

Not normally used. Can be used to allocate memory for device drivers that will be accessed by MS
DOS applications. Using this function reduces Windows' ability to optimize memory usage.

DWORD. The high-order word contains the paragraph segment for the memory block (real-mode
memory address):-The !ow-order word contains the selector (protected-mode memory ~ddress).

GlobalAllocO, LocalAllocO, GlobalPageLockO

DWORD: The number of bytes to be allocated.

634

Example

14. MEMORY MANAGEMENT ..,

This example (col.!rtesy of Mark Peterson) demonstrates allocating a block of memory that can be
accessed by either Windows or DOS. In this case, only Windows uses the block. The block is also
page-locked, forcing it to remain in the same physical address and stopping any poSsible writing
of the data to virtual (disk) memory. The address does not
change when GlobalCompactO is called (user clicks the "Do
It!" menu item). Figure 14-14 shows how the returned value
translates into the selector and segment values. A Windows far
pointer is the selector value in the high-order word. DOS in

Contains; ABCDEfGHUIQMHOPORSTlJVoMCYZ
Segment = Dxl188. Selector = Dx13dd
DosPlt = Ox31880000. Windows PIt = DxllddOOOo.

real mode (and Windows in real mod~) uses the simple seg- Figure 14-14.
ment value to point to the memory block. GlobalDosAlloc() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
DWORD
static WORD
stati c LPSTR
LPSTR
statlc void far
char
int

ps ;
dwValue- ;
wSegment, wSelector ,_
WindowsPtr
pWind ;
*DcsPtr ;
cBuf [128] ,
i, nLockCount

switch (iMessage)
{

1* process windows messages */

case WrCCREATE:
dwValue = GlobalDosAlloc (27) ; 1* allocate mem block *1
if (dwValue) 1* demonstrate selector/segment */
{ /* show casts of returned value */

}

break i
case WM_PAINT:

wSegment = HIWORD (dwValue) i
wSelector = LOWORD (dwValue); .
WindowsPtr = (LPSTR) MAKELONG (0, wSelector) i
DosPtr = (void far *) HAKELONG (0, wSegment) i

1* page lock it *1
nLockCount = GlobalPageLock (wSelector) i
if (nLockCount)
{

}

pWind = WindowsPtr ;
for (i = 0 i i < 26 ii++)

*pWind++ = IAI + i
*pWind. = 0 i

BeginPaint (hWnd, &ps) i
TextOut (ps.hdc, 10, 0, cBuf, wsprintf (cBuf,

"Contains: 7.5", WindowsPtr» ;
TextOut (ps.hdc, 10, 20, cBuf, wsprintf (cBuf~

"Segment = OxXx, Selector = OxXx",
wSegment, wSelector» i

TextOut (ps.hdc, 10, 40, cBuf, wsprintf (cBuf,
"OosPtr = OxXlx, WindowsPtr = Ox7.lx, ",

.,.DosPtr-, WindowsPtr» i
_. __ 0 EndPain_t (f)Wnd, &ps) i

break i r

case WM_COMMAND: - I*. process menu items */
switch (wParam)
{

case 10M_DOlT: 1* User hi t the "Do it" menu i te'm */
Global,Compact (0) i /* try .to budge it */
Inval:tctiI-teRect (hWnd, NULL, TRUE) i /* force paint */
break i

case 10M_QUIT: /* send end of application message */
, OestroyWindow (hWnd) i .

break i

635

• WINDOWS API BIBLE

}

}

break;
case WM_DESTROY: 1* stopappl i cation *1

nLockCount =GlobalPag~Unlock (wSelector) ;
wSelector = GlobalDosFree (wSelector) ;
if (wSelector)

Mes:;ageBox (hWnd, "Did not free memory block.",
. "GlobalDosFreeO Error", MB_OK) ;

PostQui tMessage (0) ;
bre<lk ; .'

default: 1* defa~lt windows message processing-*I
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

GLOBALDosFREE II Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

. Uses

Returns
See Also

Parameters
wSeleclor

Example

Releases a block of memory allocated with GlobalDosAllocO.

WORD GlobalDosFree (WORD wSelector)j
Memory blocks allocated with GIobalDosAIlocO inhibit memory optimization by Windows.
GlobalDosFreeO should be called as soon as possible to release the memory blocks. .

Memory blocks allocated by GlobalDosAllocO are accessible by both Windows and real·mode
DOS applications.

WORD, NULL if the function was successful. Equal to wSelector on error.

GlobalDosAllocO, GlobalPageLockO, GlobalAllocO

WORD: The selector returned in the low-order word of the returned DWORD when GlobalDos
AIlocO was called. This is the selector value for the memory block.

See the example under the GlobalDosAllocO function description.

GLOB ALDIS CARD &I Win 2.0 m Win 3.0 II Win 3.1
P.urPose
Syntax

Description

Uses'

Returns
See Also

Parameters
.hMem

Example

Discards a memory block from the global heap.

HANDLE GIobalDiscard(DWORD hMem)j

. Discarding a'memory block makes the space available for allocating other blocks of memory. The
hMem handle remains usable after the block is discarded, although it does not point to active

. I
memory. hMem can be reused by using GlobalReAIlocO to allocate another block of memory.
Only blocks allocated with the GMEM_DISCARDABLE and GMEM_MOVEABLE flags set can be
discarded.

Discarding memory to make room for other blocks. Note that GlobalFreeO removes the memory
block and invalidates the memory handle. GlobalDiscardO just discards the memory block, but
the hMem handle remains valid.

HANDLE. Equal to Mfem if the function was successful, NULL on error.

GlobalFreeO, GlobalReAIlocO

HANDLE: The handle to the discard able memory block. This is the value returned by Globa!
AIlocO when the block was first allocated.

See the previous example under GlobalCompactO:

636

GLOBALFIX
Purpose
Syntax

DescrilJtlon

Uses

Returns

See Also

Parameters
hMem

Example

14; MEMORY MANAGEMENT V

c Win 2.0 ~ Win 3.0 iii Win 3.1 .
Stops a memory block from being moved in memory.

void GlobalFix (HANDLE hMem);

When Windows is operating in Standard or 386 enhanced mode (not real mode), locked memory
blocks can be relocated in linear memory. This does not invalidate far pointers to the block used
within the program, but will change the physical address of the
block in memory. Calling GlobalFixO prevents the global
memory block from being moved in linear memory. As shown
in Figure 14-15, this does not stop the block from being paged
to disk as virtual memory. Use GlobalPageLockO to stop vir

Qohl lIull

The memory block I, lZ byte. In olz ••
Canlalns: ALlCDEfGHUUMNOPORSTUVWXVZ
flags: Dlscard.bl.: O.lo~ Count 1
Handl •• Oxbl •• Addr OxbldOOOO

tual memory writes for a memory block. Each time GlobalFixO Figure 14-15. GlobalFix(J
is cailed, the block's lock count is increased by one. An equal Example.
number of GlobalUnfIxO calls is required to free the block.

Not often used. Used with (old) drivers that assume a fIxed-memory address. Fixing a memory
block reduces Windows' ability to optimi~e memory use and should be avoided.

No returned value (void).

GlobalUnfIxO, GlobalLockO, GlobalPageLockO, GlobalAllocO

HANDLE: The global memory block's handle. This is the value returned by GlobalAllocO.

This example, initially allocates a moveable global memory block big enough to hold 27 bytes. Tho
uppercase alphabet is written to the memory block. The block is then fIxed in memory by calling
GlobalFixO. Clicking the "Do It!" menu item causes the GlobalCompactO function to be called.
This has no effect on the memory block's address, as it is fIxed. The memory block is unfIxed and
deleted when the application terminates.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
stati c HANDLE
static LPSTR
LPSTR
char
int

ps ;
hHem ;
pHem ;
pMemTemp ;
cBuf 1:128] ;
i, nSi ze, nFlags' ;

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE:
hMem = GlobalAlloc (GMEM_MOVEABLE, 27)
pMemTemp = pHem = GlobalLock (hl-Iem)
for (i = 0 ; i < 26 ; i ++)

*pMemTemp++ = IAI + i ;
*pMemTemp = 0 ;
GlobalFix (h~em) ; 1* fix block in memory *1
break;

case WM PAINT: I.
-Beginpaint I(Mlnd, &ps) ;

nSize = GlobalSile (hHem) ;
nFlags = GlobalFlags (hMern) ;
TextOut (ps.hdc, 10, 10~ cBuf, wsprintf (cBuf,

"The memory block is Xd bytes in size.", nSize» ;
TextOut (ps.hdc, 10, 30, cDuf, w~printf (cBuf,

"Contains: 70s", (LPSTR) pHem» ;
TextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBuf,

"Flags: Discardable: rod, Lock Count: rod",

637

WINDOWS API BIBLE

}

- nFlags& GMEM_DISCARDABLE, nFlags & GMEfClOCKCOUNT» ;
TextOut (ps.hdc, 10, 70, cBuf, wsprintf (cBuf, "

"Handle = Ox7.x, Address = ox:nx", hMem, pMem» ;
EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
GlobalCompact (0) ; 1* try to budge it *1
InvaUdateRect (h"Wnd, NUll, TRUE) ; 1* force paint *1
break; ,"

case-I-I>M_QUIT: 1* send end ot appUcationmessage *1

}

" DestroyWindow (hWnd); ,
break;

break;
case WM_DESTROY: 1* stop application *1

GlobalUnfix (hMem) ;
GlobalFree (hMem) ;
PostQuitMessage ,(0) ;

break;
default: 1* default windows message processing *1 -

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

" return (OL>" ;
)

GLOBALFLAGS
Purpose

Syntax

Description

Uses

Returns

B Win 2.0 • Win 3.0 • Win 3.1
Determines if a memory block in the global heap is .locked, discarded, or potentially discardable.
WORD GIobalFlags(HANDLE hMem)j . '--.. "

This function checks the status of a memory block allocated in the global heap. If a me1l1:ory block '"
is locked with GlobalLockO more than once without calling GlobalUnlockO, the block's lock
count will be more than one. GlobalUnlockO will have to be called~ many times as the lock
count to unlock the memory area. Memory blocks can'be discarded using GlobaIDiscardO and
still have vaiid handles. GlobalFlagsO will determine if the memory block has been discarded, or
if it was allocated using the LMEM_DISCARDABLE flag.

To check the validity of a: memory handle, or to check if a memory block has been locked more
than once.

WORD. The high-order byte contains one of the flags in Table 14-4.

GMEM_DDESHARE _

GMEM.:.DISCARDABLE

GMEM_DISCARDED

The block can be shared by other applications. This is only used with dynamic data exchange.

The block was allocated with the GMEM_DISCARDABLE flag.

Th~ block has been discarded. The GlobalReAllocO function will need to be called to.make the
m~mory area usable.

- The block cannot be bankedfThis only applies to EMS memory banking systems.

Table 14-4. GlobalFlags() Flags.

See Also

The low-order byte contains the lock-count of the memory block. -Combine the returned word
with GMEM_LOCKCOUNT usiIlg the C language binary and ampersand (&) to determine the
lock-count.

GlobalA1lo~O, GlobalSizeO, GlobalLockO "

638 "

Parameters
hMcm

Example

GLOBALFREE

Purpose

Syntax
Description

Uses

Returns

See Also

Parameters
hMcm
Example

. . .
14. MEMORY MANAGEMENT ...

HANDLE: The handle to the global memory block returned-by GlobaWlocO.

See t~e example under GlobalAllocO.

Frees a blo~k of memory allocated in the global heap.

HANDLE GlobalFree(HANDLE hMcm)j

• Win 2.0 • Win 3.0 • Win 3.1

Freeing a memory block returns the memory to the system for reuse. All memory blocks allocated
within an application should be freed before the application exits to return the memory to WIn
dows.

There should be a call to GlobalFreeO for every call to GlobalAllocO in a program.

HANDLE, equal to hMcm if the memory block was freed. ~LL on error.

GlobalAllocO, GlobalDiscardO, GlobalReAllocO

. \

HANDLE=""'The handle to the memory block allocated in the local heap with GlobaWlocO.
See th~ple under GlobalAllocO.

'- .

GLOBALIIANDLE • Wi~ 2.0 • Win 3.0 ;. Win 3.1
Purpose

Syntax
Description

Uses

Returns

See Also

Parameters
wMcm

Example.

GLOBALLOCK

Puipose

Syntax

Description

Uses

Returns

See Also

Returns the handle of a global memory block given its address.

DWORD GlobalHandle(WORD wMcm)j

Returns the handle of the memory block given the segment address (or selector) of a block of
memory in the global heap. This is the reverse of the normal procedure of getting the address of
a memory block by using GlobalLockO to lock a block using the memory block handle.

This is useful in cases where locked (fIxed) memory blocks are used. With locked blocks, the.
address does not change, so it is efficient to store only the block's address and not store the
handle: GlobalHandleO can be used to retrieve the handle if it is needed to free the block.

DWORD. The low-order word contains the handle of the global memory block. The high-order
word contains the segment address of the memory block. Returns NULL on error.

GlobalFlagsO

WORD: An unsigned integer value. This is the segment address of the global memory block.

See the example under GlobalFixO.

Loc~ an allocated memory block in the global heap.

LPSTR GlobalLock(HANDLE hMcm)j

• Win 2.0
.-

.Win3.0

Moveable memory blocks allocated with GlobalAllocO must be locked before data can be written
or read from the memory area. The block should be unlocked with GlobalUnlockO as soon after
use as possible.

Used to "realize" a memory pointer. This means that the return value is a far pointer to a block of
memory. The pointer will remain valid until the block is unlocked with GlobalUnlockO.

LPSTR, a far pointer to the beginning of the memory area.

GlobalUruockO, GlobalAllocO

639

WINDOWS API BIBLE

Parameters '
hMem

Example
HANDLE: A haRdle to the memory area allocated with GlobaWlocO. ,.
See the example under GlobaWlocO.

GLOBALLRUNEWEST fA Win 2.0 Il!J Win 3.0 II Win 3.1
Pnmose
Syntax

Description

Marks a memory block to be the last one to be discarded in the global heap.

HANDLE GlobalLRUNewest(HANDLE hMem)j

Windows keeps track of discardable memory blocks. Normally, the most recently used blocks are
the last to be discarded if Windows runs short of memory. GlobalLRUNewestO allows the applica
tion to specify a memory block that should be the last one discarded if the global heap is com
pacted. This function is called internally by Windows whenever GlobalLockO or GlobalWireO is
called. The LRU position is also used to determine if a memory block should be located in virtual
memory (in 386 enhanced mode).

Uses

I
Returns

See Also

Used to optimize an application's performance if a number of discardable memory blocks are
used. This is the ideal way to keep a memory' block available for immediate access without locking
it in memory, or using the GMEM_NODISCARD attribute.

HANDLE. Returns hMem if the function was successful, NULL on error.

GlobalLRUOldestO, GlobalCompactO
Parameters
hMem HANDLE: The global memory block handle. This is the value returned by GlobaWlocO or

GlobalReAllocO the last time the memory block was allocated or resized.
Related Messages WM_COMPACTING
Example This example, which is illustrated in

Figure 14-16, allocates two memory
blocks on the local heap. Both ate
moveable and, discardable. When
the user clicks the "Do It!" menu
item, the first bloc~ is marked with

Before GlobalCompactO

Do Itl ,Quit

hMeml size: 10240
LockCount = O. Discardable = 1
hMern2 size: 10240
LockCount =: O. Discardable = 1

After GlobalCompactO

Do It! ,Quit

hMeml size: 10240
LockCount = O. Discardable = 1
hMem2 size: 0
LockCount = O. Discardable = 1

GlobalLRUNewestO, and the sec- Figure 14-16. GlobalLRUNe1pest() and Global-
ond is marked with GlobaILRU- LRUOldest() Example.
OldestO. This makes the second
block the most likely to be discarded. Requesting a contiguous m~mory space slightly larger than
the amount available on the global heap with GlobalCompactO forces a block to be discarded.
Only the second memory bluck ends up discarded. Note that the second memory block's handle
an~ ~tatus (flags) remain valid. The block can be restored with GlobalReAllocO.

long FAR PASCAL,~hd~~I~ (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam) ,
{ Ii !, , i _ .

PAINTSTRUCT . I"'J
I',, . .'., ps;

stati ci HANDLE! hMem1, hMem2 ;
char cBut [128] ;
i nt nFlags1, nFlags2 ;
DWORD ' ~ dwFree, dwSize1, dwSize2 ;

, switch (iMessage)
{

1* process windows messages *1

case WM_:REATE:
hHem1 = GlobalAlloc (GHEM_MOVEABLE ,

GMEH_DISCARDABLE, 10240) ;
:hMem2 = Globa lAlloc (GMEM_MOVEABLE I

GHEM_DISCARDABLE, 10240) ;
it (!hMem1" I !hHem2)

640

}

14. MEMORY MANAGEMENT 'Y

{

MessageBox (hWnd,
"CouLd not lillocate memory blocks.",
"Memory Error", MB_ICONHANO 1MB_OK)

OestroYWindow (hWnd) ;
}

break;
case WM_PAINT:

BeginPaint (hWnd, &ps) ;
nFlags1 = GlobalFlags (hMem1)
nFlags2 = GlobalFlags (hMem2) ;
dwSize1 = GlobalSize (hMem1) ;
dwSize2 = GlobalSize (hMem2) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"h~em1 size: Xli", dwSize1» ;
TextOut (p~;hdc, 10, 30, cBuf, wsprintf (cBuf,

"LockCount = r.d, Oiscardable = r.d",
nFlags1 & GMEM_LOCKCOUNT,
(nF lags 1 & GMEM_O 1 SCAROABLE ? 1 : 0»)

TextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBuf,
"hMem2 size: Xli", dwSize2» ;

TextOut (ps.hdc, 10, 70, cBuf, ~sprintf (cBuf,
"LockCount = ?ed, Oi scardable = r.d",
nFlags2 & GMEM_LOCKCOUNT,
(nFlags2 & GMEM_01SCAROABLE ? 1 : 0») ;

EndPaint (hWnd, &ps)
break;

case WM_COMMANO: 1* process menu; terns *1
swi tch (wParam)
{

case 10M_DOlT: 1* User hit the "Do it" menu item *1
GlobalLRUNewest (hMem1) ; 1* only one of these *1
GlobalLRUOldest (hMem2) ; I*'two calls is needed *1
dwFree = GlobalCompact (0) ; 1* check free· space·*1
GlobalCompact (dwFree + 64) ; 1* force discard *1
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case ·10M_QUIT: 1* send end of application message *1
OestroYWindow (hWnd) ;
break; ,

}

break;
case WM_OESTROY:

GlobalFree (hMem1)
GlobalFree (hMem2) ;
PostQuitMessage (0) ;
break;

1* stop application *1

default: I*.default windows ~essag~ processing *1
return OefWind6wProc (hWnd, iMessagc, uPurarn, lParam>.;

return (OL> ;

GLOBALLRUOLDEST Bi Win 2.0 • Win 3.0 • Win 3.1

Purpose
. Syntax

. Description

Uses

Marks a memory block to be the first one to be discarded in the global heap .
HANDLE GlobalLRUOIdest(HANDLE hMem)j
Windows keeps track of discardable memory blocks. Normally, the most recently used blocks are
the last to be discarded if Windows runs short of memory. GlobalLRUOldestO allows the applica
tion to specify a memory block that should be the first one discarded if the global heap is com-
pacted. .
Used to optimize an application's performance ifa number of discardable memory blocks are
used. This function and GlobalLRUNewestO are the ideal way to prioritize which memory blocks
should be available for immediate access without locking it in memory, or using the
GMEM_NODISCARD attribute.

641

WINDOWS API BIBLE

Parameters

HAND~~'Re~kMem if Ute functio~ s~~_, NULL on'·error.
,GlobalLRUNewestO; GiobalComp~6'

laMem HANDLE: The global memory block handle. This is the Value returned by GlobalAlIocO or "
GlobalReAllocO the last time the memory block was allocated or resized. t

IeJatetl Messages M.CCOMPACTING
! . . '. .
Example See the previous example under GlobalLRtmewestO.

GLOBALNOTIFY .Wm 2.0 .Wm 3.0 .• WJit~.1
Parpoae Installs a notification function, which is called if global memory objects are about to. bedJs.

S7Dtu "
De8eriptlon

Uses
Iet1U1l8

See Also
Parameters
lpNottfyProc

earned. .

void G1obalNotlfy(HANDLE lpNotifyProc); -
. Memory blocks allo~d with the GMEM_DISCARDABLE and GMEM_MOVWLE fJagcJ ~. be' .

discarded ifWmdows needs a larger memory space in the global heap than is currently available.'
Normally, discarding is done on a most-recently-used-Iast-discarded basis, with no warnmg.to the .
application '£hat allOcated the block. Installing a notification function causes Wmdowsto activate ~
the function before any memory block is discarded. This provides an opportunity for the notiftca.. '\
tion function to free a less critical memory block. Only blocks allocated with the GMEM_DlS
CARDABLE I GMEM_MOVEABLE I GMEM_NOTIFY flags will result in the notification function
being called~ The notification-function Iilust be part of a DLL (Dynamic Link Library) with a fixed ' "
code segment. The DLL cannotuse the caUfng application's stack. Even though the notification
. must be in a DU: disc3.rding memory allocated by a DLL dqes not result In the notification func-
tion being called. . ,

Used In ~pplicaiions that alloyate discardable memory bIOC~' I
No returned value (void). , " . . .

GlobalLRUOldestO, GlobalLRUNewestO

HANDLE: The procedure-instance address olthe notJflcatlon functIotL This is the value returneiI .
by GetProcAddressO. The notifi~ion function must be defined In a DLL with II ftXed-code Bel
ment. The notification function must have the following form:

BOOL FAR PASCAL Notity~ (HANDLEkMem);
where hMem is the handle to the block being discarded. The notification function should retum
nonzero ifWmdows should discard the block, zero ifth) block shOuld not be dIsCarded. .

The notification function will continue to be called unless the situati~n c8using Windows to .
discard the memory block is changed. Typical actions within the notification function JricIude
discarding some other block of memory, eliminating the need to diScard the ~Iock whose handle

,is hMtrm. The callback function should not call any function whicbmay cause relOcation 01
memory objects (GlobaWlocO, Globa.ReAllocO). " .•

Related M~ M.CCOMPACTING ; . I. . ,.,
Caution 'Notification functions Cann()t be installed whlle processing the'

MCCREATE message. Th~ calling program must be process-' ~--~-----I
ing messages via the mesSage loop before GlobaINotifyO is =~;::. DIscardabI8 = 1
called. This function can only.be·called once per application hMem2s1ze:O
instance. " LockCooot = O. 0isc:8rdabIe -1

.. ~!,~ _________ -~_~xample_setsup,a notification procedure to'wamwhen- 'Pigurs l~l1.'GlobalIiotiftl(r, '--
--.---- memory blocks are about to be discarded. All the notification , Example. · .

...
, - .

14. MEMORY MANAGEMENT.

procedure does is put a message box on the screen warning that memory is about to be deleted.
After the memory has been deleted, the window appears as shown in Figure 1 ~17.

The notification must reside in a Dynamic Link Library (DLL) with a fixed code segment. The
code segment is fIxed by specifying the "FIXED" attribute in the DLL's defInition me. The two
functions called from outside the DLL are listed in the EXPORTS section.

r::> NOTIFY.DEF Definition File for DLL
LIBRARY
DESCRIPTION
EXETYPE
CODE
DATA
HEAPSlZE
EXPORTS

NOTIFY
'dll fol' notif; cation'
WINDOWS
PRELOAD FIXED
PRELOAD FIXED SINGLE
1024
NotifyFunc
SavehWnd \

The notification funct\on has a standard format (de,scribed above). In order to use the
MessageBoxO. function from withih the DLL, the DLL must use ~ second function, SavehWndO, ~
to just store the calling window's handle.

The notification fpnction NotifyFuncO shown here is only an outline. A useful notifIcation
function would t¥~ sOme action to avoid discarding a memory block, such as discarding the least
important block. N'qte that no local variables are used. Notification functions cannot assume the
stack segment of the calling program, as they are called from Wmdows' memory ~ement logic.

, 0. NOTIFY.C C Source Code for Notification Function DLL
/t*q,otify.c memory'disc8l'd notification functions *1

~in~lude'<windows.h>

static HANDLE hWi ndow = NULL;

int FAR PASCAL LibMain (HANDLE hInstance, WORD wDataSeg, WORD wHe~pSize, ,
LPSTR lpszCmdLine) . . ." I .:

(.

if (wHeapS1ze > 0)
UnlockData (0) ;

·roturn (1) ;
)

void'rAR PASCAL SavehWnd (HANDLE hWnd)'
(

)'
,hVi ndow = hWrid ;

B~OL FAR PASCAL NotifyFunc (HANDLE hMem) (. .

) .

static int n ;

if (hVindow ~= NULL)

.l ••
(

)

M •• lageBeep (0) ; 1* fOl'got to I'~n S8vehWn~ ~ just beep *1

n ~ MessageBox (hWindow, "Memo~y About To B~ Discal'ded.",
"Warni n9", MB_ICONASTERI,SK I MB_OKCANCEL> ;'

if (n == IDCANCEl) .' -
{, .,'.

)

1*, delete' some other block of memory here *1
retul',n (0) i

return (1) ;
\ '

- .,' '~

·" WINDOWS API BIBLE

The NMAKE fIle for the DLL me shown here includes the debugging switches. The key differ
ence when compiling DLLs is that the stack segment and data segment are not the same (ASw
switch with the Microsoft compile).

o NOTIFY NMAKE"FUe forNOTIFf.DLL
1# Make file for. ~otHY library

ALL: notify.dll

CFLAGS=-c -D LINT_ARGS -ASw -Zip -Od -Gsw -W2
LFLAGS=/NOD leo lalign:16

notify.obj: __ notify.c
S(CC) SCCFLAGS) notify.c

,
.'

_flotify~dll: notify.obj notify.def .
. ~ link S(LFLAGS) notify libentry, notify.dll, NUL, libw sdllcew, notify

rc notify.dll

The main program's header me (GENERIC.H) must include function prototypes of the two
exported functions. The program's definition me must also list them in the IMPORTS section.

o GENERIC.DEF Module-Definition FVe for GENERIC.C
NAME
DESCRIPTION
EXETYPE
STUB

GENERIC
Igeneric windows progr3m l

WINDOWS
I WINSTUB. EX .. E I
PRELOAD MOVEABLE CODE

DATA .
. HEAPSIZE
STACKSIZE
EXPORTS
l"PORTS

PRELOAD MOVEABLE MULTIPLE
1024
5120

.WndProc
NOTIFY.NotifyFunc
NOTI FY • SavehWnd

- The main program sets up two global memory blocks on startup. Both are discardable. When
WM_PAINT messages are received, the size and status of the two blocks are written to the
window's client area. The notification function is not installed until,the user clicks the "Do It!"
menu item for the first time. First SavehWndO is called to give the DLL the main window's
handle. Then GlobalNotifyO is called to set up the notification procedure. The notification proce
dure can only beset up once per program instance, so a static Boolean variable, bSetNoti/u, is
used to stop GlobaINotifyO from beL,g called twice.j)iscarding global memory is forced by call;.
ing GlobalCompactO, requesting a memory block larger than the largest available block. At this
point in the program's execution, the notification function is called. by Windows. NotifyFuncQ
displays the message box.

o GENERIC.C Program. Extract of Only WndProc() Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessag~, WORD wParam~ LONG lPara.)
< , . .

PAINTSTRUCT ps ;
static HANDLE hMem1, hMem2 ;
char cBuf [128] ;
int ",Flags1, nFlags2 ; .
DWORD. dwFree, dwSize1, dwSize2 ;
stati c FARPROC fpNotify; - .
static BOOL bSetNotify = FALSE;

switch (iMessage)
<

case WM~CREATE:

1* process windows messages *1

hMem1 = G loba LA llo.c CGMEM_MOVEABLE I
.. -- -------- .. _---.. _-_ .. _----_.- --_ _----/ .. ---_.

____ ... _________ ~~_EM_DISCARDABLE I GMEfLNOTI FY , 10240) -; -- - --- .

}

}

· 14.·MEMORY MANAGEMENT ..

hMem2 = GlobalAlloc (GMEM_MOVEABLE I
GMEM_DISCARDABLE I GMEM_NOTIFY~ 10240)

ff (!hMem1 I I !hMem2)
{

}

break;
case WM_PAINT:

MessageBox (hWnd,
"Could not allocate memory blocks.",
"Memory Error", MB_ICONHAND I MB~OK)

DestroyWindow (hWnd) ;

BeginP~int (hWnd, &ps) ;
nFlags1·= ~lobalFlag~ (hMem1)
nFlags2 = GlobalF lags (hMem2) ;
dwSize1 = GlobalSize (hMem1) ;
dwSize2 = GlobalSize (hMem2) ;
TextOut (ps.hdc, 10, 10, cBuf, w~printf (cBuf,

. "hMem1 size: Xli", dwSize1» ;
TextOut (ps.hdc, 10, 30, cBuf, wsprintf (cBuf,

"Loclc.Count = Xd, Discardable = Xd",
nFlags1 & GMEM_LOCKCOUNT,
(nFlags1 & GMEM_DISCARDABLE ? 1 : 0»)

TextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBuf,
"hMem2 size: Xli", dwSize2» ;

TextOut (ps.hdc, 10, 70, cBuf, wsprintf (cBuf,
"Loclc.Count = Xd, Di scardable = Xd",
nFlags2 & GMEM_LOCKCOUNT,
(nFlags2 & GMEM_DISCARDABLE ? 1 : 0») 'i

EndPaint. (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
if (! bSetNotify)
{

}

bSetNotify = TRUE;
SavehWnd (hWnd) ;
hModule = GetModuleHandle ("notify")
fpNotify = GetProcAddress (hModule,

"NotifyFunc") ;
GlobalNotify (fpNotify)

dwFree = GlobalCompact (0) ; 1* check free space *1
GlobalCompact (dwFree + 64) ; 1* force discard *1
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case IDM_QUIT: 1* send end of application message *1
DestroYWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop application *1

FreeProclnstance (fpNotify) ;
GlobalFree (hMem1); .
default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL>

GLOBALPAGELOCK .Wm2.0 • Win 3.0 .Win3.l

Syntax

Stops a memory block from.being moved in linear memory, or from being written to disk (virtual
memory inhibited).

WORD GlobalPageLock (WORDwSelector)i

645

WINDOWS API BIBLE .

Description .. -

Uses

Betoms

See AlsO

Parameters
wSelecror

Example

. .

Although pointers to locked memory blocks remain valid, the block may stlll be moved in physical
memory. Locked memory blocks can alsO be temporarily written to disk as virtual memory stor
age. Calling GlobalPageLock() physicaliy locks down a memory block. The block will not be
moved and will not be. written to virtual (disk) space. Each call t.o GlobalPageLockO increases
the memorY block's lock-count by one. An equal nUmber of calls to GlobalPageUnlockO is re-
quired to unlock the memory block.. . . .

Normally not used. Page-locked memory blocks inhibit Windows' ability to optimize memory use.
page-locked blocks may be needed for device drivers and interrupt driven routines that expect to
write to a fIXed address in real address space and that need rapid response~
WORD, the page-Iocl\-count. Returns zero on error.
GlobalPageUnlock(), GlobalDosAlloc() .

WORD: The selector for the memory;,block. This is the protected-mode equivalent of an offset.

See the example under the GlobalD6~I~~O funCtio~ description.

GLOBALP AGEUNLOCK • WiD 2.0 • WID 3.0 8 WID 3.1

.~ Unlocks a memory block locked with GlobalPageLockO.
~~ WORD GlobalPageUnlock (WORJ}wSelecror)j

DeScription.

Uses .

\ Retunui

See Also

, Parameters
wSekctor
Example

Each call to GIobalPageLockO for a given Selector increases the page-lock-count by one. CallIng
GlobalPageUnlockO decreases the page-lock-count by one. An, equal number of calls to
GlobalPageUnlockO is required to unlock a memory·block.

Urilocking a memory block locked with GIobalPageLock(). Once unlocked, the block can be
. moved in linear memory and be paged to disk (Virtu~ memory).

WORD, the page-Iock-count·after the function operates. Returns zero on error.

GlobalPageLockO, GlobalDosAlloc()

" -WORD: The selector for the memory block. This is the protected-mode "equivalent of an offset.
See the example under the GlobalDosAllocO function description.

" GLOBALREALLoc • Win 2.0 • Wm 3.0 • Win 3.1

Purpose Changes the size" and/or attributes of a I{lobal memory block.

SptQ HANDLE GlobalReAJloc(HANDLE hMem, WORD wBytes, WORD wFlags);

Desaiptlon

Returns

SeeAlso "

Panlleten
AMem
dwByte3

When a memory bloc~ is allocated with GIobalAllocO, it can be resized using GIobalReAllocO as
needed to fit the program's d~needs. DiScardable memory blocks use this function to restore
the memory size block.

Usually uSed to increase the size of a,data block as new items are added. It can also be used to
change the memory attributes from moveable to fIXed, etc.
HANDLE, the handle of the resized memory block. Returns NULL o·n error. The -returned value
will equal hMem unless the GMEM_MOVEABLE flag is set, or unless the block was realloCated
past amultiple of64K (64K minus 17 bytes in standard mode).

GlobalAllocO, GlobalDiscardQ

HANDLE: The handle of the memory block in the local heap, ~tiaUy allocated with LocalAllocO.
DWORD: The new size of the memory block.

646

wFIDgs

14. MEMORY MANAG~M~NT

~oThe type of memory to reallocate. This should be one or m~re of the ~ listed in Table
1~6, combined with t~e C language binary OR ~perator (I). Choose either GMEM_FIXED or
GMEM_MOVEABLE, and then combine the cho~e with other options;

GMatOlSCAROABLE Memory that can be discarded if Windows needs to make room. Used only with
GMEM_MODIFY.

GM9.tMODIFY

GM9.tMOVEABLE

GMatNOCOMPACT

GMStNODISCARO 0

Specifies that the attributes of the memory block will be changed. not the memory block size.
o The dwBytes parameter will be ignored.

Moveable memory. H wBytes is zero" this flag causes a preViously fixed block to be freed. a a
previously moveable object to be discarded. This only occurs if the block has net been locked.
H wBytes is nonzero and the hMem block is fixed. GlobalReAlloc() will move the block to a new
fixed location. The means that the returned value will not be the same as hMem. Use with

o GMEM.;.MODIFY to make a fixed memory block moveable.

Meniory in the ~ heap is not cOmpacted or discarded to make room for the resized memory
block; Jgnored if GMEM_MODIFY is set.

Memory in the lOcal heap is not discarded to make room for the resized memory bloOC Ignored
if GMEM_MODIFY is set. '

GMEM..,ZEROINIT)nitiaIize1he new part of the allocated memory block to zero. Ignored if GMEM_MODIFY is set.

M1814-5. GlobaLReAUoc() Flags. 0

CuUon

8eeAlso
Parameters
AMem
Buaaple o

, If the program's data segment is defined as moveable in the .DEF fIle, calling LocalAllocO mat
cause the data segment to move. This will invalidate any far pointers. 0

See the example under GlobalAllocO.

II Wm 2.0 • Win 3.0 • W'm 3.1
Determines the size of a memory block allocated in the global heap.

DWORD GlobalSfze(HANDLE kMem)j

This function determines the actual number of bytes allocated in the global heap by GlobalAlJocO
and/or GlobalReAllocO. The number of bytes may be slightly larger than the number requested,
as global memory blocks are rounded upward to the nearest 32 bytes.

DWORD, the actual size of the memory block in bytes. NULL if hMem is not a valid memory
handle. The re~ value is invalid if the memory block has been discarded.

GlobalFIags, GlobalAllocO

HANDLE: The handle of the global memory block.

See the eXample under GlobalAllocO.

GLOBAL UNFIX 8Wm'2.0 m Wm 3.0
0

• W'm 3.1
Frees a memory block fixf>d by GlobalFiXO.

o BOOL GloMlUDfh (HANDLE Wern)j 0

Each call to GlobalFixO increases the memory block's lock count by one~ GlobalUnflXO reduces
the lock-count by one. An eqUal number of calls to GlobalUnflxO is requrred to'release the fIXed

o:memory block. 0 0 0

0,647

VYINUUWS API BIBLE

Uses

Returns

See Also
Parameters
hMem

Example

Used with GlobalFixO in applications that require a memory block to remain at the same loca- ., .
tion in linear memory.

BOOL. Zero if the lock-count decreased to zero (block no longer fIXed). Nonzero if the lock-count
is above zero. ..,.

GlobalFixO, GlobalAllocO

HANDLE: A handle to a global memory block. This is the value returned by.GlobalAllocO.

See the example under the GlobalFixO function description.

GLOBALUNLOCK • Win 2'.0' • Win 3.0 • Wifi 3.1

J~~ose Unlocks a locked memory block in the global he~/., ', ..
/ Syntax BOOL GlobalUnlock(HANDLE hMem)j . ,.' ,~., ' .. ' .

Description

Uses

ReturnS
See Also

Parameters
hMem

Example

Unlocks a memory block. Once unlocked, the memory block can be moved by Windows, unless the
block with allocated with the GMEM_FIXED flag. Unlocked blocks can also be discarded, if they
were allocated with the GMEM_MOVEABLE I GMEM_DISCARDABLE style. If a memory block is
locked more than once without being unlocked, the block's reference count will be more than
one. GlobalUnlockO will have to be called the number of times specified by the reference count
before the block can be moved or discarded.

Memory blocks should be unlocked as soon after bein% locked as possible. Doing so makes it
possible for Windows to make maximum use of the memory space.

BOOL. Zero if the block's lock-count.is zero (completely unlocked), nonzero if not.

GlobalLockO, GlobalAllocO

HANDLE: The handle of the global memory block to unlock. This is the value initially returned by
GlobalAIlocO.

See the example under GlobalAllocO.

GLOBALUNWIRE • Win 2.0 • Win 3.0 • Win 3.1

Purpose .
Syntax

Description

Uses

Returns

See Also

Parameters
hMem

Example

Unwires a wired (locked) block in the glotial heap.

BOOL GlobalUnWll'e(HANDLE hMem)j

This function llnlocks a block locked in low memory by GlobalWireO. If more than one call to
. GlobalWireO, GlobalLockO, or GlobalFixO has been made, the lock-count for the memory block
will be greater than one. A matching number o(calls to GlobalUnWireO, GlobalUnlockO, and
GlobalUnflXO will be needed to unlock the memory block. .

There should be one call to GlobalUnWireO for every call to
GlobalWireO in an application.

BOOL. TRUE if the segment is unlocked, FALSE if not.

GlobalWireO, GlobalLockO, GlobalFixO

HANDLE: The handle of the global memorj block to unwire.
This is the value returned by GlobalAllocO or GlobalReAJlocO
the last time the block was created or resized.

/' /

This example, illustrated in Figure 14~18, allo~ates two blocks
of memory in the global heap. When the user clicks the "Do It!"

648

Doltl .Q.ult

hMeml Address: Ox15f50000
lock Count = O. Discardable ~ 1
hMem2 Address: Ox15fdOOOO
lockCount = 1. Discardable = 0

9'~--------------~ Figure 14-18. GlobalWire()
and GlobalUnWire() .
Example"

14. MEMORY MANAGEMENT •

menu item, the program ''wires'' the second block, locking it in low memory. The block is
"unwired" when the program exits.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

PAINTSTRUCT
static
LPSTR

HANDLE
ps ;
hMem1, hHem2 ;
pMem1, pHem2 ;
cBuf [128J ;
nFlags1, nFlags2

char
lnt

switch (iMessage)
<

1* process windows messages *1

case WPLCREATE:
hMem1 = GlobalAlloc (GMEM_MOVEABLE I

GMEM_DISCARDABLE, 10240) ;
hMem2 = GlobalAlloc (GMEM_MOVEABLE, 10240)
if (!hMem1 II !hMem2)
{

) .
break;

case WM_PAINT:

MessageBox (hWnd,
"Could not allocate memory blocks.",
"Memory Error", HB_ICONHAND MB_OKJ

DestroyWindow (hWnd) ;

BeginPaint (hWnd, &ps) ;
nFlags1 = GlobalFlags ChMem1)
nFlags2 = GlobalFlags (hMem2) ;
if «pMem1 = GlobalLock (hMem1» &&

{
. (pMem2 = Glob~lLock (hMem2)})

}

TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,
"hMem1 Address: OxXlx", pMem1» ;

TextOut (ps.hdc, 10, 30, cBuf, wsprintf (cBuf,
"LockCount = Xd, Discardable = Xd",
nFlags1 & GMEM_LOCKCOUNT, .
(nFlags1 & GMEM_DISCARDABLE ? 1 : 0»)

TextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBuf,
"hMem2 Address: OxXlx", pMem2) r ;

TextOut (Q§.hdc, 10,70, cBuf, wsprintf (cBuf,
"LockCount = Xd, Di scardable = Xd",
nFlags2 & GMER_LOCKCOUNT,
(nF lags2 & GMEM_DISCARDABLE ? 1 : 0»)

GlobalUnlock (hMem1)
GlobalUnlock (hMem2)

EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND:
switch (wParam)
{

1* process menu items *1

case 10M DOlT: 1* User hi t the "Do it" menu i teal *1
~Flags2 = GlobalFlags (hMem2) ;
if (!(nFlags2 & GMEM_LOCKCOUNT»

GlobalWire (hMem2) ;
InvalidateRect (hWnd, NULL, TRUE) 1* force paint *1
break;

case 10M_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY:

GlobalUnWire (hMem2)
GlobalFree (hMem1) ;
GlobalFree (hMem2) ;
PostQuitMessage (0) ;

649

1* stop application *1

WINDOWS API BIBLE

)

break;
default: 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParall) ;.
)

return COL) ;

Locks a global memory block in low memory.
LPSTR GlobalWlre(HANDLE kMcm)j .

• Wm 2.0 • Wm 3.0, • Win 3.1

This is similar to GlobalLockO, except that W'mdows attempts to move the memory block Into low
_ memory before the block is locked. This reduces the impact of having a fixed block in the middle

of the global heap. .

GlobalWireO is preferable to GlobalLockO if the application can allow the block to be moved
before it is locked. Apillications should avoid locking memory, and should unlock locked memory
blocks as·soon as possible. '
LPSTR, the new segment location. NULL on error.
GlobalUnW'lleO, GlobalLockO, GlobalFixO

HANDLE: The handle of the global memory block to unwire. This is the value returned by GlobaJ.;
. AllocO or GlobaIR~ocO the last time the block was created or resized.,

See the example aboye under GlobalUnW'II'eO.

LomEimPAGES -.WIri2.0 .Wm3.0
L~its the amount of expanded memory that Windows will assign to an application.
void LtmltEmsPages(DWORD d~Kbytes)j

, .
, This function has no e1Ject unless expanded memory is installed and is being used under WIll·
. dows. It will not aft'ect applications that bypass Windows' memory manager by directly eaWnc
INT 67H\ . . 4i .

. No ~tunied 'value (void) •.

DWORD: The number of kilobytes of expanded memory the application '~ thIS function
should be able to access.

t..ong FAR PASCAL WndProc (HWND hWnd, unsigned fMessage, WORD wParam, LONG lParam>
(.

switch (1R.ssage)
("

1* pro~~ss windows lies sages *1

case WR_CORMAND: 1* process menu items *1
switch (wParam)
(.
case IDILDOIT: 1* User 'hit .the "Do it" menu it •• *1

LimitEmsPages (10) ; .
break; .

LoADMoDULE • Win 2.0 • Win 3.0 • WIn 3.1
Loads and executes a Windows program,' or creates a new instarice .C)f the program If one or more
instances are already running. ' . .

HANDLE LoadModule(LPSTR IpModuleName, LPVOID IpParameterBlock);
• ~ • • I

650

Deleription

o
2

3'

5

6

10

11

12

'13

14

15

16

11

18

'-

14. MEMORY MANAGEMENT 'f

This function allows one Windows application to load and run others. The functloncan pass the
loaded file a command line, like a file name to load on startup. '

Useful for creating master applications that run a series of "slave" programs. Also handY for load
ing the standard Wmdows applications like NOTEPAD.,

, HANDLE, the instance of the loaded module. LoadModuleO returns after the aPplication loaded
enters its message loop. If the value returned is less than 32, the module was not loaded. The'
possible error values are listed in Table 14-6.

Out of memory.

Rle not found.

Path not found.

Attempt to dynamically link to a task.

Ubrary requireS separate data segments for each task.

Incorrect Windows version.

Non-Windows .EXE file.

OS/2 application.

DOS 4.0 application.

Unknown .EXE type.

Attempt to load a .EXE file created for an earlier version of Windows. Oiily affects standard and 386
enhanced modes. '

Attempt to load a second .EXE containing multiple, writeable data segments.

Attempt to load a second instance linked to-8 nonshareable DLL

Attempt to load a protected mode-only application in real mode.

~ 14-6. LoadModule() Error Codes.

.....
',I

W'mExecO accompiishes the sarne purpose, but is somewhat simpler to use.

LPSTR: A pointer to a null-terminated string containing the name of the application to nm.lfno
. extension is included, .EXE is assumed. If IpModuleName does not contain a directory path,
W'mdows will search for the file based on the following search order: -
1. In the current directory.
2. 'In the Wmdows directory. This is the directory containing WlN.COM. Use GetWindowsDlrec

toryO to determine the path name of this directory.
3. In the Windows system directory. Use the GetSystemDirectoryO function to determine the

path name of this directory. . \
4. In the directories specified in the PATH environment variable" This is the PATH command

that is executed from DOS, before W'mdowS is loaded. Typical syStems set their PATH values
in the AUTOEXEC.BAT file.

~' ',.,. , 5. In the directo~ies mapped in a network. "

~Block LPVOID: ,This is a data struc~containing four fields. For some reason; WINDOWS.H does not
litclude this structure. Derme the PARAMBLOCK data type as follows:

651
'"

WINDOWS API BIBLE

typedef struct tagParamBlock
{

WORD
LPSTR

, LPVOID
DWORD

> PARAMBLOCK ;

wEnvSeg ;
lpCmdLine ;
lpCmdShow ;
dwReserved ;

1* usually NULL *1
1* command line string *1
1* WORD w[Zl *1
1* always NULL *1

• The meaning of each of the fields is as follows.
wEnvSeg WORD: The segment address of the environment under which the module is to run. This is the

location of the Emvironment variables like PATH. Set to NULL to use the Windows environment
(normal case).

lpCmdLine LPSTR: A pointer to a null-terminated character string containing the command line. This is
typically the file name that the application will run. The first character should be a blank space.
Set to a null string ("") if no command line is to be passed.

lpCmt;lShow LPVOID: This must point to an array of two WORD values. Set the first one equal to the number
two. Set the second equal to one ofthe ShowWindowO style values in Table 14-7.

SW_HIDE Hides the window. The top window on Windows' list is activated.

SW_MINIMIZE . Minimizes the window. The top window on Windows' list is activated.

SW_RESTORE Activates and displays the ~indow (same as SW_SHOWNORMAL).

SW_SHOW Activates and displays the window in its current size and position.

SW_SHOWMAXIMIZED

SW_SHOWMINIMIZED

SW_SHOWMINNOACTIVE

SW_SHOWNA

SW_SHOWNOAC!'VE

SW_SHOWNORMAL

Activates and maximizes the window.

Activates and minimizes the window.

Displays and minimizes the window. The currently active window remains active.

Displays the window, but does not change which window is active.

Displays the window, but does not change which window is active.

Activates and displays the window. If the window was minimized or maximized, the window is .
retumed to its previous size and position.

Table 1'r7. lpCmdShow SlwwWindow() Styles.

dwReserved

. Example
DWORD: A reserved value. Set equal to NULL .
111is program, illustrated in Figure
14-19, creates a window that auto-
matically loads the NOTEPAD.EXE
application and loads READ
ME.TXT into NOTEPAD (if the files
exist). The program loads NOTE- Figure 1'r19. LoadModule() Example.
PAD.EXE while processing its own
WM_CREATE message, so NOTEPAD appears before the GENERIC application. GENERIC dis
plays the full file name and reference count of the module it loaded (NOTEPAD). When the user .
clicks the "Do It!" menu item, the NOTEPAD application is sent a WM_DESTROY message, re
moving the program from memory.

typedef struct tagParamBlock
.{

WORD
LPSTR
LPVOID
DWORD

wEnvSeg ;
lpCmdLine ;
lpCmdShow ;
dwReserved ;

652

14." MEMORY MANAGEMENT Y

) PARAMBLOCK ;

long fAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

)

PAINTSTRUCT
PARAMBLOCK
char

ps ;
pb ;
cWindName [128J ;

char
WORD
HANDLE
int
HWND

cBuf [256J, cCommandLine [J = " readme.txt"
wCmdShow [2J
hModule ;
nCount ;
hNotePad ;

switch (iMessage)
(

1* process windows messages *1 .

)

case WM_CREATE:
pb. wEnvSeg-:-O- ; "
pb.lpCmdLine = (LPSTR) cCommandLine
wCmdShow [OJ = 2 ;
wCmdShow [1J = SW_SHOWNORMAL ;
pb.lpCmdShow :: wCmdShow ;
pb.dwReserved = NULL;
LoadModule ("notepad.exe", (LPVOID) &pb)
break;

case WM_PAINT:
Be9inPaint (hWnd, &ps) ;
hModule = GetHoduleHandle ("notepad") ;
GetModuleFileName (hModule, cWindName, 127)
nCount = GetModuleUsage (hModule) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"Fi le 70s, Reference Count: 7od",
(LPSTR) cWindName, nCount» ;

EndPaint (hWnd, &ps) ;
break;

case WM_COHMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hNotePad = Fi ndWi ndow (NULL, "Notepad - README. TXT")
if (hNotePad)

SendMessage (hNotePad, WM_DESTROV, 0, Ol) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ,
break;

}

break;
case WM_DESTROV: 1* stop application *1

default:

PostQuitMessage (0) ;
break;

return DefWindowProc
1* default windows message processing *1

(hWnd, iMessage, wParam, lParam) ;

return (OL) ;

LocALALLoc • Win 2.0 • Win 3.0 .Win3.l·

Purpose

Syatax
Desaiption,

Uses

letuos

Allocates a block of memory in the local heap.
HANDLE LocalAlloc(WORD wFlags, WORD wBytes)j .

This is the first step in allocating and using memory in the local heap. The maximum amount of
memory in the local heap is 64K, less the stack and static variable storage sizes.
Local memory is ideal for small memory items. Access to local memory is faster than to global
memory, as only a 16-bit address is needed.
HANDLE, the handle to the memory block allocated. Returns NULL on error.

653

WINDOWS API BIBLE

LocaILockO, LocalReAllocO, LocalFreeO

WORD: One or more of the flags in Table 14-8, combined with tjle li ~guage binary OR operator
(I). Choose either LMEM_FIXED or LMEM_MOVEABLE, and then co~b~e the choice with other,,'
options. " (

lMEMJlISCAROABLE

UBtFIXED

LMB.tMOVEABLE

LMEMJ~OMPACT

'. Allocates memory that can be discarded if Windows needs to make room. Used only with
LMEM_MOVEABLE.

Allocates fixed memory. Do not use this unless absolutely necessary. Axed memory fimits
Windowsi ability to optimize memory use, '

Allocates moveable memory.

Memory in the local heap is not compacted or discarded to make room for the new memory
block.

I

, lMEMJ'oIDOISCARO Memory in the local heap is not discarded to make room for the new memory block.

LMEM.,.ZEROINIT Innialize the new allocated memory block contents to zero; ,

7bble 1+8. ~lloc() Flags.

"

Whenever possible, use LMEM_MOVEABLE. WINDOWS.H includes two common combinati~

'define LHND
'def1 ne LPTR

(LMEM_MOVEABLE I LHEM_ZEROINIT)
~LMEM_FIXED I LMEM_ZEROINIT)

I . /

--_.- '--
wBytes WORD: The number of byt€~srto allocate. The. actual number of bytes allocated may be _fly

higher, to ensure that the boundary ends on an even-numbered address. .

This example shows the allocation
of memory on the local heap to store
a string. When the program first
starts (WM_CREATE received),

, room for 27 characters is allocated.

120 HI .Quit

The memory block Is 5. bytH In sI~,
Contains: A8CDEFGHIJJ(lMNOPQRSTUVWXYZabcdef~ ,
Rags: Dlscardable: O. lock Count , I' -

A string is stored in the memory Figure 14-20. LocaLAlloc(} Exarnple. '
block. This string, along with the .
block size and several memory status bytes, i(display~d on the window's client area ew.ery_. .
WM_PAINT message is received. When the user clicks the "Do It!" menu item, the melllOlf
is reallocated to make room for another 27 characters. The additional characters are vmu.' to .
the buffer and are displayed when WM_PAINT messages are processed. Repeatedly clickil18 tM
"Do It!" menu item does not allocate more room in this c~e. The block is simply reallocaW to
the same size, resulting in no change. Figure 14-20 shows ihe windows appearance after tM-De
It!" menu item was clicked. '

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lPara.) (.

PAINTSTRUCT
static HANDLE
chz:r
int.

switch' (iMessage)
(

case WM_CREATE:

ps ;
hMem;
*pMem, cBuf [128l ;
i, nSize, nFlags ;

1* process windows messages *1

if (hMem = LocalAlloc (LMEM_MOVEABLE, 27»
{ , '.

if (pMem = LocalLock.(hMem»
(

. ,654
'. ~ .

}

else
{

}

break;
case W"_PAINT:

}

else

14. MEMORY MANAGEMENT .•

for (i = 0 ; i < 26 ; i ++)
*pHem++ = IAI + i

*pMem·= 0.;
LocalUnlock (hMem) ;

MessageBox (hWnd,
"Could not lock memory block.",
"Memory Error", MB_ICONHAND I "8_0K) ;

MessageBox (hWnd, "Could not allocate Me.ory"~
. ""ellory Error", MB_ICONHAND I "B_OIO ;
DestroyWindow (hWnd) ;

BeginPaint (hWnd, Ips) ;
if (pMem = LocalLock (hMem»
{

)

nSize = LocalSize (hMem) ;
nFlags = LocalFlags (hMem) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cOuf,

"The lIemory block is Xd bytes in size.",
nSize».;

TextOut (ps.hdc, 10, 30, cBuf,wsprintf (cOuf,
"Contains: %s", (LPSTR) pMem» ;

TextOut (ps.h~c, 10, 50, cBuf, ~sprintf (cOuf,
"Flags: Discardable: Xd, Lock Count: Xd",
nFlags I LMEM_DISCARDABLE,
nFlags & LMEM_LOCKCOUNT»

. LocalUnlock (hMem) ;

EndPaint (hWnd, Ips)
break;

case W',-COMMAND: 1* process menu items *1
swi tch j'w"aram)
{. .
calle\lDM_DOIT: 1* User hit the "Do it" menu· item *1

if (hMeM = LocalReAlloc (hMell, (26 * 2) + 1,
LMEM,;..MOVEABLE»

(

}

else·

if (pMe. = LocalLock (hMem»
(

}

else

for (i = 0 ; i < 26 ; i ••) •
pMe ••• ;1 skip over old stu'·f .,

for (i = 0·; i < 26 ; i ++)
*pMem++ = la l + i

*pMem = 0 ; ./
I LocalUnlock (hMelll) ;

MessageBox (hWnd,
"Could not lock memory block.",
"Memory Error", MB_ICONHAND I "B_OK) ;

MessageBox (hWnd, "Could not re';'allocate meliory",
"nemory Error", MB_ICONHAND I "B_OK) ;

InvalidateRect (hWnd, NULL, TRUE) ;1* force paint *1
break; .

case IDM_QUIT: . 1* send end of application message *1

}

break;
case W"_DESTROY:·

LocalFree (hMem) ;
DestroYWindow (hWnd) ; ,
break;

1* stop application */

655

WINDOWS ·APIBIBLE

)

PostQuitMessage (0) ;
break;

default: 1* default windows message p~ocessing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL) ;

LocALCOMPACT • Win 2.0 • Win 3.0 .Win3.!

SyBtu
DeserlpUon

Uses

leturas

8eeAJso
Parameters
wMinJ'ree

Determines the amount of available memory in the local heap, compacting memory if necessary
to increase space.
WORD LocalCompact(WORD wMinFree);
First, LocalCompactO checks to see ifthere arewMinFree bytes available in one contiguous area
of the local heap. If not, LocalCompactO moves all unlocked, moveable blocks to the high memory
end of the heap. If this still is not enough room, enough discardable blocks are removed from
memory to make room for the requested size, or blocks are removed until there are no more
discardable blocks to remove.
Used to make room in the heap. If an application is creating and discarding memory in the heap
constantly, the heap may become fragmented, which limits the size of blocks that can be allo
cated. LocalCompactO reshuffles the memory blocks to make room available for the next·
LocalAllocO or LocaIReAllocO function call.
WORD, the number of bytes in the largest available block of free memory in the local heap.

LocalAllocO, LocalReAllocO, LocalLockO, LocalUnlock(), LocalFreeQ

WORD: The number of bytes desired. If wMinFree is zero, the function returns the amount of
memory in the largest contiguous free block of memory, without compacting.

Belated Messages WM_COMPACTING·

Example This example, which is illustrated in
Figure 14-21, allocates four blocks
of memory, each 64 bytes in length.
Block 0 is moveable, block 1 is
moveable and discardable, block 2
is moveable, .and block 3 is fIxed.
Each block's address is displayed

Before "Do It!-

Do Itl .Quit
Block O's address Is 6514.
Block l's address Is 6442.
Block 2's address Is 6370.
Block 3's address Is 6032.

After "Do It!-

Do Itl jlult
Block O's address Is 6514.
Block l's address Is O.
Block 2's address Is 6442.
Block 3's address Is 6032.

(after locking the blocks) when the Figure 14-21. LocalCompact() and LocalDiscard{)
application processes a WM_PAINT Example.
message. When the user clicks the
"Do It!" menu item, block 1 is discarded. The heap is forced to be compacted by requesting a

\ I \ block of memory larger than the largest available block. Mer compacting, block 2 is moved into
. \ discarded block I's place. Block 3 remains at the same location because it was given the

LMEM_FIXEDattribute. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam) {

PAINTSTRUCT
stati c .
char
int

HANDLE

switch (iMessage)
{

\ \

ps ;
hMem 1:4] ;
*pMem 1:4], cBuf 1:128J ;

.i,nFree; .

1* process windows messages *1

}

14. MEMORY MANAGEMENT ..

case WM_CREATE:
hMem [OJ = LocalAlloc (LMEM_MOVEABLE, 64) ;
hMem [1J = LocalAlloc (LMEM_MOVEABLE I LMEM_DISCARDABLE, 64)
hMem [2J = LocalAlloc (LMEM_MOVEABLE, 64)
hMem [3J = LocalAll-oc (LMEM_FIXED, 64) ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
for (i = 0 ; i < 4 ; i ++)
{

}

pM em [iJ = LocalLock (hMem [iJ) ;
TextOut (ps. hdc, 10, 20 * i, cBuf, wsprintf (cBuf,

"Block ~d'S address is ~6d.", i, pMem [iJ»
LocalUnlock (hMem [iJ)

EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
LocalDiscard (hMem [1J) ;
nFree = LocalCompact (0) ; 1* find free space *1
LocalCompact (nFree + 16) ; 1* force compact *1
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case IDM_QUIT: 1* send end of application message *1

}

for (i = 0 ; i < 4 ; i ++) .
LocalFree (hMem [iJ) ,

PostQuitMessage (NULL) ;
break;

break;
case WM_DESTROY: 1* stop application *1

PostQu;tMessage (0) ;
brea k ;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) -

return (OL)

LOCALDISCARD I!!I Win 2.0 11 Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
hMem

Example

Discards a memory block from the local heap.

HANDLE LocalDiscard(HANDLE hMem).

Discarding a memory block makes the space available for allocating other blocks of memory. The •
hMem handle remains usable after the block is discarded, although it does not point to active
memory. hMem can be reused by using LocalReAllocO to allocate another block of memory. Only
blocks allocated with the LME~CDISCARDABLE and LMEM_MOVEABLE flags set can be dis
carded.

Discarding memory to make room for other blocks. Note that LocalFreeO removes the memory -
block and invalidates the memory handle. LocalDiscardO discards the memory block, but the
hMem handle remains valid.

HANDLE. Equal to hMem if the function was successful, NULL on error.

LocalFreeO, LocalReAllocO

HANDLE: The handle to the discardable memory block, returned by LocalAllocO.

See the previous example under LocalCompactO.
, . '-"

657

WINDOWS API BIBLE

Purpose

Syntax
Description.

Uses

Returns

• Win 2.0 • Win 3.0 • Wm 3.1
Determines if a memory block in the local heap is locked, discarded, or potentially discardable.

WORD LocalFlags(JL\NDLE hMern)j

This function checks the status of a memory block allocated in the local heap. If a memory block
is locked with LocalLockO more than once without calling LocalUnlockO, the block's lock-count
will be more than one. LocalUnlockO will have to be called as many times as the lock-count to
unlock the memory area. Memory blocks can be discarded using LocalDiscardO 'and still.have
· valid handles. LocalFlagsO will determine if the memory block has been discarded, or if it was
allocated using the LMEM_DISCARDABLE flag.

· To check the validity of a memory handle, or to check if a memory block has been locked more
than once.

WORD. The high-order byte contains one of the flags in Table 14-9.

The block was allocated with the LMEM_DISCARDABLE flag.

The block has been discarded. The LocalReAllocO function will need to be called to make the
memory area usable.

Table 14-.'9. LocalFlags() Flags.

See Also

,arameters .
hMcm

Example

Purpose

Syntax

. Deseription

Uses

Returns

See Also

Parameters
. hMein
ExainpIe

The low-order byte contains the lock-count of the memory block. Combine the returned word
with LMEM_LOCKCOUNT using the C language binary AND operator (&) to determine the lock
count.

LocalAllocO, LocalDiscardO, LocalReAllocO

HANDLE: The handle to the memory block allocated in the local heap with LocalAllocO.

· See the example under LocaWlocO.

Frees a block of memory allocated in the local heap.

HANDLE LocalFree(HANDLEhMern)j

• Win 2.0 • Win 3.0 • Wm 3.1

Freeing a'memory block returns the memory to the system for reuse. All memory,blocks allocated
within an application should be freed before the application exits, to return the memory to Win
dows.

There snould be a call to LocalFreeO for every call to LocaWlocO in a program.

HANDLE, equal to hMern if the memory block was freed. NULL on error.

LocaWlocO, LocaIDiscardO, LocalReAllocO

HANDLE: The handle to the memory block allocated in the local heap with LocalAllocO .

See the example under LocaWlocO for a complete example. The example below shows a short
cut way to allocate a small block of local memory for a quick purpose,. and then immediately
delete it. The shortcut takes advantage of the fact that the block is allocated UF' .g the
LMEM_FIXED attribute. The block does not have to be locked and unlocked. This techinque is
only suitable for blocks that are used for a quick purpose and then discarded.

/
658

14. MEMORY MAN4GEMENT •

long FAR.PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
PSTR
int

ps ;
pStr, pS2 ;
i . ,

switch (iMessage)
{

·1* process windows messages *1

case WH_PAINT:
pStr = (char NEAR *) LocalAlloc (LMEM_FIXED LMEM_ZEROINIT,

27) ;
pS2 = pStr ;
for (i = 0 ; i < 26 ; i++) I

*pS2++ = I A I + i ;
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 10, 10, pStr, 26) ;
EndPaint (hWnd, &ps) ;
LocalFree «LOCALHANOLE) pStr)
break;

{Othe; program lines}

LoCALllANnLE

Purpose

Syntax

Retrieves the handle of a memory block, given the address.

HANDLE LocalHandle(WORD wMem)j

rzJWin2.0 II Win 3.0 II Win 3.l

Description

U~"5

This function returns the handle to a local memory block, given the address of the block. '..::.

Used with flXed memory blocks to retrieve the handle so that the block can be freed using

Returns

See Also

Parameters
wMem

Example

LocaIFre~O· .

HANDLE, the local memory block's handle.

LocalFreeO

WORD: The address of the local memory block.

This example illustrates a number of bad practices, so use the example as what NOT to do. The
program allocates and locks a local memory buffer. The address is saved as th~ static variable
pMem, and a text string is copied into the buffer. This string is displayed when a WM_PAlNT
message is received. Note that the me~ory buffer is not unlocked (it should be). When the user
clicks the "Do It!" menu item, the local memory block is freed. This invalidates the memory block,
but the static handlepMem remains unchanged. The ~CPAINT messages will start to output
garbage, as the memory once used by the text block is used for other purposes by Windows.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HANDLE .
static
char

char

. ps ;
hl1em ;
*pMem ;
cBuf [128] ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hMem = LocalAlloc (LMEI1_r"OVEABLE, 128) ;
pMem = LocalLock (hMem) ;
lstrcpy (pMem, "This is bad example - fixed memory") ;
break;

case WM_PAINT:
BeginPaint (hWnd, ips) ;
TextOut (ps.hdc, 10, 10, pMem, lstrlen (pMem»
EndPaint (hWnd, &ps) ; i !
break;

WINDOWS API BIBLE

case WM_~OMMAND:
switch (wParam)
{

1* process menu items *-1

case IDM_DOIT: 1* Free the memorybJoc.~ *1
LocalFree (LocalHandle «WORD) pMem» ;
break;

{Other program lines}

LOCALLOCK

Pulpose

Syntax

Description

-~

Uses

Returns

See Also

Parameters
hMem

Example

"

Locks an allocated memory block in the local heap.

PSTR LocalLock(HANDLE hMem);

II Win 2.0 II Win 3.0 • Win 3.1

Memory blocks allocated with LocaWlocO must be locked before data can be written to or read
from the memory area. The block should be unlocked with LocalUnlockO as soon after use as
possible.

Used to "r~alize" a memory pointer. This means that the return value is a far pointer to a block of
memory.

PSTR, a near pointer to the beginning of the memory area.

Loc~lUnlockO, LocaWlocO

HANDLE: A handle to the memory area allocated with LocaWlocO.
See the example under LocaW]ocO.

LOCALREALLOC II Win 2.0 II Win 3.0 II Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also

Parameters
hMem

wBytes ,.

wFlags

Changes the size and/or attributes of a local memory block.

HANDLE LocaIReAlloc(HANDLE hMem, WORD wBytes, WORD wFlags);

Once a memory block is allocated with LocaWlocO, it can be resized using LocalReAllocO as
needed to fit the program's data needs. Discardable memory blocks use this function to restore
the memory block.

Usually,used to increase the size of a data block as new items are added. It can also be used to
change the memory attributes from moveable to fIxed, etc;

HANDLE, the handle of the resized memory block. Returns NULL on error. The returned value
will equal hMem unless the LMEM_MOVEABLE flag is set.

LocaWlocO, LocalDiscardO

HANDLE: The handle ofthe memory block in the local heap, initially allocated with LocalAllocO·

WORD: The new size of the memory block. Local memory blocks are limited to the size of the
local heap (64K, less the size of the stack and static variable storage space).

WORD: The type of memory to reallocate. This should be one or more of the flags listed in Table
14-10, combined with the C language binary OR operator (I). Choose either LMEM_FlXED or
LMEM_MOVEABLE, and the,n combine the choice with other options.

LMEM_OISCAROABLE

LMEM_MOOIFY

Memory that can be discarded if Windows needs to make room. Used with LMEM_MODIFY.

Specifies that the attributes'of the memory block will be changed. The w8ytes parameter is
ignored. Used only with LMEM_DISCARDABLE. '

660

14. MEMORY MANAGEMENT V

Moveable memory. If wBytes is zero, this flag causes a previously fixed block to be freed, or a
previously moveable object to be discarded. This only occurs if the block has not been locked.
If wBytes is nonzero and the hMem block is fixed, LocalReAliocO will move the block to a new
fixed location. This means that the returned value will not be the same as hMem. Cannot be
used with LMEM_MODIFY.

LMEM_NOCOMPACT Memory in the local heap is not compacted or discarded to make room for the resized memory
block. Cannot be used with LMEM_MODIFY.

LMEM_NODISCARD Memory in the local heap is not discarded to make room for the resized memory block. Cannot
be used with LMEM_MODIFY.

Initializes the new part of the allocated memory block to ze'ro. Cannot be used with
LMEM_MODIFY.

Tab:le 14-10. LocaLReAlloc() Flags.

Caution

Example

LOCAL SHRINK

Purpose

Syntax

Description

Uses

If the program's data segment is defined as moveable in the .DEF file, calling LocalAllocO may
cause the data segment to move. This ~ll invalidate automatic (stack) variable pointers.

See the example under LocalAllocO.

c Win 2.0 tl Win 3.0 fJ Win 3.1
, Reduces the size of the local heap.

WORD LocalShrink(HANDLE hSeg, WORD wSize)j

The local heap is increased in size as needed to hold new objects allocated with LocaWlocO and
LocalReAIlocO. The heap is not automatically reduced in size, even if objects are freed or dis
carded. LocalShrinkO reduces the heap in size. The minimum size is defined in the application's
.DEF definition file as the HEAPSIZE statement.

Making globahnemory room available, by reducing the size of an application's local heap. Call in
response to a ~CCOMPACTING message. LocalShrinkO does not affect the size of the stack.

WORD, the size of the local heap after shrinkage.

LockDataO, Unlock~ataO

Returns

See Also

Parameters
hSeg .' HANDLE: The handle of the local data heap. This value can be obtained by calling LockDataO.

wSize

Example

WORD: The desired size of the local heap after shrinkage.

This example allocates four discardable memory blocks on the local heap. When the user clicks
the "Do It!" menu item, two of the blocks are discarded, and the local heap is reduced in size. AIl
of the discardable memory blocks end up discarded after the local heap is reduced in size.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
static
HANDLE
char
int

HANDLE

switch (iMessage)
{

case WM_CREATE:

ps ;
hMem [4] ;
hSegment ;
*pMem [4], cBuf [128] ;
i, nFree, nLHeap ;

1* process windows messages *1

for (i = 0 ; i < 4 ; i ++)

break;

hMem [i] = LocalAlloc (LMEM_MOVEABLEI
LMEM_DISCARDABLE, 2048) ;

661

WINDOWS API.BIBlE

}

case W',-PAINT:
BeginPaint (hWnd, &ps) ;
for (i = 0 ; i < 4 ; f++)
{

pMem IiJ = LocalLock (hMem [iJ) ;
TextOut (ps.hdc, 10, 20 * i, cBuf, wsprintf (cBuf,

"Block Xd's address fs X6d.",. i, pMem [fJ» ;
LocalUnlock (hMem [iJ) ;

}

EndPaint"(hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
sw; tch (wParam)
{

case IDM_DOIT: 1* User hi t the "Do it" menu item *1
LocalDiscard (hMem [1J) ;
LocalDiscard (hMem [3J) ;
nFree = LocalCompact (16) ;
LocalCompact (nFree + 16) ;
hSegment = LockData (0) ;
UnlockData (0) ;

1* Hnd free space *1
1* force compact *1
1* get segment *1

nLHeap = LocalShrink (hSegment, 6144) i
InvalidateRect (hWnd, NULL, TRUE) ;
break;

case IDtLQUIT: ~/* send end of application message *1
for (i = 0 i i <4 ; i ++)

LocalFree (hMem [iJ) ;
DestroyWindow (hWnd) ;
break; .

}

break;
case WH_DESTROY: 1* stop application */

PostQui Ufessage (0) ;
break; .

default: 1* default windows message processing"*1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

. return (OL> ;
}

LoCALSIZE
Purpose

s,ntax
~ptiOD

RetarDs
See Also

Parameters
kMem

Example

III Win 2.0 m \V'm 3.0 L1 Wm 3.1
Determines the size of a memory block allocated in the local heap.
WORD LocalSiz~(HANDLE hMem)i

This function determines the actual number of bytes allocated in the local heap by LocalAllocO
and/or LocalReAllocO. The number of bytes may be slightly larger than the number requested, as
the allocated block will be sized to end on an even memory address.
WORD, the actual size of the memory block in bytes. NULL if hMem is not a valid memory handle.
LocalFlagsO, LocaWlocO

HANDLE: The handle of the local memory block.
See the example under LocalAllocO.

LoCALUNLOCK mWin2.0 mWin3.0 aWm3.l

Description

Urilocks a locked memory block in the local heap.
BOOL LocalUnlock(HANDLE hMem);

Unlocks a memory block. Once unlocked, the memory block can be moved by Windows, unless the
block was allocated with the LMEM_FIXED flag. Unlocked blocks can also be discard~, if they
were allocated with the LMEM_DISCARDABLE style. If a memory block is .locked more thaD

662

Uses

Returns

SeeAIso
Parameters
liMem

E~ple

14. MEMORY MANAGEMENT ...

. once without unlocking, tIte block's reference count will be more than one. LocalUnlock{) will
have to be called the number of times specified by the reference count before the block can be .
moved or discarded. .

Memory blocks should be unlocked as soon after being locked as possible. This makes it possible
for Windows to make maximum use of the memory space.
BOOL. Zero if the block's lock-count is zero (completely unlocked), nonzero if not.

LocalLockO, LocalAllocO

HANDLE: The handle of the local memory block to unlock. This is the value initially returned by
LocalAlloc(). . .

See the example under LocalAllocO.

LOCKSEGMENT 13 Win 2.0 • Win 3.0 • Wm 3.1
Purpose

Syntax
Description.

Uses

Returns
See Also
Parameters
wSe!}'llUmt

Example

Locks a segment in memory.

HANDLE LockSegment(WORD wSegment)i

Locking a segment in memory is normally not desirable, as it limits Windows' ability to make
maximum use of memory. Some programming elements, such as interrupt handlers, require a
locked program segment to be efficient. The size of the segment that must be locked should be
kept as small as possible and should be unlocked whenever possible.

Generally used to lock specific program segments. Can also be used to lock the program's data
segment, as shown in the example. .

HANDLE, the locked segment's handle, or NULL on error.

UnlockSegmentO, Loc~lInitO

WORD: The segment address of the segment to be locked. If wSegment equals -I, the
application's data segment is locked.
This example locks the entire data·segment while the program is running. As a consequence, the
pointer to a memory block allocated within the segment remains valid, even though the block was
allocated with the LMEM_MOVEABLE attribute. This is not a good programming practice under
normal conditions.

long FAR PASCAL WndProc (HWND hWnd, unsigned ;Message, WORD wParam, LONG lParam)
(

PAINTSTRUCT
s~atic
static
char

HANDLE
char

ps ;
hMem ;
*pMem ;
cBuf 1:128] ;

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE:
LockSegment (-1) ;
hMem = LocalAlloc (LMEM_MOVEABLE, 128) ;
pMem = LocalLock (hMem) ;
strcpy (pMem,

"Block moveable, but segment in fixed memory") ;
LocalUnlock (hMem) ;
break;

case WM_PAINT:
. BeginPaint (hWnd, &ps) ; 1* note no locking of hMem *1

TextOut (ps.hdc, 10, 10, pMem, lstrlen (pMern» ;
EndPaint (hWnd, &ps) ;

- 663

WINDOWS API BIBLE

}

brea k ;
case WM_COMMAND:

swi tch (wParam)
{

case IDM_DOIT:
break;

/* process menu items * /

/* User hi t the "Do it" menu item' */

case IDM_QUIT: /* send end of application message */

break
case WM_DESTROY:

LocalFree (hMem) ;
UnlockSegment (-1) ;
DestroyWindow (hWnd) ;
break;

1* stop application *1
PostQui tMessage (0) ;
break;

default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
}

MULDIV
Purpose
Syntax

Description

Uses

Returns

Parameters
llNumber

nNu1[terator

nDenominator

Caution

"
Examp~e

II Win 2.0 II Win 3.0 • Win 3.1
Computes the result of (a * b) / c, where a, b, and c are short integers.

int MnlDiv(int nNumber, int nNuineraior, int nDenominator);

Short integers are limited to 16 bits of precision. This limitation frequently results in truncation
problems when doing address arithmetic or graphics calcula
tions. MulDivO deals internally with the values as 32-bit num
bers, reducing truncation errors.

Address arithmetic and graphics calculations.

int, the result of (nNumber ~'nNumeralor) / nDenominator.

int: The value a in the formula (a * b) / c.·

int: The value b in the formula (a * b) / c.

int: The value c in the formula (a * b) / c.

120 It! .Quit

Answer done wrong;: -29
Answer done right = 6000

Figure 14-22. MulDiv()
Example.

The result is not guaranteed to be correct! For example the calculation 20000 * 30000/10000 will
overflow because the multiplication exceeds the 32-bit precision used.

This example shows the calculation (2000 * 3000) / 1000. Done with pure integer math, the values
overflow the 16-bit limit of short integer math. Using MulDivO provides the correct result.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
int
char

hDC ;
n1, n2, n3, nAnswer
cBuf [128] ;

switch (iMessage)
{

/* process windows messages */

case WM_COMMAND: /* process menu items */
swi tch (wParam)
{

case IDf.CDOIT: /* User hit the "Do it" menu item */

:/.i'

n1 = 2000 ;
n2 = 3000 ;
n3 = 1000 ;

-nAnswer = (n1 * n2) / n3 ; /* wrong! */
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10, cBuf, wsprintf (cBuf,

"Answer done wrong = 7.d", nAnswer» ;

664

14. MEMORY MANAGEMENT .."

nAnswer = MulOiv (n1, n2, n3) ; 1* correct *1
TextOyt (hOC, 10, 30, cOuf, wsprintf (cBuf,

"Answer done right = I.d", nAnswer»
ReleaseOC (hWnd, hOC)
brenk;

[Otherprogram lines}

UNLOCKSEGMENT [J Win 2.0 Cl Win 3.0 [J Win 3.1
Purpose

Syntax

Uses

Returns

See Also

Parameters
wSegment

Example

WINExEC
Purpose

Syntax

Description

Uses

Returns

o
2

3

5

6

10

11

12

13

14

Unlocks a memory segment locked with LockSegmentO.

BOOL UnlockSegment(WORD wSegment);

Locked segments are used for special purposes, such as for interrupt handlers.,Any segment
locked in memory by LockSegmentO should be unlocked before the application terminates.

BOOL. Zero if the segment is completely unlocked, nonzero if the s2gment lock-count is not zero.
UnlockSegmentO may have to be called more than once to unlock the segment if LockSegmentO
has been called more than once.

LockSegmentO

WORD: The segment address of the segment to be unlocked. IfwSegment equals-I, the segment
is the program's 4ata segment.

See the example under LockSegmentO.

o Win 2.0 [] Win 3.0 ['J Win 3.1

Loads and executes a Windows or DOS program, or creates a new instance of the program if one
. or more instances are already running.

WORD WmExec(LPSTR lpCmdLine, WORD nCmdS/lOw);

This function allows one Windows application to load and run others. The function can pass the
loaded file a command line, such as a file name to load Oll startup. Unlilw LoadModuleO, Win
ExecO will execute a DOS application.

Useful for creating master applications that run a series of "slave" programs. Also handy for load
ing the standard Windows applications such as NOTEPAD. NOTEPAD can provide instant editing
facilities for applications that need to process simple te>.i files.

WORD. If the value returned is greater than 32, t.he function wa~ sucee~;sful. Otherwise, one ofthe
error codes in Table 14-11 will be returned:

Out of memory.

File not found.

Path not found.

Attempt to dynamically link to a task.

Library requires separate data segments for cae!) \[lsk.

Incorrect Windows version.

Non-Windows .EXE file.

OS/2 application.

DOS 4.0 application.

Unknown .EXE type.

665

WINDOWS API BIBLE

Table 14-11. continued_

15

16

17

18

Attempt to load an .EXE file created for an earlier version of Windows. Only affects standard and
386 enhanced mrdes.

Attempt to load a second .EXE containing multiple, writeable data segrnents.

Attempt to load a second instance linked to a nonshareable DLL.

Attempt to load a protected mode-only application in real mode.

Table 14-11. WinExec() Error Codes.

See Also

Parameters
lpCmdLine

nCmdShow

SW_HIDE

SW_MINIMIZE

SW_RESTORE

SW_SHOW

LoadModuleO will accomplish the same purpose.

LPSTR: A pointer to a null-terminated string containing the name of the application to run. Ifno'
extension is included, .EXE is assumed. If lpCmdLine does not contain a directory path, Windows
will search for the file based on the following search order:

1. In the current directory.

2. . In the Windows directory. This is the directory containing WIN. COM. Use GetWindowsDirec
toryO to determine the path name of this directory.

3. In the Windows system directory. Use the GetSystemDirectoryO function to determine the
path name of this directory.

4. In the directories specified in the PATH envi"ronment variable. This is the PATH command
that is executed from DOS before Windows is loaded. Typical systems set their PATH values
in the AUTOEXEC.BAT file.

5. In the directories mapped in a network.

WORD: Set equal to one of the values in Table 14-12 for a Windows application. For a DOS appli
cation, the .PIF file (if any) will determine how the applicationJs_.run.

Hides the window. The top window on Windows' list is activated ..

Minimizes the window. The top window on Windows' list is activated.

Activates and displays the window (same as SW_SHOWNORMAL).

Activates and displays the window in its current size and position.

SW_SHOWMAXIMIZED Activates and maximizes the window.

SW_SHOWMINIMIZED Activates and minimizes the window.

SW_SHOWMINNOACTIVE ,Displays and minimizes th~ window. The currently active window remains active.

SW _SHOWNA Displays the window, but does not c11ange which window is active.

SW_SHOWNOACTIVE Displays the window, but does not change which window is. active.

SW_SHOWNORMAL Activates and displays the window. If the window was minimized or maximized, the \·,~ndo .. 'J is
retumed to its previous size and position.

Table 14-12. lpCmdLine SJLOwWindow() Styles.

Related Messages Send a \VM_DESTROY message to a running application to remove it from the system.

666 ;

Example

14. MEMORY MANAGEMENT "If

This example runs the NOTEPAD.EXE application and has it load the README.TXT fIle when the
user clicks the "Do It!" menu item. NOTEPAD is closed (sent a WM_DESTROY message) when
the example application's "Quit" menu item is clicked.

long fAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam}
{ .

>

HANDLE hNotePad ;

suitch (iMessage)
{

1* process windows messages *1

)

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
WinExec ("notepad.exe readme.txt",

SW_SHOWNORMAL) ;
break;

'case 10M_QUIT: 1* send end of application message *1

}

hNotePad = FindWindow (NULL, "Notepad - README. TXT")
if (hNotePad)

SendMessage (hNotePad, WM_DESTROY, 0, Ol)
DestroyWindow (hWnd) ;
break;

break;
case WM_DESTROY: 1* stop application *1

'default:

PostQuitMessage (O) ;
break;

return DefWindowProc
1* default windows message processing *1

(hWnd, iMessage, wParam, lParam) ;

r~tur., (OL> ;

667

Bitmaps are blocks of pixel data that can be output directly to a device, such as a video display. You can think of them
as a way to store the pixel data directly from the screen into a memory buffer. Painting bitmaps onto the screen is fast,
much faster than using GDI functions like RectangleO and LineToO. The drawback to bitmaps is that they take up a
lot of memory and/or disk space. Literally, every pixel has to be saved. Prior to the 3.0 version of Windows, there was
only one bitmap format, the device-dependent bitmap (DDB), or "old" bitmap format. Windows 3.0 introduced a
second kind of bitmap called a "Device-Independent Bitmap" (DIB). Both formats have their purposes.

DDB Bitmap Format
The simplest bitmap form is the one for a black and white (monochrome) image. In this case, we can use onenit to
store each pixel's color, 0 for black and 1 for white. A simple outlined rectangle would be stored as -.

0000000000000000

0111111111111110

0111111111111110

0000000000000000

OxOO
Ox7E
Ox7E
OxOD

This example would encode the 64 black and white pixels with eight bytes of data. If the bitmap is copying a color
display, then more than one bit will be required for each pixel. For example, a 16-color VGA display would require four.
bits to encode the color of each pixel. The same rectangle would require 4 * 64 = 256 bits, or 32 bytes of data to encode
the pixels. Typically, bitmaps are not copies of an entire screen or page. Usually, they are small images, such as custom
button faces. In order to make sense out of the pixel data, Windows starts the DDB bitmap data with some header
information. The BITMAP data type is defined in WINDOWS.H as follows: I

C Bitmap Structure
typedef struct tagBITMAP

{

int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;

BYTE bmPLanes;
BYTE bmBit~Pixel;
LPSTR bmBits;

} BITMAP;
typedef BlnlAP
typedef BITMAP ~EAR
typedef BITMAP FAR

1* alllays zero *1
1* width in pixels *1
1* height in pixels *1
1* bytes per line of data *1
1* must be a multiple of 2 *1
1* the number of color planes *1
1* the number of bits per pixel *1
1* far pointer to the bitmap data *1

*PBITI1AP;
*NPBITMAP;
*LPBITMAP;

The BITMAP structure allows two different ways to specify the number of color bits used in the pixel data.
bmPlanes is the number of color planes a device, such as a VGA display, may use. If this value is used, then
brnBilsPixel will be set to one. brnBilsPi,xel is the number of bits per pixel for a device that does not use color planes. '

. .

,668

15. BITMAPS V

If this value is used, bmPlanes will be set to one. The function CreateCompatibleBitmapO will set these color values
to match a physical device, so you do not have to know how colors are stored internally by the device. The actual pixel
data is stored in a memory buffer pointed to by bmBils. This buffer is normally right after the header data in memory,
although it can be located separately, as shown in Figure 15-1.

Using DDB Bitmaps
Pixel Data

The most common way to use bitmaps in a pro
gram is to display bitmaps created with the Figure 15-1. The DDB Bitmap Fonnat in Memory.
SDKPaint application. SDKPaint creates bit-
maps that are stored as disk files. (SDKPaint actually creates DIB bitmaps, which are explained below. This format is
converted automatically to the DDB format when LoadBitmapO is called.) Bitmap files created by SDKPaint can be
added to a program's .RC resource file \vith the BITMAP statement

pen BITMAP pen.bmp

This example loads a file called PEN.BMP and giv~s the bitmap resource the name "pen." This example bitmap
was created 60 pixels wide and 60 pixels tall. With the bitmap loaded as part of the application's resources, it is a
simple matter to bring a bitmap into memory using LoadBitmapO.

HBITMAP hB;tmap ;
hB; tmap = LoadB; tmap (hlnstance , "pen") ;

Pasting the bitmap image on the screen is a little more involved than you might expect. There is no ft.Jlction
called PaintBitmapO. Instead, the application loads the bitmap into a memory object called "Memory Device Con
text," and then paints the memory device context onto the screen. Here is some example code.

HOC hOC, hMemOC ;

hOC = GetOC (hWnd) ; 1* get screen OC *1
hMemOC = CreateCompatibleOC (hOC) ; 1* create memory OC*I
SelectObject (hHemOC, hBitmap) ;
BitBlt (hOC, 10, 10, 60, 60, hHemOC, 0, 0, SRCCOPY)
OeleteOC (hHemOC) ;
ReleaseOC (hWnd, hOC) ;

The function that paints the bitmap onto the screen is BitBltO. It.copies bitmap data from one device context to .
a second device context. To make the bitmap data available through a device context, we first create a device context
in memory that has the same attributes as the display. To do this, use CreateCompatibleDCO. Once we have the
memorY device context, the bitmap can be selected into it with SelectObjectO. Finally, BitBltO is called to do the
actual painting.

Memory Device Contexts
The previous example probably seems a little involved, but t~ere is a payoff. When a bitmap is selected into a memory
device context, you can paint on the memory device context just like you paint on the screen or printer's device
context. All of the standard GDI functions, like LineToO and RectangleO, work just fine painting into the memory
device context. As soon as the painting is done, the memory device context can be copied to the real screen \vith
BitBltO·

Why not just paint directly on the screen? You can, but there are a few situations where it is much better to paint
to the memory device context, and then copy the memory image to the screen or printer. One use is when repeating
patterns. If you have to paint the same object over and over, just paint it once to memory and then copy it to the screen
when you need it. BitBltO and related functions are much faster than using the GDI functions, such as RectangleO.
Another reason to paint on a memory device context is to avoid having the painting operations visible to the user.
Although Windows 3.0 paints quickly, it is frequently possible to see different parts of the image being painted, one
line or rectangle at a time. Avoid this situation by painting to a memory device context, and then using BitBltO to copy
to the screen.

669

WINDOWS API BIBLE-

Stretching and Painting-BitIiulpTmsges
In addition to BitBltO, there are functions for p~ting a bitmap onto a device context that allow the bitmap to be
Rtretched or compressed. StretchBltO does this foi)he DDB bitmap type. If the bitmap is increased in size, extra bits
matching the colors of t1!eir neighbors are a~de , to fIll in the missing bits. This technique is acceptable for modest
enlargements, but will produce ragged edg~ /diagonallines if the exPansion is too large. When a bitmap is reduced
in size, some pixels'have to be eliminated. In itmaps with thin lines, the lines may be eliminated if they happen to fall
on a row or column that is deleted. To save their information during compression, you can set the "stretching mode"
of the device context using SetStretchBltModeO. Three modes are provided. One preserves white pixels, one pre
'serves black (colored) pixels, and one just deletes pixels.

When painting a bitmap onto a device context, you would normally want to cover up any underlying image data.
There are other choices. Windows can do Boolean (binary) logic on both the source and dest~tionpixels, and-have
each pixel painted as a result of these calculations. For example, instead of painting the bitmap directly, the bitmap
pixels can be compared to the destination pixels using anXOR operator. This technique has the advantage of allowing
a bitmap to be erased by painting it twice in the same location.

These Boolean comparisons are called "Raster-Operation Codes." There are 256 possible combinations of the
source and destination data. They are defined in the Windows SDK documentation in Volume 2, Table 11.3. You
probably will never use more that two or three of t.flese possibilities. The most common choices are given names in
WINDOWS.H and are listed in Table 15-1, alongwitn their Boolean logic equivalent. For the Boolean codes, US" is the
source bitmap, "D" is the destination bitmap, and "P" is the currently selected brush (called a "pattern"). The Boolean
operators follow the C language conventions.

BLACKNESS

OSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATlNVERT

PATPAINT

SRCANO

SRCCOPY

,'S~~RASE
SR,ClNVERT

SRCPAINT

WHITENESS

Tums all output black, (0)

Inverts the destination bitmap, (-D)

The _~ource and destination bitmaps are combined with the Boolean AND operator. (P & S)

The source and destination bitmaps are combined with the Boolean OR operator. (-S I D)

Inverts the source bitmap, then copies it to the d~tination. (-S)

Inverts the result ofco!'11bining the source and destination bitmaps using the Boolean OR operator. (-(S
10)) ---

Copies the pattem to the destination. (P)

Combines the destination bitmap with the pattem using the SetStretchBttMode OR o~tor. (P 1\ D)

PI-(SI D)

Combines the source and destination bitmaps with the Boolean AND operator. (S & D)

Copies the source to the destination. (S)

S&-O

Combines the source and destination bitmaps using the Boolean XOR operator. (S 1\ D)

Combines the source and destination bitmaps using the Boolean OR operator. (S I D)

Tums all output white. This is a quick way to blank a device context. (1)

Table 15-1. Raster-Operation Codes.

Problems with the Old-Bitmap FOrlnat
The old bitmap format works well for copying parts of the screen into memory and pasting them back onto other
locations on the screen. Windows provides extensive support for this type of operation, using memory device contexts.
We will examine these later in ,this chapter.

670

15. BITMAPS ..

Problems occur when your program needs to save bitmap data on disk files, and then display it on some other type
of device. The old bitmap header does not have a place to store the colors used in creating the bitmap. There is an
underlying assumption that the bitmap will be displayed on the same type of device, with the same arrangement of
colors on color planes or in color bits. If you display an old bitmap on some other device, the colors may end up-:
completely different. This was not a big issue when EGA and VGA systems were the only devices available. Today, \vith
Super VGA and other expanded color displays becoming widespread, Windows must provide a better way to store
bitmaps so that they will be properly displayed on any device.

Device-Independent Bitmaps (DIB)
The device-independent bitmap, called a DIB, is the Windows 3.0 solution to the shortcomings of the old bitmap
format. The big difference between DIBs and old bitmaps is that DIBs include a table ofthe colors the bitmap will use.
The header format is also more complex. .
. One thing to keep in mind is that the DIB format l~ , . '~ ;'. ,,~~,:~;,~:~~:~~t"·' I ~xel da~ I
18 not a graphics object like a DDB. You cannot se- - _. - . -- --- -
lect a DIB into a device context. Think of the DIB Figure. 15-2 Device-Independent Bitmap (DIB) Format.
specification as a data format. It is a standard way
of storing bitmap data along with the color data needed to reproduce the bitmap image. The DIB format consists of
three sections. The first one is the BITMAPINFOHEADER, shown in Figure 15-2.

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
DWORD biWidth;
DWORD biHeight;
WORD biPlanes;

. WORD biBitCount;

DWORD

DWORD
DWORD

'DWORD
DWORD

DWORD

biCompression;

biSizelmage;
biXPelsPerMeter;
biYPelsPerMeter;
biClrUsed;

1* lower no.
biClrlmportant;

1* size of BITMAPINFOHEADER *1
1* width in pixels *1
1* height in pixels *1
1* always 1 *1
1* color bits per pixel *1
1* must be 1, 4, 8 or 24 *1
(* BI_RGB, BI_RLE8 * I
1* or BI RLE4 *1
1* tota l-bytes .i n image * I
1* 0, or opt. h res. wI
1* 0, or opt. v res. *1
1* normally 0, can set a *1

colors than biBitCount *1
1* normally 0 *1

> BITMAPINFOHEADER;

typedef BITMAPINFOHEADER FAR *LPBITMAPINFOHEADER;
typedef BITMAPINFOHEADER *PBITMAPINFOHEADER; ,

Although similar to the BITMAP header structure, BITMAPINFOHEADER contains some added fields. The
biBitCount element contains the number of color bits per pixel, either 1, 4, 8, or 24 bits. Table 15-2 describes these
values.

4

8

24

A monochrome bitmap. Each bit in the bitmap data will represent one pixel.

A bitmap with 16 colors. Each pixel requires four bits of information in the bitmap data, The four bits
represent an index in the color table.

A bitmap with 256 colors. Each pixel requires a byte of information in the bitmap data. The byte value
represents an index into the color table.

A bitmap with 224 colors. Each pixel requires three bytes of information, representing the RGB (Red,
Green, Blue) color bytes.

Table 15-2. Color Resolutions.

671

WINDOWS API BIBLE

The biCompression element contains a value to define ho\V,the oitmap is compressed (to save space) in the
memory buffer holding the pixel data. If it is set to BeRGB, no compressionl~usea. BCRLE4 is a four bits per pixel
run length encoding compression. BCRLE8 is an"eight bits per pixel compression. "

- biSizelmage is the bitmap size in bytes. Each-i:o~pixels data must terminate on a 32-bit (DWORD) boundary.
If a row of pixels, with the specifIed number of color bits per pixel, does not end at an even 32-bit number, the
remainder is padded with zero bits.

The last four values are not usually used. The biXPelsPerMeter and biYPelsPerMeter values can be used to encode
the bitmap resolution in pixels per meter. Set both to zero if these elements are not needed. biClrUsed specifies the
number of color values in the color table (described below) that are actually used. biClrUsed is normally set to zero,
me!lning that all colors are used. This value must be set to zero if the bitmap is compressed. biClrlmportant specifies
the number of critical colors. biC111mportant is normally set to zero, meaning that all of the colors are important.

Mter the BITMAPINFOHEADER structure, a DIB will contain the color table. This is a set of RGBQUAD data
structures, holding the RGB color for each of the colors used in the bitmap. There will be as many RGBQUAD entries
as there are color choices in the bitmap. For example, if biBitCount is four, there will be 16 color possibilities, requir
ing 16 RGBQUAD elements to define, taking up 16 * 4 = 64 bytes of space, assuming biClrUsed is set to zero. If
biClrUsed is set to a value above zero, the biClrUsed value will be the number of RGBQUAD elements.

typedef struct tagRGBQUAD {
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD;

1* blue intensity, 0 - 255 *1
1* green intensity, 0 - 255 *1
1* red intensity, 0 - 255 *1
1* reserved, set to zero *1

Windows provides an alternative to specifying the bitmap colors using RGB color values. The color table can be an
array of 16-bit unsigned integers, each of which is an index into the currently realized logical palette (see Chapter 12,
Color Palette Control). Using pallet index values allows bitmap colors to change as the palette is changed. Several of
the DIB functions include a wu.'iage parameter that can be set\ to DIB_PAL_COLORS if the color table contains
palette entries. DIB-,-PAL_COLORS informs Windows not to interpret the values as 32-bit RGB colors. You can use
palette colors in a DIB in a memory device context. RGB colors should be used if the bitmap is to be saved to disk,
potentially for use by some other type of device which may have a different color resolution.

WINDOWS.H includes two other structure definitions that are useful in manipulating DIBs. The BITMAPINFO
structure simply combines the first two parts of a DIB into one structure.

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmi Colors(i J;

} BITMAPINFO;
typedef BITMAPINFO FAR *LPBITMAPINFO;
typedef BITMAPINFO *PBITMAPINFO;

Note that the RGBQUAD element bmiColors shows only one 'element. This element is a placeholder, as the num
ber of colors will be greater than one, but it is not fixed for all DIBs. The application using a DIB will allocate a
memory block to hold the entire DIB structure, including all of the colors needed.

The last structure is used only when D IBs are stored to disk. "The BITMAPFILEHEADER structure is the first part "
of a bitmap stored as a disk file. This is the way Windows PaintBrush and SDKPaint applications store their outputs.

typedef struct tagBITMAPFILEHEADER {
WORD bfType;
DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER; \
typedef BITMAPFILEHEADER FAR
typedef BITMAPFILEHEADER

1* always equal to 'BM' *1
1* size of file in DWORDs *1
1* set to zero *1
1* set to zero * I
1* byte offset from BITMAPFILEHEADER to *1
1* bitmap pixel data in the file *1 '

*LPOITMAPFILEHEADER;
*PBITMAPFILEHEADER;

Figure 15-3 shows how the four elements of a complete DIB are arranged in a disk file.

6i2

· 15. BITMAPS Y

Working with Dms
As mentioned, the SDKPainf applica-
tion allows you to create bitmaps and Figure 15-3. Deuice-lrukpendent Bitmap Formatted as a Disk File.
store them to disk. If you examine the
disk file, you will notice that the bitmaps are stored in DIB format. However, if you include bitmap files created with
SDKPaint in an application's resource me, and load them with LoadBit~pQ, the resultant bitmap is in the old DDB
format in memory. What happened?

To maintain compatibility with applications written under Wmdows 2.x versions, LoadBitmapO was set up to
automatically convert DIB bitmap data to the DDB bitmap format. This is convenient, as it means that you can use
both old and new bitmap files as resource data in a Wmdows 3.x application.

The problem with LoadBitmapO's conversion from DIB to DDB format is that you lose the color infonnation
stored with the DIB data. If the bitmap was stored with 256 colors, and is to be displayed on a 256 color system, you
will still be able to use only the 20 reserved system colors when the bitmap is displayed. The way around color informa
tion loss is tQ load the color information from the bitmap's header separately. LoadBitmapQ will not do this for you.
Instead, use FindResourceO, LoadResourceQ, and LockResourceO to return a handle to a locked memory block
containing the BITMAPINFO data structure. As discussed in the previous section, that amounts to a BITMAPINFO
HEADER structure, followed by an array ofRGBQUAD data structures that contain the actual colors.

With access to the color data from the BITMAPINFO data header, the application can create a logical palette that
matches that specified in the bitmap. The steps involved are '
1. Use FindResourceO, LoadResourceQ, and LockResourceO to obtain a handle to a memory block containing the

DIB data.
2. Examine the biBitCount and biClrUsed fi~lds to determine the number of colors stored in the DIB data.
3. Retrieve the color entries from the RGBQUAD array.
4. Create a logical pale.tte wit,h the DIB colors by calling CreatePaletteQ.
5. Select the palette into the device conte~ .. b)' calling SelectPaletteO.
6. Realize the palette by calling RealiieP~etteQ.
17. Call SetDIBitsToDeviceO or StretchDIBitsO to transfer the image to the device' context.

DmExample
'LIsting 15-1 shows an ~xample of loading the color' data from a DIB, and then displaying the bitmap. The example
assumes that the PEN.BMP DIB bitmap file ~e part.ofthe resource script data with a line like
pen BITMAP

The color data from the DIB is read and converted to a logical palette when the WM_CREATE message is pro
cessed. This procedure gets a little involved, as the program has to calculate how many color vatues are stored with
the bitmap. Note that although the logical palette is created while processing the WM_CREATE message, it is not
realized tintil the WM_PAINT message is processed.
, The SetDIBitsToDeviceO function is used to display the bitmap. This function requires a pointer to both the
BITMAPINFO data and the DIB bitmap data. The latter is calculated as an offset from the start of the BITMAPINFO
data:, as 'the resource data loads the bitmap bits right after the end of the color data.

o Listing 15-1. Example Loading a Dm Bitmap
'long FAR PASCAL WndProc (HWND hWnd, unsigned ;Message, WORD wParam, LONG lParall)
(

stati c: HANDLE
'static LPBITMAPINF
LPLOGPALETTE
stati c HPALETTE
LPSTR
int
static int
PAINTSTRUCT

hRes, hfl., l ;
lpBitlD~;Hnfo ;
lpLogPI\(o::th ;
hPalette ;
lpBit3 ;

'; ..L
nColorData ;
ps ,i

,"

WINDOWS API BIBLE

switch (iMessage)
.{

1* process windows messages *1

case WM_CREATE:
1* load DIB, and get handle to its locked memo block *1

hRes = LoadResource (ghlnstance, .
Fi ndResource (ghlnstance, "pen", RT_BITMAP» ;
lpBitmapInfo = (LPBITMAPINFO) LockResource (hRes) ;

1* calculate the number of color data entries in DIB *1
if (lpBitmapInfo->bmiHeader.biClrUsed != 0)
nColorData = lpBitmaplnfo->bmiHeader.biClrUsed ;

else
{

switch (lpBitmaplnfo->bmiHeader.biBitCount)
{

case 1:
nColorData = 2 ; 1* monochrome *1
break;

case 4:

case 8:

nColorData = 16 ;
break;

1* typical vga *'
nColorData = 256 ; 1* 256 colors *1

case .24:

}

break;

nColorData = 0 ;1* rgb encoded for *1
break; 1* every pixel in bitmap *1

1* allocate memory to hold palette *1
hPal = GlobalAlloc (GMEM_MOVEABLE, sizeof (LOGPALETTE) +

(nColorData ~ sizeof (PALETTEENTRY») ;
lpLogPalette = (LPLOGPALETTE) GlobalLock (hPal) ;

1* create the logical palette *1
lpLogPalette->palVersion = Ox300 ; 1* Windows 3.0 *1
lpLogPalette->palNumEntries = nColorData ;

1* load each color into palette fields *1
for (i = 0 ; i < nColorData ; i++)
{

lpLogPalette->palPalEntry [i].peRed =
lpBitmaplnfo.->bmiColors [i].rgbRed

lpLogPalette->palPalEntry [i].peGreen =
lpBitmaplnfo->bmiColors [i].rgbGreen

lpLogPalette->palPalEntry [i].peBlue =
. lpBitmaplnfo->bmiColors [i].rgbBlue

} 1* create the palette *1
hPalette = CreatePalette (lpLogPalette)
GlobalUnlock (hRes)
GlobalUnlock (hPal)
GlobalFree (hPal)
break;

case WM_PAINT:
BeginPaint (hWnd, Ips) ;
SelectPalette (ps.hdc, hPalette, FALSE) ;
RealizePalette (ps.hdC> ; 1* put palette into action *1

1* get handle to DIB, reloading if necessary *1
,hRes = LoadResource (ghlnstance,
FindResource (ghlnstance, "pen", RT_BITMAP» ;
lpBitmaplnfo = (LPBITMAPINFO) LockResource (hRes)

1* find address of the bitmap data *1
lpBits = (LPSTR) lpBitmaplnfo ;
lpBits += (WORD) lpBitmaplnfo->bmiHeader~biSize +
(WORD) (nColorData * sizeof (RGBQUAD» ;

1* dhplay the bitmap on the window's client area *1
SetDIBitsToDevice (ps.hdc, 10, 10,
(WORD) lpBitmaplnfo->bmiHeader.biWidth,
(WORD) lpBitmaplnfo->bmiHeader.biHeight,
0, 0,
0, (WORD) lpBitmapInfo->bmiHeader.biHeight,
lpBits, lpBitmaplnfo, DIB_RGB_COLORS) ;
GlobalUnlock (hRes) ;
EndPaint. (hWnd, Ips) ;

674

}

>

break;
case liM_COMMAND:
swi tch (wParam)
{

1* pr~cess menu items *1

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hPalette)
FreeResource (hRes) ;
PostQuitMessage (0) ;
break;

15. BITMAPS Y

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

Bitmap Function Summary
Table 15-3 summarizes the bitmap functions. The detailed function descriptions are in the next section.

SitSlt

Create Sitmap

CreateBitmaplndirect

CreateCompatibleSitmap

CreateDIBitmap

CreateDISPatternSrush

CreateDiscardableBitmap

GetSitmapSits

GetSitmapDimension

GetDIBits

GetStretchS~Mode

LoadSitmap

PatS~

SetSitmapSits

SetSitmapDimension

SetDISits

SetDlSitsToDevice

SetStretchSltMode

StretchS~

StretchDISits

Copies a bitmap from a memory device context to another device context.

Creates a DDS bitmap based on an array of color bit values.

Creates a DDS bitmap based on data in a SITMAP data structure.

Creates a memory bitmap compatible with a device.

Creates a memory bitmap based on device-independent bitmap (DIS) data.

Creates a pattem brush based on a device-independent bitmap stored in a global memory block.

Creates a DDS bitmap compatible with a deVice. WindOWS can discard the bitm@ data if the
bitmap is not selected. -

Loads the bitmap data into a memory block.

Retrieves two values that were associated with the bitmap by a previous call to
SetBrtmapDimension().

Fills in SITMAPINFO data for a DIS, and/or writes a DIS's pixel data into a memory buffer.

Determines the current bitmap stretching mode of a device context.

Loads a bitmap resource into memory.

Outputs a pattem brush to a device.

Sets the pixel data for a DDS bitmap.

Sets two values that are associated with the bitmap. Thes~ values can be retrieved later using
GetBitmapDimension().

Sets device-independent bitmap (018) pixel data to the data in a memory buffer.

Paints from a device-independent bitmap (DIS) directly on a device context. .

Sets the bitmap stretching mode for the StretchSltO function.

Copies a DDS bitmap from one device context to another, stretching or contracting the image to
fit the destination rectangle.

Paints from a DIS directly on a device context,.stretching and/or compressing the iinage as it is
painted.

Table 15-3. Bitmap Function Summary.
. . !

WINDOWS API BIBLE

Bitmap 'Function Descriptions
Thls section contains descriptions for the bitmap functions.

BITBLT

DeIerIptlOD

pan-ten
hDC ~

X
y

nWidth

nHeight

hSrcDC

XSrc

fflrc

dwRop

BLACKNESS

OSTINVERT

MERGECOPV

MERGEPAINT

Copies a bitmap from a memory device context to another device context.
BOOL BitB1t(HDC knG, intX, int Y, int nWidth, int nHeight, HDC hSrcDC, intXSn:, int fflrc,
DWORD dwRop)j

The bitmap must first be selected into a memory device context, created with
CreateCompatibleDC().Normally, the bitmap is'copied without modification. The bitmap can be
combined with the existing background using any of the raster-operation codes if desired. The
source-bitmap is stretched or compressed to match the dimensions of the destination. Not all
devices support BitBlt().;Use GetDeviceCaps() to check if BitBItO operations are supported.
This isthe standard function for copying a bitmap to a device.

. ,
BOOL. Nonzero if the function was successftll, zero on error.

PatBltO, CreateCompatibleDCO, DeleteObjectO, LoadBitmapO, SelectObject(), GetDevice
CapsO

HDC; The device context handle to receive the bitmap.
int: The logical X coordinate of the upper left comer of the destination rcctaltgIe.
int: The logical Y coordinate of the upper left comer of the destination rectangle.
int: The width, in logical units, of the destination rectangle.
int: The height, in logical units, of the destination rectangle.

HDC: The device context from whiCh the bitmap will be copied. This is normally a memory device
context created with CreateCompatibleDCO. A bitmap is loaded into the me~olY device context
using SelectObjectO. hSrcDC must be NULL if the dwRop parameter does not require a source
bitmap.,~or example, the BLACKNESS, WHITENESS, and DSTINVERT options operate solely on
the backgrouRd of the destination device context.

int: The logical if. cOQrdinateof the upper left comet, in the source bitmap. Norm~ly 0, for the
whole bitmap.' . . .

int: The logical Y coordinate of the upper right comer in the sourCe bitmap. Normally 0, for the
. whole bitmap.· '.

DWORD: One of the raster-operation codes. Fifteen of the 256 possibilities have names defined
in WlNDOWS.H and are listed in Table 15-4. The remainder have hexadecimal codes, specified in
Volume 2, Section 11, Table 11.3 of the Microsoft SDK Reference manuals. These codes deter
mine how the colors of the brush are combined with the existing colors of the background. For
the Boolean codes, "S" is the source bitmap, "D" is the destination bitmap, and "P" is the cur~
rently selected brush (called a "pattern") of the device context. The Boolean operators in Table
15-4 follow the C language conventions.

T ums all output black. (0)

Inverts the destination bitmap. (-0)

The source.and destination bitmaps are combined with the Boolean AND operator. (D & S)

The source and destination bitmaps are combined with the Boolean OR operator. (-S I 0)
I

676

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATlNVERT

PATPAINT

SRCANO

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

15. BITMAPS "

Inverts the source bitmap. then copies it to the destination. (-S)

Inverts the result of combining the source and destination bitmaps using the Boolean OR
operator. (-(8 I 0))

Copies the pattern to the destination. (P)

Combines the destination bitmap with the pattern using the Boolean XOR operator. (p 1\ 0)

PI-(SIO)

Combines the source and destination bitmaps with the Boolean ANO operator. (8 & 0)

Copies the source to the destination. (8)

8&-0·

Combines the source and destination bitmaps using the Boolean XOR operator. (8 1\ 0)

Combines the source and destination bitmaps using the Boolean OR operator. (8 I 0)

Turns all output white. This is a quick way to blank a device context. (1)

Table J 5-4. Raster-Operation Codes.

Example This example (see Figure 15-4) copies a bitmap to the window's
client area when the user clicks the "Do It!" menu item.

The resource script file loads a bitmap file. The PEN.BMP
file is a 60 by 60 pixel color bitmap reated with the Windows
SDKPaint application.

0. GENERIC.HC Resource Script File .
1* gene'rie.re *1

#inelude <windows.h>
#1nelude "generic.h"

generic,
pen

generic
BEGIN

END

ICON
BITMAP

MENU

RENUITEf4 "&00 It! II
MENU ITEM "SQuit",

generic.ieo
pen.bap

X 0',-00 IT
10M_QUIT

\

Do It I 'Quit

/
Figure J 5-'1. BitBlI()
Example.

The "pen" bitmap is loaded Into memory when the WACCREATE message is processed. The
bitmap is copied to, the client area device context when the user clicks the "Do It!" menu item.
Note thai the peD is dele~ from memory as the application exits (WM_DESTROY message
prOcessed)~ ;' , . '

long FAR PASCAL WndProe(HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{' .

static
HOC,

HBnf4AP hBi t.ap ;
hDC, hMe.DC ;

switch (iMessage)
(

1* process windows .essages *1

case WM_CREATE:
hBit.ap = LoadBit.ap (ghlnstance , "pen") ;
break;

ea.e "M_COMMAND: '* proce.s •• nu ite •• *1
.wi teh (wPara.)
(

ea •• lDM_DOn: 1* User hit the "Do it" .enu i te. *1
hDC = GetDC (hWnd) ;

877'

WINDOWS API BIBLE

}

hMemOC = CreateCompatibleOC (hDC) ;
S~lectObje~t (hMemOC, hBitmap) ;
BitBlt (hDC, 10, 10, 60, 60, hMemOC, 0, 0,

SRCCOPY); .
DeleteDC (hMemDC) ;
ReleaseOC (hWnd, hOC) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hBitmap) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

CREATEBITMAP • Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nWidth

uHeigkt

nPlanes

nBitCount

Example

Creates a DDB bitmap based on an array of color bit values.

HBITMAP CreateBitmap(int nWidth, int nHeight, BYTE nPlanes, BYTE nBitCount, LPSTR
IpBits)j .

This function creates a bitmap based on the array of color bit data pointed to by lpBits.

Not often used. Normally, bitmaps are created using the SDKPaint application and loadea as part
of the application's resource data. See LoadBitmapO for an example.

HBITMAP, the bitmap handle. NULL on error.

CreateBitmaplndirectO, SelectObjectO, DeleteObjectO, SetBitmapBitsO

. int: The width, in pixels, of the bitmap.

int: The height, in pixels, of the bitmap.

int: -The~umber of color planes in the bitmap. This is used for devices (such as video boards) that
specify colors with color planes. Each plane wiJl need nWidlh * nHeight bits.

int: The number of color bits per display pixel. Either nPlanes
ornBitCount will be set to one in all cases. For black and white
bitmaps, both are set to one.

LPSTR: A pointer to an array of byte values containing the
pixel data. For black and white bitmaps, 0 is for black and. 1 is
for white. For color bitmaps, the colors are device dependent ..
IpBits can be set to NULL. Use SetBitmapBitsO to initialize
the bitmap data.

This example (see Figure 15-5) paints a small bitmap at coor
dinates 10,10 in the upper left corner of the window's client
area when the user clicks the "Do It!" menu item.

. Do It I Quit

Figure 15-5. CreateBitmap()
Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HBITMAP hBitmap;
HDC hOC, J\MemOC ; .
static BYTE BitMapBits [] = { 1* define bitmap pattern*1

OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO,

678

OxOf, Oxff, Oxff, OxfO,
OxOf, Ox7f, Oxfe, OxfO,
OxOf, Ox7f, Oxfe, OxfO,
OxOf, Ox7f, Oxfe, OxfO,
OxOf, OxOO, OxOO, OxfO,
OxOf, Ox7f, Oxfe, OxfO,
OxOf, Ox7f, Oxfe, OxfO,
OxOf, Oxff, Oxff, OxfO,
OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, oxOO, OxOO }

15. BITMAPS Y

switch (iMessage)
{

1* process windows messages *1

}

case WM_CREATE:
hBitmap.= CreateBitmap (32, 12, 1, 1, BitMapBits)
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hDC) ;
SelectObject (hMemDC, hBitmap) ;
BitBlt (hDC, 10, 10, 32, 12, hMemDC, 0, 0, SRCCOPY)
DeleteDC (hMemDC) ;
ReleaseDC (hWnd, hDC) ;
break;

case IDM_QUIT: 1* send end of application message *'.1
DestroyWindow (hWnd) ; .
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hBitmap) ;
PostQuitMessage (0) ;
break;

defaul t: 1* defaul t windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;
}

CREATEBITMAPINDIRECT • Win 2.0 • Win 3.0 • Win 3.1
Purpose'

Syntax

Description

Creates a DDB bitmap based on data in a BITMAP data structure.

HBITMAP CreateBitmapIndirect(BlTMAP FAR * lpBitmap)j

The BITMAP data structure is defined in WINDOWS.H as

typedef struct tagBITMAP
{ .

int
int
int
int
BYTE
BYTE
LPSTR

} BITMAP;

bmType;
bmWidth;
bmHeight;
bmWidthBytes;
bmPlanes;
bmBitsPixel;
bmBits;

1* set t~ zero *1
1* pixel width *1
1* pixel height *1
1* no bytes per row *1
1* no. color plains;*1
1* color bits/pixel *1
1* pointer to bit data *1

typedef BITMAP
typedef BITMAP NEAR
typedef BITMAP FAR

*PBITMAP;
*NPBITMAP;
*LPBITMAP;

Fill in this data structure and call CreateBitmaplndirectO as an alternative to calling Create
BitmapO. The bmBits element should be set to point to an array of byte values containing the
bitmap data. For black and white bitmaps, zero is black and 1 is white. For color bitmaps, the
colors are device dependent.

/
/ 679

WINDOWS API BIBLE

Uses

Returns
See Also

Parameters
IpBitmap

Example

Not often used. Normally, bitmaps are created using' th~
SDKPaint application, and loaded as part of the application's
resource data. See LoadBitmapO for an example.
HBITMAP, the bitmap handle. NULL on error.

CreateBitmapO, SelectObjectO, DeleteObjectO

BITMAP FAR *: A far pointer to a bitmap data structure
(shown above).

This example, as shown in Figure 15-6, paints a small, rectan-

Do It I Quit

Figure 15-6. CreateBitmap
Indirect() Exampk.

gular bitmap in the upper left corner of the window's client area when the user clicks the "Do It!"
menu item. ;'

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ ,

static
HDC
BITMAP
static

HBITMAP hBi tmap ;
hDC, hMemDC ;
bi tmap ;

BYTE BitMapBits [] = {
OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO,
OxOf, Oxff, Oxff, OxfO,
OxOf, Oxff, Oxff,OxfO,
OxOf, Oxff, Oxff, OxfO,
OxOf, Oxff, Oxff, OxfO,
OxOf, Oxff, Oxff, OxfO,
OxOf, Oxff, Oxff, O~fO,
OxOf, Oxff, Oxff, OxfO,
OxOf, Oxff, Oxff, OxfO~
OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO } ;

1* define bitmap pattern *1

switch (iMessage)
{

1* process wi ndows messages *1

case WM_CREATE:
bitmap. bmType = 0 ;
bitmap.bmWidth = 32 ;
bitmap.bllHeight = 12 ;
bUmap.bmWidthBytes = 4 ;
bitmap.bmPlanes= 1 ;
bitllap.bmBitsPixeL = 1 ;
bitmap.bmBits = (LPSTR) BitMapBits ;
hBitmap = CreateBitmaplndirect (

break;
case WM_COMMAND:

(BITMAP FAR *) &bi tmap) ;

1* process menu items *1
swi tch (wParam)

case IDM_DOIT: '1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hDC) ;
SelectObject (hMemDC, hBitmap) ;
BitBLt (hDC, 10, 10, 32, 12, hMemDC, 0, 0,

SRCCOPY) ;
DeleteDC (hMemDC) ;
ReleaseDC (hWnd, hDC} ;
break;

case IDM_QUIT: 1* send end of application .essage'.

)
break .;

DestroyWindow(hWnd) ;
break ;' . '. \',

clle W',-DESTROY: 1* stop appli cation *1
DeLeteObject (hBit.ap) ;

680

>

PostQuitMessage (0) ;
break;

15. BITMAPS ...

defauLt: 1* defauLt windows message processing *1
return DefW;ndowProc (hWnd, ;Message, wParam, LParam) ;

)
return (OL> ;

CREATECOMPATmLEBITMAP II Win 2.0 II Win 3.0 ,. Wm 3.1
Purpose Creates a memory bitmap that is compatible with a device.

Syntax HBITMAP CreateCompatibleBitmap(HDC hDC, int nWidth, int nHeight)i

Deseription

Uses

Returns

See Also

Parameters
kDC

nWUlth

Bsample

This function creates a memory bitmap with the same number of color panes t..ld the same num
ber of color bits per pixel as the device specified by hDC. Bitmap can then be selected into a
memory device context and drawn upon.

The bitmap memory area is not initialized when created. It will be filled with random bytes
and can be converted to a solid color by using a GDI function, such as Rectangle() or PatBlt(), to
paint the memory device context.

Memory device contexts and compatible bitmaps allow an application to draw a complex figure in
memory, and then quickly copy it to a physical device using BitBU() and similar functions. This
technique can be more attractive than letting an image appear in sections on the screen. It is also
an efficient way to draw small repeating patterns (see the following example). .

HBITMAP, the handle of the bitmap created. Returns NULL on error.

CreateCompatibleDC(), CreateDiscardableBitmapO

HDC: The device context handle for the physical device with
which the bitmap is to be compatible. Typically, this is a handle
to the window's client area device context, retrieved by either
GetDC() or BeginPaintO.
int: The width, in pixels, to which the bitmap is to be initial
ized.

int: The height, in pixels, to which the bitmap is to be initial
ized.

This example, shown in Figure 15-7, draws three identical pat·
terns on the window's client area when the user clicks the "Do
It!" m~nu item. Rather than use the GDI painting functions for
each of the drawings, the application draws ihe pattern to a
memory device context containing a bitmap compatible with
the screen. As soon as that pattern is painted to the memory
device context, the pattern can be copied to the window's cli
ent area efficiently using BitBltO. Note that similar efficien
cies could have been obtained using a metafile.

Do It! Quit

Figure 15-7. CreateCom
patibleBitmap() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORI)....wParam, LONG LParam)
(. -

static HBITMAP hBitmap;.·
HDC hDC, hMelllDC ;
int ; ;

switch (1"es5age)
(

case WM_COMMAND:
switch (wParam)

681

1* process wi ndows messages *1

l*proce5s menu items *1

WINDOWS API BIBLE .

{

case IDM_DOIT: 1* fi rst create a memory dc *1
hDC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hDC) ;
hSitmap = CreateCompatibleBitmap (hDC,

50, 50) ;
1* paint on memory device context *1

SelectObject (hMemDC, hBitmap) ;
SelectObject (hMemDC, GetStockObject (BLACILBRUSH»
Rectangle (hMemDC, 0, 0, 50, 50) ;
SelectObject (hMemDC, GetStockObject (WHITE_BRUSH»
Ellipse (hMemDC, 0, 0, 50, 50) ;
Rectangle (hMemDC, 5, 5, 45, 45) ;
Ellipse (hMemDC, 10, 10, 40, 40) ;
SelectObject (hMemDC, GetStockObject (BLACK_BRUSH»
Rectangle (hMemDC, 15, 15, 35, 35) ;

. 1* now copy the memory device context to screen *1
for (i = 0 ; i < 3 ; i ++)

BitBl t (hDC, 0, 50 * i, 50, 50 + (50 * i),
hMemDC, 0, 0, SRCCOPY) ;

DeleteDC (hMemDC> ;
DeleteObject (hBitmap) ;
ReleaseDC (hWnd, hDC) ;
brea k ;

/Otherprogram lines}

CREATEDIBITMAP o Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Creates a memory DDB bitmap based on device-independent bitmap (DIB) data.

HBITMAP CreateDIBitmap(HDC hDC, LPBITMAPINFOHEADER lplnJoHeader, DWORD
dwUsage, LPSTR lplnitBits, LPBITMAPINFO lplnitInj'o, WORD wUsage)j

The CreateDIBitmap() function creates a memory DDB bitmap based on data in several data
structures. The primary structure is BITMAPINFO, defined in WINDOWS.H as

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1J;

} BITMAPINFO;
typedef BITMAPINFO FAR *LPBITMAPINFO;
typedef BITMAPINFO *PBITMAPINFO;

BITMAPINFO contains two other structures, BITMAPINFOHEADER and RGBQUAD, also defined
in WINDOWS.H. '

C The BITMAPINFOHEADER Structure
typedef struct

DWORD
DWORD
DWORD
WORD
WORD

DWORD

DWORD
DWORD .
DWORD
DWORD

DWORD

tagBITMAPINFOHEADER{
biSize;
biWidth;
biHeight;
biPlanes;
biBitCount;

1* size of BITMAPINFOHEADER *1
1* width in pixels *1

biCompression;

biSizelmage;
biXPelsPerMeter;
biYPelsPerHeter;
biClrUsed;

1* lower no.
biClrlmportant;

1* height in pixels *1
1* always 1 *1
1* color bits per pixel *1
1* must be 1, 4, 8 or 24 *1

1* BI_RGB, BI_RLE8 *1
1* or BI_RLE4 *1

1* total bytes in image *1
1* 0, or opt. h res. *1
1* 0, or opt. v res'. *1

1* normally 0, can set a * 1
colors than biBitCount *1

1* norma lly 0 *1
} BITMAPINFOHEADER;

typedef BITMAPINFOHEADER FAR *LPBITHAPINFOHEADER;
typedef BITMAPINFOHEADER *PBITMAPINFOHEADER;

682

15. BITMAPS ~

C RGBQuad Structure
typedef struct tagRGBQUAO {

BYTE rgb9luei
BYTe rgbGreeni
BYTE rgbRed;
BYTE rgbReservedi

} RGBQUAOi

Uses

Retums

See Also

Parameters
hDG

IpbifoHeader

dwUsage

IplnitBits

IplnitInjo

wUsage

Example

There are two ways to use CreateDIBitmapO. If dwUsage is set to NULL, an uninitialized DIB
bitmap is created. This is the first step in using the DIB with a memory device context. If dwUsage
is set to CBM_INIT, CreateDIBitmapO is used to create a complete DDB bitmap. Data is passed
to the function for all color values and header settings.

HBITMAP, a handle to the bitmap created. NULL on error.

GetDIBitsO, CreateBitmapO '

HDC: The device context of the physical device to which the bitmap will be mapped. Typically,
this is the window's client area device ~onteA1;, retrieved \vith either GetDCO or BeginPaintO.

LPBITMAPINFOHEADER: A pointer to a BITMAPINFOHEADER data structure. The values in
this structure must be set before CreateDIBitmapO is called. These values determine the size
and color resolution of the bitmap. .

DWORD: Determines ifCreateDIBitmapO creates an initialized oruninitialized bitmap. If NULL,
the bitmap is created uninitialized, and the following three parameters should be set to NULL. If
dwUsage equals CBl\CINIT, the bitmap is initialized based on the data pointed to by lplnitBits
and lplnitlnjo.

LPSTR: A pointer to an array of bitmap pixel color values. The format will depend on the color
resolution of the device, as specified in the BITMAPINFO data pointed to by lplnitInjo.

LPBITMAPINFO: A pointer to a BITMAPINFO data structure containing the data format used in
IplnitBits.

WORD: Specifies if the brniColors/ J fields in the lplnitlnJo
data structure contain explicit RGB values, or if they are 16-bit
iridexes, to the currently realized logical palette.
Dffi_PAL_COLORS specifies palette e~tries. DIB_RGB_COLORS
specifies explicit colors.

This example paints a small globe image on the window's cli
ent area when the user clicks the "Do It!" menu item. The im
age shown in Figure 15-8 is created by painting on a memory
device context containing a 50 by 50 pixel DIB bitmap. The
bitmap is then copied to the screen using BitBltO.

Figure 15-8. GreateDIBit
map() &rarnple.

long FAR PASCAL WndProc (HWNO hWnd, unsigned.iMessage, WORD wParam, LONG lParam)
{

BlTMAPlNFOHEADER
BlTMAPlNFOHEAOER FAR
HBITMAP
HOC
HANDLE

switch (iMessage)
{

case WM_COMMANO:
swi tch (wParam)
{

cas e I 0 M_D 0 IT :

bi i
*lpbi ;
hBitmap ;
hOC, hMemOC ;
hOlB i

1* process windows messages *1

1* process menu items *1

hOC = GetOC (hWnd)

683

WINDOWS API BIBLE

1* initialize BITMAPINFOHEADER data *1
bi.biSize = sizeof (BITMAPINFOHEADER) ;
bi .biWidth = 50 ; 1* 50 by 50 bitmap *1
bi.biHeight = 50 ;
bi .biPlanes = 1 ;
bi .biBitCount = 4 ; 1* 16 colors on screen *1
bi .biCompression = BI_RGB ; 1* no compression *1
bi.biSizelmage = 0 ;
bi.biXPelsPerMeter = 0 ;
bi .biYPelsPerMeter = 0 ;
bi .biClrUsed = 0 ;
bi .biClrlmportant = 0 ;

1* create uninitialized DIB bitmap *1
hBitmap = CreateDIBitmap (hDC, &bi, OL,

NULL, NULL, 0) ;
1* allocate memory for BITMAPINFOstruct *1

hDIB = GlobalAlloc (GHND,
sizeof (BITMAPINFOHEADER) +
16 * sizeof (RGBQUAD» ;

lpbi = (BITMAPINFOHEADER FAR *)
GlobalLock (hDIB) ;
1* copybi to top of BITMAPINFO *1

*lpbi = bi ;
1* use GetDIBitsO to init bi struct data *1

GetDIDits (hDC, hBitmap, 0, 50, NULL,
(LPBITMAPINFO) lpbi, OIB_RGB_COLORS)

GlobalUnlock (hDIB) ;
I~ create memory device context *1

hMemDC = CreateCompatibl£DC (hOC) ;
1* select DIB bitmap into device context *1

SelectObject (hMemOC, hBitmap) ; .
1* paint on memory device context *1

SelectObject (hMemDC, GetStockObject
(BLACK_BRUSH» ;

Rectangle (hMemDC, 0, 0, 50, 50) ;
SelectObject (hMemDC, GetStockObject

(WHITE_BRUSH» ;
Ellipse (hMemDC, 0, 0, 50, 50) ;
Ellipse (hMemDC, 10, 0, 40, 50) ;
Ellipse (hMemOC, 20, 0, 30, 50) ;

1* copy the memory dc to screen *1
BitBlt. (hDC, 0, 0, 50, 50, hMemDC,·O, 0,

SRCCOPY) ;
OeleteDC (hMemDC) ;
GlobalFree (hOIB) ;
ReleaseOC (hWnd, hOC) ;
break;

IOtherprogram lines]

CREATEDmPATl'ERNBRUSH o Win 2.0 III Win 3.0 mWin3.l
Purpose

s,ntax
Deserlpdon

useS

Returns

See Also

Creates a pattern brush based on a device-independent bitmap stored in a global memory block.

HBRUSH CreateDmPatternBrush(HANDLE kPackedDIB,WORD wUsage);
This function_works by passing a handle to a memory block containing both the BITMAPINFO
structure data and the pixel data for the bitmap. The memory block is read and converted to a .
brush pattern that can be selected into a device context for painting.

Using a DIB pattern brush provides a way to ensure that the colors will not end up.drastically
. - different when displayed on a different device. See the example program at the beginning of this

chapter for how to use the DIB color data to realize a logical palette.
HBRUSH, a handle to the brush created. NULL on error.

GetDIBitsO, CreateDIBitmapO

684

15. BITMAPS ~

Pnrmllcters
hPackedDIB GLOBALHANDLE: The handle of a global memory block (allocated with GlobalAllocO) that

contains the bitmap data. The memory block must contain an initialized BITMAPINFO data struc
ture at the beginning, followed immediately by the bitmap bytes. The size of the bitmap data will
depend on the color resolution and the height/width of the bitmap. Each line of the bitmap data
must terminate on an even DWORD address (an even 32 bits). This requirement will extend the
size of the memory area needed if the bitmap size (width * color bits) does not end on an even 32-
bit boundary.

wUsage

Example

WORD: Specifies whether the bmiColors/J fields at the end of the BITMAPINFO data structure
contain explicit RGB color values, or if they are indexes into the currently realized logical pal
ette. wUsage can be either DIB_PAL_COLORS for palette colors, or DIB_RGB_COLORS for ex
plicitRGB colors.

This example, illustrated ~ Figure 15-9, creates a device-inde
.pendent bitmap, and uses It as a brush to paint a square area.
The DlB is created uninitialized, and then painted in a memory
device context. Once painted, the pixel data is copied to the
end of the memory butTer containing the BITMAP INFO data.
The memory block containing both the BITMAPINFO data fol-
lowed by the bitmap pixels is read by CreateDlBPattern-
BrushO to create the pattern brush. Once the pattern is
selected into the device context, painting a rectangle results
in the area being nIled with the DIB pattern.

Note that the ALIGNLONG macro is defined to help com
pute even DWORD address lengths for. the storage of the
bitmap data. For simplicity, this example assumes a IS-color
device context. This example also omits error checking for
memory allocation.

Do Itl- Quit

Figure 15-9. CreateDIB
PatternBrush() Example.

#define ALIGNLONG(i)
"define WIDTH
"define HEIGHT
"define COLORBITS

«i+3>14*4)
8
8
4

long FAR PASCAL WndProc (HWND hWnd, un~igned iMessage, WORD wParam, LONG lParam)
{

static BITMAPINFOHEADER bi ;
LPBITMAPINFOHEADER
HBITMAP
HDC
HANDLE
HBRUSH
LPSTR-

switch (iMessage)
{

case W"_COMI1AND:

lpbi ;
hBi tmap ;
hDC, hMemDC ;
hDIB ;
hDIBrush ;
lpstBi tmap ;

1* process windows messages *1

swi tch (wParam)
{

1* proc:ss menu items *1

case I DfCDO IT :
hDC = GetDC (hUnd) ;

1* initialize BITMAPINFOHEADER data *1
bi.b Size = sizeof (BITMAPINFOHEADER) ;
bLb Width = WIDTH; 1* 8 by 8 bitmap *1
bi.b Height = HEIGHT;
bi.b Planes = 1 ;
bi.b Bi tCount = COLORBITS ; 1* 16 colors *1

- 685

WINDOWS API BIBLE

bi .b;Compression = 8r_RGB ;
bi.biSizelmage =

(ALIGNLONG«WIOTH * COLOR8ITS)/8) * HEIGHT);
bi .b;XPclsPerMeter = 0 ;
bi .biYPelsPe"rMeter = 0 ;
bi .biClrUsed =" 0 ;
bi.biClrlmportant ~ 0 ;

1* create uninitialized 018 bitmap *1
hBitmap = CreateOI8itmap (hOC, &bi, OL, NULL,

NULL, 0) ;
1* allocate memory for BITMAPINFO structure *1

hOIB = GlobalAlloc (GHNO, sizeof (BITMAPINFOHEAOER) +
16 * sizeof (RGBQUAO) +
(ALIGNLONG«WIDTH * COLORBITS)/8) * HEIGHT»;

lpbi = (BITMAPINFOHEAOER FAR *) GlobalLock (hOIB) ;
1* tricky way to copy bi to top of BITMAPINFO *1

* lpbi = bi ; " "
1* use GetDIBitsO to init lpbi struct data *1

GetDIBits (hOC, hBitmap, 0, 50, NULL,
(LPBITMAPINFO) lpbi, OIB_RGB_COLORS)

1* create memory device context *1
hMemDC = CreateCompatibleOC (hOC) ;

1* select OIB bitmap into device context *1
SelectObject (hMemOC, hBitmap) ;

1* paint"on memory device context *1
Se l ectObj ect (hMe"mOC, GetStockObj ect (BLACK_BRUSH»
Rectangle (hMemDC, 0, 0, WIDTH, HEIGHT) ;
SelectObject (hMernDC, GetStockObject (WHITE_BRUSH»
Ellipse (hMemOC, 0, 0, WIDTH, HEIGHT) ;

1* set poi nter to bitmap I s bit data * I
lpstBitmap = (LPSTR) lpbi +

(WORD) sizeof (BITMAPINFOHEAOER) +
(16 * sizeof (RGBQUAO» ;

GetOIBits (hDC, hBitmap, 0, HEIGHT, lpstBitmap,
(LP8ITMAPINFO) lpbi, i>IB_RGB_COLORS)

1* now use OIB as pattern brush *1
hOIBrush = CreateOIBPatternBrush (hOIB,

" OIB_RGB_COLORS) ;
SelectObject (hOC, hOIBrush) ;
PatBlt (hOC, 0, 0, 100, 100, PATCOPY) ;

GlobalUnlock (hOIS) ;
GlobalFree (hOIB) ;
OeleteOC (hMemOC) ;
ReleaseOC (hWnd, hOC)
break;

{Other program lines J

CREATEDISCARDABLEBITMAP ED Win 2.0 CJ Win 3.0 m Win 3.1
Purpose

Syntax

Description

Creates a DDB bitmap that is compatible with a device. Windows can discard the bitmap data if
the bitmap is ~ot selected.
HBiTMAP CreateDiscardableBitmap(HDC h:DC, int nWidth, int nHeight)i
This function is identical eo CreateCompatibleBitmapO, except that the memory for the bitmap
is discardable. CreateDiscardableBitmap() creates a DDB bitmap with the same number of color
panes and the same number of color bits per pixel as the device specified by hDC. The bitmap can
then be selected into a memory device context and drawn upon.

The bitmap memory area is not initialized when created. It will be fIlled with random bytes
and can be converted toa solid color by using a GDI function,' such as RectangIeO, to paint the
memory device context. , ".'\ \.

Windows will only discard the bitmap data if the bit~ap is not selected into a device context.
The application can test wh~ther the bitmap h~ been discar~ed by determin~g if SelectObjectO

686

Uses

Returns

See Also

Parameters
hDC

nWidth

nHeight

Example

15. BITMAPS V

returns NULL when an attempt is made to select the bitmap. In that case, the bitmap handle
should be deleted with DeleteObjectO, and the bitmap re-created and redrawn.

Memory device contexts and compatible bitmaps allow an application to draw a complex figure in
memory, and then quickly copy it to a physical device using BitBltO and similar functions. This
technique can be more attractive than letting an image appear in sections on the screen. It is also
an efficient way to draw small repeating patterns (see the following example). Having the
memory for tb.e b!tmap discardable gives Windows the maximum freedom to use available
memory.

HBITMAP, the handle of the bitmap created. Returns NULL on error.

CreateCompatibleDCO, CreateCompatibleBitmapO

.
HDC: The device context handle for the physical device \vith which the bitmap is to be compat-
ible. Typically, this is a handle to the window's client area device context, retrieved by either
GetDCO or BeginPaintO.
int: The width, in pixels, to which the bitmap is to be initialized.

int: The height, in pixels, to which the bitmap is to be initial
ized.
This example draws nine identical patterns on the window's
client area when the user clicks the "Do It!" menu item. (See
Figure 15-10.) Rather than use the GDI painting functions for
each of the drawings, the application draws the pattern to a
memory device context containing a bitmap compatible with
the screen. As soon as that pattern is paiI!ted to the memory
device context, the pattern can be efficiently copied to the
window's client area using BitBltO.

This code fragment tests to see if the discardable bitmap
is still valid using SelectObjectO. In ihis case, the bitmap is
redrawn every time the "Do It!" menu item is selected. A more
complex program would draw the bitmap in a separate func
tion. This function would be called at the beginning of the pro
gram, and again later if the bitmap was discarded and needed
to be re-created and redrawn.

Figure 15-10. OreateDis
cardableBitmap() Example.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ .

static
HDC
int

HBITMAP hBi tmap ;
hDC, hMemDC ;
i, j ;

switch (iHessage)
<

1* process wi ndows messages *1

ca:se WM_CREATE:
hDC = Get DC (hWnd) ;
hBitmap = CreateDiscardableBitmap (hDC, 50, 50)
ReleaseDC (hWnd, hDC)
break;

case WH_COMMAND: 1* process men_u items *1
switch (wParam)
<
case IDM_DOIT: 1* first create a memory dc *1

hDC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hDC) ;
if (SeLectObject (hMemDC, hBitmap) == NULL)
<

DeLeteObject (hBitmap> ;

687

WINDOWS API BIBLE

)

}

}

hBitmap = CreateDiscardableBitmap
(hDC, 50, 50) ;

_ 1* pa i nt on memory d~vi ce context *1
Rectangle (hMemDC, 0, 0, 50, 50) ;
SelectObject (hMemDC, GetStockObject

(BLACK_BRUSH» ;
Ellipse (hMemDC, 0, 0, 50, 50) ;
SelectObject (hMemDC, GetStockObject

(WKITE_BRUSH» ;
Rectangle (hMemDC, 5, 5, 45, 45) ;
SelectObject (hMemDC, GetStockObject

(BLACK_BRUSH» ;
Ellipse (hMemDC, 10, 10, 40, 40) ;
SelectObject (hMemDC, GetStockObject

(WHITE_BRUSH» ;
Rectangle (hMemDC, 15, 15, 35, 35) ;

1* now copy the memory dc to screen *1
for (j= 0 ; j < 3 ; j++)
{

}

for (i = 0 ; ; < 3 ; i++)
{

}

BitBlt (hDC, 50 * j, 50 * i,
SO + (SO * j),
SO + (50* i), hMemDC,
0, 0, SRCCOPY) ;

DeleteDC (hMemDC) ;
ReleaseDC (hWnd, hDC)
break;

case 10M_QUIT: 1* send end of applicaHon message *1,
DestroyWindow (hWnd)
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hBitmap)
PostQuitMessage CO) ;
break;

defaul t: 1* defaul t windows message processing *1
return DefWindowProc (hWnd,iMessage,wParam, lParam) ;

return COL) ;

GETBITMAPBITS • Win 2.0 • Win 3.0 • Win 3.1
Purpose,

Syittax
Description

Uses,

Returns
See Also

Parameters
hBitmap

I

Loads the DDB bitmap data into a memory block.
DWORD GetBitmapBits(HBITMAP hBitmap, LONG dwCount, LPSTR IpBits)j

DDB Bitmaps consist of a header of type BITMAP, and a block of data that contains the color data
for each pixel in the bitmap. GetObjectO is used to retrieve the data in the BITMAP header.
GetBitmapBitsO is used to retrieve the pixel data. The size of the memory block can be computed
from the BITMAP data retrieved with GetObject. Use the formula '
dwCount = (DWORD) bm.bmWidthBytes * bm.bmHeight * fJm.bmPlanes ;

Used in cases where the application needs to selectively change some of the color pixels in the
DDB bitmap. For example, a bitmap used as a button can be copi~d and modified to create a
similar bitmap showing the button in a depressed or activated state.

DWORD, the number of bytes copied. Zero on error.

SetBitma~BitsO, GetObjectO

HANDLE: The handle of the bitmap.

688

dwCount

lpBits

Example

15. BITMAPS 'Y

DWORD: The number of bytes to copy to the lpBils buffer. Use the dwCount formula to compute
this number.

LPSTR: A pointer to a memory block to hold the bitmap data. Normally, this block is allocated
using GlobalAllocO.

This example loads a bitmap from the application's resource data when the WM_CREATE mes
sage is processed. The bitmap's data is loaded into a temporary global memory block. Each byte of
the bitmap data is examined. White pixels are converted to
black, and black pixels to white. Colored pixels are not ~. . . generic r:-v.
changed. The modified bitmap data is then written back to the Qo It I .Quit
bitmap, and the global memory block freed. The bitmap is dis- t---~------f
played as a stretched image on the window's client area when
the user clicks the "Do It!" menu item. Although not visible in
Figure 15-11, the colors on the interior of the pen are not
changed by the transformation. Note that this example as
sumes eight color bits per pixel. The program logic would need Figure 15-11. GelBilmap-
to be expanded to cover other color resolutions. Bits() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
HDC
int
BITMAP
DWORD
HANDLE
LPSTR ~

HBITMAP hBi tmap ;
hDC, hMemDC ; .
nStrl10de ;
bm ;
dwBitmapSize, dWCount
hMem ;
lpMem, lpData ;

switch (iMessagc)
{

1* process windows messages *1

case WM_CREATE:
hBi tmap = LoadBi tmap (ghlnstance , "pen") ;
GetObject (hBitmap, sizeof (BITMAP), (LPSTR) &bm) ;
dwBitmapSize = (DWORD) bm.bmWidthBytes * bm.bmHeight *

. bm.bmPlanes;
hMem = Global~lloc (GMEH_MOVEABLE, dwBitmapSize)
lpMem = GlobaLLock (hMem) ;
GetBitmapBits (hBitmap, dwBitmapSize, lpMem) ;
lpData = lpMem ;
for (dwCount = 0 ; dwCount < dwBHmapSize ; dwCount++)
{

}

if (Oxff==:(BYJE} *lpData)
*lpData = 0 ;

else if (0 == (BYTE) *LpData)
*lpData = Oxff ;

lpData++ ;

1* change white to bLack *1

1* change black to white *1

SetBitmapBits (hBitmap, dwBitmapSize, lpMem) ;
GlobaLUnLock (hMem)
GlobaLFree (hMem)
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hDC) ;
SetStretchBLtMcde (hDC, COLORONCOLOR) ;
SelectObject (hMemOC, hBitmap) ;
StretchBLt (hDC, 10, 10, 200, 80, hMemDC,

0, 0, 60, 60, SRCCOPY)
DeLeteDC (hMemDC) ;
ReleaseDC (hWnd, hOC) ;

689

WINDOWS API BIBLE

break;
case 10M_QUIT: 1* send end of application message *1

DestroyWindow (hWnd)
break;

}

break;
case WM_OESTROY: 1* stop application *1

OeleteObject (hBitmap)
PostQuitMessage (0) ;
break;

default:- 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL)
}

GETBITMAPDlMENSION • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hBitmap

Example

Retrieves two values that were associated with the bitmap by a previous call to SetBitmap
DimensionO·
DWORD GetBitmapDimension(HBITMAP hBitmap)j

The SetBitmapIDimensionO function set~ two integer values, X and Y, which are associated with
the bitmap.Th~se values do not affect the bitmap. They are provided so that an application can
store dimensiortal data with the bitmap. This is preferable to using static or global variables to
store the widthtnd height of the bitmap. The Windows SDK documentation suggests using the
MM_LOMETRI system of units (0.1 mm per unit) to specify the bitmap size. Because the values
are not used in ainting the bitmap, any system of units (including device units - pixels) can
be used., ! \

Handy ~ an app~ication uses a number of bitmaps that are different sizes.

DWORD. The low-order word contains the X value. The high- '
order word contains the Yvalue. IfSetBitmapDimensionO was '
not called previously to set these values, zero is returned.

SetBitmapDimensionO

HBITMAP: The handle of the bitmap.

This example, which is illustrated in Figure 15-12, sets the "di
mension"values associated with the bitmap to 60,60 when the
bitmap is first loaded from the resource file. When the user
clicks the "Do It!" menu item, the bitmap is painted and the
"dimension" values are displayed. /'~

~, . generic ,FF
.!20 It! ,quit

/
Bitmap X = 60. Y = bU

Figure 15-12. GetBit
mapDimension() Example.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
HOC
OWORO
char

HBITMAP hBi tmap ;
hOC, hMemOC ;
dwBmSi ze ;
cBuf [128] ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hBitmap = LoadBHmap (ghlnstance ,"pen") ;
SetBi~mapOimension (hBitmap, 60, 60) ;
break;

case WM_COMMANO: 1* process menu Hems *1
swi tch (wParam)
{

I' 690

}

· 15. BITMAPS •

case IDM_DOI.T: '* User hH the "Do it" menu itell *'
hOC = GetDC (hWnd) ;
hMemDC = CreateCompatibLeOC (hOC) ;
SeLectObject (hMemOC, hBitllap) ;
BitBLt (hOC, 10, 10, 60, 60, hMeIlOC, 0, 0,

SRCCOPY) ;
DeLeteDC (hMemDC) ;
dwBmSize = GetBitmapDimension (hBitmap) ;
TextOut (hOC, 10, 80, cBuf, wspr1ntf (cBuf,

"Bitmap X = Xd, Y = Xd", LOWORD (dwBIISize),
HIWORD (dwBIIS1ze») ;

ReLeaseOC (hWnd, hOC) ;
break;

case 10M_QUIT: _ '* send end of appLication lies sage *'
.OestroyWindow (hWnd) ;
break;

}

break;
case WM_OESTROY: '* stop appLication *'

DeLeteObject (hBitmap) ; ,
PostQuitMessage (0) ;
break; "

defauLt: '* default windows message processing.'
return DefWindowProc (hWnd~ iMessage, wParam, LParam) ;

return (OL> ;
}

GETDIBITS
Purpose

Syntax

Description

" ,.

Uses

Returns

See Also

Parameters
IfDC

" hBitmap

o Win 2.0 • Win 3.0 • Wm 3.1
Fills in the BITMAPINFO data for a device-independent bitmap, and/or writes a DIB's pixel data
into a memory buffer.
int GetDIBitB(HDCrhDC, HANDLE hRi~map, WORD nStartScan, WORD nNumScans, LPSTR
lpBits, LPBITMAPINFOlpRitsl1ifo, WORDwUsage)j
This function does two relat~d functions. If the lpRits parameter is NULL, GetDIBitsO fIlls in the
BITMAPINFO data structure'to which the lpBitsln/o parameter points. This is the normal way to
copy device context color values to the bmiColors part of the BITMAP INFO data structure.

If lpRits is not NULL, the function copies the pixel values for a bitmap to the memory area
pointed to by lpBits-. In this case, lpBits normally points to an address in a global memory block,
right after the BITMAPINFO header data. A memory block containing a combination of a
BITMAP INFO heade,r, followed by the bitmap bits, is a complete device-independent bitmap. If
the bitmap is to be "written to a disk file, the data just described should be preceded by a
BITMAPFILEHEADER data structure. Note that the origin for DIBs"is the bottom left comer of
the array instead of the top left comer. This origin makes the bits upside down relatiVe to the
default MM_TEXT mapping'mode for a device context.

Used in the creation of device-independent bitmaps. For large bitmaps, the bitmap data can be
read as a series of horizontal bands by specifying different nStartScan and nNumScans values.
This technique reduces memory demands.

int, the number of lines of pixels copied from the bitmap. Zero on error. "

SetDIBitsO, SetDIBitsToDeviceO, StretchDlBitsO. The function d~scription for Create
DIBitmapO includes the BITMAPINFO header definition. See CreateDIBPattemBrush(l.also.

HOC: The device context handle for the device to which the-DIB is-to be mapped. The device
context will determine the color values written to theRGBQUAD color table in the BITMAPINFO
structure.
HBITMAP: A handle to the bitmap.

691

WINDOWS API BIBLE

nStartScan
nNumScans

lpRits

4

8

24

,WORD: The first pixel line number on which to start in the bitmap. Usually, zero.

WORD: The number oflines of pixels to be copied. Normally, equal to the vertical height of the
bitmap in pixels.

LPSTR: A pointer to a memory buffer that will contain the bitmap data after the function is
called. If set to NULL, only the lpRi13Irifo data is written, not the bitmap biis. Setting this param
eter to NULL is the normal way to write a set of color values to the bmiColors data section of the
BITMAPINFO structure. The number of colors written will depend on the color resolution of the
device. (See Table 15-5.) .

A monochrome bitmap. bmiColors will contain two entries. Each bit in the' bitmap data will represent one
pixel.

A bitmap with 16 colors. bmiColors will contain 16 entries. Each pixel requires four bits of information in the
bitmap data. The four bits represent an index in th~ color ,table.

Abitmap with 256 colors.bmiColors will contain 256 entries. Each pixel requires a byte of information in the
: bitmap data. The 'byte 'vaiue represe~ts an index into the color table. . '

A bitmap with 224 colors. bmiColors will contain NULL. Each pixel requires three bytes of information,
representing the RGB (Red, Green, Blue) color bytes.

Table. 15-5. Color Resolutions.

IpBitslnjo

wUsage

Ex8.mllle " '

LPBl'rMAPINFO: A pointer to' a: BITMAPINFO data structure thllt specifies the size and COlor
format ofthe bitII).ap. The pointer can point to the top of the same memory area the bitmap data
is being written ~o if the BITMAP INFO data has been initialized., ' ,

WORD: Specifies whether the bmiColorsl/ fields at the end of the BITMAPINFO data structure
contain explicit RGB color values, or if they are indexes into the currently realized logical pal
.ette.:wUsage can-be either DlB_PAL_COLORS for palette colors, or DIB_RGB_COLORS for ex
plicit RGB colors. ·

The eXample under'dreateDIBPa~ternBrushO, inc~~des both usages of this function.

GETSTRETCHBLTMoDE .. Win 2.0 • Win 3.0 • Win 3.1
Purpose',

Syntax

Description

, Determines the current bitmap stretching mode of a device context.

int GetStretchBltMode(HDC hDC)j ,

The stretching mode determines how pixels are eliminated if a bitmap image is changed in size.
Bitmaps that are increased in size end up simply adding more matching pixels between existing

" ones. The stretchhlg mode becomes a property of the device context, and remains in effect until
the'device context is deleted or a new stretching mode is set. .

Uses
Returns

BLACKONWHITE '

COLORONCOLOR

WHITEONBLACK

Used to determine if the stretching mode needs to be cha~ged 'usi~g8etStretchBltMode().
Returns: the ~~rrent stretching mode w~ich can be any of the modes listed in Table 15-6.

Preserves black pixels at the expense of white ones .

. Deletes eliminated lines. No attempt to use the color value information of the eliminated pixels.

Preserves white pixels at the expense of black ones.

Table 15-6. Bitmap Stretching Modes.

692

See Also .

Parameters
hDC

Example

LOADBITMAP

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hlnstance

SetStretchBltModeO, StretchBltO

HDC: The device context handle.

See the example under StretchBltO.

15. BITMAPS ...

II Win 2.0 • Win 3.0 • Win 3.1
Loads a bitmap resource into memory.

HBITMAP LoadBitmap(HANDLE hlnstance, LPSTR IpBitmapName)j

Bitmap images are normally created using the Windows SDKPaint application. The output of
SDKPaint is stored in a file with the .Bl\IP extension. To use a bitmap, the application must list
the bitmap file in the .RC resource script file, using the· BITMAP statement. Within the
application's code, LoadBitmapO is used to load the bitmap data from the resource data into
memory. Mter the application is finished using the bitmap, DeleteObjectO should be called to
free the bitmap from memory.

This function will load either DDB or DIB bitmaps. If a DIB is loaded, it will be converted to
a DDB, losing color information. See the discussion on DIBs at the beginning of this chapter for
an example using the DIB color data to create a logical palette ..

This is the first step in using a bitmap file within a program.

HBITMAP, the bitmap handle. Returns NULL on error, usually meaning that the bitmap was not
found in the resource data.

DeleteObjectO, PatBltO

HANDLE: The instance handle of the module (running pro
gram) which has the bitmap in its resource data. You can use
GetWindowWordO to obtain this value. If hlnstance is NULL, .
LoadBitmapO accesses one of the predefined bitmaps listed
below.

120 It! .Quit

IpBitmapName LPSTR: A pointer to a null-terminated character string con-

Example

taining the bitmap name. The string is the name to the left of Figure 15-13. LoadBitmap()
the BITMAP statement in the application's .RC resource script and PatBlt() Example.
file. For example, the line

mybitmap BITMAP bitfi le.bmp

names the bitmap "mybitmap." The bitmap data is loaded from the file BITFILE.BMP.
Ifhlnstance is NULL, IpBitmapName must be one of the following predefined bitmap names:

OBM_BTNCORNERS, OBl\CBTSIZE, OBM_CHECK, OBM_CHECKBOXES, OBM_CLOSE,
OBrvCCOMBO, OBM_DNARROW, OBrvCDNARROWD, OBl\CDNARROWI, OBM_LFARROW,
OBl\LLFARROWI, OBM_~fNARROW, OBl\LOLD_CLOSE, OBl\COLD_DNARROW,
OBl\COLD_LFARROW, OBl\COLD_REDUCE, OBM_OLD_RESTORE, OBM_OLD_RGARROW,
OBrvCOLD_UPARROW, OBM_OLD_ZOOM, OBM_REDUCE, OBM_REDUCED, OBM_RESTORE,
OBM_RESTORED, OBM_RGARROW, OBl\CRGARROWD, OBM_RGARROWI, OBM_SIZE,
OBM_UPARROW, OBl\LUPARROWD, OBM_UPARROWI, OBl\CZOOM, OBl\LZOOMD

The values starting with OBl\LOLD are bitmaps used by versions of Windows prior to 3.0

This example paints the client area with a bitmap pattern brush, as shmm in Figure 15-13. The
client area pattern colors are inverted when the user clicks the "Do It!" menu item.

693

WINDOWS API BIBLE

The program's resource file includes a BITMAP statement to load a bitmap file from disk, and
add it to the program's resources. The bitmap file BRUSHPAT.BMP is an 8 by 8 pixel bitmap
created with the WindowsSDKPaint application.

C GENERIC.RC
1* generic.rc *1

#include <windows.h>
#include "generic.h"

generic
brushpat

generic
BEGIN

END

ICON
BITMAP

MENU

MENUITEM "&Do It!"
MENUITEM "&Quit",

generic.ico
brushpat.bmp

IDM_DOIT
IDM_QUIT

The bitmap is loaded into memory when the WM_CREATE message is processed. The client area
size is kept current by processing WM_SIZE messages. Because PatBltO paints using the cur
rently selected brush, the bitmap is used to create a pattern brush using CreatePatternBrushO.
PatBltO paints the entire client area with the bitmap pattern brush every time a WM_PAINT
message is received. .

PatBltO is also called when the user clicks the "Do It!" menu item. In this case, the
DSTINVERT raster code is specified, inverting the colors of the client area. Clicking the "Do It!"
menu item a second time restores the pattern colors to their original state.

C GENERIC.C WndProc() Function
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

HBRUSH
static
static
PAINTSTRUCT
HDC

HBITMAP
int

hBrush, hOldBrush ;
hBi tmap ;
nXclient, nYclient ;
ps ;
hDC ;

switch (iMessage)
<

1* process windows messages. *1

case WM_CREATE:
hBitmap = LoadBitmap (ghlnstance , "brushpat") ;
brea'k ;

case WM_SlZE:
nXclient = LOWORD (lParam) 1* get client size *1
nYclient = HIWORD (lParam)
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hBrush = CreatePatternBrush (hBitmap) ;
hOldBrush = SelectObject (hDC,.hBrush) ;
PatBlt (ps.hdc, 0, 0, nXclient, nYclient,

PATCOPY) ;
SelectObject (ps.hdc, hOldBrush)
DeleteObject (hBrush) ';
EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
<
case ID',-DOIT: 1* User hit the "Do it" menu item *1

hDC = GetDC (hWnd) ;
PatBlt (hDC, 0, 0, nXclient, nYclient,

694 ..

}

DSTINVERT) ;
ReleaseDC (hWnd, hDC)
break;

15. BITMAPS ..

case .IDM_QUIT:--- 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WH_DESTROY: 1* stop application *1

DeleteObject (hBitmap) ; .
PostQuitHessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

PATBLT

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

X

Y

nWidth

nHeight

dwRop

PATCOPY

PATlNVERT

DSTlNVERT

BLACKNESS

WHITENESS

• Win 2.0 • Win 3.0 • Win 3.1
Outputs a pattern brush to a device. .

BOOL PatBlt(HDC hDC, intX, int Y, int nWidth, int nHeight, DWORD dwRop)j

The currently selected brush is output to the device referenced by hDC: The brush is used to fill
the rectangle defined by the X; Y, nWidth, and nHeight parameters. The brush is combined with
the background colors in different ways, depending on the raster-operation code specified in
dwRop.

Used to fill regions with a pattern.

BOOL. Nonzero if the function was successful, zero on error.

BitBltO, CreatePatternBrushO, LoadBitmapO

HDC: The destination device context handle.

int: The logical X coordinate ofthe upper left corner ofthe rectangle that is to be fllied with the
selected brush.

The logical Y coordinate of the upper left corner of the rectangle that is to be filled with the
selected brush.
int: The width, in logical units, of the rectangle that is to be filled with the selected brush.

int: The height, in logical units, of the rectangle that is to be filled with the selected brush.

DWORD: One of the raster-operation codes in Table 15-7. These codes determine how the colors
of the brush are combined with the existing colors of the background.

Copies the pattern to the destination.

Combines the destination bitmap with the pattern using the Boolean OR operator.

Inverts the destination bitmap.

Turns all output black.

Tums all output white. This is a quick way to blank a device context.

Table 15-7. Raster-Operation Codes tnat PatBlt() Can Use.

Example See the previous example under LoadBitmapO.

695

WINDOWS API BIBLE

SETBITMAPBITS • Win 2.0 .. Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hBUmap

dwCount

IpBits

Example

Sets the pixel data for a DDB bitmap.

LONG Se~itmapBits(HBITMAP hBitmap, DWORD dwCount, LPSTR IpBits)j

Normally, the pixel bit data array is set when CreateBitmapO is called. SetBitmapBitsO allows
the pixel data to be set or changed later.

Generally, used if the application modifies the pixel data before disphiying it.

LONG, the number of bytes used in setting the bitmap bits. Zero on error.

CreateBitmapO, CreateBitmapIndirectO

HBITMAP: The handle of the bitmap which will receive the color bit data.

DWORD: The number ot'bytes of data in the array pointed to by
IpBits.

LPSTR: A pointer to an array of bytes containing the color bit
data. The 'array should be at least dwCount bytes in size.

This example (see Figure 15-14) paints a small bitmap con-
taining an IIH" at location 10,10 in the upper left corner of the
window's client area when the user clicks the "Do It!" menu
item.

Do It! Quit

Figure 15-14. SetBitmap
Bits() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static HBITMAP hBitmap;
HDC hDC, hMemDC ;
static BYTE ElitMapBits [48J = { 1* define bitmap pattern *1

OxOO, OxOO, OxOO, Ox 00,
OxOO, OxOO, OxOO, OxOO,
OxOf, Oxff, Oxft, OxfO,
OxOf, Ox7f, Oxte, OxfO,
OxOt, Ox7f, Oxfe, OxfO,
OxOf, Ox7f, Oxte, OxfO,
OxOt, OxOO, OxOO, OxfO,
OxOf, Ox7f, Oxte, OxfO,
OxOt, Ox7t, Oxte, OxfO,
OxOf, Oxff, Oxft, OxfO,
OxOO, OxOO, OxOD, OxOO,

, OxOO, OxOO, OxOO, Ox 00 }

switch (iMessage)
{

case WM_CREATE:

1* process windows messages *1

hBitmap = CreateBitmap (32, 12, 1, 1, NULL) ;
SetBitmapBits (hBitmap, 48,

(LPSTR) BitMapBits) ;
break;

case WM_COMMAND:
swi tch (wParam)
{

1* process ~enu items *1

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hDC) ;
SelectObject (hMemDC, hBitmap) ;
'BitBlt (hDC,10, 10, 32, 12, hMemDC, 0, 0,

SRCCOPY) ;
DeleteDC (hMemDC) ;
Re leaseDC (hWnd, hDC) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

696

}

}

break;
case WM_DESTROY: 1* stop application *1

DeLeteObject (hBitmap)
PostQuitMessage (0) ;
break;

15. BITMAPS 'Y

default: 1* default windows message processing *1
r~turn DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

SETBITMAPDlMENSION • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hBitmap

X

Y

Example

SETDIBITS

Purpose

Syntax

Description

Uses

Returns

SeeAlso.

Sets two values that are associated with the bitmap. These values can be retrieved later using
GetBitmapDimensionO·
LONG SetBitmapDimension(HBITMAP hBitmap, intX, int Y)j

The SetBitmapDimensionO function sets two integer values, X and Y, which are associated with
the bitmap. These values do not affect the bitmap. They are provided so that an application can
store dimensional data with the bitmap. This is preferable to using static or global variables to
store the width and height of the bitmap. The Windows SDK documentation suggests using the
MM_LOMETRIC system of units (0.1 mm per unit) to specifythe bitmap size. Because the values
are not used in painting the bitmap, any system of units (including device units-pixels) can be
used.

Handy if an application uses a number of bitmaps that are different sizes.

DWORD, the previous bitmap dimensions. The low-order word contains the X value. The high
order word contains the Yvalue. If SetBitmapDimensionO was not called previously to sr.t these
values, zero is returned.

GetBitmapDimensionO

HBITMAP: The handle of the bitmap.

int: The X value to associate with the bitmap.

int: The Yvalue to associate with the bitmap.

See the example under GetBitmapDimensionO.

o Win 2.0 • Win 3.0 • Win 3.1
Sets device-independent bitmap (DIB) pixel data to the data in a memory buffer.

int SetDmits(HDC hDC, HANDLE hBitmap, WORD nStartScan, WORD nNumScans, LPSTR
lpBits,LPBITMAPINFO lpBlts/njo, WORD wUsage)j

DIBs consist of header information followed by the bitmap data for each pixel of the bitmap (see
CreateDIBitmapO for descriptions of the header fonnat). SetDIBitsO allows an application to
modify the pixel data of the bitmap, changing the image represented ..

The bitmap must not be selected into a device context at the time SetDIBitsO is called. For
large bitmaps, the image can be changed in horizontal segments to minimize memory use. Specify
a series of nStartScan ~md nNumScans values to process bands of the bitmap data;

Used when the application modifies the pixel data for the DIB bitmap prior to displaying it. One
possible use is to change the colors of a button to show selection status.

int, the number of scan lines changed. Zero on error.

CreateDIBitmapO, GetDIBitsO

697

WINDOWS API BIBLE

Parameters
hDC

kBitmap

nStartScan

nNumScans

IpBits
IpBitsl71jo

ivUsage

Example

HDC: The device context handle.

HBITMAP: A handle to the bitmap .. This value is returned by CreateDIBitmapO.

WORD: The first pixel line number on which to start in the bitmap. Usually zero, unless the
bitmap is being set by several SetDIBitsO calls, for horizontal bands of the bitmap image.

WORD: The number of lines of pixels to be copied. Normally, equal to the vertical height of the
bitmap in pixels, unless the changes are being made one horizontal band at a time.

LPSTR: A pointer to a memory buffer that contains the bitmap data.

LPBITMAPINFO: A pointer to a BITMAPINFO data structure that specifies the size and color
format of the bitmap. The pointer can point to the top of the same memory area the bitmap data
is being written to if the BITMAPINFO data has been initialized.

WORD: Specifies whether the bmiColors[J fields at the end of the BITMAPINFO data structure
contain ~xplicit RGB color values, or if they are indexes into the currently realized logical pal
ette. wUsage can be either DIB_PAL_COLORS for palette colors, or DIB_RGB_COLORS for ex
plicit RGB colors.

This example paints a Device-Independent Bitmap (DIB) on
the window's client area. (See Figure 15-15.) Initially, the
bitmap is colored black and white. When the user clicks the
"Do It!" menu item, the bitmap data is altered so that any two
black pixels next to each other (0 value for a byte within a 16-
color. bitmap) are changed to a blue-black pixel combination.

For simplicity, this example assumes a 16-color bitmap.
Sixteen-color' bitmaps use four bits per pixel in the bitmap
data, so each byte of data encodes two pixels. This example Figure 15-15. SetDIBits()
also omits error checking on memory allocation. Example.

#def ne ALIGNLONG(i)
#def ne WIDTH

«i+3)/4*4)
50

#def ne HEIGHT 50
#def ne COLORBITS 4

Long FAR PASCAL WndProc (HWNDhWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
static BITMAPINFOHEADER Bi ;
LPBITMAPINFOHEADER lpbi ;

hBitmap ;
hDC, hMemDC ;
hDIB ;
hDIBrush ;

static HBITMAP
HDC
static
HBRUSH
LPSTR
int

HANDLE

lpstBitmap, lpstTemp ;
i, nBytes ;

switch (iMessage)
{

1* process windows messages *1

case·WM_CREATE:
hDC = GetDC (hWnd) ;

1* initialize BITMAPINFOHEADER data *1
Bi.biSize = sizeof (BITMAPINFOHEADER) ;
Bi .biWidth = WIDTH; 1* 8 by 8 bitmap *1
Bi .biHeight = HEIGHT;
Bi .biPlanes = 1 ;
Bi .biBi tCount = COLORBITS ; 1* 16 colors *1
Bi .b;Compression = BI_RGB ;
Bi .bi Si zelmage = (ALIGNLONG((WIDTH * COLORBITS)Ja)

* HEIGHT>;
Bi .biXPelsPerMeter = 0 ;

698

Bi.b YPelsPerMeter = 0 ;
Bi.b ClrUsed = 0 ;
'Bi.b Clrlmportant = 0 ;.

1* create uninitialized DIB bitmap *1
hBitmap = CreateDIBitmap (hDC, &Bi, OL, NULL,

NULL, 0) ; .
1* a llocate memory for BITMAPINFO structure *1

hDIB = GlobalAlloc (GHND, sizeof (BITMAPINFOHEADER) +
16 * sheof (RGBQUAD) +
(ALIGNLONG«WIDTH * COLORBITS)/8) * HEIGHT»;

lpbi = (BITMAPINFOHEADER FAR *) GlobalLock (hDIB) ;

15. BITMAPS T

1* tricky way to copy Bi to top'of BITMAPINFO *1
*lpbi = Bi ;

1* use GetDIBits() to initialize structure data *1
GetDIBits (hDC, hBitmap, 0, 50, NULL,

(LPBITMAPINFO) lpbi, DIB_RGB_COLORS) ;
1* create memory device context *1

hMemDC = CreateCompatibleDC (hDC) ;
1* select DIBbitmap into device context *1

SelectObject (hMemDC, hBitmap) ;
1* paint on memory device context *1

SelectObject (hMemDC, GetStockObject (BLACK_BRUSH» .
Rectangle (hMemDC, 0, 0, WIDTH, HEIGHT) ;
SelectObject (hMemDC, GetStockObject (WHITE_BRUSH})
Ellipse (hMemDC, 0) 0, WIDTH, HEIGHT) ;
MoveTo (hMemDC, 0, O) ;
LineTo (hMemDC, WIDTH 1 2, HEIGHT 1 2) ;
LineTo (hMemDC, WIDTH, 0) ;

1* set pointer to bitmap's bit data *1
lpstBitmap = (LPSTR) lpbi +

(WORD).sizeof (BITMAPINFOHEADER) +
(16 * s heof (RGBQUAD» ;

GetDIBits (hDC, hBitmap, 0, HEIGHT, lpstBitmap,
(LPBITMAPINFO) lpbi, DIB_RGB_COLORS)

GlobalUnlock (hDIB) ;
DeleteDC (hMemDC) ;
ReleaseDC (hWnd, hDC)
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hMemDC = CreateCompatibleDC (ps.hdc) ;
SelectObject (hMemDC, hBitmap) ;
BitBlt (ps.hdc, 0, 0, WIDTH, HEIGHT, hMemDC, 0,

0, SRCCOPY> ;
DeleteDC (hMemDC) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case I D"LDO IT :
hDC = GetDC (hWnd) ;
lpbi = (BITMAPlNFOHEADER FAR *)

GlobalLock (hDlB) ;
lpstBitmap = (LPSTR) lpbi.+

(WORD) sizeof (BITMAPINFOHEADER) +
(16 * sizeof (RGBQUAD» ;

nBytes = AliGNLONG«WIDTH * COLORBITS)/8)
* HEIGHT;

lpstTemp = lpstBitmap ;
1* change 0 bytes to Ox2C in bitmap data *1

for (i = Q ; i < nBytes ; i++)
{

}

if (0 == *lpstTemp)
*lpstTemp = Ox2C

lpstTemp++ ;

1* if black *

SetDIBits (hDC, hBitmap, 0, HEIGHT, lpstBitmap,.
(LPBITMAPINFO) lpbi, DIB_RGB_COLORS) ;

699

WINDOWS API BIBLE

}

ReleaseDC (hWnd, hDC) ;
GlobalUnlock (hDIB) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* paint *1
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;

}

break;

. break;

case WM_DESTROY: 1* stop application *1
GlobalFree (hDIB) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

SETDIBITSToDEVICE o Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

DestX
DestY

nWidth
nHeight

SrcX

SrcY
nStartScan

Paints from a device-independent bitmap (DIB) directly to a device context.

WORD SetDIBitsToDevice(HDC hDC, WORD DestX, WORD DestY, WORD nWidth, WORD
nHeight, WORD SreX, WORD SrcY, WORD nStartScan, WORD nNumSeans, LPSTR IpBits,
LPBITMAPINFO IpBitslnjo, WORD wUsage) i
This is the fastest method of painting a DIB to a device, once the DIB is stored in a memory buffer.
Normally, the BITMAPINFO data pointed to by IpBitslnjo will be right in front of the bitmap pixel
data (pointed to by lpBits) , all in the same memory block.

Unless the BITMAPINFO color data is separately processed to realize a logical palette, the
color data will be lost when the DIB is output to the device context. For example, a 256-color
bitmap will be mapped to the 20 default system colors when output to a VGA de\ice. Note that the
origin for the DIB pixel data is the bottom left corner. The data is upside down relative to the
default MM_TEXT mapping mode.

Outputs a DIB directly to the screen. Parts of a DIB can be output by manipulating the SrcX,
SreY, nStartScan, and nNumSeans parameters. Memory demands for painting the DIB can be
reduced by successively painting horizontal bands out of a DIB bitmap, rather than painting aU of
the image at once.

You can also use a DIB as an alternative to direct manipulation of the screen pixels with the
slow GetPixelO and SetPixelO functions. The changes can be made to the DIB data, and then
periodically sent to the screen with SetDIBitsToDeviceO.

WORD, the number of scan lines copied to the output device context. Zero on error.

CreateDIBitmapO, GetDIBitsO, SetDIBitsO, StretchDIBitsO -

HDC: The device context on which the DIB will be output.

WORD: The logical X coordinate on the device context to start the bitmap output.

WORD: The logical Y coordinate on the device context to start the bitmap output.

WORD: The width, in pixels, of the DIB.

WORD: The height, in pixels, of the DIB.

WORD: TheX position in the DIB from which to start reading pixel data for output. Normally O.
WORD: The Yposition in the DIB from which to start reading pixel data for output. Normally O.

WORD: The line number ofthe horizontal line of pixels in the DIB that is the first line in the
lpBits memory buffer.

700

15. BITMAPS Y

nNitmScans WORD: The number of scan lines of the DIB that are contained in the memory buffer pointed to
bylpBits.

lpBits

/pBits/njo

wUsage

Caution

Example

LPSTR: A pointer to the memory buffer that contains the pixel data. Normally, this follows the
BlTMAPINFO header data in a memory buffer. The pixel data can be in a separate buffer.

LPBIT!\1APINFO: A pointer to an initialized BlTMAPINFO data structure. This data describes
the size and color data for the bitmap. See CreateDIBitmapO for a description of this data struc-
ture. .

WORD: Specifies whether the bmiColors/J fields at the end of the BITMAPINFO data structure
contain explicit RGB color values, or if they are indexes into the currently realized logical pal
ette. wUsage can be either DIB_PAL_COLORS for palette col
ors, or DIB_RGB_COLORS for explicit RGB colors.

This function cannot be used to output to a memory device con
text.
The DIB example at the beginning of this chapter shows how
to preserve the color data associated with a DIB by using it to
realize a logical palette. This example paints a colored DIB
bitmap and saves the bytes in a global memory buffer. The
bitmap is painted to the screen when MtCPAINT messages
are received using SetDIBitsToDeviceO. (See Figure 15-16.)

110 It! ,Quit

·(:o·~·
Figure 15-16. SetD/Bits
ToDevice() Example.

#def ne ALIGNLONG(i}
#def ne WIDTH

«i+3)/4*4)
150

#def ne HEIGHT 50
#def ne COLORBITS 4

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps ;
static BITMAPINFOHEADER bi ;

lpbi ; LPBITMAPINFOHEADER
LPBITMAPINFO
static
HDC
static
HBRUSH
LPSTR
int

HBITMAP

HANDLE

lpBi tInfo';
hBitmap ;
hDC, hMemDC ;
hDIB ;
hBrush ;
lpstBitmap, lpstTemp ;
i, nBytes ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hDC :: GetDC (hWnd) ;

1* initialize BITMAPINFOHEADER data *1
bi.biSize:: sizeof (BITMAPINFOHEADER) ;
bi .biWidth :: WIDTH; 1* S by S bitmap *1
bi .biHeight = HEIGHT;
bi .biPlanes :: 1 ;
bi .biBitCount = COLORBITS ; 1* 16 colors *1
bi.biCompressior.:: BI_RGB ;
bi.biSizelmage = (ALIGNLONG«WIDTH * COLORBITS)/S)

* HEIGHT>;
bi.biXPelsPerHeter:: 0 ;
bi .biYPelsPerMeter = 0 ;
bi.biClrUsed:: 0 ;
bi.biClrlmportant = 0;

1* create uninitialized DIB bitmap *1
hBitmap = CreateOIBitmap (hOC, &bi, OL, NULL,

, NULL, 0) ;
, 1* allocate memory for BITMAPINFO structure *1

hOIB :: GlobalAlloc (GHNO, sizeof (BITMAPINFOHEAOER) +

701

WINDOWS API·BJBLE

16 * sizeof (RGBQUAD) +
(ALIGNLONG«WIDTH * COLORBITS)/S) * HEIGHT»;

lpbi = (BITMAPINFOHEADER FAR *) GlobalLock (hDIB) ;
1* tricky way to copy bi to top of BITMAPINFO *1

*lpbi = bi ;
1* use GetDIBits() to init lpbi struct data *1

GetDIBits (hDC, hBitmap, 0, 50, NULL,
(LPBITMAPINFO) lpbi, DIB_RGB_COLORS)

1* create melJlory devi ce context *1
hMemDC = CreateCompatibleDC (hDC) ;

1* select DIB bitmap into device context *1
SelectObject (hMemDC, hBitmap) ;

1* paint on memory device context *1
hBrush = CreateSolidBrush (RGB (255, SO, 80»
SelectObject (hMemDC, hBrush) ;
Rectangle (hMemDC, 0, 0, WIDTH, HEIGHT)
DeleteObject (SelectObject (hMemDC,

GetStockObject (WHITE_BRUSH»)
Ellipse (hMemDC, 0, 0, WIDTH, HE1GHT) ;
hBrush = CreateSolidBrush (RGB (0, 0, 255»
SelectObject (hMemDC, hBrush) ;
Ellipse (hMemDC, WIDTH 13,0, 2 * WIDTH I 3;

.' . HEIGHT> ; : ' . ,.
DeleteObject (SelectObject (hMemDC,

GetStockObject (BLACK_BRUSH») ;
Ellipse (hMemDC, 2 * WIDTH I 5, HEIGHT I 5,

3 * WIDTH I 5,
4 * HEIGHT 15) ;
1* set pointer to bitmap's bit data *1

lpstBitmap = (LPSTR) lpbi +
(WORD) sizeof (BITMAPINFOHEADER) +
(16 * sheof (RGBQUAD» ;

.GetDIBits (hDC, hBitmap, 0, HEIGHT, lpstBftmap,
. (LPBITMAPINFO) lpbi, DIB_RGB_COLORS) ;
GlobalUnlock (hDIB) ;
DeleteDC (hMemDC) ;
ReleaseD.C (hWnd~ hDC) ;
break; .

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
lpBitlnfo = (LPBITMAPINFO) GlobalLock (hDIB)
lpstBitmap= (LPSTR) lpBitlnf~ +

(WORD) size~f (BITMAPINFOHEADER) +
(16.* sizeof (RGBQUAD» ;

SetDIBitsToDevice (ps.hdc, 10, 10, WIDTH, HEIGHT,
0, 0, 0, HEIGHT, lpstBi tmap, lpBi Unfo,
DIB_RGB_COLORS)

GlobalUnlock (hDIB) ;
EndPaint (hWnd, &ps) ;
break;

{Other program lines)

SETSTRETCHBLT~ODE • Win 2.0 • Win 3.0 ". Win 3.1
Purpose
Syntax

Description

useS

Sets the bitmap stretching mode for the StretchBltO function.
int SetStretchBltMode(HDC hDC, int nStretchMode);

The stretching mode determines how pixels are eliminated if a bitmap image is reduced in size ..
Bitmaps that are increased in size simply add more matching pixels between existing ones. The
stretchlng,m6de becomes a propertyofthe device context, and remains in effect until the device
context is. deieMd or a new,~tretching mode is set.

The most\d~irable streto~:~ode will depend on the bitmap being reduced. Images with a few
thin lines:~lll,~'e processednfust 'effectively by BLACKO~ITE. Images with a few fat lines will be
processed ~o~e,effectively,~Y\~ITEONBLACK Generill color images can use COLORONCOLOR.

702

Returns

See Also

Parameters
hDC

nStretchMode

BLACKONWHITE

COLORONCOLOR

WHITEONBLACK

int, the previous stretching mode.

GetStretchBltModeO,. StretchBltO

HDC: The device context handle that will have the stretching mode set.

int: One of the values defined in WINDOWS.H and listed in Table 15-8.

Preserves black pixels at the expense of white ones.

15. BITMAPS •

Deletes eliminated lines. No attempt to use the color value information of the eliminated pixels.

Preserves white pixels at the expense of black ones. .

Table 15-8. Bitmap Stretching Modes.

Example

STRETCHBLT

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDestDC

X
y

nWidth

.. nHeight

hSrcDC

XSrc

See the following example under the StretchBltO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Copies a bitmap from one device context to another, stretching or contracting the image to fit the
destination rectangle.

BOOL StretchBlt(HDC hDestDC, intX, int Y, int nWidth, int nHeight, HDC hSrcDC, intXSrc, int
YSrc, intnSrcWidth, intnSrcHeight, DWORDdwRop)j

This function is similar to BitBltO, except that it has the added ability to stretch or compress the
bitmap. The method usedto fill in missing pixels (if enlarging), or delete overlapping pixels (if
shrinking), is governed by the current stretching mode of the device context.
SetStretchBltMode().sets the stretching mode.

The image can be inverted, or made a mirror image, by' changing the signs of either the
source or destination bitmap size. If StretchBltO copies a monochrome bitmap to a color device
context, white bits (1) are set to the background color, and black bits (0) are set to the fore
ground color.

Allows a bitmap to be sized. This function is convenient for windows that are sizeable, but may
.need to enlarge or contract bitmap images depending on the size of the window. The tool bars on
the left of the Windows Paintbrush application are an excellent example of scaling graphics im
ages to fit the window size. Large expansions of bitmaps will result in jagged ~dges. Consider
using a metafile for large images. .

BOOL. Nonzero if the bitmap was drawn, zero on error.

SetStretchBltModeO, GetDeviceCapsO to check whether the device support.s raster operations.
Use the RC_BITBLT flag.

HDC: The destination device context handle.

int: The logical X coordinate of the upper left corner of the destination rectangle.

int: The logical Y coordinate of the upper left corner of the destination rectangle.

int: The width, in logical units, of the destination rectangle.

int: The height, in logical units, of the destination rectangle.

HDC: The device context from which.the bitmap will be copied. This is normally a memory device
context created with CreateCompatibleDCO. A bitmap is loaded into the memory device context
using SelectObjectO.

int: The logical X coordinate of the upper left corner of the source bitmap. Normally, zero.

703

WINDOWS API BIBLE

YSrc

nSrcWidth

nSrcHeight

dwRop

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

int: The logical Y coordinate of the upper right corner of the
source bitmap. Normally, zero.

int: The width, in logical units, of the source bitmap. If the
default coordinate system is being used for hSrcDC, this is the
width in pixels. .

int: The height, in ·logical .. units, of the source bitmap. If the
default coordinate system is being used for hSrcDC, this is the
height in pixels.

~" generic .. - FF
Do It! ~uit

COLORONCOLOR

DWORD: One ofthe raster-operation codes. Fifteen of the 256 Figure 15-17. StretchBlt()
possibilities have names that are defined in WINDOWS.H and Example. .
are listed in Table 15-9. The remainder have hexadecimal
codes, specified in Volume 2, Section 11, Table 11.3 of the Microsoft SDK Reference manuals.
. These codes determine how the colors of the brush are combined with the existing colors of

the background. For the Boolean codes, "S" is the source bitmap, "D" is the destination bitmap,
and "P" is the currently selected ~rush (called a "pattern"). The Boolean operators follow the G

"'l~guage .conventions. .' . .'

Turns all output black. (0)

Inverts the destination bitmap. (-D)

The source and destination bitmaps are combined with the Boolean AND operator. (0 & S)

The source and destination bitmaps are combined with the Boolean OR operator;(-S I D)

Inverts the source bitmap, then copies it to the destination. (-S)

Inverts the result of combining the source and destination bitmaps using the Boolean XOR
opera-tor. (-(S I D)) .

Copies the pattem to the destination. (P)

Combines the destination bitmap with the pattern using the BoOlean XOR operator. (P A D)

PI-(SID)

Combines the source and destin~tion bitmaps with the Boolean AND operator: (S & D)

Copies 'the source to. the destination. (S)

S&-D

Combines the source and destination bitmaps using the Boolean XOR operator. (S A D)

Combines the source and destination bitmaps using the Boolean OR operator. (S I D)

Turns all output white. This is a quick way to blank a device context. (1)

Table 15-9. Raster-Operation Codes.

Example This example, shown in Figure 15-17, uses StretchBltO four times to draw the same bitmap in
four different sizes. The stretching mode is set to COLORONCOLOR prior to using StretchBItO ..
GetStretchBltModeO is used at the end of the output session to demonstrate that the stretching
mode is still in effect. The curr2nt stretching mode is output under the bitmaps.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
HOC
int

HBITMAP

switch (iMessage)

hBi tmap ;
hOC, hMemDC ;
nStrMode ;

/* process windows messages *1

704

{

}

case WM_CREATE:
hBitmap = LoadBitmap (ghlnstance , "pen") ;
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

15. BITMAPS ...
,I

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hOC = GetDC (hWnd) ;
hMemDC = Create~ompatibleDC (hDC) ;
SetStretchBltMode (hDC, COLORONCOLOR) ;
SelectObject (hMemDC, hBitmap) ;
StretchBlt (hDC, 10, 10, 200, 80, hMemDC,

0, 0, 60, 60, SRCCOPY) ;
StretchBlt (hDC, 10, 10, 100, 40, hMemDC,

0, 0, 60, 60, SRCCOPY) ;
StretchBlt (hDC, 10, 10, 50, 20, hMemOC,

0, 0, 60, 60, SRCCOPY) ;
S t ret c h B l t (h DC, 1 0, 1 0,. 254' 1 0, _ h M e m DC,

0, 0, 60, 60, SRCCOPY) ;
DeleteDC (hMemOC) ;

nStrMode = GetStretchBltMode (hOC)
switch (nStrMode)
{

}

case WHITEONBLACK:
TextOut (hDC, 10, 100,

"WHITEONBLACK", 12)
break;

case BLACKONWHITE:
TextOut (hOC, 10, 100, .

"BLACKONI.JHITE", 12)
break;

case COLORONCOLOR:
TextOut (hDC, 10, 100,

"COLORONCOLOR", 12) ;
break;

ReleaseDC (hWnd, hOC) ;
break;

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

break;
case WM_DESTROY: 1* stop application *1

DeleteObject (hBitmap)
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;
}

STRETCHDIBITS o Win 2.0 II Win 3.0 II Win 3.1
Purpose

Syntax

Description

Paints from a device-independent bitmap (DIB) directly to a device context, stretching and/or
compressing the image as it is painted.

WORD StretchDIBits(HDC hDC, WORD DestX, WORD DestY, WORD wDestWidth, WORD
wDestHeight, WORD SrcX, WORD SrcY, WORD wSrcWidth, WORD wSrcHeight, LPSTR lpBits,
LPBITMAPINFO lpBitsln/o, WORD wUsage, DWORD dwRop) j

This function is similar to SetDIBitsToDeviceO. The bitmap can be stretched and/or compressed
as it is painted to the device context. No provision is given for banding the output (painting the
bitmap in sections to conserve memory), so the entire bitmap must be output in one cali to
StretchDIBitsO·

705

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hDC

DestX

Destr

wDestWidth

wDestHeight

SrcX

SrcY

wSrcWidth

wSrcHeight

lpBils

lpBilslnjo

wUsage

dwRop

This function will output to a memory device context, unlike SetDIBitsToDeviceO, which
only outputs to a physical device context. If the image is compressed, bits will be eliminated from
the output. How this is done is controlled by the SetStretchBltModeO function. The image can be
reversed or inverted by using unmatched signs (one positive, one negative) for the source and
destination width or height parameters.

Like SetDIBitsToDeviceO, this function will not preserve the color data in the DIB header.
The colors in the DIB will be mapped to the existing color palette. To preserve the color informa
tion, the DIB color data must be used to realize a logical palette. There is an example of this in
the beginning of this chapter under the sectionDIB Example.

Convenient if the bitmap image must be scaled to fit a particular space. The images on the left
side 'of the Windows PaintBrush application are good examples. They change size depending on
the size of the parent ,vindows.

The return value is the number of lines of pixels copied. Zero on error.

CreateDIBitmapO, GetDiBitsO, SetDIBitsToDeviceO

HDC: The device context on which the DIB will be output. This can be a physical device or a
memory device context created with CreateCompatibleDCO. '

WORD: The logical X coordinate on the device context to start the bitmap output. The logical
units equal pixels unless the mapping mode has been changed.

WORD: The logical Y coordinate on the device context to start the bitmap output.

WORD: The ,vidth, In logical units, of the output bitmap.

WORD: The height, in logical units, of the output bitmap.

• WORD: The X position in the DIB from which to start reading pixel data for output. Normally O.

WORD: The rposition in the DIB from which to start reading pixel data for output. Normally O.

WORD: The width, in pixels, of the memory bitmap pointed to by [pBits.

WORD: The height, in pixels, of the memory bitmap pointed to by [pBits.

LPSTR: A pointer to the memory buffer that contains the pixel data. Normally, this follows the
BITMAPINFO header data in a memory buffer. The pixel data can be in a separate buffer.

LPBITMAPINFO: A pointer to an initialized BITMAPINFO data structure. This data describes
the size and color data for the bitmap. See CreateDIBitmapO for a description of this data struc
ture.

WORD: Specifies \vhether the bmiColorsl/ fields at the end of the BITMAPINFO data structure
contain explfcit RGB color values, or if they are indexes into the currently realized logical pal
ette. wUsage can be either DIB_PAL_COLORS for palette colors,or DIB_RGB_COLORS for ex
plicit RGB colors.

DWORD: One of the raster-operation codes. Fifteen of the 256 po'ssibilities have names that are
defined in WINDOWS.H and are listed in Table 15-10. The remainder hav'e hexadecimal codes,
specified in Volume 2, Section 11, Table 11.3 of the Microsoft SDK Reference manuals. '

These codes determine how the colors of the brush are combined with the existing colors of
the background. For the Boolean codes, "s" is the source bitmap, "D" is the destination bitmap,
and "P" is the currently selected brush (called a "pattern"). The Boolean operators follow the C
language conventions. '

706

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

1.5. BITMAPS 'Y

Turns all output black. (0)

Inverts the destination bitmap. (-0)

The source and destination bitmaps are combined with the Boolean AND operator. (0 & 8)

The source and destination bitmaps are combined with the Boolean OR operator. (-S I D)

Inverts the source bitmap, then copies it to the destination. (-S)

Inverts the result of combining the source and destination bitmaps using the Boolean OR
operator. (-(S I D))

Copies the pattern to the destination. (P)

Combines the destination bitmap with the pattern using the Boolean XOR operator. (P " D)

PI-(8ID)

Combines the source and destihation bitmaps with the Boolean AND operator. (S &0)

Copies the source to the destination. (S)

S&-D

Combines the source and destination bitmaps using the Boolean XOR operator. (S " D)

Combines the source and destination bitmaps using the Boolean OR operator. (8 I D)

Turns all output white. This is a quick way to blank a device context. (1)

Table 15-10. Raster-Operation Codes.

Example This example creates a colored DIB in memory when the
WM_CREATE message is processed. The image is painted on
the window's client area every time a WM_PAINT message is
processed. StretchD IBitsO paints by compressing the horizon
tal dimension by two-thirds and expanding the vertical size by
a factor of two. Compare this figure with the nonstretched im
age under the SetDIBitsToDeviceO example.

The example code also demonstrates changing the pixel
data in the bitmap. In this case, when the user clicks the "Do
m" menu item, any set of two black pixels (color value equals
OxFF with a 16-color bitmap) are changed to two white pixels
(color value of OXOO). This is a device-dependent way to change
colors, and is unusual. Normally, the bitmap data would be re-
painted using GDI functions, as demonstrated with the code
under the WM_CREATE message.

#define ALIGNLONG(i)
tldefine WIDTH .
IIdefine HEIGHT
tldefine COLORBITS

((i+3)14*4)
150
50
4

Do It 1 Quit

Figure 15-18. Stretch
DIBits() Example.

long fAR P.ASCAL WndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam')"
{

PAINTSTRUCT
static BITMAPINFOHEADER

707

ps ;
bi ;

WINDOWS API BIBLE

LPBITMAPINFOHEAOER
LPBITMAPINFO

lpbi ;
lpBi tInfo
hBi tmap ;
hOC, hMemOC
hOIB ;
hBrush ;

static
HOC
static
HBRUSH
LPSTR
int

HBITMAP

HANDLE

lpstBitmap, \pstT~mp
i, nBytes ;

swi~ch (iMessage) 1* process windows message! *1
{ -

case WM_CREATE:
hOC = GetOC (hWnd) ;

1* initialize BITMAPINFOHEAOER data *1
bi.biSize = sizeof (BITMAPINFOHEADER) ;
bi.biWidth = WIDTH; 1* 8 by 8 bitmap *1
bi .biHeight = HEIGHT;
bi .biPlanes = 1 ;
bi .biBitCount = COLORBITS 1* 16 colors on screen *1

·bi.biCompression = BI_RGB ;
bi.biSizelmage = (ALIGNLONG«WIOTH * COLORBITS)/8)

* HEIGHT);
bi.biXPelsPerMeter = 0
bi .biYPelsPerMeter = 0
bi.biClrUsed = 0;
bi.biClrImportant = 0 ;

1* create uninitialized DIB bitmap *1
hBitmap = CreateOIBitmap (hOC, &bi, OL, NULL,

NULL, 0) ;
1* allocate memory for BITMAPINFO structure *1

hOIB = GlobalAlloc (GHNO, sizeof (BITMAPINFOHEAOER) +
16 * sizeof (RGBQUAO) +
(ALIGNLONG«WIOTH * COLORBITS)/8) * HEIGHT»;

lpl..d = (BITMAPINFOHEAOER FAR *) GlobalLock (hOIB) ;
I*tricky way to copybi to top of 'BITMAPINFO *1

*lpbi = bi ;
1* use GetOIBits() to init lpbi struct data *1

GetDIBits (hOC, hBitmap, 0, 50, NULL,
(LPBITMAPINFO) lpbi, . OIB_RGB_COLORS)

1* create memory device context *1
hMemOC = CreateCompatibleOC (hOC) ;

1* select OIB bitmap into device context *1
SelectObject (hMemOC"hBitmap) ;

1* paint on memory' device context *1
hBrush = CreateSolidBrush (RGB (255, 80, 80»
SelectObject (hMemOC, hBrush) ;
Rectangle (hMemDC, 0, 0, WIDTH, HEIGHT) ,.
OeleteObject (SelectObject (hMemDC,

GetStockObject (WHITE_BRUSH»)
Ellipse (hMemOC, 0, 0, WIDTH, HEIGHT) ;
hBrush = CreateSolidBrush (RGB (0, 0, 255»
SelectObject (hMemOC, hBrush) ;
Ellipse (hMemOC, WIDTH 1 3, 0, 2 * WIDTH 1 3, HEIGHT)
DeleteObject (SelectObject (hMemOC,

GetStockObject (BLACK_BRUSH») ;
Ellipse (hMemOC, 2 * WIDTH 1 5, HEIGHT: 5,

3 * WIDTH 1 5, 4 * HEIGHT 1 5) ;
1* set pointer to bitmap's bit data *1

lpstBitmap = (LPSTR) lpbi +
(WORD) sizeof (BITMAPINFOHEADER) +
(16 * sizeof (RGBQUAO» ;

GetDIBits (hOC, hBitmap, 0, HEIGHT, lpstBitmap,
(LPBIT~APINFO) lpbi, OIB_RGB_COLORS)

GlobalUnlod (hOIB) ;
OeleteOC (hMemDC) ;
ReleaseOC (hWnd, hOC)
break;

708

15. BITMAPS ...

ca se WM_PAINT:
BeginPaint (hWnd, &ps) ;
S~tStretchBltMode (ps.hdc, COLORONCOLOR) ;
lpBitlnfo = (LPBITMAPINFO) GlobalLock (hDIB)
lpstBitmap = (LPSTR) lpBitlnfo +

(WORD) sizeof (BITMAPINFOHEADER) +
(16 * sheof (RGBQUAO» ;

Stre'CchOIBits (ps.hdc, 10, 10, 2 * WIDTH I 3,
HEIGHT * 2, 0, 0, WIDTH, HEIGHT,
lpstBitmap, lpBitlnfo, OIB_RGB_COLORS,
SRCCOPY) ;

GlobalUnlock (hOIB) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COr-1MANO: 1* process menu items * I
switch (wParam)
{

case IOM_OOIT: 1* change black pixels to white *1
hOC = Get DC (hWnd) ;
lpbi = (BITMAPINFOHEA~ER FAR *) GlobalLock (hOIB)
lpstBitmap = (LPSTR) lpbi +

. (WORD) sizeof (BITMAPINFOHEAOER) +
(16 * sHeof (RGBQUAD» ;

nBytes = ALlGNLONG((WIDTH * COLORBITS)/8) * HEIGHT
1* copy bitmap bytes into temp buffer *1

'\lpstTemp = lpstBi tmap ; ,
·for (i = a ; i < nBytes ; i++)
{

}

if (0 == *lpstTemp)
*lpstTemp = Oxff

lpstTemp++ ;

SetDIBits (hOC, hBitmap, 0, HEIGHT, lpstBitmap,
\ (LPBITMAPINFO) lpbi, OIB_RGB_COLORS) ;

Rel'\easeOC (hWnd, hOC) ;
GlobalUnlock (hOIB) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* paint *1
break;

case 10M_QUIT: 1* send end of application message *1
Oe~troyWindow (hWnd) ;
break' ;

break;
;ase WM_DESTROY: 1* stop application *1

GlobalFree (hOIB) ;
PostQuitMessage (0) ;

break;
default: 1* default windows message processing *1

return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

709

• Icons are small bitmaps that Windows uses as visual placeholders for applications. They are the small pictures you seE} at
the bottom left corner of the screen when applications are minimized. Putting some time into an attractive program icon
is well worth the effort because the icon is frequently the image that sticks in the user's mind when he or she thinks of the
program. Figure 16-1 depicts three typical icons.

Using Icons
Normally, you will create an icon using the Windows SDKPaint application, and add it to the program's resource file.
A typical resource file is shown below.

1* generic.rc *1

#include <windows.h>
#i nelude "generi c. h"

generic
childic

ICON
ICON

generic MENU
BEGIN

MENU ITEM "&00 It!"
MENU ITEM "&Qui til,

END

generic.ico
child.ico

IOM_OOIT
10M_QUIT

In this example two icon files are included in the program's resources. Both icons are given names ("generic" and
"childic") that are used to reference them when they are loaded. An icon can be associated with a window class. An
application normally does this in the WinMainO function.

wndelass. hlcon = Loadlcon (hlnstance,"generi c':)

With an icon loaded as part of the window's class
structure, the icon will be painted automatically if the
window is minimized. Windows will send W~CPAINT
ICON messages when the icon is about to be painted,
rather than WM_PAINTmessages. Every window created
froIl), the same class will have the same class icon. Note Snap3 Clock
that the program's instance handle (hlnstance) is Figure 16-1. Program Icons.
needed with the LoadlconO function because resources,

EI
Osframer

such as icons, are associated with the program's data, not the prograrn~s code. Each instance has its own data.
If the window class does not 'load an icon, the window will not display an icon when it is minimized.

wndelass. hlcon = NULL;

In this case, the application can paint on the small bit of window client area that is visible when the application
is minimized using the normal GDI painting functions. WM_PAINT messages are sent to the application when the
minimized window needs to be p::tinted. The IsIconicO function can be used to determine if the Window is minimized.

710

16. ICONS v

mCPAINT messages will not be sent to a minimized window if an icon is specified in the window's class definition
(see RegisterClassO).

Applications that use a number of child windows that can be minimized end up with a number of icons. Minimiz
ing a child window causes Windows to display the child window icon at the bottom of the parent window's client area.
These icons can be dragged with the mouse within the bounds of the client area. The convenient function
ArrangelconicWindowsO is provided to neatly arrange all of the icons at the bottom left corner of the client area.

Creating Icons at Run Time
Windows 3.0 allows icons to be created and modified while the program is running. The CreatelconO function is
similar to CreateCursorO. They both create an image by combining two bitmaps. CreatelconO has the ability to
create icons fr(lm a binary array, bitmap data, and device-independent bitmaps. The DestroylconO function is pro
vided to delete an icon created with CreateIconO, freeing memory consumed by the icon's data. Exercise restraint
when creating and modifying an icon as
the program operates. Users expect ",~~~~~Ji~1§tf,~~!!?£~~:~;·}:;::~.<i.~· ·lconData
icons to remain unchanged. If the appli-
cation needs to make the minimized ,vin- Figure 16-2. Icon Resource Data Format.
dow change (small clock applications
are an example), it is simpler not to load a class icon, andjust paint on the minimized window's client area.

Although it is seldom necessary to work with the internals of an icon, its structure is worth knowing. The icon
resource file consists of two data structures, a header and one or more icon descriptions. (See the illustration in
Figure 16-2.)

Although the structures are not defined in WINDOWS.H, you can define your own to manipulate the icon data. The
h£::ader has the follmving format:

typedef taglconHeader;
{

WORD
WORD
WORD

i cORe-served;
icoResourceType ;'
icoResourceCount;

1* must be zero *1
1* the type of resource, 1 for icons *1
1* the number of icons defined in this fi le *1

IconHeader ;

Each icon defined in the file (there will be iconResourceCount of them, normally one) will have the following
structure:

typedef taglconData;
{

BYTE
BYTE
BYTE
BYTE
WORD
WORD
DWORD
DHORD

} IconData ;

Wi dth ;
Hei ght ;
ColorCount ;
Reserved1 ;
Reserved2 ;
Reserved3 ;
; coDIBSi ze ;
; coDIBOffst:t

1* icon width in pixels, 16, 32, or 64 *1
1* icon height in pixels, 16, 32, or 64 *1

- 1* the number of colors, 2, 8, or 16 *1
1* reserved for future use *1

. 1* reserved for future use *1
1* reserved for future use *1
1* the size of the pixel array *1
1* the number of bytes from the beginning of *1
1* the fi le to the DIB bitmap for this icon*1

The actual bitmap data consists of two parts. The first (called theXOR mask) is the color bitmap for the imag~. It
is followed by a second, monochrome bitmap, called the AND mask. The AND mask is used to mark the transparent
and opaque pixels of the icon. Note that the icon bitmap size for both the vertical and horizontal dimensions is limited
to one of three values: 16, 32, or 64 pixels. Similarly, the number of colors can be only 2, 8, or 16.

Because the header allows more than one icon to be defined in one resource file, you can build an icon file with
three different sizes, or with different color resolutions. Windows will pick the best match of resolution and color
capabilities when deciding which icons to load. This approach gives a measure of device-independence to icons.

711

WINDOWS API BIBLE

Icon Function Summary
Table 16-1 summarizes the icon functions. The detailed function descriptions are in the next section.

ArrangelconicWindows

Create Icon

Destroylcon

Arranges all minimized child windows in the lower left corner of the parent window's client area.

Creates an icon based on two memory blocks containing bit data.

Destroys an icon that was previously created with Createlcon()

Drawlcon

Loadlcon

Openlcon

Draws an icon on a device.

Retrieves a handle to an icon listed in the program's resource file.

Restores a minimized window to its last size and position.

Table 16-1. Icon Function Summary.

Icon Function Descriptions
This section contains the detail descriptions of the icon functions.

ARRANGEICONICWINDOWS • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Related Messages

Example
/

Arranges all minimized child windows in the lower left corner of the parent window's client area.
WORD ArrangeIconicWindows(HWND hWnd)j

Applications that use a number of child windows that can be minimized or restored run into the
problem where' some child window icons are covered up by other child windows. Arrange
IconicWindowsO puts all iconic windows in a row, starting at the lower left corner of the parent
window's client area. If there is not enough room for all of the icons, additional rows of icons are
created above the first one. This procedure mimics the behavior of the program manager
application's positioning of group boxes and Windows' positioning of program icons on the back
ground.

Used with applications that have child windows that can be minimized. ArrangelconicWindowsO
can also be used to arrange the program icons at the bottom of the screen. Us~ GetDesk
topWindowO to retrieve the desktop window handle.

WORD, the height of one row of icons, measured in pixels. Zero if there were no icons associated
withhWnd.

GetDesktopWindowO, OpenlconO, Chapter 29 on MDI applications.

HWND: The parent. window handle.
.120 It I .Quit

o D
hild 'iv'in':!o-Child Window 2

MvCSIZE. An application can call ArrangelconicWindowsO for
the desktop background (using GetDesktopWindowO to retrieve
the background handle) every time a MtCSIZE message passes
a SIZEI CONI C value. Using this function assures that all program
icons, including the application that was just minimized, are ar
ranged at the bottom left of the screen. Figure 16-3. A'rrange

This example creates two child windows that have their own win- IconicWindows() and
dow class, and share the same message processing procedure, OpenIcon() Example.
ChildProcO. (See Figure 16-3.) The child windows are initially
shown minimized, and arranged at the lower left of the parent window's client area. When the user
clicks the "Do Jt!" menu item, one of the child windows is restored to its normal size with OpenIconO,

712

16. ICONS 'Y

and the remaining minimized child window is arranged at the lower left corner with Arrange
IconicWindowsO·

The child window message-processing function "ChildProc" must be listed in the EXPORTS ~ec
tion of the program's .DEF definition file. A function prototype should also be added to the
header file.

Note in the listing that the client area of the parent window is repainted before the iconic
windows are arranged (IllvalidateRectO and SendMessageO function calls). They are repainted
because Windows will not erase the lettering under the iconized windows when they are restored
to normal size. Repainting the client area before the icons are arranged ~olves this problem.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
WNDCLASS
sta ti c HWND

hDC ;
wndcla!:s J
hChild1, hChild2

switch (iMessage)
{

1* process windows messages *1

1* bui ld the chi ld windows *1
wndclass. style = CS_HREDRAW I CS_VREDRAW

CS_PA~ENTDC;

wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtr~

wndclass.hlnstance
wndclass.hlcon

= Chi ldPl'oc ;
= 0 ';
= 0 ;
= ghlnstance ;
= Loadlcon (NULL,

I D I_APPLICATION)
wndclass.hCursor = LoadCursor (NULL,

IDC_ARROW) ;
wndcla!:s.hbrBackground

GetStockObject (LTGRAY_BRUSH) ,
wndc lass .lpszMenuName = gszAppName ;
wndc lass .lpszC tassName = "SecondC lass"
if(RegisterClass (&wndclass»
{

}

break;

hChild1 = CreateWindow ("SecondClass",
"Child Window 1",
WS_CHILD I WS_VISIBLE I WS_CAPTION I
WS_BORDER, 1{J, 50, 200, 1,50, hWnd,
NULL, ghlnstal\ce, NIILL) ;

ShowWindow (hChild1, SW_SHOWMINIMIZED) ;
hChi ld2 = CreateWi ndow ("SecondC la'ss",

"Chi ld Wi ndow 2",
WS_CHILD I WS_VISIBLE I WS_CAPTION I
WS_BOROER, 100, 30, 150, 100, hWnd,
NULL, ghlnstance, NULL) ;

ShowWi ndow (hChi ld2, SW_SHOWMINIMIZED)
ArrangelconicWindows (hWnd) ;

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

caSE: I OM_DO IT :
Openlcon (hChild1) ;
InvalidateRect <hWnd, NULL, TRUE) ;
SendMessage (hWnd, WM_PAINT, 0, OL)
ArrangelconicWindows (hWnd) ;
break;

case 10M_QUIT: 1* send end of application message *1
OestroyWindow (hWnd) ;
break;

}

.713

WINDOWS API BIBLE

break;
case WM_D£STROY: 1* stop application *1

PostQui tMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

}

return (OL> ;
)

1* Here i~ a separate message procedure for the child window *1

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

)

PAINTSTR~CT ps ;

switch (iMessage)
{ .

1* process windows messages *1

BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 0, 0, "I'm a child.", 12) ;
EndPaint (hWnd, &ps) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL>

CREATElcON 0 Win 2.0 aI Win 3.0 Ii Win 3.1 --
Purpose Creates an icon based on two memory blocks containing bit data.

Syntax HICON Createlcon(HANDLE hlnstance, int nWidth, int nHeight, BYTE nPlanes, BYTE
nBilsPixel, LPSTR IpANDbits, LPSTR IpXORbits)j

Description

o
o

.1

Normally, icons are created using the Windows SDKPaint application and added to the program
as resources. CreateIconO provides an alternative, creating icon images dynamically as the program
operates. The icon can be created from binary data, a bitmap, or a device-independent bitmap (DIB).
The icon is created by combining two bitmaps, the AND mask, and the XOR mask. The AND mask is
always a monochrome bitmap, with one bit per pixel. Table 16-2 shows how the two bitmaps are
combined.

o
1

o

Black

White

Transparent

Inverted color

Table 16-2. Monochrome Icon Bit Masks.

Uses

Returns

See Also

If the XOR bit mask is replaced with a bitmap or DIB, set the AND mask to all ones (OxFF bytes).

Can be used to provide bitmaps that change as an application runs. Users expect icons to retain
the same shape, so change bitmaps cautiously. Note that an application can paint on the small
amount of window area that shows when the window is iconic, if the window's class definition
does not load a class icon. This is the normal way to change the appearance of an iconic lvindow.

RICON, the handle to the icon created. NULL on error.

DeleteIconO, GetSystemMetricsO

714

Parameters
hlnstance

nWidth

nHeight

nPlanes

nBitsPixel

IpANDbits

IpXORbits

Example

16. ICONS V

HANDLE: The program's instance handle.

int: The width, in pixels, of the icon. Use GetSystemMetrics(SM_ CXICON) to retrieve this value.

int: The height, in pixels, of the icon. Use GetSystemMetrics(Sl\CCYICON) to retrieve this value.

int: The number of color planes in the XOR mask for the icon. For example, 1 for monochrome, 4
for 16-color VGA, etc.

int: The number of bits per pixel in the XOR mask for the icon. Again, 1 for monochrome, 4 for 16
colors. One or both of nPlanes and nBitsPixel must be set to 1.

LPSTR: A pointer to an array of monochrome bits, specifying the AND mask for the icon. The
AND mask determines the opaque and transparent portions of the icon. Set to 1 for opaque.

LPSTR: A pointer to an array of bits specifying the XOR mask for the icon. Alternatively, the
pointer can point to a memory block containing a monochrome bitmap or device-dependent color
bitmap (DDB).

This example creates a monochrome icon, illustrated in Figure
16-4, by directly specifying the bit values of both the AND mask
and the XOR mask of the icon. The icon is created when the
MCCREATE message is processed, and it is painted to the
client area when a WM_P AINT message is received. The icon is
destroyed as the application terminates.

Note in the listing that the data defining the bitmap is
freed from memory after the icon is created. The icon will con
tain valid bitmap data from the time it is created, until
DestroylconO is called.

Do Itt Quit

III .
Figure 16-4. CreateIcon()
and Deletelcon() Example.

#define EVENBYTE(i) «i+7)/8*8)

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG· lParam)
{

PAINTSTRUCT
static
PSTR
static
int
static

HANDLE

int

HICON

ps ;
hANDBits, hXORBits ;
psAND, psXOR, psA, psX ;
nlconWide, nlconTall
i, j, nlconBytes ;
h I con ;

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
nIconWide = GetSystemMetr;cs (SM_CXICON) ;
nIconTall = GetSystemMetrics (SM_CYICON) ;
nlconBytes = (EVENBYTE (nIconWide) 1 8) * nIconTall
hANDBits = LocalAlloc (LMEM_MOVEABLE, nIconBytes)
hXORBits = LocalAlloc (LMEM_MOVEABLE, nlconBytes)
psA = psAND = Loca lLock (hANDBi ts) ;
psX = psXOR = LocalLock (hXORBits) ;
for (i = 0 ; i < EVENBYTE (nlconWide) 18; i++)
{

for (j = 0 ; j < nlconTall ; j++)
{

}

*psA++ = OxFF ;
if(i>j)

*psX++ = Ox FF ;
else

*psX++ = Ox11 ;

715

WINDOWS API BIBLE

}

hIcon = CreateIcon (ghInstance, nIcorlWide,
nIconTall, 1, 1, psAND, psXOR)

LocalUnlock (hANDBits)
LocalUnlor.k (hXORBits)
LocalFree (hANDBits) ;
LocalFree (hXORBits) ;
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) i
DrawIcon (ps.hdc, 10, 10, hIcon)
EndPaint (hWnd, &ps)
break i

case WM_'cOMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_QUIT: 1* send end of application message *1
DestroyWindow (hWnd)
break i

}

break;
ca!ie WM_DESTROY: 1* stop application *1

DestroyIcon (hIcon) i
PostQuitMessage (0) i
break i

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL> i
}

DESTRoyICON

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hIeon

Example

DRAwIcON

o Win 2.0 .. Win 3.0 II Win 3.1
Destroys an icon that was previously created with CreatelconO.
BOOL DestroyIcon(HICON hleon);

. Destroying an icon removes the icon data from memory. This should only be used for icons cre·
ated using CreatelconO.

Used to iree memory once the icon is no longer needed. Do not call DestroylconO if the icon is in
use.

BOOL. TRUE if the icon was destroyed, FALSE on error.

CreatelconO

HICON: The handle of the icon, returned by CreatelconO when the icon was created.

See the previous example under CreatelconO.

II Win 2.0 II Win 3.0 IFl Win 3.1

Draws an icon on a device. Purpose

Syntax

Description

- BOOL Drawlcon(HDC hDC, intX, int Y, HICON hIeon);

Uses

Returns

See Also

This is the only function for painting icons. The icon is normally loaded from the resource data
using LoadIconO. It can also be created uf'ing CreatelconO. The device context must be in the
MM_TEXT mapping mode for this function to operate properly.

Drawing an icon.

BOOL. TRUE if the icon was dr~wn, FALSE on error.

LoadlconO, CreatelconO

716

Parameters
hDC

X

y

hlcon

Example

HDC: The device context handle.

int: The logical X coordinate of the upper left corner of the
icon.

int: The logical Y coordinate of the upper left corner of the
icon.

HICON: The handle of the icon. This value is returned either
by LoadIconO or CreateIconO.

16. ICONS ...

r~' ".". "'.' .,'1.. . Pr? :....:.. ~ . ·:-.g'ene"dc,. . .
I I fl',

.120 It I .Quit

00080
[;]

This example, as shown in Figure 16-5, paints all five stock Figure 16-5. LoadIcon() and
icons to the screen; and also paints the GENERIC application's DrawIcon Example.

icon on the lower left. Frain left to right, the five stock icons on
the top row are named IDCAPPLICATION, IDCASTERISK, IDCEXCLAMATION, IDCHAND, and
IDCQUESTION. The image and the name ofthe IDCASTERISK and IDCHAND icons do not match
because the icons were a different shape with the 2.0 release of Windows.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
static HICON

ps ;
hlcon1, hlcon2, hlcon3, hlcon4, hlcon5, hlcon6 ;

switch (iMessage)
{

1* process windows messages *1

ca se WM_CREATE:
hlcon1 = Loadleon (NULL, IDI_APPLICATION)
hlcon2 = Loadlcon (NULL, IDI_ASTERISK) ;
hlcon3 = Loadlcon (NULL, lDI_EXCLAMATION)
hlcon4 = Loadlcon (NULL, lDI_HAND) ;
hlcon5 = loadlcon (NULl., IDI_QUESTION) ;
hlcon6 = Loadlcon (ghlnstance, "generic")
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
Drawlcon (ps.hdc, 10, 10, hlcon1)
Drawlcon (ps.hdc, 50, 10, hlcon2)
Drawlcon Cps.hdc, 90, 10, hlcon3) ;
Drawlcon (ps.hdc, 130,10, hlcon4);
Drawlcon (ps.hdc, 170, 10, hlcon5) ;
Drawleon (ps.hdc, 10, 60, hlcon6)
EndPaf'nt (hWnd, &ps) ;
break;

[Other program lines}

LOADICON
Purpose

Syntax

Description

11 Win 2.0 II Win 3.0 • Win 3d
Retrieves a handle to an icon listed in the program's resource file.'

HICON LoadIcon(HANDLE hlnstance, LPSTR lpIconName)j

LoadlconO does two related tasks. It retrieves a handle to an icon referenced in the program's
.Re resource script file. It also retrieves stock icon images. If more than one call to LoadlconO is
made for the same icon name, a handle is retrieved to the existing icon data in memory. Normally,
icons are created with the Windows SDKPaint application and stored in a disk file. A program can
use the icon by including an ICON statement in the .RC resource file.
generic ICON generic.ico

'fhen, the program can obtain a handle to the icon using the icon's name, "generic" in this case. To
load a stock icon, the hlnstance parameter must be set to NULL.

717

I

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters
hlnstance

lplconName

101_APPLICATION

10LASTERISK

101_EXCLAMATION

10LHANO

101_ QUESTION

Obtaining a handle to an icon, ready to lise for DrawIcon().

HICON, the handle to the icon. NULL on error.

DrawIconO

HANDLE: The application's instance handle. Use GetWindowWord() to obtain this value if it has
not been saved. Set to NULL to load a stock icon.

LPSTR: A pointer to a character string containing the name of the icon. (This is the name on the
left side ofthe ICON statement in the application's .RC resource file.) If hlnstance is set to NULL,
lplconName can be one of the five stock icon names listed in Table 16-3.

The default application icorJ, an open rectangle.

An information icon.

An exclamation point icon (for warning messages).

A stop sign icon (for serious waming messages).

A question mark.

Table 16-3. Stock Icons.

Example

OPENIcON

Purpose

Syntax

Description

Uses

Returns

,SeeAIso

Parameters

See the previous example under DrawlconO.

Restores a minimized window to its last size and position.

BOOL Optmlcon(HWND hWnd)j

• Win 2.0 .. Win 3.0 • Win 3.1

This is a shortcut method of restoring a window that has been minimized. Windows retains the
last size and position of the window before it was minimized. Calling OpenlconO restores the
window to its former position and size. Note that this function has little to do with the
application's icon. It is simply a means of restoring a window.

Used in applications that have child window controls that can be minimized.

BOOL. TRUE if the windowwas restored, FALSE on error.
. ArrangeIconicWindowsO •

hWnd HWND: The handle of the window to be restored. This value is returned when CreateWindowO is
used to create the '(child) window.

Related Messages WM_SIZE

Example See the example under ArrangelconicWindmysO.

718

Windows provides two methods for applications to exchange information: the clipboard and Dynamic Data Exchange
JDDE). The clipboard is used for information that is exchanged on demand by the user. DDE is used when the infor
mation needs to be transferred in the background, or as it becomes available from some outside source, such as a
modem. Windows applications use the clipboard frequently .. Any time you cut or copy text or bitmaps from within the
Windows Notepad, PaintBrush, Windows Write, Excel, etc., the data ends up in the clipboard. Because the clipboard
is available to all applications, you can cut and paste between different programs. This information exchange is a
powerful feature of Windows, and one of the benefits of using Windows as a development platform.

Using the Clipboard .
Physically, the clipboard is just a global memory block.
When an application gives data to the clipboard, Win
dows takes ownership of the memory block. Anyapplica
tion can then request a handle to the memory block and
read the data. The block remains the property of Win
dows. To put data in the clipboard, an application allo
cates a global memory block and fills it with data. The
function SetClipboardDataO then passes the memory
block to Windows. Any application wanting to read the
memory block can use Get.ClipboardDataO to obtain a
handle to the global memory location containing the
data. Figure 17-1 s~ows this relationship graphically.

A typical program fragment loads a text'string into'
.the clipboard in the follwoing code: Ftgure 17-1. The Clipboard,

hMem = Globa lAlloc- (GHND, 64)
lpStr = GlobalLockChMem) ;
lstrcpy (lpStr, "Text In Clipboard")
GlobalUnlock (hMem) ;
if (OpenClipboard.(hWnd»
{

EmptyClipboard () ;
SetClipboardData (CF_TEXT, hl1em)
CtoseClipboard () ;

The program allocates a global block 64 bytes wide and copies some text to it. The block is then unlocked, but not
freed. OpenClipboardO alerts Windows that the clipboard is going to be used. If another application has the clipboard
open, OpenClipboardO will return ·zero. Otherwise, EmptyClipboardO clears any data currently in the clipboard and
frees the memory block associated with it. SetClipboardDataO adds the new block to the clipboard. CloseClipboardO
lets Windows know that the clipboard is not needed by this application.

The program code needed to retrieve the text is shown below.

if (OpenClipboard (hWnd»
{

719

WINDOWS API BIBLE

}

hClipMem = GetClipboardData (CF_TEXT) ;
hMem = GlobalAlloc (GHND, GlobalSize (hClipMem» ;
lpStr = GlobalLock (hMem) ;
lpClip = GlobalLock (hClipMem) ;
lstrcpy (lpStr, lpCUp) ;
GtobalUnlock (hHem) ;
GlobalUnlock (hClipMe~) ;
CloseCiipboard () ;

Because the global memory block in the clipboard belongs to Windows, the application cannot use it directly.
Instead, the application needs to copy the data to another memory area that is owned by the application. Again,
OpenClipboardO alerts Windows that the clipboard will be used, and checks to make sure that no other application
has the clipboard open. GetClipboardDataO obtains a handle to the clipboard's memory block. The clipboard data is
then copied into a !Separate block allocated with GlobalAllocO. The clipboard memory block is unlocked (but not
freed) to release the block for use by other applications. CloseClipboardO informs Windows that the clipboard is no
longer needed. .

Clipboar~ Formats
You may have noticed the CF _TEXT string in the SetClipboardDataO and GetClipboardDataO function calls. This is
one of several predefined clipboard formats available to all applications. Clipboard fonna.ts are used to distinguish
different types of data that can be exchanged by applications. Without formats, an application might try to read in
bitmap data and use it as character data. Formats keep the different types of data separate. Table 17 -lUsts all of the
predefined clipboard formats.

CF_DIF

CF _DISP8ITMAP

CF _DSPMETAFILEPICT

CF _DISPTEXT

CF _METAFILEPICT

CF _OWNERDISPLA Y

bF_PALEITE

,CF_SYLK

CF_TEXT

A bitmap handle (H8ITMAP).

A memory block containing a device-independent bitmap (DI8). The block will contain a
8ITMAPINFO data structure followed by the bitmap bits (see Chapter 15, Bitmaps).

Software Arts' Data Interchange Format.
/

A private bitmap display format.

A private metafile display format.

A private text display format.

A metafil~ picture. The memory block will contain a METARLEPICT data structure (see ChAPter
23, Metafiles, and the following discussion).

A memory block containing only OEM text characters. Each line is ended with a CR-LF pair. A •
NULL byte marks the end of the text. Windows uses this format to transfer data between non
Windows and Windows applications.

The clipboard owner is responsible for painting the clipboard. The clipboard owner should
process WM_ASKC8FORMATNAME, WM_HSCROLLCLlP80ARD, WM_PAINTCUP80ARD,
WM_SIZECLlP80ARD, and WM_ VSCROLLCUP80ARD messages.

A h~dle to a color palette (see Chapter 12, Color Pallette Contro~.

Microsoft Symbolic Unk (SYLK) format.

A memory block containing text characters. Each line is ended with a CR-LF pair. A NULL byte
marks the end of the text. This is the standard format for exchanging text between Windows
applications.

Tag Image File Format.

Table 17-1. Clipboard Data Formats.

720

17. THE CLIPBOARD ... '

The predefined formats cover the most common types of data exchange. Even if your application uses specialized
data fields, it should support at least one of the predefined clipboard formats. For example, a spreadsheet might write
the selected cell contents to the clipboard using only the CF _TEXT clipboard format. This would lose the formatting
and calculations in the complete spreadsneet datil field, but at least it would allow another application to read the
character data. .

Multiple Clipboard Formats
Applications may use specialized data formats to exchange data with the clipboard. Windows supports this with the
process of "registering" a special format. The RegisterClipboardFormatO function allows applications to create cus
tom .formats.

Using a spreadsheet as an example, let's say that the program needs to cut and paste the complete contents of one
or more cells in the spreadsheet. There is a lot of data behind each spreadsheet cell, including the calculation formula .
and text formatting options. If the data were passed as a standard format, such as CF _TEXT, another application
might read all of the formatting data as text, and end up with a lot of strange characters. .

The solution is to register a new clipboard format. The format might be called "CELL." The spreadsheet applica
tion cuts and pastes cells by copying memory blocks to and from the clipboard using the CELL format. Another
application trying to read CF _TEXT format data would not get a handle to this data when it called GetClipboardData
(CF_TEXT).

Supporting more than one clipboard format is even more sophisticated than this approach. The clipboard can
hold more than one memory handle, and each handle can contain data in a different format. Our spreadsheet. can
write the full contents of the cells using the CELL format, and also write the cell text using the simple CF _TEXT
format. This ability allows a word processor to paste text off of the clipboard, while also allowing the spreadsheet to
paste the full cell data. '

Word for Windows provides an excellent example of this type of flexibility. When a block of text is cut or copied
from within Word for Windows, the clipboard has five separate versions of the text available. They range from the
sophisticated "Rich Text Format" special clipboard format, to the lowly CF _OEMTEXT predefined format~ A wide
range of applications will be able to read the text copied to the clipboard by Word For Windows. The examples under
the EnumClipboardFormatsO and GetPriorityClipboardFormatO function descriptions provide more details. The lat-
ter has an example that provides two clipboard formats at the same time. '

Delayed Rendering of Clipboard Data
"Rendering" is an awful word for putting data in the clipboard ("rendering" brings to mind boiling caldrons of fat and.
lime, but this is a different use of the word). Normally, an application will pass a memory block to the clipboard when
SetClipboardDataO is called. Windows provides another option. If SetClipboardDataO is called with a NULL memory
handle, Windows assumes that the application wants to wait to load the memory block into the clipboard. This is
called "delayed rendering."

There are a couple of reasons why you may want to use delayed rendering. One is if there is a low probability that
the data will be needed. 'For example, if the user highlights some text and then presses the @b) key, he or she
probably wants to get rid of the text. Loading the memory block into the clipboard takes time and fills up memory
space. Waiting to see if the user wants the data recovered can save memory and speed up the program. You should also
use delayed rendering if the clipboard will end up passing a large memory block, or several clipboard formats at once.
In either case, the memory area filled by the' clipboard block will interfere with the operation of other programs if
memory gets tight. It is better to load the data at the moment it is required.

As previously mentioned, the first step in using delayed rendering of clipboard data is to call SetClipboardQataO,
passing NULL as the memory handle. The clipboard format will be registered with Windows, but no data changes
hands. If another application attempts to read the specified clipboard format data from the clipboard, Windows will'
send a WM_RENDERFORMAT message to the application that called SetClipboardDataO. At this point, the applica
tion should pass the memory block containing the requested data by calling SetClipboardDataO, with a global memory
block handle. '

721

WINDOWS API,BIBLE

Applicationsthat use delayed .. rendering are also expected to process theWftCRENDERALLFORMATS message.
This message is sent to the application when the application is about to exit. The application should pass valid global
memory block handles to the clipbaord for all fonnats that the application supports. Doing so will let other applica
tions paste from the clipboard after the application' exits., Examples of delayed rendering of clipboard data are pro- .

. vided underthe EllumClipboardFormatsO and IsClipboardFormaiAvailableO function descriptions. '

Bitmap and Metafile Clipboard Formats
The CF _BITMAP format specifies the "old" DDB bitmap fonnat. Bitmaps are transferred to the clipboard by passing a
handle to the bitmap ,in place of a handle to an ordinary memory block. The bitmap handle is returned by the
CreateCompatibleBitmapO function, which creates a memory bitmap in global memory. The example under
SetClipboardDataO provides an example program that captures bitmap images from the screen and copies them to
the clipboard.

, Device-independent bitmaps (DIBs) are passed to the clipboard as a global memory block. This is the CF _DIB
clipboard format. The memory block contains the BITMAPINFO data structure followed by the bitmap bits. Metafiles
are transferred to the clipboard using the METAFILEPICT structure, which is defined in WINDOWS.H as'

typedef struct tagMETAFILEPICT
{

intO , mm;
int xExt;
int yExt; ,

, "HANDLE hMF;
':} METAFILEPICT;

typedef METAFILEPICT FAR

1* the mapping mode *1
1* the metafile X extent (width) *1
1* the metafile Y extent ~height) *1
1* a handle to the memory metafi le *1

*LPMETAFILEPICT;

Th~ METAFILEPICT-d~ta structure'is initialized in a global memory block. The hMF element points to a metafile
in memory (not a disk metafile). When the handle to the METAFILEPICT data structure memory block is passed to
Wind'ows using SetClipboardDataO, both that memory block and the memory block containing the metafile (hMF)
become the property of Windows. '

I, .. ,

Clipboard Viewer Programs
Windows comes with a clipboard viewer ~alled "Clipboard." This application is put in the Main group when Windows
is installed. The application will display whatever data is in the clipboard, and will support mog of the predefined \
clipboard formats (every one that the author tested). Other applications can be clipboard vie.wers, and more than one
clipboard viewer can be active at one time;'lfmore than one application displays the clipboard contents~ the applica
tions are said to form a "clipboard viewing chain." The functions SetClipboardViewerO and CfiangeClil!.boardChainO
are provided to establish an application as a clipboard viewer, and to remove an application from the viewing cham.

Windows, sends clipboard viewers the WM_DRAWCLIPBOARD message when the clipboard data changes. The
application can display the data (if it supports the clipboard data format). The viewer has the obligation to pass the
message to the next viewer in the: chain. When a clipboard viewer is removed from the viewing chain, the
W1t(CHANGECBCHAIN message is sent by Windows. Again, each application in the viewing chain is responsible for
sending this message to the next viewe~.

An example of a clipboard viewer that displays both text and bitmap data is given under the Change Clip
boardChainO function description. Normally, clipboard viewers are only written to view custom clipboard data for- ,
mats. The Clipboard application supplied with Windows is fine for viewing the standard fonnats.

Caution: Because Windows owns the memory block associated with the clipboard, applications should not leave '
this block locked after data has .been read. Applications should not allow control to pass back to Windows while the
clipboJrd is open. In other words, the clipboard should be opened and closed while processing a single Windows
message. This can be more complicated than it sounds. For example, an application that opens the clipboard may use
a dialog box to display an error. If the dialog box is not system-modal, the user can select another application while the
dialog box is on the screen. This effectively passes control back to Windows while the clipboard is still open. Avoid this
situation by closing the clipboard immediately after use.

722

17. THE CLIPBOARD ~

Clipboard Function Summary
Table 17·2 summarizes the clipboard functions. The detailed function descriptions are in the next section.

ChangeClipboardChain .

CloseClipboard

CountClipboardFormats

EmptyClipboard

EnumClipboardFormats

GetClipboardData

GetClipboardFormatName

GetClipb::lardOwner

GetClipboardViewer

GetOpenC!ipboardWindow

GetPriorityClipboardFormat

. IsClipboardFormatAvailable

OpenClipboard

RegisterClipboardFormat

SetClipboardData

SetClipboardViewer

,.

Removes a clipboard viewer program from the chain of viewer programs.

Closes the clipboard after it was opened either to add data, or to read data.

Determines the number of Clipboard formats currently in use.

Empties the clipboard and frees the data ~ssociated with it.

Lists all of the formats available in the clipboard.

Retrieves a handle to the data in the clipboard.

Determines the name of a special cl,ipboard format.

Retrieves the handle of the application that owns the clipboard.

Retrieves the handle of the first clipboard viewer in the clipboard viewer chain.

Determines the handle of the window that most recently opened the clipboard.

Checks the clipboard for availability of desired data formats.

Checks whether the clipboard contains data in a specific format.·

Opens the clipboard so that an application can read or set the contents.

Registers a new clipboard format name with Windows.
,

Passes a global memory handle to the clipboard. The memory block becomes the clipboard
data.

Adds a new window to the list of windows in the clipboard viewer chain.

Table 17-2. Clipboard Function Summary.

Clipboard Function Descriptions
This section contains the detailed d~scriptions of the clipboard function.

CHANGECLIPBOARDCHAIN • Win 2.0 • Win 3.0 • Win 3.1

Purpose
'Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Removes a clipboard viewer program from the chain of viewer programs.

BOOL ChangeClipboardChain(HWND hWnd, HWND hWndNext)j

This function is useful only if SetClipboardViewerO has been called to install a clipboard viewer.
Clipboard viewers receive W~CDRAWCLIPBOARD messages, and are expected to display the
data currently in the clipboard. '

Used when an application is removed from the clipboard viewing chain.

BOOL. TRUE if hWnd was removed from the clipboard viewer chain, FALSE on error;

SetClipboardViewerO

HWND: The window handle of the \vindow to be removed from the clipboard viewer chain. This
handle must have been previously passed to Windows by SetClipboardViewerO.

hWndNext HWND:The window handle of the window that follows hWnd in the chain of clipboard viewers.
This value is returned by SetClipboardViewer(), and should be saved in a static variable.

'Related Messages mCDRAWCLIPBOARD, m.CCHANGECBCHAIN

723

WINDOWS API BIBLE

Example This example creates a clipboard viewer. The application will display the current contents of the
clipboard if the clipboard contains either the CF _TEXT or CF _BITMAP data type. Clicking the·
"Do It!" menu item empties the clipboard. The viewer installs itself in the clipboard viewer chain
when the application starts, and removes itself from the chain on exit.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

PAINTSTRUCT
HDC

ps ;
hMemDC ;

HBITMAP
BITMAP
RECT
HANDLE
LPSTR
static HWND

hBi tmap ;
bm ;
rClientRect ;
hMem;
lpMem ;
hNextVi ewer ;

switch (iMessage)
<

1* process windows messages *1

case WM_CREATE:
hNextViewer = SetClipboardViewer (hWnd)
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
GetClfentRect (hWnd, &rClientRect)
OpenClipboard (hWnd);
if (hMem = GetClipboardData (CF_TEXT»
<

}

lpMem = GlobalLock (hMem) ;
DrawText(ps.hdc, lpMem, -1, &rClientRect,
DT_LEFT) ;
GlobalUnlock (hMem) ;

else if (hBitmap = GetClipboardData (CF_BITMAP»
<

}

hMemDC = CreateCompatibleDC (ps.hdc)
SelectObject (hMemDC, hBitmap) ;
GetObject (hBitmap, sizeof (BITMAP),
(LPSTR) &bm) ;
BitBlt (ps.hdc, 0, 0, bm.bmWidth, bm.bmHeight,
hMemDC, 0, 0, SRCCOPY)
DeleteDC (hMemDC)

CloseClipboard () ;
EndPa;nt (hWnd, &ps)
break;
case WM_DRAWCLIPBOARD:
if (hNextViewer)
SendMessage (hNextViewer, \,/M_DRAWCLIPBOARD,
wParam, lParam) ;
InvalidateRect (hWnd, NULL, TRUE) ; 1* force paint *1
break;

case WM_CHANGECBCHAIN:
if (wParam == hNextViewer)

hNextViewer = LOWORD (lParam) ;
else if (hNextViewer)

break;
case WM_COMMAND:

SendHessage (hNextViewer, WM_CHANGECBCHAIN,
wParam, lParam) ;

swi tch (wParam)
<

1* process menu iiems *1.

case l!)M_DOIT: 1* empty the clipboard *1
OpenClipboard (hWnd) ;
EmptyClipboard () ;
CloseClipboard () ;
InvalidateRect (hWnd, NULL, TRUE)
break;

724

}

case 10M_QUIT:

break;

DestroyWindow (hWnd) ;
break;

case WM_DESTROY: 1* stop appLication *1
ChangeCLipboardChain (hWnd, hNextViewer} ;
PostQuitMessage (0) ;
break;

17. THE CLIPBOARD ...

defauLt: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (OL)

CLOSECLIPBOARD • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Example

Closes the clipboard after it was opened ,either to add data or to read data.
BOOL CloseClipboard(void)j

The clipboard is a global memory block which has been passed to Windows from an application.
OpenClipboardO makes the data temporarily available.to an application. CloseClipboardO re
turns control of the memory block to Windows.

Used after OpenClipboardO to return control of the clipboard data to Windows. Control should
not be passed to Windows while the clipboard is open. Open and close the clipboard while pro
cessing a single Windows message.

BOOL. TRUE if the clipboard was closed, FALSE on error.

OpenClipboardO, EmptyClipboardO

None (void).

See the previous example under ChangeClipboardChainO and the example under SetClip
boardDataO·

COUNTCLIPBOARDFoRMATS II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Descriptitin

Returns

See Also
. Parameters

Example

Determines the number of clipboard formats currenny in use.

int CountClipboardFonnats(void)j

Some applications put more than one format of data in the clipboard. This allows a variety of
applications to read the data, even if they do not support all of !he formats available.

Determines if more than one clipboard format is available. EnumClipboardFormatsO can then
be used to determine which formats are available.

int, the number of data formats currently in the clipboard.

EnumClipboardFormatsO, GetClipboardFormatNameO

None (void).

See the example under EnumClipboardFormatsO.

EMPTYCLIPBOARD , • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

E~pties the clipbo~rd and frees the data assoCiated with it.
BOOL EmptyClipboard(void)j

ThisJunction is used to remove data from the clipboard. It is called after OpenClipboardO, and
before CloseClipboardO. Any global memory that was associated with the -clipboard by an appli-

725

WINDOWS API BIBLE

Uses

Returns
See Also

cation calling SetClipboardDataO is freed. The window calling EmptyClipboardO becomes the
current clipboard owner.

Use this prior to calling SetClipboardDataO to make sure that the clipboard is empty. Also used
to empty the clipboard so that no data is visible in an open clipboard viewer.
BOOL. TRUE if the clipboard was emptied, FALSE on error;

OpenClipboardO, CloseClipboardO
Parameters None (void).

Related Messages \W.LDRAWCLIPBOARD, WM_CHANGECBCHAIN
Example See the examples under ChangeClipboardChainO and SetClipboardDataO.

ENUMCLIPBOARDFoRMATS • Win 2.0 • Win 3.0 • \Vm 3.1
Purpose
Syntax

Description

Uses

Returns
. See Also '
. Parameters
wFormat

Example

Lists all of the formats available in the clipboard.
WORD EnumClipboardFormats(WORD wFormat)j
The clipboard can contain data that uses any of the predefined clipboard formats (listed under
SetClipboardDataO) or a special clipboard format made with RegisterClipboardFormatO.

EnumClipboardFormatsO is called repeatedly to determine all of the formats. On the first·
, call, wFonnat is set to zero. EnumClipboardFormatsO returns the first format available. On the
second and subsequent calls, the last format returned is used for wFonnat in the next call. This
sequence is repeated until the function returns zero, specifyiIlg that the last format has been
read. '

EnumClipboardFormatsO lists all of the formats that are currently in use in the clipboard. In,
most cases, this will be a single format. Some applications set more than one version of the data
to the clipboard, so that other applications can read the data if they only support a few formats.

EnumClipboardFormatsO lists the formats in the same order that the application that set
the clipboard used in loading the data. The first format enumerated should be the most desirable
(least data lost). For example, a DIB (device-independent bitmap) would be preferable to a DDB
bitmap.

. . Used with applications that support more than one mean~ of reading the clipboard. Enumerating
the clipboard allows the application to choose which fo~at to use in reading the data.
WORD, the next known clipboard format number. Returns zero if the' last format was read .
CountClipboardFormats, GetClipboardFormatNameO .

WORD: The format number of the last format read. Set to zero for the first call' to EnumClip
boardFormatsO. Set to the last value returned by the function for'all subsequent calls.
This example lists all of the clipboard formats available when the user clicks the "Do It!" menu
item. For custom formats (set by applications which call RegisterClipboardFormatO), the name·
of the format can be retrieved using GetClipboardFormatNameO. For predefined clipboard for-
mats, the names are not returned by II
GetClipboardFormatNameO. The
listing includes a function called
NameClipFormatO that supplies
the names of the' predefined for
mats.

Figure 17-2 shows the list of
available clipboard formats after
Microsoft Word for Windows has·

726

) ,~ • ',' c'" FF -" . ',.; •. ~ • (Ienenc 1-.': ,'" ' :.
.,., ~ :.) 1 , "\. • ~ ~

Uo It I .Quit
Rich Text Formal (Oxd2cd) clipboard format available
CF _'OWNERDISPLAY. (OxOO) clipboard format available.
CF 3EXT. (Oxl) clipboard format available. . .
LInk. (Oxdl ef) clipboard format available.
CF _ OEMTEXT. (Ox7) clipboard format available.

Figure 17-2;. EnumClipboardFonnats() Example.

17. THE CLIPBOARD ~

been used to copy text to the clipboard (Edit/Copy menu item). This application supplies the
clipboard with five clipboard formats. An application reading or viewing the clipboard could use
any of these to obtain the text copied.

o EnumClipboardFormatsO retrieves the formats in the same order that data was added into
the clipboard, which should be the priority order. In this case, the most desirable format is a
special format called "Rich Text Format." The next most desirable is theCF _OWNERDISPLAY
predefined format, which is only suitable for a clipboard viewer. Next is the CF _TF..xT format,
which includes the text characters, but omits formatting characters. Next is a special forihat
called "Link." The last, and least desirable format, is CF _OEMTEXT which will only have the OEM
character set. As you can see, Wo~d for Windows goes to a lot of trouble to make the data in the'
clipboard useful.

void NameClipFormat (int nFormat, char *cName) ;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

}

HOC
int
char

hOC 0;
i, n; nCBFormats, nFormat ;
cBuf [128J, cName [64J ;

switch (iHessage)
{

1* process windows messages *1

l

case WM~COMM~ND: 1* process menu items *1
switch (wParam)
(

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hOC = GetDC (hWnd) ;
nCBFormats = CountClipboardFormats()
OpenClipboard (hWnd) ;
nFormat = 0 ;
for (i = 0 ; i < nCBFormats ; i++)
{ .

nFormat = EnumClipboardFormats
(nFormat) ;

. n = GetClipboardFormatName (nFormat,
cName,,63) ;

if (n == 0)
NameClipFormat (nFormat, cName)

TextOut (ht'C, 10, i * 20, cBuf,
wS,:rintf (cBuf,

"%s, (Ox%x) clipboard format available.",
(LPSTR) cName, nFormat»;

CloseCLipboard () ;
ReleaseDC (hWnd, hOC) ;
break;

case IDM_QUlT:
DestroyWindow (hWnd) ;
break;

break;
case WM_DESTROY:

default:

PostQui tMessage (0) ;

break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;

1* fills in cName with the name of a predefined clipboard format *1

void NameClipFormat (int nFormat, char *cName)
{

static char *cClipName (9J = {"CF_TEXT", "CF_BITMAP",
"CF_METAFILEPICT", "CF_SYLK", "CF_DIF", "eF_TIFF",

727

WINDOWS API BIBLE

"CF OEMTEXT" "CF DIB" "CF PALETTE" } •
stat i c char *cCl ipNam'e2 [4] = {r.C F _OWNERDISPLAY'~,

"CF_DSPTEX,.", "CF~DSPBITMAP", "CF_DISPMETAFILEPICT"} ;

if (nFormat <= 9)
strcpy (cName, cClipName [nFormat - CF_TEXT]) ;

else if (nFormat"<= Ox83)"

else
,strcpy (cName, cCLipName2 [nFormat - CF_OWNERDISPLAY]) ;

s t rcpy (cName, "<Not named>")
}

GETCLIPBOARDDATA • Win 2.0 • Win 3.0 II Win 3.1
~ose I

Syntax

Description

Uses

Returns

See Also
Parameters
wFormat

CF_DIF

CF _DISPBITMAP

Retrieves a handle to the data in the clipboard.

HANDLE GetClipboardData(WORD ~vFonnat);

This function checks the clipboard to see if the clipboard holds the specified data fonnat. If so, a
handle to the clipboard memory block is returned. This function is called after OpenClipboardO,
and before CloseCJipboardO. The application should copy the memory block immediately after re
ceiving the handle. Otherwise, another application may empty the clipboard, invalidating the handle.

" Retrieving data from the clipboard.

HANDLE, a handle to a global memory block. NULL on error. Lock the memory block with
G1obalLockO before reading the data, and unlock it with G1obalUnlockO as soon as the data is read.

OpenClipboardO, CloseClipboardO, SetClipboardDataO

WORD: Specifies what type of data the application would like to read from the clipboard memory
block. The format can be any of the ones listed in Table 17-3.

A bitmap handle (HBITMAP).

" A memory block cO[ltaining a device-independent bitmap (DIB). The block will contain a
BITMAPINFO data structure followed by the bitmap bits.

Software Arts' Data Interchange Format.

A private bitmap display format.

CI: _DSPMET AFILEPICT

CF _DISPTEXT

A private metafile display format.

A private text display format.

CF _MET AFILEPICT

CF_OEMTEXT

CF _OWNERDISPLAY

CF_PALETTE

CF_SYLK

CF_TEXT

A metafile picture. The memory block will contain a MET AFILEPICT data'structure.

A memory block containing only OEM text characters. Each lirie ends with a CR-LF pair. A
NULL byte marks the end of the text. This is the format Windows uses to transfer data between
non-Windows and Windows applications.

The clipboard owner is responsible for painting the clipboard. The clipboard owner should
process WM_ASKCBFORMATNAME, WM_HSCROLLCLIPBOARD, WM_PAINTCLIPBOARD,
WM_SIZECLIPBOARD, and WM_ VSCROLLCLIPBOARD messages:

A handle to a color palette.

Microsoft Symbolic Link (SYLK) format.

A memory block containing text characters. Each line ends with a CR-LF pair. A NULL byte
marks the end of the text. This is the standard format for exchanging text between Windows
applications.

Tag Image File Forma!.

Table 17-3. Clipboard Data Formats.

728

17. THE CLIPBOARD ...

In addition, private clipboard formats can have values between CF_PRIVATEFIRST and
CF _PRIVATELAST;

Related Messages WM_ASKCBFORl\lATNAME, MYCHSCROLLCLIPBOARD, WM_PAINTCLIPBOARD, WM_SIZE
CLlPBOARD, WM_ VSCROLLCLIPBOARD

Caution

Example

The application calling GctClipboardDataO should unlock the memory block as soon as it is read.
Leaving the clipboard memory block locked while Windows processes messages may cause the
system to crash. . .

See the examples under the ChangeClipboardChainO and SetClipboardDataO function
descriptions.

GETCLIPBOARDFoRMATNAME • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns
. 'See Also·

Parameters
wFonnat

lpFonnatName

nMaxCount

Example

Determines the name of a special clipboard format.

int GetClipboardFonnatName(WORD wFonnat, LPSTR lpFonnatName, int nMaxCount)j

Applications can use RegisterClipboardFormatO to store data in the clipboard under a special
format name. GetClipboardFormatNameO allows othcr applications to check the name(s) of the
clipboard formats available to see if the data in the clipboard is in the right format to use. Names
of predefined clipboard formats are not returned.

The special format name does not imply that the d;ta is coded. The data can be in a 8tandard
format such as CF _TEXT. The format name simply givcs the clipboard data special meaning. For
example, a spreadsheet might cut and paste using the clipboard with a special format registered
as "SPREADSHEET." The actual data passed to the clipboard could be the characters in the
spreadsheet cell plus formatting characters.

Userl with EnumClipboardFormatsO to find the names of the formats available. Only special
formats registered with RegisterClipboardFormatO have stored names. The standard formats
(listed under SetClipboardDataO) willllot return a name.

int, the number of characters read. Zero on error.

EnumClipboardFormatsO, RegisterClipbourdFormatO

WORD: The format number. This is a format number returned
by EnumClipboardFormatsO or RegisterClipboardFormatO.

LPSTR: A pointer to a memory buffer that will hold the name
of the clipboard format. The buffer should be at least
nMaxCount bytes wide. .

int: The maximum string size to be read into the lpFormat- .
Name buffer. If the clipboard format name is longer, it will be
truncated.

See the example under EnumClipboardFormatsO.

- . generic FF
no It! Quit

Owner: Snap3:
Viewer: Clipboard

Figure 17-3. GetClip
boardOumer(J and GetClip
boardViewer(J Example.

GETCLIPBOARDOWNER • Win 2.0 • Win 3.0 • Win 3.1 .
Purpose

Syntax

Description

Returns

Retrieves the handle of the application that owns the clipboard.

HWND GetClipboardOwner(void)j

The clipboard owner is the last application to call SetClipboardData(). This function returns that
application's handle.

HWND, the handle of the application that owns the clipboard. NULL if the clipboard is currently
unowned. .

·729

WINDOWS API BIBLE

See Also

Parameters

Example

GetCIipboardViewerO

None (void).

This eXample displays the current clipboard viewer and owner window names. (See Figure 17-3.)
The names are updated when the user clicks the "Do It!" menu item, or when the window is
painte,d for any reason.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HWND

ps ;
hCBOwner, hCBViewer ;
cBuf [128J, cName [64J ; char

switch (iMessage)
{

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
hCBOwner = GetClipboardOwner () ;
if (hCBOwner == NULL>

lstrcpy (cName, "<None>")
else

GetWindowText (hCBOwner, cName, 63) ;
TextOut (ps~hdc, 10, 10, cBuf, wsprintf (cBuf;

"Owner: %s:', (LPSTR) cName»
hCBViewer = GetClipboardViewer () ;
if (hCBVi ewer == NULL>

lstrcpy(cName, "<None>") ;
else

GetWindowText (hCBViewer, cName, 63) ;
TextOut (ps.hdc, 10, 30, cBuf, wsprintf (cBuf,

, "V;ewer: %s", (LPSTR) cName» ;
EndPaint (hWnd, &ps) ;
break ;.

case WM_COMMAND:
swi tch (wParam)
{

case IDM_DOIT:
InvalidateRect (hWnd, NULL, TRUE)
break;

I Other program lines I

GETCLIPBOAru> VIEWER • Win 2.0 • Win 3.0 • Win 3.1

Purp~se

Syntax

Description

Returns

See Also

Parameters

Example

Retrieves the handle of the first clipboard viewer in the clipboard viewer ch"in.

HWND GetClipboardViewer(void);

The standard clipboar.d viewer application is supplied with WindO\Vs. This is the Clipboard appli- .
cation that Windows installs in the Main group. Other applications can be added to the clipboard
viewer chain. See ChangeClipboardChainO for an example.

HWND, the handle of the first window in the clipboard viewer chain. NULL if a clipboard viewer
is not running.

GetClipboardOwnerO

None (void).

See the previous example under the GetCIipboardOwnerO function description.

GETOPENCLIPBOARD WINDOW • Win 2.0 • Win 3.0 • Win 3.1
Purpose

SYntax

Determines the handle of the window that most recently opened the clipboard.

HWND GetOpenClipboardWnidow (void);
I

730

17. THE CLIPBOARD "I/f

Description The clipboard is a shared resource. Only one application can have the clipboard open for reading
and writing data at anyone time. This function retur~s the window handle of the application that

Returns

See Also

currently has the clipboard open. .

HWND, the window handle of the window which currently has the clipboard open. If the clip
board is not open, the function re
turns NULL.

GetClipboardOwnerO, GetClip
boardViewerO, OpenClipboardO

--; . generic' FF
Qo It! Quit

Parameters
Example

None (void).

This example, as shown in Figure
17-4, displays the current clipboard
owner, viewer, and the window

Clipboard Owner = Snap3

Clip,board Viewer = Clipboard Viewer

Opened Clipboard = Clipboard Viewer

which most recently opened the Figure 17-4. GetOpenClipboardWiridow() Example.
clipboard. The owner is the applica-
tion that placed the current data into the clipboard. In this case, SNAP3.EXE placed data in the
clipboard. The standard Windows clipboard viewer application was then activated, which be
comes both the clipboard viewer and the application that most recently opened the clipboard.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lPararn)
{

}

PA1NTSTRUCT
char

ps ;
cBuf [128J, cWindName [64J ;
hClipWind ; HWND

switch (iMessage)
{

1* process windows messages *1

}

case WM_PA1NT:
BeginPaint (hWnd, &ps) ;
hClipWind = GetClipboardOwner () ;
GetWindowText (hClipWind, cWindNarne, 63) ;
TextOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf,

.. "Clipboard Owner = 7.5", (LPSTR) cWindName» ;
hClipWind = GetClipboardViewer'() ; .
GetWindowText (hClipWind, cWindNarne, 63) ;
TextOut (ps.hdc, 0, 20, cBuf, wsprintf (cBuf,

"Clipboard.Viewer = 7.5", (LPSTR) cWindName»
hC l i pWi nd = GetOpenC l·i pboa rdWi ndow () ;
GetWindowText (hClipWind, cWindName, 63) ;
TextOut (ps.hdc, 0, 40, cBuf, wsprintf (cBuf,

"Opened Clipboard = 7.5", (LPSTR) cWindName»
EndPaint (hWnd, &ps) ; .
break;

case WM_CHANGECBCHA1N: 1* clipboard view chain changed *1
1nvalidateRect (hWnd, NULL, TRUE); 1* force paint *1
break;

case WM_COMMAND: 1* process menu i terns *1
swi tch (wParam)

.{

case 1DM_QUIT:

}

DestroyWindow (hWnd)
brea k ;

break;
case WM_DESTROY:

default:

PostQuitMessage (0) ;
break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;

731

WINDOWS API BIBLE

GETPRIORITYCLIl"HOARDFORMAT • Win 2.0 • Win 3.0 /. Win 3.1
Purpose

Syntax

Checks the clipboard for the availability of desired data formats. '.

int GetPriorityClipboardFonnat(WORD FAR *lpPriorityList, int nCount)j
, Description Applications can support more than one data' format for exchanging data to and from the clip

board. There can be more than one predefined format (see SetClipboardDataO for a list), and
more than one custom clipboard format (see RegisterClipboardFormatO).' Generally, some data
formats will be better than others for exchanging data. GetPriorityClipboardFormatO allows the'
clipboard to be scanned using a list of formats. The first format from the IpPriorityList that is
available on the clipboard is returned by the function. This will bethe best format for the applica
tion to read in data from the clipboard using GetClipboardDataO.

Uses

Returns

See Also

Generally used with applications that use special clipboard formats, registered with
RegisterClipboardFormatO.

int, the highest priority clipboard format available. If the clipboard is empty, the function returns
NULL. If the clipboard contains data, but not in any of the desired formats, the function returns -1.

RegisterClipboardFormatO, IsClipboardFormatAvailable(), EnumClipboardFormatsO

Parameters I,

IpPrwrityList WORD FAR *: A pointer to an array of word values. Each element of the array should contain the
number of a desired clipboard format. This is either one of the predefined formats such as
CF _TEXT, or a special format returned by either RegisterClipboardFormatO or. EnumClip

nCount

Example

boardFormatsO. The list should be in priority order, with the most desirable formats first.

int: The number of elements in the array pointed to by IpPriorityList.

. This example demonstrates several advanced uses of the clipboard. When the application is
started ~CCREATE message is processed), a special clipboard format is registered. In addi
tion, the clipboard is set for delayed rendering of two clipboard formats, CF _TEXT and the spe
cial format. With delayed rendering, data is not loaded into ,the clipboard unless an application
requests it. In this case,Windows sends the ~CRENDERFORMAT message. The application
then loads the data into the clip
board. When a WM_PAINT message
is received, the, application reads
the clipboard. Bothclipboar~ for
mats are read. The CF _TEXT format
is read via standard clipboard proto

- (Jclleric "':.-: .: . r-r:-
• :J ,~ '" Ie,"", L~-,'

120 It 1 .Quit
.'

CF _TEXT contains: Special data In clipboard
Special CB Format contains: Special data in (;Upi:oard

col. Before reading the special clip- ,Figure! 7-5. GetPriorityClipboardFormat() Example.
board format, the application uses
GetPriority ClipboardFormat() to check which formats are available. In this case, a list of only
two desired formats is checked. If the special format is available, the contents of the clipboard
are displayed on the application's client area, as shown in Figure 17-5.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
HANDLE
LPSTR
char
static
WORD

WORD

switch (iMessage)
{

ps ;
hMem, hMem2, hC~ipMem ;
lpStr, lpClip ;
cBuf [128J ;
wClipFormat;
wPriorityList [2J ;

1* process windows messages ~I

case WM_CREATE: .
wClipFormat = RegisterClipboardFormat

("SPECIAL") ;

732

17. THE CLIPBOARD T

OpenCUpboard (hWnd); 1* set clipboard for delayed *1
EmptyClipboard () ; 1* rendering of CF_TEXT *1
SetClipboardData (CF_TEXT, 0) ;
if (wClipFormat)

SetClipboardData (wClipFormat, 0)
CloseClipboard ()
break;

case WM_RENDERALLFORMATS:
case WM_RENDERFORMAT: 1* now put data in clipboard *1

OpenClipboard (hWnd)
EmptyClipboard () ;
hMem = GlobalAlloc (GHND, 64) ;
lpStr = GlobalLock (hMem) ;
lstrcpy (lpStr, "Text In Clipboard")
GlobalUnlock (hMem) ;
SetClipboardData (CF_TEXT, hMem) ;
if (wCl ipFormat>
{

}

hMem2 = GlobalAlloc (GHND, 64) ;
lpStr = GlobalLock (hMem2) ;
lstrcpy (lpStr, "Special data in clipboard")
GlobalUnlock (hMem2) ;
SetClipboardData (wClipFormat, hMem2) ;

CloseClipboard ()
break;

case WM_PAINT:
BeginPaint (hWnd, &ps)
OpenClipboard (hWnd) ;
hClipMem = GetClipboardData (CF_TEXT) ;
if (hClipMem)
{

}

lpClip = GlobalLock (hClipMem) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"CF_TEXT contains: Xs"~ lpClip» ;
GlobalUnlock (hClipMem) " ,

CloseClipboard () ;

OpenClipboard(hWnd) ;
wPriorityList [0] = wClipFormat ,
wPriorityList [1] = CF_TEXT ;
if (wClipFormat =
{

}

GetPriorityClipboardFormat (wPriorityList, 2»

hClipMem = GetClipboardData (wClipFormat) ;
lpClip = GlobalLock (hClipMem) ;
TextOut (ps.hdc, 10, 30, cBuf, wsprintf (cBuf,

"Special CB Format contains: Xs", lpClip»
GlobalUnlock (hClipMem) ;

CloseClipboard () ;
EndPaint (hWnd, &ps)
break;

case WM COMMAND:
-switch (wParam)

{

case IDM_DOIT:·
InvalidateRect (hWnd, NULL, TRUE)
break;

case IDM_QUIT:

}

DestroyWindow (hWnd)
break;

break;
case WM_DESTROY: :* s~op application *1

PostQuitMessage (0)
break '

default: 1* default windows message processing *1

733

WINDOWS API BIBLE

return DefWindowProc (hWnd, iMessage, wParam, lParam) ~

>
return (OL> ;

>

IsCLIPBOARDFORMATAVAILABLE , • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
wFormat

Example

Checks whether the clipboard contains data in a specific format. '

BOOL IsCllpboardFonnatAvailable(WORD wFormat)j
The clipboard can contain data in any of the predefined data formats (see SetClipboardDataO
for a list), or in a special format set with RegisterClipboard.'ormatO. IsClipboardFormat
AvaiIable(} checks to see if one specific data format is ciIrrently loaded on the clipboard.

Tnis function is appropriate if only one data format is being read. If the application can use
several formats, use GetPriorityClipboardFormatO instead:

BOOL. TRUE if data of the specified format is available in the clipboard, FALSE if not.

GetPriorityclipboardFormatO, EnumClipboardForm'atsO

, "

WORD: The desired clipboard format. This is either one of the predefined formats, or a special
format registered by an application with RegisterClipbo~rdFormatO.
This example registers a special
clipboard format called "SPECIAL"
when the \W.CCRFATE message is
processed. The clipboard is set for
delayed rendering of the data. This
means that the actual data is not Figure 17-6. IsClipboardFormatAvailable() Example.
loaded into the clipboard unless ei-
ther a \W.CRENDERFORMAT or mCRENDERALLFORMATS message is received. When a
WM_P AINT message is processed, the application checks whether data in the "SPECIAL" format
is available in the clipboard. If so, the data .Cas a 'character string) is displayed on the application's
client area, as shown in Figure 17-6. If not, nothing is displayed;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

I

PAINTSTRUCT
HANDLE
LPSTR
char
static WORD

ps ;
hMem, hC l i pH em ;
lpStr, lpClip;
cBuf [128J ;
wClipFormat ;

iswitch (iHessage)
{

1* process windows messages *1

case WM_CREATE:
wClipFormat = RegisterClipboardFormat

("SPECIAL") ;
OpenClipboard (hWnd); 1* set clipboard for delayed *1
EmptyClipboard () ; 1* rendering *1
SetClipboardData (wClipFormat, 0) ;
CloseClipboard () ;
break; ,

case WM_RENDERALLFORMATS:
case WM_RENDERFORMAF: 1* now put data in clipboard *1

OpenClip~o~rd (hWnd)
EmptyC l ipboard () ;
hMem = GlobalAlloc (GHND, 64) ;
lpStr = GlobalLock(hMem) ;

, lstrcpy (lpStr, "Special data in clipboard") ;
SetClipboardData (wClipFormat, hMem) ;

,GlobalUnlock (hMem) ;

734,

}

CloseClipboard () ;
break. ;

~7. THE CLIPBOARD ..

case WM_PAINT:
BeginPaint (hWnd" &ps)
OpenClipboard (hWnd) ;
if (IsClipboardFormatAvailable (wClipFormat»
{

}

hClipMem = GetClipboardOata (wClipFormat) ;
hMem = GlobalAlloc (GHNO, GlobalSize (hClipMem»
lpStr = GlobalLock (hMem) ;
lpClip = GlobalLock (hClipMem) ;
lstrcpy (lpStr, lpClip) ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"Special CB Format contains: ~s", lpStr»
GlobalUnlock (hMem) ;
GlobalFree (hMem) ;
GlobalUnlock (hClipMem) ;

CloseClipboard () ;
EndPaint (hWnd, &ps)
break; .

/I I

case WM_COMMAND:
swi tch (wParam)
{

case 10M_DOll:
1nvalidateRect (hWnd, NULL, TRUE)
break;

case 10M_QUll:

}

OestroyWindow (hWnd)
break;

break;
case WM_OESTROY: 1* stop application *1

PostQuitMessage (0)
break; .

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

OPEN CLIPBOARD • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hWnd

Example

Opens the clipboard so that an application can read or set the contents.

BOOL OpenClipboard(HWND hWnd)j

The clipboard is a global memory block maintained by Windows. OpenClipboardO makes the
memory block available to the application. GetClipboardDataO can then be used to read the data
in the memory block, and SetClipboardDataO can be used to give the clipboard a new memory
block. The clipboard remains open to the application until CloseClipboardO is called. The appli·
cation should not relinquish control to Windows while the clipboard is open. The clipboard should
be opened and closed while the application processes one wiIidows message.

Used prior to GetClipboardDataO and SetClipboardDataO. OpenClipboardO works by changing
the memory attributes of the block of memory that the clipboard is currently r~ferencing.

BOOL. TRUE if the clipboard is opened, FALSE on error (for example, if another application has
left the clipboard open).

CloseClipboardO, GetClipboardDataO, SetClipboardDataO

HWND: The handle of the window that.is opening the clipboard.

See the examples under ChangeClipboardChainO and SetClipboardDataO.'

735

WINDOWS API BIBLE

REGISTERCLIPBOARDFoRMAT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses
Returns

See Also
Parameters
lpFormatName

Example

Registers a new clipboard format name with Windows.

WORD RegistcrClipboardFonnat(LPSTR lpFormatName)j

Applications can use special clipboard format names to pass data to and from the clipboard. For
example, a spreadsheet may want to cut and paste cell contents using a format called "SPREAD
SHEET." Using a special format name prevents other applications from attempting to read data
that will not be correctly interpreted. Applications can simultaneously load more than one data
format to the clipboard. By doing so, data is made available to many other applications which may
differ in their abilities to. read different formats. For example, the spreadsheet could put the
complete cell data in the clipboard under the special "SPREADSHEET" format, and put the text
contents of the cell using the standard CF _TEXT format.
Used with applications that need to transfer data using specialized formats.
WORD, the format number. NULL on error. The format number will be between OxCOOO and
OxFFFF.
EnumClipboardFormatsO, GetClipboardFormatNameO

LPSTR: A pointer to a null-terminated character string containing the new format name.

See the examples under IsUlipboardFormatAvailableO and GetPrioritvClipboardFormatO.

SETCUPBOARDDATA • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax
Description

Uses

Returns
Se~ Also
Parameters
wFornuit

CF __ BITMAP

CF_DIB

CF_DIF

CF _DISPBITMAP

Passes a global memory handle to the clipboard. The memory block becomes the clipboard data.
HANDLE SetClipboardData(WORD wFornzat, HANDLE hMem)j
The clipboard consists of a global memory block that has been registered in Windows as belong
ing to the clipboard. SetClipboardDataO registers the memory block with Windows. When the
block of memory has been registered, applications should not free the data or leave the block
locked. The memory block should be considered to be o\\lled by the clipboard. Applications using
the clipboard should not allow control to pass to Windows while the clipboard is open. In other
words, the clipboard should be opened and closed while processing one Windows message.
This is the only way to set the clipboard data. Prior to calling this function, the application should
call OpenClipboardO and EmptyClipboardO. As soon as the memory block is passed to the clip
board with SetClipboardDataO, CloseClipboardO should be called and the memory block un-
locked (if it has bee~ locked). '
HANDLE, a handle to the data in the clipboard. This value is normally not used.
OpenClipboardO, GetClipboardDataO, EmptyClipboardO, CloseClipboardO·

,WORD: Specifies what type of data the memory block referenced by hMem contains. The data
type can be any of the those listed in Table 17-4.

A bitmap handle (HBITMAP).

A memory block containing a d9vice-independent bitmap (DIB). The block will contain a
BITMAPINFO data structure followed by the bitmap bits. . , " ,

Software Arts' Data Interchange Format.

CF _DSP~ETAFILEPiCl
A private bitmap display format. ,

A private metafile display format.

736

CF _DISPTEXT

CF _MET AFILEPICT

CF_OEMTEXT

17. THE CLIPBOARD ."

A private text display format.

A metafile picture. The memory block will contain a MET AFILEPICT data structure.

A memory block containing only OEM text characters. Each line ends with a CR-LF pair. A .
NULL byte marks the end of the text. This is the format Windows uses to transfer data between
non-Windows and Windows applications.

CF _OWNERDISPLAY The clipboard owner is responsible for painting the clipboard. The clipboard owner should'
process WM_ASKCBFORMATNAME, WM_HSCROLLCLIPBOARD,'WM_PAINTCLIPBOARD,
WM_SIZECLIPBOARD, and WM_VSCROLLCLIPBOARD messages.

CF_PALETTE

_Cf~SYLK

A handle to a color palette.

Microsoft Symbolic Unk (SYLK) format.

t;F _ TEXT A memory block containing text characters. Each line ends with a CR-LF pair. A NULL byte
marks the end of the text. This is the standard format for exchanging text between Wndows
applications.

CF _llF~ Trg Image File Format.

. Table 17-4. Clipboard Data Formats.

hMem

,
In addition, privat~ clipboard formats can have values between CF _PRIV ATEFIRST and CF _PRI
VATELAST.

HANDLE: A handle to a global memory block that contains the data in the specified format. For
delayed rendering of the clipboard, set hMem to NU~L. This means that the data does not have to
be passed to the clipboard until a W1CRENDERFORMAT message is received.

Related Messages .W1CRENDERFORMAT, wrvCRENDERALLFORMATS

Example This example shows the workings of a screen capture program called SNAPS. When the user
clicks the -"Start Capture" menu item, the mouse changes to a cross hair shape. If the uSer de
presses the left mouse button and drags the mouse, a rectangle appears on the screen. Dragging
the mouse increases the size of the- , .
rectangle. When the mouse button
is released, the area bounded by the
rectangle is copied to the clipboard
and shown in the application's cli-
ent area. "-

~tart Capture ~Iear Buffer ~out 5lult Help

In order to get the program's Figure 17-7. SetClipboardData() Example SNAP3.
window out of the way, SNAP3 mini- \
mizes itself during the capture process. The window is restored when capturing is completed, so
that the captured image is visible inside of SNAPS's window! Clicking the "Clear Buffer" menu
item empties the clipboard.

Figure 17-7 shows SNAPS ,capturing its own icon's image. This image was created by usirig
one instance of SNAP3 to capture a bitmap of a second instance of SNAP3 (capturing an image of
the icon ofSNAP3!).

o Resource Script File
'* snap~. rc *'
#include "snap3.h"
snap3 ICON snap3.ico
snap3 MENU
BEGIN

'MENUITEM'''&St~rt Capture"
MENUITEM "&Clear Buffer",
MENU ITEM "&About",

737

10M_START
10M_CLEAR
10M_ABOUT

WINDOWS API BIBLE

END

MENU ITEM "&Qui t",
MENUITEM "\a&Help",

IOM":'QUIT
IO~:-HELP

C WndProc() and OutlineBlockO Functions
long FAR PASCAL WndProc (HWNO hWnd, unsign~d iMessage, WORD wParam, LONG lParam)
{

sta·tic BOOL
static POINT·
static short
static HANDLE
HOC
BITMAP
HBITMAP
PAINTSTRUCT

bCapturing = FALSE, bBlbcking = FALSE;
beg, end, 0 ldend
xSi ze, ySi ze ;
hlnstance ;
hOC, hMemOC
bm ;
hBitmap
P1> ;

switch (iMessage)
{

case WM_CREATE: ·f* get program instance *1
hlnstance GetWindowWord (hWnd, GWW_HINSTANCE)
break;

case WM_COMMANO: 1* one.of the menu items *1
swi tch (wParam)
{

case 10M_START: 1* the start capture item *1
bCapturi ng TRUE;
bBlocking = FALSE;
Set Capture (hWnd) ; 1* grab mouse *1
SetCursor (LoadCursor (NULL, IOC_CROSS» ;
CloseWindow (hWnd) ; 1* minimize window *1
break;

case 10M_CLEAR: 1* clears screen and clipboard *1
OpenClipboard (hWnd)
EmptyClipboard () ;
CloseClipboard () ;
InvalidateRect (hWnd, NULL, TRUE)
break;

case 10M_QUIT:
OestroyWindow (hWnd) ;
break;

case 10M_ABOUT: 1* show about box *1
MessageBox (hWnd,

"Snap3 - Windows screen capture to clipboard. \nJim Conger 1990.",
"Snap3 About", MB_OK) ;

break;
case 10M_HELP:

}

break

MessageBox (hWnd, "After you click the Start Capture
menu item, move the mouse to the upper left of
the area you want to copy to the clipboard.

Hold down the left mouse button whi le you drag the

.
break

mouse to the lower right of the area. Once you
release the mouse button, the area is sent to the
clipboard and shown in Snap3's window.",
"Snap3 He lp", MB_OK)

case WM_LBUTTONOOWN: 1* starting capturing screen *1
if (bCapturi ng)
{

}

bBlocking = TRUE;
oldend = beg = MAKEPOINT (lParam) ;
OutlineBlock (hWnd, beg, oldend) ;
SetCursor (LoadCu~sor (NULL, IOC_CROSS»

break
case WM_MOUSEMOVE: 1* show area as rectangle on screen *1

738

}

17. THE CLIPBOARD ~

H (bBlo~king)
< '
end = I'1AKEPOINT (lParam) i

-- ... --..--~

OutlineBlock (hWnd, beg, oldend) , 1* erase outline *1
OutlineBlock-'hWnd, beg, end) i 1* draw new one *1

o ldend = end i

break
case WI'1_LBUTTONUP: 1* captur.e and send to clipboard *1

H (bBlocking)
<

}

bBlocking = bCapturing = FALSE i
SetCursor (LoadCursor (NULL, IDC_ARROW» i
ReleaseCapture () i 1* free mouse *1

end = HAKEPOINT (lParam) ;
OutlineBlock (hWnd, beg, oldend)
xSi ze = abs (beg. x - end. x) ;
ySize = abs (beg.y - end.y) ; .
hOC = GetDC (hWnd) ;
hMemDC = CreateCompatibleDC (hOC)
hBitmap = CreateCompatibleBitmap

(hOC, xSi ze, ySi ze) ;
H (hBitmap)
<

else

SelectObject (hMemDC, hBitmap) ;
StretchBlt (hMemDC, 0, 0, xSize, ySize,

hOC, beg.x, beg.y, end.x - beg.x,
end.y - beg.y, SRCCOPY) ;

OpenClipboard (hWnd) ;
EmptyClipboard () ;
SetClipboardOata (CF_BITMAP, hBitmap) ;
CloseClipboard () ;
InvalidateRect (hWnd, NULL, TRUE)

HessageBeep (0) ;

DeleteDC (hMemDC) ;
ReleaseDC (hWnd, hOC) ,;'

ShowWindow (hWnd, SW_RESTORE); 1* un-minimize window *1
break; ,

case WM_PAINT: 1* display contents of clipboard if bitmap *1
hOC = BeginPaint (hWnd, &ps) ;
OpenClipboard (hWnd) ;
if (hBitmap : GetClipboardData (CF_BITMAP»
<

}

hMemOC = CreateCompatibleDC (hOC) ;
SelectObject (hMemDC, hBitmap) ;
GetObject (hBitmap, sizeof (BITMAP), (LPSTR) &bm)
SetStretchBltMode (hOC, COLORONCOLOR) i
StretchBlt (hOC, 0, 0, xSize, ySize, hMemDC, 0, 0,

bm.bmWidth, bm.bmHeight, SRCCOPY) i
DeleteDC (hMemDC)

CloseClipboa'rd () ;
EndPaint (hWnd, &ps)
break;

case Wn_DESTROY:

default:

return (OL)

PostQuitMessage (0)
break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

739

WINDOWS API BIBLE

1* OutlineBlockO writes a rectangle on the screen given the two corne~ *1
1* points. The R2_NOT style is used, so drawing twice on the same location *1
1* erases the outl ine. *1 \

:Yotd OutlineBlock (HWNe hWnd, POINTbeg~ POINT end)
(

HDC hDC;

hDC = CreateDC ("DISPLAY", NULL, NULL, NULL) ; I
ClientToScreen (hWnd, &beg) ; 1* convert to screen units *1
Cl ientToScreen (hWnd, lend) ; I
SetROPZ (hOC, R2_NOn ; 1* use logi cal NOT ipen *1
"oveTo (hDC, beg.x, beg.)') ; '* draw rectangle'.'
LineTo (hDC, end.x, beg.y) ;
LineTo (hDC, end.x, end.y) ;
LineTo (hDC, beg.x, end.y) ;
LineTo (hOC, beg.x, beg.y) ;
DeleteDC (hOC) ;

).

SETCLIPBOARDVIEWER BWin2.0 BWm3.0 • Win 3 ••

Syntax \

Deseription

Parameters

Adds a new window to the list of windows inthe clipboard viewer ctuUn.
HWND SetCllpboardViewer(HWND hWnd)j

i

Windows comes with a default clipboard viewing application called Clipboard. It is added to the
Main program group when Windows is fIrst installed. Other applications can be clipboard view·
ers. SetClipboardViewcrO adds a window to the chain of clipboard viewer windows. Windows in
the clipboard viewer chain receive WM_ORA WCLIPBOARO' messages any time the clipboard data .
is changed. This is the signal to display the cUpboard data, if the data format· is known to the' !
viewer program. Viewers must pass WM_CHANGECBCHAIN messages to the next window in the I
chain. Viewers mUst also remove themselves from the chain whe.n they are about to terminate'. \.
(WM_OESTROY message processed). ChangeClipboardChain(} does this f~ction.

Adding a window to the clipboard viewer chain.

HWND, the handle of the next window in the clipboard viewer chain. This value should be saved
as a static varia!>le, as it will be needed to process W,.CDRAWCLIPBOARD, WM_CIIANGE
CBCHAIN, and \'IM_DESTROY messages.~

ChangeClipboardChainO

hWnd HWND: The window handle for the window to be added to the clipboard viewer chain.
Related Messages WM_DRAWCLIPBOARD, WM_CHANGECBCHAIN

~xample See the example under ChangeClipboardCha~nO for a clipboard viewer listing that handles both
text and bitmap clipboard data.

740

\

WindoWs provides 17 functions for sound support. Consideri~ the limited hardware support for sound production on
the I.BM PC family oC computers, 17 is a commendable number. Unfortunately, many of these functions require addi
tional hardware to produce reasonable sounding'musical notes and sound effects. Sound hardware varies from simple
tone generators to compact disk quality external sound devices. Windows provides only basic functionality for produc
ing sequences of sounds, and a limited amount oC control over the sound types. For more complete control, speciillized
sound drivers and programs are required.

Sound Sources
The spea~er attached to, the' IBM PC family of computers is a simple device. Sound patterns are genera,!ed by the
comput~r'~,timing chip. The timer sends a series of pulses to the speaker. The faster the pulses, the higher the pitch.
Clever pr~rnmmers have founlJ ways to'get more than a beep out oOhis speaker. For Windows' purposes, we can
consider t, \spe3.ker to be little more than a beeper. You can generate monophoni~ (one note at a time) music by
controllin he speaker under Windows, but it is dreadful to listen to. ','

The ne level up from the PC speaker is to install an internal sound card in the PC. The most popular boards are
the Adlib B ardt the Sound Blaster Card, and the IB~lMusic Feature Card. All ofthese include a sound synthesis chip.
The chip ca I be progmmmed to provide a wide range\of sounds, roughly simulating both musical sounds and sound
effects. In addition, the Sound Blaster Card provide~ input and output of sampled sounds (for example, recording and
playing bac~ voices recorded to disk'Crom a microphone). These internal cards use 8-bit sound resolution, which
means that the sound waves are recorded and generated by measuring the wave amplitude with 8-bit numbers. The
result is ac~ptable sound for game applications and limited room-size presentations. Eight-bit sound is Itot accept
able for amplification for use in larger rooms, or in serious musical applications.

Obtain!ng high quality sound requires 16-bit sound resolution. (The resolution that compact disk (CD) players
use to store and replay music). Sixte~n-bit(esolution sound provides professional quality sound for studio use, and it
is completely.~cceptable for amplification for presentations in large rooms and auditoriums. Roland Corporation
markets seve~internal,PC bO, ar~s t, hat have I6-bit reSOIUtiO,n. Most I6-bit, sound sources are c, omplete syntheSize, rs
that are muc~oo large to fit inside ofa PC. These external sound "boxes" ate controlled by connecting them to the
computer wi abIes. A standard ~ommunication protocol called "MIDI" (Musical Instrument Digital Interface)
allows the co \ ter to c9~trol thc\ sound sources, and also to record keyboard playing if the ~ound source has a
keyboard. \ \ ' \ .

Microsoft O~' ~ MIDI support as part of a Windows Multimedia Developer's Kit. Hopefully, MiGrosoft will add
MIDI support to uttire releases of Windows. MIDI drivers for Windows can also be purchased from'Playroom Software,
although their cu Tent release only supports Windows' real and 3tan4ard mode operations (not.enhanced mode). For
the purposes of thls book, we will assume that the reader is either limited to the PC speaker or has an inexpensive
internal sound board attached. Ueferences for other sound sources are included in the bibliography.

Sound Dr~vers \
The SYSTEM.INI file thai Windows uses to initialize devices on startup includes a line specifying the sound driver:

sound.drv=sound.drv

, ,SOUND.DRX \s the default Windows sound driver. This file is loaded into the SYSTEM subdirectory when Windows
is installed. The dfiVr includ~~ the 10~\I.~yel functions f~r contro~li~g the PC speaker. I I \

\

\ 141
.\

WINDOWS API BIBLE ~
~ , .

'", . --- ~,>/ .

If another sound d~~ce is installed in the PC, Win~will not imritediately know how to'access it. The sound
. card manufacturer will (or at least should) su~ply a specializedor~r file for the board. To use the new sound source,
edit SYSTEM.INI to include the name of the new driver. For eXample,f~r the driver FM.DRV use .

sound.drv=fm.drv

. Installing the Windows driver does not immediately provide support for all of the Windows sound functions. Three
ofthe functions are so specialized that many sound boards will not be able to use them. This limitation is because the
internal architecture of the sound board's hardware may not match the assumptions that Windows' developers made
when they created these three functions. The functions are SetSoundNoiseO, SetVoiceEnvelopeO, and Set
VoiceSoundO. The remaining 14 functions should work regardless of the sound hardware, assuming that the sound
driver has been written correctly. (The sound functions were originally developed for the IBM PC Junior, which had a
simple sound chip.)

Voices and Voice Queues
The lowly PC speaker can play only one note at a time. Internal sound boards typically allow between eight and 16
sounds to be output at once. Windows refers to each separate sound type as a "voice." To_keep track of when to play
eaCh note, Windows uses the concept of a note queue. A queue is just a list of notes stored in memory. All of the notes

" ". th8t are to be played for each voice are loaded into a queue in the order that they Slre to be played. When th~ play
. process is started, the notes are read from each queue and played. The queues shrink as the notes are played. The

queues are empty (occupy no memory) when.all notes '
haye been played. Figure IS-1 illustrates a voice queue~ Voice Queues

A minimum program fragment that will load and Voice 1
playa series of notes is shown in Listing IS~l. The
OpenSoundO function takes ,control of the system's Voice 2
sound device. Only one device has control of the sound Voice 3
source at a time. The application calling OpenSoundO
retains control of the sound device until it calls Close·
SoundO·

. " Listing 18-1. Playing One Voice The First Notes
Figure 18·1. Voice Queues.

if (OpenSound() > 0)
{

}

SetVoiceQueueSize (1, 30) ;
S.etVoiceAccent (1, 120, 128, S_NORMAL" 0) ;
f 6r (i = 0 ; i < 5 ; i ++) . '

SetVoiceNote (1, i + 20, 8, 0)
StartSoundO r

Individual

The size of the memory buffer for the note data is set with SetVoiceQueueSizeO. In thjs case, 30 bytes are re-
....... ·served. This is enough rooIIl for six notes. The tempo and volume are set with a call to SetVoiceAccentO. Five notes are

added to the voice queue by repeatedly calling SetVoiceNote(). Finally, StartSoundO is called to start playing the
notes. Windows will play the notes in the background, while continuing to process messages and run other applica
tions. This is convenient for the programmer, as you can "set and forget" the sound functions in most cases.

Elsewhere in the program, the program will need to be able to shutdown the sounds, if they are still playing, and
release the sound device to Windows for use by other applications. StopSoundO stops playback orany voice queues
that have been playing. CloseSoundO returns control to Windows. (See Listing IS-2.)

" Listing 18-2. Stopping Sound Playbacl(

StopSound () ;
CloseSound () ;

These examnles have used only one voice and are comp-atible with programming the PC's' speaker. using the
default SOUND.DRV driver. For more advanced sound sources, you will ne~d to know the numbet: ofvoi~es aVailable . ..

18. SOUND FUNCTIONS '"

OpenSoundO returns this value. OpenSoundO will return a negative integer if the sound source is not available,
meaning that another application has control of the sound source. If you program more than one voice, be sure to call

. SyncAllVoicesO to keep the playback of each voice synchronized with t.he others.
When the voices have been played, the memory buffers that held the voice data are emptied. This means that the

voice data has to be reloaded each time that the data is to be played. Voice queues occupy locked global memory.
These locked blockS of memory will clog up the global heap from the time the voices have been allocated with
SetVoiceQueueSizeOJJntil the time the play process is over.

You may notice the system performance being degraded by these locked blocks. To minimize the impact of the
locked voice queue data, do not load the voice queues until right before the sounds are to be played.

Voice Thresholds
You may want to keep track of when a voice goes beyond a certain note. For example, you might want a graphics image
to appear in sync with music in a presentation. Windows allows for this by allowing each voice to have a "threshold"
value. This value is the number of notes remaining when an action should occur. For example, if a program needs to
display a graphics objec(when 100 notes remain in voice queue 2, then the threshold for queue 2 would be set to 100.

Threshold values are set for each voice that requires one \'lith the SetVoiceThresholdO function. The status of up
to 16 voices can be checked with a call to GetThresholdStatusO. Typically, a Windows program will start the play
process, and then check the threshold status for a track at intervals. The system clock can be used to trigger a periodic
check of the track threshold status.

Sound Function Error Codes
Allof the sound functions that return integer status values use the convention that errors are returned as negative
numbers. In most cases, it is not important which error occurred. If you need this information, the error codes are
defined in WINDOWS.H as follows:

"define S_SERDVNA
"define S_SEROFM
"define S_SERMACT
"define S_SERQFUL
"define S_SERBDNT
"define 5 SERDLN
"define S:SERDCC
"defi ne 5 SERDTP
"define S:SERDVL
"define S_SERDHD
"def i ne S SERDSH
"define S-SERDPT
"define S:SERDFQ
"define S SERDDR
"define S:SERDSR
"define S_SERDST

(-1) 1* Device not available *1
(-2) 1* Out of memory *1
(-3) 1* Musi c act i ve *1
(-4) 1* Queue full *1
(-5) 1* Invalid note *1
(-6) 1* Invalid note length *1
(-7) 1* Invalid note count *1.:
(-8) 1* Invalid tempo *//
("79) 1* Invalid volume *1,
(.;:~O) 1* Invalid mode *1
<'-11) 1* Invalid shape *1
(-12) 1* Invalid pitch *1
(-13) I*/Invalid,frequency *1
(-14) 1* IrlValid duration *1
(-15) 1* Invalid source *1
(-16) 1* Invalid state *1

-'

Sound Function Summary
Table ~8-1 summarizes the Windows sound functions. The detailed function descriptions are in the next -section.

CloseSound

CountVoiceNotes

GetThresholdEvent

GetThresholdStatus

¥essageBeep

9penSound

SetSoundNoise

SetVoiceAccent
/'

Shuts down the play process.

Determines the number of notes in a note queue.

Checks all voice queues to see if the threshold value has been surpassed.

Checks all voice queues to see if the threshold value has been passed.

Beeps the sound device.

Provides the application wit0 access to the sound device.

Sets the noise waveform table for a sound device.

Sets the tempo, volume, mode, and pitch offset for a voice.

WINDOWS API BIBLE

SetVoiceNote

SetVoiceQueueSize

SetVoiceSound

SetVoiceThreshold

StartSound

StopSound

SyncAJlVoices

WaitSoundState

Adds a note to a voice queue.

Sets the size of the memory buffer to hold the note values for a voice.

Sets the sound frequency of a voice in a voice queue.

Sets a number of notes in the voice queue that will trip the threshold status.

Starts all voice queues playing.

Stops the play process.

Synchronizes the timing of playback of notes from several voice queues.

Stops Windows from regaining control until one or more voice queues surpasses a threshold
. state or is empty.

Table IlJ.J. Sound Function Summary.

Sound Function Descriptions
This ~ction contains the detailed description of the Windows sound functions.

CL08ESOUND I!l Will 2.0 II Will 3.0 .. Will 3.1·,
Purpose Shuts down the play process.
Syntax
Description

Uses
Returns
See Also
Parameters

. Example

void CloseSound(void)j
This function stops all voice queues currently playing, frees memory associated with the voice
data, and releases the sound device for use by other applications.

Every call to OpenSoundO should have a matching call to CloseSoundO.

No returned value (void).

OpenSoundO
None (void).

This example will play fwe notes on the PC speaker when the user clicks the "Do It!" menu item .
The program displays the number of voices aVailable eaCh time the menu item is clicked. (This
number will be 1 for a standard PC without a sound card installedJ' If "Do It!" is clicked more
than once, a free voices value of,:"" 1 will be displayed because the sdund source has already been
opened. The sound source is not freed until the user clicks the "Quit" menu item. If another
sound device and driver have beeri installed, the notes will be played on that device.

lori.~ 'FAR"PASCAL VndProc (HWNO hWnd, un/;gned i"essage, WORD "Para., LONG lParn)
(.' .

HOC
'int
char

hOC;
i, nVoice ;
cBuf [128J ;

switch (i"essage)
(

1* process wi ndows messages *1

1* process menu i tells *1 case W .. _CO ANO:
swi tch (wParam)
(

case 10M_DOlT: 1* User hit the "Do it" .enuite. *1
hOC = GetDC (hWnd) ;
if «nVoice = OpenSound(» >'0)
(

TextOut (hDC; 10, 10, cBuf, wsprintf (cBuf,.

-" .,'

.... 7~.::.

}

}

18. SOUND FUNliIIUN;:, v

"Xd voices fr-ee.", nVoice».
SetVoiceGueueSize (1, 30) ;
SetVo; ceAccent (1, 120, 128, S_HORMAL, 0) ;
for- (i = a ; i < 5 ; i ++)

SetVoiceNote (1, i + 20, 8, 0)
StartSound() ;

ReLeaseDC (hWnd, hOC) ;
break;

case ID',-GUlT:

}

break;

DestroYUindow (hWnd) ;
break;

case WM_DESTROY: 1* stop application *1
StopSound () ;
CLoseSound ()';
PostQuitHessage (0)
break;

default: 1* default windows message processing *1
return DcfWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;
}

COUNTVOICENoTES rJ Wm 2.0 ria Win 3.0 iI Win 3.1

Syntax

Description

Uses
Returns
See Also

Parameters
nVoice

Example

Determines the number of notes in a note queue.
int CountVoiceNotes(int nVoice)j

The SetVoiceNoteQ function is used to add notes to a voice
queue. When the StartSound() function has been called,
CountVoiceNotesO will return the number of notes left in the
queue. The function will return zero if StartSoundO has not
been called, or if all of the notes have been played.

Determining the position in a song.

int, the number of notes remaining in the note queue.

SetVoiceNoteO

Do It! Quit

5 notes.

Figure 18·2. CounlVoice·
Notes(J Example.

int: The voice number. The first voice is numbered 1. OpenSoundO returns the number ofvoic~
that are available on the sound device.

This example plays five notes when the "Do Itl" menu item is clicked, as shown in Figure 18-2. The
note count is checked right after StartSoundO is called, so all of the notes are in the queue.

long FAR PASCAL WndProc (HWHD hWnd, unsigned iAessage, WORD wParaa, LONG lParam)
(

HDC
int
char

hDC ;
i, nNotes ;
cBuf [128J ;

switch (1Mess0ge)
(

1* process windows messages *1

case W"_COMMAND: 1* process menu items *1
switch (wPararn)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWn-d) ;
11 (OpenSoundO >0)
(

SetVoiceGueueSize (1, 30) ;
SetVoiceAccent (1, 120, 128, S_NORMAL,O) ;
for(i = 0 ; i < 5 ; i++)

745
.....

•• ".~",,,,,.;J I"\r-I CU'Lt:

}

SetVoi ceNote (1, 1 :.. 20, 8, 0)
. StartSound() ;

nNotes = CountVoiceNotes (1) ;
TextQut (hDC, 10, 10, cBuf, wsprintf (cBuf,

"7.d notes.", nNotes» ;

ReleiseDC (hWnd, hDC) ;
break;

case IDM_QUIT: 1* send endof application message *1
StopSound () ;
CloseSound () ;
DestroyWindow (hWnd) .;
break;

{Other program lines J

GETTImESHOLDEVENT (Requires sound device and sound driver) • Win 2.0 • Win 3.0 • Win 3.1

Purpose Checks all voice queues to see if the threshold value has been passed.

Syntax LPINT GetThresholdEvent(void)j

Description

Uses

Returns

See Also

Parameters
Example

The SetVoiceThresholdO function is used to set a note count called the "threshold" value. As the
play process continues, the number of notes in each note queue decreases. When the number of
notes remaining is less than the threshold value, the threshold status is true. The returned value
from GetThresholdEventO is a pointer to an integer that encodes the threshold status of every
note queue as a binary number. The bit is set to 1 if the threshold value for the queue has been
passed, or to 0 if not. The least significant bit is for track 1.

This function can be used to synchronize other activities to the sound/music playing. The thresn- -
old status can be checked periodically to determine if a threshold value has been passed. If so,
some action, such as displaying a graphics image, can
be taken.

LPINT, a far pointer to a memory buffer that contains
the 16-bit value, encoding the threshold status of each
track.

SetVoiceThresholdO, GetThresholdStatusO
None (void).

Uo It! Quit
~he Threshold Flag = Oxlff

Figure 18-3. GetThresholdEvent() I

Example.

This example, which is illustrated in Figure 18-3, is designed for a sound device with nine or more
voices. The program sets nine voice queues with five notes each, and sets a threshold value of
three notes in each queue. GetThresholdEventO is used to obtain a pointer to the memory area
where Windows stores the threshold flag value. The threshold value is determined to be Oxlff,
showing that all nine queues have tripped their threshold values (Oxlff = III i1 1111 binary).

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

HDC
static
lint
LPINT
char

int

switch (iMessage)
<

case WM_CREATE:

hDC ;
nVoi ces ;
i, nActiveVoice ;
lpEvent ;
cBuf [128J ;

1* process windows messages *1

nVoices = OpenSound()
iif (nVoi ces < 0)
<,
! MessageBox (hWnd, "Could not open sound device.",

"Error", MB_ICONHAND I·MB_OK) ;
DestroyWindow (hWnd)

746

/

break;
case WM COMMANO:

18. SOUND FUNl; IIUN:::i ..,

- sw; tch (wParam)
{

1* process menu items *1

case 10M_OOIT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
for (nActiveVo;ce ='1 ; nAct;veVo;ce <= nVo;ces ;

nAct;veVo;ce++)

SetVoiceAccent (nActiveVoice, 120, 128,
S_NORMAL, 0) ;

SetVoiceEnvelope (nAct;veVo;ce, nAct;veVo;ce,
100) ;

SetVo;ceQueueSize (nActiveVoice, 256)
for (i = 0 ; ; < 5 ; ; ++)

SetVoiceNote (nActiveVoice, i + 20,
8, 0) ;

SetVoiceThreshold (nAct;veVoice, 3) ;

SyncA II Vo; ces () ;
StartSound() ;
lpEvent = GetThresholdEvent () ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"The Threshold Flag = Ox%x", *lpEvent»
ReleaseOC (hWnd, hOC) ;
brea k ;'

case 10M_QUIT: 1* send end of application message *1
OestroyWindow (hWnd)
break

break;
case WM_OESTROY: 1* stop application *1

StopSound () ;
C loseSound () ;
PostQui tMessage (0) ;
break; . /

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
}

GETTHRESHOLDSTATUS (Requires sound device and sound driver) Ii'I Win 2.0 1:1 Win 3.0 • Win 3.1

Purpose Checks the threshold status of all voice queues.

Syntax int GetThresholdStatus(void)j

Description

Uses

Returns

, See Also

The SetVoiceThresholdO function is used to set a note count called the "threshold" value. As the
play process continues, the number of notes in each note queue decreases. When the number of
notes remaining is less than the threshold value, the threshold status is true. The returned value
encodes the threshold status of every note queue as a binary number. The bit is set to 1 if the
threshold value for the queue has been passed, or to 0 if not. The least significant bit is for track
1. This function is similar to GetThresholdEventO, excep.t that GetThresholdStatusO also clears
the event flags.

This function can be used to synchronize other activities to the sound/music playing. The thresh
old status can be checked periodically to determine if a threshold value has been passed. If so,
some action, such as displaying a graphics image, can be taken.

int, the bit-coded threshold status for each track. The bits will be one for the tracks which are
currently below the threshold value. For example: 101 binary (5 decimal) codes tacks one and
three as being below the threshold value. '

SetVoiceThresholdO

747

Parameters
Example

None-(void).
See the e?G1mple under the SetVoiceThresholdO function description.

MESSAGEBEEP EJ Win 2.0 EI Win 3.0 II Win 3.1
Purpose
Syntax

'Beeps the so~d device.

void MessageBeep(WORD w1yPe)i

Description _" _ _ This is the easy way to have the PC speaker or installed sound board beep.

Uses

Returns /'

See Also
Parameters
w'Pgpe

Example

Use to alert the user. Commonly associated with error and warning messages. A good use is to
summon the user after a background task, such as a long file transfer, is complete.

No ret~rned value (void).
MessageBoxO

WORD: This value is not used. Set equal to zero.
This example shows a typical use of MessageBeepO, immediately before MessageBoxO.

long FAR PASCAL WndProc (HWND hWnd, unsi gned H1essage, WORD wParam, LONG lParam)\
{

swi tch (iMessage) 1* process windows messages *1
< \

case WrCCOMMAND: 1* process menu items *1
swi tch (wParam)
<
case lDM_DOlT: 1* User hit the "Do it" menu item *1

MessageBeep (0) ;
HessageBox (hWnd, "Thi sis a warni ng message",

"Warning", HB_lCONASTERlSK I HB_OK) ;
break;

IOtkerprogram lines}

OPENSOUND

Purpose

Syntax

Description

, \

Provides the application with access to the s~und device.
int OpenSound(void)j

II Win 2.0 ,II Win 3.0 • Win 3.1

Only one application can 'have' access to the sound device at one time. The sound device is con
trolled via a driver -file that is specified in the Windows SYSTEM.INI file with a line like

sound.drv=fm.drv.

OpenSoundO returns the number of voices available on the sound device. This is the number
of independent sound waveforms that can be played at once. As soon as one application has
called OpenSoundO, all other applications will receive a negative value from OpenSoundO if
they attempt to use OpenSoundO to access the sound device. The sound device is returned to tile
system With CloseSoundO.

Uses /' This is the first step in starting the play process. ,
Returns

See Also
Parameters
Example

'int, the number of voices available. For the default SOUND.DRV driver that runs the PC's speaker,
this will be 1. Returns a negative value if the sound driver has been opened by another applica
tion, or has been opened earlier in the same program without a call to CloseSoundO.

CloseSoundO
None (void).

See the example under the'CloseSoundO function description.

748

18. SOUND FUNCTIO~

SETSOUNDNolSE (Requires sound device and sound driver) Ia Win2.0 tI Win 3".0 II Win 3.1
Purpose Sets the noise waveform table for a sound device.

Syntax int SetSoundNoise(int nSource, int nDuration)j

Description

Usas

Returns

See~

Parameters
nSource

S_PERlOO512

S_PERlOD1024

S_PEAIOD2048

S_PERIOOVOICE

S_WH1TE512

Some sound dlivers allow the sound wave table to be programmed. This functiori allows one of a
number of "noise" wave tables to be specified. Noise waveConns fmd wide application in sound
effects for explosions, engines, etc.

Used ,vith specialized sound devices. This function will have no effect if the default SOUND.DRV
driver.is being used to drive the PC speaker.

int, zero if successful. Returns S_SERDSR if the nSource value is not valid.

SetVoiceEnveiopeO, SetVviceSoundO

int: One of the values in Table 18-2.

High-pitch hiss.

Hiss ..

Low-pitch hiss.

Source frequency from voice channel 3 (device dependent).

High-pitch noise.
~

S_WH1TE1024 Noise.

S_WHITE2048

S_WHITEVOICE

Low-pitch noise.

Source frequency from voice channel 3 (device dependent).

Table 18-2. SetSoundNoise() Values.

Example In this example, SetSoundNoiseO is used as part of a play function. The author does not have a
sound device that responds to this command. This is only a demonstration.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, ~ONG lParam)
(

"!ftlfti C I nt
int

nVo; ces ; .
i, nActiveVoice; I

switch (iHessage) 1* process windows messages *1
(I

case WH_CREATE:
nVo;ces = OpenSound()
if (nVo; ces <= 0)
{

}

break;
case \1M_COMMAND:

HessageBox (hWnd, "Cou ld not open sound devi ce.",
"Error", HB_ICONHAND I HB_OK) ;

DestroyWindow (hWnd) ;

1* process menu items *1
switch (wParam)
{

case 10M DOlT: 1* User hit the "Do it" menu item *1
SetSoundNo;se (S_PERIOD1024, 100) ;
"for (nActiveVoice =1 ; nActiveVo;ce <= nVoices ;

nActlveVoi~e~+) . . "
{

SetVo;ceAccent (nActiveVoice, 120, 128,
S_NORMAL, 0) ;

749
I '_,,

WINDOWS API BIBLE

}

}

SetVoiceQueueSize (nActiveVoice, 256)
for (i = 0 ; . i < 5 ; i ++)

SetVoiceNote (nActiveVoice, i .+ 20, 8, 0) ;

SyncAllVoices () ;
StartSound() ;
break; .

case IDM_QUIT: 1* send end of application messagp. *1 /
DestroyWindow (hWnd)
break;

}

break;
case WM_DESTROY: 1* stop application *1

StopSound () ;
C loseSound () ;
PostQuitMessage (0) ;
break;

default: _ 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

retur.n COL> ;
}

SETVOICEAcCENT D Win 2.0 II Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns

Sets the tempo, volume, mode; and pitch offset for a voice.
int SetVoiceAccent(int nVoice, int nTempo, int nVolume, int nMode, int nPitch)j

Accents can be placed I at any point in a voice's play pattern. The number of parameters that
SetVoiceAccentO will affect depends on the sound driver in use.
Used to change the volume and tempo of a song. Can also be used to transpose a portion of the
song by setting nPitch to a ~onzero value.
int, zero if the function was successful. If an error occurs, one of the values in Table 18·3 will be
returned.

Invalid tempo.

Invalid volume.

dueue full.
'I

Table 18·3. SetVoiceAccent() Error Codes.

See Also

Parameters
nVoice
nTempo

nVolume

nMode

SetVoiceQueueSizeO

int: The number of the voice that will receive the added note. The first voic~js.number 1.

int: The tempo in beats (quarter notes) per minute. The valid range is from 32 to 255. The default
value is 120. '

int: The voice volume level, 0 to 255. This parameter will not affect the default SOUND.DRV driver
for the PC speaker.
int: Specilies how the notes are to be played. This parameter will not affect the default
SOUND.DRV driver for the PC speaker. For other drivers and devices, the value may change the
duration of the notes. nMode can be set to any of the values in Table 18·4.

750

S_NORMAL

S_STACCATO

18. SOUND FUNCTIONS Y

Note duration will continue into the next beat, overlapping the next note, in order to provide a
"smooth" musical style.

Note durations will stop at the end of the beat.

. Note duration will stop before the end of the beat, leaving an open period between notes, in
order to provide a "choppy" musical style.

c

Table 18-4. SetVoiceAccent() Mode Values.

nPitch

Example

int: The pitch offset to add to the notes. This offset is used to transpose note values. Possible
range is 0 to 83.

See the example under the CloseSoundO function description.

SETVOICEENVELOPE (Requires sound device and sound driver) III Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

S_SERDRC

S_SERDSH

S_SERQFUL

Specifies the sound waveform to use for a voice.

int SetVoiceEnvelope(int nVoice, int nShape, int nRepeat)j

This function changes the wave shape used by a sound device to produce a sound. The wave shape
change is set to occur at the current location in the note queue. This allows voices to be altered in
the course of playback.

Used with sound devices that have tables of wave shapes. This function \vill have no effect if the
default SOUND.DRV driver is being used to control the PC speaker.

int, zero if the function was successful. If an error occurs, one of the values in Table 18-5 is
returned.

Invalid repeat count.

Invalid shape.

Queue full.

Table 18-5. SetVoiceEnvelope() Error Codes.

See Also

Parameters
nVoice

nShape

nRepeat

Example

SetVoiceSoundO, SetSoundNoiseO

int: The number of the voice that will receive the added note.
The first voice is number 1.

int: The index number of a sound device wave shape. This num
ber will depend on th~ hardware so~nd device in use.
int: The number of times the wave shape should be repeated
during the duration of one note. This number is hardware de
pendent ..

Figure 18-4. SetVoice
Envelope() Example.

This example plays the same five notes simultaneously on every available voice of the sound
device when the user clicks the "Do It!" menu item. As shown in Figure 18-4, the used device has''
nine voices. The frequency of the waveform used for each voice is set to 440 Hz with
SetVoiceSoundO. SetVoiceEnvelopeO is used to specify the first nine preset sound patterns.
SyncAlIVoicesO is used to make sure the notes are played at the same time on each voice.

751

WINDOWS API BIBLE

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

}

HOC
static int

hOC;
nVoi ces ;

int
char

i, nActiveVoice, nSynci ;
cBuf [128J ;

switch (iMessage)
(

1* process windows messages *1

}

case WM_CREATE:
nVoi ces = OpenSound()
if (nVoi ces <= 0)
{

}

break;

MessageBox (hWnd, "Could not open sound device.",
"Error" I"IB ICONHANO I • .a_OK) ;

OestroyWindow (hWnd) ;

case WrLCOMI"IANO: 1* process menu items *1
switch (wParam)
{

case 10M_00IT: 1* User hit the "00 it" menu item *1
hOC = GetOC (hWnd) ;
for (nActiveVoice .. 1 ; nActiveVoice <= nVoices ;

nActiveVoice++)
{

}

SetVoiceSound (nActiveVoice,
(LONG) (440 « 16), 100)

SetVoiceEnvelope (nActiveVoice,
nActiveVoice, 100) ;

SetVoiceAccent (nActiveVoice, 120,128,
S_NORMAL, 0) ;

SetVoiceQueueSize (nActiveVoice, 256) ;
for (i = 0 ;. i < 5 ; i ++)

SetVoiceNote (nActiveVoice, + 20, 8, 0)

nSync = SyncAllVoices () ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cB~f,

"Sync value = Xd, Voices = Xd", nSync, nVoices» ;
StartSound() ;
ReleaseOC (hWnd, hOC) ;
break;

case 10M_QUIT:

}

DestroyWindow (hWnd)
break;

I break;
I!, stop application *1 case WM_DESTROY:

default:

StopSound () ;
C loseSound 0 ;
PostQuitMessage (0) ;
break;

return OefWindowProc
1* default windows message processing *1

(hWnd, iMessage, wParam, lParam) ;

return (OL>

SETVOICENoTE . a Win 2.0 II Win 3.0 . II Win 3.1

Purpose }. Ad$ a note to a voice queue.
Syntax f- 'irtisetVoiceNote(intnVoice, intnValue, intnLength, intnCDots)j .

Description ",' When a voic~/~ueue's memory buffer has been allocated with SetVoiceQueueSizeO, notes can be
, . Added to ~hellqdeue with this function. Each note is added to the end of the queue. If the number
• I of notes adP~d exceeds the queue size allocated, additional calls to SetVoiceNoteO are ignored

The no~~s will nol be played until StartSoundO is called.
Uses Putting a lllUs.ical pattern into the.v~ice queue, prior to playing the pattern.

752-

ReturnS

S_SERDCC

S_SE8DLN

,S_SERDNT

S_SERQFUL

, 8. SOUND FUNCTIONS Y

int, zero if the function added the note to the queue .. If an error occurs, one of the values in Table
18-6 will be returned.

Invalid dot count.

Invalid note length.

Invalid note number

The note queue is full.

Table 18-6. SetVoiceNote() Error Values.

See Also,

Parameters
nVoice

nValue

nLength

nCDots

Example

SetVoiceQueueSizeO, Start.SoundO

int: The number of the voice that will receive the added note. The first voice is number 1.

int: The number of the note. Note numbers range from 1 to 84. Zero is used for a rest (time period
with no not~ sounding). The frequency of the note specified will depend on the sound device in
use.

int: The duration of the note. 1 for a whole note (4 beats), 2 for a half note (2 beats), 4 for a
'quarter note (l beat), etc.

int: The number of half-duration 'increments to add to the note:'value. This is not the' same as
adding musical dots. For example, if nLength is 2, the basic note value will be two beats. If nCDots
is then set to 1, the duration will be three beats. IfnCDots is set to 2, the duration is four beats.

See the example under the CloseSoundO and SetVoiceEnvelopeO function descriptions.

SETVOICEQUEUESIZE • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax '

Description

Uses

Returns

S_SERMACT

S_SEROFM

Sets the size of the memory buffer to hold the note values for a voice.

int SetVoiceQueueSize(intnVoice, intnBytes)j

Windows stores each voice's note data in a separate memory buffer. The SetVoiceNoteO function
adds notes to the buffer. Each note occupies six bytes of memory.' To make room for the note data,
SetVoiceQueueSizeO should be called before SetVoiceNoteOis used to put notes into the buffer.

Used to allocate memory for a voice's note data. The memory block is freed whenCloseSoundO is
called.

, , /
int, returns zero if the function was successful. Returns one of the values in Table 18-7 if an error
was detected.

The device is currently playing.

Out of memory.

Table 18-7. SetVoiceQu,eueSize() Error Codes.

See Also

Parameters
nVoice
\

nBytes

Example

SetVoiceNoteO

Int: The number of the voice. The first voice is number 1.

Int: The number of bytes to allocate. Each note requires six bytes. The default buffer size is 192
bytes (32 notes). ' ,

See the example under the CloseSoundO and SetVoiceEnvelopeO function descriptions.

753

WINDOWS API BIBLE

SETVOICESOUND (Requires sound device and sound driver) • Win 2.0 • Win 3.0 • Win 3.1

Purpose Sets the sound frequency of a voice in a voice queue.
Syntax int SetVoiceSound(intnVoice, LONG IFrequency, int nDuration)j

Description

U~s

Returns

S~SERDDR
S_SERDFO

S_SERDVL

S_SEROFUL

ThisJunction changes the frequency used by a sound device to produce a sound. The wave shape
change is set to occur at the current location in the note queue, which allows voices to be altered
in the course of playback.
Used with sound devices that have variable frequency sound generators. This function will have
no effect if the default SOUND.DRV driver is being used to control the PC speaker.
int, zero if the function was successful. If an error occurs, one of the values in Table ls..s is
returned: '-.,

Invalid duration.

Invalid frequency.

Invalid volume.

queue full.

/

Table 18-8. ~etVoiceSound() Error Codes.

See Also

Parameters
nVoice
IFrequency

nDuratiO!l

Example

SetVoiceEnvelopeO; SetSoundNoiseO

int:The number of the voice that will receive the added note:' The fiist voice is number 1.

LONG: The frequency to set. The high-order w6r(f~ontains the f!cquency in cycles per second
(Hz). The low-order word contains the fractiorialirequency (usually zero).

- , /

int: Sets the duration of the sound in system clock ticks. (This may not impact the sound, depend-
ing on the sound hard~vare in use.)
See the example under the SetVoiceEnvelopeO function description.

SETVOICETHRESHOLD (Requires so~nd device and sound driver) • Win 2.0 • Win 3.0 • Win 3.1

PurPose Sets the number of notes in the voice queue. that will trip the threshold status.
S)'lltax

Description

Uses

Returns

See Also

Parameters
nVoice

int SetVoiceThreshold(int n Voice, int nNotes);
The Uthreshold" is a: ~rimber of notes in a voice queue. As the voice queue is played, the number of
remaining notes declines. When the number of remaining notes falls below the threshold value,
the threshold is said to. have been passed. The c~rrent threshold status on all voices c,an be
checked at any time with GetThresholdStatusO. The WaitSoundStateO function will suspend'
Windows message processing until the threshold number is surpassed on one or more voice
queues.

Normally used in col\iunction with GetThresholdStatusQ. The application can start music play
ing, and then periodically check the threshold status (perhaps with a timer, or when any Wm
dows message is received). When the threshold is surpassed, the application' can take some
action, which will then be synchronized with the music.

int, zero if the function is successful, ~ ifnNoles is out orrange.

GetThresholdStatos(), WaitSoundStateO··· :':

int: The number of the voice queue to set the threshold value. The first voice queue is number 1.

754

nNoles

Example

int: The threshold number of notes
for the voice queue. This value must
be less than the number of notes in
the queue. CountVoiceNotesO can
be used to determine the number of
notes in a queue.

This example, which is illustrated in

18. SOUND FUNCTIONS T

, ", '",,: ·C~'
- .- ' ; ,', generic" ,: 'I. '1~·.I,7:i.

Do It! Quit
~oices = 9~ Threshold Status = Oxl ff

~II 9 voices done.

Figure 18-5, was run with a device Figure 18-5. SetVoiceThreshold() Example.
with nine voices. The program loads
all nine voices with a five note song, and sets a threshold value of three notes in each voice queue.
The Threshold status value is displayed on the top line. The value of Oxlff shows that all nine
voices have a threshold value set (ill1lllll binary = Oxlft). Unlike the normal case of letting
the music play While Windows continues to process other messages, this example calls

, WaitSoundStateO to wait until all nine voice queues are empty before returning control to Win
dows. When the WaitSoundStateO returns (voice queues empty), a message is shown on the
second line.

long FAR PASCAL WndProc (HWN~ hWnd, unsigned 1Message, WORD wParam, LONG LParam)
<

HOC
static
int
char

int
hDC ;
nVo; ces ;
;, nAct;veVoice, nTStatus ;
cBuf [128J ;

switch (iMessage)
{

1* process windows messages *1

case WM,:...CREATE:
nVoices = OpenSound()
if (nVoices <= 0)
{

}

break;
ca.se WM_COMMAND:

MessageBox (hWnd, "CouLd not open sound device.",
"Error", MB_ICONHAND'I MB_OK) ;

DestroyW;ndow (hWnd) ;

1* process menu items *1
swi tch (wParam)
{

case IDM_DOlT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
for (nActiveVoice = 1 ;'nActiveVoice <= nVoices ;

nActiveVoice++)
<

}

SetVo;ceAccent (nActiveVo;ce, 120, 128, I

S_NORMAL, 0) ;
SetVo;ceEnveLope (nActiveVoice, nActi~eVoice,

, 100) ;
SetVoiceQueueSize (nActiveVoice, 256);
for. (i = a ; ; .< 5 ; i ++) ,

, SetVoiceNote (nActiveVoice, i + 20, 8, 0)
SetVoiceThreshoLd (nAct;veVoice, 3)

SyncALLVo;ces () ;
StartSound() ;
nTStatus = GetThreshoLdStatus () ;
TextOut (hDC, 0, 0, cBuf, wsprintf (cBuf,

"Vo; ces = %d, Thrt"!shoLd Status = OxXx",
nVoices, nTStatus»';

WaitSoundState (S_QUEUEEMPTY);'. '
TextOut (hDC, 0, 20, cBuf, wspr;ntf (cBuf,

"ALL Xd voices done.", nVoices» ;
ReLeaseDC (hWnd, hDC) ;

755

WINDOWS API BIBLE

}

}

break;
case IDM_QUIT:

}

break;

DestroyWindow (hWnd) ;
break;

case WM_DESTROY: 1* stop application *1
StopSound () ;
C loseSound () ;
PostQu1tMessage (0) ;
break;

default: '. 1* defaul t windows message processing *1
return DefW1ndowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

STARTSOUND • Win 2.0 • Win 3.0
Purpose
Syntax

Description

starts plaYing all voice queues.
int StartSound(void);
This function is called after SetVoiceNote() is used to put notes in one or more voice queues. All
voices begin to play and will continue to play until either StopSoundO is called, or all queues are

'lout of notes .
Returns
See Also

. !
int, not used.

Parameters
Example

StopSoundO,OpenSoundO
None (void).
This program fragment shows the typical usage of the StartSound() function. Elsewhere in the
listing would be calls to StopSoundO and CloseSoundO. See the Closf,SoundO function descrip
tion for ~.more complete listing.

if (OpenSound() > 0)
{

)

STOPSOUND
Purpose
Syntax

Description

Uses

RetUrns
See Also

Parameters
Example

SetVo;ceQueueS;ze (1; 30) ;
SetVoiceAccent (1, 120, 128, S_NORMAL, 0) ;
for (; = 0 ; ; < 5; i++·)

SetVoi ceNote (1, i + 20, 8, 0) ;
StartSound() ;

Stops the play process.
int StopSound(vold);

• Win 2.0 • Win 3.0 • Win 3.1

Stops all notes playing on all voice queues. The contents of all voice queues are deleted and the
sound driver s,,"ut down.
Used to int~rrupt the playing of a song. Typically, this is called by a user action, such as clicking a
button or menu item.
int, not used.

StartSoundO
None (void).
See the example under the CloseSoundO function de$cription.

756

18. SOUND FUNCTIONS ...

SYNcALL VOICES (Requires sound device and sound driver) • Win 2.0 • Win 3.~ ____ • Wm3.t-- '
Purpose Synchronizes the timing of the playback of notes from several voice queues.

Syntax int Syn~oices(void)j
, Description

Uses

Returns

See,AIso

Parameters
Example

/

Each queue filled with note data by SetVoiceNoteO is an independent set of play data. Normally, '
you will want to force all queues to be played in time by calling SyncAlIVoicesO.
Used with sound devices that support more than one voice (multitimbral). This functionwill have
no effect if the default SOUND.DRV driver is used to drive the PC speaker.
int, zero if successful. The function will return S_SERQFUL if one of ~he voice queue's is full.
SetVoiceNoteO, SetVoiceQueueSizeO
None (void).
Sp.e the example under the SetVoiceEnvelopeO function description.

W AITSOUNDSTATE (Requires sound device and sound driver) • Win 2.0 • Win 3.0 • Win 3.1

Purpose Prevents Windows from regaining conttol until one or more voice queues, passes a threshold
state or is empty.' '

Syntax int WaitSoundState(int nState)j

Description

Uses

Returns

See Also

Parameters
nState

Normally, control is passed back to Wmdows once StartSoundO is called. The sound/music con
tinues while other Windows operations proceed normally. WaitSoundStateO allows Windows ac
tivities to be halted until a specified state has passed, such asa certain number of notes
remaining in a voice queue, or all queues are empty. '

Not normally used.
int, zero if successful, S_SERDST if the nState value is invalid.
SetVoiceThresholdO

int: One of the states listed in Table 18-9. '

.: :. _.' '. : : . ";, . - - '. " '.:' , ": : ... ;', .' ~

Activity stops until all voices have passed theirthreshold values,set with SetVoi~eThresholdO.
Activity stops until all voice queues are empty (play complete).

Activity stops until a voice queue passes its threshold value. In this case, WaitSoundState()
should return the voice number (driver dependent).

Table 18-9. WaitSoundState() Values.

Example 'See the example under the SetVoiceThresholdO function description.

757

-Windows uses a different character set than DOS uses. This difference is not a big problem for English-speaking users,
but it can be significant for users who work with other languages that use accented characters (French, German,
Spanish, etc.). Understanding how Windows deals with the two character sets As the key to writing programs that will
be directly portable to other languages. The Windows function library also includes several string manipulation func
tions. They are convenient and reduce the size of the programs you write because the executable code is stored in
Windows' dynamic·link libraries.

Character Sets
Windows uses the MS-DOS operating system to do file access. MS-DOS uses a character set which is commonly called
the "IBM PC character set." Windows politely refers to the IBM set as the "OEM chara.cter set." As shown in Figure 10-
1, the OEM character sct includes a number of graphic symbols. These symbols date to the early days of the IBM PC,
when most applications operated· in chimlcter mode. The· graphics symbols were used to draw lines for boxes and
highlight areas. These symbols are unnecessary in a graphical environment like Windows.

To read Figure 10-1, add the index on the top row to the index at the left side. For example, the code foracapital.
"A" charaCter is Ox41, or 65 decimal.

The internal character set used by Windows is somewhat different. Windows refers to its internal set as the "ANSI
character set." ANSI is the American National Standards Institute. ANSI is an advisory board that works to coordinate
standards on everything from computer languages (ANSI C) to shipping containe~. ANSI works closely with non-USA

o 1 2 3 4 56? 8 9 A B C.D E F
o @a •• ~~.=086V~nO
10 ~ ~ ~ !! ... § •. I t, " L .. A •
20 !" B $ % & • () * + _ - • /

30 lit 1 2.3 4 56? 8 9 : ; .< = > ?
4B @ ABC D E P G H I J KL " N 0
5B P Q R S r U U II K Y Z [,] A _

6B ' abc d e f g h i j kIn n 0

?B p q r stu u w x y z { = } - 6

8B CUe a a a A ~ e e e iii A R
9B f z ~ a 0 0 n u 9 0 U ~ E V ~ ~
AB a i 6 u ii iii g ~ l r- -. ~ '1 i « »
BB ~ I I I .. 4 II n =t ~I II iI !J U :I 1

CB L~T ~-t tlfl!r;!!iiU=U:!:
DB l1;:n U I: FnU*.J rl ••••
EB u P r REG P ~ I 8 D 6 • • e n
pe:::!:}' 1 rJ f = 0 • - .fR 2 •

. Figure 19-1. OEM Character Set.

o 1 2 3 4 5 6 1 8 9 ABC D E F
o 111111111II11 I
10 I I I I I I I I I I I I I I I I
20 ! II # S ,,&. () • .. # - o. I
30 0 1 2 3 4 5 6 1 8 9 : ; <=) ?
40 @A BCD E F G H I J K L M N 0
50 P 0 R STU V WX y Z (\ I · _

. 60 ' 8 bed e f. g h i j kim n 0

10 P q r stu V w X y Z { I } .. I
80 I I I I I I I I I I I I I I I I
90 I ' , I I I I I I I I I I I I I
AD I e£Jl¥1 §OO~!«.,,_e

758

BO D :!: 2 • ' p • .. til» """ L
CO A A A A A A IE C £ t: ~ ~ 1 (i I
DoaAOOO.06x80~OOt~8
EO 8 , 8 ii. ii A a: ~ e e e i! 1 f i 'i
FO Biio68iJiif au60UvJlV
Figure 19-2. ANSI Character SI?t.

19. CHARACTER SETS AND STRINGS 'Y

advisory boanls, such as ISO (International Standards Organization), to come up with standards that apply interna
. tionally. The ANSI character set, which is displayed in Figure 19-2, is designed so that'a teAt file in French transferred

to a computer in Singapore will still display with the correct characters.
If you compare the OEM and ANSI character sets, you will notice that the numeric digits and the alphabetical

chafacters without accents have the same codes. The accented characters occupy different locations, and the ANSI
character set contains a number of accented characters that are not present in the OEM set. The ANSI set also has a
number of undefined character locatio~s that show up as vertical bars when displayed.

The differences between the two character sets becomes a problem when the user attempts to read a file created
in DOS into Windows, or if the user runs a DOS program to access a file created by a Windows program. Even the file's
name can be a problem. For example, if a French-speaking user creates a file in DOS using the common accented "E"
character, the character will not be defined when viewed by a Windows program. This discrepancy occurs because the
OEM code for "E" is Ox90, while the ANSI code for the same letter is OxC9.

Character Set Conversions
To convert between the two character sets, Windows provides the OemToAnsiO and AnsiToOemO functions. These
functions convert strings from one set of character codes to the other. AnsiToOemO converts a file name, input:by the
user of a Windows progr8.m, to the equivalent DOS file name. In cases where the OEM character set does not contain
the same accented ch::a-acters, the nearest equivalent OEM character is-selected. The presence of accented charac
ters causes some other problems. The standard C library functions, such as toupperO and tolowerO, \vill not work
properly under Windows because those functions assume the OEM character set. Windows provides alternatives for
the most common character conversion functions. AnsiLowerO and AnsiUpperO correctly convert ANSI strings from
uppercase to lowercase and vice versa. Accented characters are correctly converted. Avoid the trap of built-in as- ,
sumptions about the character set in use. For example, the following code fragment completely ignores accented
characters. ,

1* WRONG I!! *1
; f (c >= I A I && c <= I Z I II c >= I a I && c <= I Z I)

1* do something *1

The correct alternative to this incorrect example is to use the Windows functions IsCharAlphaO and IsChar
AlphaNumericO. (sCharLowerO and IsCharUpperO also process accented characters correctly for the ANSI charac-
~~ .

Fonts and Character Sets
Although Windows uses the ANSI character set as its default, Windows programs can use different fonts. This font
change commonly occurs in word processing applications, when the user has installed a new set of fonts for a printer.
Because suppliers of printer fonts must support both Windows and non-Windows programs, the OEM character set is
frequently used. This ineans that the character codes for accented characters within a document \vill change depend
ing on the font selected. The fonts will display the same character on the screen that is ultimately printed, as the
supplier of the printer fonts also supplies the screen font drivers.

Whenwriting a Windows program, use a stock Windows font for user input and file name editing. -Normally, the
font is set in a dialog box or edit control, so there is no need to support printer fonts for these isolated bits of text. If
your application supports multiple fonts, consider making a character assignment table available via a help screen.
Dotng so will save the user from having to dig up a listing of all of the character assignments for the font when an
accented character is used. .

"--,.
String Functions
The Windows functio!} library includes a number of convenient string manipulation functions. The examples in this
book frequently use several of these. lstrlenO is used to determine a string's length. IstrcpyO is used to copy a string
irito a butTer, and IstrcatO to add one string to the end of another. These functions have equivalents in the run-time
function libraries supplied with C compilers. There are several reasons why you should use the Windows versions
whenever Possible.

759

WINDOWS API BIBLE

1. The executable versions of the Windows string functions reside in DLL (dynamic link library) files. If you use
these functions in your program, no additional code is added to your .EXE fIle. Using the compiler's library files

./ adds extra code to the end of your prog.,am, enlarging the .EXE file.

2. The Windo~ versions of the stringfunctions process both short and long addresses. Using these funCtions avoids
problems later if you switch a character string from local memory storage to a global memory block.

, ,

3. The string comparison function IstrcmpiO . (string comparison ig1lOring the difference between upper'" and lower
case letters) correctly processes accented characters for the ANSI character set. Using the C compiler library
functiQns will cause odd behavior in sorting applications if the data has accentc~~haracters .

... ~'

Character Set and String Function Summary
Table 19-1 summarizes Windows character set and string functions. The detailed function descriptions are in the next
section.

AnsiLower

AnsiLowerBuff

Ansi Next

AnsiPrev

AnsiToOem

AnsiT oOemBuff

AnsiUpper

AnsiUpperBuff

IsCharAlpha

IsCharAlphaNumeric'

IsCharLower

IsCharUpper

Istrcat

Istrcnip

, Istrcmpi

Istrcpy

Istrlen

OemToAnsi ,
OemToAnsiBuff

ToAscii

Converts a character string to lowercase.

Converts a character string to lowercase.

'Moves to the ,neXt character in ~ string.

Moves to the previous character In a string. ,

Converts a string from 'the ANSI character set to the OEM character set. '

Converts a character string from the ANSI to the OEM character set

Converts-a character string to uppercase., -;,. ____

Converts a character string to uppercase.

, Determines whether an ANSI character is an alphabetical character.

, , Determines whether an ANSI c~aracter is an alphabetical or numeric character.

Determines whether an ANSI character is lowercase. . -',;

Determines whethei an ANSI character is an uppercase letter.

Adds one character string on to the end of another string.

Compares two character strings.
, ' ,

Compares two character strings, ignoring the differenc~ between uppercase and lowercase
letters.

Copies a character string to a memory buffer.

Determines the length of a character string .
• 0" ., •

Converts a character string from the OEM character set to the ANSI character set.

Converts a character string from the OEM character set to the ANSI character set.

Converts from virtual key/scan code data to ANSI characters.

Table 19-1. Character Set and String Function Summary.

Character Set and String FUnction Descriptions
This ~ection corltains the debuled descriptions ofthecharacter set and string fuItctions.·

'ANSILoWER,: '

Purpose
Syntax

~ony~rtsast~irigto~o~ercase;,'. ,:;"

LPSTR AnsiLower(LPSTR ,l:PString);

760

.Win~2;O' .W'm3.0

"~.' .

Description

Uses

Returns

See Also

-Parameters
lpString

Notes

Example

19. CHARACTER SETS AND STRINGS •

This function is the equivalent of the C library tolowerO, func
tion, except that accented characters are properly converted ,
to lowercase. '

To preserve special characteI':), this function should be used
for case conversion with the default WindO\vs character set.
LPSTR,a pointer to the converted; string. If ipString contains
a single character, the returned value contains the converted
character in the low-order byte.
AnsiUpper(), AnsiLowerBuffO

-' generic . ~ r:-
no It! Quit

Original String: Aine
After AnsiUpper: AlNt
After AnsiLower: aine
Afte~ AnsiToOeA: aine

Figure 19-3. AnsiLower()
Example.

LPSTR: A pointer to a null-terminated character string, or to a single character.

The MAKEINTRESOURCE macro is convenient if a single character is being converted. For
example,

char c .;
c = (chart (DWORD) AnsiLower (MAKEINTRESOURCE ('a'» ;

This example, which is illustrated in Figure 19-3, converts the word "AINE" (meaning elder in
French) to upper- and lowercase. The string is then converted to the OEM character set.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam) •
{

PAINTSTRUCT
char
static char

ps •
cBu'f [128J, cTemp (15J ; ,
cFrench [J ~ {Ox41, Oxee, Ox6e, Ox~9, a} ;

switch (iMessage)
(

1* process windows messages *1

case WM_PIUNT: '
BeginPaint (hWnd,&ps) ,
lstrcpy(cTemp, cFrench) ;
TextOut(ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

".Original String: Xs", (LPSTR) cTemp»
AnsiUpper (cTemp) ;
TextOut'(ps.hdc, 10, 30;cB~f,wsprintf (cBut,

, , "After AnsiUpper: Xs", (LPSTR) cTemp»
AnsiLower (cTemp) ;
TextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBuf,

"After AnsiLower: Xs", (LPSTR) cTemp»
AnsiToOem (cTemp, cTemp) ;
SeLectObject (ps.hdc, GetStockObject

(OEM~FIXED_FONT» ;
TextOut (ps.hdc, 10, ,70, c9uf, wsprintf (cBuf,

"After AnsiToOem: Xs", (LPSTR) cTemp»
EndPaint (hWnd, &ps) ;
break;

IOther program lines 1

ANSILoWERBUFF • Win 2.0 • Win :1.0 _ \vin a.1 --
Purpose

Syntax

Description

Uses
Returns

See Also

Converts a character string to lowercase.

WORD AnsiLowerButT(LPSTR ipString, WORD nLen,qlh)j

This function correctly converts the characters in a string to lowel'(~ase. Accented characttws arc
properly converted to their lowercase equivalents. .

" Can be used to eliminate capital letters in all, or part, of a strins.

WORD, the length of the converted string.

AnsiLowerO, AnsiUpperBuffO

761

WINDOWS API BIBLE

Parameters
lpString LPSTR: A pointer to a character string to be converted to lowercase.
nLength WORD: ~e number of characters to convert. If nLengtk is zero, the length is assumed to be

65,536.
Example' This example, which is shown in Figure 19-4, uses AnsiUpperBnffO and AnsiLowerBuffO to con

vert the case of a character string. The first call capitalizes the entire string. Note that the ac
cented characters are correctly capitalized. Next, AnsiLowerBuffO is used to reduce characters
in the center of the string to lowercase. The last line demonstrates a programming error. The
non-ANSI character conversion
function strlwrO, from the C li
brary, is used t.o convert all the let
t.ers in the string to lowercase. Note
that the accented characters are
ignored because the accented char
acters fall in the range of the graph
ics symbols for the OEM (IBM PC)
character set, and they are not cor-

- , ::.' generic ~ . ,.' r-; F
Do It! .Quit

Original String: Special chars here: Aine .
AnslUpperBuff: SPECIAL CHARS HERE: AiNt
AnsllowerBuff: SPECial chars hERE: AiNt
Using strlwr: special chars here: aint

rectly processed by strlwrO. Note Figure 19-4. AnsiUpperBuJl(}andAnsiLowerBtdf(}
how IstrlenO is used to pass the Example.
string length to AnsiUpperBuffO
and AnsiLowerButJO~

long FAR PASCAL WndProc (HWHD hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
char
stati c char
stati c char

ps ;
cBuf [128], cTemp [64] ;
cStart [30] = {"Spedal chars here: ") ;
cFrench [] = (Ox41, Oxee, Ox6e, Oxe9) ;

switch (iMessage)
(

1* process windows messages *1

case WM_PAINT:

,Other protiram Unes/

BeginPaint (hWnd, Ips) ;
lstrcpy (cTemp, cStart) ;
lstrcat (cTemp, cFrench) ;
TextOut(ps.hdc, 10, 10, cBuf, w5printf (cBuf,

"Original String: %5", (LPSTR) cTemp» ;.
An5iUpperBuff (cTemp, lstrlen (clemp» ;
TextOut (ps.hdc, 10, 30, cBuf ,wsprintf (cOuf,

"AnsiUpperBuff: %s"; (LPSTR) cTemp» ;
AnsiLowerBuff ~cTemp + 5, 10) ;
TextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBut,

"AnsiLowerButt: %5", (LPSTR) cTemp» ;
strlwr (cTemp) ; 1* wrong!!! *1
TextOut (ps.hdc, 10, 70, cBuf, wsprintf (cBuf,

"Using strlwr: %5", (LPSTR) cTemp» ;
EndPaint (hWnd, Ips) ;
break;

II Win 2.0 • Win 3.0 • Win 3.1
'l Moves to the next character in a string.

LPSTR ADsiNext(LPSTR lpOummtChar);

This function is required only If the application will use character sets that require more than
one byte per character (for example, the Japanese character set). AnsiNextQ will move to the
next character position, regardless of the number of bytes required.

762
I~

Returns

19. CHARACTER SETS· AND STRINGS "

LPSTR, a pointer to the next character in the string. Returns NULL if the end of the string has
been reached.

See Also

Parameters
lpOurrenlCllar

AnsiPrcvO

LPSTR: A pointer to the current
character in a character string.

Example This example, which is shown in
Figure 19-5, uses AnsiNextO and
AnsiPl'evO to move to different lo
cations in a character string. These

_ functions are not required for the
character set in .'igure 19-5 (the
ANSI character set), as only one
byte is required per character.

.00 It! Quit

Original String: Special chars here: Aine
Character 21 = i
Character 21 - 5 = r

Figure /9-5. AllsiNext() and AnsiPrev() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

PAINTSTRUCT
char
stati c char
static char
LPSTR
int
char

ps ;
cBuf [128], cTemp [64] ;
cStart [30J = {"Special chars her~: "} ;
c~rench [J = {Ox41, Oxee, Ox6e, Oxe9} ;
LpStr ;
i ;
c ;

switch (iMessage)
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
l5trcpy (eTe_p, eStart) ;
Lstrcat (eTemp, eFrench) ;
lpStr = (LPSTR) cTemp ;
TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,

"OriginaL String: %5", lpStr» ;
for(i=0;;<21;i++) .

lpStr = AnsiNext (lpStr) ;
TextOut (ps.hdc, 10, 30, cBuf, wsprintf (cBuf,

"Character 21 = Xc", *lpStr» ;
for (i = 0 ; i < 5 ; i++)

lpStr = AnsiPrev (cTemp, lpStr) ;
lextOut (ps.hdc, 10, 50, cBuf, wsprintf (cBuf,

"Character 21 - 5 = Xc", *LpStr»
EndPaint (hWnd, &ps) ;
break;

{Other program linesJ

Purpose

Syatax

Description

Returns

See Also

• Win 2.0 • Win 3.0 • Win ~.J
Moves to the previous character in a string.

LPSTR AnsIPrev(LI18TU ipStart, LPSTR ipCurrentclwr)j

This function is only rC(luil'Cd if the apillication will use character sets that require more than
one byte pel' charach'l' (for example, the .Japanese <:haracter set). AnsiNextO will move to the
previous chal'ader position, regardless of the number of bytes required.

LPSTU, a pointer to the previous character in the string. Returns IpSlart if IpCurrelltCltar points
to the start of the string.

AnsiNext,O

763

WINDOWS API BIBLE

ParameterS
IpStart

IpCurrcntChar

Example

ANfUToOEM
Purpose

Syntax

Description

Returns
See AlSo
Parameters

IpAns;Str

IpOe-mStr

Example

Purpose

SYntax

Description

Uses

Returns

See Also

I)arameters
IpAnsiStr

[pOem SIr

tllt:lI!/tlt

.~xamldt~

LPSTR: A pointer to thE; lieginning of the character string.

LPSTR: A poimer to the current character in a character string:

See the previous example under AnsiNextO.

• Win 2.0 • Win 3.0 • Win 3.1

Converts :1 string from the AL~SI character set to the O~;M character set.

int AnsiToOem(IJPSTR IpAnsiStr, LPSTR IpOemSlr);

This function does a direct conversion of the characters. If an equivalent character exists in the
OEM character set, that character is select.ed. The string can be longer than 64K.

int., always-I.

OemToAnsiO

LPSTR: A ,winter t.o a null·terminated ANSI character string to be converted.

('PSTR: A lIointllr to a character buffer t.hat will contain the translated characters. The buffer
must be at, least as long as the string in the buffer pointed to by lpAnsiStr.lpOemStr can be the
same as lpA1l.';iStr. In t,his case, the string is converted in place.

Se(~ tho example under the AnsiLowerO function description.

• Win 2.0 • Win 3.0 • Win 3J
.Converts a ehamcter string from the ANSI to the OEM character set.

voi(~ Allsi'i'oOcmUIlJT(LPSTU ipAnBiStr, LPSTU lpOemStr, int nLength);

This furwtion (~onverts characters from the default Windows ANSI character set to the OEM (IBM
PC) charaetllcs. Accented (:haractcrs are cunverted to the nearest alternative. .

AnsiToOomBuffO is useful 1'01' (!onverting strings that artl not.null·terminated. AnsiToOemO is
silll(lim' to IIS0 for null·terminated strings.

No ret.urned value (void).

AnsiToOemO

LI'Sru: A pointer t.o an ANSI character string to be converted. The string 'ioes not have to be null
t:erminated.

LI'S'IR A \It,.illtel· to it eharaclcr
buffer that will eontaill the trans
lated eharadllrs. The hllff(~r must
hl' at. h.i<lSt as lon~~ as Uw string in
the hufrel' pointed to by (pAnsiStt'.
IpOfmStr I:an ho the same as
ljJtlll.<;il"l'lr. Itt this ClUm, tlw Iltl'in~ is
COlllr(~rl.ed in plaee.

...:... - 'generic. Fr -
0.0 It! quit
ANSi String: Special chars here: Aine
OEM String: Special chars here: Alne

f'i!lure 1.9-6. AnsiToOmnBuJf() EXample.

WORD: Tlwllulllher of ehal'aeters to hll ,:()nvertE.~d.

This example, which is illustrat.ed in FiguCtl H)·f), c(lIlverts an ANSI character string to OEM char
actmu, so t.ltat the characters are properly displayed when the OE~C~'Ix}~D_FONT is selected;

764

19. CHARACTER SETS AND STRINGS ~

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lPararn)
(

PAINTSTRUCT
char
stat; c char
static char

ps ;
cBuf [128], cANSI [64], cOEM [64] ;
cStart [30] = ("Specia l chars here: ") ;
cFrench [J = {Ox41, Oxee, Ox6e, Oxe9} ;

switch (iMessage)
{

'* process windows messages *'
case WM_PAINT:

BeginPaint (hWnd, Ips) ;
lstrcpy (cANSI, cStart) ;
lstrcat (cANSI, cFrench) ;
TextOut (ps.hdc, 10, 0, cBuf, wspr;ntf (cBuf,

"ANSI String: Xs", (LPSTR) cANSI» ;
,AnsiToOemBuff (cANSI, cOEM, 1 + lstrlen (cANSI» ;
SelectObject (ps.hdc, GetStockObject (OEM_FIXED_FONT»
TextOut (ps.hdc, 10, 20, cBuf, wsprintf (cBuf,

"OEM String: Xs", (LPSTR) cOEM» ;
EndPa;nt (hWnd, Ips) ;
break;

{Otlu!rprogram linesj

ANSIUPPER

Purpose
Syntax

Description

Uses

Returns

See Also

Parameters
lpStrillg

Notes

Example

Converts a character, string to uppercase.
LPSTR ~iUpper(LPSTR lpString)j

• Win 2.0 '. Win 3.0 • Win 3.1

This function is the equivalent of the C library toupperO function, except that accented charac-
't.ers are properly converted to uppercase. '

To preserVe special characters, this function should be used for case conversion with the default
Windows character set.
LPSTR, a pointer to the converted string. If lpString contains a single character, the returned
value contains the converted character in the low-order byte.

AnsiLowerO, AnsiUpperBuffO

LPSTR: A pointer to a null-terminated character string, or a single character. ,
The MAKEINTRESROUCE macro is convenient if a single character is being converted. For ex
ample,

char c ;
c = (char) (DWORD) AnsiUpper (MAKEINTRESOURCE (Ia l »

See the example under AnsiLowerO.

ANSIUPPERBUFF • Win 2.0 • Win 3.0 • Win 3.1

Purpose Converts a character string to uppercase.
Syntax WORD AnsiUpperButT(LPSTR lpString, WORD nLength)j

Description

Uses
Returns

See Also

This function correctly converts the characters in a string to uppercase. Accented characters are
properly converted to their uppercase equivalents.

Can be used to elilllinatQ the lowercase letters in all, or part, of a string.
WORD, ~he length of the converted string.

AnsiUpperO, AnsiLowerBuffO

766

,

WINDOWS API BIBLE

Paramewn
IpString

nLengtk
Example

LPSTR: A pointer to a character string to be converted to uppercase.
WORD: The number of characters to convert;
See the example under AnsiLowerBufTO.

IsCIlARALPRA • Win 2.0 • Win 3.0 • Win 3.1
Purpose

s,ntu
Determines whether an ANSI character is an alphabetical character. .

BOOL IsCharAlpha(char cCkar);

OesaiptlOD This function, determines whether cChar is alphabetical. Accented characters are correctly pro-
cessed. .

Returns

See Also

BOOL. TRUE if the character is alphabetical, FALSE if not.

IsCharAlphaNumericO 120 It! Quit
L " gt>nf'ri(', ' :-.-

Parameters ~S;:-tr"""ln-!l-:-=---7""">-A"""'i""'n-e""'-A-ri
Alpha: 0 0 0 1111 01
AlphaNum: 1001/11101 cOhar

Example
char: The character to test.
This example examines each character of an ANSI character
string, as shown in Figure 19-7. Note that the IsChar ... func
tions correctly process accented characters in both upper- and
lowercase.

Lower. 000011100
Upper: 000100001

Figure 19-7. IsCharAlpha()
Example.

' ..
long FAR PASCAL WndProc (HWND h~nd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
char
stati c char

1nt

ps ;
cBuf [128J ;
cFrench [l = (Ox37, Ox3e, Ox20, Ox41, Oxee,

Ox6e, Oxe9, Ox20, Oxc1, 0) ;
i . ,

switch (i"essage)
(

1* process windows messages *1

case W',,-PAINT: \
BeginPaint (hWnd, &ps) ;
rex tOut (ps.hdc, 10, 0, "String:", 7) ;

'TextOut (ps.hdc, 10, 15, "Alpha:", 6) ;
TextOut (ps~hdc, 10; 30, "AlphaNum:", 9)
TextOut (ps.~dc, 10, 45, "Lbwer:", 6) ;
TextOut (ps.hdc, 10, 60, "Upper:", 6) ; -
for (i = 0 ·1· 1: < .. ,lstrlen (cFrench) ; 1++) .
(, ,

.. 'T~ ~Out (ps.h'dc, 100 + (1 * 10), 0; cBuf,
wsprintf (cBuf, fIXc"" cFrench [tl» ;
TextOut (ps.hdc~/100 + (; * 10), 15, cBuf,

wspriritf (cBuf, "%1i",
(lsCharAlpha (cFrench til)

'1 1 : 0») ;
TextOut (ps.hdc, 100 +. (i * 10), 30, cBuf,

wsprintf (cBuf, "X1i",

)

, (lsCharAlphaNumeric (cFrench[il)
1.1 :' 0») ;

TextOut (ps.hdc, 100 + (i * 10), 45, cBuf, '<

wsprintf (cBuf, "%1i",
(lsCharLower (cFrench [ill

1 1 : 0») ;
TextOut:(ps.hdc, 100 + (1 * 10); 60, cBuf,

wsprintf (cBuf, "%1i",
(IsCharUpper (cFrench til)

.1.1: 0»);

766

EndPaint (hWnd, &ps) i
break i

/

19. CHARACTER SETS AND S'fRINGb .. ~

IOlher program linesj

lSCIlARALPHANUMERIC • Win 2.0 • Win 3.0 • Win 3.1
Purpose Determines whether an ANSI character is an alphabetical or numeric character.

Syntax BOOL IsCharAlphaNumeric(char cChar)j

Description

Returns
See Also

ParaJReters
cChar

Example

This function determines whether cChar is an alphabetical character or a numerical digit. Ac
cented characters are correctly processed.
BOOL. TRUE if the character is alphanumeric, FALSE if not.

IsCharAiphaO

char: The character to test.
See the example under the IsCharAiphaO function description ..

IsCHARLoWER • Win 2.0 • Win 3.0 • Win 3.1

Deseription

Returns

SeeAIso

P~eters
cChar

Example

IsCHARUpPER

Determines whether an ANSI character is lowercase.
BOOL IsCharLower(char cChar)j

This function determines whether cChar is a lowercase alphabetical character. Accented char
acters are correctly processed.

BOOL. TRUE if the character is an uppercase alphabetical character, FALSE if not.

IsCharUpperO

. char: The character to test.

See the example under the IsCharAiphaO function description.

• Win 2.0
Determines whether an ANSI character is an uppercase letter.

BOOL ~Upper(char cOhar);

• Win 3.0 • Win 3.1

This function determines whether cChar is an uppercase alphabetical character. Accented char
acters are c~~t1y processed.

Returns BOO~. TRUE if the character is an uppercase alphabetical character, FALSE if not.

8ef Also IsCharLowerO

Parameters ~
cOllar- char: The character to test.
Example See the example under the IsCharAlphaO function description .

LSJ'RCAT

.//

Adds one character strIng to the end of another string.
LPSTR Istrcat(LPSTR lpStringJ, LPSTR IpString2)j

• Win 2.0 • Win 3.0 • Win 3.1

The function name is short for "long string concatenation." lstrcatO searches the string pointed
to by lpStringJ for the fIrst null character. The string pointed to by lpString2,is copied into
lpStringJ starting at that point. All strings must be less than 64K in length. This function is

767
\

WINDOWS API BIBLE

Uses

Retums

equiValent to the standard C libraryfunction strcatO, except that it uses far pointers. Near point-
, ers will automatically be converted to far pointers by the compiler.
Frequently used to build composite character strings, such as warning messages that contain a
fIle name, or to add a fIle name to fIle path.
LPSTR, a pointer to IpStringl. This will be the start of the ~ombined string. Returns zero on
error.

See Also
Parameters
lpStringl

IstrcpyO, lstrcmp(), IstrcmpiO

LPSTR: A pointer to the destination character array. ,The string pointed to by IpString2 will be
copied to the end of IpStringl " starting at the first null character. The character array or memory
buffer pointed to by IpStringl must be large enough to hold the combined strings. The string in
IpStringl must be null-terminated.

lpString2

Example

LPSTR: ~ pointer to the character string to be copied to the end of IpString 1. The string must be
null-terminated.
This example shows a typical use of the string copying and concatenation functions. Text is cop
ied into a global memory block, allocated with GlobalAllocO. First, the cBegin string is placed in
the memory block. Then:the cFrench string (consisting of some accented characters) is added
with IstrcatO. When the text is needed for the WM_PAINT message processing, the block is
locked. The address of the memory block is then a far'pointer to 1\ string. The memory block is
released after use.

long fAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,LONG lParam)
{ ,

/

PAINTSTRUCT
char
stati c char
static char
static HANDLE
LPSTR '.

ps ;
cBuf (128J ;
cBegin [J = {"Starting Text_ "} ;
cFrench (J =.{Ox41, Oxee, Ox6e, Oxe9, O} ;
hMem;

, lpMem ;

switch (iMessage)
- {

1* process windows messages *1

case WM_CREATE:
,hM~m = GlbbalAlloc(GHND, 64)
lpMem = GlobalLock (hMem) ;
lstrcpy (lpMem, cBegin) ;
lstrcat (lpMem, ~French)
GlobalUnlock (hMem) i
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
lpMem = GlobalLock (hMem) ;
TextOut (ps.hdc, 0, 0, lpMem, lstrlen (lpMem»
G(obalUnlock (hMem) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_QUIT: I*,send end of application message *1
DestroyWi ndow (hWnd) ; .

}

break;
case WM_DESTROY:

break; .

GlobalFree ChMem) ;
PostQuitMessage CO)
break;

1* stop application *1

768

18. CHARACTER SETS AND STRINGS "

default: 1* default windows lIessage processing *1/
return OefWindowProc (hWnd, i"e'lage, wPara., lPara.) ;

)

return (OU ;
)

LSTRCMP • Wm 2.0 • Win 3.0 • Win 3.1
Purpose

s,ntax
Description

Compares two character strings.
int Istrcmp(LPSTR IpStringi, LPSTR IpString2)j

This function determines which of the two strings would come first in the dictionary. The deter
mination is based on the language installed in Wmdows. The comparison is case sensitive, with
capital letters coming before lowercase letters.

Uses

Returns

The strings must be smaller than 64K bytes long. The result of the comparison may not be the
same as would be returned by the C library function strcmpO, as accented characters are cor
rectly processed only by lstrcmpO.
Used in determining the sort order of strings in daiabase applications. Often used to simply check
if two strings are identical.
int, 0 if the strings are identical. Negative if IpStringJ would come before IpString2 in the dictio
nary. Positive if IpStringl would come after IpString2.

See Also

-Parameters
IpStringl

lstrcmpiO

LPSTR: A pointer to the first null-temiinated character string.
IpString2

Eumple
LPSTR: A pointer to the second null-terminated character ~tring.
The example shown ii1 figure 19-8 compares two strings:'Both of the strings contain the same
lettersj although, the second string has a capitalized word.lstrcmpO detects this, and returns I,
as the lowercase letters in the first
string would come after the .up
percase letters in the second.
IstrcmpiO finds the two strings
equal, and returns O. IstrlenO de
termines the length of a string. The
returned length of ll-characters
does not include the termlnating
NULL character.

Do hi Quit
$trings: 1) Test String,
·strcmp = 1
.strcmpl = 0
·strlen = 11

2) Test STRING.

Figure 19-8. /,trcmp() E.mmple.

long FAR PA'SCAL WndProc (HWNO'hWnd, unsigned i"essage, WORD wParam, LONG lParam)
{ \ :::.

PAINTSTRUCT 'ps •
char ~ caut [128J ;
static char cStr;ng1 [J = ("Test String") ;
static char cString2 [J ::.....{ .. Test STRING") ;
int . n ; ~

switch (1"essage)
{

case W"_PAINT:
. , Beg;nPaint '(hWnd, ips) ;

1* process w~ndows •• ssages *1

TextOut (ps.hdc, 0,0, cBuf, wsprtntf (cBuf,
"Str;ngs: 1) %s 2) %s","
(LPSTR) cString1, (LPSTR) cString2» ;

n = lstrcmp '(cString1, cString2) ;
. TextOut (ps.hdc, 0, 15, cBu1., wsprintf '(cbuf,'

"ls.trcllp = Xd", n»; -

769
- .

WINDOWS API BIBLE

n = lstrcmpi (cString1, cStringZ) ;
TextOut (ps.hdc, 0, 30, cBut, wsprintt (cBut,

"lstrcmpi = i!d", n» ;
n = lstrlen (cStringtj ;

. \
IOther program line /

TextOut (ps.hdc, 0, 45, cBut, wsprintt (cBut,
"lstrlen = i!d", n» ;

·EndPaint (hWnd, &ps) ;
break;

LSTRCMPI

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpStringl

IpString2

Example

LSTRCPY

Purpose
Syntax"

Description

Uses
Returns

See Also

Parameters
IpSlringl

/pSlring2

Example

II Win 2.0 III Win 3.0 • Win 3.1
Cpmpares two character strings, ignoring the difference between uppercase and lowercase let
ters.

iqt lstrcmpi(LPSTR IpStringJ, LPSTR IpString2)j

This function determines which of the two strings would come first in the dictionary. The deter
mination is based on the language installed in Windows. The comparison is not case sensitive.
Capital letters are treated the same as lowercase letters. The strings must be smaller than 64K in
l~ngth. The result of the comparison may not be the same as would be returned by the C library
function strcmpiO, as accented characters· are correctly processed only by IstrcmpO.
Used in deteqninmg the sort order of strings in database applications. Often used to simply check
whether two strin~ of identical upper- and lowercase letters are equivalent (file names).
int, 0 if the strings are identical. Negative, if IpStringl would come before IpString2 in the dictio-
nary. Positive, if IpStringJ would come after IpString2. .

IstrcmpO, IstrcatO, IstrcpyO, IstrlenO

LPSTR: A pointer to the first nwl-terminated character string.
LPSTR: A pointer to the second null-terminated character string.

See the previous eXample under the IstrcmpO function d~scription.

II Win 2.0 • Win 3.0 II Win 3.1
Copies a character string to a memory buffer.

LPSTR Istrcpy(LPSTR IpStringl, LPSTR lpString2)j

The function name is short for "long string copy." lstrcpyO copies all ofthe characters including
the terminating NULL character in the buffer pointed to by IpString2, into the buffer pointed to
by IpStringJ; All strings must be less than 64K in length. This function is equivalent to the stan
dard C libraty function strcpyQ, except that it uses far pointers. Near pointers are automatically
converted to far pointers by the compiler.
Used to put character strings in local and global memory buffers. Frequently used with IstrcatO.

LPSTR, a pointer to IpSlri1!fJl. Returns zero on error.
lstrcatO :.

LPSTR: A pointer to the destination character array. The string pointed to by IpString2 will be
copied to the beginning of IpSlringl. The character array or memory buffer pointed to by
lpStringl must be large enough to hold lpString2. "-

LPSTR: A pointer to the character string to be copied to lpStringl.

See the example under the IstrcatO function description:

770

LSTRLEN

Purpose

Syntax

Description

Uses

Returns

Parameters
ipString

Example

OEMToANsI
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpOemStr

ipAnsiSlr

Example

19. CHARACTER SETS AND STRINGS V

II Win 2.0 II Win 3.0 fJ Win 3.1
Determines the lcnglh of a character string.

int lstrlen (LPSTR ipString);

The length returned does not include the terminating NULL character. Be sure to allocate an
extra byte for the NULL character is IstrlenO if being used to size a memory space to hold a null
terminated character string. The string must be smaller than 64K in length.

Frequently used within other functions to pass the character string length as a parameter. For
example, inside TextOutO

char cBuf [] = {"Some Text ."} ;
TextOut (hOC, 10, 10, cBuf, lstrlen (cBuf»

In this case, IstrlenO is used to pass the number of characters in the cRufl J buffer to TextOutO.

int, the number of characters in the buffer pointed to by ipString.

LPSTH:A pointer to a null-tcrminatec\ eharaetcr string.

See the exa!l1plcs under the AnsiLmverBuffO antllstrempO function descriptions.

iii Win 2.0 Ii3 Win 3.0 [S Win 3.1
Converts a string from the OEM character set to the ANSI character set.

int OemToAnsi(LPSTR lpOemStr, LPSTR ipAnsiStr);

This function does a direct conversion of the characters from the OEM (IBM PC) character set to
the default Windows character set (ANSI). If an equivalent character exist~ in the ANSI charac
ter set, that character is selected. If no equivalent exists (graphics characters), the nearest
match is chosen. The string can be longer than 64K.

This function is needed if strings captured in the DOS environment are to be displayed in Win
dows using the del~mlt ANSI character set.

int, always -1.

OcmToAnsilluffO, AnsiToOcmO

LPSTU: A pointer to a null-terminated charader string containing OEM characters.

LPSTR: A pointer to a character buffer that will contain the converted characters.lpAnsiStr can
be the same as lpOemSlr, which causes the string to be con- .
verted in place.

This example, as shuwn in Figure HI-n, dpJl10nstratcs two dif
ferent stock f:mts. The upper slIill~ L Wrillt:11 \,'itl. the OEM
font. The char<ldcl'S must he <:Oll':erteti to the ANSI character
set beiorc the butLomline can he \\Tilten using the ANSI fIxed
pitch stock font.

I!o It! !luit
~uord in French: tpee
Sword in French: Epee

Pigure 19-9. OemToAllsi(J
E3.~ample.

long FAR PASCAL WndProc (HUNO hUnd, unsigned iMessage, WORD wParam, LONG lParam)
{ -

PAINTSTRUCT
char
stati c char
static char

swit~h li"essage)
{ ,

ps ;
cOuf (128) ;
cString1 [] = {"Sword in French: "} ;
cString2 [] = {Ox90, Ox70, Ox82, Ox65, 0) ;

/* process windows messages */

WINDOWS API BIBLE

case W"_PAINT:

lather program linesl

BeginPaint (hWr.d, Ips) ;
lstrcpy (cBuf, cStr1ng1) ;
lstrcat (cBuf, cString2) ;
SelectObject (ps.hdc, GetStockObject (OE"_FIXE()-..FON1;» ;
TextOut (ps.hdc, 0, 5, cBuf, lstrlen (cBuf» ; '.
OemToAnsi (cBuf, cBuf) ; 1* in-plaie conversion *1
SelectObject (ps.hdc, GetStockObject (ANSI_FIXED_fONT» ;
TextOut (ps.hdc, 0, 20, cBuf, lstrlen (cBuf» ;
EndPaint (hWnd, &ps) ;
break; ,

J.

OEMToANsIBUFF • Win 2.0 • Win 3.0 • Win 3.1
Purpose Converts a character string from the OEM character set to the ANSI character set.

S1lltu void OemToAnsiButT(LPSTR IpOemStr, LPSTR ipAnsiStr, int nLengtk)j

DeserlpdOR

Uses

Returns

See·AJ.so

Parameters
IpOemStr

IpAnsiStr

, nLength

ExamPle

This function is identical to OemToAnsiO, except that the number of characters to convert can
be specified. OemToAnsiBuffO docs a direct conversion of the characters from the OEM (IBM
PC) character set to the default Windows character set (ANSI). If an equivalent character exists
in the ANSI character set, that character is selected. If no equivalent exists (graphics charac-
ters), the nearest match is chosen. . .

Used in place of OemToAnsiO when the strlitg to be converted is not null·tenniriated.

No returned value (void).

OemToAltsiO, AnsiToOemO

LPSTR: A pointer to a character string containing OEM characters.

LPSTR: A pointer to a character butter that will contain the converted cbaracters.lpAnsiStr can
be the same as lpOemStr, which uses the string to be converted in place.

int: The number of characters in IpOemStr to con~~.

This example produces the same results as the previoUs example under OemToAnsiO. In this
case, the conversion to the ANSI character set is accomplished with OemToAnsiBuffO.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

PAINTSTRUCT
char
static char
static char

ps ; .
cBuf [128], cBuf2 [128] ;
cString1 [] = {"Sword in french: "} ;
cString2 [J = {Ox90, Ox70, Ox82, Ox65, O}

switch (;Message)
<

1* process·vindows messages */

case ''''_PAINT:

lather program linesl

BeginPaint (hWnd, &ps) ;
lstrcpy (cBuf, cString1) ;
lstrcat (cBuf, cString2) ;
Oe.ToAnsiBuff (cBuf, cBuf2, lstrlen (cBuf» ;
SelectObject (ps.hdc, GetStockObject (OEM_FIXED_FONT» ;
TextOut (ps.hdc,.O, 5,cBuf, lstrlen (cBuf» ;
SelectObject (ps.hdc, GetStockObject (ANSI_FIXED_FONT» ;
TextOut (ps.hdc,·O, 20, cBuf2, lstrlen (cBuf2» .
EndPaint (hWnd; ips) ;
break;

ToAscII
Purpose

Syntax

Description

Uses
Returns

See Also
Parameters
wVirtJ(ey

wScanCode

IpKCljState

lpChar

wFlags

19. CHARACTER SETS AND STRINGS V

• Win 2.0 • Win 3.0 II Win 3.1
Con~rts, virtual key/scan code data to ANSI characters.

in(~r6ASCU(WORD wVirtKey, WORD wScanCode, LPSTR lpKeyState, LPVOID lpChar, WOIm
wFlagS)i ..

Mainly used with intematio·nal (non-USA) keyboard translations. The function reads the virtual
key, scan code, and key state data, and then puts the translated ANSI character equivalent into
the buffer pointed to by lpCltar.

Useful in processing accent characters.
. . int, the number of bytes copied to the lpChar buffer. Two for accent or dead-kef ~haracters that

do not have an ANSI value. One for direct translation to an ANSI character. Zero if no translation
was possible.

··OemToAnsiO, AnsiToOemO

WORD: The virt.ual key code. This is the wParam value used when processing a WM_KEYUP or
WM_KEYDOWN message.
WORD: This is the OEM scan code. Bytes 16 to 23 of LParam contain this value when processing
a \VM_KEYUP or WM_KEYDOWN message.
LPSTR:.A pointer to a 256-byte array containing the current status of all virtual keys. Use
Get~eyboardStateO to initialize this array prior to calling ToAsciiO. '

LPVOID: J\'poiilter to a 32-bit buff~r (DWORD) that will hold the translated character.

WORD: The bit 0 flag's setting~ Set to NULL.

Rela~ Messages Wi\CKEYDOWN, W~CKEYUP ,
Example This example uses ToAsciiO to convert the MCKEYDOWN parameter data into its ANSI charac- -

ter equivalent. Every time a key is pressed, the number of translated bytes (uSually one) and the
ANSI character are displayed in the program's client area.

long FAR PASCAL WndProc (HWND hWnd, u~signed iMessage, WORD wParam, LONG lParam)
{

HOC
char
OWORt
int

hDC ;
cKeyBut [~56J, cBut [10] ;
dwAnsiValue ;
nCharResult, nScanCode ;

·switch (iMessage)
{

1* process windows messages *1

case WM_.!<EYOO"'N: .
InvalidateRect (hWnd, NULL, TRUE) ; 1* clear client area *'

IOther program lines}

UpdateWindow (hWnd) ;
hDC: GetDC (hWnd)';
nScanCode: (lParam » 16) & OxOOft ; 1* get scan code *1
GetKeyboardState (cKeyBut) ; 1* read all 256 VK_ values *1
nCharResult = ToAscii (wParam, nScanCode, cKeyBut,

&dwAnsiVaLue, NULL) ;
itOB (nCharResult, cBut, 10);
TextOut (hDC, 10, 10, cBut, strlen (cBut» ;
TextOut (hDC, 50, 10, ": bytes ToAscii() returned.", 21) ;
cBut [OJ = (char) (dwAnsiValue & OxOOft) ;
TextOut (hDC, 10, 30, cBut, 1)·;
TextOut (hDC, 50, 30, "= ASCII char.", 13) ;
ReLeaseDC (hWnd, hOC)
break;

773

Windows uses the MS-DOS disk file functions. Prior to Windows 3.0, the use of MS-DOS was obvious to the Windows
programmer as only the OpenFileO function was provided for file access. The MS-DOS file nmctions from the C
compiler'S run-time library were used to read and write data. The Windows function library included functiolHalls to
the lower-level DOS functions, but these were "undocumented" functions. The function names were preceded by an
underscore character to emphasize their temporary nature. With the release of Windows 3.0, the file functions have
been legitimized. The Windows function library now includes the previously "undocumented" functions. The under
score characters in front of the function names have been retained for compatibility with previous versions.

You are most likely to run into the differences between the OEM character set used by MS-DOS and the ANSI
character set used by Windows when using file functions. All of the file functions available within Windows do the
conversion from ANSI to OEM characters for you. If you access the MS-DOS file or path name data directly (perhaps
using the OFSTRUCT data filled by the OpenFileO function), keep in mind that the file names and path names will
contain OEM characters. .

Windows includes excellent support for maintaining initialization filesj such as WIN.INI. These files are read on
startup, and provide information to the program concerning how the user left the application when it was last run.
Typically, they are used to remember window sizes and locations, default file names, and preferred color combina-
tions. .

Disk Files
From the point of view of an application program, a disk file is just a series of byte values. There is no automatic
structure to the data. An application writes the..data to the file in any arbitrary order. This might be a series of integers
(two-byte values) followed by string data (one byte per character). When the data is read back from the disk, the
application must know the order in which the data was written in order to make sense out of the individual b:vtes.

Before any action on a disk file can be taken, the file must be opened. Opening the file alerts MS-DOS that the file
will see activity. MS-DOS uses an unsigned integer value, called a "file handle," to keep track of the open files. Only a
limited number of files can be open at one time (determined by the FILES environment variable in DOS). Files should
be closed as soon as possible after use.

Within Windows, the preferred way to open or create a new file is \vith the OpenFileO functiori. A t.ypical call to
OpenFileO is as follows:

i nt
OFSTRUCT

hFi leHandle ;
of ;

hFileHandle = OpenFile '"MYFIlE. TMP",&of, OF_CREATE)

This example creates a file called MYFILE.TMP on the default directory. Because of the OF_CREATE flag, the file
is opened and truncated to zero bytes of data if the file already exists. The file handle is returned by OpenFileO. The
file handle is an integer. The file handle is used by all of the data reading and Writing functions.

OpenFileO uses a data structure called OFSTRUCT, that is defined in WINDOWS.H as follows:

typedef struct tagOFSTRUCT
{ .

BYTE cBytes; 1* length of OFSTRUCT *1

774

20. MS-DOS AND DISK FILE ACCESS ~

BYTE
WORD
BYTE
BYTE

} OFSTRUCT;

fFixedDisk;
nErrCode;
reserved[4J;
szPathName[128J;

typedef OFSTRUCT
typedef OFSTRUCT NEAR
typedef OFSTRUCT FAR

1* non-zero H fixed drive *1
1* MS DOS error code *1
1* file date and- time *1
1* full path name and *1
1* fi le name <OEM chars) *1

*POFSTRUCTi
*NPOFSTRUCTi
*LPOFSTRUCT;

This data is filled in every time OpenFileO is called. \ '

An alternative to using OpenFileO is to used the lower-level file functions like _lcreatO and _lopenO. They do
the specific jobs of creating new files and opening existing ones. OpenFileO is more versatile, and generally pre
ferred. When the file is open, the low·level file access functions JreadO, _lwriteO, and _llseekO are used to read,
write, and move to data in the file. These functions are direct calls to their MS-DOS function equivalents. Assoonas
the need for the file's datai~ complete, the application must call_JcloseO to close the file. Failing to close a file risks
losing the file's data after the application terminates.

Lists of File Names
Most applications need to allow the user to select~ file
from a list of files on a certain directory. This task lis so
common that Windows provides automatic functions for
filling list boxes and combo boxes with a specified direc
tory list. The list box or combo box must be inside a dia
log box. DlgDirListO fills a list box with a set of file
names specified by an MS-DOS search string like "*.TXT"

. (show every file dn the directory with the TXT exten
sion). DlgDirListComboBoxO does the same function for
a combo box.

When the list of files is added to the list or combo
box, related directory and drive names are included in
the list surrounded by square brackets. A typical ex
ample is shown in Figure 20-1.

The Windows Software Development Kit (SDK) pro

Open File Name:

Eilesin c:\ ... \samples\fileopen
~-------------------=~ fileopen.res
fileopen.map
fileDpen.exe
[00]
[-a-]
[-b-]

I [-c-)

Figure 20-1. Files Listed in. a List Box.

vides an excellent example program called OPENFILE. Figure 20-1 shows the file selection dialog box that this ex
ample program creates. Extract the dialog box definition and dialog box function from this file and use it in any
application requiring file selection. .

Initialization Files
A common problem for many programs is "remembering" settings from the last time a user ran the application. Many
applications store the main window's size and location, color selections, most recently opened file names, and other
common data for the next session. Prior to Windows 3.0, all of this initialization data was stored in a single file called
WIN.lNI. WIN.INI includes initialization information used by Windows, and specialized information written and ac
cessed by other applications. The WIN.INI file is located in the Windows subdirectory, the subdirectory that contains
WIN.COM. A typical excerpt from WIN.INI is shown below.

[Windows HelpJ
Maximized=O
Xl=59
Yu=54
Xr=666
Yd=683

In this case, the Windows Help application stores information about the size and location of the help window the
last time Help was called.

775

WINDOWS APi BIBLE

ApplicatioM can write new entries to WIN.iNI usmg Wri~J»rofileStrbigO. This function will search for an existing
entl'y,such 88 (Windows Help), and write data below it. If a matching entry does not exist, a new one is written to
WIN.INt The data can be read fromWIN.INI with GetProfileStringOand GetProfileIntO for charaCter and integer
data, respectively. . '.. .

The problem with always using WIN.INI to stor:e initialization data is that WIN.INI becomes very long. This slows
down the Windows startup routines because all ofWIN.INI is read every time Windows is started. There is also no.
provision for deletlJig entries from ·WIN.INI when an application has been removed froni the system. WIN.INI files
tend to collect large numbers of unnecessary entries over time.

With W'mdows 3.0, support is provided for private initialization files. These fIles have the same format as WIN.INI,·
but are specific to one application. The WritePrivateProfIleStringO, GetPrivateProfileStrin'gO, and GetPrivate
ProfileIntO functions are provided for simple support of these fIles. Private initialization fIles should be used for data
that is ~ificto the application. WIN.INI should be used for data that might be used by more than one application,
such as preferred color choices.

Because WIN.INI holds Initialization data common to all applications, an application that changes WIN.INI should
notify all other running applications if a change is made. The application changing WIN.INI should send the
WM_ WININICHANGE to all applications (call PostMessageO with the kWnd parameter set to -1) after WriteProfile
StringO is called. Do not do this for changes to private initialization fIles.

MS-DOS and Disk File Function Summary
Table 20-1 summarizes the Windows disk file functions. The detailed function descriptions arc In'the next section.

DlgDirUst

OIgDirlistComboBox

D/gDirSelect

OIgDirSeIectCorx
GetOOSEnvironment

GetDriveType

GetEnvironment

GetPrivateProfilelnt

GetPrivateProfi!eString
. GetProfilelnt

GetProfiIeStrin
GetSystemDirectorY

GetTempDrive

GetTempFiIeName

GetWltldowsOirectory

Jclose
Jcreat

. I/seek -. ,
.Jopen

Jread
).wite

()penFIe

RDs a list box control in a dialog box with a set of file names.

Fdls a combo box control in a dialog box with a set of file names.

Retrieves the currently selected file name from a list box.

Retrieves the currently selected file name from a combo box.

Retrieves a pointer to the DOS environment string buffer.

Determines if a drive is fixed, removeabIe, or a network drive.

Retrieves the Windows environment string for a device.

Retrieves an integer value from an application's private profile (.INQ file.

Retrieves a character string from an application's private profile (.INQ file.

Reads an integer value from the WlN.lNI file.

Retrieves a character string from the WlN.lNJ file.

Determines the path name of the Windows system directory.

Determines which drive to use for temporary files.

Creates a unique, temporary file name.
Determines the path name of the Windows cfll'eCtory.

Closes a disk file.

Creates a reN disk file.

Moves to a new JocatJon In a disk file.

Opens a file for reading or writing data.

Reads data from a dsk ftIe.
WrItes data to a dsk file. .
Qeates, opens, a deletes files.'. \.

778

20. MS-DOS AND DISK FILE ACCESS ..

SetEnvironment .

SetErrorMode

SetHandIeCount

WritePrivateProfileString

WriteProfileString

Changes the environment variable settings for a port.

Sets whether Windows shows the default aiticaI error message.
Changes the number of files an ~ can have open at once.

. Copies a character string to an application's private profile (.INQ file ..

Writes an entry to the W1N.lNI file.

Table 20-1. Disk File Function Summary.

MS-DOS andDlsk File Function Descriptions
This section contain!} the detailed descriptions for the disk file functions.

DLGDmLIST

DescripUon

Uses

Re~
See Also
Parameters
Wig

lpPalhSpec

n1DLWBo:r

wFileType

0x0000

0x0001

0x0002
0x0004

0x0010

0x0020

0x2000

Ox4000
0x8000 .

.Wm2.0 aWln3.0

Fills a list box control in a dialog box with a set of me names.

int DJgDlrUst(HWND Wig, LPSTR IpPatltSpec, int nIDListBox, lnt nlDStaticPath, WORD
wFile'J'ype }i
List box controls are ideal for allowing the user to select a file name from a list. This function
conveniently fills the list box with a set of file names which match a DOS file search string.

Used in the File/Save, FilelLoad dialog boxes for most applications.

int, nonzero if files were found. Zero if no files were found that matched IpPathSpec.
DlgDirListComboBoxO, DlgDirSelectO

HWNI): The dialog box handle. . .
LPSTR: A pointer to a character string containing the DOS rtie:~h string. For example,
"C:\DOS*.COM" would list all files in the DOS subdirectory with the .COM extension.
int: The dialog box ID value for the list box control. Normally the list box wlll have the LBS_SORT
style, so that the files are listed in ASCII sort order. _
tnt: . The dialog box ID value for a static text control that will be updated with the current path
name.
WORD: The DOS flle attribute value. (See the list in Table 20-2.) Only files with the selected
attributes will be displayed. .

Read/write data files with no other attributes set (normal files).

Read only files.

Hidden files.

System files.

S . 'bdirectories.

Archived files.

LB_DlR flag. Flag places messages associated with filling the list box on the application's'
message queue. rather than ~ing them directly. See the LB_DlR message description in

. Chapter 9, Wtldows Messages.

Drives (A. 8. C).

exclusive bit. If this Is set, only the specified file attribute type is recovered. If not set, normal files
are c.fisp\ayei(i In addtion to the types listed. .

m ..

WINDOWS API BIBLE

Related Messages . LB_RESETCONTENT, LB_DIR

Example This example, as shown in Figure
20-2, creates a dialog box when the
user clicks the "Do It!" menu item.
The dialog box. contains a list box,
showing all of the files in the cur
rent directory. The dialog box also
displays the directory name and the
number of files displayed. When the
user selects a file from the list box,
the selection number and file name
are stored in global variables. This
allows the calling WndProcO func-

The current selection is number 1. brushpat.bmp

c:\c\book3

orchive.bot
rush - flt.brn '

copywind.bot
cut.bmp
diolog.h

eneric

•
Number of
Files:

32 -
tion to display the current selection Figure 20-2. DlgDirList() Example.
at the top of the window's client
area when wrwCPAINT messages are processed.
The dialog box is defined in a resource file created with the dialog box editor.

EXAMPLEDIALOG DIALOG LOADONCALL MOVEABLE DISCARDABLE 20, 36, 162, 75
CAPTION "Example Dialog Box"
FONT 10, "Helv"
STYLE WS_BORDER I WS_CAPTION I WS_lILGFRAME I DS_MODALFRAME I WS_POPUP
BEGIN

END

CONTROL "OK", DLI_OK, "button", BS_DEFPUSHBUTTON I WS_TABSTOP I
WS_CHILD, 102, 48, 40, 14

CONTROL "", DLI_LISTBOX, "l i stbox", LBS_STANDARD I LBS_HASSTRINGS
WS_BORDER I WS_VSCROLL I WS_CHILD, 5, 17, 87, 49

CONTROL "Number of Fi les:", -1, "stat; COl, SS_LEFT I WS_CHILD,
102, 15, 54, 18

CONTROL , DLI_DIRSTRING, "stati c .. , SS_LEFT I WS_CHILD,
10,4,141,12

CONTROL "", DLI_NUMFILES, "static", SS_LEFT I WS_CHILD,
102,37,41,10

The dialog box control ID numbers are defined in a separate header file, GENERIC.HD.

#def ne DLI_LISTBOX
#def ne DLI_NUMFILES
#def ne DLI_DIRSTRING
#def ne DLCOK

104
103
102
101

int
char

The following listing shows the dialog box function at the end. The function must be listed in
the F.u,{PORTS section of the application's .DI~F definition file, and it must have a function proto
type in the header file.

nSelection = 0 ;
cSelection [128] ;

1* global variables *1

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

FARPROC
PAINTSTRUCT
char

switch (iMessage)
{

case WM_PAINT:

lpfnDlgPro'c ;
ps ;
cBuf (128] ;

BeginPaint (hWnd, &ps)

778

1* process windows messages *1

)

}

20. MS-DOS AND DISK FILE ACCESS 'Y

TextOut (ps.hdc, 10, 10, cBuf, wsprintf (cBuf,
"The current selection is number 7.d, 7.s",
nSelection, (LPSTR) cSelection» ;

EndPaint (hWnd, &ps) ;
break;

case WH COMMAND: 1* process menu items *1
~wi tch (wParam)

{

case IDM_DOIT:" 1* run dialog box *1
lpfnDlgProc = MakeProcInstance (DialogProc,

ghlnstance) ;
DialogBox (ghInstance, "ExampleDialpg", hWnd,

lpfnDlgProc) ;
FreeProcInstance (lpfnDlgProc) ;
InvalidateRect (hWnd, NULL, TRUE) ;
break;

case IDM_QUIT:

}

break
case WM_DESTROY:

DestroyWindow (hWnd)
break;

1* stop application *1
PostQuitMessage (0)
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMess~ge,"wParam, lParam) ;

return (OL>;

BOOL FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG lParam)
{

int nFi les ;

swi tch (wHess)
{

}

~ase WH_INITDIALOG:
DlgDirList (hDlg, "*.- , DLI_LISTBOX,

DLI_DIRSTRING, 0) ;
nFiles = SendDlgltemMessage (hDlg, DLI_LISTBOX,

LB_GETCOUNT, 0, Ot.) ;
SetDlgltemlnt (hDlg, DLI_NUHFILES, nFiles, TRUE)
return TRUE; ,

case WM_COMMAND: 1* One of the controls was activated *1
swi tch (wParam)
{

case DLi_OK:
EndDialog (hDlg, 0)
return TRUE;

case DLI_LISTBOX:
if (HIWORD (lParam) == LBN_SELCHANGE)
{

return TRUE;
case WM_DESTROY:

}

EndDialog (hDlg, 0)
return TRUE;

nSelection = SendDlgltemMessage (hDlg,
DLI_LISTBOX, LB_GETCURSEL, 0, OL)
DlgDirSelect (hDlg,

lLPSTR) cSelection,
DLI_LI STBOX)

return FALSE

179

WINDOWS API BIBLE

DLGDmLISTCOMBoBox II Win 2.0 II Will 3.0 II Win 3.1
Purpose Fills a combo box control in a dialog box with a set of file names.
&,Dtax int DJgDfrLlstComboBox(HWND Wig, LPSTR lpPathSpec, int nlDListBox, int nlDStaticPatk,

WORD wFile'Pype)j

Deralption

Uses
leturns
8eeAlso

Parameters
hDlg

lppathSpec

\ ... filDListBox

nlDStaticPatk

wFileType

0x0000

OxO<Xl1

0x0002

Ox0004
~.'--(M)9.1.0

(hc()C».O

MOOD

Ox4ooo

Ox8000

.. .

Combo box controls are ideal for allowing the user to select a file name from a list. This function
fills the combo box with a set of file names which match a DOS file search string.

Used in the File/Save, FileILoad dialog boxes.

int, nonzero if files w~re found. Zero if no files were found matching lpPathSpec.

DlgDirListO, DlgDirSelectComboBoxO

lIWND: The dialog box handle.
LPSTR: A pointer to a character string containing the DOS file search string. For example
"C:\DOS*.COM~ would list all files in the DOS subdirectory with the .COM extension.
int: The dialog box ID value for the combo box control. Normally the combo box "ill have the
CBS_SORT style, so that the files are. listed in ASCII sort order.

int: The dialog box ID value. for a static text control that will be updated with the current path
name.
WORD: The DOS. file attribute value. (See the list in Table 20-3.) Only files with the selected
attributes wiJl be displayed.

Read/write data files with no other attributes set (normal files).

Read only files.

Hidden files.

System files.

Subdirectories.

Archived files.

LB_DIR flag. This places messages associated with filling the combo box on the application's
message queue, rather than sending them directly. See the LB_DIR message description in
Chapter 9, Windows Messages.

Drives (A, S, C, ...).

Exclusive bit. If this is set, only the specified file attribute type is recovered. If not set, normal files
are displayed in addition to the types listed.

Table lO-3. DOS File AUributes.

lelated Messages CB_RESETCONTENT, CB_DIR

Eumple This example, as shown in Figure 20-
3, is identical to the previous ex
ample, except that a combo box is
used in place of the list box for show
ing the list of files. The combo box
has the advantage of automatically

. showing the selected me in the edit
control at the top of the combo box.

c:\C\book3

generic_c
generic. de'
generic. dig

eneric.exe

Numbero'
Files:

21

Figure 20-3. DlgDirListComboBox() Example.

780

20. MS-DOS AND DISK FILE ACCESS •

The SDK Dialog Box Editor is used to create the dialog box definitio~ me. nus can either be
physically added to the program's .RC resource file or included via an #include s~tement. " "

EXAMPLEDIALOG DIALOG LOADONCALL "OVEABLE DISCAROABLE 20, 36, 162, 75
CAPTION "Ex2mple Dialog Box"
FONT 10, "Helv"
STYLE WS_BORDER I WS_CAPTION I WS_DLGFRAME I DS-"ODALFRAME I WS_POPUP
BEGIN

EhD

CONTROL "OK", OLI_OK, "button", BS_DEFPUSHBUTTON I WS_TABSTOP'
I WS_CHILD, 102, 48, 40, 14

CONTROL "Number of Files:", -1, "static", SS_LEFT I WS_CHILD,
102, 15, 54, 18

CONTROL "", OLI_DIRSTRING, "static", SS_LEFT I WS_CHILD,
10, 4, 141, 12

CONTROL '''', DLI_NUMFILES, "stati c", SS_LEFT I WS_CHILD,
102, 37, 41, 10

CONTROL "", DLI_CO"BO, "combobo~", CBS_SIMPLE I CBS_SORT
WS_VSCROLL I WS_CHILD, 7, 17, 89, 57

The dialog box control ID numbers are de"fmed in a separate header file, GENERIC.HD.

'define DLI_COMBO
'deti ne DLI_NUMF ILES,
'define DLI_DIRSTRING
'deti ne DLI_OK

104
103
'102
101

Only the dialog box procedure is shown in the following example. The WndProcO function is
identical to the example shown above under the DlgDirListO function description. The dialog
box function must be listed in the EXPORTS section orthe application's .DEF definition fIle, and
should have a function prototype in the program's header file.

BOOL FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG lParam)
< ~

).

int nFi les ;

switch (wMess)
(

}

case W"_INITDIALOG:
DlqDirListCollboBox (hDlg, "*.*", DLI_COMBO,

DLI_DIRSTRING, 0) ;
nFiles = SendDlgItemMessage (hDlg, DLI_COMBO,

CB_GETCOUNT, O,OL)';
SetDlgItemInt (hDlg, bLI_NUMFILES, nFiles, TRUE)
return TRUE.; ""

case W"_COMMAND: " '* One of the controls was activated *'
s"i tch (wParanl)
{

case DLI_OK:
EndDialog (hDlg, 0)
return TRUE ;

case DLI_COMBO:
if (HIWORD (lParam) == LBN_SELCHANGE)
{

}

return TRUE;
case 1iI"_DESTROY:

}

EndDialog (hDlg;" 0)- ;
return TRUE ;

nSelection = SendDlgitemMessage (hDtg,
DLI_COMBO, CB_GETCURSEL, 0, OL) ;
DlgDirSelectComboBox (hDlg,

(LPSTR) cSelection,
DLI_COMBO) ;

return FALSE;
, "

',/

781

WINDOWS API BIBLE

DLGDIRSELEC'f m Win 2.0 1m Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses
Returns

See Also
Parameters
hDlg

Retrieves the currently selected file name from a list box.

BOOL DlgDirSelect(HWND hDlg, LPSTR IpString,int nIDListBox);

This function assumes that the list box in a dialog 'box was filled with file names using the
D1gDirListO function. The currently selected file or directory name is copied to the memory
buffer pointed to by IpString. This function is equivalent to sending the LB_GETCURSEL and
LB_GETTEXT messages to the list box co~trol.

Used in File/Save and FilelLoad dialog boxes.

BOOL. Nonzero ilthe item selected is adirectory name, otherwise zero.

D1gDirListO

HWND: The dialog box handle.

IpString LPSTR: A,pointer to a memory buffer that will hold the name of the file or directory selected.
Directories will be displayed with square brackets surrounding the directory name. The brackets
are not copied to the memory buffer. ' .

nlDListBox int: The ID value for the list box control in the dialog box.
, Related Messages LB_GETCURSEL, LB_GETTEXT

Example See the example under the D1gDirListO function description.

DLGDIRSELECTCOMBOBox o Win 2.0 LI Win 3.0 iii Win 3.1 :
Purpose

Syntax

Description

Uses
Returns

See Also
Parameters
hDlg

Retrieves the currently selected file name from a combo box.

BOOL DlgDirSelectComboBox(HWND hDlg, LPSTR IpString, int nIDComboBox);

This function assumes that the combo box in a dialog box was filled with file na~es using the
D1gDirListComboBoxO function. The currently selected fIle or directory name is copied to the
memory buffer pointed to by IpString. This function is equivalent to sending the CB _GETCURSEL
and CB_GETLBTEXT messages to the combo box control.

Used in File/Save and FjleILoad dialog boxes.

BOOL. Nonzero if the item selected is a directory name, otherwise zero.

D1gDirListComboBoxO

HWND: The dialog box handle.

IpString LPSTR: A pointer to a memory buffer that will hold the name of the file or directory selected.
Directories will be displayed with square brackets surrounding the directory name. The brackets
are not copied to the memory buffer.

nlDComboBox int: The ID value for the combo box control in the dialog box.
Related Messages' CB_OETCURSEL, CB_OgfLBTEXT .

Exmnple See tbJexample under the DlgDirListComboBoxO function description.

GETDOSENVIRONMENT Fa \Vm 2.0 II Wm 3.0 1m W'm 3.1
Purpose

Syntax
Description

Retrieves a pointer to the DO~ emironment string buffer. .

LPSTR GetDOSEmironment(void);
When you issue a PATH or SET command from within MS·nOS) the string is stored in the DOS
environment buffer. This memory area is expanded by ,DOS to hold all of the input strltlgs.

782

Uses

Returns

SeeAIso

Parameters

Example

GetDOSEnvironmentO retrieves a
pointer to this memory area. Each
string is separated by a single NULL
character. The end of the last envi
ronment string is marked by two
NULL" characters. The environment
string is not updated after the appli- "
cation or DLL is loaded. Changes af-

20. MS-DOS AND DISK FILE ACCESS ~

", " , ' "4 < 'J. ","". rsG
- ,~" g' eneric .. " ":,. "".;.

- , '.. • ~ ~ "r ~ ••

. .0.0 III quit
COMSPEC=C:\DOS\COMMAND.COM
SOUND = C:\SB
PROMPT=SPSG
PATH=\WINDEV;\WINDEV\INCLUDE;\C\BINB;
UB=C:\C\UB'C:\WINDEv\UB

ter that point are not reflected in Figure 20-4. GetDOSEnvironment(J Example.
the returned memory area. This
function will work within a DLL (dynamic link library).

Frequently used to find which directories are on the cnrrent PATH.

LPSTR, a pointer to the MS-DOS environment string memory buffer.

GetEnvironmentO, GetWindowsDirectoryO

None (void) j

This example displays the current DOS environment variables. on the window's client area, as
shown in Figure 20-4. Note that the output code must skip over the single NULL characters t.hat
separate the environment strings, and must stop when it finds two NULL characters in a row.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT
LPSTR

ps ;
lpstr ;
nUne -; int

switch (iMessage)
{

1* process windows messages *1

case WM_PAlNT:
BeginPaint (hWnd, &ps) ;
lpstr = GetDOSEnvironment () ;
TextOut (ps.hdc, 0, 0, lpstr, lstrlen (lpstr» ;
nL i ne == 1 ;

, do {
if (*lpstr == 0 && *(lpstr + 1) ! = 0)
{-

}

lpstr++ ;
TextOut (ps.hdc, 0, nLine++ * 15, lpstr,

lstrlen (lpstr» ;

}while (*lpstr++ + *lpstr) ;
EndPaint (hWnd, &ps) ;
break;

1* not two nulls *1

{Olherprogram lines]

GETDRIVETYPE • Wm 2.0 • Win 3.0 • Wm 3.1

Purpose Detennines if a drive is fixed, removeable, or a network drive .

Syntax

Description

Returns

. -
WORD GetDriveType{int 1lDrive)j

Network and removeable disks are much slower than fixed
disks. It is frequently desirable to know which disk is the fast
est available for writing temporary flIes, etc.

WORD, zero if unknown, 1 if the specified drive does not exisl
Othenvise, one of the values in Table 20-418 returned.

783

no It! !luit
Drive A: Removeable
Drive B: Removeable
iDrive C: raxed
!Drive 0: Does not exist.

Figure 20-5. GetDriveType()
Example.

WINDOWS API BIBLE

DRIVE_REMOVABLE

DRIVE_FIXED

DRIVE_REMOTE

Aoppydisk.

Hard disk.

Network drive.

, . '/'able 20-4. GetDrive'1'ype() Returned Values.

8eeAlsOOetTempDriveO
Paraaieters
nDrive

BsuIple

int:. The drive to check. 0 for the A'drive~ 1 for the B drive, etc. ,
This example displays the drive type of the fIrst four drives when the user clicks the "Do It!" menu
item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMe •• age, WORD wPara., LONG lPar ••)
(

HOC
in~
char

hOC;
i, nTyp. ;
c,' cBuf ,[128] ;

swttch,(tMe.sage)
(

i* process .,ihdo., ••• ss.ge. *1

case WM_COMMAND: 1* process menu ite •• *1

IOther program linesl

swi tch (wPara.)
(

case 10M_DOlT: 1* User hit the "Do it" lIIenu item *1
hOC = GetDC (hWnd); ,
for (i = 0 ; i < 4 ; i++)'
(

nType = GetDriveType (i) ;
switch (nType)
(

}

case DRIVE_REMOVABLE:
TextOut (hOC, 0, 15 * i, cBuf,

wspri ntf (cBuf,
"Drive Xc: Xs", 'A' + i,
(LPSTR) "R.moveable"» ;

break;
case DRIVE_FIXED:

TextOut (hOC, 0, 15 * i, cBuf,
wsprintf (cBuf,

, "Drive Xc: Xa", 'A' + i,
. (LPS~R) "Fhed"» ;

break;
cas. DRIVE REMOTE:

Te"itOut (hOC, 0, 15* 1, cBuf,
wsprintf (cBuf,

break ';
defaul t:

"Drive Xc: Xs", 'A' + 'I,
(LPSTR) "R.moveable"» ;

TextOut (hOC; 0, 15 * i, cBuf,
wsprintf (cBuf,
"Drive Xc: Xs", 'A' + 'I,

(LPSTR) "Does not exist."» ;
break;

} , ,

Releas~OC (h~nd, hOC) ;
break; " ' ,

',184

20. MS-DOS AND DISK FILE ACCESS ...

GETENVIRONMENT " • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpPortName

IpEnv-iron

nMa.xCount

Example

Retrieves the Windows environment strin~ or a device.

int GetEnvironment(LPSTR lpPortName, LPSTR IpEnviron, WORD nMaxCount)j

The Windows GDI (Graphics Device Interface) maintains a string table for each port. If the port
has been initialized via the Windows setup program, the port environment st.ring will be set.
Otherwise, the environment string will not exist, and Get
EnvironmentO will return zero. GetEnvironmentO will return
the length of the environment string if IpEnviron is set to
NULL.

A quick way to get the printer name. The IpPortNarne variable
will normally be "LPTl'.' for the printer device.

int, the number of characters copied to IpEnviron.

GetDOSEnvironmentO, SetEnvironmentO

- generic FF
Qo It! Quit

pel I HP laserJe"t

Figure 20-6. GetEnviron
mentO Example.

LPSTR: A pointer to a null-terminated character string containing the port name. For example
"LPTl."

LPSTR: A pointer to a character buffer that will hold the environment string. If this value is set to
NULL, GetEnvironmentO will return the length of the environment string. "

int: The maximum number of characters to copy to lpEnviron.

This example, as shown in Figure 20-6, displays the GDI environment string associated with the
LPTI port.

long FAR PASCAL WndProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
{

PAINTSTRUCT ps •
cBu'f [128J ; char

switch (iMessage)"
{

1* process windows messages *1

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
GetEnvironment (lIlpt1", cBuf, 128) ;
TextOut (ps.hdc, 0, 0, cBuf, lstrlen (cBuf»
EndPaint (hWnd, &ps) ;
break;

/ Otlter program lines J

GETPRIV ATEPROFILEINT • Win 2.0 • Win 3.0" • Win 3.1

Purpose

Syntax

Description

Retrieves an integer value from an application's private profile (.IN!) file.

WORD GetPrivateProfllelnt(LPSTR lpApplicationName, LPSTR lpKeyName, int nDejault,
LPSTR lpFileName)j "

The best way for a program to "remember" user preferences, such as favored colors and sub
directory names, is to write them to an initialization file. For items that may affect zrt~e than one
application, this should be the main WIN.lNI file. For items that will affect only the application
itself, this should be a private .INI file. GetPrivateProfilelntO reads an integer value. The value is
assumed to be in a file with the format

[application nameJ
keyname = int value

785

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters

These files are best created and maintained using the WritePrivateProfileStringO function.

Reading in saved values, such as ~he window size and location when last closed.

WORD, the'value read. If the key name exists, but the value following the equal sign is not a
positive integer, the function returns zero. If the key name does not exist, the nDefault value is
returned.

WritePrivateProfileStringO, GetPrivateProfileStringO

IpApplicationName LPSTR: A pointer to a character string that contains the application name in the private .INI file.
I This is the string that appears inside the square brackets.

IpKeyName LPSTR: A pointer to the key name in the private .INI file. This is the string to the left of the equal
sign.

nDefault "

lpFileName

Example

int: The default value to return if the lpKeyName match is not found.

LPSTR: A pointer to a character string containing the private .INI file name. The file is assumed
to be in the Windows subdirectory unless a path name is included with the file name in
IpFileName~ .

When started, this example creates a private profile file,
GENERIC.lNI, in the Windows subdirectory. The file is
written with two values under the heading [TestApp].
The first value is an integenyith the key name ''Value,'' "Figure 20-7. GetPrivateProfilelnt()
which is set to 437. The second value is a string with the Exarl~ple.

key name "StringConst," which is set to "This String."
When the user clicks the "Do It!" menu item, the private profile string is read, and the two values

, are extracted. They' are written to the window's client area as shown in Figure 20-7.

o GENERIC.INI File Created
CTestAppJ
Value=437
StringConst=This string!

o GENERIC.C WndProcO Function"
long FAR PASCAL WndProc (HWNci h~~~, unsigned iM~ssage, WORD wParam, LONG lParam)
<

HDC
char
int

hDC;
cBuf [128J, szStringVal [32J ;
nValue ;

switch (i~essag~~"
<

1* process windows messages *1

case WM_CREATE:
WritePrivateProfileString ("TestApp", "Value", "437",

"GENERIC.INI"); I

WritePrivateProfileString ("TestApp", "StringConst",
"This string!", "GENERIC.INI") ;

break;
case WM_COMMAND:

switch. (wParam)
<

1* process menu items *1

case IDM_DOlT: 1* User hi,t the ':Do it" menu item *1
hDC = GetDC (hWnd) ;
nValue = GetPrivateProfi leInt ("TestApp", "Va lue",

-1, "GENERIC.INI") ;
GetPri va teProfi leSt ri ng ("TestApp.", "St ri ngConst",

"<none>", szStringVal, 32, "GENERIC.INI")
TextOut (hDC, 0,·0, cBuf, wsprintf (cBuf,

"Value = Xd, String = Xs", ",Value,

786

20. MS-DOS AND DISK FILE. ACCESS Y

(LPSTR) szStringVaL» ;
ReLeaseDC (hWnd, hDC) ;
break;

IOther program lines]

GETPRIVATEPROFILESTRING • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Retrieves a character string from an application's privclte profile (.INI) file.

int GetPrlvateProflleStrlng(LPSTR lpApplicationName, LPSTR lpKeyName, LPSTR lpDej'ault,
LPSTR IpRelurnedString, int nSize, LPSTR lpFileName)j

The best way for a program to "remember" user preferences, such as subdirectory names, is to
write them to ·an initialization file. For items that may affect more than one application, this-
should be the main WIN.INI file. For items that will only affect the application itself, this should
be a private .INI file. GetPrivateProfileIntO reads a character string. The string is assumed to be
in a file with the format

[application name]
keyname = st ri n9

These files are best created and maintained using the WritePrivateProfileStringO fUEction.

Reading saved values, such as the last file(s) read, or the working subdirectory path name.

int, the number of characters copied to the lpReturnedString buffer. If the returned string is
truncated to fit the nSize parameter, only the number of copied characters is returned.

GetPrivateProfileIntO, WritePrivateProfileStringO

lpApplicatio1lNmne LPSTR: A pointer to a character string that contains the application name in the private .INI file.
This is the string that appears inside the square brackets.

lpKeyName LPSTR: A pointer to the key name in the private .INI file. This is the string to the left of the equal
sign. If lpK~yName is set to NULL, all of the key names are copied to the buffer pointed to by
lpReturnedString. -

lpDejault LPSTR: The default string to return if the ipKeyName match is not found.

lpReturnedString LPSTR: A pointer to a character buffer to hold the returned string. The buffer must be at least

n8ize

lpFileName

Example

n8ize bytes long. -

int: The maximum number of characters to copy to lpReturnedString.

LPSTR: A pointer to a character string containing the private .INI file name. The file is assumed
-to be in the Windows subdirectory unless a path name is included with the file name in
IpFileName.

See the previous example under the GetPrivateProfilelntO function description.

GEtPROFILEINT • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Reads an integer value from the WIN.INI file.

WORD GetProflleInt(LPSTR lpApplicationName, LPSTR IpKeyName, int nDejault)j

Windows uses the WIN.INI file to initialize applications. With Windows 3.0; support is provided
for both private initialization files and the general file WIN.INI. WlN.INI should be used for pro
grams that have settings that impact more than one application. Private profile files should be
used for initialization data that only impacts one application. GetProfileIntO reads an integer
value from WIN.INI. The value is assumed to be in a file with the format

(application name]
keyname = int value

787

"

WINDOWS API BIBLE

Uses

Returns

See Also

Parameters

The integer value can either be as
sociated with a specific program, or
one of the parameters Windows
reads on startup (for example Cur
sor~linkRate=460) .
WORD, the value read. If the key

Do It! Quit
Integer = 358,. String = Test string

name exists, but the value following Figure 20-8. GetProfilelnt() Example.
the equal sign is not a positive inte-
ger, the function returns zero. If the key name does not exist, the nDejault value is returned.

WriteProfileStringO, GetProfileStringO, GetWindowsDirectoryO

IpApplicationName LPSTR: A pointer to a character string that contains the application name in the WIN.INI file.
This is the string that appears inside the square bracke~s.

IpKeyName L~STR: A pointer to the key name in the private .INI file. This is the string to the left of the equal
sign.

nDefault

Example

lnt: . The default value to return if the lpKeyName match is not found.

This example, illustrated in Figure 20-8, writes an ,integer and a string constant to the WIN.lNI
file on startup. When the user clicks the "Do It!" menu item, the values are retrieved from WIN.INI

. and displayed on the window's client area.

o . The Bottom of the WIN.INI File after Running GENERIC.C
[Generic]
IntValue=358
Stri~gConst=Test.string

o GENERIC.C WndProcO Function
long,FAR PASCAL WndProc(HWNO hWnd; unsigned iM.~sage, WORO wParam, LONG lParam)
{

HOC
char
int

hOC;
cBuf [128J, szStringVal [32J ;
nValue ;

: .,1

switch (iMessage)
{

1* process wi ndows messages *1

case WM_CREATE:
WriteProfileString ("Generic", "lntValue", "358")
WriteProfileString'("Generic","StringConst",

"Test string")
break;

case WM_COI1I1ANO: 1* process menu items *1

IOther program lines I

. switch (wParam)
{'

case 1011_001T: 1* User hit the ":>0 it" menu item *1
" hOC = Get DC (hWnd) ;

nVa lue = GetProf i l'el nt ("Gener i c" , ." IntVa lue", -1)
GetProfileString ("Generic", "StringConst",

"<none>", szStringVal, 32) ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Integer = 7od, Stri r.g = 70s", nVa lue,
, • (LPSTR) szStringVal»

ReleaseOC (hWnd,' hoC) ;
break;

788

20. MS-DOS AND DISK'FlLE ACCESS ...

GETPROFILESTRING • Win 2.0 • Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
Parameters

Retrieves a character string from the WIN.INI file.

, int GetProfIleStrlng(LPSTR IpApplicationName, LPSTR IpKeyName, LPSTR IpDejault, LPSTR
IpReturnedString, int nSize)j

Windows uses the WIN.INI file to initialize applications. With Windows 3.0, support is provided
for both private initialization files and the general file WIN.INI. WIN.INI shoultl be used for pro
grams that have settings that impact more than one application. Private profile files should be
used for initialization data that only impacts one application. GetProfileStrillE~O reads a charac
ter string from WIN.INI. The value is assumed to be in a file with the format

[application name]
keyname = string

Useful both for reading strings associated with an application and strings tHat Windows reads on
startup (for example, device=PCL / HP LaserJet,HPPCL,LPTl:).
int, the number of characters copied to the IpReturnedString buffer. If the returned string is
truncated to fit the nSize parameter, only the number of copied characters is returned.
GetProfileIntO, WriteProfileStringO, GetWindowsDirectoryO

IpApplicationName LPSTR: A pointer to a character string that contains the application name in the WIN.INI file.
" This is the string that appears inside the square brackets.

IpKeyName LPSTR: A pointer to the key name in the WIN.INI file. This is the string to the left of the equal
sign. If lpKeyName is set to NULL, all of the key names are copied to the buffer pointed to by
ipReturnedString.

IpDejault LPSTR: The default string to return if the IpKeyName match is not found.

IpReturnedString LPSTR: A pointer to a character buffer to hold the returned string. The buffer must be at least
nSize bytes long.

nSize

Example

int: The maximum number of characters to copy to IpReturnedString.

See the previous example under the GetProfilelntO function description.

GETSYSTEMDIRECTORY • Win 2.0 II Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns
See Also
Parameters
IpBuffer

Determines the path name of the Windows system directory.
WORD GetSystemDirectory(LPSTR IpBuJJer,WORD nSize)j

The system directory contains the Windows driver files and the dynamic link libraries that Win
dows uses to load the GDI and Kernel functions. Depending on how Windows was installed, this
directory c~n be on different drives and can have different names. The full path name of the
system directory is copied to the buffer pointed to by IpB'l{[fer. The path name will not include the
terminating backslash (\) character unless the system directory is the root directory.
Programs that install drivers should add them to the system subdirectory. .
WORD, the number of characters written to the buffer pointed to by IpBuffer.

GetWindowsDirectoryO

LPSTR: A pointer to a character buffer that holds the directory name. This buffer mUst be at least
nSize bytes long:' .

789

WINDOWS API BIBLE

nSize

Example

int: The maximum number of chara~teis to copy to
the buffer pointed to by IpBuffer.

The system directory is. written to the window's cli
ent area when the user clicks the "Do It!" menu item,
as &hown in Figure 20-9.

- generic FF
00 It! Quit

C:\WINOOWS\SYSTEM

Figure 20-9. GetSystemDirectory()
. Exarnple. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC hDC ;
char cBuf [128J ;

switch (iMessage) 1* process windows messages *1
{

case WM_COMMAND: 1* pr~cess menu i terns *1
switch (wParam)
{

case IDM DOIT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) ;
GetSystemDirect9ry (cBuf, 128) ;
TextOut (hDC, 0,--0, cBuf, lstrlen (cBuf» ;
ReteaseDC (hWnd, hDC) ;
break ;.

/Otherprograrn lines}

Purpo~

Syntax

Description

Uses

Returns

See Also

Parameters
cDriveLetter

Example

Determines which drive to use for temporary files.

BITE GetTempDrive(BITE cDriveLetter);

This function is used with GetTempFileNameO to
create temporary files. The drive letter returned is
the first hard disk drive letter, ifthe system has one.

Temporary files can be used to store memory data if
the system becomes low on memory. .

BITE, the drive letter as an ASCII characte'i'.

GetTempFileNameO

• Win 2.0 II Win 3.0 • Win 3.1

- generic . FP
llo It! .Quit

[Temp File = C:fGEN0001.nAP
Read string = This is the data.

Figure 20·10. GelTempDrive()
E.rample.

BITE: If zero, the function will return the drive letter for the disk drive that Windows is running
on (usually the fastest drive). If an ASCII letter, the function will return the ntAt hard disk drive
letter, starting with the cDriveLetter drive.

This example, which is illustrated in Figure 20·10, creates a temporary file and writes a character
string to it. When the user clicks the "Do It!" menu item, the file is read and its contents are
displayed on the window's client area. '

long FAR PASCAL WndProc(HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
static
char
BYTE
HANDLE
;nt

char
hDC ;
szTempFi le [144J, cData [] = {"This is the data."} ;
cBuf [128], cReadBuf [64] ;
cDriveLetter ;
hFi leHandle ;
nStatus, nFileLong ;

1* process windows messages *1

790

<

}

20. MS-DOS AND DISK FILE ACCESS ...

case WH_CREATE:
cDriveletter = GetTempDrive (0) ;
GetTempFileName (cDriveletter I TF_FORCEDR1VE,

"GEN", 1, szTempFi le) ;
hFi leHandle = _lcreat (szTempFi le, 0) ;
nStatus = _lwrite {hFileHandle, cData, lstrlen (cData»
if (nStatus != -1 && hFileHandle != ~1)

else

break;
case WH_COHMAND:

_lclose (hFileHandle) ;

HessageBox ChWnd, "Could not open temp file.",
"Fi le Error", HB_OK) ;

swi tch (wParam)
<

1* proces;> menu items * I

case 1OH_DOIT: 1* User hit the "Do it" menu item *1
hDC = ~etDC'{hWnd) ;
hFileHandle = _lopen (szTempFile, OF_READ) ;
ifChFileHandle != -1)
{ 1* find fi le length *1

nFilelong = (i~t) ~llseek (hFileHandle, Ol, 2) ;
. 1* return to beginning *1

_llseek (hFileHandle, Ol, 0) ;
1* read the data into cReadBuf *1

_lread (hFileHandle, (lPSTR) cReadBuf, ,
nFi lelong) ;

_lclose (hFileHandle) ;
}

TextOut {hDC, 0, 0, cBuf, wsprintf (cBuf,
"Temp Fi le = Xs", (lPSTR) szTempFi le»

TextOut {hDC, 0, 20, cBuf, wsprintf (cBuf,
"Read string = Xs", (lPSTR) cReadBuf» ,

ReleaseDC (hWnd, hDC) ;
break;

1DM_QUIT: 1* send end of applicaHon messllge *1
DestroyWindow (hWnd) ; ,

}

break;
case WM_DESTROY:

break;

1* stop application *,
PostQuitMessage (0) ;
break;

default: I*'default windows message processing *1
ret~l~ DefWindowProc' (hWnd, iMessage, wParam, lParam) ;

return COL) ;
}

Purpose

Syntax

Description

Uses

II Win 2.0 ' • Win 3.0 • Win 3.1
Creates a unique, temporary file name.

int GetTempFileName(BYTE cDrlveLetter, LPSTR IpPrejixString, WORD wUnique, LPSTR
IpTempFileName)j

This function generates a unique temporary file name that the application can use to store data.
The file name will include the full path name in the form '

drive:'qJathYilename. tmp

The path will either be the root directory (eg. ,C:\) or the path name specified by the TEMP
environment variable. Environment variables are created from DOS using the SET command (eg.,
SET TEMP=C:\TEMP).

Temporary files can be used to store memory data if the system becomes low on memory.

791

WINDOWS API BIBLE

Returns

See Also

Parameters
. cDriveLetter

IpPrejL-rString

wUnique

IpTempFileName

Example

int, a unique numeric value used in the temporary file name. If wUnique was set to a nonzero
value, that value will be retu~ned.

GetTempDriveO

BITE: The drive letter as an ASCII character. If zero, the default drive is used. Use GetTemp
DriveO to determine the best drive to use.

Windows will ignore the cDriveLetter drive specification unless there is no hard disk. To
force the selection of drive cDriveLetter, OR the drive letter with TF _FORCEDRIVE using the C
language binary OR operator (I). This sets the high-order bit to one.

LPSTR: A pointer to a character string with which to start the temporary file. The characters
must be from the OEM character set. Use AnsiToOemO to convert the string if the prefIX is based
on the default Windows character set (ANSI), Normally, only two or three characters are sup
plied to leave room for the unique file name numbers ..

WORD: Specifies an unsigned integer. If nonzero, the function will use wUnique to create a file '
name. IfwUnique is zero, GetTempFileNameO forms a unique file name from the system time. If
a file with that name exists, the value is incremented until a unique file name is found. The file is
then created and closed. This is the only case where GetTempFileNameO creates a file.

LPSTR: A pointer to a memory buffer to hold the temporary file name. The buffer should be at
least 144 bytes long. The characters written to the buffer will use the OEM character set.

See the previous example under the GetTempDriveO function description.

GETWINDowsDIRECTORY III Win 2.0 6 Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns'

See Also

Parameters
IpBuifer

nSize
Example

Determines the path name of the Windows directory.

WORD GetWmdowsDirectory(LPSTR IpBuifer,WORD nSize)j
The Windows subdirectory contains WIN.COM and WIN.lNL Depending on how Windows was
installedj this directory can be on different drives and have different names. The full path name
of the Windows directory is copied to the buffer pointed to by IpBulfer. The path name will not
include the terminating backslash (\) character unless the system directory is the root directory.

The Windows subdirectory IS frequently where applications install dynamic link library files
(DLLs).

WORD, the number of characters written to the buffer
pointed to by IpBuJfer.

GetSystemDirectoryO
.0.0 It! guit

C:\WINDOWS

LPSTR: A pointer to a character buffer to hold the direc- Figure 20-11. Get Windows
tory nam~. This buffer must be at least nSize bytes long. DirectoryO ,example.

int: The maximum number of characters to copy to the buffer pointed to by lpBuff,
The Windows subdirectory is displayed in the client area when the user clicks the "Do It!" menu
item, as shown in Figure 20-11. '

long FAR PASCAL WndProc (H\oI"IO hWnd, unsigned iMessage, WOROwParam, LONG lParam)
{

HOC hOC;
cBuf [128J ; 'char

switch (iMessage)
{

1* process wi ndows messages *1

1* process menu items *1

792

swHth- (wParam)
('

20. MS-DOS AND DISK FILE ACCESS ...

case 10M_DOlT: 1* User hi t the "Do it" menu item *1
hOC = GetOC (hWnd) ;
GetWindowsOirectory (cBuf, 128) ;
TextOut (hOC, 0, 0, cBuf, lstrlen (cBuf» ;
ReleaseOC (hWnd, hOC) ;
break;

/Otherprogram lines]

_LCLOSE
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hFile

Example

• Win 2.0 • Win 3.0 • Win 3.1
Closes a disk file.

int _lclose(int hFile);

This function closes a disk file opened with either _lcreatO, _lopenO, or OpenFileO. As soon as
it is closed, the file handle becomes invalid. The file cannot be read from or written to until it is
reopened.

Files should be closed as soon as possible after they are created or opened. Doing so avoids having
th~ application terminate without closing the file.

int, zero if the file was closed, -Ion error.

_lopenO, _lcreatO, OpenFileO

int: The file handle. This is an inte-
ger value that' DOS returns when a Dolt! quit

.-----------------------------------~ file is opened or created. The value Read string = String data for the file.
is obtained by calling either
_lopenO, _lcreatO, or Op~nFileO. Figure 20-12. _lclose() Example.

When the ~CCREATE message is processed, the file MYFILE.TXT is created on the default
drive and directory. A character string is written to the file. When the user clicks the "Do It!"
menu item, the file is read. The file contents are written to the window's client area, as shown in
Figure. 20-12.

long FAR PASCAL WndProc (~WNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HOC
static
char
int
int

char
hOC;
cData [] = {"String data for the file."}
cBuf [128], cReadBuf [64]
hFi leHandle ;
nFi leLong ;

switch (iMessige)
{

1* process w.indows messages */

case WM_CREATE:
hFi leHandle = _lcreat ("MYFILE. TXT", 0) ;
if (hFileHandle != -1)
{

}

else

break;
case WH_COMMANO:

_lwrite (hFileHandle, cOata, lstrlen (cData) + 1)
_lclose (hFileHandle)

MessageBox (hWnd, "Could not open temp file.",
"File Error", MB_OK);

1* process menu items *1
sw itch (wParam)
{-

case 10M_DOlT: 1* User hit the "Do it" menu item *1
hOC = Get DC (hWnd) ;

793

WINDOWS API BIBLE

)

. .

hFi leHandle=_lopen ("MYFIlE. TXi'!, OF_RE~l)l ;
if (hFi leHandle != -1) ..
{ 1* find fi le length *1

)

nFilelong = (int) _llseek (hFileHandle, Ol, 2) ;
1* return to beginning *1

_llseek (hFileHandle, Ol, 0) ;.
1* read the data into cReadBuf *1

_lread (hFileHandle, (LPSTR) cRea~Buf,
nFi lelong) ;

_lclose (hFileHandle) ;

TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,
"Read string = %s", (lPSTR) cReadBuf» ;

ReleaseOC (hWnd, hOC) ;
break;

case 10M_QUIT:

)

break;
case WM..,:.OESTROY:

OestroyWindow (hWnd)
break;

1* stop application *1
PostQuitMessage (0) ;
break;

default: 1* default windows messag~ processing *1 .
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OU ;
)

LCREAT
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
lpPathName

iAttribute

o
1

2

3

• Win 2.0 • Win 3.0 l! Win 3.1
Creates a new disk file.

int _lcreat(LPSTR lpPathName, int iAttribute)i

This function creates a new file if the specified file name does not already exist. If the me already
exists, the me is opened and truncated to zero bytes. -

This is the standard way to create a new disk fIle. OpenFileO is an alternative, if information
about the file (date, full path name) is needed:

int, the MS-DOS me handle for the file. Returns -Ion error.
OpenFileO, _lcloseO

LPSTR: A pointer to a null-terminated character string containing the me name. The string must
contain characters from the ANSI character set (not the OEMIDOS character set).

int: The DOS me attribute. This should be one of the attributes listed in Table 20-5.

Normal. 80th reading and writing data is allowed.

Read-only. The file cannot be opened for writing data.

Hidden. Not shown on a directory list.

System. Not shown on a directory list.

Table 20-5. DOS File Attributes.

Example See the example under the _lcloseO function description.

794

/

_LLSEEK

Purpose

Syntax

Description

Uses

Returns

. See Also

Parameters
hFile

lOffset

iOrigin

a

2

20. MS-DOS AND DISK FILE ACCESS ...

• Win 2.0 • Win 3.0 • Win 3.1
Moves to a new location in a disk file.

LONG _llseekOnt hFile, long lOffset, int iOrigin)i

_llsee1<O repositions a pointer in a file that was previously opened with either _lcreatO,
_lopenO, or OpenFileO. The pointer marks the position at which the next _lreadO and _lwriteO
function calls will start.

This function is the basis for all random-access file operations. The function can also be used to
determine the length of a file.

LONG, the offset in bytes from the beginning of the file to the file position pointer. The pointer
points to the location at which the next _lreadO and _lwriteO operations will begin.

_lopenO, _lreadO, _lwriteO, _lcloseO

int: The file handle. This is an integer value that DOS returns when a file is opened or created.
The value is obtained by calling _lopenO, _lcreatO, or OpenFileO.

LONG: The number of bytes the pointer is to be moved.

int: The starting position or direction to move the pointer. This can be any of the values listed in
Table 20-6.

Moves the file painter IOffset bytes from the beginning of the file. Setting both IOffset and iOrigin
to zero moves the pointer to the beginning of the file.

Moves the file poin!er IOffset bytes from the current position in the file.

Moves the file pointer IOffset bytes from the end of the file.

Table 20-6. _llseekO Position Values.

Example

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
IpPathNarne

iReadWrite

See the example under the :.....lcloseO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Opens a file for reading or writing data.

Int _lopen(LPSTR IpPathName, int iReadWrite)i

This is the normal function for opening an existing file for reading or writing data. OpenFileO
can be used as an alternative if additional information is needed about the file (date created,
etc.). Use _lcreatO to create a file for the first time.

Called before _lreadO or _lwriteO can be used to read or write data in the file.

int, the MS-DOS file handle for the file. Returns -Ion error, such as the file not being found.

OpenFileO, _lreadO, _lwriteO

LPSTR: A pointer to a null-terminated character string containing the file name. The string must
contain characters from the ANSI character set (not the OEMIDOS character set).

int: Specifies how the file is to be accessed. This can be any combination of the values in Table
20-7, combined with the C language binary OR operator (I). .

795

WINDOWS API BIBLE

OF_READ The file is opened for reading only.

OF _READWRITE The file is opened for reading and writing.

OF ..;.SHARE_COMPAT The file can be opened by any number of applications at the same time. The function will fail
. (return -1) if the file has been opened previously with a different mode. This is called "com pat ~

ibility mode."

OF _SHARE_DENY _NONE The file can be opened by any number of applications at the same time. The function will fail
(return -1) if the file has been opened previously in compatibility mode using
OF _SHARE_COM PAT.

OF _SHARE_DENY _READ Opens the file and denies other applications read access. The function will fail (return -1) if the
file has been opened by another application for read access, or in compatibility mode using
OF:...SHARE_COMPAT.

OF _SHARE_DENY _WRITE Opens the file and denies other applications write access. The function will fail (return -1) if the
file has been opened by another application for write access, or in compatibility mode using
OF _SHARE_COM PAT.

OF_SHARE_EXCLUSIVE Opens the file and denies other applications read or write access. The function will fail (retum-1)
if the file has been opened by another application or opened previously by the same application.

OF_WRITE Opens the file for writing only.

Table 20-7. _lopenO Access Values.

Example

. LREAD

Purpose

Syntax

Description

Returns

See Also

Parameters
hFile

lpBuffer

wBytes
'Example

Purpose

Syntax

See the example under the _lclose() function description.

• Win 2.0 • Win 3.0 • Win 3.1
Reads data from a disk file.

. int _lread(int hFile, LPSTR lpBuffer, int wBytes)j

This function reads data from a disk file starting at the current file position pointer. When a file
. is initially opened by _lopenO. or OpenFileO, the file point.er is set to the beginning of the file. As

data is read using _lreadO, the pointer moves forward by the number of bytes read. The pointer
can be repositioned in the file by calling _llseekO. .

int, the number of bytes actually read from the fIle. Returns -Ion error. The returned value may
be less than wBytes if the end-of-fIle is detected during the read process,

_lopenO, OpenFileO, _lcloseO

int: The fIle handle. This is an integer value that DOS returns when a file is opened or created.
The value is obtained by calling _lopenO or OpenFileO.

LPSTR: A pointer to a memory buffer to hold the data read from the disk file. The buffer must be
at least wBytes in length. '

WORD: The number of bytes to read from the disk file.

See the example under the _lcloseO function description.

, .. Win 2.0 • Win 3.0 • Win 3.1
Writes data to a disk file.

int _lwrite(int hFile, LPSTR IpBuffer, int wBytes)j

796

Description

Returns

See Also

Parameters
hFile

lpBuJ[er

wBytes

Example

QPENFILE

Purpose
Syntax

Description

20. MS-DOS AND DISK FILE ACCESS ...

This function writes data from a disk file starting at the current file position pointer. When a file
is initially opened by _lopenO, _lcreatO, or OpenFileO, the file pointer is set to the beginning of
the file. As data is written using _lwriteO, the pointer moves forward by the number of bytes
written. The pointer can be repositioned in the file by calling _llseekO.

int, the number of bytes written to the file. Returns -Ion error.

_lopenO, _lcreatO, OpenFileO, _lcloseO

int: The file handle. This is an integer value that DOS returns when a file is opened or created.
The value is obtained by calling _lopenO, _lcreatO, or OpenFileO.

LPSTR: A pointer to a memory buffer that contains the data to be written to the disk file.

WORD: The number of bytes to write to the disk file.

See the example under the _lcloseO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Creates, opens, or deletes files.

int OpenFile(LPSTR lpFileName, LPOFSTRUCT IpReOpenBuJ, WORD wStyle)j

'Ih;) ftinction combines a number of more primitive file initiation functions (such as _lcreatO
and _lopenO) into a single powerful function. The function uses the OFSTRUCT data structure
d€.'ined in WINDOWS.H as follows: .

typedef st~uct ta90FSTRUCT
.(

B':QE'
BYTE'
WORD
BY,'E
BYTE

} OFSTRUCT;

cBytes;
fnxedD;sk;
nErrCode;
reserved[4J;
szPathName[128J;

1* length of OF struct *1
1* non-zero if fixed drive *1
1* MS DOS error cede *1
1* fi le date and time *1

. 1* full path name and *1
1* fi le name <OEM chars) *1

typedef OFSTRUCT
typedef OFSTRUCT NEAR
typedef OFSTRUCT FAR

*POFSTRUCTi
*NPOFSTRUCTi
*LPOFSTRUCT;

Uses

Returns

See Also

Parameters
lpFileName

IpReOpenBuj

wStyle

OpenFileO includes options that will create a simple dialog box to display error messages
automati<;ally.

This is the standard way to create and/or open a disk file. It is the only direct way to delete a file
from within Windows.

int, the MS-DOS file handle. Heturns -Ion error;

_lopenO, _lcloseO, _lcreatO

• LPSTR: A pointer to a null-terminated character string that contains the name of the disk file.
The characters should be from the ANSI (Windows default) chara~ter set. If the file name string
contains OEM (MS-DOS) characters, use OemToAnsiO to convert the characters to the ANSI
character set before calling OpenFileO.

LPSTR: A pointer to an OFSTRUCT data structure, The data fields in this structure will be filled
in after OpenFileO has been called.

WORD: A flag to determine what OpenFileO is to do. The flag values listed in Table 20-8 can be
combined using the C language binary OR operator (I).

797

WINDOWS API BIBLE

OF_CANCEL

OF_CREATE

OF_DELETE

OF_EXIST

OF_PARSE

OF_READ

OF ":'READWRITE

OF_REOPEN

Only used with the OF_PROMPT style. Addsa-Cancel button to the file-nat-found dialog box.

Creates a new file. If the file already exists, the file is truncated to zero bytes.

Deletes a file.

Checks if the file exists. The file is opened, and then immediately closed.

Fills in the OFSTRUCT data structure, but does not open or close the file. Useful for determining t

the full path name or file date/time:

Displays a dialog box if ttie requested file does not exist. The dialog box requests that the user
put a disk in drive A and retry. This is seldom a reasonable action.

The file is opened for reading only.

The file is opened for reading arid writing.

Opens the file specified in the szPathName field of the OFSTRUCT. This assures that the same·
file is opened that was originally openwhen OpenFile() was first called. Otherwise, changing
default directories could result in changing which of several files with the same name, but
residing in different directories, is opened. .

The file cfm be opened by any number of applications at the same time. The function will fail
(return -1) if the file has been opened previously with a different mode. This is called "com pat -
ibility mode."

The file can be opened by any number of application·s at the same time. The function will fail
(return -1) if the file has been opened previously in compatibility mode. .

Opens the file and denies other applications read access. The function will fail (return-1) if the
file has been opened by another application for read access, or opened in compatibility mode.

Opens the file ar;1ddenies other applications write access. The function will fail (return -1) if the
file has been op~n~d by another application for write access, or opened in compatibility mode.

Opens the file and denies other applications read or write access. The function will fail (return -
1) if the file has been opened by another application or has been opened previously by the same
application.

Verifies that the date and time of the file on the disk are the.same as the data in the OFSTRUCT
. . .~<data structure. This assumes that OpenFile(j has already been called atleast once to fill in the

data.

i .oF_WRITE Opens the file for writing data only.

Table 20-8. OpenFile() Flag Values.

Example This example uses OpenFileO twice. When the ~CCREATE - generic FF
message is processed, the application creates a file called Q,o It!. Q.uit
"MYFILE.TMPIt using OpenFileO. Ten integers are written to Data Read From Disk
the file. When the user clicks the "Do It!1t menu item, 0 1· 2 3 4 5 6 1 8 9
OpenFileO is called again to open the file. The ten integers are
_read into an array, and displayed on the window's client area, . Figure 20·13. OpenFile()
. as shown in Figure 20-13. SetHandleCountO is also used in this Example.
example to allow the application to open as many as 50 files at
one time. This maximum is not taken advantage of inthis simple example, which only has one file
open at a time. ...

798

20. MS-DOS AND DISK FILE ACCESS 't"

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

HOC
OFSTRUCT
char
HANDLE
int

hOC;
of ;
cBuf (128], cReadBuf (64] ;
hFi leHandle ;
i, nStatus, nFileLong, nData (10~ ;

switch (iMessage)
{

1* process windows messages *1

}

case WM_CREATE:
nStatus = SetHandleCount (50) ;
if (nStatus ! = 50)

MessageBox (hWnd, "Not able to open 50 files.",
"Warning", pm_OK) ;

hFileHandle = OpenFile ("MYFILE.TMP", &of,
OF -,REATE) ;

if (nStatus != -1 && hFileHandle != -1)
{

}

else

brea k ;
c-ase WM_COMMAND:

for (i = 0 ; i < 10 ; i ++) 1 * w r it e 10 in t s * 1
_lwrite (hFileHandle, (LPSTR) &i,

sheof (int»
_lclose (hFileHandle) ;

MessageBox (hWnd, "Could not open file.",
"Fi le Error", MB_OK) ;

1* process menu items *1
.. swi tch (wParam)

{

case IDM_DOIT: 1* User hit the- "00 it" menu item *1
hOC = GetDC (hWnd) ;
hFileHandle = OpenFile ("MYFILE.TMP", &of,

OF_READ) ;
if (hFileHandle != -1)
{ 1* find file length in bytes *1

}

nFileLong = (int) _llseek (hFileHandle, OL, 2)
1* return to beginning *1

_llseek (hFileHandle, OL, 0)";
1* file length in integers *1

nFileLong 1= sizeof (int) ;
1* read the data into array *1

for (i = 0 ; i < nFi leLong ; i++)
_lread (hFileHandle,"1LPSTR) &nData [i],

sheof (int» ;
_lclose (hFileHandle) ;

TextOut (hOC, 0, 0, "Data Read From Disk", 19) ;
for (i = 0 ; i < nFi leLong ; i++)

TextOut (hOC, 15 * i, 20, cBuf, wsprintf (cBuf,
"red", nData (i]» ;

ReleaseDC (hWnd, hOC) ;
break;

case 10M QUIT: 1* send end of application message *1
DestroyWindow (hWnd) ;
break;

}

brea"k ;
case WM_DESTROY: 1* stop application *1

PostQuitMessage (0) ;
break; '. .

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iHessage, wParam, lParam) ;

return (OL) ;

799

"'-

WINDOWS API BIBLE

SETENVIRONMENT
I

• Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
lpPortName

lpEnviron

nCount

Example

Changes the environment variable settings for a port.

int SetEnvironment(LPSTR lpPortName, LPSTR lpEnviron, WORD nCount)j

Windows maintains a table of environment settings for each of the ports as a part of the GDI
(graphics device interface). These settings control the· current port configuration, such as the
baud rate and pa,rity settings for a serial ;>ort. .

.Changing the settings of a port. An application can redirect printer output to a disk file by chang
ing the printer port's environment string to a disk file name.

int, the number of bytes copied to the environment table. Zero
on error, -1 if the environment was deleted ..

GetEnvironmentO, CreateDCO
Figure 20-14. SetEnpiron

LPSTR: A pointer to a null-terminated character string con- menlO Example.
taining the port name. Examples are "LPT1" and "COM2."

LPSTR: A pointer to a null-terminated character string containing the new environment string.
The WlN.INI file contains a number of examples of preset values for environment variables.

WORD: The number of bytes to be copied.

This example, which is illustrated in Figure 20-14, loads and displays the current environment
variable settings for the COM! device when the user clicks the "Do It!" menu item. If none have
been set, the port is set to 9600 baud, no parity, 8-bitword length, and one stop bit.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
char
int

hDC ;
cBuf [128J, cEnv [64J ;
nEnvChar ;

switc~ (iMessage)
{

1* process windows messages *1

case·WM_COMMAND: 1* process menu items *1
swi tch(wParam)
{

case IDM DOlT: .1*User hit the "Do it" menu item *1
-;;EnvChar = GetEnv;ronment ("COM1", cEnv, 64)
hOC= GetOC (hWnd) ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"COM1 Env = %s", (LPSTR) cEnv·» ;
if' (nEnvChar == 0)

SetEnvi ronment ("COM1", "9600,n,8,1", 10)
break;

{Other program lines I

SETERRORMoDE • Win 2.0 • Win 3.0 • Win 3.1

Purpose"
Syntax

Description

Uses

Sets whether or not Windows shows the default critical error message.

WORD SetErrorMode(WORD~vMode)j

Windows' uses MS·DOS for disk functions. DOS sends an INT 24H interrupt when a critical error
occurs, such as being unable to read a disk. This is where the dreaded message "Abort, Cancel,
Retry?" message comes from under DOS. Windows has its own message box as a default critical
error handler. SetErrorModeD allows 'an application to turn this default message box on and off.

Usually, the error message box is left on, except when the application is doing file access 8nd has
its own error messages.

800

Returns

Parameters
wMode

Example

20. MS-DOS AND DISK FILE ACCESS ..,

WORD, the previous error mode. 0 if Windows was set to display the default critical error message _
box, 1 if not.

WORD: Set to 1 to shut off the default critical error message box. Set to 0 to turn it on .

. This example shuts down the default critical error message box when the WM_ CREATE message
is processed. When the user clicks the "Do It!" menu item, the application attempts to open a file
on the A drive. Assuming that the drive door has been left open, a critical DOS error occurs. The
normal Windows warning message box is not shown, so the application can go ahead and show its

, own error message via the MessageBox{) functi~n.

long FAR PASCAL Wr.dProc (HWND hWnd,'unsigned iMessage, WORD wParam, LONG lParam)
{ .

PAINTSTRUCT·
OFSTRUCT

ps; .
ofFi le ;
n ; int

switch (iMessage)
(

1* process windows messages *1

case WM_CREATE:
SetErrorMode (1)

break; i

case WM_COMMAND:' .
swi tch (wParam)
{

case IDM_DOIT:

1* no error message *1

n = OpenFile ("A:Temp", &ofFile, OF_READ)
if (n == -1)

brea k ;

MessageBox (hWnd,
"Could not read file on drive A:",
"Fi le Problem", MB_ICONHAND 1MB_OK)

{Other program lines}

. SETlIANDI,ECOUNT t':3 Win 2.0 a Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
wNumber

Example

Changes the number of files an application can' have opim at once.

WORD SetHandleCount(WORD wNumber)i

The default number of files an application can have open at one time is 20. SetHandleCountO
allows this number to increase to,an.v numbpr up to 255.

Useful in disk-intensive applications, such as database programs.

WORD, the number of files that can actually be opened at one time. This may be less' than
wNumber if MS-DOS runs out of file handle space.

OpenFileO

WORD: The desired number of files that can be open at one time. The maximum is 255.

See the eElmple under the OpenFileO function description.

WRITEPRIVATEPROFILESTRING c Win 2.0 EI Win 3.0 III Win 3.1
Purpose

Syntax

Description

Copies a character string to an application's private profile (.INI) file.

BOOL WritePrivateProfileString(LPSTR lpApplicationName, LPSTR lpKeyName, LPSTR
lpString, LPSTR lpFileName)j

The best way for a program to "remember" user preferences, such as subdi!~ctory names, is to
write them to an initialization file. For items tliat may affect more than one application, thb

/
/ 801

/

WINDOWS API BIBLE

Uses

Returns

SeeAIs.o

Parameters

should be the main WIN.INI file. For items that will affect only the application itself, this should
be a private .INI file. WritePrivateProfileString(}writes a character string. The string is assumed
to be in a file with the format

[application name]
keyname = string

The file is assumed to be in the Windows subdirectory (the subdirectory containing
WIN.EXE). A different subdirectory can be specified by using the full path name for lpFileName.
If the file is not found, a new one is created. If the application name is not found in the file,
lpApplicationName is written to the file and enclosed in square brackets. If lpKeyName is not
found, it is written to the file, followed by an equal sign.

Writing and updating the application's private .INI file. The values written in the .INI file can be
both character strings and numeric values. Integer values are written using the numeric charac-

. ters as a string (eg., "124").

BOOL. TRUE if the function is successful, FALSE on error.

GetPrivateProfileIntO, GetPrivateProfileStringO

lpApplicati01lName LPSTR: A pointer to a character string that contilins the application name in the private .INI file.
This is the string that appears inside the square brackets.

IpKeyName LPSTR: A pointer to the key name in the private .INI file. This is the string to the left of the equal
sign. If lpKeyName is set to NULL, the entire section starting with IpApplicationName is de
leted. Comment lines (starting with a semicolon) are not deleted.

lpString LPSTR: The string value to write to the right of the equal sign. If IpString is NULL, the (lntire line
starting with lpKeyName is deleted.

IpFileName

Example

LPSTR: A pointer to a character string containing the private .INI file name. The file is assumed
to be in the Windows subdirectory unless a path name is include with the file name in
IpFileName.

See the example under the GetPrivateProfileIntO function description.

WRITEPROFILESTRING II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Writes an entry. to the WIN.INI file.

BOOL WrlteProfileStrlng(LPSTR tpApplicationName, LPSTR IpKeyName, LPSTR IpString);

The best way for a program to "remember" user preferences, such as subdirectory names, is to
write them to an initialization file. For items that may affect more than one application, this
should be the main WIN.INI file. For items that will affect only the application itself, this should
be a private .INI file. WriteProfileStringO writes a character string in WIN.INI. The string is
assumed to be written with the format

[application name]
keyname = stri ng

WIN.INI is assumed to be in the Windows subdirectory (the subdirectory containing
WIN.EXE). A different subdirectory can be specified by using the full path name for IpFileName.
If the application name is not found, lpApplicationName is written to the file, and enclosed in
square brackets. If IpKeyName is not found, it is written to the file, and followed by an equ!\l sign.

Most often used as an application, to remember user settings, and file names. The value written
to the .INI file can be either character strings or numeric values. Integer values are written to
WIN.INI by writing thenumeric characters in a string (eg., "124").

802

Returns

See Also

Parameters

20. MS-DOS AND DISK FILE ACCESS 'Y

BOOL. TRUE if the function is successful, FALSE on error.

GetProfilelntO, GetProtileStringO, GetWindowsDirectoryO

lpApplicationName LPSTR: A pointer to a character string that contains the application name in the WIN.INI file.
This is the string that appears inside the square brackets.

IpKeyName LPSTR: A pointer to the key name in the WIN.INI file. This is the string to the left of the equal
sign. If lpKeyName is set to NULL, the entire section starting with lpApplicationName is de
leted. Comment lines (starting with a semicolon) are not deleted.

IpStritzg LPSTR: The string value to write to the right of the equal sign. If ipString is NULL, the entire line
starting with lpK(!IJName is deleted.

Example See the example under the GetProfilelntO function description.

803

Windows programs need to be able to communicate with external devices. The most common device is a printer. This
specialized requirement is well supported in Windows, as described in Chapter 10, Device Contexts, Tm Outpu~ and
Printing. Other important external devices are communications equipment, such as modems and instrumentation
that may be connected to the computer via serial or parallel communications lines. Because of the wide range of
external devices that can be connected to a computer, Windows cannot provide high-level support for every piece of
equipment. Instead, the function library contains 16 low-level functions that provide the programmer with the basic
tools Cor dealing with any device.

Commwiications Support
Communications support is not a trivial matter for Windows. Consider the case of a communications program that
sends and receives data via a modem attached to the computer's Serial port. The data from the modem arriVes slowly
(relative to the internal clock speed of the computer) and can arrive at any time. If the Windows program simply
looped, checking for incoming data bytes, the program would take over the Windows enVironment. No other applica
tion' could get the input focus. This violates the basic principle behind the structure of all Windows programs, which
must give I!P control of the environment frequently to allow other programs to run.

To get- around this problem, the Windows function library includes interrupt-driven communications support.
When the communications device receives an input byte, it generates a hardware interrupt. The interrupt briefly halts
whatever application is'~nning and stores the input byte in a memory buffer. Control is then immediately given back
to Windows. . _

'Ibe memory buffer is called the "receive, data queue." The data bytes accumulate in the queue as,they are re
ceived. When a WIndows communications application wants to read the incoming data, it reads the receive queue
data. Data to be transmitted is also stored in a buffer before being sent to the communications device. This buffer Is
called the "transmit data queue." .

Figure 21-1. Communications Data Queues.

804

21. COMMUNICATIONS FUNCTIONS •

Figure 21-1 shows the organization of communications functions and data queues. The OpeilComm() function
opens up a communications link to an external device, such as a serial port, and sets up the transmit and receive data
queues. Only one· application can open a device at one time. The application retains control of the device until
CloseCommO is called. The application that has control of the device uses the'\vriteCommO function to send data to
the device, and uses ReadComm() to read data received from the device. In both cases, the data is buffered via the
data queues. For example, calling WriteCommO places the data in the transmit queue. Windows will send the data to
the device when the device completes sending bytes already in the transmit queue.

TWo functions are provided which allow the normal first-in, first-out processing of data in the queues 'to be by
passed. TransmitCommChar() makes a character become the next character sent, which is useful for sending special
control sequences, such as escape sequences. UngetCommCharO puts a character at the beginning of the receive
queue. This character will be the next character read. This is convenient for programming applications that have
multiple functions for processing incoming data.

Reading Data in the Receive Data Queue
As previously mentioned, the communications program cannot simply loop forever, checking for data in the data
queues. The application must continually give up control to Windows so that other applications can run. There are two .
approaches to checking the data queues from within a Winnows program. The simplest way is to use a timer. The
Windows timer can be set to generate a MCTIMER message, on a frequency of perhaps ten times per second. Each
time the WM_TIMER message is processed by the application, the receive data queue can be checked with
ReadCommO to look for data.

Although the timer approach will work, it is not the best way to design a communications program: A better way
to write a communications program is to use a PeekMessageO loop for the program's main message loop. Peek
MessageD takes control if no other application is requesting it. This approach allows the communications program to
continually check the receive data queue in the "gaps" when other Windows applications are not active. The example
programs under the function descriptions in this chapter all use the PeekMessageO approach.

Writing a complete communications program requiFes an understanding of the several protocols in use for trans
mitting and receiving data. A good source of information is Practical Digital and Data Communications by Paul
Bates (Prentice-Hall, 1987). This book covers both serial and parallel communications;

Communications Function Summary
''rable 21~1 summarizes. the Windows communication support functions. The detailed function descriptions are in the
next section.

BuildCommDCB

CIearCommBreak

CloseComm

EscapeCommFunction

AushComm

GetCommError

GetCommEventMask

GetCommState

OpenComm

ReaOComm
SetCommBreak

SetCommEventMask

Converts a command string in DOS MODE command format to fill the fields in a Device Control
Block (DCB).

Clears a communications device break state, restoring operation,

Closes a communications device.

Sets a communications device extended function.

Clears all data in a communications queue.

Determines the error status of a communications port, and clears the error.

Determines which communication event has occurred.

Determines the current settings of a communications device.

Opens a communications device (port) and allocates memory for the input and output data
queues.

Reads data from an open communications device.

Temporarily suspends operation of a communications device.

Sets which communications events are enabled.

805

WINDOWS API BIBLE

Figure 21-1. continued

SetCommState

T ransmitCommChar

UngetCommChar

WriteComm

',:purpose,

Changes the settings (baud rate, etc.) for a communications device.

Sends a character to a communications device immediately, bypassing the transmit data
queue.

Places a character at the beginning of the receive data queue, bypassing any other characters
already in the queue.

Sends data to a communications' device.

Table 21-1. Communications Function Summary.

Communications Function Descriptions
This section contains the detailed descriptions of the Windows communication functions.

BUILDCOMMDCB II Win 2.0 • Win 3.0 • Win 3.1
Purpose Converts a command string in DOS MODE command format to fill the fields in a Device Control

Block (DCB).

Syntax

Description

int BuiIdCommDCB(LPSTR IpDej, DCB FAR * ipDCB);

The SetCommStateO function requires that'the configuration data for the communications port
(baud rate, parity, etc;) be stored in a data structure of type DCB. BuildCommDCBO provides a
convenient way to set the DCB elements based on a character string. The character string must
be in the format used by the DOS MODE command. The DCB data structure is defined in
WINDOWS.II as:

typedef struct tagDCB
{

BYTE Id;
WORD BaudRate;
BYTE ByteSize;
BYTE Pari ty;
BYTE StopBi ts;
WORD RlsTimeout;
WORD CtsTimeout;
WORD DsrTimeout;

BYTE fBinary: 1;
BYTE fRtsDisable:1;
BYTE fParity: 1;
BYTE fOutxCtsFlow:1;
BYTE fOutxDsrFlow:1;
BYTE fDummy: 2;
BYTE fDtrDisable:1;

BYTE fOutX: 1;
BYTE fInX: 1;
BYTE fPeChar: 1;
BYTE fNull: 1;
BYTE fChEvt: 1;
BYTE fDtrflow: 1;
BYTE fRtsflow: 1;
BYTE fDummy2: 1;

char XonChar;
char XoffChar;
WORD XonL i m;
WORD XoffLim;
cha r PeCha r;

1* device control block (DCB) *1

1* Internal Device In *1
1* Baudrate at which runing *1
1* Number of bits/byte, 4-8 *1
1* 0-4=None,Odd,Even,Mark,Space *1
1*0;1,2=1,1.5,2 ,*1
1* Timeout for RLSD to be set *1
1* Timeout for CTS to be set *1
1* Timeout for DSR to be set *1

1* Binary Mode (skip EOF check *1
1* Don't assert RTS at init time *,1
1* Enable parity checking *1
1* CTS handshaking on output *1
1* DSR handshaking on output *)
1* Reserved *1
1* Don't assert DTR at init time *1

1* Enable output X-ON/X-OFF *1
1*,Enable input X-ON/X-OFF *1
1* Enable Pc:rity Err Replacement *1
1* Enable Null stripping *1 '
1* Enable Rx character event. *1
1* DTR handshake on input *1
1* RTS handshake on input *1

1* Tx and Rx X-ON character * 1
1* Tx and Rx X";'OFF character *1
1* Transmit X-ON threshold *1
1* Transmit X-OFF threshold *1
1* Pari ty error replacement char *1

806

char EofChar
char EvtChar
WORD TxDelay

} DCB;

Uses

Returns
See Also

Parameters
IpDej

IpDCB

Example

21. COMMUNICATIONS FUNCTIONS V

1* End of Input character *1
1* Recieved Event character *1
1* Amount of time between chars *1

Note that two groups of the structure's eleillents are coded bit values, saving space.

Used prior to SetCommStateO to prepare the DCB data.

int, zero if the IpDeJ string is translated, negative on error.

SetCommStateO

LPSTR: A pointer to a character string in DOS MODE format. For example the string
"coml:1200,e,7,1" establishes the port at 1200 baud, even parity, ,-bit word length, and one stop
bit.

DCB FAR *: A pointer to a DCB structure. The structure's elements will be initialized based on
the lpDej string. It may be necessary to set additional values by directly initializing the DCB
elements after BuildCommDCBO has been called.

This example creates a primitive communications program. When the program first starts, COMI
is opened for 1200 baud, even parity, 7-bit word length, and one stop bit. All of the characters the
user types show up on the line marked "Out>." Any characters received from COMI show up on
the line marked "In>," including echoed characters. No formatting is done for the characters.
Control characters such as CRILF show up as vertical lines.

Figure 21-2 shows atypi-

cal log-on sequence. A Hayes ~~iii·~.;w~· ~.'~~~'~~.'f:~! ... ·I·;J.[~ti···~~~):~~,,·~,~·j~r. m· m· B~.II ••• II.Iii~
modem is connected to
COM!. The Hayes modem
command ATDT is used to

.D.oltl ~ult

In> ATDT68226331I1CONNECT 12001111112~WNCIIIIIIIH ost Name:
Out> ATDT682263311

dial a phone number. Note Figure 21-2. SimpleCommunicationsProgramExample.
that the typed characters are
echoed on the "In>" line. When a connection is made, the input line begins to show the charac
ters received from the remote computer.

The program uses a PeekMessageO loop for the main program loop. This function allows for
periodic checking of the input data queue using ReadCommO. If characters are in the queue,
they are copied to the clnBufbuffer. A user message numbered \VM_USER + 1 is posted to cause
the WndProcO function to do the actual output of the received characters.

Within the WndProcO function, the COMI port is opened when processing the \VM_CREATE
message. Note that both the input and output data queues are flushed after the port is opened. A
combination of BuildCommDCBO and SetCommStateO is used to set the port to the desired
baud rate, parity, etc. EscapeCommFunctionO is demonstrated by sending a reset to the port.
This is usually not necessary.

User-typed characters for output to the port are handled by sending each typed character to
the port using WriteCommO. The remainder of the logic in WndProcO displays character stings
on the window's client area. As soon as 80 characters are collected, the strings are erased and
started again. The "DQ It!" menu item toggles a temporary break in communications on and off.
The communications break state is displayed in the program's window caption. Note that the port
is closed by CloseCommO as the program exits.

1* gener; c. c si.mple com program example *1
Uinclude <windows.h>
#include "generic.h"

static
static

int
char

nComID = -1 ;
cInBuf [256 + 128], cOutBuf [128] ;

807

WINDOWS API BIBLE

Oint PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstanc~; LPSTR lpszCmdLine, int nCmdShow)
(

HWND
MSG
WNDCLASS
COMSTAT"
char

MInd;
msg ;
wndclass ,
ComStat ;
cBuf [128] ,

int i, nReadChars, nStart

ghInstance = hInstance ;
if (!hPrevInstance)
(

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndc"lass. hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= CS_HREDRAW CS_VREDRAW
= WndProc ;
= 0 ;
= 0 ;
= hInstance ;
= LoadIcon (hInstance, gszAppName)
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;
= gszAppName ;
= gszAppName ;

if (!RegisterClass(&wndclass»
return FALSE;

}

hWnd = CreateWindow (
gszAppName,
gszAppHame,
WS_OVERLAPPEDWINDOW,
CW..;..USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEfAULT,
NULL,
NULL,
hInstance,
NULL) ;

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ;

. whi le (TRUE)
(

1* create the program's window here *1
1* class name *1
1* window name *1
1* wi ndow style *1
1* x position on screen *1
1* y posi tion on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null = none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr (null = not used) *1

1* use peek message loop to check com1 *1

if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE»
(

}

if (msg.message == WM_QUIT)
break;

, else
{

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

else if (nComID >= 0)
(

1* check the com port for data *1

if «nReadChars = Readtornm (nComID, cBuf, 128» > 0)
(

if «nStart = lstrlen (cInBuf» < 80)
{ 1* add chars to end of string *1

}

else

for (i = 0 ; i < nReadChars; i++)
cInBuf [nStart + 1] = cBuf [i J ;

cInBuf [nReadChars + nStartJ = 0 ;
PostMessage (msg.hwnd, WM_USER + 1, 0, OL)

{ 1* start s.tring over *1
for (i = 0 ; i < nReadChars ; i++)

808 ..

>

}
}

}

else

return msg.wParam ;

}

21. COMMUNICATIONS FUNCTIONS ...

clnBuf [il = cBuf [il ;
cInBuf [nReadCharsl ='0 ;
PostMessage (msg.hwnd, WM_USER + 1, 1, Ol)

GetCommError (nComID, &ComStat)

long FAR PASCAL WndProc (HWND hWnd, un!i~ned iMessage, WORD wParam, lONG lParam)
{

PAINTSTRUCT
HOC

ps ;
hOC;
dcb ; DCB

int
char
static BOOl

i, nStatus
cBuf [128l ;
bToggle = TRUE;

switch (iMessage)
{

case WM_CREATE:
nComID = OpenComm ("COM1", 128, 128)
if (nComID < 0)

else
{

}

break;
case WM_PAINT:

MessageBox (hWnd, "Could not open COM1", "Warning",
MB_OK) ;

FlushColII1II (nComID,' O) '* elllPty output queue *'
FlushComm (nComID, 1); '* empty input queue *'
BuildColllmDCB ("com1:1200,e,7,1", &dcb) ;
SetComlllState (&dcb) ;
EscapeColllmFunction (nComID, RESETDEV) ;
MessageBox (hWnd, "COM1 is open.", "Message",

MB_OK) ; ,

BeginPaint (hWnd, Ips) ;
TextOut (ps.hdc', 0, 0, "In>", 3) ;
TextOut (ps.hdc, 40, 0, cInBuf, lstrlen (cInBuf» ;
TextOut (ps.hdc, 0, 20, "Out>", 4) ;
TextOut (ps.hdc, 40, 20, cOutBuf, lstrlen (cOutBuf»
EndPaint (hWnd, Ips) ;
break;

case \1M_COMMAND:
switch (wParam)
{

case 10M_DOlT:

'* process menu iteas *'

if (bToggle)
{

}

else
{

>
break;

bToggle = FALSE;
SetCommBreak (nComID) ;
SetWindowText (hWnd, "COIIIIII Break")

bToggle = TRUE;
ClearCommBreak (nCo.ID) ;
SetWindowText (hWnd, "Co •• Open")

case IOM_QUlT: '* send end of appltcation g. *'
DestroyWindow (hWnd) ;
break;

809

WINDOWS API BIBLE

}

}

break;
case WM_CHAR: . 1* user typed a char *1

if (nComID >= 0)
{

}

else

break;

nStatus = WriteComm (nComID,
(LPSTR) &wParam, 1) ;

; f (nStatus < 0)

else
{

}

MessageBox (hWnd, "Output comm error.",
"Message", MB_OK)

i = lstrlcn (cOutBuf) ;
if (i > 80>1* don't overflow line size *1
{

cOutBuf [OJ: (char) wParam ;
cOutBuf [1] = 0 ;
InvalidateRect (hWnd, NULL, TRUE)

else 1* added char to end of typed string *1
{

}

cOutBuf [i] = (char) wParam ;
cOutBuf [i + 1J = 0 ;
hDC = GetDC (hWnd) ;
TcxtOut (hDC; 40, 20, cOutBuf,

lstrlen (cOutBuf»
ReleaseDC (hWnd, hDC)

HessageBox (hWnd, "Click Do It! t'~ connect.",
"Message", HB_OK) ;

case WH_USER + 1: 1* need to update screen from input *1
switch (wParam)
{

}

brea"- ;
case WM_DESTROY:

case 0: 1* input chars added to end, of string *1
hDC = GetDC (hWnd) ;
TextOut (hDC, 40, 0, cInBuf, lstrlen (cInBuf»
ReleaseDC (hWnd, hDC) ;
break;

case 1: 1* started string over from start *1
InvalidateRect (hWnd, NULL, TRUE) ;
break;

1* stop application *1
CloseComm (nComID) ;
PostQui Hlessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam);

return (OL> ;
}

CI.EARCOMMBREAK a Will 2.0 • Win 3.0 • Win 3.1 0_. _______ _

Purpose

Syntax

Description

Uses

Clears a communicatiolW deviee break state, restoring operation.

jnt ClearCommBreak(int nOEd);

Communil~ations deviclls (parallel and serial ports) can be temporarily turned off by calling
SetCommUmakO. ClearCommBreakO clears the break state, restoring the port's operation. Data
remaining in the input and output data queues is not affected. .

It is simpler to use SetCommBreakO to temporarily close a communications device than to close

810

Returns

See Also
Parameters
nCid

Example

CLOSECOMM

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nCid

Example

21. COMMUNICATIONS FUNCTIONS T

and then reopen the port.

int, zero if the function was successful, negative on error (such asnCid not being a valid device).

SetCommBreakO, OpenCommO

int: The communications device ID value. This is the value returned by OpenCommO.

See the previous example under the BuildCommDCBO function description.

Closes a communications device.

int CloseCommCint riCid);

II Win 2.0 • Win 3.0 • Win 3.1

This function closes the communications device previously opened by OpenCommO, and frees
the memory associated with the input and output data queues. Any data in the output queue is
sent before the device is closed. Only one application can have a port open at any onetime.

Any application that opens a communications device must call CloseCommO to return the port
to the system. Failure to do this will cause the port to be inaccessible to other applications.

int, zero if the communications device (port) is closed, negative on error.

OpenCommO

int: The ID of the device to be closed. This is the value returned by OpenCommO when the device
was first opened.

See the example under the BuildCommDCBO function description.

ESCAPECOMMFUNCTION • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns
See Also

Parameters
nCid

nFunc

Sets a communications device extended function.

int EscapeCommFunction(int nCid, int nFunc);

This function provides a convenient way to send a communications device a control code, such as
DTR, RTS, or XON/OFF.

DTR and RTS sIgnals are used in establishing communications links between two devices. XONI
OFF pairs are used in sending packets of data between two devices.

int, zero if the function is successful, negative on error.

OpenCommO

int: The ID of the device to be closed. This is the V~ lue returned by OpenCommO when the device
was first opened.

int.: The function code. This can ,be any of the codes listed in Table 21-2.

J~£~~,~~;~~V:tA;J1~~:j{lcMe,~"fri~:{:L~:t;::\., :.~::~\':;:[;:,:LX·(::;:·::;;:~:";'<:i~'~'·;:~::{(~.;<;J '.,~:,::;':~::: >"~~~§jit!i~&iM&lI
CLROTA

,CLRRTS

RESETDEV

SETDTA

SETRTS

Clears the data-te,rminal-ready (OTR) signal.

Clears the requesHo-send (RTS) signal.

Attempts to reset the device.

Sends the data-terminal-ready (OTR) signal.

Sends the request-to-send (RTS) Signal.

811

WINDOWS API BIBLE

Table 21·2. continued

SETXOFF

SETXON

Emulates receipt of an XOFF character.

Emulates receipt of an XON character.

. Table 21·2. Communications Codes.

Example

FLUSHCOMM

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters .
nCid
nQueue

Example

See the example under the BuildCommDCBO function description.

Clears all data in a communications queue.

.int FlushCommCintnGid, intnQueue)j

m Win 2.0 II Win 3.0 • Win 3.1

Windows uses memory buffers to store incoming and outgoing data for a communications device
(port). FlushCommO is used to clear the buffers.

Used when the communications device is fir~t opened with OpenCommO. It can also be used
within the communications program logic if it is desirable to purge the queues.

int, zero if the queue was cleared, negative on errur.

OpenCommO

int: The communications device ID value. This is, the value returned by OpenCommO.

int: Set to zero to clear the transmit data queue. Set to one to clear the receive data queue.

See the example under the BuildCommDCBO function description.

GETCoMMERROR 11 Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Determines the error status of a communications port, and clears the error.

int GetCommError(int nGid, COMSTAT FAR *lpStat)j

Windows locks a communications device (port) when an error is detected. The port remains
locked until GetCommEiTorO is called. The error data is copied to the COMSTAT data structure.
This stmcture is defined in WINDOWS.H as follows:

typedef struct tagCOMSTAT
(

BYTE fCtsHold: 1;
BYTE fDsrHold: 1;
BYTE fRlsdHold: 1;
BYTE fXoffHold: 1;
BYTE fXoffSent: 1;
BYTE fEof: 1;
BYTE fTxim: 1;
WORD cbInQue;
WORD cbOutQue;

) CO"STAT;

1* Transmit is on CTS hold *1
1* Transmit is on DSR hold *1
1* Transmit is on RLSD ho ld *1
1* Received handsh~ke *1
1* Issued handshake *1
1* End-of-fi le character found *1
1* Character being transmitted *1
1* count of characters in Rx Queue *1
1* count of characters in Tx Queue *1

Uses
Returns

Note that the first seven elements of the COMSTAT data structure are bit vru~es.
Used to unlock the communications device and determine the error status.
int, the error code returned by the most recently used communications function. This can be any
of the error codes listed in Table 21·3. .

812

CD_FRAME

" CDJOE

CD_MODE

CE_OOP

CE_OVERRUN

CE_PTO

CE_RLSDTO

21. COMMUNICATIONS FUNCTIONS •

A break condition was detected.

Clear -to-send time-out. The amount of time before time-out is set by the Cts Timeout element of
the DCB data structure passed to SetCommState(). See BuildCommDCB() for the DCB
structure definition.

Parallel device not selected.

Data-set-ready time-out. The amount of time before time-out I:; set by the DsrTimeout element
of the DCB data structure passed to SetCommState(). See BuildCommDCB() for the DCB
structure definition.

Hardware framing error detected.

Input/Output error on a parallel device.

The requested communications mode is not supported by the device, or nCid is not valid.

The parallel device is out of paper.

A character arrived before the last character could be read. The character is lost.

Parallel device time out.

Receive-Ilne-signal-detect time-out. The"?mount of time before time-out is set by the
Ris Timeout element of the DCB data structure passed to SetCommState(). See Build
CommDCB() for the DCB structure definition.

The receive queue overflowed. This can also be set by having a character be received after the
end-of-file character has been set. The end-of-file character is determined by the EofChar
element of the DCB data structure passed to SetCommState(). See BuildCommDCB() for the
DCB structure definition .

. A parity error was detected.

The transmit queue is full.

Table 21-3. Communication.<; Error Codes.

See Also

Parameters
neid

IpStal

Example

BuildCommDCBO, SetCommStriteO

int: The communicatiOIls device ID value. This is the value returned by OpenCommO.

COMSTAT FAR *: A pointer to a COMSTAT data structure. The structure will be filled with the
current device status.

-See the exampleurider Bui~dCommDCBO.

GETCoMMEVENTMAsK .. Win 2.0 • Win 3.0 • Win 3.1
Purpose Determines which communication event has occurred.

Syntax
Description

Uses

WORD GetCommEventMask(int nCid, int nEvtMask)j

Events are noncharacter communication data, such as clear-to-send (CTS) line status. The events
which will be detected for a device are set with SetCommEventMaskO.GetCommEventMaskO
determines which event has occurred. Each event is coded as a hit flag.

Used within the message loop (or timer message processing function) to determine the event
status of a communications device (port).

WINDOWS API BIBLE

Returns .

EV_BREAK

EV_CTS

EV_DSR

EV_ERR

EV_PERR

EV_RING

EV_RLSD

EV_RXC~~R

EV_RXFLAG

. EV3XEMPlY

WORD. The event status for each type of event is coded as a bit in the returned WORD. Each of the
event flags is given a name in WINDOWS.H as listed in Table 21-4.

Break detected on input.

Clear-to-send (CTS) signal change detected.

Data-set-ready (DSR) signal change detected.

Une-status error detected. They are CE_F.RAME, CE_OVERRUN, and CE_RXPARllY.

Printer error detected. They are CE_NDS, CEJOE, CE_LOOP, am:!. CE_PTO.

Ring indicator detected.

Receive-line-signal-detect (RLSO) change detected.

Any character placed in the receive queue was detected.

The event character was received and placed in the receive queue .

The last character in the transmit queue has been sent.

Table 21-4. Communicittions Event Flags.

See Also SetCommEventMaskO

Parameters
nCid

nEvtJfask

Example

int:. The communications device ID value. This is the value returned by OpenCommO.

int: Sets which events are to be monitored after the call to GetCommEventMaskO. nEvtMask
can be any combination of the bit flags in Table 21-4, combined with the C language binary OR
operator (I). Set nEvtMask to OxFFFF to monitor all events.

See the example under the SetCommEventMaskO function description.

GETCOMMSTATE . Ell Win 2.0 .. Win 3.0 II Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also
.\ Parameters
nCid

IpDCB

Example

Determines the current settings of a communications device.

int GetCommState(int nCid, DCB FAR *lpDCB)j

This function copies the current settings for ~ comiliunications
device (serial or parallel port) to a DCB data strucfure.

Determining the settings for a communications device, such as
the current baud rate.

int, zero if the function was successful, negative on error.

SetCommStateO, BuildCommDCBO, OpenCommO

no Itl .Quit
Serial Port:

10 = O. Baud Rate = 1829. Parity = 0
Parallel Port:
ID" 128

Figure 21-3. GetComm-
8tate() Example.

int: The communications device ID value. This is the value returned by OpenCommO.

DCB FAR *: A pointer to a DCB (Device Control Block) data structure. See the BuildCommDCB(}, ..
funCtion description for the dermition of this structure.

This example, which is illustrated in Figure 21-3, opens the COMI and LPTI ports and displays
the initial settings when the user clicks the "Do It!" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
char
int
DCB

hDC ;
cBuf [128J ;
nComm ;
dcb ;

switch (iMessage) 1* process windows messages *1

814

21. COMMUNICATIONS FUNCTIONS' ..

case WH_COMMAND: 1* process men~ ,tems *1
swi tch (wParam)
{

case IDM_DOIT: 1* User hit the "Do it" menu item *1
hDC = Get DC (hWnd) ;'
nComm = OpenComm ("COM1", 128, 128) .:
GetCommState (nComm, &deb) ;
TextOut (hOC, 0, 0, "Serial Port:", 12) ;
TextOut (hDC, 10, 20, cBuf, wsprintf (cBuf,

"10 = I.d, Baud Rate = I.d, Pari ty = I.d",
dcb.ld, deb.BaudRate, deb.Parity»

CloseComm (nComm) ;
nComm = OpenComm ("LPT1", 0, 0) ;
GetCommState (nComm, &dcb) ;
TextOut (hOC, 0,,40, "Parallel Port:", 14) ;
TextOut (hOC, 10, 60, cBuf, wsprintf (cBuf,

"10 = I.d",dcb.ld»
CloseComm (nComm) ;
ReleaseOC (hWnd, hOC) ;
break;

IOther program linesJ

OPENCOMM

Purpose

Syntax

Description

Uses

Returns

IE_BADID

IE_BAUDRATE

IE_BYTESIZE

IE_DEFAULT

IE_HARDWARE

IE_MEMORY

IE_NOPEN

IE_OPEN

Ii Win 2.0 • Win 3.0 • Win 3.1
Opens a communications device (port) and allocates memory for the input and output data
queues.

int OpenComm(LPSTRlpComName, WORD wlnQueue, WORD wOutQueue)j

Before.a communications device can be used, it must be opened. The device will be opened with
default settings for baud rate, parity, etc. These settings can be changed by using
BuildCommDCBO and SetCommStateO. Serial ports use data buffers calle.d "queues" to tempo
rarily store dat~ being sent and received by the port. OpenCommO also allocates memory for the
input and output data queues. Parallel ports do not use data buffers. The wlnQueue and
wOutQueue values will be ignored if a parallel port is being opened. Only one application can
open a communications device at a time. Be sure to call CloseCommO when the device is no
longer needed.
OpenCommO must be called before a communications device, such as a serial or parallel port,
can be used.

int, the ID value of the opened communications device. This value should be saved in a static
variable. If an error occurs in opening the device, the function returns one of the negative values
listed in Table 21-5.

An invalid device name.

Unsupported baud rate.

Unsupported byte size.

Error in the default parameters.

Hardware not present.

'" '. ,',

Unable to allocate memory for the data queues.

Not able to open the device.

Device already open.

rgJj

Table 21-5. OpenComm{) Error Codes.

See Also CloseCommO, BuildCommDCBO, SetCommStateO, WriteCommO

815

WINDOWS API BIBLE

Panuneters
lpCumName

READCoMM
hrpose

s,ntax
De8crlpdon

Uses

Returns

See Also

Parameters
"Cid .

'pBui

nSize

Example

LPSTR: A pointer to a null-terminated character string containing the device 'name. EDm~les
are "COM 1" and "LPl'2." The valid device numbers start with 1, and are limited by the number of
devices on the system.
WORD: The size ofthe receive data queue. For serial devices, this is typically set at 1,024 bytes.
For parallel devices, the value is ignored.
WORD: The size of the transmit data queue. For serial devices, this is typically set at 128 bytes.
For parallel devices, the value is ignored. .

See the example under BuildCommDCBQ.

Reads data from an open communications device.
int ReadComm(int nCid, LPSTR IpBuj, int nSize)j

BWin2.0 • Win 3.0 • Win 3.1

With a serial communications device, input data is stored temporarily in a data queue as it is
received. ReadCommO reads the data queue and copies the data into a buffer pointed to by
IpBu/, removing the data from the. data queue. With a parallel communications device, only one
data byte is available at any one time. This value is read and copied to the buffer pointed to by
IpBuJ,
Readlng data from a communications device previously opened by OpenCommO.
int, the number of characters actually read. This number will be smaller than nSize if the data
queue contains fewer than nSize bytes. If the returned value is equal to nSize, more than nSize
bytes may be in the data queue and the queue should hetead again with ReadCommO. If an error
occurs, the returned value will be negative. The absolute V'cllue of the' returned value will be the
number of characters read. Use GetCommErrorO to retrieve the error code. It is a good practi~e
to call GetCommErrorO every time ReadCommO returns zel'Q.tO clear any possible errors on a
serial device. For parallel devices, the returned value is always zero.
OpenCommQ, GetCommErrorO

int: The communications deVice ID value. This is the value returned by OpenCommO ..
LPSTR: A pointer to the data buffer to receive the data. The buffer must be at least nSize bytes
long.
Int: The maximum number of bytes to read from the data queue.
See the example under BUildCommDCBO.

SETCoMMBREAK • W'm 2.0 • W'm 3.0 • W'm 3.1
Purpose Temporarily suspends operation of a communications device.
SJIltax int SetCommBreak(int'riCid);
Deserlptlon

Uses

RetarDs
See Also

This function shuts down character transmission to and from a communications device. The de
vice is left in the break state until ClearCommBreakO is called. Data sent to the transmit data
queue is stored in the queue, but it is not transmitted until the break state is cleared.
Setting the communications device in a break state is simpler for temporary interruptions than
closing and then reopening the device. .
int, zero ifthe;hre~ ~tate is established. negative on error (such as an invalid nCid value).
ClearCommB~akO'," OpenCommO '

816

Parameters
nCid

Example

21. COMMUNICATIONS FU~!CTIONS T

int: The communications device ID value. This is the value returned by OpenCominO.

See the example under the BuildCommDCBO function description.

SETCOMMEVENTMAsK • Win 2.0 91 Win 3.0 • Win 3.1 ----------------------.--------------------------------------
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nCid

nEvtMask

EV_DSR

EV_ERR

EV_PERR

EV_RING

EV_RLSD

EV_RXCHAR

EV_RXFLAG

EV3XEMPlY

Sets which communications events are enabled.

WORD FAR *SetCommEventMask(int nCid, WORD nEvtMask);

Events are noncharacter communication data, such as the DSR (Data Set Heady) signal state.
This function allows certain events to be screened. Use GetCommEventMaskO to retrieve the
event status.

Used in low· level control over a port's signal status.

WORD FAR *, a pointer to a WORD that contains the bit mask for the event status. The event has
occurred if the bit is set to 1.

GetCommEventMaskO, GetCommErrorO

int: The communications device ID value. This is the value returned by OpenCommO.

int: The bit mask for the events to be enabled. This can be any combination of the values in Table
21-6, combined with the C language binary OR operator (I).

Breaks are detected 0\ input.

Clear-to-send (CTS) si,gnal changes are detected.

Data-set-ready (DSR) signal changes are detected.

. Une-status errors are detected. They are CE_FRAME, CE_OVERRUN, and CE_RXPARllY.

Printer errors are detected. They are CE_NDS, CEJOE, CE_LOOP, and CE_PTO.

Ring indicator is detected.

Receive-line-signal-detect (RLSD) changes are detected.

Any character placed in the receive queue is detected.

The event character is received and placed in the receive queue.

The last character in the transmit queue has been sent.

Table 21-6. Communications Event Flags.

Example This example is similar to the
simple communications program _ ':- .;. . - " generic' ,-' ... ~,,;. '", C'r7

" • , ~ , ... ·f ... , '. t ,: I ~,'~

under the BuildCommDCBO func· t--Il_o_lt_, _,q_u_it _____ ----: __ -------I
tion description. In this case, Set·' In> IICONNECT 1200111111 27WNCIIII Host.-Name:
CommEventMaskO is used to Out> ATDT6B22633II -
enable both break and CTS signal .,E .. rr ... o_r_m_a .. s ... k .. Ox .. O ____________ ___

changes for the communications Figure 21-4. SetCommEventMask() Example.
port. Communications events are
detected in the program's message loop. The current event mask is displayed in the window's
client area by sending a \V~CUSER + 1 message to WndProcO. WndProcO intercepts this meso
sage; and displays the error mask on the third line, as shown in Figure 21-4.

817

WINDOWS API BIBLE

1* generic.c simple serial communications application *1

#include <windows.h>
#include "generic.h"

static
static

int
char

nComID = -1 ;
clnBuf [256], cOutBuf (128]

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevlnst~nce, LPSTR lpszCmdLine, int nCmdShow)
{

/'

HWND
MSG
WNDCLASS
COMSTAT
char
WORD
int

hWnd ;
msg ;
wndclass
ComStat ;
cBuf [128] ,
wComError ;
i, nReadChars, nStart

ghlnstance hlnstance;
if (!hPrevlnstance)
{

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra

,wndclass.hlnstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName-

if {!RegisterCLass (&wndclass»
return FALSE;

hWnd CreateWi ndow {
gszAppName,
gszAppNam·e,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL> ;

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ;

whi le (TRUE)
{

1* store instance handle as global var. *1

= CS HREDRAW CS_VREDRAW
= WndProc
= 0 ;
= 0 ;

hlnstance ;
= Loadlcon (hlnstancc, gszAppName) ,
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;

gszAppName ;
= gszAppName ;

1* create the program's window here *1
1* class name *1
1* 'window name *1
1* wi.ldow style *1
1* x position on screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (nuLL = none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr (null = not used) *1

1* use peek message loop to check com1 *1'

if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE»
{

}

if (msg .message == WM_QUIT>
break;

else
{

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

else if (nComID >= 0) 1* check the com port for data *1
{

if «nReadChars ReadComm (nComID, cBuf, 128»> 0)
{

818

}

}

21. COMMUNICATIONS FUNCTIONS T

if «nStart = lstrlen (clnBuf» < 80)
{ 1* add to end *1

)

else

for (i = 0 ; i < nReadChars ; i++)
clnBuf [nStart + iJ = cBuf CiJ ;

clnBuf [nReadChars + nStartJ = a ;
PostMessage (msg.hwnd, WM_USER + 1, 0, Ol)

{ 1* start string over *1

}

for (i = 0 ; i < nReadChars ; i ++)
clnBuf [iJ = cBuf [iJ ;

clnBuf [nReadCharsJ = 0 ;
PostMessage (msg.hwnd, WM_USER + 1, 1, Ol)

else 1* clear error, post mesg. to disp.,error *1
{

return msg.wParam

GetCommError (nComID, &ComStat) ;
wComError = GetCommEv~ntMask (nComID, OxFFFF)
PostMessage (msg.hwnd, WM_USER + 1, 2,

(lONG) wComError) ;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{

PAINTSTRUCT
HOC

ps ;
hOC;
dcb ; DCB

int
,char
static BOOl

i, nStatus
cBuf [128J ;
bTogg le = TRUE

switch (iMessage)
{

case WM_CREATE:
nComID = OpenComm ("COM1", 128, 128) ;
if (nComID < 0)

else
{

}

break;
case WM_PAINT:

MessageBox (hWnd, "Could not open COM1", "Warning",
MB_OK)

FlushComm (nComID, 0); 1* empty output queue *1
FlushComm (nComID, 1); 1* empty input queue *1
BuildCommDCB ("com1:1200,e,7,1", &dcb);
SetCommState (&dcb) ;
SetCommEventMask (nComID, EV_BREAK I EV_CTS) ;
MessageBox (hWnd, "COM1 is open. ", "Message",

MB_OK)

BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 0, 0, "In>", 3) ;
TextOut (ps.hdc, 40, 0, clnBuf, lstrlen (clnBuf» ;
TextOut (ps.hdc, 0, 20, "Out>", 4) ;
TextOut (ps.hdc, 40, 20, cOutBuf, lstrlen (cOutBuf»
EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch, (wParam)
{

case IDM_DOIT:
break;

case 10M_QUIT:

819

1* put ESC into receive queue *1

1* send end of applicat'ion message *1

WINDOWS API BIBLE

DestroyWindow (hWnd)
break;

}

break
case WM_CHAR: 1* user typed a char *1

if (nComID >= 0)
{

nStatus = WriteComm (nComID, (LPSTR) &wParam, 1)
if (nStatus < 0)

else
{

MessageBox (hWnd, "Output comm error.",
"Message", MB_OK)

i = lstrlen (cOutBuf) ;
if (i > 80) 1* don't overflow line size *1
{

}

cOutBuf [OJ = (char) wParam ;
cOutBuf [1 J = 0 ;
InvalidateRect (hWnd, NULL, TRUE)

els'e 1* added char to end of typed string *1
{

}

cOutBuf [iJ = (char) wParam ;
cOutBuf [i -t 1J = 0 ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 40, 20; cOutBuf,

lstrlen (cOutBuf»
Re leaseOC (hWnd, hDC> ;

break;
case WM_USER + 1: 1* need to update screen from input *1

switch (wParam)
{

br'eak

case 0: 1* input chars added to end of string *1
hOC = GetDC (hWnd) ;
TextOut (hOC, 40, 0, cInBuf, lstrlen (clnBuf» ;
Re~easeDC (hWnd: hDC> ;
break;

case 1: 1* started string over from start *1
InvalidateRect (hWnd, NULL, TRUE) ;
breaic ;

case 2: 1* di splay an error va lue * 1
hDC = GetDC (hWnd) ;
TextOut (hDC, 0, 40, cBuf, wsprintf (cBuf,

, "Error mask Ox%x", LOWORD (lParam»)
ReleaseDC (hWnd, hDC) ;
break;

case WM_DF.STROY: 1* stop applic'!tion *1
CloseComm (nComID) ;
PostQui Ulessage (0) ;
break;

default: '1* default windows,message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

SETCOMMSTATE .Win'2.0 • Win 3.0
Purpose

Syntax

Changes the settings (baud rate, etc.) for a communications device.

int SetCommState(DCB FAR *lpDCB)j

820

Description

Uses

Returns

See Also

Parameters
IpDCB

Example

21. COMMUNICATIONS FUNCTIONS T

When a communications device is initially opened with OpenCommO, the default settings for the
device are in place. SetCommStateO allows these values to be changed. The new values are
passed in a data structure of type DCB. This structure is typically initialized using Build·
CommDCBO. The port III value that SetCommStateO is determined by is the III element of the
DCB structure. SetCommStateO does not affect the input and output data queues.

Changing the settings for a communications device, such as the baud ra:te and parity for a serial
port. "
int, z~ro if the settings were changed, negative on error.

BuildCommDCBO

DCB FAR *: A pointer to a DCB (Device Control Block) data structure that contains the settings
to use for the communications device. See the BuildCommDCBO description for a listing of the
DCB structure. "

See the example under the BuildCommDCBO function description.

ThANSMITCOMMCHAR B Win 2.0 • Win 3.0 • Win 3.1

Purpose
Syntax
Description

Uses

Returns
See Also
Parameters
nCid

cChar

Example"

Sends a character to a communications device immediately, bypassing the transmit data queue.
int TransmitConunCharCint nCid, char cChar);

Normally, characters are sent to a communications device (port) by using WriteCommO to copy
characters to the transmit data que"ue, and then having Windows send the characters when the
port is available. TransmitCommCharO places a character at the head of the queue, so that it is
the next character sent. Only one character can be sent at a time using TransmitComldCharO:
The function will return a negative (error) value if the previous character sent by Transmit·
CommCharO has not been sent to the device.
Used to send special characters out of normal transmission sequence. For example, an external
device may respond to an ESC or CAN (ASCII 27 or'24) character by resetting or starting a ne~
mode.
int, zero if the character was sent, negative on error.
WriteCommO

int: The communications device ID value. This is the value returned by OpenCommO.

char: The character to be transmitted.
This example creates a primitive communications program. The program is similar to one de·
scribed under the BuildCommDCBO fm:lCtion description, but it is modified to demonstrate
TransmitCommCharO and UngetCommCharO. Communications are to and from the COM! se·
rial port. When the user clicks the "Do It!" menu item, an ESC character is placed at the end of
the receive data queue by a call to UngetCommCharO. The ESC is the next character displayed
on the window's client area (displayed as a vertical line).

When the user presses the key cap key, the ESC character is sent directly to COM!, bypassing
any other characters in the transmit data queue. Do this by using TransmitCommCharO to send
ESC, rather than using WriteCommO as is used for all other characters. This logic is typical of
dealing with an external serial device that used the ESC character to force a reset or change the
device state.

1* generic.c generic windows application *1
#include <windows.h> '
#include "generic.h"

821

o

WINDOWS API BIBLE

static
static

int
char

nComID = -1 ;
cInBuf (256 + 128J, cOutBuf (128J ;

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
{

HWND
MSG
WNDCLASS
COMSTAT
char

hWnd ;
msg;
wndclass ;
ComStat ;
cBuf (128J ,

int i, nReadChars, nStart

ghInstance hInstance;
if (!hPrevInstance)
{

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndcl ass. h I con
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

1* store instance handle as global vai'. *1

:.: CS_HREDRAW CS_VREDRAW
= WndProc
= 0 ;
= 0 ;

hInstance ;
LoadIcon (hInstance, gszAppName)
LoadCursor (NULL, IDC_ARROW) ;
GetStockObject (WHITE_BRUSH)
gszAppName ;
gszAppName ;

if {!RegisterClass (&wndclass»
return FALSE;

}

hWnd CreateWindow {
gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULU;

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ;

whi le (TRUE)
{

1* create the p,'ogram's window here *1
1* class name *1
1* wi ndow name *.1
1* window style *1
1* x posi tionon screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null= none) *1
1* menu handle (null = use class menu) *1
1* instance handle *1
1* lpstr {null = not used'>" *1

1* use peek message loop .to check com1 *1

if (PeekM~ssage (&msg, NULL, 0, 0, PM_REMOVE»
{

}

if (msg.message ==WM_QUIT)
break;

else
{

}

TranslateMessage (&msg) j
DispatchMessage (&msg)

else if (nComID >=,0) 1* check the com port for data *1
{

if C{nReadChars ReadComm (nCo~ID, cBuf, 128» > 0)
{

if ({nStart = lstr,len (cInBuf» < 80)
{ 1* add chars to end of string *1

for (i = 0 ; i < nReadChars ; i ++)
cInBuf (nStart + iJ = cBuf (iJ ;

cInBuf (nReadChars +nStartJ = 0 ;
PostMessage (msg •. hw.':ld, WM_USER + 1, 0, OU

822

o

else

}
}

return msg.wParam
}

21. COMMUNICATIONS FUNCTIONS ...

else
{ 1* start string over *1

}

for (i = 0 ; i < nReadChars ; i++)
clnBuf [iJ = cBuf [iJ ;

clnBuf [nReadCharsJ = 0 ;
PostMessage (msg.hwnd, WM_USER + 1, 1, Ol)

GetCommError (nComID, &ComStat)

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, lONG lParam)
{

PAINTSTRUCT
HDC

ps ;
hDC ;
deb; DCB

int
char
static BOOl

i, nStatus
cBuf [128J ;
bTogg le :.: TRUE

switch (iHessage)
{

•

case WM_CREATE:
nComID = OpenComm ("COM1", 128, 128) ;
if (nComID < 0) 0

else
{

}

break
case WM_PAINT:

McssageBox (hWnd, "Could not open COM1", "Warni ng",
MB_OK)

FlushComm (nComID, 0) 10k empty output queue * 1
FlushComm (nComID, 1); 1* empty input queue *1
BuildCommDCB ("com1:1200,e,7,1", &dcb) ;
SetCommState (&dcb) ;
EscapeCommFunction (nComID, RESETDEV) j
MessageBox (hWnd, "COr.,1 is open.", "Message",

MB_OK)

BeginPaint (hWnd, &ps) ;
TextOut (ps. hdc, 0, 0, "In>", 3) ;
TcxtOut (ps.hdc, 40, 0, clnBuf, lstrlen (clnBuf» ;
TextOut (ps.hdc, 0, 20, "Out>", 4);
TextOut (ps.hdc, 40, 20, cOutBuf, lstrlen (cOutBuf»
EndPaint (hWnd, &ps) ;
break i

case WM_COMMAND: 1* process menu items *1
swi tch (wPa,'am)
{

case IDM_DOIT:
UngetCommChar
break;

case 10M QUIT:

}

break
case WM_CHAR:

DestroyWindow
break;

if (nComID >= 0)
{

1* put. ESC into receive queue *1
(nComI D, 27>

(hWnd)

1* user tYRed a cha r * I

if (wParam == 27) 1* ESC char - send di rect *1
nStatus = TransmitCommChar (nComID,

(char) wParam) i

823

WINDOWS API BIBLE

}

}

break;

else 1* all other chars go into queue *1
nStatus = WriteComm (nComID,

(LPSTR) &wPa ram, 1) ;
if (nStatus < 0)

else
{

MessageBox (hWnd, "Output comm error.",
"Message", MB_OK)

i = lstrlen (cOutBuf) ;
if (i > 80) 1* don't overflow line size *1
{

cOutBuf [0] = (char)wParam ;
cOutBuf [1] = 0 ; .
InvalidateRect (hWnd, NULL, TRUE)

else 1* added char to .end of typed string *1
{

cOutBuf [i] = (char) wParam ;
cOutBuf [i + 1] = 0 ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 40, 20, cOutBuf,

lstrlen (cOutBuf»
ReleaseDC (hWnd, hDC)

case WM_USER + 1: 1* need to update screen.from input *1
switch (wParam)
{

}

break;

case 0: 1* input chars added to end of string *1
hOC = GetOC (hWnd) ;
TextOut (hOC, 40, 0, cInBuf, lstrlen (cInBuf»
ReleaseDC (hWnd, hDC) ;
break;

case 1: 1* started string over from start *1
InvalidateRect (hWnd, NULL, TRUE) ;
break;

case \H1_0ESTROY: 1* stop application *1
CloseComm (nComID) ;
PostQuitMessage (0) ;
br'eak ;

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL> ;
}

UNGETCOMMCHAR .. Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Places a character at the beginning of the receive data queue, bypassing any other characters '
already in the queue. . i
int UngetCommChar(int nCid, char cChar)j

Normally, characters are read from the receive data queue in the order that they were received
using ReadCommO. UngetCommCharO allows a character to be placed at the beginning of the
data queue. This character will be the next character read by ReadCommO. Only one character
can be placed at the start of the receive data queue at a time. If the last character placed by
UngetCommCharO has not been read, the next call to UngetCommCharO will return a negative
(error) value.

824

Uses

Returns

See Also

Parameters
nCid

cChar

Example

WRITECOMM

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nCid

lpBuj

nSize

Example

21. COMMUNICATIONS FUNCTIONS "f'

This function is convenient if the program deals with certain characters as special markers. For
example, a program might read each character received looking for an ESC character. When the
ESC is received, it is put back on the receive queue, and then a separate function within the
program is called to deal with the sequence of characters starting with ESC.

int, zero if the character was placed at the start of the transmit data queue, negative on error.

ReadCommO

int: The communications device ID value. This is the value returned by OpenCommO.

char: The character to be placed at the beginning of the receive data queue.

See the previous example under the TransmitCommCharO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Sends data to a communications device.

int WriteComm(int nCid, LPSTR lpBu!, int nSize)j

This function sends a group of characters to a communications device. The data is copied to the
transmit data queue, and then sent in the background while Windows processes the data request
interrupts from the device. If the number of characters to be sent is larger than the space avail
able in the transmit data queue, data in the transmit queue will be lost. Use GetCommErrorO to
determine the space in the transmit queue.

Sending data to a communi9ations device, such as a serial port.

int, the number of characters transmitted. If an error occurs, the value will be negative, and have
an absolute value equal to the number of characters sent. Use GetCommErrorO to determine the
error type and clear the device's error status.

OpenCommO

int: The communications device ID value. This is the value retur~ed by OpenCommO.

LPSTR: A pointer to the buffer containing the data to be transmitted.
int: The number of characters to be written.

See the example under the BuildCommDCBO function description.

825

A common programming problem is determinirg if a character string belongs to a group of strings. For example, a
compiler will need to check each word in the source code listing against the set of commands and function names~ If
a match is found, the compiler knows that the word is part of the language. If not, the compiler must assume that it is
a new variable name or constant.

With any reasonably sized program, comparing each word to all of the commands and function names on a char
acter-by-character basis is unacceptably slow. Compilers use hash table techniques to reduce the number of compari
sons to a manageable number. Windows provides a similar facility in the form of atom functions. A group of character

, strings can be loaded into an atom table. Each string is identified with a unique integer value. Because only integer
values need to be compared, checking to see if a new string exists in the atom table is quick. Atoms are also useful for
exchanging character data between running applica~ions.

Atom Tables
Windows implements two types of atom tables, local atoms and global atoms. Local atoms are stored in the
application's local memory block. (This is the 64K memory segment that is private to the application.) Only one local
atom table is allowed per application. The table is created using the InitAtomTableO and AddAtomO functions. The
table remains in existence until either all of the elements of the table have been deleted using DeleteAtomO, or until
the application terminates.

Global atoms are stored in the global memory area. Windows maintains one global atom table at all times. This
table is shared by every application running on the system. Any application can add new elements (atoms) to the
global atom table using GlobalAddAtomO and can delete them using GlobalDeleteAtomO. There is no equivalent to
InitAtomTableO for the global atom table, as the global table is always in existence if Windows is running.

If the same character string is added to an atom table more than once, the string is not duplicated. Instead, a
counter called the "reference count" of the-atom is incremented. Each time the same string is added, the reference
count goes up by one. Every time the same string is deleted, the reference count is reduced by one. When the refer
ence count is reduced to zero, the string (atom) is removed from the atom table.

. The FindAtomO and GlobalFindAtomO functions determine if a character string has already been loaded in the
atom table. These functions are fast. Of course, the program must load all of the comparison strings into the atom
table before the search can be started. Using atom 'tables for string searches makes sense if the same group of strings
will be searched a large number of times.

If the application knows the atom value (the unique integer tag) for the string, the character string can be
recovered with GetAtomNameO or GlobalGetAtomNameO. Because the atom values are integers, they can be passed
between parts of a program as parameters in function calls. For example, a program can load all of the error and
warning messages into a local atom table. The atom number for the string to display can then be used to pass the
string to a message display function.

Atom Data Structure
Normally, Y0l! will not deal directly with the atom data. The atom functions provide all the needed functionality for
adding, finding, and removing entries. If you need to deal directly with the atom data, the format used internally by ,
Windows is

826

22. ATOM FUNCTIONS ...

typedef struct tagATOHENTRY
{

WORD
int
BYTE
char

} ArOHENTRY ;

wReserved ;
nRefCount ;
cStrLen ;
cContent [1 J ;

1* the number of times the string has been added *1
1* the length of the string in bytes *1

1* the string characters (length variabLe> *1

,
This structure is not defined in WINDOWS.H. The number of bytes in the cContent element is arbitrary, as it will

vary depending on the string stored. The GetAtomHandleO function will retrieve a handle to the memory block con
taining data in this format.

Data Exchange
A useful property of the global atom table is that it is available to all applications running on the system. This availabil·
ity allows one program to load a string into the atom table, and another to pull it out. Because the atom's unique value
is a 16-bit number, atoms can be transmitted hetween running applications as the wParam part of a Windows mes
sage. This transmissio~ requires that both the sending and receiving applications know the same message ID to use to
transmit the atom value. The RegisterWindowMessageO takes care of determining a unique message ID value to use.
This message ID is then posted with the atom value as wParam using PostMessageO, and is received by the second
application through the normal message loop and WndProcO function. The receiving application uses the wParam
value to recover the string from the global atom table using GlobalGetAtomNameO.

The techniques for exchanging character strings between applications described above are demoristrated in the
example program under the GlobalAddAtomO function. These simple techniques work fine if you are writing both the
sending and receiving applications. The more general case is when you may want to send data to another
programmer's application, or receive data from that application. Working with other applications requires a consis
tent protocol for sending and receiving data, which is defined in the Dynamic Data Exchange (DDE) protocol, covered
in Chapter 30.

Atom Function Sun:tmary
Table 22-1 summarizes the atom functins. The detailed function descriptions are in the next section.

AddAtom

DeleteAtom

FindAtom

GetAtomHandle

GetAtomName

GlobalAddAtom

GlobalDeleteAtom

GlobaiRndAtom

GlobalGetAtomName

InitAtom Table

Adds a character str!ng to the application's local atom table.

Deletes an item from the local atom table.

. Determines if a character string has been stored in the local atom table.

Retrieves a local memory handle to the memory area containing an atom.

Retrieves the character string, given the atom's value.

Adds a character string to the global atom table.

Removes a character string from the global atom table.

Determines if a c~aracter string is stored in the 9,lobal atom table.

Retrieves a character string from the global atom table.

Initializes the local, atom table.

Table 22-1. Atom Function Summary.

Atom Function Descriptions
This section contains the detailed descriptions of the atom functions.

WINDOWS API BIBLE

AnnAToM
Purpose

Syntax

Description

Uses

Returns

SeeAlso

Parameters
lpString

Example

• Win 2.0 • Win 3.0 • Win 3.1
Adds a character string to the application's local atom table.

. ATOM AddAtom(LPSTR lpString)j

This function is used to add entries. to the local atom table. Each string is ~ven a unique identi
fier called an atom. This atom is a 16-bit unsigned integer. If an exact copy of the string pointed to
by lpString already exists in the atom table, the existing entry's reference count (number of
duplicates for the string) is increased by one. Note that atoms are not case-sensitive. The maxi-
mum string length is 256 characters. .
Atom tables are a convenient way to store and retrieve character strings.
ATOM, the string's unique identifier. The returned value will be in the range OxCOOO to OxFFFF.
Returns NULL on error.
lnitAtomTable()

LPSTR: A pointer to a null-terminated character string that
will be added to the local atom table. . .
This example, which is illustrated in Figure 22-1, loads six
character strings into the local atom table when the program
first starts (MtCCREATE message processed). Two of the
strings are duplicates. The atom values for the six strings are
stored in an array of ATOM values. When a WM_PAINT mes

120 Itl .Quit

tom O. Ref Count 1> Arst String
tom 1. Ref Count 1> Second String
tom 2. Ref Count 1> Third String
tom 3, Ref Count 2> Fourth String
tom 4. Ref Count 2> Fourth String
tom 5, Ref Count 1> Last String

sage is processed, the atom table is displayed. The string con- Figure 22-1. AddAtom()
tents are retrieved·from the atom ~able using the GetAtom Example.
Name() function. To retrieve the reference count for each
string, the local memory area containing the atom is locked. The memory area contains data in
the structure ATOMENTRY format. This data structure is defined at the top of the listing.

When the user clicks the "Do It!" menu item, the application deletes atom number 3. As this
atom starts with a reference count of two (it 'was duplicated), the first call to DeleteAtom()
simply reduces the atom's reference count by one. The second time the "Do It!" menu item is
clicked, the atom is deleted by setting the atom value to zero. Atom 4 remains valid with a refer
ence count of 1.

typedef struct tagATOMENTRY
{

WORD
int
BYTE
char

} ATOMENTRY ;

wReserved ;
nRefCount ;
cStrLen ;
cContent [1] ;

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,LONG lParam)
{

PAINTSTRUCT
char
char

static
WORD
HANDLE
ATOMENTRY

ATOM

ps ;
cBuf [128], cAtomContent [32] ;
*cNames [6] = {"First String", "Second String",

"Thi rd Stri ng", "Fourth String", "Fourth String",
"Last String"} ;

AtomArray [6] ;
i, wAtolll ;
hMem;
*AtomEntry ;

switch (iMessage) 1* process windowsm~ssages*1
{

case WM_CREATE:
InitAtomTable (NULL>; 1* initialize local atom table *1

828

}

22. ATOM FUNCTIONS Y

for (i = a ; i < 6 ; i ++)
AtomArray [i] = AddAtom (cNames [i])

break;
case \;;M_PA1NT: .

BeginPaint (hWnd, &ps) ;
for (i = a ; i < 6 ; 1 ++)
{

}

wAtom = GetAtomName (AtomArray til,
cAtomCont'nt, 32) ;

if (wAtom)
{

}

else

hMem = GetAtomHandle (AtomArray [ill ;
AtomEntry = (ATOMENTRY *) LocalLock (hMem) ;
TextOut (ps.hoc, 0, 1*20, cBuf, wsprintf (cBuf,

"Atom Xd, Ref CountXd> Xs",
AtomEntry->nRefCount,

(LPSTR) cAtomContent»
LocalUnlock (hMem~ ;

TextOut (ps.hdc, 0, i*20, cBuf, wsprintf (cBuf,
"Atom Xd is no longer valid", i» ;

EndPaint (hWnd, &ps)
break;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case 1DM DOIT: 1* delete atom 113 *1
if (AtomArray [3J)
{

}

hMem = GetAtomHandle (AtomArray [3» ;
AtomEntry = (ATOMENTRY *) LocalLock (hMem)
if (AtomEntry->nRefCount > 1)

else
DeleteAtom (AtomArray.[3»

AtomArray [3] = a ;
LocalUnlock (hMem) ;

1nvalidateRect (hWnd, NULL,/TRUE)
break;

1* force paint *1

.case 1DM_QUIT:
DestroyWindow (hWnd)
break;

break;
case W/'LDESTROY:

default:

PostQuitMessage (0) ;
break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL> ;
}

DELETEATOM

Purpose
Syntax

Description

Uses

Deletes an item from the local atom table.
ATOM DeleteAtom(ATOM nAtom)j

• Win 2.0 • Win 3.0 • Wm 3.1

Each time the same character string is added to the atom table using AddAtomO, that entry's
reference count is increased by one. DeleteAtomO reduces the refel'8nce count by one. When the
entry's reference count is reduced to zero, the string is removed from the local atom table.
Removing strings from the local atom table. The entire local atom table will be removed from
memory when the application is terminated, so it is not necessary to delete each atom prior to
stopping the program.

829

WINDOWS API BIBLE

Returns
See Also
Parameters
nAtom

Example

FINDATOM

Purpose

Syntax

Description

Uses

Returns

See Also
Parameters
IpString

Example

ATOM. NULL if the f\Inction was successful. The nAtom value is returned on error.

AddAtomO

ATOM: The atom to be deleted. This is the value returned by AddAtomO.

See the previous example under the AddAtomO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Determines if a_character string has been stored in the local atom table.
ATOM FindAtom(LPSTR IpString); ,

This function searches the local atom table for a case-insensitive match to the string pointed to
by IpString. If a match is found, the atom's value is returned as a 16-bit value.

Locating a string in the atom table.

ATOM, the 16-bit atom value- for the atom containing the requested string. NULL if the string
pointed to by IpString has not been loaded into the local atom table by AddAtomO.

AddAtomO

LPSTR: A pointer to a null-terminated character string con
taining the string to locate in the local atom table.

This example loads six character strings into the local atom

- generic Fr:-
.Qo It! ,gult

Fo.und <Third String>.

table when the program starts (WM_CREATE message re- Figure 22-2. FindAtorn()
ceived). When the user clicks the "Do It!'l-menu item, the table Example.
is searched for the string "Third String." When the string is
located, the result is displayed in the window's client area, as shown in Figure 22-2.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

HOC
char
char

WORO

hOC •
cBuf'r1281, cAtomContent [32J ;
*cNames [6J = {"First String", "Second String",

"Thir:d String", "Fourth String", "Fourth String",
"Last String"} ;

i, wAtom ;

switch (iMessage)
<

/* process windows messages *f

case WM_CREATE:
InitAtomTable (NULL); 1* initialize local atom table *1
for (i = 0 ; i < -6 ; i ++)

AddAtom (cNames [il) ;
break;

case WM_COMMANO: I~ process menu items *1

•

/Otherprogram lines}

swi tch (wParam)
{

/
case 10M_00IT: 1* delete atom 113 *1

hOC = GetOC (hWnd) ;
wAtom = FindAtom ("Third String") ;
if (wAtom)

TextOut (hOC, 0, 0,
"Found <Third String>.", 21) ;

else
TextOut (hOC, 0, 0,

"Did not find <Thi rd St-ring>.", 27> ;
ReleaseOC (hWnd, hOC) -
break;

830

22. ATOM FUNCTIONS Y

GETATOMllANnLE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

~ee Also

Parameters
wAtom

Example

~ose

Syntax

Description .

Uses

Returns

See Also
Parameters
riAtom

IpBujJer

nSize

Example

Retrieves a local memory handle to the memory area containing an atom.

HANDLE GetAtomHandle(ATOM wAt011t)i

When a character string is added to the local atom table with AddAtomO, the data is stored in
local memory in a data structure with the following format:

typedef struct tagATOMENTRY
(

WORD
int
BYTE
char

) ATOMENTRY ;

wReserved ;
nRefCount ;
cStrLen ;
cContent [1 J ;

This structure is not defined in WINDOWS.H. The array size of the cContent element is arbi
trary. The maximum length of an individual atom string is 256 characters. Windows' total atom
storage space is limited by the size of the local memory area (64K). GetAtomHandleO returns a
handle to the memory area containing the ATOM ENTRY data structure. The application can use
this structure to determine the reference count of an atom. This is the number of times the same
string was added to the local atom table using AddAtom().
Seldom used. Normally, GetAtomNameO is used to retrieve the contents of the atom's string.
GetAtomHandleO can be used to determine the reference count of an atom, if atom entries are
being adqed and deleted from the atom table as the application runs.

HANDLE, a local memory handle. This handle can be used to lock the ATOMENl'RY memory
block by calling LocalLockO.

GetAtomNameO, AddAtomO

ATOM: This is the atom number returned by AddAtomO.
See the example under the AddAtomO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Retrieves the character string, given the atom's value.

WORD GetAtomName(ATOM nAtom, LPSTR IpBujJer, int nSize)i

This function copies the atom's character string to the lpBujJer memory buffer, given the atom's
value. The atom's value is the value retumed by AddAtomO when the string was added to the
local atom table .

. This is the normal way to retrieve an atom's string.

WORD, the number of characters copied to IpBu.ffer. Returns zero if the atom is not valid.

GetAtomHandleO, AddAtomO

ATOM: This is, the I6-bit atom value returned by AddAtomO when the character string was .
added to.the local atom table. -

LPSTR: A pointer to a memory buffer that will receive the character string. The buffer must be at
least nSize bytes long.

int: "rIte maximum number of characters to copy to the buffer pointed to by IpBujJer.

See the example under the AddAtomO function description.

831

WINDOWS API BIBLE.

GLOBALAnDATOM • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
lpString

Example

Adds a character string to the global atom table.

ATOM GlobalAddAtom(LPSTR lpString)j

The global atom table is shared by all running applications. GlobalAddAtomO adds a character
string to the table. If the string already exists, the reference count for the atom (number of times
the string has been stored) is increased by one. The maximum string length is 256 characters.

Storing a string in the global atom table makes the string available to any application that has the
atom value (the returned value from this function is the atom value). This is a way to exchange
character data between applications.

ATOM, the atom value for the stored string. NULL on error. The atom value will be between
OxCOOO and OxFFFF.

GlobalGetAtomNameO, GlobalDeleteAtomO

, LPSTR: A pointer to a character string containing the string to be added to the global atom table.

This example demonstrates using globa! atoms to exchange string data b~tWeen running applica
tions. The demonstration is most effective if ~o or more instances of the program are running at
once. When the "Do Jt!" menu item on any of the program instances is clicked. all of the instances
display the string "GobTransmitted data" at once.

The program uses two important keys to communications between applications: registering a
unique mes~age and using the global atom table to store character strings. The Register
Windt r:Mess<:geO creates a unique message ID value that will be the same for each program that
requests the message !D. GlobalAddAtomO loads the character string into the global atom table
that is accessible to all applications.

When the user clicks the "Do Jt!" menu item, the program posts the unique message to all
running applications. The wParam value is set equal to the atom value returned by
GlobalAddAtomO. The -1 for the-Window handle in the PostMessageO call does the trick of
sending the message to every windo·v. Because the message is unique, only applications which
called RegisterWindowMessage("generic") will have the message ID value to respond.

When the unique message is received, the application uses '
the wParam value passed with the message to read the string
back from the global atom table. GlobalGetAtomNameO recov
ers the string, allowing it to be displayed in the window's client
area, as shown in Figure 22-3. Note that the atom is deleted
from the global atom table when the program exits. This step is
necessary, as the global atom table remains in place after the Figure 22-3. GlobalAdd-
program terminates. AtomO Example.

long FAR, PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{ ,

HDC
char
static
static

WORD
ATOM

hDC ;
cBuf [128], cAtomContent [32] ;
wMessa'geID ;
AtomID ;

switch (iMessage)
<

1* process windows messages *1

case WM_CREATE:
wMessageID = Regi sterWi ndowMessage ("generi c") ;
AtomID = Globa lAddAt~m ("Transmi tted data") i
break; ': '

case WM_COMMAND: , ",1 1* process menu items *1
switch (wParam)
<

832
I

I .1

}

22. ATOM FUNCTIONS Y

case 10M_DOlT:'
PostMessage (-1, wMessageID, AtomID, Ol)
break;

case 10M_QUIT:

break;

DestroyWindow (hWnd)
brea k ;

case WM_DESTROY:

default:

GlobalDeleteAtom (AtomID)
PostQui tMessage (0) ;
break;

if (iMessagc == wMessageID)
{

hDC = GetDC (hWnd) ;

1* registered message? *1

GlobalGetAtomName (wParam, cAtomContent, 32)
TextOut (hDC, 0, 0, cBuf, wsprintf .(cBuf,

}

else

"Got>7.s", (lPSTR) cAtomContent» ;
ReleaseDC (hWnd, hDC) ;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL)
}

GLOBALDELETEATOM • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nAtom

Example

Removes a character string from the global atom table.

ATOM GlobalDeleteAtom(ATOM nAtom)j

If a character string has been added to the global atom table more than once with the' Global
AddAtomO function, the atom's reference count will be more than one. Calling Global
'DeleteAtomO reduces the reference count by one. When the reference count is reduced to zero,
the atom is deleted from the global atom table.

Atoms added to the global table by an application should be deleted before the application termi- .
nates. Othenvise, they will remain in memory for the duration of the Windows session.

ATOM. NULL if the function was successful. The nAtom value will be returned if the function
fails, indicating that nAtom is not a valid atom.

GlobalAddAtomO

ATOM: The ~tom value for the string to delete. This is the value returned by GlobalAddAtomO.

See the previous example under the GlobalAddAtomO function description.

GLOBALFINDATOM , • Win 2.0 • Win 3.0 • Win 3.1

Purpose

Syntax

Description

Uses

Returns

Determines if a character string is stored in the global atom table.

ATOM GlobalFindAtom(LPSTR lpString)j

The global atom table is shared by all running applications. GlobalFindAtomO is used to deter
mine if a character string has been loaded into the global atom table. The search is case-insen
sitive.
Normally not used. Usually, the atom values are stored and/or exchanged between applications,
rather than the character strings.
ATOM the atom value for the string in the global atom table. NULL if the string is not loaded in
the atom tab)e.

833

, WINDOWS API BIBLE

See Also

Parameters
lpString

GlobalAddAtomO

LPSTR: A pointer to a character string containing the string to locate in the global atom table.

This example demonstrates the p~sive exchange of string data between running applications. It Example
is most effective if two instances of the program run at the
same time. The first time the "Do It!" menu item on any of the
applications is clicked, the atom containing the string "Test _Do It! Quit
String" is not found. This is because it has not been added to
the global atom table. Mter the message "Test String Not Test String Found.
Found" is displayed, the string is added to the global atom
table. Any instance of the program that has the "Do It!" menu Figure 22-4. GlobalFind
item clicked after that 'point will display the message shown in AtomO Example.
Figure 22-4,"Test String Found."

Note tbat the program calls GlobalDeleteAtomO as many times as the atom was added to the
global atom table. This is necessary to reduce the atom's reference count to zero, if the_~Do It!"
menu item has been clicked more than once. Each running instance of the program ends up
deleting as many reference counts as it added. When the last instance of the program is termi
nated, the atom is certain to be removed from the global atom table.

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{ /

}

HOC
char
ATOM
static int
int

hOC;
cBuf [128], cAtomContent [32] ;
Atom;
nCount = 0 ;

switch (iMessage)
{

1* process windows messages *1

}

case WM_COMMANO: 1* process menu items *1
swi tch (wParam)
{

case 10M_OOIT:
hOC = GetOC (hWnd) ;
Atom = GlobalFindAtom ("Test String")
if (Atom)

TextOut (hOC, 0, 0,

;.{ise
"Test String Found.", 18)

TextOut (hOC, 0, 0,
"Test ~tring Not Found.", 22)

GlobalAddAtom ("Test String")
nCount++ ;
ReleaseOC (hWnd, hOC) ;
break; .

case IDM_QUIT:
OestroyWindow (hWnd)
break;

break;
case WM_OESTROY:

default:

Atom = GlobalFindAtom ("Test String")
for (i= 0; i < nCount ; i++)

GlobalOeleteAtom (Atom)
PostQuitMessage (0) ;
break;

return tiefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

834

22. ATOM FUNCTIONS T

GLOBALGETATOMNAME • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description·

Uses

Returns

See Also

Parameters
nAtorn

lpBuJJer

nSize

Example

. Retrieves a character string from the global atom table.

WORD GlobalGetAtomName(ATOM nAtorn, LPSTR lpB'l{[fer, int nSize)j

Any application that has the nAtorn value for an atom in the global atom table can determine the
associated character string by calling this function. The character string is copied to the lpBuffer
memory buffer.

Used by applications that exchange character data. The nAtorn value can be passed as the
wPflrarn value in a message sent between the two applications. .

WORD, the number of bytes copied to the IpBuffer memory buffer. Zero on error.
GlobalAddAtomO __

ATOM: The atom value. This is the value returned by GlobalAddAtomO.

LPSTR: A pointer to a memory buffer that will contain the character string. The buffer must be at
least n8ize bytes long. .

int: The maximum number of characters to copy to lpBuifer.

See the example under the GlobalAddAtomO function description.

INITATOMT ABLE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
nSize

, Example

Initializes the local atom table.

BOOL InitAtomTable(int nSize)j

Before the local atom table can be used, it must be initialized. InitAtomTableO allows the num
ber of top-level table entries to be specified. The default number (ifnSize is set to NULL) is 37.
This is adequate to efficiently store several hundred character strings; Larger values can be set if
a large number of strings are to be stored in the local atom table. Note that the local atom table
resides in the limited local memory area. Large amounts of data should be stored in the global
atom table.

This function must be called before the local atom table can be used.

BOOL. TRUE if the function was successful, FALSE on error.

AddAtomO

int: The number of t.op-Ievel entries to set in the local atom table. This value should be a prime
number. Set to NULL for the default number of 37 top-level entries. Larger values result in faster
retrieval of strings, but require more memory ~pace.

See the example under the AddAtomO and FindAtomO function descriptions.

835

.Metafiles are coded GDI (Graphics Device Interface) function calls. The GDI functions are described in Chapter,1O,
Device Contexts, Te.Tt Output, and PrinUng, and Chapter 11, Painting the Screen~ When a metafile is "played," the
result is the same as if the GDI functions had been used directly. The differonce is that metafiles can be stored in
memory or as disk files, reloaded, and played any number of times by different applications. Metafiles' are frequently
the most compact means of storing graphical data. Most GDI functions require less than 16 bytes of data when en
coded in a metafile The exact number of bytes depends on the number of parameters the function uses. Compare
metafiles to bitmaps. A 100 by 100 pixel bitmap \vith 16 colors requires 5,000 bytes of storage. Metafiles are also more
device·independent than bitmaps, as the GDI functions are interpreted at run time, based on the output d~vice COlI

text.

Creating and Playing a Memory Metafile
Metafiles are created by using GDI functions on a metafile device context. This is a special type of device context that
only records the GDI function calls, not the results ofthe functions. If the GDI function calls are recorded in memory,
the metafile is a "memory metafile."

, To create ~ metafile that draws a rectangle filled with a hatched brush pattern, use the following code:

static
HBRUSH
HDC

HANDLE hMetaFile;
hBrush ;
bMetaDC, hDC ;

hMe"aDC = CreateMetaFi le (NULL) ;
if (hMetaDC != NULL)

1* create memory metafi le *1

{

hBrush = CreateHatchBrush (HS_DIAGCROSS~RGB (0, 0, 255» ;
SelectObject (hMetaDC, hBrush) ; .
Rectangle (hMetaDC, '0, 0, 100, 50) ;_
hMetaFi le = CloseMetaFi le (hMet'aDC) ; 1* stop GD! input *1
DeleteObject (hBrush) ;
hDC = GetDC (hWnd) ;
PlayMetaFile (hDC, hMetaFile) ;,1* display metafile to hDC *1
ReleaseDC (hWnd, hDC) ;

CreateMetaFileO creates the metafile device context. The GDI functions CreateHatchBrushO,SelectObjectO,
and RectangleO are recorded into this device context. When all of the graphics functions have been' recorded,' the
metafile device context is closed \vith CloseMetaFileO.

C1oseMetaFiJeO returns a handle to the memory metafile, which is a global memory area containing the encoded
GDI function calls. PlayMetaFileO is used to display this data to a physical device, such as the screen or printer.
PlayMetaFileO sends each encoded function to th'e Windows GDI. The results appear just as if the GDI functions were
being used directly. If you are going to use-the metafile again, you will want to save the metafile handle as a static
variable.

Creating and Displaying a Disk Metafile
The GDI functions can be captured in a disk file just as easily as in a memory block. The advantage of using a disk me
is that the metafile can be saved and played later without the time required to re-create all of the GDI function calls.

/

836

Herr is the sante example shown previously, but using a disk metafile:

HANDLE
HBRUSH
HDC

hMetaFi le ;
hBrush ;
hMetaDC, hDC

hMetaDC = CreateMetaFi le (IImymeta.mfll) ; 1* create disk metafi le *1
; f (hMetaDC ! = NULL>
{

hBrush = CreateHatchBrush (HS_DIAGCROSS, RGB (0, 0, 255» ;
SelectObject (hMetaDC, hBrush) ;
Rectangle (hMetaDC, 0, 0, 100, 50) ;
CloseMetaFile (hMetaDC)
D~leteObject (hBrush) ;

}

{Other program lines}

hDC = Get DC (hWnd) ;
1* load metafi le *1

23. METAFILES ""

hHetaFile = GetMetaFile (IImymeta.mf")
PlayMetaFile (hOC, hMetaFilc)
ReleaseDC (hWnd, hDC) ;

1* display it on hDC *1

In this example, a file name is passed to CreateMetaFileO. The encoded GDI calls go into this file, rather than
into a memory area. Later in the program, the GetMetaFileO function is used to load the disk metafile into memory so
that it can be played using PlayMetaFileO.

There are two common uses for disk metafiles. One is as a compact method of storing graphics data for use. in a
program. The metaflles are generated as the program is developed. The final program is distributed with the rnetafiles
on the distribution disks. The program uses the metafile data, ,vithout having to generate the metafile each time the
program is run. The second use for disk metafiles is as a means of storing- graphics data for a painting or design
application. Metafiles are ideal if the application uses objects like lines, rectangles, and ellipses for drawing. Metafiles
ar~ not useful if the paint program is pixel based, allowing arbitrary changes to any pixel. In this case, a DIB bitmap is
the best option. Windows also uses metafiles internally when printing to a printer that only prints one band of pixels
at a time (such as a dot matrix printer). The GDI outputs are stored in a metafile before printing begins. The metafile
is played once for each band of printer output. A convenient way to keep track of metafiles used by a program is to add
them to the .RC resource script file. The line

mymeta HETAFILE"mymeta.mf"

,vin include the l\1YMETA.MF disk metafile in the resource data. When it is time to play the metafile, the data can be
recovered from the resource pool by using

HANDLE
HDC

hMetaFile, hResourcc ;
hDC ;

hResource = LoadResource (hlnstance, FindResource (hlnstance, "mymeta", "r1ETAFILE"»
LockResource (hResource) ;
hHetaFi le= SetHetaFi le9its (hResource) ;
GlobalUnlock (hResource) ;

hDC = GetOC (hWnd) ;
PlayMetaFile (hDC, hMetaFile)
ReleaseDC (hWnd, hDC) ;

SetMetaFileBitsO returns a handle that can be passed to PlayMetaFileO to display the metafile data.

Metafile Disk Format
Normally, you will not have to be concerned with the data format used internally by metafiles. If you are curious, read
on. Otherwise, skip to the next section. The disk file format for metafiles starts with a METAHEADER structure,
defined in WINDOWS.H as follows:

837

WINDOWS API BIBLE

typedef struct tagMETAHEADER

{

WORD
WORD
WORD
DWORD
WORD
DWORD
WORD

} METAHEADER

mtType;
mtHeaderSize;
mtVersion;
mtSize;
mtNoObjects;
mtMaxRecord;
mtNoParameters

1* 1=memory, 2=disk file*1
1* the size of this header *1
1* windows version number, Ox300 = ver 3.0 *1
1* size of the data *1 .
1* number of objects (brush, pen, etc) *1
1* size of the largest record *1
1* reserved *1

After the header, each GDI function is encoded in a METARECORD data structure.

typedef struct tagMETARECORD
{

DWORD
WORD

WORD

rdSize;
rdFunction;
rdParm[1J;

} METARECORD;
typedef METARECORD
typedef METARECORD FAR

1* size of the record *1
1* the function id value *1 .
1* param~ter data - may be more than one *1

*PMETARECORD;
*LPMETARECORD;

The METARECORD structure is the same structure used to encode the metafile data in memory. The key element
in this structure is rdFunction, the numeric ID value for the GDI function. The ID· values are defined in WINDOWS.H,
and they all start with the prefix "META_." For example, the ID value for the LineToO function is META_LINETO,
which is defined as Ox0213. The parameter values follow the GDI function ID values. The number of parameter data
words will depend on the parameters in the function.

Altering the Metaille Image
The simplest way to use a metafile is to just play back the GDI data without modification. The metafile will always be
displayed in the same location and with the same dimensions, because the function parameters, such as a rectangle's
X and Y corner locations, are written directly into the metafile data. To move the location where a metafile is dis
played, you must "trick" the metafile by changing the logical coordinate system. If a metafile is set to output starting
at the 0,0 point, b~t the origin is moved to the center ofthe window's client area, the metafile picture will be displayed
in the center. The SetWindowOrgO function moves the logical origin of a device context. .

Metafiles can also be stretched and compressed during playback by changing the scale of the logical coordinate
system. The SetMapModeO, SetWindowExtO, and SetViewportExtO functions allow complete flexibility as to the
relative scaling. The example program under the CloseMetaFileO function description uses all of these techniques to
display one metafile at two different locations, with two different sizes, and scale the images to fit the size of the
window's client area.

The ultimate way to modify a metafile is to intercept each GDI function call as the data is pulled from the metafile,
and modify the data before it is displayed. The EnumMetaFileO and PlayMetaFileRecordO functions are provided for
this purPose. To use EnumMetaFileO requires adding a callback function to your program. EnumMetaFileO calls this
function once for each GDI call in the metafile. Within the callback function you can examine and change any of the
coded metafile data, prior to displaying it with PlayMetaFileRecordO. The example program under the Enum
MetaFileO function description uses this approach to change the pattern brush used to fill in ~egions.

Metaille Limitations
. Not every GDI function can be recorded to a metafile. The simplest way to .check whether a function can be used is to
see if the function name is defined with a metafile ID number in WINDOWS.H. This is not foolproof, as some GDI IDs
apply to more than one function. Here are some general rules covering the functions that cannot be used in metafiles.
1. Metafiles cannot return information about the environment because the metafile data exists independent of any

real device. Functions such as PtVisibleO, DPtoLPO, GetDeviceCapsO, and GetTextMetricsO will not work in a
metafile.

2. Metafiles cannot process bitmap data or align brush patterns. Functions like GrayStringO, DrawlconO, and·
SetBrushOrgO cannot be used.

838

23. METAFILES ~

"3. The metafile device context does not refer a "real" device. Functions like CreateCompatibleDCO, ReleaseDCO,
and DeleteDSE') should not be used in metafiles.

4. The FillRectO and FrameRectO functions do not work in metafiles because th~y require handles to brushes.

By design, metafiles do not have default values for pens, brushes, colors, etc. When a metafile is played, it simply
executes the GDI function calls given the current status of the device context. This means that you may end up with
different results depending on when a ~eta:file is played. For example, a metafile that does not create a pen will draw
with whatever pen color is in effect.

The opposite problem occurs when a metafile changes the device context settings for colors, coordinate system
scaling, etc. There is no way for a metafile to determine the current settings in order to reset them to their previous
state after use. Any changes made to the device context by the metafile will remain in effect after playback has
stopped.

Thereare several ways to handle the device context changes incurred with a metafile. The simplest is to create a
new device context after. the metafile is played. That way any changes the metafile makes to pens, brushes, etc. will be
qeleted when the old device context is destroyed.

A more sophisticated way of dealing ,vith the device context changes is to store a copy of the device context before
the metafile is played. SaveDCO does this. After the metafile has been played, RestoreDCO is used to recover the old
device context settings. You should decide on a general philosophy of either having the metafile use the existing
brushes and pens selected into a device context, or always having the metafile create its own pens and brushes. The
latter is the preferred approach.

l\letafUe Function Summary
Table 23-1 summarizes the metafile fJ,mctions. The detailed function descriptions are in the next section.

CioseMetaFile

CopyMetaFile

CreateMetaFile

OeleteMetaFile

EnumMetaFile

GetMetaFile

GetMetaFileBits

PlayMetaFile

PlayMetaFileRecord

SetMetaFileBits

Closes the m"etafile device context, and returns a handle that can be used to play the" metafile.

Copies"a metafile to either a disk file or a memory metafile.

Creates a metafile device 9ontext, ready to receive GOI painting information.

" Frees the system resources" associated with a metafile.

Plays a memory metafile back one GOI f')nction at a time, allowing the GOI function parameters
to be changed.

Loads a disk metafile into memory"

Returns a handle to the global memory block containing a memory metafiie.

Outputs a metafile to a device context.

Displays a single GOI f\Jnction call to a device from within an enumeration callback function for a
metafile.

Creates a memory metafile from data stored in a global memory block.

Table 23-1. Metafile Function SwnmanJ.

Metafile Function Descriptions
This section contains detailed descriptions for the metafile functions.

CLOSEMETAFILE • Win 2.0 • Win 3.0 '. Win 3.1
Purpose "

Syntax

Closes the metafile device context and returns a handle that can be used to play the metafile.

HANDLE CloseMetaFile(HANDLE hDC)j

• 839

WINDOWS API BIBLE

Description

Uses

Returns

See Also

Parameters
hDC

Example

When painting operations to the metafile device context opened with CreateM.etaFileO are com
pleted, the metafile must be closed for input. CloseMetaFileO returns a ha.noleiO=the-<:ompleted
memory metafile. This handle is used to play the metafile using the PlayMetaFileO function.

Used after the painting operations creating the metafile are complete. This function must be
used before the metafile can be displayed.

HANDLE, the metafile handle. Returns NULL on error.

CreateMetaFileO, PlayMetaFileO

HDC: The metafile device context created with CreateMeta
FileO. This device context is invalid after CloseMetaFileO is
called.
This example demonstrates creating and painting a metafile 'Figure 23-1. CloseMetaFile()
image. The metafile is created when the application processes Example.
the WM_CREATE message. WM_SIZE messages are inter-
cepted to save the size of the client area. When a W1\CPAINT message is received, the metafile is
painted twice. The size of the image the metafile creates is changed by using the
MM_ANISOTROPIC mapping mode, to change the logical device scaling. The second time the
metafIle is painted, the size is doubled, as the logical X and Yextents are cut in half.1fthe user
clicks the "Do It!" menu item, the metafile is written to a disk file named "twoeJips.mf." The
memory metafile is deleted as the application exits.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
HBRUSH
HOC
PAINTSTRUCT
static

HANDLE

int

hMetaFi le ;
hBrush ;
hMetaDC ;
ps ;
xClient, yClient

switch (iMessage)
{

1* process windows messages *1

case WM CREATE: 1* bui ld memory metafi le *1
hMetaDC = CreateMetaFi le (NULL> ;
if (hMetaDC != NULL)
{

hBrush = CreateHatchBrush (HS_DIAGCROSS,

}

break;
case WM_SIZE:

RGB (0, 0, 255»; .
SelectObject (hMetaDC, hBrush) ;
Ellipse (hMetaDC, 0, 0, 100, 50) ;
Ellipse (hMetaDC, 20, 0, 80, 120) ;
hMetaFile = CloseMetaFile (hMetaDC)
DeleteObject (QBrush) ;

xClient = LOWORD (lParam)
yClient = HIWORD (lParam)
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
SetMapMode (ps.hdc, MM_ANISOTROPIC)
SetWindowExt(ps.hdc, 300, 300) ;
SetVicwportExt (ps.hdc, xClicnt, yClient)
SetWindowOrg (ps.hdc, 0, 0) ;
PlayMetaFile (ps.hdc, hMetaFile) ;

SetWindowExt (ps.hdc, 150, 150) ; .
SetViewportExt (ps.hdc, xClient, yClient)

840 •

}

SetWindowOrg (ps.hdc, -50, -25) ;
PlayMetaFile (ps.hdc, hMetaFile) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

23. METAFILES T

case 10M OOIT: 1* save the meta fi le to disk *1
copyMetaFi le (hMetaFi le, "twoelips.mf") ;
break;

case 10M_QUIT:

}

break;

DestroyWindow (hWnd) ;
break;

case WM_OESTROY: 1* stop appU cati on */
OeleteMetaFile (hMetaFile) ;
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
return DefWindowProc (~Wnd, iMessage! wParam, lParam) ;

return (OL> ;

COPyMETAFILE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Aleo

Parameters
hSrcMetaFile

lpFileName

Example

Copies a metafile to either a disk file or a memory metafile.

HANDLE CopyMetaFile(HANDLE hSrcMetaFile, LPSTR IpFileName)i

This function copies a metafile to a disk file. Disk metafiles are a compact means of storing
graphical information. Alternatively, if the lpFileName parameter is set to NULL, the source
metafIle is copied to a memory metafile. .

Normally used to write memory metafile data to a disk file.

HANDLE, the handle of the new metafile created.

GetMetaFileO

HANDLE: The handle of the metafile to copy. This is the value returned by CloseMetaFileO or
GetMetaFileO·

LPSTR: A pointer to a null-terminated character string containing the disk file name to create. If
lpFileName is set to NULL, the source metafile is copied to a new memory metafile. \

See the previous example under the CloseMetaFileO function description.
. -

CREATEMETAFlLE • Win 2.0 .• Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Creates a metaflle device context, ready to receive GDI painting information.

HDC CreateMetaFile(LPSTR lpFilename)j

This function creates a metaflle device context. This is not the same as a device context opened
with GetDCO or CreateDC(). Metafile device contexts store GDI (Graphics Device Interface)
function calls, so that they can be played back later.

This is the first step in creating a metafile.

HDC, a handle to the metafile device context created.

CloseMetaFileO, PlayMetaFileO

841

WINDOWS API BIBLE

Parameters
IpFilename

Example

LPSTR: A pointer to a null-terminated character string containing the name of the disk file that
will receive the metafile data. Alternatively, IpFilename can be set to NULL, creating a memory
metafile device context.

See the example under the CloseMetaFileO function description.

DELETEMETAFlLE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax
Description .

Uses

Returns

See Also

Parameters
hMF

Example

Purpose

Syntax

Description

Uses

Returns

See Also
. Parameters

hDC

hMF

Frees the system resources associated with a metafile.

BOOL DeleteMetaFile(HANDLE hMF)i

This function frees the system resources associated with a metafile. The metafile handle can be
retrieved with GetMetaFileO. Disk metafiles are not deleted from disk by this function.

Used to free the system memory when the metafile is no longer needed by the application.

. BOOL. TRUE if the system resources have been freed, FALSE on error.

CloseMetaFileO, GetMetaFileO, CopyMetaFileO

HANDLE: The metafile handle. This is the value returned by CloseMetaFileO when the metafile
was created, or by GetMetaFileO when a disk metafile was loaded.

See the example under the CloseMetaFileO function description .

• Win 2.0 • Win 3.0 • Win 3.1
Plays (enumerates) a memory metafile back one GDI function at a time, allowing the GDI func
tion parameters to be changed.
BOOL EnumMetaFile(HDC hDC, LOCALHANDLE hMF, FARPROC IpCallbackFunc, BYTE FAR
*lpClientData)i .

Metafiles consist of a series of binary coded GDI (Graphics Device Interface) function calls.
EnumMetaFileO calls a callback function once per GDI call. The callback function can examine
the GDI data and modify it J>efore using PlayMetaFileRecordO to display the GDI output.
Modifying a metafile during playback (for example to change the colors, pens, 'or brush patterns
used).

BOOL. TRUE if the function successfully processed each GDI function call in the metafile. False
on error.

PlayMetaFileRecordO

HDC: The device context handle passed to the callback function with each enumeration.

LOCALHANDLE: The handle of the memory metafile. This is the value returned by Close
MetaFileO and/or GetMetaFileO. - .

IpCalibackFunc FARPROC: The procedure-instance address of the callback function. This value is returned by

IpClientData

MakeProclnstanceO. The callback function must be listed in the EXPORTS section of the
program's .DEF definition file, and it must have the format shown below ..

BYTE FAR *: A pointer to data to be passed to the callback function. This can be used to pass
data, such as colors or pattern numbers, to the callback function.

Callback Function The callback function must be in the following format:

int FAR PASCAL EnumFunc (HDC hDC, LPHANDLETABLE IpHTable, LPMETARECORD IpMFR,
intnObj, BYTE FAR *lpClientData) i

842

hDC

lpHTable

23. METAFILES ...

The callback function should return 1 to c'ontinue displaying the metafile, 0 to stop playback.
The callback function parameters are defined as follows.

HDC: This is the device context handle for the device to receive the metafile output. This value is
passed to the callback function by EnumMetaFileO.

LPHANDLETABLE: A far pointer to a HANDLETAI3LE data structure. This is defined in WIN
DOWS.H as follows:

typedef struct tagHANDLETABLE
{

HANDLE objectHandle[1 Ji 1* can be more than one *1
} HANDLETABLEi

'typedef HANDLETABLE *PHANDLETABLEi
typedef HANDLETABLE FAR *LPHANDLETABLEi

lpMFR LPMETARECORD: A far pointer to a METARECORD data structure. This is defined in WIN
DOWS.H as follows:

typedef struct tagMETARECORD

{

DWORD
WORD
WORD

/
rdS;ze;
rdFunct;on;
rdParm[1J;

1* the s;ze of th;s record *1
1* the GDI funct;on number *1
1* the parameter data *1

} METARECORD;
typedef METARECORD
typedef METARECORD FAR

*PMETARECORDi
*LPMETARECORD;

nObj

lpClientData

Example

The rdSize element of this structure is convenient, as the size of each METARECORD entry
depends on the number of bytes of parameter data used by the GDI function called. The number
of rdParamlJ elements will depend on the number of parameters the GDI function calls. The
function is identified with the rdFunction element. Metafile·compatible GDI functions are iden
tified in WINDOWS.H with ID values starting with "MF _."

int: The number of objects with handles stored in the HANDLE TABLE.

BITE FAR *: The data passed to the callback function by EnumMetaFileO.

As shown in Figure 23-2, this example displays the disk
metafile TWOELIPS.MF when the user clicks the "Do It!" menu
item. During playback, the brush pattern used in the Create
HatchBrushO GDI function call is changed to the HS_CROSS
style. Compare this figure with Figure 23·1 to see the differ
ences in the hrush patterns.

The brush pattern is changed within the metafile enu
meration function EnumMFO, shown at the bottom of the list
ing. This function is called one time for every GDI call in the
metafile. EnumMFO checks for the GDI function ID for Create
HatchBrushO, and then modifies one of the parameter values
before passing the data to PlayMetaFileRecordO. Note that
EnumMFO must be listed in the EXPORTS section of the
program's .DEF definition file, and it must have a function pro·
totype added to the program's header file.

Figure 23-2. Enum Meta
File() Example.'/

"r·"

long FAR PASCAL WndProc (HWND hWnd, uns;gned ;Message, WORD wParam, LONG lParam)
{

stat;c
HOC
FARPROC

HANDLE hMetaF; le ;
hOC ;
fpEnumFunc ;

843

WINDOWS API BIBLE

}

switch (iMessage)
<

1* process windows messages *1

}

case WM CREATE: 1* load metafile *1
if(!(hMetaFile = GetMetaFile ("twoelips.mf"»)

MessageBox (hWnd, "Could not load TWOELIPS.MF",
"Fi le Problem", MB_OK) ;

break;
case WM_COMMANO: 1* process menu items *1

swi tch (wParam)
<
case 10M_OOIT:

hOC = GetOC (hWnd) ;
fpEnumFunc = MakeProc1nstance (EnumMF, gh1nstance)
EnumMetaFile (hOC, hMetaFile, fpEnumFunc, NULL) ;
FreeProc1nstance (fpEnumFunc) ;
ReleaseOC (hWnd, hOC) ;
break; .

case 10M_QUIT:. 1* send end of application message *1
OestroyWindow (hWnd) ; -
break;

break;
case WM_DESTROY: 1* stop application *1

DeleteMetaFile (hMetaFile) ;
PostQuitMessage (0) ;

. break;
default: , 1* default windows message processing *1

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

int FA~ PASCAL EnumMF (HDC hDC, LPHANDLETABLE lpHTable,
LPMETARECORD lpMFR, int nObj, BYTE FAR *lpClientData)

{

}

1* check f6r create hatch brush function == MF_CREATEBRUSHI"01RECT *1
H (lpMFR->rdFunction == MF_CREATEBRUSH1NOIRECT) .
<

lpMFR->rdParm [3J = HS_CROSS ; 1* change brush pattern *1
}

PlayMetaFileRecord (hOC, lpHTable, lpMFR, nObj) ;
return (1) ;

• Win 2.0 .. Win 3.0 II Win 3.1
Purpose
Syntax
Description

Loads a disk metafile into memory.

HANDLE GetMetaFile(LPSTR IpFilename)j

This function reads a disk metafile into memory and returns a
handle to the metafile. The handle can be used to display the
metafile using PlayMetaFileO.

Do-It! Quit

Uses

Returns

See Also

Disk metafiles are a compact way to store graphics data cre
ated with GD! function calls. They require much less space .
than storing the bitmapped image.

HANDLE, the metafile handle. Returns NULL on error, such as
not finding the disk file.
PlayMetaFileO, CopyMetaFileO, CreateMetaFileO .. 1 _______ ... '

Figure 23-3. GeLMetaFile()
Example.

844

23. METAFILES T

Parameters
IpFilename LPSTR: A pointer to a null·terminated string containing the DOS file name of the disk metafile.

This can be an extended file n3:me, including the full directory name.
Example This example, which is shown in Figure 23·3, displays the disk metafile "twoelips.mf.". See the

CloseMetaFileO function description for an example program that creates the disk metafile.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

}

static
PAINTSTRUCT
HANDLE

HANDLE hMetaFi Le = NULL;
ps ;
hl1em ;

char
HOC
int

cBuf [128J ;
hOC;
oSi ze ;

switch (iMessage)
{

1* process windows messages *1

}

case WM CREATE: 1* Load metafi Le *1
if<!(hMetaFile = GetMetaFile ("twoelips.mf"»)

MessageBox (hWnd, "Could not load TWOELIPS.MF",
"Fi le Problem", MB_OK) .

break;
case WM_PAINT:

BeginPaint (hWnd, &ps) ;
if (hMetaFi Le)

PlayMetaFiLe (ps.hdc, hMetaFiLc)
EndPaint (hWnd, &ps)
break;

case WM_COMMAND:
swi tch (wParam)
{

case 10M_QUIT:

}

break;

DcstroyW;ndow (hWnd)
break;

case WI1_DESTROY:

default:

DeleteMetaFile (hMetaFiLe)
PostQu; tMessage /(0) .
break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL) ;

GETMETAFILEBITS II Win 2.0 .. Win 3.0 • Win 3.1
Purpose

Syntax

. Description

Uses

Returns a handle to the gloqal memory block containing a memory metafile.

HANDLE GetMetaFileBits(HANDLE hMF)j

This function returns a handle to a global memory block containing a metafile. The metafile data
consists of binary·coded G D I function calls. This data should,not be" modified. The hMF handle to
the metafile is invalid after GetMetaFileBitsO returns. SetMetaFileBitsO can be used to restore
the metafile handle.

Applications can manipulate the global memory block using the normal memory management
functions. This is typically done in order to copy more than one memory metafile into a file or
data structure used by a graphics program.

845

WINDOWS API BIBLE

Returns

See Also

HANDLE, the global memory handle for the metafile data.
NULL on error.

SetMetaFileBitsO is used to restore the metafile handle after
. GetMetaFileBitsO has been called ..

Parameters
hMF HAND~E: The memory metafile handle. This is the value re

turned by CloseMetaFileO and/or GetUetaFile().

Example This example creates and paints a metafile. When the user
clicks the "Do It!" menu item, the program obtains a global
memory handle to the memory block containing the memory
metafile. The GlobalSizeO function is used to determine the Figure 23-4. GetMeta-
size of the memory block. The metafile requires 128 bytes of FileBits() Example.
storage, which is remarkably compact. For comparison, 128
bytes would store only 32 pixels of a bitmap with a 16-color bitmap. The graphics portion of Figure
23-4 contains 13,000 pixels, or 6,500 bytes if stored as a bitmap.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

static
HBRUSH
HOC

HANDLE hMetaFi le = NULL;
hBrush ;
hMetaDC ;

int
PA1NTSTRUCT
HOC

nSize ;
ps ;
hOC;

HANDLE hMem ;
char cBuf [128J

switch (iMessage)
{

1* process windows messages *1

case WM CREATE: 1* bui ld metafi le *1
hHetaDC = CreateMetaFile (NULL) ;
if (hMeta DC ! = NULL)
{

}

break;
case WM_PA1NT:

hBrush = CreateHatchBrush (HS_D1AGCROSS,
RGB (0, 0, 255» ;

SelectObject (hMetaDC, hBrush) ;
Rectangle (hMetaDC, 0, 0, 100, 30) ;
Pi~ (hMetaDC, 0, 30, 100, 100, 100, 100, 0, 100)
MoveTo (hMetaDC, 0, 100) ;

. LineTo (hMetaDC, 100, 100) j
hMetaFile = CloseMetaFile (hMetaDC)
DeleteObject (hBrush) ;

BeginPaint (hWnd,.&ps) ;
if (hMetaFi le)

PlayMetaFile (ps.hdc, hMetaFile)
EndPaint (hWnd, &ps)
break;

case.WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case 10M_DOlT:
hOC = GetDC (hWnd) ;
hMem = GetMetaFi leBits (hHetaFi le) ;
nSize = GlobalSize (hMem) ;
hMetaFile = SetHetaFileBits (hMem) ; :
TextOut (hOC; 0, 120, cBuf, wsprintf (cBuf,

"Metafi le si ze = Xd bytes.", nSi ze»

846

}

ReleaseOC (hWnd, hOC)
break;

case 10M_QUIT:

}

brea k ;

OestroyWindow (hWnd) ;
break;

case WM_OESTROY: 1* stop application *1
OeleteMetaFile (hHetaFile) ;
PostQuitMessage (0) ;
break;

23. METAFILES ~

default: 1* default windows message processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

PLAyMETAFILE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

hMF

Example

Outputs a metafile to a device context.

BOOL PlayMetaFile(HDC hDC, HANDLE hMF)j

This function runs the metafile in order to display the graphics output. The meta11le GDI (Graph
ics Device Interface) function calls are played to the hDC device context. The size and location of
the output can be changed by setting different device context scalings and origin locations for
hDC.

Displaying a metafile on a device.

BOOL. TRUE if the function was successful, FALSE on error.

CreateMetaFileO, CloseMetaFile, SetWindowExtO, SetWindowOrgO

HDC: The device context handle for the device that will receive the metafile output.

HANDLE: The handle of the metafile to play. This is the value returned by CloseMetaFileO or
GetMetaFileO·
See the example under the CloseMetaFileO function description.

PLAyMETAFILERECORD ' • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hDC

Displays a single GDI function call to a device from within an enumeration callback function for
a metafile.

void PlayMetaFileRecord(HDC IiDC, LPHANDLETABLE lpHandletable, LPMETARECORD
lpMetaRecord, WORD nHandles)j

EnumMetaFileO calls a callback function once per GDI function in the metafile. Within the call
back function, PlayMetaFileRecordO is used to output ~he single GDI call to the device. The GDI
parameter data can be modified before 'this function is called .

. Used within the callback function when using EnumMetaFileO to modify a metafile during play
back.

No returned value (void).

EmimMetaFileO

HDC: The device context handle for the device to receive the GDI output. This is the HDC passed
to the callback function by EnumMetaFileO.

, .

WINDOWS API BIBLE

lpHandletable LPHANDLETABLE: A far pointer to a HANDLETABLE data struCture, defined in WINDOWS.H as
follows:

~ypedef struct tagHANDLETABLE
{

HANDLE objectHandle[1J; 1* can be more than one *1
} HANDLETABLE;

typedef HANDLETABLE *PHANDLETABLE;
typedef HANDLETABLE FAR *LPHANDLETABLE;

lpMetaRecord LPMETARECORD: A far pointer to a METARECORD data structure, defined in WINDOWS.H as
follows: '

typedef struct tagMETARECORD
{

DWORD
WORD
WORD

rdSize;
rdFunction;
rdParm[1J;

1* the size of this record *1
1* the GDl function number *1
1* the parameters *1

} METARECORD;
typedef META RECORD *PMETARECORD;

*LPMETARECORD; typedef METARECORD FAR
/

nHandles WORD: The number of handles in the lIANDLETABLE. This value is passed to the callback func-
tion as the nObj parameter. -

Example See the example under the EnumMetaFileO function description.

SETMETAFILEBITS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns
See Also

Parameters
hMem

Example

Creates a memory metafile from data stored in a global memory block.

lfANDLE SetMetaFiIeBits(HANDLE hMem)j \

,GetMetaFileBitsO is used to obtain a handle to a memory metafile's global memory block. After
it is called, SetMetaFileBitsO should be used to restore the metafile handle. SetMetaFileBitsO
returns a valid metafile handle that can be used for PlayMetaFileO.

Used to convert a block of resource data into a memory metafile that can be played using
PlayMetaFileO· .

HANDLE, a memory metafile handle that can be passed to PlayMetaFileO.

GetMetaFileBitsO

HANDLE: The memory handle ofthe global memory blo~k containing the metafile. This handle is
returned by GetMetaFileBitsO or LoadResourceO.
See the example under the GetMetaFileBitsO function description. Also see the discussion of
loading a metafile as resource data at the beginning of this chapter. '

·848 .

Windows includes the useful ability to set timers. Once set, a timer sends WM_TIMER messages to an application at
preset intervals. These messages continue until the timer is shut off. Timers are used more frequently in Windows
applications than in programs running in a conventional environment, such as MS-DOS. A DOS program canjust loop
forever, waiting for some event to occur. This situation would not work under Windows, as the application would take
over the system and not allow other applications to run. Timers are a convenient way to periodically initiate some
action, without having the application hog the environment.

Using Timers
Windows allows a maximum of 16 timers to be active at once. Each timer has a separate ID value, so that an applica

, tion can use more than one timer. The timers use the system clock, which limits the minimum time between timer
events to 55 milliseconds. Longer time periods, up to about 596 hours, are possible.

The SetTimerO function starts a timer. There are two ways to use this function. The most common way is to call
SetTimerO with the fourth parameter set to NULL.

static int nTimer ;

if (!(nTimer = SetTimer (hWnd, 1, 1000, NULL»)
MessageBox (hWnd, "No Timers Left!", "Message",

MB_OK) ;

In this case, the timer will send WM_TIMER messages to the program's WndProcO function every 1,000 millisec
onds (once per second). The timer's ID value is returned by SetTimerO. The ID is an integer value that will be passed
as the wParam value when the WM.....:TIMER message is received. If more than one timer is set, the timers will have
different ID values, so they cali be kept apart. Note that the SetTimerO return value is checked to see if it is zero. A
zero value means that all 16 timers are being used. This is possible, so be sure to check this value before proceeding.

The other way to call SetTimerO is to pass a procedure-instance address of a callback function to the function.
The callback funciion receives the WM_TIMER messages, not the WndProcO function. A typical program fragment
for this usage is

static int nTimer ;

fpTimerFunc = MakeProcInstance (TimerFunction, ghInstance) ;
if (!(nTimer =SetTimer (hWnd, 1, 15000, fpTimerFunc»)

. MessageBox (hWnd, "No Hmers left!", "Message",
MB_OK) ; .

. The callback function must follow a sp~cific format, and it must be listed in the EXPORTS sectioIJ. of the program's
.DEF deflnition fIle. See the SetTimerO function description for a complete example.

The WM_TIMER messages will continue until the timer is shut down with the KillTimerO function.

KillTimer (hWnd, nTimer) ;

Timer Accuracy . '
Alth~ughtimers can be set t~ a i~equefl(~yof one every 55 milliseconds,'the interval, between timer events will not be
tha~ accurate. This ina~curacy is because the WM_TIMER messages are placedfonthe application's message queue.

I
I

'849

WINDOWS API BIBLE

Windows will only place the ~CTIMER message on the queue if the queue is empty (empty of all messages except
W~CPAINT). Windows will not put more than one MtCTIMER message on the queue. This keeps the queue from
filling up with WM_TIMER messages if a very short time interval is set. .

For most applications, exact precision between WM_TIMER messages is not necessary because the applications
are not significantly affected iftheWM_TIMER message is a bit late. For applications that require greater accuracy,
other techniques are required. Applications like music recording/playback and some process control programs re
quire more accurate time keeping. This is generally done by using hardware interrupts, processed by a small program
function and data buffer ~n a page locked memory block. The Windows program can periodically read and write to the
memory buffer, leaving the exact timing of transmission/reception to the interrupt driven routine.

I.

Other Time Functions
Windows keeps track of the number of milliseconds since the system was started. This period of time is called "Win
dows time." The millisecond count is a DWORD value that can be retrieved using GetCurrentTimeO or GetTick
CountO. Every Windows message is tagged with a time value. You can determine this value by either examining the
contents of the MSG data structure in the program's message loop, or by calling the GetMessageTimeO function
within th~ body of the program.

Windows does not provide a way to determine the outside world date and time from the system clock. The C
compiler run;time Ubrary functions timeO and ctimeO can be used to fetch the current date/time and convert it to a
character sting.

Timer Function Summary
Table 24-1 summarizes the Windows timer functions. The detailed function descriptions are in the next section.

GctCurrentTtme

GetTtckCount

KillTimer

SetTtmer

Returns the number of milliseconds since the system was booted.

Returns the number of milliseconds since the system was booted.

Stops a timer.

Starts a Windows timer.

Table 24-1. Timer Function Summary.

Function Descriptions.
This section contains the detailed description of Windows time functions.

GETCURRENTTIME • Win 2.0 • Win 3.0 • Win 3.1
Purpose
Syntax

Description

Uses

Returns
See Also
Parameters
Example

Returns the number of milliseconds since the system was booted:
DWORD GetCurrentTime(void)j

Windows keeps an internal clock that starts when the system is booted. Each message is tagged
with the clock count when the message is sent (GetMessageTimeO retrieves this value).
GetCurrentTimeO returns the current clock count. The maximum accuracy is about 1I18th of a
second.
Used to determine how long a message has been waiting in the message queue. The difference '.
between GetCurrentTimeO and ~etMessageTimeO is the delay.'

DWORD, the internal clock count in milliseconds.
GetTickCountO
None (void).

This example, which is illustrated in Figure 24-1, sets a one second timer when the user clicks the
"Do It!" menu item. Whe~ a WM~TIME message is received, both the message time "and Windows

850

_ ~4. I nt: IIMt:" ""

current clock value are retrieved. The difference between the two is the length of time the
WM_TIME message waited on the application's message queue. Because the WM_TIME mes-

; sages are sent only ifWhldows passes control to the application, there will be no time delays if the
application is sharing the Windows .
environment with other Windows
applications. However, ifWmdows is
running DOS applications concur
rently in 386 enhanced mode, delays
will be registered by this program. Figure 2t-1. GeWumintTime() Example.

- .', . . .

long FAR PASCAL WndProc (HWND hWnd, unsigned i"essage, WORD wParaa, LONG lParaa)
(' ,

>

DWORD '
static
char
HDC
static

dwTickCount,dwflessageTi.e, dwDelay i
OWORD dw"axDe lay = 0 ;

cBuf [128J ;
hDC ;

int nTiller ;

switch (i"e8.age)
{

1* process windows lIes.ages *1

)

case W"-TltlER:
hDC = GetDt (hWnd) ;
SetBkflode (hDC, OPAQUE) ;
dvTickCount = GetCurrentTt.e () ;
dw"esaageTille = Get"essageTi.e () ;
dwOelay = dwTickCount - dw"essageTilae ;
if (dwDelay > dw"axOelay)

dwflaxOelay = ,dwDelay ;
TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf,

"Tick Count = %lu, delay = Xlu, "ax Delay = Xlu .. ,
dwTickCount, dwDelay, dw"axDelay» ;

ReleaseDC (hWnd, hOC);
, br~k;

case W"_CO""AND: 1* process laenui te.s *1
swi tch (wParala)
(

case IO"_DOIT: ,
if (!(nTimer =$etTi.er (hWnd, 1, 1000, NULL»)

"essageB~x(hWnd, "No Tiaers Lett!", l"e8.age",
"B_OK) ';

break;
'case ID"_QUIT:

)

'break;

DestroyWindow (hWnd)
break;

case W"_DESTROY: 1* stop application *1
KillTiaer (hWnd, nTimer) ;
PostQuitflessage (0) ;
break; , '

default: 1* default windows .essage processing *1
return Def~indowProc (hWnd, iNessage, .,Paraa, lParaa) ;

return (OL) ;

GE1TICKCOUNT' • Win 2.0 • Win 3.0 .Win3.l

Purpose Returns the number of milliseconds since the system was booted. "
Spta DWORD GetnekCount(void);
DeaaipUOD' This function is id~ntical to GetCurrentTime().
1etarDs' DWORD, the number of milliseconds since the symem w~ booted.
See AIIo GetCurrentTimeO

851

None (wuid). .

'lhepMious example can be modified louse GetTickcountb in p~or~Owldl
no·~ 1ft the operati~ of the program..

, .,."

:...... Stops

. .,.... . .. BOOL IIRI'IIIer(BWND AW7uI, Int n1DBwnt);
.e._.... . . ~ .. ·TbaeIIIri ereated with Set'niilerQ. Once set, the .timer will cOrit~ to WlLTIJIEI

~antU the KUlTbnerO function is used to stop the timer's eueutIoIL Any pesadIfta .
\ftLmtER IlIeSIIIge8 are removed from the message queue when KIIlI1IIer() .. eDC1Ited.

.. _t ••
AW.
fIIDBwrtI

SMttIDI down. Windows tllner. 'Ibis Is necessary to retum the timer to u.at it ..
lie, aather application.· . . .

BOOL. TRUE lithe timer was removed, FALS~ on error.
8et'I'IIIer()

IIWND: 'lite bandIe of the window that owns the timer.
iM: .10 qJue oIthe timer to kill. 'Ihia Is the value returned by 8een.er .

.... Mu FlU WILTIMER
,....... See the examples under the SetTlmerO and GetCurrent'fimeO·function descriptions.

SeeM.

".e ..
AIW
fIIDBwrtI

I"Vm 2.0 .WIn 3.0 .. o WIn 3.1
Starts. WIndows timer.
WOlD 1eI'I'IIIU(IIWND AJfW, int n1DBverd, WORD wE,.., FABPBOO ",n.rIWc);

. 'ibis Iunetion I&arts a timer. If Ip7'imerJi1unc is,set to NULL,~the timer II8Ilds WM_TIMII ...
AID to the appIleatlon at thewElap8e interval.lflp7'imerFunc Is a prOeedure-~"
of.aIIbaek fanetion, the WM_TlMER messages are sent dlrectly to that ftmctIon, bJ tIae
ROIIMI WndProeO meaage processlJig. .

Iecaa8e the timer mesiqes are placed on the appUcation's message..." theJwlllaat-
ftJCeiMI at tile aid IntemI JPeCifted byIDB,.", bot they may Ite ,.
IdidIes. A ___ of 16tiJnen are available to all applications nmaIII-....... 1M
............ eheektlte retumedvaJuefrom SetTlmerO towrttthlt
AIrI time • perlodlc lmemption Is required within a WIndows applleatlon.
WORD, the Iideter 10 of the timer. This value Is passed to KillTlmerQ to MIG\1e tile tbaer. Be- .
tIIftII .. if~ tIJIlerwas available.

IiIIIbIMJr()

IIWND: fte oftJae window that will receive the WM_TIMER .. e_
Iat: of the timer. This .me will be passed with the WM_TIMII-...e. tile
"',..,.. fthie. timer m values allow more than one timer to be set wIddIIa ~ lid dlelrWILTDIII to be distinguished. . . .' , .• : .. ~.

WOIIJ: oImUJtsreonds between timer events. 'I1leJlliDblna
·ahout65~ ;

rAlPlOO: 'Dds II let to NULL lithe application dJrecehethe Wit.Tu8
to the WndPJocO tuIiCtion. To send the· WM;..TIMER ,.to a sepan&e callituk IIIdIea,

\

. 2 •• THE TIMER W'

Bet IpTimerJiUnc to the procedure-instance address of the ~ fuDction. 'Ibis is the value
m.uned by MakeProcInstanceO. . r.-..,..... The timer callback functlor. must be in the following form:
WORD FAR PASCAL TlllerFac (HWNDAIftul, WOBDtDM." tntfll~ DW~4wTiru);
RWND: The window handle of the window owning the timer.
WOlD:' Always WM_TIMER.
tnt The 10 number of the timer. ThIs is the returned vallie .. wilen ttae SetI1mer() funetlon ..
eaUed.
DWORD: 111e WIndows clock value when the callback fUnctionla IIrs& called. 'I1als value is DOt
updated as the callback function is repeatedly called.

IeIa1ed II-.s· MLTIMER
B....ae: 11ds example, which is illustrated In Figure 24-2, sets a timer

that calls a callback function directly, rather than lssulng
WM_TlMER messages. The callback function displays the num
ber of milliseconds since the system was started. 1be callback FigunI M-l. Set7'iaer()
function TimerFunctionO must be listed in the EXPORTS see- Hzoapls.
tlon of the program's .DEF definition, and a function pro~
should be included in ille header tue. Note that the callback function eanDOt use the dlD7ialB
parameter to show the system time. dwTime is 0Dly valid the first time the caIlbadt ftmctIon is
caned. (See the example under GetCurrent11meO for an example of settin& a timer without a .
callback function.)

Long fAR PA~CAL IIndProc (HWND Mind, unsigned U' g., .. ORO wPare., LOla lPara.)
(

)

FARPIOC fpTi •• rfunc ;
.~.ttc int nTi •• r ;

.witch (i ~e)
(

1* proc ••• windo *1

)

case .. "-TlAER:
break;

ca .. W"_COIIIIAND: 1* process aenu tt ••• *1
.witch (wP.r.m)
(

ca.e U,,-DOIT: .:' ." ' .
fpTi •• rfunc = RateProclnstanca (Tt •• ,functton,

ghlnstanca) ;
if .(!enTi.er = S.tTi •• , (h"nd, 1, 1000,

, .. ;fpTt .. ,Func»!.
1I ~8ox (hllnd, "10 t't .. rs l.ft t .. # , ... #

.---"'8_01C) ;'
break ;:

cas. lOR_QUIT: '.
De.troyWindow (h"nd) ;
br.ak ; ,

)
bre.t ';

ca •• ",,-DESTROY: 1* .top .pplic.t:ton *1
ICtllTi •• r (hYnd, nTi •• r) ; .
fr •• Procln.t.nc. (fpTtaerFunc) ;

. . Po.ttui tR '. (0) ;
1 br •• k ; ~ ." . .

def.ult:· '1* d.f.ult 'lMIow' 'roc ••• 'n. */
, ' retur ... ' D.fW'ndo .. Proc (.... nd, , lP);

_return (OL) ;

'''ORD .AI ~AICAL T' •• rFunctton (MYND' h"nd, "ORO fll' .tn~ nlDTt ,. OVOID an ..) (

./ 853

WINDOWS API BIBLE

(

)

·HOC'
char
OIllORO

hOC;
cBuf [128J ;
dwCurrentTime ;

dwC~rrentTi~e = GetCurrentTime ()
hOC = GetOC (hWnd) ;
SetBk"ode(hOC, OPAQUE) ;
TextOut (hOC,'O, 0, cBuf, wspr~ntf (cBuf,

"Syste. Up XLu ~sec.", dwCurre~tTi.e»
ReLeaseDC (hWnd, hDC) ;

854

Every example program in this book uses resources. The .RC resource script file of the GENERIC application includes
the menu definition and program icon data. Other examples of defining dialog boxes, keyboard accelerators, and
menus have been discussed in their respective chapters. Resources are frequently the most convenient way to store
raw data needed by the program. Combining the static data needed by the application in the resource file avoids
having a number of separate files that the application reads when needed. Resources are also efficient because they
are usually loaded into memory only when needed.

The Resource Compiler
The NMAKE file for the GENERIC application includes two calls to the resource compiler RC.EXE (shown here with
debugging options set on).

ALL: generic.exe

CFLAGS=-c -0 LINT_ARGS -Zi -Od -Gsw -W2
LFLAGS=/NOO Ico

generic.obj : generic.c generic-.h
S(CC) S(CFL~GS) generic.c

generi c. res : generic. rc generi c. i co paragraf. txt
rc -r generi c. rc

generic.exe : generic.obj generic.def generic.res
link S(LFLAGS) generic, , ,libw slibcew, generic
rc generic.res

The first call to RC has the "-r" switch. This switch just compiles the resource file GENERIC.RC, producing an
output file GENERIC.RES. The second call to the RC at the bottom of the listing does not have the "-r" switch. This call
adds the compiled resource data to the executable program, creating the finished ready-to-run program. It also marks
the program with the Windows version data, even if the program does not have resource data. The version data is
detected when Windows version 3.0 or higher starts a program. If an earlier version of Windows is detected, a warning
message is put on the screen.

Both the resource compilation and final program assembly can be"done with one call to RC. Just drop the first call
to RC, and eliminate the ".res" after the resource name on the last line. Combining them this way is not recommended
because the compilation is slow relative to final assembly. If there have been no changes to the resource data, there is
no reason to recompile the resources every time the program is compiled and linked. There are some other compiler
switches that you may find useful. They are listed in Table 25-1. '

-R

-D

-FO

Compile only. Creates a .RES file from a .RC file.

Defines a symbol. This allows conditional compilation of the resource file if you use compiler
directives, such as #ifdef in the .RC file (explained later).

Renames the output .RES file. The character string following this switch will be the output file
name.

855

WINDOWS API BIBLE

Table 25-1. continued

-FE

-I
Renames the .EXE file. The character string following this switqh will be the .EXE file name.

. Specifies a directory to search for include files.

-V Verbose compiler messages.

-x Prevents searching of directories in the DOS PATH environment variable when the resource
compiler is looking for include files.

-Lor -lIM32 Use LotusilntellMicrosoft Expanded Memory Specification (EMS).

-M or -MULTINST ASSigns each program instance to a separate EMS bank (only if the EMS 4.0 memory
configuration is active). ,IC

-E Changes the global memory location for a DLl to above the EMS bank line.

-P " Creates a private DLL. (dynamic link library) that is only accessible to one application.

-K Disables load optimization of PRELOAD resources. By default all PRELOAD resource data is
grouped together so that it can be loaded quickly.

-T

-?or -H

Creates an application that will not run in Window's real mode.

Displays help information on the resource compiler.

Table 25-1. Resource Compiler Switches.

You can combine more than one letter option after an initial dash. For example

RC -T -K -R generi c. rc

is equivalent to

RC -TKR generic.rc

Capital and lowercase letters are equivalent.

The Resource Script File
All of the resources used by the program are defined in the resource script file. Here is a typical example.

1* gener;c.rc *1
#include <windows.h>
#include "generic.h"

generic ICON generic.i'co

generi~ MENU
BEGIN

MENU ITEM "&Do It!"
MENUITEM "&Quit",

END

I OM_DO IT
IDM_QUIT

This resource script file includes an icon file in the data and defines the program's menu.
There are four single-line resource script statements: BITMAP, CURSOR, FONT, and ICON. Each of these state

ments loads a data file of the specified type into the resource data. Once included in the resource data, the
LoadBitmapO, LoadCursorO! and LoadlconO functions are provided for direct access to the respective data within a
program. AddFontResourceO is the normal means of adding font data for use by all applications. There are five
multiple-line resource script statements: ACCELERATORS, DIALOG, MENU, RCDATA, and STRINGTABLE. The first
three are explained in Chapters 7, 13, and 4, respectively. The RCDATA and STRINGTABLE statements are deScribed
later in this chapter.

The resource compiler recognizes a number of directives tha,t can be used to control compilation. The most
common one is #include, which allows other files to be included into the r:esource file during compilation. "The header

25. RESOURCES 't'

file and any dialog box definition files (created by the dialog box editor) are typically added to the resource file using
#include lines. . .

Different 'parts of ~he resource file cau be compiled by using conditional compilation directives. They are #elif
(else if), #else, #endif, #if, #Udef, #Undef, and #undef. These switches are usually used to allow the same resource file
to compile both debu~ <:LIld non-debug versions. For example, the a resource me in the format
IIi fdef DEBUG

[debug program lines]
'elle

[non-debug Pcogram lines]
IIendif

would only compile the flfSt group of program lines if the variable DEBUG was defmed.1t could be defined at the top
of the resource script file with the #define directive, or defmed in the command line for HC using the -D switch.

rc -r -d DEBUG generic.rc

Using the command line switch is a better approach, as it means that the debugging options can be controlled
entirely from the program's NMAKE me.

String Tables
Most programs use a serieS-Of-.character strings in messages and character outputs. The conventional programming
practice is to code the character strings right intoihe program as static data. Windows provides an alternative, called .
a string table. In this case, the character strings are defined in the resource data and are given an ID value. Here is an
example.

STRINGTABLE
BEGIN

END

"Caption Fro •• RC"
"String Loaded From .Re"

Each string is given an ID v~ue, which is usually defmed in a separate header file.

1* g~neric.h *1

IIdefi!le S_TITLE
'define S_STRING

16
17

1* string table 10 values *1

When the application neeck to Use the data, the Lo'adStringO function copies the character data from the re-
~ me into a memory buffer. .

char .. gnTi tle [32] ;
char gnString [64] ;

LoadUring
LoadString

(ghlnltance, S_TITLE, gszTitle, sizeof (gszTitle» ;
(ghlnstance t S_STRING, gszString, sheof (gszString» ;

Strings in a string table can contain control characters like tabs and line feeds. They must be encoded as octal '
constants preceded by a backslash character (\). The octal value is the ASCII code 'for the control character. Here Is .
aneumple ...

. STRlN6TABLE
8E61N

BODYTEXT
END

"This text contains a \011tab,\012\015and a CR/LF pair"

'lbere are a number of advantages to using string tables. The main one is the reduction in memory use. The strings
are not loaded until they are needed. Wln~ows,Ioads strings into memory in blocks of up to 16 strings,based on the
string ID numbers. Strings 0-15 are loaded in one call to LoadStringO, 16-31 as another block, etc. Strings that are
likely to be used together are best numbered within a group of 16 integers .. ' . .

,857

WINDOWS API BIBLE

"
By default, strings are loaded into memory that is both moveable and discardable. If the memory containing the

string has been discarded, the next call to LoadStringO will reload it from the disk data. The memory status for the
strings in a string table can be set to either PRELOAD or LOADONCALL. The d'efault is LOAD ON CALL, which means
that· the strings are not loaded into memory until LoadStringO is called. PRELOAD loads' the strings into memory
when the program first starts. " "

The string table can also be set to have the memory block FIXED, MOVEABLE, or DISCARDABLE. The least
desirable combinations of options would be a table listed as .

STRINGTABLE PRELOAD FIXED
BEGIN

1* strings here *
END

You can defeat the whole purpose of using string tables if U';estring data ends up copied into a static memory
buffer. This means that the buffer will take up space, even if the character data has not been loaded into it from the
string table. Most applications load the strings into automatic variables, which are temporarily stored on the stack
and then discarded. ."' ' " "

Another reason to put strings into string tables is for future editing. For example, if the program is marketed in --'
several countries, the resource file can be translated into another language without changing the source.code. ~e
cause the resource file also contains the menu and dialog box definitions, translating the resource file ends up com-
pletely transforming the program into a new language with a minimum of fuss. .', ,

Custom Resources
Uesource files are also an excellent place to put other types of static data, which can be anything from metafiles to raw
binary data. The brute force way to include data is with an RCDATA statement in the resource script file. Here is an
example.

DataID RCDATA PRELOAD MOVEABLE
BEGIN

END

3
78
OX444,
"a string\O"

Like all resource data types, the RCDA1'A is given an ID number. The same memory options mentioned under
string tables are available for RCDATA. In this case, the data will be preloaded, but not fIXed in memory, and not
discarded. The data consists of four integers and a character string.

Usually, the best place to store the custom resource data is in an external file during program development. The
file's contents are then added to the resource data when the resource file is compiled. A typical set of custom re
sources is shown here.

paragraph
twoelips

TEXT
METAFILE

"paragraf.txt"
"twoelips.mf"

These lines define the custom resource types "TEXT" and "METAFILE." The data for these two resources is in two
separate files, PARAGRAF.TXT and TWOELIPS.MF. The resource compiler reads in the two files and puts the" data
right into the resource file for the program. Within the body of the program, it is necessary to locate the start of the
resource data before the data can be loaded into memory. FindResourceO locates the resourCe data in the resource
file, and LoadResourceO loads it into a memory block. These are typically called together. "

HANDLE hMFRes ;

hMFRes = LoadResource (ghInstance, FindResource (ghlnstance," "paragraph", "TEXT"» ;

This example shows the location and loading of the TEXT data. The hMFRes returned value is' ~ handle to the
global memory block containing the loaded resource data. See the example under the FindResourceO function de
scription for a more complete program listing.

858

25. RESOURCES 'Y

Resource Function Summary
Table 25-2 summarizes the resource functions. The detailed function descriptions are in the next section.

AccessResource

A1locResource

FindResource

FreeResource

GetlnstanceData

LoadResource

LoadString

LockResource

SetResourceHandler

SizeofResource

Returns a file handle to data in the resource file.

Allocates global memory to hold a resource.

Locates a resource in the resource file.

Removes a resource from memor/.

Copies data from a previous instance of the same program into a memory buffer.

Loads a resource into memory.

Loads a string from the resource file string table into a buffer.

Locks a global memory block containing a resource.

Creates a custom resource loading function, called by LoadResource().

Determines the size of a resource.

Table 25-2. Resource Function Summary.

Resource Function Descriptions
This section contains the detailed descriptions of resource functions.

ACCEssKESOURCE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Descripdon

Uses

Returns
See Also

Parameters
klnstance

hResbifo

. Example

Returns a DOS file handle to data in the resource file.

int ACftssResource(HANDLE hInstance, HANDLE hReslnJo)j
This function opens the resource file data and moves the file pointer to the beginning of the data
specified by kResIn/o. The file handle can be used with the standard file functions, such as
_lreadO, and should be closed after use with _lcloseO. The file cannot be written to. DOS file
handles are a limited resource. Be sure to release the file handle when done by calling _lcloseO.

Can be used to allow selective reading of portions of a resource item. To load the entire resource,
use LoadResourceO .

int, a DOS file handle. Returns -Ion error.

AllocResourceO, SizeoffiesourceO

HANDLE: The instance handle of the application which has
the resource file. This value can be retrieved with GetWindow
Word().

HANDLE: A handle to the specific data item in the resource
file. Use FindResourceO to obtain this value.

~ 'g@11erfc r;-r:-
UO It! .Q.uft

This is a pragraph of text that will
be displayed in the window's client
area. The text is stored in an ASCII
ext file. Each end of a line has

a CRiLF pair.

Figure 25-1. Access
Resource() Example.

This example loads and displays a custom resource. In this case, the resource data is just a block
of text saved in an ASCII file. The text is displayed in the window's client area when the user
clicks the "Do It!" menu item, as shown in Figure 25-1.
This example demonstrates several seldom used resource functions. Considerably simpler meth
ods are available for loading resources. See the example under the FindResourceO function de
scription for a more typical example.

The resource file defines the custom resource type ''TEXT' as being loaded from the file
PARAGRAF.TXT.

859

WINDOWS 'API BIBLE

f*~eneric.rc *1
'include <windows.h>
'include "generic.h"
generic ICCN gener{c.ico
generic MENU
BEGIN

MENUITEM "&00 It!"
MENUITEM "&Quit",

END
paragraph TEXT paragraf.txt

I DM_DO IT
10M_QUIT

The PARAGRAF.TXT me was created with a text processor.

This is a paragraph of text that wi II
be displayed in the window's client
area. The text is stored in an ASCII
text file. Each end of a line has
a CR/LF pai r.

i<,

The custom resource is located in the 'resource data using FindRefiourceQ. AlIoeBesotirceQ
allocates a global memory block to hold the data. AccessResourceQ provides a file handle to the
data, so that it can be loaded into memory using _lreadO., "

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage,' WORD wP,arall" LONG lPara.), ,
{

HOC
HANDLE
static
WORD
int
LPSTR

'. static

HANDLE

REeT

hOC;
hText ;
hMelll ;
wResSize ;
i, nResFi le
lpResDlita ;
rClient ;

switch (iMessage)
{

'1* 'process windows •• ' •• gel *1

case WM_CREATE:
hText = FindResource (ghlnstance, "paragraph", "TEXT") ;
wResSize = SizeofResource (ghInstance, hText) ;
hMem = AllocResource (ghlnstance, hText,' .

(OWORO) wResSize) ; ,
lpResOata =.,GlobalLock (hMell) ; . '
nResFile = AccessResource (ghInstance, hText)
U (nResFile != -1)
{

_lread (nResFile, lpResData, ~Re.Sizej ;
}

GlobalUnlock (hMem) ;
_lclose (nResFi le) ;
break;

case WM_SIZE:
SetRect (&relient, 0, 0, LOWORO(lPara.), HIWORD (lPar •• » ;
break;

case WM,:,:COMMANO:
switch (wParall)
{

case 10M_DOlT:
hOe = GetDe (hWnd) ;
lpResOata = GlobalLock (hMe.) ;
OrawText '(hOe, lpResData, lstrlen (lpRe.D,ta>,
'&rClient, DT_EXPANDTABS) ; .,

GlobalUnlock (hMe.) ;
ReLeaseDC (hWnd, hDC) ;
break; ,

case IDM_QUIT:

break;

DestroyWindow (hWnd) ;
break;

860

)

case UN_DESTROY:
Globalfree (h"e.) ;

. PoatQuit"essage (0) ;
break;

default: ~

- - - - . 25. RESOURCES Y

return DefUi ndowProc (hWnd, i MeSSage:; .wParam, lParam) ;

return (OL) ;
)

Dtsal

u.s

ItResl1ffo

dwSize

..,...
s,aaa.
Dtaa

lpName

lp7'gpe

• Win 2.0 • Win 3.0 • Win 3.1
. AIIocat~global memory to hold a resource.

HANDLE DLE hInstance, HANDLE kHesIn/o, DWORD dwSize)j
. 'Ibis functt~ a handle to a 0 memory oCk. The function will compute the size of
. tJte block to allOcate Ififie dwSize parameter is set to NULL. .

AIIocResoureeO is called internally by Windows to process LoadResourceO function calls. It is
not normally used by itself.

BANDLE~~irto-a global memory block.

kcessResoureeO, StzeomesourceO

HANDLE: The instance handle of the program containing the resource data. This value can be
retrieved with GetWindowWordO.

HANDLE: The handle of the specific resource that will be loaded into memory. Use
F'mdResourceO to determine this value.

DWORD: The number of bytes to allocate. If this value is set to NULL, the minimum size that will
hold the resource data will be allocated.

See the example under the AccessResourceO function description .

• Wm2.0 • Win 3.0 .Wm3.1
IAJcates a resource in the resource me.
HANDLE FiIIdIeBouee(HANDLE klnstance, LPSTR lpName, LPSTR lp1'ype)j
Before a resource Can be loaded into memory for use, it must be located. FindResourceO returns .
a handle to the resource in the resource me.

Used in col\lunction with LoadResourceO to load resources into memory Cor use.
HANDLE, the handle of the resource in the resource fIle. NULL if the resource cannot be located.
This Iwtdle is not the memory handle of a loaded resource. Use LoadResourceO to return a
memory handle.

LoadResourceO

HANDLE: The pro~'s instance handle. This value can be retrieved by calling GetWindow
WordO·
LPSTR: A pointer to a null-terminated character string containing the name of the resource. This

. is the name specified on the left side of the resource definition line in the .RC resource script fIle.

LPSTR: A pointer to a null-terminated character string containing the resource type. For custom
resources, this is the string specified in the second field ofthe resource defmition line in the .RC
resource script me. For predefmed resource types, the lp'l'ype parameter should be set equal to
one of the values in Table 25-3. .

861

WINDOWS API BIBLE

RT _ACCELERATOR Accelerator table.

RT_BITMAP Bitmap.

RT_DIALOG Dialog box template.

RT_FONT Font.

RT_FONTDIR Font directory.

RT_MENU Menu definition.

RT_RCDATA User-defined resource.

Table 25-3. Predefined ResOurce Types.

Example This example, which is shown in Figure 25-2, loads and dis
plays two custom resources, a metafile' and a block of ASCII
text.

The program's resource script file includes two custom re
source types, "TEXT" and "METAFILE." They used to include
the data in the two referenced files into the application's re
source data.

1* generic.rc *1
#include <windows.h>
#include "generic.h"
generic ICON generic.ico

generic MENU
BEGIN .

MENUITEM "&00 It!"
MENUITEM "&Qui t",

END

paragraph
twoeLips

TEXT
METAFILE

10M_Don
IDM_QUn

"paragraf.txt"
"twoelips.mf"

Is a pragraph
text that win

be displayed In the
window's client
area The text Is
stored In an ASCII

Each end of a line has

Figure 25-2. FindResourceO
Example.

The text file PARAGRAF.TXT was created with a text editor. The first six lines are tabbed, to
make room for a metafile picture. .

This is a paragraph
of text that wi II
be displayed in the
window's client
area" The text is
stored in an ASCII

text fi le. Each end of ali ne has
a CR/LF pair. \

The application loads the resource data when the WM_CREATE message is processed.
SetMetaFileBitsO is used to return a handle to the metafile that can be passed later'to
PlayMetaFileO. The length of the character string resource is determined by searching for the
backslash character (\).' . .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, W~RD wParam, LONG \Param)
{

PAINTSTRUCT
static
,stat i c
static
LPSTR
HANo'LE

RECT
HANDLE
int

ps ;
rClient ;
hTextR.s, hMetaFile ;
nTextLong ;
lpChar ;

'hMFRes ;' •...

862

>

Purpose

S)'Iltax

25. RESOURCES ~

switch (iMessage)
{

1*' process windows messages *1

}

case WM_CREATE:
hMFRes = LoadResource (ghInstance,

FindResource (ghlnstance, "twoelips",
"METAFILE"» ;

LockResource (hMFRes) ;
hMetaFile = SetMetaFileBits (hMFRes) ;
GlobalUnlock (hMFRes) ;
hTextRes = LoadResource (ghInstance,

FindResource (ghInstance, "paragraph", "TEXT"» ;
lpChar = LockResource (hTextRes)
nTextLong = 0 ;
while (*lpChar++ != '\\') 1* find text length *1

nTextLong++ ; 1* '\' at end *1
GlobalUnlock (hTextRes) ;
break;

case WM_SIZE:
SetRect (&rClient, 0, 0, LOWORD (lParam), HIWORD (lParam»
break;

case WM_PAINT:
BeginPaint <hWnd, &ps) ;
lpChar = LockResource '(hTextRes) ;
DrawText (ps.hdc, lpChar, nTextLong, &rClient,

DT_EXPANDTABS) ;
GlobalUnlock (hTextRes) ;
PlayMetaFile (ps.hdc, hMetaFile) ;
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT: 1* "Do it" menu item does nothing *1
break;

case IDM_QUIT: 1* send end of application m,essage *1
DestroyWindow (hWnd) ;
break;

} .
,10<

break; 1',' .::_;;"

case WM_DESTROY: ,. 1* stop application *1
FreeResource (hMetaFile) ;
FreeResource (hTextRes)
PostQuitMessage (0) ;
break;

default: 1* default windows message processing *1
/. > • return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

retur.n (OL)

• Win 2.0 • Win 3.0 • Win 3.1
Removes a resource from memory.
BOOL FreeResource(HANDLE hResData)j

\ Description If a resource is loaded more than once, Windows does not load two copies of the data. Instead, the
r~ference count of the resource is increased by one for each time LoadResourceO is called.
FreeResourceO decreases the reference count by one. When the reference count reaches zero,
the resource is deleted. Note that the resource data is freed when the program terminates. It is
not necessary to call FreeResourceO for every resource loaded. Normally, FreeResourceO is used
within a program to reduce memory consumption for resources that are unlikely to be reused.

Uses Because of the use of a reference count for each resource, different parts of the same applicaticm
can both load and delete the same resource without concern about interfering with other uses of
the data in the application.

863

WINDOWS AP.I BIBLE

f

Returns o BOOL. Zero if the function was successful, non-zero on error. Noie that this is the opp~lte ofthe

See Also
Parameters
kResData
Example

normal TRUFJFALSE assignment. I i'- .

LoadResource(), FindResource() 0

HANDLE: The resource handle returned by LoadResource().

See the example under the FindResource() function description. '0

GETINSTANCEDATA • Win 2.0 .Wm3.0
Purpose Copies data from a previous instanc-e of the same program into a ~lnory buffer.

y-- • ' ...

S1lltax
DesCription

Uses

Returns
See Also
Parameters
klnstance

pData

Co 0 nCoont
0

0 Example

o int GetlnstanceData{HANDLE kInstance, NPSTR pDala, int nCount);
If more than one copy of a program is run at the same time, each copy shares the same code
segments, but separate copies of data segments are maintained; GetinstanceDataO allows data
to be copied from a previous instance of the program into a subsequent instance's data segment.
The data is copied in the order that it occurs in the fllSt instance's data segment. Repeated calls
to GetinstanceData() read successive blocks of data, each nCount bytes long.

Used with programs that are likely to have multiple instances loaded, such as tenninal emulator
o programs that allow several sessions to be run at the same time.- Reading from aprevtous--in-

stance is faster than reloading the data from disk. 0 0 /

int, the number of bytes copied.
LoadResource(), LoadString()

HANDLE: The instance handle ofthe previous instance oftha
application. This is available as the hPrcvlnstance parameter
passed to the WinMain() function.

NPSTR: A pointer to a memory b~ock in the applicatiort's own
data segment.

int: The number of bytes to copy.

Figure 25-3. GetInstance
Data() Example.

This example loads two strings from a resource flle. One is used for the windoWs caption. 'lbe
other is displayed in the client area if the "Do It!" menu item is clicked, as shown in Figure 26-3.

The program's .RC resource file includes two strings in a string table.

1* generic.rc *1
'include <windows.h>
'include "generic.h"
generic ICON generic.ico

generic MENU
BEGIN

"ENUITE" "&Do It!" IDM_DOIT
"ENUllE" "'Quit", ID"_QUIT

END' .

STRINGTABLE
BEGIN

"Caption From .RC"· S_TITLE
oS_STRING "String Loaded From .RC"

END

The ID values for the strings are defmedin the program's header file.

1* generic.b *1
'define ID"_DOIT1 1* menu item id values *1

864'

25. RESOURCES T

#def ne 1DM_QUIT2
#def ne S_TlTLE 16 1* string table 1D values *1
#def ne S_STRING 17

1* global variables *1
int ghlnstance ;
char gszAppName [J = "generi COl

1* function prototypes *1
long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

The first time the program is run, the two strings are loaded into memory with LoadStringO.
If the program is started a second or subsequent time, the first instance of the program uses the
GetInstanceDataO function within WinMainO to copy the two strings into global character buff
ers from the resource data.

1* generic.c generic windows application *1

#include <windows.h>
#include "generic.h"

char gszTitle [32J ;
char gszString [64] ;

int PASCAL WinMain (HANDLE h1nstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
{

HWND
HSG
WNDCLASS

hWnd ;
msg ;
wndclass

ghInstan'ce = hlnstance ;
if (!hPrev1nstance)
{

1* store instance handle as global var. *1

LoadString (ghlnstance, S_TITLE, gszTitle,
sizeof (gszTitle»);

LoadString (ghlnstance, S_STR1NG, gszString,

} .

else
{

sizeof (gszString»
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.h1nstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

if (!RegisterClass (&~ndclass»
return FALSE;

= CS_HREDRAW CS_VREDRAW;.
= WndProc ;
= 0 ;
= 0 ;

hInstance ;
= Load1con (hlnstance, gszAppName)
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH)
= gszAppName ;
= gszAppName ;

GetlnstanceData (hPrevInstance, gszTitle,
sizeof (gszTitle» ;

GetlnstanceData {hPrevlnstance, gszString,
sizeof (gszString»

hWnd CreateWi ndo'w. (
gszAppName,
gszTitle,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,

865

1* create the program's window here *1
.1* class name *1
1* wi ndow name *1
1* window style *1
1* x position on screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle (null none) *1

WINDOWS API BIBLE

}

NULL,
hlnstance,
NULL) ;

ShowWindow (hWnd, nCmdShow)
UpdateWindow (hWnd) ;
while (GetMessage (&msg, NULL, 0, 0»
{

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

return msg.wParam ;

/* menu handle (null = use class menu) */
/* instance handle*/'
/* lpstr (null = not used) */

/* the message loop */

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG lParam)
{

}

HOC hOC;

switch (iMessage)
{

/* process windows messages */

}

case WM_COMMANO: /* process menu items * /
switch (wParam)
{

case 10M_OOIT: /* User hit the "00 it" menu item */
hOC = GetOC (hWnd) ;
TextOut (hOC, 0, 0, gszString, lstrlen (gszString» ;
ReleaseOC (hWnd, hOC) ;
break;

case 10M_QUIT:

}

break;

OestroyWindow (hWnd)
bre~k ;

case WM_OESTROY: /* stop application */
PostQuitMessage (0)
break;

default: /* default windows message processing */
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL)

LOADRESOURCE II Win 2.0 II Win 3.0 II Win 3.1
Purpose
Syntax

Descripnon

Uses
Returns

See Also
Parameters
hlnstance

Loads a resource into memory.
HANDLE LoadResource(HANDLE hlns(;ance, HANDLE hReslnfo)j

Resource data must be loaded ,into memory before it can be used. If LoadResourceO is called
more than once for the same reso~rce, the data is not loaded multiple times. Instead, Windows
keeps track of the number of times LoadResourceO was called for the given resource as the
"reference count" of the resource. The resource is not removed from memory until Free Re
sourceO has been called an equal number of times, or th~ application is terminated.

The application can provide a custom resource loading callback function that will be called
when the LoadResourceO function is called. Use SetResourceHandlerO to set the callback
function.
Used with FindResourceO to load resources into memory so that they can be used.
HANDLE, the handle to the global memory block that contains the loaded resource. Returns
NULL if the resource could not be loaded.
FindResourceO, FreeResourceO, SetResourceHandlerO

HANDLE: The instance handle of the running program. This value can be retrieved by calling
GetWindowWordO·

866

hRes!nJo

Example

·' 25. RESOURCES ..

HANDLE: The handle of the resource within the resource data. This value is obtained by calling
FindResourceO·

See the example under the FindResourceO function description.

LOAD STRING 81 Win 2.0 II Win 3.0 II Win 3.1
Purpose

Syntax

, Desiription

. Uses,

Returns'

See-Also

Parameters
hInstance

wID

IpBuJfer

nBufferMax

Example

,

Loads a string from the resource file string table into a buffer.

int LoadString(HANDLE hIfI.stance, WORD wID, LPSTR IpBuJ[er, int nBuJJerMa;r)j

Strings are added to the program's resource file in a string table. Each string is given an ID value,
normally defined in the program's header file. LoadStringO copies the string from the resource
file into a buffer so that it can be manipulated and displayed. 1'0 be niemory efficient, the IpBuffer
should either be an automatic variable (stored on the program's I'ltaek) , a temporary memory
block allocated by the program, or a static buffer that can be reused as differm!t strings are
loaded. Loading string resources into a series of static buffers is inefficient and defeats t.he pur
pose of using resource files to minimize memory consumption .

The best place to store string constants is in resource files. This method of storage is memory
efficient, and it makes edits or translations of the strings much simpler.

int, the number of characters copied to the buffer. Returns zero on error.

.LoadResourceO

HANDLE: The instance handle for the program.

" WORD: The ID value for the string in the string
table. This is the value to the left of the string in
the resource file. Normally, it is given a defined
name in the program's header file.

Qolt! Quit
This text contains a . tab.
and a CRILF pair

LPS'fB; A_pointer to a memory buffer to hold
the character string. The buffer must be at least
nBufferMa.r characters long.

Figure 25-4. LoadString() Example.

" int: The maximum number of characters to copy to the lpBuJji?f memory buffer.

'This exa~ple, which is illustrated in Figure 25-4, includes three character strings in the resource
file string-table. One string is displayed in the window's client area each time a W~CPAINT
message is received. The other two strings are used in message box functions.

The strings are defined in the program's resource file. Note the octal constants used to code
the tab, CR, and LF characters in the first text line. -

1* generic.rc *1

#include <windows.h>
#include "generic.h"

generic

generic
BEGIN

ICON generic.ico

HENUlTEH "&00 It!"
HENUITEH "&Quit",

END

STRINGTABLE
BEGIN

10M_DOlT
10M_QUIT

867

WINDOWS API BIBLE

END

BODYTEXT
MESSAGE1
MESSAGE2

"Th s text contains a \011tab,\012\01Sand a CR/LF pair"
"Th sis message 1"
"Th sis message 2"

The ID values for the strings are defined in the program's header file.

1* generic.h *1

#define 10M_DOlT
#define 10M_QUIT

1
2

1* menu item id values *1

#def
#def
#def

i nt
char

long

ne BODYTEXT 0
ne MESSAGE1 16
ne MESSAGE2 17

1* global variables *1
ghlnstance ; .

1* number 0 - in first segment *1
1* numbers 16 & 17 wi II be loaded *1
1* into a different segment together *1

1* these two globals are required *1
1* if you include winmain.c *1 gszAppName [J = "generi c"

1* function prototypes *1
FAR PASCAL WndProc (HWND, unsigned, 'WORD, LONG) ;

,The program uses the BODIT~.string'Yhen processingm-t-.CPAINTmessages .. Theother, .' ,
·t\vostringsareusedinme~sagebox~s."'. :'_ •... ,_o~' •• ' "::,'-,< ',. , '~,'

long FAR PASCAL WndProc(HWND hWnd, unsigned iMessage, WORDwParam, LONG lParam)
{

PAINTSTRUCT
static.RECT
char

ps ;
rClient
cBuf [128J

switch (iMessage)
{

1* process windows messages *1

}

case WM_SIZE:
SetRect (&rClient, 0, 0, LOWORD (lParam), HIWORD <lParam»
break;

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
LoadString (ghlnstance, BODYTEXT, cBuf, 128) ;
DrawText (ps.hdc, cBuf, lstrlen (cBuf), &rClient,

DT_EXPANDTABS)
EndPaint (hWnd, &ps) ;
break;

case WM_COMMAND: 1* process menu items *1
swi tch (wParam)
{

case IDM_DOIT:
LoadString (ghlnstance, MESSAGE1, cBuf, 128)
MessageBox (hWnd, cBuf, "Message", MB_OK) ;
break;

case 10M_QUIT:

}

LoadString (ghlnstance, MESSAGE2, cBuf, 128)
MessageBox (hWnd, cBuf, "Message", MB_OK)
DestroyWindow (hWnd) ;
break;

break;
case WM_DESTROY:

default:

PostQuitMessage (0)
break;

return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL)

868

25. RESOURCES T

LOCKRESOURCE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hResData·

Example

Locks a global memory block containing a resource.

LPSTR LockResource(HANDLE hResData).

This function locks a resource in global memory and returns a far pointer to the memory block's
address. If the resource is locked more than once with LockResourceO, an equal number of
FreeResourceO function calls will be needed before the memory block is freed.

This is a convenient way to temporarily lock resource data loaded into memory by Load Re-
source(). '

LPSTR, a pointer to the beginning of the memory block containing the resource data. NULL on
error.

LoadReso11rceO, FindResourceO

HANDLE: The handle of the loaded resource data in memory, returned by LoadResourceO.
See the example under the FindResourceO function description.

SETRESOURCElIANDLER • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

USes

Returns

See Also '
ParameterS"
hlnsta~ce{

lpType

lpLoadFunc

Creates a custom resource loading function, called by LoadResourceO.
FARPROC SetResourceHandler(HANDLE Mnstance, LPSTR IpType, FARPROC lpLoadFunc);

This function allows you to define a custom resource loading function that will be called by
LoadResourceO. This is convenient if you will need to examine or modify the resource data dur
ing thr. loading process.

Not often used. Can be used with custom resource types, where the data in the resource file needs
to,be reformatted in memory. For example, appending a null character to the end of character
data once it is loaded in memory.

-FARPROC, a pointer to the callback function.

LoadResourceO, FindResourceO, AccessResourceO

HAJ'1DLE: The instance handle of the program containing the resource data. You can use Get
WindowWordO to retrieve this value.

LPSTR: A pointer to a null-terminated character string containing the resource type. This is the
second field in the resource script file line that defines the resource.
FARPROC: The procedure-instance address of the loader function. This value is returned by
MakeProcInstanceO·

Callback Function The callback function must have the following format, and be listed in the EXPORTS section of
the program's .DEF definition file:

hMem

hlnstance

hResbifo

FARPROC FAR PASCAL LoadFunc (HANDLEhMem, HANDLEhlnstance, HANDLEhResbifo)

HANDLE: A handle to the global memory block that will contain the resource data. If this value
is NULL, the callback function should allocate a global memory block big enough to hold the
resource. The SizeofResourceO function will return the minimum size to allocate.J

HANDLE: The instance-handle of the program containing the resource data.

HANDLE: The handle of the resource in the resource data file. This value is obtained by Find
R(;30urceOand passed to tlie callback function when the LoadResourceO function is called.

869

WINDOWS API BIBLE

Example

The callback function should return the memory handle of the global memory block contain
ing the loaded resource data. If hMem is not NULL, but an attempt to lock the memo'ry block fails,
the block has been discarded. In this case, the callback function should reallocate and reload the
resource data.

This example demonstrates the use of a custom resource loading function. The loader
LoadStringResO is shown at the bottom of the listing. It must also be included in the EXPORTS
section of the program's .DEF definition file, and a function prototype must be added to the
header file. In this case, a custom resource type TEXT is defined in the resource file. This in
cludes a text file PARAGRAF.TXT in the resource data.

1* generic.rc *1
#include <windows.h>
#include "generic.h"
generic ICON generic.ico
generic MENU
BEGIN

MENUITEM "&00 It!" I OM_DOlT
MENU ITEM "&(1u;t", I Dt·,_QUIT

END
paragraph TEXT paragraf.txt

The custom resource loader for the TEXT resource type is set by SetResourceHandlerO. Once
set, the loader function is called when LoadResourceO is used to load this resource type into
memory. The callback function returns a handle to the loaded resource data in a global memory
block.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HDC
HANDLE
static
LPSTR
static
FARPROC

HANDLE

RECT

hOC;
hText ;
hMem ;
lpResData
rClient ;
fpLoaderlnst

\

switch (iMessage)
{

1* process windows messages *1

case WM_CREATE:
hText = FindResource (ghlnstance, "paragraph", "TEXT") ;
fpLoaderlnst"= MakeProclnstance «FARPROC) LoadStringRes,

ghlnstance) ;
SetResourceHandler (ghlnstance, "TEXT", fpLoaderlnst)
hMem = LoadResource (ghlnstance, hText) ;
break;

case WM_SIZE:
SetRect (&rClient, 0, 0, LOWORD (lParam), HIWORD (lParam»
break;

cas~ WM_COMMAND: 1* process menu items *1
switch (wParam)
(

case IDM_DOIT: 1* di splay the resource text *1
hDC = GetDC (hWnd) ;
lpResData = LockResource (hMem) ;
DrawText (hOC, lpResOata, lstrlen (lpResOata),

&rClient, OT_EXPANOTABS)
GlobalUnlock (hMem) ;
ReleaseDC (hWnd, hOC) ;
break;

case IDM_QUIT:

break;
case W"LDESTROY:

OestroyWindow (hWnd) ;
brea k ;

870

default:

}

return (OL) ;
. }

PostQuitMessage (0) ;
break;

25. RESOURCES T

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

FARPROC FAR PASCAL LoadStringRes (HANDLE hMem, HANDLE hlnstance, HANDLE hReslnfo)
{

}

int wResSize, nResFile
iLPSTR lpResData;

if (hMem == NULL)
hHem = AllocResource (hlnstance, hReslnfo, (DWORD) wResSize)

wResSize = SizeofResource (ghlnstance, hReslnfo) ;
lpResData = GlobalLock (hMem) ;
nResFile = AccessResource (hlnstance, hReslnfo) ;
if (nResFile != -1)
{

}

_lread (nResFile, lpResData, wResSize)
_lclose (nResFile) ;

GlobalUnlock (hHem) ;
return «FARPROC) (DWORD) hMem)

SIZE OF RESOURCE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hlnstance

hReslrifo

Example

Determines the size of a resource.

WORD SizeofResource(HANDLE hlnstance, HANDLE hReslnfo)i

This function returns the minimum size that a resource will occupy when loaded into memory.

Used with AllocResourceO and AccessResourceO to size and resourc'e data into a memory area.

WORD, the size of the resource in bytes. Returns zero on error.

AccessResourceO, AllocResourceO

HANDLE: The program's instance handle. The value can be retrieved with GetWindowWordO.

HANDLE: The resource handle of the specific item in the resource tile to size. This value is
returned by FindResourceO.

See the example under the AccessResourceO function description.

871

A new addition to the Software Developmcnt Kit (SDK) for Windows 3.0 is the execution profiler. This tool allows you
to track which parts of an application are taking the most time. Armed with this knowledge, you can work on speeding
up the slowest parts of the program to get the ma..ximum improvement for programming time spent.

The CocleView for Windows debugger is a critical element of the SDK. Besides allowing debugging of Windows
programs, the debugger is an excellent way to learn how Windows programs work. Armed with a two-monitor system
(VGA and monochrome display on the samc computer), the programmer can watch the source code execute line-by
line on the monochrome monitor while seeing the Windows application's progress on the VGA screen. (The Windows
3.1 debugger allows debugging with only one monitor, or two VGA screens.) This chapter documents a few functions
that can be used to "hard code" debugging information into the program during development.

Ho,v the Profiler \Vorl{s
The basic idea behind a pl'ofiler is simple. When the profiler is on, the program is interrupted at some fixed frequency.
h'very time the program is interrupted, the promer checks and stores the name of the part of the program that was
executing at that moment. Over time, the parts of the program that are taking the most time tend to get the most
"hits." They tend to be the parts of the program that are operating when the interruption occurs. Mter the program is
stopped, the statistics from the profiler are summed and analyzed to determine which parts of the program are taking
the most time. .

The Windows promcr works on this principle. The profiler stores the hit data in a memory buffer. When the
profiler is stopped, or the ProfFlushO function is called, the memory buffer is written to a disk me. A DOS application
called SHO\v1IITS,KXE then summarizes the statisfics and outputs the data to the screen. This chain of actions to use
the profiler is shown in Figure 26-1.

The promer reduces the performance of the application being run. The amount of degradation will depend on
how often the program is interrupted. Typically, the reduction in performance is not noticeable.

Preparing to Run the Profiler
Assuming that you are running Windows in the 386 en·
hanced memory mode, the profIler is a Windows device
driver. You install the profIleI' by adding the VPROD.386
driver to the [386EnhJ portion of the SYSTEM.INI fIle
and restarting Windows.

[386EnhJ
DEVICE=VPROD.386

The SDK also includes support for profIling applica
tions in the Windows "rear' memory mode by running the
PROF.COM program hefore Windows is started. Because
commercial realities demand that all Windows programs
be able to run in standard and 386 enhanced modes, this
option is of little value. Figure 26-1. Windows Execution Pro/iter.

872

26. EXECUTION PROFILING AND DEBUGGING T

The program that will be profiled must be modified slightly to control the profiler. The sample rate and sample
buffer size are set at the beginning of the program using the ProfSampRateO and ProfSetupO functions.

ProfSampRate (1, 2) ;
Prof Setup (100, 0) ;
Prof Clear () ;

1* two milliseconds sample interval*1
1* 100 kbyte buffer in memory *1
1* empty buffer to start*1

Specific parts of the program are marked for profiling by surrounding the code with ProfStartO and ProfStopO
function calls. The profiler will be active from the point of execution marked with ProfStartO to the point marked
wit.h ProfStopO. The range of program lines profiled includes all functions called between ProfStartO and ProfStopO
(including Windows functions), and any other parts of the program that may be executed as Windows processes other
messages in the time period between these two markers.

Prof Start () ;
I Program lines to profile /
Prof Stop () ; .

Any number of ProfStartO and ProfStopO pairs can be placed in tile program, isolating sections that will be
profiled. At the end of the program, the ProtFinishO function should be called to write the profile memory buffer data
to disk. The data is written to the CSIPS.DAT file on the WINDOWS subdirectory.

When compiling the program, add the "-M" linker flag so link will generate a .MAP file for the application. This
map file includes the name and segment address of every function called by the program. Run the MAPSYM utility
program after the program is compiled and linked. This utility generates a .SYM symbol file that is used by the profile
report program to determine the names of the segments that were "hit" during profiling.

With all of this done, you simply run the program. The profiler writes the "hit" data to the memory buffer during
execution of the code between the ProfStartO and ProfStopO function calls. When the program is finished, the data
will be stored in raw form in the CIPS.DATA file on the WINDOWS subdirectory. To get a readable analysis of this data,
run the SHOWHITS.EXE program from DOS. SHO~!TS comes with the Windows SDK. SHOWHITS collects all (lfthe
hit data in the file, organizes it, and displays a report on the screen in the following format:

C:\WINDOWS>showhits -3
Windows Profiler Data Displayer
Copyright (c) 1988-1990~ Microsoft Corp. All Rights Reserved.

Here are the Hits for Unrecognized Segments

4 Hi ts on Segment 01 AD

Here are the Hi ts for Known Segments

586 Hits on GENERIC-1
6 Hi ts on KRNL386-0
1 Hi ts on USER-O

49 Hits on USER-15
76 Hi ts on GDI-O

777 Hits on DISPLAY-O
30 Hi ts on SYSTEM-O

1529 TOTAL HITS

Profi ler Summary (Top 10 Hi ts):

SHOWHITS.EXE allows several command line switches. They are

SHOWHITS [-r/-3] [-ipalh] [csipsJile] [segJile]

-3

-r

386 enhanced mode profiling. Implies that VPROD.386 was installed as a driver in SYSTEM.INI's
[386Enh] section.

Real mode profiling. Implies that PROF. COM was run before Windows was started in real mode.

873

WINDOWS API BIBLE

-;path Specifies the directory path to locate the .SYM file output by MAPSYM.

c$ipsJile Specifies the full path name of the CIPS.DAT file. By default, this file is in' the WINDOWS
subdirectory.

segJile Specifies the full path name of the SEGENTRY.DAT file. This file is generated when Win'dows
starts, if the profiler has been installed. By default, this file is located in the WINDOWS

\ subdirectory.

Normally, you will just run SHOWHITS from the WINDOWS subdirectory \\ith the "-3" switch. SHOWHITS will
prompt you with a short help screen if you forget to set a switch.

Using the Profiler
Getting meaningful data out of the profiler is not as simple as it might appear. Most Windows applications spend the
majority of their time executing Windows functions for output to the display and for other Windows activities. You
tend to get a lot of hit data in the segments that Windows loads, such as USER, DISPLAY, and GDI. This information is
not very helpful.

If there are specific parts of the program that are calculation intensive, surround these parts with the ProfStartO
and ProfStopO functions as closely as possible. Avoid having calls to Windows functions between the profile markers,
particularly ones that require user response. For example, if the program calls MessageBoxO between ProfStartO
and ProfStopO, you know that most of the time will be spent waiting for the user to click the OK button, not in
program execution.

In general, you cannot compare the performance of two different but similar Windows functions within one ver
sion of the program. For example, you cannot compare the time spent by TextOutO and DrawTextO by surrounding
each of these calls with a ProfStartO and ProfStopO function. Both of these functions use portions of the same
Windows .DLL files and end up contributing hits to the same segments.

To compare Windows function performance, compile the same code section two different times. Each time, sur
round the function to be analyzed with the ProfStartO and ProfStopO functions. If the profiler sample rate is the
same, the absolute number of hits that you collect will reflect the total time the function occupied. Comparing the
total hits for the two different versions of the program will tell you which version is faster.

Debugging Functions
A full discussion of the excellent CodeView for Windows (CVW) debugger is beyond the scope of this book. However, "

" ',the debugging functions are documented. In generai, you will not need to use any of these functions when debugging.
,'" The debuggerallowsbreakpoints to be s'et, conditions to be checked, etc:, without modification to 'the code other th~m'
,,' compilE~r switch settings. '. "'" . , , ",',

. A point worth noting is that the CWI debugger will work fine in 386 enhanced mode without installing the
WINDEBUG.386 driver in the [386Enh] section 'of the SYSTEM.lNI file~ Not having the debugger driver installed will
eliminate the possibility of breaking to the debugger with the ICTRLr@){SYSREQ} key combination, and also makes

, several of the debugging functions inoperative. These functions are not normally needed to debug a program.

ExecutionProtiIing and Debugging FUnction Summary
Table 26-1 summarizes the Windows profiling and debugging functions. The next section conatins the detailed func
tion descriptions.

DebugBreak

Fatal Exit

OutputDebugString

Prof Clear

Prof Finish

Forces a break to the debugger.

Forces an immediate termination of the application.

Displays a character string at the bottom of the debug screen.

Clears all data from the profile sample buffer.

Stops the profiler, and copies the data buffer to the disk file CSIPS.DAT.

874

26. EXECUTION PROFILING AND DEBUGGING ~

ProfFlush

ProflnsChk

ProfSampRate

Prof Setup

ProfStart

Prof Stop

VaiidateCodeSegments

VaiidateFreeSpaces

Copies the profiler sample buffer to disk.

Checks if the profiler has been installed.

Sets the sampling rate of the profiler.

Initializes the size of the profile data buffer and disk file.

Starts the execution profiler.

Stops the profiler.

Enables debugging checking if code segments are overwritt~n.

Enables checking of memory overwriting of free areas.

Table 26-1. Execution Profiling and Debugging Function Summary.

Execution Profiling and Debugging Function Descriptions
This section contains the detailed descriptions of the Windows profiling and debugging functions.

DEBUGBREAK

Purpose

Syntax

Forces a break to the debugger.

void DebugBreak(void)j

BWin2.0 • Win 3.0 • Win 3.1

Description

Uses

Returns

See Also

Parameters
Example

This function codes a debugger break right into the program. It is only used when debugging.

Not often used. It is usually easier to set breakpoints from within the debugger.

No returned value (void).

OutputDebugStringO

None (void).

This example breaks to the debugger when the "Do It!" menu item is clicked.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

switch (iMessage) 1* process windows messages *1
{

case WM_COMMAND: "1* process menu items *1
swi tch (wParam)
(

case 10M_DOlT: 1* User hit the "Do it" menu item *1
DebugBreak ()
break;

{Other program lines /

FATALEXIT

Purpose

Syntax

Description

Uses

Returns

See Also

Forces an immediate termination of the application.

void FatalExit(int Code)j

• Win 2.0 • Win 3.0 • Win 3.1

This function is only used in debugging. It forces an immediate end to the program's operation,
bypassing WM_DESTROY processing logic and the message loop. It should only be called if the
application cannot be shut down by any other means:

Used in debugging as an emergency way to shut down the application, in most cases without
forcing Windows to shut down or fail.

No returned value (void).

DebugBreakO

875

WINDOWS API BIBLE

Parameters
nCode

Example

int: The SDK documentation suggests that FatalExit displays this ~rror code and message in the
. debugger window. The message is not reliable.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LOtlG lParam)
{

switch (iMessage)
{

case WM_COMMAND:
switch (wParam)
(

case IDM_DOIT:
FatalExit (1)
break;

1* process windows messages *1

1* process menu items *1

1* User hi t the liDo i til menu item *1

IOther program lines J

OUTPUTDEBUGSTRING • Win 2.0 • Win 3.0 • Win 3.1
. Purpose

Syntax

Description

Uses

Returns

Parameters
IpOutputString

Example

Displays a character string at the bottom of the debug screen.
void OutputDebugStrlng(LPSTR IpOutputString);
This function is only used in debugging. The character string is ultimately added to the bottom of
the screen in the debugger. If no debug monitor is installed, the character string is sent to the
AUX port (assumed to be connected to a terminal).

Handy for tracking which parts of a program were executed, and in what order. A series of differ
ent messages can be output, each at a different location. This procedure minimizes the disrup
tion to the program, compared to setting breakpoints in the debugger.
No returned value (void).

LPSTR: A pointer to a null-terminated character string that will be displayed at the bottom ofthe
debug monitor screen.

This eXample outputs the string ''Testing debug function" at the bottom of the debug screen when
the user clicks the "Do It!" menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

switch (iMessage)
{

case WM_COMMAND:
switch (wParam)
{

1* process windows messages *1

1* process menu items *1

case IDM_DOIT: 1* User hit the liDo it" menu item *1
OutputDebugString (IITesting debug function") ;
break;

IOther program lines J

PROF CLEAR
Purpose

Syntax

Description

Clears all data from the prome sample buffer.

void ProfClear(void)j

II Win 2.0 • Win 3.0 II Win 3.1

The prome copies the hit data to a memory buffer while the profiler is active. This data is written
to a disk me when ProfFlushO or ProfFh!!shO is called. The memory buffer can be emptied by
calling ProfClearO in the program being profiled. This does not affect any profile data already
written to disk.

Uses

Returns

See Also
Parameters

Example

26. EXECUTION PROFILING AND DEBUGGING ~

Generally u~ed at the start of a profiling session.

No returned,value (void).

. ProfFlushO
None (void)

This example~Ofiles the operation of two functions. The MethodlO function uses the TextOutO
and wsprintf(fu~ctions repeatedly. Method20 just counts integers 106 times. To run the profiler,
the profile de'ce driver VPROD.386 must be added to the SYSTEM.INI file in the [386Enh] sec
tion with the li e

DEVICE=VPROD.386

Windows must be restarted with this change in SYSTEM.INI before profiling begins.
The program must be linked with the linker switch, -m (for map), set on. After the program is

compiled and liIlli,ed, MAPSYM.EXE is run to generate a MAP file. When the program executes, it
generates the file OSIPS.DAT in the \WINDOWS subdirectory. Running SHOWHITREXE as a DOS
application from Within the \WINDOW~ subdirecto~ wil,l display the profile information.

'C~\WjNDOWS~sh~whit~ -i'
Windo~~ Profile~ D~ta Displayer
Copyright (c) 1988-1990, Microsoft Corp. All Rights Reserved.

Here are the Hi ts for Unrecogni zed Segments

4 Hits on Segment 01AD

Here are the Hi ts for Known Segments

586 Hi ts on GENERIC'-1
6 Hits on KRNL386-0
1 Hi ts on USER-O .

49 Hi ts on USER-15
76 Hi ts on GDI-0

777 Hi ts on DISPLAY-O
30 Hi ts on SYSTEM-O

1529 TOTAL HITS

Profi ler Summary (Top 10 Hi ts):

Five hundred and eighty-six hits were within the GENERIC application's segment. The hits
were times that the profile timer checked the application and found the current segment to be
the application's segment. These hits occurred in the Method20 function, which counts for a
long period of time. The ml\iority of the hits were detected in the DISPLAY and GDI segments.
They reflect the repeated use of the TextOutO and wsprintfO Windows functions in the
MethodlO function. The remainder of tbe hits were in other portions of the Windows environ-
ment used to process messages, etc. .

The program initializes the profiler for 2 millisecond intervals between checks when the
WM_CREATE message is processed. The sample data buffer is set to lOOK. The calls to
ProfStartO and ProfStopO occur within the functions that are profiled. ProfFlushO is called
between the two function calls to copy all of the profile data to disk before the second function is
called. This reduces the chance of overflowing the buffer.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

i nt nProfMode ;

switch (iMessage) 1* process wi ndows messages *1

877

WINDOWS API BIBLE

{

case WM_CREATE:
nProfMode = ProflnsChk () ;
H (!nProfMode)

MessageBox '(hWnd, "Profi ler not installed", "Message",
MB_OK) ;

else
{

}

ProfSampRate (1, 2) ;
Prof Setup (100, 0)
Prof Clear () ;

case WM_COMMANO:
swi tch (wParam)
{

case IOM_OOn:
Method1 (hWnd)
ProfFlush () ;
Method2 (hWnd) "
break;

case 10M QUIT:

}

ProfFinish () ;
OestroyWindow (hWnd)
break;

break;
case WM_OESTROY:

default:

PostQuitMessage (0)
break;

1* two mi II i seconds *1
1* 100 kbyte buffer *1
1* empty buffer *1

1* process menu items *1

1* try method1 function *1
1* write samples to di sk *1
1* try method2 function *1

return OefWindowProc (hWnd, iMessage, wParam, lParam)

return (OL>
)

void Method1 (HWNO hWnd)
(

,}

HOC
int
char

Prof Start () ;

hOC;
i ;
cBuf [128]

hOC = GetDC (hWnd) ;
for (i = 0; i < 1000; i++)

TextOut (hOC, 0, 0, cBuf, wsprintf (cBuf, "Xd", i»
ReleaseOC (hWnd, hOC) ;
Prof Stop () ;

void Method2 (HWNO hWnd)
{

}

HOC
int

hOC;
i, j ;

Prof Start () ;
hOC = GetOC (hWnd) ;
SetBkMode (hOC, OPAQUE) ;
TextOut (hOC, 0, 0, "Starting", 8)
for (i = 0 ; i < 1000 ; i ++)
{

for (j = 0 ; j < 1000 j++)

}

TextOut (hOC, 0, 0, "Oone Counting", 13)
ReleaseOC (hWnd, hOC) ;
Prof Stop () ;

878

PROFFINISH

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Example

PROFFLUSH

Purpose

Syntax

Description

USt'S

Returns

See Also

Parameters

Example

PROFINsCHK

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters

Example

26. EXECUTION PROFILING AND DEBUGGING ~

• Win 2.0 • Win 3.0 • Win 3.1
Stops the profiler, and copies the data buffer to the disk file CSIPS.DAT.

void ProtFinish(void)j

While the profiler is running, the hit data is copied to a memory buffer. This function stops the
profiler, and copies the data to the file CSIPS.DAT in the WINDOWS subdirectory. This file is part
of the input to the SHOWHITS.EXE program that outputs the profiler findings.

Used at the end of a profile session.

No returned value (void).

ProfFlushO

None (void).

See the example under the ProfClearO function description.

Copies the profiler sample buffer to disk.

void ProtFlush(void)j

• Win 2.0 • Win 3.0 • Win 3.1

While the profiler is running, the hit data is copied to a sample buffer. ProfFlushO copies this
data to the file CSIPS.DAT in the WINDOWS subdirectory and empties the memory buffer. This
allows more data to be accumulated without fear of overflowing the buffer. It is not necessary to
call ProfFlushO if ProfFinishO will be called before the buffer is full. ProfFlushO should not be
run when the program may be processing an interrupt.

Used within the body of the program being profiled to copy the profile data to a disk file.

No returned value (void).

ProfFinishO

None (void) ..

See the example under the ProfClearO function description.

Checks if the profiler has been installed.

int ProflnsChk(void)j

• Win 2.0 • Win 3.0 • Win 3.1

This function checks to see if the 386 enhanced mode device driver VPROD.386 has been in
stalled, or whether the PROF.COM function was executed before WINDOWS was started.

Verification that the profiler is available.

int, 0 ifthe profiler is not installed,! if PROF. COM was installed, 2 ifVPROD.386 was installed.

ProfStartO, ProfSetupO

None (void).

See the example under the ProfClearO function description.

PROFSAMPRATE • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Sets the-sampling rate of the profiler.

void ProfSampRate(int nRate286,int nRate386)j

879

WINDOWS API BIBLE

Description

Uses
Returns
See AlsO

Parameters
nRate286

2

,3

4

5

6

7

8

9

10

11

12

13

· This function allows the sampling rate that the profiler uses to be set. The sampling rate is the
number of times per second that the sampler will check and record the part of the program that
is active.
Used in initializing the profiler.

No returned value (void).

Prof Setup 0

int: The sampling rate that the profiler will use in ciny mode except 386 enhanced mode. If
nRate386 is set, the nRate386 parameter is ignored. nRate286 can be any of the values in Table
26-2.

122.070 microseconds

244.141 microseconds

488.281' microsecorids~ .

, " 976:562 microsec6~dS
1.953125 milliseconds

3.90625 milliseconds

7.8125 milliseconds

15.625 milliseconds

31.25 milliseconds

65.2 milliseconds

125 milliseconds

250 milliseconds

500 milliseconds

Table 26-2. Sampling Ratesfor Non-386 EnhancedMode Profiling.

nRate386 int: The sampling rate in milliseconds for the application if it is running in 386 enhanced mode.

Example

PROFSETUP
,Purpose

Syntax

Description

Uses

Returns

See Also

IfnRate286 is set, the nRate286 parameter is ignored. The nRate386value can be between 1 and
1,000.

See the example under the ProfClearO function description.

Initializes the size of the profile data buffer and disk file.

void ProfSetup(int nBujferSize,int nSamples)j

• Win 2.0 • Win 3.0 • Win 3.1

This function is only effective if Windows is running in 386 enhanced mode. If the function is not
called, the sampling buffer defaults to 64K, and the output file size is not limited ..

Setting the sample buffer size and file size. This could be important if the system were running
low on memory .

. No returned value (void).

ProfSampRateO

880

Parameters
nBu!ferSize

nSamples

Example

, PROFSTART

Purpose

Syntax

Description

Returns

See Also

Parameters

Example

PROFS TOP

. Purpose

Syntax

Description

Returns

See Also

Parameters

Example

26. EXECUTION PROFILING AND DEBUGGING •

int: The side of the sample data memory buffer in kilobytes. This value must be between 1 and
1,064. .

int: Sets a maximum on the number of hits that will be recorded to the disk file. A value of zero
allows unlimited sample data.

See the example under the ProfClearO function description.

Starts the exe~ution profiler.

void ProfStart(void)j

• Win 2.0 • Win 3.0 • Win 3.1

Once this function is started, the profiler begins checking the application at the time interval
specified by ProfSampRateO. The location within the program is recorded as a "hit" in the sample
buffer each time it is checked.

No returned value (void).

ProfStopO

None (void).

See the example under the ProfClearO function description.

Stops the profiler .

void ProfStop(void)j

• Win 2.0 • Win 3.0 • Win 3.1

This function stops th~ profiler. The data-collected in the profiie data buffer is not affected. The
profiler can be restarted by calling ProfStartO. The new data will be added to the profile data
buffer.

No returned value (void).

ProfStartO I

None (void).

See the example under the ProfClearO function description.

V ALIDATECODESEGMENTS 11 Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Uses

Returns

Enables debug checking if code segments are overwritten.

void ValidateCodeSegments(void)j

Enables output of debugging information if memory areas containing code segments are over-
written by program operations. . .

Validity checking is enabled by default with the debug version of Windows, so this function is
normally not needed. If code segment checking has been turned off by including the line

[kernel]
EnableSegmentChecksum=O

in the [kernel] section of WIN .IN I, then ValidateCodeSegmentsO will override this switch and
enable checking.

No returned value (void).

881

WINDOWS API BIBLE

See Also
Parameters .

Example

ValidateFreeSpacesO
None (void). .

This example shows an application that has the debugging memory validation functions set when
the WM_ CREATE message is processed. Calling these functions asSures that any program actions
that overwrite code or data areas will be trapped by the debugger. .

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParsm) { . ,

switch (iMessage)
{

case WM_CREATE:

1* process windo~s messages *1

ValidateCodeSegments () ;
ValidateFreeSpaces () ;
break; .

case WM_COMMAND: 1* process menu items *1.
switch (wParam)
{

case 10M_DOlT: 1* User hi t the "Do it" menu item *1
GlobalCompact (NULL) ;
break;

{Other program lines J

V ALIDATEFREESPACES II Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Description

Enables checking of memory overwriting of free areas.

LPSTR ValidateFreeSpaces(void)j .
This function is only available with the debugging version of Windows. Free memory areas are
portions of memory that have not been allocated WithJHobalAllocO and that do not contain code.
This function enables checking of these ~reas when memoryaccess functions are used, to make
sure that memory writing operations use only valid memory areas. _.

Two lines must be added to WIN.INI in the [kernel] section before using this function.·
[kernel]
EnableFreeChecking~1

EnableHea~Checking=1

Uses

Returns

See Also

Parameters

Example

Windows must be restarted if these lines were not in place when the system was started.
Once installed, free memory areas will be loaded with the value OxCC. Global memory operations,
such as GlobalAllocO and GlobalCompactO, will cause memory checking to start, which slows
system performance.

U~ed only with the debug version of Windows. Use should be limited to tracking' down memory ..
errors; as this function slows system performance. '

LPSTR. This value is not used.

ValidateCodeSegmentsO
None (void).

Seethe previous example under the ValidateCodeSegmentsO function description.'

882

Microsoft added a hypertext help system to Windows 3.0. "Hypertext" refers to the ability to jump from one subject to
ano~her while reading a document. The Windows help system has several advantages for the developer.

1. The help system will be installed on any computer running Windows 3.0 or later. The Windows INSTALL program
puts the WINHELP.EXE file in the WINDOWS directory.

2. The help system is fully iutegrated into the Software Development Kit (SDK). Your application can include con
text-sensitive help, automatically loading the help system when called. "Context-sensitive" means that a differ~_nt
part of the help file is displayed depending on what part of the program is active. -

3. Because all of the applications provided with Windows use the help system, users can be expected to have some
familiarity with its operation.

This chapter documents the help file support command to Windows 3.0 and 3.1. Version 3.1 additions are not
discussed.

Building a Help File
Adding Windows help file support to your application is a three-step process. First, create a help document using a
text editor. Special characters are used to mark key words, index entries, etc. Second, compile the document using

. the HC.EXE help compiler provided with the SDK. This creates a help file that is ready to use by the WINHELP.EXE
program. Last, add calls to the WinHelpO function in your program. This function loads WINHELP.EXE, if it is not
already running, and jumps to a specified location in the help file.

Although in theory you can use any text editor to create the help document, in practice you are much better oIT if
you use Microsoft Word for Windows. Besides being an excel- .
lent editor, Word for Windows supports all of the special char- . "IndexU
acters needed to create help documents. The help compiler File'Cornrnands:U
expects to read a file in the rich text format (rtf). Word for Win- Opening'A'FileOpen_Eilell
dows will save and read files in this format; although it must be Closing'A:FWiCloseYilell
specified in each file save and open operation. Edit'Cornrnands:ll

The help document uses several techniques to code the in- Editing'A'FileEditYilell
formation the help compiler needs to figure out indexes and
jump points to other parts of the file. Footnotes are used to la- #.$.+.K·Opening·A·Filell
bel parts of the file with names and index entries. The double- This·text·area·telIs·how·to·open·a·f.ileDeLEile.

. underline character style is used to mark jump points. Jump ... _
points are the words that the user can click with the mouse to #.$.+.K·Closing-A·Filell
jump to another part of the help file. Underlined text is used to This·text·area·telIs·how·to·close·a·fileDeLFile
. mark definitions. Clicking a definition word pops up a small box .. .
containing the word's meaning. The box disappears when the #.$.+.K·Editing-A-FileU
user releases the mouse button. The hidden text style (a char- This·text·area·tells·how·to·edit·a·f.il.eDeLFile.~
acter style supported by Word for Windows) is used to put cross-

. reference strings into the -documents. Cross-reference strings #'Filell
are the names of the labels that the help system wiII jump to A-disk·file·containing·data.l1
when the user clicks an item. Figure 27-1. A Help Document.

883

WINDOWS API BIBLE

Figure 27-1 shows a small help document with all of the special characters
exposed. The top portion of the me is the index. Below that, separated by page
breaks, are three help subjects and a definition of the term "File." Each title is

-preceded by f09tnote characters. The footnotes contain the names and labels for
• each page of the help document. .

(Hidden text is exposed and indicated with a dotted underline. Page breaks are
, "indicated by a continuous dotted line between pages. Tab characters are indicated

by the arrows to the right.)
The hypertext jump destinations use the "hidden text" style (shown in Figure

27-1 with a dotted underline). For example, if the user clicks the visible "Opening A
File" item in the index, the help system will jump to the label "Open_File."
"Open_File" is a footnote label for the second page of the help document. If you
were to open the footnote entries for editing within Word for Windows, the footnote
list would appear as shown in Figure 27-2.

In Word for Windows, footnotes are added by placing the cursor at the location
where the footnote is to be added, and then selecting the InsertlFootnote menu '
item. The footnote dialog box requests a "Footnote Reference Mark." This box is

. where you enter the $, #, +, or K character. Word for Windows will then open the
footnote editing area at the bottom of the screen, so that you can enter the label
string for the footnote. The editor keeps the footnotes in the correct order, and it
will jump to a footnote if you position the cursor within the text area while the
footnote edit area is visible.

Help Document Special Characters

IF Index
$ Index
Open_File
$ Opening A File
+ File Commands:10
K File;Open File
Close File
$ Closing A File
+ File Commands:20
K File; Clo sing Files,
Edit File
$ Edit-File

+ File Commands:30
,K File; Editing Files
Def File

Figure 27-2. Index Entries
for the Help Document.

When building the help document, you will add footnotes and special character types to structure the hypertext
jumps. Table,' 27-1 contains a list of the special' characters. The characters preceding the word "footnote" are the
"Footnote Reference Mark" characters used when creating a footnote in the document. .

footnote

$ footnote

Kfootnote

+ footnote

Double-underlined text (strike
• through text has the same effect)

,Underlined text

• footriote

Marks a context string. This is a destination label that the help system can jump to. The point(s)
to jump from will be marked with double-underlined text, followed by the same context string in
hidden text. '

Defines a title string. Title strings are optional.

Key word. Key words are used to build the list of search strings that the help 'system will search,
for. They are not required, but are highly recommended.

Browse sequence number. In the footnote definition you put a group subject name, a colon,
and an integer. Browse sequences mark the order that the subjects will be viewed if the user
clicks the browse buttons on the help system window.

Marks a cross-reference point. The marked characters will be highlighted in color on the help
system. Clicking the mouse pointer on the highlighted characters causes a jump to another
topic. The destination is named in hidden teXt immediately following the double-underlined text.

Marks a definition. The underlined characters will be highlighted in underlined color on the help .
system. Clicking the mouse pointer on the highlighted characters causes a small window
containing a definition of the term to appear. The definition is obtained from another topic. The ,
topic is specified in hidden text immediately following the underlined text.

Marks a buildtag. BUildtags are used to allow conditional compilation of parts of a help file.
, .

Table 27-1. Help Document Special Characters.

884

\

27. HELP FILE SUPPORT ...

Defining Hypertext Jumps and Index Entries
The critical aspect in creating the help document is marking topics with the # footnotes. They are the context labels
that allow that point to be a destination for a hypertext jump. Normally, these labels will be on the first line of a page
(following a page break); as shown in·the example in Figure 27-1. The footnotes can be placed anywhere in the page if
desired.

To allow jumping to the point, you must do two things. First, the text string that will mark the jumping off point is
typed using double-underlined characters. This mark is followed by the exact context label for the destination, typed
with hidden characters. Once compiled, the footnote markers and hidden characters are not visible in the help win
dow. The double-underlined characters (the jumping off points) are highlighted in color.

Creating an index using these techniques is simple. As shown in Figure 27-1, the top of the help file is normally
the index. Each jumping off point is marked with double-underlined characters, followed by the hidden characters
defining where to jump. Each of the destination subjects is on a separate page, with the top line of each marked with .
the # footnote context string. Context strings can be up to 255 characters long, and can contain letters, numbers,
periods, and underscore characters. Spaces between words are not allowed. Uppercase and lowercase letters are
treated as identical.

Adding Search Strings and Bookmarks
The K footnotes are also important. The help window includes a magnifying glass button marked "search." Topics that
have K footnote entries will appear in a list of subjects that can be searched for. The search feature allows the user to
quickly locate information in a large file. With the footnotes shown in Figure 27-2, the search list would have four
entries: "File," "Open File," "Closing Files," and "Editing Files." Searching for "File" within the help system would
reveal three topics to jump to. "Open File," "Closing Files," and "Editing Files" would show single entries. .

Keywords can be up to 255 characters long, and can contain any ANSI character including spaces. A group of key
words can be defined on one footnote line by separating them with a semicolon. Here is an example with four key
words defined.

K FilesjOpening Files;DiskjDisk Access

Titles are· marked ,vith $ footnotes. Titles appear in the help system bookmark list. Bookmarks allow the user to
mark a location for future reference. Titles also appear in the "Topics found" section when the user searches for a key
word. Titles and key words are usually used together. Titles can be up to 128 characters long, and can contain any
ANSI character, including spaces. The entire line in the footnote entry is considered to be one title entry.

Browse sequences, marked with + footnotes, are less critical. They allow the user to jump from one section to the
next section in a logical order. In a large file, there will be a number of groups of subjects (pages) that logically fit
together. Each can be organized in a separate browse sequence. In the simple example shown in Figures 27-1 and 27-
2, there is only one group, labeled "File_Commands," available to browse. Each + footnote is followed by a colon and
an integer. The integer order sets the browse sequence. The help system will not allow browsing to go past the first or
last entry in a browse sequence. Note that the browse·numbers are sorted in character order, not numerical order. To
avoid confusion, you can precede the browse sequence numbers by zeros. For example, if you will be using browse
numbers up to 999, code the number five as 005.

Adding Bitmap Graphics
The help system will display bitmap graphics in the help window. Bitmap graphics can be useful to clarify subjects,
although large bitmaps· can take up a lot of disk space.

The simplest Way to add a bitmap to a help document is to paste it into a Word for Windows document. The bitmap
is saved along with the file. Chapter 15,Bitmaps, includes the source code for a program that will "cut" bitmap images
from any Windows application, and then allow them to be "pasted" into Word for Windows.

Ifyourwol'd processor does not support direct cut and paste operations with bitmaps, you can still include bitmaps
stored as files in your help document. There are three ways to do this, depending on whether you want the bitmap to
show up on the left or right of the document, or to be fit in with the character data. Here are the commands.

885

WINDOWS API BIBLE

{bmc filename.bmp}

{bml filename.bmp}

{bmrfilename.bmp}

Fits filename.bmp in with the text at this location.

Puts the bitmap at the far left of the document.

Puts the bitmap at the far right of the document.
Note that 'the bitmap file is the same in all three cases. Only the loction 01\ the help document changes. "

Compiling a Help File
The help compiler is called HC.EXE. HC reads a project file with the extension .HPJ that specifies how a help docu
ment is to be built. The project file is a normal ASCII text file. Here is an example.

o HELPEX.HPJ Help ,Project File List~g.
[OPTIONS]
TITLE=Help Example
COMPRESS=true
WARNING=1

[HAP]
Open_File 10
Close_File 20
Edit_File 30

[FILES]
\c\work\helpex.rtf

In this example, the help document created by Word for Windows is called HELPEX.RTF. It is referenced in the
[FILES] section of the project file. To compile this file and create the file HELPEX.HLP, use the following command
line:

C:>HC HELPEX.HPJ

Note that the project file name, not the help document~ is passed to the help compiler. If the help compiler does
not find an error during compilation, it outputs the finished help file, IIELPEXHLP. This file can be read into the
Windows help program and examined. The help program can also be launched from within another program using the
WinHelpO function.

Help Project File Options
The help project file has a large number of options that allow control over the help compiler. The project file is a
standard ASCII file, not the RTF format used forthe help document itself. The structure of the project file is similar to

, that of WIN .IN I and the other Windows initialization files. There are six possible sections in a help project file: [Files],
[Options], [BuildTags], [Alias], [Map], and [Bitmaps]. Only the [Files] section is required, although most project
files will include some [Options] and [Map] statements.

Project [Files) Section
The [Files] section is where all of the document files that will be combined to form the complete help system are
listed. A typical section is

[FILES]
HELPEX.RTF
HELPINDX.RTF
COMMON.RTF

The files are assumed to be in the same directory as the project file.;The directory can be specified with the ROOT
option, described later in this chapter.

Project [Buildtags) Section'
The help compiler allows portions of the help document to be included or omitted based on settings iri the project file.
This ability is useful when you want one version of the help document to allow generation of two or more different help
files. This might be the case if you are mark~ting beginner and' advanced versions of the same program.

886

/

27. HELP FILE SUPPORT T /

Implementing buildtags requires additions to both the help document and the project file. Within the help docu
ment, each section is preceded with a buildtag footnote. (This is a footnote with the asterisk (*) as the reference
mark.) The footnote text can contain one or more strings that are the "buildtags" for the section. For example, the
footnote

• Beginnerj Advanced

would code a section as being included if either the "Beginner" or "Advanced" option were defined in the BUILD
option of the help project file. The footnote

• Advanced

would only add the section if the "Advanced" BUILD option were defined.
All of the buildtags used in the document file should be listed in the help project file under the [Buildtags]

section. Finally, you specify which build =tag or tags will be included during compilation with a BUILD command in
the [Options] part of the project file.

[Options]
BUILD=Advanced

[Buildtags]
Beginner
Advanced

Project [Options] Section
The [Options] section of the project file provides information to the help compiler. Here is an example [Options]
section using every possible statement.

[Options]
BUILD=Advanced I Beginner
COMPRESS=TRUE
WARNING=3
ROOT=C:\C\WORK
INDEX=main index
TITLE=Help-Example
FORECEFONT=Modern
MAPFONTSIZE=8-12:12
MUL TIKEY=A

The BUILD option controls which of the sections marked with bl:~:dtags will be added to the finished help file.
Usually, this is just one keyword.

BU lLD=Advan ced

You can also combine more than one buildtagwith the logical operators & (AND), I (OR), and - (NOT). Parenthe
ses can be used to group buildtag names.

The COMPRESS option controls whether the final help file is stored in compressed form, or is left uncempressed.
Normally, you will set this value to FALSE during the development of the help file to save time. During the final
compilation, set the value to TRUE to reduce the disk space taken up by the help file. Decompression is fast, so there
is little value in storing the help files uncompressed.

The WARNING option determines the amount of debugging information the help compiler generates. Levell is
minimal output, 2 is medium, 3 is maximum output. Set this value to 3 during development.

The ROOT option specifies the starting directory fo~ all help compiler operations. Directory names listed in the
FILES section are assumed to be subdirectories of the ROOT directory. You can gct around this assumption by typing
the full path name of a file, starting with the drive letter. '

The INDEX option sets which section of the help document contains the index. The name following the INDEX=
key word must be a context string (marked with a # footnote). If no INDEX value is specified in the project file, the
first topic is assumed to be the index by the compiler. This is usually the best way to organize a help document, so
INDEX is not often used.

887

WINDOWS API BIBLE

The TITLE option speCifies a character string that will be added to the caption bar of the help window. The string
will be followed by "Help - Filename," where Filename is the name of the file that was loaded. .

.The FORCEFONT option causes the help compiler to convert all characters to the specified font. Because fonts
are a Win~ows resource, the text will not be 'displayed if the help file references fonts that are not installed on the
user's system. In these cases, use FORCEFONT to specify one of the fonts supplied with Windows (Courier, Helv,
Modern,Roman, Script, Symbol, and Tms Rmn). .

MAPFONTSIZE allows conversions from one font size to another during the help file compilation. This option is
generally used with FORCEFONT to pick font sizes appropriate for the font that will be used. MAPFONTSIZE can
convert either a single font size to another size, or a range of font sizes to one final size. Here are two examples.

[OPTIONSJ
MAPFONTSIZE=8:12
MAPFONTSIZE=10-16:14

; Convert all 8 pt to 12 pt
; Convert all 10 to 16 pt to 14 pt

MULTI KEY allows the creation of additional key word tables. By default, only the letter K footnotes go into a key
word table. MULTlKEY allows other letters to be used, creating additional tables of key words that can be searched.
Upper- and lowercase letters are not equivalent. The letters "K" and "k" are reserved.

To use the MULTI KEY option, spe~ify the HELP _MULTlKEY option when calling WinHelpO.

Project [Alias) Section
The [Alias] section allows the help compiler to use one cont~xt string in place of another. You might use this option as
an alternative to changing the footnote names within a help document. For example, to eliminate the "Edit_Info" and
"Cut..)nfo" topics, and have the jump points destinations changed to "General_Edits," use

[ALIASJ
Edit_Info=General_Edit
Cut_Info=General_Edit

lethe [ALIAS] section gets too long, the help document will be difficult to follow,so use this option with discretion.

Project [Map] Section
One of the best features of the Windows help system is the ability. to create context-sensitive help systems. Context
sensitive means that the help topic displayed will depend on the portion of the program that is currently active.

To create context-sensitive help files, you must assign numbers to the context strings. Context strings are placed
by inserting topics marked with # footnotes. The string in the footnote's text for the # footnote is the conteXt string.
For example, the help document shown at the beginning of the chapter, in Figures 27-1 and 27-2, contained several
context strings. Each context string can be assigned a number within the project file as follows:

[MAPJ
Open_File
Close_File
Edit_FilC!

10
20
30

The Open_File Context string asigned number 10, Close_File number 20, and Edit_File number 30. These num~
bersare used when calling the WinHelpO function.

Within tfie program calling WinHelpO to load the help file, the dwData parameter passed to WinHelpO is set
equal to the context number. An example of this is shown under the WinHelpO function description. The help system
will jump to this numbered topic when WinHelpO is called.

Project [Bitmaps] Section
Ifbitmap files have been referenced within the help document using the bmc, bml, or bmr commands, the bitmap files
must be listed in the help project file under the [Bitmaps] section. Here is an example.

[BITMAPSJ
bit1.bmp.·
bit2.bmp
c:\paint\bit3.bmp

888

27. HELP FILE SUPPORT T

Using the [Bitmaps] will only be necessary if you are using a text editor that does_not support direct pasting of
. bitmaps into the help document file.

Using the Help System
Although the help system works well, it does not provide any method to debug a help document. In large help files, it
is easy to end up with a missing context string footnote, or some other important marker. Missing string errors are
noted by the help compiler, but they are not always easy to track down. The best cure for these development problems
is prevention. Organize the structure of your help document before you start writing the text. Use a consistent set of
naming conventions (such as preceding key words with "k_," topics with "t_," etc.). You can use a Microsoft Excel
spreadsheet to keep track of the various labels used. "

WINlIELP

Purpose

Syntax
Description

Uses
Returns
Parameters
hWnd

lpHelpFile

wCammand

HELPJNDEX

• Win 2.0 • Win 3.0 • Win 3.1
Loads and/or M'cates an entry in a help file accessed via the Windows help system.

BOOL WinHelp(HWND hWnd, LPSTR /pHelpFile, WORD wCommand, DWORD dwData)i
This function allows an application to call the Windows help system. The help file is assumed to
have been created by the HC help compiler. If the help system (a Windows program) is not active,
it is loaded, and the help fileis read. If the help system is already viewing the help file, calling
WinHelpO can be used to jump to a new location in the help file, or to close the help system.
WinHelpO allows several methods of starting the help system at a specific point in the help file,
which allows context-sensitive help systems to be created.
Used within applications to provide online help documents.
BOOL. TRUE if the function was successful. FALSE on error.

HWND: The handle of the window that is calling the help system.
LPSTR: A pointer to a null-terminated character string containing the name of the help file. The
file name can include the full directory path if needed. The file is assumed to have been created
by compiling a help document with the HC help compiler.

WORD: Sets what action WinHelpO is to take. This can be any of the 'values in Table 27-2.

Displays the help file, starting with a context string. In this case, dwData is a 32-bit unsigned
integer. The integer's value is set to match a number in the [MAP] section of the help project file.

Displays help on the help system. Both IpHelpRle and cAvData are ignored.

Displays the help file, starting with the help file's index. This assumes that there is only one
index. For files with more than one index, use HELP _SEfINDEX.

Displays the help file, starting with a key word in the help file. In this case, dwData contains a
pointer to a character string containing the name of the key word.

Displays help for a key word in an altemate key word table. This is used with the MU!... TIKEY
option in the help project file. In this case, dwData points to a MULTIKEYHELP data structure.

Closes the help file and terminates the help system for this application. Other applications' use
of the help system is not affected. dwData is ignored.

Sets a help index in a file containing more than one index. The index is identified by placing the
context string number in dwQata. The context string number is set in the [MAPj section of the
help project file (see the following example). Calling WinHelp() with this option is always followed
by calling WinHeipO a second time with the HELP_CONTEXT command.

Table 27-2. WinHelp() Command.

889

WINDOWS API BIBLE

dwData DWORD: The DWORD value passed to the help system. The value's meaning depends on the
wCommq.nd option. See Table 27-2 for the description. .

For the HELP _MULTI KEY option, dwData points to a MULTIKEYHELP data structure, de
fined in WINDOWS.H as

typedef struct tagMULTIKEYHELP

{

WORD
BYTE
BYTE

mkSize;
mkKeylist;
szKeyphrase[1J;

} MUL TIKEYHELP;

1* si ze of thi s structure *1
1* table footnote character *1
1* key word to start on. This *1
1* string will contain more *1'
1* than one byte *1

Example This example shows four uses of the WinHelpO function. When the user clicks the "Do It!" menu
item, the'HELPEX.HLP file is loaded and displayed startingfrom the index. If the user presses
the (ED key, the same file is loaded, but it is started from the topic "Editing Files." If the help file
has already been loaded, the file jumps to this topic. Similarly, if the user presses the em key, the
help file jumps to the context string labeled number 20. The labels are set iD the help project file.

r::> HELPEX.IIPJ Project File
[OPTIONS]
TITLE=Help Example
COMPRESS=true
WARNING=3
FORCEFONT=Modern
MAPFONTSIZE=8-12:10

[MAPJ
Open_File 10
Close_File 20
Edit_File 30

[fILESJ
c:\c\book3\helpex.rtf

Item 20 is mapped to the context string "Close_File." The final use of the WinHelpO function
is'to close the help system when the application terminates. This does not cause a problem if the
help system is not currently loaded, or if two or more applications of the help system are in use.
Only an active instance of this application is removed by calling WinHelpO with the HELP_QUIT
command.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

switch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1
,switch (wParam)
<
case 10M_DOlT: 1* User hit the "Do it" menu it~m *1

WinHelp (hWnd, "helpex.hlp", HELP_INDEX, NULL)
break;

case 10M_QUIT:

}

break;
case WM_KEYDOWN:

DestroyWindow (hWnd)
break;

if (wParam == VK_F1) .
WinHelp (hWnd, "helpex.hlp", HELP_KEY,

(DWORD) (LPSTR) "Ed; ti ng FHes")
else if (wParam == VK_F2) .

WinHelp (hWnd, "helpex.hlp", HELP_CONTEXT,

890

27. HELP FILE SUPPORT ...

(DWORD) 20) ;
break;

case WM_DESTROY: 1*. stop application *1
WinHelp (hWnd, "helpex.hlp", HELP_QUIT, NULL> ;
PostQu;tMessage (0) ; .
break;

default: 1* default windows message processing *1
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

}

return (OL>
)

891

Dynamic Link Libraries(DLLs) have a reputation for being difficult to create. This reputation dates from the carly
days of Windows, when you had to write your own assembly language prolog, and when the unique aspects of program
ming within a DLL were not well documented. . ,

Today DLLs are simple to write and debug. DLLs offer major advantages to programmers over conventionallibrar
ies of functions that are included in the linking process when a program is compiled. DLLs do not have to be
recompiled or relinked. Functions in a DLL can be used by another program by just referencing the function names in
the IMPORTS section of the program's .DEF definition file. Once loaded, the DLL functions can be used by any run
ning application on the system, without loading another copy of the DLL into memory.

Because of these advantages, DLLs are the preferred way to program functions that are likely to be useful to more
than one application. As your experience as a Windows programmer grows, your collection ofDLLs will increase. You
may find that DLLs are the best way to market libraries of fUIlctions.

What Is a DLL?
If you have been programming with the C language for some time, you are probably familiar with object libraries. All
of the C library functions, such as printfO and strcatO, are stored in object libraries. You can also create your own
object library using the LIB program. During the linking process, the linker copies the functions that are called within
a C program from the library file, and adds them to the executable program. This is more efficient thanjust storing the
functions in a compiled .OBJ objective file, as only the functions.that are used are copied into the finished .EXE file.

Objective libraries are fine for an operating system like MS-DOS that only allows one program to run at one time
(TSRs and other tricks are ignored hcre). Under Windows, objective libraries are not efficient. Windows programs
would be enormous if every one had to have its own functions for output to the screen, message processing, memory
management, dialog boxes, etc.

The developers of Windows invented DLLs to allow several programs running at the same time to !:.:~.N·e a single
copy of a group of functions. Almost all of the basic functionality of Windows is stored in DLL files with names like
USER, KERNEL, and GDI. You can also create your own DLL files, as described in the next section. DLL files usually
have the extension .DLL, although they can be named with the extension 'EXE'

The term "dynamic link" describes how DLLs work. With a regular objective library, the linker copies all of the
library functions it needs and passes the exact function addresses to the program that calls the functions. With DLLs,
the library functions are in a separate DLL me. The DLL file is not involved in the linking process when a Windows
program is created. The program that calls a function in a DLL does not find out the address of the function until the
program is running and uses that function. Only then does Windows find the function in the DLL and pass its address
to the calling program. The result is that DLLs provide the ultimate in reusable code. Once a DLL is created, it never
needs to be recompiled or relinked again. Any number of running applications can call functions in a single copy of
the DLL loaded inoo memofy.

Creating a DLL
DLLs are simpler to create than a full Windows program. You do not need to create a window, window class, or
message loop. You will need to add two short functions, LibMainO and WEPO, that take care.of starting and closing
the DLL. The LibMainO function is called when a DLL is first loaded into memory. The function must always have the
format

892

28. DYNAMIC LINK LIBRARIES •

int FAR PASCAL LibHain (HANDLE hlnstance, WORD wDataSeg, WORD .,HeapS;ze,
LPSTR lpszCmdLine) ;

hlnstance is the DLL's instance handle. wDataSeg is the data segment, if the DLL has a local heap defined in the
.DEF file (see below). wHeapSize is the size of the local heap.lpszCmdLine is a pointer to a null-terminated charac
ter string that can contain a command line string. The command line string will only be available if the DLL is loaded
with the LoadModuleO function. The command line is passed as the IpCmdShow element in the IpParameterBlock
parameter passed to LoadModuleO.

The only thing LibMainO must do is to call UnlockDataO to unlock the DLL's data segment in memory (assuming
that there is no special reason why a locked data segment is required). You can also put any initialization functions,
such as allocating memory blocks, in LibMainO.

The other standard function is WEPO, which is an exit routine called right before Windows removes the DLL from
memory. The function must have the following format:

void FAR PASCAL WEP (int nParameter) ;

The parameter nParameter will either have the value WEP _SYSTEMEXIT if Windows is being shut down, or
WEP _FREE_DLL if Windows isjust removing the DLL from memory. You can code functions, such as freeing allocated
memory, into WEPO. A WEPO function is not actually required if there is no cleanup to do, as the DLL is removed
from memory. The Windows SDK documentation strongly recommends including a WEPO function in all DLLs, so it is
a good idea to put one in even if it is not needed with the current version of Windows.

Besides LibMainO and WEPO, the DLL consists of functions that you create and add to the library. These func
tions need to be declared as FAR, and they are usually declared as FAR PASCAL following the normal Windows
function declarations. Any pointer passed to a DLL function must be a FAR pointer.

Listing 28-1 provides an example of a DLL source code file. Besides the required LibMainO and WEPO functions,
the library_ contains a single function called InStrO. This function locates a string lszCheck in the string lszString and
returns the character position of the match. It returns -1 if there is not a match. Note that the function is declared
FAR PASCAL, and it uses only FAR pointers (LPSTR is defined as CHAR FAR * in WINDOWS.H).

C Listing 28-1. EXMAPDLL.C
1* exmpdll.c example dynamic link library *1

#include <windows.h>

1* dll initiator function *1
int FAR PASCAL LibHain (HANDLE hlnstance, WORD wDataSeg, WORD wHeapSize,

LPSTR lpszCmdLine)

if (wHeapSi ze > 0)
UnlockData (0) ;

1* any initialization code goes here. return 0 if initialization fails *1
return (1) ;

}

1* check if lszCheck is in lszString"return match pos, -1 if no match *1
int FAR PASCAL InStr (LPSTR lszString, LPSTR lszCheck)
{ .

LPSTR
int

lpCheck, lpString ;
nMatch, nPos ;

nPos = 0 ;
do {

lpCheck = lszCtieck ;
lpString = lszString ;
nMatch = 0 ;
do {

if (*lpCheck == *lpStdng)
nMatch++ ;

else
break; .

} while (*lpCheck++ && *lpString++)
if (nMatch == lstrlen (lszCheck»

893

WINDOWS API BIBLE

}

return (nPos) ;
else

nPos++ ;
} whi le (*lszString++) ;
return (-1) ;

void FAR PASCAL WEP (int nParameter)
{

return' ;
}

1* dll terminator *1

If you examine the code the InStrO function, you will note that there is nothing special about it. The only special
consideration in writing this function in a DLL was to make sure that only FAR pointers were used. Once you have
written the DLL source code, you will need to compile and link it. In this case, "linking" does not link the functions
into another program. Linking simply creates the executable .DLL file. Like any Windows program, a .DEF definition
file is required for linking.

There are several differences between the .DEF file for a DLL and the .DEF file for a Windows application pro
gram. Instead of the NAME statement, DLLs use LIBRARY to name the file. DLLs do not have a STACK statement
because the DLL will use the stack of any application that calls a function in the OLL. OLLs can have a local heap, so
theHEAPSIZE statement is included. Note that SINGLE is added to the DATA statement. Because DLLs only have 'one
data segment. Only one instance of a DLL is ever loaded, unlike Windows applications where multiple instances each
have their own data segments. ' ,

Listing 28-2 sh~ws a typical>DEF definition file for a OLL.

o Listing 28-2. EXAMPDLL.DEF Detlnition File
LIBRARY

DESCRIPTION
EXETYPE
STUB

EXAMPDLL

'Example DLL'
WINDOWS
'WINSTUB.EXE'

CODE
DATA
HEAPSIZE
EXPORTS

PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE SINGLE
1024
InStr

The EXPORTS statement in the DLL's .OEF file is where the library function namesare listed. Any application
calling a function in the DLL will use this name to reference the library function. It is easy to forget to add the function
name to the .DEF file after adding a new function to the C program.

The last adjustments needed to compile a OLL are made to the NMAKE file. Listing 28-3 shows the NMAKE file
needed to compil~PDLL.C. The C compiler switch "-ASw" is added. The "s" specifies the compiler small memory
model. The ''w'' provides warning messages if the compiler detects the use of a NEAR pointer that assumes that the
stack is in the local data segment (more on this later). You will use the "-AM" flag for a medium memory model
compilation. '

0, Listing 28-3. EXAMPDLL NMAKE File
#make fHe for exampdll library

ALL: exampdll.dll

CFLAGS=-c -0 LINT_ARGS -ASw -Zp -Ow -Gsw -W2
LFLAGS=/NOD lalign:16

\
exampdll.obj: \exampdll.c

, S(CC) S(CFLAGS) exampdll.c

exampdll.dll: exampdll.obj exampdll.def
link S(LFLAGS) exampdll libentry, exampdli.dll, NUL, libw sdllcew, exampdll
rc exampdll.dll .

894

28. DYNAMIC LINK LIBRARIES 'Y

The NMAKE file includes the LIBENTRY.OBJ and the SDLLCEW.LIB files 1n the linker commandline. LIB ENTRY
is a small assembly language program that starts all DLLs and ultimately calls the LibMainO function in the DLL. A
listing of this assembly language program is included in the LocalInitO function description later in this chapter.
SDLLCEW.LIB is the standard objective library for all DLL files using the small memory model.

As with Windows applications, the resource compiler RC.EXE is called at the end of the compile/link cycle. This
example is so simple that no resource data was included. RC.EXE simply tags the DLL as being a Windows 3.0 version
program. DLLs can include all types of resource data if desired.

That is all there is to creating a DLL. When you are done, the file EXAMPDLL.DLL will be created. You can't run
this program from the file manager or program manager. It is only useful if the functions included are called by
another Windows program.

Using the Functions in a DLL
Continuing with our example, let's say that you want to use the InStrO function inthe DLL in a Windows program. The
only requirement is that you add the function's name in the IMPORTS section of the calling program's .DEF definition
file. Listing 28-4 provides an example of a .DEF fiie for a program that uses InStrO:

o Listing 28-4. GENERIC.DEF
NAME
DESCRIPTION
EXETYPE WINDOWS
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS
IMPORTS

GENERIC
'generic windows program'

'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE

1024
5120

WndProc
EXAMPDLL. InStr

The only thing special about this .DEF file is the last line. The program IMPORTS the function InStrO from the
file EXAMPDLL. This is how you tell Windows where to find the InStrO function when GENERIC.EXE calls it. With
InStrO listed in the .DEF file, you can use it within the. program like any other library function. Listing 28-5 provides
an excerpt from a program calling this function ..

o Listing 28-5. Calling the InStr() Function from within a Windows Program .
int FAR PASCAL InStr (LPSTR LszString, LPSTR LszCheck) ;

Long FAR PASCAL:WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static char
HDC
char

cBuf1 [] = {"This is a string to check out."} ;
hDC ;
cBuf [128] ;

sWltch (iMessage)
{

1* process windows messages *1

case WM_COMMAND: 1* process menu items *1

IOther program lines J

switch (wParam)
{

case IDM DOlT: 1* User hit the "Do it" menu item *1
hDC = GetDC (hWnd) i
TextOut (hDC, 0, 0, cBuf, wsprintf (cBuf,

"String to Check->i!s", (LPSTR) cBuf1»
TextOut (hDC, 10, 20, cBuf, wsprintf (cBuf,

"check is at position rod",
InStr «LPSTR) cBuf1,

(LPSTR) "check"») i
TextOut (hDC, 10, 40, cBuf, wsprintf (cBuf,

"other is at position Xd",
InStr «LPSTR) cBuf1,

ReLeaseDC (hWnd, ~DC) i
break i

J- 895

(LPSTR) "other"»)

WINDOWS API BIBLE

With this simple example, the function prototype for
the InStrO function is coded right into the calling pro
gram. For a larger DLL, the DLL's exported ,functions
would be proto typed in a header file that could be in
cluded in any program calling the functions.
, , InStrO is called twice in the example. Note that the

parameters passed to InStrO are cast to long pointers.
This explicit calling is not necessay if you use a function
protypefor InStrO. This example will produce the output

-. , '9~neric . FF
120 It I .Quit

String to Check-} This is a string to check out.
check Is at postlon 20
other is at postion -1

Figure 28-1. Output/rom Program Calling InStr()
DLL Function.

shownin Figure 28-1 when the user clicks the "Do It!" ~enu item.

Other Ways' to Call DLL Functions
The previous example used the most common method of providing Windows with the function address to use in the
DLL: reference by function name. This method works for any number of functions in a DLL. For example, if the DLL
has three functions, the EXPORTS section of the DLL's .DEF definition file would look like

EXPORTS FirstFunc
SecondFunc
ThirdFunc

If the DLL file's name is MYDLL.DLL, then any program wanting to use these three functions would include the
following in its .DEF definition file:

IMPORTS MYDLL.FirstFunc
MYDLL.SecondFunc
MYDLL.ThirdFunc

A more efficient, but less transparent, method oflinking the functions is to give each exported function a number.
These numbers, called "ordinal" numbers, are preceded by an ampersand (@) character in the DLL's EXPORT sec
tion. Here is an example.

EXPORTS FirstFunc
SecondFunc

'ThirdFunc

iil1
iil2
iil3

. The program using the DLL's functions can then IMPORT them based on the ordinal value.

IMPORTS FirstFunc
SecondFunc .
ThirdFunc

= MYDLL.1
= MYDLL.2
= MYDLL.3

This produces smaller and faster code than using the function names to define the link. The trade-off is that it is
easy to get the ordinal numbers confused when using large DLL files.

One trick that you can use with either the function name or ordinal number methods of linking D LCs is to rename
the function within the program's .DEF file. For example, the program calling the three functions could have the
following lines in its .DEF definition file:

IMPORTS FirstF
SecondF
ThirdF

= MYDLL.FirstFunc
= MYDLL.SecondFunc
= MYDLL.ThirdFunc

This is called giving the function an "alias." You can do a lot of clever tricks using function alias names, such as
replacing standard Windows functions with your own versions. Again, the trade-off is that the code gets more difficult
to follow when the same function may have move than one name.

The last way to link a DLL's functions to a program is to explicitly load the library with the LoadLibraryO func
tion, and obtain a function address With GetProcAddressO. This provides precise control of when a DLL is loaded into
memory, and when it is removed with FreeLibraryO. Using these functions is more complex than definirig the links in
the program .DEF files, as you must use indirect function references. An example is provided under the FreeLibraryO
function description.

896

.'.::

28. DYNAMIC LINK LIBRARIES Y

Importing Windows Library Functions
All of the examples used in this book import f~nctions from the Windows DLLs that contain functions l\ke
ShowWindowO, TextOutO, etc. You may wonder why we have not had to include a long list of function names in the
IMPORTS section of every .DEF file to allow links to the Windows functions.

The answer is that Windows allows you to summarize all of the functions that are exported from a DLL in a small
file that the linker can read. This file is called an "imnort library." The IMPLIB.EXE program creates this type of file.
IMPLIB has the following syntax:

IMPLIB imp-lib·name mod-def1ile

Where imp-lib-name is the name of the import library file to create, and mod-def-file is the name of the DLL's .DEF
definition file. For example, to create an import, library for EXAMPDLL.DEF, you would use the following command
line from'DOS:

IMPLlB EXAMPDLL.LIB EXAMPDLL.DEF

Once this is done, you can forget about all of those IMPORT statements, and just use the import library in the
LINK command line. For example, '

LINK GENERIC, GENERIC.EXE, , INOD SLIBCEW LIBW EXAMPDLL, GENERIC.DEF

would give the linker the dynamic link function information to link the EXAMPDLL functions into GENERIC.EXE at
run time.

You have probably figured it out already, but the SLIBCEW and LIBW import libraries of Windows functions were
created this way. We have included them in every LINK command for the examples in this book. That is how the DLL
functions for all of the Windows library are referenced into the programs~

All links of Windows programs include the LIBW.LIB import library. The other Windows import library you will
include in the LINK command line depends un the memory model, math calculation basis, and whether the program
to be created is a Windows application 'or DLL. Table 28-1 summarizes the import library names.

Coprocessor Emulation Math Routines

Small SLlBCEW.LlB

Medium MLlBCEW.LlB

Compact CLlBCEW.LlB

Large WBCEW.UB

Altemate Math Routines

Small SLlBCAW.UB

Medium MUBCAW.L1B

Compact CLlBCAW.LlB

large LUBCAW.UB

Table ts-l. Windows Import Library Names.

SDLLCEW.LlB

MDLLCEW.lIB

CDLLCEW.LlB

LDLLCEW.lIB

SDLLCAW.UB

MDLLCAW.UB

CDLLCAW.UB

LDLLCAW.UB

The compact and large memory models are not often used in Windows programs, as they require the program's
code to be fixed in memory. If you are not familiar with the' memory mode~ or math calculation options, you may want
to review your C compiler manual. '

Problems with 'Writing DLLs ,,'
We brieRy mentioned in the description of creating a DLL that the DLL uses the calling program's stack. The DLL
does not have a stack of its own. This is different from a conven, tiona! Windows'apPlicat~~n, ,Where, the stack and the
local heap share the lWlle data segment. This difference can cause problems if you are Ift aware of its effects. '

~ .' , ':'

897 ...

WINDOWS API BIBLE

(Jfyou have some assembly language background, you may find it simpler to think of the differences between a
Windows application and DLL in terms of the CPU's registers. With an application, the stack segment and data seg
ment are the same. ,That is DS == SS. With a DLL, the stack segment belongs to the calling program, and the data
segment belongs to the DLL. DS!= SS.) . .

Some C compiler library functions take shortcuts that make the assumption that the stack and the local heap are
in the same segment. These functions will cause the DLL to attempt to write in a protected area of memory and cause
the-application to fail. You can also fall into the same trap if you use automatic variables inside the DLL for pointers.
or arrays. Short pointers for automatic variables will point to the stack of the calling program. Short pointers for static
variables will point to the local heap. You can get all sorts of incorrect pointers if you are not careful.

There are several simple ways to avoid these problems.

1. Use FAR pointers. FAR pointers code both the segment and the offset for an address. It does not matter if the
pointer points to another application's stack, or the DLL's memory heap. The pointers will be valid.

2. . Use static variables. Static variables are always stored in the local heap, not in the stack. This rule avoids the DS
!= SS problem, but may waste memory if the variables are only needed for a short period of time. .

3. Use third-party C library functions with caution. The C library that comes with the Microsoft 5.0 and later compil
ers is safe, but most non-Windows code is suspect.

Static variables have their own set of pitfalls inside DLLs. Remember that any number of applications can call the
same DLL functions. Imagine a database application that uses one function call to move to the first record and stores
t~is location in a static variable. While the first application is working on the databaSe, a second application can call
the same function and reset the static variable to a new value. The first application will not be alerted to this,' but the
static value will suddenly be invalid.

Avoiding these types of problems requires careful DLL design. Assume that all DLL functions are potentially
reentrant. That is, the function can be called independently at different times by separate applications. If you need to
store data specific to one application's use of the DLL, allocate separate memory for each calling application. The
application's instance handle is a good choice for a parameter to pass to the DLL's functions so that calling applica
tions can be differentiated.

Deb~gging DLLs
. The CodeView for Windows debugger works perfectly for DLLs. When you initiate the debugger, you will need to enter

the name of the ap~lication that calls the DLL and the name of the DLL(s). After that, the DLL will behave just like
any other file that the debugger processes. You can set breakpoints in the DLL, examine registers, etc. .

Use the same -Zi -Od compiler switches to disable optimization and add debugging information when creating a
DLL. Here is an example NMAKE file, preparing the EXAMPDLL.C file for debugging.

" make fi le for exampdll library

ALL: exampdlL.dLL

CFLAGS=-c -D LINT_ARGS -ASw -Zip -Od -Gsw -W2
LFLAGS=/NOD Ico laLign:16 '

exampdLl.obj: exampdLL.c
$(CC) $(CFLAGS) exampdll.c

exampdll.dLl: exampdll.obj exampdll.def
link $(LFLAGS) exampdLl libentry, exampdll.dll, NUL, libw sdllcew, eX8~pdlL
rc exampdll.dll

Dynamic Link Library Function Summary
Table 28-2 summarizes the functions that support the DLLs in Windows applications. The next section contains the
detailed function descriptions.

898

28. DYNAMIC LINK LIBRARIES T

FreeUbrary Removes a DLL library from memory.

GetProcAddress Retrieves the address of a function in a DLL.

LoadUbrary Loads a DLL into memory.

Locallnit Initializes the local memory heap during the startup of a DLL.

Table 28·2. Dynamic·Link Library Function Summary.

Dynamic Link Library Function Descriptions
This section contains the detailed description of the functions that support using DLLs in Windows applications.

FREELIBRARY

Purpose

Syntax

Description

Uses

Returns

See Also

Parameters
hLibModule

Example

• Win 2.0 • Win 3.0 • Win 3.1

Removes a DLL library from memory.

void FreeLibrary(HANDLE hLibMod!lle)j

LoadLibraryO and FreeLibraryO directly control when a DLL is loade.d and removed from
memory. DLL library modules are only loaded into memory once. If more than one call to Load
LibraryO is made, Windows keeps track of the number ofloads as the reference count. Each call
to FreeLibraryO reduces the reference count by one. When the reference count reaches zero, the
DLL module is removed from memory.

Each call to LoadLibraryO should have a matching call to FreeLibraryO to make sure that the
DLL is not left in memory after the user applications are terminated.

No returned value (void).

LoadLibraryO, GetProcAddressO

HANDLE: The handle of the DLL library module. This value is returned by LoadLibraryO.

This example demonstrates explicitly loading and freeing a dynamic link library. In this case, th~ .
InStrO function in the EXAMPDLL.DLL library (discussed at the beginning of the chapter) is
used. The program using InStrO does not include the library and function name in the IMPORTS
section of its .DEF definition file. Instead, LoadLibraryO is used to load the library when the
WM_ OREATE message is processed. Figure 28-2 shows the example program after the .DEF menu
item was selected.

The library file EXAMPDLL.DLL is loaded by calling LoadLibraryO. If the returned handle
has a value greater than 31, the library was successfully loaded. GetProcAddressO returns the
address of the InStrO function within the library, so that the function can be called.

One trick here is the definition of the pointer to the InStrO function~ The top line in the
listing shows a typdef of the INSTR data type. INSTR is defined as a function that has the same
type and parameters as the InStrO function in the library. This data type is used to create the
lpFunc/nStr static pointer for the .
InStrO function. This avoids getting
compiler warning messages every
time the function is called.

The InStrO function is actually
used in the processing of the
WM_P AINT messages. The function

Qo It! ,2ult
string to Check-) This Is a string to check out.
check Is at postlon 20
other Is at postlon -1

is called indirectly, us! ng the Figure 28-2. FreeLibrary() Example.
/

899

WINDOWS API BIBLE

lpFuncInStr pointer. This is done twice, checking the occurrence of two strings within the
cBufl {j character array. The results are output to the window's client area with a combination of
the TextOutO and wsprintfO functions.

When the program terminates, the library is removed 'from memory with a call to Free
LibraryO. If another running application is using EXAMPDLL.DLL at the same time, ·Free
LibraryO will just reduce the library's relerence count by one. The library will not be removed
from memory until all applications using it have terminated, or called FreeLibraryO.

typedef int (F~R PASCAL *INSTR)(LPSTR, LPSTR) ;

long FAR PASCAL WndProc (HWNO hWnd, unsigned iMessage, WORO wParam, LONG L~a~8m)
(

)

stat; c char
HOC
char
s ta ti c HANOLE
static INST~

cBuf1 [J = ("This is a string'to check out.") ;
hOC;
cBuf [128J ;
hLibrary ;.
lpFuncInStr;

switch (iMessage)
(

1* process windows messages *1

}

case WM_CREATE:
hLibrary = LoadLibrary ("EXAMPOLL.OLL") ;
if (hLibrary < 32)
(

IItes!:ageBox (hWnd, "Could not load dL l",
"LoadLibrary Error", MB_OK) ;

OestroyWindow (hWnd) ;
}

lpFuncInStr = GetProcAddress (hLibrary,' "InStrh)
break;

case WM_COMMANO: 1* process menu items *1
switch (wParam)
(

case 10'M_00IT: 1* User hit the "·00 it" menu ·item *1
hOC = GetOC (hWnd) ;
TextOut (hOC,. 0, 0, cBuf, wsprintf (cBuf,

'''S.tring to Check->h", (LPSTR) cBuf1»
TextOut (hDO, 10, 20, ~Buf, wsprintf (cBuf,

"ch,ck is at position Xd", ,
(*lpFunclnStr) «LPSTR) cBuf1,

(LPSTR) "check"») ;
TextOut{hO't, 10, 40, cBuf, wsprintf (cBuf,

"olher ; s at posi tion Xd'.'., : . .
(*lpFunclnStr) «LPSTR>.cBuf1,

. (LPSTR) "other"») ;
ReleaseDC thWnd, hDC) ;
break;

case 10M_QUIT:

}

break;

OestroyWi~dow (hWnd) ;
break;

case WM_OESTROY: 1* stop application *1
FreeLibrary (hLibrary)
PostQuitlitessage (0) ;
break;

defaul t: I 1* defaul t wi ndows messag~. processing *1
return OefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ; /

GETPROCAnDRESS • Win 2.0 • Win 3.0 • Win 3.1
Purpose

Syntax

Retrieves the address of a function in a dynamic link library (DLL).

FARPROC GetProcAcldress(HANDLE hModule, LPSTR lpProcName)j

900

Description

28. DYNAMIC LINK LIBRARIES ~

This function returns ~he address of a function in a DLL. It is equivalent to MakeProcInstanceO
which returns a function address for a Windows application module. The lpProcName function
name inust be liste~ in the EXPORTS section of the DLL's.DEF definition file. Normally,
lpProcName points tb a null-terminated character string containing the exported function name.
Alternatively, if the function is given an ordinal value in the EXPORTS section,

EXPORTS Funct i onNallle a1

the function can be referenced by using the MAKEINTORESOURCEO macro

FARPROC fpFuncName ;

fpFuncNallle = GetProcAddress ChLibrary, HAKEINTORESOURCE(1» ;

Uses

Returns

See Also

Parameters
hModule

lpProcName

Exiuuple

Used with LoadLibraryO to obtain a function address within a loaded DLL, so that the function
can be called.

FARPROC, the function's address (entry point). Returns NULL on error. Note that if an incorrect
ordinal value is used to reference the function, GetProcAddressO may still return a non-NULL
value.

MakeProcInstanceO, LoadModuleO

HANDLE: The handle of the library module that contains the module. This value is returned by
LoadLibraryO. Set hModule to NULL to reference the current module (the module that contains
the GetProcAddressO function call).

LPSTR: A pointer to a null-terminated character string containing the function name. Alterna
tively, this can be the ordinal value ofthe function, as listed in the EXPORTS section of the DL1's
.DEF definition file. The spelling of the function name must be identical to that used in the
EXPORTS section of the DLL's .DEF definition me.

See the example under the FreeLibraryO function description .. :.

• Win 2.0 FIIWin3.0 .Win3.!
Pmpose Loads a dynaIl\ic link libraty (DLL) into memory.

Sptu HANDLE LoadLibrary(LPSTR Ip~ibFileName);
Deseription

u~

Retuns

o
2

3

5

This function provides an alternative to simply adding the DLL function names to the IMPORTS
se~tion of the .DEF defmition file for the program calling the library fu~ctions. LoadLibraryO
lOads the D11 into memory and returns a handle to the DLL. The GetProcAddressO function can
then be used to obtain the address of functions within the library.

Ideal if a DLL will only be used for a small portion of the application. The DLL can be loaded,
used, and then freed using FreeLibraryO.

HANDLE, the handle oUhe library. This value will be over 31. Otherwise, an error has occurred.
The type of error is determined by the returned value, which may be any of the codes listed in
Table 28-3.

Out of memory.

Rle not found.

Path not found (invalid directory path specified in /pUbFileName).

Attempted to load a task, not a DLL.

901

WINDOWS API BIBLE

Table 28-3. continued

6

10

11

12

13

14

15

16

17

18

Library requires separate data segments for each task.

Wrong Windows version.

Invalid .EXE file (DOS file, or error in program header).

OS/2 application.

DOS 4.0 application. ,

Unknown .EXE type.

Attempt to load an .EXE created for an earlier version of Windows. This error will not occur if
Windows is run in real mode.

Attempt to load a second instance of an .EXE file containing multiple, writeable data'segments.

EMS memory error on the second loading of a DLL.

Attempt to load a protected-mode-only application while Windows is running in real mode.

Table 28-3. LoadLibrary() Error Codes.

See Also

Parameters
lpLibFileName

Example

LOCALINIT

Purpose

Syntax

DeScription

Uses

Returns

See Also

Parameters
wSegment
pStart

pEnd

FreeLibraryO, GetProcAddressO

LPSTR: A point.er to a null-terminated character string containing the library name. The name
can contain the full DOS path name if necessary.

See the example under the FreeLibraryO function description.

• Win 2.0 • Win 3.0 • Win 3.1
Initializes the local memory heap during the st~rtup of a dynamic link library (DLL).

BOOL LocalInit(WORD wSegment, WORD pStart, WORD pEnd);

During the creation of a DLL, the LIBENTRY.OBJ module is linked into the program to add the
startup routine for the DLL. LIBENTRY.OBJ is the standard startup routine for DLLs, provided
with the Windows Software Development'Kit. The source code (shown below) for this file is an
assembly language function that does two things:

1. Initializes the local memory heap for the DLL by calling LocaUnitO.

2. Calls the LibMainO function in the C language source code file for the DLL.
, '/

LocalInitO leaves the local heap as a locked memory segment. Normally, this is unlocked in the
LibMainO function by calling UnlockDataO. The heap can end up moved if either LocaWlocO or
LocalReAllocO is called. Use LockDataO to explicitly lock the heap memory block.

Normally, not called from a C program because the inclusion ofLIBENTRY.OBJ in the creation of
a DLL takes care of this function call.

BOOL. TRUE if the heap was initialized, FALSE on error.

LockDataO, UnlockDataO

WORD: The segment address of the segment that will contain the local heap.

PSTR: The address of the start of the local heap within the segment.

PSTR: The address of the end of the local heap' within the segment.

902

28. DYNAMIC LINK LIBRARIES ~

Example This is the source code for the LIBENTRY.OBJ file that is included during the link step in the
creation of a DLL. LIB ENTRY calls LocaUnitO to create the application's local memory heap,

. and then calls the LibMain() function within the DLL to allow the DLL to do initialization.

PAGE,132 ..
"""""",""","""""",""""""","""""",,""",""",

LIBENTRY.ASH

Windows dynamic Link Library entry routine

This moduLe generates a code segment caLLed INIT_TEXT.
It initializes the local heap if one exists and then calls
the C routine LibHainC) which should have the form:
BaaL FAR PASCAL LibHainCHANDLE hInstance,

WORD wDataSeg,
WORD cbHeap,
LPSTR lpszCmdLine);

The result of the call to LibMain is returned to Windows.
The C routine should return TRUE if it completes initialization
successfuLly, FALSE if some error occurs •

..
""""""""""""""""""""""""""" """"",,""",,,,
include cmacros.inc

externFP <LibHain> the Crout i ne to be ca lled

createSeg INIT_TEXT, INIT_TEXT, BYTE, PUBLIC, CODE
sBegin INIT_TEXT
assumes CS,INIT_TEXT

?PLH=O 'C'naming
externA <_acrtused> ; ensures that Win DLL startup code is linked

?PLH=1 I PASCAL I nami ng
externFP <Locallnit> ; Windows heap init routine

cProc LibEntry, <PUBLIC, FAR> 0; entry point into DLL

cBegin
push
push
push
push
push

di
ds
cx
es
si

handle of the module instance
library data segment
heap size
command line segment
command line offset

caLlc:

error:

; if we have some heap then initialize it
jcxz callc ; jump if no heap specified

; call the Windows function LocaLInitO to set up the heap
; LocallnitCCLPSTR)start, WORD cbHeap)i

xor ax,ax
cCall LocaLInit <ds, ax, cx>
or ax, ax ; did it do it ok ?
jz error ; quit if it failed

; invoke the C routine to do any special initialization

call LibHain
jmp short exi t

pop si

; invoke the ICI routine (result in AX)
LibHain is responsible for stack clean up

clean up stack on a Locallnit error

903

WINDOWS API BIBLE

pop ., es
pop ex
pop ds
pop d; .

cEnd

sEnd INIT~TEXT

904

Multiple Document Interface (MDI) is a standard way to write applications in which one master window holds a
number of child windows. The most popular Windows program that uses this interface is Microsoft Excel, although
many other programs also use it. Excel will hold a number of spreadsheets, charts, and macro sheets within the
bounds of the Excel main window.

Realizing that this type of program interface could be used for many types of programs, IBM included a descrip
tion of the proper behavior ofl an MDI application in the book Systems Application Architecture, Common User
Access, Advanced Interface Design Guide (IBM, 1989). This book describes how all windowing applications should
behave, including complex applications like MDI programs. Microsoft added several functions to Windows 3.0 that
make creating MDI applications simpler. These functions, and related MDI messages, are discussed in this chapter.

MDI Frame and Child Windows
Windows 3.0 includes a little-known application called SYSEDIT.EXE. By default, it is loaded in the SYSTEM
SUbdirectory. SYSEDIT allows you to edit the initialization files CONFIG.SYS, AlITOEXEC.BAT, WIN.INI, and SYS
TEM.INI. Figure 29-1 shows a typical session. In this
case, the child windows are cascaded, so that at least a
part of each window is visible and can be activated by a
mouse click.

SYSEDIT is a classic MDI application. The outer
window, ,called the "frame" window, contains all of the
child windows. Each, child is a separate editor applica
tion. The child windows can be minimized to an icon,
shown within the bounds of the frame. Children can also
be maximized to fill the entire frame, covering up all
other chUd windows below them.

MDI applications end up being their own "little
world. n All the child windows stay within the bounds of
the frame window, and all use the same menu. This pro- Figure 29-1. SYSEDIT.EXE MDI Application. ,
vides a consistent feel to the elements of an MDI appli-
cation. The trade-off is that the child windows are limited to the size limits of the frame window. This contrasts with
applications that use popup windows that can be placed anywhere on the screen. Popup windows are usually better

-for relatively independent windows, while MDI child windows are best suited to closely coupled applications.
One interesting aspect of the MDI child windows is that they do not have their own menus. All MDI windows share

the same menu line on the outer frame. If there are different modes (such as graphics vs. spreadsheet child windows),
the menu items may be different. To minimize confusion for the user, the menus should be as similar as possible.

The Structure of an MDI Application
You can create MDI applications without using special functions. Child windows will minimize to within the bounds of
their parent's client areas, and they will display an icon when minimized. ChUd window extents are 'automatically
limited by the parent window's borders. The advantage of using the new MDI functions and messages is that Wmdows
developers have provided direct implementations of several useful features.

905

WINDOWS API BIBLE

1. The MDI frame menu can automatically keep a list of the names of all active chil~ windows. You' can take advan·
tage of this feature to allow the user to select any active child from the menu item, even if the child window is
hidden under other children.

2. Special messages are provided which automate the arrangement of the child windows into cascades (as shown in
Figure 29-1), or tiled windows to fill the frame window's client area with all of the child windows. '

3. If some of the children have been minimized, a single message will arrange the icons at the bottom of the frame
window's client area. The program manager (an MDI application) uses this feature to arrange icons at the bottom
of the client area.

To implement these features, Windows 3.0 adds the MDICLIENT predefined window class. This class is similar to
the definition of BU'ITON and LISTBOX classes. You do not have to register predefined classes, they are already
defined within Windows.

The MDICLIENT window class runs the client area of the frame window. When starting, the MDI application
creates a frame window, then an MDICLIENT window as a child of the fra~e, and then all child windows as children
of the MDICLIENT window. The structure is shown in
Figure 29·2.

This arrangement allows the MDICLIENT window to
take care of activities like caScading child windows or
arranging icons. You will not draw on the MDICLIENT
window."Its sole purpose is to control the behavior of the
child windows. The child window client areas and the
frame window menu are the areas of an MD I application
that respond to user actions.

With the tree structure of windows in an MDI appli
cation, the most efficie~t way to communicate between
the frame, MDICLIENT, and child windows is via Win- Figure 29-2. Window Structure in an MDI Application.
dows messages. To automate default keyboard actions,
the TranslateMDISysAccelO function is added to the application's message loop. This function is similar to
TranslateAcceleratorO, but it is customized to convert keystrokes into equivalent MDI messages.

Windows provides two default message processing functions, DefFrameProcO and DefMDIChildProcO"to pro
cess messages for the frame and child windows. They take the place of DeiWindowProcO that we have been using at
the bottom of every WndProcO function to handle messages not processed by the application. Communi'cation
between the frame, client window, and child windows is ha,ndled via eleven specialized messages. Table 29·1 provides

. a summary of each of these messages. The full message description for ,each is included in Chapter 9, WindOws
Messages.

WM_MOIACTIVATE

WM_MOICASCAOE

WM_MOICREA TE

WM_MOIOESTROY

WM_MOIGET ACTIVE

WivUviOilCONARRANGE

WM_MOIMAXIMIZE

WM_MOINEXT

Used to activate child windows within a Multiple Document Interface (MOl) window. This is
similar to a main window gaining the input focus. '

Arranges all of the child windows within the MOl client window in "cascade" format.

Creates an MOl child window.

Destroys (removes) an MOl child window.

Obtains the handle of the currently active MOl child window.

Causes the MOl client window to arrange all minimized MOl child windows at the bottom of the
client area.

Causes an MOl child window to be maximized.

Activates the next MOl child window.

906

29. MULTIPLE DOCUMENT INTERFACE (MOl) 'Y

Restores an MOl child window to its previous size.

Unks a new menu to the ~Ol frame window.

WM_MOIRESTORE

WM_MOISETMENU

WM_MOITILE Causes an MOl client window to arrange all of its children in tile format.

Table 29-1. MDI Message Summary.

The example program in this chapter demonstrates the use of these messages.

MDI Interface Bugs
Although the MDI functions work well, there are a few bugs that you may run into. One is that the maximized child
windows cannot be closed by double-clicking the child window's close box (upper left corner). You can get around this
problem by trapping Mt-CNCLBUTTONDBLCLK messages and checking if the active child window is maximized. The
returned value from sending the W~CMDIGETACTIVE message will be 1 if the active child is maximized. If the child
window is maximized and the mouse position is within the close box, you can close the child window directly.

Another bug is that MOl applications tend to not release all of the Windows system resource memory when the
MOl application terminates. The loss will only show up if you start and terminate the MID application a number of
times. This small loss occurs even if you explicitly remove all child windows and their class definitions before the MOl
application exits. The system memory area is a limited resource, with a maximum of 64K available. You can check this
value from the program manager Help/About Program Manager menu item. Be sure to explicitly delete any resources
(such as unattached menus) before the MDI application
exits to minimize the drain on system resources.

MDI Example Program
This example creates a simple MOl application. Thpre
are only two child window types. One displays a rect
angle, the other an ellipse. In both cases, the object
changes size to fit within the child window borders. The
MOl frame window supports two similar menus. If one of
the children is active, the menu allows the color of the

D
Rectangle

--D
Ellipse

rectangle/ellipse to be changed. If the frame is active, Figure 29-3 . .MDI Example Program.
the "MDI Controls" menu item replaces the color selec-
tion item. "MOl Controls" demonstrates standard MOl features for tiling and cascading opened child windows, select
ing the next child window, and arranging iconized child windows.

Figure 29-3 shows the example with five child windows created. The top three were tiled when the frame window
was smaller. After enlarging the frame window, two more children were created and then minimized to icons.

The resource file defines both menus, and the keyboard accelerators. The upper menu is used when the frame
window is active. The lower menu applies when a child window is active.

C GENERIC.RC Resource File for MDI
1* generic.rc *1

#include <windows.h>
#include "generic.h"

generic '~tON generic.ico

Accel ACCELERATORS
{

}

VK_F2, 10M_CASCADE, VIRTKEY
VK_F3, 10M_ARRANGE, VIRTKEY
VK_F4, IOH_TILE,VIRTKEY
VK_F5, IDH_NEXT,VIRTKEY

FrameMenu MENU

·907

WINDOWS API BIBLE

BEGIN
POPUP "SFi Le"

BEGIN

END

END

MENUITEM "New SRectang L e",
MENU ITEM "New SELLipse",
MENU ITEM SEPARATOR
MENUITEM "gCLose Chi ld",
MENUITEM ~&Exit Demo",

POPUP "&MDI Controls"
BEGIN

END

MENUITEM "Cascade Windows\tF2",
MENUITEM "Arrange Icons\tF3",
MENUITEM "Tile Windows\tF4",
MENUITEM "Next Window\tF5",

POPUP "schiLd ~indows"
BEGIN

MENU ITEM "Chi ld Window List",
END

ChildMenu MENU
BEGIN

ENO

POPUP "&File"
BEGIN

MENU ITEM "&Top Menu",
~ MENUITEM SEPARATOR
-------__ MENUITEM "gClose chi ld",

END
POPUP
BEGIN

END·

AE-RtJi-TEM _'~~Ex it Demo",
-------.---

"&Color"

MENU ITEM "&BLue""
MENUITEM "&Green"
MENUITEM "&Red"

POPUP "&Child Windows"
BEGIN

MENUITEM "Child Window List",
END

IDM_NEWRECT
IDM_NEWEliP

10M_CLOSE
IDM_QUIT

10M_CASCADE
IDM_ARRANGE
10M_TILE
IDM_NEXT

IO'LTOP

10M_CLOSE
10M_QUIT

IDM_BlUE
10M_GREEN
lOICRED

The header file defines all of the' menu item ID numbers and provides function declarations and the; stand8rd two
glob~ variables used i~ the examples in this book.

o GENERIC.H Header File
1* generic.h *1

'define lOM_MOIlIST
'define 10M_QUIT
'define IOM_NEWRECT
'define IOM_NEWElIP
'define 10M_CASCADE
'define 10M_ARRANGE
'define IOM~ClOSE
'define IDM_TOP
'define 10M_TILE
'defi ne 10M_RED
'define 10M_BLUE
'define 10M_GREEN
'define 10M_NEXT

'define FIRST_CHILD

1
2
3
4
5
6
7
8
9
10
11
12
13

100

, 1* globaL variables *1
int ghInstance ;
char gszAppName [] = "generi c" ;

'* menu item id values *1

1* child window nu.bers above .enu ite •• *1

908

29. MULTIPLE DOCUMENT INTERFACE (MOl) '9

1* function prototypes *1
long FAR PASCAL FrameWndProc (HWND, unsigned, WORD, LONG) ;
long FAR PASCAL El ipProc (HWND hChi ld, WORD wMessage, WORD wParam,

LONG lParam) ;
long FAR PASCAL RectProc (HWND hChild, WORD wMessage, WORD wParam,

LONG lParam) ;
void SetFrameMenu (void) ;
void SetChildMenu (void) ;
BOOL FAR PASCAL EnumChildDestroy (HWND hWndChild, DWORD lParam) ;

The program definition file shows the message processing functions for the frame window and the two types of
child windows in the EXPORTS section. In addition, an enumeration function EnumChildDestroyO is listed. This
function is used to delete all of the child windows before the MDI application exits. .

~ GENERIC.DEF DefinItion File
NA"E
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSlZE
EXPORTS

I

GENERIC
'generic mdi prograM'
WINDOWS
'WINSTUB.EXE'
PRELOAD "OVEABLE DISCARDABLE
PRELOAD "OVEABLE MULTIPLE
1024
8192
frameWndProc
El1pProc
RectProc
EnumChild~estroy

The NMAKE file is shown with the debug options set on.

~ GENERIC.NMAKE File
ALL: generic.exe

CFLAGS=-c -D LINT ARGS -Zi -Od-Gsw -H2
LFLAGS=/NOD leo -

generic.obj : gener1c.c generic.h
$~CC) S(CFLAGS) generic.c

generic.res: generic.rc generic.ico
rc -r generic.rc

generic.ext : generic.obj generic.def generic.res
link S(LFLAGS) generic, , ,libw slibcew, generic
rc. generic.res

The source code creates the frame window inside WinMainO. Creating the frame window causes a WM_CREATE
message to be·sent to the frame window message processing function FrameWndProcO. The MDI client window is
created while processing WM_CREATE.

The two new window classes, "rectangle" and "ellipse," are also registered in the WM_CREATE section. The
cbWndExtra element of the window class definitioriis set to hold one global memory handle. This memory area will
:;tore the current color of the rectangle or ellipse for each window created. As the data is stored with each window, not
with the class, changing the color of one MDI child does not change the color of any other similar child window. Note
that the message loop in WinMainO has been modified" to include both the TranslateMDISysAccelO and
TranslateAccelerator() functions. . .

The FrameWndProc() function demonstrates several of the MDI messages for controlling tiling and cascading
child windows. Note that WM_COMMAND messages not processed by FrameWndProcO are sent on to any active
child.

The window functions for the two types of child windows are very similar. Both process WM_COMMAND mes
sages, and change the rectangle or ellipse color if a color menu item has been selected. Note that the memory area for
storing the color of the rectangle/ellipse is allocated when the child window processes a WM_CREATE message. The
handle is stored in the cbWndExtra element of the window's private data. The memory value is changed when the

909

WINDOWS API BIBLE

window color value is altered. The rnemoryvalue is retrieved before painting the rectangle or ellipse in the W~CPAINT
section of these child window functions.

o GENERIC.C Source Code
1* genedc.c generic windows application *1
1**1

#include <windows.h>
#include "generic.h"

1* window's header file - ilways included *1
1* the application's header file *1

HWND ghWndFrame, ghWndClient 1* globals *1

int PASCAL WinHain (HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
{

HANDLE
HSG
WNDCLASS
HMENU

hAccel ;
msg

wndclass
hMenu ;

ghInstance = hlnstance ; 1* stor.e instance handle as global yare *1
hMenu = LoadMenu (hInstance, IFrameMenu") ;

if (!hPrevInstance)
{

J* create frame window class *1

)

. wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground

1* aternative:,
wndclass.lpszMentiNa~e
wndclass.lpszClassName

= CS_HREDRAW I CS_VREDRAW
= FrameWndProc
= 0 ;
= 0 ;
= hInstance ;

LoadIcon (hlnstance, gszAppName) ;
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH)_;
set backgr'ound to COLOR_APPWORKSPACE + 1. *1
= NULL;
= "MDIFrame" ;

. 1* register frame window class *1
if (!RegisterClass (&wndclass»

return FALSE;

ghWndFrame = CreateWindow
"MDIFrame",

1* create the frame window *1
1* class name *1

"MDI Example",
WS_OVERLAPPEDWINDOW
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
LoadMenu (ghInstance,
hInstance,
NULL> ;

1* window name *1
WS_CLIPCHILDREN, 1* window style *1

1* x position on screen *1
1* y position on screen *1
1* width of window *1
1* height of window *1
1* parent window handle *1

IFrameMenu"), 1* menu handle *1
1* instance handle *1
1* lpstr (null = not used) *1

ShowWindow (ghWndFrame, nCmdShow)
DrawMenuBar (ghWndFrame) ;
UpdateWindow (ghWndFrame) ;
hAccel = LoadAccelerators (hInstance, "Accel")

\

while (GetMessage (&msg, NULL, 0, 0» 1* the m~ssage loop.*1
{

if (!Tr~nslateMDISysAccel (ghWndClient, &msg~ &&
!TranslateAccelerator (ghWndFrame, hAccel, &msg»

{

TranslateHessage (&msg) ;
D1spatchMessage (&mag) ;

910

29. MULTIPLE DOCUMENT INTERFACE (MOl) T

}

}

return msg.wParam . }

long FAR PASCAL FrameWndProc (HWNO hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{

HWNO
CLIENTCREATESTRUCT
MOICREATESTRUCT
WNOCLASS

hChild
ccs ;
mcs ;
wndclass
hMenu ;
lpEnumFunc

HMENU
FARPROC

switch (iMessage)
{

case WM CREATE: 1* create MOl client window here *1
ccs.idFirstChild = FIRST_CHILD;
hMenu = LoadMenu (ghlnstance, "FrameMenu") ;
ccs.hWindowMenu = GetSubMenu (hMenu, 0) ;
ghWndClient = CreateWindow ("MOICLIENT", NULL,

WS_CHILO I WS_CLIPCHILOREN I WS_VISIBLE,
0, 0, 0, 0, hWnd, NULL, ghInstance, (LPSTR) &ccs)

SendMessage (hWnd, WM_MOISETMENU, 0,
MAKE LONG (ccs.hWindowMenu, hMenu»

wndclass.style = CS_HREORAW I CS_VREORAW
wndclass.lpfnWndProc = ElipProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra sizeof (GLOBALHANOLE)
wndclass.hlnstance ghlnstance; .
wndclass.hIcon Loadlcon (NULL, IOI_APPLICATION)
wndclass.hCursor LoadCursor (NULL, IOC_CROSS)
wndel a ss. hbrBa c kg round Get Stoc kObj ec t (WH I TE_BRUSH)
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = "Ellipse";
RegisterClass (&wndelass) ; 1* reg ellipse wind class *1

wndclass.lpfnWndProc = RectProc ;
wndclass.lpszClassName = "RectangLe" ;
RegisterClass (&wndelas·s) ; 1* reg rectangle wind class *1

return (0) ;
case WM_COMMANO: 1* process menu items *1

swi tch (wParam)
{

case IOM_NEWRECT: 1* make a new rectangle child window *1
mcs.szClas3 = "Rectangle" ;
mcs.szTitle = "Rectangle" ;
mcs.hOwner ghlnstance ;
mcs.x = CW_USEOEFAULT
mcs.y = CW_USEOEFAULT
mcs.cx = CW_USEOEFAULT
mcs.cy = CW_USEOEFAULT
mcs.style = 0 ;
mcs.lParam = NULL;
SendMessage (ghWndClient, WM~MOICREATE, 0,

(LONG) (LPMDICREATESTRUCT) &mcs) i.
break;

case IOM_NEWELIP:
mcs.szClass
mcs. szTi tle
mcs.hOwner
mcs.x
mcs.y
mcs.cx
mcs.cy
mcs.style

911

1* make a new ellipse chi ld window *1
"Ellipse" ;
"Ellipse" ;
ghInstance ;
CW_USEOEFAULT
CW_USEDEFAULT
CW_USEDEFAULT·
CW_USEDEFAULT

= 0 i

WINDOWS API BIBLE

)

mcs.lParam =NUll;
SendMessage (ghWndClient, WM_MOICREATE, 0,

(lONG) (lPMOICREATESTRUCT) &mcs) ;
break;

case 10M_CLOSE:
hChild = lOWORO (SendMessage (ghWndClient,

WM~MOIGETACTIVE, 0, Ol»; ,
SendMessage (ghWndC l i ent, WM_MOIOESTROY, hChi ld, au
break;

case 10M_ARRANGE:
SendMessage (ghWndClient, WM_MOIICONARRANGE, 0, Ol)
break;

case IOM_CASCAOE:
SendMessage (ghWndClient, WM_MOICASCAOE, 0, Ol)
break;

case IOIICTllE:
SendMessage (ghWndClient, WM_MOITIlE, 0, Ol)
break;

case 10M_NEXT:
SendMessage (ghWndClient, WM_MOINEXT, 0, Ol) ;
break;

case IDM_QUIT: 1* destroy chi ldren, frame *1
lpEnumFunc = MakeProcInstance (EnumChildDestroy,

ghInstance) ; .
EnumChildWindows (ghWndClient, lpEnumFunc, Ol) ;
FreeProcInstance (lpEnumFunc) ;
DestroyWindow (hWnd) ;
break;

default: 1* pass command to active child *1

,}

break;

hChild = lOWQRD (SendMessage (ghWndClient,
WM_MDIGETACTlVE, 0, aU) ;'

if (IsWindow (hChild»

break

SendMessage (hChild, WM_COMMAND, wParam,
lParam) ;

case WM_DESTROY: 1* free menu data before exit *1
hMenu= FindResource (ghInstance, "FrameMenu", RT_MENlJ)
hMenu = loadResource (ghInstance, hMenu)
if (hI'lenu)

while (FreeResource (hMenu»
,

hMenu = Fi ndResource (ghInstance, "Chi ldMenu", RT_MENU)
hMenu = loadResource (ghInstance, hMenu) ;
if (hMenu)

while (FreeResource (hMenu»
,

PostQuitMessage (0)
break;

default: 1,* default windowS'-lllessage-processing-'*1
return DefFrameProc (h\ifnd', ghWndClient, ;Message, wParam, lParam)

return (au,.

1* child window message processing procedure for ellipse windows *1

long FAR PASCAL ElipProc (HWND hChild, WORD wMessage, WORD wParam, lONG lParam)
<

RECT
PAINTSTRUCT
GlOBAlHANDlE
lPSTR
HBRUSH

switch (wMessage)
{

r~lient
ps ;
hriem ;
lpMem ;
hBrush •

912

)

)

29. MULTIPLE DOCUMENT INTERFAcE (MOl) "
"

c"a'se WM_CREATE: 1* put default black color in window data *1
hMelD = GlobalAlloc CGHND, sheof CDWORD» ; ,
SetWindowWord ChChi ld, 0, hHem) I*save handle with window *1
break; ; .

case WM_MDIACTIVATE:
if (wPara'm)

SetChildMenu ();
else

SetFrameMenu () ;
DrawHenuBar (ghWndFrame) ;
return CO) ;

case WM_PAINT:
GetClientRect (hChild, &rClient) ;
hHem = GetWindowWord (hChild, 0) ;
lpMem = GlobalLock (hMem) ;
BeginPaint (hChild, Ips),;

1* gained input focus *1

1* lost input focus *1

1* color stored here *1
1* get handle to color *1

hBrush = CreateSolidBrush (RGB (*ClpMem + 1), *(lpHe. + 2),
, *UpMem + 3») ;

GlobalUnlock (hMem) ;
SelectObject (ps.hdc, hBrush) ;,
Ellipse Cps.hdc, 10, 10, rClient.right - 10,

rClient .bottom - 10)
DeleteObject (hBrush) ;
EndPaint ChChild, Ips)
return CO) ;

case WM_COMMAND:
swi tch (wParalll)
(

case IDM_RED: 1* change the color used to paint ellipse *1
case 10M_BLUE: 1* the color value is stored in global *1
case IDM_GREEN: 1* memory. Mem handle stored with wind *1

hMem = GetWindowWord ChChild, 0) ;
lpMem = GlobalLock ChMem) ; ,
*(lpMem + 1) = (wParalll == IDPLRED ? 255 : 0) ;
*(lpHem+ 2) = (wParam == 10M_GREEN? 255 : 0) ;
*UpHem + 3) = CwParam == IDi,-BLUE ? 255 : 0) ;
GlobalUnlock (hMem) ;
InvalidateRect (hChild, NULL, TRUE) ;

case IDM_TOP:

}

return (0) ;
case W"_OESTROY: '

SetFrameHenu () ;
break;

h~e. = GetWindowWord (hChild, 0)
GlobalFree (hMem) ;
return CO) ;

return DefHDIChildProc (hChild, wHessage, wParam, lParalll)

/

1* child window messoge processing_pr~~edurc for rectange windows *1

long FAR PASCAL RectProc (HUNO hChild, WOR~ wMessage, WORQ wParom, LONG lParam)
(

RECT
PAINTSTRUCT
GLOBALHANDLE
LPSTR
HBRUSH

switch (wMessage)
{

rClient ;
ps ;
hMem;
lpMem ;
hBrush ;

case W"_CREATE: 1* put default black color in window data *1
hMem = GltibalAlloc (G"ND, sizeof tDWORD» ;
SetWindowWord (hChi la, 0, hMem); 'I 1* save handle with windo .. *1
break'; I '

case WM~MDIACTIVATE~

WINDOWS API BIBLE

>

>

,."j :

if (wParam)
SetChi ldMenu n

else
SetFrameMenu () ;

DrawMenuBar (ghWndFrame) ;
return (0) ; .

case WM_PAINT: ..
GetClientRect (hChi ld, &rClient) ;
hMem = GetWindowWord (hChild, 0) ;
lpMem = GlobalLock (hMem);
BeginPaint (hChild, &ps) ;

1* gained input focus.*1

1* lost input focus *1

1* color stored here *1 I

1* get handle to color *1

hBrush = CreateSolidBrush (RGB (*(lpMem +1>, *(lpMem + 2),
*(lpMem + 3») ;

GlobalUnlock (hMem) ;
SelectObject (ps.hdc, hBrush) ;
Rectangle (ps.hdc, 10, 10, rClient.right - 10,

rClient .bottom - 10)
DeleteObject (hBrush); -
EndPaint (hChild, &ps)
return (0);

case WM_COMMAND:
swi tch (wParam)
{

case IDM_RED: 1* change the color used to paint recto *1
case IDM_BLUE: 1* the color value is stored in global *1
case.:"IDM_GREEN: 1* memor'y. Mem handle stored with wind *1

hMem = GetWindowWord (hChild, 0) ;
lpMem = GlobalLock (hMem) ;
*(lpMem + 1) = (wParam == 10M_RED? 255 : 0) ;

·-·*(lpMem + 2) = (wParam == 10M_GREEN? 255 : 0)
*<LpMem + 3) = (wParam == IDM_BLUE ? 255 : 0) ;
GlobalUnlock (hMem) ;
InvalidateRect· (hChild, NULL, TRUE)

case IDM_TOP:

.>
return (0) ;

case WM..!DESTROY:

SetFrameMenu () ;
break;

·hMem = GetWindowWord (hChild, 0)
GlobalFree (hMem) ;
return (0) ;

"return OefMOIChildProc (hChild, wMessage, wParam, lParam)

"'~}

if (! hMenu)

hMenu = NULL ;
hSubMenu ;
nMenuItems ;

hMenu = LoadMenu (ghlnstance, "FrameMenu")
nMenultems = GetM~nultemCount (hMenu) ;
hSubMenu = GetSubMenu (hMenu, nMenultems - 1)
SendMessage (ghWndClient, WM_MOISETMENU, 0,

MAKE LONG (hMenu, hSubMenu»
DrawMenuBar (ghWndFrame) ;

void SetChi ldMenu (void) 1* put the chi ld window menu at top *1
{

static
HMENU
int

HMENU hHenu = NULL;
hSubMenu ;

- nMenultems ;

if (! hMenu) .

914

}

29. MULTIPLE DOCUMENT INTEBFACE (MOl) •

hMenu = LoadMenu (ghlnstance, "Chi ldMenu")
nMenultems = GetMenultemCount (hMenu) ;
hSubMenu = GetSubMenu (hMenu, nMenultems - 1)
SendMessage (ghWndClient, WM_MDISETMENU, 0,

MAKELONG (hMenu, hSubMenu»
DrawMenu~ar (ghWndFrame) ;

BOOl FAR PASCAL EnumChildDestroy (HWND hWndChild, DWORD lParam)
{

SendMessage (ghWndClient, WM_MDIDESTROY, hWndChild, Ol)

}
, return (TRUE~ ; I

Because the example program uses two menus, only one of the menus is attached to the frame window when the
program exits. This means that the menu data for the unattached menu will be left in memory after the application
terminates unless it is explicitly removed. The logic in the processing of the \VM_DESTROY message in Frame
WndProcO handles removal of the menu resource data. FreeResourceO must be called as many times as Load
ResourceO was called to actually remove the resource from memory. The EnumChildDestroyO function at the bottom
ofthe listing demonstrates a simple technique for sending a message to all of the child windows. In this case, it is the
W1CMDIDESTROY message. The same technique can be used to send any message, including user messages.

, This example shows two separate functions for processing rectangular and elliptical child windows. This ap
pr:oach was used to demonstrate passing control to separate message processing functions, the most general case.
The:;e two functions are so similar that they could easily be combined into one function. The type of window (rect
angle or ellipse) would be stored with the color data in the memory block associated with each child window. When
the child window received a mCPAINT message, it would determine what shape to paint along with the color data.

MDI Function SUffiluary
Table 29-2 summarizes the MDI support functions.

OefFrameProc

OefMOIChiidProc

Provides default message processing for the window function of the frame window in an MOl
application.

Provides default message processing for the window function of a child window in an MOl
application.

T ranslateMOISysAccel Provides default translation of Windows keyboard messages for MOI'applications.

Table 29-2. MDI Function Summary.

MDI Function Descriptions
This section contains the detailed descriptions of the MOl support functions.

DEFFRAMEPROC o Win 2.0 • Win 3.0 ,. Win 3.1
Purpose

Syntax

Description

Provides ~efault message processing for the window function of the frame window in an MDI
(multiple document interface) application.

, LONG Def'FrameProc(HWND hJVnd, fIWND hWndlr!DIClienl, WORD wMsg, WORD wParam,
LONG IPamm)j

In an MDI application, the frame \vindow is primarily responsible for maintaining the menu. All
child windows share the same menu line. The default MDI behavior will add child window names,
preceded by a number, to the menu line as the child windows are activated. DefFrameProcO is
the equivalent of DefWindowProcO, except that DefFrameProcO provides specialized functions
for an MDI frame window as the default. All messages that are not processed by the frame
window's message processing logic should be passed to DefFrameProcO. '

915

WINDOWS API.BIBLE

Returns

See Also

Parameters
hWnd'

hWndMDIClient

tlJMsg

wParam

lParam

. . ~ . ."

Used at the bott~rn of the frame window message processing (window) function to handle meS*
sages not explicitly processed by the program's logic. .

. LONG. This value is returned to Windows as the returned value from the frame window's message
processing (~vindow) function.

DefMDIChildProcO, CreateWindowO

HWND: The MDI frame window handle;

HWND: The Mill client window ha~dle. The client window is normally created during procesSIng
of the WM_CREATE message for the frame window. Client windows are created from the class
MDICLIENT.

WORD: The mess.'lge ID value (such as WM_MOVE). This value is initially sent from WindowS to
the frame window function.

WORD: The I6-bit value passed with the message. This value is initially sent from Windpws to th~
frame window function. . '. .

DWORD: The 32·bit value passed with the message. This value is initially sent from Windows to
the frame window function.

Related Messages All messages that the MDI frame window message processing (window) funct~on receives, but,
does not act on, are sent to DeiFrameProcO. In addition, the following messages should be Passed
to DefFrameProcO regardless of whether action is taken in the MDI frame window's 'message

~.
processing function: MCCOMMAND, Wt.LMENUCHAR, W?\LNEXTMENU, W1rLSET FOCUS,
andMLSIZE~

The MDI example earlier in this chapter uses DefFrameProcO at the bottom 'of the MDIframe
message processing function, FrameWmlProcO.

DEFMDICBlLDPRoc o Win 2.0 .• Wm 3.0. • Win).!

Bee Also

Parameters
AWnd

tDMsg

wParam'

'lPaiam

. i ~ , ___

Provides default message processing for the window function of a child window in an MI)I (mul·
tiple document interface) application.

LONG DefMDIChildProe(HWND hWiul, WUR» wltfsg, ~ORD ~Param, LONG LParam)i

This function takes the place ofDefWin~owProcO for a child window message fJmction in an MDI
window. The default processing notifi~s the MDI client window when a child is created or plosed,
and also does the normal chores for sizing the'child window, iconizing, etc. •

Used within the child window function of an MDI application.

LONG. This value is returnedto Windows as the returned value from the child message process
ing (window) function.

DeiFrameProcO

HWND: The MDI child window handle.

WORD: The message ID value (such as MLMOVE). This value is initially sent from Wmdows to
the child window function.

WORD: The 16·bit value passed with the message. This value is initially sent from Wmdows to the
child \yindo"r; function.

,DWORD: Th.~ 32·bit value passed with the message. This value is initially sent frOm Wmdows to
. '. the child window function: .

\
916

29. MULTIPLE OOCUMENT INTERFACE (MOl) Y

Ie1ated Messages The followingmessagcs are actively processed by this function: ~CCHILDAarIVATE, WM_GET
MINMAXINFO, Wt\CMENUCHAR, \VM_MOVE,WltCNEXTMENU, Wt\CSETFOCUS, WM_SIZE,
and W!\CSYSCOMMAND.

Example Both the RectProcO and ElipProcO window functions in the MDI example earlier in this chapter
use this function. .

TRANSLATEMDISYsACCEL 0 Win 2.0 1.1 Win 3.0 • Win 3.1

Purpose Provides defau!t translation of Windows keyboard messages for MDI applications. -

BJDtax BOOL TranslateMDISynAccel(HWND hWndClient, LPMSG IpJ,fsg)i

Description

Uses
Returns
Parameters
hWndClient

This function is used within the MOl application's message loop to process system menu input for
the MDI frame \'window. If the message is translated, the function returns 1. In this case, the
message should not be passed on to TranslateMessageO and DispatchMessage(), as the trans
lated equivalent to the original message will be placed on the application's message queue;
Used within an MDI application's message loop.

BOOL. TRUE if the message was processed, FALSE if not.

. HWND: 'file MDI client window handle. Note that this is the client window, not the frame window
~~ .

IpMsg LPMSG:- A pointer to an MSG data structure containing the Windows message. The message is
assumed to have been retrieved from Windows with either GetMessageO or PeekMessage().

Related Messages All messages are passed through t~~. function.
Example 'file genera) structure for an MDI message loop is as follows:

whi le-CGe.tftessage (&msg, NULL, 0, 0»
{. -

1* the message loop ·1

}

if (!TranslateMDISysAccel 1hUndClient, &rnsg) &&
!TranslateAccelcrator (hUndFra~c, hAccet, &msg»

{

}

TrnnslateMcssnge (&asg) ;
DispatchHessage <&rnsg) ;

Tills example shows both the MDI message translation and accelerator table translations
being checked in the message loop. If the MDI application does not use keyboard acceleratonJ,
the TranslateAcceleratorO function can be omitted.

917

Dynamic Data Exchange is a message protocol that allows Windows applications to exchange data. Using DDE is
similar to using the clipboard. With the clipboard, the user is normally in charge of controlling the cut and paste

, operations. With DDE, the application ca~ control the flow of data in the background. DDE is ideal for problems such
as displaying stock quotes as they change, or provid'ing links between different types of applications. Microsoft Word
for Windows and Excel support DDE links fur updating spreadsheet values shown within a word processing document.

DDE is implemented with nine Windows messages. Learning to use DDE ill your applications is simply a matter of
learning how these nine messages work. You can register your own unique messages for data transmittal to exchange

. data between two or more programs you are working 011. By using the DDE messages defined in the DDE.H header file,
your application will be able to exchange data with many other programs that use the DDE standard.

Windows 3.1 includes an alternative method of implementing DDE via a series of about 25 functions that reside in
a DLL library called DDEML.LIB. These functions provide a different programmer's interface to DDE, but work on the
same principles described in this chapter. DDE data exchange implemented with the DDEML functions is compatible
with the conventional DDE implemented with Windows messages. The DDEML functions are not covered in this book.

,How DDE Data Is Exchanged
Because DDE is a message-based system, the data must be transmitted with messages. Windows messages allow only
two parameter values, a WORD (wParam) and a DWORD (lParam). That is not enough room to transmit much
information. To get around this limit, the IParam value is used to hold an indirect address to a block of memory. For
short strings ~sed to pass the names of data elements, lParam holds one or two global atom values. For larger amounts
of data, IParam holds the handle of a global memory bloek allocated using GlobaWlocO with the GMEM_DDESHARE
option.., ' .

dfobal~tOlns and DDESHARE global memory blocks are used because they are the only two types of data that can
be safely ~ed by two separate applications. Trying to read a normal memory block allocated by another application
risks the ,dreaded "Sharing Violation" error message, and/or termination of the program. Future releases of Windows
are_ expected to have even more stringent safeguards against the use of another application's data.

Keep in mind that there are two other ways to exchange data between applications. One is to use the clipboard.
,The other is to read data maintained by a dynamic link library (DLL).

The DDE protocol requires nine messages because there are several different situations that an application may
need to address. One is that the receiving appl~cation may not be running. Applications that are not running will not
get DDE data. Ano.ther .problem is that the re'ceiving application may be running, but not ready to receive the data.
Also,.tp.e r~ceiviI1lfapplication may be able to read several different formats or types of DDE data, and it will need to
d~i~~hichJO;mat to read, and which to reject.
" ':' 'ljf~'DDE ,conversation, the client is the application that starts the conversation. The serverfs the application that
teSpQnds to the,client. In most cases, the server will provide data to the client, but this does not have to be the case,
is ,v,:e ' will see'ln' the first example in thi~ chapter. To keep things simple, we will look at cases where only one DDE
,:con,,~.satiori is going on at one time. An application can engage in several DDE conversations at once. This means that
all1li'iP1ication can be both a client and a server at the same time. . .

918

30. DYNAMIC DATA EXCHANGE (DOE)'"

Applications, Topics, ~nd Item Identifiers
Because a server may be able to send more than one type of data, DDE messages label data with character strings
stored as global atoms. Atoms are used to transmit the name of the application and the name of the data item(s)
requested.

Data items are labeled with three levels of identifiers. When the DDE conversation is started, both the client and
server must support the same "application" and "topic." "Application" is normally the name of the server program,
while "topic" refers to one of a number of DDE subjects that the program may exchange (such as-plots, text, bitmaps,
etc.). Limiting the conversation to a specific application and topic is important. Otherwise, all ruiming applications
that support DDE would respond to all messages. As soon as the DDE conversation is established, the specific data
element requested is specified with the "item" name.

Cold DDE Link
The simplest DDE conversation, the cold link, is ideal for sending a packet of information on an infrequent basis. DDE
conversations start when the client sends a WM_DDE_INITIATE message. This is the only DDE message that is sent
with SendMessageO. The rest are posted with PostMessageO, placing the messages on the message queue of the
receiving application. SendMessageO has the handy ability to transmit the same message to every running applica
tion on the system.

The WM_DDE_INITIATE message uses the IParam parameter to encode the desired application name and topic
name as global atoms. An application having the ability to respond to this type of data sends back a WM~DDE_ACK
acknowledgement message, as shown in Table 30-1. Other applications running on the system ignore the
WM_DDE_INITIATE message. • "

I, .,Message From To

1 WM_DDEJNITIATE Client Server

2 WM_DDE_ACK Server Client

Table 30-1. Initiation ofa DDE Conversation.

, Data Transmitted

Application name. topiC name (as atoms).

Echoes application and topic names if server can supply data. Also
provides window handle of server.

If the client gets a WM_DDE_ACK back, the DDE conversation has started. Now the client can ask for some data.
lfWM_DDE_ACK is not returned, the server application is probably not running. The client can attempt to start the
server by calling WinExecO, or simply give up and display a warning message. '

Assuming a link was established, the client requests the data be transmitted by sending a WM_DDE_REQUEST
message to the server. A handle to the memory block containing the data is sent back with a WM_DDE_DATA mes
sage. The client confirms the receipt of the data with a WM_DDE_ACK message, as shown in Table 30-2.

OfAessage .' ' From

3 WM_DDE_REQUEST Client

4 WM_DDE_DATA Server

5 WM_DDE_ACK Client

To

Server

Client

Server

Data, Transmitted

The name of the data item requested (as an atom). and the clipboard
format to use for the data.

/Echoes the data item name (as an atom). and passes a handle to a
global memory block containing the data.

Echoes the data item name (as an atom), andiets server know if the
data was accepted.

Table 30-2. A DDE Cold Link Data Transmission. ;'

The actual data is passed within a global memory block allocated with GlobalAllocO. The GMEM_DDESHARE
option is used when allocating the memory block to allow the data to be passed ~thout causing a memory error
("sharing violation").

919

WINDOWS API BIBLE

If the server cannot respond to the MeDDE_REQUEST, the server transmits a MeDDE_DATA message encod
ing a zero in one of the bit fields of the data (theJAck bit field). This is called a .!'negative" acknowledgment. If the
server can send the requested data item, the bit field is set to one. This is called a "positive" acknowledgment. '

. The data itein name is passed as a global atom with every message. This allows an application involved in several
DDE conversations to keep track of which request is being processed. Additional meDDE_REQUEST messages can
be sent for· each data item that the client would like to receive. When all of the data has been collected, the DDE
. conversation is termina~d, as shown in Table 30-3.

6 WM_DDE_ TERMINATE. Client SerVer The handle of the client window.

7 WM_DDE_ TERMINATE Server Client The handle of the server window.

Table 30-3. Termination of a DDE Conversation .
. //

~o(DD~ Link . .
/The cold link is fme for sending a packet of data at one time, but it is inefficient if the client would like to receive data
whenever the data changes. Examples of data that change periodically are links between communications programs
and spreadsheetS .. The classic example is updating an Excel spreadsheet based on the latest stock quotes received
over a modem~ The hot link is initiated the same way as a cold link. When the conversation is established, the client
sends the server a WM_DDE_ADVISE message. This lets the server know that the client would like the data sent every
time the d~ta changes. The transmittal of the WM_DDE_DATA messages then goes on as needed, until either the
server or the client terminates the conversation.

Table 30-4 shows the message sequence.:

1 . WM_DDEJ~ITlATE Client

2 WM_DDE_ACK Server

3 WMJ)OE..ADVl$E Client

4 WMJ)OE_OATA Server

5 WMJ)OEy.CK Client
(optional, depends on
the fAckReq flag sent
with ~DDE.l\DVISE).

(Steps 4-5 continue as
the Server's data changes.)

6 WM_DDE_ TER~INATE Client

Server

Client

Server

qient

Application ~~ic ilame (as atoms).

Echoes application and topic names if server can supply data. /J.Jso
provides window handle of server. .
The name of the data item requested (as an atom), the clipboard fonnat
to use for the data, and the link type (hot).

Echoes the data nem name (as an atom), and passes a handle to a
global memory block containing the data.

Server Echoes the data item name (as an atom), and lets server know if the
data was accepted.

Server The handle of the client window.

The handle of the server window.

Table SO-t. S6quence qf a Hot DDE Conversation. . ,

The cllent can temporarily stop updates from the SerVer by posting a WM_DDE_UNADVISE message. 'ibis mes
sage doeS not terminate the conversation, but lets the server know that updates are not needed until a WM_DDE...AD
VISE message is posted.

920

-
30. DYNAMIC DATA EXCHANGE (DOE) •.

Wann DDE Link
- The hot DDE link is ideal for intermittent transmittal of small amounts of data. For larger amounts of data, or frequent

transmissions, the client may not be able to deal with the data all of the time. The warm DDE link provides a compro-
. mise. The server notifies the client with a meDDE_DATA message when the data·changes, but sends a NULL in

place of the handle to the memory block containing the data. If the client is busy, it can Ignore the message. If ~
client has time to read the data, it sends a mCDDE_REQUEST message back to the server. The server then transmits .
another WM_DDE_DATA message, this time including the handle to the data.

Table 30-5 shows the warm link ll1:essage sequence. .

~i
1 WM_DDEJNITIATE Client Server Application name, topic name (as atoms).

2· WM_DDE_ACK Server Client Echoes appfication and topic names if server can supply data. Also
provides window handle of server.

3 WM_DDE-AOVlSE Client Server The name of the data ttem requested (as an atom), the clipbOard format
to use for the data and the link type (warm).

4 WM_DDE_DATA Server Client Echoes the data item name (as an atom), and passes a NULL in place of
the handle to a global memory block containing the data ..

------5 WM_DDE_ACK Client Server Echoes the data item name (as an atom), and lets server kooN if the
(optional, depends on dat~ was accepted.
the fAckReq flag sent
with WM_DDE_ADVlSE).

(Steps 4-5 continue as
the server's data changes.
No, data is transmitted until

-a WM_DDE_REQUEST is posted.)

6 WM_DDE_REQUEST Client Server The name of the data item requested (as an atom), and the clipboard
fonnat to use for the data.

7 WtvtDDE_DATA Server Client Echoes the data item name (as an atom), and passes a handle tq a •
global memory block contain:ng the data.

8· WM_DDE_ACK Client Server Echoes the data ttem name (as an atom), and lets server know if the
(optiOnal, depends on data was accepted.
the fAckReq flag sent
with WM_DDE_DATA).

{11:le conversation continues
with steps 4-5).

9 ~_DDE_TERMINATE Client Server The handle of the client window.

10 WM_DDE_TERMINATE Server Client The handle of the server window.

Table 3o-s. Sequence qf a Warm DDE 0lf!l-versation.
.- .

In general, an application supporting DDE should support old, Warm, and hot links. The data passed in global
aaemory blocks uses a clipboard data format to structure the data., It is preferable to support the OF_TEXT clipboard'·
data tonnat, as this is the most likelY method of transmitting data. Other, more specialized data formats, can be
supported in addition to CF _TEXT~ CF.:,.TEXT provides the common denominatOr for exchange of data between pro-
srams written by ditYerent peOple.

921

WINDOWS API BIBLE

Generalized DDE Conversations
If you are writing both the client and server application, you can control the names of the application, topics and
items. The more general situation occurs when your application needs to be able to exchange data with a range of
appl!cations, using topics and items which are not known. There are two types of support for generalized DDE conver
sations. The first is the use of "wild card names" during the DDE connection step. (Using a wild card name is similar
to using the "*.*" notation in DOS when doing a directory search.) If the client specifies NULL in place of the applica
tion name atom or topic name atom, all running DDE servers will respond. 1'he client can then look over the applica.:
tion and/or topic names that come back (via W~CDDE_ACK messages) and choose which ones are appropriate to
establish DDE links.

The other convention used for generalized DDE conversations is support of the "System" topic. Supporting the
system topic is not required, out strongly recommended for any DDE server application. The idea is that all DDE
applications support this topic name and provide standard information items to potential clients. The clients can then
use the information to narrow the choice of which data to exchange. Table 30-6 shows the recommended "System"
topic data items that a server should support. In all cases, the data is transmitted as character strings (CF_TEXT
clipboard format). Multiple items in the string are separated by tab characters.

Sysltems

Topics

RetumMessage

Status

Formats

A list of the items that the application supports as part of the system topic.

A list of the items that the application can support at this time. This may change, depending on what activity
the application is doing.

Data in support of the last WM_DDE_ACK message. This is a way for the server to transmit additional data.

The application receiving a WM_DDE_REQUEST message for this item should respond with a
WM_DDE_DATA message containing either "Busy" or "Ready."

A list of the clipboard formats that the server supports. The server should list them in the order of
preference. The first format should be the format that retains the maximum amount of information.

Table 30-6. "System" Topic Items.

The second example, Listing 30-2, uses Microsoft Excel's support of the System topic to obtain information from
"Excel. One thing to keep in mind with generalized DDE conversations is that a single initiation of a DDE link using
wild cards will resultin a large number of messages being transmitted. Processing these messages takes time, and can
significantly slow down system7 performance. ,
Other DDE Data Transmission Messages
In the descriptions of the three types of links (cold, hot, warm), the data was always transmitted with a
WM_DDE_DATA message. This is the general method of sending any type of data. There is an alternative if the data
transmitted is a series of one or more character string commands. This is appropriate when one application will
control another application's behavior. A good example of this is control of the Windows Program Manager applica
tion. The Program Manager responds to five different DDE commands. They are described in Section 22-20 of the
Windows SDK manual and are summarized in Table 30-7. .

[CreateGroup(New Group)]

[Addltem(FILENAME.EXT, MyFile)].

[DeleteGroup(Old Group)]

Creates a new program group called "New Group" in the Program Manager window.

Adds the application FIL~NAME.EXT to the group, and names the application icon
"MyFile."

Deletes a program group called "Old Group" in the Program Manager window.

922

30. DYNAMIC DATA EXCHANGE (ODE).

[ShowGroup(New Group, 1)] Displays a group called "New Group. The second value is a code: 1=Show normal,
2=Show iconic, 3=Show maximized, 4=SI10W last size, 5=Activate, show current size,
6=SI10W minimized, 7 ::.Minimize, no changr. in active group, 8=Show current size, no
chal108 in activr. group.

[ExitProgMan(1)] Exits tile Program Manager. O=Exit without saving, 1 =Save state.

Table 30-7. Windows PI'O.'IJ'am .1fal/af)('J"])J)E COlllmands.

To use these ('ommalHls, all applieation estahlishes a DDE ('ollversation with the Windows Program Manager
application. In this easc, the application name and topic are both "PHOGMAl'lJ." The eommands are endosed in square
brackets and SPilt with a Wl\l_DDI~_EXEClJTE message. The first example pnigram (Listing :30-1) demonstrates ere-
atlng a program group using DIH~ messages. . .
.-The other messa~e for sl'IHling data is \Vl\l_DDI~_POKE. It is used when a DDE conversation is in either a warm or

hotli~kj but when rlata needs to be transmitted without a prompting \v~l_DDE_DATAJ1lessage from the client to the
ser.v~r, It canb~ thought of as an "I know you did not ask fill' this, but here it is anyway" message.

III' . .'

Adding a New Group to the Program Manager
This example, see Listing :30-1, creates a new program group in t he Windows Program Manager window, and adds the
WINFILKf~XE program to the group. It is t~1)ical of a colli link D[)E session that would take place in an install pro
gram. Figure aO-l shows how the Program !\lanager window will appeal' after this cXaIl1ple program is executed.

The DDE conversation is managed by a hidden window. The hidden window is convenient, as it allows DDE
messages to be sellt to the "windl)\v" without eornplieating tl1l' \\'ndProcO function for the application's main window.
The "sender" window dass is created in WlldPl'OcO when till' Wl\l_CREATE message is protpssed. The "sender"
window eJass h,~s its own window messagp procl'ssing .
function Send~rProcO, shown at the end of t he listing.
SendeI'l'l'ocO must be included in the EXPOHTS sed ion
of the program's .DEF definition me. A functioll proto
ty})e should also be added to thc program's hpadcl' file.

The application starts the convcrsation wit h Pro
gram Manager when SendcrProcO processes the
\Vl\CCHEATE message. The \V~CDDE_EXECUTE II11'S

sages are not sent until SenderProcO rl'('('in~s a
WM_lISEH + 1 nwssage from the application's main win-
dow. This message is s£'nt when the U:-ier dirks tIll' "Do
It!" menu item.

'1\\'0 WM_DDE_EXECllTE Ilwssagl's an' St'llt t (I til('
Progl'am Manager. Tlw first one ('ontains a tOllllllanli

I:.·,·· -

ioO[i'l
~
~ .. ·111·'.1':

string with both tlll' Crcat('(iroupO and Sho\\'Gl'OuPO Fi,l//(/'(' .]0-1. Addill.!! (f G/'()IIj) I() 'he ProlJl'alll Mal/agel'.
commands. Tlw st'l'olld message transmits AddJtemO.
The two messages could have heen combined into a singh' longl'r IllPssage.

Wl\CDDE_ACK messages received after the init ial \\,~I_()J))'~_INITIATE message, and after the two
Wl\CDDE_EXECllTE messages, are posted. Sl'nderPl'otO lIsrs Blillil'<lll valtH's to take a shortcut when keeping track
ofwhieh ACK is expeeted. This is fine for a simpll' J)DE <lpplieation,hylhe('olllPs complex if several DDE conversa
tions are happening at the.same tinw.ln thosp cases, use the item 'n;'~nl'~ (stored as an atom) to determine which DDE
message is being pl'O('(~ssed. .

o Listing 30-1. Creating a Program Group Inside the Program Manager
1* generic.c dde example - creates group in program manager *1

#include <windows.h>
#include <dde.h>

·923-

1* note inclusion of DDE.H *1

WINDOWS ApI SISLE

\.
'include "~eneric.hh

~nt PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance, LPSTR lpszCmdLine, int nCmdShow)
.(

)

HWND
MSG
WNDCLASS

hWnd;
msg ;
wndclass

ghlnstan~e = hlnstance ;
if (!hPrevlnstance)
(

)

wndc las5'. style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass •. hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName
if (!RegisterClass (&wndclass»

return FALSE;

hWnd = CreateWindow
gszAppName,
gszAppName,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,

~'NULL,

NULL,
hlnstance,
NULL> ;

, ShowWindow (hWnd, nCmdShow) .,
UpdateWindow (hWnd) ;

while (G~t"essDge (&msg, NULL, 0, 0»
(

)

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

return·.sg.wParam;

1* store instance handle as global yare *1

= CS_HREDRAW I CS_VREDRAW ;
= WndProc ;
-= 0 ;
= 0 ;
= hlnstance ;
= Loadlcon (hlnstance, gszAppNa.e)
= LoadCursor (NULL, IDC_ARROW) ;
= GetStockObject (WHITE_BRUSH) ;
= gszAppName ;
= gszAppName ;

1* create the program's window here *1
1* class name *1
1* window name *1
1* window style *1
1* x position on screen *1
1* y posi tion on screen *1
1* width of window *1
1* height of window */
1* parent wi ndow handle (null = none) *1
1* menu handle (null = use clus,.enu) *1
1* instance handle *1 .
1* lpstr (null = not used) *L
1* send fi rst WM_PAINT lies sage *1

1* the message· loop;1

long FAR PASCAL WndProc (HWND h~nd, unsigned iMessage, WORD wParall, LONG lPara.)
(

WNDCLASS
static HWND

wndclass ;
hSender ;

switch (iMessage)
(

case WM_CREATE:
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass.hicon
wndclass.hCursor
wndclass~hbrBackground
wndclass.lpszMenuNa.e
wndclass.lpszClassName

1* create a sever window class *1

= 0 ;
C"-SenderProc ;
= 0 ;
= 0·;
= ghlnstance ;
= NULL;

. = NULL;
= NULL;
= NULL;
= "sender" ;

)

)

30. DYNAMIC DATA EXCHANGE (DOE) •

1* create a hidden sender window *1
RegisterClass (&wndclass) ;
hSender = CreateWindow ("sender", 'Wll, WS_CHILD, a, 0, 0, 0,

hWnd, NULL, ghlnstance, NULL) ;
H (! hSender)

break;

MessageBox ChWnd, "Could not create DDE sender window.",
"Error Message", ItB_OK) ;

case WM_COMMAND: 1* process menu items ,*1
swi tch (wParam)
{

case IDM_DOIT: 1* tell sender to make a group *1
PostMessage (hSender, WM_USER + 1, 0, al) ;

, break;
case IDM_QUIT:

)

DestroyWindow (hWnd) ;
break

break;
case W"-DESTROY:

default :

PostQuitHessage (0) ;
break;

return DefWindowProc (hUnd, iHessage, wParam, lParam)

roturn (OL) ;

1* window procedure for the hidden DDE sender window *1

long F~R PASCAL SenderProc (HWND hWnd, unsigned iHessage, WORD wParam, LONG lParam)
(

ATOM
.stati c
HANDLE
LPSTR
char

char
stati c

HWND

DOOL

aApplication, aTopic
hProgMgr = NULL;
hMem1, hMem2 ;
lpl1cm ;
cBuf1 [] =
"[CreateGroupCNew Group)][ShowGroup(tfew Group,1)]" ;
cBuf2 [] = "[AddItem(WINFllE,.EXE,Win Fi le)]" ;
bIni t = FALSE, bExec = FALSE;

switch (iMessage)
{

case '1M_CREATE: 1* initiate dde conversation with 'prog Clan *1
aApplication = GlobalAddAtom ("PROGMAN") .
aTopic = GlobalAddAtom ("PROGMAN") ;
bIni t = TRUE;
SendMessage (-1, WM_DDE_ItHTIATE, Mind,

MAKE LONG (~Application, aTopic» ;
GlobalDeleteAtom (aApplication)
GlobalDeleteAtom (aTopic) ;
break;

case WICDDE_ACK:
if (bInit) -1* ACK from a WM_DDE_INITIATE *,
(

}

bIni t = fALSE ;'. .
GlobalDeleteAtom (lOWORD (lParam» ;
GlobalDeleteAtom (HIWORD (lParam» ;
H (! (lParam & Ox8000» 1* if ACK is negative *1

PostMessage (wParam, WH_DDE_TERMINATE, hWnd, aL) ;
else
hProgMgr = wParam ; 1* save program mgrhandle *1

else H (bExec)
{

1* ACK froCl a WM_DDE_EXECUTE ·*1

bExec = FALSE;
if (KIWORD(lParam»

GlobalFree (HIWOR~ (lParam») .; .

}
PostMess,age (wParam, WM_DDE_TERf'"INATE, hWnd, aL)

WINDOWS API BIBLE

break;
case (WM_USER + 1): 1* message from WndProcO - make group *1

if (hProgMgr)
. {

bExec = TRUE;
hMem1 = GlobalAlloc (GMEM_DDESHARE I GMEM_MOVEABLE,

sizeof (cBuf1) + 1);
lpMem = GlobalLock (hMem1) ;"
lstrcpy (lpMem, (LPSTR) cBuf1) ;
GlobalUnlock (hMem1); 1* send first command string *1
PostMessage (hProgMgr, WM_DDE_EXECUTE, hWnd,

MAKELONG (0, hMem1» ;

hMem2 = GlobalAlloc (GMEM_DDESHARE I GMEM_MOVEABLE,
sizeof (cBuf2) + 1) ;

lpMem = GlobalLock (hMem2) ;
lstrcpy (lpMem, (LPSTR) cBuf2) ; ",
GlobalUnlock (hMem2); 1* send second comriiilnd string *1

)

break;
defaul t: "

PostMessage (hProgMgr, WM_DDE_EXECUTE, hWnd,
MAKELONG (0, hMem2» ;

re;.ufn" DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OU ;

Obtaining File Names from Microsoft Excel
In this example, the application establishes a DDE link with Microsoft Excel and obtains the current open file names.
This istypical of the client side of J cold link DDE session. When executed, this application will display the names of
the currently active files, as shown in Figure aO-2.

The DDE abilities of Excel are documented in the Ex(:clllsds manual. Excel supports a hroad range orDDE links,
including cold, warm, and hot data links. This example Q~tains Hw file names. by posting a W~CDDE_nEQllEST for
the "System" topic and the item "Topies." Excel respo~~
with a WM_DDE_D;\TA m~ssage containillg the fife
names in the clipboard format CF _TEXT. This te::-..1. clata
is saved in a global variable gcGlob1'eJ'/Bllfl J, so that the
"application's window can display the string. In aci(lition,
the topic atom is retrieved and stored in the global vari-

.~<\,~". ,""' excelred' FF
flo II! .Quil

opics
C:\WINDOWS\EXCH\WOnK\91 COMPU,XLS Sheet1 Syslem

able gcGlob Top icBuff J. This string is also displayed at Figure 30-2. E:J.:alllple 1)[)E Session Obtaining Data
the top of the application's window, primarily to demon- from Microsoft E:l'ce/.
strate manipulating global atoms.

The top part "of the listing including the WinMainO function is not repeated here, as it is identical to the previous
listing. SenderProcO must be included in the EXPORTS section of the program's .DEF definition file. A function
prototype should also be added to the program's header file.

Note the interplay of USER messages being sent between the application's main \\'indow and the sender window.
Normally; the USER messages would be given names in the application's header file, such as

#define SENDDDEREQ

In the example in Listing 30-2, the more direct\WvCUSER + n notation is used for clarity.

o Listing 30-2. DDE Data from Microsoft Excel
HWND ghWndV~sible; 1* globals *1
char gcGlobTextBuf [128] ;
char gcGlobTopicBuf [128] ;

long-FAR PASCAL WndProc (HWND hWnd, unsigned iMes~age, WORD wParam, LONG lParam)
{ "

926

}

30. DYNAMIC DATA EXCHANGE (DOE) T

WNDCLASS
static
PAINTSTRUCT

HWND
wndclass ;
hSender
ps ;

. switch (iMessage)
{ 1* create a sever window class *1

}

case WM3REATE:
ghWndVisible = hWnd ;
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hlnstance
wndclass .hI con
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

= 0 ;
= SenderProc
= 0 ;
= 0 ;
= ghlnstance
= NULL
= NULL
= NULL
= NULL ,
= "sender" ;
1* create a hidden DDE sender window *1

RegisterClass (&wndclass) ;
hSender = CreateWi ndow ("sender" ~ NULL, WS_CHILD, 0, 0, 0, 0,

hWnd, NULL, ghlnstance, NULL) ;
if (!hSender)

break;

MessageBox (hWnd, "Could not create DDE sender window.",
"Error Message", MB_OK) ;

case WM_COMMAND: 1* process menu items *1
switch (wParam)
{

case IDM_DOIT: 1* tell dde wind to get data from excel *1
Postr1essage (hSender, WM_USER + 1, 0, OU ;'
break;

case 10M_QUIT: 1* tell dde wind to terminate dde *1

}

PostMessage (hSender, WM_USER + 2, 0, OL) ;
DestroyWindow (hWnd) ;
break; .

break
case WM_USER + 3: 1* message from'dde wind - data ready *1

InvalidateRect
break;

(hWnd, NULL, TRUE) ; .

case WM_PAINT:
BeginPaint (hWnd, &ps) ;
TextOut (ps.hdc, 0, 0, gcGlobTopicBuf,

lstrlen (gcGlobTopicBuf» ;
TextOut (ps.hdc, 0, 20, gcGlobTextBuf,

lstrlen (gcGlobTextBuf»
EndPaint (hWnd,'&ps) ,
break;

case WM_DESTROY:
PostQuitMessag~~(Oj
break; .

default:
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return (OU

long FAR PASCAL SenderProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
(

ATOM
static
static
DDEDATA FAR

HWND
BOOL

switch (;Message)

aApplication, aTopic, altem ;
hExcelWnd = NULL
bIni t :::; FALSE
*lpDDEData ;

927

WINDOWS API BIBLE

(

') .

case W"_CREATE: 1* start dde conversation *1
. aApplication= GlobalAddAtom ("Ex~el") ;

aTopic = Glcibal'AddAtO.," .("SYitem") ; .
bIni t :: TRUE;
SendMessage (-1, WM_DDE_INITIATE, hWnd,

MAKElONG (aApplication, aTopic» ,
.GlobalDeleteAtom (aAppl;cation)
GlobalDeleteAtom (aTopic) ;
break;

case W"_DDE_ACK:
, if (bInit) 1* ACK from a WM_DDE_INITIATE *1

(

)

bIni t = FALSE;
GlobalDeleteAtom (lOWORD (lParam» ;
GlobalDeteteAtom (HIWORD (lParam» ;
11 (!(lParam & Ox8000» 1* if ACK is negative *1

PostMessage (wParam, WM_ODE_TERMINATE" hWnd, OU
, else

hExcelWnd = wParam ; 1* save excel hand.Le *1

else . 1* another ACK *1
GlobalOeleteAtom (HIWORO (lParam»

break ';
case W"_DDE_OATA: 1* got data back from excel *1

1* save atom contents in buf *1
GlobalGetAtomName (HIWORD (lParam), gcGlobTopicBuf, 12S)

. 1* lock the memory buffer *1
lpOD~Oata = (DOEDATA FAR *) Globallock (LOWORD (lParam»

'I, 1* excel wants ACK ? *1 .
I if (lpDDEOata->fAckReq)

. PostMessage (hExcelWnd, WM_DDE_ACK, hWnd,
MAKElONG (OxSOOO, HIWORD (lParam»)

else'
GlobalDeleteAtom '(HIWORD (lParam» ;

-1* save the data if in CF_TEXT format *1
if (lpDDEData->cfFormat == CF_TEXT)
(

>

lstrcPY (gcGlobTextBuf, lpDDEData->Value) ;
1* tell visible wind. data is ready_ *1

PostMessage (ghWndVisible, WM_USER + 3, 0, Ol)

if (lpODEOata->fRelease)/* excel wants,cleanup ? *1
Glo~8lFree ClOWORD (lParam» ;

else
GlobalUnlock (lOWORD (lParam»

break;
case (WM_USER + 1): 1* message from host - talk to Excel *1

if· (hExcelWnd)
{'

)

break;

altem = GlobalAddAtom ("Topics") ';
PostMessage (hExcelWnd,WM_DDE_REQUEST, hWnd,

MAKElONG.(CF_TEXT, altem» ;

case (WM_USER + 2): 1* message from host - quit dde *1
PostMessage (hExcelWnd, WICDDE_TERMINATE, hWnd, Ol) ;

break;
default:

return DefWindowProc (hWnd, iMessage, wParam, lParam)

. return (OL) ;

928

---:

30. DYNAMIC DATA EXCHANGE (DOE) ...

DDE Message Summary
Table 30-8 summarizes the DDE messages. The detailed message descriptions are in the next section.

WM_DDE_ACK

WM_DDE_ADVISE

',' "':, :,,: 1"\711 ~ ~ ~.

Notifies an application that another DOE message was received. -

The client application sends this message to the server to inform the server that the client would
like to receive updated data any time the data changes.

Sends data to the client application, or notifies the client that the data has changed in a warm
link.

WM_DDE_EXECUTE

WM_DDEJNITIATE

WM_DDE_POKE

WM_DDE_REQUEST

WM_DDE_ TERMINATE

WM_DDE_UNADVISE

Sends one or more command strings to the client application.

Starts a DOE conversation.

This message is posted by the client application, sending unsolicited data to the server.

Posted by the client application to prompt transmittal of a data item from the server.

Stops a DOE conversation.

Sent by the client application to stop updates of a particular item in a warm or hot link.

Table 30-8. DDE Messa.qe SummariJ.

DDE Message Descriptions
This section contains the detailed descriptions of the DDE messages.

These messages are defined in the DDE.H header file that comes with the software development kit .

Purpose

Syntax

Discussion

Parameters
hWnd

wParam

IParam

• Win 2.0 • Win 3.0 • Win 3.1
Notifies an application that another DDE message was received.

PostMessage (HWND hWnd, WM_DDE_ACK, WORD wParam, DWORD lParam)j

This message is posted in response to receipt of a W~CDDE_INITIATE, ~CDDE_EXEClITE,
WtlCDDE_DATA, WM_DDE_ADVISE, W~CDDE_UNADVISE, or \VM_DDE_POKE message. In
some cases, \VM_DDE_ACK is also posted in response to a WtlCDDE_REQUEST message. (See
that message description for details.) The response code with the ~CDDE_ACK message can
be either positive or negative. If thefAck element (most significant bit) of the DDEACK data
structure is zero, the response is negative. IffAck is one, the response is positive.

HWND: The window handle of the window to receive the message.

WORD: The window handle of the window that sent the message.

. -:--:-

DWORD: The meaning of IParam depends on which message the application is responding to.
Responding to ~CDDE_INITIATE: The low-order word of IParam should be a global atom

that contains the name of the replying application. The high-order word of IParam should con
tain a global atom containing the data topic. If the topic sent with ~CDDE_INITIATE is NULL,
a WM_DDE_ACK should be sent back for every topic supported.

Responding to WM_DDE_EXEClITE: The low-order word of IParam should con~ain a bit flag
as specified in Table 30-9.-The high-order word should contain a global memory handle contain
ing the command string. See W~CDDE_EXEClITE for details on the command string.

Responding to all other DDE messages: The low-order word of IParam should contain a bit
flag as specified in Table 30-9. The high-order word should contain a global atom contain the data
item for which the response is sent.

929

WINDOWS API BIBLE

15 fAck

14 fBusy

1=Request accepted, 0 =Request not accepted.

1=Busy. This only has meaning if fAck is zero. The busy flag should be set if the application
cannot respond immediately.

13-8" reserved Reserved for Microsoft use.

7 -0 bAppRetumCode Reserved for application-specific return codes.

Table 30-9. lParam Low-Order Word Flagsjor WACDDE_ACK

These values correspond to the elements of the DDEACK data structure. This structure contains
the bit fields, and is defined in DDE.H as follows:

typedei struct{'
unsigned bAppReturnCode:8, ,

} DDEACK

Posting

Receiving
,';

reserved:6, ,
fBusy:1,
fAck,: 1;

PostMessageO should be used to send WM_DDE_ACK. The only exception is when responding to
a WM_DDE_INITIATE message. Then use SendMessageO. When re~ponding to a message that
contains a global atom, the application can reuse the atom received in responding, or it can'
delete the atom received, and then create and return a new atom.

When responding to a Wl\CDDE_EXECUTE message, the application should reuse the
hCornmmids global memory object. This basic'ally echoes the commands sent to ~he sender. The
sender is responsible for deleting the hCommands object. Once a Wl\CDDE_TERMINATE mes

" sage is sent, the application should not acknowledge other messages from the application'that
sent the WM_DDE_TERMINATE. '

Anipplication expects' tore'ceive '3 WM_DDE_ACK after sending data to anothar application.
: When the ACK is received, the application knows that the other application has received the

, ,'~, ;"; data,'so it is safe to delete global atoms and memory areas'containing the data that was sent. The
, : data should be deleted from memory even if the ACK was negative, meaning that the other appli

, , cation-cDJ!!?not use the data.

WM DDE ADVISE , .. Win 2.0 III Win 3.0 a Win 3.1
Purpose

Syntax

Discussion

Parameters
hWnd,

wParam'

IParam

The client application sends this message to the server to inform the server that the client w()uld,
like to receive updated data 'any time the'data changes. ' '

PostMessage (HWNn hWnd, wM:~~DE_AnVISE, WORD wPiiram, DWORD lParam)j

.' This mes:sage is used to set upboth hot 'an.d warm DDE links. Hot links involve transmission of the
d~ta every time the dat3changes~'Warm links simply notify the clientwhen the data has changed.
Th~'ciiE~nl then uses Wr,CDDEjlEQUEST to request the data. ' ,
.,;:' :,' ','

HWND: ~he window l~a~dl~ 'of the wind~w to receive the mess~ge.
WORD:, The window handle of the window sending the message.

DWORD:· The high-order word (calledaltem) contains a global atom containing the name of the
, : data item being requested. The low-order word (called hOptions) contains a handle to a global

memory block containing 'a DDEADVISE data structure. This structure'contains bit fields de
scribed in Table 30-10. The DDEADVISE structure is defined in DDE.H as follows:

,I
930

30. DYNAMIC DATA EXCHANGE (DOE)"

typedef s~ruct {
unsigned reserved:14,

fDeferUpd:1,
fAckReq:1;
cfFormat;

1* bits 0-13 reserved *1
'1* warm link request *1
1* ACK requested? *1

int
} DDEADVISE;

15 fAckReq

14 fDeferUpd

13-0 reserved

1* clipboard format *1

'.",'

1 =Server requested to send WM_DDE_DATA with the fAckReq bit set to 1. a O=Server
requested to send WM_DDE_DATA with the fAckReq bit set to O. This inhibits sending the ACK
messages, speeding data transfer

1 =Server is requested to send WM_DDE_DATA with hData set to NULL. This starts a warm link,
where data is not transferred until the client sends a WM_DDE_REQUEST message. O=Server is
requested to send data with each WM_DDE_DATA message.

Reserved for Microsoft use.

Table 30-10. lParam Low-Order Word Flags/or IV!lCDDE_ADVISE.

Posting

cfFormat is the clipboard format used to transmit the data. This can be either a standard
clipboard format, or a special format created with RegisterClipboardFormatO. If an application
uses more than one clipboard format, it can post multiple W~CDDE_ADVISE messages for sepa
rate topics and items.

Use Post Message ° , not SendMessageO, to transmit this message to another application. Be sure
that the global memory object pointed to by the low-order word of lParam is allocated with
GlobaWlocO using the GMEl\CDDE_SHARE option. This memory block should he deleted if the
server responds with a Wl\CDDE_ACK message. '

Always respond to this message by posting a WM...:DDE_ACK message. If responding positively,
delete the hOptions global memory block containing the DDEADVISE structure. If responding
negatively, do not delete the hOpiions memory block, as the sender will delete it when it receives
the negative Wl\CDDE_ACK. The iI1tem global atom can either be reused, or deleted and a new
item created in its place.

WM DDE DATA II Win 2.0 • Win 3.0 • Win 3.1 '

Purpose

Syntax
Discussion

Parameters
hJVnd
wParam

IParam

Sends data to the client application, or notifies the client that the data has changed in a warm
link.

PostMessage (HWND hU'1td, \~CDDE_DATA, WORD wParam, DWORD IParmn)j

This message transfers data from the server to the client in a DDE link. If a warm link has been
established, this message simply informs the client that new data is available. It is up to the
client to request the data with a \WrCDDE_REQUEST message. .

HWND: The windew handle of the window to receive the message.

WORD: The window handle of the window sending the message.

DWORD: The high-order word (called altem) contahls a global atom containing the name of th~
data item being sent. f ' ,

The low-order word (called hOptions) contains a handle to a global memory block contain
ing a DDEDATA data structure. This structure contains bit fields, whic,h are described in Table
30~11. The DDEDATA dtructure is defined in DDE.II as follo?(s:

931

WINDOWS API BIBLE

typedef struct {
unsigned

int
BYTE

} DDEDATAi

15 fAckReq

13 fDeferUpd

12 fRequested

14, 11-0 reserved

unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1i
cfFormati
Value[1]i

1* 1 = got REQUEST, 0 = got ADVISE * 1
1* 1 = client frees data *1

1* 1 = expect ,ACK back *1
1* clipboard format *1
1* can I:?e more than one element *1

1=Client is expected to send a W~tDDE_ACK message after receiving the WM_DDE_DATA.
. O=Client is not expected to send ACK.

1 =Client is expected to free the data pointed to by hData. O=Client should not free the data.
See the Posting and Receiving notes below for exceptions.

1 =Data is being sent in response to a WM_DDE_REQUEST message. O=Data is bei'ng sent in
response to a WM_DDE_ADVISE message.

Reserved for Microsoft use.

Table 30-11. lPa;,am Low-Order WordPlags!or WM_DDE_DATA

IJosting

cjFormat contains the clipboard format being used to store the data. This can be either a
standard clipboard format, or a special format created with RegisterClipboardFormatO. Value/ J

- is an array of one or more bytes of data being transmitted. This data is in the format specified by
cjFormat. In a warm link, the high-order word in lParam will be NULL. This simply notifies the
client that new data is available, but does not transmit the data. It is up tothe client to post the
WM_DDE_REQUEST message to getthe actual data. '

Use PostMessageO to send this'message. The hData data block containing the DDEDATA data
structure must be allocated using GlobalAllocO with the GMEM_DDESHARE option. If the client
receiving the data responds with a negative WM_DDE_ACK message, the server should delete
the hData memory block. hData should also be deleted if thejRelease flag is set to zero. Do not
setjAckReq andjRelease to zero. With both set to zero, the server will not know when to delete
the hData memory block.

Receiving A client receiving this message must decide whether or not to respond with a W~CDDE_ACK
, message. IffAckReq is 1, post the ~CDDE-.ACK, otherwise do not post the message. IffAckReq

',I, " is 0, delete the altern global at~m. If hData is NULL, a warm link is in progress. The client can ask
for the data by sending a \VM_DDE_REQUEST message, or simply ignore the WM_DDE_MESS- .
AGE. If hData is not NULL, the hData global memory block should be deleted unlessjRelease is
zero, orjRelease is 1, and the client decides to respond with a negative \VM..:.DDE_ACK message.

WM_DDE 'EXECUTE • Win 2.0, • Win 3.0 • Win 3.1
Purpose

Syntax

Discussion

Sends one or more command stringG to the client application.

PostMessage (HWND hWnd, WM_DDE_EXECUTE; WORD wParam, DWORD lParam);

This is a convenient way to send character string commands from the server to the client applica
tion. The commands are stored in a global memory block containing a null-terminated character
string. The command strings are in the format

[command(parameters)]

The square brackets are part of the transinithid string. There can be more than one com- .
mand in the character string.' Here are several examples of valid commands

932

30. DYNAMIC DATA EXCHANGE (DOE)

[startup][filefunction(data~txt,7)][shutdown]
[passname("This is the string data passed.")]

Parameters
hWnd

wParam

IParam

Posting

Receiving

Purpose

Syntax

Discussion

Parameters
hWnd

wParam

lParam

SendiIig

Receiving

The square brackets are required around each command.

HWND: The window handle of the window to receive the message.

WORD: The window handle of the window sending the message.

DWORD: The low·order word is reserved. The high-order word contains a handle to a global
memory block containing the command string. The block must be allocated with the
GMEl\CDDESHARE option.

Use PostMessageO to post this message. Th~ server sending this message should wait for the
Wl\CDDE_ACK message to come back from the client before deleting the memory block contain
ing the command string.

Respond to receiving this message by posting a WM_DDE_ACK message. Reuse the hCommands
handle in sending the ~CDDE_ACK message back.

• Win 2.0 • Win 3.0 • Win 3.1
Starts a DDE conversation.

SendMessa_ge (HWND hWnd, WM_DDE_INITIATE , WORD wParam, DWORD lParam)

When an application receives this message, it should check to see if the application name and
data name held by the atoms in lParam match the application's name and data supported. If so,
the application should respond with a WM.:,.DDE_ACK message. Otherwise, the message is ig
nored.

HWND: The window handle of the window to receive the message.

WORD: The window handle of the window sending the message.

DWORD: The low-order word contains a global atom holding the name of the application. This
parameter is called aApplication. The application name cannot contain slashes or backslashes,
as these characters are reserved for future network support. If aApplication is NULL, anyappli
cation can respond.

The high-order word contains a global atom holding the name of the data element. This pa
rameter is called aTopic. If aTopic is NULL, any topic is valid. Upon receiving a WM_DDE_INF
TIATE message with a NULL value for aTopic,. the application should send a WM_DDE_ACK
message for every topic it supports.

Use SendMessageO to transmit this message, not PostMessageO. The message can be sent to
every application running on the system by setting the first parameter of SendMessageO to-I.
The window handle(s) for applications that respond can be obtained from the returning
~CDDE_ACK message(s).

Delete the two global atoms containing the application and topic names immediately after
calling SendMessageO. You do not have to wait for the WM_DDE_ACKmessage(s) to come back
to delete these atoms.

Post a WM_DDE_ACK message for each topic supported if the application name matches. If a
topic is specified, post a WM_DDE_ACK only if the topic is supported. The receiving application
should create new aApplication and aTopic atoms. Do not use the atoms sent with
WM_DDE_INITIATE, as the sending application is expected to delete them;

933

WINDOWS API BIBLE

Purpose

Syntax

Discussion

Parameters
hWnd

wParam

IPamm

• Win 2.0 • Win 3.0 • Win 3.1
This message is postE:ld by the client application sending unsolicited data to the server.

PostMessage (H\VND hWJld, W~CDDE_POl{E, WORD wParam, DWORD IParam)j

\V~CDDE_POKE allows the client to send ~he server data independent of when the server ini
tiates data exchange.

HWND: The window handle of the , .. indow to receive the message.

WORD: The window handle of thc\\indow sending the message.

DWORD: The high-order wotd contains a glohal atom contaiiling the name of the data. item being
transmitted. This parameter is called altern. The low-order word contains a handle (called
lzDala) to a global memory block containing a DDEPOKE data structure. This structure contains
bit fields, and is defined in DUE.II as follows:

typedef struct {
unsigned unused:13,

fRelease:1,
fReserved:2;
cf Format;
Value[1J;

int
BY,TE .

} DDEPOKE;

Posting

Receiving

Purpose

S~tax

Discussion

Parameters
hWnd

. wParam

1* 1 = receiver frees memory *1

1* clipboard data format used *1
1* this may be > 1 byte *1

If thejReseroed field is set to 1, the application receiving the WM_DDE_POKE message is
expected to free the global memory block containing the DDEPOKE data structure. IfjReserved
is 0, the bloek should not be freed.

e/Pormat c{Jntains the clipboard format being used to store the data. This can be either a
standard clipboard fornlat, or a special format created with HegisterClipboardFormatO.

Value! J is an array of one or more bytes of data being transmitted. This data is in the format
specified byeft'ormat.

Use PostMessageO to transmit this message, not SendMessageO. Use the GMEl\CDDESHARE
--opIToll When calling GlobalAllocO to allocate memory to hold the DDEPOKE data structure.

The sending application is responsible for deleting the memory block if thejRelease flag is
set to zero. In this case, the sending application should wait for the WivCDDE_ACK message to
come back before deleting the data.

An application reeeiving this message should respond with a ~CDDE_ACK message. The
Wl\CDDE_ACK can reuse the a/tl->Jn atom, or it can delete the received atom and create a new
one. After receiving W~CDDE_POKE, the application should delete the global memory block
hDaturilessjRelease is zero.

• Win 2.0 • Win 3.0 Ii Win 3.1
Posted by the client application to prompt transmittal of a data item from the server.

PostMessage (HWND II JVlld, WrvCDDE_REQUEST, WORD wParam, D\VORD lPar~~.);
This message is sent as part of a warm link If the client receives a \VM_DDE_DATA message with
a NULL data item, the server is indicating that a data item has changed and a new value is avail
able. A WM_J)llE_REQUEST can then be sent by the client to prompt for the latest data value.

HWND: The window handle of the window to receive the message.

WORD: The '''indow handle of the window sending the message .

934

IParam

Posting

Receiving

30. DYNAMIC DATA EXCHANGE (DOE) T

DWORD: The low-order word (called cjFonnat) contains the clipboard format being used to
store the data. This can be either a standard clipboard format, or a special format created with
RegisterClipboardFormatO. The high-order word (called aItem) contains a global atom contain
ing the data item name being requested.

Use PostMessageO to transmit this message, not SendMessageO.

The receiving application normally will respond by posting a MCDDE_DATA message contain
ing the requested data. Othenvise, it should post a WM_DDE_ACK message containing a nega
tive response. In either case, the global atom altem can either be reused, or deleted and a new
atom created.

WM nnE TERMINATE • Win 2.0 II Win 3.0 II Win 3.1
Purpose
Syntax

Discussion

Parameters
hWnd

wParam

IParam

Posting

Receiving

Stops a DDE conversation.

PostMessage (HWND hWnd, MCDDE_TERMINATE, WORD wParam, DWORD IParam)j

This message notifies either a client or server application that the DDE conversation is termi
nated.

HWND: The window handle of the \vindow to receive the message.

WORD: The \vindow handle of the window sending the message.
DWORD: Not used. Set equal to OL.

Use PostMessageO to transmit this message, not SendMessageO. After posting this message, the
application should not respond to any other messages from the application receiving the mes
sage, other than WM_DDE_TERMINATE.

Respond by posting a \V?\CDDE_TERMINATE message. Do not respond to this message if the
receiving application initiated \WtCDDE_TERMINATE (to avoid an infinite loop ofrnessages).

WM nnE UNADVISE II Win 2.0 iii Win 3.0 g Win 3.1
Purpose

-Syntax

Discussion

Parameters
hWnd

wParam

IParam

Posting

Receiving

Sent by the client application to stop updates of a particular item in a warm or hot link.

PostMessage (HWND hWnd, W~'-DDE_UNADVISE, WORD wParam, DWORD lParam)j

After a waCDDE_ADVISE message is received by the server, the server is expected to send a
WM_DDE_DATA message when the data item changes. \WtCDDE_UNADVISE stops this process,
temporarily stopping hot or warm link \~CDDE_DATA messages ..

HWND: The window handle of the window to receive the message.

WORD: The \vindow handle of the \vindow sending the message.

DWORD: The low-order word (called cjFonnat) contains the clipboard format being used to
store the data. This can be either a standard clipboard format, or a special format created with
RegisterClipboardFormatO. The high-order word (called altem) contains a global atom contain
ing the dllta item name being retracted. If altem is NULL, all \VM_DDE_ADVISE conversations
associated with the client application are terminated.

Use PostMessageO to transmit this message, not SendMessageO.

Post the \VM_DDE_ACK message to respond to this message.

935

./

Appendix A
Bibliography and Sources
of Additional Information

Books on Windows
Charles Petzold's book is an excellent tutorial on programming under Windows. It covers all the basic elements of
Windows and several more advanced topics, including DDE and MDI.

Programming Windows
Charles Petzold
Microsoft Press, 1990

The Norton and Yao book is slower paced and easier to digest than Petzold's book, but it covers less material.
Windows 3.0 Power Programming Techniques
Peter Norton and Paul Yao
Bantam Books, 1990

Jeffrey Richter's book covers a number of advanced topics, including dynamic dialog boxes, custom controls, printer
setup, and program installation. It is intended for readers who have already mastered the material in the Petzold, or
Norton and Yaobooks.

Windows 3: A Developer's GUide
Jeffrey M. Richter
M&T Books, 1991

Other Programming Reference Books
This IBM document spells out the rules for programming the user interface for Windows and OS/2 applications. Fol
lowing these guidelines is strongly encouraged.

Systems Application Architecture,
Common User Access Advanced Interface Design Guide
International Business Machines, 1989

The classic Kerninghan and Ritchie book is the standard reference for the C language.
The C Programming Language, Second Edition
Brian W. Kerninghan and Dennis M. Ritchie
Prentice Hall, 1988

If you need a more readable introduction to the C language, try the Waite and Prata book.
The Waite Group's New C Primer Plus
Mitchell Waite and Stephan Prata -
The Waite Group, 1990

937

WINDOWS API BIBLE

For a thorough understanding of the MS-DOS operating system that underlies Windows, refer to the Microsoft Press
Encyclopedia.

The MS-DOS E'ncyclopedia
Ray Duncan, General Editor
Microsoft Press, 1988

For additional background on digital communications, refer to Paul Bate's book.
Practical Digital and Data Communications
Paul Bates

. Prentice-Hall, 1987

Sound Driver Support and Information
Users of the popular Sound Blaster and Adlib music cards can obtain an excellent Windows driver that was developed
at the University ofWisconson. ' .

Monty Schmidt
1020E. Johnson #1
Madison, WI 53703
(608) 256-3133
COMPUSERVE 73020, 2770

For more complete control of all of the Sound Blaster features, Creative Labs, Inc. offe~s a DLL (d~~mic link library).
The DLL includes support of both the synthesized sound, and voice recoi'dlplayback functions. '. .

Creative Labs, Inc. ' '
2050 Duane Ave.
Santa Clara, CA 95954

, (408) 986-'t461

MIDI drivers are available from Microsoft as part of their Multimedia Development Kit, or separately from Playroom
Software. . . ." . .

Microsoft Corporation
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717
(206) 426-9900

Playroom Software
7308-C East Independence Blvd., Suite 310
Charlotte, NC 28227
(704) 536-3093

The MIDI (Musical Instrument Digital Interface) specification is available from the International MIDI Association.
International MIDI Association . , .
5316 W. 57th St.
Los Angeles, CA 90056
(213) 649-6434

938

Appendix B
Useful·Macros from WINDOWS.H

WINDOWS.H contains a number of useful #define statements that define macros. They can be used to improve ihe
clarity of an application's code and maintain strong type checking.

The following three macros extract one of the color values from the composite 32-bit color value used with either
the RGB color model, or a color palette.

GetBValue(rgb)
GetGVa.lue(rgb)
GetRValue(rgb)

«BYTE)«rgb»>16»
«BYTE)«(WORO)(rgb» » 8»
«BYTE)(rgb»

It is frequently necessary to extract one-half of either a 16-bit WOIm or a 32-bit DWORD value when processing
Windows messages.

HIBYTE(w)
HIWORO(l)
LOBYTE(w)
LOWORO(l)

«BYTE)«(WORO)(w) » 8) & OxFF»
«WORO)((OWORO)(l) »16) & OxFFFF»
«BYTE)(w»
«WORO)(l»

WINDOWS.H contains several macros for casting values to different types. The MAKELONG macro. combines two
WORD values to make a DWORD. Note that the low-order WORD is placed first in the macro.

MAKEINTATOH(i)
HAKELONG(a, b)
MAKEPOINT(l)

(LPSTR)«OWORO)«WORD)(i»)
«LONG)«(WORO)(a» ! «OWORO)«WORO)(b») « 16»
(*«POINT FAR *)&(l»)

The min and max macros return the smaller or larger of two values.

max(a,b)
min(a,b)

«(a) > (b» ? (a) : (b»
«(a) < (b» ? (a) : (b»

The palette manager uses the high-order byte of the color value to be coded ifthe color entry is a palette index or
a palette RGB value. The RGB macro combines three byte values to make a DWORD color value ..

PALETTEINOEX(i)
PALETTERGB(r,g,b)
RGB(r,g,b)

«OWORO)(Ox01000000 !-(WORO)(i»).
(Ox02000000 ! RGB(r,g,b»
«OWORO)«(BYTE)(r)!«WORO)(g)«8»!«(OWORO)(BYTE)(b))«16»)

939

HTERROR
H'ITRANSPARENT
HTNOWHERE
HTCLIENT
HTCAPTION
HTSYSMENU
HTGROWBOX
HTSIZE
HTMENU
HTHSCROLL
H'lVSCROLL
HTREDUCE
HTZOOM

'HTLEFT
HTRIGHT '

. HTTOP
H'ITOPLEFT
H'ITOPRIGHT
HTBOTTOM
HTBOTTOMLEFT .
HTBOTTOMRIGHT
HTSIZEFIRST

. HTSIZELAST

,

Appendix C
Mouse Hit Test Codes

(-2)
(-1)

.0
1
2 .
3
4
HTGROWBOX.
5
6
7
8
9
10
11
12
13
14
15
16
17
HTLEFT
HTBOTrOMRIGHT

.-940

Appendix D
WINDOWS.H Listing

1*---.*1
1* *1
1* WINDOWS. H - *1
1* *1
1* Include file for Windows 3.0 applications *1
1* *1
1*--- *1

1* If defined, the following flags inhibit definition
* of the indicated items.

* * NOGDICAPMASKS
* NOVIRTUALKEYCODES
* NOWINMESSAGES
* NOWINSTYLES
* NOSYSMETRICS
* rWMENUS
* NO ICONS
* NOKEYSTATES
* NOSYSCOMMAND~
* NORASTEROPS
* NOSHOWWINDOW
* OEMRESOURCE
* NOATOM
* NOCLIPBOARD
* NOCOLOR
* NoCTLMGR
* NODRAWTEXT
* NOGDI
* NOKERNEL
* NOUSER
* NOMB

- CC_*, LC_*, PC_*, CP_*, TC_*, RC_
- VK *
- WM:*, EM_*, LB_*, CB_*
- Ws_*, CS_*, ES_*, LBS_*, SBS_*, CBS_*
- SM_*
- MF_ *
- 101_*
- MK_*
- SC_*
- Binary and Tertiary raster ops
- SW_*
- OEM Resource values
- Atom Manager routines
- Clipboard routines
- Screen colors
-' Cont ro land Di a log rout i nes
- DrawText() and DT_*
- All GDI defines and routines
- A II KERNEL def i nes and rout i nes
- All USER defines and routines
-'MB_* and MessageBox()

* NOMEMMGR - GMEM_*, LMEM_*, GHNO,LHNO, associated routines
* NOMETAFILE
* NOMINMAX
* NOMSG
* NOOPENFILE
* NOSCROLL
* NOSOUND
* NOTEXTMETRIC
* NOWH
* NOWINOFFSETS
* NOHELP
* NOPROFILER
* NODEFERWINDOWPOS
* NODRIVERS
* NODBCS
* NOSYSPARAMSINFO
* NOSCALABLEFONT

*
* USECOMM

*

- typedef METAFILEPICT
- Macros min(a,b) and max(a,b)
- typedef MSG and associated routines
- OpenFile(), OemToAnsi, AnsiToOem, and OF_*
- SB_* and scrolling routines
- Sound driver routines
- typedef TEXTMETRIC and associated routines
- SetWindowsHook and WH_*
- GWL_*, GCL_*, associated routines
- Help engine interface.
- Profiler interface.
- DeferWindowPos routines
- Installable driver defines
- OBCS support stuff.
- SystemParameterlnfo (SPI_*)
- Scalable font prototypes and data structures

- Include COMM driver routines

* Defining the following allows API's to be included
* PRINTING - include printing api's
*1 •

941

...
WINDOWS API BIBLE

lIifdef RC_INVOKED

1* Turn off a bunch of stuff to ensure that RC files·compile OK.*I
IIdefine NO ATOM
IIdefineNOGDI
IIdefine NOGDICAPMASKS
IIdefine NOMETAFILE
IIdefine NOMINMAX
IIdef i ne NOMSG
IIdefine NOOPENFILE
IIdefine NORASTEROPS
IIdefine NOSCROLL
IIdefi ne NOSOUND
IIdefine NOSYSMETRICS
IIdefine NOTEXTMETRIC
IIdefine NOWH
#define NODBeS
IIdefineNOSYSPARAMSINFO

#tendi f 1* RC_INVOKED * 1

�*--~*I 1* General Purpose Defines - *1
I*----------~-- *1
IIdef i ne NULL
IIdefine FALSE
IIdef i ne TRUE

IIdefine FAR
IIdtifine NEAR
IIdefine LONG
#defi ne VOID
IIdef i ne PASCAL

IIdefine API
IIdefine CALLBACK

#ifndef NOMINMAX

#i fndef max
IIdefine max{e,b)
lIendif

IIi fndef mi n
IIdefine min{a,b)
lIendif

lIendif 1* NOMINMAX *1

o
o
1

far
near
long
void
pascal

far pascal
far pasca l

(({a) > (b» (a),: (b»
• I ,'.

.«(a) < (b» (a): (b»,

IIdefine MAKELONG(a, b) «LONGH~"WORD)(a» I «DWORD)«WORD)(b») «16»
IIdefine LOWORO(l) «WORD)(~) " .
IIdefine HIWORO(l) «W'c)RD)('(DWORD)(l)>> 16) & OxFFFF»
IIdefine LOBYTE(w) «BYTE)'(w»· . .'
IIdefine HIBYTE(w) «BYTE)«(WORD)(w) »·8)& OxFF»
IIdefine MAKELP(sel, off) «VOID FAR *)MAK~LONG(off, sell)
IIdefine SELECTOROF(lp) HIWORO(lp)
IIdefine OFFSETOF(lp) LOWORO(lp)

typedef i nt
typedef unsigned char
typedef unsigned short
typedef unsigned long
typedef char near
typedef char near
typedef char-far,
typedef BYTE near
typedef BYTE far

BOOL;
BYTE;
WORD;
DWORD;
*PSTR;
*NPSTR;
*LPSTR;
*PBYTE;
*LP,YTE;

typedef int near
typedef int far
typedef WORD near
typedef WORD far
typedef long near
typedef long far
typedef DWORD near
typedef DWORD far
typedef void far

lIifdef STRICT

*PINT;
*LPINT;
*PWORD; .
*LPWORD;
*PLONG;
*LPLONG;
*PDWORD;
*LPDWORD;
*LPVOID;

IIdefine DECLARE_HANDLE(name)
typedef struct _1I#name##_ { int dummy; };
typedef struct _##name#lI_ near *name

typedef void near*

DECLARE_HANDLE(HWND);

lIelse 1* STRICT *1 ,

HANDLE;

IIdefine DECLARE_HANDLE(name)
typedef WORD name

typedef WORD HANDLE;

DECLARE_HANDLE(HWND);

#endif 1* !STRICT *1

1* Special value for CreateWindow, et ale *1
#define HWND_DESKTOP «HWND)NULL)

typedef HANDLE *PHANDLE;
typedef HANDLE NEAR *SPHANDLE;
typ'edef HANDLE FAR *LPHANDLE;
typedef HANDLE GLOBALHANDLE;
typedef HANDLE LOCALHANDLE;
typedef int (FAR PASCAL *FARPROC)();
typedef int (NEAR PASCAL *NEARPROC)();

DECLARE_HANDLE(HSTR);
DECLARE_HANDLE(HICON);
DECLARE_HANDLE(HDC);
DECLARE_HANDLE(HMENU);
DECLARE_HANDLE(HPEN);
DECLARE_HANDLE(HFONT);
DECLARE_HANDLE(HBRUSH);
DECLARE_HANDLE(HBITMAP);
DECLARE_HANDLE(HCURSOR);
DECLARE_HANDLE(HRGN);
DECLARE_HANDLE(HPALETTE);

typedef DWORD

typedef struct tagRECT
{

int
int
int
;nt

} RECT;

left;
top;
right;
bottom;

typedef RECT
typedef RECT NEAR
typedef RECT FAR

COLORREF;

*PRECT;
*NPRECT;
*LPRECT;

APPENDICES ..

943

WINDOWS API BIBLE

typedef struct tagPOINT
{ .

int x;
int y;

} POINT;
typedef POINT
typedef POINT NEAR
typedef POINT FAR

*PPOINT;
*NPPOINT;
*LPPOINT;

1*------------------------------------- *1
1* KERNEL Section *1
I*----------------------~-------------- *1

~ifndef NOKERNEL

1* Loader Routines *1
DWORD API GetVersion(void);
WORD API GetNumTasks(void);
HANDLE API GetCodeHandle(FARPROC);
void API GetCodeInfo(FARPROC lpProc, LPVOID lpSegInfo);
HANDLE API GetModuleHandle(LPSTR);
int API GetModuleUsage(HANDLE);
int API GetModuleFileName(HANDLE, LPSTR, fnt);
iot API GetInstanceData(HANDLE, NPSTR, int);'
FARPROC API GetProcAddress(HANDLE, LPSTR);
FARPROC API MakeProcInstance(FARPROC, HANDLE);
void API FreeProcInstance(FARPROC);
HANDLE API LoadLibrary(LPSTR);
HANDLE API LoadModule(LPSTR, LPVOID);
void API FreeModule(HANDLE);
void API FreeLibrary(HANDLE);
DWORD API GetFreeSpace(WORD);
WORD API WinExec(LPSTR, WORD);
void API DebugBreak(void);
void API OutputDebugString(LPSTR);
void API SwitchStackBack(void);
void API SwitchStackTo(WORD, WORD, WORD);
WORD. API GetCurrentPDB(void);
IIi fdef WIN31
BOOL API IsTask(HANDLE); .
WORD API GetFreeSystemResources(WORD);
lIendif

lIifndef NOOPENFILE

1* OpenFile() Structure *1
typedef struct tagOFSTRUCT

{ .

BYTE cBytes;
BYTE fFixedDisk;
WORD nErrCode;
BYTE reserved[4J;
BYTE szPathName[128J;

} OFSTRUCT;
typedef OFSTRUCT
typedef OFSTRUCT NEAR
typedef OFSTRUCT FAR

*POFSTRUCT;
*NPOFSTRUCT;
*LPOFSTRUCT;

1* OpenFile() Flags *1
IIdefi ne OF_READ
IIdefine OF_WRITE
IIdefine OF_READWRITE
IIdefine OF_SHARE_COMPAT
IIdefine OF_SHARE_EXCLUSIVE
IIdefine OF_SHARE_DENY_WRITE
IIdefine OF_SHARE_DENY_READ
IIdefine OF_SHARE_DENY_NONE
IIdef i ne OF_PARSE \

OxOOOO
Ox0001
Ox0002
OxOOOO
Ox0010
Ox0020
Ox0030
Ox0040
Ox0100

944

#define OF_DELETE
#define OF_VERIFY
#define OF_SEARCH
#define OF_CANCE~
#define OF_CREATE
#define OF":'PROMP'r
#define OF_EXIST
#define OF_REOPEN

Ox0200
Ox0400
Ox0400
Ox0800
Ox1000
Ox2000
Ox4000
Ox8000

1* Used with OF_REOPEN *1
1* Used without OF_REOPEN *1

int API OpenFile(LPSTR, LPOFSTRUCT, WORD)i
int FAR PASCAL OpenSystemFile(LPSTR, LPOFSTRUCT, WORD)i

1* GetTempFileName() Flags *1
#define TF_FORCEDRIVE (BYTE)Ox80

BYTE API GetTempDrive(BYTE)i
int API GetTempfileName(BYTE, LPSTR, WORD, LPSTR)i
WORD API SetHandleCount(WORD)i

WORD API GetDriveType(int);
1* GetDriveType return values *1
#define DRIVE_REMOVABLE 2
#define DRIVE_FIXED 3
#define DRIVE_REMOTE 4

#endi f 1* NOOPENFILE *1

#ifndef NOMEMMGR

OxOOOD
Ox0002
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100
Ox1000
Ox2000
Ox2000

1* Global Memory Flags *1
#define GMEM_FIXED
#define GMEM_MOVEABLE
#define GMEM_NOCOMPACT
#define GMEM_NODISCARD
#define GMEM_ZEROINIT
#define GMEH_MODIFY
#define GHEM_DISCARDABLE
#define GHEM_NOT_BANKED
#define GMEM_SHARE
#define GMEM_DDESHARE
#define GMEM_NOTIFY
#define GMEM_LOWER

Ox4000
GME'LNOT_BANKED

#def i ne GHND
#defi ne GPTR

CGMEM_MOVEABLE IGHEM_ZEROINIT)
(GMEM_FIXED I GMEM_ZEROINIT)

#define GlobalDiscard(h) GlobalReAlloc(h, OL, GMEM_MOVEABLE)

HANDLE
DWORD
HANDLE
DWORD
LPSTR
HANDLE
DWORD
BOOL
WORD
LPSTR
BOOL
HANDLE
HANDLE
VOID
WORD
WORD
VOID
BOOl
DWORD
WORD

API GlobalAlloc(WORD, DWORD)i
API GlobalCompact(DWORD);
API GlobalFree(HANDLE)i
API GlobalHandle(WORD)i
API GlobalLock(HANDLE)i
API GlobalReAllocCHANDLE, DWORD, ~ORD)i
API GlobalSize(HANDLE)i
API GlobalUnlock(HANDLE)i
API GlobalFlags(HANDLE)i
API GlobalWire(HANDLE)i
API GlobalUnWire(HANDLE)i
API GlobalLRUNewest(HANDLE)i
API GlobalLRUOldest(HANDLE)i
API GlobalNotify(FARPROC)i

, API GlobalPageLock(HANDLE)i
API GlobalPageUnlock(HANDLE)i
API GlobalFix(HANDlE)i
API GlobalUnfix(HANDLE)i
API GlobalDosAlloc(DWORD)i
API GlobalDosFree(WORD)i

946

APPENDICES ..

WINDOWS API BIBLE

1* Flags returned by-GlobalFlags (in addition to GMEM_DISCARDABLE) *1
#define GMEM_DISCARDED Ox4000
#define GMEM_LOCKCOUNT OxOOFF

#define LockData(dummy)
#define UnlockData(dummy)

HANDLE API LockSegment (WoRb);
HANDLE API UnlockSegment(WORD);

#i fdef WIN31

LockSegment(OxFFFF)
UnlockSegment(OxFFFF)

#define GlobalAllocPtr(flags, cb) \
«VOID FAR*)MAKELP(GlobalAlloc«flags), (cb»~ 0»

idefine GlobalReAllocPtrClp, cbNew, flags) \
«BOOL)GlobalReAlloc«HANDLE)SELECTOROF(lp), (cbNew), (flags»)

#define GlobalFreePtr(lp) \
«BOOL)GlobalFree«HANDLE)SELECTOROF(lp»)

#define GlobalLockPtr(lp) \
«BOOL)SELECTOROF(GlobalLock«HANDLE)SELECTOROF(lp»»

#define GlobalUnlockPtrClp) \ /
GlobalUnlock«HANDLE)SELECTOROF(lp»

#endi f 1* WIN31 *1,

1* Local Memory Flags *1
#define LMEM FIXED
#define LMEM-MOVEABLE
#define LMEM-NOCOMPACT

_ #define LMEM-NODISCARD
#define LMEM-ZEROINIT
#define LMEM=MODIFY
#define LMEM_DISCARDABLE

OxOOOO
Ox0002
Ox0010
Ox0020
Ox0040
Ox0080
OxOFOO

#define LHND
#def i ne LPTR

(LMEM_MOVEABLE I LMEM_ZEROINIT)
(LMEM_FIXED I LMEM_ZEROINIT)

#define NONZEROLHND
#define NONZEROLPTR

(LMEM MOVEABLE)
(LMEM=FIXED)

#define LNOTIFY OUTOFMEM
#define LNOTIFY-MOVE
#define LNOTIFY=DISCARD

o
1
2

#define localDiscard(h) LocalReAlloc(h, 0, lMEM_MOVEABLE)

HANDLE API LocalAlloc(WORD, WORD);
WORD API LocalCompact(WORD);
HANDLE API LocalFree(HANDLE);
HANDLE API LocalHandle(WORD);
BOOL API Loca l Init (WORD, WORD; WORD);
char NEAR * API Loca lLock(HANDLE);
FARPROC API LocalNotify(FARPROC);
HANDLE API LocalReAlloc(HANDLE, WORD, WORD);
WORD API LocalSize(HANDLE); .
BOOL API LocalUnlock(HANDLE);
WORD API LocalFtags(HANDLE);
WORD API LocalShrink(HANDLE, WORD);

1* Flags returned by LocalFlags (in addition to LMEM DISCARDABLE) *1
#define LMEM_DISCA~DED Ox4000 -
#define LMEM_LOCKCbuNT OxOOFF

#endif 1* NOMEMMGR *1

LONG API SetSwapAreaSize(WORD);
VOID API ValidateFreeSpaces(void);
VOID API LimitEmsPages(DWORD);
BOOl API SetErrorMode(WORD);

VOID API ValidateCodeSegments(void);

#define UnlockResource(h> ,GlobalUnlock(h)

HANDLE
HANDLE
BOOL
LPSTR
FARPROC
HANDLE
DWORD
int

API FindResource(HANDLE, LPSTR, LPSTR);
API LoadResource(HANDLE, HANDLE);
API FreeResource(HANDLE);
API LockResource(HANDLE);
API SetResourceHandler(HANDLE, LPSTR, FARPROC);
API AllocResource(HANDLE, HANDLE, DWORD);
API SizeofResource(HANDLE, HANDLE);
API AccessResource(HANDLE, HANDLE);

#define MAKEINTRESOURCE(i) (LPSTR)«DWORD)«WORD)(i»)

#ifndef NORESOURCE

#define DIFFERENCE 11

1* Predef i ned Resource Types * 1
#define RT_CURSOR MAKEINTRESOURCE(1)
#define RT_BIiMAP MAKEINTRESOURCE(2)
#define RT_ICON MAKEINTRESOURCE(3)
#define RT_MENU MAKEINTRESOURCE(4)
#define RT_DIALOG MAKEINTRESOURCE(S)
#define RT_STRING MAKEINTRESOURCE(6)
#define RT_FONTDIR MAKEINTRESOURCE(7)
#define RT_FONT MAKEINTRESOURCE(8)
#define RT_ACCELERATOR MAKEINTRESOURCE(9)
#define RT_RCDATA MAKEINTRESOURCE(10)
1* NOTE: if any new resource types are introduced above this point, then the
** value of DIFFERENCE must be changed.
** (RT_GROUP_CURSOR - RT_CURSOR) must always be equal to DIFFERENCE
** (RT_GROUP_ICON - RT_ICON) must always be equal to DIFFERENCE
*1
#define RT GROUP CURSOR (RT CURSOR + DIFFERENCE)
1* The va l;;-e 13 i-; intent i on;lly unused * 1
#define RT_GROUP_ICON (RT_ICON + DIFFERENCE)

#endi f 1* NO RESOURCE *1

void API Yield(void);
HANDLE API GetCurrentTask(void);'

WORD API AllocSelector(WORD);
WORD API FreeSelector(WORD);
WORD API AllocDStoCSAlias(WORD);
WORD API ChangeSelector(WORD sourceSel, WORD destSel);

#ifndef NOATOM
typedef WORD ATOM;

#define MAKEINTATOM(i) (LPSTR)«DWORD)«WORD)(i»)

BOOL
ATOM
ATOM
ATOM
WORD
ATOM
ATOM
ATOM
WORD
HANDLE

API InitAtomTable(int);
API AddAtom(LPSTR);
API DeleteAtom(ATOM);
API FindAtom(LPSTR);
API GetAtomName(ATOM, LPSTR, int);
API ~lobalAddAtom(LPSTR);
~PI GlobalDeleteAtom(ATOM);
API GlobalFindAtom(LPSTR)i
API GlobalGetAtomName(ATOM, LPSTR, int);
API GetAtomHandle(ATOM);

#endif 1* NOATO.M *1

1* User Profile Routines *1

947

APPENDICES T

WINDOWS API BIBLE

WORD API GetProfileIntCLPSTR, LPSTR, tnt);
int API GetProfileStr1ng(LPSTR, LPSTR, LPSTR, LPSTR, int);
BOOL API WriteProfileString(LPSTR, LPSTR, LPSTR);
WORD API GetPrivateProfileInt(LPSTR, LPSTR, int, LPSTR);
int API GetPrivateProfileString(LPSTR, LPSTR, LPSTR, LPSTR, int, LPSTR);
BOOL API WritePrivateProfileString(LPSTR, LPSTR,LPSTR, LPST~);

WORD API GetWindowsDirectory(LPSTR,WORD);
WORD API GetSyste.Directory(LPSTR,VORD);

1* Catch() and ThrowC) *1
typedef int CATCHBUF[9J;
typedef tnt FAR *LPCATCHBUF;

int
void

API CatchCLPCATCHBUF);
API Throw(LPCATCHBUF, int);

void API SwapRecording(WORD);

.i fdef WIN31

, ,

void API LogError(WORD err, VOID FAR* lpInfo);
void API LogParamError(WORD err, FARPROC lpfn, VOID FAR* param);

, 1* LogError and LogPara.Error constants *1

1* Error modifier bits *1

'define ERR_WARNING
'define ERR_PARA"

1* Parameter error values *1

'define ERR_BAD_VALUE
'define ERR_BAD_FLAGS
'define ERR_BAD_INDEX
'define ERR_BAD_DVALUE
'define ERR_BAD_DFLAGS
'define ERR_BAD_DINDEX
'define ERR_BAD_PTR
'define ERR_BAD_FUNC_PTR
'define ERR_BAD_SELECTOR
'def i ne ERR_BAD_STRING_PTR
'define ERR_BAD_HANDLE

1* KERNEL para.eter errors *1

'define ERR_BAD_HINSTANCE
'define ERR_BAD_H"ODULE
'define ERR_BAD_GLOBA~HANDLE
'define ERR_BAD_LOCAL_HANDLE
'define ERR_BAD_ATO"

1* USER parameter errors *1

'define ERR_BAD_HWND
'define ERR_BAD_H"ENU
'define ERR_BAD_HCURSOR
'define ERR_BAD_HICON

1* GDI parameter errors *1

'define ERR_BAD~COORDS
'define ERR_BAD_GDI_OBJECT
'define ERR_BAD_HDC
'define ERR_BAD_HPEN
'define ERR_BAD_HFONT
'define ERR_BAD_HBRUSH
'defi,ne ERR_BAD_HBIT"Af

Ox8000
Ox4000

Ox5001
Ox5002
Ox5003
Ox7004
Ox7005
Ox7006
Ox7007
Ox7008
Ox5009
Ox700.
Ox700b

Ox5020
Ox5021
Ox5022
Ox5023
Ox5024

Ox5040
Ox5041
Ox5042'
Ox5043

Ox7060
Ox5061
Ox5062
Ox5063
Ox5064
Ox5065
Ox5066

948

Ndefine ERR_BAO_HRGN
IIdefine ERR_BAD_HPAlETTE

#define ERR_SIZE_MASK
IIdefine ERR_SIZE_SHIFT
#define ERR_BYTE
IIdefine ERR_WORD
IIdefine ERR_DWO~D

1* Debug 11 II constants *1

#define DBGFIll_AllOC
IIdefine DBGFIll_FREE
'define DBGFIll_BUFFER
'define DBGFIll_STACK

#lendi f 1* WIN31 *1

void API FatalExitCint);

Ox5067
Ox5068

Ox3000
12
OxOOOO
Ox1000
Ox3000

Odd
Oxfb
Oxf9
Ox17

void API FatalAppExitCWORD, lPSTR);

1* Character Translation Routines *1
int API AnsiToOemClPSTR, lPSTR);
BOOl API OemToAnsiClPST~, lPSTR);
void API AnsiToOemBuffClPSTR, lPSTR, int);
void API OemToAnsiBuffClPSTR, lPSTR, int);
lPSTR API Ans;UpperClPSTR);
WORD API AnsiUppcrBuff(lPSTR, WORD);
lPSTR API AnsilowcrClPSTR)i
WORD API AnsilowerBuffClPSTR, WORD);
lPSTR API AnsiNextClPSTR);
lPSTR API AnsiPrevClPSTR, lPSTR);

#i fdef WIH31
IIi fndef NODees
BOOl API IsDBCSleadByteC BYTE); /
#lendi f 1* NODBCS *1
lIendif 1* \lIN31 *1

1* Keyboard Information Routines *1
lIifndef NOKEYBOARDINFO
DWOR API OemKcyScanCWORD);
WORD API VkKeyScan(WORD);
int API GetKeyboardTypeCint);
int API GetKBCodePageCvoid);
int API GetKeyNameTextClONG, lPSTR, int); _ \

APPENDICES ...

int API ToAsc;iCWORD wVirtKey,.WORD wScanCode, LPSTR lpKeyState, lPVOID lpChar, WORD wFlags);
#lendif

"1 fndef NOlANGUAGE
1* language dependent Routines *1
BOOl FAR PASCAL IsCharAlphaCchar);
BOOl FAR PASCAL IsCharAlphaNumeric(char);
BOOl FAR PASCAL IsCharUpper(char);
BOOl FAR PASCAL IsCharlowerCchar);
lIendif

lONG API GetWinFlags(void);

#ldefine WF_PMODE
'define WF_CPU286
IIdefine WF_CPU386
IIdefine WF_CPU486
IIdefine WF_STANDARD
IIdefine WF_WIN286

. 'define WF_ENHANCED
'define WF_WIN386
IIdefine WF_CPU086
IIdefine WF_CPU186

OxOOO,
Ox0002
Ox0004
Ox0008
Ox0010
Ox0010
Ox0020
Ox0020
Ox0040
Ox0080

949

WINDOWS API BIBLE

#define WF_LARGEFRAME. Ox0100
#define WF SMALLFRAME Ox0200
#define WF:80x87 Ox0400
#define WF_PAGING Ox0800
#define WF_WlO Ox8000

1* WEP fSystemExit fl~g va lues * 1
#define WEP_SYSTEM_EXIT 1
#define WEP_FREE_DlL 0

lPSTR API GetDOSEnvironment(void);

#ifdef OEMRESOURCE

1* OEM Resource Ordi na l Numbers *1
#define OBM_ClOSE 32754
#define OSM_UPARROW 32753
#define OBM_DNARROW 32752
#define OBM_RGARROW 32751
#define OBM_LFARROW 32750
#define OBM_REDUCE 32749
#define OBM_ZOOM 32748
#define OBM_RESTORE 32747
#define OBM_REDUCED 32746
#define OBM_ZOOMD 32745
#define OBM_RESTORED 32744
#define OBM UPARROWD 32743
#define OBM:DNARROWD 32742
#define OBM_RGARROWD 32741
#define OBM_lFARROWD 32740
#define OBM_MNARROW 32739
#define OBM_COMBO 32738
#i fdef WIN31
#define OBM_UPARROWI 32737
#define OBM_DrlARROWI 32736
#define OBM_RGARROWI 32735
#define OBM_lFARROWI ·32734
#endif 1* WIN31 *1

#define OBM_OLD_ClOSE 32767
#define OBM_SIZE 32766
#define OBM_OlD_UPARROW 32765
#define·OBM OLD DNARROW 32764
#define OBM:OlD:RGARROW 32763
#define OBM_OLD_lFARROW 32762
#define OBM_BTSIZE 32761
#define OBM_CHECK 32760
#define OBM_CHECKBOXES 32759
#define OBM_BTNCORNERS 32758
#define oaM_OLD_REDUCE 32757
#define OBM_OlD_ZOOM 32756
#define OBM_OlD_RESTORE 32755

#define OCR_NORMAL 32512
. #define OCR_IBEAM 32513

#define OCR_WAIT 32514
#define OCR_CROSS 32515
#def i ne OCR_UP 32516
#define OCR_SIZE 32640
#define OCR_ICON 32641
#define OCR_SIZENWSE 32642
#define OCR_SIZENESW 32643
#define OCR_SIZEWE 32644
#define OCR_SIZENS 32645
#define OCR_SIZEAll 32646
#define OCR_ItOCUR 32647

#define OIC_SAMPlE 32512
#define OIC_HAND 32513

950

APPENDICES ..

#define OIC_QUES
#define OIC_BANG
#define OIC_NOTE

#endif I*'OEMRESOURCE *1

#endi f 1* NOKERNEL *1

32514
32515
32516

1*--------------------------------------*1
1* GDI Section *1
1*--------------------------------------*1

#i fndef NOGDI

#ifndef NORASTEROPS

1* Bi nary raster ops *1
#define R2_BLACK
#define R2_NOTMERGEPEN
#define R2_HASKNOTPEN
#define R2_NOTCOPYPEN
#define R2_MASKPENNOT
#def i lie R2_NOT
#define R2_XORPEN
#define R2_NOTMASKPEN
#define R2_MASKPEN
#define R2_NOTXORPEN
#defi ne R2_NOP
#define R2_MERGENOTPEN
#define R2_COPYPEN
#define R2_MERGEPENNOT
#define R2_MERGEPEN
#define R2_WHITE

1 1* 0
2 1* DPon
3 1* DPna
4 1* PN
5 1* PDna
6 1* Dn
7 1* DPx
8 1* DPan
9 1* DPa
10 1* DPxn
11 1* D
12 1* DPno
13 1* P ,
14 1* PDno
15 1* DPo
16 1* 1

1* Ternary raster operations *1

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

#define SRCCOPY (DWORD)OxOOCC0020 1* dest = source *1
#define SRCPAINT (DWORD)OxOOEE0086 1* dest = s'ource OR dest *1
#define SRCAND (DWORD)Ox008800C6 1* dest = source AND dest *1
#define SRCINVERT (DWORD)Ox00660046 1* dest = source XOR dest *1
#define SRCERASE (DWORD)Ox00440328 1* dest = source AND (NOT dest *1
#define NOTSRCCOPY (DWORD)Ox00330008 1* dest = (NOT source) *1
#define NOTSRCERASE (DWORD)Ox001100A6 1* dest = (NOT src) AND (NOT dest) *1
#define MERGE COPY (DWORD)OxOOCOOOCA 1* dest = (source AND pattern) *i
#define HERGEPAINT (DWORD)OxOOBB0226 1* dest = (NOT source) OR dest *1
#define PATCOPY (DWORD)OxOOF00021 1* dest = pattern *1
#define PATPAINT (DWORD)OxOOFBOA09 1* dest = DPSnoo *1
#define PATINVERT (DWORD)Ox005A0049 1* dest = pattern XOR dest *1
#define DSTINVERT (DWORD)Ox00550009 1* dest = (NOT dest) *1
#define BLACKNESS (DWORD)Ox00000042 1* dest = BLACK *1
#define WHITENESS (DWORD)OxOOFF0062 1* dest = WHITE *1

#endif 1* NORASTEROPS *1

1* StretchBlt() Modes *1
• #def i ne BLACKONWHITE 1

#define WHITEONBLACK 2
#define COLORONCOLOR 3

1* PolyFill() Modes *1
#define ALTERNATE 1
#define WINDING 2

1* Text Alignment Options *1
#define TA_NOUPDATECP OxOOOO
#define TA_UPDATECP Ox0001

#def ne TA_LEFT
#def ne TA_RIGHT
#def ne TA_CENTER

OxOOOO
Ox0002
Ox0006-'

,951

\'

WINDOWS API BIBLE

IIdetine TA_TOP
IIdefine TA_BOTTOM
IIdefine. TA_BASELINE

IIdefine ETO_GRAYED
IIdefine ETO_OPAQUE
#define ETO_CLIPP~D

IIdefine ASPECT_FILTERING

lIifndef NOMETAFILE

1* Metafile Functions *1
#define META_SETBKCOLOR
IIdefine META_SETBKMODE
IIdefine META_SETMAPMODE
IIdefine M~TA_SETROP2

1
2
4

IIdef in~ META_SETRELABS
IIdefin~META_SETPOLYFILLMODE
#define META_SETSTRETCHBLTMODE
IIdefine META_SETTEXTCHAREXTRA
#define META_SETTEXTCOLOR
IIdefine META_SETTEXTJUSTIFICATION
IIdefine META_SETWINDOWORG
IIdefine META_SETWINDOWEXT
#define META_SETVIEWPORTORG
IIdefine META_SETVIEWPORTEXT
#define META_OFFSETWINDOWORG
#define META_SCALEWINDOWEXT
IIdefine META._OFFSETVIEWPORTORG
#define META_SCALEVIEWPORTEXT
#define META_LINETO
IIdefine META MOVETO
IIdefine META-EXCLUDECLIPRECT
IIdeline META:INTERSECTCLIPRECT
#define META_ARC
#define META_ELLIPSE
#define META_FLOODFILL
IIdefine META PIE

. IIdefine META-RECTANGLE
IIdefine META:ROUNDRECT
IIdefine META_PATBLT
IIdefine META_SAVEDC
IIdefine META_SETPIXEL
IIdefine META_OFFSETCLIPRGN
IIdefine META_TEXTOUT
IIdefine META BITBLT
IIdefine META:STRETCHBLT
IIdefine META_POLYGON
IIdefine META_POLYLINE
#define META_ESCAPE
IIdefine META_RESTOREDC
IIdefine META_FILLREGION
IIdefine META_FRAMEREGION
IIdefine META_INVERTREGION
IIdefine META_PAINTREGI~N
IIdefine META_SELECTCLIPREGION
IIdefine META_SELEvTOBJECr
IIdefine META_SETTEXTALIGN
IIdefine META_DRAWTEXT .

\ .
IIdefine ~ETA_CHORD
IIdefine META_SETMAPPERFLAGS
IId~fine META_EXTTEXTOUT
IIdefine META_SETDIBTO~EV
IIdefjne META_SELECTPALETTE
'define-META_REALIZEPALETTE
'define META_ANIMATEPALETTE
'define META_SETPALENTRIES

OxOOOO
Ox0008
Ox0018

Ox0001

Ox0201
Ox0102
Ox0103
Ox0104
Ox0105
Ox0106
Ox0107
Ox0108
Ox0209
Ol:020A
Ox020B
Ox020C
Ox020D
Ox020E
Ox020F
Ox0400
Ox0211
Ox0412
Ox0213
Ox0214
Ox0415
Ox0416
Ox0817
Ox0418
Ox0419
Ox081A
Ox041B
Ox061C
Ox061D
Ox001E
Ox041F

. Ox0220
Ox0521
Ox0922
OxOB23
Ox0324
Ox0325
Ox0626
Ox0127
Ox0228
Ox0429
Ox012A
Ox012B
Ox012C
Ox012D
Ox012E
Ox062F

Ox0830
Ox0231
OxOa32
OxOd33
Ox0234
Ox0035
Ox0436
Ox0037

~52

APPENDICES ~

#define META_POLYPOLYGON Ox0538
#define META_RESIZEPALETTE Ox0139

#define META_DIBBITBLT Ox0940
#detine META_DIBSTRETCHBLT OxOb41
#define META_DIBCREATEPATTERNBRUSH Ox0142
#de~ine META_STRETCHDIB OxOf43

#define META_DELETEOBJECT Ox01fO

#define META_CREATEPALETTE OxOOf7
#define META_CREATEBRUSH OxOOF8
#define META_CREATEPATTERNBRUSH Ox01F9
#define META_CREATEPENINDIRECT Ox02FA
#define META_CREATEFONTINDIRECT Ox02FB
#define META_CREATEBRUSHINDIRECT Ox02FC
#define META_CREATEBITMAPINDIRECT Ox02FD
#define META_CREATEBITMAP Ox06FE
#define META_CREATEREGION Ox06FF

#endif 1* NOMETAFILE *1

1* GDI Escapes *1
#define NEWFRAHE 1
#define ABORT DOC 2
#define NEXTBAND 3
#define SETCOLORTABLE 4
#define GETCOLORTABLE 5
#define FLUSHOUTPUT 6
#define DRAFTMODE 7
#define QUERYESCSUPPORT 8
#define SETABORTPROC 9
#define STARTDOC 10
#define ENDDOC 11
#define GETPHYSPAGESIZE 12
#define GETPRINTINGOFFSET 13
#define GETSCALINGFACTOR14
#define MFCOMMENT 15
#define GETPENWIDTH 16
#define SETCOPYCOUNT 17
#define SELECTPAPERSOURCE 18
#define DEVICEDATA 19
#define PASSTHROUGH 19
#define GETTECHNOLGY 20
#define GETTECH~OLOGY ,20
'define SETENDCAP 21
'define SETLINEJOIN 22
'define SETMITERLIMIT 23
'define BANDINFO 24
'define DRAWPATTERNRECT 25
'define GETVECTORPENSIZE 26
'define GETVECTORBRUSHSIZE 27
'defineENABLEDUPLEX 28
'define GETSETPAPERBINS 29
'define GETSETPRINTORIENT 30
'define ENUMPAPERBINS 3~
#define SETDIBSCALING 32
'define EPSPRINTING 33
'define ENUMPAPERMETRICS 34
'define GETSETPAPERMETRICS 35
'define POSTSCRIPT_DATA 37
'define POSTSCRIPT_IGNORE 38
#define MOUSETRAILS 39

'define GETEXTENDEDTEXTMETRICS 256
'define GETEXTENTTABLE 257
#define GETPAIRKERNTABLE 258
#def i ne GEHRACKKERNTABLE 259
'define EXTTEXTOUT I 512

953

WINDOWS API BIBLE

#define ENABlERElATIVEWIDTHS
#define ENABlEPAIRKERNING
#define SETKERNTRACK
#define SETAllJUSTVAlU~S
#define SETCHARSET

#define GETSETSCREENPARAMS

#define STRETCHBlT
#define BEGIN_PATH
#define ClIP_TO_PATH
#define END_PATH
#define EXT_DEVICE_CAPS
#define RESTORE_CTM
#define SAVE_CTM
#define SET_ARC_DIRECTION
#define SET_BACKGROUND_COlOR
#define SET_POLY_MODE
#define SET SCREEN ANGLE
#define SET=SPREAD-
#define TRANSFORM_CTM
#define SET_CLIP_BOX
#define SET_BOUNDS

1* Spooler Error Codes *1
#define SP_NOTREPORTED
#define SP_ERROR
#define SP APPABORT
#define SP=USERABORT
#define SP_OUTOFDISK
#define SP_OUTOFMEMORY

#define PR_JOBSTATUS

768
769
770
771
772

.800

2048
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109

Ox4000
(-1)

(-2)
(-3)
(-4)
(-5)

OxOOOO

1* Object Definitions for EnumObjects() *1
#define OBJ PEN 1
#def i ne OBJ=BRUSH 2

1* Bitmap Header Definition *1
typedef struct tagBITMAP

{

int
int
int
int
BYTE
BYTE
lPSTR

} BITMAP;

bmType;
bmWidth;
bmHeight;
bmWidthBytes;
bmPlanes;
bmBitsPixel;
bmBits;

typedef BITMAP
typedef BITMAP NEAR
typedef BITMAP FAR

*PBITMAP;
*NPBITMAP;
*lPBITMAP;

typedef struct
BYTE ;
BYTE:
BYTE:

} RGBTRIPlE;
i

typedef. struct
BYTE
BYTE
BYTE
BYTE

} RGBQUAD;

tagRGBTRIPlE {
rgbtBluei
rgbtGreen;
rgbtRed;

tagRGBQUAD {
rgbBlue;
rgbGreen;
rgbRed;
rgbReserved;

1* structures for defining DIBs *1
typede1 struct tagBITMAPCOREHEADER {

954

DWORD bcSizei 1* used to get to color table *1
WORD bcWidthi
WORD bcHeighti
WORD bcPlanesi
WORD bcBitCounti

} BITHAPCOREHEADERi
typedef BITHAPCOREHEADER FAR
typedef BITMAPCOREHEADER

*LPBITMAPCOREHEADERi
*PBITMAPCOREHEADERi

typedef struct
DWORD
DWORD
DWORD
WORD
WORD

tagBITMAPINFOHEADER<
biSizei
biWidthi
biHeighti
biPlanesi
biBitCounti

DWORD biCompressioni
DWORD biSizelmagei
DWORD biXPelsPerMeteri
DWORD biYPelsPerHeteri
DWORD biClrUsedi
DWORD biCl~Importanti

} BITMAPINFOHEADERi

typedef BITMAPINFOHEADER FAR
typedef BITMAPINFOHEADER

*LPBITHAPINFOHEADERi
*PBITMAPINFOHEADERi

1* constants for the biCompression field *1
#define BI_RGB OL
#define BI_RLE8 1L
#define BI_RLE4 2L

typedef struct tagBITMAPINFO <
BITMAPINFOHEADER bmiHeaderi
RGBQUAD bmiColorsE1Ji

} BITHAPINFOi
typedef BITMAPINFO FAR
typedef BITMAP INFO

*LPBITMAPINFOi
*PBITMAPINFOi

typedef struct tagBITMAPCOREINFO{
BITMAPCOREHEADER bmciHeaderi
RGBTRIPLE bmciColorsE1Ji

} BITMAPCOREINFOi
\ typedef BITMAPCOREINFO FAR *LPBITMAPCOREINFOi

typedef BITMAPCOREINFO *PBITMAPCOREINFOi

typedef struct tagBITMAPFILEHEADER <
WORD bfTypei
DWORD bf S ; ze; .:-..!'~-

WORD bfReserved1i
WORD bfReserved2i
DWORD bfOffBitsi

} BITMAPFILEHEADERi
typedef BITHAPFILEHEADER FAR
typedef BITHAPFILEHEADER

*LPBITMAPFILEHEADERi
*PBITMAPFILEHEADERi

#define MAKEPOINTCl) (*CCPOINT FAR *)&Cl»)

#ifndef NOHETAFILE

1* Clipboard Metafile Picture Structure *1
typedef struct tagHANDLETABLE

<
HANDLE objectHandle E1J i

,} HANDLETABLEi
typedef HANDLETABLE
typedef HANDLE~ABLE FAR

*PHANDLETABLEi
*LPHANDLETABLEi

955

APPENDICES ...

WINDOWS API BIBLE

typedef struct tagMETARECORD
{

DWORD
WORD
WORD

rdSizei
rdFunctioni
rdParlll[1J;

> METARECORDi
typedef METARECORD
typedef METARECORD FAR

typedef struct tagMETAFILEPICT
(

int 111m;
,int xExt;
int yExt;
HANDLE hMF;

) METAFILEPICT;
typedef METAFILEPICT FAR

typedef struct tagMETAHEADER
(

WORD
WORD
WORD
DWORD
WORD
DWORD
WORD

mtType;
mtHeaderSize;
.tVersion;
mtSize;
mtNoObjects;
mtMaxRecord;
mtNoParalieters;

) METAHEADERi

lIendif 1* NOMETAFILE *1

1I1fndef NOTEXTMETRIC

typedef struct tagTEXTMETRIC
{

1nt tmHeight;
int tllAscent;
int tlllDescent;
int tmlnternalLeading;
int 'tmExternalLeading;
int tmAveCharWidth;
int tlllMaxCharWidth;
int tmWeight;
BYTE tllItalic;
BYTE tllUnderlined;
BYTE tliStruckOut;
BYTE tliFirstChar;
BYTE tllLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tllPitchAndFallily;
BYTE tliCharSet;
int tllOverhangi
int tllDigitizedAspectXi
int tmDigitizedAspectYi

> TEXTMETRIC;
typedef TEXTMETRIC

'typedef TEXTMETRIC NEAR
typedef TEXTMETRIC FAR

typedef struct tagNEWTEXTMETRIC
{

int
int
int
int
int
int

tllHeight;
tlllAscenti
tliDescenti
tlllnternalLeadingi
tllExternalLeadingi
tllAveCharWidthi

*PMETARECORD;
*LPMETARECORD;

*LPMETAFILEPICTi

*PTEXTMETRIC;
*NPTEXTMETRl C i
*LPTEXTMETRICi

956

int tm"axCharWidth;
int tIllWe;ght;
BYTE tmItal i c;
BYTE tlllUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE t.LastChar;
BYTE tmDefaultChar;
BYTE t.BreakChar;
BYTE t.PitchAndFalllily;
BYTE t.CharSet;
int tlllOverhang;
int tlllDigitizedAspectX;
int t.DigitizedAspectY;
DWORD nt.Flags;
WORD ntIllSizeE";

1* various flags (fsSelection) *1
1* size of EM *1

WORD nt.CellHeight;
WORD nt.AvgWfdth;

1* height of font in notional units *1
1* average with ill notional units *1

> NEWTEXT"ETRIC;
typedef NEWTEXT"ETRIC
typedef NEWTEXT"ETRIC NEAR
typedef NEWTEXTMETRIC FAr.

*PNEWTEXT"ETRICi
*NPNEWTEXT"ETRIC;
*LPNEWTEXTMETRIC;

'define NT"_REGULAR
'define NT"_BOLD
'define NT"_ITALIC

Ox00000040
Ox00000020
Ox00000001

'endif I*'NOTEXT"ETRIC *1

1* GDI Logical Objects: *1

1* Pel Array *1 .
typedef struct tagPELARRAY

{

int paXCounti
int paYCounti
int paXExti
int paVed;
BYTE paRGBsi

> PELARRAY i
typedef PELARRAY
typedef PELARRAY NEAR
typedef PELARRAY FAR

*PPELARRAY;
*NPPELARRA Y ;

. *LPPELARRA Y;

1* Logical Brush (or Pattern) *1
typedef struct tagLOGBRUSH

{

WORD
DWORD
int

lbStyle;
lbColor;
lbHatchi

> LOGBRUSH;
typedef LOGBRUSH
typedef LOGBRUSH NEAR
typedef LOGBRUSH FAR

typedef LOGBRUSH
typedef 'PATTERN
typedef PATTERN NEAR

. typedef PATTERN FAR

*PLOGBRUSH;
*NPLOGBRUSHi
*LPLOGBRUSH;

PATTERN;
*PPATTERNi
*NPPATTERN;
*LPPATTERNi

1* Logical Pen *1
typedef struct tagLOGPEN

{

WORD
POINT
DWORD

> LOG PEN;

lopnStylei
lopnWidthi
lopnColori

typedef LOG PEN
typedef LOGPEN.NEA~

*PL06PEN;
. *NPL06PE"i

1* possible nt.Flags bits *1

957

APPENDICES Y

WINDOWS API BIBLE

typedef LOG PEN FAR *LPLOGPENi

typedef struct tagPALETTEENTRY {
BYTE peRedi
BYTE peGreeni
BYTE peBluei
BYTE peFlagsi

} PALETTEENTRY i
typedef PALETTE ENTRY FAR" *LPPALETTEENTRYi

1* Logical Palette *1
typedef struct tagLOGPALETTE {

WORD palVersioni
WORD palNumEntriesi
PALETTEENTRY palPalEntry[1Ji

LOGPALETTE; .
typedef LOGPALETTE *PLOGPALETTE;
typedef LOGPALETTE NEAR *NPLOGPALETTE;
typedef LOGPALETTE FAR *LPLOGPALETTEi

1* Logical Font *1
#define LF_FACESIZE 32

typedef struct tagLOGFONT
{

int It'Heighti
int lfWidthi
int lfEsr.apement;
int lfOrientation;
int lfWeighti
BYTE lfItalici
BYTE lfUnderline;
BYTE lfStrikeOuti
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQualitYi
BYTE lfPitchAndFamily;
BYTE lfFaceName[LF_FACESIZEJi

} LOGFONT;
typedef LOG FONT
typedef LOG FONT NEAR
typedef LOG FONT FAR

*PLOGFONT;
*NPLOGFONTi"
*LPLOGFONTi

#define OUT_DEFAULT_PRECIS 0
#define OUT_STRING_PRECIS 1
#define OUT~CHARACTER_PRECIS 2
#define OUT_STROKE_PRECIS 3

#define CLIP_DEFAULT_PRECIS 0
#define CLIP_CHARACTER_PRECIS 1
#define CLIP_STROKE_PRECIS 2

#define DEFAULT QUALITY 0
#define DRAFT QUALITY 1
#define PROOF:QUALITY 2

#define OEFAULT PITCH 0
#define FIXED PITCH 1
#define VARIABLE_PITCH 2"

#define ANSI CHARSET 0
#~le~f i ne SYMBOL CHARSET 2
#define SHIFTJIS_CHARSET 128
#define OEM_CHARSET 255

1* Font Families *1
#define FF_DONTCARE (0«4) 1* Don't care or don't know. *1

958

IIdefine FF_ROMAN

IIdefine FF_SWISS

(1«4) 1* Variable stroke width, serifed. *1
1* Times Roman, Century Schoolbook, etc. *1

(2«4) 1* Variable stroke width, sans-serifed. *1
1* Helvetica, Swiss, etc. *1

APPENDICES "

IIdefine FF _MODERN (3«4) 1* Constant stroke width, serifed or sans-serifed. *1
1* Pica, ELite, Courier, etc. *1

IIdefine FF _SCRIPT (4«4) 1* Cursive, etc. *1
IIdefine FF ...,..DECORATIVE (5«4) 1* Old English, etc. *1

1* Font Weights *1
IIdefine FW_DONTCARE
IIdefine FW_THIN
IIdefine FW_EXTRALIGHT
IIdefine FW_LIGHT
IIdefine FW_NORMAL
IIdefine FW_MEDIUM
IIdefine FW_SEMIBOLD
IIdefine FW_BOLD
IIdefine FW_EXTRABOLD
IIdefine FW_HEAVY

IIdefine FW_ULTRALIGHT
IIdefine FW_REGULAR
IIdefine FW_DEMIBOLD
IIdefine FW_ULTRABOLD
IIdefine FW_BLACK

o
100
200
300
400
500
600
700
800
900

FW_EXTRALIGHT
FW_NORMAL
FW_SEMIBOLD
FW_EXTRABOLD
FW_HEAVY

1* EnumFonts Masks *1
IIdefine RASTER_FONTTYPE
IIdefine DEVICE_FONTTYPE
IIdefine SCALABLE_FONTTYPE

Ox0001
OX0002 ~
Ox0004

IIdefine RGB(r,g,b) «DWORD)«(BYTE)(r)!«WORD)(g)«8»!«(DWORD)(BYTE)(b))«16»)
IIdefine PALETTERGB(r,g,b) (Ox02000000 ! RGB(r,g,b»
IIdefine PALETTEINDEX(i) «DWORD)(Ox01000000 ! (WORD)(i»)

IIdefine GetRValue(rgb)
IIdefine GetGValue(rgb)
IIdefine GetBValue(rgb)

((BYTE)(rgb))
«BYTE)«(WORD)(rgb» » 8»
«BYTE)«rgb»>16»

1* Background Modes *1
#define TRANSPARENT
IIdef i ne OPAQUE

1* Mappi ng Modes * I
IIdef i ne MM_TEXT
IIdefine MM_LOMETRIC
IIdefine MM_HIMETRIC
IIdefine MM_LOENGLISH
IIdefine MM_HIENGLISH
IIdefine MM_TWIPS
#define MM_ISOTROPIC
IIdefine MM_ANISOTROPIC

1* Coordinate Modes *1
IIdefine ABSOLUTE
IIdefine RELATIVE

1
2

1
2
3
4
5
6
7
8

1
2

1* Stock Logical Objects *1
II d 2 fin e ~ H IT E_B k U S H 0
IIdefine LTGRAY_BRUSH 1
IIdefine GRAY_BRUSH 2
IIdefine DKGRAY_BRUSH 3
#define BLACK_BRUSH 4
#def i ne NULL_BRUSH 5
#define HOLLOW_BRUSH NULL_BRUSH
IIdefine WHITE_PEN 6
#def i ne BLACK_PEN 7
IIdefine NULL_PEN 8

959

WINDOWS API BIBLE

#define OEM_FIXED_FONT
#define ANSI_FIXED_FONT
#define ANSI_VAR_FONT
#define SYSTEM_FONT
#define DEVICE_DEFAULT_FONT
#define DEFAULT_PALETTE
#define SYSTEM_FIXED_FONT

o

10
11
12
13
14 -
15
16

1* Brush Styles *1
#define BS_SOLID ,
#define BS_NULL
#define BS_HOLLOW
#define BS_HATCHED
#define BS_PATTERN
#define BS_INDEXED
#define BS_DIBPATTERN

1
BS_NULL
2
3
4
5

1* Hatch Styles *1
#define HS_HORIZONTAL 0
#define HS_VERTICAL 1
#define HS_FDIAGONAL 2
IIdefine HS_BDIAGONAL 3
IIdefine HS_CROSS 4
IIdefine HS_DIAGCROSS 5

1* Pen Styles *1
#define PS_SOLID 0
IIdefine PS_DASH 1
IIdefine PS_DOT 2
"define PS_DASHDOT 3
"define PS_DASHDOTDOT 4
"define PS_NULL 5
#define PS_INSJDEFRAME 6

1* NN */
1* IIIII *1
/* \\\\\ */
1*11/11*1
1* +++++ */
1* xxx xx *1

/* NNN */
/* 000000 ° *1
1* _0_0_0_ *1
1* _00_00_ *1

1* Device Parameters for GetDeviceCaps() *1
"define DRIVERVERSION 0 1* Devi ce driver version
IIdefine TECHNOLOGY 2 /* Device classification
"define HORZSIZE 4 /* Horizontal size in millimeters
"define VERTSIZE 6 /* Vertical size in mi llimeters
#define HORZRES 8 /* Horizontal width in pixels
IIdefine VERT RES 10 /* Vertical width in pixels
"define BITSPIXEL 12 /*Number of bits per pixel
#define PLANES 14 /* Number of planes
#define NUMBRUSHES 16 /* Number of brushes the device has
IIdefine NUMPENS '18 /* Number of pens the device has
"define NUMMARKERS 20 /* Number of markers the d1fvi ce has
IIdefine NUMFONTS 22 /* Number of fonts the device has
"define NUMCOLORS 24 1* Number of colors the device supports
IIdefine PD~VICESIZE 26 /* Si ze requi red for device descriptor
IIdefine CURVECAPS 28 /* Curve capabi lities
"define LINECAPS 30 /* Line capabilities
IIdefine POLYGONALCAPS 32 /* Polygonal capabilities
IIdef i ne TEXT CAPS 34 /* Text capabi lit i es

/ "define CLIPCAPS 36 /* Clipping capabilities
#defineRASTERCAPS 38 1* Bitblt capabilities
"define ASPECTX 40 /* Length of the X leg
IIdefine ASPECTY 42 /* Length of the Y leg
#define ASPECTXY 44 /* Length of the hypotenuse

"define LOGPIXELSX
"define LOGPIXELSY

88
90

/* Logical pixels/inch in X
/* Logical pixels/inch in Y

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*1
*/
*/
*/
*/
*/
*/
*/

*/
*/ ,

IIdefine SIZEPALETTE
IIdefine NUMRESERVED
#define COLORRES

104
106
108

/* Number of entries in physical palette */.
/* Number of reserved entries in palette */
1* Actual color resolution */

lIifndef NOGDICAPMASKS

960

"

1* Device Capability Masks: *1

1* D~vice Technologies *1
#define DT_PLOTTER 0
#define DT_RASDISPLAY 1
#define DT_RASPRINTER 2
#define DT_RASCAMERA 3
#define DT_CHARSTREAM 4
#define DT_METAFILE 5
#define DT_DISPFILE 6

1* Curve Capabilities *1
#def i ne CC_NONE 0
#define CC_CIRCLES 1
#def i ne CC_PIE 2
#define CC_CHORD 4
#define CC_ELLIPSES 8
#define CC_WIDE 16
#define CC_STYLED 32
#define CC_WIDESTYLED 64
#define CC_INTERIORS 128

1* Line Capabilities *1
#define LCNONE 0
#define LC_POLYLINE 2
#define LC_MARKER 4
#define LC_POLYMARKER 8
#define LC_WIDE 16
#define LC_STYLED 32
#define LCWIDESTYLED 64
#define LC_INTERIORS 128

1* Polygonal Capabilities *1
#define PC_NONE 0
#define PC_POLYGON 1
#define PC_RECTANGLE 2
#define PC_WINDPOLYGON 4
#define PC_TRAPEZOID 4
#define PC_SCANLINE 8
#define PC_WIDE 16
#define PC_STYLED 32
#define PC_W I DESTYLED 64
#define PC_INTERIORS 128

1* Polygonal Capabilities *1
#defi ne CP _NONE
#define CP_RECTANGLE

1* Text Capabilities *1
#define TC_OP_CHARACTER
#define TC_OP_STROKE
#define TC_CP_STROKE
#define TC_CR_90
#define TC_CR_ANY
#define TC_SF_X_YINDEP
#define TC_SA_DOUBLE
#define TC_SA_INTEGER
#define TC_SA_CONTIN
#define TC_EA_DOUBLE
#define TC_IA_ABLE
#define TC_UA_ABLE
#define TC_SO_ABLE
#define TC_RA_ABLE
#define TC_VA_ABLE
#define TC_RESERVED

0
1

Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

·Ox0040
Ox0080
Ox0100
Ox0200
Ox0400
Ox0800
Ox1000
Ox2000
Ox4000
Ox8000

#endif 1* NOGDICAPMASKS *1

APPENDICES ~

1* Vector plotter
1* Raster display
1* Raster printer
1* Raster camera
1* Character-stream, PLP
1* Metafile, VDM
1* Display-file

*1
*1
*1
*1
*1
*1
*1

1* Curves not supported *1
1* Can do ci rcles*1
1* Can do pie wedges *1
1* Can do chord arcs *1
1* Can do ellipese *1
1* Can do wide lines *1
1* Can do styled lines *1
1* Can do wide styled lines *1
1* Can do interiors *1

1* Lines not supported *1
1* Can do polylines *1
1* Can do markers *1
1* Can do polymarkers *1
1* Can do wide lines *1
1* Can do styled lines *1
1* Can do wide styled lines *1
1* Can do interiors *1

1* Polygonals not supported */
1* Can do polygons *1
1* Can do rectangles *1
1* Can do winding polygons *1
1* Can do trapezoids *1
1* Can do scanlines *1
1* Can do wide borders *1
1* Can do styled borders *1
1* Can do wide styled borders *1
1* Can do interiors *1

1* No clipping of output *1
1* Output clipped torects *1

1* Can do OutputPrecision
.1* Can do OutputPrecision
1* Can do ClipPrecision
1* Can do CharRotAbi l i ty
1* Can do CharRotAbility
1* Can do Sca leFreedom
1* Can do Sea leAbil ity
1* Can do SealeAbility
1* Can do SealeAbility
1* Can do EmboldenAbility
1* Can do ItalisizeAbility
1* Can do UnderlineAbility
1* Can do StrikeOutAbility
1* Can do RasterFontAble
1* Can do VeetorFontAble

961

CHARACTER
STROKE
STROKE
90
ANY
X_YINDEPENDENT
DOUBLE
INTEGER
CONTINUOUS
DOUBLE
ABLE
ABLE
ABLE
ABLE
ABLE

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

WINDOWS API BIBLE

*1
1
2
4

1* Raster Capabilities
#define RC_BITBlT
#define RC_BANDING
#define RC_SCAlING
#define RC_BITMAP64
#define RC_GDI20_0UTPUT
#define RC_DI_BITMAP
#define RC_PAlETTE
#define RC_DIBTODEV
#define RC_BIGFONT
#define RC_STRETCHBlT
#define RC_FlOODFIll
#define RC_STRETCHDIB

1* palette entry flags *1

#define PC_RESERVED
#define PC_EXPLICIT
#define PC_NOCOllAPSE

8
Ox0010
Ox0080
Ox0100
Ox0200
Ox0400
Ox0800
Ox1000
Ox2000

Ox01
Ox02
Ox04

1* DIB color table identifiers *1

#define DIB_RGB_COlORS 0
#define DIB_PAl_COlORS 1

1* Can do standard Bl T. *1
1* Device requires banding support *1
1* Device requires scaling support *1
1* Devi ce can support >641< bitmap *1
1* has 2.0 output calls *1
1* supports DIB to memory *1
1* supports a palette *1
1* supports DIBitsToDevice *1
1* supports >64K fonts *1
1* supports StretchBlt *1
1* supports FloodFill *1
1* supports-StretchDIBits *1

1* palette index.used for animation *1·
1* palette index is explicit to device *1
1* do not match color to system palette *1

1* color table in RGBTriples *1
1* color table in palette indices*1

1* constants for Get/SetSystemPaletteUse() *1
\

#define SYSPAl_STATIC 1
#define SYSPAl_NOSTATIC 2

1* constants for CreateDIBitmap *1
#define CBM_INIT Ox04l 1* initialize bitmap *1

#ifndef NODRAWTEXT

1* DrawText() Format Flags *1
#def i ne DT_TOP
IIdefine DT_LEFT
#define DT_CENTER
#def i ne DT_R IGHT
#define DT_VCENTER
#define DT_BOTTOM
#define DT_WORDBREAK
#defi ne DT_SINGLELINE
#define DT_EXPANDTABS
#def i ne DT TABSTOP -
#define DT-NOCLIP
#define DT-EXTERNAllEADING
#define DT-CALCRECT
#define DT-NOPREFIX
#define DT=INTERNAL

OxOOOO
OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100
Ox0200
Ox0400
Ox0800 _
Ox1000

int API DrawText(HDC, LPSTR, int, lPRECT, WORD);
BOOL API DrawIcon(HDC, int, int, HICON);

#endif 1* NODRAWTEXT *1

1* ExtFtoodFill style flags *1
#define FLOODFIlLBORDER 0
#define FLOODFILLSURFACE 1

HOC API GetWindowDC(HWND);
HOC API GetDC(HWND);
int API ReleaseDC(HWND, HDC);

#i fdef WIN31

962

HDC API GetDCEx(register HWND hwnd, HRGN hrgnClip, DWORD flags) ;

1* GetDCEx() flags "ltl
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define

#define

#define
#define
#define

#endif

HDC
HDC
HDC
BOOl
int
BOOl
DWORD
DWORD
BOOl
DWORO

DCX_WINDOW OxOOOOOOO1L
DCX_CACHE OxOOOOOOO2L
DCX_NORESETATTRS OxOOOOOOO4L
DCX_CLIPCHILDREN OxOOOOOOOBL
DCX_C LI PS IBLI NGS OxOOOOOO10L
DCX_PARENTCLI P OxOOOOOO20L

DCX_EXCLUDERGN OxOOOOOO40L
DCX_INTERSECTRGN OxOOOOOOBOL

DCX_EXCLUDEUPDATE OxOOOOO100L
DCX_INTERSECTUPDATE OxOOOOO200L

DCX_LOCKWINDOWUPDATE OxOOOOO400L

OCX_USESTYLE OxOOO10000l
DCX_NORECOMPUTE OxOO100000l
DCX_VALI DA TE OxOO200000l

1"It WIN31 "ltl

API CreateDC(lPSTR, lPSTR, lPSTR, lPVOID);
API CreateIC(lPSTR, lPSTR, lPSTR, lPVOID);
API CreateCompatibleDC(HDC);
API DeleteDC(HDC);
API SaveDC(HDC);
API RestoreDC(HDC, int);
API MoveTo(HDC, int, int};
API GetCurrentPosition(HDC);
API lineTo(HOC, int, int);
API GetDCOrg(HDC);

int API MulDiv(int, int, int);

BOOl API ExtTextOut(HDC, int, int, WORD, lPRECT, lPSTR, WORD, lPINT);

BOOl API Polyline(HOC, lPPOINT, int);
BOOl API Polygon(HDC, lPPOINT, int);
BOOl API PolyPolygon(HDC, lPPOINT, lPINT, int);

API Rectangle(HOC, int, int, int, int);
API RoundRectCHDC, int, int, int, int, int, int};
API Ellipse(HDC, int, int, int, int);
API ArcCHOC, int, int, int, int, int, int, int, int);
API Chord(HDC, int, int, int, int, int, int, int, int};
API Pie (HOC, int, int, int, int, int, int, int, int};
API PatBltCHOC, int, int, int, int, OWORD);
API BitBltCHDC, int, int, int, int, HOC, int, int, DWORD);

APPENDICES 'Y

BOOl
BOOl
BOOl
BOOl
BOOl
BOOl
BOOl
BOOl
BOOl
BOOl
lONG
BOOl
DWORD
DWORO
BOOl
BOOl
void

API StretchBltCHDC, int, int, int, irit, HDC, int, int, int, int, DWORD);
API TextOut(HDC, int, int, lPSTR, int};
API TabbedTextOutCHDC, int, int, lPSTR, int, int, lPINT, int);
API GetCharWidth(HDC, WORD, WORD, lPINT);
API SetPixel(HOC, int, int, DWORD);
API GetPi xe l(HOC, i nt, i nt);
API FloodFill(HOC, int, int, DWORO);
API ExtFloodFill(HOC, int, int, DWORD, WORD);
API lineDDA(int, int, int, int, FARPROC, lPSTR);

HANDLE API GetStockObject(int);

HPEN API CreatePen(int, int, DWORO);

963

· ,
WINDOWS API BIBLE

HPEN API CreatePenIndirect(LOGPEN FAR *);

HBRUSH
HBRUSH
DWORD
DWORD
HBRUSH
HBRUSH

API CreateSolidBrush(DWORD);
API CreateHatchBrush(int,DWORD);
API SetBrushOrg(HDC, int, int);
API GetBrushOrg(HDC);
API CreatePatternBrush(HBITMAP);
API CreateBrushIndirect(LOGBRUSH FAR *);

HBITMAP API CreateBitmap(int, int, BYTE, BYTE, LPSTR);
HBITMAP API CreateBitmapIndirect(BITMAP FAR *);
HBITMAP API CreateCompatibleBitmap(HDC, int, int);
HBITMAP API CreateDiscardableBitmap(HDC, int, int);

LO'NG
LONG
DWORD
DWORD

API SetBitmapBits(HBITMAP, DWORD, LPSTR);
API GetBitmapBits(HBITMAP, LONG, LPSTR);
API SetBitmapDimension(HBITMAP, int, int);
API GetBitmapDimension(HBITMAP);

HFONT API CreateFont(int, int, int, int, int, BYTE, BYTE, BYTE, BYTE, BYTE, BYTE, BYTE,
BYTE, LPSTR);
HFONT API CreateFontIndirect(LOGFONT FAR *);

int' API SelectClipRgn(HDC, HRGN);
HRGN API CreateRectRgn(int, int, int, int>;
void API SetRectRgn(HRGN, int, int, int, int);
HRGN API CreateRectRgnIndirect(LPRECT);
HRGN API CreateEllipticRgnIndirect(LPRECT);
HRGN API CreateEllipticRgn(int, int, int, int);
HRGN API CreatePolygonRgn(LPPOINT, int, int);
HRGN API CreatePolyPolygonRgn(LPPOINT, LPINT, int, int);
HRGN API CreateRoundRectRgn(int, int, int, int, int, int>;

BOOL

int
BOOL
HANDLE
BOOl

DWORD
DWORD
int
int
DWORD
DWORD
WORD
WORD
DWORD
DWORD
DWORD
int
int
int
int -",
int
int
int
int
DWORD
DWORD
DWORD
DW'ORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

API IsGDIObject(HANDLE);

API GetObject(HANDLE, int, LPVOID);
API DeleteObject(HANDLE);
API SelectObject(HDC, HANDLE);
API UnrealizeObject(HBRUSH);

API SetBkColor(HDC, DWORD);
API GetBkColor(HDC); ,
API SetBkMode(HDC, int);
API GetBkMode(HDC);
API SetTextColor(HDC, DWORD);
API GetTextColor(HDC);
API SetTextAlign(HDC, WORD);
API GetTextAlign(HDC);
API SetMapperFlags(HDC, DWORD);
API GetAspectRatioFilter(HDC);
API GetNearestColor(HDC, DWORD);
API SetROP2(HDC, int);
API GetROP2(HDC);
API SetStretchBltMode(HDC, int);
API GetStretchBltMode(HDC);
API'SetPolyFillMode(HDC, int);
API GetPolyFillMode(HDC);
API SetMapMode(HDC, int);
API GetMapMode(HDC);
API SetWindowOrg(HDC, int, int);
API GetWindowOrg(HDC);
~PI SetWindowExt(HDC, int, int);
API-GetWindowExt(HDC);
API SetViewportOrg(HDC, int: int);
API GetViewportOrg(HDC);
API SetViewportExt(HDC, int, int);
API GetViewportExt(HDC);
API OffsetViewportOrg(HDC, int, int);
API ScaleViewportfxt(HDC, int, int, int, int);

964

DWORD
DWORD

API OffsetWindowOrg(HDC, int, int)i
API ScaleWindowExt<HDC, int, int, int, int)i

int API GetClipBox(HDC, lPRECT)i
int API IntersectClipRect<HDC, int, int, int, int)i
int API OffsetClipRgn(HDC, int, int);
int API ExcludeClipRectCHDC, int, int, int, int)i
BOOl API PtVisible(HDC, int, int>i
int API CombineR9n(HRGN, HRGN, HRGN, int)i
BOOl API EqualRgn(HRGN, HRGN)i
int API OffsetRgn(HRGN, int, int);
int API GetRgnBox(HRGN, lPRECT);

#ifdef WIN31

1* Drawing bounds accumulation APIs *1
WORD API SetBoundsRect(HDC hDC, lPRECT lprcBounds, WORD flags);
WORD API GetBoundsRect(HDC hDC, lPRECT lprcBounds, WORD flags);

Ox0001
Ox0002
DCB_ACCUMUlATE

#define DCB_RESET
#define DCB_ACCUMUlATE
#define DCB_DIRTY
#defi ne DCB_SET
#define DCB_ENABlE
#define DCB_DISABlE

(DCB_RESET I DCB_ACCUMUlATE)
Ox0004
Ox0008

#endif 1* WIN31 *1

int
DWORD
DWORD
int
int

API SetTextJu~tification(HDC, int, int);
API GetTextExtent(HDC, lPSTR, int)i
API GetTabbedTextExtent(HDC, lPSTR, int, int, lPINT);
API SetTextCharacterExtra(HDC, int)i
API GetTextCharacterExtra(HDC);

#i fdef WIN31
DWORD API GetTextExtentEx(HDC, lPSTR, int, int, lPINT, lPINT)i
#endi f 1* WIN31 *1

HANDLE
BOOl
HANDLE

API GetMetaFile(lPSTR)i
API DeleteMetaFile(HANDlE)i
API CopyHetaFile(HANDlE, lPSTR)i

#ifndef NOMETAFIlE
void API PlayHetaFileRecord(HDC, lPHANDlETABlE, lPM~TARECORD, WORD);
BOOl API EnumMetaFilc(HDC, lOCAlHANDlE, FARPRO~, BYTE FAR *);
#endif

BOOl API PlayMetaFileCHDC, HANDLE);
int API Escape(HDC, int, int, lPSTR, lPSTR)i
int API EnumFonts(HDC, lPSTR, FARPROC, lPSTR);
int API EnumFontFamilies(HDC, lPSTR, FARPROC, lPSTR);
int API EnumObjectsCHDC, int, FARPROC, lPSTR);
int API GetTextFace(HDC, int, lPSTR);

#ifndef NOTEXTMETRIC
BOOl API GetTextHetrics(HDC, lPTEXTMETRIC);
#endH

int API GetDeviceCaps(HDC, int>i

int API SetEnvironment(lPSTR, lPSTR, WORD);
int API GetEnvironment(lPSTR, lPSTR, WORD);'

BOOl API DPtolP(HDC, lPPOINT, int)i
BOOl API lPtoDP(HDC, lPPOINT, int)i

HANDLE API CreateMetaFile(lPSTR);
HANDLE API CloseMetaFile(HANDlE)i

'- 965

APPENDICES T

WINDOWS-API.BIBLE

HANDLE
HANDLE

API GetMetaFileBits(HANDLE);
API SetMetaFileBits(HANDLE);

int
'int
int

API SetDIBits(HDC,HANDLE,WORD,WORD,LPSTR,LPBITMAPINFO,WORD);
API GetDIBits(HDC,HANDLE,WORD,WORD,LPSTR,LPBITMAPINFO,WORD);
API SetDIBitsToDevice(HDC,WORD,WORD,WORD,WORD,

WORD,WORD,WORD,WORD,
LPSTR,LPBITMAPINFO,WORD);

HBITMAP API C rea teD IBi tmap (HOC, LPBITMAPIN FOHEADER, DWORD, LPSTR,
LPBITMAPINFO,WORD);

HBRUSH API CreateDIBPatternBrush(HANDLE,WORD);
int API StretchDIBits(HDC, WORD, WORD, WORD, WORD, WORD,

WORD, WORD, WORD, LPSTR, LPBITMAPINFO, WORD, DWORD);

HPALETTEAPI CreatePalette (LPLOGPALETTE);
HPALETTEAPI SelectPalette (HDC,HPALETTE, BOOL) ;
WORD API Rea l i zePa lette (HOC> ;
int API UpdateColors (HOC) ; ,
void API AnimatePalette(HPALETTE, WORD, WORD, LPPALETTEENTRY);
WORD API SetPaletteEntries(HPALETTE,WORD,WORD,LPPALETTEENTRY);
WORD API GetPaletteEntries(HPALETTE,WORD,WORD,LPPALETTEENTRY);
WORD API GetNearestPaletteIndex(HPALETTE, DWORD);
BOOL API ResizePalette(HPALETTE, WORD); .

WORD API GetSystemPaletteEntries(HDC,WORD,WORD,LPPALETTEENTRY);
WORD API GetSystemPaletteUse(HDC);
WORD API SetSystemPaletteUse(HDC, WORD);

#iindef NOSCALABLEFONT

1* GDI scalable font API prototypes and data structures: *1

typcdcf struct PANOSE { 1* panosc *1
BYTE bFamilYType;
BYTE bSerifStyle;
BYTE bWeight;
BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bLetterform;
BYTE bMidline;
BYTE bXHeight;

} PANOSE;

#ifndef NOTEXTMETRIC

typedef struct _OUTLINETEXTMETRIC {

'-.-

WORD otmSize; 1* size of this structure *1
TEXTMETRIC otmTextMetr~cs; 1* regular text metrics *1
BYTE otmFi ller; 1* want to be word aligned * 1
PANOSE otmPanoseNumber; 1* Panose number of font *1
WORD otmfsSelection;' 1* BF 0 n t s e l e c t ion fl a 9 s (s e e # d e fin e s) * 1
WORD otmfsType; , 1* B Type indicators (see #defines) *1
WORD otmsCharSlopeRise; 1* Slope angle Rise 1 Run 1 vertical *1
WORD otmsCharSlopeRun; 1* o vertical *1
WORD otmEMSquare; 1* N size of EM
WORD otmAscent; 1* D
WORD otmDescent; 1* 0
WORD otmLineGap; 1* 0
WORD otmCapEmHeight; 1* 0
WORD otmXHeight; 1* 0
RECI otmrcFontBox; 1* 0
WORD otmMacAscent; 1* 0
WORD otmMacDescent; 1* b
WORD otmMacLineGap; 1* 0
WORD otmusMinimumPPEM; 1* D
POINTotmptSubscriptSize; 1* D
POINTotmptSubscriptOffset; 1* 0

ascent above baseline
descent below baseline

height of upper case M
height of lower case chars in font
Font bounding box ..
ascent above base line fo·r Mac
descent below baseline for Mac

Minimum point ppem
Si ze of subscri pt
Offset of subscript

966 /

*1
*1
*/
*1
*1
*1
*1
*1
*1
*1
*1
-*1
*1

POINTotmptSuperscriptSizei
POINTotmptSuperscriptOffseti
WORD otmsStrikeoutSizei
WORD otmsStrikeoutPositioni
WORD otmsUnderscoreSizei
WORD otmsUnderscorePosition;
PSTR otmpFamilyNamei
PSTR otmpFaceName;
PSTR otmpStyleName;
PSTR otmpFullNamei

} OUTlINETEXTMETRIC;

typedef OUTlINETEXTMETRIC

#endif 1* NOTEXTMETRIC *1

typedef struct _FIXED {
WORD fract;
short value;

} FIXED;

typedef struct _MAT2 {
FIXED eM11;
FIXED eM12;
FIXED eM21i
FIXED eM22;

} MAT2;

typedef HAT2

typedef struct _GlYPHMETRICS {
WORD gmBlackBoxXi
WORD gmBlackBoxYi
POINT gmptGlyphOrig;ni
short gmCellIncXi
short gmCellIncYi

} GlYPHMETRICSi

typedef GlYPHMETRICS

typedef struct _ABC {
short abcAi
WORD abcBi
short abcCi

} ABCi

typedef ABC
typedef WORD

1* D Size of superscript
1* D Offset of superscript
1* D Strikeout size
1* D Strikeout position
1* D Underscore si ze
1* D Underscore position
1* offset to fam; ly name
1* offset to face name
1* offset to Style string
1* offset to full name

FAR

FAR

FAR

FAR
FAR

*lPOUTlINETEXTMETRIC;

*lPHAT2i

*lPGlYPHHETRICSi

*lPABCi
*lPFONTDIRi

typedef struct _RASTERIZER_STATUS
short nSizei
short wFlags;
short nlanguageID;

}' RASTERIZER_STATUSi

typedef RASTERIZER_STATUS FAR *lPRASTERIZER_STATUS;

1* bits defined ;n wFlags of RASTERIZER_STATUS *1

#define TT_AVAIlABlE
#define TT_ENABlED

Ox0001
Ox0002

API ConvertOutlineFontFile(lPSTR, lPSTR, lPSTR);
API GetFontData(HDC, DWORD, DWORD, lPSTR, DWORD);

APPENDICES ...

*1
*1
*1 ..
*1
*1
*1
*1
*1
*1
*1

DWORD
DWORD
DWORD
DWORD
BOOl
BOOl
BOOl

API GetGlyphOutline(HDC, WORD, WORD, lPGlYPHMETRICS, DWORD, lPSTR, lPMAT2);
APr EngineHakeFontDir(HDC, lPFONTDIR, lPSTR);
API CreateScalableFontResource(HDC, lPSTR, lPSTR, lPSTR);
API GetCharABCWidths(HDC, WORD, WORD, lPABC)i

-API GetRasterizerCaps(lPRASTERIZER_STATUS, int)i

967

WINDOWS API BIBLE

#ifndef NOTEXTMETRIC

DWORD API GetOutLineTextMetricsCHDC, WORD, LPOUTLINETEXTMETRIC);
/

lIendif
lIendif
lIendif

1* NOTEXTMETRIC *1
1* NOSCALABLEFONT *1
1* NOGDI *1

1*------------------------------------- *1
1* USER Section *1

/ 1*------------------------------------- *1

#i fndef NOUSER

int API wvsprintfCLPSTR,LPSTR,LPSTR);

'tlifdef _cpLuspLus
extern "c"
{

lIendif 1* _cpLuspLus *1

int FAR cdecL wsprintfCLPSTR,LPSTR, •••);

tlifdef _cpLuspLus
}

lIendif 1* _cpLuspLus *1

lIifndef NOSCROLL

1* ScrolL Bar Constants *1
tldefine SB_HORZ 0
IIdef i ne SB VERT 1
IIdefine SB:CTL 2
tldefine SB_BOTH 3

IIdefine SB_MAX 3

IIdefine ESB_ENABLE_BOTH 0
IIdefine ESB~DISABLE_LTUP 1
IIdefine ESB_DISABLE_RTDN 2
IIdefine ESB_DISABLE_BOTH 3

tldefine ESB':""AX 3

1* ScroL L Bar Commands *1
IIdefine SB_LINEUP
tldefine SB_LINEDOWN
IIdefine SB_PAGEUP
tldefine SB_PAGEDOWN
IIdefine SB_THUMBPOSITION
IIdefine SB_THUMBTRACK
IIdefi ne SB_TOP
IIdefine SB_BOTTOM
IIdefine SB_ENDSCROLL

#endif 1* NOSCROLL *1

lIifndef NOSHOWWINDOW

1* ShowWindowO Commands *1

o
1
2
3
4
5
6
7
8

IIdefine SW_HIDE 0
IIdefine SW_SHOWNORMAL 1
IIdefine SW_NORMAL 1
"lldefine SW_SHOWMINIMIZED 2
IIdefine SW_SHOWMAXIMIZED 3

968

,

APPENDICES ~

#define SW_MAXIMIZE 3
#define SW_SHOWNOACTIVATE 4
#define SW_SHOW 5
#define SW_MINIMIZE 6
#define SW_SHOWMINNOACTIVE 7
#define SW_SHOWNA S
#define SW_RESTORE 9

1* Old ShowWindow() Commands *1
#define HIDE_WINDOW 0
#define SHOW_OPENWINDOW 1
#define SHOW_ICONWINDOW 2
#define SHOW_FULLSCREEN 3
#define SHOW_OPENNOACTIVATE 4

1* Identifiers for the WM_SHOWWINDOW message *1
#define SW_PARENTCLOSING 1
#define SW_OTHERZOOM 2
#define SW_PARENTOPENING 3
#define SW_OTHERUNZOOM 4

#endif 1* NOSHOWWINDOW *1

1* Region Flags *1
#define ERROR 0
#define NULLREGION 1
#define SIMPLEREGION 2
#define COMPLEXREGION 3

1* CombineRgn() Styles *1
#define RGN_AND 1
#define RGN_OR 2
#define RGN_XOR 3
#define RGN DIFF 4
#define RGN:COPY 5

#ifndef NOVIRTUALKEYCODES

1* Virtual Keys, Standard Set *1
#define VK_LBUTTON Ox01
#define VK_RBUTTON Ox02
#define VK_CANCEL Ox03
#define VK_MBUTTON Ox04 1* NOT contiguous with L & RBUTTON *1
#define VK_BACK OxOS'
#define VK_TAB Ox09
#define VK_CLEAR OxOC
#define VK_RETURN OxOD
#define VK_SHIFT Qx10
#define VK_CONTROL Ox11
#define VK_MENU Ox12
#define VK_PAUSE Ox13
#define VK_CAPITAL Ox14
#define VK-ESCAPE Ox1B
#define VK-SPACE Ox20
#define VK_PRIOR Ox21
#define VK_NEXT Ox22
#define VK_END Ox23
#define VK_HOME Ox24
#define VK-LEFT Ox25
#define VK_UP Ox26
#define VK_RIGHT Ox27
#define VK_DOWN Ox2S
#define VK-SELECT Ox29
#define VK_PRINT Ox2A
#define VK-EXECUTE Ox2B
#define VK_SNAPSHOT Ox2C
1* #define VK-COPY Ox2C not used by keyboards. *1
#define VK_INSERT Ox2D

969

WINDOWS API BIBLE

#define VICDELETE Ox2E
#define VK_HELP Ox2F

1* VK_A thru VICI are the same as their ASCII equivalents: 'A' thru 'I' *1
1* VK_O thru VIC9 are the same as their ASCII equivalents: '0' thru '0' *1

#def i ne VK_NUMPADO Ox60
#define VK_NUMPAD1 Ox61
#def i ne VK_NUMPAD2 Ox62
#define VICNUMPAD3 Ox63
#define VICNUMPAD4 Ox64
#def i ne VK_NUMPAD5 Ox65
#define VICNUMPAD6 Ox66
#define VK_NUMPAD7 Ox67
#define VK_NUMPAD8 . Ox68
#define VICNUMPAD9 Ox69
#define VICMULTIPLY Ox6A
#define VK_ADD Ox6B
#define VICSEPARATOR Ox6C
#define VICSUBTRACT Ox6D
#define VICDECIMAL Ox6E
#define VK_DIVIDE Ox6F
#define VK_F1 Ox70
#define VK_F2 Ox71
#define VICF3 Ox72
#define VK_F4 Ox73
#define VICF5 Ox74
#define VICF6 Ox75
#define VK_F7 Ox76
#define VK_F8 Ox77
#define VICF9 Ox78
#define VK F10 Ox79
#define VK:F11 Ox7A
#define VICF12 Ox7B
#define VK F13 Ox7C
#define VK-F14 Ox7D
#define VK-F15 Ox7E
#define VK:F16 Ox7F

#define VK NUMLOCK Ox90
#define VK:SCROLL Ox91

#endif 1* NOVIRTUALKEYCODES *1

typedef struct tagWNDCLASS
{

WORD style;
LONG (API *lpfnWndProc)(HWND, unsigned, WORD, LONG);
int cbClsExtra;
int cbWndExtra;
HANDLE hlnstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPSTR lpszMenuName;
LPSTR lpszClassName;

} WNDCLASS;
typedef WNDCLASS *PWNDCLASS;
typedef WNDCLASS NEAR *NPWNDCLASS;
typedef WNDCLASS FAR *LPWNDCLASS;

#ifndef NOMSG

1* Message structure *1
typedef struct tagMSG

{

,HWND hwnd;
WORD message;
WORD wPa~~m;

970

LONG
DWORD
POINT

} HSG;

lParam;
time;
pt;

typedef MS6- *PHSG;
typedef MSG NEAR *NPHSG;
typedef MSG FAR *LPHS'i;

lIendif 1* NOHSG *1

lIifndef NOWINOFFSETS

1* Window field offsets
IIdefine GWL_WNDPROC
IIdefine GWW HINSTANCE
IIdefine GWW=HWNDPARENT
IIdefine GWW ID
IIdefine GWL=STYLE
IIdefine GWL_EXSTYLE

for GetW;ndowLong()
(-4)
(-6)
(-8)

-(-12)
(-16)
(-20)

and GetWindowWord() *1

1* Class field offsets for GetClassLongO and GetClassWordO *1
IIdefine GCL HENUNAME (-8)

,lIdefine GCW=HBRBACKGROUND (-10)
IIdefine GCW_HCURSOR (-12)
IIdefine GCW_HICON (-14)
IIdefine GCW_HHODULE (-16)
IIdefine GCW_CBWNDEXTRA (-18)
IIdefine GCW_CBCLSEXTRA (-20)
IIdefine GCL_WNDPROC (-24)
IIdefine GCW_STYLE (-26)

lIendif 1* NOWINOFFSETS *1

#ifndef NOWINHESSAGES

1* Window Messages *1
IIdefine WH NULL
#define WH-CREATE
#define WM=DESTROY
#define WH MOVE
#define WM=SIZE
IIdefine WM_ACTIVATE
#define WH SET FOCUS
#define WM-KILLFOCUS
#define WM-ENABLE
Rdefine WH=SETREDRAW
#define WH SETTEXT
#define WH-GETTEXT
#define WH-GETTEXTLENGTH
#define WH-PAINT.
#define WH=CLOSE
IIdefine WH_QUERYENDSESSION
IIdefine WH QUIT.
#define WH-QUERYOPEN
#define WH=ERASEBKGND
IIdefine WH SYSCOLORCHANGE
#define WH=ENDSESSION
#define WH_SHOWWINDOW
IIdefine WM_CTLCOLOR
#define WM_WININICHANGE
#define WH DEVHODECHANGE
#define WH=ACTIVATEAPP
IIdefine WH FONT CHANGE
IIdefine WH=TIHECHANGE
#define WH_CANCELHODE
#define WH SETCURSOR
#define WM=HOUSEACTIVATE
IIdefine WH_CHILDACTIVATE

OxOOOO
,Ox0001
Ox0002
Ox0003
Ox0005
Ox0006
Ox0007
Ox0008
OxOOOA
OxOOOB
OxOOOC
OxOOOD
OxOOOE
OxOOOF
Ox0010
Ox0011
Ox0012
Ox0013
Ox0014
Ox0015
Ox0016
Ox0018
Ox0019
Ox001A
Ox001B
Ox001C
Ox001D
Ox001E
OxOO1F
Ox0020
Ox0021
Ox0022

971

APPENDICES ~

WINDOWS API BIBLE

#define WM_QUEUESYNC OxOO23
IIdefine WM_GETMINMAXIN.FO OxOO24
IIdefine WM_PAINTICON OxOO26
#define WM_ICONERASEBKGND OxOO27
IIdefine WM_NEXTDLGCTL OxOO28
IIdefine WM_SPOOLERSTATUS OxOO2A
IIdefine WM_DRAWITEM OxOO2B
IIdefine WM_MEASUREITEM OxOO2C
IIdefine WM_DELETEITEM OxOO2D
#define WM_VKEYTOITEM OxOO2E
IIdefine WM_CHARTOITEM OxOO2F
#define WM_SETFONT OxOO30
IIdefine WM_GETFONT ·OxOO31
#define WM_SETHOTKEY OxOO32 ,
#define WM_GETHOTKEY OxOO33
#define WM_QUERYDRAGICON OxOO37

#define WM_COMPAREITEM OxOO39
IIdefine WM_COMPACTING OxOO41

IIi fdef WIN31
#define WM_OTHERWINDOWCREATED OxOO42
#define WM_OTHERWINDOWDESTROYED OxOO43
#define WM_COMMNOTIFY OxOO44

#define W~WINDOWPOSCHANGING OxOO46
IIdefine WM_WINDOWPOSCHANGED OxOO47
#define WM_POWER OxOO48
lIendif 1* WIN31 *1

IIdefine WM_NCCREATE OxOO81
#define WM_NCDESTROY OxOO82
#define WM NCCALCSIZE OxOO83
#define WM:NCHITTEST OxOO84
#define WM_NCPAINT OxOO8S
#define WM NCACTIVATE OxOO86
#define WM:GETDLGCODE OxOO87
IIdefine WM_NCMOUSEMOVE OxOOAO
#define WM_NCLBUTTONDOWN -OxOOA1
#define WM_NCLBUTTONUP OxOOA2
#define WM_NCLBUTTONDBLCLK OxOOA3
IIdefine WM_NCRBUTTONDOWN OxOOA4
#define WM_NCRBUTTONUP OxOOAS
IIdefine WM_NCRBUTTONDBLCLK OxOOA6
#define WM_NCMBUTTONDOWN OxOOA7
#define WM_NCMBUTTONUP OxOOA8
IIdefine WM_NCMBUTTONDBLCLK OxOOA9

IIdefine WM_KEYFIRST Ox0100
#define WM KEY DOWN Ox0100
IIdefine WM:KEYUP Ox0101
IIdefi ne WM_CHAR Ox0102
IIdefine WM ~EADCHAR Ox0103
IIdefine WM:SYSKEYDOWN Ox0104
#define WM SYSKEYUP Ox010S
IIdefine WM:SYSCHAR Ox0106
#define WM_SYSDEADCHAR Ox0107
IIdefine WM_KEYLAST Ox0108

#define WM_INITDIALOG Ox0110
IIdefine WM_COMMAND Ox0111
IIdefine WM_SYSCOMMAND Ox0112
IIdefine WM_TIMER Ox0113
IIdefine WM_HSCROLL Ox0114
#define WM_VSCROLL Ox011S ,;\

IIdefine WM INITMENU Ox0116
IIdefine WM:INITMENUPOPUP Ox0117
IIdefine WM_MENUSELECT Ox011F
IIdefine WM_MENUCHAR Ox0120

972

#define WH_ENTERIDLE

#define WH_MOUSEFIRST
#define WH_HOUSEHOVE
#define WH_LBUTTONDOWN
#define WM_LBUTTONUP
#define WH_LBUTTONDBLCLK
#define WM_RBUTTONDOWN
#define WH_RBUTTONUP
#define WM_RBUTTONDBLCLK
#define WH_HBUTTONDOWN
#define WH_MBUTTONUP
#define WM_HBUTTONDBLCLK
#define WH_HOUSELAST

#define WH_PARENTNOTIFY
#define WH_HDICREATE
#define WH_MDIDESTROY
#define WM_MDIACTIVATE
#define WM_MDIRESTORE
#define WM_HDINEXT
#define WM_HDIHAXIMIZE

_ #define WH_HDITILE
#define WH_MDICASCADE
#define WH_MDIICONARRANGE
#define WM_MDIGETACTIVE
#define WM_MDISETMENU
#de fine WH_D ROPF I LE S

#de fine WM_CUT
#defi ne WH_COPY
#define WH_PASTE
#define WH_CLEAR
#define WH_UNDO
#define WH_RENDERFORMAT
#define WH_RENDERALLFORMATS
#define WM_DESTROYCLIPBOARD
#define WM_DRAWCLIPBOARD
#define WM_PAINTCLIPBOARD
#define WH_VSCROLLCLIPBOARD
#define WM_SIZECLIPBOARD
#define WM_ASKCBFORMATNAHE
#define WM_CHANGECBCHAIN
#define WM_HSCROLLCLIPBOARD
#define WH_QUERYNEWPALETTE
#define WH_PALETTEISCHANGING
#define WM_PALETTECHANGED

#i fdef WIN31
#define WM_PENWINFIRST
#define WH_PENWINLAST

#define WH_COALESCE_FIRST
#define WM_COALESCE_LAST

#endif 1* WIN31 *1

Ox0121

Ox0200
Ox0200
Ox0201
Ox0202
Ox0203
Ox0204
Ox0205
Ox0206
Ox0207
Ox0208
Ox0209
Ox0209

Ox0210
Ox0220
Ox0221
Ox0222
Ox0223
Ox0224
Ox0225
Ox0226
Ox0227
Ox0228
Ox0229
Ox0230
Ox0233

Ox0300
Ox0301
Ox0302
Ox0303
Ox0304
Ox0305
Ox0306
Ox0307
Ox0308
Ox0309
Ox030A
Ox030B
Ox030C
Ox030D
Ox030E
Ox030F
Ox0310
Ox0311

Ox0380
Ox038F

Ox0390
Ox039F

1* NOTE: All Message Numbers bel"ow Ox0400 are RESERVED. *1

1* Private Window Hessages Start Here: *1
#define WH_USER Ox0400

/* WM_SIZE message wParam values *1

973.

APPENDICES ...

WINDOWS API BIBLE

#define SIZENORMAL 0
#define SIZEICONIC 1
#defi ne SIZEFULLSCREEN 2
#defi ne SIZEZOOMSHOW 3
#define SIZEZOOI1HIDE 4

#i fdef WIN31

1* WI1_WINDOW'POSCHANGING/CHANGED struct pointed to by lParam *1
typedef struct tagWINDOWPOS
<

HWND hwnd;
HWND hwndInsertAfter;
int x;
int y;
int ex;
int ey;
WORD flags;

} WINDOWPOS;
typedef WINDOWPOS FAR *LPWINDOWPOS;

#endif 1* WIN31 *1

-#ifndef NONCMESSAGES

1* WM_SYNCTASK Commands *1,
#def i ne ST_BEGINSWP 0
IIdef i ne ST_ENDSWP 1

1* WinWhere() Area Codes *1
(-2)
(-1)

o
1
2
3

#define HTERROR
IIdefine HTTRANSPARENT
#def i ne HTNOWHERE
#define HTCLIENT
#detine HTCAPTION
#define HTSYSMENU
IIdefine HTGROWBOX
IIdefine HTSIZE
#def i ne HTME-NU
#define HTHSCROLL
#define HTVSCROLL
#define HTREDUCE

4
HTGROWBOX
5

IIdef i ne HTZOOM
#define HTLEFT
#define HTRIGHT
#defi ne HTTOP
#define HTTOPLEFT
#define HTTOPRIGHT
#define HTBOTTOI1
IIdefine HTBOTTOMLEFT
#define HTBOTTOI1RIGHT

#ifdef WIN31

6
7
8
9
10
11
12
13
14
15
16
17

1* WI1_NCCALCSIZE parameter structure *1
typedef struct tagNCCALCSIZE_PARAI1S
<

RECT rgre[3J;
WINDOWPOS FAR*

} NCCALCSIZE_PARAMS;
typedef NCCALCSIZE_PARAMS FAR*

lppos;

LPNCCALCSIZE_PARAMS;

1* WM_NCCALCSIZE "window valid reet" return values *1
#define WVR_ALIGNTOP Ox0010
#define WVR_ALIGNLEFT Ox0020
#define WVR_ALIGNBOTTOI1 Ox0040
#define WVR_ALIGNRIGHT Ox0080
#define WVR_HREDRAW Ox0100
#defi ne WVR_VREDRAW Ox0200

974

#def i ne WVR_REDRAW CWVR_HREDRAW WVR_VREDRAW)
#define WVR_VALIDRECTS Ox0400

#endif 1* WIN31 *1

#endif 1* NONCMESSAGES *1

1* WM_MOUSEACTIVATE Return Codes *1
#define MA_ACTIVATE 1
#define MA_ACTIVATEANDEAT 2
#define MA_NOACTIVATE 3

#ifdef WIN31
#define MA_NOACTIVATEANDEAT 4
#endif 1* WIN31 *1

"

WORD API RegisterWindowMessageCLPSTR);

#ifndef NOKEYSTATES

1* Key State Masks for Mouse Messages *1
#define MK_LBUTTON
#define MK_RBUTTON
#define MK_SHIFT
#define MK_CONTROL
#define MK_MBUTTON

#endif 1* NOKEYSTATES *1

Ox0001
Ox0002
Ox0004
Ox0008
Ox0010\

#endif 1* NOWINMESSAGES *1

#ifndef NOWINSTYLES

1* Window Styles *1
#define WS_OVERLAPPED
#define WS_POPUP
#define WS_CHILD
#define WS_MINIMIZE
#define WS_VISIBLE
#define WS_DISABLED
#define WS_CLIPSIBLINGS
#define WS_CLIPCHILDREN
#define WS_MAXIMIZE
#define WS_CAPTION
#define WS_BORDER
#define WS_DLGFRAME
#define WS_VSCROLL
#define WS_HSCROLL
#define WS_SYSMENU
#define WS_THICKfRAME
#define WS_GROUP
#define WS_TABSTOP

#define WS_MINIMIZEBOX
#define WS_MAXIMIZEBOX

#define WS_TILED
#define WS_ICONIC
#define WS_SIZEBOX

OxOOOOOOOOL
Ox80000000L
Ox40000000L
Ox20000000L
Ox10000000L
Ox08000000L
Ox04000000L
Ox02000000L
Ox01000000L
OxOOCOOOOOL
Ox00800000L
Ox00400000L
Ox00200000L
Ox00100000L
Ox00080000L
Ox00040000L
Ox00020000L
Ox00010000L

Ox00020000L
Ox00010000L

WS_OIJERLAPPED
WS_MINIMIZE
WS_THICKFRAME

1* Common Window Styles *1

APPENDICES ...

#define WS_OVERLAPPEDWINDOW CWS_OVERLAPPED I WS_CAPTION I WS_SYSMENU WS_THICKFRAME
WS_MINIMIZEBOX IWS_MAXIMIZEBOX)

#define WS_POPUPWINDOW CWS_POPUPI WS_BORDER I WS_SYSMENU)
#define WS_CHILDWINDOW CWS_CHILO)

#define WS_TILEDWINDOW CWS_OVERLAPPEDWINDOW)

1* Extended Window Styles *1

975

WINDOWS·API BIBLE

#define WS_EX_DLGMODALFRAME
#define WS_EX_NOPARENTNOTIFY

#ifdef WIN31
#define WS_EX_TOPMOST
#define WS_EX_ACCEPTFILES
#define WS_EX_TRANSPARENT

#endif 1* WIN31 *1

1* Class styles *1
#define CS_VREDRAW
#define CS_HREDRAW
#define CS_KEYCVTWINDOW
#define CS_DBLtLKS

#define CS_OWNDC
#define CS_CLASSDC
#define CS_PARENTDC
#define CS_NOKEYCVT
#define CS_NOCLOSE

Ox00000001L
Ox00000004L

Ox00000008L
Ox00000010L
Ox00000020L

Ox0001
Ox0002
Ox0004
Ox0008

"-.

Oi0020
Ox0040
Ox0080
Ox0100
Ox0200
Ox0800
Ox1000
Ox2000

#define CS_SAVEBITS
#define CS_BYTEALIGNCLIENT
#define CS_BYTEALIGNWINDOW
#define CS_GLOBALCLASS Ox4000 1* Global window class *1

~endif 1* NOWINSTYLES *1

#ifndef NOCLIPBOARD

1* Predefined Clipboard
#define CF_TEXT
#define CF_BITMAP
#define CF_METAFILEPICT
#define CF_SYLK
#define CF_DIF

r#define CF_TIFF
#define CF_OEMTEXT
#def i ne C F _DIB
#define CF_PALETTE
#define CF_PENDATA

#define CF_OWNERDISPLAY
#define CF_DSPTEXT

Formats *1
1
2
3
4
5
6
7
8
9
10

#define CF_DSPBITMAP
#define CF_DSPMETAFILEPICT

Ox0080
Ox0081
Ox0082
Ox0083

1* "Private" formats don't get GlobalFreeO 'd *1
#define CF_PRIVATEFIRST Ox0200
#define CF_PRIVATELAST Ox02FF

1* "GDIOBJ" formats do get DeleteObject()'d *1
#define CF_GDIOBJFIRST Ox0300
#define CF_GDIOBJLAST Ox03FF

#endif 1* NOCLIPBOARD *1

typedef struct tagPAINTSTRUCT
{

HDC hdc;
BOOL fErase;
REeT rcPaint;
BOOL fRestore;
BOOl flncUpdate;
BYTE rgbReserved[16J;

} PAINTSTRUCT;

976

typedcf PAINTSTRUCT *PPAINTSTRUCT;
typedef PAINTSTRUCT NEAR *NPPAINTSTRUCT;
typedef PAINTSTRUCT FAR *LPPAINTSTRUCT;

typedef struct tagCREATESTRUCT
{

LPSTR
HANDLE
HANDLE
HWND
iht
int
int
int
LONG
LPSTR
LPSTR
DWORD

lpCreateParams;
hInstance;
hMenu;
hWlldParent;
cy;
cx;
Xi
Xi
style;
lpszNamei
lpszClassi
dwExStylei

} CREATESTRUCT;
typedef CREATESTRUCT FAR*LPCREATESTRUCTi

/* Owner draw control
#define ODT_MENU
#define ODT_LISTBOX
#define ODT_COMBOBOX
#define ODT_BUTTON

type:; */
1

1* Owner draw actions *1
#def i ne ODA_DRAWENTIRE
#define ODA_SELECT
#define ODA_FOCUS

/* Owner draw state * /
#dcfine ODS_SELECTED
#define ODS_GRAYED
#define ODS_DISABLED
#define ODS_CHECKED
#define ODS_FOCUS

2
3
4

oxooo1
OxOoo2
Ox0004

Ox0001
ox0002
Ox0004
Ox0008
Ox0010

/* MEASUREITEMSTRUCT for ownerdraw */
typedef struct tagMEASUREITEMSTRUCT

{

WORD CtlType;
WORD CtlIDi
WORD itemIDi
WORD itemWidthi
WORD itemHeighti
DWORO itemDatai

} MEASUREITEMSTRUCT;
typedef MEASUREITEMSTRUCT NEAR *PMEASUREITEMSTRUCT;
typedef HEASUREITEMSTRUCT FAR *LPMEASUREITEMSTRUCTi

/* DRAWITEMSTRUCT for ownerdraw */
typedef struct tagDRAWITEMSTRUCT

{

WORD CtlTypei
WORD CtlIDi
WORD itemID;
WORD itemActioni
WORD itemState;
HUND hwndltem;
HDC hOC;
RECT rcltemi
DWORD itemData;

} DRAWITEMSTRUCT;
typedef DRAWITEMSTRUCT NEAR
typedef DRAWITEMSTRUCT FAR

*PDRAWITEMSTRUCT;
*LPDRAWITEMSTRUCTi

977

APPENDICES V

WINDOWS API BIBLE

1* DELETEITEMSTRUCT for ownerdraw *1
typedef struct tagDELETEITENSTRUCT

(

WORD CtlType;
WORD CtllD;
WORD itemID;
HWND hwndItem;
DWORD itemData;

} DELETEITEMSTRUCT;
typedef DELETEITEMSTRUCT NEAR
typedef DELETEITEMSTRUCT fAR

*PDELETEITEMSTRUCT;
*LPDELETEITENSTRUCTi

1* COMPAREITEMSTUCT fo:- ownerdraw sorting *1
typedef struct tagCONPAREITEMSTRUCT

(

WORD CtlType;
WORD CtllD;
HWND hwndlteM;
WORD itemlD1;
DWORD itemData1;
WORD itemID2;
OWORD itemData2;

. } COMPAREITEMSTRUCT;
typedef COMPAREITENSTRUCT NEAR *PCOMPAREITENSTRUCT;
typedef COMPAREITEMSTRUCT FAR *LPCOMPAREITEMSTRUCT;

IIi fndef NOMSG

1* Message Function Templates *1
BOOL APt GetMessage(LPMSG, HWND, WORD, WORD);
BOOL API TranslateMessage(LPNSG);
LONG API DispatchMessage(LPMSG);
BOOL API PeekMessage(LPMSG, HWHD, WORD, WORD, WORD);

1* PeekMessage() Options *1
IIdefine PM_HOREMOVE OxOOOO
IIdefine PM_REMOVE Ox0001
#define PM_NOYIELD Ox0002

#endif 1* NOMSG *1

'ifndef NOLSTRING
int API lstrcmp(LPSTR, LPSTR >;
int API lstrc.p;(L~TR, LPSTR >;
LPSTR API lstrcpy(LPSTR, LPSTR >;
LPSTR API lstrcat(L~STR, LPST~ >;
int API lstrlen(LPSTR >;
lIendif 1* NOLSTRING*I

lIifndef NOLFILEIO
int API _lopen(LPSTR, ;nt >;
int API _lclose(int);
int API _lcreat(LPSTR, int);
LONG API _llseek(int, long, int >;
WORD API _lread(int, LPSTR, int >;
WORD API _lwrite(int, LPSTR, int >;

IIdef,ine READ 0 1* Flags for _lopen *1
IIdefine WRITE 1
IIdefine READ_WRITE 2
lIendif 1* NOLFILEIO *1

BOOL API ExitWindows(DWORD dwReturnCode, WORD wReserved);
IIdefine EW_RESTARTWINDOWS Ox42
lIifdef WIN31
IIdefine EW_REBOOTSYSTEM Ox43
lIendif 1* WIN31 *1

978

BOOL
DWORD
LONG

API SwapMouseButtonCBOOL);
API GetMessagePosCvoid);
API GetMessageT1meCvo1d);

lIifdef WIN31
LONG API GetMessageExtraInfo(void);
lIendif 1* WIN31 *1

HWND API GetSysModalWindow(void);
HWNO API SetSysModalW1ndow(HWNO);

LONG API SendMessageCHWND, WORD, WORD, LONG);
BOOL API PostMessageCHWND, WORD, WORD, LONG);
BOOL API PostAppMessageCHANDLE, WORD, WORD, LONG);
void API ReplyMessageCLONG);
void API WaitMessageCvoid);
LONG API DefWindowProc(HWND, WORD, WORD, LONG);
void API PostQultMessageClnt);
LONG API CallW1ndowProcCFARPROC, HWND, WORD, WORD, LONG);
BOOL API InSendMessage(voi~);

WORD API GetDoubleClickTimeCvoid);
void API SetOoubleClickTimeCWORO)i

BOOL API Reg1sterClassCLPWNDCLASS);
BOOL API UnregisterClassCLPSTR, HANDLE); .
BOOL API GetClassInfoCHANDLE, LPSTR, LPWNDCLASS);

BOOL API SetMessageQueueCint);

IIdefine CW_USEDEFAULT CCint)Ox8000)

APPENDICES ~

HWND API CreateWindowCLPSTR, LPSTR, DWORD, int, int, int, int, HWND, HMENU, HANDLE, LPSTR);
HWND API CreateWindowEx(DWORD, LPSTR, LPSTR, DWORD, int, int, lnt, int, HWNO, HMENU, HANDLE,
LPSTR);

BOOL API IsWindow(HWNO);
BOOL API IsCh1ldCHWND, HWND);
BOOL API DestroyWindowCHWND);

BOOL API ShowWindowCHWND, int);
BOOL API FlashWindowCHWND, BOOL);
void API ShowOwnedPopupsCHWND, BOOL);

BOOL API OpenIconCHWND);
void CloseWindowCHWND);
void API MoveWindowCHWND, int, intr int, int, BOOL);
void API SetWindowPosCHWND, HWND, int, int, int, int, WORD);

Rifndef NODEFERWINDOWPOS

HANDLE API BeginDeferWindowPosCint nNumWindows);
HANDLE API OeferWindowPosCHANDLE hWinPosInfo, HWNO hWnd, HWND hWndInsertAfter, int x, int y,
int cx, int cy, WORD wFlags)i .
void API EndDeferWindowPosCHANDLE hWinPo.lnfo)i

'.ndif 1* NOOEFERWINOOWPOS *1

BOOL API IsWindowVisibleCHWNO);
BOOL API IsIconicCHWNO)i
BOOL API AnyPopupCvoid);
void API Br;ngWindowToTopCHWND);
BOOL API IsZoomedCHWND)i

1* Special HWND values for SetWindowPosC) hwndlnsertAfter *1
#define HWND_TOP CCHWND)NULL)
#define HWND_BOTTOM . «HWND)1) .
Idefine HWND_GROUPTOTOP «HWND)-1)

1* .SetWindowPosO and .WINDOWPOS flags *1

979

.WINDOWS API BIBLE

#define SWP_NOSIZE
#define SWP_NOMOVE
#define SWP NOZORDER
#define SWP:NOREDRAW
#define SWP_NOACTIVATE
#define SWP_FRAMECHANGEo
#define SWP_SHOWWINoOW
#define SWP_HIDEWINDOW
#define SWP_NOCOPYBITS
#define SWP_NOOWNERZORDER

Ox0001
Ox0002
Ox0004
Ox0008
,Ox0010
Ox0020 1* The frame changed: send WM_NCCALCSIZE *1
Ox0040
Ox0080
Ox0100
Ox0200 1* Don't do owner Z ordering *1

#def i ne SWP _DRAWFRAME
#define SWP_NOREPOSITION

SWP_FRAMECHANGEo
SWP_NOOWNERZORoER

#ifndef NOCTLMGR

HWND
HWND
HWND
HWNo
int
int
int
int
void
HWND
void
WORD
void
int
void
void
WORD
LONG
HWND
HWND
int
long
LONG
#detine

#endif

API CreateDialogCHANDLE, LPSTR, HWND, FARPROC);
API CreateDialogIndirectCHANDLE, LPSTR, HWND, FARPROC);
API CreateDialogParamCHANolE, LPSTR, HWNo, FARPROC, LONG);
API CreateDialogIndirectParamCHANDLE, LPSTR, HWND, FARPROC, LONG);
API DialogBoxCHANDLE, LPSTR, HWND, FARPROC); .
API DialogBoxIndirectCHANDLE, HANDLE, HWND, FARPROC);
API DialogBoxParamCHANoLE, LPSTR, HWND, FARPROC, LONG);
API DialogBoxIndirectParamCHANDLE, HANDLE, HWND, FARPROC, lONG);
API EndDialog(HWND, int);
API GetDlgItemCHWND, int);
API SetDlgItemIntCHWNo, int, WORD, BOOl);
API GetOlgItemIntCHWNo, int, BOOl FAR *, BOOl);
API SetDlgItemTextCHWND, int, lPSTR);
API GetDlgItemText(HWND, int, lPSTR, int);
API CheckolgButton(HWNO, int, WORD);
API CheckRadioButton(HWND, int, int, int);
APl IsOlgButtonChecked(HWNo, int);
API SendDlgItemMessage(HWND, int, WORD, WORD, LONG);
API GetNextDlgGroupItem(HWND, HWND, BOOl);
API GetNextDlgTabItem(HWND, HWND, BOOl);
API GetDlgCtrlID(HWND);
API GetDialogBaseUnits(void);
API DefDlgProc(HWND, WORD, WORD, lONG);
DLGWINDOWEXTRA 30 1* Window extra by ted needed for private dialog classes */

1* NOCTLMGR *1

#i fndef NOMSG
BOOl API CallMsgFilter(lPMSG, int);
#endif

#ifndef NOCLIPBOARD

1* Clipboard Manager Functions *1
BOOl API OpenClipboard(HWND);
BOOl API CloseClipboardCvoid);

#i fdef WIN31
HWND API GetOpenClipboardWindow(void);
#endif 1* WIN31 *1

API GetClipboardOwnerCvoid);
API SetClipboardViewer(HWND);

HWND
HWND
HWND
BOOl
HANDLE
HANDLE
WORD
int
WORD
int

APJ GetClipboardViewer(void);
APf,thangeClipboardChain(HWNo, HWNo);
API ~etClipboardDataCWORD, HANDLE);
API GetClipboardoata(WORo);
API RegisterClipboardFormatCLPSTR);
API CountClipboardFormats(void);
API EnumClipboardFormat.(WORD>i
API GetClipboardFormatNaMe(WORo, LPSTR, int);

.-(I

980

BO,Ol API EmptyCUpboard(void);
BOOl API IsClipboardFormatAvailableCWORO);
int API GetPriorityClipboardFormat(WORO FAR *, int);

#endif 1* NOClIPBOARD *1

HWNO API SetFocusCHWNO);
HWND API GetFocus(void);
HWNO API GetActiveWindow(void);
int API GetKeyStateCint);
int API GetAsyncKeyState(int);
void API GetKeyboardStateCBYTE FAR *);
void API SetKeyboardStateCBYTE FAR *);
BOOl API EnableHardwareInput(BOOl);
BOOl API GetInputState(void)i
HWNO API GetCapture(void)i
HWND API SetCapture(HWND)i ;.
void API ReleaseCapture(void)i

IIi fdef WIN31

DWORO API GetQueueStatusCWORO flags);

1* GetQueueStatus flags *1
IIdef i ne QS_KEY Ox0001

Ox0002
Ox0004

#define QS_MOUSEMOVE
IIdefine QS_MOUSEBUTTON
IIdefine QS_MOUSE
IIdefine QS_POSTMESSAGE
IIdefi ne QS_TIMER
IIdefine QS_PAINT
#define QS_SENDMESSAGE

CQS_MOUSEMOVE I QS_MOUSEBUTTON)
Ox0008
Ox0010
Ox0020
Ox0040

lIendi f 1* WIN31 *1

1* Windows' Functions *1
WORD API SetTimerCHWNO, int, WORD, FARPROC)i
BOOl API KillTimer(HWNO, int)i

BOOl API EnableWindowCHWNO,BOOl)i
BOOl API IsWindowEnabledCHWNO);

HANDLE API loadAcceleratorsCHANOlE, lPSTR);

IIi fndef NOMSG
int API TranslateAccelerator(HWNO, HANDLE, lPMSG)i
lIendif

lIifndef NOSYSMETRICS

codes *1
o

1* GetSystemMetrics()
IIdefine SM_CXSCREEN
IIdefine SM_CYSCREEN
IIdefine SM_CXVSCROll
IIdefine SM_CYHSCROll
IIdefine SM_CYCAPTION
IIdefine SM_CXBORDER
IIdefine SM_CYBORDER
IIdefine SM_CXOlGFRAME
IIdefine SM_CYOlGFRAME
#define SM_CYVTHUMB
IIdefine SM_CXHTHUMB
IIdefine SM_CXICON
IIdefine SM_CYICON
IIdefine SM_CXCURSOR
IIdefine SM_xCYCURSOR
IIdefine SM_CYMENU
IIdefine SM_CXFUllSCREEN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16,

981

APPENDICES V

'-

WINDOWS API BIBLE

#def i ne SM_CYFUllSCREEN 17
#define SM_CYKANJIWINDOW 18
#define SM_MOUSEPRESENT 19
#def i ne SM_CYVSCROll 20
#define SM_CXHSCROll 21
#def i ne SM_DEBUG 22
#define SM_SWAPBUTTON 23
#define SM RESERVED1 24
#define SM=RESERVED2 25
#define SM_RESERVED3 26
#define SM_RESERVED4 27
#define SM_CXMIN 28
#define SM CYMIN 29
#define SM=CXSIZE 30
#define SM_CYSIZE 31
#define SM CXFRAME 32
#define SM=CYFRAME 33
_#define SM_CXMINTRACK 34
#define SM_CYMINTRACK 35

#i fdef WIN31
#define SM CXDOUBlEClK 36
#define SM-CYDOUBlEClK 37
#define SM=CXICONSPACING 38
#define SM CYICONSPACING 39
#define SM=MENUDROPAlIGNMENT 40
#define SM PENWINDOWS 41
#endif 1* WIN31 *1

int API ~etSystemMetricsCint);

#endif 1* NOSYSMETRICS *1

#i fndef NOMENUS

BaOl

HMENU-
HMENU
HMENU
BOOl

API IsMenuCHMENU)i

API lo~dMenuCHANDlE, lPSTR)i
API loadMenuIndirect(lPSTR)i
API GetMenuCHWND)i
API SetKenu(HWND, HMENU);

BOOl
BOOl

API ChangeMenu(HMENU, WORD, lPSTR, WORD, WORD)i
API HiliteMenuItemCHWND, HMENU, WORD, WORD);

int
WORD
void
HMENU -
HMENU
HMENU
BOOl
BOOl
BOOl
HMENU
WORD
WORD

BOOl
BOOl
BOOl
BOOl
Baal -
BOOl
lONG

API GetMenuString(HMENU, WORD, lPSTR~ int, WORD);
API GetMenuState(HMENU, WORD, WORD);

-API DrawMenuBar(HWND);
API GetSystemMenu(HWND, BOOl);
API CreateMenu(void);
API CreatePopupMenu(void);
API DestroyMenu(HMENU)i
API CheckMenuItem(HMENU, WORD, WORD);
API EnableMenuItem(HMENU, WORD, WORD);
API GetSubMenu(HMENU, ;nt);
API GetMenuItemIDCHMENU, int);
API GetMenuItemCount(HMENU)J

API InsertMenu(HMENU, WORD, WORD, WORD, lPSTR);
API APpendMe~U(HMENU' WORD, WORD, lPSTR)i
API ModifyMe u(HMENU, WORD, WORD, WORD, lPSTR)i
API RemoveMe u(HMENU, WORD, WORD);
API DeleteMenu(HMENU, WORD, WORD);
API SetMenuItemBitmaps(HMENU, WORD,~ORD, HBITMAP, HBITMAP);
API GetMenuCheckMarkDimenaions(vo1d);

BOOl ~PITrackPopupMenu(HMENU, WORD, int, int, int, HWND, lPRECT);
1* Flags for TrackPopup"en ... *1-
#define-TP"_LEFTBUTTON -OxOOOO

#i fdef WIN31

982

IIdefine TPH_RIGHTBUTTON OxOOO2
IIdefine TPH_LEFTALlGN OxOOOO
IIdefine TPM_CENTERALlGN OxOOO4
IIdefine TP''-RIGHTALIGN OxOOO8

"endif 1* ~IN31 *1

lIendif 1* NOHENUS *1

BaaL API GrayString(HOC, HBRUSH, FARPROC, DYORO, int, int, int, int, int);
void API UpdateWindowCHWNO);
HWNO API SetActiveWindow(HWNO);

HOC API BeginPaintCHWNO, LPPAINTSTRUCT);
void API EndPaint(HWND, LPPAINTSTRUCT);
BaaL API GetUpdateRectCHWNO, LPRECT, BaaL);
int API GetUpdatcRgn\HWNO, HRGN, BaaL);

int API ExcludeUpdateRgn(HOC, HWNO);

void API InvalidateRect(HWND, LPRECT, BaaL);
void API ValidateRect(HWNO, LPRECT);

void API InvalidateRgn(HWND, HRGN, BaaL);
void API ValidateRgn(HWNO, HRGN);

lIifdef WIN31

BOOL API RedrawWindow(HWNO hwnd,
LPRECT lprcUpdate, HRGN hrgnUpdate, WORD flags);

1* RedrawWindo~() flags *1
IIdefine ROW_INVALIDATE
tldef i ne RDW_INTERNALPAINT
IIdefine ROW_ERASE

...
tldefine ROW_VALIDATE .
IIdefine RDW_NOINTERNALPAINT
IIdefine RDW_NOERASE

tldefine RDU_NOCHILDREN
IIdefine RDW_ALLCHILDREN

'Ir
IIdefine RDW_UPOATENOW
fldefine RDW_ERASENOW

1* LockWindowUpdate API *1

Ox0001
Ox0002
Ox0004

Ox0008
Ox0010
Ox0020

Ox0040
Ox0080

Ox0100
Ox0200

BOOL API LockWindowUpdate(HWND hwndLock);

flendif 1* WIN31 *1

void API ScrollWindow(HWNO, int, int, LPRECT, LPRECT)i
BOOL API ScrollDC(HDC, int, int, LPRECT, LPRECT, HRGN, LPRECT)i

IIi fdef WIN31

int API ScrollWindowEx(
HWNO hwnd,
int dx,
int dy,
tPRECT prcScroll,
LPRECT prcC lip,
HRGN hrgnUpdate,
LPRECT prcUpdate,
WORD flags);

APPENDICES ...

IIdefi ne SW_SCROLLCHILOREN Ox0001 1* Scroll chi ldren within *lprcScroll. *1

983

WINDOWS API BiBLE

#define SW_INVAlIDATE
;;"':~fine SW_ERASE

Ox0002 1* Invalidate after scrolling *1.
Ox0004 1* If SW_INVALIOATE, don I t send WM_ERASEBACKGROUND *1

#endi f 1* WIN31 *1

#ifndef
int

NOSCROll
API SetScrollPos(HWND, int, int, BOOU;
API GetScrollPos(HWND, int); int

void
void
void
BOOl
#endif

API SetScrollRange(HWND, int, int, int, BOOU;
API GetScrollRange(HWND, int, lPINT, lPINT);
API ShowScrollBar(HWND, WORD, BOOl);
API EnableScrollBar(HWND, WORD, WORD);

BOOl API SetProp(HWND, lPSTR, HANDLE);
HANDLE API GetProp(HWND, lPSTR);
HANDLE API RemoveProp(HWND, LPSTR);
int API EnumProps(HWND, FARPROC);
void API SetWindowText(HWND, lPSTR);
int API GetWindowText(HWND, lPSTR, int);
int API GetWindowTextlength(HWND);

void API GetClientRect(HWND, lPRECT);
void API GetWindowRect(HWND, lPRECT);
void API AdjustWindowRect(lPRECT, lONG, BOOl);
void API AdjustWindowRectEx(lPRECT, lONG, BOOl,

#i fndef NOMB

1* MessageBox() Flags *1
#define MB OK
#define MB:OKCANCEl
#define MB_ABORTRETRYIGNORE
#define MB YESNOCANCEl
#define MB-YESNO
#define MB=RETRYCANCEl

#define MB_ICONHAND
#define MB_ICONQUESTION
#define MB_ICONEXClAMATION
#define MB_ICONASTERISK

OxOOOO
Ox0001
Ox0002
Ox0003
Ox0004
Ox0005

Ox0010
Ox0020
Ox0030
Ox0040

#define MB_ICONINFORMATION MB_ICONASTERISK
#define MB_ICONSTOP MB_ICONHAND

#define MB_DEFBUTTON1 OxOOOD
#define MB_DEFBUTTON2 OxD1DD
#define MB_DEFBUTTON3 DxD20D

#define MB_APPlMODAl ·DxODOO
#define MS_SYSTEMMODAl Dx1000
#define MB_TASKMODAl Dx2000

#define MB_NOFOCUS Ox8000

int API MessageBox(HWND, lPSTR, lPSTR, WORD);
void API MessageBeep(WORD);

#endi T 1* NOMB * 1

int API ShowCursor(BOOL);
void API SetCursorPos(int, int);

#ifdef WIN31
·HCURSOR API GetCursor(void);

984

DWORO);

.,

/

#endif

HCURSOR
void
void
#ifdef
void
lIendif

1* WIN31 * 1

APt SetCursor(HCURSOR);
API GetCursorPos(LPPOINT);
API ClipCursorCLPRECT);
WIN31
API GetClipCursorCLPRECT);

void API CreateCaretCHWND, HBITMAP, int, int);
WORD API GetCaretBlinkTim~Cvoid);
void API SetCaretBlinkTimeCWORD);
void API DestroyCaret(void);
void API HideCaretCHWNO);
void API ShowCaret(HWND);
void API SetCaretPosCint, int);
void API GetCaretPosCLPPOINT);

void API ClientToScreenCHWND, LPPOINT);
void API ScreenToClientCHWND, LPPOINT);

#ifdef WIN3~

APPENDICES ...

void API HapWindowPointsCHWND hwndFrom, HWND hwndTo, LPPOINT lppt, WORD Cpt);

#define MapWindowRectChwndFrom, hwndTo, lprc) \
MapWindowPoints(hwndFrom, hwndTo, (LPPOINT)&lprc, 2)

lIendif 1* WIN31 *1

HWND APIWindowFromPoint(POINT);
HWND API ChildWindowFromPoint(HWND, POINT);

lIifndef NOCOLOR

1* COlor, Types *1
#define CTLCOLOR_MSGBOX
#define CTLCOLOR_EDIT
#define CTLCOLOR_LISTBOX
#define CTLCOLOR_BTN
#define CTLCOLOR_DLG
#define CTLCOLOR_SCROLLBAR
#define CTLCOLOR_STATIC
#define CTLCOLOR_MAX

o
1

"2
3
4
5
6
8

#define
#define
#define
#define
#define
IIdefine
IIdefine
IIdefine
#define
IIdefine
IIdefine
#define
#define
#define
#define
IIdefine
IIdefine
#define
#define
lIifdef
#define
#define
lIendif

COLOR_SCROLLBAR 0
COLOR_BACKGROUND 1
COLOR_ACTIVECAPTION 2
COLOR_INACTIVEC~PTION 3
COLOR_MENU 4
COLOR_WINDOW 5
COLOR_WINDOW FRAME 6
COLOR_MENUTEXT 7
COLOR_WINDOWTEXT 8
COLOR_CAPTIONTEXT 9
COLOR_ACTIVEBORDER 10
COLOR_INACTIVEBORDER 11
COLOR_APPWORKSPACE 12
COLOR_HIGHLIGHT 13
COLOR_HIGHLIGHTTEXT 14
COLOR_BTNFACE 15
COLOR_BlNSHADOW 16
COLOR_GRAYTEXT 17
COLOR_BTNTEXT 18,
WIN31
COLOR_INACTIVECAPTIONTEXT19
COLOR_BTNHIGHLIGHT 20
1* WIN31 *1

1* three bits max *1

gaf

WINDOWS API BIBLE

DWORD API GetSysColor{int);
void' API SetSysColors{int, LPINT, LONG FAR *);.

#endif 1* NOCOLOR *1

BOOL API FillRgn(HDC, HRGN, HBRUSH);
BOOL API FrameRgn(HDC, HRGN, HBRUSH, int, int);
BOOL API InvertRgn{HDC, HRGN);
BOOL API PaintRgn{HDC, HRGN);
BOOL API PtInRegion(HRGN, int, int);

API DrawFocusRect(HDC, LPRECT);
API FillRect{HDC, LPRECT, HBRUSH);
API FrameRect(HDC, LPRECT, HBRUSH);
API InvertRect(HDC, LPRECT);

void
int
int
void
void
void
int
void
int
int
BOOL
void
BOOL
BOOL
BOOL
BOOL
BOOL

API SetRect(LPRECT, int, int, int, int);
API SetRectEmpty(LPRECT);
API CopyRectCLPRECT, LPRECT);
API InflateRect{LPRECT, int, lnt);
API IntersectRect{LPRECT, LPRECT, LPRECT);
API UnionRect(LPRECT, LPRECT, LPRECT);
API SubtractRect{LPRECT, LPRECT, LPRECT);
API OffsetRect(LPRECT, int, int);

DWORD
DWORO

API IsRectEmpty(LPRECT);
API EqualRect(LPRECT, LPRECT);
API PtInRect(LPRECT, POINT);
API RectV;sible(HDC, LPRECT);
API RectInRegion{HRGN, LPRECT);

API GetCurrentTime(void);
API GetTickCount(void);

'i~ndef NOWINOFFSETS

WORD
WORD
LONG
LONG
WORD
WORD
LONG
LONG
HWND
HWHD

lIendif

API GetWindowWord{HWND, int);
API SetWindowWord(HWNO, int, WORD);
API GetWindowLong(HWNO, int);
API SetWindowLong(HWND, int, LONG);
API GetClassWord(HWND, int); .
API SetC(assWord(HWND, int, WORD);
API GetClassLong(HWND, lnt);
API SetClassLong(HWND, int, LONG);
API GetDesktopHwnd(void);
API GetDesktopWindow(void);

1* NOWINOFFSETS *1

API GetParent(HWND);
API SetParent(HWND, HWND);

HWNO
HWND
BOOL
HWND
BOOL
BOOL.
int
HWND
HWND
HANDLE
HWNO

API EnumChildWindow~(HWND, FARPROC, LONG);
API FindWindow(LPST~, LPSTR);
API EnumWindows(FARPROC, LONG);
API EnumTaskWindows(HANDLE, FARPROC, LONG);
API GetClassName(HWND, LPSTR, int);
API GetTopWindow(HWND);
API GetNextWindow(HWND, WORD);
API GetWindowTask(HWNO);
API GetLastActivePopup(HWND);

1* GetWindow() Constants *1
'define GW_HWNDFIRST 0
'define GW_HWNOLAST 1
'defi ne GW_HWNDNEXT 2
'define GW_HWNOPREV 3
'define GW_OWNER 4
'define GW_CHILD 5

HWND API GetWindow(HWND, WORD);

986

APPENDICES •

lIifndef NOWH

FARPROC API SetWindowsHookCint, FARPROC);
BOOL API UnhookWindowsHook(int, FARPROC);
DWORD API DefHookProcCint, WORD, DWORD, FARPROC FAR *);

lIifdef WIN31

typedef DWORD HHOOK;
typedef DWORD (API *HOOKPROC)(int code, WORD wPara., LONG lParam);

HHOOK
BOOL
DWORD

API SetWindowsHookEx(int idHook, HOOKPROC lpfn, HANDLE hModule, HANDLE hTask);
API UnhookWindowsHookEx(HHOOK hHook);
API CallNextHookExCHHOOK hHook, int code, WORD wParam, LONG lParam);

lIendif 1* WIN31 *1

1* SetWi ndowsHook() codes *1
IIdefine WH_MSGFILTER <-1)
IIdefine WH_JOURNALRECORD 0
IIdefin~ WH_JOURNALPLAYBACK 1
IIdefine WH_KEYBOARD 2
IIdefine WH_GETMESSAGE 3
IIdefine WH_CALLWNDPROC 4

lIifdef WIN3'

IIdef i nOe WH_CBT
IIdefine WH_SYSMSGFILTER
IIdefine WH_MOUSE

°l#define WH_HARDWARE
IIdefine WH_DEBUG

lIendif 1* WIN31 *1

1* Hook Codes *1

IIdefine HC_GETLPLPFN
IIdefine HC_LPLPFNNEXT
IIdefine HC_LPFNNEXT
IIdefine HC_ACTION
IIdef i ne HC_GETNEXT
IIdefine HC_SKIP
IIdefine HC_NOREM
IIdefine HC_NOREMOVE
IIdefine HC_SYSMODALON
IIdefine HC_SYSMODALOFF

tlifdef WIN31

1* CBT Hook Codes *1

5
6
7
8
9

(-3)
(-2)
(-1)
o
1

0
2
3
3
4
5

IIdefine HCBT_MOVESIZE 0
IIdefine HCBT_MINMAX 1
IIdefine HCBT_QS 2
IIdefine HCBT_CREATEWND 3
tldefine HCBT_DESTROYWND 4
IIdefine HCBT_ACTIVATE 5
IIdefine HCBT_CLICKSKIPPED 6
IIdefine HCBT_KEYSKIPPED 7
IIdefine HCBT_SYSCOMMAND 8
IIdefineHCBT_SETFOCUS 9

1* HCBT_CREATEWND parameters pointed to by lParam *1
typedef struct tagCBT_CREATEWND
<

LPCREATESTRUCT
HWND

) CBT_CREATEWND;

lpCSi
hwndlnsertAfter;

987

WINDOWS API BIBLE

typedef CBT_CREATEWND FAR *lPCBT_CREATEWND;

#endif 1* WIN31 *1

1* WH_HSGFIlTER Filter Proc Codes *1
#define HSGF DIAlOGBOX 0
#define MSGF::::MENU 2
#define HSGF MOVE 3
#define MSGF-SIZE 4.
#define MSGF-SCROllBAR 5
#define MSGF::::NEXTWINDOW 6

1* Window Manager Hook Codes *1
#define WC INIT 1
#define WC::::SWP 2
#define WC_DEFWINDOWPROC3
#define WC_MINMAX 4
#define W~_MOVE 5
#define WCSIZE 6
#define WC_DRAWCAPTION 7

#i fdef WIN31
typedef struct tagMOUSEHOOKSTRUCT

{ \

POINT pt;
HWND hwnd;
WORD wHitTestCode;
DWORD dwExtraInfo;

} MOUSEHOOKSTRUCT;
typerlef MOUSEHOOKSTRUCT FAR *lPMOUSEHOOKSTRUCT;

typedef struct tagCBTACTIVATESTRUCT
{

BOOl fMouse;
HWND hWndActive;

} CBTACTIVATESTRUCT;

typedef struct tagHARDWAREHOOKSTRUCT
{

HWND hWnd;
WORD wHessage;
WORD wParam;
DWORD lParam;

} HARDWAREHOOKSTRU~T,

#endi f 1* WIN}1-*1

1* Message Structure used in Journaling *1
typedef struct tagEVENTMSG

{

WORD
WORD
WORD
DWORD

} EVENTMSG;

message;
paraml;
paramH;
time;

typedef EVENTMSG
typedef EVENTMSG NEAR
typedef EVENTMSG FAR

#endif 1* NOWH *1

IIi fndef NOMENUS

#def ne MF_INSERT
IIdef ne HF_CHANGE
#def ne HF_APPEND
IIdef ne HF_DElETE

*PEVENTMSGMSG;
*NPEVENTMSGMSG;
*lPEVENTMSGMSG;

Ox 0000
Ox0080
Ox0100
Ox0200

988

Ox1000

1* Menu flags for Add/Check/EnableMenultem() *1
#define MF_BYCOMMAND OxOOOO
#define MF_BYPOSITION Ox0400

#define MF_SEPARATOR

#define HF~ENABLED
#define MF_GRAYED
#define MF_DISABLED

#define MF_UNCHECKED
#define MF_CHECKED
#define MF_USECHECKBITMAPS

#define MF_STRING
#define MF_BITMAP
#define MF_OWNERDRAW

#define MF_POPUPOxOO10
#define MF_MENUBARBREAK
#define MF_MENUBREAK

#define MF_UNHILITE
#define MF_HILITE

#define MF_SYSMENU
#defi ne MF _HELP
#define HF_MOUSESELECT

1* Menu item resource format *1
typedef struct

{

WORD versionNumber;
WORD offset;

} MENUITEMTEMPLATEHEADER;

typedef struct
{

WORD mtOption;
WORD mtID;
LPSTR mtString;

} MENUITEMTEMPLATE;

#endif 1* NOMENUS *1

#ifndef NOSYSCOMMANDS

1* System Menu Command Values *1
#define SC_SIZE -
#define SC_MOVE
#defineSC_MINIMIZE
#define SC_MAXIMIZE
#define SC_NEXTWINDOW
#define SC_PREVWINDOW
#define SC_CLOSE
#define SC_VSCROLL
#define SC_HSCROLL

_#define SC_MOUSEMENU
#define SC_KEYMENU
#define SC_ARRANGE
#define SC_RESTORE
#define SC_TASKLIST

Ox0800

OxOOOO
OxOOO1
OxOOO2

OxOOOO
OxOOO8
Ox0200

OxOOOO
OxOOO4
Ox0100

OxOO20
OxOO40

OxOOOO
OxOO80

Ox2000
Ox4000
Ox8000

Ox0080

OxFOOO
OxF010
OxF020
OxF030
OxF040
OxF050
OxF060
OxF070
OxF080
OxF090
OxF100
OxF110
OxF120
OxF130

'1;1

989

APPENDICES T

"-"-

WINDOWS API BIBLE

IIdefine SC_SCkEENSAVE
IIdefine SC_HOTKEY

IIdef i ne SC_ICON
IIdefine SC_ZOOM

OxF140
OxF150

SC_MINIfUZE
SC_MAXIMIZE

lIendif 1* NOSYSCOMMANDS *1

1* Resour~e Loading Routines *1
HBITMAP API LoadBitmapCHANDLE, LPSTR);
HCURSOR A~I LoadCursorCHANDLE, LPSTR);
HCURSORAPI CreateCursor(HANDLE, int, int, int, int, LPSTR, LPSTR);
BOOL API DestroyCursor(HCURSOR);

IDs *1
MAKEINTRESOURCE(32512)
MAKEINTRESOURCE(32513)
MAKEINTRESOURCE(32514)

1* Standard Cursor
IIdefine IDC_ARROW
IIdefine IDC_IBEAM
IIdefine IDC_WAIT
IIdefine IDC_CROSS
IIdefine IDC_UPARROW
IIdefine IDC_SIZE
IIdefine IOC_ICON
IIdefine IOC_SIZENWSE
IIdefine IDC_SIZENESW
IIdefine IOC_SIZEWE
IIdefine IDC_SIZENS

MAKEINTRESOURCE(32515)
MAKEINTRESOURCE(32516)
MAKEINTRESOURCEC32640>
MAKEINTRESOURCE(32641)
MAKEINTRESOURCE(32642)
MAKEINTRESOURCE(32643)
MAKEINTRESOURCE(32644)
MAKEINTRESOURCE(32645)

HICON
HICON
BOOL

API LoadIconCHANDLE, LPSTR);
API Createlcon(HANOLE, int, int, BYTE, BYTE, LPSTR, LPSTR);
API DestroyIconCHICON);

IIdefine ORO_LANGDRIVER 1* The ordinal number for the entry point of
** language drivers. .
*1

IIi fndef NOICONS

1* Standard Icon IDs *1
IIdefine IOI_APPLICATION MAKEINTRESOURCE(32512)
IIdefine IOI_HANO MAKEINTRESOURCE(32513)
IIdefine IOI_QUESTION MAKEINTRESOURCE(32514)
IIdefine IOI_EXCLAMATION MAKEINTRESOURCE(32515)
IIdefine IDI_ASTERISK I MAKEINTRESOURCE(32516)

lIendif 1* NOI~ONS-~I

int API LoadString(HANDLE, WORD, LPSTR, int);

int API AddFontResource(LPSTR);
BOOL API RemoveFontResource(LPSTR);

1* Dialog Box Command
IIdefine lOOK
IIdefine IDCANCEL
IIdefine IOABORT
IIdefine IORETRY
IIdefine IDIGNORE
IIdefine IOYES
IIdefine IONO

lIifndef NOCTLMGR

IDs *1
1
2
3
4
5
6
7

1* Control Manager Structures and Definitions *1

lIifndef NOWINSTYLES

1* Edit Control Styles *1

990

fldefine ES_LEFT
fldefine ES_CENTER
fldefine ES_RIGHT
"define ES_~ULTILINE
IIdefine ES_UPPERCASE
fldefine ES_LOWERCASE
fldefine ES_PASSWORD
fldefine ES_AUTOVSCROLL
fldefine ES_AUTOHSCROLL
fldefine ES_NOHIDESEL
fldefine ES_OEMCONVERT

lIifdef WIN31
IIdefine ES_READONLY
lIendif 1* WIN31 *1

OxOOOOL
Ox0001L
Ox0002L
Ox0004L
Ox0008L
Ox0010L
Ox0020L
Ox0040L
Ox0080L
Ox0100L
Ox0400L

OxOSOOL

flendi f 1* NOWINSnl£S *1
I
\

1* Edit Control Notification Codes *1
fldefine EN_SETFOCUS
fldefine EN_KILLFOCUS
fldefine EN_CHANGE
fldeli ne EN_UPDATE
IIdefine EN_ERRSPACE
IIdefine EN_MAXTEXT
fldefine EN_HSCROLL
fldefine EN_VSCROLL

flifndef NOWINMESSAGES

Ox0100
Ox0200
Ox0300
Ox0400
OxOSOO
OxOS01
Ox0601
Ox0602

1* Edit Control Messages *1
Ndefine EM_GETSEL
IIdefine EM_SETSEL
fldefine EM_GETRECT
fldefine EM_SETRECT
IIdefine EM_SETRECTNP
fldefine EM_SCROLL
IIdefine EM_LUlESCROLL
IIdefine EM_GETMODIFY
IIdefine EM_SETMODIFY
IIdefine EM_GETLINECOUNT
IId~fine EM_LINE INDEX
IIdefine EM_SETHANDLE
'define EM_GETHANDLE
'define EM_GETTHUPIB
IIdefine EM_LINELENGTH
ndefine EM_REPLACESEL
IIdefine EM_SET FONT
IIdefine EM_GETLINE
IIdefine EM_LIMITTEXT
IIdefine EM_CANUNDO
fldefine EM_UNDO
IIdefine EM_FMTLINES
IIdefine EM_LINEFROMCHAR
IIdefine EM_SETWORDBREAK
IIdefine EM_SETTABSTOPS
IIdefine EM_SETPASSWORDCHAR
fldefine EM_EMPTYUNDOBUFFER

flifdef WIN31
flde~ine EM_GETFIRSTVISIBLE
IIdefine EM_SETREADONLY
lIendif 1* WIN31 *1

. IIdefine EM_MSGMAX

lIendif 1* NOWINMESSAGES *1

1* Button Control" Styles *1

(WICUSER+O)
(WM_USER+1)
(WM_USER+2)
(WM_USER+3)
(W"_USER+4)
<WM_USER+S)
(W"_USER+6)
(WM_USER+8)
<WM_USER+9)
(W',-USER+10)
(WM_US"ER+11)
<WM_USER+12)
<WM_USER+13)
(WM_USER+14)
(WM_USER+17)
(WM_USER+18)
(WM_USER+19)
(WM_USER+20)
(WM_USER+21)
(WM_USER+22)
(WM_USER+23)
(WM_USER+24)
(WM_USER+2S)
(WM_USER+26)
(WM_USER+27)
(WM_USER+2S)
(WM_USER+29)

(WM_USER+30)
(WM_USER+31)

(WM_USER+32)

APPENDICES •

/

991

WINDOWS API BIBLE

#define as PUSHBUTTON
#define BS-DEFPUSHBUTTON
#define BS-CHECKBOX
#define BS-AUTOCHECKBOX
#define BS-RADIOBUTTON
#define BS-3STATE
#define BS-AUT03STATE
#define BS-GROUPBOX
#define BS-USERBUTTON
#define BS-AUTORADIOBUTTON
#define BS-OWNERDRAW
#define BS=lEFTTEXT

OxOOl
Ox01l
Ox02l
ux03l
Ox04l
Ox05l

- Ox06l
oxon
Ox08l
Ox09l
OxOBl
Ox20l

1* User Button Notification Codes *1
#define BN CLICKED
#define BN-PAINT
#define BN-HIlITE
#define BN-UNHIlITE
#defi~e BN-DISABlE
#define BN=DOUBlEClICKED

1* Button Control Messages *1
#define BM GETCHECK
#define BM-5ETCHECK
#define BM-GETSTATE
#define BM-SETSTATE
#define BM=SETSTYlE

1* Static Control Constants *1
#define 5S lEFT
#define SS-CENTER
#define 5S-RIGHT
#define SS-ICON
#define SS-BlACKRECT
IIdefine SS-GRAYRECT
#define SS-WHITERECT
#define SS-BlACKFRAME
#define SS-GRAYFRAME
#define SS-WHITEFRAME
IIdefine SS-USERITEM
#define SS-SIMPlE

o
1
2
3
4
5

(WM_USER+O)
(WM USER+1)
(WM_USER+2)
(WM_USER+3)
(WM_USER+4)

IIdefine SS-lEFTNOWORDWRAP
#define SS=NOPREFIX

OxOOl
Ox01l
Ox02l
Ox03l
Ox04l
Ox05l
Ox06l
oxon
Ox08l
Ox09l
OxOAl
OxOBl
OxOCl
Ox80l 1* Don't do "&" character translation *1

#ifdef WIN31
#ifndef NOWINMESSAGES
1* Static Control Mesages *1
#define STM_SETICON
#define STM_GETICON
IIdefine STM_MSGMAX
#endif 1* NOWINMESSAGES *1
lIendif 1* WIN31 *1

1* Dialog Manager Routines *1

#ifndef NOMSG

(WM_USER+O)
(WM_USER+1)
(WM_USER+2)

BOOl API IsDialogMessage(HWND, lPMSG);
lIendif

void API MipDialogRect(HWND, lPRECT);

int API DlgDirlist(HWND, lPSTR, int, int, WORD);
BOOl API DlgDirSelect(HWND, lPSTR, int);
int API DlgDirlistComboBox(HWND, lPSTR, int, int, WORD);
BOOL API DlgDirSelectComboBox(HWND, lPSTR, int);

1* DlgDirlist, DlgDirListComboBox flags values *1

- 992

#define DDL_READWRITE
#define DDL_READONLY
#define DOL_HIDDEN
#define DOL_SYSTEM
#define DOL_DIRECTORY,
#define DOL_ARCHIVE

#define DDL_POSTMSGS
#define DOL_DRIVES'
#define DDL_~XCLUSIVE

Ox0001
Ox0002
Ox0004
OxOOOB
Ox0010
Ox0020

Ox2000
, Ox4000

OxBOOO

APPENDICES 'Y

1* Edit items get Local storage *1

1* Di a log Styles * 1
#define DS_ABSALIGN
#define DS_SYSMODAL
#define DS_LOCALEDIT
#define DS_SE1FONT
#define DS_MODALFRAME
#define DS_NOIDLEMSG

Ox01L
Ox02L
Ox20L
Ox40L
OxBOL
Ox100L

1* User specified font for Dlg controls *1
1* Can be combined with WS_CAPTION *1

#define DM_GETDEFID
#define DM_SETDEFID
#define DC_HASDEFID

1* Dialog Codes *1
#define DLGC_WANTARROWS
#define DLGC_WANTTAB
#define DLGC_WANTALLKEYS
#define DLGC_WANTMESSAGE
#define DLGC_HASSETSEL
#define DLGC_DEFPUSHBUTTON
#define DLGC_UNDEFPUSHBUTTON
#define DLGC_RADIOBUTTON
#define DLGC_WANTCHARS
#define DLGC_STATIC
#define DLGC_BUTTON

#define LB_CTLCODE OL

1* Listbox Return Values *1
#define LB_OKAY 0
#define LB_ERR (-1)
#define LB_ERRSPACE (-2)

1*

1* WM_ENTER!DLE message will not be sent *1

(WM_USER+O)
(WM_USER+1)
Ox534B

Ox0001
Ox0002
Ox0004
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100
Ox2000

1* Control wants arrow keys *1
1* Control wants tab keys *1
1* Control wants all keys *1
1* Pass message to control *1
1* Understands EM_SETSEL message *1
1* Default ·pushbutton *1

1* Non-default pushbutton *1
1* Radio button *1
1* Want WM_CHAR messages *1
1* Static item: don't include *1
1* Button item: can be checked *1

** The idStaticPath parameter to DlgDirList can have the following values
** ORed if the list box should show other details of the files along with
** the name of the fi les;
*1
1* all other details also will be returned *1

1* Listbox Notification
#define LBN_ERRSPACE
#define LBN_SELCHANGE
#define LBN_DBLCLK
#define LBN_SELCANCEL
#define LBN_SETFOCUS
#define LBN_KILLFOCUS

#ifndef NOWINMESSAGES

1* Listbox messages *1
#define LB_ADDSTRING
#define LB_INSERTSTRING
#define LB_DELETESTRING
#define LB_RESETCONTENT
#define LB_SETSEL

Codes *1
(-2)
1
2
3
4
5

(WM_USER+1)
(WM_USER+2)
(W'CUSER+3)
(WM_USER+5)
(WM_USER+6)

993

WINDOWS API BIBLE

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

LB_SETCURSEL
LB_GETSEL
LB_GETCURSEL
LB_GETTEXT
LB_GETTEXTLEN
LB GETCOUNT·
L(~SELECT'STRING
LB_DIR
LB_GETTOPINDEX
LB_FINDSTRI~G
LB_GETSELCOUNT
LB_GETSELITEMS
LB SETTABSTOPS
LB:GETHORIZONTALEXTENT
LB_SETHORIZONTALEXTENT
LB_SETCOLUMNWIDTH
LB_SETTOPINDEX
LB_GETITEMRECT
LB_GETITEMDATA
LB_SETITEMDATA
LB_SELITEMRANGE
LB_SETCARETINDEX
LB GETCARETINDEX
~

#i fdef WIN31

(WM_USER+7>
(WM_USER+8)
(WM_USER+9)
(WM_USER+10)
OIM_USER+11)
(WM_USER+12)
(WM_USER+13)
(WM USER+14)
(WM:USER+15)
(WM_USER+16)
(WM_USER+17>
(WM_USER+18)
(WM USER+19)
(WM:USER+20)
(WM USER+21)
(WM:USER+22)
(WM_USER+24)
(WM_USER+25)
(WM_USER+26)
(WM_USER+27>
(WM USER+28)
(WM:USER+31)
(WM_USER+32)

#define LB SETITEMHEIGHT(WM USER+33)
#def i ne LB -GET ITEMHE IGHT<WM - USER+34)
#endif 1*-WIN31 *1 - .
#define LB_MSGMAX (WM_USER+35)

#endif 1* NOWINMESSAGES *1

#ifndef NOWINSTYLES·

1* Listbox Styles *1
#define LBS_NOTIFY
#define LBS SORT
#define LBS:NOREORAW
#define LBS_MULTIPLESEL
#define LBS_OWNERDRAWFIXED
#define LBS_OWNERDRAWVARIABLE
#define LBS_HASSTRINGS
#define LBS_USETABSTOPS
#define LBS_NOINTEGRALHEIGHT
#define LBS_MULTICOLUMN
#define LBS_WANTKEYBOARDINPUT
#define LBS EXTENDEDSEL
#i fdef WIN31
#defi"~ LBS_DISABLENOSCROLL
#endif 1* WIN31 *1

Ox0001L
Ox0002L
Ox0004L
Ox0008L
Ox0010L
Ox0020L
Ox0040L
Ox0080L
Ox0100L
Ox0200L
Ox0400L
Ox0800L·

Ox1000L

#define LBS_STANDARD (LBS_NOTIFY LBS_SORT WS_VSCROLL I WS".:-.ttoIRDER)

#endi f 1* NOWINSTYLES!</

1*.Combo Box return Values *1
#define CB OKAY 0
#define CB-ERR (-1)
#define CB:ERRSPACE (-2)

1* Combo Box Notification
#define CBN_ERRSPACE
#define CBN_SELCHANGE
#define CBN DBLCLK
#define CBN-SETFOCUS
#define CBN:KILLFOCUS
#define CBN_EDITCHANGE
#define CBN_EDITUPDATE

Codes * I
(-1)

1
2
3
4
5
6

994

#define CBN DROPDOWN
#ifdef WIN31
#define CBN_CLOSEUP
#endif 1* WIN31 *1

1* Combo Box styles *1
#ifndef NOWINSTYLES
#define CBS_SIMPLE
#define CBS_DROPDOWN
#define CBS_DROPDOWNLIST
#define CBS_OWNERDRAWFIXED
#define CBS_OWNERDRAWVARIABLE
#define CBS_AUTOHSCROLL
#define CBS_OEMCONVERT
#define CBS_SORT
#define CBS_HASSTRINGS
#define CBS NOINTEGRALHEIGHT
#ifdef WIN31 .
#define CBS DISABLENOSCROLL'
#endi f/* WIN31 *1
#endi f 1* NOWINSTYLES *1

1* Combo Sox messages *1
. #ifndef

#define
#define
#det-i ne
#define
#define
#define
#define

'-'#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#ifdef
#define
#define
#define
#define
#define
#define
#endif
#define
#endif

NOWINMESSAGES
CB_GETEDITSEL
CB_LIMITTEXT
CB_SETEDITSEL
CB_ADDSTRING
CB_DELETESTRING
CB_DIR
CB_GETCOUNT
CB_GETCURSEL
CB_GETLBTEXT
CB_GETLBTEXTLEN
CB_INSERTSTRING
CB_RESETCONTENT
CB_FINDSTRING
CI3_SELECTSTRING
CB_SETCURSEL
CB_SHOWDROPDOWN
CB_GETITEMDATA
CB_SET ITEMDATA
WIN31
CB_GETDROPPEDCONTROLRECT
CB_SETITEMHEIGHT
CB_GETITEMHEIGHT
CB_SETEXTENDEDUI
CB_GETEXTENDEDUI
CB GET DROPPED STATE
1*-WIN31 *1
CB_MSGMAX
1* NOWINMESSAGES *1

#ifndef NOWINSTYLES

1* Scroll Bar Styles *1
#def i ne SBS_HORZ
#define SBS_VERT
#define SBS TOPALIGN
#define SBS=LEFTALIGN
#define SBS_BOTTOMALIGN
#define SBS_RIGHTALIGN

7

8

#define SBS_SIZEBOXTOPLEFTALIGN
#define SBS_SIZEBOXBOTTOMRIGHTALIGN
#define SBS_SIZEBOX

#endif 1* NOWINSTYLES *1

Ox0001L
Ox0002L
Ox0003L
Ox0010L
Ox0020L
Ox0040L
Ox0080L
Ox0100L
Ox0200L
Ox0400L

Ox0800L

(WM.:....USER+O)
(WM_USER+1)
(WM_USER+2)
(WM_USER+3)
(WM_USER+4)
(WM_USER+S)
(WM_USER+6)
(WM_USER+7)
(WM_USER+8)
(WM_USER+9)
(WM_USER+10)
(WM_USER+11)
(WM_USER+12)
(WM_USER+13)
(WM_USER+14)
(WM_USER+1S)
(WM_USER+16)
(WM_USEP.+17>

(WM_USER+18)
(WM_USER+19)
(WM_USER+20)
(WM_USER+21)
(WM_USER+22)

I (WM_USER+23)

OxOOOOL
Ox0001L
Ox0002L
Ox0002L
Ox0004L
Ox0004L
Ox0002L
Ox0004L
Ox0008L

995

APPENDICES T

WINDOWS API BIBLE

#endif 1* NOCTLMGR *1

IIi fndef NOSOUND

API OpenSound(void);
API CloseSound(void);
API SetVoiceQueueSize(int, int);
API SetVoiceNote(int, int, int, int);

int
void
int
int
int
int
int
int
int
int
int
int
int
LPINT
int
int

API SetVoiceAccent<int, int, int, int, int);
API SetVoiceEnvelope(int, int, int);
API SetSoundNoise(int, int);
API SetVoiceSound(int, LONG, int);
API StartSound(void);
API StopSound(void);
API WaitSoundState(int);
API SyncAllVoices(void);
API CountVoiceNotes(int);
API GetThresholdEvent(void);
API GetThresholdStatus(void);
API SetVoiceThreshold(int, int);

1* WaitSoundState() Constants *1
#define S_QUEUEEMPTY 0
#define S_THRESHOLD 1
IIdefine S_ALLTHRESHOLD 2

1* Accent Modes *1
#define S_NORMAL 0
#define S_LEGATO 1
#defi ne S_STACCATO 2

1* SetSoundNoise() Sources *1
#define S_PERIOD512 0
#define S_PERIOD1024 1
#de fi ne S_PER 1002048 2
#define S_PERIODVOICE 3
#defi ne S_WHITE512 4
#define S_WHITE1024 5
#defi ne S_WHITE2048 . 6
#define S_WHITEVOICE 7

1* Freq = N/512 high pitch, less coarse hiss
1* Freq = N/1024
1* Freq = N/2048 low pitch, more coarse hiss
1* Source is frequency from voice channel (3)
1* Freq = N/512 high pi tch, less coarse hi 5S
1* Freq = N/1024
1* Freq = 'N/2048 low pitch, more coarse hiss
1* Source is frequency from voice channel (3)

#define S_SERDVNA
#de1i ne S_SEROFM
#define S_SERMACT
#define S_SERQFUL
#define S_SERBDNT
#define S_SERDLN
#define S_SERDCC
#define S_SERDTP
#define S_SERDVL
#define S_SERDMD
#define S_SERDSH
#defi ne S_SERDPT
IIdefine S_SERDFQ
#define S_SERDDR
#define S_SERDSR
#define S_SERDST

(-1) 1* Device not avai lable *1
(-2) 1* Out of memory *1
(-3) 1* Music active *1
(-4) 1* Queue full *1
(-5) 1* Invalid note *1
(-6) 1* Invalid note length *1
(-7) 1* Invalid note count *1
(-8) 1* Invalid tempo *1
(-9) 1* Invalid volume *1
(-10) 1* Invalid mode *1
(-11) 1* Invalid shape *1,
(-12) 1* Invalid pitch *1
(-13) 1* Invalid frequency *1
(-14) 1* Invalid duration *1
(-15) 1* Invalid source *1

(-16) 1* Invalid state *1

#endif 1* NOSOUND *1

#ifdef USECOMM

#define NOPARITY 0
#define ODDPARITY 1

'#define EVENPARITY 2
#define MARKPARITY 3
#define SPACEPARITY 4

#defi ne ONESTOPBIT ,0

996

*1
*1
*1
*1
*1
*1
*1
*1

APPENDICES ...

#define ONE5STOPBITS 1
#define TWOSTOPBITS 2

#define IGNORE 0 1* Ignore signal *1
#define INFINITE OxFFFF 1* Infinite timeout *1

1* Error Flags *1
#define CE_RXOVER OxOO01 1* Receive Queue overflow *1
#define CE_OVERRUN OxOO02 1* Receive Overrun Error *1
#define CE_RXPARITY OxOO04 1* Receive Parity Error *1
#define CE _FRAME OxOO08 1* Receive Framing error *1
#define CE_BREAK OxOO10 1* Break Detected *1
#define CE CTSTO OxOO20 1* CTS Timeout *1
#define CE_DSRTO OxOO40 1* DSR Timeout *1
#define CE_RLSDTO OxOO80 1* RLSD Timeout *1
#define CE_TXFULL Ox0100 1'tIt TX Queue is full *1
#define CE_PTO Ox0200 1* LPTx Timeout *1
#define CE IOE - Ox0400 1* LPTx I/O Error *1
#define CE DNS Ox0800 1* LPTx Device not selected *1
#d.fine CE_OOP Ox1000 1* LPTx Out-Of-Paper *1
IIdefine CE_MODE Ox8000 1* Requested mode unsupported *1

#define IE_BADID (-1) 1* Invalid or unsupported id *1
IIdefine IE_OPEN (-2) 1* Device Already Open *1
IIdefine IE_NOPEN (-3) 1* Device Not Open *1
#define IE_MEMORY (-4) 1* Unable to a llocate queues *1
#define IE DEFAULT (-5) 1* Error in defau l t parameters *1
#define IE_HARDWARE (-10) 1* Hard\lare Not Present *1
#define IE_BYTES lZE (-11) 1* Illegal Byte Size *1
#define IE_BAUDRATE (-12) 1* Unsupported 8audRate *1

1* Events *1
IIdefine EV_RXCHAR OxOO01 1* Any Character received *1
IIdefine EV_RXFLAG OxOO02 1* Received certain character *1
IIdefine EV_TXEMPTY OxOO04 1* Transmitt Queue Empty *1
IIdefine EV_CTS OxOOO8 1* CTS changed state *1
IIdefine EV DSR Ox0010 1* DSR changed state *1
IIdefine EV_RLSD OxOO20 1* RLSD changed state *1
IIdefine EV_BREAK OxOO40 1* BREAK recei ved *1
#define EV_ERR OxOO80 1* Line status error occurred *1
#define EV_RING Ox0100 1* Ring signal detected *1-
#defi ne EV_PERR Ox0200 1* Printer error occured *1
#define EV_CTSS Ox0400 1* CTS state *1
IIdefine EV_DSRS Ox0800 1* DSR state *1
IIdefine EV_RLSDS Ox1000 1* RLSD state *1
IIdefine EV_RingTe Ox2000 1* Ring trailing edge i ndi cator *1
IIdefine EV_RINGTE EV_RingTe

1* Escape Functions *1
IIdefi ne SETXOFF 1 1* Simulate xeFF received *1
IIdefine SETXON 2 1* Simulate XON received *1
IIdef i ne SETRTS 3 1* Set RTS high *1
IIdef i ne CLRRTS 4 1* Set RTS low *1
IIdef i ne SETDTR 5 1* Set DTR hig'h *1
IIdef i ne CLRDTR 6 1* Set DTR low *1
IIdefine RESETDEV 7 1* Reset devi ce if possible *,!

#define LPTx Ox80 1* Set if ID is for LPT devi ce *1

#ifdef WIN31

1* new escape functions
IIdefine GETMAXLPT 8 ~* Max supported LPT id *1
IIdef i ne GETMAXCOM 9 1* Max supported COM id *1
#define GETBASEIRQ 10 1* Get port base & i rq for a port *1

1* Comm Baud Rate indices *1
IIdef i ne CBR_110 OxFF10

997

WINDOWS API BIBLE

Hdefine CBR_300
Hdefine CBR_600
Hdefine CBR_1200
Hdefine CBR_2400
Hdefine CBR_4800
#define CBR_9600
#define CB~14400
#define CBR_19200
1* #define CBR_RESERVED
Hdefine CBR_RESERVED
#define CBR_38400
1* #define CBR_RESERVED
Hdefine .CBR_RESERVED
#define CBR_RESERVED
Hdefine CBR_56000
1* Hdefine CBR_RESERVED
#define CBR_RESERVED
#define CBR_RESERVED
#define CBR_128000
1* #define CBR_RESERVED
Hdefine CBR_RESERVED
Hdefine CBR RESERVED
#define CBR:256000

1* notifica~ions passed
Hdefine CN_RECEIVE
#define C~_TRANSMIT

#en~if 1* WIN31 *1

typedefstruct tagDCB
{

BYTE Id;
WORD BaudRate;
BYTE ByteSi ze;
BYTE Parity; ,
BYTE StopBi ts;
WORD RlsTimeout;
WORD CtsTimeout;
WORD DsrTimeout;

BYTE fBinary: 1;
BYTE fRtsDisable:1;
BYTE fParity: 1;'
BYTE fOutxCtsFlow~1;
BYTE fOutxDsrFlow:1;
BYTE fDummy: 2;
BYTE fDtrDisable:1;

BYTE fOutX: 1;
BYTE fInX: 1;
BYTE fPeChar:,: 1; /
BYTE fNull: 1;
BYTE fChEvt: ,1;
BYTE fDtrflow: 1;
BYTE fRtsflow: 1;
BYTE fDummy2: 1;

char XonChar;
char XoffChar;
WORD XonL i m;
WORD XoffLim;
char PeCh'ar;
char EofChar
char EvtChar
WORD TxDelay

} DCB;

OxFF11
OxFF12
OxFF13
OxFF14
OxFF15
OxFF16
OxFF17
OxFF18
OxFF19
OxFF1A *1
OxFF1B
OxFF1C
OxFF1D
OxFF1E *1
Ox F F1 F
OxFF20
ilxFF21
OxFF22 *1
O·xF F23
OxFF24
OxFF25
OxFF26 *1
OxFF27

7 -"

in low word of lParam on WM_COMMNOTIFY messages *1
Ox01 1* bytes are available in the input queue*1
Ox02 1* fewer than wOutTrigger bytes still *1

1* remain in the output queue waiting *1
1* to be transmitted. *1

1* Internal Device ID *1
1* Baudrate at which runing *1
1* Number of bits/byte, 4-8 *1
1* 0-4=None,Odd,Even,Mark,Space *1
1* 0,1,2 = 1, 1.5, 2 *1
1* Timeout for RLSD to be set * 1
1* Timeout for CTS to be set *1
1* Timeout for DSR to be set *1

1* Binary Mode (skip EOF check *1
1* Don't assert RTS at init time *1
1* Enable parity checking *1
1* CTS handshaking on output *1
1* DSR handshaki ng on output * 1
1* Reserved *1
1* Don't assert DTR at init time *1

f* Enable output X-ON/X-OFF ·*1
1* Enable input X-ON/X-OFF *1

·1* Enable Parity Err Replacement *1
1* Enable Null stripping *1
1* Enable Rx character event. *1
1* DTR handshake on input *1
1* RTS h~f1dshake on input *1

1* Tx and Rx X-ON character *1
1* Tx and Rx X-OFF character *1
1* Transmit X-ON threshold *1
1* Transmi t X-OFF threshold *1
1* Parity error replacement char *1
1* End of Input character *1
1* Recieved Event character *1
1* Amount of time between chars *1

998

•

typedef DCB FAR * LPDCB;

typedef struct tagCOMSTAT
{

BYTE fCtsHold: 1; .
BYTE fDsrHold:'1;
BYTE fRlsdHold: 1;
BYTE fXoffHold: 1;
BYTE fXoffSent: 1;
BYTE fEof: 1;

1* Transmit is on CTS hold
1* Transmit is on DSR hold
1* Transmit is on RLSD hold
1* Received handshake
1* Issued handshake
1* End of file character found

*1
*1
*1
*1
*1
*1

BYTE fTxim: 1;
WORD cbInQue;
WORD cbOu tQue;

1* Character being transmitted *1
1* count of characters in Rx Queue *1
1* count of characters in Tx Queue *1

} COMSTAT;

int
#ifdef
BOOL
#endif
int
int
int
int
int
int
int
int
int
WORD
WORD
int
int
int
LONG

API OpenComm{LPSTR, WORD, WORD);
WIN31
API EnableCommNotification{int, HWND, int, int);
1* WIN31 *1
API SetCommState{LPDCB);
API GetCommState{int, LPDCB);
API ReadComm{int, LPSTR, int);
API UngetCommChar{int, char);
API WriteComm{int, LPSTR, int);
API CloseComm{int);
API GetCommError{int, COMSTAT FAR *);
API BuildCommDCB{LPSTR, LPDCB)i
API TransmitCommChar{int, char);
FAR * API SetCommEventMask{int, WORD);

. API GetCommEventMask{int, int>i
API SetCommBreak{int);
API ClearCommBreak(int);
API FlushComm(int, int);
API EscapeCommFunction{int, int);

#endif 1* USECOMM * 1

#ifd~f WIN31
#ifndef NODRIVERS
#define DRV_LOAD
#define DRV_ENABLE
#define DRV_OPEN
#define DRV_CLOSE
#define DRV_DISABLE
#define DRV_FREE
#defineDRV_CONFIGURE
#define DRV_QUERYCONFIGU~E
#define DRV_INSTALL
#define DRV_REMOVE
#define DRV_POWER
#define DRV_RESERVED
#define DRV_USER

Ox0001
Ox0002
OxOOO'3
Ox0004
Ox0005
Ox0006
Ox0007
Ox0008
Ox0009
OxOOOA
OxOOOF
Ox0800
Ox4000

1* Supported return values for DRV_CONFIGURE message *1
#define DRVCNF CANCEL OxOOOO
#define DRVCNF-OK Ox0001
#define DRVCNF:RESTART Ox0002

APPENDICES ...

HANDLE
LONG
HANDLE
LONG
LONG

API OpenDriver{LPSTR szDriverName, LPSTR szSectionName; LONG lParam2);
API CloseDriver{HANDLE hDriver, LONG lParam1, LONG lParam2);

HANDLE

API GetDriverHoduleHandle{HANDLE hDriver); .
API SendDriverMessage{HANDLE hDriver, WORD message, LONG lParam1, LONG lParam2);
API DefDriverProc(DWORD dwDriverIdentifier, HANDLE driverID, WORD message, LONG
lParam1, LONG lParam2);
API GetNextDriverCHANDLE, DWORD); .

1* GetNextDriver flags *i
#define GND_FIRSTINSTANCEONLY
#define GND_REVERSE

Ox00000001
Ox00000002

999

WINDOWS API BIBLE

" typedef str\Jct::tagDRIVERINFOSTRUCT
"{

WORD length;
HANDLE hDriveri
HANDLE hModulei
char szAliasName[128Ji

} DRIVERINFOSTRUCTi
typedef DRIVERINFOSTRUCT FAR *LPDRIVERINFOSTRUCTi
BOOL API GetDriverlnfo(HANDLE, LPDRIVERINFOSTRUCT);

#endif 1* !NODRIVERS *1
#endif 1* WIN31 *1

lIifndef NOMDI
lIifdef WIN31
1* MDI client style bits *1
IIdefineMDIS_ALLCHILDSTYLES Ox0001

1* wParam Flags for WM_MDITILE and WM_MDICASCADE messages. *1
#define MDITILE_VERTICAL OxOOOO
#define MDITILE_HORIZONTAL Ox0001
#define MDITILE_SKIPDISABLED Ox0002
lIendif 1* WIN31 *1

typedef struct tagMDICREATESTRUCT
{

LPSTR
LPSTR
HANDLE

szClassi
szTitlei
hOwner;

int x,Yi
int cx,cy;
LONG stylei
LONG lParami 1* app-defined stuff *1

} MDICREATESTRUCT;

typedef MDICREATESTRUCT FAR * LPMDICREATESTRUCTi

typedef struct tagCLIENTCREATESTRUCT
{

HANDLE hWindowMenui
WORD idFirstChildi

} CLIENTCREATESTRUCTi

typedef CLIENTCREATESTRUCT FAR * LPCLIENTCREATESTRUCTi

LONG API nefFrameProc(HWND,HWND,WORD,WORD,LONG)i
LONG API DefMDIChildProc(HWND,WOR~,WORD,LONG)i

#~fndef NOMSG 'r

BOOL API' Trans l a"teMDI SysAc:ce l (HWND ,LPMSG) i
lIendif

WORD API ArrangelconicWindows(HWND)i

lIendif 1* NOMDI *1

lIifde1 WIN31
lIifndef NOSYSPARAMSINFO
1* Parameter for SystemParam~terslnfo() *1

IIdefine SPI_GETBEEP
IIdeiine SPI_SETBEEP
IIdefine SPI_GETMOUSE
IIdefine SPI_SETMOUSE
IIdefine SPI_GETBORDER
IIde~in~ SPI_SETBORDER
IIdefineSPI~TIMEOUTS
IIdefine SPI_GETKEYBOARDSPEED

1
2
3
4
5
6
7
10

.1000

#define SPI_SETKEYBOARDSPEED 11
#define SPI_LANGDRIVER 12
#define SPI_ICONHORIZONTALSPACING 13
#define SPI_GETSCREENSAVETIMEOUT 14
#define SPI_SETSCREENSAVETIMEOUT 15
#define SPI_GETSCREENSAVEACTIVE 16
#define SPI_SETSCREENSAVEACTIVE 17
#define SPI_GETGRIDGRANULARITY 18
#define SPI_SETGRIDGRANULARITY 19
#define SPI_SETDESKWALLPAPER 20
#define SPI_SETDESKPATTERN 21
#defineSPI_GETKEYBOARDDELAY 22
#define SPI_SETKEYBOARDDELAY 23
#define SPI_ICONVERTICALSPACING 24
#define SPI_GETICONTITLEWRAP 25
#define SPI_SETICONTITLEWRAP 26
#define SPI_GETMENUDROPALIGNMENT 27
#define SPI_SETMENUDROPALIGNMENT 28
#define SPI_SETDOUBLECLKWIDTH 29
#define SPI_SETDOUBLECLKHEIGHT 30
#define SPI_GETICONTITLELOGFONT 31
#define SPI_SETDOUBLECLICKTIME 32
#define SPI_SETMOUSEBUTTONSWAP 33
#define SPI_SETICONTITLELOGFONT 34

BOOL API SystemParameterslnfo(WORD, WORD, LPVOID, WORD);
1* Flags *1
#define SPIF_UPDATEINIFILE Ox0001
#define SPIF_SENDWININICHANGE Ox0002

#define SPIF_VALID

#endif 1* NOSYSPARAMSINFO *1
#endif 1* WIN31 *1

#endi f 1* NOUSER *1

#ifndef NOHELP

1* Help engine section. *1.

1* Commands to pass WinHelp() *,
#defin~ HELP_CONTEXT
#define HELP_QUIT
#define HELP_INDEX
#define HELP_CONTENTS
#define HELP_HELPONHELP

Ox0003

1* Display topic in ulTopic *1
1* Terminate help *1
1* Display index *1

1* Display help on using help *1

APPENDICES Y

#define HELP_SETINDEX

Ox0001
Ox0002
Ox0003
Ox0003
Ox0004
Ox0005
Ox0005
Ox0008
Ox0009
Ox0101
Ox0102
Ox0105
Ox0201
Ox0203

1* Set the current Index for mul ti .index help *1
#define HELP_SETCONTENTS
#define HELP_CONTEXTPOPUP
#define HELP_FORCEFILE
#def i ne HELP_KEY -
#define HELP_COMMAND
#define HELP_PARTIALKEY
#define HELP_MULTIKEY
#define HELP_SETWINPOS

1* Display topic for keyword in offabData *1

1* call the search engine in winhelp *1

BOOL API WinHelp(HWND hwndHain, LPSTR lpszHelp, WORD usCommand, DWORD ulData);

typedef struct tagMULTIKEYHELP
{ -

WORD mkSize;
BYTE - mkKeylist;
BYTE sZKeyphrase[1J;

} HUL TIKEYHELP;

#endif 1* NOHELP *1

·1001

WINDOWS A~I BIBLE

#ifndefNOPROFILER

1* function declarations for profiler routines contained in Windows libraries *1
.int API ProfInsChk(void);
void API ProfSetup(int,int);
void API ProfSampRate(int,int);
void API ProfStart(vdid);
void API ProfStop(void);
void API ProfClear(void);
void API ProfFlush(void);
void API ProfFinish(void);

#endif 1* NOPROFILER *1

#ifdef PRINTING
typedef struct {

short cbSize;
LPSTR lpszDocName;
LPSTRlpszOutput;
} DOC INFO, FAR * LPDOCINFO;

int
int
int
int
int
int
#endif

API StartDoc(HDC, LPDOCINFO);
API StartPage(HDC);
API EndPage(HDC);
API EndDoc(HDC);
API SetAbortProc(HDC,"~ARPROC);
API AbortDoc(HDC);"

.'

1002

INDEX

. #define, 857
#elif, 857
#endif, 857
#if, 857
#ifdef, 857
#include, 856
#Undef, 857
$ footnotes, 885
& character, 18, 109, 195,558
+ footnotes, 885
-R switch, 855
.DEF, 5, 6H, 617
.DRV, 358
.FON,354
8-bit sound resolution, 741
16-bit sound resolution, 741
32-bit coded keyboard data, 344
32-bit keyboard data for WM_KEYUP,

wr.CKEYDOWN, 324
80386 chip, 617
80486 chip, 612, 617
8086 chip, 612
8Ox86 chip, 617
_Lclose, 793-94
_Lcreat, 794
_LIseek, 795,

position values, 795
_LIseek, 795
_Lopen, 795-96,

access values, 796
_Lread, 796
_Lwrite, 796-97

A
Abort logic, 355
Abort procedure, printing example,

355-57
Accelerator options, 197
ACCELERA'TORS, 856
AccessResource, 859-61
AddAtom, 828-29
AddFontResource, 360-61
A(ljustWindowRect, 35-36
A(ljustWindowRectEx, 36-37
Adlib Board, 741
AllocResource, 861
AND mask, 711

AnimatePalette, 531-33
ANSI character set, 758-59, 774
AnsiLower, 760-61
AnsiLowerBuff, 761-62
AnsiNext, 762-63 '
AnsiPrev, 763-64
AnsiToOem, 764
AnsiToOemBuff, 764-65
AnsiUpper, 765
AnsiUpperBuff, 765-66
AnyPopup,37
AppendMenu, 111, 116-18

flags, 117
Arc, 441-42
ArrangeIconicWindows, 712-14
Atoms,

and data exchange, 827
atom tables, 826
data structure, 826-27
functions, 826-35
local and global, 826

Automatic (stack) variables, 615
Automatic data segment, 611

B
BeginDeferWindowPos, 37-38
BeginPaint, 442~43

device handle context, using,
435-36

BiBitCount, 673 '
Bibliography, 937-38
BiClrImportant, 672
BiClrUsed, 672
BiCompression, 672
BiSizeImage, 672
BitBlt, 676-78
BITMAP,

data type, 668
resource script statement, 856

Bitmap,
.adding graphics, 885-86
checkmark,112
old format, 670-71
stretching and painting images,

670
stretching modes, 692, 703
structure, 668 .

1003

BITMAPFILEHEADER structure,
\ 672

BITMAPINFO structure, 672
BITMAPINFOHEADEl\. structure,

672,682
Bitmaps, 668-709

and memory device contexts,
669

as menu items, 112
DDB format, 668-69
device-independent bitmaps

(DIBs) , 671-75
functions, 675-709
problems with old format,

670-71
BiXPelsPerMeter, 672
BiYPelsPerMeter, 672
BmBits, 669
BmBitsPixel, 668
BmiColors, 672
BmPlanes, 668-69
BM_, 259
BM_GETCHECK, 2\?1
BM_GETSTATE, 261
BM_SETCHECK, 261
BM_SETSTATE, 262
BM_SETSTYLE, 262 .
BN_, 259
BN_CLICKED, 264
BN_DISABLE, 264
BN_DOUBLECLICKED, 264
BN_HILITE, 265
BN_PAINT,265
BN_UNHILITE, 265
Bookmarks, adding, 885
BOOL, 8,33
Boolean logic and bitmaps, 670
BringWindowToTop, 39
Brush, default, 437
BuildCommDCB, 806-10
BUITON, 12-13, 19
Button,

controls, recognizing, 14
messages, transmitted, 260-62
notification codes, 262-65
styles, 20, 262

BITE, 8

WINDOWS API BIBLE

c
C compiler library function and

Windows, 355,759,760,774,
850,.892,898

_ CallMsgFilter, 220-22
CallWindowProc, 222-24
CAPTION, 561
Caret functio-ns, 165-66
CB_, 259
CB_ADDSTRING, 270
CB_DELETESTRING, 270
CB_DIR, 270
CB_FINDSTRING, 271
CB_GETCOUNT, 271-72
CB_GETCURSEL, 272
CB_GETDROPPEDCONTROLRECT,

272
CB_GETEDITSEL, 272
CB_GETEXTENDEDUI, 272-73
CB_GETITEMDATA,273 -
CB_GETITEMHEIGHT, 273
CB_GETLBTEXT, 273-74

- CB_GETLBTEXTLEN, 274
CB_INSERTSTRING, 274
CB_LIMITTEXT, 274
CB_RESETCONTENT, 275
CB_SELECTSTRiNG, 275
C~_SETCURSEL, 275
CB_SETEDITSEL, 276
CB_SETEXTENDEDUI, 276
CB_SETITEMDATA,-276
CB_SETITEMHEIGHT, 277
CB_SHOWDROPDOWN, 277
CBN_, 259
CBN_DBLCLK, 278
CBN_DROPDOWN, 278
CBN_EDITCHANGE, 278 _
CBN_EDITUPDATE, 278-79_
CBN_ERRSPACE,279
CBN_KILLFOCUS, 279
CBN_SELCHANGE, 279
CBN_SETFOCUS, 279
CContent library, 827
ChangeClipboardChain,

723-25
Character sets,

and fonts, 759
and strings, 758-73
conversions, 758
functions, 760-73

CHECKBOX, 562

CheckDIgButton, 566-69
Checkmark bitmap, 112
CheckMenultem, 111, 118-119

flags, 119
CheckRadioButton, 569
Child windows, 13-17,905
ChildWindowFromPoint, 39-40
Chord, 443-44
CLASS, 561
Class data, 29-30
ClearCommBreak, 810-11
Client area mouse button messages,

164
ClientToScreen, 166-67
Clipboard, 719-40

delayed rendering of data, 721-22
formats, 720-21, 722, 728, 736~37
functions, 723-40
using, 719-20
viewer programs, 722

Clip Cursor, 167-68
Clipping region, 438 --
CloseClipbmird, 725
CIoseComm,811 -
CloseMetaFile, 839-41
CIoseSound, 744-45

function, 742
CloseWindow, 40-41
CODE, 5,-616, 618
CodeView for Windqws, 17,872,874,

898 '-
Color palette,

control, 528-51
functions, 530-51
in Windows, 528-29
messages, 530

COLORREF, 438
Color resolutions, 671, 692
Colors, 438
Color values, 438
CombineRgn, 444-46,

modes,445
COMBOBOX, 19, 562
Combo box, -

control, sending and receiving
messages from, 266-67

example,268-69 -
messages, 265-77
notification codes, 277-79
owner-redrawn, 267-69
styles, 20~21 .

1004

Communications,
codes, 811-12
error codes, 813
event flags, 814,817
functions, 804-25
support, 804-5

Compiler memory models, ~16-17
Compiling and linking, 6-7
Context stack, 437
CONTROL, 562
Controls, 17-18
CopyMetaFile, 841
CopyRect, 446
CountClipboardFormats, 725
CountVoiceNotes, 745-46
CreateBitmap, 678-71}
CreateBitmaplndirect, 679-81
CreateBrushIndirect, 447-48
CreateCaret,168-70 '
CreateCompatibleBitmap, 681-82
CreateCursor, 170-72-
CreateDC, 361-63
Create Dialog, 569-73
CreateDialogIndirect, 573-75
CreateDialogIndirectParam, 575-77
CreateDialogParam, 577-80
CreateDIBitmap, 682-84
CreateDIBPatternBrush, 684-86
CreateDiscardableBitmap, 686-88
CreateEllipticRgn, 449
CreateEllipticRgnlndirect, 449-50
CreateFont, 363-65
CreateFontIndirect, 365-66
CreateHatchBrush, 450-51
CreateIC, 366-67
Createlcon, 714-16
CreateMenu, 111, 120
CreateMetaFile, 841-42
CreatePalette, 533-35 .
CreatePatternBrush, 451-52
CreatePen, 452-53
CreatePenlndirect, 453-54
CreatePolygonRgn, 454-55
CreatePolyPolygonRgn, 455-56
CreatePopupMenu, 111, 119-20
CreateRectRgn, 456
CreateRectRgnIndirect, 457
CreateRoundRectRgn, 457-58
CreateSolidBrush, 458-59
CreateWindow, 4,12-13,18-24 -

messages generated ~y, 17

CreateWindowEx, 24-25
CTEXT,562
CUA Advanced Interface Design

Guide, 198
CURSOR, 856
Cursor

D

boolean masks, 170
functions, 169-70
names, predefined, 180

Data attached to window or class,
30

Data queue, reading data in, 805
DATA, 5, 616, 618
DBEditor, 552-53
DC, also see device contexts,

350-433
DDB bitmaps,

format, 668-69
using, 669

DDE,
applications, 919
cold link, 919-20
cold link data transmission, 919
conversation, initiation of, 919
conversation, termination of, 920
conversations, generalized, 922
data exhange, 918'
data from Microsoft Excel, 927-28
data transmission messages,

other, 922-23
hot link, 920
item identifiers, 919
messages, 929-35
topics, 919
warm link, 921

DebugBreak, 875
Debugging, 872-82
Debugging functions, 874
Default objects, 437-38
Default palette, system, 520
DeIDlgProc, 580-84
DeferWindowPos, 41-42

flags,42
DetFrameProc, 915-16
DetHookProc, 224-25
DefMDlChildProc, 916-17
DEFPUSHBUTrON, 562-63
DefWindowProc, 226

Delayed rendering of clipboard
data, 721

DeleteAtom, 829-30
DeleteDC, 367-68
DeleteMenu, 111, 121

flags, 121
DeleteMetaFile, 842
DeleteObject, 459
DESCRIPTION, 5, 618-19
DestroyCaret, 172
DestroyCursor, 172
Destroylcon, 716
DestroyMenu, 111, 121-22
DestroyWindow, 42-43
DeviceCapabilities, 368-71

index values, 369
Device contexts, 350-433

and painting, 435-36
mapping modes, 420
private, 352
saving, 352-54
selecting objects into, 351-2,'

436-37 .
DEVMODE, 358, 378
DIALOG, 560
Dialog box, 552-610

communicating with dialog box
controls, 556-58

control statements, 56t-65
data structures, 559
definition containing list box,

557
dynamic, 558-59
function, 553-54
functions, 565-610
indirect and parameter dialog

box functions, 556
keyboard interface, 558
modal,555
mode less, 555
procedure for list box example,

557-58 - .
styles, 21
template statement description,

560-61
types: 555
window messages, 280

DialogBox, 584-87
DialogBoxIndirect, 587-89
DialogBoxIndirectParam, 589-92
DialogBoxParam, 595-95

1005

INDEX.

Dialog template statement descrip-
tion, 560-61 \

DlB bitmap, loading, 673-75
DIBs, 671-75, 722 .
DISCARDABLE, 616
Disk files, 774-75
DispatchMessage, 226-27
Dithering, 438
DlgDirList, 777-79
DlgDirListComboBox, 780-81
DlgDirSelect, 782
DlgDirSelectComboBox, 782
DLLs, 892-904

about, 892
and string functions, 760
creating, 892-95
debugging, 898
function summary, 898-904
importing Windows library fUllC-

tions,897 .
other ways to call functions, 896
problems with writing, 897-98
using functions in, 895-96

DM_, 259
DM_GETEFID, 280
DM_SETEFID, 2~0
DOS application in 386 mode, 217
DOS file attributes, 777, 780, 794
DPtoLP, 371-72
DrawFocusRect, 459-60
Drawlcon, 716-17
DrawMenuBar, Ill, 122-23
DrawText, 372-74

flags, 373
DWORD, 8, 612, 918
Dynamic data exchange (DDE),

918-35
Dynamic link libraries (DLL),

892-904

E
EDIT, 13, 19
Edit control styles, 21
EDITrEXT, 563
EGA, 528
Ellipse, 460
EM_,259

"

EM_CANUNDO, 283
EM_EMPrYUNDOBUFFER, 284
EM_FMTLINES, 284

WINDOWS API BIBLE

EMjlETHANDLE, 284
EM_GETLINE, 285
EM_GETLINECOUNT, 285
EM...;GETMODIFY, 285
EM_GETRECT, 286-86
EM_GETSEL, 286
EM_GETTHUMB, 282

• EM_LIMITTEXT, 286
EM_LINEFROMCHAR, 286,
EM_LINE INDEX, 286-87
EM_LINELENGTH, 287
EM_LINESCROLL, 287
EM_REPLACESEL, 287-88' ,
EM_SETABSSTOPS, 289
EM_SETFRONT, 282
EM_SETHANDLE, 288
EM_SETMODIFY, 288
EM_SETPASSWORDCHAR, 288
EM_SETRECT, 288-89
EM_SETRECTNP, 289
EM_SETSEL, 289
EM_SETWORDBREAK,290
EM_UNDO, 290
EmptyClipboard, 725-26
EN_, 259
EN_CHANGE, 291

, EN_ERRSPACE, 291
EN_HSCROLL, 291 '
EN_KILLFOCUS, 292
EN_MAXTEXT, 292 '
EN_SETFOCUS, 29'2

-EN_UPDATE, 292-93,
EN_ VSCROLL, 293 \. '- . '
EnableHardwarelnput, 198-99',
EnableMenultem, 111, 123-25

flags, 124
EnableScrollBar, 149-51
EnableWindow, 43-44
EndDeferWindowPos, 44
EndDialog, 595
EndPaint, 461
EnumChildWindows, 44-45
EnumClipboardFormats, 726-28
Enumeration functions, 30-33
EnumFoI}ts, 374-76
EnumMetaFile, 842-44
EnumObjects, 462-64
EnumProps, 47-48
EnumTaskWindows, 49-51
EnumWindows, 51-53

EqualRect, 464
EqualRgn, 464-65
Escape function version reference,

380
Escape, 379-81

return codes, 380
EscapeCommFunction, 811-12
ExcludeClipRect, 465-66
ExcludeUpdateRgn, 466-67
Execution profiling and debugging,

872-82
. functions, 874-82

EXETYPE, 619
ExitWindows, 227-28
EXPORTS, 619

flags, 378
Extended window styles, 24
ExtFloodFill, 4~7-69
ExtTextOut, 381~8?

F
FAR, 10
FatalExit, 875-76
FErase, 435 .
File attribute flags, 271, 297
File names, obtaining from

Microsoft Excel, 926-27
, Files,

initialization, 775-76
list of names, 775

FillRect, 469
FillRgn, 469-70
FindAtom, 830
FindResource,861-63 --
FindWindow, 53-54 '. ''"-
FIXED, 616
FlashWindow, 54-55
Flood fill types, 468 ,
FloodFill, 470-71
FlushComm, 812
FONT, 561, 856
Font, default, 437 -
Fonts,354 '
Frame windows, 905
FrameRect, 471-72
FrameRgn, 472-73
FreeLibrary, 899-900
FreeModule, ~23-24
FreeProcInstance, 228-30
FreeResource, 863-64

1006

G
GDI function calls, 836-37
GDI.EXE;7
GENERIC, improving, 9-10
GENERIC.C, .

example program, 2-6
header file, 4-5

GENERIC.DEF
definition file, 7

. module/definition file for
GENERIC:C, 644

GENERIC.DLG,
dialog box definition file, 567
dialog box template file,

,552-53
GENERIC.H header file, 4 :
GENERIC.HD dialog box item

defines, 567
GENERIC.ICO, 5
GENERIC.INI file created, 786
GENERIC.RC, 5, 109, 553
GENERIC.RES, 855
GENERIC2.C, changes to process

WM_PAINT message, 9-10
GENERICD.H dialog box ID header

file, 553
GetActiveWindow, 29, 55
GetAsyncKeyState, 200
GetAtomHandle, 831
GetAtomName, 831
GetBitmapBits, 688-90
GetBitmapDimension, 690-91
GetBkColor, 382-83 .
GetBkMode, 383-84
GetBrushOrg, 473-74
GetBValue, 474
GetCapture, 172-73
GetCaretBlinktime, 173-74
GetCaretPos, 174-75
GetCharWidth, 384-85
GetClasslnfo, 55-56
GetClassLong, 56-58

index values, 56
GetClassName, 58-59
GetClassWord, 59-60

index values, 59
GetClientRect, 60
GetClipboardData, 728-29
GetClipboardFormatName, 729
Get~~ipboardOwner, 729-30

GetClipboardViewer, 730
GetClipBox, 474-75
GetClipCursor, 175-76
GetCodeHandle, 624
GetCodelnfo, 627

data array, 627
GetCornmError, 812-13
GetCQrnrn~entMask, 813-14
. GetCorninStater814-15
GetCurrentPDB;' 627-28

, GetCurrentPosition, 475-76
GetCurrentTask, 60-61
GetCurrentTirne, 850-51
GetCursorPos, 176-77
GetDC, 385
GetDCOrg, 386
GetDesktopWindow, 61-62.
GetDeviceCaps, 386-90

index values, 389 ,
GetDialogBaseUnits, 595-96
GetDIBits, 691-92
GetDIgCtrlID, 596-97
GetDlgI tern, 597-98
GetDIgltemlnt, 598-99
GetDlglternText, 600
GetDOSEnvironment, 782-83
GetDoubleClickTime, 178-79
GetDriveType, 783-84

returned values, 784
GetEnvironrnent, 785
GetFocus, 62-63
GetFreeSpace, 628-29
GetGValue, 474
GetInputState, 201-2
GetInstanceData, 864-66
GetKBCodePage, 202
GetKeyboardState, 202-3
GetKeyboardType, 203-5
GetKeyNameText, 205
GetKeyState, 205-6
GetLastActivePopup, 63-64
GetMapMode, 390-91

, GetMenu, 125
GetMenuCheckmarkDirnensions,

125-27 '
GetMenulternCount, 127-28
GetMenulternID, 128-29
GetMenuState, 129-30

return flags, 129
\¥flags settings, 129

GetMenuString, 130
wflags settings, 130

GetMessage, 217, 230-31
GetMessagePos, 231-32
GetMessageTirne, 232-33
GetMetaFile, 844-45
GetMetaFileBits, 845-47
GetModuleFileNarne, 629
GetModuleHandle, 630
GetModuleUsage, 630
GetNearestColor, 476-77
GetNearestPalettelndex, 535-36
GetNextDlgGroupltern, 600-1
GetNextDlgTabltem, 601-2
GetNextWindow, 65 .
GetNurnTasks, 65-66
GetObject, 477-78
GetOpenClipboardWindow, 730-31
GetPaletteEntries, 536-37
GetParent, 66-67
GetPixel, 479
GetPolyFillMode, 479-80
GetPriorityClipboardForrnat,

732-34
GetPrivateProfilelnt, 785-87
GetPrivateProfileString, 787
GetProcAddress, 900-1
GetProfilelnt, 787-89
GetProfileString, 789
GetProp, 67-69
GetRgnBox, 480-81 '
GetROP2, 481-83
GetRValue, 474
GetScrollPos, 151-53
GetScrollRange, 153-55
GetStockObject, 483-84
GetStretchBltMode, 092-93
GetSubMenu, 131-32
GetSysColor, 485-86
GetSysModalWindowj 69-70 .
GetSysternDirectory, 789-90
GetSysternMenu, 132-33
GetSysternMetrics, 391 ~93

nlndex values, 392 .
GetSysternPalette~ntries, 537-38
GetSysternPaletteUse, 538-39 '

flags, 539
, GetTabbedTextExtent, 393-94

GetTernpDrive, 790-91
GetTempFileNarne, 791-92

1007 .

INDEX ~

GetTextAIign, 394-95
flags, 394

GetTextCharacterExtra, 396
GetTextColor, 396-97
GetTextExtent, 397-98
GetTextFace, 398-99
GetTextMetrics, 399-400
GetThresholdEvent, 746-47
GetThresholdStatus, 747-48
GetTickConnt, 851-52
GetTopWindow, 70-71
GetUpdateRect, 486-87
GetUpdateRgn, 487-88
GetVersion, 71-73
GetViewportExt, 400-1
GetViewportOrg, 402-3
GetWindow, 72-73

criteria, 72 ,-
GetWindowDC, 403-5
GetWindowExt, 405
GetWindowLong, 73-74
GetWindowLongO index values, 73
GetWindowOrg, 406
GetWindowRect, 74-75
GetWindowsDirectory, 792-93
GetWindowTask, 75-76
GetWindowText, 77
GetWindowTextLength, 77
GetWindowWord, 77-78

index values, 78
GetWinFlags, 78-79

flags, 79
Ghlnstance, 10, 13
Global descriptor table, 617
Global heap, 612

allocating memory in, 613-14
GlobalAddAtom, 832-33
GlobalAlloc, 630-33

flags, 631
GlobaiCompact, 633-34
GlobalDeleteAtorn, 833
GlobalDiscard, 636
GlobaIDosAiloc, 634~36
GlobalDosFree, 636
GlobalFindAtom, 833-34
GlobalFix, 637-38
GlobalFlags, 638-39
. flags, 638

GlobalFree, 639
GlobalGetAtomNarne, 835

WINDOWS API BIBLE

GlobalHandle, 639
GlobalLock, 639
GlobalLRUNewest, 640-41
GlobalLRUOIdest, 641-42
GlobalNotify, 642-45
GlobalPageLock, 645:46
GlobalPageUnlock, 646
GlobalReAlloc, 646-47

flags, 647
GlobalSize,647 '
GlobalUnflX, 647-48
GlobalUnlock, 648
GlobalUnWire, 648-50
GlobalWire, 650
Graphics and music~ 743
GrayString, 406-7
GROUPBOX, 563

H
HANDLE, 9
Hardware palettes, 528 .
Hatch brush patterns, 448, 451

. HDC data type, 350, 435
HDlgModeless, 555
HEAPSIZE, 5,619-20
Help document, 883 .

special characters, 884
Help file, 883

building, 883-84
compiling, 886
support, 883-91·

Help project file options,
886-89 .

Help system, using, 889
HELPEX.HP J help project file

listing, 886
HideCaret, 179
HiliteMenultem, 133-35

flags, 134
Hlnstance, 10'
HMF, 722
Hot DDE conversation, sequence of,

920 .
Hot keys, 558
HPrevInstance, 10
Hwnd, 13,216
Hypertext, 883

defining jumps and index entries,
885

jump destinations, 884

I
IBM 8513/A, 528
IBM 8514 and colors,438
IBM Music Feature Card, 741- -
IBM PC character set, 758
ICON, 563, 856
Icon files, 710
IconResourceCount,711
Icons, 710-18

creating at run time, 711
functions, 712-18
stock, 718
using, 710-11

10M_DOlT, 3
10M_QUIT, 3
IMessage, 11
IMPORTS, 620
InflateRect, 488-89
InitAtomTable, 835
InSendmessage, 233-34
InsertMenu, 111, 135-37

data types, 136 .
wFlags values, 136

Instances and message loops, 10-11
IntersectClipRect, 489-90
IntersectRect, 490-91
Invalid rectangle, 435
InvalidateRect, 491-92

. InvalidateRgn, 492-93
InvertRect, 493-94
InvertRgn, 494-95
IsCharAlpha, 766-67
IsCharAlphaNumeric, 767
IsCharLower, 767
IsCharUpper, 767 .
IsChild, 29, 80
IsClipboardFormatAvailable,

734-35
IsDialogMessage, 602-3
IsDlgButtol\Checked, 603~4
Islconic, 29, 80-82
IsRectEmpty, 495-96
IsWindow, 29, 82-83
IsWindowEnabled, 83
IsWindowVisible, 29, 84
IsZoomed, 85

K
K footnotes, 885 .
KERNEL.EXE, 7

1008

Keyboard accelerators, 195-98
event types, 196
recommended, 198
resource file with, 196

Keyboard messages, 193-95
with non-English keyboards, 195
wParam meaning in, 194

Keyboard,
code page values, 202
functions, 198-214
input message processing, 194-95
support, 191-215
type values, 204

KillTimer, 852 .

L
LB_, 259 '
LB_ADDSTRING, 296
L~DELETESTRING, 296
LB_DIR, 296-97
LB_FINDSTRING, 297
LB_GETCARETINDEX, 297-98
LB_GETCOUNT, 298
LB_GETCURSEL, 298
LB_GETHORIZONTALEXTENT, 298
LB_GETITEMDATA, 298-99
LB_GETITEMHEIGHT, ·299
LB_GETITEMRECT, 299
LB_GETSEL, 299
LB_GETSELCOUNT, 299-300
LB_GETSELITEMS, 300
LB_GETTEXT, 300
LB_GETTEXTL~N, 300-01
LB_GETTOPINDEX, 301
LB_INSERTSTRING, 301
LB_RESETCqNTENT, 301
LB_SELECTSTRING, 301-2
LB_SELITEMRANGE, 302 .
LB_SETABSSTOPS, 304
LB_SETCARETINDEX, 302
LB_SETCOLUMNWIOTH, 302
LB_SETCURSEL, 303
LB_SETHORIZONTALEXTENT, 303
LB_SETITEMDATA, 303 .
LB_SETITEMHEIGHT, 303-4
LB_SETTOPINDEX, 304 .
LB_SETSEL, 304
LBN_, 259
LBN_DBLCLK, 305
LBN_KILLFOCUS, 305

LBN_SELCHANGE, 305-6
LBN SETFOCUS, 306
LIBR:ARY, 620 .
LimitEmsPages, 650
LineDDA, 496-97
LineTo, 497-98
LISTBOX, 19,563-64
List box,

control, 294-95
messages, 293-305
notification codes, 305-6
owner-redrawn; 295
styles, 22

LoadAccelerators, 206-A
LoadBitmap, 693-95
LoadCursor, 179-81
LoadIcon, 717-18
LoadLibrary: 901-2

error codes, 901-2
LoadMenu, 111, 137-38
LoadMenuIndirect, 138-40
LoadModule, 650-53

error codes, 651
LOADONCALL, 616

'" LoadResource, 866-67
LoadString, 867-68
Local descriptor table, 617
Local heap, 611

allocating memory in, 612-13
LocalAlloc, 653-56

flags, 654
LocalCompact, 656-57
LocalDiscard, 657
LocalFlags, 658

flags, 658
LocalFree, 658-59
LocalHandle, 659-60
Locallnit, 902-4
LocalLock, 660
LocalReAlloc, 660-61

flags, 660-61
LocalShrink, 661-62
LocalSize, 662
LocalUnlock, 662-63
LockResource, 869
LockSegrriEmt, 663-64
Logical brush,

color types, 447
types, 447

Logical fonts, 354

Logical palette, 529-30
Logical units, 353
LONG, 1
Long pointers, 612
LParam, 11
LpCmdLineShowWindow styles, 666
LpCmdShow ShowWindow styles, 652
LPSTR, 9, 612
LPtoDP, 408
Lstrcat 767-69

. Lstrcmp, 769-70
Lstrcmpi, 770
Lstrcpy, 770
Lstrlen, 771
LTEXT, 564

M
Macros from WINDOWS.H, 939 .
Main menus, 109
MAKEPOINT, 498
MakeProcInstance, 235
MapDialogRect, 604-5
Mapping modes, 352-54

device context, 420
fixed size, 353
that can be scaled, 353

MapVirtualKey, 209-10
codes, 210

MDI,
application structure, 905-7
example program, 907-15
frame and child windows, 905
functions, 915-17
interface bugs, 907
message summary, 906-7

MDICLIENT, 19
Memory,

allocating in the global heap,
613-14

allocating in the local heap,
612-13

blocks, 614, 617
compiler memory models, .

616-17 '
configurations, 615-16
functions, 621-669
local and global, 611-12_
management, 611-69
problems, 615
segments and offsets, 612

1009

INDEX 'V

Memory blocks,
locked, fIXed, and page-locked,

617
moveable, fIXed, and discardable,

614 -
MENU, 564
Menu, 109-46

adding to program's window, III
building in the resource file,

109-11
changing, 111
functions, 115-46
item options, 110
main, 109
messages, 115
popup, 109

Menu items,
bitmaps as, 112
checked, 110
graying, 110
owner-drawn, 112-15

MENUITEMTEMPLATE mtOption
flags, 139

Message box,
flags, 606-7
returned values, 606

Message flow, 216-18
Message hook functions, 218-19
Message loop, 217
Message processing, 14-17, 217

functions, 216-57
Message sources, 217-18
MessageBeep, 748
MessageBox, 606
Messages,

button notification codes, 262-65
combo box, 265-67
edit control, 280-90
edit control notification, 290-93
list box, 293-305
sources of, 217
static control, 306-7
transmitted, 259-260
transmitted button, 260-62

. Metafiles, 836-48
altering metafile image, 838
creating and displaying disk

metafile, 836-37
creating and playing memory

metafile, 836

WINDOWS API BIBLE

disk format, 837-38
functions, 839-48
limitations, 838-39

METAHEADER structure, 837-38
METARECORD structure, 838
Microsoft Excel, 918, 926-28
Microsoft Word for Windows, 883,

918
MIDI, 741
Modal dialog box, 555
Modeless dialog box, 555

. ModifyMenu, 111, 141-42
data types, 142
flags, 142

Modules,
definition stjltements, 617-21
running other, 617

Monochrome icon bit masks, 714
Mouse,

flags, 340, 341
functions, 165, 166-90
hit test codes, 940
key flags, 325, 326, 327, 332
messages, 163-64

Mouse and cursor functions, 163-90
MOVEABLE, 7, 616
MoveTo, 498-99 .
MoveWiridow, 29, 85-86
MS-DOS

and disk file access, 774-803
and disk file functions, 776-80~, 758

MulDiv, 664-65
Multiline edit control, creating,
~ 281-82
Multiple document interface

(MDI),905-7 .

N
. NAME, 620

NCmdLine, 10
NCmdShow,l1
NMAKE, 5-7, 855
Note queue, 742
Notes, 30-33
NOTIFY NMAKE file for

NOTIFY.DLL, 644
NOTIFY.C source code for

notification function DLL, 643
NOTIFY.DEF definition file

for DLL, 643

o
OEM character set, 758-59, 774
OemKeyScan, 210-212
OemToAnsi, 771-72
OemToAnsiBuff, 772
OffsetClipRgn, 499-500
OffsetRect, 500-1
OffsetRgn, 501-2
Offsets, 612
OffsetViewportOrg, 408-10
OffsetWindowOrg, 410
OFSTRUCT data structure, 774-75
OpenClipboard, 735
OpenComm, 815-16

error codes, 815
OpenFile, 797-99

flag values, 798
Openkon, 718
OpenSound, 748

function, 742
OutlineBlock function, 738-40
OutputDebugString, 876

p

Painting, 434-527
functions, 439-527

PaintRgn, 502~3
PAINTSTRUCT data structure,

351
P ALETTEENTRY flags, 533
PALETI'EIHDEX, 539-41
PALETTERGB, 541
PASCAL statement, 10
PatBlt, 695 .
PC speaker, 741
Pee~essage,235-38,805

flags, 236
. Pen and brush, selecting into

device context, 436-37
Pen, default, 437
Pie, 503-4
Pixels, 352
Playing one voice, 742
PlayMetaFile, 847
PlayMetaFileRecord, 847-48
POINT, 9
Polygon filling modes, 454, 455,

480, 51?
Polygon, 504
Polyline, 504-5

1010

PolyPolygon, 505-6
Popup menus, 109
PostAppMessage, 238-40
PostMessage, 240-41
PostQuitMessage, 241-42
PRELOAD, 616
Printer,

device driver, 357-58
support, 354-57
support, minimal,354-55

Printing, 350-433
Prof Clear, 876-78
ProfFinish, 879 _
ProfFlush, 879
Profiler,

about, 872
preparing to run, 872-74
uSing, 874

ProfinsChk, 879
ProfSampRate, 879-80
ProfSetup, 880-81
Prof Start, 881
ProfStop, 881
Program code, moveable, 616
Program control, 217 , •
Program group, adding to program

manager, '923-26
Programming, 1-11

reference books, 937-38
Project [alias] section, 888

'Project [bitmaps] section,
888-89

Project [buildtags] section,
886-87

Project [files] section, 886
Project [map] section, 888
Project [options] section, 887-88
PSTR, 9, 612
PtInRect, 506-7
PtinRegion, 507-8
PtVisible, 508-9
PUSHBUTTON, 564

R
RADIOBUTTON, 564
Raster dra\ving modes, 521
Raster-operation codes, 482, 670,

676-77, 704, 707
that PatBlt can use, 695

RCDATA, 856, 858

RC.EXE, 5, 855
RePaint, 351
RdFunction, 838
ReadComm, 816
RealizePalette, 541-42
Receive data queue, 804
RECT, 9
Rectangle, 510
RectI nRegion, 510-11
RectVisible, 511-12
Reentrant functions, 17,218
Reference count, 617, 826
Region types, 445, 465, 466, 475,

481,487,489,499,501,514
Regions, 438
RegisterClass, 26-28

window styles, 26
RegisterClipboardFormat, 736
RegisterWindowMessage,

242-44
ReleaseCapture, 181-82
ReleaseDC, 410-11
RemoveFontResource, 411-12
RemoveMenu, 142-43

flags, 143
RemoveProp, 86-87
ReplyMessage, 244-45
ResetDC, 412-15 .
ResizePalette, 542-43
Resource compiler switches,

855-56
Resource file with keyboard

accelerators, 196
Hesource script file, 109

with menu items grayed and
checked, 110

Hesource types, predefined, 862
Resource,

compiler, 855-56
file, 109-11
script file, 85G-57

Resource.rc file, 117
Resources, 855-71

custom, 858
functions, 859-71

RestoreDC, 415-16
RGB, 438,512-13
RGBQUAD, 672, 683
RoundRect, 513-14
RTEXT, 564-65

S
Sampling rates for non-386 en-

hanced mode profiling, 880
SaveDC,416
ScaleViewportExt, 416-17
ScaleWindowExt, 418
ScreenToClient, 182-83
SCROLLBAR, 13, 19,565
Scroll bar, 147-62

attachment to window border,
148

class, 18
codE.S, 322, 348
concepts; 147-48
creating, 147
functions, 149-62
messages, 148-49
position and range, 148
styles, 22
types, 150, 151, 153, 160

ScrollDC, 155-56
ScrollWindow, 157-59
SDK, 163,552,775,872,883
SDKPaint, 6, 112, 165,669,673, 710
Search strings, adding, 885
SEGl\1ENTS, 616, 621
Segments and offsets, 612
SelectClipHgn, 514-15
SelectObject,_ 515
SelectPalette, 543-44
SendDlgltemMessage, 607-9
SENDEH.C, 244-45
SendMessage, 246-47
SetActiveWindow, 29, 87-88
SetBitmapBits, 696-97
SetBitmapDimension, 697
SetBkColor, 418-19
SetBkMode,41O
SetBrushOl'g, 515-16
SetCapture, 18:3
SetCaretBlinkTime, 184
SetCaretPos, 184-85
SetClassLong, 30, 88-89

flags, 88
SetClassWord, 30, 89-91

flags, 90
SetClipboardData, 736-40
SetClipboardViewer, 740
SetCommBreak, 816-17
SetComnlEyentMask, 817-20

1011

INDEX '"

SetCommState, 820-21
SetCursor, 185-86
SetCursorPos, 186-87
SetDIBits, 697-700
SetDIBitsToDevice, 700-2
SetDlgItemInt, 609-10
SetDIgItemText,61O
SetDoubleClickTime, 187-88
SetEnvironment, 800
SetErrorMode, 800-1
SetFocus,29,91
SetHandleCount, 801
SetKeyboardState, 212-13
SetMapl\lode, 419-20
SetMapperFlags, 420-21
SetMenu, 111, 143
SetMenuitemBitmaps, 144

flags, 144
SetMessageQueue, 248
SetMetaFiIeBits, 848
SetPaletteEntries, 544-45
SetParent, 91-92
SetPixel, 516-17
SetPolyFiUl\Iode, 517
SetProp, 92-93
SetRect, 518
SetRectEmpty, 518-19
SetRectHgn, 519-20
SetResourceHandler, 869-71
SetROP2, 520-22
SetScrollPos, 159-60
SetScrollRange, 160-61·
SetSonndNoise, 749

values, 749
SetStretchBltMode, 702-3
SetSysColors, 522-24, 545-47
SetSysModalWindow, 93-94
SetSystemPalettleUse, 547-49

!lags, 54
SetTextAiign, 421-22,

flags, 422
SetTextCharacterExtra, 422-23
SetTextColor, 423-24
S~tTextJustification, 424-25
SetTimer, 852-54
SetViewportExt, 425-26
.SetViewportOrg, 426-27
SetVoiceAccent, 750-51

error codes, 750
mode values, 751

WINDOWS API BIBLE

SetVoiceEnvelope, 751-52
error codes, 751

SetVoiceNote, 752-53
error values, 753

SetVoiceQueueSize, 753
error codes, 753

SetVoiceSound, 754 ,
error codes, 754

SetVoiceThreshhold, 754-56
SetWindowExt, 427-28
,SetWindowLong, 30, 94-96

flags, 95
SetWindO\vOrg, 428
SetWindowPos, 96-98

flags, 97
SetWindowsHook, 248-55
SetWindowText, 98
SetWindowWord, 30, 99

flags, 99
ShowCaret, 188
ShowCursor, 188-89
ShowOwnedPopups, 100
ShowScrollBar, 161-62
ShowWindow, 4, 100-2

flags, 10
SizeofiResource, 871
S0U11d Blaster Card, 741
Sound drivers, 741-42

support and information, 938
Sound function error codes, 743
Sound,

functions, 741-57
sources, 741
support, 741
synthesis chip, 741

SOUND.DRV, 741
STACKSIZE, 5, 621
StartSound l 756
STATIC, 13, 19
Static class, 17
Static control,

control styles, 23
messages, 306-7 '

Static data, 611
STM_GETICON, 306
STM_SETICON, 306-7
Stock icons, 718
Stock objects, 437-38
Stopping sound playback, 742
StopSound, 756
StretchBlt, 703-5

StretchDIBits, 705-9
String manipulation functions,

759-73
String tables, 857-58
STRINGTABLE, 856
STUB, 621
STYLE, 560
Super VGA and colors, 438, 528
Support functions, 29-108
SwapMouseButton, 189-90
SyncAlIVoices, 757
SYSEDIT.EXE, 905
System colors, 485, 523
System default palette, 529
SYSTEM.lNI, 741
S)'3temParametersI nfo, 102-6

wAction values, 105
"System" topic items, 922

T
TabbedTextOut, 429
Task header, 611
Text and device context functions,

358-433
Text output, 350-433
TextOut, 430
Time functions, 850 '
Timer, 805, 848-54

accuracy, 849-50
functions, 850-54
using, 849

ToAscii, 773
TrackPopupMenu, 144-46
TranslateAccelerator, 213-14
TranslateMDISysAccel, 917
TranslateMessage, 217, 255-56
Transmit data queue, 804
TransmitCommChar, 821-24

U
UngetCommChar, 824-25
UnhookWindowsHookO hook types,

256
UnhookWindowsHook, 256

I UnionRect, 524
UnlockSegment, 665
UnrealizeObject, 525
UnregisterClass, 106-7
-Update Colors, 549-51
UpdateWindow, 526 .
USER.EXE,7

1012

V
ValidateCodeSegments, 881-82
ValidateFreeSpaces, 882
ValidateRect, 526-27
ValidateRgn, 527
VGA and colors, 438, 528, 668
Viewport extent, 353
Virtual key codes, 193
Virtual keys, 191-93
VkKeyScan, 214-15,

codes,214
Voice thresholds, 743
Voices and voice queues, 742-43

W
WaitMessage, 257
WaitSoundState, 757

values, 757
Warm DDE conversation, sequence

of, 921
, WICCALLWNDPROC, 249-50

WH_GETMESSAGE, 250
WH_JOURNALPLAYBACK, 250
WH_JOURNALRECORD, 250-51
\VII_KEYBOARD, 251
WH_MSGFILTER, 251

nCode values, 251
WH_SIZE,11
Windclass structure, 4
WINDENUM.C WindProcO function

and enumeration functions,
52-53

WINDENUM.C WndProcOfunction,
31-33

WINDENUM.DEF, 31
WINDENUM.H header file for child

window enumeration, 31
WINDEXM2,14
WINDEXM2.C, 15-16
WINDEXM2.DE~' definition file,

16-17
WINDEXM2.H header file, 16
Window

attributes, changes to, 29
classes, creating new, 14-17
creation functions, 18-28
extent, ;153
styles, 17-18, 23-24

Window messages, 307-49
dialog box, 280

, summary, 308-11

WindowFromPoint, 107-8
Windows GDI, 434
Windows

books about, 937
creating, 12-28
creating, using different base

class, 12-13
import library names, 897
messages, 17,259-307,259
support functionS, 33-108
time, 850

Windows Multimedia Developer's
Kit, 741

Windows Program Manager,
creating new group inside, .

923-26
DDE commands, 922-23

Windows Software Development Kit,
163,552,775,872,883

Windows Spy program, 163
WINDOWS.H,

excerpt, 8-9
header file, 7-9
listing, 941-1002
macros, 939 '

WINDCLASS definition in, 29-30
WinExec, 665-67,

error codes, 665-66
WINEXM2.H header file, 16
WinHelp,8S9-91,

command, 889
WinMainO,l
WinProcO function, 117-18
WINSTUB,5
WM_,259 .
WM_ACTIVATE, 312
W~CACTIVATEAPP, 312
W~CASKCBFORMATNAME, 312
WM_CANCELMODE, 312
MtCCHANGECBCHAIN, 312, 722
WM_CHUlR, 194,217,313

IParam coding, 313
WrtCCHUlRTOITEM, 313
MtCCHILDACTIVATE, 313
WM_CL~,283,314

WM_CLOSE, 314
WM_COMMAND, 3, 14,314
\VM_COMPACTING, 314
WM_COMPAREITEM, 314-15
WM_COPYI.283, 315
WM_CREATE, 17, 19,315-16 .

WM_CTLCOLOR, 316
values, 316

WM:...CUT, 283, 316
WM_DDE_ACK, 929-30,

IParam low-order word flags for,
930

WM_DDE_ADVISE, 930-31,
IParam low-order word flags for,

931
WM_DDE_DATA, 931-32,

IParam low-order word flags for,
932

WM_DDE_EXECUTE, 932-33
WM_DDE_INITIATE, 933
MCDDE_POKE, 934
\VM_DDE_REQUEST, 934-35
WM_DDE_TERMINATE, 935
'Y~LDDE_UNADVISE, 935
\VM_DEADCHAR, 195,316-17

IParam coding, 317
W1LDELETEITEM, 317
\VM_DESTROY, 3, 4, 317-18
WM_DESTROYCLIPBOARD, 318,

722
W~LDEVMODECHANGE, 318
W1LDRAWCLIPBOARD, 318
WM_DRAWITEM, 117, 142,318-19
\VM_DROPFILES, 319
WM_ENABLE, 83, 319
\VM_ENDSESSION, 319
\VM_ENTERIDLE, 319
W1LERASEBKGND, 319-20
WM_FONTCHANGE, 320
WM_GETDLGCODE, 320

return flags, 320
WM_GETFONT, 320-21
\VM_GETMINMAXINFO, 17,321

point array values, 321
WM_GETTEXT, 321-22
\VM_GETTEXTLENGTH, 322
WM_HSCROLL, 148,322
\VM_HSCROLLCLIPBOARD, 322-23
WM_ICONERASEBKGND, 323
WM_INITDlALOG, 323, 554, 576
\V1CINITMENU, 323
WM_INITMENUPOPUP, 115, 323
M.CKEYDOWN, 194, 195,324

32-bit keyboard data for, 324
WM_KEYUP, 194, 195,324

32-bit keyboard data for, 324
WM_KILLFOCUS, 166,324

1013

INDEX 'Y

WM_LBUTTONDBLCLK,
164,324-25

\VM_LBUTTONDOWN, 163, 164,325
W~LLBUTTONUP, 164, 325-26
WM_MBUTTONDBLCLK, 326
WM_MBUTTONDOWN, 326
\VM_MBUTTONUP, 326-27
WM..:.MDIACTIVATE, 327, 906
WM_MDICASCADE, 327, 906
\VM_MDICREATE, 328, 906
WM_MDESTROY, 328, 906 .
WM_MDIGETACTIVE, 328
WM_MDIICONARRANGE, 329, 906
WM_MDIMAXIMIZE, 329, 906
WM_MDINEXT, 329, 906
WM_MDIRESTORE, 329, 907
WM_MDISETMENU, 330, 907
WM_MDITILE, 330, 907

flags, 330
WM_MEASUREITEM, 117, 142,

330-31
WM_MENUCHAR, 115,331
WM_MENUSELECT, 331

flags, 331
WM_MOUSEACTIVATE, 332

return codes, 332
WM_MOUSEMOVE, 164, 332
WM_MOVE, 85, 176, 333
WM_NCACTIVATE, 333
WM_NCCALCSIZE, 17, 333
W~LNCCREATE, 17, 19,333
WM_NCDESTROY, 333
WM_NCHITTEST, 163,334
\VM_NCLBUTTONDBLCLK, 334
WM_NCLBUTTONDOWN, 164,334
\VM_NCLBUTTONUP, 334'
WM_NCMBUTTONCBLCLK, 334
WlwLNCMBUTTONDOWN, 335
WM_NCMBUTTONUP, 335
WM_NCMOUSEMOVE, 163,335
\VM_NCPAINT, 123,335
WM_NCRBUTTONDBLCLK, 335

. WM_NCRBUTTONDOWN, 336
\VM_NCRBUTTONUP, 336
WM_NEXTDLGCTL, 336

settings, 336
WM_NULL, 336
WM_OTHERWINDOWCREATED,

337
WM_OTHERWINDOWDESTROYED,

337

CI

. .

WINDOWS API BIBLE

mCPAINT, 9·10, 337,351; 434·35,
typical logic, 434·35

WM_PAINTCLIPBOARD, 337·38
WM_PAINTICON, 338
mCPALETIECHANGED, 338
WM_PARENTNOTIFY, 19,338

codes, 338
WM_PASTE, 283, 339
WM_QUERYDRAGICON, 339
WM_QUERYENDSESSION, 339
WM_ QUERYNEWPALETTE, 339
WM_QUERYOPEN, 339·40
WM_QUIT, 340
WM_RBUTIONDBLCLK, 164,340
WM_RBUTIONDOWN, 163, 164,

. 340·41 .
. WM~RBUTIONUP, 164, 341

WM_RENDERALLFORMATS,
341, 722

mCRENDERFORMAT, 341
mCSETCURSOR, 163, 165,341·42
WM_SETFOCUS, 166,342
WM_SETFONT, 342
WM_SETREDRAW, 342·43
\VM_SETIEXT, 343
WM_SHOWWINDOW, 17, 343
W~CSIZE,85, 176,343·44
WM_SIZECLIPBOARD,344
mCSPOOLERSTATUS, 344 .
WM~SYSCEUtR,194,344
WM_SYSCOLORCHANGE. 345

mf_SYSCOMMAND, 345
message wParam values, 132
values, 345

WM_SYSDEADC~,346

WM_SYSKEYDOWN, 194,346
WM_SYSKEYUP, 194, 346
WM_SYSMSGFILTER, 251,

nCode values, 252
WM_TIMECHANGE, 346

. WM_TIMER, 347, 805, 847·50
WM_UNDO, 347
WM_USER, 347
WM_ VKEYTOITEM, 347·48
WM_VSCROLL, 148,348
WM_ VSCROLLCLIPBOARD, 348
WM_WININICHANGE,349 .
WNDCLASS, .

definition in WINDOWS.H, 29,
structure, 3

WndProc,2, 122, 128
WndProcO function,

creating owner·drawn menu
items, 113·14

outline of, 307
WORD, 612, 918
WParam, 11
WriteComm, 825
WritePrivateProfileString, 801·2
WriteProfileString, 802·3
WS_BORDER, 23
WS_CAPTION, 23

1014

WS_CHILD, 13
WS_ CHILDWINDOW, ·23
WS_CLIPCHILDREN, 23·
WS_CLIPSIBLINGS,23
WS_DISABLED, 23
WS_DLGFRAME, 23 .
WS_GROUP,23
WS_HSCROLL, 24
WS_ICONIC, 24
WS_MAXIMIZE, 24
WS_MAXIMIZEBOX, 24
WS_MINIMIZE, 24
WS_MINIMIZEBOX,24
WS_OVERLAPPED,24

. WS_OVERLAPPEDWINDOW,24
WS_POPUP,24
WS_POPUPWINDOW, 24

" WS_SYSMENU, 24
WS_SYSMODAL, 555
WS_TABSTOP, 24, 558
WS_THICKFRAME, 24
WS_VSCROLL,24
Wsprintf, 430·32
WsprintfO,

extra formatting codes, 431
format codes, 431

WUsage, 672
Wvsprintf, 432·33

X
XOR mask, 711

Jim Conger began programming in 1972 while studying Engineering at the
University of Southern California. He has been writing programs ever since for
a variety of computers. Most of his early work was done on mainframe com·
putersystems using FORTRAN and BASIC for process simulation work. Jim
started programming microcomputers in the early 1980s while living in Lon·
don. These projects were primarily financial models, using BASIC, Pascal and
assembly language. His first C programs were written in 198:3 while under the
CPIM operating system, and has continued using C and C++ under MS· DOS
and Windows. '

Jim's hobby of playing woodwind instruments lead to his interest in com· .
plltpr music. He is the author of two hooks on the subject, C Programmingjor MIDI (M&T Books, 1989), and MIDI
Seqw:llcil!:1 ill (' (M&T Books, 1089). Jim lives in California with his wife and two children. .

Colophon
Production for this book used desktop publishing techniques-every phase of the book involved the use of computer
technology. Never did production use traditional typesetting, stats, or photos, and virtually everything for this, book,
from the illustrations to the formatted text, was saved on disk. Only the cover painting was created in the traditional
manner.

This book was written on an IBM PC-compatible computer but Apple Macintosh computers were used for desktop
publishing. The text was written using Microsoft Word for Windows 1.1 and style sheets. The finished documents were
transferred directly to a Macintosh using MacLink Desktop version 5.0.

All book design and page formatting was done in Aldus PageMaker 4.01 for the Macintosh, using the imported
Microsoft Word, files. Adobe Postscript fonts were used. Design elements and line art work was created in Adobe
Illustrator 3.01. '

PC screen dumps were captured as .BMP files and then translated to TIFFs using Publisher's Paintbrush, by ZSoft
Corporation. The PC TIFF files were transferred directly to Macintosh on a 3.5-inch DOS disk opened under Access
PC. The TIFF files were imported into PageMaker. .

The cover was created as a traditional airbrush painting' and scanned. QuarkXpress 3.0 was used for four-color
cover type and layout. '

Final files were sent on Syquest 44 Mb removable .disk cartridges to the printer, R.R. Donnelley & Sons Co., where
they were directly imposed to film through a Macintosh IIfx and Linotronic 530 phototypesetting machine, utilizing
Adobe and Monotype fonts. Plates were then made from the film.

Computer Programming

THE WAITE GROU~

WINDOWS API BIBLE
Let this definitive reference- to all the Windows APls open your programming horizons.
With over 800 functions and messages to learn, Windows presents programmers with a
steep and complex learning curve. The Waite Group's Windows API Bible cuts through
this complexity by breaking the Windows Application Programming Interface (API) into
manageable pieces:

• Chapters are arranged by usage category; each begins with an overview
of key concepts, and is followed by detailed descriptions of every
function and message.

• More than 350 source code examples demonstrate ec;lch function in
context, including related messages, support functions, and variable
declarations.

• Examples are written in ANSI C, suitable for use with any C or C++ compiler
that supports Windows programming.

• Inside cover jump tables and a handy pocket reference card make finding
and understanding each API function a snap.

• Compatibility boxes show at a glance whether each API can be used with
W.indows versions 2, 3.0, and the new 3.1.

Beginners and experienced C and C++ programmers will find invaluable detailed
coverage of menus, scroll bars, . dialog boxes, graphics, text output, bitmaps, icons, file
input and output, character conversions, metafiles, messages, resources, memory
management, and clipboard. This thorough volume is the latest in a legacy that includes
The W~ite Group's best-selling Microsoft C Bib/e, Turbo C++ Bib/e, and the Microsoft
QuickBAS/C Bible. .
You'll find subjects typiC.dUy, not covered in other Wind9ws books including:

• Color palette control for Super VGA and IBM 8514 systems

• Communications. support for writing modem programs and accessing
external hardware such as lab equipment

• Sound support showing how Windows applications can make music using
the PC sReaker or 'add-in sound boards like the Sound Blaster

• Atom functions, for efficient storage and retrieval of character strings

• Setting hook functions, and custom painted list box and combo box
controls

• Execution profiling and debugging functions for "tuning applications"

• Advanced subjects such as Dynamic Data Exchange (DOE), Help File
support, and the Multiple Document Interface (MOl)

With the Waite Group's Windows API Bible
by your side you'll never again say

"I don't do Windows!"
Rs. 406.00 . _______________ ~ISBN 81-85623-75-9

AUTHORISED EDITION FOR SALE IN INDIA ONLY

WAITE GROUP
PRESS ':

ee

.." Gdlgotid Publicdtions pvt.ltd
5, Ansari Road, Oaryaganj New Oelhi -11 0 002

o m
CJ)

i5
z

