
The Win32. Application
Programming Interface:
An Overview

TM

SOFTWARE DEVELOPMENT KIT

The Win32™ Application Programming Interface

An Overview

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software and/
or databases described in this document are furnished under a license agreement
or nondisclosure agreement. The software and/or databases may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy
the software on any medium except as specifically allowed in the license or
nondisclosure agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or databases may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or information storage and retrieval systems, for any
purpose other than the purchaser's personal use, without the express written
permission of Microsoft Corporation.

© 1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft and MS-DOS are registered trademarks, and Win32, Windows, and
Windows NT are trademarks of Microsoft Corporation. OS/2 is a registered
trademark, and Presentation Manager is a trademark licensed to Microsoft
Corporation.

Postscript is a registered trademark of Adobe Systems, Inc.
Macintosh is a registered trademark, and TrueType is a trademark of Apple
Computer, Inc.
VMS is a registered trademark of Digital Equipment Corporation.
LaserJet is a registered trademark of Hewlett-Packard Company.
Intel is a registered trademark of Intel Corporation.
IBM is a registered trademark of International Business Machines Corporation.
UNIX is a registered trademark of UNIX Systems Laboratories.

Document No. 30214

The Microsoft Windows Graphical Environment Part

1
Since its original release in 1985, the Microsoft® Windows™ graphical environment
has become the leading graphical system for personal computers. Microsoft
Windows version 3.0, released in May 1990, was a milestone that broke the 640K
barrier of the Microsoft MS-DOS@ operating system by running applications in
protected mode, thus making it possible to develop much more sophisticated
applications. This innovation spawned myriad applications and is responsible for
the huge success of the Windows environment in the marketplace, showcased by
the volume of graphical applications sold (see Figure 1).

Market Perspective
12/91 Forecast 1 YTD 1991 2

Installed annual run application
base rate 1992 volume

Windows 3.0 7.9M 9.2M $711M
MS-DOS 96.0M 24.3M $2,148M

I
Macintosh 6.5M 1 2.2M $457M
PC UNIX 1.0M I .4M n/a
OS/2 1.2M .7M $29M

Sources: 1) IDC, October 1991; 2) Software Publishing Assoc., September 1991

Figure 1

Between May 1990 and October 1991, more than 7 million personal computer
users worldwide licensed Windows version 3.0. International Data Corporation
estimates that an additional 9.2 million users will adopt it during 1992. In
addition, more than 70,000 Microsoft Windows version 3.0 Software Develop-

2 The Win32 Application Programming Interface

ment Kits (SD Ks) have been shipped, a clear indication of the number of
applications likely to appear during the next 12 to 18 months. By fall 1991,
more than 5000 Windows-based applications were shipping.

Building on this achievement and on the success of independent software develop
ers, Microsoft is extending and expanding the Windows environment so that
Windows-based applications can run on a broad range of computing platforms
from battery-operated portables to high-end RISC workstations and multiprocessor
servers.

We are expanding Windows to make it fully 32 bit and are adding additional
operating system services. Microsoft Windows for Pen Computing and Microsoft
Windows with Multimedia Extensions will also take advantage of new hardware
technologies.

Windows Today
Today many people think of Windows as a graphical add-on to the familiar
MS-DOS operating system they have used for years. This perception took much of
the fear out of upgrading to Windows for the end user, but, in fact, Windows is not
limited by MS-DOS.

Windows is a complete operating system that provides extra features on top of
MS-DOS and replaces certain MS-DOS features. Windows version 3.0 does not use
MS-DOS screen or keyboard I/O, does not use MS-DOS memory management, and
can even bypass MS-DOS file I/O with new Windows-specific device drivers.
Windows version 3.0 Enhanced mode can handle 32-bit device drivers that are not
limited by the infamous 640K MS-DOS barrier. These drivers talk through Win
dows to applications that are also not limited by the constraints of MS-DOS.

Because Windows works with MS-DOS, the value added by the MS-DOS long life
span (in computer years) is preserved. Windows can run with MS-DOS TSRs and
with MS-DOS device drivers, and, of course, it can run MS-DOS applications.
Future versions of Windows will continue to be available on MS-DOS.

The Windows Architecture
Since the IBM@ personal computer was introduced in 1981, personal computers
have become much more diverse in capability and in configuration. This diversity
will increase in the next few years as personal computers based on RISC processors
and multiprocessor systems are introduced.

An Overview 3

These diverse systems have different operating system needs. For example, a
battery-operated portable requires minimal memory and hard disk footprint to
minimize weight and cost. It also requires power management to extend battery
life. In contrast, network servers and mission-critical desktops require sophisticated
security to ensure the integrity of data. Easy migration to RISC-based systems
requires portability for both the operating system and the applications.

Some vendors feel that the diverse range of hardware requires totally different
operating systems with incompatible applications. They sell different operating
systems for personal computers, workstations, servers, and, in the future, pen-based
systems. Each of their operating systems requires unique, incompatible applica
tions. Connectivity between these divergent platforms is complicated.

Microsoft is focused on a much simpler solution. We're extending Windows into
multiple, fully compatible implementations. Different implementations of Windows
will be optimized for different classes of hardware. Customer investment in
development for Windows and applications for Windows will be protected.
Applications for Windows will run across the spectrum of hardware, from notepad
sized pen systems to mission-critical desktops to multiprocessor and RISC-based
workstations.

Microsoft Windows is evolving into a complete operating system architecture that
addresses diverse requirements by supporting different modes of operation. Today
Windows has three modes: Real, Standard, and Enhanced. Real mode provides
compatibility with previous versions of Microsoft Windows. Standard mode is
optimized for an 80286 processor and provides access to the full 16 MB of memory
supported by that chip. Enhanced mode takes advantage of the 80386 and 80486
processors by providing support for multiple simultaneous MS-DOS applications
and, through a technique called demand paging, provides applications with access
to more memory than is physically present in the machine. All three modes support
both MS-DOS and Windows applications.

Building on the success of Windows version 3.0, Microsoft will introduce Windows
version 3.1 in early 1992. Windows version 3.1 incorporates significant customer
feedback. It includes TrueType™, an advanced scalable fonts technology; it
improves performance, introduces a newly designed file manager, improves
network connectivity, and improves system reliability. Windows version 3.1 will
support Windows Standard mode and Enhanced mode.

Microsoft has also enhanced Windows Standard mode and Enhanced mode by
providing extensions for sound, animation, and CD-ROM access, called Windows

4 The Win32 Application Programming Interface

Windows NT

with Multimedia Extensions. In early 1992 we will release an operating environ
ment for clipboard and pen-style computing, called Microsoft Windows for Pen
Computing.

In 1992, Microsoft will introduce a new product called Windows NT™ (New
Technology). Windows NT is built on a 32-bit operating system kernel. Windows
NT will deliver an extremely robust client environment for mission-critical
applications, a high-end desktop platform, and a portable, scalable server environ
ment (see Figure 2). Windows NT will also transform Windows into a Microsoft
LAN Manager server platform, thus adding a fourth server platform to the three
that LAN Manager currently supports: OS/2®, UNIX@, and VMS®.

Entry
Systems

Figure 2

Windows:
Scalable and Evolutionary

Mainstream
Desktops & Portables

~

Workstations
& Servers

Single User Interface
Single Programming Model

Windows NT does not require MS-DOS. It is, however, compatible with the large
installed base of MS-DOS and Windows applications. In addition to providing
compatibility with these existing applications, Windows NT includes the features
required to meet the needs of the high-end desktop and server marketplace in the
1990s and beyond.

To support large server applications, Windows NT provides symmetric multipro
cessor support, with threads symmetrically distributed among processors. This
design provides maximum utilization of each processor in a multiprocessor system
and simplifies the development of multiprocessor applications.

An Overview 5

Network servers and many mission-critical applications require security. To meet
this need, Windows NT has been designed as a secure operating system. Microsoft
is working with the U.S. government to certify Windows NT as "C2-level" secure.
In addition, the internal design of Windows NT can be enhanced in future releases
to "B-level" security.

Windows NT is a key component of the Advanced Computing Environment (ACE)
initiative announced in April 1991 by Microsoft, Compaq Computer Corporation,
Digital Equipment Corporation, MIPS Computer Systems, The Santa Cruz Opera
tion, and others. It now includes more than 200 members.

The goal of the ACE initiative is to provide an open, standards-based advanced
computing environment for microprocessor-based systems as they become increas
ingly powerful. The ACE initiative provides full support for two platforms: 386/
486-based PCs and MIPS RISC-based systems. As a portable operating system that
spans both of these environments, Windows NT is a crucial element of the ACE
standard. With Windows NT, existing MS-DOS and Windows programs will run
unchanged on MIPS-based computers.

In addition to these advanced capabilities, the kernel-based design of Windows NT
can be thought of as a nucleus that is compatible with different operating system
environments. It exposes the Win32 API that is designed to support both client and
server applications. In addition, the kernel design provides Windows NT compat
ibility with MS-DOS and Windows applications. It also provides the foundation for
Windows NT to support OS/2 and POSIX subsystems, both of which are under
development at Microsoft and will be available as add-on products.

The Win32 API
Developers and end users have made enormous investments in programming for
Windows and applications for Windows. Most of these applications have been
developed to run on both the 16-bit 80286 processor and the 32-bit 80386 and
80486 systems. Although highly capable, programs written to the Windows
versions 3.0 and 3.1 16-bit API are constrained by the memory limits inherent in a
16-bit architecture. Code must be divided into segments that cannot exceed 64K,
which makes programming more difficult. Also, 32-bit code lets applications take
full advantage of high-performance 80486 and RISC-based systems.

The Win32 API has been designed to make the transition from the Windows 16-bit
API to 32 bit as easy as possible. Only minimal changes have been made to the
syntax of the Win32 APL The API names are the same as those in Windows
versions 3.0 and 3.1. The semantics and the message order are identical. In fact, it

6 The Win32 Application Programming Interface

is possible to keep a single source code base and compile that source code into both
16-bit and 32-bit programs. The changes that are necessary are detailed in Part 2,
"Portable Programming Considerations for Win32 Operating Systems."

Although the Win32 API is extremely compatible with the Windows 16-bit API, it
also contains significant new features. These features include preemptively
multitasked processes that use separate address spaces, preemptive threads,
semaphores, named shared memory, named pipes, mailslots, and memory-mapped
file I/O. Graphic device interface (GDI) improvements include Bezier curves,
paths, and transforms.

The Win32 API will be fully supported in both MS-DOS Windows and Windows
NT. The Win32 API will first be available in the Windows NT product during
1992. It will be added to MS-DOS Windows in 1993. Programs that are written to
the Win32 API will have the same executable run on both Windows NT and MS
DOS Windows. All Win32 features will be supported by both MS-DOS Windows
and Windows NT, including preemptive multitasking. Win32 programs will be
fully source compatible between x86 and MIPS processors. SDKs for the Win32
API have been available to a select set of software developers since October 1991.
SDKs will be generally available in the first half of 1992.

In addition, Microsoft Languages is developing a Windows extender product that
will allow the creation of a 32-bit application that will run on both Windows
version 3.1 and Windows NT. It does this by implementing a compatible subset of
the Win32 API on Windows version 3.1. This product will provide a 32-bit
programming environment for all Windows version 3.1 features but will not
include advanced capabilities present in the full Win32 API such as preemptive
multitasking. Additional information on this product will be released during the
first half of 1992.

The following sections highlight some key features of the Win32 APL

Kernel: The Base Operating System
The Win32 API on both Windows NT and MS-DOS Windows provides preemptive,
thread-based multitasking. It also runs all Win32 and MS-DOS applications in separate
address spaces so that they cannot corrupt one another or the operating system.

The Win32 API is designed to be portable beyond the 80386 and 80486 processors
and in particular to be portable to RISC architectures. All these processors have
different features but have in common 32-bit addressing and paged virtual memory
architectures. Paged virtual memory is more efficient to implement and executes

An Overview 7

faster than segmented virtual memory. Memory management in Win32 is secure
because the operating system places different memory objects in different pages of
memory and allows an application to control access permissions (read, write, read
write, execute) to memory objects.

Win32 provides an API to allow an application to map files into its address space.
Data within the file can then be accessed using simpler memory read-write instruc
tions rather than 1/0 system functions such as rewind and seek. In addition, the
operating system can conveniently and efficiently optimize file 1/0 done in this
manner because of the large 32-bit address space available. The operating system,
through page faulting, can detect read access to a file and bring in that data. It can
detect when a shared file is written to and then write out that data. With process
configurable access permissions and sparse allocation of physical memory pages,
processes can implement very efficient data access, even when access patterns are
entirely unpredictable.

GDI Improvements: Beziers, Paths, Transforms
GDI, the drawing API for Windows versions 3.0 and 3.1, provides a useful device
independent drawing set for applications. As output devices have become more
sophisticated, so have drawing needs; hence, GDI has been improved.

Some applications for Windows versions 3.0 and 3.1 have needed to implement
high-level graphics functions using the low-level drawing primitives of the Win
dows environment. Although this capability has provided application vendors
flexibility in extending the Windows GDI, it has not allowed them to take seamless
advantage of advances in printer and display technology. Application developers
have had to code their own algorithms for displaying graphics such as Bezier
curves and paths. With the Win32 API, developers can call new high-level graphics
features that will take advantage of the built-in drawing capabilities in advanced
output hardware. Under Win32, displaying Bezier curves can be handled by the
graphics engine or by output devices that have implemented Bezier optimizations.

The Win32 GDI is a complete and general-purpose drawing package. Bezier curves
are a curve primitive from which a straight line can also be derived. This function
combined with the PolyBezier functionality makes it possible to draw any combi
nation of continuous lines and curves.

Win32 also adds a Path API, making it easy for an application to manage multiple
shapes efficiently. These shapes can consist of an arbitrary combination of lines,
arcs, ellipses, and Bezier curves. A path is started by calling BeginPath. Subse
quent calls to drawing primitives define the shape and size of the path. A call to

8 The Win32 Application Programming Interface

EndPath closes the path. Applications can then draw, clip through, fill, and
transform these defined shapes.

The Win32 Transform API maps the virtual two-dimensional surface on which
you draw to the two-dimensional output surface. This API, combined with the
TrueType font technology first available with Windows version 3.1, makes it
possible to draw truly device-independent graphics that the system can map to the
display surface, including the rotation of bitmaps, fonts, and metafiles.

The Windowing System and System Classes
The most significant change to the Windows windowing system is the
desynchronization of the per-window message queue from the system message
queue. This change prevents errant, looping applications that stop processing their
messages from blocking the computer system's entire user interface and thus
making other applications unavailable.

Desynchronization means that users can work with other programs while one
application is busy. For example, if a word processing program is busy printing a
100-page document, a user can click another application's window or bring up the
Task Manager to begin working in another application. This effectively minimizes
the time the user waits with an hourglass on the screen.

The desynchronization of the message queue is completely compatible with the
Windows versions 3.0 and 3.1 message models. The message ordering is the same. If
WM_xyz came after WM_abc, it still does. This compatibility is necessary because, in
Win32 systems, existing applications for Windows run on top of the Win32 message
system. The messages are simply copied from the 32-bit stack to the 16-bit stack and
passed to the application; therefore, message order cannot change.

Networking Extensions
Each time the Windows API is extended to further standardize a particular area, it
becomes easier to write significant new applications. Because of the variety of
networking layers, ranging from network card interfaces and protocol stacks to the
wide array of network interprocess communication (IPC) mechanisms, networking
is probably the most confusing interface for developers today. Win32 will include a
standard set of network APis that can replace those that network providers have
previously needed to supply. Win32 will expose driver-style interfaces similar to
the WinNet API provided by Windows version 3.0 so that third-party vendors can
plug their network services into the Windows open architecture.

An Overview 9

Some of the new, 32-bit network APis being defined are file, print, named pipes,
mailslots, server browsing, and machine configuration. This means applications can
rely on a consistent programming interface regardless of the underlying network.
Even if a network is not present, the APis are still available and will return appro
priate error codes.

The Win32 API includes peer-to-peer named pipes, mailslots, and APis to enable
remote procedure call (RPC) compilers. With Win32, a mail-server vendor can
build a messaging service on named pipes and asynchronous communication that
will run on top of any network operating system, protocol stack, or network card
each of which could come from a different network vendor.

Compatibility with the Windows 16-Bit API
Applications for Windows versions 3.0 and 3.1 will run on MS-DOS Windows and
Windows NT. To be compatible with Windows versions 3.0 and 3.1, all 16-bit
applications for Windows will run as one process in one address space. They will
be nonpreemptive with respect to one another but preemptive with respect to the
rest of the system, which mirrors their behavior under Windows versions 3.0 and
3.1 Enhanced mode. Applications for Windows run against the Win32 API without
a "layer" and without any state mapping or message reordering.

Windows executables will also run on RISC-based Windows NT machines (see
Figure 3). Excellent performance is expected on this platform because, although
some code will be run against 80286 emulation technology, all Windows calls will
be mapped directly to Windows NT calls and executed as native 32-bit instructions.

Windows Platforms
Windows 16

MS DOS >-----~
Win32

Applications

Hardware

+ MS DOS Windows + Windows NT
+Windows NT

Figure 3

10 The Win32 Application Programming Interface

The Future of Windows
Millions of people are actively using Windows version 3.0 today. Corporations and
independent software vendors are making major investments in Windows and
applications for Windows.

To protect this investment, Microsoft is evolving Windows into a complete
architecture. Through separate implementations, Microsoft Windows will run on
vastly different types of hardware, from pen-based notepad computers to multipro
cessor and RISC systems.

Windows NT and future versions of MS-DOS Windows will support the Win32
APL Designed to simplify migration of applications for Windows from 16 bit to 32
bit, this API will also make it easy to develop new Win32 applications. It contains
significant new features that will enable a new generation of more powerful
applications for Windows.

In addition, the Win32 API will be used as the foundation for future versions of
Windows under development at Microsoft. This technology, often called informa
tion at your fingertips, will make it even easier to use personal computers and will
again provide significant new functionality to Windows users.

Portable Programming Considerations
for Win32 Operating Systems

Part

2
The first beta Win32 Software Development Kit for Windows NT will be available
soon. Developers can update application source code to take advantage of new
Windows version 3.1 features, make changes that will result in a robust application
for Windows version 3.1, and prepare the application for transition into the full 32-
bit environment provided by the Win32 APL This section is not a call to start
creating 32-bit source code but rather a highlight of the changes that will benefit
updating application source code for Windows version 3.1 and Win32.

Goals of the Microsoft Win32 API
The creation of the Win32 API focused on six goals:

1. Provide a 32-bit migration path for existing Windows-based applications.

2. Make porting a Windows-based application to Win32 as easy as possible.

3. Create an efficient mapping layer to run Windows version 3.x binaries on
Win32 systems.

4. Support a single source code base for creating Windows version 3.x and Win32
binaries.

5. Offer an identical Win32 API on both Windows NT and a future release of
MS-DOS Windows.

6. Add a new API for advanced operating system features such as preemptive
multitasking, IPC mechanisms, sophisticated memory management, and
graphics capabilities while maintaining compatibility by simply widening the
existing Windows APL

To achieve these goals, Microsoft derived the Win32 API from the existing
Windows version 3.1 API, disallowing arbitrary name changes of data types,

12 The Win32 Application Programming Interface

functions, and structures. At first glance, an application for Win32 is indistinguish
able from an existing application for Windows version 3 .0 or 3 .1 (hereafter referred
to as Windows version 3.x), both from a user's perspective and from a quick
inspection of the source code. A native application for Win32 (unlike its cousin,
which uses the Windows version 3.x API) can take full advantage of large linear
memory allocation, multiple threads for background tasks and calculations, local
and remote IPC via named pipes, and other features detailed in Part 1, "The
Microsoft Windows Graphical Environment."

The Win32 API first appears in Windows NT for uniprocessor and multiprocessor
80386 and 80486 systems and for new RISC-based systems. A future version of
MS-DOS Windows will also support the Win32 APL All Win32 features are
supported by both Windows NT and the future release of MS-DOS Windows,
including linear address space, threads, and preemptive multitasking. Win32-based
applications running on MS-DOS Windows or Windows NT will be binary
compatible with Intel@ 80386 and 80486 processors and source compatible with
Windows NT running on RISC processors.

This section concentrates on two aspects of Windows application portability:

Steps that developers can take today while working on Windows version 3.1
applications to better support binary compatibility of these applications on
Windows NT

Techniques that developers can use to create Windows code that is more
portable and t..11at vvill make it easier to create V/in32 versions of the applica
tion when the Win32 Software Development Kit for Windows NT is available

Binary Compatibility
Win32 systems will be able to run existing Windows version 3.x applications with
interoperability by means of dynamic data exchange (DDE), object linking and
embedding (OLE), metafiles, and the Clipboard with other Windows version 3.x
applications and with native Win32 applications. Applications for Windows version
3.x and applications for Win32 will exist side by side on the same display rather
than running in separate screen groups. Applications for Windows version 3.x will
be fully compatible with Windows NT if developers follow these rules:

Ensure that Windows version 3.x applications run in Standard/Enhanced mode.

Use published Windows version 3.x APis, messages, and structures.

An Overview 13

Do not modify WIN.IN! directly; use a profile string API (for example,
WriteProfileString).

Use QUERYESCSUPPORT to determine whether particular printer driver
escapes are implemented.

The ability to run Windows version 3.x binaries on Windows NT is not restricted to
80386 and 80486 systems; these binaries will also run on RISC-based Windows NT
systems. This is accomplished with a very high-performance PC emulator and the
same efficient mapping layer technology used to seamlessly integrate applications
for Windows version 3.x on Windows NT systems running on 80386 and 80486
systems.

Design Requirements
Mapping-layer technology has been offered in the past to allow Windows-based
applications to run on OS/2. Past solutions such as Microsoft Windows Libraries for
OS/2 (WLO) required special run-time libraries and DLLs before Windows-based
applications could run on OS/2. ISVs must ship WLO mapping-layer DLLs along
with their applications, which complicates distributing and installing the product.
This approach is unacceptable on Win32 systems.

To achieve binary compatibility and high performance on Win32 systems, develop
ers of applications for Windows version 3.x do not need to recompile the source
code, use special run-time libraries, or develop or acquire special tools to make
executables compatible.

The ability to run Windows version 3.x binaries allows a user to update to Win32
systems and continue to use existing applications for Windows version 3.x as well
as native Win32 applications as they become available. This protects investments
in existing applications for Windows version 3.x and allows users to update to new
Win32 applications as they are released. Native Win32 applications will take
advantage of the higher performance, linear 32-bit addressing and enormous
capacity increase for data processing.

Microsoft will encourage Windows developers to test their current products for
Windows version 3 .x on prerelease versions of Windows NT by means of a
Windows NT beta test program to assure that binary compatibility is thorough and
efficient.

14 The Win32 Application Programming Interface

Supported Features
The following is a list of the many Windows version 3.x features supported on
Win32 systems. It shows that existing applications for Windows can be binary
compatible with future Win32 systems with little work on the part of developers. It
also illustrates that complex windowing, graphics, and low-level operating system
reliance by Windows version 3.x binaries will be completely supported.

Examples of major user interface features that are fully supported (no modifications
needed) include:

Multiple document interface messages and default message handling

• Resource files (for example, dialog boxes, menus, accelerator tables, and user
defined resources)

• DDE messages and the DDE manager library (DDEML) API

Windows-compatible OLE

Metafiles

Clipboard data exchange

Major graphical interface features that are fully supported include:

TrueType and TrueType APls

Windows version 3.x icons and cursors in existing format

Bitmaps (BMPs) and device-independent bitmaps (DIBs)

Printing by means of native Win32 printer drivers

Base system functionality includes support for:

Shared memory for IPC

NetBIOS and Microsoft LAN Manager for MS-DOS named pipe support

MS-DOS version 5.0 interfaces (called with DOS3Call or INT21)

An Overview 15

Methods to Achieve Binary Compatibility
The Win32 API will employ a registration database that will maintain all system
and application configuration information. Files such as WIN.IN! will no longer
exist in the file system; instead, calls to the profile API (for example,
GetProfileString) will be routed to the database. Therefore, applications should
not attempt to create or modify *.INI files directly by means of file 1/0. The
Windows version 3.x profile APis should be used to manipulate all profile informa
tion. Installation programs that create private installation files should be modified
to use the profile API or the Windows version 3.1 registration database APL

Windows NT includes a set of printer drivers similar to those in Windows version
3.x. This has been accomplished by sharing printer minidrivers. However, Windows
NT also includes native Win32 printer drivers to take advantage of high-end
printing capabilities present on such devices as PostScript@ printers. Windows
based applications should always use QUERYESCSUPPORT before using any
extended printer driver escape. Applications should not assume that printer drivers
of a certain class (LaserJet® or PostScript, for example) are guaranteed to provide
specific driver escapes. Querying for support guarantees that an application will not
be affected by subsequent Windows version 3.x or Win32 printer driver updates.

Applications must be compatible with Windows version 3.x Standard or Enhanced
mode. Win32 systems will not support Windows Real mode. Applications should
use only published Windows version 3.x APis, messages, and structures.

Portable Coding Techniques
With the release of Windows version 3 .1, many applications are being updated to
add support for features such as OLE and to take advantage of TrueType. Because
programmers are already scrutinizing their applications' sources, now is a
convenient time to prepare the code for the future: a future that offers a 32-bit
environment with powerful new features.

This discussion concentrates on the important issues that affect porting existing
Windows source code to Win32. Although this list may seem long and detailed,
all the recommendations are useful for creating robust Windows version 3.1
applications. In addition, applications will be more portable, and creating native
Win32 applications will be easier when the Win32 Software Development Kit for
Windows NT is available.

To assist in creating portable source code, the Win32 SDK will provide tools to
automate the process. One tool is an editor with a table-driven search capability
that can be used to search source code for APis, messages, and certain C con-

16 The Win32 Application Programming Interface

structs that are nonportable. Once an item is found, the code is highlighted for
review. Online help is available to assist in modifying source code.

Source Code Rules
The following rules apply when writing portable Windows version 3.x or 32-bit
source code:

Parse wParam and lParam immediately in WndProc routines.

Use portable API forms (for example, MoveToEx instead of Move To).

• NULL is a valid return value from GetFocus and GetActiveWindow.

• Use FindWindow (or IPC) instead of hPrevlnstance to find other running
instances.

GlobalLock and malloc will not return 64K aligned pointers.

Use Windows version 3.x DIB functions to initialize color bitmaps.

Do not use GetlnstanceData; replace with supported IPC mechanism.

• Do not share GDI object handles (for example, pens and bitmaps) between
processes.

Compile warning level -W2 or higher (-W3 recommended).

Create function prototypes for all functions.

Review structure member alignment and data types.

Remove hard-coded buffer sizes (for example, filenames and paths).

Do not extract private copies of WINDOWS.H definitions.

Use unique typdefs (HPEN, HWND, not generic types such as HANDLE or
int).

Use portable integer typdefs (UINT, WORD).

An Overview 17

A Brief Look at Win32
If you start with Windows version 3.x source code, creating a native application for
Win32 using the Win32 API is straightforward and requires minimal source
changes. In general, the Win32 API simply involves widening parameters and
return values to 32 bits. Over the course of a few months, a Windows NT develop
ment team ported a range of Windows version 3.x source code to Win32, including
the complete Windows version 3.0 and beta 3.1 SDK sample code and relatively
complex Windows version 3.1 applets-Program Manager, File Manager, Cardfile,
and so on. This porting effort validated the design of the Win32 API and proved
that creating applications for Win32 quickly from Windows version 3.x sources is
possible. The Windows SDK samples and system applet source code were modified
to be fully portable, allowing Windows version 3.1 and Win32 binaries to be
created from the same code base.

The Windows version 3.1 system applets contain more than 100,000 lines of source
code. File Manager contains approximately 20,000 lines of code; yet within one
day, it was compiling as a native Win32 application. Within a week, File Manager
could execute and display directory listings. Changes included recoding several
assembler routines in C so that the sources can be compiled for both x86 and RISC
processors. Few changes to the original Windows version 3.x C code were required,
which is indicated by the short time needed to create a functional, portable version
of File Manager.

An important porting factor is that Windows version 3.x resource files containing
menus, dialog boxes, icons, accelerator tables, and so on are directly compatible
with the 32-bit resource compiler. You need not modify the resource files for
Win32: This is not surprising because the resource file is simply a script with no
information that is 32-bit sensitive.

Win32 Sample Source Code
The following code fragment is from the Windows version 3.0 SDK sample,
GENERIC. Only one minor change to the entire GENERIC sample is required; the
fragment builds completely as either a Windows version 3.x or Win32 binary.
Although the GENERIC sample is not particularly sophisticated, it does contain a
menu and a dialog box, indicating that more complex Windows functionality is
easily supported.

If we look at the code fragment through the eyes of Win32, we see a true 32-bit
application. Function parameters, pointers, and structure members are all widened
from 16 to 32 bits. This widening is accomplished "under the covers" by means of

18 The Win32 Application Programming Interface

typedefs in WINDOWS.H (Win32 version). For example, the typedef LPSTR is a
linear 32-bit pointer. The variable hlnst is defined as a 32-bit HANDLE. The
window handle, HWND, returned by Create Window, is a 32-bit window handle.
The window class structure contains 32-bit handles to icons, 32-bit linear pointers
to string constants, and a 32-bit stock brush handle.

Generic Sample Application from Windows Version 3.0 SOK
#include "windows.h"
#include "generic.h"

/* required for all Windows applications*/
/* specific to this program */

HANDLE hinst; /* current instance */

int PASCAL WinMain(hinstance, hPrevinstance, lpOndLine, nCmdShow)
HANDLE hinstance; /* current instance */
HANDLE hPrevinstance;
LPSTR lpOndLine;
int nCmdShow;

/*previous instance */
/* command line */
/* show-window type (open/icon) */

MSG msg; /*message */
if (!hPrevinstance) /*Other instances of app running?*/

if (!InitApplication(hinstance)) /*Initialize shared things*/
return (FALSE); /*Exits if unable to initialize */

/* Perform initializations that apply to a specific instance */

if (!Initinstance(hinstance, nCmdShow))
return (FALSE);

/* Acquire and dispatch messages until a WM_QUIT message is received. */

while (GetMessage(&msg,
NULL,
NULL,
NULL))

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return (msg.wParam);

/* message structure */
/* handle of window receiving message */
/* lowest message to examine */
/* highest message to examine */

/* Translates virtual key codes */
/* Dispatches message to window */

/* Returns the value from PostQuitMessage */

BOOL InitApplication(hinstance)
HANDLE hinstance /* current instance */

WNDCLASS we;

/* Fill in window class structure with parameters that describe the */
/*main window. */

An Overview

we.style = NULL; /*Class style(s). */
wc.lpfnWndProc = MainWndProc; /* Function to retrieve messages for */

/*windows of this class. */
wc.cbClsExtra = O;
wc.cbWndExtra = O;
wc.hinstance = hinstance;
wc.hicon = Loadicon(NULL,

/* No per-class extra data. */
/*No per-window extra data. */
/* Application that owns the class. */

IDI_APPLICATION) ;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITF~BRUSH);

19

wc.lpszMenuName = "GenericMenu";/* Name of menu resource in .RC file. */

wc.lpszClassName = "Generi.cWClass"; /*Name used in call to CreateWindow. */

/* Register the window class and return success/failure code. */
return (RegisterClass(&wc));

BOOL Initinstance(hinstance, nCmdShow)
HANDLE hinstance; /* Current instance identifier. */
int nCmdShow; /* Param for first ShowWindow()call.*/

HWND hWnd; /* Main window handle. */

/* Save the instance handle in static variable, which will be used in */
/*many subsequent calls from this application to Windows. */

hinst = hinstance;

/* Create a main window for this application instance. */
hWnd = CreateWindow(

"GenericWClass", /* See RegisterClass () call. *I
"Generic Sample Application", /* Text for window title bar. *I
WS_OVERLAPPEDWINDOW /* Window style. */
CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */
CW_USEDEFAULT, /* Default width. */
CW_USEDEFAULT, /* Default height. */
NULL, /* Overlapped windows have no parent.
NULL, /* Use the window class menu.
hinstance, /* This instance owns this window.
NULL /* Pointer not needed.

) ;

/* If window could not be created, return "failure" */
if (!hWnd)

return (FALSE);

*/
*/

*/
*/

/*Make the window visible; update its client area; and return "success" */
ShowWindow(hWnd, nCmdShow); /* Show the window */
UpdateWindow(hWnd);
return (TRUE) ;

/* Sends WM_PAINT message */
/* Returns the value from PostQuitMessage */

20 The Win32 Application Programming Interface

User Interface Code
This section details portability issues in user interface code. It includes issues
related to message parameter packing, window and class extra words, profile string
use, and localized input.

Message Parameter Packing
With the widening of handles to 32 bits, both wParam and lParam (the additional
message parameters) must be 32 bits wide. If, in applications for Windows version
3 .x, a handle and another value were packed into the high and low 16 bits of
lParam, widening to 32 bits requires repacking. A 32-bit handle occupies lParam
completely, requiring the previously packed second parameter to be moved to
wParam. Several messages have been affected by handle widening, including
WM_ COMMAND:

WM_ COMMAND

Win 3.x:
wParam
lParam

Win32:

window id
hwnd, command

wParam == window id, command
lParam == hwnd

The WM_ COMMAND window id and command parameters remain 16-bit values
in Win32 and can therefore be packed in the widened 32-bit wParam. The 32-bit
hwnd value is now fully contained in lParam. Therefore, the notification code has
been moved from the high word of lParam to the high word of wParam.

Code that tests for a message identifier should be modified:

Existing code:

switch (message)

case WM_COMMAND:
switch (wParam)

case ID_OK:

Portable code:

switch (message)

case WM_COMMAND:
switch (LOWORD(wParam))

case ID_OK:

An Overview 21

In this case, the change can be made portably and continue to compile for either
Windows version 3.x or Win32. LOWORD(wParam) extracts the correct low
order 16-bit message identifier in Windows version 3.x and Win32.

In extracting window handles from the WM_ COMMAND message parameters,
existing Windows code often uses constructs such as the following:

hwnd = LOWORD(lParam);
notification= HIWORD(lParam);

The portable method for extracting a window handle from the WM_ COMMAND
lParam is as follows:

hwnd = (HWND) (UINT) lParam;

UINT is a new data type discussed below. UINT casts lParam to a 16-bit value in
Windows version 3.x (extracting the window handle) and a 32-bit value in Win32.

Handling the extraction of the WM_ COMMAND notification code portably
requires explicit coding:

#ifdef WIN32
notification HIWORD(lParam);

#else
notification HIWORD(wParam);

#endif

To minimize the effect of parameter packing differences, a set of macros that parse
message parameters has been created. In this way, you can compile source code
either as an application for Windows version 3.x or as an application for Win32
without unique message-handling code or C compiler #ifdef directives. Some
programmers prefer macros; others prefer #ifdef statements. You can use both

22 The Win32 Application Programming Interface

Summary

methods to create portable code. Examples of macros used to parse
WM_ COMMAND information are as follows:

GET_WM_COMMAND_ID (wParam, lParam) //Parse control ID value
GET_WM_COMMAND_HWND(wParam, lParam) //Parse control HWND
GET_WM_COMMAND_CMD (wParam, lParam) //Parse notification command

The underlying macro definitions are Windows version 3.x and Win32-specific,
parsing the information from wParam or !Param as appropriate for each implemen
tation. The important point is that you can easily create readable source code that
can be compiled for Windows version 3.x or Win32.

For messages that have changed their packing, extract the wParamllParam infor
mation immediately upon handling the message. Use local variables to hold this
information, and refer to the data using these variables-not by means of continued
references but by means of wParam or lParam manipulations. Pass values extracted
from wParam and lParam, not the wParam or lParam itself, to worker routines.

LOWORD and HIWORD are always suspect; verify each (search for them in an
editor). Locating each occurrence will quickly highlight nonportable code. Study
the target data type of these macros and the data type receiving the result.

You can use casts and/or macros to handle many porting issues.

Fortunately, there are few message differences, and most of the affected messages
are used infrequently:

MESSAGE

Win 3.x: (Existing form)
wParam: 16-bits
lParam: Least Significant 16-bits, Most Significant 16-bits

Win32: (Widened form)
wParam: Least Significant 16-bits, Most Significant 16-bits
lParam: 32-bits

The following list can be used for quick reference. Similar approaches in handling
packing differences with each message can be used as discussed for
WM_ COMMAND in the text above.

WM_ACTIV ATE

Win 3.x:
wParam: state
lParam: fMinimized, hwnd

Win32:
wParam: state, fMinimized
lParam: hwnd

WM_CHARTOITEM

Win 3.x:
wParam: char
lParam: pos, hwnd

Win32:
wParam: char, pos
lParam: hwnd

WM_ COMMAND

Win 3.x:
wParam: id
lParam: hwnd, cmd

Win32:
wParam: id, cmd
lParam: hwnd

WM_CTLCOLOR

Win 3.x:
wParam: hdc
lParam: hwnd, type

Win32:
WM_CTLCOLORBTN
WM_CTLCOLORDLG
WM_CTLCOLORLISTBOX
WM_CTLCOLORMSGBOX
WM_CTLCOLORSCROLLBAR
WM_CTLCOLORSTATIC
WM_CTLCOLOREDIT

wParam: hdc
lParam: hwnd

An Overview 23

24 The Win32 Application Programming Interface

Note: Porting WM_CTLCOLOR requires handling the specific control class color
message. Portable code should use #ifdef directives to handle this difference.

WM_MENUSELECT

Win3.x:
wParam: cmd
lParam: flags, hMenu

Win32:
wParam: cmd, flags
lParam: hMenu

WM_MDIACTIVATE (when message is sent to the MDI client window)

No change.

WM_MDIACTIVATE (when client window sends message to MDI child)

Win3.x:
wParam: fActivate
lParam: hwndDeactivate, hwndActivate

Win32:
wParam: hwndActivate
lParam: hwndDeactivate

WM_MDISETMENU

Win3.x:
wParam: 0
lParam: hMenuFrame, hMenuWindow

Win32:
wParam: hMenuFrame
lParam: hMenuWindow

WM_MENUCHAR

Win3.x:
wParam: char
lParam: hMenu, fMenu

Win32:
wParam: char, fMenu
lParam: hMenu

WM_PARENTNOTIFY (also has two cases)

Win 3.x case #1:
wParam: msg
lParam: id, hwndChild

Win32 case #1:
wParam: msg, id
lParam: hwndChild

Win 3.x case #2:
wParam: msg
lParam: x, y

Win32 case #2:
wParam: msg
lParam: x, y

WM_ VKEYTOITEM

Win 3.x:
wParam: code
lParam item, hwnd

Win32:
wParam: code, item
lParam: hwnd

EM_GETSEL

Win 3.x:
returns (wStart, wEnd)
wParam: NULL
lParam: NULL

Win32:
returns (wStart, wEnd)
wParam: lpdwStart or NULL
lParam: lpdwEnd or NULL

An Overview 25

26 The Win32 Application Programming Interface

EM_LINESCROLL

Win 3.x:
wParam: 0
lParam: nLinesVert, nLinesHorz

Win32:
wParam: nLincsHorz
lParam: nLinesVert

EM_SETSEL

Win3.x:
wParam: 0
lParam: wStart, wEnd

Win32:
wParam: wStart
lParam: wEnd

WM_HSCROLL:

WM_ VSCROLL:

Win3.x:
wParam: code
lParam: pos, hwnd

Win32:
wParam: code, pos
lParam: hwnd

Window and Class Extra Words
The following APis have nonportable implementations:

GetClass Word
Get Window Word
SetClass Word
SetWindowWord

These APis have two uses: to manipulate system information and to manipulate
user-defined data. System data is modified by index values. The portability
problem is that these APis manipulate 16-bit data, but the data may need to widen

An Overview 27

to 32 bit on Win32. This is especially true for handle data accessed by means of
predefined index values. For portability, these index values are now supported by
means of the Windows extra long APis:

GetClassLong
GetWindowLong
SetClassLong
SetWindowLong

The index values used to manipulate data that has widened to 32 bit are mapped as
follows:

GCW_CURSOR
GCW_HBRBACKGROUND
GCW_HICON
GWW _HINSTANCE
GWW _HWNDPARENT
GWW_ID
GWW_USERDATA

-> GCL_CURSOR
-> GCL_HBRBACKGROUND
-> GCL_HICON
-> GWL_HINSTANCE
-> GWL_HWNDPARENT
->GWL_ID
-> GWL_USERDATA

Therefore, to modify code that can compile in either Windows version 3.x or
Win32, #ifdef directives are recommended:

#ifdef WIN32
hwndParent
#else
hwndParent
#endif

(HWND)GetWindowLong(hWnd, GWL_HWNDPARENT) ;

(HWND)GetWindowWord(hWnd, GWW_HWNDPARENT) ;

Alternatively, a named API already exists that obtains a parent Windows handle
and is portable:

Nonportable:

hwndParent (HWND) GetWindowWord (hWnd, GWW_HWNDPARENT) ;

Portable:

hwndParent = GetParent(hWnd);

Additional named APis are being considered to address the remaining values only
accessible by means of indexes in the current APis. The named APis will be
available in Windows version 3.x and Win32.

28 The Win32 Application Programming Interface

Profile String Use

Localized Input

The Windows extra word APis are also used to manipulate user-defined data that
may consist of private handles, pointers, or data that also must widen to 32 bit.
Therefore, review all uses of these APis in existing code to ensure that the data
stored in Windows extra words remains 16 bit. Otherwise, use Windows extra long
APis to manipulate this data on both Windows version 3.x and Win32 even though
the data may only be 16 bit in Windows version 3.x.

Win32 systems will provide a registration database. All system and application
configuration data will be stored in the database on a per-user basis with appropri
ate security controls to ensure that applications cannot corrupt one another's data or
the system's configuration data. A centralized database has a number of advan
tages, including simpler installation, remote administration of workstation software,
remote software updating, and error logging.

Win32 versions of the Windows version 3.x profile APis (for example,
GetProfileString and WriteProfileString) route profile string requests, including
private profiles (that is, * .INI files), to the registration database transparently.
Therefore, do not attempt to manipulate * .INI files directly with file 1/0 functions.
These files will not exist, and the data contained in them is not accessible via file
1/0 calls; only the profile string API will be supported.

The Win32 model is different from Windows version 3.x in that input ownership is
assigned at user input time-when the input is created-instead of when the input
is read out of the system queue. For this reason, each thread has its own input
synchronized state information. In other words, each thread has its own input
synchronized picture of the mouse capture and the active window and is aware of
which window has the focus.

This change adds tremendous benefit to programmers and users alike: It is no
longer possible for an application that fails to process messages to bottleneck the
system. Unlike applications for Windows version 3.x and OS/2 Presentation
Manager™, applications for Win32 will not be affected by other applications that
process their messages slowly or that otherwise fail to check their message queue.

The following APis are affected by localized input state:

SetFocus(HWND)
GetFocus(VOID)
SetActive Window(HWND)
GetActiveWindow(VOID)
GetCapture(VOID)
ReleaseCapture(VOID)

An Overview 29

In general, the Get APis query only local current thread state. The Set APis set
state local to the window creator thread. If the current thread did not create the
window, the current thread's related input state is set to NULL as if the input
related state were being transferred between threads.

Thus, the Windows version 3.x semantics of APis that return input-synchronized
states are changed slightly. For example, an HWND and a return value of TRUE
for success can call SetFocus, but a follow-up call to GetFocus might return
NULL. More substantially, GetFocus now returns NULL ifthe calling thread does
not have a focus window. Under Windows version 3.x, GetFocus never returns
NULL because a window in the system always has the keyboard focus.

Therefore, code applications to expect that functions such as GetFocus can return
NULL as a legal value. The return value should be tested against NULL before
being used in subsequent functions.

Mouse capture is affected in an added dimension. The Win32 server input thread
cannot know ahead of time when an input thread will set the capture. Also, regard
less of the input state of any application, the system must allow the user direct input
to any other application at any time. Therefore, the semantics of mouse capture
change slightly.

The semantics of how and when the capture changes are not affected; how and
when an application gets mouse input is affected. The Win32 server will send all
mouse input between a mouse down operation and a mouse up operation to the
queue of the thread that created the window into which the original mouse down
went. Thus, the input thread processes mouse capture as the input is read out of the
queue. If the mouse button is down during the mouse capture, the capture window
sees all input generated by the mouse, no matter where the mouse is on the screen,
until the mouse button goes up or until the mouse capture is released. If a thread
sets the mouse capture while the mouse button is up, the mouse capture window
sees mouse events only as long as the mouse is over a window that thread created.

30 The Win32 Application Programming Interface

Graphics Device Interface Code
This section details changes that need to be made to an application's GDI code.

Portable Solutions for Win32 API Changes
The Windows API consists of several hundred APis; all are widened to 32 bits with
minimal impact on existing source code, except for approximately two dozen,
which are generally GDI related. Unfortunately, these specific APis could not be
supported as-is in the Win32 API but had to be modified. Most of these APis fall
into a specific class. Previously, they returned a packed XIY value in a DWORD
return value. Because graphics coordinates are now 32 bit rather than 16 bit, an
extra parameter has been added to these functions, a pointer to a POINT structure.
To simplify porting, the Win32 forms for these functions are included in Windows
version 3.1. Windows version 3.1 will support the old and the new form. The
Win32 API names are based on the original with an Ex suffix added. Win32 will
support only the new form. If you write to the new form, you can compile for either
Win32 or Windows version 3.x.

Windows version 3.1 will implement the API by means of a static library so that
code compiled with the new API will also function in Windows version 3.0.

Modifying code to use the new forms of these APis is straightforward in most
cases. Half of the APis are used to get coordinates from GDI. The other half set
GDI coordinates and return the previously set value.

MoveToEx
OffsetViewportOrgEx
OffsetWindowOrgEx
Scale ViewportExtEx
Scale WindowExtEx
SetBitmapDimensionEx
SetMetaFileBitsEx
Set ViewportExtEx
Set ViewportOrgEx
SetWindowExtEx
SetWindowOrgEx

In general, most Windows applications ignore the return value from the above
functions. Therefore, modifying an existing application to use the new forms of
these APis is straightforward:

An Overview 31

Original:

MoveTo (hDC, x, y) ;

Portable:

MoveToEx(hDC, x, y, NULL) ;

In cases where the return value is used, you must modify code to use a structure
rather than using the packed DWORD in the original APL This is identical to the
matching APis that are used explicitly to obtain X/Y information.

GetAspectRatioFilterEx
GetBitmapDimensionEx
GetBrushOrgEx
GetCurrentPositionEx
GetTextExtentPoint
GetTextExtentPointEx
Get ViewportExtEx
Get ViewportOrgEx
GetWindowExtEx
GetWindowOrgEx

Of these APis, GetTextExtent is the most common to be encountered. In the case
of GetTextExtent, the Point suffix has been used because GetTextExtent already
has a Windows version 3.1 GetTextExtentEx extended function. Therefore, the
mapping of related functionality is as follows:

GetTextExtent
GetTextExtentEx

-> GetTextExtentPoint
-> GetTextExtentPointEx

Because the Win32 API form now relies on a structure, the typical coding change
requires creating a temporary (local) structure:

Nonportable:

dwXY = GetTextExtent(hDC, szFoo, strlen(szFoo));
rect.left = O; rect.bottom = O;
rect.right = LOWORD(dwXY); reel.top= HIWORD(dwXY);
InvertRect(hDC, &rect);

32 The Win32 Applieation Programming Interface

DIBs vs. DDBs

Portable:

SIZE sizeRect;

GetTextExtentPoint(hDC, szFoo, strlen(szFoo), &sizeRect);
rect.left = O; rect.bottom = O;
rect.right = sizeRect.cx; rect.top = sizeRect.cy;
InvertRect(hDC, &rect);
}

Another class of necessary Win32 changes concerns a handful of Windows APis
that do not provide a parameter for specifying sizes of buffers receiving data. This
is an API design error that is corrected in Win32. The functions affected are as
follows:

DlgDirSelectEx
DlgDirSelectComboBoxEx

And the changes for portability are minor:

Win3.x:

DlgDirSelect(hDlg, lpString, nIDListBox);

Portable:

DlgDirSelectEx(hDlg, lpString, sizeof(lpString), nIDListBox);

As noted previously, all functions listed in this section have equivalent, portable
versions in Windows version 3.1. Therefore, converting to the Win32 forms is not a
one-way street.

Beginning with Windows version 3.0, device-independent bitmaps (DIBs) have
been the recommended format for creating and initializing bitmap data. This format
includes a header with bitmap dimensions, color resolution, and palette information
supporting portability between Windows version 3.x and Win32. Device-dependent
bitmaps (DDBs), as originally offered in Windows versions 1.x and 2.x, are not
recommended.

An Overview 33

Because DDBs lack complete header information, applications that directly
manipulate DDB data are not portable to Win32. Developers are encouraged to
write to the Windows version 3.x DIB APis (for example, SetDIBitmapBits); these
calls are portable. Win32 does provide, however, a subset of functionality for DDB
APis, such as SetBitmapBits:

Monochrome DDBs are fully supported.

Caching color bitmaps with GetBitmapBits and SetBitmapBits is supported.

Caching implies that GetBitmapBits is used to save bitmap data on disk. In low
memory situations in Windows versions l .x and 2.x, the bitmap in memory could
be freed and easily restored with GetBitmapBits. This implies that the DDB data is
never manipulated; it is simply backed up and restored on disk in its original form.
Although caching is not needed in Windows version 3.x or Win32, source code
employing this technique will still be supported.

Win32 does not support initializing color DDBs with CreateBitmap. Such code is
also not portable among Windows version 3.x systems with different display drivers
because DDB data is device-driver dependent.

Sharing Graphical Objects
All applications for Windows version 3.x run in a shared address space. Data can be
directly manipulated, and other Windows processes can directly access per-process
objects that the system created. This architecture has been exploited by some
applications that create a single graphical object, such as a pen or a bitmap, and
allow separate processes to use the pen or draw on the bitmap.

Applications for Win32 run in separate address spaces, and graphical objects are
owned by the process that creates them. Only the owner of a graphical object can
manipulate it. A handle to a bitmap passed to another process cannot be used by
that process because the original process retains ownership of the bitmap.

Pens and brushes should be created by each process. A cooperative process may
access the bitmap data in shared memory (by means of standard IPC) and create its
own copy of the bitmap. Alterations to the bitmap must be communicated between
the cooperative processes by means of IPC and a proper protocol. One such
protocol is DDE. Win32 may add an explicit ownership transfer API for graphical
objects to allow cooperative applications to share graphical objects.

34 The 'Nin32 Application P1091a111111ing Interlace

Base System Support
This section details portability issues for base Windows functions, including instance
initialization, memory allocation, INT21 functions, and DLLs.

Instance Initialization
The first release of Windows (version 1.01) was designed to run on 8088-based
systems, which assumed limited installed memory (512K RAM). Functions such as
GetlnstanceData and knowledge about other instances of an application already
running allowed efficient data sharing and initialization using data belonging to
other running instances. On protected systems in which applications run in separate
address spaces, these functions are no longer appropriate.

Therefore, applications that want to share data among several instances must
replace calls to GetlnstanceData with standard IPC techniques such as shared
memory and/or DDE.

A Win32 version of WinMain supports the same parameter list as does Windows
version 3.x:

int WinMain(hinstance, hPrevinstance, lpOndLine, nCmdShow)

However, the hPrevlnstance parameter always returns NULL, indicating that this is
the first instance of the application, regardless of any other already running
instances. Although this situation would appear to be a problem, the initialization of
most applications is handled correctly. Under Windows version 3.x, multiple
instances can share private window classes registered by the first instance. Under
Win32, each instance is required to register its own window classes.

Applications usually test hPrevlnstance to see if they must register their window
class. This test is guaranteed to work optimally under Win32, always indicating the
first instance of the application, and Win32 requires that every instance register its
own window classes.

Some applications, however, must know if other instances are running. Sometimes
data sharing is required, but typically applications that care about multiple in
stances are interested in ensuring that only one instance of the application runs at
any time. An example is the Control Panel; another is the Task Manager.

Applications such as these cannot use hPrevlnstance in Win32 to test for previous
instances. These applications must use an alternative method, such as creating a

An Overview 35

unique named pipe, creating/testing for a named semaphore, broadcasting a unique
message, or calling Find Window. If another instance is found, the application
determines which instance should be terminated.

Memory Manipulation
Under the Windows version 3.x segmented memory architecture, globally allocated
memory always aligns on segment boundaries. Both GlobalAlloc and the C run
time malloc family of functions allocate global memory in a way that causes the
16-bit offset of the 32-bit segmented pointer that references the base address of this
data always to be 0.

This behavior is not portable to linear memory. Memory allocation is not guaran
teed to align on 64K boundaries. Memory is allocated with a 4K page granularity,
but some objects may be packed to fit within a single page to maximize memory
efficiency. (Pointer manipulation is discussed later in this document.)

Win32 API Replacements for INT21
Direct INT21 functions or the use of the Windows version 3.x DOS3Call API to
request MS-DOS to perform file I/O operations must be replaced by the appropriate
Win32 file 1/0 calls. Win32 has a complete set of named APis to replace
nonportable INT21 functions.

INT21H
Function MS-DOS Operation Win32 API Equivalent

OEH Select Disk SetCurrentDirectory

19H Get Current Disk GetCurrentDirectory

2AH Get Date GetDateAndTime

2BH Set Date SetDateAndTime

2CH Get Time GetDateAndTime

2DH Set Time SetDateAndTime

36H Get Disk Free Space GetDiskFreeSpace

36 The Win32 Application Programming Interface

39H Create Directory CreateDirectory

3AH Remove Directory Remove Directory

3BH Set Current Directory SetCurrentDirectory

3CH Create Handle Create File

3DH f1npn l-l'.lnrlli::o. OpenFilc '-'.t'"".l..l .1..1.u..L.LUJ..'-'

3EH Close Handle CloseHandle

3FH Read Handle ReadFile

40H Write Handle WriteFile

41H Delete File Delete File

42H Move File Pointer SetFilePointer

43H Get File Attributes GetAttributesFile

43H Set File Attributes SetAttributesFile

47H Get Current Directory GetCurrentDirectory

4EH Find First File FindFirstFile

4FH Find Next File FindNextFile

56H Change Directory Entry MoveFile

57H Get Dateffime of File GetDateAndTimeFile

57H Set Dateffime of File SetDataAndTimeFile

59H Get Extended Error GetLastError

SAH Create Unique File GetTempFileName

5BH Create New File Create File

An Overview 37

SCH Lock LockFile

SCH Unlock UnlockFile

67H Set Handle Count SetHandleCount

In most situations, the standard C run-time libraries are sufficient for normal file
I/O. The C run time has the advantage of being portable across many platforms.

Dynamic Link Libraries
DLL initialization and termination functions behave differently in Windows
version 3.x and Win32 in terms of how they are defined, when they are called, and
the information that is made available to them. Win32 DLLs are easier to create
and have functionality not currently available in Windows version 3.x. In Windows
version 3.x, initialization and termination functions must be provided, the termina
tion function must be named WEP, and the initialization function is the DLL entry
point written in master. Initialization and termination functions are optional in
Win32DLLs.

In Windows version 3.x, the DLL initialization function is called once, when the
DLL is first loaded in the system. The function is not called again, even if other
applications that use the DLL are called. Likewise, the DLL termination function is
not called until the DLL is unloaded from the system, when the last application
using it terminates or frees the library. The initialization and termination functions
are distinct. The startup code for the initialization function must be in assembly
language, to allow access to parameters that are passed in machine registers.

In Win32, the DLL initialization function is the same as the termination function,
and its name is specified at link time. Initialization or termination functionality is
selected by a Boolean parameter, bAttaching, passed to the initialization function.
The DLL initialization function is called each time a process attaches to the DLL
for the first time or detaches from the DLL for the last time. Thus, if five processes
access the same DLL, the DLL's initialization function is invoked five times with
the bAttaching parameter set to TRUE. When these five processes terminate,
detaching the DLL from each process causes five calls to the DLL initialization
function, with the bAttaching parameter set to FALSE.

Windows version 3.x DLLs are typically implemented completely in assembly
language or in C and linked to the standard LIBENTRY.ASM function. This
function calls LibMain after initializing the heap and saving appropriate registers.

38 The Win32 Application Programming Interface

In porting to Win32, DLLs implemented in assembly language should be rewritten
in C so that they are portable to RISC-based systems.

Windows version 3.x DLL initialization functions are passed the following infor
mation:

the DLL's instance handle

• the DLL's data segment (DS)

• the heap size specified in the DLL's .DEF file

the command line

Win32 DLL initialization functions are passed the following information:

the DLL's module handle

the bAttaching Boolean, indicating initialization or termination

The Win32 module handle is analogous to the Windows version 3.x instance
handle. In Win32, the data segment is irrelevant because declared DLL data is
either private to each process accessing the DLL or shared among cooperative
processes accessing the DLL. The DLL's module definition file controls whether
DLL data is shared or private. The heap size is not passed to the Win32 DLL
initialization function because all calls to local memory management functions
operate on the default heap, which is provided to each process. The command line
does not need to be passed as a parameter because in Win32 it can be obtained
through an API function.

Although the Windows version 3.x LIBENTRY.ASM function contains
nonportable assembly routines, it isolates the assembly language initialization and
supports writing additional DLL-specific initialization in C by means of the
LibMain function. For portability to Win32, DLL initialization code should be
added to the LibMain function and written in C. (For further information on
LIBENTRY.ASM, see the Windows version 3.x SDK documentation.)

C Coding Guidelines
The Win32 API was designed to simplify the creation of Win32 applications from
Windows version 3.x sources. Specific API differences have been discussed above.
Creating portable Windows code also involves writing portable C. Fortunately, the

An Overview 39

similarity of Windows version 3.x and Win32 requires only that a concise set of
portable C guidelines be followed. Windows programs have generally been
optimized to operate with the Sf'gmented x86 architecture. Therefore, the change
from segmented to linear memory is the most significant issue in creating portable
C code.

Pointer Manipulation
Win32 supports a compatible set of memory management functions, such as
GlobalAlloc and GlobalLock, and a new set of advanced linear memory APis.
Therefore, existing applications for Windows can easily be converted to Win32 and
continue to use the Windows version 3.x memory allocation and handle
dereferencing APL

As mentioned previously, memory allocations are not aligned on 64K boundaries.
Therefore, any pointer arithmetic based on assumptions of segment:offset encoded
pointers will fail in Win32. When computing offsets to arrays of structures, do not
create pointers by combining a computed 16-bit offset with the high-order 16 bits
of an address pointer. This type of pointer arithmetic depends on segment: offset
encoded addresses.

Several other pointer characteristics should be observed:

All pointers (even pointers to objects in the local heap) grow to 32 bits.

Code that takes advantage of 16-bit pointer address-wrapping is not appropri
ate with linear addresses.

Structures that hold NEAR pointers in Windows version 3.x will grow from 2
bytes to 4 bytes in Win32.

Promotions and Ranges
Expressions involving the C integer data types (int and unsigned int) should be
reviewed for portability, especially if the compiler already generates warnings about
signed/unsigned mismatches or conversion warnings. The int data type grows from 16 to
32 bits, which can subtly affect applications compiled for Win32. Typical problems
encountered are sign extensions and assumptions (sometimes unintentional) about
ranges. Loops that take advantage of 16-bit ints and of the fact that integer loop counters
will wrap at 32,767 or 65,535 will experience problems when the integer loop counters
grow to 32 bit and wrapping occurs at 2 GB or 4 GB.

40 The Win32 Application Programming Interface

Structure Member Alignment

Unique Typedefs

Data accesses to unnaturally aligned data elements are expensive on some hardware
architectures and are illegal on others. For example, on the 80386, accessing a DWORD
that is not 4-byte aligned results in a performance penalty. When the same code is
moved to a MIPS RISC processor, the misaligned access generates a fault. The system
handles the fault, and system software decodes the data. Although the code is portable, it
is not efficient. Therefore, all data elements should be aligned consistently with their
type. Alignment rules vary with architecture, but the following guidelines are appropri
ate for the Intel and MIPS processors targeted by Win32.

Win32 Structure Member Alignment

char:

short (16-bit):

int/long (32-bit):

float/double:

structures:

Align on byte boundaries

Align on even byte boundaries

Align on 32-bit boundaries

Align on 32-bit boundaries

Align on 32-bit boundaries

Creating a portable structure that is both efficient in memory usage (without
packing) and aligned properly is possible.

As illustrated in the GENERIC code fragment listed earlier in this document,
unique typedefs are useful in creating portable code. Even though the typedefs can
have different underlying definitions in Windows version 3.x and Win32, Windows
source code can remain unchanged.

Windows offers unique typedefs for most objects defined in WINDOWS.H. Unique
typedefs such as HPEN, HBRUSH, and HWND better support portability to
Win32 than do generic typedefs such as HANDLE. Although all handles in
Windows version 3.x are interchangeable with HANDLE or unsigned int, using
these basic data types affects porting to Win32 because various objects require
different typedefs under Win32 than under Windows version 3.x.

Just as using unique typedefs is recommended when defining (or casting) Windows
objects, creating a complete set of unique typedefs for application-specific objects
is also strongly recommended. As with the Windows objects, the underlying
application-specific data types and structures can be modified and minimally affect
source code that uses these data types.

UINT vs. WORD

An Overview 41

Win32 relies on existing Windows version 3.x WINDOWS.H typedefs to automati
cally widen parameters and structure members to 32 bits as well as retain 16-bit
data types for compatibility. All handles (HWND, HANDLE, HPEN, HBRUSH,
and so on) grow to 32 bits. Data types such as LONG and DWORD are 32 bit in
both Windows version 3.x and the Win32 APL

In creating the Win32 API, it was recognized that a new, flexible typedef was
required. The UINT data type is defined to be an unsigned int. This data type is 16
bits in Windows version 3.x and 32 bits in Win32. Therefore, this is a portable data
type that also takes advantage of 32-bit mode. Accessing 32-bit data is more
efficient than accessing 16-bit data, especially for RISC processors. The WORD
typedef is generally considered a 16-bit quantity and remains a 16-bit data type in
Win32. UINT and WORD data types are defined as follows:

typedef unsigned int DINT;
typedef unsigned short WORD;

Therefore, WORD remains 16 bit on Win32 and should be used to specify only
objects that should exist as 16-bit unsigned types. UINT should be used to define
objects that naturally widen in 32-bit mode.

Structures and API prototypes in Windows version 3.1 header files have replaced
WORD with UINT for structure members and API parameters that should widen to
32 bits. Although UINT and WORD are interchangeable (for compatibility) in
Windows version 3.1 headers, they are not interchangeable in Win32. Therefore,
applications should review the following typedefs and update source code to use the
proper data types for portability:

Flexible data types:

int

UINT

; 16-bit signed integer on Windows 3.x,
32-bit signed integer on Win32

; 16-bit unsigned integer on Windows 3.x,
32-bit unsigned integer on Win32

Fixed-size data types:

WORD
DWORD
LONG

; 16-bit unsigned integer in Windows 3.x and Win32
; 32-bit unsigned integer in Windows 3.x and Win32
; 32-bit signed integer in Windows 3.x and Win32

42 The Win32 Application Programming Interface

Portable Use of the WORD Data Type
Historically, Windows programs have used the various typedefs interchangeably:
WORD, HWND, HANDLE, and so on. It is not uncommon to see (WORD) casts
being used to assign values to variables holding handles to windows:

Nonportable:

HWND hWnd;
hWnd = (WORD)SenclMessage(hWnd, WM_GETMDIACTIVE, NULL, NULL);

Portable:

HWND hWnd;
hWnd = (HWND) SenclMessage (hWnd, WM_GETMDIACTIVE, NULL, NULL) ;

In porting the Windows version 3.x system applets, games, and sample code, most
(WORD) casts were found to be nonportable.

Review all (WORD) casts in existing Windows version 3.x code to determine the
data type/size of the original value and result.

General Recommendations
The following coding recommendations are well known but are occasionally
ignored. Reviewing your code and addressing the following issues will create more
robust Windows version 3.1 code and will create code that is more easily ported to
Win32.

Review hard-coded buffer sizes for file names and environment strings. Although
dynamically allocating buffers to hold strings is not necessary, Win32 supports
FAT 8.3 and long file names (256 characters). Therefore, buffers hard-coded
assuming FAT 8.3 format will not take advantage of long file name support. Using
a #define to define sizes for array allocations will assist portability of the source
code to Win32.

Compile all sources at warning level 2 (-W2); warning level 3 (-W3) is recom
mended. Warning level 3 has been a problem in the past because WINDOWS.H
included non-ANSI C-compliant bit-field definitions that did not pass at this
level. The latest release of the Microsoft C compiler (C 6.00a) moves this fatal
error to -W4, allowing the strict type checking of -W3.

An Overview 43

Create function prototypes for all functions. Relying on default C compiler han
dling is often (but not guaranteed to be) portable. In addition to parameter assump
tions, the Microsoft C compiler supports various calling conventions (_cdecl,
_pascal, and so on), and the default calling convention may change because of
future C compiler implementations. Using function prototypes helps isolate source
code from default compiler behavior and changes in the ANSI C definition.

Until recently the size of WINDOWS.H has been a problem for the Microsoft C
compiler, causing out-of-heap space problems in Pass 1 and/or Pass 2 of the
compiler. This problem is corrected in the MS-DOS extender version of the
Microsoft C compiler (C 6.00ax). ISVs have worked around this previous limitation
by extracting specific WINDOWS.H definitions into their source code. This could
cause portability problems if these WINDOWS.H definitions are not updated with
Win32 definitions when the source is compiled under Win32. Therefore, either
remove extracted header information and rely on WINDOWS.H or clearly high
light extracted information for modification when building a Win32 version.

This overview has concentrated on the most common issues that will be encoun
tered in creating a portable Windows application. Although a significant number of
changes may appear to be required for portability, in practice, creating a portable
application for Win32 systems (either native 32 bit or by means of binary compat
ibility) is straightforward. Porting tools help automate the process.

With the compatible changes being made in the Windows version 3.1 SDK, there is
truly one Windows API with 16-bit segmented and 32-bit linear forms. Although
the Win32 API offers new advanced features, the semantics of the existing Win
dows API are not broken. Only a small percentage of APis and messages were
affected by 32-bit widening. In these situations new, portable solutions have been
provided in the Windows version 3.1 APL

Summary of Compatibility Rules
Rules for Windows version 3.x binary compatibility on Windows NT:

•

Ensure that applications for Windows version 3.x run in Standard/Enhanced
mode.

Use published Windows version 3.x APis, messages, and structures.

Do not modify WIN.INI directly; use a profile string APL

Use QUERYESCSUPPORT to determine whether particular printer driver
escapes are implemented.

44 The Win32 Application Programming Interface

Rules for portable Windows version 3.x/Win32 source code:

•

•

•

Parse wParam and lParam immediately in WndProc routines.

Use portable API forms (for example, MoveToEx instead of MoveTo).

NULL is a valid return value from GetFocus and GetActiveWindow.

Use FindWindow instead of hPrevlnstance to find other running instances.

GlobalLock and malloc will not return 64K aligned pointers.

Use Windows version 3.x DIB functions to initialize color bitmaps .

Do not use GetlnstanceData; replace with supported IPC mechanism.

Do not share GDI object handles (for example, pens and bitmaps) between
processes.

Compile warning level -W2 or higher (-W3 recommended) .

Create function prototypes for all functions .

Review structure member alignment and data types.

Remove hard-coded buffer sizes (for example, file names and paths).

Do not extract private copies of WINDOWS.H definitions.

Use unique typdefs (HPEN, HWND, not HANDLE or int).

Use portable integer typdefs (UINT, WORD).

Mictosott®

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

0392 Part No. 30214

